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ABSTRACT 

 Blue crabs (Callinectes sapidus) play an important role in Louisiana’s economy. The 

increase in consumer popularity coupled with the ambiguity of cooking instructions available is 

portentous because of the tendency that some pathogenic bacteria have for sharing the natural 

habitats of the Louisiana blue crab. While all seafood has the potential of being associated with 

foodborne illness, blue crabs are environmentally exposed to Vibrio cholerae, Vibrio 

parahaemolyticus, Vibrio vulnificus, Listeria monocytogenes and Salmonella species. This study 

was designed to determine the least amount of time and temperature needed to reduce or 

eliminate each of the aforementioned bacteria from a single Louisiana blue crab with either 

boiling or steaming heat treatments. Once the single crab heat treatment studies were completed, 

the bacteria that showed the greatest thermal resistance, Listeria monocytogenes, and the bacteria 

most associated with foodborne illness in Louisiana blue crabs, Vibrio parahaemolyticus, were 

inoculated into a serving size of crabs and subjected to heat treatments. The results were based 

on the amount of bacterial log reduction of each heat treatment time point. The recommendations 

for safe cooking times were determined by the abundance of below detection limit or non-

detectable level results for each bacterium tested and the temperature was determined by the 

lowest temperature needed to achieve these conditions. Results of the heat treatment experiments 

were: boil one crab four minutes and cool one additional minute for an internal temperature of at 

least 79.5° C and a total cooking time of five minutes; steam one crab for five minutes and cool 

two additional minutes for an internal temperature of at least 57° C and a total cooking time of 

seven minutes; boil four crabs for 10 minutes and cool five additional minutes for an internal 

temperature of at least 85° C and a total cooking time of 15 minutes; steam four crabs for 15 

minutes and cool five additional minutes to reach an internal temperature of at least 85° C with a 
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total cooking time of 20 minutes. These results will be presented to consumers as easy, concise 

instructions for safe preparation of Louisiana blue crabs.  
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CHAPTER 1 – INTRODUCTION 

 Louisiana blue crabs (Callinectes sapidus) are gaining popularity as a consumer product. 

Formerly, Louisiana blue crabs were intimidating Gulf Coast delicacies that were only prepared 

by trained chefs or experienced locals. Now, through the reliability of shipping, blue crabs are 

rapidly becoming one of the most profitable industries for Louisiana fisheries [3]. Louisiana is 

the number one blue crab supplier in the country, with crab fishermen landing approximately 40 

million pounds per year [4]. Primarily, Louisiana blue crabs are shipped domestically to 

restaurants. In 2001, Louisiana was the largest contributor of blue crabs to the U.S. market at 

22% with North Carolina coming in second at 17% [5]. In 2009, Louisiana Department of 

Wildlife and Fisheries stated that the blue crab industry had “a total economic effect of more 

than $290 million for the state of Louisiana” [6]. This industry significantly contributes to 

Louisiana’s state economy and is on the rise due to declining populations of blue crabs in the 

Chesapeake Bay area and the extensive natural estuarine habitat that is unique to Louisiana’s 

coastal area [5]. 

 While blue crab habitat exists along the coastal areas from Nova Scotia all the way down 

through South America, there are specific environmental requirements that are needed for blue 

crabs to thrive [7]. Blue crabs require estuaries with their nearby wetlands to complete their life 

cycles. Louisiana has a great deal of land that is classified as estuarine – approximately 40% of 

all of the wetlands located in the lower United States are in Louisiana [8]. An estuary is a coastal 

region where saltwater ocean and freshwater river meet and mix. In additions, estuaries provide a 

unique eco-system that is rich in nutrients and has several regions of water with different 

concentrations of salinity, which is necessary for a blue crab to complete its life cycle [5, 9]. This 
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gives Louisiana crab fishermen the means to create a profitable and sustainable blue crab 

industry. 

 Since the blue crab industry is so important to Louisiana’s economy, it is necessary to 

protect the consumers’ confidence in the product. It is difficult to regain a consumers’ trust in a 

product once an outbreak of foodborne illness is associated to it. Every food product has the 

potential for pathogen contamination and seafood is no exception. In general, Louisiana blue 

crabs are no more prone to bacterial contamination than shellfish in any other region of the 

country [10]. Autochthonous or naturally occurring bacteria that can sometimes be pathogenic to 

humans, such as some members of the species Vibrio, simply co-exist in the same habitat as blue 

crabs [10-17]. Blue crabs are omnivorous and can bio-accumulate bacteria in their gills as well as 

having it on their shells from the environment – they are basically surrounded externally and 

internally with bacteria [12, 13, 18-22]. Since there is not much that can be done about changing 

estuarine microbial ecology without major biological ramifications, it is much easier to give 

consumers safe preparation instructions to eliminate bacterial flora [23]. 

 After undertaking this project, the problem that became apparent after researching the 

background and epidemiology of foodborne illness associated with Louisiana blue crabs was: 

people were still occasionally becoming ill after eating blue crabs although the crabs are always 

consumed cooked [15, 24-26]. The two main causes of foodborne illness of any etiology are 

cross-contamination and improper handling [10, 27]. Certainly, cross-contamination could be a 

contributing factor, as it is in any study involving foodborne illness but investigations into these 

outbreaks could not exclude improper preparation as the causative reason [10, 23, 27]. Yet, 

trends are emerging that show private residence as a major location for foodborne illness [28, 

29]. For example, in 2007, the greatest number of bacterial-associated foodborne illnesses 
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investigated by the CDC was the private residence location not the restaurant/deli location [28]. 

In addition, approximately 19% of foodborne illness outbreaks reported during 1993-1997 were 

in private residences [22]. These factors led to the conclusion that natural bacterial contaminants 

and private residence were going to play major roles in this study.  

 The next avenue to investigate was preparation instructions for blue crabs. This is where 

there is a distinct lack of information. Cooking times and temperatures provided by the Food and 

Drug Administration (FDA) were not applicable because this information was oriented toward 

industrial settings. General advice is abundant online but vague and this is where the problems 

are originating [17]. Cooking instructions available to consumers typically include “cook until 

red” or “crabs will be red…” [30, 31]. A key factor that most instructions are missing is the 

quantity of crabs added to a boiling pot or a steamer. This is crucial, as overloading the cooking 

apparatus with “a batch of crabs” is a significant issue influencing the time and temperature 

needed to safely reduce any bacteria present in the blue crabs [17, 32]. There is no way to present 

safe cooking recommendations without quantifying the amount of crabs to be cooked for that 

time and temperature. 

 There is a need for a scientifically proven, consumer-focused study of minimum safe 

cooking times and temperatures for Louisiana blue crabs [17]. This study was designed to mimic 

consumer cooking conditions, using the same items available to the average cook. It was also 

customized to target Listeria monocytogenes 1/2b, Salmonella typhimurium, Vibrio cholerae O1, 

Vibrio parahaemolyticus (tdh+), and Vibrio vulnificus; the pathogens which are the most realistic 

threat to blue crab consumers [17, 21, 29, 33-35]. In addition, it was theorized that no one would 

go to all the trouble of preparing just one blue crab, therefore a serving size study was added. It 

was determined that the most heat resistant pathogen, Listeria monocytogenes, and the pathogen 
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most associated with blue crab-linked foodborne illness, Vibrio parahaemolyticus, would 

generate the most useful results for consumers from the serving size study [13, 17, 34]. Lastly, 

spectrophotometric studies of the changes in the color of a cooked crab to indicate “doneness” 

were conducted to determine if following the expression “cook until its red”, which is frequently 

the instructions for cooking blue crabs, was a reliable method to safely cook blue crabs [17, 30, 

31]. These studies were intended to produce results that would not only contribute knowledge to 

the scientific community but also be of practical consumer use as guidelines for safe preparation 

and consumption of Louisiana blue crabs [17].  
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Introduction 

 Foodborne disease is a continuing battle in the United States. It was conservatively 

estimated in 1999 by Mead et al. that foodborne illness caused approximately 76 million cases of 

illness, 325,000 hospitalizations, and 5,000 deaths per year [36]. In 2001, Rose et al. stated that 

“Foodborne diseases may be one of the most significant contemporary public health problems, 

not only because of the large number of cases reported and the associated economic costs, but 

also because many of the causative agents are newly recognized.” [12]. Recent sensationalized 

reports have listed the cumulative costs of foodborne illness to be $152 billion dollars per year 

[37]. This is more than the earlier estimated $35 billion dollars per year [36]. These may sound 

like outrageous estimates but the total cost of foodborne illness is very expensive. The absolute 

economic impact of foodborne illness would probably exceed the $152 billion estimate if all 

costs were considered, such as the amount spent on researching foodborne pathogens or the 

actual cost of a product recall. These are relatively new issues to the public as we become more 

aware of the realities caused by foodborne illness due to heightened media coverage.  

 The Center for Disease Control (CDC) is the governmental body responsible for 

monitoring and investigating foodborne illnesses. The CDC listed a total of 25,659 cases of 

foodborne disease outbreaks in 2006 with 6,872 (23%) suspected or confirmed cases due to 

bacteria [29]. Although this does not sound considerable, it is still a significant figure that is 

showing a trend toward consistency as seen represented in Figure 1[2]. In general, while viruses 

caused more foodborne illnesses, bacterial infections associated with foodborne illnesses were 

more likely to require hospitalization or result in death (Figure 2) [34]. 
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Figure 1: Graphical representation of foodborne disease outbreak cases sorted 

by etiological causes as reported by the CDC [3] 

 

Figure 2: Graphical representation of fatalities associated with foodborne 

disease outbreaks sorted by etiological causes as reported by the CDC [3] 
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 Crustaceans contaminated with bacteria are often the culprit in foodborne disease 

outbreaks. Many of these cases are due to improperly prepared or mishandled shellfish [2]. In 

2006 alone, the FDA issued six warnings regarding shellfish consumption including a seizure of 

31,800 pounds of improperly refrigerated crabmeat [38]. Many of the detailed investigations of 

bacterial-related foodborne illnesses have focused on oysters, since they are often consumed 

uncooked [34]. However, a significant number of bacterial foodborne disease outbreaks cases are 

caused by eating crab (Figure 3). There is usually no apparent reason for crabmeat to cause 

foodborne illness, since it is typically cooked before it is consumed [24]. That is why a detailed 

investigation into the cooking times and temperatures for safe consumption of Callinectes 

sapidus or Louisiana blue crabs are necessary, not only for industry but more importantly, for 

consumers [17]. 

 

Figure 3: Foodborne illness cases associated with crab for the year 2006 as 

reported by the CDC [2] 
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2.2 Outbreaks 

 Outbreaks associated with the consumption of tainted seafood have been casually 

documented for many centuries. However, in the early 20
th

 century, some major outbreaks got 

the attention of public officials. One such outbreak occurred in 1925 on the East Coast. An 

outbreak of typhoid fever was eventually traced back to oysters contaminated by sewage [39]. It 

was so severe, that it prompted officials to petition the Surgeon General of the United States to 

draw up formal guidelines for the safety of the public to replace the loose recommendations the 

shellfish industry followed at the time. Over time, small outbreaks continued around the country, 

but there were still many advances in sanitation, hygiene, and general processing that had yet to 

be discovered or implemented as regular practice. Things started changing in the 1970’s with 

advances in fields such as bacteriology and microbiology. For example, in 1978, when over 

1,100 people became ill with Vibrio parahaemolyticus at a shrimp dinner in Port Allen, LA, a 

thorough investigation of this foodborne disease outbreak was conducted. Upon further 

examination, it was discovered that the food was grossly mishandled – not only were the shrimp 

cross-contaminated after cooking, but they were also held unrefrigerated for eight hours in the 

middle of the Louisiana summer before being served [40]. Those were two extreme examples 

and since then, federal agencies such as the FDA and the CDC have instituted strict shellfish 

industry regulations, have developed sanitization practices that minimize cross-contamination, 

and in general, have tried to ensure safe food handling and consumer safety.  However, recent 

statistics have shown that foodborne disease outbreaks due to shellfish is still a concern for 

consumers especially in the Gulf Coast states [2]. 

 Bacterial contamination of crab has caused several outbreaks. In 1926, Chicago recorded 

an outbreak of Salmonella in crabmeat [41]. The product was traced back to the original 
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company where severely unsanitary conditions were discovered. In 1932, there was another 

outbreak of crabmeat-associated illness along the East Coast [41]. These events, along with the 

ones previously described, heralded the new regulations for seafood processing. For instance, 

random inspections and surveillance were instituted along the East and Gulf Coasts to 

periodically monitor the crab processing plants for compliance with the regulations [13]. These 

inspections led to better regulations and sanitation guidelines. Currently, conditions in the 

processing plants are very strict; however, there is still typically at least one outbreak per year 

that leads to a product recall. Recently, crab-associated bacterial illnesses have typically been 

caused by either cross-contamination [42, 43] or mishandling, either in private residences or in 

restaurant/delicatessen settings [2, 44, 45].  

 For example, ten people became ill with Bacillus cereus after eating crab at a home in 

Florida; eighty people became ill with Vibrio parahaemolyticus after eating crab at a restaurant 

in New York [2]. Also, Vibrio cholerae has continued to infect people who eat crabs that were 

improperly handled, such as the five people from New Jersey in 1991 who became infected with 

toxigenic V. cholerae O1, serotype Inaba, biotype El Tor from eating crabmeat brought back in a 

suitcase from Ecuador – which happens to be an epidemic area for Cholera [27]. Eleven people 

in Louisiana in 1978 came down with hemolytic Cholera biotype El Tor serotype Inaba after 

eating allegedly undercooked crabs [24, 25]. Products commonly mixed with crabmeat are also a 

vehicle for foodborne illness. Eggs mixed with crab to make crab cakes caused two separate 

outbreaks of Salmonella serotype Enteritidis in restaurants during 2001, a total of twenty cases in 

both outbreaks, with nine people hospitalized [46].  

 Outbreaks that are occurring at private residence setting are becoming a very common 

route of foodborne disease outbreaks and foodborne illness infections. At home, cooks do not 
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have easy guidelines for preparing crab. Many use the “cook until it’s red” technique [17, 30, 

31]. However, this is inadequate, as shellfish usually appear red within ten seconds after the start 

of cooking [32, 47]. Also, this cooking technique may kill the bacteria, but not the spores or the 

heat-stable toxins [33], such as in the case of Clostridium botulinum or Vibrio cholerae, both of 

which are frequently isolated from the gills of crab [18, 20] . An experiment was performed that 

showed V. cholerae 01 was still isolated from crabs that had been boiled for eight minutes or 

steamed for twenty-five minutes – the crabs were red, the meat was opaque and firm, yet Cholera 

was still cultured [24, 25, 48]. The experiment reveals that appearances are deceiving and that 

proper cooking time and temperatures are necessary since these experimental parameters exceed 

the typical cooking time done in a home.  

 With the latest news reports on choosing healthy, low calorie, low fat, low cholesterol, 

high protein foods to eat, crab and other seafood are becoming a popular item for today’s health-

conscious cooks. However, many instructions for cooking crab are complex or ask the cook to 

use equipment they may not have on hand, like a thermometer that can fit well into a large 

boiling pot. Simple, concise instructions, such as “bring water to a boil, toss in x amount of 

crabs, rapidly boil for x amount of minutes, use a different receiving tray for the cooked crab 

than for the raw crab” are needed for consumer ease. The simpler the instructions, the more 

likely the home chef will follow them, and therefore, the less likely the chef and guests will 

become statistics for the CDC. 

 Many foodborne disease outbreaks are classified as caused due to “contributing factors” 

such as inadequate refrigeration, inadequate cooking or cooling, inadequate “hot-holding”, and 

cross-contamination [49]. An actual determination of the contributing factor is often impossible 

due to a lack of samples of the contaminated food, which is a major problem associated with 
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foodborne disease outbreak investigation. Because of this, deduction is regularly employed to 

figure out the best scenario to fit the outbreak circumstances [25]. By the time the victim is 

displaying symptoms, the food is usually gone – either consumed or discarded [45]. Most 

bacterial pathogens associated with foodborne illnesses have an incubation time in the gut 

between six hours and fourteen days. Also, many foodborne illnesses are self-limiting and people 

only seek medical help if necessary, such as discovering the presence of blood in their diarrhea 

from a hemolytic strain of a pathogen, like Vibrio cholerae 01, for example [10, 50]. Stool and 

serum samples are usually the only evidence left of the “crime” [10].   

 CDC and FDA are depending on the hospital staff to recognize an illness as potentially 

being foodborne and relying on them to gather as much epidemiological information as possible 

to correlate to the laboratory results. However, with hospitals typically overwhelmed and short-

staffed, an epidemiological report may not be a priority [50]. Even with the advances in 

foodborne disease outbreak surveillance, the general feeling is that all foodborne disease 

outbreaks are underreported due to incorrect diagnosis at the hospital, failure to report, or any 

number of factors [37]. In addition, foodborne disease outbreaks are difficult to track since some 

foodborne pathogens only affect certain populations, such as the immune compromised. 

Unfortunately, if only one family member becomes ill after a meal, the food is not suspected. 

Instead, the illness may be attributed to the “flu” or a “bug”. However, there is a need for 

diligence since the number of susceptible people in our population, such as the elderly and 

immune-compromised, is steadily growing [12, 22]. 

2.3 Foodborne Bacteria Associated with Crab 

 Most bacteria associated with edible crabs are pathogenic. Due to the bacterial 

populations that co-exist in the same habitat that blue crabs live in, there is little possibility that 
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there will not be natural, environmental contamination on the crabs [22]. For example, live crabs 

sometimes have pathogenic bacteria such as Clostridium botulinum on their shells and in their 

gills simply due to the environment they live in  [51]. It is hypothesized that blue crabs are 

consistently associated with foodborne bacteria because they are harvested off coastal areas – 

making them susceptible to land-based contamination as well as the naturally occurring estuarine 

bacterial populations [15, 52]. Typically with other seafood, bacteria spoil a product before 

pathogenic bacteria have a chance to grow in sufficient amounts to make a person ill [33]. On 

average, the meat of a freshly caught, healthy crab will not have a high bacteria count [52]. 

Therefore, most contamination of the crab and crabmeat occurs post-harvest [53]. Since 

crabmeat is a perfect medium for bacterial growth, dangerous concentrations of pathogenic 

bacteria are easily achieved [43].  

2.3.1 Listeria monocytogenes 

 Listeria monocytogenes is gram-positive, non-spore forming, rod-shaped, facultative 

anaerobe that is ubiquitous in nature and is found in water, soil, feces, and foliage [33, 54]. L. 

monocytogenes has many serotypes associated with it, but it is serotype ½b that is associated 

with crabmeat contamination [35]. L. monocytogenes has unique survival properties – it is 

psychrotrophic (able to grow at refrigeration temperatures) [55], can survive irradiation [56], can 

grow in a high salt concentration, and is able to survive a wide range of pH’s [35]. The greatest 

threat from L. monocytogenes is through ready-to-eat products like processed crabmeat [53]. A 

study by Farber in 1991 demonstrated that L. monocytogenes actually grows better on crabmeat 

than other seafood [57]. Since it can grow to high concentrations in refrigerated, vacuum packed, 

ready-to-eat foods that will not be subjected to further processing such as heating, there is a 
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serious health risk associated with this organism [58]. This has caused some safety and 

regulation issues, since there is no established infectious dose [35, 59]. 

 L. monocytogenes affects susceptible populations strongly, such as pregnant women [59], 

or those with pre-existing conditions, like liver disease [22, 34], but otherwise it causes flu-like 

symptoms or is asymptomatic in non-susceptible populations [57, 60]. According to the CDC, L. 

monocytogenes accounted for the majority of deaths associated with a foodborne bacterial 

disease from 1998-2002 [2]. In 2005, L. monocytogenes had the highest incidence of 

hospitalizations and “the highest case-fatality rate; 12% of persons infected with Listeria died.” 

[61]. It is still a very hard pathogen to track successfully due to its elusive nature [62]. Another 

issue in tracking L. monocytogenes is the increase in the popularity of ready-to-eat products, 

which usually are not subjected to further heating before consumption and are the perfect culture 

“media” for L. monocytogenes to grow [53]. 

2.3.2 Salmonella 

  Salmonella spp. is a rod-shaped, gram-negative, non-spore forming bacterium [54, 63]. 

Salmonella infection presents as either enteric syndrome, also called typhoid, or as 

gastroenteritis, which is more common [34]. Many species of Salmonella can be found on live 

crabs because Salmonella is present in estuaries. However it is still under debate whether 

Salmonella is in waters because it is a part of the natural marine flora or if it is due to 

contamination from sewage run-off or just happen to be from both sources [21]. In addition, 

Salmonella is part of the natural flora of humans, so this presents even more difficulty when 

trying to determine the origin of the pathogen in a food product. When a pathogen is found 

commonly on humans, surfaces, the environment, and the food product, it is almost impossible to 
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tell if the contamination is from a processing failure, improper storage conditions, unsanitary 

workers, or some combination of factors [64].  

 It is generally believed that Salmonella is one of the most underreported foodborne 

illnesses as the gastroenteritis syndrome does tend to be a self-limiting [22]. Typically, 

Salmonella enters orally and can cause foodborne illness with as few as 15 cells [63]. Salmonella 

is implicated in many foodborne outbreaks involving crab mixtures such as crab cakes. In these 

cases, it is not clear which component of the crab mixture is responsible for contributing the 

Salmonella. Many outbreaks are due to eggs used as a binding agent in the crab mixture but 

some have no obvious cause. For example a ten person outbreak in Ohio due to crab cakes, 

lobster cakes, and crab-stuffed lobster served in a restaurant in July of 2001 was eventually 

traced back to contaminated eggs. However that same year, another ten person outbreak due to 

crab cakes served in a Washington, DC restaurant could not be traced to any egg contamination 

source [46]. Therefore, more investigation into this pathogen should be considered as it is still 

one of the major foodborne bacterial pathogens active today. 

2.3.3 Vibrio 

 Species found in the family Vibrionaceae are gram-negative, rod-shaped or curved rod-

shaped, halophilic, non-spore forming, facultative anaerobic bacteria [54]. Vibrio spp. has been 

found to be naturally occurring in temperate estuarine environments, which are commonly found 

in Louisiana [11, 14, 20, 54, 65].  In addition, 50% of the bacteria found in estuaries were 

determined to be from the Vibrio family [54]. The pathogenic Vibrio spp. associated with 

causing foodborne illness typically present as a gastroenteritis syndrome in people unless they 

have a prior health condition. People with chronic or underlying health issues, like cirrhosis or 
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hemochromatosis, for example, are at risk of a more severe pathology caused by a Vibrio-

associated foodborne illness, such as primary septicemia or necrotizing fasciitis [22, 66].  

 Vibrio spp. is monitored by one of several specialized CDC surveillance systems. The 

Vibrio program is named COVIS which stands for the Cholera and Other Vibrio Illness 

Surveillance System. It is a multi-state program initiated in 1988 by the FDA and the CDC to 

work in conjunction with the Gulf Coast States most affected by these pathogens – specifically to 

monitor the number of Vibrio cases occurring in Alabama, Florida, Louisiana, Mississippi, and 

Texas [67]. 

2.3.3.1 Vibrio cholerae 

 Vibrio cholerae is a bacterium that many believe to be no longer of any threat, especially 

to U.S. citizens. Cholera is thought to be an issue for countries with questionable sanitation 

practices. Unfortunately, there are approximately one to two cases of cholera reported per week 

in the United States [44]. While many of these cases of cholera were travel-associated to places 

with endemic cholera outbreaks, it should be remembered that the Gulf Coast has a long history 

of cholera. The first confirmed case was in Louisiana in 1832 and the last case was in 1873. 

There were no reported cases of cholera in the Gulf Coast States until 1973. Then a four case 

cluster of eleven people infected with V. cholerae O1 biotype El Tor serotype Inaba was reported 

in Abbeville, LA in 1978 from eating contaminated crabs that had been boiled between ten and 

twenty minutes or steamed up to thirty-five minutes [24, 25]. V. cholerae has been repeatedly 

isolated in blue crabs from the Gulf Coast [18]. The Gulf Coast has been a reservoir of naturally 

occurring environmental toxigenic V. cholerae and the crabs harvested from that area remain a 

risk to consumers, especially during the warmer months [22, 48]. Even as recently as 2005 there 
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were two confirmed cases of toxigenic Vibrio cholerae O1, serotype Inaba, biotype El Tor 

isolated from a couple from Louisiana after eating locally caught crabs and shrimp [10]. 

2.3.3.2 Vibrio parahaemolyticus 

 Vibrio parahaemolyticus is the Vibrio spp. most associated with blue crabs [13, 68]. Due 

to the halophilic nature of the Vibrio spp., V. parahaemolyticus grow very well in the same high 

salinity habitat necessary for blue crabs to complete their life cycles [12]. Both V. cholerae and 

V. parahaemolyticus have been found to bio-accumulate in the gut and gills of blue crabs, most 

likely due to the omnivorous diet of a blue crab [20]. V. parahaemolyticus was recognized as an 

emerging foodborne illness in 1950 [54]. In 1971, United States experienced its first major V. 

parahaemolyticus foodborne outbreak associated with crabs in Maryland. The outbreak caused 

approximately 425 people to become ill and was traced to improperly steamed crabs [54, 69]. In 

1998, the CDC received a report that thirteen people in Florida became ill with V. 

parahaemolyticus from eating crabs [68]. Eighty people in New York in 2006 were diagnosed 

with V. parahaemolyticus after eating crab in a restaurant [29]. There are approximately 25 

different serotypes of V. parahaemolyticus being monitored by the CDC [70]. In addition, 

emerging research has also determined that a specific gene, the tdh gene, is responsible for a 

virulence factor capable of causing the hemolytic syndrome when V. parahaemolyticus colony 

counts were well below the FDA accepted V. parahaemolyticus limits [34].  

2.3.3.3 Vibrio vulnificus 

 Vibrio vulnificus is considered the most serious of all the pathogenic vibrios because it 

has been attributed to being the leading cause of seafood-related fatalities [54]. The infectious 

dose of V. vulnificus is only 10
3
 bacteria/gram, but luckily, it is one of the more heat-sensitive 

bacterium and is easily destroyed with proper cooking [14]. Of the thermal death times listed 
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from the Seafood Network Information Center at UC Davis 

(http://seafood.ucdavis.edu/Pubs/pathogen.htm) the most virulent strains of V. vulnificus were 

much lower than other pathogenic organisms such as E. coli O157:H7, Salmonella typhimurium, 

and Listeria monocytogenes [1, 71]. The danger with foodborne illness associated with V. 

vulnificus is its propensity to progress into severe necrotizing wound infections or fatal 

septicemia in patients with pre-existing conditions such as hemochromatosis or cirrhosis [22, 58, 

66]. Liver disease plays a particular factor in the virulence of V. vulnificus due to the availability 

of free iron in the patient’s serum [66]. Of the Vibrio cases that occur, V. vulnificus has the 

highest mortality rate: approximately 50% of the cases result in death approximately 48 hours 

post-consumption [70, 72]. Interestingly, it is very common for only one member of a family to 

show symptoms of V. vulnificus [54]. V. vulnificus and V. parahaemolyticus are regularly 

isolated together in crabs sampled for bacterial titers [18]. 

2.4 Blue Crab Anatomy 

 “Beautiful, savory swimmer” is the literal translation of the blue crabs’ scientific name 

Callinectes sapidus [7, 73]. Blue crabs have a geographic range from Nova Scotia to South 

America, as well as France, Holland, and Denmark [8, 9]. Blue crabs do have specific habitat 

needs to complete their life cycle which Louisiana provides with its extensive estuarine habitat. 

Mating occurs in brackish waters with lower salinity (approximately <10 parts per thousand), 

while spawning and maturation occurs in higher salinity waters (ranging from 23 – 33 parts per 

thousand) in the lower parts of the estuary, closest to the ocean [7, 9, 73].  

 There are several distinct and immediate ways to differentiate between a male crab and a 

female crab. A female crab will have bright red tips on their claws, often referred to as “red 

fingernails” [74]. Or, for the more daring, turning a crab over will display the abdomen. Male 

http://seafood.ucdavis.edu/Pubs/pathogen.htm
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crabs will have a T-shaped apron while a female blue crab has a large apron that covers most of 

her abdomen [9, 74]. Crabs have several sets of swimming legs that allow them to move very 

quickly, either away from predators or toward prey [7]. Most notable on a crab are their large 

and powerful claws. These claws are for fighting, defense, scavenging, and posturing for 

fermales [7]. Male blue crabs have been sampled to have greater concentrations of bacterial titers 

in their hemolymph, possibly due to competition for food or females [18]. Most consumers eat 

“the claws”, which are more accurately called the chelipeds as this includes the claw (or dactyl) 

and the arm (the propodus) and the back meat located under the carapace (see figure 4 for 

detailed blue crab anatomy) [7, 74].  

 

Figure 4: Anatomy of a blue crab (Callinectes sapidus) courtesy of Steve Zinski [74] 
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2.5 Conclusion 

 

 Foodborne pathogens are a continuing epidemic in the world. This is not just a problem 

in exotic locales with questionable sanitation practices; major outbreaks occur yearly in the U.S. 

despite stringent regulations. Intense research into bacterial foodborne pathogens needs to 

continue so that outbreaks can be contained as quickly as possible. However, in addition to 

further research, the information gathered by this research also needs to be disseminated to the 

public in a user-friendly format that will help prevent common mistakes that can lead to 

foodborne illness. While there have been extensive scientific studies on thermal death times of 

different bacteria in crabs, these studies are important in industry, but not particularly useful for 

consumers since the charts are confusing. It is clear that there is a noticeable deficiency in the 

literature and translating the data into useful instructions for consumers. For example, most of 

the foodborne illnesses caused by consuming crabs were due to mishandling on the part of the 

consumer during cooking or preparation, such as undercooking the crab or allowing the crab to 

come into contact with raw products after it is cooked [43]. While these basic principles are 

emphasized in all mandatory retail and industrial courses for safe food handling practices, the 

average consumer is not likely to be as aware of the dangers of cross-contamination or 

undercooking a crab. Therefore, as cases of foodborne illness associated with crab continue to 

escalate in private residences, there is obviously a need for easy-to-follow instructions that are 

based in science. To cook crabs safely, consumers only want two numbers to remember: the 

amount of time and the temperature. To satisfy this need, research is required to obtain 

scientifically-proven times and temperatures necessary to cook blue crabs so that there is 

minimal bacterial threat and then these results need to be transformed into instructions that 

consumers would feel comfortable following.     
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CHAPTER 3 – MATERIALS AND METHODS 

3.1 Media 

 Tryptic soy broth (TSB) consisted of 30 g of tryptic soy broth (Becton, Dickinson and 

Co., Sparks, MD) and 5 g of yeast extract (Acumedia Manufacturers, Inc., Lansing, MI) in 1 L of 

distilled water (di H2O). TSB + 3% NaCl was prepared by making TSB broth with the addition 

of 30 g of NaCl. Brain heart infusion (BHI) broth was comprised of 37 g of BHI powder 

(Acumedia Manufacturers, Inc., Lansing, MI) in 1 L of di H2O. BHI and TSB deep agar slants 

were prepared by making BHI broth or TSB broth with the addition of 15 g of technical agar 

(Becton, Dickinson and Co., Sparks, MD). In each liter of di H2O, vibrio maintenance media 

(VMM) contained 8.0 g tryptone, 22.5 g NaCl, 4.0 g nutrient broth, 4.0 g technical agar, 4.0 g 

KCl, and 4.0 g MgCl2*6 H2O. Phosphate buffered solution (PBS) had 2.4 g of sodium phosphate 

monobasic anhydrous, 2.84 g of sodium phosphate dibasic and 8.5 g of NaCl in 1L of di H2O. 

Modified Oxford Listeria agar was prepared by adding 57.5 g of Oxford Listeria agar base 

powder (Acumedia Manufacturers, Inc., Lansing, MI) to 1 L of di H2O. Once the Oxford Listeria 

media had been autoclaved and cooled slightly, two vials of re-suspended Oxford Listeria 

supplement (Acumedia Manufacturers, Inc., Lansing, MI) were added and the now modified 

Oxford Listeria media (MOX) was mixed briefly before the agar plates were poured. 

Thiosulfate-Citrate-Bile-Sucrose (TCSB) agar was prepared by adding 88 g of TCBS powder 

(Acumedia Manufacturers, Inc., Lansing, MI) to 1 L of di H2O. Xylose Lysine Desoxycholate 

(XLD) agar was prepared by adding 55 g of XLD powder (Remel – Thermo Fisher Scientific, 

Lenexa, KS) to 1 L di H2O. Vibrio vulnificus agar (VVA) was prepared by following the U.S. 

Food and Drug Administration Bacteriological Analytical Manual (BAM) media M190 



21 

 

instructions [75]. All solutions except the cellbiose in the VVA, the Oxford Listeria supplement 

in the MOX, TCBS, and XLD agars were sterilized at 121° C for 15 minutes by autoclave.  

3.2 Bacterial Cultures  

 All cultures were obtained as -70° C frozen stocks from the Louisiana State University 

Department of Food Science culture collection. One loopful (approximately 10 ul) of frozen 

stock was inoculated in nine mL of BHI broth and left overnight or until turbid to incubate at 37° 

C. Overnight cultures produce approximately 10
7
 – 10

9
 amounts of bacteria after 14 hours. After 

incubation, cultures were streaked onto agar plates and incubated inverted at 35° C or 37° C 

overnight. Single colonies were picked, stabbed into deep agar slants, left at room temperature 

and transferred monthly to retain viability.  

 Cultures of Vibrio cholerae O1 (ATCC 14035), tdh+ Vibrio parahaemolyticus (ATCC 

33847), and Vibrio vulnificus (ATCC 27562) were maintained in vibrio maintenance media deep 

agar slants. Vibrio cholerae O1 and V. parahaemolyticus were streaked onto TCBS plates and 

incubated at 37° C while V. vulnificus was streaked on VVA plates and incubated at 35° C. Prior 

to an experiment, one loopful of the maintained Vibrio to be tested would be inoculated in 10 mL 

of TSB + 3% NaCl and incubated at 37° C for approximately 14 hours. 

 Salmonella enterica serovar Typhimurium, or as it is also known, Salmonella 

typhimurium (ATCC 14028) culture was maintained in BHI deep agar slants. S. typhimurium 

was streaked onto XLD plates. Prior to an experiment, one loopful of maintained S. typhimurium 

was incubated at 37° C and then sub-cultured twice in 10 mL of BHI broth at approximately 16-

hour intervals. 

 Listeria monocytogenes ½b (Lm F4260 CDC, Atlanta) culture was maintained in TSB 

deep agar slants. L. monocytogenes ½b was streaked onto MOX plates. Prior to an experiment, 
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one loopful of maintained L. monocytogenes ½b was incubated at 37° C and then sub-cultured 

twice in 10 mL of TSB broth at approximately 16-hour intervals. 

3.3 Sample Preparation 

 Samples of Callinectes sapidus (Louisiana blue crabs) were donated by Mr. Gary Bauer, 

owner of Pontchartrain Blue Crab, Inc. 38327 Salt Bayou Road, Slidell, LA 70461. Male, medium 

blue crabs were blast frozen on site overnight at -80° C. Each crab weighed approximately one 

pound each, based on sorting standards for retail distribution. Crabs were maintained at -20° C and 

used no later than seven days post-procurement. Two hours prior to experiment, crabs were placed 

under running water and thawed to approximately room temperature prior to inoculation.

 Each crab, except the negative control, was inoculated at 10 points on the claws and body 

with 100 L of inoculum at each point, see table 1 for amounts recovered from each experiment. 

The points were chosen to target the meat typically consumed on a blue crab; the dactyls on each 

claw to target the propodus, each soft junction of the carpus to target the merus, and six additional 

points equally distributed in the back meat through a hole drilled into the carapace. After 

inoculation, an ACR SmartButton® temperature probe was inserted into the hole in the carapace to 

monitor the internal temperature in one minute 

increments during heat treatment. This probe is 17 

mm diameter x 6 mm height, approximately the size 

and thickness of a typical watch battery (Figure 5). 

The hole was sealed with adhesive and the crab was 

left at room temperature for 30 minutes which 

allowed the bacteria to acclimate to its surroundings  
Figure 5: Side and front view of an ACR 

SmartButton® temperature data logger. 
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Positive Control Inoculation Amounts Recovered 

Date of Experiment Bacteria Condition 
Recovery 

(log10) 

7/15/2010 L. monocytogenes Single Crab TNTC 

9/8/2010 L. monocytogenes Single Crab 6.62325 

9/16/2010 L. monocytogenes Single Crab X 

9/17/2010 L. monocytogenes Single Crab 7.25527 

9/18/2010 L. monocytogenes Single Crab 7.23754 

9/19/2010 L. monocytogenes Single Crab 7.15106 

9/17/2010 L. monocytogenes Serving Size (4) Crabs 7.25527 

9/17/2010 L. monocytogenes Serving Size (4) Crabs 7.23754 

9/18/2010 L. monocytogenes Serving Size (4) Crabs 7.16106 

7/12/2010 S. typhimurium Single Crab TNTC 

7/15/2010 S. typhimurium Single Crab 6.59835 

9/6/2010 S. typhimurium Single Crab 6.63397 

9/12/2010 S. typhimurium Single Crab 6.82347 

9/17/2010 S. typhimurium Single Crab 7.21272 

9/18/2010 S. typhimurium Single Crab 6.49623 

8/6/2009 V. cholerae Single Crab 3.45092 

10/7/2009 V. cholerae Single Crab 4.51055 

11/23/2009 V. cholerae Single Crab 2.83197 

7/6/2009 V. parahaemolyticus Single Crab 4.12057 

8/18/2009 V. parahaemolyticus Single Crab 4.40140 

8/24/2009 V. parahaemolyticus Single Crab 4.33445 

11/9/2009 V. parahaemolyticus Single Crab 3.84926 

5/3/2010 V. parahaemolyticus Serving Size (4) Crabs 4.68529 

5/11/2010 V. parahaemolyticus Serving Size (4) Crabs 5.45117 

6/8/2010 V. parahaemolyticus Serving Size (4) Crabs TNTC 

8/26/2009 V. vulnifcus Single Crab 2.99563 

9/9/2009 V. vulnifcus Single Crab 3.01283 

12/16/2009 V. vulnifcus Single Crab 3.74853 

 

Table 1: Log amounts of bacteria recovered from the inoculated positive control for each 

experiment 
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3.4 Heat Treatments  

3.4.1 Boiling One Crab 

 In a Tramontina® professional 3-piece 8 quart stainless steel pot (Wal-Mart Stores, Inc., 

Bentonville, AR) with the steamer apparatus removed and the glass lid on, 5 L (approximately 1 

gallon) of tap water was brought to a rolling boil. One inoculated crab was added to the boiling 

water for a designated amount of time and the lid was replaced. The time points for boiling one 

crab were from 1 to 6 minutes. After the designated time, the crab was removed and allowed to 

cool for one additional minute. The carapace is much thicker than the shells of the chelipeds and 

it is harder for the heat to penetrate to the back meat. Therefore, since the chelipeds cook faster 

and are easier to pick, it can be assumed that a consumer would start with the claws, so the 

chelipeds were picked first. While the chelipeds were being picked, residual heat from boiling 

allowed the back meat to continue cooking. Once the carapace was removed, the ACR 

SmartButton® temperature probe was removed and sanitized. After the back meat was picked 

and added to the claw meat, it was briefly homogenized by hand to check for shell debris and to 

facilitate cooling. All of the meat was then placed in a tared, divided homogenizer bag which 

was then weighed. After the weight was recorded, an equivalent by weight in volume of PBS 

was added and the bag was stomached for one minute in a Lab-Blender 400 Stomacher (Tekmar 

Co., Cincinnati, OH) to simulate digestive break down. The total cooking time after the addition 

of PBS was noted; assuming that the addition of the PBS has stopped carryover cooking by 

cooling the meat to room temperature.  

3.4.2 Steaming One Crab 

 Once the single crab boiling treatments were completed, the steaming apparatus that 

came with the pot was inserted and left to prime for approximately 30 minutes. One inoculated 
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crab was added to the steamer for a designated amount of time and the lid was replaced. The 

time points for steaming were from 3 to 9 minutes. The steaming method of picking and 

homogenizing was the same as for the one crab boiling method. 

3.4.3 Boiling Four Crabs (Serving Size) 

 In the same way as the one crab boiling heat treatment, 5 L (approximately 1 gallon) of 

tap water was brought to a rolling boil. Four inoculated crabs were added to the boiling water for 

a designated amount of time and the lid was replaced. The time points of boiling for a serving 

size of crabs were from 8 to 25 minutes. The serving size boiling method of picking was the 

same as for the one crab boiling method. Once all of the meat was picked, it was homogenized 

by hand to check for shell debris and to thoroughly mix all the meat from the four crabs. 

Subsequent to the manual homogenization of the four picked crabs, 25 g of mixed meat was 

removed and added to a tared, divided homogenizer bag. An equivalent of PBS was added and 

the bag was homogenized for one minute in the stomacher. The total cooking time after the 

addition of PBS was noted; assuming that the addition of the PBS has stopped carryover cooking 

by cooling the meat to room temperature. 

3.4.4 Steaming Four Crabs (Serving Size) 

 In the same way as the one crab steaming heat treatment, the steaming apparatus that 

came with the pot was inserted and left to prime for approximately 30 minutes. Four inoculated 

crabs were added to the steamer for a designated amount of time and the lid was replaced. The 

time points of steaming for a serving size of crabs were from 10 to 30 minutes. The steaming 

method of picking and homogenizing was the same as for the four crabs boiling method. 



26 

 

3.5 Enumeration of Bacteria 

 Under sterile conditions, 1:10 serial dilutions of homogenate fluid in PBS were made and 

100 L was spread plated in duplicate. Plates were inverted and incubated at either 35° C or 37° C 

overnight. After 24 hours, colonies were counted. As commonly accepted, only bacterial counts 

of ≤250 colonies were used in the data analysis. An exception was during the serving size 

experiments with Vibrio parahaemolyticus and Listeria monocytogenes, bacterial counts of 

≤1000 colonies had to be included as positive controls. Replicate plates were averaged and used 

to determine colony forming units/g*mL or CFU and then mathematically transformed to log 

CFU.  

3.6 ACR SmartButton® Temperature Data Logger Processing 

 Prior to the experiment, the ACR SmartButton® temperature probes were calibrated by 

inserting them individually into an ACR SmartButton® interface port and removing any residual 

readings, thus zeroing the data logger. After plating, the sanitized ACR SmartButton® 

temperature probes were taken to a computer with an ACR SmartButton® interface port. Each 

probe was individually inserted into the port and the SmartButton® Reader software transferred 

the internal temperature data accumulated in one minute increments during the heat treatments. 

This data was then exported into a MS-Windows® Excel compatible format and analyzed for 

peak temperatures. 

3.8 Colorimeter Measurements 

 Changes in color of the crab carapace after different heat treatments were analyzed using 

a Minolta Spectrophotometer CM-508d. The colorimeter was calibrated by taking an initial 

measurement of the ambient surroundings. The colorimeter took three readings of each crab 

shell, averaged the results, and presented the data as L, a, and b measurements. All values were 
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recorded. However, only the “a” Value results were analyzed with respect to their position on the 

red – green axis of color. No further calculations were required to use the measurements. Each 

blue crab shell was measured immediately after the chelipeds were picked and the carapace of 

the blue crab was removed to begin picking the back meat. 

3.9 Statistical Analysis 

 The heat treatment data and colorimeter data were analyzed using the JMP® 8 statistical 

analysis software (SAS Institute Inc., Cary, NC). The heat treatment data was analyzed using 

one-way analysis of variance (ANOVA) with Dunnett’s test to measure each time point against 

the positive control. The colorimeter data was analyzed using one-way ANOVA method with the 

Tukey-Kramer ad hoc test measuring the variance of the amount of redness detected after each 

time point. Statistical significance can be implied with these tests given a p-value of <0.05. All 

experiments were conducted in triplicate. 
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CHAPTER 4 – RESULTS AND DISCUSSION 

4.1 Boiling One Crab 

 Results of the single crab boiling experiment showed sufficient bacterial load reduction 

for all organisms at four minutes and at a minimum internal temperature of 78.5° C (Figure 6a). 

The bacterial reduction for Listeria monocytogenes (Figure 6b) went from 6.6 log CFU to below 

detection limits at an internal temperature of 77° C at the five minute time point. However, since 

FDA regulations require zero tolerance for L. monocytogenes growth on any cooked or ready-to-

eat product, this time point could not be chosen due to the growth of one colony [76]. Therefore, 

the next time point to reach non-detectable levels was an internal temperature of 82.5° C at five 

minutes (p=0.051*). Figure 6c shows the reduction of Salmonella typhimurium from 6.8 log 

CFU to non-detectable levels at an internal temperature of 65° C at five minutes (p<0.0001*). 

For Vibrio cholerae (Figure 6d), the bacterial load was consistently reduced from 4.5 log CFU to 

non-detectable levels when the blue crab’s internal temperature reached 58° C at three minutes 

(p=0.0005*). In Figure 6e, Vibrio parahaemolyticus was reduced from 4.4 log CFU to non-

detectable counts at an internal temperature of 55° C at the three minute time point (p<0.0001*). 

Figure 6f shows the bacterial reduction of Vibrio vulnificus from 3.4 log CFU to non-detectable 

levels with an internal temperature of 78.5° C at four minutes (p=0.0010*).  
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Figure 6: (6a) Results of the single crab boiling experiments showing optimum reduction of 

all organisms tested at four minutes after reaching an internal temperature of 79.5° C. 

Time point results of the single crab boiling experiments for: (6b) L. monocytogenes, (6c) S. 

typhimurium, (6d) V. cholerae, (6e) V. parahaemolyticus, and (6f) V. vulnificus. 

Due to the tendency of L. monocytogenes to be thermally resistant [17] the time point that 

would have been set for boiling a single crab would have been five minutes with an internal 

temperature reaching at least 70° C. Similarly, the S. typhimurium heat treatment experiments 

required five minutes with the internal temperature reaching a minimum of 65° C for consistent 

results of non-detectable levels. The meat of a single crab boiled for five minutes is tough and 

feels rubbery. A contributing factor for this study is the idea that consumers do not want to 

overcook their blue crabs and would sometimes err on the side of undercooking the seafood 

rather than serving rubbery crabmeat [17]. Since four minutes boiling with an internal 
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temperature of 78.5° C was enough to reduce all of the Vibrio species tested to non-detectable 

levels and given that these pathogens are more likely to be the cause of a foodborne illness 

resulting from eating Louisiana blue crabs [18, 75], this was the best choice as a 

recommendation for safe cooking times and temperatures for boiling a single crab. With the 

addendum of an additional minute of cooling time before picking the boiled crab bringing the 

total heat treatment time to five minutes with carryover cooking, the most likely conditions for 

safe consumption can be achieved without overcooking the product. 

4.2 Steaming One Crab 

 Results of the single crab steaming experiment showed sufficient bacterial load reduction 

for all organisms at five minutes at a minimum internal temperature of 57° C (Figure 7a). The 

log reduction for L. monocytogenes (Figure 7b) went from 6.6 log CFU to non detectable levels 

at an internal temperature of 75.5° C at the eight minute time point (p<0.0.001*). Figure 7c 

shows the reduction of S. typhimurium from 6.8 log CFU to non-detectable levels at an internal 

temperature of 70° C at eight minutes (p<0.0008*). For V. cholerae (Figure 7d), the bacterial 

load was reduced from 4.5 log CFU consistently to non-detectable levels when the crab’s 

internal temperature reached 57° C at five minutes (p<0.0001*). In Figure 7e, V. 

parahaemolyticus was reduced from 4.4 log CFU to non-detectable counts at an internal 

temperature of 53.5° C at the five minute time point (p<0.0001*). Figure 7f shows the log 

reduction of V. vulnificus from 3.4 log CFU to non-detectable levels at 46.5° C at four minutes 

(p=0.0005*). 
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Figure 7: (7a) Results of the single crab steaming experiments showing optimum reduction 

of all organisms tested at five minutes after reaching an internal temperature of 57° C. 

Time point results of the single crab steaming experiments for: (7b) L. monocytogenes, (7c) 

S. typhimurium, (7d) V. cholerae, (7e) V. parahaemolyticus, and (7f) V. vulnificus. 
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As with the single crab boiling experiments, Listeria monocytogenes and Salmonella 

typhimurium needed extended steaming times to achieve below detectable or non-detectable 

levels. Both L. monocytogenes and S. typhimurium required eight minutes of steaming, with the 

internal temperature reaching a minimum of 77.5° C for L. monocytogenes and 70° C for S. 

typhimurium, to reach non-detectable levels. Again, as with the single crab boiling experiments, 

the extra steaming time made the blue crab meat seem visually overcooked. Both Vibrio 

parahaemolyticus and Vibrio cholerae were reduced to non-detectable levels after steaming for 

five minutes, while Vibrio vulnificus only needed four minutes steaming time to reach below 

detectable levels. Therefore, steaming one blue crab a minimum of five minutes with an 

additional two minutes of carryover cooking during cooling for a total of seven minutes cooking 

time will allow the crab to reach an internal temperature of at least 57° C and would produce 

maximum reduction of bacteria while conserving the desired texture of blue crab meat. 

4.3 Boiling Four Crabs (Serving Size Experiments) 

 Figure 8a shows the results of all the time points tested in the serving size boiling 

experiments. Inconsistent results because of thermal resistance in Listeria monocytogenes caused 

the time for boiling four blue crabs until bacterial loads were non-detectable to be 20 minutes, 

with an internal temperature holding at 85° C between 13 and 15 minutes (p<0.001*). Results for 

Vibrio parahaemolyticus were more consistent with non-detectable levels being reached at 10 

minutes and a minimal internal temperature of 82.5° C (p<0.0001*). Figure 8b shows the results 

of the 10 minute boiling time point which had non-detectable levels for both L. monocytogenes 

and Vibrio parahaemolyticus (p<0.0001*). Bacterial reduction for L. monocytogenes went from 

7.2 log CFU to non-detectable levels at an internal temperature of 85° C while V. 
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parahaemolyticus was reduced from 5.5 log CFU to non-detectable levels at an minimal internal 

temperature of 82.5° C.  

  

Figure 8: Boiling results for a serving size (four) of blue crabs. (8a) Time point results of 

four blue crabs inoculated with either L. monocytogenes or V. parahaemolyticus. (8b) 

Results of the 10 minute serving size time point which showed optimal bacterial reduction 

once an internal temperature of 85° C was reached. 

While Listeria monocytogenes did show significant growth in one experiment at the 15 

minute time point after holding an internal temperature of 85° C for six minutes, it also resulted 

in non-detectable levels in two other experiments after holding an internal temperature of 85° C, 

once for 8 minutes and once for nine minutes. Figure 8b shows that L. monocytogenes attained 

non-detectable levels twice at the 10 minute mark with internal temperatures of 80.5° C and 85° 

C from a bacterial load of 7.15 log CFU and 7.23 log CFU, respectively. Therefore, boiling a 

serving size of four blue crabs for 10 minutes reaching a minimum internal temperature of 85° C, 

with an additional five minutes for cooling should result in maximum bacterial reduction while 

conserving the texture and flavor of the blue crab meat. 

4.4 Steaming Four Crabs (Serving Size Experiments) 

 Figure 9a shows the results of all the time points tested in the serving size steaming 

experiments. The recommended time for steaming four blue crabs inoculated with Listeria 

a b 
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monocytogenes was 20 minutes with an internal temperature holding at 79.5° C (p<0.001*). 

Bacterial loads of Vibrio parahaemolyticus were reduced from an average of 5 log CFU to non-

detectable levels at 15 minutes with a minimum internal temperature of 79° C (p<0.0001*). 

Figure 9b shows the results of the 15 minute steaming time point which had non-detectable 

levels for both L. monocytogenes and V. parahaemolyticus (p<0.0001*). Bacterial loads for L. 

monocytogenes were reduced from 7.15 log CFU to below detection limits at an internal 

temperature of 83.5° C while V. parahaemolyticus was reduced from 5.45 log CFU to non-

detectable levels at an minimal internal temperature of 79° C. 

  
 

Figure 9: Steaming results for a serving size (four) of blue crabs. (9a) Time point results of 

four blue crabs inoculated with either L. monocytogenes or V. parahaemolyticus. (9b) 

Results of the 15 minute serving size time point which showed optimal bacterial reduction 

once an internal temperature of 85° C was reached. 

 Although L. monocytogenes was never reduced to non-detectable levels at the 15 minute 

steaming time point, it was reduced significantly from 7.23 log CFU to an average of 2.3 log 

CFU after reaching an internal temperature of 63° C in one experiment and from 7.15 log to an 

average of 2.3 log CFU after reaching an internal temperature of 83.5° C in a second experiment. 

Figure 9a shows that L. monocytogenes grew one colony after steaming for 30 minutes, holding 

an internal temperature of 85° C for 17 minutes. Therefore, steaming a serving size of four blue 

crabs for 15 minutes and reaching an internal temperature of 85° C, with an additional five 

a b 
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minutes for cooling, should result in an inferably sufficient bacterial reduction while conserving 

the texture and flavor of the blue crab meat. Again, the steaming results were more consistent 

than the boiling method and should therefore be the recommended method of preparation.  

4.5 Below Detection Limits/Non-detectable Levels 

Finally, the least amount of time necessary for the safest consumption of blue crab was 

determined by graphing all of the time points that reached below detection level (BDL) colony 

counts (≤10 colonies/plate) and non-detectable (ND) colony counts, where no growth was 

detected on the agar plates. The graphs were used to see how often these results were achieved 

on each time point, thereby giving the least amount of time required to consistently reach 

maximum bacterial load reduction, ergo the least amount of time for safest consumption. 

 

Figure 10: Graph of below detection limit/non-detectable level reached for boiling a single crab at 

each time point and the optimum temperature each was achieved for L. monocytogenes (Lm), S. 

typhimurium (St), V. cholerae (Vc), V. parahaemolyticus (Vp), and V. vulnificus (Vv). 



36 

 

 For boiling a single crab, the greatest abundance of BDL/ND results are on the four 

minute time point. While three minutes is sufficient in eliminating the Vibrios tested here, L. 

monocytogenes and Salmonella typhimurium require an additional minute to reach BDL/ND 

levels. Therefore, the final determination for boiling a single crab is four minutes with one 

additional minute for cooling would provide maximum bacterial reduction with the least amount 

of cooking time. 

 

Figure 11: Graph of below detection limit/non-detectable level reached for steaming a 

single crab at each time point and the optimum temperature each was achieved for L. 

monocytogenes (Lm), S. typhimurium (St), V. cholerae (Vc), V. parahaemolyticus (Vp), and 

V. vulnificus (Vv). 

For steaming a single crab, the greatest abundance of BDL/ND results are on the five 

minute time point. Again, the Vibrios tested here are eliminated sooner than the more heat 

resistant L. monocytogenes and S. typhimurium. Therefore, the final determination for steaming a 

single crab is five minutes with two additional minutes for cooling to provide maximum bacterial 
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reduction with the least amount of cooking time. In this case, boiling is preferred over steaming 

for a single crab. 

 

Figure 12 Graph of below detection limit/non-detectable level reached for boiling a serving 

size of crabs (4) at each time point and the optimum temperature each was achieved for L. 

monocytogenes (Lm) and V. parahaemolyticus (Vp). 

 Boiling four blue crabs, deemed a serving size, produced clearance of both L. 

monocytogenes and Vibrio parahaemolyticus at the 10 minute time point. The recommendation 

to allow five additional minutes for the crabs to cool will allow the heat to further penetrate into 

the back meat through carryover cooking. The final recommendation to consumers will suggest 

that they use this five minute waiting time to pick the chelipeds (the claws) as the chelipeds cook 

faster than the back meat due to their thinner shells. The final recommendation released to the 

public will also suggest the serving size method of cooking since the extended times with 

additional blue crabs produce a synergistic effect of more consistent clearance while preserving 

the sensory integrity of the blue crab meat. 
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Figure 13 Graph of below detection limit/non-detectable level reached for steaming a 

serving size of crabs (4) at each time point and the optimum temperature each was 

achieved for L. monocytogenes (Lm) and V. parahaemolyticus (Vp). 

 Steaming a serving size of blue crabs produced clearance of both L. monocytogenes and 

Vibrio parahaemolyticus at the 15 minute time point. Again, the recommendation to allow five 

additional minutes for the crabs to cool will allow the heat to further penetrate into the back meat 

through carryover cooking. The final recommendation released to the public will also suggest the 

serving size method of cooking since the extended times with additional blue crabs produce a 

synergistic effect of more consistent clearance while preserving the sensory integrity of the blue 

crab meat with steaming preferred over boiling since it tends to penetrate better with steam. 

4.6 Colorimeter Studies 

 The readings were taken approximately five to six minutes after removing the blue crabs 

from each heat treatment while the chelipeds were removed and picked. Figure 14a shows the 

results of all the time points analyzed by spectrophotometer for significant changes in shell color 
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of the blue crabs during each of the V.parahaemolyticus serving size boiling experiments 

(p=0.2062). Figure 14b is a graphical representation of the standard deviations of the a Values 

from Figure 14a. Figure 14c shows the results of all the time points analyzed for significant shell 

color changes of the blue crabs during each of the V. parahaemolyticus serving size steaming 

experiments (p=0.6146) and Figure 14d is a graphical representation of the standard deviations 

of the a Values from Figure 14c. Neither 14a nor 14c showed statistically significant differences.  

 

  

Figure 14: (14a) a Values for the serving size boiling experiment time points. (14b) 

Standard deviations of the serving size boiling experiment a Values. (14c) a Values for the 

serving size steaming experiment time points. (14d) Standard deviations of the serving size 

steaming experiment a Values. 

 The “a” Value was used to measure changes in redness intensity by a specialized 

spectrophotometer also referred to as a colorimeter. Figure 14a and 14c shows the results of the 

colorimeter reading of each shell after each boiling time point and after each steaming time point 

a b 

c 
d 
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experiment, correspondingly. Figure 14b and 14d interpret the importance of the a Value data. In 

graphically displaying the standard deviations of the a Values from the time points, it is clear 

how little differentiation there is between the redness of each time point. There is not a drastic 

enough change in color for a person to accurately identify a partially cooked blue crab (Figure 

15a) from a fully cooked blue crab (Figure 15b) based solely on the expression “cook until it 

turns red”, particularly because a blue crab will turn red within 30 seconds of boiling [77] 

  

Figure 15: Boiled Louisiana blue crabs. (15a) Undercooked Louisiana blue crab boiled 

until red, approximately 30 seconds. (15b) Cooked Louisiana blue crab boiled, 

approximately three minutes 

  

b a 
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CHAPTER 5 – CONCLUSION 

 The purpose of this study was two-fold: to determine the safe cooking time and 

temperatures for Louisiana blue crabs and to see if cooking until red was a viable cooking 

method. Initially, the results of this project illustrated the frustration of meeting both scientific 

needs and consumer needs. Scientists need to have a single time and a single temperature to 

eliminate all pathogens in the manner established by food safety guidelines, usually using 

traditional thermal death time studies. The scientists need this one time and one temperature to 

pass onto retailers and consumers who want simplicity in their cooking instructions, not 

confusing D-values and Z-values of deadly pathogens. Due to the variability of the experimental 

conditions, the results of past scientific studies did not give a straight-forward answer that 

satisfied consumers [17]. Consequently, the problem was never addressed, which left a gap in 

both scientific and consumer knowledge possibly causing some instances of foodborne illness 

after eating blue crabs.  

 In an industry or retail setting, the FDA standards should still be practiced. Cross-

contamination and proper handling techniques are just as relevant to consumers as they are for 

retailers and industry protocol [17]. However, the high microbial eradication standards held by 

the FDA, while admirable, are not necessarily applicable for consumers who purchase live 

Louisiana blue crabs for private consumption. The parameters of safety needed to be customized 

to fit the specific hazards particular to personal preparation of Louisiana blue crabs [17]. 

 First, the spectrum of the experiment had to be defined; second, the design had to be 

optimized; and finally, the results had to be analyzed. After struggling to fit the results of this 

study to analytical methods found in literature, it was obvious that another approach was 

necessary to elucidate the information uncovered during this investigation. Once the data was 
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examined from a different angle, some trends did emerge that can help bridge the gap between 

scientific knowledge and consumer practicality.  

 Initial results for the heat treatment experiments showed that, for Louisiana blue crabs to 

be as safe to eat as possible, they had to be completely overcooked. However, the fear of 

overcooking shellfish and making the meat rubbery and unpleasant to eat was considered to be a 

probable causative factor of blue crab associated-foodborne illness, since some cases of 

foodborne illness associated with blue crabs were primarily due to consumers not wanting to 

overcook their blue crabs. It is not as though consumers are purposefully choosing foodborne 

illness over rubbery blue crab meat – it seems likely that the circumstances were a lack of 

familiarity with cooking this product, combined with inadequate availability of reasonable 

cooking instructions [17]. This is why the results were evaluated to offer cooking times that 

maintained the blue crabs sensory quality, while ensuring sufficient bacterial reduction. 

 The second purpose of this project was to determine if one could differentiate changes in 

the shell color to identify when a crab was safely cooked. The “cook until it is red” method is 

commonly used as a standard for cooking times with shellfish; this is the basis of “doneness” to 

most consumers. While this method works for other types of shellfish such as shrimp [Janes lab, 

unpublished results], cooking until the shell turns red does not adequately indicate “doneness” in 

blue crabs. Biochemical changes during any heat treatment cause the release of the astaxanthin, 

or red color, from the pigment complex of the blue crab shell. This is an acceptable indicator of 

“doneness” for shrimp because the shell is very thin and close to the meat. Blue crab shells are 

much thicker (an average of approximately 1 millimeter thick), so they require a greater 

application of heat to penetrate fully to the back meat. While the dissociation of astaxanthin from 
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the pigment complex can be accomplished fairly quickly – within 30 seconds – it does not 

correspond to the amount of time necessary to fully cook the crab [77].  

 The final recommendations for the public would not be given in precise temperatures that 

are impossible for consumers to measure without scientific equipment. While the minimal 

temperatures were discerned, solely presenting the data in those terms would not fulfill the main 

objective of this research project, which was to give consumers easy to follow instructions for 

cooking Louisiana blue crabs. The recommendations for boiling blue crabs are: bring 

approximately one gallon of water to a rolling boil, add crab(s), and cover with the lid. Boil one 

crab for four minutes and let cool for one additional minute; or boil a serving size of crabs (four) 

for 10 minutes and cool for five more minutes. Remove, cool, and pick the claws first. Be sure to 

bring water back to a rolling boil before adding the next batch of crabs. The recommendations 

for steaming blue crabs are: bring half a pot of water to a boil with the steamer apparatus inserted 

and the lid on. Steam the apparatus for about 30 minutes, add crab(s), and replace the lid. Steam 

one crab for five minutes and let cool for two additional minutes; or steam a serving size of crabs 

(four) for 15 minutes and cool for five more minutes. Remove, cool, and pick the claws first. 

Bring the water back to a boil with the lid on for 10 – 15 minutes, or until steam consistently 

escapes from under the lid, in between batches to allow the steamer apparatus to come back up to 

the starting temperature. Steaming is the preferred method over boiling because it is a better 

penetrative method. 

 There are several other avenues to explore in conjunction with this project. Future studies 

should include the use of common additives associated with cooking crabs, such as investigating 

if there are any thermal properties that salt or “crab boil”, a commercially available seasoning 

product, may contribute when added to the boiling water, and determining if the amount of time 
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necessary to achieve the optimum internal temperatures can be decreased due to ionic 

conductivity. Also, is some mixed research on certain types of herbs and spices acting as anti-

microbial agents, so the use of crab boil during the cooking process should be investigated to 

determine if it offers any microbial protection [54].  
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