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ABSTRACT 

Lignocellulosic biomass appears to be a prospective renewable resource that can be used 

for the generation of biofuels and bioproducts. The major concern in lignocellulose conversion is 

overcoming biomass recalcitrance through pretreatment while still maintaining a green, energy 

efficient and cost-effective process. Energy cane is a promising energy crop with high fiber 

content, cold tolerance, and less fertilizer and water input requirements as compared to 

conventional sugarcane. Ionic liquids (ILs) are promising solvents for the pretreatment of 

lignocellulose as they are thermally stable, environmentally friendly, recyclable, and have low 

volatility. This study assessed the use of ionic liquid 1-ethyl-3-methylimidazolium acetate 

([EMIM][OAc]) as a solvent during the pretreatment of energy cane bagasse (ECB) and its effect 

on the chemical composition, surface morphology, cellulose crystallinity, and enzymatic 

hydrolysis of the pretreated biomass. 

IL-treated ECB resulted in significant lignin removal (32.1%) with slight glucan and 

xylan losses (8.8% and 14.0%, respectively), and exhibited much higher cellulose and 

hemicellulose enzymatic digestibilities (87.0%, 64.3%) than untreated (5.5%, 2.8%) or water-

treated (4.0%, 2.1%) ECB, respectively. The enhanced digestibilities of IL-treated biomass can 

be attributed to delignification and reduction of cellulose crystallinity as confirmed by FTIR and 

XRD analysis. When pretreating ECB with recycled IL, enzymatic digestibility decreased as the 

number of pretreatment recycles increased.  Decreasing the pretreatment temperature from 120 

°C to 100 °C and extending the residence time from 30 min to 2 h brought significant 

improvement to the pretreatment efficiency of recycled [EMIM][OAc] on ECB. However, 

response surface methodology model indicated that a higher glucose yield of IL-treated biomass 

could be obtained at higher pretreatment temperatures with shorter residence times. The optimal 



x 

 

processing conditions were pretreatment of ECB at 131.9 °C for 28.1 min at 8.4% solids loading 

resulting in a final glucose yield of 35.96 g glucose per 100 g of native biomass.  

The results presented in this thesis demonstrated that [EMIM][OAc] can be used as a 

potential solvent for the pretreatment of lignocellulosic biomass such as ECB. Furthermore, the 

sugar yields obtained post pretreatment have great potential as building blocks in the production 

of renewable fuels and chemicals.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Lignocellulosic Biomass 

Renewable fuels and chemicals have gained increased interest worldwide due to growing 

concerns on energy consumption, depletion of fossil fuels, and increasing greenhouse gas 

emissions (Liu et al., 2012). Current production of bioethanol (first generation biofuels) relies on 

the use of sugars from food crops (Ajanovic, 2011). The major crops for biofuels are corn, 

wheat, barley, sugarcane, rapeseed, soybean, and sunflower which are all directly or indirectly 

used in food production (Sims et al., 2010). The sustainable and economic production of first 

generation fuels has, however, come under close scrutiny in the last decade attributed in most 

part to the competition for limited land and water used for food and fiber production (Alvira et 

al., 2010). Mueller et al. (2011) claimed that biofuel production contributed to 3-30% increase in 

commodity food prices from 2007 to 2008.  Boddiger (2007) reported that the number of food-

insecure people would rise by over 16 million for every percentage increase in the real prices of 

staple foods, raising the total number of chronically hungry to 1.2 billion by 2025. The recently 

identified limitations of first generation biofuels have caused great emphasis on second 

generation biofuels produced from lignocellulosic biomass or biomass not use for human 

consumption (Sims et al., 2010). 

Lignocellulosic biomass appears to be a prospective renewable energy resource that can 

be used for the generation of biofuels and bioproducts. A jointed study supported by the U. S. 

Department of Energy (DOE) and the U. S. Department of Agriculture (USDA) indicated that 
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the land resources in the United States  are sufficient to sustain production of over 1.3 billion dry 

tons of biomass annually, which could be available for large-scale bioenergy and biorefinery 

industries by mid-21
st
 century while still meeting demand for forestry products, food and fiber 

(Perlack et al., 2005). A 30 percent replacement of the current U.S. petroleum consumption with 

biofuels by 2030 was also envisioned in this study. Crop residues (sugarcane bagasse, corn 

stover, rice straw, wheat straw, sorghum bagasse), hardwood (black locust, poplar, eucalyptus), 

softwood (pine, spruce), herbaceous biomass (switchgrass, Bermuda grass), cellulose waste, and 

municipal solid wastes are some traditional lignocellulosic biomass sources with potential for 

biofuels production (Aita and Kim, 2010).  

Energy cane, a hybrid of commercial and wild sugarcanes, is another ideal energy crop 

and lignocellulose resource, which is bred for high fiber content and low sucrose (Kim and Day, 

2011). Unlike sugarcane, energy cane is more cold tolerant, requires less fertilizer and water 

input, and requires replanting only every ten years, as compared to every three years for 

sugarcane (Sierra et al., 2008). A non-commercial energy cane variety, L79-1002, developed in 

collaboration with the U. S.  Department of Agriculture-Agricultural Research Service (USDA-

ARS) in Houma, LA and the Louisiana State University Agricultural Center Sugar Research 

Station in St. Gabriel, LA has an average fiber content of 257 g/kg (dry basis) and cane yield of 

83.3 Mg/ha (dry basis) (Bischoff et al., 2008) as compared to LCP 85-384, the predominant 

commercial variety of sugarcane grown in Louisiana, with a fiber content of 117 g/kg (dry basis) 

and cane yield of 59.2 Mg/ha (dry basis) (Gravois et al., 2009).  

Lignocellulosic biomass including energy cane bagasse is not readily available for 

bioconversion into biofuels and bioproducts due to its recalcitrant structure. Lignocellulose is  
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Fig. 1.1. Chemical Composition of Lignocellulosic Biomass (Macrae et al., 1993). 

 

composed mainly of cellulose, hemicellulose and lignin as shown in Fig. 1.1. A cellulose chain is 

made up of glucose units joined together by β-1,4 glycosidic bonds (Aita and Kim, 2010). 

Individual cellulose chains are held together by strong hydrogen bonds and van der Waals forces, 

which make cellulose a highly crystalline polymer (Dadi et al., 2007). The crystalline structure 

makes cellulose water insoluble and highly resistant to chemical and biological degradation 

(Mosier et al., 2005). Hemicellulose, a polymer of five carbon sugars, is relatively amorphous 

and it is readily degraded by glycosidases (Lee et al., 2009). However, the xylan layer with its 

covalent linkage to lignin and its non-covalent interaction with cellulose may play a role in 

preventing enzymatic degradation (Beg et al., 2001). Lignin is a highly branched and aromatic 
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polymer, which consists mainly of ether linked phenylpropanoid units, and it serves as the “glue” 

that binds cellulose and hemicellulose, giving both rigidity and resistance to the lignocellulosic 

structure (Aita and Kim, 2010; Lee et al., 2009). The close association and complexity of the 

carbohydrates-lignin complex which results in low enzymatic accessibility is the main obstacle 

in lignocellulosics degradation (Lee et al., 2009; Zhu et al., 2008). 

1.2 Pretreatment and Enzymatic Hydrolysis 

Four major steps are needed to convert lignocellulosic biomass to bioethanol and can be 

summarized as follow: (1) pretreatment to breakdown the carbohydrates-lignin complex and 

enhance the access of enzymes to sugar polymers, (2) enzymatic hydrolysis to break down the 

cellulose and hemicellulose structures into their corresponding monosaccharides, (3) 

fermentation of monomeric sugars into ethanol by yeast or bacteria, and (4) distillation of 

ethanol (Hu et al., 2008). Pretreatment aims at breaking the lignin structure and disrupting the 

crystalline structure of cellulose to make cellulose and hemicellulose available for enzymatic 

hydrolysis (Fig. 1.2).  

Cellulose is hydrolyzed by cellulases after pretreatment. The cellulases are a mixture of 

endo-1, 4-β-glucanase, exo-1, 4- β-glucanase, and β-glucosidase, among which endo-1, 4-β-

glucanase randomly cleaves internal bonds in the amorphous structure of  cellulose, exo-1, 4- β-

glucanase removes tetrasaccharides or disaccharides from the non-reducing ends of cellulose 

chains, and β-glucosidase breaks down the tetrasaccharides and disaccharides into glucose (Aita 

and Kim, 2010; Lynd et al., 2002). Three steps take place during enzymatic hydrolysis of 

cellulose: (1) cellulases attach to the surface of cellulose, (2) cellulases break down cellulose to 

glucose, and (3) cellulases detach from the surface of cellulose (Sun and Cheng, 2002).    
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Fig. 1.2. Effect of Pretreatment on Lignocellulose (Mosier et al., 2005). 

 

A promising pretreatment (1) minimizes the loss of cellulose and hemicellulose during 

pretreatment, (2) reduces the production of compounds that are inhibitory to both  enzymes 

during enzymatic hydrolysis and microorganisms during fermentation,  (3) increases sugar yields 

after enzymatic hydrolysis,  (4) requires less energy input, and (5) minimizes capital and 

operating costs (Aita and Kim, 2010; Sierra et al., 2008). Pretreatment methods can be classified 

into biological, mechanical, physicochemical, and chemical processes (Aita and Kim, 2010; 

Brodeur et al., 2011; Hendriks and Zeeman, 2009; Liu et al., 2012; Shill et al., 2011; Sierra et al., 

2008; Zhao et al., 2009). Specifically, biological pretreatments (e.g., fungi degradation) are 

carried out by aerobic fungi such as white rot, brown rot and soft rot. Aerobic fungi make 
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lignocellulose more digestible by attacking both cellulose and/or lignin, but this process 

generally requires excessive residence time of 10-14 days. Mechanical pretreatments (e.g., 

milling, grinding) break down lignocellulosic biomass into small particles by milling, grinding or 

chopping, which results in increase of specific surface area, decrease of the degree of 

polymerization and the crystallinity of cellulose, and, consequently, improvement of hydrolysis 

yields.  However, intensive energy and capital cost is the main drawback. Physicochemical 

pretreatments (e.g., steam explosion, liquid hot water, supercritical fluids) are effective and 

promising methods to pretreat lignocellulosic biomass. Generally, they are cost-effective and 

result in high hydrolysis yields, but specialized equipment which can withstand high pressures 

and high temperature is needed. Moreover, steam explosion produces toxic compounds during 

pretreatment.  Chemical pretreatments (e.g., alkali, acid, oxidizing agents, organic solvent, ionic 

liquids) have been shown to be highly effective in lignin removal, reducing cellulose crystallinity 

and improving hydrolysis yields. Some drawbacks include corrosion of equipment, release of 

toxic pollutants, and the high cost of catalysts and solvents. Therefore, the major concern in 

lignocellulose conversion is overcoming biomass recalcitrance through pretreatment while still 

maintaining a green, energy efficient and cost-effective process (Lee et al., 2009). 

1.3 Ionic Liquid and Ionic Liquid Pretreatment 

Ionic liquids (ILs) are a group of new organic salts that exist as liquids at relative low 

temperature (usually below 100 ºC). ILs exhibit excellent physical characteristics including the 

ability to dissolve polar and non-polar organic, inorganic and polymeric compounds (Lee and 

Lee, 2005). They are generally considered as green solvents which can be potential substitutes 

for traditional flammable and volatile solvents due to their desirable properties which include 
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low volatility, high thermal stability, non-flammability, and good recyclability (Quijano et al., 

2010). Physical properties of ILs such as melting points, viscosity, hydrophobicity, and 

hydrolysis stability depend on both the type of cation/anion pair and the alkyl chain of the anion 

(Huddleston et al., 2001). Therefore, the physical properties of ILs can be adjusted by changing 

the structure of either the cation or the anion, or both to meet a special application. The main 

cations and anions commonly used for the synthesis of ILs are shown in Fig. 1.3. Mäki-Arvela et 

al. (2010) reported that physicochemical properties of ILs  (i.e., viscosity, melting point, 

dipolarity, and hydrogen bond basicity) have significant effects on pretreatment of 

lignocellulosic biomass.  

 

 

Fig. 1.3. Main Cations and Anions Present in Ionic Liquids (Olivier-Bourbigou et al., 2010). 

 

Pretreatment with ILs can reduce the crystallinity of cellulose and partially remove 

hemicellulose and lignin while not generating degradation products which are inhibitory to 

enzymes or fermenting microorganisms (Dadi et al., 2007; Lee et al., 2009). Meanwhile, ILs 
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pretreatments are less energy demanding, easier to handle and more environmentally friendly 

than other pretreatment methods such as mechanical milling, steam explosion, acid, base, or 

organic solvent processes (Rogers and Seddon, 2003; Zhao et al., 2009). More than 20 ILs have 

been reported to be able to dissolve cellulose, which can be regenerated by the addition of anti-

solvents, such as water, ethanol or acetone (Fukaya et al., 2008; Holm and Lassi, 2011; Shill et 

al., 2011). The polar characteristics and the ability to generate hydrogen bonds are the main 

properties of ILs, affecting the dissolution of cellulose and carbohydrates (Holm and Lassi, 

2011). The mechanism for the dissolution of cellulose in ionic liquids is shown in Fig. 1.4. Feng 

and Chen (2008) indicated that interactions between the oxygen and hydrogen atoms of 

cellulose-OH and the cation and anion of ionic liquid results in the dissolution of cellulose. The 

cellulose atoms serve as electron pair donors and hydrogen atoms act as electron acceptors. Upon 

interaction, the oxygen and hydrogen atoms from hydroxyl groups are separated, which leads to 

the opening of hydrogen bonds between molecular chains of the cellulose and, as a result, the 

cellulose dissolves. 

 

 

Fig. 1.4 Dissolution Mechanism of Cellulose by Ionic Liquids (Feng and Chen, 2008). 
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Typical ionic liquids used during biomass pretreatment contain an anion of chloride, 

formate, acetate or alkylphosphonate, which forms strong hydrogen bonds with cellulose and 

other carbohydrates (Zhao et al., 2009). In earlier studies, two chloride-based ILs, 1-butyl-3-

methylimidazolium chloride ([BMIM]Cl) and 1-allyl-3-methylimidazolium chloride 

([AMIM]Cl), have been demonstrated to be effective ILs for pretreatment (Wu et al., 2004; Zhao 

et al., 2009; Zhu et al., 2006). However, [BMIM]Cl is corrosive and toxic, and [AMIM]Cl is 

viscous and has a reactive side chain (Zhao et al., 2009). In general, acetate-based ILs are less 

viscous than chloride-based ILs, and are more thermally stable than formate-based ILs (Fukaya 

et al., 2008; Zhao et al., 2008). Sun et al. (2011) pointed out that the anions affect the solubility 

of cellulose in ILs with the same cation in the following decrease order: [OAc]
−
 ≈ 

[(CH3CH2O)2PO2]
− 

 > [SHCH2COO]
− 

> [HCOO]
−
 > Cl

−
 > Br

−
 ≈ [SCN]

−
. Therefore, the acetate-

based IL 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) (Fig. 1.5) was selected as the 

pretreatment solvent in this study because of its high lignocellulose solubility, low melting 

temperature (-20 °C), low viscosity, non-toxicity, and non-corrosiveness (Samayam and Schall, 

2010). 

 

 

Fig. 1.5. Molecular Structure of 1-Ethyl-3-Methylimidazolium Acetate [EMIM][OAc]. 
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1.4 Goal of This Study 

This study aimed to assess the use of 1-ethyl-3-methylimidazolium acetate 

([EMIM][OAc]) as a solvent during the pretreatment of energy cane bagasse and its effect on the 

chemical composition and enzymatic hydrolysis of pretreated biomass. This study is divided into 

three sections: (1) Chapter 2, assessment of the effect of [EMIM][OAc] during the pretreatment 

of energy cane bagasse by monitoring changes in biomass chemical composition (cellulose, 

hemicellulose and lignin), surface morphology, cellulose crystallinity, and enzymatic 

digestibility; (2) Chapter 3, investigation of the pretreatment efficiency of recycled 

[EMIM][OAc] on energy cane bagasse in terms of its chemical composition and enzymatic 

hydrolysis; (3) Chapter 4, optimization of the pretreatment processing parameters for 

[EMIM][OAc] on energy cane bagasse by response surface methodology. 
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CHAPTER 2  

EFFECT OF IONIC LIQUID PRETREATMENT ON THE CHEMICAL 

COMPOSITION, STRUCTURE AND ENZYMATIC HYDROLYSIS OF 

ENERGY CANE BAGASSE 

 

2.1 Introduction 

Lignocellulose is a suitable and renewable energy resource that can be used for the 

generation of bio-based transportation fuels and chemicals. The polysaccharides (hemicellulose 

and cellulose) present in native or untreated lignocellulosic biomass are not readily available for 

bioconversion into fuels and chemicals. The close association and complexity of the 

carbohydrates-lignin complex is the main obstacle in lignocellulosics degradation (Lee et al., 

2009; Zhu et al., 2008). Pretreatment aims at breaking the lignin structure and disrupting the 

crystalline structure of cellulose to make cellulose and hemicellulose available for enzymatic 

hydrolysis. Processing shortages such as long residence time, high energy demand, high cost, 

and environmental pollution exist in current biological, mechanical, chemical, and 

physicochemical pretreatment methods (Shill et al., 2011; Zhao et al., 2009).  Therefore, the 

major concern in lignocellulose conversion is overcoming biomass recalcitrance through 

pretreatment while still maintaining a green and energy efficient process (Lee et al., 2009). 

 

 

 

 

 

Reprinted by permission of “Bioresource Technology”. 

This chapter previously appeared as: Qiu, Z., Aita, G.M., Walker, M.S. 2012. Effect of ionic 

liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy 

cane bagasse. Bioresource Technology, 117, 251-256. 
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Ionic liquids (ILs) are thermally stable organic salts with potential application as ‘‘green 

solvents’’ (Sheldon et al., 2002). ILs exhibit excellent physical characteristics including the 

ability to dissolve polar and non-polar, organic, inorganic, and polymeric compounds (Lee and 

Lee, 2005). Additionally, ILs have the advantages of having low volatility, being non-flammable 

and recyclable (Gremos et al., 2011). Pretreatment with ILs can reduce the crystallinity of 

cellulose and partially remove hemicellulose and lignin while not generating degradation 

products which are inhibitory to enzymes or fermenting microorganisms (Dadi et al., 2007; Lee 

et al., 2009). Pretreatment with ILs are less energy demanding, easier to handle and more 

environmentally friendly than other pretreatment methods such as mechanical milling, steam 

explosion, acid, base, or organic solvent processes (Rogers and Seddon, 2003; Zhao et al., 2009). 

Typical ionic liquids used during biomass pretreatment contain an anion of chloride, formate, 

acetate or alkylphosphonate which form strong hydrogen-bonds with cellulose and other 

carbohydrates (Zhao et al., 2009). In general, acetate-based ILs are less viscous than chloride-

based ILs and are more thermally stable than formate-based ILs (Fukaya et al., 2008; Zhao et al., 

2008). The acetate-based IL 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) was selected 

in this study for the pretreatment of energy cane due to its low melting temperature (-20 °C), low 

viscosity, non-toxicity, and non-corrosiveness (Samayam and Schall, 2010). 

Energy cane, a hybrid of commercial and wild sugarcanes, is bred for high fiber content 

and low sucrose (Kim and Day, 2011). Unlike sugar cane, energy cane is more cold tolerant, 

requires less fertilizer and water input, and requires replanting only every ten years, compared to 

every three years for sugar cane (Sierra et al., 2008). A non-commercial energy cane variety, 

L79-1002, developed in collaboration by the United States Department of Agriculture-

Agricultural Research Service (USDA-ARS) in Houma, LA and the Louisiana State University 
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Agricultural Center Sugar Research Station in St. Gabriel, LA has an average fiber content of 

257 g/kg (dry basis) and cane yield of 83.3 Ma/ha (dry basis) (Bischoff et al., 2008) as compared 

to LCP 85-384, the predominant commercial variety of sugarcane grown in Louisiana, with a 

fiber content of 117 g/kg (dry basis) and cane yield of 59.2 Mg/ha (dry basis) (Gravois et al., 

2009). 

This study aimed to assess the effect of an acetate-based ionic liquid 1-ethyl-3-

methylimidazolium acetate ([EMIM][OAc]) during the pretreatment of energy cane bagasse by 

monitoring changes in biomass chemical composition (cellulose, hemicellulose and lignin), 

lignocellulose structure and enzymatic digestibility.   

2.2 Materials and Methods 

2.2.1 Biomass 

Energy cane (L79-1002) was harvested at the Louisiana State University Agricultural 

Center Sugar Research Station located in St. Gabriel, LA. Leaves and roots were removed and 

the stalks were crushed in a roller press (Farrel Company, Ansonia, CT) three times to extract the 

juice.  The remaining crushed fibers (bagasse) were stored at -20 °C.  

2.2.2 Ionic liquid pretreatment 

Ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) (Sigma-Aldrich, Inc., 

St. Louis, MO) was mixed with biomass at a 20:1 ratio and heated to 120 °C for 30 min. Post 

pretreatment, deionized water was added into the IL solution at a 5:1 ratio to recover the 

biomass. The ionic liquid/water mixture and biomass were separated by vacuum filtration. The 

solids were washed repeatedly with deionized water to remove any remaining IL from the 

samples until the wash solution appeared colorless and solids were collected. Untreated and 
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water-treated energy cane bagasse were used as controls. Water-treated bagasse (control) was 

prepared by combining water and bagasse at a 20:1 ratio and by heating the mixture to 120 °C 

for 30 min. Experiments were run in triplicates with three separate batches. 

2.2.3 Chemical composition of energy cane bagasse 

Untreated, water-treated and ionic liquid-treated energy cane bagasse were analyzed for 

glucan, xylan, arabinan, mannan, lignin, ethanol extractives, and ash content following  

Laboratory Analytical Procedures (LAP TP-510-42618, 42619, 42622) as documented by the 

National Renewable Energy Laboratory (NREL). NREL reference material (8491 sugarcane 

bagasse) was analyzed as an internal sample to ensure the accuracy of the procedures. The 

percent lignin removal, glucan loss and xlyan loss were calculated as described below: 

 

 

                  
                                              

                            
    

 

               
                                              

                            
 

 

              
                                             

                           
 

 

2.2.4 FTIR analysis 

Fourier transform infrared spectroscopy (FTIR) was performed using a Thermo Scientific 

Nicolet Nexus 670 FT-IR Spectrometer and Smart iTR with a diamond window (Thermo Fisher 
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Scientific Inc., Waltham, MA). About 5 mg of sample material was placed on the diamond 

window of Smart iTR. The background spectrum of diamond window without sample was 

subtracted from that of each sample spectrum.  Scans were conducted at 700-4000 cm
-1

 with a 

resolution of 4 cm
-1

 and at 64 scans per sample. 

2.2.5 XRD analysis 

X-ray diffraction (XRD) measurements were made at the synchrotron ring of J. Bennett 

Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD), Louisiana State 

University, Baton Rouge, LA. The CAMD electron storage ring operates at 1.3 GeV with ring 

current varying between 100 to 200 mA. The measurements were performed at the double crystal 

monochromator 7.5 Tesla wavelength shifter beam line. The wavelength was set to that of the 

absorption edge of nickel foil (8333.0 eV, 1.4878 A) with the double crystal monochromator 

with Ge 220 crystals. The wavelength was refined to 1.4810 Angstrom with GSAS by running 

NIST LaB6 standard 660a.  A Huber four-circle goniometer in Bragg-Brentano geometry was 

used for the measurements. The diffracted X-rays were detected with a Canberra germanium 

solid state detector. The source and receiving slits were 30 µm and 10 µm, respectively. The 

biomass samples were mounted on zero-background plates (50 µm depth) coated with a very thin 

layer of vacuum grease. Patterns were collected from 5° to 40° (2θ), with 0.05° step size and 3 

seconds counting. Patterns were normalized by the ring current. Data reduction was 

accomplished with JADE 9.3.4. The crystallinity index (CrI) was calculated using the formula as 

described by Cheng et al. (2011):  

 

CrI = (I002-Iam)/ I002 
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Where, I002 is the scattered intensity at the main peak for cellulose Type I;  Iam is the 

scattered intensity due to the amorphous portion evaluated as the minimum intensity between the 

main and secondary peaks. 

2.2.6 SEM analysis 

Scanning electron microscopy (SEM) was used to monitor the changes in morphology 

before and after IL pretreatment. A JEOL JSM-6610LV scanning electron microscope (JEOL 

USA, Inc., Peabody, MA) operated at 10 keV was used to image the samples. Prior to imaging, 

the samples were sputter-coated with platinum to make the fibers conductive, avoiding 

degradation and buildup of charge on the specimen. 

2.2.7 Enzymatic hydrolysis 

A combination of two commercially available enzymes, Spezyme CP (cellulases) 

(Genencor, Danisco US Inc., Rochester, NY) and Novozyme 188 (cellobiases) (Sigma-Aldrich, 

Inc., St. Louis, MO) were used for the hydrolysis of untreated, water-treated and ionic liquid-

treated energy cane bagasse. Enzymatic hydrolysis was measured by following NREL’s LAP 

TP-510-43629. Briefly, hydrolysis was carried out with 1% (w/v) substrate at 50 °C, in 0.1 M 

sodium citrate buffer at pH 4.8 in a shaker incubator (Amerex Instruments Inc., Lafayette, CA) at 

150 rpm. The substrates were hydrolyzed with Spezyme CP at 15 FPU/g glucan and Novozyme 

188 at 15 CBU/g glucan.  A second test using a higher enzyme loading of Spezyme CP at 30 

FPU/g glucan and Novozyme 188 at 30 CBU/g glucan was also conducted. Samples were taken 

at 0 h (before the addition of enzymes), 24 h, 48 h, and 72 h. Experiments were run in  

triplicates. 
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2.2.8 Chemical analysis of hydrolyzed samples  

Collected samples (0 h, 24 h, 48 h, and 72 h) were centrifuged (8000 rpm) with a 

Spectrafuge 24D (Labnet International Inc., Woodbridge, NJ ), filtered (0.2 μm Syringe Filters, 

Environmental Express, Inc., Mt. Pleasant, SC) and diluted accordingly. Sugars (glucose, 

cellobiose, arabinose, and xylose) from all collected samples were analyzed by high performance 

liquid chromatography (HPLC) (Agilent 1200 Series) with a BioRad Aminex HPX-87P, lead 

form, 3000 mm × 7.8 mm (ID), 9 μm column and  a differential refractive index detector 

(G1362A Agilent).  Percent theoretical cellulose and hemicellulose digestibilities were 

calculated using the equations provided by NREL’s LAP TP-510-43630 as described below: 

 

                                      
                             

                  
        

 

                                         
                             

                 
         

 

Where, [Glucose] is the residual glucose concentration (g/L), [Cellobiose] is the residual 

cellobiose concentration (g/L), [Xylose] is the residual xylose concentration (g/L), [Arabinose] is 

the residual arabinose concentration (g/L), 1.053 is the multiplication factor that converts 

cellobiose to equivalent glucose, [Biomass] is the dry biomass concentration at the beginning of 

the enzymatic hydrolysis (g/L),  f  is the cellulose or hemicellulose fraction in dry biomass (g/g), 

1.111 is the factor that converts cellulose to equivalent glucose, 1.136 is the factor that converts 

hemicellulose to equivalent xylose. 
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2.3 Results and Discussion 

2.3.1 Effect of IL pretreatment on biomass composition 

The chemical composition of untreated, water-treated and IL-treated energy cane bagasse 

were analyzed and reported in Table 2.1 as dry weight basis. The chemical composition of 

energy cane bagasse before pretreatment was 40.9% glucan, 20.8% xylan and 24.8% lignin 

which are comparable to those reported by Aita et al. (2011) and Kim and Day (2011). It was 

observed that 15.1% of the total mass was lost during pretreatment with IL and that 52.6% of the 

loss was attributed to lignin removal. Only 4.0% of mass loss was observed in water-treated 

energy cane bagasse. Recent studies have indicated that [EMIM][OAc]  is effective in removing 

lignin (Fu et al., 2010; Lee et al., 2009; Samayam and Schall, 2010). Composition analysis 

revealed that 32.1% of the initial lignin was removed in IL-treated energy cane samples, whereas 

only 2.3% of the initial lignin was removed in water-treated samples. Shill et al. (2011) indicated 

that the π-π interactions of the IL cation with lignin assisted in lignin solubilization. However, 

complete delignification of biomass is difficult due to the location of lignin within the lignin-

carbohydrate complex, strong poly-ring bonds of C-O-C,  and hydrophobicity (Kim et al., 2003). 

IL pretreatment exhibited a lesser effect on delignification as compared to other pretreatment 

technologies such as dilute ammonia in which 55% of the initial lignin was removed from energy 

cane bagasse (Aita et al., 2011). A more effective delignification was observed with acid 

insoluble lignin. Specifically, 41.7 % of the initial acid insoluble lignin was removed from 

energy cane bagasse by [EMIM][OAc] at 120 °C for 30 min. Fu et al. (2010) reported that 52.7% 

initial acid insoluble lignin was extracted from triticale straw by [EMIM][OAc] at 150 °C for 2 

h. Another study with switchgrasss reported a 69.2% total lignin removal using [EMIM][OAc] at 

160 °C for 3 h (Li et al., 2010b). The higher acid insoluble lignin loss and total lignin loss 
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reported in previous studies can be attributed to the different lignocellulosic materials, higher 

processing temperatures (150 °C, 160°C) and longer retention times (1.5 h, 3h) used. 

 

Table 2.1. Chemical composition of untreated, water-treated and [EMIM][OAc]-treated energy 

cane bagasse. 

Biomass component 

(%, dry weight basis) 
Untreated Water-treated IL-treated 

Ash 1.44 ± 0.01 1.10 ± 0.01 1.39 ± 0.01 

Extractives 1.49 ± 0.04 1.44 ± 0.14 1.52 ± 0.09 

Acid soluble lignin  3.98 ± 0.08 4.15 ± 0.14 5.54 ± 0.36 

Acid insoluble lignin 20.83 ± 0.22 21.10 ± 0.14 14.31 ± 1.06 

Total lignin 24.81 ± 0.14 25.25 ± 0.01 19.85 ± 1.45 

Glucan 40.87 ± 0.22 43.41 ± 0.27 43.89 ± 0.21 

Xylan 20.82 ± 0.10 21.85 ± 0.18 21.10 ± 0.33 

Arabinan 1.53 ± 0.05 1.59 ± 0.06 2.05 ± 0.27 

Mannan  ND ND ND 

Recovered solids  100 95.99 ± 1.67 84.89 ± 2.32 

ND: none detected 

    

The loss of glucan in IL-treated and water treated samples were less than 9%. Similar 

observations were reported by Aita et al. (2011) in which 91.4% of the initial glucan was 

retained in dilute ammonia-treated energy cane bagasse. The loss of initial xylan in 

[EMIM][OAc]-treated sample was 14.0% as compared to dilute ammonia pretreatment which 

removed 30.1% of the initial xylan (Aita et al., 2011). Compared with other [EMIM][OAc] 

pretreated lignocellulosic materials, Samayam and Schall (2010) reported 15.0% and 32.0% of 

initial xylan losses in pretreated poplar and switchgrass, respectively, at 120 °C for 30 min. Li et 

al. (2010b) reported that the loss of xylan in pretreated  switchgrass was 62.6% at 160 °C  for 3 

h. Xylan losses of  6% and 26% had been reported in Maple wood flour pretreated at 110 °C and 

130 °C for 1.5 h, respectively (Lee et al., 2009).  
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2.3.2 Effect of IL pretreatment on lignocellulose structure 

2.3.2.1 FTIR analysis 

FTIR analysis was conducted to examine the cellulose structure of untreated, water-

treated and IL-treated samples (Fig.  2.1). Two infrared ratios related to cellulose structure were 

calculated: (1) α 1426 cm
-1

/ α 896 cm
-1

, the ratio of peak areas at 1426 and 896 cm
-1

 ,which is 

referred to as the crystallinity index (O'Connor et al., 1958) or lateral order index (LOI) 

(Hurtubise and Krassig, 1960); (2) α 1373 cm
-1

/ α 2917 cm
-1

, the ratio of peak areas at 1373 and 

2917cm
-1

, which is known as the total crystallinity index (TCI) (Nelson and O'Connor, 1964a). 

The ratios of peak areas were determined following the method of Nelson and O'Connor (1964a). 

The 1426 cm
-1 

band represents  CH2 scissoring motion (Nelson and O'Connor, 1964b);  the 896 

cm
−1

 band  indicates the vibrational mode involving C1 and four atoms attached to it, which is 

characteristic of β-anomers or β-linked glucose polymers (Nelson and O'Connor, 1964b); the 

1373 cm
−1

 band is for C-H bending mode (Nelson and O'Connor, 1964a); and the 2917 cm
−1

 

band represents C-H and CH2 stretching, which is unaffected by changes in crystallinity (Nelson 

and O'Connor, 1964a). Therefore, higher values of LOI and TCI are indicative of biomass with a 

higher crystallinity and more ordered structure of cellulose. Both LOI and TCI decreased 

significantly post IL pretreatment as shown in Table 2.2. LOI decreased from 0.9593 to 0.3718 

and TCI decreased from 0.4057 to 0.1937 in IL-treated bagasse; whereas, water-treated samples 

just had a slight decrease from 0.9593 to 0.8174 and 0.4057 to 0.3747 in terms of LOI and TCI, 

respectively. The results indicated that the highly crystalline cellulose in energy cane bagasse 

was transformed to amorphous form after pretreatment with [EMIM][OAc]. Decrease in 

crystallinity of Avicel (Zhao et al., 2009), switchgrass (Li et al., 2010b), straw (Fu and Mazza, 
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2011a), sugarcane (Yoon et al., 2011) and kenaf powder (Ninomiya et al., 2012) have also been 

reported after pretreatment with ILs. 

2.3.2.2 XRD analysis 

XRD analysis was conducted to further examine the crystallinity of cellulose since 

determination of crystallinity index (CrI) by FTIR spectroscopy gives only relative values from 

both crystalline and amorphous regions. Therefore, the CrI calculated from an FTIR spectrum is 

often compared with those from XRD and/or NMR measurements (Park et al., 2010). In this 

study, two typical diffraction peaks were observed at 2θ=15° and 21°, which correspond to (101) 

and (002) lattice planes of crystalline cellulose type I (Fig. 2.2).  After IL pretreatment, the peak 

(101) disappeared and the peak (002) became broader and weaker (Fig. 2.2C). The XRD pattern 

of [EMIM][OAc]-treated energy cane bagasse was similar to the XRD pattern of amorphous 

cellulose as reported by Nelson and O'Connor (1964b).  

The CrI of various energy cane bagasse samples was determined based on the XRD 

patterns for quantitative comparison and are depicted in Table 2.2.  The CrI of untreated, water-

treated and IL-treated samples were 0.5628, 0.5338 and 0.2452, respectively. The CrI of IL-

treated sample was significantly lower than those reported for water-treated and untreated 

samples.  No significant difference was observed between the CrI for water-treated and untreated 

samples. A lower CrI is indicative of a material with lower crystallinity. The CrI obtained 

through XRD was also in accordance with the LOI and TCI values obtained through FTIR as 

reported earlier. Results from both FTIR and XRD suggest that pretreatment with [EMIM][OAc] 

can reduce the cellulose crystallinity in energy cane bagasse. Reports suggested that anions and  



 

22 

 

 

Fig. 2.1. FTIR Spectra of (A) Untreated, (B) Water-Treated and (C) [EMIM][OAc]-Treated 

Energy Cane Bagasse.  (a) 2917 cm
-1

, (b) 1426 cm
-1

, (c) 1373 cm
-1

, (d) 896 cm
-1

. 

 

 

Table 2.2. Crystallinity index of untreated, water-treated and [EMIM][OAc]-treated energy cane 

bagasse. 

Sample 
LOI TCI CrI 

 (1426/896 cm
-1

) (1373/2917 cm
-1

) (XRD) 

Untreated 0.9593 0.4057 0.5628 

Water-treated 0.8174 0.3747 0.5338 

IL-treated 0.3718 0.1937 0.2452 

LOI: lateral order index or crystallinity index based on FTIR 

TCI: total crystallinity index based on FTIR 

CrI: crystallinity index based on XRD 
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Fig. 2.2. XRD Patterns for (A) Untreated, (B) Water-Treated and (C) [EMIM][OAc]-Treated 

Energy Cane Bagasse. 

 

cations in ILs are responsible for the dissolution and disruption of cellulose (Dadi et al., 2007; 

Feng and Chen, 2008; Shill et al., 2011; Yoon et al., 2011).  It was indicated that the anion in ILs 

attacked the free hydroxyl group on cellulose and deprotonated it, while the cation interacted 

with the hydroxyl oxygen atoms. The hydrogen bonds in cellulose were disrupted and replaced 

by hydrogen bonding between the anion of ILs and cellulose hydroxyls. Consequently, cellulose 

dissolution occurred and the crystalline structure was disrupted. Li et al. (2009) also suggested 

that the decrease of CrI, probably due to the rapid precipitation with water, prevented the 

dissolved lignocellulosic material from restructuring into its original crystalline structure, which 
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resulted in a fragmented and porous biomass with amorphous structure and greater surface area 

for enzymes to attach.  

2.3.2.3 SEM analysis 

SEM images of untreated, water-treated and IL-treated energy cane bagasse are shown in 

Fig. 2.3. Both untreated and water-treated biomass showed compact, ordered and rigid fibril 

structures (Fig. 2.3A and 2.3B). After pretreatment of energy cane bagasse with ionic liquid, the 

structure became loose, disordered and curly (Fig. 2.3C). This was probably due to the removal 

of lignin and decrease of cellulose crystallinity, which have already been confirmed by FTIR and 

XRD analysis. 

2.3.3 Enzymatic hydrolysis of energy cane bagasse 

Enzymatic hydrolysis of untreated, water-treated and [EMIM][OAc]-treated energy cane 

bagasse are summarized in Fig. 2.4. Detailed data on enzymatic hydrolysis (Tables A1, A2) is 

listed in Appendix A and B. Significantly higher cellulose digestibilities (64.6%, 68.4% and 

68.9%) were observed in IL treated energy cane bagasse samples at an enzyme loading of 15 

FPU Spezyme CP and 15 CBU Novozyme 188/g glucan as compared to untreated samples 

(2.6%, 3.2% and 4.1%) and water-treated samples (2.9%, 3.3% and 3.4%) at 24 h, 48 h and 72 h 

post hydrolysis, respectively.  Cellulose digestibility of IL-treated sample at 24 h was 

approximately 25 and 22 times higher than untreated and water-treated samples, respectively. 

The limited enzymatic hydrolysis of untreated and water-treated energy cane bagasse can be 

explained by the unmodified crystalline structure of cellulose and hindrance of lignin (Chandra 

et al., 2007; Yang and Wyman, 2008). Higher cellulose digestibilities (75.4%, 81.2% and 87.0%) 

were observed with enzyme loadings of 30 FPU Spezyme CP /g glucan and 30 CBU Novozyme 
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Fig. 2.3. SEM Images of (A) Untreated (B) Water-Treated and (C) [EMIM][OAc]-Treated 

Energy Cane Bagasse at 1000X Magnification. 
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Fig. 2.4. (A) Cellulose and (B) Hemicellulose Digestibility of [EMIM][OAc]-Treated, Water-

Treated and Untreated Energy Cane Bagasse at Two Enzyme Loadings. 

*   15 FPU Spezyme CP/g glucan and 15 CBU Novozyme 188/g glucan. 

** 30 FPU Spezyme CP/g glucan and 30 CBU Novozyme 188/g glucan. 
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188 /g  glucan at 24, 48 and 72 h, respectively, than lower enzyme loadings. No significant 

increases in digestibilities were observed for untreated and water-treated samples. A  slightly 

higher cellulose digestibility (77.0%) has been reported with dilute ammonia-treated energy cane 

bagasse at an enzyme loading of 30 FPU Spezyme CP and 32 CBU Novozyme 188/ g glucan at 

24 h post hydrolysis (Aita et al., 2011).  This result suggested that a higher delignification 

(55.0% versus 32.1%) did not directly result in a higher cellulose digestibility (77.0% versus 

75.4%). Similarly, other studies have indicated high cellulose digestibilities (85% - 95%) post 

ILs pretreatment with  lignocellulosic materials containing  60–70% of initial lignin, such as 

wood flour (Lee et al., 2009), straw (Fu et al., 2010), switchgrass, and poplar (Samayam and 

Schall, 2010). Ninomiya et al. (2012) reported  95% cellulose digestibility with almost 100% 

initial lignin content in the kenaf powder post ILs pretreatment.  

Hemicellulose digestibilities were lower than those observed for cellulose since the 

enzyme mixture used in this study contained mostly cellulase-degrading enzymes.  

Hemicellulose digestibilities of [EMIM][OAc]-treated samples (40.4%, 43.6% and 46.5%) at an 

enzyme loading of 15 FPU Spezyme CP and 15 CBU Novozyme 188/g glucan were significantly 

higher than both untreated (1.1%, 1.4% and 2.4%) and water-treated samples (1.5%, 1.8%  and 

1.9%) at 24 h, 48 h and 72 h post hydrolysis, respectively. An increase in enzyme loading to 30 

FPU Spezyme CP and 30 CBU Novozyme 188/g glucan resulted in higher hemicellulose 

digestibilities (52.5%, 59.6% and 64.3%, respectively) in all IL-treated samples. As observed 

with cellulose digestibilities, no significant increases in digestibilities were detected in untreated 

and water-treated samples. IL-treated sample exhibited a significantly higher hemicellulose 

digestibility than those reported with dilute ammonia in which only a 39% hemicellulose 

digestibility was observed after 24 h hydrolysis at an enzyme loading of 30 FPU Spezyme CP 
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and 32 CBU Novozyme 188/ g glucan (Aita et al., 2011). The higher hemicellulose digestibility 

observed in [EMIM][OAc]-treated bagasse may be attributed to minimal loss of initial xylan 

(14.0% versus 30.1%). The enhanced cellulose and hemicellulose digestibilities observed in 

energy cane bagasse treated with [EMIM][OAc] could be attributed to delignification, lignin 

structure disruption and  the  reduction in cellulose crystallinity. 

2.4 Conclusions 

[EMIM][OAc]-treated energy cane bagasse resulted in significant lignin removal (32.0%) 

with slight glucan and xylan losses (8.8% and 14.0%, respectively), and exhibited significant 

higher enzymatic digestibilities (87.0%, 64.3%) than untreated (5.5%, 2.8%) or water (4.0%, 

2.1%) treated energy cane bagasse in terms of both cellulose and hemicellulose yields, 

respectively. SEM images revealed a loose and disordered structure of biomass post 

pretreatment.  FTIR analysis indicated that IL-treated biomass exhibited a significant loss of 

native cellulose crystalline structure. XRD analysis also confirmed that IL pretreatment resulted 

in a decrease of crystallinity index from 0.5628 to 0.2452. 
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CHAPTER 3  

PRETREATMENT OF ENERGY CANE BAGASSE WITH RECYCLED 

IONIC LIQUID FOR ENZYMATIC HYDROLYSIS 

 

3.1 Introduction 

Lignocellulosic biomass appears to be a prospective renewable energy resource that can 

be used for the generation of biofuels and bioproducts. Energy cane, a hybrid of commercial and 

wild sugarcanes, is an ideal energy crop and lignocellulose resource. Compared to sugarcane, 

energy cane has higher fiber content, better cold tolerance, less fertilizer and water input 

requirements, and longer replanting time (Kim and Day, 2011; Sierra et al., 2008). 

Lignocellulose is composed mainly of cellulose, hemicellulose and lignin, which together forms 

a complex structure. The recalcitrance of this complex structure makes lignocellulose biomass 

highly resistant to enzymatic hydrolysis, which results in low reducing sugar yield (Yang and 

Wyman, 2008).  

Pretreatment is an essential step for overcoming the recalcitrance of lignocellulose, as it 

reduces the lignin content, breaks the carbohydrate-lignin complex and disrupts the crystalline 

structure of cellulose (Hendriks and Zeeman, 2009; Tan and Lee, 2012). Numerous methods 

have been developed to pretreat lignocellulosic biomass, which can be classified into several 

categories: (1) biological (e.g., fungi degradation), (2) mechanical (e.g., milling, grinding), (3) 

physicochemical (e.g., autohydrolysis, liquid hot water, steam, supercritical fluids, steam 

explosion), and (4) chemical (e.g., alkali, acid, oxidizing agents, organic solvent) (Aita and Kim, 

2010; Liu et al., 2012; Zhao et al., 2009). However, several drawbacks are found with each of 
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these methods. Biological methods have excessive residence times, mechanical methods suffer 

from intensive energy and capital costs, physicochemical methods require specialized equipment 

that can stand high pressures and high temperatures, and chemical methods have cost, safety and 

environmental issues (Aita and Kim, 2010; Hendriks and Zeeman, 2009; Shill et al., 2011; Zhao 

et al., 2009). Therefore, the development of alternative, cost-effective and energy efficient 

pretreatment processes are needed.   

Ionic liquids (ILs) are promising solvents for the pretreatment of lignocellulose as they 

exhibit excellent physical and chemical characteristics that include thermal stability, non-

toxicity, good recyclability, low volatility, and are environmentally friendly (Gremos et al., 

2011; Lee and Lee, 2005).  In our previous work, [EMIM][OAc]-treated energy cane bagasse 

resulted in significant lignin removal (32.0%) with slight glucan and xylan losses (8.8% and 

14.0%, respectively), and exhibited a much higher enzymatic digestibility (87.0%, 64.3%) than 

untreated (5.5%, 2.8%) or water-treated (4.0%, 2.1%) energy cane bagasse in terms of both 

cellulose and hemicellulose digestibilities, respectively (Qiu et al., 2012). The enhanced 

digestibilities of IL-treated energy cane bagasse were attributed to delignification and reduction 

of cellulose crystallinity as confirmed by FTIR and XRD analysis (Qiu et al., 2012). Although 

[EMIM][OAc] is highly effective on the pretreatment of energy cane bagasse, the relatively high 

cost of [EMIM][OAc] as well as other ILs is a major disadvantage. Therefore, recycling of ILs 

post pretreatment will aid in lowering processing costs for future commercial application.  

 This study aimed to assess the effect of multiple recycled [EMIM][OAc] on the 

pretreatment of energy cane bagasse in terms of its chemical composition and enzymatic 

hydrolysis. 
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3.2 Materials and Methods 

3.2.1 Biomass 

Energy cane (L79-1002) was harvested at the Louisiana State University Agricultural 

Center Sugar Research Station located in St. Gabriel, LA. Leaves and roots were removed and 

the stalks were crushed in a roller press (Farrel Company, Ansonia, CT) three times to extract the 

juice.  The remaining crushed fibers (bagasse) were stored at -20 °C.  

3.2.2 Ionic liquid pretreatment and recycling 

Ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) (Sigma-Aldrich, Inc., 

St. Louis, MO) was mixed with biomass at a 20:1 ratio and heated to 120 °C for 0.5 h or at 100 

°C for 0.5 h, 1 h, 2 h, and 4 h. Post-pretreatment, deionized water was added to the IL solution at 

a 5:1 ratio to recover the biomass. The ionic liquid/water mixture and biomass were separated by 

vacuum filtration. The solids were washed repeatedly with deionized water to remove any 

remaining IL from the samples until the wash solution appeared colorless and solids were 

collected. The filtrate was evaporated at 100 °C for 12 h by air drying oven to remove water and 

then reused to pretreat energy cane bagasse without any further purification. Approximately, 

85% to 90% of IL was recovered on each recycle.  

Based on the yields obtained from enzymatic hydrolysis studies, pretreatment conditions 

at 120 °C for 0.5 h and 100 °C for 2 h were selected for assessing the efficiency of recycled IL 

pretreatment. The ionic liquid/solid mixture separation and ionic liquid recovery were 

accomplished as described above.  A total of two (120 °C for 0.5 h) or three (100 °C for 2 h) IL 

recycles post pretreatment were evaluated.  Studies were carried out in duplicate with two 

separate batches. 
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3.2.3 Chemical composition of energy cane bagasse 

All ionic liquid-treated energy cane bagasse samples were analyzed for glucan, xylan, 

arabinan, mannan, and lignin following Laboratory Analytical Procedures (LAP TP-510-42618, 

42619, 42622) as documented by the National Renewable Energy Laboratory (NREL). NREL 

reference material (8491 sugarcane bagasse) was analyzed as an internal standard to ensure the 

accuracy of the procedures. The percent lignin removal, glucan recovery and xlyan recovery 

were calculated as described below: 

 

                  
                                              

                            
 

 

                 
                                              

                            
 

 

                
                                             

                           
 

 

3.2.4 Enzymatic hydrolysis 

A combination of two commercially available enzymes, Spezyme CP (Genencor, 

Danisco US Inc., Rochester, NY,) and Novozyme 188 (Sigma-Aldrich, Inc., St. Louis, MO), 

were used for the hydrolysis studies. Enzymatic hydrolysis was measured by following NREL’s 

LAP TP-510-43629. Briefly, hydrolysis was carried out with 1% (w/v) substrate at 50 °C, in 0.1 

M sodium citrate buffer at pH 4.8 in a shaker incubator (Amerex Instruments Inc., Lafayette, 

CA) at 150 rpm. The substrates were hydrolyzed with Spezyme CP at 30 FPU/g glucan and 
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Novozyme 188 at 30 CBU/g glucan.  Samples were taken at 0 h (before the addition of 

enzymes), 24 h, 48 h, and 72 h. Experiments were run in duplicate. 

3.2.5 Chemical analysis of hydrolyzed samples  

Collected samples (0 h, 24 h, 48 h, and 72 h) were centrifuged (8000 rpm) with a 

Spectrafuge 24D (Labnet International Inc., Woodbridge, NJ ), filtered (0.2 μm Syringe Filters, 

Environmental Express, Inc., Mt. Pleasant, SC) and diluted accordingly. Sugars (glucose, 

cellobiose, arabinose, and xylose) from all collected samples were analyzed by high performance 

liquid chromatography (HPLC) (Agilent 1200 Series) with a BioRad Aminex HPX-87P, lead 

form, 3000 mm × 7.8 mm (ID), 9 μm column and  a differential refractive index detector 

(G1362A Agilent).  Percent theoretical cellulose and hemicellulose digestibilities were 

calculated using the equations provided by NREL’s LAP TP-510-43630 as described below: 

 

                                      
                             

                  
        

 

                                         
                            

                 
         

 

Where, [Glucose] is the residual glucose concentration (g/L), [Cellobiose] is the residual 

cellobiose concentration (g/L), [Xylose] is the residual xylose concentration (g/L), [Arabinose] is 

the residual arabinose concentration (g/L), 1.053 is the multiplication factor that converts 

cellobiose to equivalent glucose, [Biomass] is the dry biomass concentration at the beginning of 

the enzymatic hydrolysis (g/L),  f  is the cellulose or hemicellulose fraction in dry biomass (g/g), 
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1.111 is the factor that converts cellulose to equivalent glucose, 1.136 is the factor that converts 

hemicellulose to equivalent xylose. 

3.3 Results and Discussion 

3.3.1 Effect of IL and recycled IL pretreatment on biomass composition 

The chemical composition of IL and recycled IL-treated energy cane bagasse is 

summarized in Table 3.1, and the percent lignin removal, glucan recovery and xylan recovery are 

presented in Table 3.2. Previous studies have indicated that  [EMIM][OAc]  is effective in 

removing lignin, because the π-π interactions of the IL cation with lignin assist in lignin 

solubilization (Fu et al., 2010; Lee et al., 2009; Samayam and Schall, 2010; Shill et al., 2011). 

IL-treated energy cane bagasse with different pretreatment temperatures, residence times and IL 

recycles exhibited lignin removal in the range of 15.05% to 32.08% when compared to the initial 

lignin percentage in untreated bagasse as shown in Table 3.2.  Specifically, lignin removal of the 

1
st
 and 2

nd
 recycled IL-treated biomass at 120 °C for 0.5 h gradually decreased to 23.53% and 

21.74% from 32.08% of the original IL-treated biomass, respectively. A temperature decrease in 

pretreatment also resulted in the decrease of lignin removal. The lignin removal of energy cane 

bagasse treated at 100 °C for 0.5 h, 1 h, 2 h, and 4 h were 15.05%, 18.66%, 17.45%, and 25.19%, 

respectively, among which lignin removal from biomass treated for 4 h was 6.89% less than the 

result observed at 120 °C for 0.5 h. The use of 1
st
, 2

nd
 and 3

rd
 recycled IL at 100°C for 2 h did not 

cause any significant decrease in lignin removal (16.80%, 17.47% and 18.93%, respectively) 

compared to the original IL pretreatment (17.45%) under the same pretreatment conditions. Li et 

al. (2010a) reported that lignin removal of regenerated wood  decreased  with the increasing 

number of IL recycles at 120 °C for 5 h. In our study, a similar trend was observed with biomass  
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Table 3.1. Chemical composition analysis of biomass. 

Pretreatment conditions Biomass component (%, dry weight basis) 

Solvent 

Number 

of 

recycles 

Temp. 

(°C) 

Time 

(h) 

Acid 

soluble 

lignin 

Acid 

insoluble 

lignin 

Total lignin Glucan Xylan Arabinan 
Recovered 

solids 

None N/A N/A N/A 4.70 ± 0.93 19.17 ± 0.29 23.86 ± 0.64 43.51 ± 0.18 21.29 ± 0.90 1.59 ± 0.30 100.00 

Water* N/A 120 0.5 4.15 ± 0.14 21.10 ± 0.14 25.25 ± 0.01 43.41 ± 0.27 21.85 ± 0.18 1.59 ± 0.06 95.99 ± 1.67 

IL* 0 120 0.5 5.54 ± 0.36 14.31 ± 1.06 19.85 ± 1.45 43.89 ± 0.21 21.10 ± 0.33 2.05 ± 0.27 84.89 ± 2.32 

IL 1 120 0.5 4.91 ± 0.52 16.48 ± 0.33 21.39 ± 0.76 45.20 ± 2.45 20.87 ± 0.29 1.21 ± 0.14 85.30 ± 1.02 

IL 2 120 0.5 3.70 ± 0.89 17.65 ± 0.51 21.35 ± 1.37 40.95 ± 1.72 21.27 ± 0.56 2.09 ± 0.33 87.46 ± 4.32 

IL 0 100 0.5 4.56 ± 0.27 18.52 ± 0.23 23.07 ± 0.96 42.81 ± 1.68 22.27 ± 1.23 1.91 ± 0.21 87.86 ± 4.33 

IL 0 100 1 4.39 ± 0.15 17.60 ± 1.11 21.99 ± 1.33 42.49 ± 2.53 22.04 ± 0.19 2.13 ± 0.12 88.26 ± 3.03 

IL 0 100 2 4.86 ± 0.28 17.42 ± 0.40 22.27 ± 0.68 45.35 ± 0.56 22.42 ± 0.74 1.43 ± 0.26 88.44 ± 2.54 

IL 0 100 4 6.01 ± 0.94 15.59 ± 1.08 21.60 ± 2.02 48.02 ± 2.30 20.89 ± 2.30 1.51 ± 0.28 82.64 ± 2.72 

IL 1 100 2 3.99 ± 0.25 18.04 ± 0.53 22.04 ± 0.78 44.44 ± 2.61 22.85 ± 1.86 1.38 ± 0.11 90.07 ± 2.92 

IL 2 100 2 4.12 ± 0.39 18.40 ± 0.51 22.53 ± 0.13 47.90 ± 0.06 22.96 ± 0.78 1.62 ± 0.13 87.40 ± 3.19 

IL 3 100 2 4.82 ± 0.12 17.04 ± 0.80 21.85 ± 0.68 47.59 ± 2.63 22.71 ± 0.46 1.43 ± 0.04 88.53 ± 3.13 

*Data obtained from previous study by Qiu et al. (2012). 
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Table 3.2. Lignin removal, glucan recovery and xylan recovery from IL-treated biomass. 

Pretreatment conditions 
Lignin 

removal  

Glucan 

recovery  

Xylan 

recovery  

Solvent 
Number of 

recycles 
Temp. (°C) Time (h) 

(%, dry weight basis) 

None N/A N/A N/A 0 100 100 

Water* N/A 120 0.5 2.31 101.96** 100.74** 

IL* 0 120 0.5 32.08 91.16 86.03 

IL 1 120 0.5 23.53 88.61 83.62 

IL 2 120 0.5 21.74 82.31 87.38 

IL 0 100 0.5 15.05 86.45 91.90 

IL 0 100 1 18.66 86.19 91.37 

IL 0 100 2 17.45 92.18 93.13 

IL 0 100 4 25.19 91.21 81.09 

IL 1 100 2 16.80 92.00 96.67 

IL 2 100 2 17.47 96.22 94.26 

IL 3 100 2 18.93 96.83 94.43 

*Data obtained from previous study by Qiu et al. (2012). 

**Considering systematic and random errors, these values were approximate to 100. 

 

pretreated at 120 °C for 0.5 h; whereas, the lignin removal of biomass pretreated at 100 °C for 2 h 

did not differ significantly with the increasing number of IL recycles. This discrepancy between 

the two pretreatment condition groups is probably due to the disparity in lignin extraction ability 

under different temperatures and residence times. Lee et al. (2009) reported that although lignin 

continuously accumulated in recycled [EMIM][OAc] by repeating the pretreatment cycle at 90 °C 

for 24 h, the lignin extraction efficiencies remained largely unaffected. This result is in 

accordance with our observations of biomass pretreated at 100 °C for 2 h. A correlation between 
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pretreatment temperature, residence time and lignin removal efficiency can be seen as higher 

pretreatment temperature (120 °C) and shorter residence time (0.5 h) resulted in a decrease in 

lignin removal efficiency with the increasing number of IL recycles; whereas, a relative lower 

pretreatment temperature (100 °C) and longer residence time (2 h) maintained similar lignin 

removal efficiencies.   

The glucan recovery of all IL-treated biomass ranged from 82.31% to 96.83% as shown 

in Table 3.2. The glucan recovery for pretreatment at 120 °C for 0.5 h decreased with the 

increasing number of IL recycles; whereas, the glucan recovery of pretreatment at 100 °C for 2 h 

increased with the increasing number of IL recycles. The decrease of glucan recovery at higher 

temperature (120 °C) was probably due to cellulose degradation taking place during the 

pretreatment process. Nguyen et al. (2010) reported that the cellulose recovery of rice straw 

consistently increased with the increasing number of [EMIM][OAc] recycles. It was also pointed 

out that the constant increase of glucan recovery was due to the accumulation of solubilized 

cellulose from previous pretreatments (Nguyen et al., 2010), a possible explanation for the 

increase of glucan recovery observed in our study at the lowest pretreatment temperature (100 

°C).  

The xylan recovery of biomass pretreated at 100 °C, with the exception of 4 h residence 

time, was higher than biomass pretreated at 120 °C, an indication that higher pretreatment 

temperature and longer residence times may lead to degradation of xylan. Li et al. (2010b) 

reported a 62.6% xylan loss in switchgrass pretreated at 160 °C for 3 h with [EMIM][OAc]. Lee 

et al. (2009) also reported that when the [EMIM][OAc] pretreatment temperature increased from 

110 °C  to 130 °C with 1.5 h residence time, the xylan loss in maple wood flour increased from 

6% to 26%. The glucan and xylan recoveries of [EMIM][OAc]-treated biomass at 100 °C for 2 h 
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including 0, 1
st
, 2

nd
 and 3

rd
 recycles (glucan recovery: 92.18%, 92.00%, 96.22%, 96.83%, and 

xylan recovery: 93.13%, 96.67%, 94.26%, 94.43%, respectively) were higher than both 

[EMIM][OAc]-pretreated at 120 °C for 0.5 h (glucan recovery: 91.16%, xylan recovery: 86.03%) 

and dilute ammonia-treated (glucan recovery: 91.4%, xylan recovery: 69.9%) energy cane 

bagasse (Aita et al., 2011; Qiu et al., 2012). 

3.3.2 Enzymatic hydrolysis 

Cellulose digestibility and hemicellulose digestibility of IL and recycled IL-treated 

energy cane bagasse are summarized in Fig. 3.1 and Fig. 3.2, respectively. Detailed data on 

cellulose and hemicellulose digestibilities (Tables A3, A4) is listed in Appendix C and D. A 

similar pattern was observed in the data obtained for both percent enzymatic digestibilities of 

cellulose and hemicellulose. However, hemicellulose digestibilities were lower than those 

obtained for cellulose due to the enzyme mixture used in this study which contained mostly 

cellulase-degrading enzymes. Higher hemicellulose digestibility could be expected if xylanases 

were added. A decrease in the enzymatic hydrolysis efficiency was observed for the 1
st
 and 2

nd
 

recycled IL-treated biomass at 120 °C for 0.5 h as shown in Fig. 3.1 (B) and Fig. 3.2 (B), 

respectively. Both cellulose and hemicellulose percent digestibilities decreased significantly with 

the increasing number of IL recycles. A 39.55% cellulose digestibility and a 28.73% 

hemicellulose digestibility were observed for the 1
st
 recycle followed by 30.34% and 14.66% for 

the 2
nd

 recycle as compared to 87.01% and 64.25% cellulose and hemicellulose digestibilities 

observed with the original IL-treated sample, respectively. No further recycles were evaluated 

due to the low cellulose and hemicellulose digestibilities observed after the 2
nd

 recycle.  Nguyen 

et al. (2010) reported that the glucose conversion of rice straw pretreated at 130 °C for 24 h  
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Fig. 3.1. Cellulose Digestibility of (A) Original [EMIM][OAc]-Treated Energy Cane Bagasse at 

120 °C or 100 °C for Different Residence Times; (B) IL, 1
st
 and 2

nd
 Recycled IL-Treated Energy 

Cane Bagasse at 120 °C for 0.5 h; and (C) IL, 1
st
, 2

nd
 and 3

rd
 Recycled IL-Treated Energy Cane 

Bagasse at 100 °C for 2 h. 

*1R, 2R, 3R IL: 1
st
, 2

nd
, 3

rd
 recycled ionic liquid (IL). 
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Fig. 3.2. Hemicellulose Digestibility of (A) Original [EMIM][OAc] -Treated Energy Cane 

Bagasse at 120 °C or 100 °C for Different Residence Times; (B) IL, 1
st
 and 2

nd
 recycled IL-

Treated Energy Cane Bagasse at 120 °C for 0.5 h; and (C) IL, 1
st
, 2

nd
 and 3

rd
 Recycled IL-

Treated Energy Cane Bagasse at 100 °C for 2 h. 

*1R, 2R, 3R IL: 1
st
, 2

nd
, 3

rd
 recycled ionic liquid (IL). 
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declined with increasing numbers of [EMIM][OAc] recycles. Li et al. (2010a) also reported that 

the amount of glucose released by the enzymatic hydrolysis from Eucalyptus grandis decreased 

by 56% after three recycles with [AMIM][Cl] at 120 °C for 5 h as compared to the original IL-

treated sample. The decrease in IL pretreatment efficiency could be attributed to the increase of 

impurities in IL after each recycle. The recycled ILs were observed to be darker than the original 

IL. Li et al. (2010a) observed the presence of carboxylic acids and aliphatic hydroxyl groups 

which originated from the decomposition of cellulose and/or hemicellulose post-pretreatment 

by
31

P NMR analysis. After three recycles, the concentration of aliphatic hydroxyl groups 

increased by 2.3 fold, and phenolic hydroxyl groups which come from lignin degradation were 

also detected. Lee et al. (2009) also pointed out that the extracted lignin content increased from 

6.9 g/kg after original IL pretreatment to 35.6 g/kg after the 4
th

 recycled IL pretreatment, which 

clearly indicated the accumulation of lignin content with increasing numbers of IL recycles. 

Although the accumulation of impurities was observed in recycled [EMIM][OAc], similar 

cellulose digestibilities (1
st
, 2

nd
, 3

rd
, and 4

th
: 92.1%, 92.7%, 92.7%, and 90.2%, respectively) to 

that of original IL (95.7%) were observed for wood flour after four recycles pretreatment at 90 

°C for 24 h.  

Percent cellulose and hemicellulose digestibilities of [EMIM][OAc]-treated energy cane 

at 100 °C at various residence times are shown in Fig. 3.1 (A) and Fig. 3.2 (A), respectively. 

Both percent cellulose digestibility and hemicellulose digestibility gradually increased with the 

increase in residence time. Although the percent cellulose digestibility at 2 h residence time was 

lower at both 24 h and 48 h as compared to that of 4 h residence time, the cellulose digestibility 

at 2 h residence time after 72 h increased to 98.39%, which was comparable to the cellulose 

digestibility observed at 4 h residence time (99.80%). A similar trend was also observed with 
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percent hemicellulose digestibility. Therefore, the 2 h residence time was used to further evaluate 

the effect of recycled IL on energy cane bagasse pretreatment at 100 °C.  

Percent cellulose and hemicellulose digestibilities of energy cane bagasse pretreated by 

recycled IL at 100 °C for 2 h are shown in Fig. 3.1 (C) and Fig. 3.2 (C), respectively. The 

recycled IL-treated (100 °C for 2 h) energy cane bagasse also exhibited a significant decrease of 

both cellulose and hemicellulose digestibilities as compared to the original IL-treated biomass. 

Unlike the biomass pretreated at 120 °C for 0.5 h as shown in Fig. 3.1 (B) and Fig. 3.2 

(B),enzymatic digestibility of  biomass pretreated at 100 °C for 2 h did not decrease significantly 

with the increasing number of IL recycles. The enzymatic digestibilities of 1
st
, 2

nd
 and 3

rd
 

recycled IL-treated samples were comparable to each other. Especially after hydrolysis for 72 h, 

cellulose digestibilities were 70.09%, 68.81% and 66.91% for 1
st
, 2

nd
 and 3

rd 
recycles, 

respectively, and the hemicellulose digestibilities were 46.66%, 49.78% and 48.05%, 

respectively. Compared to cellulose digestibility (39.55% and 30.34%) and hemicellulose 

digestibility (28.73% and 14.66%) of biomass pretreated by 1
st
 and 2

nd
 recycled IL at 120 °C for 

0.5 h after hydrolysis for 72 h, the biomass pretreated with recycled IL at 100 °C for 2 h 

exhibited significantly higher digestibilities in terms of both cellulose and hemicellulose. 

Perhaps, this observation is due to faster decomposition of the ionic liquid at high temperatures. 

Li et al. (2011b) indicated that the decomposition of [EMIM][OAc] occurs upon heating, and 

higher temperatures result in more decomposition even for short residence times. Comparing 

these results with those reported by Lee et al. (2009), Li et al. (2010a) and Nguyen et al. (2010), 

it can be concluded that high pretreatment temperatures (≥ 120 °C) are detrimental to the 

efficiency of recycled ILs pretreatment; whereas, relatively low temperatures (≤100 °C) could 

improve the pretreatment efficiency of recycled ILs. However, this trend does not apply to all 
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biomass and ionic liquids. Li et al. (2009) reported that by the 5
th

 recycle of [EMIM][DEP] for 

the pretreatment of wheat straw at 130 °C for 0.5 h, the yield of reducing sugars was still similar 

to that of the original IL pretreated sample. Shill et al. (2011) also reported that Miscanthus 

pretreated with 1
st
 and 2

nd
 recycled [EMIM][OAc] at 140 °C for 1 h still maintained a glucose 

conversion of 90%.  Therefore, the pretreatment condition that leads to high pretreatment 

efficiency of recycled IL varies with different biomass and ionic liquids, and properly adjusting 

pretreatment temperature and residence time could be beneficial in improving the efficiency of 

recycled IL pretreatment and enzymatic digestibility of pretreated biomass. In this case, 

decreasing pretreatment temperature from 120 °C to 100 °C and extending the residence time 

from 0.5 h to 2 h resulted in significant improvements of the pretreatment efficiency of recycled 

[EMIM][OAc] on energy cane bagasse. However, further research is still needed to determine 

optimal pretreatment conditions for both [EMIM][OAc] and recycled [EMIM][OAc] on energy 

cane bagasse.  

3.4 Conclusions 

The energy cane bagasse pretreated with recycled [EMIM][OAc] resulted in less lignin 

removal as compared to the original ionic liquid pretreatment. Pretreatment with recycled IL at 

120 °C for 0.5 h removed more lignin than pretreatment with recycled IL at 100 °C for 2 h. 

However, the lignin removal efficiency at 120 °C for 0.5 h decreased with increasing number of 

IL recycles; whereas, a relatively low pretreatment temperature (100 °C) and a longer residence 

time (2 h) resulted in fixed lignin removal efficiency. The energy cane bagasse pretreated with 

recycled IL at 100 °C for 2 h retained more than 90% percent of both glucan and xylan in each 

recycle. The enzymatic digestibility decreased with increasing numbers of IL recycles for 
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pretreatments at 120 °C for 0.5 h and at 100 °C for 2 h. However, higher digestibilities in terms 

of both cellulose (70.09%, 68.81% and 66.91%) and hemicellulose (46.66%, 49.78% and 

48.05%) were observed with 1st, 2nd and 3rd recycled IL at 100 °C for 2 h, respectively, as 

compared to cellulose digestibilities (39.55% and 30.34%) and hemicellulose digestibilities 

(28.73% and 14.66%) of 1
st
 and 2

nd
 recycled IL-treated biomass at 120 °C for 0.5 h. Decreasing 

pretreatment temperature from 120 °C to 100 °C and extending the residence time from 0.5 h to 

2 h resulted in significant improvements to the pretreatment efficiency of recycled 

[EMIM][OAc] on energy cane. This study demonstrated that the recycle of [EMIM][OAc] for 

energy cane bagasse pretreatment has great potential for further industry application. 
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CHAPTER 4  

OPTIMIZATION OF PROCESSING CONDITIONS FOR THE IONIC 

LIQUID PRETREATMENT OF ENERGY CANE BAGASSE BY 

RESPONSE SURFACE METHODOLOGY 

 

4.1 Introduction 

Lignocellulosic biomass is an abundant and prospective renewable resource that can be 

converted to biofuels and bioproducts. It is mainly composed of cellulose, hemicellulose and 

lignin. The complex and rigid structure is the main obstacle in lignocellulosic biomass 

degradation and bioconversion into fuels and chemicals (Himmel et al., 2007; Lee et al., 2009). 

Pretreatment aims to break down the carbohydrates-lignin complex to make cellulose and 

hemicellulose more susceptible to enzyme degradation (Hendriks and Zeeman, 2009). Long 

residence times, high energy demand, harsh processing conditions, high processing costs, and 

environment pollution remain as challenges in current biological, physical, chemical, and 

physicochemical pretreatment methods (Li et al., 2009; Shill et al., 2011; Zhao et al., 2009). 

Therefore, new approaches are needed in order to overcome such challenges and be able to 

develop pretreatment technologies that are efficient, green and cost-effective. 

Ionic liquids (ILs) are a group of new organic salts that exist as liquids at relative low 

temperature (usually below 100 ºC). ILs exhibit excellent physical characteristics including the 

ability to dissolve polar and non-polar, organic, inorganic, and polymeric compounds (Lee and 

Lee, 2005). They are generally considered as green solvents which can be potential substitutes 

for traditional flammable and volatile solvents due to their desirable properties such as low 

volatility, high thermal stability, non-flammability, and good recyclability (Quijano et al., 2010). 
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Pretreatment with ILs can reduce the crystallinity of cellulose and partially remove hemicellulose 

and lignin while not generating degradation products which are inhibitory to enzymes and/or 

fermenting microorganisms (Dadi et al., 2007; Lee et al., 2009). Furthermore, pretreatment with 

ILs are less energy demanding, easier to handle and more environmentally friendly than other 

pretreatment methods such as mechanical milling, steam explosion, acid, base, or organic solvent 

processes (Rogers and Seddon, 2003; Zhao et al., 2009).  

Energy cane, a hybrid of commercial and wild sugarcanes, is a relatively new energy crop  

being considered as an alternative source of biomass because of its  high fiber content and low 

sucrose (Kim and Day, 2011). Unlike sugarcane, energy cane is more cold tolerant, requires less 

fertilizer and water input, and requires replanting only every ten years,  as compared to every 

three years for sugarcane (Sierra et al., 2008). In our previous work, 1-ethyl-3-

methylimidazolium acetate ([EMIM][OAc])-treated energy cane bagasse resulted in significant 

lignin removal (32.0%) with slight glucan and xylan losses (8.8% and 14.0%, respectively), and 

exhibited a much higher enzymatic digestibility (87.0%, 64.3%) than untreated (5.5%, 2.8%) or 

water-treated (4.0%, 2.1%) energy cane bagasse in terms of both cellulose and hemicellulose 

digestibilities, respectively (Qiu et al., 2012). The enhanced digestibilities of IL-treated energy 

cane bagasse were attributed to delignification and reduction of cellulose crystallinity as 

confirmed by FTIR and XRD analysis (Qiu et al., 2012).  

Response surface methodology (RSM) is a statistical modeling technique which utilizes 

quantitative data from an appropriate experimental design to determine a multivariate equation in 

order to obtain an optimal response (Maache-Rezzoug et al., 2011). RSM has been widely 

applied to various fields for parameters optimization including food processing and development, 

microbiology, biotechnology, and agriculture (Karunanithy and Muthukumarappan, 2010). The 
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main advantage of RSM is the reduced number of experimental trials needed to evaluate multiple 

parameters and their interaction. Therefore, it requires less labor and time than other 

optimization approaches (Li et al., 2011a).  

This study aimed to optimize ionic liquid ([EMIM][OAc]) pretreatment processing 

conditions (temperature, residence time and solids loading) and to evaluate the effect of the 

above mentioned pretreatment processing parameters on the enzymatic hydrolysis of 

[EMIM][OAc]-treated energy cane bagasse.  

4.2 Materials and Methods 

4.2.1 Biomass 

Energy cane (L79-1002) was harvested at the Louisiana State University Agricultural 

Center Sugar Research Station located in St. Gabriel, LA. Leaves and roots were removed and 

the stalks were crushed in a roller press (Farrel Company, Ansonia, CT) three times to extract the 

juice.  The remaining crushed fibers (bagasse) were stored at -20 °C.  

4.2.2 Experimental design and statistical analysis 

A Central Composite Design (CCD) was employed to assess the effect of three 

independent variables (pretreatment temperature, residence time and solids loading) on the 

responses (glucose yield).  The experiments were designed by using the software Design-Expert 

8.0.7.1 (State Ease Inc., Minneapolis, MN). The levels of variables are shown in Table 4.1. CCD 

consists of 2
k 

factorial points, 2k axial points (±α), and 6 center points for replications, where k is 

the number of independent variables. Six replicates at the center point of the design were used to 

estimate the pure error sum of squares. A total of twenty experiments were performed as shown 
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in Table 4.2. A second-order polynomial equation (eq. 1) was assumed to approximate the true 

function and it is presented below: 

 

      ∑    

 

   

 ∑    

 

   

  
  ∑ ∑           

 

     

 

   

          

 

Where, Y is the response variable, Xi and Xj are the independent variables, β0 is the 

constant coefficient, βi is the linear coefficient, βii is the quadratic coefficient, and βij is the two 

factors interaction coefficient, εi is the random error. 

 

Table 4.1. Coded levels of the pretreatment condition variables tested in the CCD. 

Variable Unit Coding 
Coded level 

-α* -1 0 1 +α* 

Temperature °C A 100.0 108.1 120 131.9 140.0 

Residence time min B 20.0 28.1 40 51.9 60.0 

Solids loading % (w/w) C 2.0 3.6 6 8.4 10.0 

*α (axial distance) = √ 
 

, where N is the number of experiments of the factorial design. In this 

case =1.6818. 

 

The Design-Expert 8.0.7.1 was also used to analyze the CCD experimental results. Each 

coefficient in the second-order polynomial equation was calculated and the possible interaction 

effects of the independent variables on the response were obtained. The significance of each 

coefficient was checked by analysis of variance (ANOVA). Three dimensional response surfaces 

were drawn by using the same software to illustrate the effect of independent variables on the 

response.  
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Table 4.2. Experimental design matrix of CCD. 

IL 

pretreatment 

run 

Experimental variables 

Temperature (°C) Residence time (min) Solids loading  (%, w/w) 

1 108.1 28.1 3.6 

2 131.9 28.1 3.6 

3 108.1 51.9 3.6 

4 131.9 51.9 3.6 

5 108.1 28.1 8.4 

6 131.9 28.1 8.4 

7 108.1 51.9 8.4 

8 131.9 51.9 8.4 

9 100.0 40.0 6.0 

10 140.0 40.0 6.0 

11 120.0 20.0 6.0 

12 120.0 60.0 6.0 

13 120.0 40.0 2.0 

14 120.0 40.0 10.0 

15 120.0 40.0 6.0 

16 120.0 40.0 6.0 

17 120.0 40.0 6.0 

18 120.0 40.0 6.0 

19 120.0 40.0 6.0 

20 120.0 40.0 6.0 

 

4.2.3 Ionic liquid pretreatment 

Ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) (IoLiTec Ionic 

Liquids Technologies Inc., Tuscsaloosa, AL) was mixed with biomass at different solids loading 

(%, biomass/ionic liquid) (2%-10%), and pretreated at various temperatures (100 °C to 140 °C) 

and residence times (20 min to 60 min) as shown in Table 4.2. Post pretreatment, deionized 

water was added into the IL and biomass solution at a 5:1 (water: IL) ratio to recover the biomass. 

The ionic liquid/water mixture was separated from biomass by vacuum filtration. The solids 
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were washed repeatedly with deionized water to remove any remaining IL from the samples until 

the wash solution appeared colorless and solids were collected. The collected samples were 

oven-dried at 45 °C until constant weight was achieved.  

4.2.4 Chemical composition analysis 

All ionic liquid-treated energy cane bagasse samples were analyzed for glucan, xylan, 

arabinan, mannan, and lignin following Laboratory Analytical Procedures (LAP TP-510-42618, 

42619, 42622) as documented by the National Renewable Energy Laboratory (NREL). NREL 

reference material (8491 sugarcane bagasse) was analyzed as an internal standard to ensure the 

accuracy of the procedures. The percent lignin removal, glucan loss and xlyan loss were 

calculated as described below: 

 

 

                  
                                              

                            
          

 

               
                                              

                            
          

 

              
                                             

                           
          

 

4.2.5 Enzymatic hydrolysis 

A combination of two commercially available enzymes, Spezyme CP (cellulases) 

(Genencor, Danisco US Inc., Rochester, NY,) and Novozyme 188 (cellobiases) (Sigma-Aldrich, 
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Inc., St. Louis, MO), were used for the hydrolysis studies. Enzymatic hydrolysis was conducted 

as described in NREL’s LAP TP-510-43629. Briefly, hydrolysis was carried out with 1% (w/v) 

substrate at 50 °C, in 0.1 M sodium citrate buffer at pH 4.8 in a shaker incubator (Amerex 

Instruments Inc., Lafayette, CA) at 150 rpm. The substrates were hydrolyzed with Spezyme CP 

at 30 FPU/g glucan and Novozyme 188 at 30 CBU/g glucan.  Samples were taken at 0 h (before 

the addition of enzymes), 24 h, 48 h, and 72 h.  

4.2.6 Chemical analysis of hydrolyzed samples 

Collected samples (0 h, 24 h, 48 h, and 72 h) were centrifuged (8000 rpm) with a 

Spectrafuge 24D (Labnet International Inc., Woodbridge, NJ ), filtered (0.2 μm Syringe Filters, 

Environmental Express, Inc., Mt. Pleasant, SC) and diluted accordingly. Sugars (glucose, 

cellobiose, arabinose and xylose) from all collected samples were analyzed by high performance 

liquid chromatography (HPLC) (Agilent 1200 Series) with a BioRad Aminex HPX-87P, lead 

form, 3000 mm × 7.8 mm (ID), 9 μm column and  a differential refractive index detector 

(G1362A Agilent).  Percent theoretical cellulose digestibility was calculated using the equation 

(eq. 5) provided by NREL’s LAP TP-510-43630 as described below: 

 

                                      
                             

                  
                 

 

Where, [Glucose] is the residual glucose concentration (g/L), [Cellobiose] is the residual 

cellobiose concentration (g/L), 1.053 is the multiplication factor that converts cellobiose to 

equivalent glucose, [Biomass] is the dry biomass concentration at the beginning of the enzymatic 
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hydrolysis (g/L),  f  is the cellulose fraction in dry biomass (g/g), 1.111 is the factor that converts 

cellulose to equivalent glucose. 

Since significant solids losses after pretreatment were observed, the glucose yield was 

calculated based on the chemical composition of native biomass. Native biomass in this case 

refers to the biomass before pretreatment. Therefore, glucose yield was defined as the mass of 

glucose released via enzymatic hydrolysis per 100 g of native biomass as shown in the equation 

(eq. 6) below: 

 

Glucose yield = 100 × %Recovered solids × 1.111 f × %Theoretical cellulose digestibility (eq. 6) 

 

Where,  100 stands for 100 g of native biomass, %Recovered solids is the percentage of 

recovered solids after pretreatment,  f  is the cellulose fraction in dry biomass (g/g), 1.111 is the 

factor that converts cellulose to equivalent glucose, %Theoretical cellulose digestibility  is the 

percentage of theoretical cellulose digestibility. 

4.3 Results and Discussion 

4.3.1 Effect of pretreatment on the composition of energy cane bagasse 

The chemical composition of energy cane before and after IL pretreatment is summarized 

in Table 4.3. The initial chemical composition of untreated energy cane bagasse was 41.15% 

glucan, 21.13% xylan and 24.32% lignin. The results are comparable to those observed  by Aita 

et al. (2011), Kim and Day (2011) and Qiu et al. (2012). Based on this composition and 

considering the mass increase after the conversion from polysaccharides to monosaccharides, the 
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maximal theoretical glucose and xylose yields were 45.72 g and 24.00 g per 100 g of energy 

cane bagasse on dry weight basis, respectively. 

 

Table 4.3. Experimental data for composition analysis and glucose yields. 

IL 

pretreatment 

run 

Experimental variables 

Recov-

ered 

solids 

(%, 

w/w)
a
 

Glucan 

(%, 

w/w)
a
 

Xylan 

(%, 

w/w)
a
 

Lignin 

(%, 

w/w)
a
 

Cellulose 

digesti-

bility
ab

 

(%, w/w) 

Glucose 

yield
ab

 

(g/100 g 

native 

biomass) 
Temp. 

(°C) 

Time 

(min) 

Solids 

loading  

(%, 

w/w)
a
 

Untreated N/A N/A N/A 100.00 41.15 21.13 24.32 7.93 3.63 

1 108.1 28.1 3.6 93.43 41.08 21.74 22.03 68.98 29.42 

2 131.9 28.1 3.6 67.94 48.93 12.87 25.94 97.17 35.89 

3 108.1 51.9 3.6 89.33 43.25 20.95 21.40 72.78 31.24 

4 131.9 51.9 3.6 59.72 52.38 13.29 24.19 97.88 34.02 

5 108.1 28.1 8.4 95.45 41.63 21.08 22.03 68.15 30.08 

6 131.9 28.1 8.4 74.91 45.88 14.46 27.45 94.17 35.96 

7 108.1 51.9 8.4 92.08 43.55 21.39 20.30 76.02 33.87 

8 131.9 51.9 8.4 70.69 44.66 15.29 29.64 99.39 34.86 

9 100.0 40.0 6.0 93.41 41.97 21.83 22.57 60.41 26.32 

10 140.0 40.0 6.0 63.36 55.09 12.59 22.49 88.96 34.49 

11 120.0 20.0 6.0 86.02 47.47 21.33 21.44 72.33 32.82 

12 120.0 60.0 6.0 70.25 53.13 13.58 21.94 84.61 35.09 

13 120.0 40.0 2.0 72.60 55.03 16.37 17.01 76.62 34.01 

14 120.0 40.0 10.0 83.27 49.24 19.58 21.57 71.88 32.75 

15 120.0 40.0 6.0 77.74 50.53 16.61 22.75 82.17 35.86 

16 120.0 40.0 6.0 77.47 50.59 16.27 20.41 80.39 35.00 

17 120.0 40.0 6.0 80.18 48.82 16.60 20.13 78.03 33.94 

18 120.0 40.0 6.0 80.41 48.81 16.73 23.35 79.66 34.73 

19 120.0 40.0 6.0 76.44 51.08 16.48 21.78 80.46 34.91 

20 120.0 40.0 6.0 79.22 48.98 17.35 22.80 83.38 35.95 

a Dry weight basis. 

b Enzymatic hydrolysis after72 h. 

N/A= not applicable. 
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After pretreatment, significant mass loss was observed for all of the IL-treated samples. 

The linear effects of pretreatment temperature, time and solids loading had a significant impact 

(p-value < 0.001) on the recovered solids; however, no quadratic effects or interactive effects 

were observed.  The contour plots (Fig.4.1 and Fig. 4.2) describe the effect of pretreatment 

temperature, time and solids loading on the percent of recovered solids. Each figure keeps one 

variable constant at central level. The percent of recovered solids increased with the decrease of 

both time and temperature, and with an increase in solids loading. Among  all pretreatment runs,  

pretreatment at 131.9 °C for 51.9 min with 3.6% solids loading resulted in the lowest percent 

recovered solids (59.72%); whereas, pretreatment at 108.1°C for 28.1 min with 8.4% solids 

loading resulted in the highest percent recovered solids (95.45%). Similar negative correlations 

between percent recovered solids and temperature or time was observed by Fu and Mazza 

(2011b) when pretreating wheat straw with aqueous [EMIM][OAc]. Weerachanchai et al. (2012) 

also indicated a negative correlation between pretreatment temperature and percent of recovered 

solids for both cassava pulp residue and rice straw pretreated by three types of ILs 

([EMIM][OAc], [EMIM][DEPO4] and [DMIM][MESO4]). 

The loss of biomass after pretreatment was mainly attributed to the loss of glucan, xylan 

and lignin as shown in Table 4.4. Generally, significant degradation of cellulose only takes place 

under harsh conditions such as high temperatures (Tan and Lee, 2012). The results of our study 

are in accordance with this observation. A significant positive correlation between temperature 

and glucan loss was observed. For the pretreatments at over 131 °C, the glucan loss ranged from 

15.18% to 23.98%; whereas, for the samples pretreated at lower temperatures the glucan loss 

was no more than 10%. However, no significant impact of pretreatment time and solids loading 

on glucan loss was observed. Fu and Mazza (2011b) also indicated that the pretreatment time 
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was not a statistically significant variable for the cellulose recovery of wheat straw pretreated by 

aqueous [EMIM][OAc]; whereas, the cellulose recovery increased with the decrease of 

pretreatment temperatures from 130 °C to 170 °C.  Tan and Lee (2012) pointed out that higher 

temperatures accelerate both cellulose dissolution and cellulose degradation processes during 

ionic liquid pretreatment, and the degradation products such as carbohydrate oligomers and 

monomers are all soluble in the anti-solvent such as water (Brennan et al., 2010).  Therefore, 

higher pretreatment temperatures (> 130 °C) favor glucan loss.   

 

 

Fig. 4.1. Contour Plot of the Combined Effects of Pretreatment Temperature and Residence 

Time on Percent Recovered Solids at 6% (w/w) Solids Loading. 
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Fig. 4.2. Contour Plot of the Combined Effects of Pretreatment Temperature and Solids Loading 

on Percent Recovered Solids at Pretreatment time of 40 min. 

 

Pretreatment temperature and residence time had a strong positive correlation with xylan 

loss in the design space; whereas, solids loading had a relatively weak negative correlation with 

xylan loss.  Xylan loss (48.72% to 62.44%) was more severe than glucan loss for pretreatments 

placed at over 131 °C. Fu and Mazza (2011b) reported similar observation where severe xylan 

loss (83.2%) was observed when high pretreatment temperature (150 °C) was  used for 

pretreating wheat straw with [EMIM][OAc] for 3 h. Tan and Lee (2012) also found that a 

significant amount of xylan was loss when high temperature (120 °C) and longer residence times 

(1 h - 3 h) were employed for the pretreatment of oil palm frond with [BMIM]Cl. Arora et al. 

(2010) observed that partial hemicellulose was depolymerized into oligosaccharides after  
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Table 4.4. Lignin removal, glucan loss and xylan loss in IL-treated biomass. 

IL 

pretreatment 

run 

Experimental variables Glucan 

loss  

(%, w/w)
a
 

Xylan  

loss  

(%, w/w)
a
 

Lignin 

removal 

(%, w/w)
a
 

Temp. 

(°C) 

Time 

(min) 

Solids 

loading  

(%, w/w)
a
 

1 108.1 28.1 3.6 6.72 3.88 15.35 

2 131.9 28.1 3.6 19.22 58.61 27.53 

3 108.1 51.9 3.6 6.10 11.41 21.38 

4 131.9 51.9 3.6 23.98 62.44 40.61 

5 108.1 28.1 8.4 3.44 4.76 13.52 

6 131.9 28.1 8.4 16.48 48.72 15.46 

7 108.1 51.9 8.4 2.55 6.77 23.14 

8 131.9 51.9 8.4 23.28 48.84 13.84 

9 100.0 40.0 6.0 4.72 3.49 13.32 

10 140.0 40.0 6.0 15.18 62.26 41.41 

11 120.0 20.0 6.0 0.76 13.16 24.16 

12 120.0 60.0 6.0 9.30 54.86 36.63 

13 120.0 40.0 2.0 2.91 43.75 49.21 

14 120.0 40.0 10.0 0.36 22.84 26.15 

15 120.0 40.0 6.0 4.53 38.90 27.29 

16 120.0 40.0 6.0 4.76 40.35 34.97 

17 120.0 40.0 6.0 4.86 36.99 33.64 

18 120.0 40.0 6.0 4.62 36.35 22.81 

19 120.0 40.0 6.0 5.11 40.37 31.54 

20 120.0 40.0 6.0 5.69 34.96 25.72 

a Dry weight basis. 

 

pretreatment of switchgrass with [EMIM][OAc] at longer residence time (≥ 3 h). Yoon et al. 

(2012) indicated that IL pretreatment at high temperature (> 135 C°) for a long residence time (> 

30 min) might lead to the depolymerization of polysaccharides into their respective monomers, 

which could not be recovered after pretreatment. Therefore, in this study significant glucan and 

xylan losses were observed at pretreatments with higher temperatures and longer residence 

times. 
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Pretreatment temperature and solids loading had a significant impact on lignin removal, 

while the correlation between residence time and lignin removal was not significant in the design 

space. Lignin is one of the main obstacles during enzymatic hydrolysis, which serves as the 

“glue” that binds cellulose and hemicellulose, giving both rigidity and resistance to the 

lignocellulosic structure (Aita and Kim, 2010; Lee et al., 2009). Generally, high lignin removal is 

favorable. Lignin removal increased with the increase of pretreatment temperature, and 

decreased with the increase of solids loading. Shill et al. (2011) indicated that the π-π 

interactions of the IL cation with lignin assisted in lignin solubilization. Tan and Lee (2012) 

pointed out that dissolved lignin would remain in the ionic liquid when the anti-solvent such as 

water was added for biomass recovery. Higher temperature should accelerate the solubilization 

of lignin in ionic liquid, and pretreatment temperatures above the glass transition of lignin (Tg 

=130-150 °C) result in better delignification (Li et al., 2011b). Therefore, better delignification 

was achieved at higher temperatures (> 120 °C) as observed in this study. Solids loading had a 

negative correlation with lignin removal. The highest lignin removal (49.21%) was obtained at 

the lowest solids loading (2%) at 120 °C. Samples with more than 8% solids loading exhibited 

less lignin removal (13.52%-26.15%) regardless of pretreatment temperature and residence time. 

High solids loading can decrease the probability of biomass mixing with  the ionic liquid thus  

limiting  heat and mass transfer (Tan and Lee, 2012). Furthermore, the [EMIM][OAc] with 

dissolved biomass at  high solids loading (> 8%) turned into a solid phase after pretreatment with 

a residence time of more than 20 min, which significantly reduced the mixing rate and limited  

lignin solubilization. [EMIM][OAc] with dissolved biomass at lower solids loading remained in 

the liquid phase, which is favorable for lignin extraction. Therefore, higher solids loading 

resulted in lower lignin removal. Previous studies by Samayam and Schall (2010), Ninomiya et 
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al. (2012) and Qiu et al. (2012) have suggested that  a higher delignification is not necessarily a 

prerequisite for a higher cellulose digestibility, so high solids loading samples with relative low 

lignin removal may still result in high hydrolysis yields. 

4.3.2 Statistical analysis and model fitting 

The experimental data of glucose yield per 100 g of native biomass presented in Table 

4.3 was used to fit the model. Based on sequential adjusted sum of square type I, lack of fit tests, 

adjusted R-squared, and predicted R-squared, the quadratic model was selected. The quadratic 

model fitted the data significantly but not aliased, and had an insignificant lack of fit.  Thus, a 

second order polynomial equation was used to fit the response as shown in eq. 1. Coefficients β0, 

βi, βii, and βij were estimated by using Design-Expert 8.0.7.1 software. Analysis of variance 

(ANOVA) was performed to test the significance of the developed model and the effects of each 

linear, quadratic and interaction terms on the response. The stepwise selection method was used 

to choose significant model terms at 95% confidence interval. The significance of each 

coefficient was determined by the F test. A reduced quadratic model was obtained as shown in 

the ANOVA table (Table 4.5).  

A model is considered significant if its p-value is < 0.05, in this model, the p-value was 

<0.0001, which indicated that there was only a 0.01% chance that a "Model F-Value" could 

occur due to noise. The p-value of A and A
2
 were both lower than 0.0001, which suggested that 

pretreatment temperature had great impact on the glucose yield in terms of both linear and 

quadratic effects. The p-value (0.0063) of AB indicated that the interactive effect of pretreatment 

temperature and time had significant effect on the glucose yield. Although the linear effect of 

residence time (B, p-value = 0.0877) did not have a significant effect on the glucose yield at 95% 
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confidence interval, this term was retained in the model in order to support the model hierarchy 

because the interactive effect of temperature and residence time (AB) was significant. The linear 

effect of solids loading (C), quadratic effect of residence time (B
2
) and solids loading (C

2
), the 

interactive effects of temperature and solids loading (AC), and residence time and solids loading 

(BC) were excluded from the model due to statistical insignificance. The final equation (eq. 7) 

obtained in terms of actual factors after removing the insignificant model terms was as follow: 

 

Glucose yield = -171.17089 + 2.91457 × Temperature + 0.95036 × Residence Time - 

0.00758841 × Temperature × Residence Time -0.010113 × Temperature
2
   (eq. 7) 

 

Table 4.5. Analysis of variance (ANOVA) table for reduced quadratic model. 

Source 
Sum of 

square 

Degree 

of 

freedom 

Mean 

square 
F value 

p-value   

Prob > F   

Model 107.56 4 26.89 29.41 < 0.0001 significant 

A-Temperature 65.28 1 65.28 71.39 < 0.0001 
 

B-Residence time 3.05 1 3.05 3.34 0.0877 
 

AB 9.21 1 9.21 10.08 0.0063 
 

A
2
 30.02 1 30.02 32.83 < 0.0001 

 
Residual 13.72 15 0.91 

   
Lack of fit 10.89 10 1.09 1.93 0.2429 not significant 

Pure error 2.83 5 0.57 
   

Corrected total 121.28 19         

      Std. dev. 0.96   R-squared 0.8869 
 

Mean 33.56 
 

Adj R-squared 0.8567 
 

C.V. %* 2.85 
 

Pred R-squared 0.8096 
 

PRESS 23.09   Adeq precision 18.9882 
 

* Coefficient of variation. 
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The p-value (0.2429) of the lack of fit test with an F-value of 1.93 was not significant, 

which indicated that there was a 24.29% chance that a "Lack of Fit F-value" this large could 

occur due to noise. The determination coefficient (R
2
) was 0.8869, which implied a high 

correlation between the actual and predicted values as shown in Fig. 4.3.  Only 11.31% of the 

total variance could not be explained by the model. The predicted determination coefficient (Pred 

R
2
) of 0.8096 was in reasonable agreement with the adjusted determination coefficient (Adj R

2
) 

of 0.8567, which also confirmed the significance of the model. The coefficient of variation 

(C.V.%) was low (2.85%), which indicated the experiments conducted were precise and reliable. 

"Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  The ratio 

of 18.9882 in this model indicated an adequate signal, which implied that this model can be used  

 

Fig. 4.3. Predicted versus Actual Glucose Yield. 
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to navigate the design space. The normality of residuals was confirmed by the normal probability 

plot of the studentized residuals as shown in Fig. 4.4. 

These statistical tests demonstrated that the reduced quadratic model presents a decent 

description of the correlation between the processing variables and the response, and it is 

adequate to predict the glucose yield under different combinations of pretreatment conditions 

with the range of design space.  

 

Fig. 4.4. Normal Probability Plot of the Studentized Residuals. 

 

4.3.3 Effect of processing variables on glucose yield 

Based on the quadratic model developed, three-dimensional response surface graph were 

plotted to investigate the interactive effect of pretreatment temperature and residence time with 
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the range of design space on the glucose yield, while keeping the solids loading constant at 

central level (6%). The effect of pretreatment temperature and residence time on the glucose 

yield at 6% solids loading is shown in Fig. 4.5. Pretreatment temperature had significant impact 

on the glucose yield, and an interactive effect of pretreatment and residence time was also 

observed. At lower pretreatment temperatures, the glucose yield increased with the increase of 

pretreatment residence time. At 108.1 °C, the glucose yield almost linearly increased from 29.37 

g to 32.46 g per 100 g native biomass, while the residence time increased from 28.1 min to 51.9 

min. This trend was reversed at temperatures higher than 125 °C. A negative correlation between 

residence time and glucose yield was observed. The glucose yield decreased from 35.89 g to 

34.69 g/100 g native biomass as the residence time increased from 28.1 min to 51.9 min at 131.9 

°C. Temperature had a greater impact on glucose yield, which was also confirmed by previous 

statistical analysis. With shorter pretreatment residence times, the glucose yield increased 

significantly with the increase of temperature. When the residence time was set at 28.1 min, the 

glucose yield increased from 29.37 to 35.89 g/100 g native biomass as the temperature increased 

from 108.1°C to 131.9 °C. However, if the residence time was extended to more than 40 min, the 

plot of temperature to glucose yield changed to a convex shape, and the highest glucose yield 

shifted to a lower temperature around 121 °C to 125 °C (Fig. 4.5). Therefore, the highest glucose 

yield is expected at higher pretreatment temperatures and shorter residence times within the 

range of the design space.  

Tan et al. (2011) also reported that improvement of glucose recovery was observed when 

oil palm was pretreated with [BMIM]Cl at higher temperature (100 °C) for shorter residence 

time (15 min); whereas, prolonged residence time to 60 min at higher temperature led to 

reduction in glucose recovery. Similarly, Yoon et al. (2012) observed that the reducing sugar 
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Fig. 4.5. Three-Dimensional Response Surface Plot of the Effects of Pretreatment Temperature 

and Residence Time on Glucose Yield at 6% (w/w) Solids Loading. 

 

yield of  [EMIM][OAc]-treated sugar cane bagasse increased with the increase of  residence time 

at lower temperature (120 °C); whereas, an increase in  residence time resulted in lower reducing 

sugar yields at higher temperatures (>135 °C).  The higher glucose yield observed at higher 

pretreatment temperature and shorter residence time can be attributed to several factors:  (1) the 

rate of cellulose dissolution in ILs can be accelerated by increasing the temperature during 

pretreatment, (2) higher temperature can reduce the viscosity of ILs, which is conducive to the 

mixing of biomass and ILs, and (3) higher pretreatment temperature results in a destabilization of 

the hydrogen bonds which tighten the three-dimensional structure of cellulose (Tan et al., 2011; 

Yoon et al., 2012; Zavrel et al., 2009). However, it has been discussed before that pretreating 
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biomass at higher temperature for a long residence time could lead to the degradation and loss of 

polysaccharides (Brennan et al., 2010; Tan and Lee, 2012; Yoon et al., 2012). Higher 

temperature and longer residence time would also produce overcooked biomass with burnt 

surface, which has a negative effect on enzymatic hydrolysis (Teramoto et al., 2008). Moreover, 

pretreatment of energy cane bagasse with [EMIM][OAc] tends to coagulate mixture when  

pretreatment takes place at high temperatures (> 120 °C) with a long residence time (> 40 min). 

This is probably because the increased hydrogen bonds between cellulose and ionic liquid 

immobilized the ionic liquid. It was difficult to recover the biomass from the coagulated mixture 

after pretreatment, which not only reduced the amount of recovered solids, but also might have 

left small amounts of [EMIM][OAc] residual in the recovered biomass even after thorough 

washing. Turner et al. (2003) and Zhao et al. (2009) indicated that ionic liquid residual can 

inactivate  cellulases and inhibit enzymatic hydrolysis, which would directly result in a decrease 

of glucose yield. Yoon et al. (2012) reported similar coagulate formation after pretreatment of 

sugar cane bagasse with [EMIM][OAc] at high temperature and long residence time. Another 

possible reason for the decrease of glucose yield after pretreatment at high temperature and long 

residence time is thermal degradation of [EMIM][OAc] at high temperature. Li et al. (2011b) 

observed that dealkylation occurred upon heating of [EMIM][OAc], and more dealkylation took 

place at high temperature even for short times.  Therefore, in our study more [EMIM][OAc] 

decomposed at  longer residence times (> 30 min) and higher temperatures (> 130 °C).   

Solids loading (3.6%-8.4%) had no significant impact on the glucose yield within the 

range of design space. Generally, a better pretreatment efficiency is expected at low solids 

loading, as it has no mixing problem and provides better heat and mass transfer. Tan et al. (2011) 

argued that high biomass concentration under agitation allowed for more frequent contacts and 
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collisions between biomass particles. This frequent collision probably compensated for the heat 

and mass transfer limitation. Therefore, in this study no considerable differences in glucose 

yields between low solids loading and high solids loading were observed. 

4.3.4 Optimization of processing conditions 

Design-Expert 8.0.7.1 software was used to predict optimal processing conditions. As 

discussed in section 4.3.3, the highest glucose yield could be expected at higher pretreatment 

temperature and shorter residence time with the range of the design space. The pretreatment 

combination of 131.9 °C, 28.1 min and solids loading from 3.6% to 8.4% was predicted to have 

the highest glucose yield of 35.89 g/100 g native biomass with a 95% prediction interval from 

33.54 g to 38.24 g/100 g native biomass. Since solids loading did not have a significant impact 

on the glucose yield, the highest solids loading of 8.4% in the design space was selected as 

higher solids loadings are preferred during processing. Therefore, the combination of 131 °C, 

28.1 min and 8.4% solids loading was selected as the optimal processing condition for the 

pretreatment of energy cane bagasse with [EMIM][OAc]. The experimental glucose yield for the 

optimal processing conditions was 35.96 g/100 g native biomass. There is only a 0.19% 

difference between the predicted value and the experimental value, which suggests that this 

model is applicable and accurate with the range of design space. 

4.4 Conclusions 

The effect of temperature, residence time and solids loading on glucose yields of   

[EMIM][OAc]-treated energy cane bagasse was assessed in this study by response surface 

methodology (RSM). A reduced quadratic model was built based on statistical tests.  The model 

presented a suitable description of the correlation between the processing variables and the 
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response. The model predicted that higher glucose yields could be obtained at higher 

pretreatment temperatures with shorter residence times regardless of the solids loading. The 

pretreatment combination of 131.9 °C, 28.1 min and 8.4% of solids loading was selected as the 

optimal process condition, which resulted in a glucose yield of 35.96 g glucose per 100 g of 

native biomass as compared to the predicted value of 35.89. The consistency observed between 

the predicted value and the experimental value suggests that this model is adequate and accurate 

to predict the glucose yield with the range of design space. Furthermore, this model can also 

provide valuable insight for further industry application. 

 



 

68 

 

CHAPTER 5 

SUMMARY AND FUTURE WORK 

 
Lignocellulosic biomass appears to be a prospective renewable energy resource that can 

be used for the generation of biofuels and bioproducts. The major concern in lignocellulose 

conversion is overcoming biomass recalcitrance through pretreatment while still maintaining a 

green, energy efficient and cost-effective process. Energy cane is a promising energy crop with 

high fiber content and good cold tolerance traits that requires less fertilizer and water input than 

sugarcane. This study assessed the use of ionic liquid 1-ethyl-3-methylimidazolium acetate 

([EMIM][OAc]) as solvent for the pretreatment of energy cane bagasse.  

[EMIM][OAc]-treated energy cane bagasse resulted in significant lignin removal (32.0%) 

with slight glucan and xylan losses (8.8% and 14.0%, respectively), and exhibited significant 

higher enzymatic digestibility (87.0%, 64.3%) than untreated (5.5%, 2.8%) or water (4.0%, 

2.1%) treated energy cane bagasse in terms of both cellulose and hemicellulose yields, 

respectively. SEM images revealed a loose and disordered structure of biomass post 

pretreatment.  FTIR analysis indicated that IL treated biomass exhibited a significant loss of 

native cellulose crystalline structure. XRD analysis also confirmed that IL pretreatment resulted 

in a decrease of crystallinity index from 0.5628 to 0.2452. 

The energy cane bagasse pretreated with recycled [EMIM][OAc] resulted in a decrease of 

lignin removal as compared to bagasse pretreated with the original ionic liquid. Pretreatment 

with recycled IL at 120 °C for 0.5 h removed more lignin than pretreatment with recycled IL at 

100 °C for 2 h. However, the lignin removal efficiency at 120 °C for 0.5 h decreased with 

increasing number of IL recycles; whereas, relatively low pretreatment temperature (100 °C) and 
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longer residence time (2 h) resulted in fixed lignin removal efficiency. The energy cane bagasse 

pretreated with recycled IL at 100 °C for 2 h retained more than 90% of both glucan and xylan in 

each recycle. The enzymatic digestibility decreased with increasing numbers of IL recycles for 

pretreatments at 120 °C for 0.5 h and at 100 °C for 2 h. However, higher digestibilities in terms 

of both cellulose (70.09%, 68.81% and 66.91%) and hemicellulose (47.71%, 50.90% and 

49.13%) were observed with 1st, 2nd and 3rd recycled IL at 100 °C for 2 h, respectively, as 

compared to cellulose digestibilities (39.55% and 30.34%) and hemicellulose digestibilities 

(29.38% and 14.99%) of 1
st
 and 2

nd
 recycled IL-treated biomass at 120 °C for 0.5 h. Decreasing 

pretreatment temperatures from 120 °C to 100 °C and extending the residence time from 0.5 h to 

2 h resulted in significant improvements to the pretreatment efficiency of recycled 

[EMIM][OAc] on energy cane bagasse.  

Response surface methodology (RSM) model indicated that higher glucose yields could 

be obtained at higher pretreatment temperatures with shorter residence times regardless of the 

solids loading. The pretreatment combination of 131.9 °C, 28.1 min and 8.4% of solids loading 

was selected as the optimal process condition, which resulted in a glucose yield of 35.96 g 

glucose per 100 g of native biomass as compared to the predicted value of 35.89. The 

consistency observed between the predicted value and the experimental value suggests that this 

model is adequate and accurate to predict the glucose yield with the range of design space. 

The work discussed in this thesis presented a systematic study on the use of 

[EMIM][OAc]  as solvent during the pretreatment of energy cane bagasse and demonstrated that 

[EMIM][OAc] pretreatment for energy cane bagasse has great potential as a pretreatment 

method. However, further research is still needed to improve the efficiency of this pretreatment 

on energy crops. Future research work will investigate the optimal pretreatment conditions with 
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extended design space, assess the efficiency of recycled ionic liquid pretreatment at optimal 

processing conditions, evaluate hydrolysis yields with a combination of both cellulases and 

xylanases, and calculate the cost for the entire conversion process and energy returned on energy 

invested (EROEI). 
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APPENDIX A  

SUPPLEMENTARY DATA (1) FOR CHAPTER 2 
 

 

Table A1. Cellulose digestibility data for chapter 2. 

  % Cellulose digestibility 

Pretreatment time (h) 
24

*
 48

*
 72

*
 24

**
 48

**
 72

**
 

Pretreatment type 

IL treated 64.63 68.43 68.93 75.41 81.19 87.01 

Std. dev. 5.96 2.48 4.79 3.99 5.42 1.01 

Water treated 2.89 3.33 3.47 2.90 3.66 4.04 

Std. dev. 0.01 0.06 0.26 0.01 0.41 0.30 

Untreated 2.64 3.23 4.12 3.17 3.73 5.49 

Std. dev. 0.01 0.02 0.15 0.09 0.03 0.01 

*   15 FPU Spezyme CP/g glucan and 15 CBU Novozyme 188/g glucan. 

** 30 FPU Spezyme CP/g glucan and 30 CBU Novozyme 188/g glucan. 
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APPENDIX B 

SUPPLEMENTARY DATA (2) FOR CHAPTER 2 
 

 

Table A2. Hemicellulose digestibility data for chapter 2. 

  % Hemicellulose digestibility 

Pretreatment time (h) 
24

*
 48

*
 72

*
 24

**
 48

**
 72

**
 

Pretreatment type 

IL treated 40.38 43.58 46.47 52.51 59.56 64.25 

Std. dev. 0.77 0.54 2.29 6.11 6.42 1.57 

Water treated 1.47 1.78 1.90 1.61 2.03 2.06 

Std. dev. 0.04 0.01 0.01 0.25 0.04 0.10 

Untreated 1.07 1.38 2.35 1.31 2.12 2.84 

Std. dev. 0.05 0.05 0.05 0.06 0.17 0.03 

*   15 FPU Spezyme CP/g glucan and 15 CBU Novozyme 188/g glucan. 

** 30 FPU Spezyme CP/g glucan and 30 CBU Novozyme 188/g glucan. 
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APPENDIX C 

SUPPLEMENTARY DATA (1) FOR CHAPTER 3 
 

 

Table A3. Cellulose digestibility data for chapter 3. 

Biomass component 

(%, dry weight basis) 

% Cellulose digestibility 

24 h 
Std. 

dev. 
48 h 

Std. 

dev. 
72 h 

Std. 

dev. 
Pretreatment conditions 

Solvent Temp. (°C) Time (h) 

None 120 0.5 3.17 0.09 3.73 0.03 5.49 0.01 

Water 120 0.5 2.90 0.01 3.66 0.41 4.04 0.30 

IL 120 0.5 75.41 3.99 81.19 5.42 87.01 1.01 

1st recycled IL 120 0.5 30.35 0.55 38.43 2.93 39.55 1.81 

2nd recycled IL 120 0.5 26.63 0.17 30.75 2.84 30.34 0.96 

IL 100 0.5 55.10 1.21 55.49 2.02 59.81 0.98 

IL 100 1 54.67 3.31 64.30 1.55 73.45 2.73 

IL 100 2 56.35 0.79 61.64 2.11 98.39 4.73 

IL 100 4 77.63 2.49 75.79 2.49 99.80 13.43 

1st recycled IL 100 2 43.83 0.72 49.78 2.29 70.09 4.32 

2nd recycled IL 100 2 38.07 3.21 43.77 2.93 68.81 2.73 

3rd recycled IL 100 2 40.98 0.88 44.99 1.57 66.91 15.44 
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APPENDIX D 

SUPPLEMENTARY DATA (2) FOR CHAPTER 3 

 

 

Table A4. Hemicellulose digestibility data for chapter 3. 

Biomass component 

(%, dry weight basis) 

% Hemicellose digestibility 

24 h 
Std. 

dev. 
48 h 

Std. 

dev. 
72 h 

Std. 

dev. 
Pretreatment conditions 

Solvent Temp. (°C) Time (h) 

None 120 0.5 1.31 0.06 2.12 0.17 2.84 0.03 

Water 120 0.5 1.61 0.25 2.03 0.04 2.06 0.10 

IL 120 0.5 52.51 6.11 59.56 6.42 64.25 1.57 

1st recycled IL 120 0.5 19.04 0.65 26.42 1.57 28.73 1.91 

2nd recycled IL 120 0.5 9.49 0.06 13.47 0.82 14.66 0.23 

IL 100 0.5 27.33 0.58 29.07 1.64 32.94 1.68 

IL 100 1 31.48 1.68 37.21 1.63 45.10 1.68 

IL 100 2 39.10 0.56 44.79 2.24 73.88 5.90 

IL 100 4 59.41 0.25 61.15 0.43 82.77 13.22 

1st recycled IL 100 2 29.45 0.04 34.68 0.91 46.66 7.48 

2nd recycled IL 100 2 25.25 1.45 30.65 1.32 49.78 0.77 

3rd recycled IL 100 2 27.95 0.75 31.76 1.48 48.05 11.52 
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