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ABSTRACT 

Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157:H7 and non-

O157 STEC, is a significant cause of foodborne illnesses and deaths in the United States and 

worldwide. Shiga toxins (encoded by stx) and intimin (encoded by eae) are important virulence 

factors for STEC strains causing infection. Although E. coli O157:H7 remains to be the single 

most common STEC causing disease, the clinical importance of non-O157 STEC is on the rise 

worldwide. And six major serogroups (O26, O45, O103, O111, O121, and O145) accounted for 

over 70% of non-O157 STEC infections in the United States.  

Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification 

technology that has attracted great attention in recent years as a rapid, accurate, and cost-

effective pathogen detection method in both food testing and clinical diagnostics. In this 

dissertation research, two sets of LAMP assays, one serogroup-independent and the other one 

serogroup-specific, were designed by targeting the stx1, stx2, and eae genes, and seven major 

STEC serogroup-specific genes (the wzx and wzy genes), respectively, for the rapid, specific, 

sensitive, and quantitative detection of STEC strains. The assay performances in pure culture, 

spiked ground beef, and human stools were evaluated and compared with qPCR. No false 

positive or false negative results were observed among 120 strains for assay specificity testing. 

The detection limits for all assays were approximately 1-20 CFU/reaction in pure culture and 

103-104 CFU/g in spiked ground beef, which were comparable to qPCR. Standard curves 

generated suggested good linear relationships between STEC cell numbers and LAMP turbidity 

signals. When applied in ground beef samples spiked with two low levels (1-2 and 10-20 

CFU/25 g) of STEC cultures, the LAMP assays achieved accurate detection after 6-8 h of 
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enrichment. The assays also consistently detected STEC in human stool specimens spiked with 

103 or 104 CFU/0.5 g stool after 4 h enrichment, while qPCR required 4-6 h of enrichment.  

Given the emerging and evolving nature of STEC serogroups involved in human illness, 

the LAMP assays developed in this research can serve as rapid and reliable methods for STEC 

detection in food so that proper control measures can be implemented promptly. 
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CHAPTER 1: INTRODUCTION 
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Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157:H7 and non-

O157 STEC, is a leading cause of foodborne outbreaks and deaths worldwide. In the United 

States, STEC causes an estimated 176,000 illnesses, 2,400 hospitalizations, and 20 deaths 

annually through the food transmission route. Although non-O157 STEC strains are generally 

considered less pathogenic than E. coli O157:H7, some highly virulent ones (O26, O45, O103, 

O111, O121, and O145) have distinguished themselves from others by involving in outbreaks 

associated with the same severe human illnesses, like hemorrhagic colitis (HC) and uremic 

syndrome (HUS). Additionally, an unprecedented large outbreak of E. coli O104:H4 in Germany 

has resulted in a total of 4,075 cases (including 908 HUS) and 50 deaths as of July 21, 2011. Due 

to the severity of disease symptoms, STEC O157 was declared as an adulterant in raw ground 

beef and beef trim by the U.S. Department of Agriculture (USDA) in 1994. On September 13, 

2011, USDA announced the intention to declare six additional serogroups of STEC (O26, O103, 

O45, O111, O121, and O145) as adulterants in non-intact raw beef and the regulation will be 

enforced beginning on March 5, 2012. 

In contrast with the rising clinical importance of STEC strains, the effective detection, 

isolation, and characterization of this group of pathogens remain problematic, particularly for 

those strains belonging to various non-O157 serogroups, due to the lack of phenotypic 

characteristics distinguishable from generic E. coli. Immuno-based technology for Shiga toxins 

and a few STEC serogroups are commercially available, but with reported false positive results 

and long pre-enrichment treatment. Nucleic acid amplification tests (NAAT) such as PCR and 

qPCR are rapid, specific, and sensitive, and therefore have been applied for STEC detection by 

targeting genes coding for major STEC virulence factors and antigen. Nonetheless, the 

indispensable thermal cycling instrument limits their wide applicability. 
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In this dissertation research, a novel molecular-based detection method, loop-mediated 

isothermal amplification (LAMP), was adopted for the rapid, specific, sensitive, and quantitative 

detection of STEC strains. Two sets of LAMP assays consisting of 10 individual ones were 

developed and evaluated. In the first set, three LAMP assays were designed to identify all STEC 

strains with important virulence factors by targeting the stx1, stx2, and eae genes. The second set 

of seven LAMP assays targeted serogroups-specific genes (wzx or wzy) of seven major STEC O 

serogroups (O26, O45, O103, O111, O121, O145, and O157).  

This dissertation consists of the following chapters: 

1: Introduction about this dissertation research. 

2: Literature review on general information and detection methods of STEC. 

3: Describes a project on LAMP assays for detecting STEC in beef and human stools. 

4: Describes a study on rapid and specific detection of STEC O26, O45, O103, O111, 

O121, O145 and O157 serogroups in ground beef by LAMP. 

5: Conclusions of this study and future work.  

Given the demonstrated rapidity, sensitivity, specificity, and robustness of the two sets of 

LAMP assays, they may effectively serve as serogroup-independent and serogroup-specific 

screening of STEC strains in ground beef and/or clinical samples, therefore facilitating the rapid 

and reliable identification of STEC contaminations in high-risk food commodities and prompt 

diagnosis of STEC infections in clinical laboratories.  
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General Information on Escherichia coli O157:H7 and Related STEC 
 

Microbiology. Escherichia coli is a common component of intestinal microflora of human and 

warm-blooded animals. As a member of the Enterobacteriaceae family, E. coli is Gram-negative, 

rod-shaped, and facultative, possessing both respiratory and fermentative metabolism pathways ( 

Doyle et al., 2001a). Most E. coli strains are motile with peritrichous flagella; meanwhile, a 

number of non-motile variants also exist. On solid culture media, E. coli appears as colorless, 

translucent round colony with entire margin and smooth surface (Fig. 2.1).  

 

 

 

 

 

 

FIGURE 2.1. A typical Escherichia coli strain grown on trypticase soy agar (TSA). Photo 
courtesy of Eddy Perez, 2011. 

E. coli strains are generally considered harmless in healthy people and animals. Further, it 

is a good indicator organism reflecting the possible fecal contamination in food and water, due to 

its similar characteristics as other major foodborne pathogens in terms of reservoir, transmission 

route, and growth speed (Doyle et al., 2001a). However, some E. coli strains are pathogenic and 

capable of causing diseases ranging from mild diarrhea to lethal complications (Brooks et al., 

2005). Currently, diarrheagenic E. coli is grouped into six major groups: diffuse-adhering E. coli 
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(DAEC), enteroaggregative E. coli (EAEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive 

E. coli (EIEC), enteropathogenic E. coli, (EPEC), and enterotoxigenic E. coli (ETEC) (Kaper et 

al., 2004). EHEC can be distinguished from other diarrheagenic E. coli by its highest incidence 

in foodborne outbreaks of hemorrhagic colitis (HC) and life-threatening hemolytic uremic 

syndrome (HUS) in the United States and worldwide (Brooks et al., 2005; Pennington, 2010). 

Since nearly all EHEC strains produce Shiga toxins (encoded by stx1 or stx2), they are classified 

into another group termed Shiga toxin-producing E. coli (STEC). The main difference between 

EHEC and STEC is that some STEC strains are only found in animal host and have not been 

associated with human illness in the past (Gyles, 2007; Johnson et al., 2006). Among STEC, E. 

coli O157:H7 is the most widely recognized serotype to date, causing significant food safety and 

public health concerns (Pennington, 2010).  

Physiologically, most E. coli strains including E. coli O157:H7 can survive under a broad 

range of temperatures between 4oC and 46oC, with the optimum temperature usually around 

37oC. Studies on heat resistance of E. coli O157:H7 in ground beef revealed that it is thermal 

sensitive under high temperature conditions, with D values of 270 s, 45 s, 24 s, and 9.6 s at 

57.2oC, 60oC, 62.8oC and 64.3oC, respectively (Doyle and Schoeni, 1984). As a result, heating is 

commonly adopted in food industry and clinical setting as an easy and effective treatment for E. 

coli elimination. E. coli O157:H7 can propagate over a wide range of pH values as well, though 

its acid-resistant ability varies according to many intrinsic and extrinsic factors, including strain 

serotype, genetic profiles, acid type, food type, environmental conditions, and others. For 

example, E. coli O157:H7 at high inoculation level can live in fermented sausage (pH 4.5) for up 

to 2 month at 4oC (Glass et al., 1992), and in apple cider (pH 3.6-4.0) for 10 to 31 days at 8oC 

(Zhao et al., 1993).   
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Clinical Symptoms. Symptoms of E. coli O157:H7 infection range from asymptomatic to lethal. 

Once a person is infected, initial symptoms may include abdominal cramps, a short-lived fever, 

and watery diarrhea. Nearly half of the patients may also experience vomiting in this phase. 

After one or two days, much more severe bloody diarrhea may occur, usually accompanied with 

increased abdominal pain, which may last up to 10 days (Pennington, 2010). Although most 

people infected with E. coli O157:H7 will recover without seqealae if timely diagnosis and 

proper treatment were initiated, there are still approximately 10% of patients who will develop 

hemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS), particularly in children 

younger than 10 years old and senior people (Ethelberg et al., 2009; Gyles, 2007; Nataro and 

Kaper, 1998). HC is characterized by severe abdominal cramps and grossly bloody diarrhea with 

little to no fever. HUS was initially described in 1955 in Shigella dysenteriae infection, 

characterized by acute renal failure, thrombocytopenia, and microangiopathic hemolytic anemia 

(Mead and Griffin, 1998; Rowe et al., 1998; Slutsker et al., 1997). In adult infected with O157 

STEC, thrombotic thrombocytopenic purpura (TTP) may develop similar signs and symptoms as 

HUS plus neurological symptoms (Griffin and Tauxe, 1991). HUS can cause high percentage of 

permanent renal injury and up to 5% of deaths. One 6-year study on 180 cases of HUS in 

Scotland showed typical outcomes: 48% recovered and were released home; 13% had renal 

impairment; 7% became dependent on dialysis; 4% had neurological impairment; and 4% died 

(Pennington, 2010). The infectious dose for E. coli O157:H7 is low, as few as 10-100 cells may 

occasionally cause illnesses for immuno-compromised person and child under 4 or 5 years old 

(Rangel et al., 2005). The three to four days of incubation period is normal for STEC, but in 

some cases it can be either as long as 5 to 8 days, or as short as 1 to 2 days. Unlike Salmonella 
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typhi infection, long-term carriage of E. coli O157:H7 in infected patients has not been recorded 

(Mathusa et al., 2010).  

Similar to E. coli O157:H7, clinical manifestations of non-O157 STEC infections range 

from watery diarrhea to HC, HUS, and even death (Brooks et al., 2005; Johnson et al., 2006). 

However, in general, non-O157 STEC is considered to be less virulent than E. coli O157:H7, 

since it tends to be associated with mild symptoms shown in the early stage of infection, but 

seldom induces severe complications at later stage of diseases (Brooks et al., 2005). This 

statement is backed up by the data collected and analyzed by U.S. Centers for Disease Control 

and Prevention (CDC),  which found a lower incidence of non-O157 STEC in HUS (1.7% for 

non-O157 STEC v.s. 6.3% for O157 STEC) and death (0.1% for non-O157 STEC v.s. 0.6% for 

O157 STEC) (Gould, 2009). In another smaller scale study conducted between 2000 and 2006, a 

similar finding was reported (Hedican et al., 2009) by testing stool cultures of STEC-infected 

patients that non-O157 strains were less likely to result in bloody diarrhea (54% v.s.78%), 

hospitalization (8% v.s.34%), and HUS (0 v.s.7%) than O157 STEC strains. Among over 100 

different STEC O serogroups historically involved in sporadic HUS cases, O111 is the second 

most frequent one right after STEC O157 (Brooks et al., 2005). Other important ones included 

O26, O103 and O145 (Johnson et al., 2006).     

Virulence Determinants. By definition, all STEC strains have the potential to produce Shiga 

toxins, the major virulence factors contributing to STEC pathogenicity. There are two types of 

Shiga toxins secreted by E. coli, Shiga toxin 1 and 2, with different typical genetic and antigenic 

characteristics (Gyles, 2007). Molecular sequence analysis of their coding genes revealed that the 

stx1 gene was more conservative than the stx2 gene, with the same sequence or only three bases 

difference from that of Shigella dysenteriae (Jackson et al., 1987). The stx2 gene has at least 11 
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variants identified to date, including stx2, stx2c, stx2d, stx2e, stx2f, stx2g and others (Brett et al., 

2003; Russmann et al., 1995; Schmidt et al., 2000). Pairwise sequence alignments among 

randomly picked two stx2 gene variants revealed that the homology score ranged from 91% to 

98%, demonstrating close relationship in evolution.  

The molecular weight of purified Shiga toxin was estimated to be 62,000 Dalton 

(Yutsudo et al., 1986), consisting of two different functional subunits, A and B, when 

recognizing the host cell and triggering disease progress. Generally, the B subunit binds to 

neutral glycolipids on host cells and mediates cellular uptake of the Shiga toxin with trafficking 

to the endoplasmic reticulum. Thereafter, the A subunit is translocated across endoplasmic 

reticulum membrane to the cytoplasm, and achieve the access to its final target ribosome, where 

it can bind to the 28S RNA, cleave off a specific adenine, and prevent aminoacyl t-RNA 

binding, resulting in the inhibition of protein synthesis and the initiation of proinflammatory 

cytokine expression (Johnson et al., 2006). 

  A given STEC strain may produce either one or both Shiga toxins, and Stx2 have been 

identified to be closely associated with highly pathogenic STEC strains, especially when co-

existing with the eae gene (Boerlin et al., 1999; Brooks et al., 2005). Some studies found 

frequent appearance of stx2-positive E. coli O157:H7 isolates in HUS cases, whereas the 

detection of strains carrying only stx1 gene in HUS cases was not reported (Ostroff et al., 1989). 

Besides, purified Stx2 presented 1,000 times more toxic for human renal microvascular 

endothelial cells than Stx1, probably due to their major differences in crystal structure (Gyles, 

2007). 
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   Since STEC strains are not invasive, it is critical for them to attach and colonize the 

intestinal epithelial cell first and then release the Shiga toxins. After intensive research on the 

mechanisms of adherence and colonization presented by highly pathogenic STEC, including E. 

coli O157:H7, one characteristic histopathological feature, attaching and effacing lesion (A/E), 

was elucidated (Kaper et al., 2004). It enables the intimate attachment of the bacteria to the 

plasma membranes of the host epithelial cells, localized destruction of the brush border 

microvilli, and assembly of highly organized pedestal-like actin structures. Only the expression 

of A/E lesion is believed to be sufficient to cause nonbloody diarrhea, while the production of 

Shiga toxin is responsible for the development of bloody diarrhea and HUS.  

The A/E lesion is associated with a group of functional proteins, which are encoded by a 

gene cluster located on a chromosomal pathogenicity island, referred as the locus of enterocyte 

effacement (LEE). These proteins include components of a type III secretion system (TTSS), 

intimin, translocated intimin receptor (Tir), and others (Garmendia et al., 2005). Among these 

proteins, intimin has been widely used as the target in developing method for identification of 

LEE. The intimin is a 94-kDa outer membrane protein encoded by the eae gene, and it 

determines the unique pattern of attachment and interaction of STEC with epithelial cells: Tir is 

provided by the pathogen itself and translocated into the host cell to serve as the receptor for 

intimin, so that intimate attachment could be established (Johnson et al., 2006).  

Except for Shiga toxin and A/E lesion, many other putative virulent genes are found on 

the conserved plasmids (pO157, pO113, and others) in some STEC strains (Brunder et al., 2006; 

Newton et al., 2009). For instance, the F-like plasmid pO157 has approximately 100 open 

reading frames, of which 19 may be potentially involved in disease, including the one encoding 

EHEC hemolysin. This hemolysin toxin is secreted across both the cytoplasmic and outer 
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membranes of pathogenic E. coli to form the membrane pores in the host immune system cells 

and cause dysfunction and death. Recently, non-Lee enfectors (nle) have been identified to be 

strongly associated with STEC pathogenicity (Coombes et al., 2008). Taken together, the STEC 

virulence is due to a combination of various factors, and the attempt to describe it with single 

trait is difficult (Grant et al., 2011). More researches are still needed to clarify the relationship 

between these diverse virulence factors associated with STEC infection in human.   

O Serogroups. Serotyping E. coli isolates is normally based on three major surface antigens, the 

O, H, and K antigens, among which O antigen identifies the serogroup, and H antigen identifies 

the serotype (Doyle et al., 2001c). The application of serotyping to isolates associated with 

diarrheal disease has shown that particular serogroups often fall into one category of pathogenic 

E. coli, while others (i.e. O55, O111) will appear in more than one (Doyle et al., 2001c). Since E. 

coli O157:H7 was firstly identified as a new foodborne zoonosis in 1982 (Riley et al., 1983), 

about 250 different O serogroups of E. coli have been identified to produce Shiga toxin (Johnson 

et al., 2006).   

 

FIGURE 2.2. The open reading frame of O antigen gene cluster for E. coli O157 

 

Genes involved in the synthesis of O-antigen are located in the O antigen gene cluster 

(10-15 kb) between the galF and gnd genes on the E. coli chromosome (Samuel and Reeves, 

2003). O antigen gene clusters generally contain 8 to 20 genes (Fig. 2.2), some of which encode 

the protein carrying out specific assembly or processing steps to convert the O unit to the O 
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antigen as part of the complete lipopolysaccharide, therefore, they are O serogroup specific and 

can be selected as target to develop novel serotyping method (Wang and Reeves, 1998).  

Emerging Clinical Importance of Non-O157 STEC Serogroups 
 

Epidemiology of E. coli O157:H7. Ruminants particularly cattle are the major reservoirs for E. 

coli O157:H7 strains (Pennington, 2010). The prevalence rates of STEC was as high as 60% in 

bovine herds in some countries; however, the rates of 10-25% were mostly reported (Michael P. 

Doyle et al., 2001c). Generally, the isolation rates of E. coli O157:H7 are much lower than those 

of non-O157 STEC. For example, two major surveys conducted in the U. S. revealed that 31 

(3.2%) of 965 dairy calves and 191 (1.6%) of 11,881 feedlot cattle were positive for E. coli 

O157:H7. Additionally, 0.4% of feedlot cattle were positive for E. coli O157:NM (Zhao et al., 

1995). The number of E. coli O157:H7 in calf feces ranged from less than 100 CFU/g to 105 

CFU/g.  Some studies found a robust pattern that up to 80% of the E. coli O157:H7 

transmissions on the farm originated from 20% most infectious cattle, which were defined as 

Super-Shedders by their ability to release higher numbers of this organism for a longer period 

(Menrath et al., 2010).  

E. coli O157:H7 has been the reason of many major outbreaks of severe illnesses 

worldwide since 1982. In the United States, STEC O157 causes an estimated 63,153 illnesses, 

2,138 hospitalizations, and 20 deaths annually through food transmission route (Scallan et al., 

2011). Based on CDC’s surveillance data, STEC O157 outbreaks in the United States has 

increased from an average of 2 cases per year between 1982 and 1992 to 29 cases annually 

between 1993 and 1998 (Doyle et al., 2001b), and it fluctuates around 22 to 40 outbreaks each 

year (CDC, 2006, 2010a) in recent 10 years (1998-2007). However, if the increase of population 
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is counted, the incidence of E. coli O157:H7 has actually dropped by 44% to 0.9 per 100,000 

people in 2010 (Fig. 2.3) (CDC, 2010b). 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.3. Incidence of STEC O157-Foodborne Diseases Active Surveillance Network, 
United States, 1996-2010 (CDC, 2010b) 

 

A variety of foods have been identified as vehicles of E. coli O157:H7 infections, 

including ground beef, produce, milk, and juice (Pennington, 2010). Among the 196 E. coli 

O157:H7 outbreaks (by 1998) reported in the United States for which a vehicle has been 

identified, 48 (33.1%) were associated with ground beef, 4 (2.8%) with raw milk, and 3 (2.1%) 

with roast beef (Doyle et al., 2001b). Another review analyzed the source of 24 multistate 

outbreaks recorded between 1992 and 2002, of which 16 were related to ground beef and 6 to 

produce (Pennington, 2010). If the food/outbreaks combination was examined based on the 

country, geographical distribution may be clearly unveiled, indicating the difference in local food 

preference and culinary customs. For example, the butcher-associated E. coli O157:H7 outbreaks 
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have occurred more often in the United Kingdom other than ground beef (Rangel et al., 2005). 

Secondary spread is another primary cause for E. coli O157:H7 infections, mainly through 

person to person transmission (Rangel et al., 2005).  

Epidemiology of Non-STEC Serogroups. Non-O157 STEC has the same reservoirs and 

transmission route as E. coli O157:H7, but with relatively higher prevalence. Regarding the 

original source, one six-month study found 63.2% of cattle in one herd carrying STEC by testing 

feces sample for the stx gene, and no isolates belonged to O157 serogroup (Beutin et al., 1997). 

Similarly, the high non-O157 STEC prevalence was also estimated in dairy cattle (74%), or 

cattle at slaughter house (70.1%) in the United States (Hussein and Bollinger, 2005a, b; Hussein 

and Sakuma, 2005). Talking about the food items frequently associated with STEC 

contamination and infection, data from numerous countries indicates that while E. coli O157:H7 

is rarely present in more than 1% of raw beef products, the prevalence of non-O157 STEC 

ranges from 2.4% to 49.6% (Grant et al., 2011).  One recent published study (Bosilevac and 

Koohmaraie, 2011) examined the prevalence of non-O157 STEC isolated from 4,133 

commercial ground beef samples, representing the main regions of the United States. The overall 

suggested prevalence of STEC in ground beef was 24.3%, and it varied among different regions 

(13.1% to 39.4%). Nine serogroups (O113, O8, O22, O117, O163, O174, O171, O116, and O20) 

accounted for 53% of all isolates that were identified (Bosilevac and Koohmaraie, 2011). Such 

prevalence variation may depend on environmental factors and management practices.  
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FIGURE 2.4. The reported STEC O157 and non-O157 STEC infections by CDC’s FoodNet, 
1997-2010 (CDC, 2010b) 

Although non-O157 STEC strains are generally thought to be less virulent than E. coli 

O157:H7, some O serogroups are still frequently associated with sporadic foodborne outbreaks 

of HC and HUS. Non-O157 STEC may annually cause 112,752 illnesses and 271 

hospitalizations in the United States (Elaine Scallan et al., 2011), accounting for 20% to 50% of 

all STEC infections (Grant et al., 2011). In contrast to the decreasing trend of STEC O157 

infection, non-O157 STEC infection has been on the rise since it became nationally notifiable in 

2000 (Fig. 2.4), and a ten-fold increase in incidence was recorded in CDC FoodNet Report 

between 2000 and 2010 (0.12 cases per 100,000 to 1 case per 100,000 people) (CDC, 2010b). 

Even non-O157 serogroups were not equally pathogenic either; epidemiology data showed that 

several serogroups (O26, O45, O103, O111, O121, and O145) were repeatedly isolated from 

70% of confirmed non-O157 STEC infections in the United States (Brooks et al., 2005). And 

very recently, an unprecedented large outbreak of E. coli O104:H4 in Germany has resulted in a 

total of 4,075 cases (including 908 HUS) and 50 deaths as of July 21, 2011(WHO, 2011). Due to 
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the severity of disease symptoms, STEC O157 was declared as an adulterant in raw ground beef 

and beef trim by the U.S. Department of Agriculture (USDA) in 1994. On September 13, 2011, 

USDA announced the intention to declare six additional serogroups of STEC (O26, O103, O45, 

O111, O121, and O145) as adulterants in non-intact raw beef and the regulation will be enforced 

beginning on March 5, 2012. 

Detection Methods for E. coli O157:H7 and Related STEC 
 

Importance of Pathogen Detection. Microorganism with the ability to cause food spoilage and 

foodborne illness has always raised concerns of food quality and safety. Effective detection 

methods with high sensitivity and speed, although not a solution, may serve as the powerful tool 

in identifying the problem source and outlining solutions. Recently, numerous technologies have 

been developed to enumerate the total and groups of microorganisms and to detect specific 

pathogens and toxins in foods (Ge and Meng, 2009). Traditional methods mainly rely on 

appropriate selective and differential agar to detect specific microorganism in food. Although it 

has the highest sensitivity (several cells) among all the detection methods, and progress has been 

made to improve the formulation of the enrichment agar and differential medium, this method is 

still time-consuming and labor intensive. Advanced techniques, including convenience-based, 

antibody-based, and molecular-based assays, have successfully reduced the process to several 

hours with high specificity. In addition, such assays may also serve as the effective tool to 

provide the comprehensive genetic or metabolic profiles of the organism. 

Culture-based Methods. Culture-based method is regarded as the “gold standard” in food 

detection, due to its high sensitivity and ability to detect live cells. Additionally, it is the only 

method so far to provide the access to purified isolates from the background flora. Multiple steps 
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must be included in one complete test round, consisting of sample preparation, pre-enrichment, 

selective-enrichment, plating on differential agars and subsequent confirmation via biochemical, 

serological, and molecular test (Feng, 2007). As a result, the total analysis needs several days. 

The hardcore part of such traditional detection method for pathogens is the suitable selective and 

differential media. Selective media enhances the growth of target pathogens to detectable level, 

and simultaneously suppresses the growth of the rest. Differential agar, on the other hand, relies 

on the specific biochemical traits possessed by the target organisms, which are usually reflected 

on the color changes of the growth media. Numerous types of selective and differential agar have 

been commercialized for decades, targeting the main foodborne pathogens, including E. coli 

O157:H7, Campylobacter, Salmonella, Listeria monocytogenes, Vibrio and others. Continuous 

effects have also been made on the selection of specific physiological metabolism traits in 

microorganisms, and the improvement on the formulation of selective and differential media. For 

instance, the enrichment broth mEC + n used for E. coli O157:H7 detection is replaced by an 

improved one, mTSB + n (modified tryptone soy broth with Novobiocin and casamino acids) in 

the revised USDA protocol (U.S. Department of Agriculture, 2008).  

E. coli O157:H7 can be easily distinguished from other pathogenic and generic E. coli by 

their inability to ferment sorbitol within 24 hours (March and Ratnam, 1986). Recently, three 

types of differential agar are recommended by regulatory agencies and widely used in scientific 

and clinical community, including sorbitol-MacConkey agar (SMAC), cefixime tellurite-sorbitol 

MacConkey agar (CT-SMAC), and CHROMagar O157 (Fig. 2.5). Typical E. coli O157:H7 

colony will present mauve or pink color on CHROMagar O157, but no color on the other two 

medium after 16-24 h incubation at 37oC. With regards to sensitivity, CHROMagar O157 and 

CT-SMAC are better than SAMC (Church et al., 2007; Zadik et al., 1993). Presumptive colony 
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needs to be confirmed by O157 specific antiserum or O157 latex reagent before it is documented 

and reported as E. coli O157:H7 (March and Ratnam, 1989). Usually the culture-based method 

can detect as low as one E. coli cell or even fewer in 65 gram tested sample after enrichment 

(Bosilevac et al., 2010), but the confirmation of this preliminary data needs several days or even 

weeks.  

 
 

   

 

 

 

FIGURE 2.5. A typical Escherichia coli O157 strain grown on SMAC (left), CHROMagar O157 
(middle) and CT-SMAC (right). 

 

Standard methodology of non-O157 STEC detection is still challenging, since no 

characteristic physiological trait in this group of bacteria can be utilized to develop a differential 

agar. Recently several differential agars designed for some non-O157 STEC serotypes have been 

reported, however, the resulted color change is not consistent and sometimes hard to interpret, 

due to many unpredictable interfering factors like the incubation time, how crowded the colony 

is, and what food matrix they are isolated from (Catarame et al., 2003; Hiramatsu et al., 2002; 

Posse et al., 2008a, b). In most public health laboratory, the intention to isolate non-O157 STEC 

starts with the screening test for Stx presence in enrichment samples via enzyme immunoassay 

(EIA) or PCR method, then followed by plating the Stx-positive sample on relatively less 
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selective agar (MacConkey agar). Those well-isolated colonies are randomly picked out for 

serotype test. Hence it is possible that many potential STEC strains are omitted. 

Immunology-based Methods. Immunology-based methods use antibodies to directly identify 

the presence of foodborne pathogens in food or assist in the detection by separating microbial 

cells from food matrix. Enzyme-linked immunosorbent assay (ELISA) and Immunomagnetic 

separation (IMS) are the typical examples in each category. In ELISA, the 96-well microtiter 

plate is pre-coated with specific antibody, which will recognize and capture the target organism 

in food sample. After the initial binding, the secondary antibody linked with an enzyme will bind 

with the target organism again to form the vivid “sandwich” structure. Then the indicator 

substance is added to react with the enzyme and generate color, fluorescence, or electrochemical 

signal, indicating the presence and amount of target organism. Similar as the ELISA method, one 

special designed magnetic bead coated with specific antibody is employed in IMS to capture the 

target organism in enrichment culture first, and then separated from the food matrix for further 

detection by other technology. The IMS method can result in the concentrated target organism 

and inhibitor-free solution, both factors served to improve the sensitivity of molecular-based 

tests. Recently, the antibody and bead for major foodborne pathogens have already been 

commercialized and widely used in various places other than food industry.      

Shiga-toxin production as the only universally shared trait in STEC strains is used to 

design enzyme immunoassay, defined as Stx-EIA. This method was introduced into the United 

States in the early 1990s, and has successfully improved the low detection rate of STEC in food 

and clinical samples. Four commercial EIA kits have been approved by FDA, including The 

Premier EHEC, the ProSpecT Shiga Toxin E. coli Microplate Assay, the Immunocard STAT! 

EHEC, and the Duopath Verotoxins Gold Labeled Immunosorbent Assay. Most assays are 
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conducted after the enrichment, allowing the detection limit to reach a few cells in examined 

samples. The directly application of EIA test in stool samples may generate the result from 20 

minutes to 4 hours, but with the compromised sensitivity and specificity. Other studies point out 

that EIA may fail to detect a subset of O157 STEC with unknown mechanism (Klein et al., 2002; 

Manning et al., 2007), and false-positive results cannot be avoided when other pathogens are 

presented (CDC, 2001). STEC serotyping mainly uses agglutination reactions between antisera 

and specific O-antigen; however, the process can only be conducted in specialized laboratories 

(CDC, 2009), and the cross-reaction of antisera with multiple O serogroups often occurs 

(Fratamico et al., 2005). 

IMS coupled with culture-based or PCR method may increase the isolate rate of STEC 

from complicated food stuff. The key component, immunocapture bead, has been developed for 

those major STEC serogroups (O26, O45, O103, O111, O121, O145 and O157) associated with 

high prevalence and severe manifestations (Mathusa et al., 2010); however, due to the huge 

diversity in STEC serogroups, it is impossible to design the specific bead for all serogroups. 

Molecular-based Methods. The breakthrough on DNA amplification theory and subsequent 

discovery of highly efficient and thermal-tolerant DNA polymerase enable the emergence and 

evolvement of molecular-based pathogen detection assay. Methods such as PCR and real-time 

PCR are widely used in detection, diagnosis, genetic characterization, and other biological 

research area, because of their high speed, sensitivity, specificity and reproducibility. 

PCR can exponentially generate thousands to millions of copies of a particular DNA 

sequence in vitro across several orders of magnitude (Mullis et al., 1986). This method relies on 

two key components, primer and DNA polymerase, along with the repeated cycles of heating and 
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cooling of the reaction to enable the selective and repeated DNA amplification. Normally, a gel 

electrophoresis is coupled to examine the PCR products under the UV light; however, this 

drawback has been overcome by the development of real-time PCR. PCR can detect foodborne 

pathogens by the amplification of specific DNA genes and region, hence reducing the massive 

time previously spent on the agar preparation, and various biochemical tests. Meanwhile, it is 

easier to interpret the PCR result than the traditional culture-based method, where the non-

differentiable color change often happens. The other desirable feature of PCR is that more than 

one pair of primers can be incorporated in the single test; therefore it is possible to 

simultaneously detect two or three targets in one run (Claustres et al., 1989). It is noteworthy that 

some inhibitors in food matrix may interfere with the PCR by affecting the DNA polymerase 

activity, so it is critical to design the internal control and separate the target organism from 

enrichment culture as complete as possible (Hoorfar et al., 2003).  

Real-time PCR, also named as quantitative PCR (Q-PCR or qPCR), is an advanced PCR 

assay, providing near instantaneous amplification and detection at the same time. Different from 

conventional PCR, which distinguish the end point product for analysis, this fluorescence-based 

method is using a DNA-binding dye or hybridization probes to quantify input nucleic acid by 

measuring the number of thermal cycles required to reach a certain level of product. The identity 

of tested organism is reflected by sequence-dependent melting temperature or target-specific 

probe. It is generally agreed that real-time PCR is more sensitive than traditional one, along with 

the less running time. Both PCR assays now can detect the live cell after the incorporation of 

EMA or PMA as a dead DNA eliminating agent (Chen et al., 2011; Nocker and Camper, 2006; 

Nocker et al., 2006; Wagner et al., 2008). However, neither one can supply the purified isolate as 
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culture-based method. Meanwhile, the expensive equipment for accurate thermal control and 

data reading makes it unaffordable in small business.     

TABLE 2.1. Comparison of detection limits reported using molecular methods 

 # Target Assay type Detection limit Reference 
1 stx 1 and 2 PCR 20-200 CFU/R  (Pollard et al., 1990) 
2 stx 1 and 2 PCR 1 CFU/g a  (Gannon et al., 1992) 
3 stx 1 and 2 PCR 100 CFU/R  (Read et al., 1992) 
4 stx 1 and 2 PCR-ELISA 10 CFU/R  (Ge et al., 2002) 
5 stx 1 and 2, eae  qPCR 10 CFU/R (Ibekwe and Grieve, 2003) 
6 stx 1 and 2, eae qPCR 10 CFU/R  (Sharma and Dean-Nystrom, 2003) 
7 stx 1 and 2, eae qPCR 50 CFU/R (Fratamico et al., 2011) 
8 stx 1 and 2 LAMP 0.7-2.2 CFU/R (Hara-Kudo et al., 2007) 
9 stx 1 and 2, rfbE LAMP 2-20 CFU/R (Zhao et al., 2010) 
10 stx 2, rfbE and fliC LAMP 26 CFU/R (Zhu et al., 2009) 

a This sensitivity was achieved with pre-enrichment procedure. 

 

PCR and real-time PCR methods targeting the stx1 and stx2 genes are mainly used for 

STEC screening, strain confirmation and genetic characterization. According to the primer 

nature and detection strategy, some assays may differentiate the stx1 from stx2 gene (Gannon et 

al., 1997; Meng et al., 1997). Additionally, the assay has also been developed for the detection of 

specific O-serogroup and other virulence factors, such as intimin, and enterohemolysin (DebRoy 

et al., 2005; DebRoy et al., 2004; Fratamico et al., 2009; Paton and Paton, 1998, 1999). The 

reported detection limit of PCR and real-time PCR assay ranges from 10 to 102 CFU per reaction 

in pure culture (as shown in Table 2.1), which equals to 104-105 CFU per gram or milliliter 

sample. The result can be accessed within several hours after the 8-24 hours enrichment (Ibekwe 

and Grieve, 2003; O'Hanlon et al., 2004; Sharma and Dean-Nystrom, 2003). Although PCR 

method is with the high speed, sensitivity, and specificity, it can only be used in public health 

laboratories for confirmatory testing, but not approved by FDA for clinical diagnosis, because 
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the virulent genes somehow may not be translated into final pathogenic products. Another 

interesting finding is that no PCR-based method is used to detect STEC in those laboratories 

serving Foodborne Disease Active Surveillance Network site, based on one survey in 2007 

(Hoefer et al., 2010). One latest strategy for non-O157 STEC strains detection and isolation 

proposed an additional serotyping step by PCR before immuno magnetic separation (IMS), 

therefore, the target bacteria can be selected and concentrated before plating on selective agar 

and the recovery rate is increased (Fratamico et al., 2011; Perelle et al., 2007). The flow chart is 

presented in Fig. 2.6. 

 

 

 

 

 

 

 

 

 

FIGURE 2.6. The flowchart of non-O157 STEC isolation by USDA (U.S. Department of 
Agriculture, 2010) 

 

Loop-mediated Isothermal Amplification. Recently, a novel molecular-based assay, loop-

mediated isothermal amplification (LAMP) has been developed and applied in pathogen 

detection as well. LAMP was developed by a group of Japanese scientists, and first published in 

2000 (Notomi et al., 2000). Due to its novel design, several major advantages have been 
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provided in this new DNA amplification technique. Firstly, the target sequence is amplified in a 

single temperature incubation (60-65oC) using a polymerase with high strand displacement 

activity, thereby avoiding the need for expensive thermal cyclers. Secondly, a set of 4 primers, 

two inner and two outer, is used to recognize six distinct regions in target DNA, and form a 

dumbbell-like structure complex with multiple amplification starting sites. Therefore, LAMP can 

generate larger amount of DNA than PCR based method within the same time span. All the 

LAMP assays can be completed within 1 hour. Additionally, many studies have also proved that 

most LAMP assays are 10 times more sensitive than real-time PCR method, with the lowest 

detection limit of less than 1 cell per reaction. Thirdly, the amplification product is detected by 

the visible turbidity caused by increasing quantity of Magnesium pyrophosphate in solution, or 

by fluorescence after the addition of SYBR-green dye (Fig. 2.7). LAMP can also be quantitative, 

when the real-time turbidimeter is used to correlate the turbidity signals with the number of DNA 

copies initially present. As a simple, rapid and cost-effective method with the high sensitivity 

and specificity, LAMP has great potential to be used as a simple screening assay especially in the 

field test. Recently, it has been extensively validated for common pathogens detection, such as 

Campylobacter, Escherichia coli, Salmonella, Vibrio, virus and others (Chen and Ge, 2010; Han 

and Ge, 2010; Hara-Kudo et al., 2007; Techathuvanan et al., 2010; Yamazaki et al., 2009; Yoda 

et al., 2009).    

LAMP assays recognizing the stx genes and O157 serogroup determining gene (the rfbE 

gene) have also been developed in some studies so far (Hara-Kudo et al., 2008; Hara-Kudo et al., 

2007; Kouguchi et al., 2010; Zhao et al., 2010; Zhu et al., 2009), and none of them was 

conducted in the United States. The most sensitive one can detect 1 dead cell per reaction, with 

pure isolates as the template (Hara-Kudo et al., 2007). All the studies mainly focused on the 
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basic characters of LAMP assay for STEC and/or O157 serogroup detection, including the 

sensitivity and specificity. However, the systematic study has not been done about the 

optimization of the assay, the quantitative application in sample, the comparison between 

different methods, and the suitable protocol to use. In addition, no LAMP assay is reported for 

STEC subtyping and virulence check. All those issues will be the subject in this study. It is 

believed that this assay will have the potential to be incorporated into proposed USDA protocol 

to replace the real-time PCR method. 

 

FIGURE 2.7. Loop-mediated isothermal amplification turbidimeter and three result observation 
methods. 
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Introduction 
 

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic foodborne pathogen of 

significant public health concern due to its frequent involvement in outbreaks of hemorrhagic 

colitis (HC) and the ability to cause life-threatening complications such as hemolytic uremic 

syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) (Thorpe, 2004). In the United 

States, STEC causes an estimated 176,000 illnesses, 2,400 hospitalizations, and 20 deaths 

annually (Scallan et al., 2011). Ruminants particularly cattle are the major reservoirs for STEC 

strains (Hussein and Bollinger, 2005). STEC transmission commonly occurs through 

consumption of contaminated food (ground beef, produce, milk, juice) and water, contact with 

animals, and from person to person (Gyles, 2007). Less than 100 organisms of some STEC 

serotypes can lead to human illness (Thorpe, 2004). 

First recognized as a foodborne pathogen in 1982 (Karmali et al., 1983), E. coli O157:H7 

remains to be the most common STEC serotype causing human illness (Scallan et al., 2011). 

However, the clinical significance of non-O157 STEC is on the rise worldwide, with well over 

100 serotypes associated with sporadic and epidemic human infections (Johnson et al., 2006). 

For the first time since 2000, FoodNet in the U.S. actually reported a higher incidence of 

laboratory-confirmed non-O157 STEC infections than STEC O157 in 2010 (CDC, 2011). O26, 

O45, O103, O111, O121, and O145 are the top 6 non-O157 serogroups in the U.S. (Brooks et al., 

2005) whereas additional ones are more prevalent in other countries (Johnson et al., 2006). Since 

May 2011, an unprecedented large outbreak of E. coli O104:H4 in Germany has resulted in a 

total of 4,075 cases (including 908 HUS) and 50 deaths as of July 21 (WHO, 2011). Given this 

emerging and evolving nature of STEC serotypes involved in human illness, it is crucial that 
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rapid and reliable detection methods are available to screen for all STEC serotypes in food and 

clinical samples so that proper control and treatment can be implemented promptly.  

By definition, all STEC serotypes are capable of producing at least one Shiga toxin (Stx1 

or Stx2), the major virulence factors contributing to STEC pathogenicity (Thorpe, 2004). Stx1 is 

identical (or with only a single amino acid difference) to Shiga toxin produced by Shigella 

dysenteriae type 1 (Nataro and Kaper, 1998) whereas Stx2 shares 55-60% homology with Stx1 

and is immunologically distinct (Jackson et al., 1987). In addition to Stx, many STEC strains 

carry a large chromosomal pathogenicity island termed the locus of enterocyte effacement 

(LEE), which is responsible for producing attaching and effacing (A/E) lesions on enterocytes 

(Nataro and Kaper, 1998). Within the LEE region, an outer membrane protein intimin (encoded 

by eae) mediates the intimate attachment of bacteria to the enterocyte membrane (Nataro and 

Kaper, 1998). Although STEC virulence factors have yet to be fully elucidated, epidemiological 

data suggest that strains harboring both stx2 and eae are strongly associated with severe human 

illnesses such as HC and HUS (Boerlin et al., 1999; Brooks et al., 2005; Ethelberg et al., 2004). 

For STEC detection, three broad categories of assays are available. First, while traditional 

culture methods using sorbitol-containing selective media can readily identify E. coli O157:H7, 

currently no selective and differential media exist to culture non-O157 STEC strains (Gould et 

al., 2009). Second, enzyme immunoassays (EIA) for Shiga toxins and a few STEC serogroups 

are commercially available (Gould et al., 2009). However, false-positive results have been 

reported (CDC, 2001, 2006). Further, it is recommended that Shiga toxin EIA be performed on 

overnight (16-24 h) enrichment cultures of stools rather than direct examination (Gould et al., 

2009), stretching the total assay time to days rather than hours (Ge and Meng, 2009). Third, 

rapid, specific, and sensitive nucleic acid amplification tests (NAAT) such as PCR and qPCR 
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have been developed to detect STEC by targeting genes coding for major STEC virulence factors 

such as Stx, intimin, or hemolysin (Fratamico et al., 2011; Paton and Paton, 1998). Nonetheless, 

a sophisticated thermal cycling instrument is an indispensable requirement of such tests, limiting 

their wide applicability. 

Recently, a novel NAAT technology termed loop-mediated isothermal amplification 

(LAMP) has attracted great attention as a rapid, accurate, and cost-effective pathogen detection 

method in both food testing and clinical diagnostics (Mori and Notomi, 2009; Notomi et al., 

2000). LAMP employs four to six specially designed primers and a strand-displacing Bst DNA 

polymerase to amplify up to 109 target DNA copies under isothermal conditions (60-65oC) 

within an hour (Mori and Notomi, 2009). Since it is isothermal, LAMP can be performed in 

much simpler instruments such as a heater or water bath. To date, several LAMP assays targeting 

STEC Shiga toxin genes (stx1 and stx2) have been developed and evaluated in food samples 

(Hara-Kudo et al., 2008a; Hara-Kudo et al., 2007; Hara-Kudo et al., 2008b; Kouguchi et al., 

2010; Maruyama et al., 2003; Ohtsuka et al., 2010; Zhao et al., 2010; Zhu et al., 2009), as well as 

a few others targeting the rfbE gene (encoding perosamine synthetase) specific for the O157 

antigen of STEC O157 (Wang et al., 2009; Zhao et al., 2010; Zhu et al., 2009). However, to our 

knowledge, there are no LAMP assays currently available for the E. coli intimin gene (eae). Due 

to the importance of STEC intimin in causing severe human illnesses (Boerlin et al., 1999; 

Brooks et al., 2005; Ethelberg et al., 2004), screening for both stx and eae using qPCR is 

currently recommended by the U.S. Department of Agriculture’s Food Safety and Inspection 

Service (U.S. Department of Agriculture, 2010). Additionally, none of the LAMP studies have 

evaluated the assay applicability in clinical samples.  



 

38 
 

The objectives of this study were to develop rapid and reliable LAMP detection assays 

for STEC by targeting stx1, stx2, and eae, and evaluate the assay performance with ground beef 

and human stools experimentally contaminated with low levels of STEC strains of seven major 

serogroups, i.e., O26, O45, O103, O111, O121, O145, and O157. 

Materials and Methods 
 

Bacterial Strains and Culture Conditions. A total of 90 strains (50 STEC and 40 non-

STEC; Table 3.1) were used for specificity testing. Among these, seven STEC belonging to 

serogroups O26, O45, O103, O111, O121, O145, and O157 were used for sensitivity and ground 

beef testing. STEC O157 strain EDL933 (BEI Resources, Manassas, VA) was also used for 

assay optimization and application in human stools. The strains were examined for the presence 

of target genes (stx1, stx2, and eae) using previously described PCR assays (Xia et al., 2010). 

STEC and other Enterobacteriaceae were cultured at 35oC overnight on trypticase soy agar or 

broth (TSA or TSB; BD Diagnostic Systems, Sparks, MD). Non-Enterobacteriaceae strains were 

grown on blood agar except for Vibrio strains for which TSA supplemented with 2% NaCl was 

used. Campylobacter strains were grown under microaerophilic conditions (85% N2, 10% CO2, 

and 5% O2).  

LAMP Primers and Reaction Conditions. The STEC stx1, stx2, and eae genes 

(GenBank accession numbers M19473, X07865, and Z11541, respectively) were selected as 

targets for designing LAMP primers (Table 3.2). A set of six primers, two outer (F3 and B3), 

two inner (FIP and BIP), and two loop (LF and LB), which recognize eight distinct regions of the 

target gene, were designed for each target using PrimerExplorer V4 (Fujitsu Limited, Japan).  
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The LAMP prototypic conditions were those recommended by the manufacturer (Eiken 

Chemical Co., Ltd., Tokyo, Japan). Following optimization, the final LAMP reaction mix (25 µl) 

for stx1 and stx2 consisted of 1× ThermoPol reaction buffer (New England Biolabs, Ipswich, 

MA), 6 mM MgSO4, 1.2 mM each deoxynucleoside triphosphate (dNTP), 0.1 μM F3 and B3 

(Integrated DNA Technologies, Coralville, IA), 1.8 μM FIP and BIP, 1 μM LF and LB, 10 U of 

Bst DNA polymerase (New England Biolabs), and 2 µl of DNA template. The optimized eae 

reaction mix differed from those described above for the following parameters: MgSO4 (8 mM), 

dNTP (1.8 mM each), F3 and B3 (0.3 μM each), FIP and BIP (2 μM each), and LF and LB (1.2 

μM each). One positive and one negative control were included in each LAMP run.  

LAMP reactions were carried out at 65oC for 1 h and terminated at 80oC for 5 min in an 

LA-320C real-time turbidimeter (Eiken Chemical Co., Ltd.) with turbidity readings at 650 nm 

every 6 s. The time threshold (Tt; min) was determined when the turbidity increase measurement 

(differential value of moving averages of turbidity) exceeded a threshold of 0.1.  

qPCR Assays. In comparison, qPCR assays (Fratamico et al., 2011) for STEC stx1, stx2, 

and eae were carried out. The mix (25 µl) contained 1× PCR buffer, 0.2 mM each dNTP, 4 mM 

MgCl2, 0.25 µM each primer (Table 3.2), 0.1875 µM probe, 1.5 U of GoTaq Hot Start 

Polymerase (Promega, Madison, WI), and 2 µl of DNA template. The assays were conducted 

using 40 cycles of denaturation at 94oC for 20 s, annealing at 60oC for 30 s, and extension at 

72oC for 50 s in a SmartCycler II System (Cepheid, Sunnyvale, CA). Fluorescence readings were 

acquired using the FAM channel and the cycle threshold (Ct; cycle) was obtained when the 

readings crossed 30 units. 
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TABLE 3.1. Bacterial strains used in this study to evaluate specificity and sensitivity of LAMP assays  
 
Strain groupa Serotype Strain IDb Stx Intimin Origin Sourcec 
STEC (n = 50) O15:H27 88-1509 1, 2 - Human The STEC Center 
 O26 MT#10 1 + Human The STEC Center 
 O26:NM TB352A 1 + Human The STEC Center 
 O26:H11 97-3250b 1, 2 + Human The STEC Center 
  3047-86 1  + Human The STEC Center 
  EH1534 1 + Human BEI Resources 
 O45:NM DA-21 1 + Human The STEC Center 
 O45:H2 MI01-88b 1 + Human The STEC Center 
  MI03-19 1 + Human The STEC Center 
  MI05-14 1 + Human The STEC Center 
 O55:H7 5905 2 + Food (meat) The STEC Center 
 O91:H21 B2F1 2 - Human BEI Resources 
  H414-36/89 2 - Human BEI Resources 
 O103:NM PT91-24 1 + Human The STEC Center 
 O103:H2 MT#80b 1 + Human The STEC Center 
 O103:H6 TB154A 1 + Human The STEC Center 
 O103:H25 8419 1 + Human The STEC Center 
 O104:H21 G5506 2 - Human The STEC Center 
 O111:NM 3007-85 1, 2 + Human The STEC Center 
 O111:H2 RD8 2 - Human The STEC Center 
 O111:H8 3215-99b 1, 2 + Human The STEC Center 
 O111:H11 0201 9611 1 + Human The STEC Center 
 O121 MT#18 2 + Human The STEC Center 
 O121:H19 DA-5 2 + Human The STEC Center 
  MDCH-4b 2 - Human The STEC Center 
  MT#2 2 + Human The STEC Center 
  MT#11 1, 2 + Human The STEC Center 
 O145 EH1533 2 + Human BEI Resources 
 O145:NM GS G5578620b 1 + Human The STEC Center 
  IH 16 2 + Human The STEC Center 
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Table 3.1 Cont.  
O145:H16 

 
87-1713 

 
1 

 
+ 

 
Human 

 
The STEC Center 

 O145:H28 4865/96 2 + Human The STEC Center 
 O157:NM 493/89 2 + Human The STEC Center 
 O157:H7 86-24 2 + Human The STEC Center 
  93-111 1, 2 + Human The STEC Center 
  2886-75 1, 2 + Human The STEC Center 
  A 1, 2 + Human BEI Resources 
  BDMS 770 1, 2 + Human BEI Resources 
  CoGen002096 2 + Food (spinach) BEI Resources 
  E32511 2 + Human The STEC Center 
  EDL931 1, 2 + Human BEI Resources 
  EDL932 1, 2 + Human BEI Resources 
  EDL933b 1, 2 + Food (hamburger) BEI Resources 
  G5101 1, 2 + Human The STEC Center 
  MDL 3562 2 + Human BEI Resources 
  MDL 4444 2 + Human BEI Resources 
  MDL 4445 2 + Human BEI Resources 
  MDL 4572 2 + Human BEI Resources 
  OK-1 1, 2 + Human The STEC Center 
  RIMD 509952 1, 2 + Human BEI Resources 
Non-STEC (n = 40)       
E. coli (n = 11)       
  EAEC O3:K2a,2b(L):H2 NCDC U14-41 - - Human BEI Resources 
  EHEC O55:H7 DEC5D - + Human The STEC Center 
 O157:NM 94-G7771 - + Human BEI Resources 
  EIEC O28a,28c:K73(B18):NM NCDC 909-51 - - Human BEI Resources 
 O29:NM 1885-77 - - Human BEI Resources 
  EPEC O126:K71(B16):NM ATCC 12807 - + Human BEI Resources 
  ETEC O25:K98:NM E2539-C1 - - Human BEI Resources 
 O78:H11 H10407 - - Human BEI Resources 
  UPEC O6:K2:H1 CFT073 - - Human BEI Resources 
  Other E. coli O9 HS - - Human BEI Resources 
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Table 3.1 Cont.  
OR:H48 

 
K-12 

 
- 

 
- 

 
Laboratory 

 
      BEI Resources 

Salmonella enterica (n = 11) 
 Anatum NR-4291 - - Food (tomato) BEI Resources 
 Braenderup 10 N - - Food (raw chicken) FDA CFSAN 
 Enteritidis SE 5 - - Food (lasagna) FDA CFSAN 
 Hartford 2807 H - - Food (raw oyster) FDA CFSAN 
 Heidelberg 1364 H - - Food (raw oyster) FDA CFSAN 
 Infantis 1102 H - - Food (meat meal) FDA CFSAN 
 Javiana 2080 H - - Food (frog legs) FDA CFSAN 
 Newport 1240 H - - Food (dried yeast) FDA CFSAN 
 Saintpaul 1358 H - - Food (mixed vegetables) FDA CFSAN 
 Stanley 1243 H - - Food (bone meal) FDA CFSAN 
 Typhimurium CIP 60.62 - - Laboratory BEI Resources 
Shigella (n = 7) 
  boydii  NCTC 12985 - - Unknown BEI Resources 
  dysenteriae 1 NCTC 4837 1 - Human BEI Resources 
  flexneri 2a 24570 - - Unknown BEI Resources 
  2457T - - Laboratory BEI Resources 
 2b ATCC 12022 - - Unknown Lab collection 
  sonnei  NCTC 12984 - - Human BEI Resources 
  ATCC 25931 - - Human Lab collection 
Vibrio (n = 6) 
  cholerae O1 ATCC 14035 - - unknown Lab collection 
  harveyi  ATCC 14126 - - Animal (dead amphipod) Lab collection 
  fluvialis  ATCC 33809 - - Human Lab collection 
  mimicus  ATCC 33653 - - Human Lab collection 
  parahaemolyticus  ATCC 33847 - - Human Lab collection 
  vulnificus  ATCC 27562 - - Human Lab collection 
Others (n = 5)       
Campylobacter jejuni  ATCC 33560 - - Animal (bovine feces) Lab collection 
Citrobacter freundii  ATCC 8090 - - Unknown Lab collection 
Enterobacter aerogenes  ATCC 13048 - - Human Lab collection 
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Table 3.1 Cont. 
Listeria monocytogenes 

 
4b 

 
ATCC 13932 

 
- 

 
- 

 
Human 

 
Lab collection 

Staphylococcus aureus  ATCC 29213 - - Human Lab collection 
a Abbreviations are as following: STEC-Shiga toxin-producing Escherichia coli, EAEC-Enteroaggregative E. coli, EHEC-
Enterohemorrhagic E. coli, EIEC-Enteroinvasive E. coli, EPEC-Enteropathogenic E. coli, ETEC-Enterotoxigenic E. coli, and UPEC-
Uropathogenic E. coli. 
b The seven labeled strains were used for both specificity and sensitivity evaluation of LAMP assays whereas others were used for the 
specificity test alone. 
c The STEC Center is based at Michigan State University, East Lansing, MI. BEI Resources is located in Manassas, VA. FDA CFSAN 
stands for the U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD. Lab collection 
refers to our strain collection maintained at Louisiana State University, Baton Rouge, LA. 
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LAMP Specificity and Sensitivity. For LAMP specificity, DNA templates of 90 

bacterial strains (Table 3.1) were prepared by heating at 95oC for 10 min as described previously 

(Chen et al., 2011). Aliquots (2 µl) of each template were subjected to LAMP amplification and 

repeated twice. 

LAMP sensitivity (limit of detection) was determined by using 10-fold serial dilutions of 

seven STEC strains (Table 3.1). Briefly, 3-5 single colonies of each strain were inoculated 

separately into 8 ml of fresh TSB and incubated at 35oC for 16 h to reach the stationary phase 

(OD600 = 1, approximately 109 CFU/ml). The cultures were 10-fold serially diluted in 0.1% 

peptone water and aliquots (500 µl) of each dilution were used to prepare DNA templates 

similarly by heating. The exact cell numbers were determined by standard plate counting. 

Aliquots (2 µl) of each template were tested by LAMP and qPCR, and repeated three times. 

LAMP Evaluation in Ground Beef. Ground beef (23% fat, 25 g) samples were obtained 

from a local grocery store and analyzed within 2 h of collection. To determine LAMP sensitivity 

in ground beef, each test sample (25 g) was inoculated with 2 ml of 10-fold serially diluted 

individual overnight STEC cultures, resulting in spiking levels between 109 and 105 CFU/25 g. 

Another sample was included as the uninoculated control. The samples were homogenized with 

225 ml of buffered peptone water (BPW; BD Diagnostic Systems) in a food stomacher (Model 

400; Tekmar Company, Cincinnati, OH) for 1 min. Aliquots (1 ml) of the homogenates were 

centrifuged at 16,000 × g for 3 min, and pellets were suspended in 100 µl of PrepMan Ultra 

Sample Preparation Reagent (Applied Biosystems, Foster City, CA). The mixtures were heated 

at 95oC for 10 min and centrifuged again at 12,000 × g for 2 min. The supernatants (2 µl) were 

used for both LAMP and qPCR, and repeated three times each. Aerobic plate counts were 

performed for the uninoculated control by standard pour plate method. 
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TABLE 3.2. LAMP and qPCR primers used in this study to detect STEC strains by targeting three genes (stx1, stx2, and eae) 
 

Assay 
type 

Primer/probe 
name 

Sequence (5′-3′) Positiona Amplicon 
size (bp) 

Reference 

stx1-
LAMP 

stx1-F3 TGATTTTTCACATGTTACCTTTC 507-529 Ladder-like 
bands with 
variable sizes 
for all three 
LAMP 
assays 

This study 

stx1-B3 TAACATCGCTCTTGCCAC 688-705 
stx1-FIP CCTGCAACACGCTGTAACGT-CAGGTACAACAGCGGTTA 574-593, 530-547 
stx1-BIP AGTCGTACGGGGATGCAGAT-AGTGAGGTTCCACTATGC 598-617, 660-677 
stx1-LF GTATAGCTACTGTCACCAGACAATG 548-572 
stx1-LB AAATCGCCATTCGTTGACTACTTCT 618-642 

stx2-
LAMP 

stx2-F3 CGCTTCAGGCAGATACAGAG 812-831 
stx2-B3 CCCCCTGATGATGGCAATT 1022-1040 
stx2-FIP TTCGCCCCCAGTTCAGAGTGA-GTCAGGCACTGTCTGAAACT 897-917, 840-859 
stx2-BIP TGCTTCCGGAGTATCGGGGAG-CAGTCCCCAGTATCGCTGA 927-947, 989-1007
stx2-LF GCGTCATCGTATACACAGGAGC 860-881 
stx2-LB GATGGTGTCAGAGTGGGGAGAA 950-971 

eae-
LAMP 

eae-F3 TGACTAAAATGTCCCCGG 502-519 
eae-B3 CGTTCCATAATGTTGTAACCAG 683-704 
eae-FIP GAAGCTGGCTACCGAGACTC-CCAAAAGCAACATGACCGA 581-600, 526-544 
eae-BIP GCGATCTCTGAACGGCGATT-CCTGCAACTGTGACGAAG 605-624, 664-681 
eae-LF GCCGCATAATTTAATGCCTTGTCA 545-568 
eae-LB ACGCGAAAGATACCGCTCT 625-643 

stx1-
qPCR 

stx1-150-F GACTGCAAAGACGTATGTAGATTCG 252-276 151 (Fratamic
o et al., 
2011) 

stx1-150-R ATCTATCCCTCTGACATCAACTGC 379-402 
stx1-150-P FAM-TGAATGTCATTCGCTCTGCAATAGGTACTC-Iowa Black FQ 278-307 

stx2-
qPCR 

stx2-200-F ATTAACCACACCCCACCG 425-442 206 
stx2-200-R GTCATGGAAACCGTTGTCAC 611-630 
stx2-200-P FAM-CAGTTATTTTGCTGTGGATATACGAGGGCTTG-Iowa Black FQ 445-476 

eae-
qPCR 

eae-170-F CTTTGACGGTAGTTCACTGGAC 734-755 170 
eae-170-R CAATGAAGACGTTATAGCCCAAC 811-903 
eae-170-P FAM-CTGGCATTTGGTCAGGTCGGGGCG-Iowa Black FQ 789-812 
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Table 3.2 Cont. 
a The positions are numbered based on the coding sequences of STEC stx1, stx2, and eae genes with GenBank accession numbers 
M19473, X07865, and Z11541, respectively. Underlined corresponds to the F2 or B2 regions of the FIP or BIP primers, respectively. 
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Additionally, the capability of LAMP to detect low levels of seven STEC strains in 

ground beef was evaluated. For this application, ground beef samples were spiked with 

individual STEC cultures at two levels: 1-2 and 10-20 CFU/25 g. Another sample was included 

as the uninoculated control. The samples were homogenized with 225 ml of pre-warmed BPW 

supplemented with 8 mg/l vancomycin (Sigma-Aldrich, St. Louis, MO) in the food stomacher for 

1 min, followed by incubation at 42oC for up to 24 h. Aliquots (1 ml) of the enrichment broth 

were removed at 4, 6, 8, 10, 12, and 24 h and processed similarly by PrepMan Ultra Sample 

Preparation Reagents. Two microliters of the sample DNA extracts were subjected to both 

LAMP and qPCR. This experiment was independently repeated twice. 

LAMP Application in Human Stools. Human stool specimen was obtained from donor 

and processed immediately. Each stool sample (0.5 g) was inoculated with 1 ml of 10-fold 

serially diluted STEC O157 strain EDL933 overnight culture, resulting in spiking levels of 103 

and 104 CFU/0.5 g stool. The samples were mixed with 5 ml of TSA, and aliquots (1 ml) were 

removed for direct testing. The remaining mixtures were incubated at 35oC and aliquots (1 ml) 

were removed at 4, 6, and 8 h for further analysis. For both direct stool testing and testing after 

enrichment, the samples were treated with PrepMan Ultra Sample Preparation Reagents as 

described above and subjected to both LAMP and qPCR. This experiment was independently 

repeated twice. 

Data Analysis. Means and standard deviations of Tt for LAMP or Ct for qPCR were 

calculated by Microsoft Excel (Seattle, WA). The detection limits (CFU/reaction in pure culture 

or CFU/g in spiked ground beef) were presented as the lowest numbers of STEC cells that could 

be detected by the assays. In spiked ground beef, CFU/reaction was calculated by using CFU/g × 



 

48 
 

25 g ÷ 250 × 10 × 2 × 10 - 3, i.e., CFU/g × 2 × 10-3. Similarly, in spiked human stools, 

CFU/reaction was converted by using CFU/g × 2 × 10-3. Standard curves to quantify STEC in 

pure culture and spiked ground beef were generated by plotting Tt values against log 

CFU/reaction or log CFU/g, respectively, and quantitative capabilities of the LAMP assays were 

derived based on the coefficient of determination (R2) values from the standard curves. 

In spiked ground beef and human stool experiments, Tt and Ct values sorted by target 

gene, spiking level, and enrichment time were compared by using the analysis of variance 

(ANOVA; SAS for Windows version 9; SAS Institute Inc., Cary, NC). Differences between the 

mean values were considered significant when P < 0.05. 

Results 
 

LAMP Specificity. Among 90 bacterial strains (Table 3.1) used to determine specificity 

of the three LAMP assays (stx1-LAMP, stx2-LAMP, and eae-LAMP), false positive or false 

negative results were not observed, i.e., LAMP results matched 100% with known strain 

characteristics for the three target genes. Using stx1-LAMP, mean Tt values for 30 STEC strains 

harboring the stx1 gene ranged from 11.4 to 14.5 min and one stx1-positive Shigella dysenteriae 

strain NCTC 4837 also gave positive LAMP result with a mean Tt value of 13.2 min. Similarly, 

by stx2-LAMP, mean Tt values for 35 STEC strains containing stx2 fell between 13.1 to 19.7 

min, whereas mean Tt values for 47 eae-positive E. coli strains fell between 13 to 25.2 min by 

eae-LAMP. In contrast, for strains lacking any or all of the three target genes, no Tt value was 

obtained by corresponding LAMP assays, suggesting negative LAMP results.  

LAMP Sensitivity and Quantitative Capability. Table 3.3 summarizes LAMP 

sensitivity when testing 10-fold serial dilutions of individual STEC strains of seven serogroups 
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in three repeats. In pure culture testing, all three LAMP assays consistently detected down to 101 

CFU/reaction of the seven STEC strains except for eae-LAMP when STEC O26 strain 97-3250 

and O111 strain 3215-99 were tested. Further, in one to two out of three repeats, all three LAMP 

assays detected several STEC strains at concentrations 10-fold lower (i.e., 100 CFU/reaction). It 

is noteworthy that LAMP assays proceeded faster in some strains than others. For example, at 

the 105 CFU/reaction level, the mean Tt values by stx1-LAMP ranged from 15 min for STEC 

O103 strain MT#80 to 19.6 min for O157 strain EDL933. Similar variations in amplification 

speed among the seven STEC strains were also observed for stx2-LAMP and eae-LAMP. 

Regardless of target genes, the detection limits for qPCR were between 100-101 CFU/reaction 

(data not shown, see appendix). 

Fig. 3.1 shows a typical LAMP amplification graph and a standard curve generated for 

pure culture sensitivity testing of STEC O157 strain EDL933 by stx2-LAMP. The Tt values 

ranged from 21.4 to 45.2 min for cell concentrations between 1.6 × 105 and 1.6 CFU/reaction. 

Excluding data for 1.6 and 16 CFU/reaction, the quantification equation for this assay was 

determined to be y = -2x + 31.2, and the coefficient of determination (R2) was 0.997. Similar 

quantification equations were obtained for other assay/strain pairs and the overall R2 values 

ranged between 0.933 and 0.997 (data not shown, see appendix).  

LAMP sensitivity in spiked ground beef is also summarized in Table 3.3. For the 

uninoculated control sample, APC averaged 2 × 105 CFU/g and all three target genes tested 

negative by LAMP and qPCR (data not shown, see appendix). Using stx1-LAMP and stx2-

LAMP, the lower limits of detection were at the 103 CFU/g level, equivalent to 8-14 

CFU/reaction. While by eae-LAMP, at least 10-fold higher cell concentrations (i.e., 104 CFU/g) 

were needed in three strains (Table 3.3). 
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TABLE 3.3. Sensitivity of the three LAMP assays when testing 10-fold serial dilutions of individual STEC strains of seven 
serogroups in pure culture and spiked ground beef samples 
Strain ID Serotype Stx Intimin Detection limit (CFU/reaction or CFU/g) 

stx1-LAMP stx2-LAMP eae-LAMP 
Culture Ground beef Culture Ground beef Culture Ground beef 

97-3250 O26:H11 1, 2 + 10 4×103-4×104b 1-10b 4×103-4×104b 10-100b 4×104-4×105b 
MI01-88 O45:H2 1 + 1.6-16a 7×103 N/A N/A 1.6-16b 7×103-7×104a 
MT#80 O103:H2 1 + 1.6-16b 6.5×103 N/A N/A 16 6.5×104 
3215-99 O111:H8 1, 2 + 1.1-11a 5×103 1.1-11b 5×103 110-1,100a 5×104-5×105a 
MDCH-4 O121:H19 2 - N/A N/A 1.2-12b 4×103 N/A N/A 
GS G5578620 O145:NM 1 + 17 4×103 N/A N/A 1.7-17b 4×103 
EDL933 O157:H7 1, 2 + 1.6-16a 6.5×103 1.6-16b 6.5×103 1.6-16a 6.5×103 

a One out of three repeats was positive for the lower detection limit.  
b Two out of three repeats were positive for the lower detection limit. In ground beef testing, CFU/reaction equals to CFU/g×2×10-3. 
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FIGURE 3.1. A typical LAMP amplification graph (A) and a standard curve generated for pure 
culture sensitivity testing of STEC O157 strain EDL933 by stx2-LAMP (B). Samples 1-6 
correspond to 10-fold serial dilutions of E. coli O157:H7 EDL933 cells ranging from 1.6 × 105 to 
1.6 CFU/reaction; sample 7 is water. The standard curve was drawn based on three independent 
repeats and excluding data for cell concentrations of 1.6 and 16 CFU/reaction. 

In comparison, the majority of qPCR assays had detection limits of 104 CFU/g for stx1 

and stx2 and 103 CFU/g for eae in spiked ground beef (data not shown, see appendix). Similar to 

pure culture testing, quantification equations were generated based on ground beef sensitivity 

data and R2 ranged between 0.904 and 0.994 (data not shown, see appendix).  

Rapid Detection of Low Levels of STEC in Ground Beef. Table 3.4 shows LAMP and 

qPCR results in ground beef samples spiked with two low levels (1-2 and 10-20 CFU/25 g) of 

individual STEC strains of seven serogroups after various enrichment periods. A typical LAMP 

amplification graph generated for ground beef enrichment samples is shown in Fig. 3.2. 

Regardless of spiking levels, none of the 4-h enrichment samples tested positive by either LAMP 

or qPCR. Positive LAMP results appeared at 6 h with significantly larger Tt values (P < 0.05), 
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and for samples enriched for 8, 10, 12, and 24 h, stable and lower Tt values were observed with 

no significant differences among different enrichment periods (P > 0.05) (Table 3.4). A similar 

trend of detection was observed for qPCR. At the 6-h enrichment point, the only LAMP-negative 

sample was the one spiked with STEC O157 strain EDL933 and tested by stx1-LAMP, which 

was confirmed by qPCR. However, STEC O45 strain MI01-88 tested positive by LAMP was 

negative by qPCR (Table 3.4). Additionally, qPCR results were presented by cycles, which were 

approximately 2 min/cycle. Therefore, additional 30-55 minutes of amplification time were 

needed for qPCR with the same enrichment sample. 

 
FIGURE 3.2. A typical LAMP amplification graph generated when testing ground beef samples 
spiked with two low levels of individual STEC strains of seven serogroups after various 
enrichment periods (4, 6, 8, 10, 12, and 24 h). In this graph, the ground beef samples were spiked 
with 1.2 CFU of STEC O111 strains 3215-99 and the enrichment samples were tested by stx2-
LAMP. 

Rapid Diagnostic of STEC in Human Stools. Table 3.5 shows LAMP and qPCR results 

in human stool specimen spiked with 103 and 104 CFU/0.5 g of STEC O157 EDL933 cultures 

based on two independent repeats. For direct stool testing, all samples were negative except for 
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the 104 CFU/0.5 g level tested by eae-LAMP in one repeat. Regardless of spiking levels, after 4, 

6, and 8 h of enrichment, all samples were positive by LAMP. However, several negative qPCR 

results were observed at the 4-h enrichment point at the 103 CFU/0.5 g spiking level (Table 3.5). 

Noticeably, both Tt and Ct values decreased as the enrichment proceeded with significantly 

higher Tt values observed at the 4-h enrichment point (P < 0.05). Similar to ground beef testing, 

qPCR (Ct approximately 30 cycles) required additional 40 min to generate positive results 

compared to LAMP (Tt around 20 min). 

Discussion 
 

The three LAMP assays (stx1-LAMP, stx2-LAMP, and eae-LAMP) developed in the 

present study were rapid (11-45 min), specific (100% inclusivity and 100% exclusivity among 90 

strains tested), sensitive (1-20 CFU/reaction in pure culture and 103-104 CFU/g in spiked ground 

beef), and accurate (R2= 0.904-0.997). With 6-8 h of enrichment, the assays accurately detected 

two low levels (1-2 and 10-20 CFU/25 g) of STEC in ground beef samples. In human stool 

specimen, the assays also consistently detected STEC spiked at 103 or 104 CFU/0.5 g stool after 

4 h enrichment. To our knowledge, this is the first study applying the novel LAMP NAAT 

technology to detect STEC in food and clinical samples by targeting both stx and eae. Previously, 

LAMP assays have been developed for the detection of generic (Hill et al., 2008) and pathogenic 

E. coli, including enteroaggregative E. coli (Yokoyama et al., 2010), enteroinvasive E. coli (Song 

et al., 2005), enterotoxigenic E. coli (Yano et al., 2007), STEC (Hara-Kudo et al., 2007; 

Kouguchi et al., 2010; Maruyama et al., 2003), and more specifically E. coli O157:H7 (Wang et 

al., 2009; Zhao et al., 2010; Zhu et al., 2009). 



 

54 
 

 

TABLE 3.4. Comparison of effect of enrichment time on LAMP or qPCR assays in ground beef samples spiked with low levels (1-2 
CFU and 10-20 CFU/25 g) of individual STEC strains of seven serogroups 
 

Geneb Average LAMP Tt (min) after enrichment ofa Average qPCR Ct (cycles) after enrichment ofa 
6 h 8 h 10 h 12 h 24 h 6 h 8 h 10 h 12 h 24 h 

stx1-l 20.5 ± 4.3A 17.0 ± 3.5AB 15.8 ± 3.1B 15.9 ± 2.7B 16.1 ± 3.3B 37.4 ± 2.2A 32.5 ± 3.3B 29.4 ± 2.2B 30.2 ± 1.9B 30.5 ± 3.3B 
stx2-l 28.2 ± 3.3A 22.4 ± 0.8B 20.4 ± 0.6B 20.3 ± 0.3B 20.5 ± 1.1B 37.7 ± 1.5A 30.1 ± 3.4B 28.4 ± 1.6B 29.4 ± 1.4B 29.0 ± 2.6B 
eae-l 27.7 ± 12.4A 19.6 ± 4.8B 18.8 ± 4.2B 18.6 ± 4.0B 18.9 ± 4.2B 34.7 ± 2.2A 28.3 ± 2.9B 26.1 ± 2.0B 27.3 ± 2.1B 27.1 ± 2.6B 
stx1-h 22.0 ± 7.7A 15.9 ± 3.4B 15.1 ± 3.4B 15.1 ± 3.0B 15.2 ± 2.8B 36.0 ± 3.5A 28.9 ± 3.6B 26.4 ± 3.5B 27.2 ± 2.8B 26.2 ± 3.4B 
stx2-h 23.4 ± 0.6A 19.4 ± 0.4B 18.5 ± 0.6B 19.1 ± 0.7B 19.2 ± 0.7B 35.4 ± 2.3A 27.8 ± 3.9B 25.9 ± 3.0B 26.8 ± 2.1B 26.1 ± 3.0B 
eae-h 23.2 ± 7.1A 18.5 ± 4.2AB 18.0 ± 4.1AB 17.2 ± 4.0B 17.6 ± 4.0AB 31.8 ± 4.4A 26.0 ± 2.8B 24.0 ± 3.0B 24.4 ± 3.3B 23.7 ± 3.4B 

a None of the 4-h enrichment samples tested positive by either LAMP or qPCR. After 6 h enrichment, one out of six stx1-positive 
strains were negative for LAMP whereas two were negative for qPCR. In each row within LAMP or qPCR, Tt or Ct values followed 
by different upper case letters are statistically significant (P < 0.05). 
b l and h means low inoculation level (1-2 CFU/25 g) and high inoculation level (10-20 CFU/25 g), respectively. 
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TABLE 3.5. Comparison of effect of enrichment time on LAMP or qPCR assays in human stool specimen spiked with 103 and 104 
CFU/0.5 g of STEC O157 strain EDL933 based on two independent repeats  
 

Cell level 
(CFU/0.5 g) 

Target 
gene 

LAMP Tt (min) after enrichment of qPCR Ct (cycles) after enrichment of 
0 h 4 h 6 h 8 h 0 h 4 h 6 h 8 h 

103 stx1 - 32.0 ± 2.6A 20.9 ± 1.5B 17.3 ± 1.6B - 37.9a 34.1 ± 1.5A 29.1 ± 1.4A 
 stx2 - 33.9 ± 2.3A 23.9 ± 1.1B  21.0 ± 1.3B - - 34.3 ± 1.5A  29.4 ± 1.5A 
 eae - 27.8 ± 2.1A 19.0 ± 2.0B 15.9 ± 1.8B - 37.2a 32.3 ± 1.4A 26.6 ± 1.5A 
104 stx1 - 22.9 ± 0.8A 18.9 ± 0.4B 18.2 ± 0.5B - 34.5 ± 1.4A 31.3 ± 1.5A  30.2 ± 1.4A 
 stx2 - 26.6 ± 1.3A 23.2 ± 0.5AB 21.5 ± 1.3B - 34.5 ± 1.2A 31.2 ± 1.4AB 30.3 ± 1.3B 
 eae 26.9a 19.8 ± 3.0A 17.5 ± 1.4A 17.0 ± 1.1A - 33.5 ± 1.8A 29.7 ± 1.5A 28.8 ± 1.1A 

a only one repeat generate positive result. In each row within LAMP or qPCR, Tt or Ct values followed by different upper case letters 
are statistically significant (P < 0.05). 
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With 35 min to 1 h of reaction time, these LAMP assays were capable of detecting between 0.7 

and 100 CFU of E. coli per reaction, 10-100 fold more sensitive than conventional PCR (Hara-

Kudo et al., 2007; Hill et al., 2008; Kouguchi et al., 2010; Song et al., 2005; Wang et al., 2009; 

Yokoyama et al., 2010; Zhu et al., 2009). The three LAMP assays developed here fell within 

these detection ranges in terms of speed and sensitivity. Numerous other studies also reported the 

superior sensitivity of LAMP in comparison with PCR (Chen et al., 2011; Han and Ge, 2008; 

Han et al., 2011); however, few comparisons were made between LAMP and qPCR. Similar to 

findings of the present study, a recent study on LAMP detection of Salmonella also reported 

comparable sensitivities between LAMP and qPCR (Chen et al., 2011). It is noteworthy that the 

LAMP assays reported here were markedly faster than qPCR assays developed by USDA 

scientists (Fratamico et al., 2011) by at least 30 min, therefore significantly shortening the total 

assay time. 

Among the three target genes, stx1 does not possess sequence heterogeneity, but multiple 

distinct variants of either stx2 or eae have been identified (Gyles, 2007; Zhang et al., 2002). In 

this study, sequence alignments of several Stx2 and intimin variants were conducted before 

suitable regions were chosen for LAMP primer design. Consequently, all of the three LAMP 

assays possessed 100% inclusivity and 100% exclusivity among 50 STEC and 40 non-STEC 

strains tested, a specificity similar to that reported previously for LAMP assays targeting stx1 

and stx2 (Hara-Kudo et al., 2007). Noticeably, eae-LAMP showed inferior sensitivity in 

detecting two strains (O26 97-3250 and O111 3215-99) compared to others (Table 3), which 

may be partially explained by sequence variations of the eae gene (Zhang et al., 2002). 

LAMP positive reactions are commonly detected by gel electrophoresis, visual endpoint 

judgment of turbidity or color change, and real-time turbidity/fluorescence analysis (Mori and 
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Notomi, 2009). Through real-time turbidity analysis, the quantitative capability of LAMP has 

been demonstrated previously (Chen and Ge, 2010; Chen et al., 2011; Han and Ge, 2010; Han et 

al., 2011; Mori et al., 2004). Other studies also showed LAMP to be quantitative using 

fluorescence-based platforms (Ahmad et al., 2011; Chen and Ge, 2010; Han and Ge, 2010). In 

the present study, R2 fell between 0.933 and 0.997 for STEC cells ranging from 105 to 102 

CFU/reaction in pure culture and 0.904-0.988 for cells between 107 and 104 CFU/g (105 and 102 

CFU/reaction) in spiked ground beef, suggesting good quantitative capabilities. However, for 

STEC cells lower than 102 CFU/reaction, the quantitative capability of LAMP was poor, 

indicated by much delayed Tt values (Fig.3.1A). Similar findings regarding the poor 

quantification of LAMP at low cell levels were reported previously (Aoi et al., 2006; Francois et 

al., 2011). It is important to note that whenever enrichment was incorporated in the detection 

steps, quantification is out the picture. 

To date, application of LAMP assays for the detection of STEC and E. coli O157:H7 has 

been reported exclusively in food samples (Hara-Kudo et al., 2008a; Hara-Kudo et al., 2007; 

Hara-Kudo et al., 2008b; Ohtsuka et al., 2010; Wang et al., 2009). Only STEC O157 and O26 

strains have been used for inoculation, and the spiked samples were usually enriched overnight 

without characterizing the effects of different enrichment time on the detection outcomes (Hara-

Kudo et al., 2008a; Hara-Kudo et al., 2007; Hara-Kudo et al., 2008b; Ohtsuka et al., 2010; Wang 

et al., 2009). For instance, a recent study reported that 45-50% of liver samples inoculated with 

1-4 CFU/25 g of E. coli O157:H7 strains tested positive by LAMP after overnight enrichment, 

compared to 10-35% detection rate by culture (Ohtsuka et al., 2010). Two earlier studies by the 

same group reported that for ground beef samples inoculated with approximately 10 CFU/25 g of 

E. coli O157 or O26 strains, 100% detection rates were observed after 24 h enrichment (Hara-
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Kudo et al., 2008a; Hara-Kudo et al., 2007), whereas culture methods detected 100% of ground 

beef samples spiked with STEC O157 but only 50-80% of those spiked with STEC O26 (Hara-

Kudo et al., 2008a). In raw milk, a detection limit of 4.1 × 104 CFU/ml of E. coli O157 was 

reported (Wang et al., 2009). 

In the present study, STEC strains of seven major serogroups were used in ground beef 

experiments and STEC O157 EDL933 was also used to spike human stool specimen. The three 

LAMP assays had 103-104 CFU/g detection limits in ground beef, which were comparable to 

previously reported LAMP and qPCR assays (Fratamico et al., 2011; Wang et al., 2009). For the 

ground beef samples spiked with two low levels (1-2 and 10-20 CFU/25 g) of STEC, positive 

detection occurred at 6 h enrichment and consistently thereafter, which were superior than results 

obtained in the liver study (Ohtsuka et al., 2010) mentioned above. We also found LAMP 

performed better than qPCR in terms of positive detection rate and assay speed in spiked ground 

beef. In human stool experiments, consistent detection of samples spiked with 103 and 104 

CFU/0.5 of STEC O157 EDL 933 culture after 4 h enrichment were observed by LAMP in the 

present study. Again, qPCR failed to detect several samples positive for LAMP after 4 h 

enrichment. In general, molecular-based detection methods such as PCR and LAMP are subject 

to various inhibitors present in food and clinical samples. However, LAMP has been confirmed 

previously to be more robust than PCR with regards to tolerance to inhibitors in clinical samples 

and other biological substances (Francois et al., 2011; Kaneko et al., 2007). 

Currently, E. coli O157:H7 is regulated as an adulterant in raw beef in the U.S. The 

growing clinical importance of non-O157 E. coli also warrants the development of rapid, 

sensitive, and specific methods for detection. However, to meet the goal of detecting very low 

levels of these pathogens in food, enrichment is essential (Ge and Meng, 2009). For example, in 
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the newly updated USDA protocol for E. coli O157:H7 and non-O157 STEC detection in ground 

beef and beef trimmings, enrichment is an indispensable step followed by initial screening of 

Shiga toxins and intimins by qPCR and a second screening of O157 and top six STEC 

serogroups by another set of qPCR assays (U.S. Department of Agriculture, 2010). Given the 

rapidity, sensitivity, specificity, and robustness of LAMP assays demonstrated in the present 

study, these assays may effectively serve as serogroup-independent screening of STEC strains in 

ground beef samples, which is to be followed with serogroup-specific tests and virulence 

characterizations to ascertain the food safety and public health relevance of the STEC-positive 

samples. In conclusion, the LAMP assays developed in this study may facilitate rapid and 

reliable identification of STEC contaminations in high-risk food commodities and also facilitate 

prompt diagnosis of STEC infections in clinical laboratories 
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Introduction 
 

Shiga toxin-producing E. coli (STEC) distinguish themselves from other pathogenic E. 

coli by their potential to excrete the Shiga toxin and cause disease ranging from mild diarrhea to 

life-threatening complications such as hemorrhagic uremic syndrome (HUS) and thrombotic 

thrombocytopenic purpura (TTP) (Brooks et al., 2005; Johnson et al., 2006). Among more than 

250 STEC serogroups identified to date (Johnson et al., 2006), STEC O157:H7 is the most 

frequently isolated one in the United States since 1982, and highly associated with bloody 

diarrhea and HUS. Meanwhile, approximately 100 other non-O157 STEC serogroups also 

contribute to the burden of comparable disease and are always involved in foodborne outbreaks 

(Johnson et al., 2006). It is estimated that STEC, including all serogroups, may annually cause 

176,000 illnesses, 2,400 hospitalizations, and 20 deaths in the United States (Elaine Scallan et al., 

2011). STEC strains are mainly carried on by ruminants particularly the cattle, and transferred 

through contaminated food (ground beef, produce, milk, and juice), water, or contact with 

animals and infected person (Johnson et al., 2006). 

Recently, the number of non-O157 STEC infection has been on the rise since it became 

nationally notifiable in 2000, and a ten-fold increase in incidence was recorded in CDC FoodNet 

Report between 2000 and 2010 (0.12 cases per 100,000 to 1 case per 100,000 people). 

Conversely, the incidence of STEC O157:H7 infection has dropped by 44% (3 cases per 100,000 

to 0.9 cases per 100,000 people) over the similar time span (Centers for Disease Control and 

Prevention, 2010). The top six most common non-O157 STEC serogroups (O26, O45, O103, 

O111, O121, O145) account for 71% of non-O157 STEC infection in the U.S., and O111 is the 

second serogroup most frequently linked with HUS after STEC O157 (Brooks et al., 2005). 

Other STEC serogroups may be more prevalent in continental Europe, South America, Australia, 
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and New Zealand (Johnson et al., 2006). For example, since May 2011, an unprecedented large 

outbreak of E. coli O104:H4 in Germany has resulted in a total of 4,075 cases (including 908 

HUS) and 50 deaths as of July 21(WHO, 2011).  

Although current methods like enzyme immunoassay (EIA) and molecular technique 

targeting the common virulent factors (Shiga toxin or the stx, eae, and hlyA genes) (Centers for 

Disease Control and Prevention, 2009)  successfully provide the tool for early STEC detection in 

food matrix or human stool specimen, the isolation and serotyping of pure culture is still critical 

for timely and reliable identification of infection source, which in turn enable the implementation 

of appropriate public health action. However, the effective isolation method for non-O157 STEC 

is still problematic due to their same phenotypic characteristics as generic E. coli (Johnson et al., 

2006). Traditional non-O157 STEC isolation relies on random picking from less selective agar 

followed by serotyping confirmation, leading to low recovery rates in stx-positive samples. A 

recent survey in the U.S. found 65% of labs conducting E. coli testing practice are only culturing 

for O157, so non-O157 strains would not be detected initially (Hoefer et al., 2011). One latest 

strategy for non-O157 STEC strains detection and isolation proposed an additional serotyping 

step before immuno magnetic separation (IMS), therefore, the target bacteria can be selected and 

concentrated before plating on selective agar and the recovery rate is increased (Fratamico et al., 

2011; Perelle et al., 2007).  

For STEC serotyping, two broad categories of assays are available. Previously, it mainly 

uses agglutination reactions between antisera and specific O-antigen; however, the process is 

time consuming and labor intensive, and generally can only be conducted in specialized 

laboratories (Centers for Disease Control and Prevention, 2009). Further, the cross-reaction of 

antisera with multiple O serogroups often occurs (Fratamico et al., 2005). Now rapid, specific, 
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and sensitive nucleic acid amplification tests (NAAT) such as PCR and qPCR have been 

developed to identify main virulent STEC O serogroups (O26, O45, O55, O91, O103, O104, 

O111, O121, O145, and O157) by targeting the wzx and wzy genes (coding for flippase and 

polymerase in O-antigen synthesis), which locate on a 10 kb O-antigen gene cluster fragment 

and are demonstrated to be specific to each O serogroup (D'Souza et al., 2002; DebRoy et al., 

2005; Feng et al., 2005; Fratamico et al., 2003; Fratamico et al., 2005; Perelle et al., 2002; Wang 

et al., 2001; Wang et al., 1998; Wang and Reeves, 1998). Nonetheless, a sophisticated thermal 

cycling instrument is an indispensable requirement of such tests, limiting their wide applicability. 

Recently, a novel NAAT technology termed loop-mediated isothermal amplification 

(LAMP) has attracted great attentions as a rapid, accurate, and cost-effective pathogen detection 

method in both food testing and clinical diagnostics (Mori et al., 2001; Notomi et al., 2000). 

LAMP employs four to six specially designed primers and a strand-displacing Bst DNA 

polymerase to amplify up to 109 target DNA copies under isothermal conditions (60-65oC) 

within an hour (Mori et al., 2001). Since it is isothermal, LAMP can be performed in much 

simpler instruments such as a heater or water bath. To date, a few of LAMP assays targeting the 

rfbE gene (encoding perosamine synthetase) specific for the O157 antigen of STEC O157 have 

been developed (Wang et al., 2009; Zhao et al., 2010; Zhu et al., 2009). However, to our 

knowledge, there are no LAMP assays currently available for the top non-O157 STEC 

serogroups.  

The objectives of this study were to develop rapid and reliable LAMP detection assays 

for 7 main STEC O-serogroup (O26, O45, O103, O111, O121, O145, and O157) typing by 

targeting the wzx or wzy genes, and evaluate the assay performance with ground beef 

experimentally contaminated with low levels of STEC strains of these seven major serogroups.   
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Materials and Methods 
 

Bacterial Strains and Culture Conditions. Seven STEC clinical or food strains (Table 

4.1) respectively representing serogroups O26, O45, O103, O111, O121, O145, and O157 were 

used for sensitivity testing and ground beef experiments. An additional 84 E. coli strains 

belonging to 19 different O serogroups and 29 non-E. coli strains (Table 4.1) were used for 

specificity testing. The strain serogroup information was provided by the donor institute. STEC 

and other Enterobacteriaceae strains were cultured at 35oC overnight on trypticase soy agar or 

broth (TSA or TSB; BD Diagnostic Systems, Sparks, MD). Non-Enterobacteriaceae strains were 

grown on blood agar except for Vibrio strains for which TSA supplemented with 2% NaCl was 

used. Campylobacter strains were grown under microaerophilic conditions (85% N2, 10% CO2, 

and 5% O2).  

LAMP Primers and Reaction Conditions. The specific wzx gene for O103 and O145 

(GenBank accession numbers AY532664 and AY647260), and wzy genes for O26, O45, O111, 

O121, and O157 (GenBank accession numbers AF529080, AY771223, AF078736, AY208937 

and AF061251, respectively) were selected as targets for designing LAMP primers (Table 4.2). 

A set of six primers, two outer (F3 and B3), two inner (forward inner primer [FIP] and backward 

inner primer [BIP]), and one or two loop (LF and LB), which recognize eight distinct regions of 

the target gene sequence, were designed for each target using PrimerExplorer V4 (Fujitsu 

Limited, Japan). The primers were synthesized by Integrated DNA Technologies (Coralville, 

IA). 

Following the optimization of prototype LAMP condition recommended by the 

manufacturer (Eiken Chemical Co., Ltd., Tokyo, Japan), the final LAMP reaction mix (25 µl) for 
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TABLE 4.1. Bacterial strains used in this study to evaluate specificity and sensitivity of LAMP assays  
 
Strain groupa Serotype Strain IDb Origin Sourcec 
STEC (n = 80) O15:H27 88-1509 Human The STEC Center 
 O26 MT#10 Human The STEC Center 
  VP30 Human The STEC Center 
 O26:NM TB352A Human The STEC Center 
  DEC9F Human The STEC Center 
 O26:H2 TB285A Human The STEC Center 
 O26:H11 97-3250b Human The STEC Center 
  3047-86 Human The STEC Center 
  EK29 Human The STEC Center 
  H19 Human The STEC Center 
  DEC10C Human The STEC Center 
  EH1534 Human BEI Resources 
 O45:NM DA-21 Human The STEC Center 
  5431-72 Human The STEC Center 
  4309-65 Human The STEC Center 
  D88-28058 Cow The STEC Center 
  B8026-C1 Cow The STEC Center 
  2566-58 Pig The STEC Center 
 O45:H2 MI01-88b Human The STEC Center 
  MI03-19 Human The STEC Center 
  MI05-14 Human The STEC Center 
  DEC11C Human The STEC Center 
 O55:H7 5905 Food (meat) The STEC Center 
 O91:H21 B2F1 Human BEI Resources 
  H414-36/89 Human BEI Resources 
 O103:NM PT91-24 Human The STEC Center 
 O103:H2 MT#80b Human The STEC Center 
  87-2931 Human The STEC Center 
  EK30 Human The STEC Center 
  107-226 Human The STEC Center 
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Table 4.1 Cont.   
RW1372 

 
Cow 

 
The STEC Center 

 O103:H6 TB154A Human The STEC Center 
 O103:H25 8419 Human The STEC Center 
  MT#82 Human The STEC Center 
 O104:H21 G5506 Human The STEC Center 
 O111 TB226A Human The STEC Center 
  412/55 Human The STEC Center 
  ED-31 Human The STEC Center 
  C412 Cow The STEC Center 
 O111:NM 3007-85 Human The STEC Center 
  DEC8C Cow The STEC Center 
 O111:H2 RD8 Human The STEC Center 
 O111:H8 3215-99b Human The STEC Center 
  CL-37 Human The STEC Center 
  EK35 Human The STEC Center 
 O111:H11 0201 9611 Human The STEC Center 
 O121 MT#18 Human The STEC Center 
 O121:NM DA-1 Human The STEC Center 
  DA-69 Human The STEC Center 
 O121:H7 87-2914 Human The STEC Center 
 O121:H19 DA-5 Human The STEC Center 
  MT#2b Human The STEC Center 
  MT#11 Human The STEC Center 
  F6173 Human The STEC Center 
  3-524 Human The STEC Center 
 O145 EH1533 Human BEI Resources 
  TB269C Human The STEC Center 
  0 2-3422 Rabbit The STEC Center 
 O145:NM GS G5578620b Human The STEC Center 
  MT#66 Human The STEC Center 
  BCL73 Cow The STEC Center 
  IH 16 Human The STEC Center 
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Table 4.1 Cont.  
O145:H28 

 
4865/96 

 
Human 

 
The STEC Center 

 O157:NM 493/89 Human The STEC Center 
 O157:H7 86-24 Human The STEC Center 
  93-111 Human The STEC Center 
  A Human BEI Resources 
  BDMS 770 Human BEI Resources 
  CoGen002096 Food (spinach) BEI Resources 
  E32511 Human The STEC Center 
  EDL931 Human BEI Resources 
  EDL932 Human BEI Resources 
  EDL933b Food (hamburger) BEI Resources 
  G5101 Human The STEC Center 
  MDL 3562 Human BEI Resources 
  MDL 4444 Human BEI Resources 
  MDL 4445 Human BEI Resources 
  MDL 4572 Human BEI Resources 
  OK-1 Human The STEC Center 
  RIMD 509952 Human BEI Resources 
Non-STEC (n = 40)     
E. coli (n = 11)     
  EAEC O3:K2a,2b(L):H2 NCDC U14-41 Human BEI Resources 
  EHEC O55:H7 DEC5D Human The STEC Center 
 O157:NM 94-G7771 Human BEI Resources 
  EIEC O28a,28c:K73(B18):NM NCDC 909-51 Human BEI Resources 
 O29:NM 1885-77 Human BEI Resources 
  EPEC O126:K71(B16):NM ATCC 12807 Human BEI Resources 
  ETEC O25:K98:NM E2539-C1 Human BEI Resources 
 O78:H11 H10407 Human BEI Resources 
  UPEC O6:K2:H1 CFT073 Human BEI Resources 
  Other E. coli O9 HS Human BEI Resources 
 OR:H48 K-12 Laboratory BEI Resources 
Salmonella (n=11) Anatum NR-4291 Food (tomato) BEI Resources 
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Table 4.1 Cont.  
Braenderup 

 
10 N 

 
Food (raw chicken) 

 
FDA CFSAN 

 Enteritidis SE 5 Food (lasagna) FDA CFSAN 
 Hartford 2807 H Food (raw oyster) FDA CFSAN 
 Heidelberg 1364 H Food (raw oyster) FDA CFSAN 
 Infantis 1102 H Food (meat meal) FDA CFSAN 
 Javiana 2080 H Food (frog legs) FDA CFSAN 
 Newport 1240 H Food (dried yeast) FDA CFSAN 
 Saintpaul 1358 H Food (mixed vegetables) FDA CFSAN 
 Stanley 1243 H Food (bone meal) FDA CFSAN 
 Typhimurium CIP 60.62 Laboratory BEI Resources 
Shigella (n=7)     
  boydii  NCTC 12985 Unknown BEI Resources 
  dysenteriae 1 NCTC 4837 Human BEI Resources 
  flexneri 2a 24570 Unknown BEI Resources 
  2457T Laboratory BEI Resources 
 2b ATCC 12022 Unknown Lab collection 
  sonnei  NCTC 12984 Human BEI Resources 
  ATCC 25931 Human Lab collection 
Vibrio (n=6)     
  cholerae O1 ATCC 14035 unknown Lab collection 
  harveyi  ATCC 14126 Animal (dead 

amphipod) 
Lab collection 

  fluvialis  ATCC 33809 Human Lab collection 
  mimicus  ATCC 33653 Human Lab collection 
  parahaemolyticus  ATCC 33847 Human Lab collection 
  vulnificus  ATCC 27562 Human Lab collection 
Others (n = 5)     
Campylobacter jejuni  ATCC 33560 Animal (bovine feces) Lab collection 
Citrobacter freundii  ATCC 8090 Unknown Lab collection 
Enterobacter aerogenes  ATCC 13048 Human Lab collection 
Listeria monocytogenes 4b ATCC 13932 Human Lab collection 
Staphylococcus aureus  ATCC 29213 Human Lab collection 
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Table 4.1 Cont. 
a Abbreviations are as following: STEC-Shiga toxin-producing Escherichia coli, EAEC-Enteroaggregative E. coli, EHEC-
Enterohemorrhagic E. coli, EIEC-Enteroinvasive E. coli, EPEC-Enteropathogenic E. coli, ETEC-Enterotoxigenic E. coli, and UPEC-
Uropathogenic E. coli. 
b The seven labeled strains were used for both specificity and sensitivity evaluation of LAMP assays whereas others were used for the 
specificity test alone. 
c The STEC Center is based at Michigan State University, East Lansing, MI. BEI Resources is located in Manassas, VA. FDA CFSAN 
stands for the U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD. Lab collection 
refers to our strain collection maintained at Louisiana State University, Baton Rouge, LA 
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TABLE 4.2. LAMP primers used in this study to detect STEC serogroups by targeting 7 genes (O26-wzy, O45-wzy, O103-wzx, O111-
wzy, O121-wzy, O145-wzx, O157-wzy ) 
 
Target Primer name Sequence (5′-3′) Positiona 

O26 O26-F3 GACTATGAAGCGTATGTTGAT 136-156 

O26-B3 TCCTGATTTGAACAATGTCAAT 352-373 
O26-FIP ACCGCCTAAATACTTAACACCATAA-TTAATGTCAATGAACTTTATGCC 207-231, 161-183 
O26-BIP TTCCTTGGGACCACATTCCT-ACATGTAAAGCAGCAAACC 265-284, 319-337 
O26-LF ACCAGCGATAACCAATCTC 184-202 
O26-LB TACAATACAGTAAGTATACAGCATT 293-317 

O45 O45-F3 AATGTCCCCAGGGTTTGT 15-32 
O45-B3 TTTAGTCGCTCGCCAAGA 217-234 
O45-FIP AGCGGGCTAATATTAGTAGTCACTC-GTATGCTTCAATTTGGCTGT 77-101, 33-52 
O45-BIP ACTCTGGGTTTGATTTTTTCACTTC-ATAATTTCATCCAGACGAACG 139-163, 192-212 
O45-LB TTATTACTCCTGGCAGTATTAATCG 167-191 

O103 O103-F3 ACTCAGTGGTGTAGTAACATG 33-53 
O103-B3 TCACCTTGATTTTCTGCTGA 205-224 
O103-FIP ATTTGCTATTCCAATTGGACCAGTA-CTTTAGACTAATTTGTGGCCTTC 102-126, 54-76 
O103-BIP TTGGGACAATTGCAAAATTTTGTGG-ATCTATTAACTCCTTGTGAAACTTG 127-151, 178-202 
O103-LF AATTGCAACAACTTTTGAAATAA 77-99 
O103-LB CCTTTATAAATGGATTCATTTCATC 152-176 

O111 O111-F3 AAGGCGTAACTTTTTTTGAAC 623-643 
O111-B3 TCATGAGGGTCATTAGGAATT 786-806 
O111-FIP TCACCAAGCTGTGAAACCAAA-CTACAGCAAGTAATATTGAACGT 684-704, 644-666 
O111-BIP TCCATGGTATGGGGACATTAAATTT-TGATGGAAGTCCATATAACGT 713-737, 763-783 
O111-LB CTTAAATAACGGCGGACAAT 738-757 

O121 O121-F3 GCTCAGCTTTTATCTTGTTCAA 864-885 
O121-B3 ATAGGCTCCCAACCATCC 1087-1104 
O121-FIP ACGCAAAAAGTATGGATTCATACCT-GATATAACAGAACCGACTTGG 955-979, 895-915 
O121-BIP TGTTGCTGGTTCCTTATTATGTAGT-AAAAGCAAGCCAAAACACTC 995-1019, 1047-1066 
O121-LF TAAAGCCATCCAACCACGC 929-947 

O145 O145-F3 TTTGTAAGACAAGGTGTATGG 433-453 
O145-B3 GCATTGGTACAGACAGCTTTA 632-652 
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Table 4.1 Cont. 
O145-FIP CACAGTACCACCAAACCAAAAAATA-TTGGTTAGCTATAGCTGTGA 516-540, 456-475 
O145-BIP AGTGTGCTTGGAGTGGCTTA-CAATCCCAGTTTGTAATATCGC 547-566, 590-611 
O145-LF TTCTTAAGTTCGGATACACTAGCA 476-499 

O157 O157-F3 TCCCTTTAGGGATATATATACCTT 935-958 
O157-B3 ATAACTGATATTTTCATTTCGTGAT 1146-1170 

 O157-FIP TTCCCAGCCACTAAGTATTGCAATA-TGAAAAAAACCCATAGCTCGA 1034-1058, 977-997 
 O157-FIP TGCATCGGCCTTCTTTTTTGG-AACGTATCATGCAATAAGATCA 1059-1079, 1115-1136 
 O157-LF ATAATGATATATGAATAGAATGCGC 1004-1028 
 O157-LB TCCTTTTCTCTCCGTATTGAT 1080-1100 
a The positions are numbered based on the coding sequences of STEC O-antigen specific O26-wzy, O45-wzy,O103-wzx, O111-wzy, 
O121-wzy, O145-wzx, and O157-wzy genes with GenBank accession numbers AF529080, AY771223, AY532664, AF078736, 
AY208937, AY647260 and AF061251, respectively.



 

76 
 

all seven targets consisted of 1× ThermoPol reaction buffer (New England Biolabs, Ipswich, 

MA), 6 mM MgSO4, 1.2 mM each deoxynucleoside triphosphate (dNTP), 0.1 μM F3 and B3, 1.8 

μM FIP and BIP, 1 μM LF and LB, 10 U of Bst DNA polymerase (New England Biolabs), and 2 

µl of DNA template. The LAMP reactions were carried out at 63oC for 1 h for O157 STEC, or at 

65oC for the other six STEC serogroups. Then it was terminated at 80oC for 5 min in an LA-

320C real-time turbidimeter (Eiken Chemical Co., Ltd.), which acquired turbidity readings at 

650 nm every 6 s. The time threshold (Tt; min) values were determined when the turbidity 

increase measurements (the differential value of the moving average of turbidity) exceeded a 

threshold of 0.1.  

qPCR Assays. In comparison, qPCR assays designed in one recently published study 

targeting O-serogroup determining genes were also carried out with minor modification. The 

qPCR reagent mix (25 µl) contained 1× PCR buffer, 0.2 mM each dNTP, 4 mM MgCl2, 0.25 µM 

each primer, 0.1875 µM probe (Integrated DNA Technologies), 1.5 U of GoTaq Hot Start 

Polymerase (Promega, Madison, WI), and 2 µl of DNA template. The assays were conducted 

using 40 cycles of denaturation at 94oC for 20 s, annealing at 60oC for 30 s, and extension at 

72oC for 50 s in a SmartCycler II System (Cepheid, Sunnyvale, CA). Fluorescence readings were 

acquired using the FAM channel (excitation at 450-495 nm and detection at 510-527 nm). The 

cycle threshold (Ct; cycle) values were obtained when the fluorescence readings crossed a 

threshold of 30 units. 

LAMP Specificity and Sensitivity. A total of 120 bacterial strains (Table 4.1) were used 

to determine LAMP specificity. DNA templates were prepared by heating at 95oC for 10 min as 
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described previously. Aliquots (2 µl) of each DNA template were subjected to LAMP 

amplification. Specificity testing was repeated twice for each strain. 

LAMP sensitivity (limits of detection) was determined by using 10-fold serial dilutions of 

seven individual STEC strains (Table 4.1). Briefly, 3-5 single colonies of each strain were 

inoculated separately into 8 ml of fresh TSB and incubated at 35oC for 16 h to reach stationary 

phase (optical density at 600 nm [OD600] = 1, approximately 109 CFU/ml). The cultures were 10-

fold serially diluted in 0.1% peptone water and aliquots (500 µl) of each dilution were used to 

prepare DNA templates similarly by heating. The exact cell numbers were determined by 

standard plate counting. Aliquots (2 µl) of the sensitivity templates were tested by LAMP and 

qPCR, and repeated five times each. 

LAMP Evaluation in Ground Beef. Ground beef (23% fat, 25 g) samples were obtained 

from a local grocery store and analyzed within 2 h of collection. To determine LAMP sensitivity 

in ground beef, each test sample (25 g) was inoculated with 2 ml of 10-fold serially diluted 

individual overnight STEC cultures, resulting in spiking levels between 109 and 105 CFU/25 g. 

Another sample was included as the uninoculated control. The samples were homogenized with 

225 ml of buffered peptone water (BPW; BD Diagnostic Systems) in a food stomacher (Model 

400; Tekmar Company, Cincinnati, OH) for 1 min. Aliquots (1 ml) of the homogenates were 

centrifuged at 16,000 × g for 3 min, and pellets were suspended in 100 µl of PrepMan Ultra 

Sample Preparation Reagent (Applied Biosystems, Foster City, CA). The mixtures were heated 

at 95oC for 10 min and centrifuged again at 12,000 × g for 2 min. The supernatants (2 µl) were 

used for both LAMP and qPCR, and repeated three times each. Aerobic plate counts were 

performed for the uninoculated control by standard pour plate method. 
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Additionally, the capability of LAMP to detect low levels of seven STEC strains in 

ground beef was evaluated. For this application, ground beef samples were spiked with 

individual STEC cultures at two levels: 1-2 and 10-20 CFU/25 g. Another sample was included 

as the uninoculated control. The samples were homogenized with 225 ml of pre-warmed BPW 

supplemented with 8 mg/l vancomycin (Sigma-Aldrich) in the food stomacher for 1 min, 

followed by incubation at 42oC for up to 24 h. Aliquots (1 ml) of the enrichment broth were 

removed at 4, 6, 8, 10, 12, and 24 h and processed similarly by PrepMan Ultra Sample 

Preparation Reagents. Two microliters of the sample DNA extracts were subjected to both 

LAMP and qPCR (in single target format). This experiment was independently repeated twice. 

Data Analysis. Means and standard deviations of Tt for LAMP or Ct for qPCR were 

calculated by Microsoft Excel (Seattle, WA). The detection limits (CFU/reaction in pure culture 

or CFU/g in spiked ground beef) were presented as the lowest numbers of STEC cells that could 

be detected by the assays. In spiked ground beef, CFU/reaction was calculated by using CFU/g × 

25 g ÷ 250 × 10 × 2 × 10 - 3, i.e., CFU/g × 2 × 10-3. Standard curves to quantify STEC in pure 

culture and spiked ground beef were generated by plotting Tt values against log CFU/reaction or 

log CFU/g, respectively, and linear regression was calculated using Microsoft Excel. 

Quantitative capabilities of the LAMP assays were derived based on the coefficient of 

determination (R2) values from the standard curves. 

In spiked ground beef experiments, Tt and Ct values sorted by target gene, spiking level, 

and enrichment time were compared by using the analysis of variance (ANOVA; SAS for 

Windows, version 9; SAS Institute Inc., Cary, NC). Differences between the mean values were 

considered significant when P < 0.05  
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Results 
 

LAMP Specificity. Among 120 bacterial strains (Table 4.1) used to evaluate the seven 

LAMP assays specificity, no false-positive or false-negative results were observed after 

comparing LAMP results with known strain serogroup characteristics, indicating 100% inclusive 

and exclusive accuracy (Table 4.3). Using O26-LAMP assay, the Tt value for 11 STEC strains 

belonging to O26 serogroup ranged from 15.6 to 20.4 min, with an average of 16.9 ± 1.4 min. 

Similarly, the average Tt values determined by the other six O serogroup specific LAMP assays 

for 10 O45-STEC, 9 O103-STEC, 11 O111-STEC, 9 O121-STEC, 8 O145-STEC, and 18 O157-

E. coli strains (17 O157 STEC and 1 O157 EHEC) were 19.8 ± 0.8 min, 19.8 ± 1.2 min, 21.7 ± 

0.9 min, 19.5 ± 1.5 min, 17.5 ± 1.3 min, and 16.7 ± 1.3 min, respectively. In contrast, no Tt 

values were obtained from either LAMP assay for the other 43 strains consisting of 15 E. coli 

from 12 other different O serogroups and 29 non-E. coli strains (Table 4.1), suggesting negative 

LAMP results.  

TABLE 4.3. Inclusive and exclusive studies of O serogroup specific LAMP assays 
 

O serogroups Inclusivea Exclusiveb 
  Other E. coli Microorganismsc 

O157 18/18 0/73 0/29 
O26 11/11 0/80 0/29 
O45 10/10 0/81 0/29 
O103 9/9 0/82 0/29 
O111 11/11 0/80 0/29 
O121 9/9 0/82 0/29 
O145 8/8 0/83 0/29 

a Inclusive studies are listed as number of positive results/number of inclusive strains tested 
b Exclusive studies are listed as number of false positive results/number of exclusive strains 
tested 
c Microorganisms include Shigella, Salmonella, Vibrio, Staphylococcus, Campylobacter, Listeria, 
Citrobacter and Enterobacter 
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LAMP Sensitivity and Quantitative Capability. Table 4.4 summarized LAMP 

sensitivity when testing 10-fold serial dilutions of individual STEC strains of seven serogroups 

in five repeats. For the pure culture templates, all seven O-antigen specific LAMP assays were 

cable to consistently detect down to 101 CFU/reaction in all tests. Further, O45-based LAMP 

assay had a even better detection limit of 1.6 CFU/reaction, and in two out of five repeats, O26-

based LAMP can detect several targets at 10-fold lower template concentration (i.e., 1 

CFU/reaction). It is noteworthy that O111-based LAMP assay proceeded slightly slower than the 

other six LAMP assays. When testing the pure culture templates ranging from 105 to 101 

CFU/reaction level, the average Tt value for O111-based LAMP assay fell between 25.7 min and 

41.8 min, which was approximately 5 minutes later than other assays. In comparison with 

corresponding qPCR assay, the similar detection limit (100-101 CFU/reaction) was achieved for 

each serogroup testing. 

TABLE 4.4. Sensitivity of LAMP and qPCR assays when testing 10-fold serial dilutions of 
individual STEC strains of seven serogroups in pure culture and spiked ground beef 
 

Strain ID Serotype Detection limit of LAMP Detection limit of qPCR 

Culture 
(CFU/R) 

Ground beef 
(CFU/g) 

Culture 
(CFU/R) 

Ground beef 
(CFU/g) 

EDL933 O157:H7 16 6.5 × 103-104 a 16 6.5 × 104 
97-3250 O26:H11 1-10 a 4 × 104 10 4 × 104 
MI01-88 O45:H2 1.6 7 × 103 1.6 7 × 103 
MT#80 O103:H2 16 6.5 × 103 16 6.5 × 103 
3215-99 O111:H8 11 4 × 104 11 4 × 104 
MT#2 O121:H19 18 9 × 103 1.8 9 × 103 

GS G5578620 O145:NM 17 4 × 103-104 b 17 4 × 104 
a Two out of five repeats were positive for the lower detection limit. b Three out of five repeats 
were positive for the lower detection limit. In ground beef testing, CFU/reaction equals to CFU/g 
× 2 × 10-3.  
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Fig 4.1. shows a typical LAMP amplification graph and standard curve generated when 

10-fold serially diluted STEC O26 strain 97-3250 was tested by O26-based LAMP in pure 

culture format. The average Tt value based on five repeats ranged from 20.9 min to 35.2 min for 

cell concentrations between 1 × 105 and 10 CFU/reaction. Within this template range, the 

quantification equation was determined to be y = -3.556 x + 37.636 with the coefficient of 

determination (R2) at 0.964. Similar quantification equations were obtained for other 

assay/serogroup combinations in its detection limit range, and the overall R2 values ranged 

between 0.945 and 0.993 (data not shown, see appendix). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4.1. A typical LAMP amplification graph (A) and a standard curve generated for pure 
culture sensitivity testing of STEC O26 strain 97-3250 by O26-LAMP (B). Samples 1-6 
correspond to 10-fold serial dilutions of E. coli O26:H11 97-3250 cells ranging from 1 × 105 to 1 
CFU/reaction; sample 7 is water. The standard curve was drawn based on five independent 
repeats. 

LAMP sensitivity result in spiked ground beef is also summarized in Table 4.4. For the 

uninoculated control sample, APC averaged 2 × 105 CFU/g and all seven target genes tested 
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negative by LAMP and qPCR. Among 7 O serogroup specific LAMP assays, three assays (O45, 

O103, and O121-based) consistently detected their targets in five repeats at the 103 CFU/g level, 

equivalent to 13-18 CFU/reaction, whereas two assays (O145 and O157-based) only partially 

recognized their target genes at this level, and another two assays (O26 and O111-based) 

required 10-fold higher cell concentrations (i.e., 104 CFU/g) to achieve positive result. In 

comparison, qPCR assays had detection limits of 104 CFU/g for O26, O111, O145 and O157 

serogroups, and 103 CFU/g for the other three ones, including O45, O103, and O121. Similar to 

pure culture testing, quantification equations were generated based on ground beef sensitivity 

data and R2 ranged between 0.932 and 0.982 in their detection range (data not shown, see 

appendix). 

Rapid Detection of Low Levels of STEC in Ground Beef. Table 4.5 shows LAMP and 

qPCR results for ground beef samples inoculated with low level (1-2 and 10-20 CFU/25 g) of 

individual STEC strains of seven serogroups after various enrichment periods. Fig.4.2 shows a 

typical LAMP amplification graph generated for E. coli O26:H11 strain 97-3250 by O26-based 

LAMP in ground beef enrichment samples. All of the samples tested negative after 4 h 

enrichment by either LAMP or qPCR. Positive LAMP results appeared at 6 h with significantly 

larger Tt values (P < 0.05), and for samples enriched for 8, 10, 12, and 24 h, stable and lower Tt 

values were observed with no significant difference among different enrichment periods (P > 

0.05) (Table 4.5). A similar trend of detection was observed for qPCR with 6 h enrichment being 

the starting point for positive results. However, qPCR results were presented by cycles, which 

were approximately 2 min/cycle. Therefore, additional 25 to 40 minutes of amplification time 

were needed for qPCR with the same sample. 
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FIGURE 4.2. A typical LAMP amplification graph generated when testing ground beef samples 
spiked with two low levels of individual STEC strains of seven serogroups after various 
enrichment periods (4, 6, 8, 10, 12, and 24 h). In this graph, the ground beef samples were spiked 
with 10 CFU of STEC O26 strain 97-3250 and the enrichment samples were tested by O26-
LAMP. 
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TABLE 4.5. Comparison of effect of enrichment time on LAMP or qPCR assays in ground beef samples spiked with low levels (1-2 
and 10-20 CFU/25 g) of individual STEC strains of seven serogroups 
 

Target  Level 
CFU/25g 

LAMP Tt (min) after enrichment ofa qPCR Ct (cycles) after enrichment ofa 
6 h 8 h 10 h 12 h 24 h 6 h 8 h 10 h 12 h 24 h 

O157 1-2 34.2 ± 0.1A 26.7 ± 0B 21.2 ± 3.2C 20.7 ± 3.5C 23.5 ± 0.3BC 37.2 ± 0.8A 30.8 ± 1.1B 27.1 ± 2.4B 26.1 ± 4B 29 ± 1.8B 
10-20 31.3 ± 2A 20.4 ± 1.9B 17.9 ± 3.3B 17.9 ± 3.3B 20.9 ± 1.1B 33.4 ± 2.4A 27.2 ± 3.3AB 24.4 ± 4.5AB 23.6 ± 5.5B 25.5 ± 1.9AB 

O26 1-2 29.3 ± 3.3A 18.9 ± 0.5B 17.4 ± 0.9B 17.7 ± 1.3B 18.5 ± 0.3B 34.8 ± 0.7A 27.4 ± 1.1B 23.8 ± 3.4B 24.2 ± 3B 25.5 ± 1.1B 
10-20 23.6 ± 0.9A 18 ± 1.4B 17 ± 1.5B 16.9 ± 1.1B 17.7 ± 0.7B 33 ± 1A 25.4 ± 2.9AB 22.5 ± 3.8B 22.2 ± 4.3B 23.8 ± 2.7B 

O45 1-2 36.6 ± 0.2A 26.2 ± 0.2B 23.5 ± 0.1C 22.6 ± 0.1C 24.5 ± 2.1BC 35.2 ± 1.1A 28 ± 2.3B 23.2 ± 2.6B 23.2 ± 3.3B 24.8 ± 2.3B 
10-20 30.6 ± 0.9A 24.4 ± 0.1B 21.2 ± 1C 21 ± 0.6C 22.6 ± 1.4BC 31.2 ± 0.9A 24.3 ± 2.2B 19.8 ± 2B 19.9 ± 2.8B 22 ± 0.2B 

O103 1-2 31.7 ± 7.6A 20.6 ± 1.3B 18.6 ± 0B  18.5 ± 0.8B 19.2 ± 0.3B 33.6 ± 3.5A 25.8 ± 2.5B  21 ± 2.1B 21.3 ± 3.0B 22.1 ± 0.4B 
10-20 29.2 ± 8.7A 20.1 ± 1.6AB 17.7 ± 0B 17.5 ± 1B 17.9 ± 0.3B 32.1 ± 4.1A 24.7 ± 3.8B 19.3 ± 1.6B 18.9 ± 2.6B 19.6 ± 0.3B 

O111 1-2 30.1 ± 1.9A 25.7 ± 0.8B 24.4 ± 0.1B 24.1 ± 0.9B 26.3 ± 1.5B 33.9 ± 0.3A 25.6 ± 0B 21.8 ± 2.2B 22.5 ± 4.5B 24.9 ± 0.6B 
10-20 28.7 ± 1.3A 24.2 ± 0.9B 22.9 ± 0.1B 23.2 ± 0.5B 25 ± 2.1B 31.6 ± 0.4A 24.2 ± 0.7B 20.4 ± 1.8B 21.1 ± 3.8B 23.2 ± 1.9B 

O121 1-2 27.6 ± 0.6A 21.2 ± 0.6BC 19.2 ± 0.4C 19 ± 0.7C 21.7 ± 1.6B 32.5 ± 0.6A 24.8 ± 0.4B 19.6 ± 0.1C 19.4 ± 0.1C 24.2 ± 0.1B 
10-20 25.4 ± 1.6A 20.7 ± 0.5BC 18.8 ± 0.7C 18.7 ± 1.3C 21.9 ± 0.6B 30.9 ± 0.2A 24.1 ± 0.5B 19.1 ± 0C 18.3 ± 0.2D 23.6 ± 0.2B 

O145 1-2 32.7 ± 3.9A 22.8 ± 3.2B 21.1 ± 3B 21.6 ± 4.5B 22.1 ± 1.1B 35.3 ± 1.6A 28.4 ± 0.3B 26.3 ± 1.7B 26 ± 2.8B 27.4 ± 1.4B 
10-20 27.5 ± 1.6A 20.7 ± 2.2B 19.1 ± 2.3B 19.3 ± 2.1B 20.9 ± 0.4B 32.7 ± 1.2A 25.5 ± 0.5B 22.3 ± 1.4B 22.1 ± 2.6B 24.3 ± 1.2B 

a None of the 4-h enrichment samples tested positive by either LAMP or qPCR. In each row within LAMP or qPCR, Tt or Ct values 
followed by different upper case letters are statistically significant (P < 0.05).
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Discussion 
 

LAMP technology has been applied previously to detect generic and pathogenic E. coli 

(Hara-Kudo et al., 2007; Hill et al., 2008; Kouguchi et al., 2010; Song et al., 2005; Yano et al., 

2007; Zhao et al., 2010; Zhu et al., 2009), including STEC, however, O-serogroup specific 

LAMP assays are still unavailable except for O157 (Wang et al., 2009; Zhao et al., 2010; Zhu et 

al., 2009), and the quantitative capability of LAMP assay were not evaluated. The STEC 

serogroup-based LAMP assay developed in present study was rapid (19 - 45 min), specific (no 

false positive or false negative results for 120 strains tested), sensitive (1-20 CFU/ reaction in 

pure culture and 103-104 CFU/g in spiked ground beef, based on testing 1 typical outbreak STEC 

strain in each of the 7 main virulent serogroups), and quantitative (R2= 0.932-0.993). Coupled 

with 6 h enrichment, it can detect STEC strain in ground beef at a low level of 1-2 CFU/25 g. To 

our knowledge, this is the first report applying LAMP to detect and quantify main virulent STEC 

serogroups in ground beef by targeting wzx/wzy genes.  

In this study, the wzx and wzy genes were selected as targets to design primers for 7 main 

virulent STEC serogroups detection. Both genes, along with several other genes/fragments (rfb, 

rfbE, wbsD, wbdI, and ihp1 gene) used in recently published O157-LAMP studies (Wang et al., 

2009; Zhao et al., 2010; Zhu et al., 2009) and numbers of O serogroup specific PCR studies 

(Fratamico et al., 2011; Madic et al., 2011; Valadez et al., 2011), are located together on a 10-15 

kb O-antigen gene cluster, and encode the protein carrying out specific assembly or processing 

steps in conversion of the O unit to the O antigen (Wang and Reeves, 1998). It is noteworthy that 

the rfbE gene was more frequently used for O157 serogroup detection than others. In fact, this 

gene (GenBank accession #: S83460) is right after the O157-wzx gene (GenBank accession #: 

AF061251) in sequence and even has 14 overlapped bases with each other. According to 



 

86 
 

previous O-antigen cluster sequencing studies in various serogroups (O26, O45, O55, O91, O103, 

O104, O111, O121, O145, and O157), the wzx and wzy genes were proved to be highly group 

specific (D'Souza et al., 2002; DebRoy et al., 2005; Feng et al., 2005; Fratamico et al., 2003; 

Fratamico et al., 2005; Perelle et al., 2002; Wang et al., 2001; Wang et al., 1998; Wang and 

Reeves, 1998). The attempt to design LAMP primer sets based on O103 and O145 wzy genes 

was also made in preliminary test, but failed for the unpredictable false positive result or slow 

amplification speed.  

The 7 O serogroup specific LAMP assays developed in present study consistently 

detected down to 1-20 cells of STEC strains per reaction in pure culture, similar as the limit 

reported in those three LAMP assays targeting O157 (3 to 20 CFU/reaction ) (Wang et al., 2009; 

Zhao et al., 2010; Zhu et al., 2009). This level of sensitivity was also comparable to that of qPCR 

assay run in parallel, but around 10-100 folds superior to those of two PCR assays targeting 

O111, O113, and O157 (Paton and Paton, 1998, 1999). The increased sensitivity of LAMP (by at 

least 10 folds) compared to that of PCR agreed with findings from many previous studies (Chen 

and Ge, 2010; Han et al., 2011; Hara-Kudo et al., 2007). On the other hand, the comparison 

between LAMP and qPCR for STEC serotyping has not been made before. Without enrichment, 

the detection limit of 7 LAMP assays for STEC strain in spiked ground beef was 6.5 × 103-104 

CFU/g (13-130 CFU/reaction), the similar range reported in a qPCR study for same targets 

(Fratamico et al., 2011). The slightly inhibition of food matrix on detection limit (10 folds higher) 

was found for O45 and O111 when testing the assay sensitivity in ground beef without 

enrichment procedure. This inhibition caused by DNA polymerase inhibitors (tissue, fat, acid, 

blood, and salt) may also happen for other molecular detection methods, including PCR and 

qPCR (Chen et al., 2011; Lin et al., 2011).  
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LAMP amplicons were commonly detected by gel electrophoresis, naked eye observation 

of turbidity or color change, and real-time turbidimeter monitoring, and among those, real-time 

turbidimeter monitoring is the only one that is potentially quantitative (Han and Ge, 2010).The 

quantitative capability of LAMP assay was not evaluated in other two O157-LAMP assays, but 

was reported in a few of studies detecting Vibrio parahaemolyticus, V. vulnificus, and 

Salmonella in spiked oyster and produce (Chen and Ge, 2010; Chen et al., 2011; Han et al., 

2011). A strong linear coefficients (R2 = 0.94 to 0.99) was demonstrated, indicating the good 

quantitative capability of LAMP at between 101 and 105 DNA copies/reaction. In our study, the 

R2 value were found to be 0.945-0.993 for STEC cell concentrations between 105 and 100 

CFU/reaction in pure culture, and 0.932-0.982 for cells ranging from 107 to 103 CFU/g in spiked 

ground beef homogenates, suggesting excellent quantitative capabilities. 

Due to the stringent zero-tolerance policy for STEC O157:H7 in ground beef in the U.S., 

together with its extremely low infectious dose (~100 cells) to cause severe illness in human 

(Pennington, 2010), the detection method is required to be sensitive enough to accurately 

recognize its targets at low level. In present study, all 7 LAMP assays were capable to 

consistently detect an initial spiking of 1-2 CFU/25g of STEC in ground beef after 6 h of 

enrichment, and this was the shortest enrichment procedure among other published detection 

methods (PCR or qPCR) when testing STEC in ground beef (8 h, 20h, or overnight) (Fratamico 

et al., 2011; Lin et al., 2011; Pina M. Fratamico and DebRoy, 2010; Valadez et al., 2011). The 

qPCR assay run in parallel also generated the positive result in 6 h enrichment broth, whereas, 

the 30-40 min delays were needed. This LAMP assay evaluation test in ground beef 

contaminated with low level STEC was not conducted in other two O157-LAMP assays, but 

described in similar LAMP assays screening the STEC stx gene in beef products (ground beef 
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and beef liver), where 18 h enrichment was tried. To ensure the quality of templates, it is 

recommended to use simplified DNA extraction Kits rather than directly boiling method, which 

may also delay the assay process by 2 hours (data not shown). Taken together, the short-period 

enrichment procedure combined with simplified sample processing steps and rapid LAMP 

confirmation (< 35 min) would make it possible to complete the analysis within an 8-h workday. 

The ability of PCR and qPCR assays to simultaneously identify more than one target 

(Fratamico et al., 2011; Madic et al., 2011; Pina M. Fratamico and DebRoy, 2010; Valadez et al., 

2011) gives them advantage over LAMP assays, particularly in this STEC serotyping case as no 

related information is available before test. Multiplex LAMP assay has been conducted in one 

study targeting both stx1 and stx2 genes, but with relatively sacrificed sensitivity (102 

CFU/reaction) (Kouguchi et al., 2010). However, LAMP assay is still a promising technology in 

many other respects. Except for the same high sensitivity and specificity as PCR, it has the 

highest gene amplification speed among other NAAT technology. A new LAMP format referred 

as microRT-LAMP can achieve accurate result within 10 min at the initial cell concentration of 

105 CFU/reaction (Farhan Ahmad et al., 2011). Further, the isothermal condition and various 

amplicon detection methods make it adaptable to different platforms (PCR, qPCR, heating block, 

water bath, and real-time turbidimeter) (Chen and Ge, 2010; Farhan Ahmad et al., 2011; Han and 

Ge, 2010). Now it has been selected by the Foundation for Innovative New Diagnostics (FIND) 

in collaboration with the World Health Organization (WHO) to develop diagnostic tests that are 

simple to use and effective in Africa remote area for tuberculosis and malaria (Fondation for 

Inovative New Diagnostics, 2011).  

From a public health perspective, the development of rapid and reliable method capable 

of identifying both virulent genes and serogroup specific genetic determinants holds promise for 
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a more comprehensive characterization of STEC strains in food, for timely outbreak responses, 

and to monitor trends in disease epidemiology. The 7 STEC main virulent O serogroup specific 

LAMP assays developed in this study are rapid, specific, sensitive, and cost-effective, and can be 

used for detection and characterization of O26, O45, O103, O111, O121, O145, and O157 STEC 

in ground beef. This set of assays may present a valuable tool for the meat industry and 

regulatory agencies to better control the STEC risks associated with ground beef consumption. 

Future combination with IMS method for STEC isolation and testing with natural ground beef 

samples are desired for further evaluate the performance of LAMP in a setting closer to 

application. 
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In this dissertation research, two sets of LAMP assays, consisting of 10 individual ones, 

were developed and evaluated for the detection of three STEC key virulent factors (the stx1, stx2 

and eae genes) and seven O antigens of major STEC serogroups (O26, O45, O103, O111, O121, 

O145, and O157) in food and/or human stool. All of the assays were rapid (11 - 45 min), specific 

(no false positive or false negative results for 120 STEC and non-STEC strains tested), sensitive 

(1-20 CFU/ reaction in pure culture and 103-104 CFU/g in spiked ground beef), and accurate (R2 

= 0.904-0.997). Coupled with 4-8 h enrichment, the assays detected STEC strains spiked in 

ground beef at a very low level of 1-2 CFU/25 g, and in human stools at 103 CFU/0.5 g. LAMP 

also possessed superior sensitivity and rapidity compared with qPCR. To our knowledge, this is 

the first study applying the novel LAMP technology to detect major STEC serogroups by 

targeting the wzx/wzy genes, as well as the first study to develop and evaluate an LAMP assay 

targeting the eae gene in food and clinical samples. 

Currently, E. coli O157:H7 is regulated as an adulterant in raw beef in the U.S. The 

growing clinical importance of non-O157 E. coli also warrants the development of rapid, 

sensitive, and specific methods for detection. In the newly updated USDA protocol for E. coli 

O157:H7 and non-O157 STEC detection in ground beef and beef trimmings, enrichment is an 

indispensable step followed by initial screening of Shiga toxins (encoded by stx1 and stx2) and 

intimin (encoded by eae) by qPCR and a second screening of O157 and top six STEC serogroups 

by another set of qPCR assays. Given the rapidity, sensitivity, specificity, and robustness of 

LAMP assays demonstrated in the dissertation research, these assays may effectively serve as 

promising alternatives to qPCR in the two stage screening, one is serogroups-independent and 

the other one serogroups-specific, which is to be followed by culture isolation and further 

virulence characterizations to ascertain the food safety and public health relevance of the LAMP-
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positive samples. The three serogroups-independent LAMP assays also had superior 

performance than qPCR in human stools. 

The LAMP assays may be advantageous over other techniques, particularly in resource-

limited regions due to the simplicity (isothermal amplification requires simple instrument, high 

tolerance to biological inhibitors eases DNA extraction requirement, turbidity and fluorescence 

changes simplify results reading), sensitivity, specificity, and rapidity. Although all of the assays 

developed and evaluated in this dissertation research were performed on the LAMP turbidimeter 

platform, they can be similarly conducted under much simpler settings (such as a water bath or a 

heating block) or existing settings (PCR and qPCR) without modifying the reagents and reaction 

conditions. Meanwhile, LAMP detection kits (Eiken Chemical Co., Ltd, Tokyo, Japan) have 

been manufactured to detect several foodborne pathogens (Campylobacter, Salmonella, and 

Vibrio), and research is also ongoing on LAMP reagent lyophilization. Taken together, the wide 

application of LAMP assays in food safety arena is anticipated.  

Further testing of the assays developed in this dissertation research may include tolerance 

to various conditions and inhibitors, including temperature, pH, salts, soil, plant tissue, and 

others, as well as evaluation in additional food items (produce, milk, juice), as matrix effect may 

affect the detection outcomes. Finally, the assays need to be validated in multiple laboratories to 

become a standardized method.   

In conclusion, the LAMP assays developed in this study are rapid, sensitive, specific, and 

quantitative for STEC, which may facilitate rapid and reliable identification of STEC 

contaminations in high-risk food commodities and also facilitate prompt diagnosis of STEC 

infections in clinical laboratories.
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APPENDIX: SUPPLEMENTAL RESULTS  

1. Sensitivity of the three qPCR assays when testing 10-fold serial dilutions of individual STEC strains of seven serogroups in pure 
culture and spiked ground beef samples 
 

Strain ID Serotype Stx Intimin Detection limit (CFU/reaction or CFU/g) 
stx1-qPCR stx2-qPCR eae-qPCR 

Culture Ground beef Culture Ground beef Culture Ground beef 
97-3250 O26:H11 1, 2 + 1 4×104 1 4×104 1 4×104 
MI01-88 O45:H2 1 + 1.6 7×103 N/A N/A 16 7×103 
MT#80 O103:H2 1 + 1.6 6.5×103 N/A N/A 1.6 6.5×103 
3215-99 O111:H8 1, 2 + 11 5×103 1.1 5×104 11 5×103 
MDCH-4 O121:H19 2 - N/A N/A 1.2 4×104 N/A N/A 
GS G5578620 O145:NM 1 + 17 4×104 N/A N/A 17 4×104 
EDL933 O157:H7 1, 2 + 1.6 6.5×104 1.6 6.5×103 1.6 6.5×103 
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2. Quantitative capabilities of serogroup-independent LAMP assays when testing serially diluted STEC cells in pure culture and 
spiked ground beef samples 

Targets Strain 
Quantification capability of LAMP assay 

Pure culture Ground beef 
Quantification equation R2 Quantification equation R2

stx1 

EDL933 y = -2.39x + 31.618 0.977 y = -1.57x + 26.78 0.973 
97-3250 y = -2.43x + 29.33 0.986 y = -2.59x + 33.567 0.913 
MI01-88 y = -2.31x + 27.872 0.983 y = -1.98x + 29.934 0.952 
MT#80 y = -2.94x + 29.728 0.973 y = -2.98x + 36.494 0.916 
3215-99 y = -2.67x + 29.32 0.983 y = -3.34x + 39.322 0.958 

GS G5578620 y = -2.99x + 30.838 0.933 y = -2.22x + 31.313 0.95 

stx2 

EDL933 y = -1.98x + 31.109 0.997 y = -1.64x + 28.763 0.956 
97-3250 y = -1.84x + 27.993 0.963 y = -1.2x + 26.267 0.931 
3215-99 y = -2.23x + 26.027 0.989 y = -1.35x + 27.886 0.971 

MDCH-4 y = -2.18x + 25.9 0.970 y = -1.98x + 32.177 0.974 

eae 

EDL933 y = -1.79x + 23.115 0.978 y = -1.18x + 21.141 0.965 
97-3250 y = -4.24x + 39.44 0.957 y = -3.43x + 45.656 0.904 
MI01-88 y = -3.13x + 39.077 0.976 y = -3.13x + 44.775 0.965 
MT#80 y = -4.367x + 38.92 0.959 y = -2.05x + 35.875 0.994 
3215-99 y = -4.22x + 39.667 0.99 y = -2.78x + 42.674 0.978 

GS G5578620 y = -1.81x + 21.335 0.977 y = -1.4x + 23.493 0.988 
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3. Quantitative capabilities of serogroup-specific LAMP assays when testing serially diluted STEC cells in pure culture and spiked 
ground beef samples 

Strain ID Serotype 
Quantification capability of LAMP assay 

Pure culture Ground beef 
Quantification equation R2 Quantification equation R2

97-3250 O26:H11 y = -3.556x + 37.636 0.964 y = -4.248x + 51.322 0.932 
MI01-88 O45:H2 y = -3.77x + 38.497 0.973 y = -2.508x + 39.534 0.953 
MT#80 O103:H2 y = -4.19x + 41.793 0.945 y = -4.286x + 53.21 0.958 
3215-99 O111:H8 y = -4.2x + 46.498 0.991 y = -4.382x + 62.329 0.947 
MDCH-4 O121:H19 y = -3.598x + 38.516 0.993 y = -2.542x + 40.788 0.947 
GS G5578620 O145:NM y = -3.116x + 36.646 0.996 y = -3.704x + 51.932 0.963 
EDL933 O157:H7 y = -4.636x + 42.362 0.988 y = -4.426x + 56.186 0.982 
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