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ABSTRACT 

The incidence of foodborne outbreaks linked to fresh produce has increased in the United 

States. Particularly noteworthy was the 2006 Escherichia coli O157:H7 outbreak associated 

with pre-packaged baby spinach. Factors affecting the contamination of spinach leaves with E. 

coli O157:H7 are not yet well understood. This study aimed to determine whether E. coli 

O157:H7 would be present in the aerial leaf tissue of a growing spinach plant when 

introduced at various plant maturities and different inoculum levels in the growth media in a 

greenhouse setting. Spinach seeds of a standard commercial variety were sown individually 

in 8-inch pots, watered daily and fertilized weekly after germination. Two levels (103 and 107 

CFU) of an E. coli O157:H7 green fluorescent protein (GFP)-expressing strain were 

introduced into the plant growth media on a weekly basis after germination. Inoculated 

spinach plants were examined weekly for the presence of E. coli O157:H7 on leaves and in 

surrounding growth media. Among 120 spinach plant samples examined for internal leaf 

contamination, only one yielded positive result. Surface leaf contamination occurred 

occasionally and clustered between 4 to 5 weeks of age, but not among leaves younger than 3 

weeks of age. Additionally, when inoculated at 107 CFU level, the E. coli O157:H7 GFP 

strain survived the entire cultivation period although with gradually reduced levels. The 

experiments demonstrated that internalization of E. coli O157:H7 of growing spinach plant 

leaves under greenhouse conditions was a rare event, but surface contamination did occur, 

primarily when the plants reached 3 weeks of age. The study provided important data to 

further assess the association between spinach age and potential contamination of E. coli 

O157:H7.
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CHAPTER 1 

INTRODUCTION 

In the past few years, outbreaks of human illness associated with the consumption of 

fresh and fresh-cut fruits and vegetables have rapidly increased in the United States (Doyle 

and Erickson, 2008). Numerous fresh produce items, including cantaloupe, herbs, lettuce, 

tomatoes, sprouts, and spinach, have been implicated in foodborne outbreaks. Lettuce/leafy 

greens and tomatoes are the top two produce categories, accounting for 30% and 17% of all 

produce-associated outbreaks, respectively (Buchanan, 2006). Escherichia coli O157:H7 and 

Salmonella are the two leading foodborne pathogens implicated in these produce outbreaks. 

Data from the U.S. Food and Drug Administration (FDA) showed that between 1995 and 

2005, 19 fresh or fresh-cut lettuce and spinach-associated E. coli O157:H7 outbreaks 

occurred, resulting in 409 reported illnesses and two deaths (USFDA, 2005). Particularly 

noteworthy was a prebagged spinach outbreak caused by E. coli O157:H7 in August and 

September 2006 in multiple states (26 U.S. states and one Canadian province), causing 205 

confirmed illness (including 31 cases of HUS, 103 hospitalizations, and 3 deaths), as well as 

an estimated $37-74 million loss to the California produce industry (Kotewicz et al., 2008; 

USFDA, 2007).  

Reduction of human illness risks associated with raw produce consumption can be better 

achieved through controlling points of potential contaminations in the field, during harvesting, 

during processing or distribution, in retail markets and food-service facilities, or at home. In 

the agricultural field, the growth soil, irrigation water, workers, and unclean utensils are the 

most likely source of contamination with foodborne pathogens (Natvig et al., 2002). A 
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previous study (Islam et al., 2004) has shown that E. coli O157:H7 could survive long period 

of time (150 to 200 days) in the soil, which is of special concern to produce safety. Once 

harvest, fresh produce undergoes minimum processing (no lethal kill step) which mainly 

cleaned and sanitized using chlorine or alternative sanitizers (Dong et al., 2003). One of the 

recurrent questions that emerge from high frequency of recent outbreaks is how E. coli 

O157:H7 could survive under harsh environmental conditions in the field or after commercial 

sanitizer treatments. Several studies indicated that post-harvest sanitizer wash was intended to 

reduce microorganisms on the produce surface but will not be effective if microbes are inside 

the tissues (Erickson and Ortega, 2006; Takeuchi and Frank, 2000). Moreover, some 

microbes could survive by biofilm formation or cellulose production (Solomon et al., 2005), 

which could not be effectively washed off by post-harvest sanitizers. Also, whether 

foodborne pathogens could internalize into the tissue of fresh produce has been a largely 

debated topic. It is therefore very important to investigate the interaction between these 

foodborne pathogens and produce products. 

Multiple studies have shown that internalization of E. coli O157:H7 in growing lettuce or 

spinach occurred (Cooley et al., 2003; Franz et al., 2007; Hora et al., 2005; Jablasone et al., 

2005; Solomon et al., 2002b; Warriner et al., 2003a) while others showed no internalization 

(Johannessen et al., 2005). Plant roots (rhizosphere) appeared to be the preferable site for 

attachment and entrance, and the contamination was reported to be dose-dependent (Wachtel 

et al., 2002a). Past research suggests that foodborne pathogens can enter lettuce plants 

through roots and end up in the edible leaves (Solomon et al., 2002b; Warriner et al., 2003a; 

Warriner et al., 2003b; Warriner et al., 2003c). 
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However, it remains controversial whether E. coli O157:H7 is capable of contaminating 

the edible part of a mature plant (phyllosphere) when introduced through soil or irrigation 

water. In spinach, internalization was observed in the root tissue or seedlings but not in 

mature leaves (Hora et al., 2005; Warriner et al., 2003a). Moreover, in most studies 

examining the attachment and internalization of enteric pathogens in plant tissues, 

inoculations were done at the seed or seedling stage only. Since contamination events may 

occur at any time throughout the cultivation period in the field, the effect of plants 

encountering E. coli O157:H7 at later growth stages on the contamination of mature plants 

needs to be established. Furthermore, most experiments were conducted under selected 

simplistic conditions instead of the complex natural systems found in the farms (Doyle and 

Erickson, 2008). Therefore, the mechanism of natural fresh leafy greens being internalized 

with E. coli O157:H7 is still uncertain and needs to be examined following conditions that 

closely mimic the agricultural field growth conditions. 

Our objective in this study is to better understand whether E. coli O157:H7 would be 

present in the aerial leaf tissue of a spinach plant when introduced via soil inoculation at 

different growth stages under an experimental conditions that closely mimic the field 

conditions. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Epidemiology of Produce-Linked E. coli O157:H7 Outbreaks 

In the past few years, outbreaks of human illness associated with the consumption of 

fresh produce have increased rapidly in the United States (Doyle and Erickson, 2008). 

According to the Centers for Disease Control and Prevention, the proportion of foodborne 

outbreak-associated illness due to the consumption of fresh produce jumped from 1% in the 

1970s to 12% in the 1990s (Sivapalasingam et al., 2004). Between 1996 and 2006, 

seventy-two produce-related outbreaks were documented, resulting in over 8,500 reported 

illnesses and several deaths (Buchanan, 2006; USFDA, 2008). 

This increase could be partly attributed to better outbreak surveillance systems 

implemented in the U.S. such as the national surveillance program termed the Foodborne 

Disease Active Surveillance Network (FoodNet) (Niemira, 2007). FoodNet conducts 

surveillance and monitors trends for major foodborne pathogens (e.g., E. coli O157:H7, 

Salmonella, Campylobacter, Vibrio and Listeria monocytogene) in more than ten states in the 

U.S. Some other reasons for the increase number are possibly due to the changes in 

demographic, harvesting, distribution, processing, and consumption patterns (Beuchat and 

Ryu, 1997).  

Numerous fresh produce items, including cantaloupe, herbs, lettuce, potatoes, tomatoes, 

sprouts and spinach, have been linked to high-risk foodborne pathogens, primarily 

Salmonella, Escherichia coli O157:H7, Shigella, and Listeria monocytogenes (Doyle and 

Erickson, 2008; Sewell and Farber, 2001). Among all produce categories, lettuce/leafy greens 
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and tomatoes are the top two, accounting for 30% and 17% of all produce-associated 

outbreaks, respectively (Buchanan, 2006). E. coli O157:H7 and Salmonella are the two 

leading pathogen associated with such outbreaks (Sivapalasingam et al., 2004). 

Recently, Centers for Disease Control and Prevention (CDC) reported that outbreaks 

associated with E. coli O157:H7 have increased dramatically, especially the produce-linked 

outbreaks (CDC, 2006). Data from Figure 1 were modified from CDC annual reports of E. 

coli O157:H7 illnesses, with both total cases and cases associated with produce. From 2001 

to 2005, the E. coli O157:H7 illnesses related to produce remained less than 35% of all E. 

coli O157:H7 cases. However, in 2006, the percentage jumped to 78.5% (402/512). 

 

Figure 1. E. coli O157:H7 illnesses from 2001 to 2006 (CDC Annual Report) 

Particularly, there were several outbreaks occurred during 2006 linked to fresh spinach or 

lettuce. From August to September, a prebagged spinach-associated outbreak of E. coli 

O157:H7 occurred through multistate area in the United States (Kotewicz et al., 2008), 
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causing 205 illnesses (including 31 cases of HUS; 103 hospitalizations; and 3 deaths) (CDC, 

2006). Another two E. coli O157:H7 outbreaks were associated with lettuce during November 

and December, causing 152 illnesses, including 10 cases of HUS, and 79 hospitalizations 

(CDC, 2006). Therefore, produce safety presents an important public health concern, and 

more research is needed.  

2.2 General Information on E. coli O157:H7 

2.2.1 Microbiology 

Escherichia coli is the most thoroughly studied species in the microbial world, which has 

gained much more information and benefited many areas of biological sciences (Fratamico et 

al., 2005). E. coli is a Gram-negative, non-spore-forming, rod-shaped bacterium, belonging to 

the family Enterobacteriaceae. It is facultatively anaerobic, with the optimal growth 

temperature of 37oC. E. coli was first considered as a low virulence potential microorganism 

in 1980’s until many strains of E. coli acted as pathogens causing serious gastrointestinal 

diseases and even death in humans (Park et al., 1999). Pathogenic E. coli strains which have 

potential to cause diarrhea in human are termed diarrheagenic E. coli, which can be 

categorized into six major groups based on virulence properties, mechanisms of pathogenicity, 

and clinical syndromes. They are enterohemorrhagic E. coli (EHEC), enteropathogenic E. 

coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasice E. coli (EIEC), diffusely 

adherent E. coli (DAEC), enteroaggregative E. coli (EAEC) (Fratamico et al., 2005). 

Among these diarrheagenic E. coli groups, EHEC is the most significant group based on 

the severity of illness (Doyle et al., 2001), particularly the commonly known E. coli O157:H7 

(O for somatic antigen and H for flagella), which can cause serious bloody diarrhea and 
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hemolytic uremic syndrome (Boyce et al., 1995). In 1982, E. coli O157:H7 was first 

identified as a cause of two outbreaks of severe bloody diarrhea associated with the 

consumption of undercooked hamburgers in fast food restaurants (Riley et al., 1983).  

2.2.2 Epidemiology 

The first E. coli O157:H7 outbreak associated with eating hamburgers at restaurants in 

Oregon and Michigan was identified by the U.S. CDC in 1982 (CDC, 1982). The incidence 

began with sudden and severe abdominal cramps, followed by watery diarrhea within 24 

hours. All four patients in this outbreak recovered within one week without special treatment 

(CDC, 1982).  

After the first outbreak in 1982, cases of E. coli O157:H7 infections have been 

increasingly reported worldwide. In the United Kingdom, laboratory-confirmed E. coli 

O157:H7 infections increased from 1 in 1982 to 1039 in 1995 (Park et al., 1999). A report in 

North Ireland showed that the number of infections with E. coli O157:H7 rose from a few 

cases in the early 1990s to 54 reported in 1999 (Watabe et al., 2008). The largest E. coli 

O157:H7 outbreak occurred from November to December 1996 in central Scotland, resulting 

in 496 infections with 20 deaths (Cowden et al., 2001). After this outbreak, more efforts from 

the U.K. government were made to control and prevent such infections by increasing the 

funding for a wide variety of E. coli O157:H7 research on public health measures (Park et al., 

1999).  

In Sakai City, Japan, a massive outbreak of E. coli O157:H7 infection occurred among 

school children in 1996, which was associated with the consumption of uncooked white 

radish sprouts from a single farm (Michino et al., 1999). This is the largest outbreak ever in 
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Japan which affected about 6,000 people, mostly schoolchildren in 47 different elementary 

schools.  

There is less information available on E. coli O157:H7 infection in most of the African 

countries, possibly due to the lack of surveillance systems for E. coli O157 cases in many 

countries. However, a study done in Egypt showed that E. coli O157:H7 was widely present 

in raw ground beef, chicken, lamb and unpasteurized milk and along the product processing 

chain, including slaughterhouses, supermarkets and farmer's homes (Abdul-Raouf et al., 

1996). 

In Australia, few outbreaks reported are related to O157:H7 strains, while non-O157 

Shiga toxin-producing Escherichia coli (STEC) strains are more common and more 

frequently cause serious human disease (Goldwater and Bettelheim, 1995). Australian 

National Notifiable Diseases Surveillance System announced that only a small case number 

of 85 were reported as STEC infection in 2005, compared to 7,720 cases of salmonellosis and 

15,313 cases of campylobacteriosis (Hall et al., 2008). The surveillance of STEC in all 

Australian States and Territories has low rates for STEC, except for South Australia where the 

rates are slightly higher (Combs et al., 2005). 

In the U.S., after the first outbreak in 1982, more outbreaks were reported and 

accompanied with tighter regulations from the U.S. Department of Agriculture and better 

reporting systems. From CDC annual reports (Figure 1), we clearly observed that the 

numbers of E. coli O157:H7 outbreaks had increased and ranged from 215 to 512, between 

2001 and 2006. Particularly, as mentioned above, there were three big E. coli O157:H7 

outbreaks related to fresh lettuce and spinach in 2006 (USFDA, 2007). 
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In summary, E. coli O157:H7 is a common foodborne pathogen all over the world. With 

high outbreaks numbers, this pathogen is becoming a wide concern for food safety. 

2.2.3 Clinical Symptoms 

E. coli O157:H7 infection often leads to a mild non-bloody diarrhea or a severe, acute 

bloody diarrhea termed hemorrhagic colitis, and abdominal cramps. Also, it can be 

asymptomatic (Watabe et al., 2008). In some people, primarily infants, children, and the 

elderly, E. coli O157:H7 infections can cause hemolytic uremic syndrome (HUS), in which 

the red blood cells are destroyed and the kidney fails (Fratamico et al., 2005). In the U. S., 

infections among 2% to 7% of patients can lead to such a complication (Mead and Griffin, 

1998), which is the principal cause of acute kidney failure in children. Most HUS cases 

occurred in the U.S. are caused by E. coli O157:H7 (Mead and Griffin, 1998). 

Most people infected by E. coli O157:H7 can recover from hemorrhagic colitis without 

using antibiotics in 5-10 days. Less severe illness is seen in patients with non-bloody diarrhea, 

and they are less likely to develop systemic sequelae or die. However, HUS is always a 

severe, life-threatening condition, which needs intensive care. Blood transfusions and kidney 

dialysis are often required in roughly 50% of HUS patients (Ammon, 1997; Scheiring et al., 

2008). With intensive care, approximately 3% to 5% die and about 5% develop chronic renal 

failure, stroke, and other major sequelae. Treatments with some antibiotics may precipitate 

kidney complications without improving the course of disease (Mead and Griffin, 1998; 

Skerka et al., 2009). Therefore, antibiotic treatment is generally not recommended for E. coli 

O157:H7 infections. 
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2.2.4 Shiga Toxins Produced by E. coli O157:H7 

Usually, the most important factors in the pathogenesis of EHEC is considered as the 

ability to produce one or more types of Shiga toxins (Mead and Griffin, 1998). Shiga toxins 

(Stxs) are a family of bacterial cytotoxins produced by Shigella dysenteriae type 1 and Shiga 

toxin-producing E. coli (STEC) (Park et al., 1999). It also can be called vero-cytotoxins, and 

formerly known as Shiga-like toxins. The most common Shiga toxins produced by E. coli 

O157:H7 are Stx1 and Stx2 (Mead and Griffin, 1998). 

Shiga toxins (Stx) produced by EHEC strains play a key role in the pathogenesis of 

hemorrhagic colitis and HUS (Robins-Browne et al., 2004). The binding of Shiga toxins to 

specific receptors on endothelial cells results in damage and death of the cells. There are clear 

evidences that platelets and fibrin can lead to abnormal white blood cell adhesion, reduced 

blood flow in small vessels of the affected organs, increased coagulation, and thrombosis 

formation (O'Loughlin and Robins-Browne, 2001). Therefore, Shiga toxins are probably 

critical to the development of bloody diarrhea due to its both local and systemic effects on the 

intestine (Mead and Griffin, 1998). 

2.2.5 Transmission 

It is known that E. coli O157:H7 can be present in animals as well as humans, but the 

most common reservoir of E. coli O157:H7 is cattle (Armstrong et al., 1996). EHEC existed 

in the bodies of cattle do not normally cause disease, but could transmit to humans by the 

consumption of undercooked beef products, because after cattle are slaughtered, the 

pathogens would remain in the cattle bodies and come into the food chain. In addition, it is 

also commonly agreed that the feces on the cattle farms are highly contaminated with E. coli 
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O157:H7. The fecal shedding of E. coli O157:H7 can stay even longer in calves than in adults 

(Brown et al., 1997). The Canadian group’s report also confirmed that feces plays a important 

role in the cattle-to-human transmission, since E. coli O157:H7 were frequently isolated from 

the feces of healthy cattle (Rahn et al., 1997). Moreover, direct contact with cattle or their 

environment could be considered as another transmission vehicle. The report of the 

prevalence of E. coli O157:H7 isolates from Minnesota dairy farms and county fairs in 2006 

demonstrated that the connection between the presence of E. coli O157:H7 at county fairs 

and the potential for transmission to the public (Cho et al., 2006). 

Waterborne outbreaks of E. coli O157:H7 were reported as the source of transmission 

vehicle (Swerdlow et al., 1992). Drinking water (Akashi et al., 1994) and unchlorinated 

swimming water (Keene et al., 1994) contaminated with E. coli O157:H7 were reported to 

cause severe outbreaks of hemorrhagic colitis and HUS infections in 1994. In July 2001, 

twenty cases occurred in Minnesota among people who had visited a beach, and were finally 

confirmed as E. coli O157:H7 infections because of the high fecal coliform levels in the lake 

water (Yoder et al., 2004). It somehow suggests that E. coli O157:H7 has a high infectious 

potential for transmission through a water environment. 

Another source of transmission vehicle is humans. Public facilities could become the 

place for person-to-person transmission, combining a high potential for transmission with a 

population at increased risk for severe outcomes (Belongia et al., 1993). The infected people 

in the Minnesota waterborne incident subsequently attended child care centers and caused 

secondary outbreaks (Yoder et al., 2004). 

Additionally, produce including fruits and fresh vegetables were frequently involved 

in the E. coli O157:H7 outbreaks. Recently, the foodborne outbreaks associated with the
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consumption of fresh produce have increased, linked to the food production chain “farm to 

fork” with the potential microbial pathogen contamination (Wachtel et al., 2002b). Sources of 

pre-harvest contamination include feces, soil, irrigation water, improperly composted manure, 

air, wild and domestic animals, and human handling. The source of E. coli O157:H7 outbreak 

associated with spinach in 2006 were demonstrated to link with feral pigs near spinach fields 

(Cooley, Carychao et al. 2007; Jay, Cooley et al. 2007).  

2.2.6 Detection Methods for E. coli O157:H7 

Generally speaking, the isolation and detection of E. coli O157:H7 methods can be 

divided into several categories: culture-based detection methods, immunochemical methods, 

and nucleic acid-based methods. 

Due to not fermenting sorbitol by most E. coli O157:H7, Sorbitol-MacConkey agar 

(SMAC) is usually used as the selective media for O157:H7 serotypes. The nutritional 

requirements for most E. coli strains are similar, including O157:H7 serotype, but O157:H7 

serotype, does not ferment sorbitol within 24 hours, resulting in the colorless colonies on 

SMAC. The use of SMAC offers a simple, inexpensive, and generally reliable method of 

screening stools for E. coli O157:H7 (Chapman et al., 1991). Regarding the deficiencies of 

SMAC, regular plating media SMAC agar has been modified with some supplements, to 

increase the selectivity and ability to differentiate E. coli O157:H7 from other 

microorganisms (Fratamico et al., 2005).  

Immunochemical methods, which usually give high selectivity, speed, and simplicity, 

have been widely used for pathogen screening and detection. Many assays can use the 

antibodies to O-antigens of the O157 serotype as the antigen in immunoassays. However, 

these assays may produce false-positive results due to the antigen structures (Bennett et al., 
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1996). The commercial enzyme-linked immunosorbent assay (ELISA) was developed to 

detect E. coli O157:H7 and decreased the false-positive rate (Chapman et al., 1997). Later, an 

immunomagnetic separation (IMS) was developed for E. coli O157:H7 detection. 

The most widely used nucleic acid-based method for the detection of E. coli O157:H7 is 

polymerase chain reaction (PCR) assays, targeting on stx genes or the eae gene (Gannon et al., 

1993; Meng et al., 1998; Oberst et al., 1998). Both two genes are used for detection and 

characterization of the Shiga Toxins produced by E. coli O157:H7. The stx gene based PCR 

was widely developed and different primers were used. The specificity of the eaeA-based 5' 

nuclease assay system developed by Oberst’s group could be sufficient to correctly identify 

all E. coli O157:H7 strains evaluated, mirroring the previously described specificity of the 

PCR primers (Oberst et al., 1998). However, PCR-based methods targeting the two genes 

have their own limitations. The stx gene-specific PCR methods are for Shiga toxin-producing 

E. coli but not specific for E. coli O157:H7 serotype. On the other hand, the eae gene-specific 

methods are not specific for E. coli O157:H7 only; certain EPEC strains also contain eae 

gene. More recently, primers were developed, targeting some other specific genes for 

O157:H7 serotype. 

Recently, as the risk of spreading outbreaks with the globalization of trade and increased 

cross-continental flow, more rapid, sensitive and reliable methods for screening of different 

foodborne pathogens, especially for these high-risk organisms are stringently needed 

(Mukhopadhyay and Mukhopadhyay, 2007). 

2.2.7 Green Fluorescent Protein (GFP)-Expressing E. coli O157:H7 Strain 

In the past 15 years, Green fluorescent protein (GFP) has been widely used as a novel 

marker system (Chalfie et al., 1994) in biochemistry and cell biology, particularly in food and 
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environmental studies (Simpson-Stroot et al., 2008). Fluorescent protein markers are both 

intrinsically fascinating and tremendously valuable because of the capacity to generate a 

highly visible, efficiently emitting internal fluorophore (Tsien, 1998). GFP is usually 

introduced into some microorganisms as a stable and easily identifiable tracer label 

(Errampalli et al., 1999).  

GFP, the green fluorescent protein, was originally discovered from the jellyfish Aequorea 

Victoria (Tsien, 1998). In jellyfish, energy was transferred from a Ca+-activated photoprotein 

aequorin, to the GFP, and green fluorescent light is emitted (Chalfie et al., 1994; Cody et al., 

1993). The gfp gene could be cloned and expressed in both eukaryotic and prokaryotic 

system (Chalfie et al., 1994), encoding a 27-kDa green fluorescent protein which can absorbs 

UV and blue light at 395 nm and emits green light at 509 nm(Cody et al., 1993). GFP is 

stable to heat (65oC), alkaline pH (6-12), and the presence of detergents and many proteases 

(Prasher et al., 1992), and it is independent of other protein, substrates, or cofactors (Chalfie 

et al., 1994; Kremer et al., 1995; Valdivia et al., 1996). Therefore, it appears to be a valuable 

reporter and marker system. Furthermore, some mutated GFP proteins have been produced to 

give much stronger fluorescence, so it gives more sensitivity when detecting microorganisms 

(Errampalli et al., 1999). 

Studies have been validated that the use of GFP in E. coli O157:H7 have no effect on the 

organism behavior (Vialette et al., 2004). The specific GFP strain E. coli O157:H7 B6-914 

was successfully constructed and characterized in 1997 (Fratamico et al., 1997). The green 

fluorescent protein was constructed by transforming the plasmid pGFP into the E. coli 

O157:H7 B6-914 strain. Because of the safety advantages, Shiga toxin Type 1 (Stx1) and 2 
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(Stx2) were no longer produced by this strain. Since the toxin genes Stx1 and Stx2 had little 

or no influence on the growth characteristics of E. coli O157:H7 cells (Kudva et al., 1998), 

this strain can be used for laboratory experiment. Another property of this strain is the 

resistance to antibiotic ampicillin, so it can be distinguished from regular E. coli O157:H7 

strains by using selective medium supplemented with ampicillin (Franz et al., 2007). 

Moreover, as the plasmid was stable in this GFP strain (Fratamico et al., 1997), the loss of 

plasmid under greenhouse environment could be not a big concern. 

2.3 Spinach Horticultural Information 

Spinach (Spinacia oleracea), originally from central and southwestern Asia, is a 

flowering plant in the family of Amaranthaceae used as a vegetable. It is an annual herb, 

grown in fall to spring in temperate region as it is a cool-season plant (Bailey, 1917). It can 

grows up to 30 cm in height, and it runs to seed in warm weather (Robbins, 1917). The leaves 

may be large enough for eating within eight weeks after seedling (Bailey, 1917). During the 

developmental process, spinach throws out a number of large leaves crowded near the ground 

surface early in the season, and later a flower stalk is sent up to a distance of 2 or 3 feet. The 

mature leaves are large, alternate, petioled, and triangular-ovate or arrow-shaped in outline, 

variable in size from 2-30 cm long and 1-15 cm broad. The flowers occur in axillary clusters, 

appearing as inconspicuous, yellow-green, 3-4 mm diameter. During maturation, it will turn 

into a small hard dry lumpy fruit cluster 5-10 mm across containing several seeds (Robbins, 

1917). Farmers annually sow the seeds from early spring to late summer every other week to 

provide a steady supply. 

Spinach is commercially sold loose, bunched, in prepackaged bags, canned, or frozen. 

Fresh spinach other than processed spinach products, can keep more nutritional value such as 
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folate and carotenoid content, and subsequently pre-bagged fresh spinach is the most 

common product in most grocery stores. Although uncooked fresh spinach is recommended 

for its nutrition, canning, refrigeration or freezing are still commonly used in order to prolong 

the storage time, up to eight months (Robbins, 1917).  

Driven by fresh-market use, the consumption of spinach has been on the rise in the 

United States. The fresh market now accounts for about three-fourths of all the U.S. spinach 

consumed (Charatan, 2006). Much of the growth over the past decade has been due to sales 

of triple-washed cello-packed spinach and, more recently, baby spinach. 

2.4 Current Knowledge on the Interaction between E. coli O157:H7 and Fresh Produce 

2.4.1 Contamination Sources in the Field 

 Fresh produce could be contaminated with human pathogens like E. coli O157:H7 at any 

point through the entire farm-to-table continuum. The most common contamination sources 

in the environment are the feces of healthy cattle and other farm or wild animals, as E. coli 

O157:H7 can survive in such condition over extended periods of time (Islam et al., 2004; 

Natvig et al., 2002).  

For leafy greens like spinach grown in field, the primary sources of pre-harvest 

contamination of potential foodborne pathogens in the produce growth environment include 

soil amended with untreated or improperly composted manure, contaminated irrigation water, 

presence of wild and domestic animals, infected workers, and unclean containers and tools 

used in harvesting (Beuchat and Ryu, 1997; USFDA, 2008). Studies demonstrated that cattle 

feces are commonly considered as the major source of E. coli O157:H7 in dairy farms (Rahn 

et al., 1997; Wells et al., 1991). Also, the E. coli O157:H7 sources of spinach nationwide 
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outbreak in 2006 were traced to feces of feral swine (Jay et al., 2007). Through the irrigation 

and fertilization in contamination of agricultural fields and surface waterways, E. coli 

O157:H7 could inoculated into produce growth environment (Jay et al., 2007). Solomon and 

colleagues (Solomon et al., 2002a) discovered that both spray and drip irrigation could 

possibly be responsible for the transmission of E. coli O157:H7 to lettuce. In the follow-up 

experiment on lettuce by the same group, the transmission of E. coli O157:H7 from 

manure-contaminated soil and irrigation water to lettuce plants were demonstrated (Solomon 

et al., 2002b).  

2.4.2 Post-Harvest Treatment Methods and Their Effectiveness 

After harvested, fresh produce undergoes minimum process (no lethal kill step), mainly 

cleaning and sanitizing using chlorine or alternative sanitizers (Doyle and Erickson, 2008; 

Sapers, 2005).  

However, treatment of produce with chlorinated water reduces populations of pathogenic 

and other microorganisms on fresh produce but cannot eliminate them. At concentrations 

used in the produce industry (50-200 ppm), a typical commercial chlorine wash only results 

in 1-2 log CFU/g reduction of bacterial pathogens (Delaquis et al., 2002; Li et al., 2001; 

Takeuchi and Frank, 2000), although in the laboratory one study (Rodgers et al., 2004) 

reported approximately 5 log CFU/g reduction with inoculated produce. One report 

demonstrated that commercial washing processes for cantaloupe were limited in their ability 

to inactivate or remove the E. coli O157:H7, and it is suggested to refrigerate the products as 

soon as possible following harvest in case of any possible contamination (Annous et al., 

2004). In 2003, Warriner and colleagues reported that the bioluminescent E. coli strains 
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inoculated on seeds can become internalized within the germinating mung bean sprouts, and 

cannot be removed by postharvest biocidal washing (Warriner et al., 2003c). 

Niemria’s group compared the method of sodium hypochlorite wash with irradiation to 

inactivate E. coli O157:H7 internalized in leaves of romaine lettuce and baby spinach 

(Niemira 2007). Their results showed radiation was more effective than chemical sanitizers 

against the E. coli O157:H7 cells internalized in leafy green vegetables, but with different 

responses on spinach and lettuce leaves. The follow-up experiment conducted by the same 

group (Nemecek et al., 2008) showed that the irradiation could effectively reduce viable E. 

coli O157:H7 cells internalized in lettuce, but with different responses due to the variety of 

lettuce. However, irradiation has not been commonly used for commercial post-harvest fresh 

produce yet. 

Limitations in the effectiveness of chemical sanitizers are due partly to the formation of 

microbial biofilms and the physical structure of the plants that limit the accessibility of 

sanitizers to the sites where microorganisms are resided (Annous et al., 2005; Doyle and 

Erickson, 2008).  

2.4.3 Internalization and Contamination Studies 

Post-harvest sanitizer wash is intended to reduce microorganisms on the produce surface 

but will not be effective if microbes are inside the tissues (Doyle and Erickson, 2008). 

Multiple studies have shown that internalization of E. coli O157:H7 in growing lettuce or 

spinach occurred (Cooley et al., 2003; Franz et al., 2007; Hora et al., 2005; Jablasone et al., 

2005; Solomon et al., 2002b; Warriner et al., 2003a) while others showed no internalization 

(Johannessen et al., 2005).  
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Plant roots (rhizosphere) appeared to be the preferable site for attachment and entrance, 

and the contamination was reported to be dose-dependent (Wachtel et al., 2002a). However, it 

remains controversial whether E. coli O157:H7 is capable of contaminating the edible part of 

a mature plant (phyllosphere) when introduced through soil or irrigation water. In spinach, 

internalization was observed in the root tissue or seedlings but not in mature leaves (Hora et 

al., 2005; Warriner et al., 2003a). Moreover, in most studies examining the attachment and 

internalization of enteric pathogens in plant tissues, inoculations were done at the seed or 

seedling stage only. However, since contamination events may occur at any stage throughout 

the cultivation period in the field, the effect of plants encountering E. coli O157:H7 at later 

growth stages on the contamination of mature plants needs to be established. 

Some previous studies indicated that pathogens can be incorporated into fresh produce 

(Burnett et al., 2000; Seo and Frank, 1999; Zhuang et al., 1995). However, Multiple studies 

have shown that internalization of E. coli O157:H7 in growing lettuce or spinach occurred 

(Cooley et al., 2003; Franz et al., 2007; Hora et al., 2005; Jablasone et al., 2005; Solomon et 

al., 2002b; Warriner et al., 2003a) while others showed no internalization (Johannessen et al., 

2005). In 2002, Guo and colleagues confirmed the possibility of uptake of Salmonellae by 

roots of hydroponically grown tomato plants (Guo et al., 2002). The Canadian group 

demonstrated that E. coli O157:H7 became established on the roots of growing plants while 

the risk associated with internalized bacteria in salad vegetables was low at harvest. A similar 

article published in 2005 reported that E. coli O157:H7 internalized in cress, lettuce, radish 

and spinach seedlings cannot be recovered within the tissues of mature plants (Jablasone et 

al., 2005). 
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However, it remains controversial whether E. coli O157:H7 is capable of contaminating 

the edible part of a mature plant (phyllosphere) when introduced through soil or irrigation 

water. In spinach, internalization was observed in the root tissue or seedlings but not in 

mature leaves (Hora et al., 2005; Warriner et al., 2003a). Moreover, in most studies 

examining the attachment and internalization of enteric pathogens in plant tissues, 

inoculations were done at the seed or seedling stage only. However, since contamination 

events may occur at any stage throughout the cultivation period in the field, the effect of 

plants encountering E. coli O157:H7 at later growth stages on the contamination of mature 

plants needs to be established.  

Although these conclusions somehow imply that it is a low risk exists for internalized E. 

coli O157:H7 in leafy greens, these experiments were all under selected simplistic conditions 

instead of the complex natural systems found in the farms (Doyle and Erickson, 2008). 

Therefore, the mechanisms of natural fresh leafy greens being internalized with E. coli 

O157:H7 is still uncertain and needs to be examined following environment protocols 

mimicking the agricultural growth conditions. 

To enhance produce safety, substantial research is needed to better understand factors 

that contribute to the contamination and internalization of pathogens in produce. The 

objective of this study was to determine the effects of plan maturity and bacterial inoculum 

level on the colonization and contamination of E. coli O157:H7 in the aerial leaf tissue of 

growing spinach plants in a greenhouse setting. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Bacterial Strain Characterization  

In this study, the specific GFP strain E. coli O157:H7 B6-914 (Fratamico et al., 1997) 

was used for its characters of green fluorescence, lacking Shiga toxins 1 and 2, and carrying 

an ampicillin resistance marker. Once it is inoculated into the spinach growth media, the 

GFP-labeled strain could help to trace the contamination on the surface and internal leaves. 

For the safety reason in the greenhouse setting, Shiga toxins associated with regular E. coli 

O157:H7 cells could be avoided by this GFP strain. Moreover, with the ampicillin resistance 

marker, it was easier to differentiate inocula bacteria from other bacteria in the greenhouse 

environment by using a selective media with ampicilin supplement. 

 To better understand the characters of the specific GFP-labeled E. coli O157:H7 strain 

B6-914, the presence of Shiga toxins 1 and 2, and the ampicillin resistance marker needed to 

be confirmed before actual work on spinach plants. Also, overnight culture growth 

concentration was observed by the OD600 so that the exact serial dilutions of bacteria 

concentrations could be made for the preparation of inoculum levels. 

3.1.1 Bacterial Strains 

Along with E. coli O157:H7 strain B6-914, two other enterohemorrhagic E. coli 

O157:H7 strains in our strain collection, CVM 97 (CDC strain G5244) and UMD 263 (CDC 

strain EDL 932 NalR+, ATCC 43894) were also tested as a comparison for producing Shiga 

toxins and ampicillin resistance marker and fluorescence under UV light. The strains were 

kindly provided by Dr. Jianghong Meng, at the Department of Nutrition and Food Science, 

University of Maryland. 
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3.1.2 Bacterial Growth Conditions and Morphology 

All the three E. coli O157:H7 strains were streaked onto different growth media, 

including tryptic soy agar (TSA), TSA with 100 µg/ml of ampicillin, MacConkey (MAC) 

agar, and sorbitol MacConkey (SMAC) agar. After overnight incubation at 37°C, all the 

cultures on the agar plates were observed for growth, colony morphology (color, shape, and 

size), and green fluorescence activity under UV light. All media were obtained from Difco, 

Becton Dickinson, Sparks, MD. All chemicals obtained from Sigma-Aldrich, St. Louis, MO. 

3.1.3 Detection of Shiga Toxin Genes 

Three fresh pure bacterial strains were obtained from TSA agar plates. For each culture, 

one single colony was selected and suspended in a 1.5 ml centrifuge tube containing 500 µl 

of TE buffer (10 mM Tris, pH 8.0, 1 mM EDTA). The bacterial suspension was then heated 

for 10 min at 95oC in a dry heating block to make DNA template and stored at -20oC. 

Two PCR assays were performed using the following primers: VT1-f: 5′-TGT AAC TGG 

AAA GGT GGA GTA TAC A-3′ and VT1-r: 5′-GCT ATT CTG AGT CAA CGA AAA ATA 

AC-3′ for stx 1 and VT2-f: 5′-GTT TTT CTT CGG TAT CCT ATT CC-3′ and VT2-r: 5′-GAT 

GCA TCT CTG GTC ATT GTA TTA C-3′ for stx 2 (Meng et al., 1998). The PCR product for 

stx 1 was a 210 bp fragment whereas a 484 bp fragment for stx 2. The PCR mixture contained: 

1.5 mM MgCl2; 0.2 µM of each dNTP (dATP, dCTP, dGTP, dTTP); 5 µl of template; 0.5 µM 

of each primer, and 0.02 U of Taq DNA polymerase (Promega, San Luis Obispo, CA) in a 

total of 25 µl. The prepared master reagent mix was distributed to PCR microcentrifuge tube 

reaction vessels. DNA templates were finally added into each tube. The thermocycling 

program contained 30 cycles of 1 min at 94°C, 1 min at 60°C, and 1 min at 72°C in C100 

Thermal Cycle PCR machine (Bio-Rad, Hercules, CA) 
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The PCR products were analyzed by running in 1.5 % agarose gel containing 1 µg/ml 

ethidium bromide submerged in 1 × Tris-acetate-EDTA (TAE) buffer. Under a UV 

transilluminator, the two pairs of primers listed could give 210 bp and 484 bp bands relative 

to molecular weight marker migration. 

3.1.4 Growth Concentration and OD600 Observation 

Aliquots of 1 ml of fresh E. coli O157:H7 B6-914 overnight culture from TSB broth 

were centrifuged at 9,000 g for 5 min, washed with 2 times of saline, and measured for OD600 

values in duplicate in a UV/Visible Spectrophotometer (Beckman Coulter DU 530, Fullerton, 

CA.). The same amount of sterile TSB broth was used as the zero bases. Serial dilutions of 

the overnight culture from 100 to 10-7 were made using the TSB broth (1 ml of culture into 9 

ml of broth). Dilutions from 100 to 10-3 were measured similarly for OD600 values. The exact 

cell concentration was quantified by using the standard spread-plating method with 0.1 ml of 

10-5, 10-6, and 10-7 dilutions on TSA agar plates. After overnight incubation, a standard curve 

of OD600 vs. Log CFU/ml was plotted out and used for the spinach inoculation experiment.  

3.2 Spinach Plant Cultivation 

3.2.1 Seeds Information 

A standard commercial variety of spinach seeds, El Grinta (Rogers/Syngenta Seeds, Inc., 

Boise, ID) was used in this study. A simple germination rate was pretested in the laboratory. 

Around 50 seeds were rinsed by tap water and incubated at room temperature in a pertri-dish 

with 10 layers of moist paper towel.  

3.2.2 Plant Growth Conditions 

Spinach was cultivated in a greenhouse facility located on the Louisiana State University 

campus as approved by the Inter-Institutional Biological and Recombinant DNA Safety 
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Committee. The greenhouse had a 14-h photoperiod and air-conditioned control of day and 

night temperatures of 24oC and 18oC, respectively. The humidity range was kept between 

50% and 85% throughout the cultivation period. Spinach seeds were chilled at 4oC for 3 days 

before randomly sowing in 8-inch pots filled with Sunshine Mix #1 (Sun Grow Horticulture, 

Bellevue, WA). The pots were randomly arranged on the greenhouse benches, with at least 10 

cm distances in between to avoid cross-contamination (splashing) during watering. After 

sowing, the pots were watered daily for 2-5 days to allow for seed germination. The plants 

were continuously watered daily after germination and fertilized weekly using fish emulsion 

(5-2-5; Ferti-Lome, BWI Cos., Inc., Jackson, MS) throughout the cultivation period until the 

final harvest time on day 44. During watering, special attention was paid so that the water 

level did not exceed 5 cm above the growth media levels in the pots, to avoid vertical 

bacterial transfer from the growth media to spinach leaves. 

3.3 Greenhouse Experiment 

3.3.1 Inoculum Preparation 

The GFP-labeled E. coli O157:H7 strain B6-914 was routinely cultured on TSA agar 

plate or in TSB broth containing 100 µg/ml of ampicillin at 37oC overnight with shaking. On 

the day of inoculation, fresh E. coli O157:H7 B6-914 culture was washed twice with sterile 

saline (0.85 % NaCl) and adjusted to the OD600 of 0.05 (ca. 1 x 107 CFU/ml). Serial dilutions 

were made in saline for inoculation at two levels, 103 and 107 CFU/ml. The exact cell 

numbers were enumerated by standard plating methods. 

3.3.2 Plant Inoculation 

Inoculation regime and harvest scheme are detailed in Table 1. Starting on day 9 after 

sowing, the bacterial inoculums were introduced into the plant growth media on a weekly 
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basis for a total of five times, i.e., on days 9, 16, 23, 30, and 37. Each plant was inoculated 

only once. Inoculation was done through surface addition of 1 ml of bacteria at two 

concentrations (103 CFU/ml and 107 CFU/ml) into the plant growth media within 5 cm radius 

of the plant. The total number of plants maintained in the greenhouse consisted of five 

replicates for each inoculation level/harvest week combination and five control plants with no 

bacteria inoculated for each harvest week.  

Table 1. Experimental variables for inoculation regime and harvest scheme 

Variables No. Specific levels for each variable 

Inoculation 
time 

5 Day 9 Day 16 Day 23 Day 30 Day 37 
 

Inoculation 
level 

3 
107 

CFU/ml 
103 

CFU/ml 
Blank 
control    

Harvest time 6 Day 11 Day 18 Day 25 Day 32 Day 39 Day 44 
Microbial 
analysis 

4 
Total  
leaf 

Surface 
leaf 

Internal 
leaf 

Growth 
media   

3.3.3 Plant Harvest 

Following inoculation, spinach plant samples were collected on the third day and weekly 

thereafter until the final harvest on day 44 (Table 2). On each sample collection day, three 

healthiest plants out of the five replicates designated for the inoculation level/harvest week 

combination were randomly selected. Each plant was aseptically removed from the pot using 

scissors to cut the plant leaf tissues 5 cm above the ground to avoid growth media 

contamination. The leaf tissues from the same plant were divided equally in half and placed 

into two Ziploc bags. Additionally, approximately 20 g of growth media in the pot within 5 

cm radius of the plant was collected with sterile gloves and placed into the third Ziploc bag. 

Collected spinach and growth media samples were sealed and transported to the laboratory on 

ice. The weight of each sample was recorded. 
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Table 2. Spinach plant inoculation with GFP-labeled E. coli O157:H7 strain B6-914 and sample harvest scheme 

Harvest 

week (days 

after 

sowing) 

No. of plants harvested 

Experimental plants inoculated once on different weeks at two bacterial inoculum levels (CFU) Control 

plants 

Total 

1st (day 9) 2nd (day 16) 3rd (day 23) 4th (day 30) 5th (day 37) 

103 107  103 107 103 107 103 107 103 107 

1st (day 11) 3 3 N/A N/A N/A N/A N/A N/A N/A N/A 3 9 

2nd (day 18) 3 3 3 3 N/A N/A N/A N/A N/A N/A 3 15 

3rd (day 25) 3 3 3 3 3 3 N/A N/A N/A N/A 3 21 

4th (day 32) 3 3 3 3 3 3 3 3 N/A N/A 3 27 

5th (day 39) 3 3 3 3 3 3 3 3 3 3 3 33 

6th (day 44) 3 3 3 3 3 3 3 3 3 3 3 33 

Total 18 18 15 15 12 12 9 9 6 6 18 138 
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3.4 Microbiological Analysis 

For microbiological analysis, the entire process was finished in a biosafety Level 2 

laboratory. A flowchart (Figure 2) illustrates the detailed procedure. First, two leaf samples 

(Leaf 1 and 2) from the same plant and one growth media sample were obtained from each 

spinach pot. Leaf 1 sample was used for total E. coli O157:H7 enumeration, whereas Leaf 2 

was used for examining the E. coli O157:H7 internalization. Additionally, rinse waters used 

for the internalized E. coli O157:H7 analyses, as described below, were enumerated for E. 

coli O157:H7.  

The spinach leaf samples used for total E. coli O157:H7 counts (Leaf 1) and the growth 

media samples were processed similarly. After adding 100 ml of TSB, the samples were 

homogenized for 1 min in a food stomacher (model 400, Tekmar Company, Cincinnati, OH). 

Aliquots (100 µl) of the homogenate and appropriate dilutions were spread-plated onto TSA 

supplemented with 100 µg/ml ampicllin. After overnight incubation at 37oC, the numbers of 

colonies were counted and also observed under UV light (for green fluorescent colonies). For 

samples containing no visible colonies, enrichment was performed in TSB overnight which 

was followed by spread-plate counting. 

Spinach leaf samples used for internalized E. coli O157:H7 counts (Leaf 2) were first 

rinsed with 100 ml of sterile distilled water, then submerged in 100 ml of 2% (w/v) calcium 

hypochlorite (Sigma-Aldrich) solution for 20 minutes to inactivate the residual surface 

microflora, which was followed by three rinses in 100 ml of sterile distilled water and one 

final rinse in 50 ml of sterile distilled water. After the final rinse, spinach leaf samples used 

for internal E. coli O157:H7 were enumerated similarly as described above for total E. coli 
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O157:H7 counts. Aliquots (100 µl) of the first and final rinses were spread-plated on TSA 

with ampicillin to examine the counts or presence/absence of the E. coli O157:H7 GFP strain. 

 

Figure 2. Microbiological analysis procedures for spinach leaves and growth media 

*Leaf 1 & 2: evenly separated same leaf samples; Growth media: soil-like media for spinach 

growth in pot; TSA/ampicillin: tryptic soy agar with 100 µg/ml of ampicillin supplement; dd 

water: double distillation water. 

3.5 Statistical Analysis 

The analysis of variance (ANOVA) followed by post-hoc multiple comparisons using the 

Least Significant Difference (LSD) test (SAS for Windows, v 9.1; SAS Institute Inc., Cary, 

NC) was performed to compare the contamination incidences of the E. coli O157:H7 GFP 

strain among spinach leaf samples harvested at different plant ages and at different time 

intervals between inoculation and harvest, as well as differences in the E. coli O157:H7 GFP 

strain counts (Log CFU/g) among growth media samples from plants inoculated at 107 CFU. 

Additionally, the independent Chi-square test was used to compare the contamination 

incidences of the spinach leaves for plants inoculated with two bacterial inoculums levels. 

Differences between the mean values were considered significant when P < 0.05. 
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CHAPTER 4 

RESULTS 

4.1 Bacterial Strain Characterization 

4.1.1 Morphological Characteristics 

The morphology of all the strains could be observed on either growth media or selective 

media. Differences in the morphology, as depicted by color, colony size and growth/ no 

growth on TSA, TSA with ampicillin, MacConkey agar, and Sorbitol MacConkey agar are 

illustrated in Table 3. On TSA with amicillin, only B6-914 strain showing grew 

demonstrating that the B6-914 strain has an ampicillin resistant marker, which could be used 

to differentiate it from other E. coli O157:H7 strains by using a growth media with ampicillin 

supplement. Also, the results showed that only B6-914 strain gave the green fluorescence 

color under the UV light. 

Table 3. Characteristics of E. coli O157:H7 strains used in the study 

4.1.2 The Absence of Shiga Toxins 

B6-914 strain does not have the stx gene, including both stx 1 and stx 2. For the purpose 

of inoculation spinach with B6-914 for safety reason, the strain proposed in our project was 

tested by general PCR. Another two E. coli O157:H7 strains were also tested by PCR as the 

comparison. The results from Table 4 showed that the B6-914 strain in our stock did not have 

Strain 

Growth, Color, and Morphology on Agar Plates 
Fluorescence 

under UV 
light 

TSA 
TSA with 
ampicillin 

MacConkey 
agar 

Sorbitol 
MacConkey 

agar 

B6-914 White, medium Size Growth Pink Colorless Green 
UMD 263 White, medium Size No Growth Pink Colorless None 
CVM 97 White, medium Size No Growth Pink Colorless None 
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either stx 1 or stx 2. As a result, this B6-914 without the stx genes, which can meet the 

requirement for greenhouse use, was utilized for E. coli O157:H7 inoculation on growing 

spinach plants. 

 

Table 4. PCR results of E. coli O157:H7 strains used in the study 

 

4.1.3 OD600 vs. Log CFU/ml Standard Curve 

The result of a triplicate test for the OD600 vs. Log CFU/ml standard curves is shown in 

Figure 3. Based on the figure, the relationship of E. coli O157:H7 B6-914 between OD600 and 

Log CFU/ml in TSB broth could be converted into the formula: Log CFU/ml = 0.45 Ln 

(OD600) + 9.3. Therefore, the two inoculum levels (103 and 107 CFU/ml) broths could be 

adjusted to correlative concentrations by serial dilutions. 

4.1.4 Summary of Strain Characteristics 

 From series of testing in the laboratorial experiment, the specific GFP-labeled E. coli 

O157:H7 strain B6-914 was confirmed for its characters of green fluorescence, lacking Shiga 

toxins 1 and 2, and carrying an ampicillin resistance marker. Therefore, once used as the 

inoculation strain into the spinach growing plants, the GFP-labeled strain could help to track 

the contamination on the surface, internal leaves, or growth media.  

Strain 
Shiga toxin types 

Stx 1 Stx 2 

B6914 Negative Negative 

UMD 66 Negative Negative 

UMD 263 Positive Negative 
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Figure 3. Standard curves of OD600 vs. Log CFU/ml of E. coli O157:H7 B6-914 strain 

*Three curves stand for a triplicate test for the standard curves. The final standard curve 
equation is Log CFU/ml = 0.45 Ln (OD600) + 9.3. The bacteria concentration 1 X 108 CFU/ml 
equals to 0.05 (OD600). 

 

4.2 Greenhouse Parameters during Cultivation Period 

 Although the greenhouse setting in LSU has an air-condition system, the temperature and 

humidity were monitored daily. The day and night (24-h period) temperature changes were 

recorded by the data logger and are showed in Figure 4. The daily temperatures ranged 

between 15oC and 30oC, with the highest average temperature 29.27oC at 3 pm, and lowest 

average temperature 17.44oC at 8 a.m. The average humidity was manually recorded and 

ranged from 50% to 85% during the entire experimental period. 
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Figure 4. Temperature Monitoring during 24-h period in the Greenhouse 

*The average temperatures were measured by the entire period (44 day) data.  

 

4.3 Microbiological Data 

4.3.1 Harvested Sample Weight 

 The leaf samples and growth media samples were first weighed before microbiological 

analysis. Figure 5 shows the spinach leaf weight by different harvest day from day 11 to day 

44. The weight ranged from 0.11 g to 2.00 g with an increasing trend according to the growth 

period. The soil weight ranged from 10.5 g to 80.2 g with a mean of 32.3 g. All the weight 

data were used to convert the CFU colony count into CFU/g in the microbiological analysis. 
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Figure 5. Spinach Leaf Weight by Harvest Day 

*Average of all the leaf samples on each harvest day was included.  

 

4.3.2 Internalization of E. coli O157:H7 in Spinach Leaves 

Among 120 spinach samples examined for internal E. coli O157:H7 contamination, only 

one yielded positive result (bold and underlined in Table 5). This incidence occurred in one of 

the three plants which were inoculated at 107 CFU level in the third week (day 23) and 

harvested in the same week (day 25). The contamination level was below the detection limit 

(10 CFU/ml) for direct plating but was observed after enrichment. The actual internal 

contamination level was less than 3.3 × 103 CFU/g when taken into account of the sample 

weight. Internal E. coli O157:H7 was not detected in subsequent sampling of plants 

inoculated at the same time and level.
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Table 5. Incidences of Spinach Leaf Contamination Following Experimental Inoculation of 
GFP-labeled E. coli O157:H7 Strain B6-914 at Various Plant Maturities and Different 

Bacterial Inoculum Levels 
Inoculation 

day 
Inoculum 

level (CFU) 
Leaf sample 

type 
Spinach age in days at the time of harvest 

11 18 25 32 39 44 Total 
9 103 Total 0/3 0/3 0/3 1/3 2/3 0/3 3/18 
  Surface 0/3 0/3 0/3 0/3 0/3 0/3 0/18 
  Internal 0/3 0/3 0/3 0/3 0/3 0/3 0/18 
 107 Total 0/3 0/3 0/3 1/3 0/3 0/3 1/18 
  Surface 0/3 0/3 0/3 1/3 0/3 0/3 0/18 
  Internal 0/3 0/3 0/3 0/3 0/3 0/3 0/18 

16 103 Total N/A 0/3 0/3 1/3 1/3 0/3 2/15 
  Surface N/A 0/3 0/3 0/3 1/3 0/3 1/15 
  Internal N/A 0/3 0/3 0/3 0/3 0/3 0/15 
 107 Total N/A 0/3 0/3 0/3 0/3 0/3 0/15 
  Surface N/A 0/3 1/3 0/3 0/3 0/3 1/15 
  Internal N/A 0/3 0/3 0/3 0/3 0/3 0/15 

23 103 Total N/A N/A 0/3 0/3 2/3 0/3 2/12 
  Surface N/A N/A 0/3 1/3 1/3 0/3 2/12 
  Internal N/A N/A 0/3 0/3 0/3 0/3 0/12 
 107 Total N/A N/A 3/3 0/3 3/3 0/3 6/12 
  Surface N/A N/A 2/3 1/3 1/3 0/3 4/12 
  Internal N/A N/A 1/3 0/3 0/3 0/3 1/12 

30 103 Total N/A N/A N/A 2/3 1/3 0/3 3/9 
  Surface N/A N/A N/A 1/3 1/3 0/3 2/9 
  Internal N/A N/A N/A 0/3 0/3 0/3 0/9 
 107 Total N/A N/A N/A 1/3 1/3 1/3 3/9 
  Surface N/A N/A N/A 0/3 1/3 0/3 1/9 
  Internal N/A N/A N/A 0/3 0/3 0/3 0/9 

37 103 Total N/A N/A N/A N/A 1/3 0/3 1/6 
  Surface N/A N/A N/A N/A 0/3 0/3 0/6 
  Internal N/A N/A N/A N/A 0/3 0/3 0/6 
 107 Total N/A N/A N/A N/A 2/3 1/3 3/6 
  Surface N/A N/A N/A N/A 1/3 1/3 2/6 
  Internal N/A N/A N/A N/A 0/3 0/3 0/6 

Total 103 Total 0/3 0/6 0/9 4/12 7/15 0/15 11/60 
  Surface 0/3 0/6 0/9 2/12 3/15 0/15 5/60 
  Internal 0/3 0/6 0/9 0/12 0/15 0/15 0/60 
 107 Total 0/3 0/6 3/9 2/12 6/15 2/15 13/60 
  Surface 0/3 0/6 3/9 2/12 3/15 1/15 9/60 
  Internal 0/3 0/6 1/9 0/12 0/15 0/15 1/60 
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4.3.3 Surface Contamination of E. coli O157:H7 on Spinach Leaves 

Among 120 spinach leaf samples examined for total leaf contamination, eleven out of 60 

(18.3%) plants inoculated at 103 CFU level were contaminated, compared to 13 out 60 

(21.7%) for those inoculated at 107 CFU level (Table 5). Similarly, a higher incidence of 

contamination was observed for surface leaf samples, with 5/60 (8.3%) and 9/60 (15%) for 

inoculations at 103 and 107 CFU levels, respectively. Nonetheless, the differences in 

contamination incidences observed between the two inoculum levels for both total leaf and 

surface leaf samples were not statistically significant (P > 0.05) as analyzed by Chi-square 

test. Additionally, most of the contamination incidences were detected after enrichment, 

indicating levels lower than the detection limit (10 CFU/ml) for direct plating. The five 

spinach leaf samples with countable numbers by direct plating were the total leaf samples for 

all three plants which were inoculated at 107 CFU level in the third week (day 23) and 

harvested in the same week (day 25), one surface leaf sample among the same three plants, 

and one total leaf samples among the three plants which were inoculated at 107 CFU level in 

the fourth week (day 30) and harvested in the same week (day 32).  

When grouping the incidences of leaf contamination by spinach age at the time of 

harvest, interestingly, none of the plants harvested during the first three weeks or the last 

week were contaminated for the 103 CFU inoculum level, regardless of the time of 

inoculation (Table 5). The contamination incidences clustered among leaf samples harvested 

when the plants were 4 or 5 weeks old. The association between contamination incidence and 

specific plant ages (4 and 5 weeks) was found to be statistically significant (P < 0.05). 

Similar findings were observed among plants inoculated at the 107 CFU level, although 
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contamination also occurred when the plants were at 3 or 6 weeks age (Table 5). Nonetheless, 

plants harvested at weeks 4 and 5 were found to have significantly higher incidence of 

contamination with the E. coli O157:H7 GFP strain (P < 0.05). 

The effect of harvesting at different days after inoculation on the contamination 

incidences of the spinach leaf samples is shown in Table 6. For 30 experimentally inoculated 

spinach plants harvested on day 44, none of the 15 plants inoculated at 103 CFU level were 

contaminated whereas 3 out of the 15 plants inoculated at the 107 CFU level were 

contaminated. One of the three contaminated plants was inoculated on day 30 and the other 

two were inoculated on day 37, one to two weeks before the harvest. Similar analyses were 

performed for plants harvested on 39, 32, and 25 days and data are shown in Table 6. Across 

these four harvest dates, close to 40.5% (15 out of 38) spinach leaf contamination occurred 

within 1 week after inoculation, and 60.5% (23 out of 38) contamination occurred within 2 

weeks after inoculation. Based on the statistical analysis, spinach samples harvested with 1 

and 2 weeks inoculation had significantly higher incidences of contamination compared to 

those harvested at a later time (P < 0.05).  

4.3.4 Survival of E. coli O157:H7 in the Growth Media 

The E. coli O157:H7 GFP-expressing strain was found in all growth media samples 

collected throughout the cultivation period. For plants inoculated at 103 CFU (n = 60), 

although recovered after enrichment, the GFP-expressing E. coli O157:H7 could not be 

detected for the majority of samples by direct plating, indicating the contamination levels 

below the detective limit (10 CFU/ml). In contrast, from plants inoculated at 107 CFU (n = 

60), all except one growth media sample had countable numbers via direct plating, indicating 
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higher levels of contamination. Figure 6 shows changes in the E. coli O157:H7 GFP strain 

concentrations (log CFU/g) in the growth media for plants inoculated at the 107 CFU level. A 

gradually reduced level of contamination was observed and this decreasing trend was found 

to be statistically significant (P < 0.05).  

 

Table 6. The Effect of Harvesting at Different Days after Inoculation (Time Intervals between 
Inoculation and Harvest) on the Incidences of GFP-labeled E. coli O157:H7 Strain B6-914 

Contamination of the Spinach Leaf Samples 

a Both total leaf and surface leaf samples from the same plants were contaminated with 
GFP-labeled E. coli O157:H7 strain B6-914. 

Harvest 
day 

Inoculum 
level (CFU) 

Leaf sample 
type 

Contamination 
incidence 

No. of contaminated samples (days 
between inoculation and harvest) 

44 103 Total 0/15 N/A 
  Surface 0/15 N/A 
 107 Total 2/15 1 (7); 1 (14) 
  Surface 1/15 1 (7) 

39 103 Total 7/15 1 (2); 1 (9); 2 (16); 1 (23); 2 (30) 
  Surface 3/15 1 (9) a; 1 (16); 1 (23) a 
 107 Total 6/15 2 (2); 1 (9); 3 (16) 
  Surface 3/15 1 (2); 1 (9); 1 (16) a 

32 103 Total 4/12 2 (2); 1 (16); 1 (23) 
  Surface 2/12 1 (2) a; 1 (9) 
 107 Total 2/12 1 (2); 1 (23) 
  Surface 2/12 1 (9); 1 (23) 

25 103 Total 0/9 N/A 
  Surface 0/9 N/A 
 107 Total 3/9 3 (2) 
  Surface 3/9 2 (2) a; 1 (9) 
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Figure 6. Fluctuation of E. coli O157:H7 GFP strain concentrations (in log CFU per gram) 
in the plant growth media when inoculated at 107 CFU/ml once on a weekly basis for five 

weeks, and analyzed 2 days after inoculation and weekly thereafter.  
 

*The weeks of E. coli O157:H7 GFP strain inoculation are indicated as follows: first week 
(right-slashed bars), second week (light dotted bars), third week (left-slashed bars), fourth 
week (plaid bars), and fifth week (vertical strip bars). When analyzed by ANOVA and 
least-significant difference among the means of the E. coli O157:H7 concentrations in the 
growth media after different gaps between inoculation and harvest. 
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CHAPTER 5 

DISCUSSION 

From series of testing in the laboratorial experiment, the specific GFP-labeled E. coli 

O157:H7 strain B6-914 was confirmed for its expression of green fluorescent protein, lacking 

Shiga toxins 1 and 2, and carrying an ampicillin resistance marker. Our study result suggested 

that the markers were stable in our greenhouse experiment. 

Leafy greens such as lettuce and spinach are a leading produce category among many 

fresh and fresh-cut produce items that have been increasingly involved in foodborne 

outbreaks (Buchanan, 2006; USFDA, 2008). A better understanding of the occurrence and 

factors affecting the internalization and contamination of foodborne enteric pathogens in 

leafy greens will have significant implications for prevention and control. It remains 

uncertain whether the adherence of enteric pathogens to produce tissues is due to passive 

physicochemical forces of the plants or active attachment processes involving specialized 

bacterial cellular mechanisms (Delaquis et al., 2007). Some studies reported that bacterial 

strains varied widely in their endophytic colonization abilities, which could be related to the 

plant defense mechanisms that targeted bacterial extracellular components (Dong et al., 2003; 

Iniguez et al., 2005). Interestingly, Solomon et al. (Solomon and Matthews, 2006) recently 

reported that the uptake of E. coli O157:H7 in lettuce is independent of any bacterial process, 

since dead cells and fluorescent microspheres were present in the aerial part of mature lettuce 

plants in a similar manner as live E. coli O157:H7 cells. The authors suggested that the 

uptake process may be governed by the plant instead of the organism, recommending 

commodity-specific investigations. Previous studies have demonstrated the internalization of 
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enteric pathogens in mature lettuce tissues via soil inoculation (Bernstein et al., 2007; Franz 

et al., 2007; Solomon et al., 2002b), but for spinach grown in soil inoculated with E. coli 

O157:H7, internalization was observed in roots but not in mature spinach leaves (Hora et al., 

2005; Jablasone et al., 2005; Warriner et al., 2003a). In this study, we found one incidence of 

internalization (out of 120 spinach samples examined) in the spinach leaves harvested on day 

25, suggesting that internalization was not readily occurring when the plants were grown in a 

greenhouse setting. Generally speaking, under greenhouse conditions, the possibility of 

external vectors (e.g. bird droppings or grazing wild animals) contaminating the spinach 

plants were largely minimized. In this study, we further reduced cross-contamination by 

randomly arranging the pots with sufficient separations and avoiding splashing during 

watering. Nonetheless, the risk of E. coli O157:H7 internalization needs to be further 

evaluated in field studies with conditions closely mimic the environmental conditions spinach 

encounters during the growing seasons. 

A previous report (Franz et al., 2007) underscored the importance of using a proper 

surface sterilization method in studies examining internalized pathogens in plants. In this 

study, a common chlorine solution, 2% (w/v) calcium hypochlorite solution for 20 minutes 

(Wachtel and Charkowski, 2002) was used and found to be an effective mechanism to remove 

residual surface microflora. The method was also found to be logistically easy when handling 

a large number of plant samples compared to methods using multiple sanitizing steps. 

In contrast to internalized contamination, surface contamination of the aerial leaf tissues 

was readily observed in this study, both introduced at 103 and 107 CFU level. Two 

mechanisms may help explain how surface contamination occurred. We did not cover the 
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plants with plastic at the growth media line which may result in cross-contamination of the E. 

coli O157:H7 GFP strain from the soil to the leaves during watering. Secondly, the 

ventilation system in the greenhouse may help bacterial cells to migrate from the soil onto the 

spinach leaves. An interesting observation was that surface spinach leaf contaminations 

clustered between 4 to 5 weeks of age at harvest, but not among leaves younger than 3 weeks 

of age. We hypothesize that plant defense systems may play a role here which are dependent 

on the developmental stage of the plant. Very few reports have examined the effect of plant 

age on the contamination of enteric pathogens. Bernstein et al. (Bernstein et al., 2007) 

assessed the contamination potential of lettuce of Salmonella enterica Serovar Newport 

added to the plant growing medium and reported that internalization of Salmonella via the 

root to the aerial tissues was identified in 33-day-old plants but not 17- or 20-day-old plants, 

and such contamination was stimulated by root decapitation. Another recent study reported 

that leaf age was a risk factor in contamination of lettuce with E. coli O157:H7 and 

Salmonella enterica, with the population size of the pathogens ca. 10-fold higher on the 

younger (inner) leaves than on the older (middle) leaves (Brandl and Amundson, 2008). The 

authors correlated the nitrogen content in the leaves with the likelihood of contamination as 

young-leaf exudates were 2.5 and 1.5 times richer in total nitrogen and carbon, suggesting 

nutritional content of the plant tissue played a role (Brandl and Amundson, 2008). Further 

studies assessing the association between spinach age and potential contamination of E. coli 

O157:H7 would provide practical means for developing strategies for control. 

Besides plant age as a factor affecting the interaction between foodborne pathogens and 

produce, previous studies have shown the effects of phytopathogens and protozoa to enhance 
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the internalization and persistence of human pathogens on produce leaves (Barak and Liang, 

2008; Brandl, 2008; Gourabathini et al., 2008). Other studies, on the other hand, showed no 

effect or even beneficial effect of phytopathogens on the survival of human pathogens on 

plants (Aruscavage et al., 2008; Cooley et al., 2006). Additionally, several studies have 

investigated genetic factors involved in the attachment and colonization of produce by human 

pathogens (Danhorn and Fuqua, 2007; Klerks et al., 2007; Palumbo et al., 2005). Future 

studies in these areas will lead to a better understanding of various factors that affect the 

contamination of produce by human enteric pathogens. 

In most reports examining the contamination of fresh produce with enteric pathogens, the 

levels of bacteria used were far greater than what may be found in an agricultural field, 

therefore, may only indicate the worst case scenario. Our data showed that inoculation levels 

(103 CFU and 107 CFU) affected the contamination incidences, corroborating previous 

studies (Wachtel et al., 2002a). 

Another interesting finding from this study was the effect of harvesting at different days 

after inoculation on the contamination incidences on the surface of spinach leaf samples. In 

the study by Bernstein et al. (Bernstein et al., 2007), the authors observed the presence of 

Salmonella in lettuce leaves 2 days post-inoculation but not 5 days later. Similar to their 

findings, we found that 60.5% of contamination incidences occurred within 2 weeks after 

inoculation, although some occurred as many as 30 days post-inoculation. As reviewed by 

Doyle and Erickson (Doyle and Erickson, 2008), the longer the interval between application 

of the contaminated vehicle and the harvest of the plant, the greater the likelihood that the 

produce would not be contaminated. It is therefore important to incorporate sufficient 
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intervals between potential contamination events and harvest, such as the minimum 120 days 

fertilization-to-harvest interval recommended by the National Organic Program and validated 

by some studies (Ingham et al., 2005).  

Similar to many previous studies which reported that E. coli O157:H7 can survive 

extended period in soil and environment (Islam et al., 2004; Natvig et al., 2002), our data 

indicated the presence of E. coli O157:H7 recovered from the growth media throughout the 

cultivation period (44 days) at both inoculum levels. 

However, only one strain of E. coli O157:H7 was used in the study and hence it had the 

limitation to represent other E. coli O157:H7 strains in the similar experimental procedure. It 

is possible that the pathogenic E. coli O157:H7 strains could have some other mechanisms to 

facilitate attachment of bacteria onto leaves. In addition, the effect of phytopathogens to 

enhance the ability of pathogenic E. coli O157:H7 internalization could not be known 

throughout this study. 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

This study aimed to determine whether E. coli O157:H7 would be present in the aerial leaf tissue 

of a growing spinach plant when inoculated via growth media by different levels of inoculums. 

The experiment used the specific GFP-labeled E. coli O157:H7 strain B6-914 as a trace marker 

in the inoculation during the entire cultivation period. By detecting the B6-914 strain in 120 

harvested spinach leave samples, it demonstrated that internalization of E. coli O157:H7 of growing 

spinach plant leaves under greenhouse conditions was a very rare event, but surface contamination 

did occur, primarily when the plants were harvested at age of 4 and 5 weeks. Interestingly, for the 

mature plants (after age of 5 weeks), the contamination rate was significantly lower than found in 

plants of younger age. Also, the effect of harvesting at different days after inoculation on the 

incidence of contamination of the spinach leaf samples was significant. The result showed spinach 

samples harvested with 1 and 2 weeks after inoculation had significantly higher incidences of 

contamination of E. coli O157:H7 compared with those harvested at a later time. 

This study also demonstrated that E. coli O157:H7 strain could survive in the growth media 

throughout the entire cultivation period (35 days) at either lower inoculation level (103 CFU) or 

higher (107). However, a decreasing trend of the concentration of E. coli O157:H7 was observed with 

a gradually reduced level of contamination. 

However, the findings in this study are subject to at least four limitations. First, as mentioned 

above, the study was conducted in a greenhouse rather than a field setting. The sample size included 

in this study was relatively small. Second, the bacterial inoculation levels used were greater than 

what may be found in an agricultural field. Third, stomaching was used in this study to assess the 
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uptake of E. coli O157:H7 into spinach leaves, which may not effectively release internalized 

populations from within leaves and hence underestimate the contamination levels. Additionally, the 

study used a single E. coli O157:H7 strain, hence, it is not clear how the results relate to other 

strains. 

In conclusion, the present study demonstrated that internalization of E. coli O157:H7 of 

growing spinach plant leaves under greenhouse conditions was a rare event, but surface contamination 

did occur, primarily when the plants reached 3 weeks of age. The finding that greater contamination 

occurred on the surface than internalized tends to support that the pathogen would have been deposited 

on the leaf surface before being internalized and hence would not have entered via the roots. 

Furthermore, the study provided important data to further assess the association between spinach age 

and potential contamination of E. coli O157:H7.  
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