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ABSTRACT 

Shrimp is one of the most common seafoods and a favorite among consumers. Like any 

other food there are safety concerns about shrimp.  Listeria species, Salmonella species, 

Clostridium species and Vibrio species are among the pathogens of prime importance.  Most of 

these pathogens can be eliminated by cooking.  However, the extent of cooking and temperatures 

greatly influence the safety of these foods. The current study is focused on the determination of 

minimum cooking temperatures for shrimp to eliminate Listeria species, Salmonella species and 

Vibrio species.  Shrimp were surface inoculated with the three different species mentioned above 

to about 5.00 log CFU/g of shrimp and then incubated for two days.  Shrimp samples were 

treated at five different temperatures on days 0 (day of inoculation), 1 and 2 by boiling.  The 

effects of heat treatments by boiling on bacterial counts were determined by plating and 

calculating the log CFU/g reduction for each temperature.  The experiment was repeated with 

different temperatures for each bacterium until the bacterial load in the shrimp was at non-

detectable levels.  The internal temperature of 85oC was the lowest temperature that was needed 

to kill all the bacteria tested.  Vibrio species were less resistant to heat with bacterial counts 

reaching non-detectable levels at 55oC.  75oC was the minimum temperature required to 

eliminate Salmonella species, while Listeria species showed highest resistance up to 85oC.  This 

study is mainly intended to design a simple, easy and unbiased consumer guide for cooking 

shrimp to enhance safety while handling and cooking them at home.  This can also serve as a 

guide for manufacturers of ready-to-eat shrimp products while designing and planning CCP’s in 

HACCP plans during production. 
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1.1 Introduction 

Seafood is a balanced food that is nutritionally rich and delectable.  Fresh seafood, in 

particular shrimp are highly perishable and microbiological spoilage is one of the important 

reasons that limit the shelf-life and safety.  Fresh seafood can be contaminated at any point from 

rearing or harvesting to processing, transport or cross contamination while handled by the 

consumer at home.   

` There are incidents of shrimp contaminated with foodborne pathogens like Listeria 

species, (Lennon and others, 1984; Mu and others, 1997; and Weagant and others, 1988), 

Salmonellaspecies (Heinitz et al., 2000) and Vibrio species (Fatma et al., 2005).  These 

foodborne pathogens cause serious health risks if the food is not cooked adequately to kill them.  

Most of the time consumers rely upon the color of the flesh as a parameter for doneness during 

cooking which does not ensure the safety.  

  Heat treatment is an important method to reduce the microbial load in food products.  In 

shrimp, heat treatment has an important role in the/ safety of the product.  The freshness and 

safety of seafood especially shrimp varies depending on many factors like contamination during 

farming, harvesting and handling or other post-harvest activities.  Consumers can store fresh raw 

shrimp for 2 days at refrigerated temperatures ranging from 0.5 - 4.5oC (Tim Roberts and Paul 

Graham, 2001).  However, at this temperature some pathogenic bacteria like L. monocytogenes 

could grow.  Therefore, in our current study, 3oC has been used for storage to study the effect of 

refrigerated storage on thermal resistance of three bacterial species.  Internationally, there have 

been several reports of farmed shrimp being contaminated with Salmonella due to their culture in 

poor quality waters (Phan et.al., 2005, Koonse et al., 2005).  In many countries the acceptable 

microbiological level in cooked crustaceans is set at 0 bacteria per 25 grams of sample (Osborne 

et al., 2003).  The three species of Vibrios used in this study have been cited as the reasons for 
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various foodborne outbreaks especially associated with seafood (CDC, 2005).  Establishment of 

safe guidelines for heat processing of seafood is mandatory for the prevention of V. vulnificus 

septicemia.  (Kim et al., 1997).  Shrimp present a particular risk for bacterial foodborne diseases 

because although they are generally cooked, they are often consumed only lightly cooked or 

even raw (Dalsgaard et al., 1995). 

Thermal resistance can vary from one bacterium to another and also between species.  

Thermal resistance can also be affected by other factors such as conditions under which foods 

contaminated with pathogens are stored.  Consumers generally store the shrimp at refrigerated 

temperatures for 1or 2 days before using.  Therefore, studying the effect of duration of cold 

storage (3oC) on thermal resistance is also an important factor for designing safe cooking 

temperature guides for consumers.  Our study is aimed at determining the minimum internal 

temperature of the shrimp required to reduce Listeria species, Salmonella species, and Vibrio 

species to non-detectable levels by boiling the shrimp samples to reach different internal 

temperatures. 

1.2 References 

Lennon, D., Lewis, B., Mantell, C., Becroft, D., Dove, B., Farmer, K., Tonkin, S., Yeates, 
N., Stamp, R., and Mickleson, K. 1984.  Epidemic perinatal Listeriosis.  Pediatr. Infect.Dis. 
3(1):30-34. 

Mu, D., Huang, Y. W., Gates, K. W., and Wu, W. H. 1997. Effect of trisodium phosphate 
on Listeria monocytogenes attached to rainbow trout (Oncorhynchus Mykiss) and shrimp 
(Penaeus spp.) during refrigerated storage. J. Food Safety 17:37-46. 

Weagant, S.D., P.N. Sado, K.G. Colburn, J.D. Torkelson, F.A. Stanley, M.H. Krane, 
S.E. Shields, and C.F. Thayer. 1988. The incidence of Listeria species in frozen seafood 
products. J. Food Prot. 51:655-657. 

Heinitz, M.L., Ruble, R.D., Wagner, D.E., Tatini, S.R., 2000.  Incidence of Salmonella in 
fish and seafood.  J. Food Prot. 63, 579–592. 

Fatma Arik Colakoglu , Aliye Sarmasik 1, Burcu Koseoglu, Occurrence of Vibrio spp. 
and Aeromonas spp. in shellfish harvested off Dardanelles cost of Turkey Food Control 17 
(2006) 648–652. 
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2.1 Shrimp 

Shrimp is one of the most popular and valuable seafood products in the world with 

production at about 3.5x105 tons.  The consumption of seafood among American consumers has 

steadily increased over the past decade and shrimp has risen to the position of America’s number 

one favorite seafood (NOAA, 2008) leaving behind canned tuna which previously held this 

position.  This could be due to greater awareness of health attributes of seafood.  The U.S. 

Department of Agriculture projects that seafood and fish will increase 26% in per capita 

consumption between 2000 and 2020 (Sloan, 2005).  Increasing consumer awareness of the 

nutritional value of seafood has stimulated a strong demand for seafood and seafood products 

(Pigott and Tucker, 1990). 

2.2 Foodborne Illnesses; Risks Associated with Shrimp 

Consumption of foods contaminated with foodborne pathogenic microorganisms and 

toxins produced by them cause deaths, illnesses, hospitalization, and economic losses.  

Foodborne illnesses have major implications for the food industry through lawsuits, lost 

earnings, and damaged consumer confidence (Dalton and Douglas 1996; O‘Brien and others 

2002; Dalton and others 2004).  Foodborne illnesses cause a high cost to the US economy and 

results in thousands of deaths each year.  The Center for Disease Control and Prevention has 

stated that foodborne diseases cause approximately 76 million illnesses, 325,000 

hospitalizations, and 5000 deaths in the United States each year, in which about 14 million 

illnesses, 60,000 hospitalizations, and 1800 deaths are caused by known pathogens (Mead et al., 

2000).  Many of today’s concerns for pathogens such as Campylobacter jejuni, Escherichia coli 

O157:H7, L. monocytogenes, and Cyclospora cayetanensis were not recognized as causes of 

foodborne illnesses about 20 years ago (Mead et al., 2000).  There are a series of techniques such 
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as, washing methods, chlorine sprays, organic acid sprays and steam treatment procedures to 

reduce the microbial load on food (Kochevar et al., 1997; Reagan et al., 1996; Cutter and 

Siragusa, 1995; and Prasai et al., 1995).  Still, these various methods have not reduced the 

numbers of recalls and outbreaks. 

Contamination by bacterial pathogens e.g. Salmonella, Vibrio, and presence of antibiotics 

may have potentially hazardous effects on consumers, handlers, and the environment. It is 

largely accepted that the microbiological quality of the production environment impacts the 

microbiological quality of the fish and ultimately the processed product.  Bacterial pathogens 

represent a threat to human health when they are consumed raw. 

  Raw fish and shrimp were linked to an outbreak of L.  monocytogenes which caused nine 

deaths in New Zealand (Lennon and others, 1984).  Since this outbreak, the seafood industry has 

been concerned with the ability of L.  monocytogenes to grow to high levels in shrimp when 

stored at refrigerated temperatures (Lennon and others, 1984; Mu and others, 1997; and Weagant 

and others, 1988).  Consumers buy raw shrimp from their local grocery store and cook them at 

home which greatly reduce the risk of outbreaks but the extent of cooking depends upon various 

factors like the size of the shrimp, and type of cuisine or dish.  The shelf life of seafood is greatly 

influenced by microbial load and moreover these are highly perishable commodities (Mu et al., 

1997).  Food safety becomes more complicated when foodborne pathogens like L. 

monocytogenes, V. cholerae 01 and Salmonella are involved because seafood processing plants 

are ideal environments for these kinds of organisms to proliferate adding to the ever growing 

issues of food safety. 

For decades the consuming public has believed that “fresh is best.”  Unfortunately, fresh 

is not always best, sometimes it’s old, rancid, or loaded with bacteria.  While consumers always 
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say they prefer fresh rather than frozen, previously frozen or “thawed for convenience,” the fact 

is most of the shrimp sold in the domestic markets has been frozen.   

Bacteria are part of our environment.  Where there is food there may be bacteria.  Proper 

food handling and cooking are the best ways to prevent foodborne illness.  Consuming raw or 

undercooked seafood or shellfish may increase the risk of foodborne illness, especially for 

children, the elderly, pregnant women and those who have chronic illnesses or compromised 

immune systems. 

2.3 Pathogens 

2.3.1 Listeria Species 

In the United States there is zero tolerance policy for L. monocytogenes (Cooked 

crustaceans).  Listeria is a major concern for the seafood industry as well as the common 

consumers because its consumption can result in death. A high fatality rate was associated with 

Listeriosis resulting in L. monocytogenes being responsible for 27.6% of all deaths due to 

foodborne pathogens in the United States (Mead et al, 1999).  The projected cost relating to L. 

monocytogenes alone was estimated at $233 million per year in the US (Kanuganti et al., 2002).  

It is widespread in the environment and can colonize on processing surfaces.  It can multiply on 

foods stored at refrigerated temperatures. 

Listeria species are found in almost every medium in the environment, soil, excrement, 

canal waters, plants, animals, animal feeds and foods.  They contaminate food by various means 

from these sources; because of their ability to grow at +4oC can contaminate many kinds of foods 

under every kind of storage condition.  It is not very hard for them to enter seafood.  It is also 

very important to eliminate pathogens and keep them away. 

Researchers have studied the thermal resistance of Listeria innocua, Listeria seeligeri, 

Listeria welshimeri, and L. monocytogenes (Bradshaw et al., 1991).  They found that the heat 



8 
 

resistance of L. monocytogenes appeared somewhat greater than other Listeria species in milk 

products.  

L. monocytogenes has been shown to grow at refrigeration temperatures by several 

studies (Harrison et al., 2000).  Investigators have studied the growth of L. monocytogenes under 

modified atmospheres of 5% O2: 10% CO2: 85% N2 and at 4 and 8°C (Harrison et al., 2000).  

The general relationship between the maximum and minimum specific growth temperature (-2 to 

45ºC) was studied for L. monocytogenes by Bajard et al., (1995).  These investigators showed the 

existence of growth between 10 and 15ºC, furthermore below these temperatures L. 

monocytogenes grew faster than would be expected (Bajard et al., 1995). 

  In general it has been reported that L. monocytogenes can survive for 10-30 days in tap 

water at 28-30°C and for 7-110 days at 5-10°C.  In pond water, L. monocytogenes has been 

reported to survive for more than 8 weeks (air temperature – 26 to 9°C), (Bremer et al., 2003).  L. 

monocytogenes has been reported to survive for at least 3 weeks and probably significantly 

longer in seawater.  Survival in seawater was dependent on seawater temperature and                   

L. monocytogenes strain (Bremer et al., 2003).  

  L. monocytogenes has many adaptive physiological traits that enable it to survive under a 

wide range of environmental conditions.  It can overcome various types of stress, including the 

cold stress associated with the low temperatures of food production environments (Jemmy et al., 

2006).  Researchers have proposed that this cold tolerance phenomenon in these microorganisms 

is a function of multiple genetic and physiological factors that sense the cold stress threat and 

efficiently induce appropriate cellular responses.  These mechanisms render the current use of 

low temperatures and refrigeration, which control most foodborne pathogens in food 

environments (Wouters et al., 2000) 
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   Slabyj et al., (2008) reported that L. monocytogenes could survive for five-minutes in 

boiling water inside shrimp tails.  It is important to note that the pathogen was not detected 

immediately after the boiling, but was detected when the shrimp tails were analyzed after three 

days of refrigeration.  The delayed recovery of L. monocytogenes from shrimp tails is important 

to note because it implies that the few surviving cells that had sustained sub-lethal damage 

during processing could (given three days to recover) repair the damage that was sustained 

during the boiling step at refrigerated temperature.  The recovery of the pathogen is not 

unexpected since shrimp is a nutritious product, which will support bacteria growth.   

2.3.2 Salmonella Species 

Acute gastroenteritis caused by Salmonella species continues to be a worldwide public 

health concern (Obana et al., 1996).  In humans, Salmonellosis is usually due to the consumption 

of contaminated food or water.  The fecal wastes from infected animals and humans are 

important sources of bacterial contamination of the environment and the food chain (Thong et 

al., 2002).  During a 9-year study (1990–1998), the FDA noted an overall incidence of 

Salmonella in 7.2% of 11,312 samples from imported and 1.3% of 768 samples from domestic 

USA seafood (Heinitz et al., 2000).  Salmonella has also been detected in US market oysters 

(Brands et al., 2005) and in other imported seafood from different countries (Khan et al., 2006).  

The incidence of Salmonella in seafood is highest in the central Pacific and African countries 

and lowest in Europe including Russia, and North America (12% versus 1.6%)(Heinitz et al., 

2000).  The presence of Salmonella species in seafood has been reported in Vietnam (Phan et 

al.,2005), India (Varma et al., 1985; Iyer and Shrivastava, 1989; Kumar et al., 2003), Sri Lanka 

(Fonseka, 1990), Thailand (Rattagol et al., 1990), Taiwan (Chio and Chen, 1981) and Japan 

(Saheki et al., 1989) which make significant exports of shrimp to US markets. 
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USFDA has conducted studies which showed that aquacultured seafood was more likely 

to contain Salmonella than wild-caught seafood (Koonse et al., 2005).  Many researchers also 

have evaluated the presence of Salmonella, fecal coliforms and E. coli in shrimp aquaculture 

ponds (Bhaskar et al., 1998; Iyer and Varma, 1990; Reilly and Twiddy, 1992; Dalsgaard et al., 

1995).  The relationship between the occurrence of Salmonella in shrimp from aquaculture 

operations and the concentration of fecal bacteria in the source and grow-out pond water has 

been recently described by Koonse et al (2005).  These could be the possible routes of 

contamination of Shrimp and other seafood with the pathogen. 

2.3.3 Vibrio Species 

Scientific studies conducted in countries within warm climate zones demonstrated that 

shellfish can be contaminated by a variety of pathogenic organisms (Colakoglu et al, 2005). 

Some members of Vibrionaceae have a specific emphasis among these pathogenic organisms.  

The members of Vibrionaceae such as Vibrios, Aeromonas, and Plesiomonas are natural 

contaminants of aquatic habitats which are also inhabited by shellfish (Huss, 1997; Oliver, 

1989).  Fatma et al., (2005) have isolated Vibrio species from raw shrimps in Turkey.  During 

the last several decades researchers have continuously emphasized foodborne infection cases in 

humans which were caused by consuming contaminated fresh-raw shellfish (Colakoglu et al., 

2006).  Occasionally, Vibrio species has been identified as the most significant cause of 

foodborne hospitalizations; even as a cause of death (Diesterweg, 1992; Kunz, 1988). The 

magnitude of the risk increases when food preparation and consumption trends change towards 

raw or undercooked seafood (Stolle, 2002). 

V. cholerae 01 due to its higher resistance compared to the other microorganisms, could 

lead to safety hazards in seafood products (Rippen & Hackney, 1992).  Shrimp are cooked at 

home by the consumer, or in commercial/institutional settings.  This reduces the number of 
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microorganisms in shrimp (Erdogdu et al 2001), but the extent of cooking greatly plays a role in 

destruction of this bacteria.  

 V. cholerae O1 is recognized as an autochthonous bacterium in the marine environment 

(Colwell et al., 1981). Marine foods have been identified as vehicles for the transmission of 

cholera (Centers for Disease Control, 1986a, b, 1991a, and b).  The factors and mechanisms that 

affect the survival in the aquatic environment are not completely understood.  But some research 

groups have stated that this pathogen is able to attach to abiotic surfaces, to zooplankton and 

phytoplankton, and to the carapaces of crustaceans such as shrimp and crab (Castro-Rosas and 

Escartı´n 2002; Hood and Winter, 1997; Huq et al., 1983, 1984, 1986, 1990; Tamplin et al., 

1990).  Vibrios are generally considered to be heat sensitive (Hackney and Dicharry, 1988) but 

there are some reports which show that the V. cholerae 01 can show some resistance in hot foods 

(Makukutu and Guthrie, 1986). 

2.4 VBNC - Viable but Non Culturable State 

Viable but Non-Culturable state (VBNC) trends have been observed in bacteria such as 

Listeria, Salmonella and V. cholerae. Both O1 and O139 strains of vibrio cholerae, may also be 

singled out because it has been suggested that the VBNC state accounts for the seasonal nature of 

cholera outbreaks due to survival for long periods e.g. in river sediments (Oliver, 2005). 

2.5 Foodborne Outbreaks 

2.5.1 Occurrence of Foodborne Disease Outbreaks 

Of the places identified, the frequency of foodborne disease outbreaks in the United 

States is listed as follows by The Idaho Food Safety and Sanitation Manual 

• Restaurants, cafeterias, delicatessens and other commercial food establishments                         

(57%)  

• Homes (29%)  
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• Schools (6%)  

• Church functions (3%)  

• Picnics (3%)  

• Camping (2%)  

Because many foodborne disease outbreaks are not recognized or just considered "a bug 

that's going around," many foodborne disease outbreaks go unreported.  It is estimated that the 

actual number of outbreaks is 10 to 100 times more than reported. 

 2.5.2 Causes of Outbreaks 

• Investigations of foodborne disease outbreaks have revealed the following as the most 

important contributing factors.  ( Idaho food safety and sanitation manual) 

• Improper holding temperatures (34%)  

• Poor personal hygiene (18%)  

• Inadequate cooking (15%)  

• Contaminated equipment (14%)  

• Food from unsafe source (9%)  

• Other (10%)  

2.6 Food Safety- Cooking 

In the past century, advances in making the food supply safe for consumers have 

occurred with the use of irradiation and other thermal treatments as new technologies, however 

we are still having outbreaks related to seafood.  These technologies have largely not been 

accepted by the consumer.  One of the main reasons is the lack of non-biased information to the 

consumer (Skovgaard, 2007).  A lot of foodborne outbreaks occur due to improper cooking of 

food by consumers.  There is a need for consumer friendly guidelines in order to ensure 

maximum possible food safety. 
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Cooking processes are not usually designed to eliminate spores of pathogens (FDA, 

2001; Rippen 1998).  When discussing cooking, we must be aware that the core of the food 

particles heats significantly slower than the surrounding liquid.  Storing the cooked shrimp under 

refrigeration for a day results in very little chance of bacterial infection but it is not guaranteed. 

The thermo tolerance of L. monocytogenes is estimated to be one of the highest among 

nonperformers.  Inadequate cooking was cited as a contributing factor in 67% of the Salmonella 

related outbreaks and has also been investigated as a source of Listeriosis (Bean and Griffin, 

1990; D’Sa et al., 2000). 

Foodborne pathogens can have different responses or reactions after exposure to stresses 

or sub-lethal treatments.  One of responses is the sigma factor RpoS, or the stationary phase 

sigma factor, which has been identified in a number of Gram-negative bacteria and similar 

systems operate in other bacteria (Skovgaard, 2007).  The RpoS response confers resistance to a 

range of stresses, and exposure to one factor such as low pH or high osmotic pressure, can confer 

increased resistance to other stresses such as heat.  Some research groups have also noted that the 

resistance can be contagious (Skovgaard, 2007).  The implication of this for food safety is 

considerable because not only do they suggest that stresses micro-organisms can encounter 

during food processing might increase resistance to other stresses, but they could also increase 

the virulence of any pathogen present (Adam and Moss, 2000). 

A study by Guzewich and Ross’s (1999)  that reviewed 81 foodborne outbreaks from 

1975 to 1998 found that 89% of these outbreaks were associated with the transmission of 

pathogens to foods by workers’ hands.  Ha and others (2003) suggested that drinking water, 

employees’ hands, refrigerators, and aprons obtained from school foodservices could also be 

factors related to foodborne illness.  This emphasizes that contamination of the food can also 
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take place at and during cooking and handling.  The immediate and important measure to 

overcome this problem is cooking which can eliminate the pathogens. 

Risk factors identified as causes for foodborne illness are foods from unsafe sources, 

inadequate cooking, improper holding temperature, contaminated equipment, and poor personal 

hygiene (USDHHS-FDA-CFSAN, 2000).  Apart from this while cooking, cutting boards may 

cause cross-contamination after they have been sanitized in the dishwasher (Sneed and others 

2004; Staskel and others 2007). 

Inadequate cooking and storage of food is considered to be the main cause of foodborne 

infection, (Ryan et al., 1996) it has also been suggested that domestic household conditions and 

inadequate heating account for 11% and inappropriate storage for up to 50% of outbreaks.  This 

leaves room for extensive research in food safety for developing guidelines at the consumer or 

domestic house hold level that will aid in reducing the number of outbreaks. 
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CHAPTER 3 

SAFE COOKING TEMPERATURES TO DESTROY VIBRIO SPP, 
LISTERIA SPP AND SALMONELLA SPP ON SHRIMP 
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3.1. Methods and Materials 

3.1.1 Culture Preparation 

 Vibrio cholerae 01, Vibrio parahaemolyticus (ATCC 33847) and Vibrio vulnificus 

(ATCC 1007), Salmonella enteriditis(13076), Salmonella infantis (CDC, Atlanta) and 

Salmonella typhimurium (ATCC 14028), Listeria innocua(Lm F4248.  CDC, Atlanta), Listeria 

monocytogenes(1/2a) (Lm F4263, CDC, Atlanta)  and Listeria welshimeri (ATCC, 35897) were 

obtained from the Louisiana State University, Department of Food science culture collection.  

Frozen pure cultures were thawed and a loop full was streaked on nutrient agar for V. cholerae 

01 and Nutrient agar with 2% salt for V. vulnificus and nutrient agar with 3% NaCl slants for V. 

parahaemolyticus.  Salmonella enteriditis, Salmonella infantis and Salmonella typhimurium were 

streaked on BHI agar slants and Listeria innocua, Listeria monocytogenes (1/2a) and Listeria 

welshimeri were streaked on TSB agar slants and incubated for 16 hrs at 37oC after that these 

slants were maintained at room temperature for future use.  Vibrios were sub cultured by 

suspending a loop full of cells from nutrient agar slants to nutrient broth with NaCl 

supplemented according to the requirement of each species.  Listeria species and Salmonella 

species were sub cultured into TSB and BHI broths respectively and incubated at 37oC and this 

process was repeated before using the cultures for inoculation studies. 

3.1.2 Sample Preparation 

Shrimp samples were purchased from a local seafood market.  The samples were sorted 

for uniform weight and only samples weighing 72±3 grams were selected as larger shrimp take 

more time to reach the internal temperature.  Samples were tested for the presence of Vibrio 

species following the protocols explained in the FDA/BAM rules of food testing.  All the 

samples used in this study were free of Vibrio species.  These samples were stored at -20oC until 
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the next day.  On the day of inoculation the samples were thawed at room temperature and were 

first washed thoroughly with tap water and then with sterile distilled water.  Fifty ml of 

respective 16 hour culture was added to a sterile container holding 1,000 ml of sterile 0.1 % 

Peptone water.  The shrimp samples were soaked in culture solution for 30 minutes and then 

allowed to air dry for about 1 hour.  This process was followed for all the 9 bacteria used in this 

experiment.  The final concentration of the bacteria was about 5.00 to 6.00 log CFU/g.  

After inoculation the shrimp samples were randomly picked and separated into three 

different portions and were assigned the following Day 0, 1 or 2.  The samples were packed in 

double layered freezer bags and were stored at 3oC in an incubator until treated. 

3.1.3 Heat Treatment – Boiling 

 The day of inoculation was designated day 0 and immediately after surface inoculation and 

drying, shrimp samples were placed in a boiling water bath and were removed at different 

internal temperatures.  Thermometer probes with digital display were used for monitoring the 

temperatures.  The thermometer probe was inserted at the cold spot of the whole shrimp which 

was between the third and fourth abdominal segment.  Two samples were inserted with the 

thermometer probes and temperatures were monitored individually.  Shrimp samples were 

subjected to internal temperatures ranging from 30oC to 50oC for Vibrio species, 50oC to 75oC 

for Salmonella species and 65oC to 85oC for Listeria species.  When the internal temperature of 

the shrimp samples attained the predetermined temperature the samples were quickly removed 

from the water bath and immediately transferred aseptically to pre-labeled Whirl-Pak bags using 

sterile stainless steel tongs.  These bags containing the heated shrimp samples were immediately 

plunged into an ice water bath in order to stop further cooking of the sample and were left in the 

ice bath for 1 minute and then weighed. 
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3.1.4 Enumeration of Bacteria 

The weight of the samples was recorded on the exterior of the bags.  Equal (wt/vol) 

amounts of PBS were added to the samples and then they were stomached to homogenize.  

Homogenized samples were transferred into a sterile filter bag.  From here the filtered sample 

was obtained for subsequent decimal dilutions.  Then each dilution was plated in triplicate on 

Thiosulphate Citrus Bile Salts (TCBS) plates (Acumedia, Baltimore, MD, U.S.A.) for Vibrios  

(Ali et al., 2005), Xylose lysine deoxycholate agar (XLD agar) plates (Acumedia, Baltimore, 

MD, U.S.A.) for Salmonella species (Nye et al., 2001) and Modified Oxford Agar plates 

(Acumedia, Baltimore, MD, U.S.A.)  for Listeria species (Beverly et al., 2006).  The same 

procedure was followed for all the temperature treatments. 

Day 1 and Day 2 —the samples designated as day 1 or day 2 were taken out of the 

incubator and the above said procedure for heat treatment and enumeration was followed.  The 

experiment was repeated three times for each of the species used and the values were analyzed. 

3.1.5 Verification Studies 

On Day 0, Day 1 and Day 2 for each bacterial pathogen used two shrimp samples were 

cooked to the assigned highest internal temperature.  The cooked samples were then incubated at 

37oC for 24 hours .After incubation the samples were stomached by adding equal (wt/vol) 

amount of sterile PBS, filtered in a sterile filter bag and the filtrate used for subsequent dilutions 

which were plated in triplicates on respective enumeration media for each bacteria. 

3.1.6 Statistical Analysis 

Differences in survival of Vibrio species, Salmonella species and Listeria species were 

analyzed at different internal temperature treatments  for significance using Student’s t test 

following one-way analysis of variance (ANOVA) JMP-IN (version 5.0, SAS Inst. Inc., Cary, 
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North Carolina, USA).  The statistical difference was set at p < 0.05.  All experiments were done 

in triplicate. 

3.2 Results 

V. vulnificus, V. parahaemolyticus and V. cholera 01 inoculated shrimp samples showed  

different responses to cold storage at 3oC and also to the thermal treatment by boiling to different 

internal temperatures.  The thermal resistance patterns varied both by the species and also by the 

day of storage. 

On day 0, the initial counts of all the three Vibrio species inoculated onto the surface of 

shrimp samples were about 5.00 log CFU/g.  When shrimp samples when subjected to heat 

treatment by boiling to different internal temperatures, all three Vibrio species showed 

significant reduction in bacterial counts.  The counts of V. cholerae 01 and V. parahaemolyticus 

at 35oC internal temperature were about 2.35 and 2.12 log CFU/g, and V. vulnificus was the most 

sensitive with 1.98 log CFU/g.  When the shrimp samples were treated to reach the internal 

temperature of 40oC all the three Vibrio species were reduced to non-detectable levels (Fig.1a). 

 
Fig.1a. Thermal resistance of V. vulnificus, V. parahaemolyticus and V. cholerae 01 at different 
internal temperatures in shrimp when subjected to boiling on day 0.  UC = Uncooked shrimp 
sample. Data presented in the bar diagram is the mean of three different experiments and the bars 
with same data letters are not significantly different from each other.  (p<0.05) 



24 
 

Storing the shrimp samples inoculated with Vibrio species at 3oC for one day resulted in 

0.78, 0.82 and 0 .54 log CFU/g reduction of V. parahaemolyticus, V. vulnificus and V. cholerae 

respectively (Fig.1b). 

  An internal temperature of 45oC was lethal enough to reduce V. vulnificus to non-

detectable levels and reduce V. cholerae and V. parahaemolyticus to 1.6 and 0.8 log CFU/g, 

respectively for sample stored first day prior to boiling.  The highest internal temperature that 

was necessary to reduce all the three Vibrio species to non-detectable levels on day 1 was 50oC. 

 

 
Fig.1b. Thermal resistance of V. vulnificus, V. parahaemolyticus and V. cholerae 01 at different 
internal temperatures in shrimp when subjected to boiling after storing at 3oC for 1 day. UC = 
Uncooked shrimp sample.  Data presented in the bar diagram is the mean of three different 
experiments and the bars with same data letters are not significantly different from each other.  
(p<0.05) 
 

On day 2,  V. vulnificus, V. parahaemolyticus and V. cholerae 01  counts inoculated onto 

the surface of shrimp samples and  stored at 3oC were  significantly reduced by  1.16, 1.11 and 

0.8 log CFU/g (Fig.1c) after 48 hours of storage. 

Shrimp samples stored for 2 days at 3oC showed a different pattern of thermal resistance 

at 40o C for V. cholera 01, V. parahaemolyticus and V. vulnificus with counts of 2.42, 2.13 and 
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2.01 Log CFU/g. 50oC was the highest internal temperature required to reduce all the three 

Vibrio species to non-detectable levels on Day 2 (Fig.1c). 

Fig.1c. Thermal resistance of V. vulnificus, V. parahaemolyticus and V. cholerae 01 at different 
internal temperatures when subjected to boiling after storing at 3oC for 2 days. UC = Uncooked 
shrimp sample.  Data presented in the bar diagram is the mean of three different experiments and 
the bars with same data letters are not significantly different from each other.  (p<0.05) 

 

On day 0 the plate counts for S. enteriditis, S. infantis and S. typhimurium inoculated 

shrimp stored at 3oC were 5.87, 5.86 and 5.58 Log CFU/g.  

Shrimp samples boiled to an internal temperature of 65oC had 1.68, 0.22 and 0.99 Log 

CFU/g for S. enteriditis, S. infantis and S. typhimurium, respectively.  At 70oC S. infantis and S. 

typhimurium were reduced to non-detectable levels whereas an internal temperature of 75oC was 

required to reduce all the three serovars to non-detectable levels (Fig.2a). 
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Fig. 2a. Thermal resistance of S. enteriditis, S. infantis and S. typhimurium at different internal 
temperatures in shrimp when subjected to boiling on Day 0.  UC= Uncooked.  Data presented in 
the bar diagram is the mean of three different experiments and the bars with same data letters are 
not significantly different from each other.  (p<0.05) 

The inoculated shrimp samples stored at 3oC for one day had counts of 5.55, 5.53 and 

5.37 Log CFU/g for S. enteriditis, S. infantis and S. typhimurium respectively.  On Day 1 Shrimp 

with an internal temperature of 60oC had significant reduction of all three serovars with 1.11, 

0.12 and 1.12 Log CFU/g for S. enteriditis, S. infantis and S. typhimurium, respectively.  An 

internal temperature of 65oC was lethal enough to reduce S. infantis to non-detectable levels and 

at 70oC all the three species were reduced to non-detectable levels on Day 1(Fig.2b). 
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Fig. 2b. Thermal resistance of S. enteriditis, S. infantis and S. typhimurium at different internal 
temperatures in shrimp when subjected to boiling after storing at 3oC for 1 day.  UC= Uncooked. 
Data presented in the bar diagram is the mean of three different experiments and the bars with 
same data letters are not significantly different from each other.  (p<0.05) 

There was reduction of 0.61, 0.72 and 0.39 Log CFU/g for S. enteriditis, S. infantis and S. 

typhimurium respectively after 2 days of storage at 3oC (Fig.2c). 

On Day 2 the inoculated shrimp samples had significant reductions in bacterial counts at 

internal temperatures of 50oC to 60oC but at 65oC there were only 0.29 Log CFU/g of S. 

enteriditis while S. infantis and S. typhimurium had reached to non-detectable levels and at 70oC 

all the serovars were at non-detectable levels. 
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Fig.  2c.  Thermal resistance of S. enteriditis, S. infantis and S. typhimurium at different internal 
temperatures in shrimp when subjected to boiling after storing at 3oC for 2 days.  UC= 
Uncooked.  Data presented in the bar diagram is the mean of three different experiments and the 
bars with same data letters are not significantly different from each other.  (p<0.05) 

The three Listeria species used in this study showed divergent responses when subjected 

to different cooking temperatures.  L. monocytogenes, L. innocua, L. welshmeri showed distinct 

patterns of survival when inoculated on the surface of the shrimp.  

  On day zero there was no significant difference in the initial number of each bacteria that 

were inoculated onto the surface of shrimp samples with 5.65, 5.69 and 5.70 log CFU/g of L. 

monocytogenes, L. innocua and L. welshmeri. When the shrimp samples were subjected to 

different internal temperatures, there were no notable differences observed regarding the thermal 

resistances showed by the three species of Listeria at internal temperatures of 65oC and 70oC.  

But, at 75oC there was a significant decrease in the level of L. welshimeri on the surface of the 

shrimp that was reduced to non-detectable levels where as L. innocua and L. monocytogenes had 

counts of 1.12 and 2.23 Log CFU/g respectively.  All the three Listeria species were reduced to 

non-detectable levels when the shrimp samples were cooked to an internal temperature of 80oC 
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Fig.3a. Thermal Resistance of L. monocytogenes, L. innocua and L. welshimeri at different 
internal temperatures in shrimp when subjected to boiling on Day 0.  UC = Uncooked. . Data 
presented in the bar diagram is the mean of three different experiments and the bars with same 
data letters are not significantly different from each other.  (p<0.05) 

Shirmp samples stored at 3oC for one day had counts for L. welshimeri, L. 

monocytogenes and  L. innocua of  with about 5.64, 5.61 and 5.68 log CFU/g, respectively (Fig 

2). 

On day 1 when the shrimp samples were boiled to achieve an internal temperature of 

65oC L .monocytogenes, L. innocua and L. welshimeri showed almost similar pattern of thermal 

resistance with a reduction of 1.34, 1.51 and 1.52 log CFU/g respectively.  At 75oC L. welshimeri 

was reduced to non-detectable levels and in shrimp with an internal temperature of 80oC L. 

monocytogenes had counts of 1.8 log CFU/g while the other two species were reduced to non-

detectable levels.  All the three species were reduced to non-detectable levels when the internal 

temperature of the shrimp samples was 85oC. 
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Fig.3b. Thermal Resistance of L. monocytogenes, L. innocua and L. welshimeri at different 
internal temperatures in shrimp when subjected to boiling after storing at 3oC for 1 day.  UC= 
Uncooked shrimp sample.  Data presented in the bar diagram is the mean of three different 
experiments and the bars with same data letters are not significantly different from each other.  
(p<0.05) 

The bacterial counts of L. monocytogenes, L. innocua and L. welshimeri on day 2 when 

stored at a temperature of 3oC were 5.61, 5.63 and 5.64 log CFU/g respectively. 

All the three Listeria species behaved similarly when cooked to an internal temperature 

of 65oC (Fig.3).  At 70oC L. welshimeri and L. innocua had plate counts of 2.65 and 2.7 log 

CFU/g but the level of L. monocytogenes was significantly higher with about 3.2 log CFU/g.  On 

day 2 L. welshimeri and L. innocua were reduced to non-detectable levels at 80oC but L. 

monocytogenes had 1.06 log CFU/g and at 85oC all the three Listeria species were reduced to 

non-detectable levels. 
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Fig.3c. Thermal resistance of L. monocytogenes, L. innocua and L. welshimeri at different 
internal temperatures when subjected to boiling in shrimp after storing at 3oC for 2 days.  UC = 
Uncooked shrimp sample. Data presented in the bar diagram is the mean of three different 
experiments and the bars with same data letters are not significantly different from each other.  
(p<0.05) 

The results from our verification studies showed that none of the samples were positive 

for the Listeria species when boiled to reach an internal temperature of 85oC and similarly none 

of the samples were positive for Salmonella species when boiled to reach an internal temperature 

of 75oC.  But our results showed that 1 out of three replications were positive for V. cholerae 01 

when boiled to reach an internal temperature of 50oC.  However, there were no positive samples 

at 55oC. 

3.3 Discussion 

Although the infectious dose for the classical strain of V.  cholerae has been reported to 

be 8–9 log CFU/g in water, prior neutralization of gastric acid within the stomach may reduce 

this to 3–6 log CFU/g (Hornick et al., 1971; WHO Scientific Working Group, 1980).  In the 

current study the initial number of bacteria inoculated on to the surface of shrimp was about 5 
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log CFU /g.  Our results found that bacterial levels were reduced by more than 1 log after two 

days at 3oC.  The data suggests that the pathogen can withstand cold storage temperatures.  

Comparatively high resistance of V. cholerae 01 has been linked to its ability to form colonies on 

the shell of shrimps.  Several studies have demonstrated that once V. cholerae O1 has attached to 

chitin particles or crustacean external surfaces, the microorganism is able to initiate a process of 

colonization (Castro- Rosas and Escartı´n, 2002; Huq et al., 1984; Nalin et al., 1979).  This 

process can be associated with an increased resistance to various stresses like temperature but 

also to those caused by chemical disinfectants (McCarthy and Miller, 1994), low temperatures 

(Amako et al., 1987), and low pH levels (Nalin et al., 1979).  In a research study conducted by 

Castro- Rosas and Escartı´n (2005) V. cholerae  01 suspended in Isotonic sterile saline solution  

were inactivated  at 70oC for 1 minute, whereas the colonizing cells on shrimp carapaces 

survived for 1 min at that temperature.  Our study found that all the three species were reduced to 

non-detectable levels when cooked to reach an internal temperature of 50oC.  Shultz et al. (1984) 

also conducted a similar kind of experiment with cockles and concluded that cockles should be 

cooked until the slowest heating cockles reach 71oC, for 1 minute, the difference in temperature 

requirements for cockles and shrimp may be due to the differences in sizes and composition. 

The optimum temperature for growth of V. parahaemolyticus is 35–37oC, while the 

maximum and the minimal temperature are reported to be 42–44oC and 5oC, respectively, 

(Beuchat, 1982).  Furthermore, this pathogen is reported to be extremely sensitive to thermal 

inactivation when heated in either laboratory media or shrimp substrates (Beuchat, 1973 ,Covert 

1972, Vanderzant,1972).  Vanderzant (1972) found a 1-2 log reduction of V. parahaemolyticus  

in shrimp homogenate when stored at 3oC for 1 day and were destroyed after heating at 100oC 

for one minute.  In our study the results showed that V. parahaemolyticus inoculated onto shrimp 

was reduced by 1.2 log CFU/g after storing at 3oC for 2 days.  
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V. vulnificus was the most susceptible to boiling temperatures in our experiment which 

reduced it to non-detectable levels at an internal temperature of 45oC on day 0 and day 1 but the 

temperature requirement to reduce it to non-detectable levels increased to 50oC on day 2.  There 

is little information on the effect of boiling shrimp inoculated with V. vulnificus.  However, 

Hesselman et al. (1999) found that V. vulnificus levels in oysters (Crassostrea virginica) 

subjected to a commercial heat-shock process, which was 1 to 4 minutes at internal oyster meat 

temperatures exceeding 50oC, were significantly reduced.  The current data also suggests that the 

V. vulnificus have been reduced 1.15 log CFU /g after two days of storage which is not ideal for 

controlling the pathogen.  Similarly, Quevedo and others (2005) also showed that the use of ice 

immersion as a post-harvest method is not effective in reducing V.  vulnificus because of the 

relatively small declines in bacterial load (Ren and Su, 2006). 

George et al. (1984) reported that every 12/15 breaded shrimp samples tested in their 

study had surviving S. typhimurium even when fried for 3 min to an internal temperature of 

82oC.  Our results do not match their findings, which could be due to the difference in the 

product the breaded shrimp versus whole shrimp and also the medium of cooking which was 

water in our study.  The layer of breading could act as a protective covering.  Additionally it has 

been documented by many studies that heat treatment is the primary method for preserving 

foods.  Several factors, such as growth medium (Annous and Kozempel, 1998; Casadei et al., 

1998), growth temperature (Rowan and Anderson, 1998; Martínez et al., 2003), growth phase 

(Rees et al., 1995; Martínez et al., 2003), water activity (Fernández et al., 2007) and pH (Annous 

and Kozempel, 1998), may influence the heat resistance of microorganisms.  Other mechanisms 

such as the synthesis of Heat Shock Proteins (HSP) in bacteria could be responsible for this 

increase in the bacterial heat resistance (Avelino et al., 2008) Therefore, the thermal resistance of 

bacteria can vary from one type of food or food product to another. 
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From our results the minimum temperature requirement to kill S. typhimurium on day 0 

and day1 was 70oC (Fig 2a&2b).  However the requirement decreased to 65oC on day 2.  A 

similar study by Murphy et.al (2001), found chicken patties inoculated with a mixed culture of 

Salmonella serovars then cooked in a convectional oven to an internal temperature of 65oC had 

no surviving bacterial cells. 

Analysis of data obtained from the current study shows that 70oC was the highest 

temperature required to kill S. enteriditis on day 1 and 2 (Fig 2b and 2c) but not on the day of 

inoculation.  Thermal inactivation data for S. enteritidis in liquid whole eggs was published by 

Muriana, Hou, and Singh (1996).  Their data shows D-values of 16.5 min at 50oC and 0.7 min at 

57.5oC.  James et.al (2002) proposed that using these values for interpretation indicate that 

temperatures of over 70oC for less than 1.5 seconds should be capable of reducing S. enteritidis 

populations by as much as 6 log CFU/g.  Another study by Bucher et .al (2008) demonstrated 

that with adequate cooking (71°C), the Salmonella serovars including enterides and typhimurium 

can be reduced to non-detectable levels in frozen chicken nuggets/strips.  There was little 

information on the thermal resistance studies of Salmonella infantis, but the results (Fig 2b) from 

our study indicate that this is the most susceptible of all the three species used.  

A number of studies have previously investigated the growth properties of different 

Listeria species and strains at different incubation temperatures (Rosenow and Marth, 1987; 

Junttila et al., 1988; Walker et al., 1990; Barbosa et al., 1994).  The current study shows that 

there is no significant difference in counts of L. welshimeri, L. innocua and L. monocytogenes 

when stored for 2 days at 3oC.  Beuchat et al., (1989) and Johnson et al., (1988) made similar 

observations about L. monocytogenes inoculated into minced beef stored at refrigerated 

temperatures, in which the bacterial counts remained constant throughout a 14 day sampling 

period.  Nufer et al. (2007) found that L. monocytogenes strains displayed better cold stress 
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tolerance.  Although factors controlling L. monocytogenes growth at low temperatures are not yet 

clear there are several genetic and molecular factors that are implicated in the cold stress 

adaptation of these microbes (Liu et al., 2002; Tasara and Stephan, 2006). 

  Our study found that L. monocytogenes was more thermal resistant as compared to L. 

innocua and L .welshimeri.  The minimum internal temperature of 80oC was required to reduce a 

5.6 log CFU/g of L. monocytogenes to non-detectable levels on the surface of shrimp at day 0 

where as the internal temperature to destroy the pathogen increased to 85oC on day 1 and day 2 

when the inoculated shrimp were stored at 3oC.  Murphy et al. (2004) found that cooking L. 

monocytogenes inoculated into ground beef/turkey links in an air impingement oven to an 

internal temperature of 71oC reduced L. monocytogenes counts by 7 log CFU/g.  In another study 

researchers found that increasing the product temperature of chicken breast patties from 55 to 

80oC reduced L. monocytogenes more than 7 logs (Murphy et al., 1999).  The difference in our 

results could be due to the different composition of the foods such as the shell of the whole 

shrimp which can act as a barrier to the temperature and increase the cooking time.  Shrimp can 

be cooked by different methods like boiling, grilling, frying or baking but the extent of cooking 

greatly varies with cuisine and style.  Doneness of shrimp is measured by the color and hardness 

of the tissue, in many cases toughness of the tissue is a non-desirable trait which occurs due to 

over cooking (Mohan et al., 2006).  But, it is very important to ensure that the food is cooked 

safely along while taking care of the sensory characteristics.  Studies by different research 

groups have found that yield loss and hardness of the tissue significantly increased with an 

increase in the boiling time (Niamnuy, 2008).  Therefore, it is very important to have a simple 

and unbiased method to monitor the safety of the shrimp while balancing the delicacy and the 

current study shows that this can be achieved by cooking the shrimp to minimum internal 

temperatures. 



36 
 

L. innocua was the next most heat resistant bacteria and was able to survive at an internal 

temperature in shrimp up to 75oC on day 0, 1 and 2.  Many studies have documented that heat 

tolerance of L. innocua is much similar to L. monocytogenes which makes it an ideal surrogate 

for L. monocytogenes in food safety experiments.  Freidly et al. (2008) studied the D-values of L. 

innocua and L. monocytogenes serotypes which ranged from 3.17 to 0.13 min at 62.5 to 70 °C, 

and the z-values of L. innocua and L. monocytogenes were 7.44 to 7.73 min.  The differences in 

thermal resistance were not very significant in hamburger patty and they concluded that L. 

innocua has the potential to survive as the primary non-pathogenic surrogate with the greatest 

margin of safety in verifying a new thermal process to destroy L. monocytogenes.  Murphy et al. 

(2001) found that L. innocua survived in hamburger patties cooked in an air convection oven 

even after cooking the patties to an internal temperature of 70oC to 80oC with about 3 to 5 log 

CFU/g.  The same group compared their results with their previous experiments in which 

chicken meat was cooked in a water bath and reduced L. innocua to non–detectable levels at 

71.1oC.  (Murphy, 1999).  Our study found L. monocytogenes had significantly higher heat 

resistance when compared to L. innocua.  From our results the minimum internal temperature of 

shrimp required to destroy the Listeria species tested was 85oC.  Furthermore we found that L. 

welshimeri on the surface of the shrimp was less heat resistant when compared to other two 

species of Listeria tested. 

  Other factors affecting thermal resistance of L. monocytogenes are changes in intrinsic 

factors, including water activity, pH, and protein and/or fat content of the food product (Lihono 

et al., 2001).  Involuntary exposure of microorganisms or food contaminated with 

microorganisms to conditions that initiate adaptive stress responses may make reduction of the 

microorganisms in foods more difficult.  L. monocytogenes has been shown to induce synthesis 

of about 12 and 32 proteins upon exposure to cold stress (Bayles 1996, Phan-Thanh, 1995).  
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Additionally, L. monocytogenes has been shown to undergo changes in its membrane fatty acid 

profile upon long-term exposure to reduced temperatures (Annous 1997). 

  Any temperature above the optimum growth temperature is supposed to have some lethal 

effect.  However, it has been shown that in most microbial species slow heating or heating for 

short periods of time at temperatures above the optimum temperature for growth induces higher 

thermo-tolerance (Mackey & Derrick, 1986).  This response consists of the synthesis of various 

proteins, which are also known as heat shock proteins (HSPs), (Lindquist 1986).  This could be 

one of the reasons for the increased heat tolerance of L. monocytogenes in our study.  Juneja et 

al., (2003) found that refrigeration prior to heat treatment has increased the heat tolerance of L. 

monocytogenes which is also in agreement with our findings. 

The results from our study suggest that cold storage has significant effect on the 

reduction of the bacterial levels in shrimp but, it is not enough to control the pathogen and 

maintain the quality of the product and the shrimp should at least be cooked to 50oC of internal 

temperature to ensure that Vibrio species are reduced to non-detectable levels.  But, from our 

verification tests we found that there is a chance of V. cholerae 01 surviving at 50oC.  Therefore 

shrimp should be cooked to at least 55oC of internal temperature to control all the three Vibrio 

species tested.  In the current study it has also been found that the thermal resistance of 

Salmonella species was decreased when subjected to cold storage for two days prior to thermal 

treatment. From our current study we also conclude that in order to bring the three Salmonella 

species tested to non-detectable levels, shrimp should be cooked to an internal temperature of 

75oC.  

Our results showed that the V. vulnificus are the most susceptible while L.  

monocytogenes is the most heat resistant of all the nine species tested in this study. The heat 
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resistance of Salmonella was decreased by cold storage where as it has increased in Vibrios and 

Listeria.  

It can be recommended that consumers should cook raw shrimp to at least 85oC of 

internal temperature when refrigerated for up to 2 days prior to cooking to destroy all the nine 

species of bacteria used in this study including L. monocytogenes. 
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CONCLUSION 
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4.1 Conclusions 

Well acknowledged is the fact that incidence of foodborne infections and intoxications of 

microbial aetiology are certainly not diminishing (Bean & Griffin, 1990; Rampling, 1993; 

Cliver, 1997; Motarjemi & Käferstein, 1997; Stephenson, 1997; Slutsker et al., 1998 and 

Slutsker, L., Altekruse, S. F. and Swerdlow, D. L., 1998).  The efforts made to decrease the 

incidence of such outbreaks is well documented and many previous research studies have 

focused on improving the food safety and microbiological quality of food at industrial or pilot 

scales, but there are only a few studies which focused on the development of food safety 

guidelines at the consumer level. 

In our study Vibrios which are known as temperature sensitive microorganisms also 

showed notable patterns of survival and resistance to cold storage and thermal treatment.  It has 

been observed that V. cholerae 01, was the most heat resistant of all Vibrio species tested and 

when inoculated on to the surface of the shrimp, they were reduced to non-detectable levels 

when cooked to reach 55oC of internal temperature of shrimp. 

Salmonella species tested by inoculating the shrimp surfaces were found to be more 

temperature resistant than the three Vibrio species tested in our study, they were reduced to non-

detectable levels when cooked to a minimum of 75oC of internal temperature of shrimp.  It was 

also found that the thermal resistance of Salmonella species somewhat decreased with the 

duration of cold storage.  S. enteriditis was the most heat resistant of all the salmonella tested. 

Listeria showed higher thermal resistance than Vibrios and Salmonella.  L. 

monocytogenes was the most resistant of all Listeria species and it was observed that the internal 

temperature required to kill Listeria increased with duration of storage at 3oC.  In order to reduce 

the Listeria species to non-detectable levels on the surface of the shrimp samples, they need to be 

cooked to reach a minimum internal temperature of 85oC. 
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From our study it was found that 85oC of minimum internal temperature will kill Vibrio, 

Salmonella and Listeria species.  It has also been found that cold storage does not decrease the 

bacterial numbers on shrimp samples significantly.  There is a need for further study on the 

response of the foodborne pathogens in different food products and composition and also to 

study the effect of cold storage and freezing on the thermal resistance of bacteria.  This approach 

of food safety from consumers point will be of immense help in controlling foodborne out breaks 

occurring in the US and across the world. 

 We hope this study will have implications for consumers enhance food safety at 

consumer level while serving as a easy and handy guide for cooking the shrimp safely at 

domestic conditions.  This can also help the food processors determine CCP’s while designing 

HACCP at industrial level. 

4.2 References 

Bean NH, Griffin PM (1990).  Foodborne disease outbreaks in the United States, 1973-
1987: pathogens, vehicles and trends. J. Food Prot., 53:807-814. 

Cliver, D. O. 1997. Foodborne viruses.  M. P. Doyle, L. R. Beuchat, and T. J. Montville 
(eds.), Food Microbiology: Fundamentals and Frontiers. American Society for Microbiology, 
Washington, D.C. pp. 437B446. 

Motarjemi, Y., & Ka¨ferstein, F. (1999). Food safety, hazard analysis and critical control 
point and the increase in foodborne diseases: a paradox? Food Control, 10, 325e333. 

Rampling, A., 1993. Salmonella enteritidis five years on. Lancet., 342: 317–318.  

Slutsker L, Altekruse S F, Swerdlow D L. Foodborne diseases. Emerging pathogens and 
trends. Infect Dis Clin North Am. 1998;12:199–216.  

Slutsker, L., A.A. Ries, K. Maloney, J.G. Wells, K.D. Greene, P.M. Griffin, and the 
Escherichia coli O157:H7 Study Group. 1998. A nationwide case-control study of 
Escherichia coli O157:H7 infection in the United States. J Infect Dis 177:962-966. 

Stephenson, J. 1997. New approaches for detecting and curtailing foodborne microbial 
infections. JAMA 277:1337–1340. 

 



46 
 

VITA 

        The author was born in Hyderabad, in India.  She completed her schooling in 

Hyderabad, and received her Bachelor of Science (Hons) degree in agriculture from Osmania 

University, Hyderabad, in 2005.  After graduation she went to work as Lab-in-charge of 

quality control laboratory at Vibha Agritek, in Hyderabad, for one year and in January, 2007, 

she joined Louisiana State University to pursue Master of Science degree in food science. 

 

 


	Louisiana State University
	LSU Digital Commons
	2009

	Determination of minimum safe cooking temperatures for shrimp to destroy foodborne pathogens
	Sailaja Chintagari
	Recommended Citation


	tmp.1483774927.pdf.Uz2tV

