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ABSTRACT 
 

 To provide for a weed-free seedbed, Louisiana crop producers typically apply a 

burndown herbicide four to six wk prior to seeding summer annual crops; however, these 

treatments often provide inadequate henbit (Lamium amplexicaule L.) control.  Research was 

conducted in Louisiana to evaluate henbit emergence from north to south, compare growth of 

henbit accessions based on emergence date, and control with fall-applied residual herbicides. 

 For the emergence study during the weeks of Oct 17 to Dec 12 at all locations in all 

years, soil temperatures at 2.5 cm averaged between 10 and 18.5 C.  Henbit at densities of at 

least 50 m-2 emerged each week from approximately Oct 20 through Dec 20, for the three 

northern most sites which included the Northeast Research Station, a grower’s field in Concordia 

Parish, and the Dean Lee Research and Extension Center..  At all three northern most locations 

counts in excess of 1000 henbit m-2 were observed in November, indicating potential for high 

henbit density at these locations.  Henbit emergence was more sporadic from 2012 through 2015 

for the three northern locations, with densities not exceeding 40 henbit m-2 at the Dean Lee 

Research and Extension Center, although large single week increases in the number of henbit did 

occur between mid-October to mid-December at those locations.  Regardless of year, densities at 

the Ben Hur Research Farm, the southern location, were less overall. 

 Averaged across emergence date leaf area ratio (LAR) for September and October was 

0.012 and 0.010 cm2 g-1, respectively, and although not significantly different was greater than 

henbit emerging in November.  Specific leaf weight (SLW) for henbit emergence in November 

was 119.0 g cm-2, greater than September and October populations at 54 and 89 g cm-2, 

respectively.  Additionally, relative growth rate (RGR) for September emerged henbit averaged 

across harvest intervals was 0.194 g g-1 d-1, and greater than for both October and November 
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emerged henbit with 0.121 and 0.092 g g-1 d-1, respectively.  Results suggest that September 

emerged henbit could be larger and more difficult to control than November emerged henbit.  

However, October populations had similar trends and were not different than September 

emerged henbit, conceding that any competitive advantage September may have over October is 

slight. 

For fall applied residual herbicides study variability in henbit control, across years was 

observed.  Overall, application Nov 1 through Dec 1 provided more consistent henbit control 

compared with oxyfluorfen applications controlled henbit at least 76% 100 DAT regardless of 

herbicide date.  For flumioxazin and rimsulfuron: thifensulfuron, greater than 70% henbit control 

100 DAT was obtained only when applied Nov 1 through Dec 15.  
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Henbit (Lamium amplexicaule L.) is a winter annual weed belonging to the Labiatae 

family.  It is prevalent in more than 50 crops as well as on ditch banks, roads, and field edges 

(Holm et al. 1997).  Henbit is adapted to temperate areas and a wide variety of soils.  It is widely 

naturalized in the United States; however, it is native to Europe and the Mediterranean region 

(USDA-NRCS 2015). 

Taxonomy of Henbit.  Characteristics distinctive to henbit include rounded, coarsely toothed, 

and palmately veined leaves, tubular pink to purplish flowers with a bearded upper and lobed 

spotted lower lip (Holm et al. 1997).  Henbit seedlings have oval, smooth cotyledons.  

Decumbent square stems occur at the base with branches that root at nodes where ground contact 

occurs, leaves appear in opposite pairs along the stem (DeFelice 2005; Holm et al. 1997).  

Amplexicaule is derived from the Latin word amplexicaulis, meaning “embracing the stem” 

referring to the upper sessile leaves of henbit that clasp the stem (DeFelice 2005). 

Henbit produces cleistogamous (closed), pseudocleistogamous (both open and closed), 

and clasmogamous (open) flower types.  These various flower types are dependent on vegetative 

development of the plant (Lord 1979; 1980) and are produced due to phenotypic plasticity that 

allows henbit to overcome and reproduce in unfavorable sites and conditions.  Stojanova et al. 

(2016) observed that henbit flowers were predominately clasmogamous early-season to reduce 

inbreeding and shifted to cleistogamous later in the growing season when presence of pollinators 

were limited in Northern and Southern France. 

CHAPTER 1
INTRODUCTION
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The fruit of henbit occur in groups at the base of the calyx tube and separate at maturity.  

The nutlet-like seeds are 1.8 to 2.3 mm long, obviate oblong and grayish-brown with a surface 

slightly shiny and white spotted (DeFelice 2005; Holm et al. 1997).  Henbit can produce 200 to 

2,000 seed per plant (Allan 1979; Holm et al. 1997).  Hill et al. (2014) collected 800 to 40,000 

seed m-2 at densities of 10 to 65 plants m-2, respectively.  Roberts and Boddrell (1983) found that 

52 to 70% of henbit seed germination occur within the first 18 months after dispersal.  Henbit 

seed are conditionally dormant at maturity, which infers that dormancy can be broken by after-

ripening in dry state storage in the presence of light or gibberellins, and exposure to alternating 

warm/cold temperatures after imbibing water (Kucera et al. 2005).  Others have shown that 

henbit seed subjected to light for a 14 hour photoperiod or complete darkness germinated at 

alternating temperatures of 15/6 C and 20/10 C (Baskin and Baskin 1981; Baskin and Baskin 

1984; Baskin et al. 1986).  Seed produced in autumn months germinated the following year at 

high percentages when exposed to light and high temperatures during the preceding summer 

(Baskin and Baskin 1981).  Conversely, low winter temperatures can cause seed produced in 

autumn and non-dormant seeds to become dormant showing an ecological consequence to 

temperature fluctuations (Baskin and Baskin 1984).  Blackshaw et al. (2002) reported henbit 

emergence at soil temperatures 5 to 25 C, with greatest emergence 15 to 20 C.  Emergence 

declined as soil water content decreased.   

Intraspecific Variation among Plant Species.  Timing or date of a plant species emergence is 

important in determining the growth, performance, and survival of the plant (Miller 1987).  

Furthermore, understanding weed growth rates are important for development of management 

strategies, as poor weed control can result from improper timing of herbicide applications (Horak 

and Loughlin 2002).  Ross and Harper (1972) found that final cocksfoot (Dactylis glomerata L.) 
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size was greater following early emergence compared to later emergence due to a longer growth 

period and competitive advantage, regardless of the final plant density.  Similarly, when seeded 

in late-May, June, or July in North Carolina, May sown Carolina geranium (Geranium 

carolinianum L.) developed more leaves, reached rosette stage, flowered earlier, and had higher 

fecundity (Roach 1986).   

Differences among a weed species biology pertaining to germination and rates of growth 

have been documented.  Alcocer-Ruthling et al. (1992a) observed that sulfonylurea-susceptible 

prickly lettuce (Lactuca serriola L.) gained 31% more aboveground biomass 52% faster than the 

resistant biotype.  However, sulfonylurea-resistant prickly lettuce germinated faster than the 

susceptible biotype, but no differences were found in their fecundity or seed viability (Alcocer-

Ruthling et al. 1992b).  Cumulative germination of chlorsulfuron-resistant and -susceptible 

kochia [Kochia scoparia (L.) Schrad.] biotypes were similar at 28 C; however, the resistant 

biotype germinated faster than the susceptible at 8 and 18 C (Thompson et al. 1994a).  

Additionally, no differences in seed production and plant growth or competitiveness was 

observed with both biotypes producing 12,000 seed per plant with a relative competiveness of 

0.75 and 0.85 for the resistant and susceptible biotypes, respectively (Thompson et al. 1994b).   

Florida beggarweed [Desmodium tortuosum (Sw.) DC.] accessions differed in height, 

node formation, branching, flower and fruiting habits which contributed to adaptability in 

changing environments (Cardina and Brecke 1989).  Klingaman and Oliver (1996) found that 

entireleaf morningglory (Ipomoea hederacea var. integriuscula Gray) accessions from southern 

latitudes remained vegetative longer which lead to increased biomass compared to northern 

accessions.  Similarly, differences in vine length, leaf size and shape, and days to flower 

initiation was observed among pitted morningglory (Ipomoea lacunosa L.) accessions collected 
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from different geographic locations (Stephenson et al. 2006).  Although the previously discussed 

research compared plant accessions from different regions and not singular plant communities, 

their findings highlights a plants ability to adapt when subjected to variables inherent to a local 

environment.  

Measurement of Plant Growth Dynamics.  Plant growth analysis utilizes parameters to 

determine growth and development of plant systems in a controlled, semi-natural, or natural 

condition (Hunt 2003), which can elucidate competitive ability of a species.  Growth in the 

context of an individual plant means irreversible change over time; in size (however measured), 

habit or form, and occasionally in number (Hunt 2003).  Radosevich et al. (1997) stated that total 

dry matter production and leaf area are basic processes of vegetative growth.  Therefore, growth 

measurements such as dry weights of a plant and leaf area recorded over time can show the 

relative size, productivity, and photosynthetic capability of the plant. 

Leaf area ratio (LAR) is the most important variable for whole plant growth and a unit 

measure of plant leafiness, thereby measuring photosynthetic capacity of a plant (Radosevich et 

al. 1997).  It is a product of two parameters, specific leaf area (SLA) and leaf mass ratio (LMR), 

which are leaf area per unit leaf mass and fraction of total plant mass allocated to leaves, 

respectively (Lambers et al. 2008).  Another important variable of whole plant growth is net 

assimilation rate, which is the measure of total dry matter net gain per unit of leaf area (James 

and Drenovsky 2007; Lambers et al. 2008; Poorter and Remkes 1990).  It determines 

photosynthetic efficiency by reflecting the ratio of carbon gain during photosynthesis and carbon 

loss through respiration (Forbes and Watson 1992; Poorter and Bergkotte 1992).  Multiple 

factors such as architecture of leaves affect NAR, which influences interception of light and how 
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photoassimilates are utilized by the plant.  Additionally transportation, storage, and the chemical 

makeup of these photoassimilates can also affect NAR (Kriedemann et al. 1999). 

Relative growth rate (RGR) is the increase of the total dry weight of a plant over a unit of 

time.  It is considered the central parameter in plant growth analysis which is determined by 

differences in physiology, morphology, and partitioning assimilates to biomass, and utilizes LAR 

and NAR for its calculation (Kriedemann et al. 1999).  Furthermore, favorable environments for 

plant growth typically leads to higher RGR.  Additionally, specific leaf area (SLA), a component 

in the calculation of LAR, has been found to strongly correlate to RGR (Poorter and Remkes 

1990).  Specific leaf area measures the amount of leaf area per unit of dry matter (Kvet et al. 

1971), thus is related to leaf thickness.  Also, it is a measure of photosynthetic capacity; 

however, the prevailing view states that SLA reflects plant utilization of resources in rich or poor 

environments (Wilson et al. 1999).  Specific leaf weight (SLW) is the reciprocal of SLA and is a 

predictive index of previous light environment and net photosynthetic potential (Barden 1977; 

Pearce et al 1969).  This parameter assesses the functioning of total plant leaf area or total 

canopy by taking into account light, nitrogen status, and other stressors (Field and Mooney 

1986).  Stem-to-leaf ratio is a ratio of stem to leaf dry matter, which describes plant allocation of 

resources.  A plant’s capacity to acquire resources and compete with adjacent plants can be 

observed with dry matter partitioning coefficients (Radosevich et al. 1997).  Partitioning 

illustrates the flow of assimilates from source (leaves) to sink (meristematic tissue and fruit 

structures) components within a plant, dictated by developmental lifecycle needs (Singh et al. 

2008).  The source sink relationship with SLR is dependent on NAR carbon allocations and 

photosynthetic capacity inferred by LAR.  Therefore, it is related inherently to RGR due to 
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growth and maturation of a plant as lifecycle dictates movement of assimilates (Kriedemann et 

al. 1999). 

Others used various growth parameters to investigate growth characteristics of Palmer 

amaranth (Amaranthus palmeri S. Wats.) (Bond and Oliver 2006), ragweed parthenium 

(Parthenium hysterophorus L.) (Pandey et al. 2003), and spurred anoda [Anoda cristata (L.) 

Schllecht.] (VanGessel et al. 1998).  Palmer amaranth accessions that originated from southern 

and eastern regions of the U.S. had greater LAR, which could indicate greater photosynthetic 

capacity (Bond and Oliver 2006).  In addition, they observed an increase in SLR as plants grew 

indicating the allocation of resources for leaf growth shifting to greater stem or reproductive 

structures growth later in the growing season.  However, Bond and Oliver (2006) observed 

greater NAR in accessions from the western U.S., whose leaves were smaller, which may be an 

adaption to balance photosynthesis with lower total leaf area.  Ragweed parthenium growth 

during summer and winter months was compared by Pandey et al. (2003).  Lower NAR and 

RGR was observed when ragweed parthenium grew during the winter months.  These plants had 

lower total biomass and flower and seed number due to a decrease in net photosynthetic rate 

caused by low air temperatures.  This is supported by Williams (1946), who stated that NAR is 

decreased when environmental conditions reduce net photosynthetic rate.  Also, plants depend 

upon optimum photosynthetic area for a proper rate of growth, but slow photosynthetic rate 

reduces new leaf development, thus hampering growth (Beale et al. 1996).  Similar to the 

findings of Bond and Oliver (2006) with Palmer amaranth, spurred anoda accessions originating 

from warmer climates produced higher LAR (VanGessel et al. 1998), indicating a competitive 

advantage for these populations.  They also observed that spurred anoda is a day sensitive plant, 

thus Colorado accessions, who typically grow in lower light environments, had lower LAR and 
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SLA, indicating greater carbon allocation to stems than leaves.  Furthermore, SLR increased 

during the growing season, indicating an allocation of resources to leaves early then a shift in 

resource allocation to stems and reproductive structures later in the season (VanGessel et al. 

1998), which is similar to that for Palmer amaranth (Bond and Oliver 2006). 

Control of Winter Annual Weeds.  If not controlled, winter weed vegetation following 

multiple month’s growth can reach heights up to 1 m (Stougaard et al. 1984).  Targeting winter 

weeds when small with fall-applied herbicides provide greater control than spring applications 

(Hasty et al. 2004).  Multiple studies have shown increased weed control following herbicides 

applied to weeds 5 cm or less (Baldwin et al. 1991; Baldwin and Frans 1972; Barrentine 1989; 

DeFelice et al 1989; Harrison et al 1989; Oliver 1989), which gives credence to targeting winter 

annual weeds early in their life cycle for management.   

Herbicide applications in the fall provide excellent control of winter weeds (Young and 

Krausz 2001).  Fall-applied residual herbicides such as atrazine, rimsulfuron plus thifensulfuron, 

and simazine controlled mouseear chickweed [Cerastium fontanum ssp. vulgare (Hartman) 

Greuter & Burdet] and henbit 93% prior to planting a spring annual crop (Krausz et al. 2003)  

Henbit control was 94% at soybean planting after application of residual herbicides in the fall 

(Monnig and Bradley 2007).  Fall applications of residual herbicides suppressed glyphosate-

resistant (GR) horseweed [Conyza Canadensis (L.) Cronq.] greater than 86% 190 days after 

application; however, spring moisture and increased temperatures increased degradation of fall-

applied residual herbicides warranting a spring herbicide application (Owen et al. 2009). 

Additionally, they found that cotton yields were greater following programs that included fall-

applied residual herbicides compared to dicamba applied alone in the spring.  Monning and 

Bradley (2007) found that if 2,4-D co-applied with chlorimuron plus sulfentrazone or 
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chlorimuron plus tribenuron was delayed until 7 days before planting, control of annual fleabane 

(Erigeron annuus (L.) Pers.), corn speedwell (Veronica arvensis L.), field pennycress (Thlaspi 

arvense L), henbit, and shepherd’s-purse (Capsella bursa-pastoris (L.) Medik.) ranged from 37 

to 75% at planting; however, if these same herbicide treatments were applied in the fall, control 

was greater than 95%.   

Oftentimes winter annual weeds are controlled with herbicide applications in the spring.  

Additionally, others have stated that fall-applied herbicides can effectively control winter annual 

weeds prior to planting a soybean crop, but an additional herbicide application in the spring may 

be needed for total control (Monnig and Bradley 2007; Hasty et al. 2004).  However, fall-applied 

chlorimuron plus metribuzin or sulfentrazone with or without glyphosate plus 2,4-D provided 

99% control of purple deadnettle (Lamium purpureum L.), another Lamium species like henbit, 

at soybean planting compared to 48% control following glyphosate plus 2,4-D applied 30 d 

preplant (Hasty et al. 2004), indicating an advantage with fall-applied herbicides versus spring-

only applications for this species.  Similarly, following a fall-applied residual herbicide, spring 

applications of dicamba alone or co-applied with diuron, flumioxazin, or fomesafen provided 

86% control of GR horseweed 21 days after application, but, when these spring herbicide 

treatments did not follow a fall-applied herbicide, GR horseweed control was 70% (Owen et al. 

2009). 

Fall herbicide applications could improve herbicide efficacy and reduce spring workloads 

for producers by reducing spring herbicide applications prior to planting (Hasty et al. 2004; 

Krausz et al. 2003).  Bruce et al. (2000) found soil temperatures are greater in the spring due to 

reduced vegetative cover following fall herbicide applications.  Furthermore, winter annual 

weeds compete for nutrients and water resources during establishment of a summer crop 
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(Bernards and Sandell 2011).  Others have documented that Lamium species can serve as host for 

overwintering pests such as soybean cyst nematode (Heterodera glycines), which can reduce 

soybean yield (Creech et al. 2007; Venkatesh et al. 2000; Werle et al. 2013).  Therefore, the 

presence of henbit when seeding a summer annual crop may interfere with crop planting, growth, 

and development via direct competition or harboring of other pests.   

Webster (2013) stated that henbit is the fifth and sixth most troublesome weed in 

Louisiana cotton and soybean, respectively.  The troublesome nature of henbit in Louisiana crops 

may be due to the difficulty in control following spring herbicide applications prior to seeding a 

summer annual crop (D. O. Stephenson, IV, personal communication).  Considering the poor 

control of henbit in Louisiana reported by crop producers with spring-applied herbicides, 

development of herbicide programs for henbit management are needed.  Additionally, little 

information is available investigating emergence pattern and growth characteristics of henbit, 

which would be useful in planning weed control programs.  Although others have determined the 

effect of temperature and soil moisture on henbit emergence (Roberts and Boddrell 1983; Baskin 

and Baskin 1981, 1984; Baskin et al. 1986; Blackshaw et al. 2002), their research was conducted 

in fields at northern latitudes.  It has not been determined if the findings of Blackshaw et al. 

(2002) are applicable to the fall, winter, and spring environments in Louisiana.  Therefore, this 

research investigates emergence patterns, comparative growth of henbit accessions based on 

emergence date, and the effect of application date of residual herbicides for henbit control. 
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Introduction 

Henbit (Lamium amplexicaule L.) is a winter annual weed belonging to the Labiatae 

family.  Henbit is widely naturalized in the United States (USDA-NRCS 2015) and adapted to a 

wide variety of soils (Holm et al. 1997).  Dependent on vegetative development of the plant, 

henbit produces cleistogamous (closed), pseudocleistogamous (both open and closed), and 

clasmogamous (open) flower types (Lord 1979; 1980).  Henbit flowers were observed to be 

predominately clasmogamous early-season reducing inbreeding and shifted later in the growing 

season  to cleistogamous when presence of pollinators were limited in Northern and Southern 

France (Stojanova et al. 2016). 

Henbit fruit are nutlet-like, 1.8 to 2.3 mm long, obviate oblong, and are grayish-brown, 

slightly shiny and white spotted (DeFelice 2005; Holm et al. 1997).  Approximately 52 to 70% 

henbit seed germination occurred within the first 18 months after dispersal as observed by 

Roberts and Boddrell (1983).  This winter annual weed can produce 200 to 2,000 seed per plant 

(Allan 1979; Holm et al. 1997).  Furthermore, Hill et al. (2014) collected 800 to 40,000 seed m-2 

at densities of 10 to 65 plants m-2, respectively.  The seeds of henbit have physiological 

dormancy that can be broken by after-ripening in dry state storage, or by dormancy releasing 

treatments such as light, gibberellins, and warm/cold alternating exposures after imbibing water 

once mature (Kucera et al. 2005).  

Timing or date of a plant species emergence is important in determining the growth, 

performance, and survival of plants (Miller 1987).  Henbit emergence is strongly affected by soil 

CHAPTER 2
DETERMINATION OF HENBIT (Lamium Amplexicaule L.) EMERGENCE 

PATTERNS IN LOUISIANA 
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temperature (Baskin and Baskin 1981; Baskin and Baskin 1984).  Fully ripened seed had greater 

than 95% germination when temperatures were within a range of 15/6 to 30/15 C.  Additionally, 

an upper threshold was indicated, with no germination of henbit seeds occurring at 35/20 C, and 

lower numbers occurring at 5 to 10 C.  Germination of autumn produced seed occurred at high 

percentages the following year in the presence of light when exposed to high temperatures during 

the preceding summer (Baskin and Baskin 1981).  Conversely, low winter temperatures can 

cause seed produced in autumn and non-dormant seeds to become dormant showing an 

ecological consequence to temperature fluctuations (Baskin and Baskin 1984).   

The presence of henbit when seeding a summer annual crop may interfere with the crops 

planting, growth, and development.  Cocksfoot (Dactylis glomerata L.) final size was greater 

following early emergence compared to later emergence due to a competitive advantage of 

longer growth period, regardless of the final plant density (Ross and Harper 1972).  Similarly, 

Carolina geranium (Geranium carolinianum L.) sown in late-May, June, or July in North 

Carolina, developed more leaves, reached rosette stage, flowered earlier, and had higher 

fecundity when planted in May (Roach 1986). 

Understanding weed emergence and growth rate is important for development of 

management strategies, as poor weed control can result from improper timing of herbicide 

applications (Horak and Loughlin 2002).  Research was conducted to evaluate seasonal henbit 

emergence in Louisiana as a means to assist in the development of herbicide control strategies 

for crop producers. 
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Materials and Methods 

A study to evaluate henbit seasonal emergence was conducted in 2011/2012, 2012/2013, 

2013/2014, and 2014/2015 at the Northeast Research Station in St. Joseph, and a producer farm 

in Concordia Parish near Jonesville, Dean Lee Research and Extension Center near Alexandria 

and Louisiana State University Agricultural Center Ben Hur Research Farm in Baton Rouge, 

from north to south.  Six, 1 m-2 plots were established in mid-September of each year at each 

location in areas where corn, cotton, or soybean were produced the preceding summer.  Crop 

management practices prior to implementation of each experiment was not considered a factor in 

the study.  Total number of emerged henbit were counted weekly from mid-September through 

late-March.  A weather station (WatchDog 100 Weather Station, Spectrum Technologies, 360 

Thayer Ct., Aurora, IL 60504) was placed at each location each year to record air temperature, 

soil temperature at a 2.5 cm depth, rainfall, and solar radiation on an hourly basis for the duration 

of each experiment to determine if environmental variables could predict henbit emergence.  

Additionally, soil degree-day (SDD) was calculated on a weekly basis using the following 

formula: 

Weekly SDD = Tmean - Tbase 

Where Tmean is the mean soil temperature recorded over the weekly interval and Tbase equals 0 C. 

Base temperature of 0 C has been commonly used for winter annual weeds (Ball et al. 2004; 

Bullied et al. 2003).  After each count, paraquat at 0.56 kg ai ha-1 plus a nonionic surfactant at 

0.25% v/v was applied to remove all henbit and other vegetation to enable evaluation of newly 

emerged henbit the following week. 

Data were subjected to multivariate analysis using PROC IM followed by PROC REG in 

SAS (release 9.4, SAS Institute, 100 SAS Campus Drive, Cary, NC 27513) that utilized the R-
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square and Mallows’ Cp selection methods and PROC DTREE in SAS to develop a decision tree. 

Both statistical methods were used to determine if the environmental variables and/or SDD could 

predict weekly henbit emergence.  Factors included in all analyses were weekly henbit 

emergence data and all environmental variables measured. 

Results and Discussions 

Statistical analyses of environmental variables and SDD were unable to predict henbit 

emergence (data not shown; Appendix 2.1; 2.2).  The analyses did indicate that a prior week’s 

emergence can predict the following week’s emergence, but that would be an ineffective tool for 

crop producers to predict emergence for implementation of management strategies.  Therefore, 

data will be used to document henbit emergence at each location in Louisiana.  Based on data 

from all locations henbit emerged from September through March (Figure 2.1).  Additionally, for 

the majority of the sampling dates at all locations henbit emergence was no more than 200 plants 

m-2. At the Northeast Research Station, at least 50 henbit m-2 were observed between 24-Oct and 

12-Dec in 2011/2012, 2012/2013, and 2013/2014 with 25 and 39 henbit m-2 observed the weeks 

of 24-Nov and 5-Dec, respectively, in 2014/2015 (Figure 2.2).  Similarly, at least 50 henbit m-2 

emerged in Concordia Parish between the weeks of 10-Oct and 19-Dec in 2011/2012, 

2012/2013, and 2014/2015 (Figure 2.3).  Emergence of 400 henbit m-2 was observed the weeks 

of 14-Nov in 2011/2012 and 28-Nov 2012/2013, indicating the potential for high henbit density 

at this location.  In 2011/2012, at least 50 henbit m-2 were counted each week beginning 24-Oct 

through 26-Dec at the Dean Lee Research and Extension Center, and henbit densities of greater 

than 200 m-2 were observed for 6 consecutive weeks (Figure 2.4). 
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Figure 2.1.  Henbit density m-2 at the Northeast Research Station in St. Joseph, a producer field in Concordia Parish near Jonesville, 
Dean Lee Research and Extension Center near Alexandria, and the Ben Hur Research Farm in Baton Rouge determined weekly from 
26-Sept. through 20-Mar. in 2011/2012, 2012/2013, 2013/2014, and 2014/2015.
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Figure 2.2.  Henbit density m-2 at the Northeast Research Station in St. Joseph counted weekly 
from 26-Sept. through 20-Mar. in 2011/2012, 2012/2013, 2013/2014, and 2014/2015. 

Figure 2.3.  Henbit density m-2 at a producer field in Concordia Parish near Jonesville counted 
weekly from 26-Sept. through 20-Mar. in 2011/2012, 2012/2013, 2013/2014, and 2014/2015.
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Figure 2.4.  Henbit density m-2 at the Dean Lee Research and Extension Center near Alexandria 
counted weekly from 26-Sept. through 20-Mar. in 2011/2012, 2012/2013, 2013/2014, and 
2014/2015. 

Figure 2.5.  Henbit density m-2 at the Ben Hur Research Farm in Baton Rouge counted weekly 
from 26-Sept. through 20-Mar. in 2011/2012, 2012/2013, 2013/2014, and 2014/2015
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However, henbit emergence, did not exceed 40 m-2 in 2012/2013 and 2013/2014, but densities of 

588 and 182 m-2 were observed the weeks of 28-Nov and 5-Dec in 2014/2015, respectively.  

Regardless of year, henbit densities at the Ben Hur Research Farm were less than other locations 

(Figure 2.1).  Densities greater than 50 m-2 was observed at Ben Hur the weeks of 14-Nov and 

21-Nov in 2011/2012, 14-Nov in 2013/2014, and 5-Dec in 2013/2014 and 2014/2015 (Figure 

2.5). 

Although multivariate analysis showed that environmental conditions could not be used 

to predicted henbit emergence, data did show trend toward increased emergence when soil 

temperatures averaged between 10 and 18.5 C.  At all locations in each year this range in soil 

temperature occurred during the weeks of 17-Oct to 12-Dec.  Blackshaw et al. (2002) reported 

that henbit emerged when soil temperatures ranged from 5 to 25 C, and germination was 92% 

germination when soil temperature was 15 to 20 C. 

Overall greatest henbit emergence generally occurred between mid-October through mid-

December at all locations in Louisiana.  Densities greater than 1000 m-2 were observed at the 

Northeast Research Station, Concordia Parish site, and the Dean Lee Research and Extension 

Center in some years, indicating the potential for severe henbit infestations at these locations. 

Therefore, an effective emergence management strategy should include use of residual herbicide 

applied in October to halt emergence of henbit, or tillage during the October through mid-

December. 
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Introduction 

Henbit (Lamium amplexicaule L.) is a winter annual weed belonging to the Labiatae 

family.  Henbit is adapted the temperate areas of the world, a wide variety of soils (Holm et al. 

1997), and now widely naturalized in the United States (USDA-NRCS 2015).  Newly emerged 

henbit seedlings are oval with smooth cotyledons.  Leaves are rounded, coarsely toothed, and 

palmately veined, flowers are tubular pink to purplish with a bearded upper and lobed spotted 

lower lip (Holm et al. 1997). 

Although henbit is a winter annual weed, Webster (2013) stated that henbit is the fifth 

and sixth most troublesome weed in Louisiana cotton and soybean, respectively.  Henbit’s 

troublesome nature in Louisiana cotton and soybean may be due to the difficulty in control 

following spring herbicide applications prior to seeding a summer annual crop (D. O. 

Stephenson, IV, personal communication).  Growth, performance, and survival of a plant species 

is dictated by timing or date of emergence (Miller 1987).  Differences in germination and rates of 

growth among weedy species have been documented.  Sulfonylurea-susceptible prickly lettuce 

(Lactuca serriola L.) gained 31% more aboveground biomass 52% faster than the resistant 

biotype (Alcocer-Ruthling et al. 1992a).  However, germination was faster in sulfonylurea-

resistant prickly lettuce than the susceptible biotype, but no differences were found in their 

fecundity or seed viability (Alcocer-Ruthling et al. 1992b).  Similiarly, cumulative germination 

of chlorsulfuron-resistant and -susceptible kochia [Kochia scoparia (L.) Schrad.] biotypes were 

similar at 28 C; however, the resistant biotype germinated faster at 8 and 18 C (Thompson et al. 

CHAPTER 3
IMPACT OF EMERGENCE DATE ON HENBIT (Lamium amplexicaule L.) 

GROWTH
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1994a).  Additionally, no differences in growth, competitiveness, or seed production was 

observed with both biotypes producing 12,000 seed per plant with a relative competiveness of 

0.75 and 0.85 for the resistant and susceptible biotypes, respectively (Thompson et al. 1994b). 

A plants ability to adapt when subjected to variables inherent to a local environment has 

been documented by others.  Accessions of entireleaf morningglory (Ipomoea hederacea var. 

integriuscula Gray) from southern latitudes remained vegetative longer which lead to increased 

biomass compared to northern accessions (Klingaman and Oliver 1996).  Similarly, differences 

in vine length, leaf size and shape, and days to flower initiation was observed among pitted 

morningglory (Ipomoea lacunosa L.) accessions collected from different geographic locations 

(Stephenson et al. 2006).  Furthermore, accessions of Florida beggarweed [Desmodium 

tortuosum (Sw.) DC.] differed in height, node formation, branching, flower, and fruiting habits 

(Cardina and Brecke 1989).   

Plant growth analysis can elucidate competitive ability of a species utilizing parameters 

to determine growth and development of plant systems in a controlled, semi-natural, or natural 

condition (Hunt 2003).  Total dry matter production and leaf area are basic processes of 

vegetative growth (Radosevich et al. 1997).  Therefore, growth measurements such as dry 

weights of a plant and leaf area recorded over time can show the relative size, productivity, and 

photosynthetic capability of the plant.  Ragweed parthenium growth during summer and winter 

months was compared by Pandey et al. (2003) using various growth parameters.  Lower net 

assimilation rate (NAR) and relative growth rate (RGR) was observed when ragweed parthenium 

grew during the winter months due to a decrease in net photosynthetic rate caused by low air 

temperatures.  Net assimilation rate is the measure of total dry matter net gain per unit of leaf 

area (James and Drenovsky 2007; Lambers et al. 2008; Poorter and Remkes 1990).  NAR 
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determines photosynthetic efficiency by reflecting the ratio of carbon gain during photosynthesis 

and carbon loss through respiration (Forbes and Watson 1992; Poorter and Bergkotte 1992).  

Environmental conditions can reduce this efficiency (Williams 1946).  Additionally, RGR is the 

increase of the total dry weight of a plant over a unit of time, and is a central parameter in plant 

growth analysis which is determined by differences in physiology, morphology, and partitioning 

assimilates to biomass (Kriedemann et al. 1999).  Furthermore, favorable environments for plant 

growth typically leads to higher RGR.  High leaf area ratio can indicate competitive advantage in 

weedy species.  While evaluating accessions from various locations in the US, both Bond and 

Oliver (2006) and VanGessel et al. (1998) found accessions, Palmer amaranth (Amaranthus 

palmeri S. Wats) and spurred anoda [Anoda cristata (L.) Schllecht.], respectively, originating 

from warmer climates produced higher leaf area ratio, indicating a competitive advantage for 

these populations.  Plant LAR is the most important variable for whole plant growth and a unit 

measure of plant leafiness, thereby measuring photosynthetic capacity of a plant (Radosevich et 

al. 1997). 

An understanding of weed development and growth rate would be important in 

development of effective management strategies, because poor weed control can result from 

improper timing of herbicide applications (Horak and Loughlin 2002).  Therefore, the objectives 

of this research were to compare growth characteristics of henbit accessions differentiated by 

emergence date and to investigate growth changes during the growing season. 
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Materials and Methods 

Research was conducted in 2013/2014, 2014/2015, and 2015/2016 at the Louisiana State 

University Agricultural Center Dean Lee Research and Extension Center near Alexandria to 

evaluate growth characteristics of henbit.  A factorial arranged in a completely randomized 

design was used in all studies.  Factors included henbit emergence dates of September, October, 

or November and destructive harvest intervals of 2, 3, 4, 6, 8, 10, and 12 wk after emergence 

(WAE).  Individual plants were considered separate experimental units.  For the emergence date 

treatments cotyledon henbit collected were transplanted in early September, October, or 

November of each year to 31 by 46 cm pots (GL 6900S #10 Squat, BWI Companies, Forest Hill, 

LA 71430) containing 50/50 mix of potting soil (Metro-Mix 840, Sungro Horticulture, Agawam, 

MA 01001) and inert sand..  Metro-Mix 840 contains a proprietary blend of starter nutrient with 

gypsum and slow release nitrogen.  Each pot contained 50.5 liters soil, and no additional 

nutrients were added over duration of the trial.  At each of the destructive harvest intervals, 

eights henbit plants were clipped at the soil surface and leaves were separated from stems and 

petioles.  Below ground biomass was not evaluated.  Total leaf area was measured 

photometrically (LI-COR 3100 leaf area meter, 4647 Superior Street, Lincoln, NE 68504).  

Leaves and stems of each plant were oven-dried separately at 56 C for 7 d.  After drying, leaf 

and stems with petioles weight were measured and used to determine total dry weights.  Average 

monthly temperatures and rainfall totals were recorded and compiled for September through 

February of each growing season from the Louisiana Agriclimatic Information System (LAIS) 

automated weather station located at the Dean Lee Research and Extension Center (Table 3.1).   



29

Table 3.1. Maximum and minimum air temperature and rainfall average for each month of 
study duration in 2013 through 2016. 
3 year average Sept Oct Nov Dec Jan Feb 
Maximum temperaturea 32.2 27.2 19.4 17.2 14.4 16.6 
Minimum temperaturea 20.5 14.4 7.7 6.6 2.2 5.0 
Rainfallb 11.7 15.5 15.5 10.2 10.4 8.9 
a Temperature in Celsius 
b Rainfall in centimeters

Values of leaf area ratio (LAR), net assimilation rate (NAR), relative growth rate (RGR), 

specific leaf area (SLA), specific leaf weight (SLW), and stem-to-leaf ratio (SLR) were 

calculated on a per-plant basis at each harvest interval.  These values were calculated with the 

following formulas: 

LAR = La x Wt
-1 

NAR = [(Wt2 – Wt1) x (T2 –T1)-1] x [(ln La2 – ln La1) x (La2 – La1)-1] 

RGR = (ln Wt2 – ln Wt1) x (T2 – T1)-1 

SLA = La x Wl
-1 

SLR = Ws x Wl
-1  

SLW = Wl x La
-1

where La is total leaf area, La1 is total leaf area at time 1; La2 is total leaf area at time 2, Wt, Wl, 

Ws are dry weights of whole plants (total), leaves, and stems, respectively; Wt1 is whole plant 

weight at time 1; Wt2 is whole plant weight at time 2; T1 is harvest time at time 1; T2 is harvest 

time at time 2. 

All data were subjected to analysis of variance using PROC GLIMMIX in SAS 

(SAS/STAT, version 9.3, SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513) with 

emergence date, harvest interval, and their interaction as fixed effects and years, plant, and their 

interaction as random variables.  Considering year an environmental or random effect permits 
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inferences about treatments to be made over a range of environments (Blouin et al. 2011; Carmer 

et al. 1989).  Least square means were calculated for main effects and their interactions, and 

separated using Tukey’s honest significant difference test at the P ≤ 0.05. 

 

Results and Discussions 

Leaf Area Ratio.  (Horak and Loughlin 2000) LAR is a measure of the proportion of plant 

biomass invested in leaf area= leaf area x total plant dry weight; thus, greater plant LAR may 

have greater photosynthetic capacity.  Main effects of emergence date and harvest interval were 

detected for LAR (Table 3.2).  Leaf area ratio for henbit emerging in September, October, and 

November was were 0.012, 0.01, and 0.008 cm2 g-1 respectively, with the November henbit 

having 33% less LAR then the September emerged henbit (Table 3.3).  In addition, averaged 

across emergence dates, henbit LAR was greater at the 2, 3, and 4 WAE harvest intervals 

compared with 8, 10, and 12 WAE (Table 3.4).  Leaf area ratio data show that September 

emerged plants regardless of harvest interval were larger than November emerged henbit, which 

may be a function of greater photosynthetic capacity.  Visual observations noted that September 

emerged henbit plants were larger and more vigorous than plants emerging in November.  

Additionally, the reduced LAR from 8 to 12 WAE harvest intervals may suggest that allocation 

of resources to leaf production was greater for henbit emerging at 4 weeks and earlier (Table 

3.4).   
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Table 3.2. Significance of the main effects of emergence date, harvest interval, and 
interactions among main effects. a, b 
Parameter Date Harvest Date x Harvest 
 _________________________ P-value _________________________ 

Leaf area ratio (LAR) 0.0036 <.0001 0.7037 
Net assimilation rate (NAR) 0.1439 0.3073 0.6055 
Relative growth rate (RGR) <.0001 0.2848 0.9425 
Specific leaf area (SLA) 0.8243 0.2307 0.5804 
Stem leaf ratio (SLR)  0.1739 0.3973 0.4486 
Specific leaf weight (SLW) 0.0114 0.7138 0.7274 
a Main effects and interactions considered significant for Type III error if P ≤ 0.05. 
b Data for main effects and interactions not significant at P ≤ 0.05 are shown in 
Appendix 3.1 through 3.3. 

 

Table 3.3.  Leaf area ratio, relative growth rate, and specific leaf weight as influenced 
by henbit emergence date. 
Emergence date Leaf area ratio Relative growth rate Specific leaf weight 
 cm2 g-1 g g-1 d-1 g cm-2 
September 0.012 a 0.194 a 53.7 b 
October 0.010 ab 0.121 b 88.7 ab 
November 0.008 b 0.092 b 119.0 a 
a Data pooled over harvest interval.  Means followed by the same letter for each 
parameter are not significantly different according to Tukey’s honest significant 
difference test at P ≤ 0.05. 

 

Table 3.4. Leaf area ratio as influenced by henbit harvest interval.a 
 cm2 g-1 
wk 2 0.013 a 
wk 3 0.013 a 
wk 4 0.013 a 
wk 6 0.011 ab 
wk 8 0.008 b 
wk 10 0.007 b 
wk 12 0.007 b 
a Data pooled over emergence date.  Means followed by the same letter are not 
significantly different according to Tukey’s honest significant difference test at P ≤ 
0.05. 

 
Net Assimilation Rate.  Net assimilation rate is a net gain in total dry matter per unit leaf area at 

each harvest interval (James and Drenovsky 2007).  This measurement determines 

photosynthetic efficiency by reflecting the ratio of carbon gain during photosynthesis and carbon 

loss through respiration (Forbes and Watson 1992).  For NAR significant effects due to henbit 
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emergence date, harvest interval, and their interaction were not observed (Table 3.2).  For 

September, October, and November emerged henbit, NAR ranged from -122.8 to 226.0 g cm-2 d-

1 (data not shown; Appendix 3.1).  In addition, harvest interval NAR ranged from -286.6 to 252.9 

g cm-2 d-1 (data not shown; Appendix 3.2).  Light is important in net assimilation with longer 

illumination times indicating more biomass.  Compensation point is where light intensity and 

photosynthesis cancel each other out which is called zero net assimilation rate (Forbes and 

Watson 1992).  The lack of differences observed possibly indicates that October emerged henbit 

may better balance photosynthesis and respiration, whereas September and November 

populations at -122.8 and 226.0 respectively, (data not shown; Appendix 3.1) have greater 

photosynthetic/respiration imbalance due to carbon allocation.  This carbon allocation may be 

better reflected by LAR and RGR.  Faster growing plants like September emerged henbit 

assimilate carbon in new growth, especially leaf growth, whereas November emerged plants, 

which were slower growing, use more carbon in respiration and root growth (Lambers et al. 

2008).  

Relative Growth Rate.  Differences in henbit emergence date for RGR were observed, but there 

were no differences among harvest intervals or for the interaction (Table 3.2).  September 

emerged henbit RGR was 0.194 g g-1 d-1, which was greater than both October and November 

emerged henbit with 0.121 and 0.092 g g-1 d-1, respectively (Table 3.3).   Relative growth rate is 

the rate of increase of the total dry weight of a plant over a unit of time, which is calculated 

utilizing LAR and NAR (Kriedemann et al. 1999).  In addition, they noted that the role of LAR 

as a driving variable in a plant’s relative growth rate and thus is more important than its net 

assimilation rate.  Poorter and Remkes (1990) found NAR to be not strongly correlated to RGR.  

Therefore, more light was available for leaf production, inducing greater LAR for the September 
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emerged henbit.  This higher leaf area intercepted more light then the November population, 

leading to the increase in the September population’s RGR compared to November.  Henbit 

harvest interval RGR ranged from 0.121 to 0.154 g g-1 d-1 (data not shown; Appendix 3.2). 

Specific Leaf Area.  Specific leaf area is a calculation of leaf area of the plant to dry leaf weight 

(Kvet et al 1971), thus reflects the density or relative thickness of leaves.  However, prevailing 

view states that SLA reflects plant utilization of resources in rich or poor environments (Wilson 

et al. 1999).  Henbit emergence date, harvest interval, and their interaction were not significant 

(Table 3.2).  Specific leaf area for the September, October, and November populations ranged 

from 0.016 to 0.018 cm2 g-1 (data not shown; Appendix 3.1).  The range of SLA over harvest 

interval was 0.013 to 0.023 cm2 g-1 (data not shown; Appendix 3.3).  All cotyledon plants were 

transplanted and grown for the trial duration in 50.5 liters of Metro-Mix 840, which contain a 

starter nutrient with gypsum and slow release nitrogen; therefore, all plants were subject to equal 

growing conditions, thus eliminating a variable that would cause significant difference in SLA.   

Specific Leaf Weight.  Specific leaf weight is a predictive index of previous light environment 

and net photosynthetic potential (Barden 1977; Pearce et al 1969).  Although SLW and SLA both 

measure leaf thickness, SLW assesses the physiological processes occurring in the functioning of 

total plant leaf area or total canopy by taking into account light, nitrogen status, and other 

stressors and SLA measures the change in leaf area index as a plant adds growth through 

nutrients assimilation (Field and Mooney 1986). 

Differences in henbit emergence date were observed for SLW, but there were no-

significant differences among harvest intervals or for their interaction (Table 3.2).  Specific leaf 

weight for November emerged henbit was 119 g cm-2, which was equal to October (88.7 g cm-2), 

but greater than September (53.7 g cm-2) (Table 3.3).  Poorter and Bergkotte (1992) reported that 
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low SLW is associated with high RGR, thus greater leaf area with ability to intercept more light.  

Henbit emerging in November had greater SLW than henbit emerging in September (Table 3.3), 

but smaller leaf area and lower RGR (Table 3.3).  November emerging henbit populations were 

subject to less available daylight (approximately 10.5 hours) compared with henbit emerging in 

September and October (approximately 12.5 and 11.5 daylight hours, respectively).  This may 

help explain why November henbit populations had thicker leaves and thus a higher SLW.  A 

greater concentration of photosynthetic apparatus per unit leaf area with more sun facing leaves 

to increase net photosynthetic potential in a lower light environment has been reported by Brown 

and Byrd (1997).  It should also be noted that henbit emerging in November would have been 

under greater environmental stress than September and October populations due to increased 

rainfall and cooler growing temperatures over the 12 wk harvest intervals (Table 3.1), providing 

yet another factor that may increase SLW. 

Stem-to-Leaf Ratio.  Henbit emergence date, harvest interval, and their interaction were not 

significant (Table 3.1).  Stem-to-leaf ratio was 0.623, 0.630, and 0.985 g g-1 for the September, 

October, and November emerged henbit, respectively (data not shown; Appendix 3.1).  

Furthermore, SLR ranged from 0.374 to 1.015 g g-1 across henbit harvest intervals (data not 

shown; Appendix 3.3).  SLR is a ratio of stem to leaf dry matter describing plant allocation of 

resources (Bond and Oliver 2006).  The flow of assimilates shifts from leaves to meristematic 

tissue and fruit structure components within a plant, are dictated by developmental lifecycle 

needs (Singh et al. 2008).  Although not significant, the SLR of 0.717 g g-1 at the 2 wk suggests 

production of more leaves, and then a gradual increase of allocations to reproduction for weeks 6 

to 12; 0.809 and 1.015 g g-1, respectively (Appendix 3.3).  It is possible that differences would 

have been found if henbit was harvested at 14 and 16 week intervals. 
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Differences in henbit growth and development were observed among emergence dates 

and were reflected in LAR, RGR and SLW.  Photosynthetic capacity and efficiency were greater 

for September emerged henbit, which may indicate a competitive advantage over November 

emerged henbit.  October populations had similar trends and were not different than September 

emerged henbit, conceding that any competitive advantage September may have over October is 

slight.  November emerged henbit was subject to colder environmental conditions with less 

daylight and greater rainfall, thus allocating resources and maintaining fitness over 12 weeks is 

more difficult metabolically.  Low temperatures reduces net photosynthesis by slowing 

photosynthetic.  Slow photosynthetic rate reduces new leaf development because plants depend 

on photosynthetic area and rate for growth (Beale et al. 1996).  Leaf area ratio, RGR, and SLW 

for November emerged henbit substantiate field observations of much smaller overall plants, 

with thickened leaves.  Differences in henbit growth was also observed among henbit intervals 

for LAR.  It was observed that September emerged henbit has begun to senesce 12 WAE, which 

may indicate a shorter lifecycle than October and November populations; however, this was not 

reflected in the data.  It is possible that greater differences in emergence date, harvest interval, 

and their interaction could have been documented if harvest interval was extended to 16 or 18 

WAE.  Overall, the data suggests that difficultly in controlling henbit emerging in September 

and/or October with herbicide treatments in the spring of the year maybe due to hardening off 

and senescence, which would reduce leaf area potentially leading to reduced herbicide 

absorption and subsequent translocation.
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Introduction 

Henbit (Lamium amplexicaule L.) is a winter annual weed that is prevalent in more than 

50 crops as well as ditch banks, roads, and field edges (Holm et al. 1997).  Henbit is adapted to 

temperate areas and a wide variety of soils.  It is naturalized in the United States; but native to 

Europe and the Mediterranean region (USDA-NRCS 2015).  Henbit seedlings have oval, smooth 

cotyledons.  Characteristics distinctive to henbit include, palmately veined leaves, occurring in 

opposite pairs along the stem, tubular pink to purplish flowers and a lobed spotted lower lip 

(DeFelice 2005; Holm et al. 1997).  Webster (2013) stated that henbit is the fifth and sixth most 

troublesome weed in Louisiana cotton and soybean, respectively.  Henbit’s troublesome nature in 

Louisiana crops may be due to the difficulty in control with spring herbicide applications prior to 

seeding a summer annual crop (D. O. Stephenson, IV, personal communication).   

Winter weed vegetation following several months of growth prior to planting a summer 

annual crop can reach heights up to 1 m (Stougaard et al. 1984).  Fall applied herbicides 

targeting winter weeds when small provided greater control than spring applications (Hasty et al. 

2004).  Fall applied herbicide provided excellent control of winter weeds (Young and Krausz 

2001).  Fall-applied residual herbicides such as atrazine, rimsulfuron plus thifensulfuron, and 

simazine controlled mouseear chickweed [Cerastium fontanum ssp. vulgare (Hartman) Greuter 

& Burdet] and henbit 93% prior to planting a spring annual crop (Krausz et al. 2003)  Similarly, 

Monnig and Bradley (2007) reported henbit control of 94% at soybean planting after application 

CHAPTER 4
EVALUATION OF FALL-APPLIED RESIDUAL HERBICIDES FOR CONTROL 

OF HENBIT (LAMIUM AMPLEXICAULE L.) 
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of residual herbicides in the fall.  Co-application of 2, 4-D with residual herbicides, applied 7 

days before planting, controlled of annual fleabane (Erigeron annuus (L.) Pers.), corn speedwell 

(Veronica arvensis L.), field pennycress (Thlaspi arvense L.), henbit, and shepherd’s-purse 

[Capsella bursa-pastoris (L.) Medik.] 37 to 75% at planting (Monnig and Bradley 2007).  These 

same herbicide treatments applied in the fall controlled weeds was greater than 95%.  Likewise, 

chlorimuron plus metribuzin or sulfentrazone with or without glyphosate plus 2, 4-D applied in 

fall provided 99% control of purple deadnettle (Lamium purpureum L.), another Lamium species 

like henbit, at soybean planting compared to 48% control following glyphosate plus 2,4-D 

applied 30 d preplant (Hasty et al. 2004), also showing an advantage to fall-applied herbicide 

application for control of lamium spp.  Although fall glyphosate-resistant (GR) horseweed 

[Conyza Canadensis (L.) Cronq.] applied residual herbicides controlled greater than 86% 190 

days after application herbicide degradation due to spring moisture and increased temperatures 

warranted a spring herbicide application (Owen et al. 2009).  Cotton (Gossipium hirsutum L.) 

yields were greater when residual herbicides were applied in fall compared with dicamba applied 

alone in the spring. 

When seeding a summer annual crop, uncontrolled henbit may interfere with crop 

planting, growth, and development via direct competition or through harboring of other pests.  

Application of efficacious herbicides in fall can reduce producer workload in spring and aid in 

timely planting of the crop (Hasty et al. 2004; Krausz et al. 2003).  Additionally, reduced 

vegetative cover following fall herbicide applications can result in increased soil temperatures in 

the spring (Bruce et al. 2000).  A weed free seed bed would be beneficial to crop emergence and 

summer crops must compete with winter annual weeds for nutrients and water resources 

(Bernards and Sandell 2011).  Presence of winter vegetation can be detrimental to crop growth 



41

and yield because some annual weeds can serve as host for soybean cyst nematode (Heterodera 

glycines) (Creech et al. 2007; Venkatesh et al. 2000; Werle et al. 2013). 

Considering the significant populations of henbit in Louisiana along with the poor control 

reported by Louisiana crop producers with spring-applied herbicides, there is a need for 

development of control programs for henbit.  The objective of this research was to investigate the 

effect of application dates and residual herbicides for henbit control. 

Materials and Methods 

Experiments were conducted in 2012/2013, 2013/2014, and 2014/2015 at the Louisiana 

State University Agricultural Center Dean Lee Research and Extension Center near Alexandria.  

Soil was a Coushatta silt loam (fine-silty, mixed, superactive, thermic Fluventic Entrudept), with 

a pH of 8.0 and 1.5% organic matter.  An augmented factorial arranged in a randomized 

complete block design replicated four times was used in all studies.  Factors consisted of five 

application dates, seven herbicide treatments, and a nontreated.  The five application dates were 

Oct 15, Nov 1, Nov 15, Dec 1, and Dec 15 +/- 3 days.  The seven herbicide treatments were 

diuron at 840 g ai ha-1, flumioxazin at 72 g ai ha-1, oxyfluorfen at 280 g ai ha-1, pyroxasulfone at 

150 g ai ha-1, prepackaged mixture of rimsulfuron: thifensulfuron-methyl at 18:18 g ai ha-1, S-

metolachlor at 1420 g ai ha-1, and a non-residual herbicide treatment.  Paraquat at 840 g ai ha-1 

plus a non-ionic surfactant at 0.25% v/v was co-applied with all residual herbicide treatments to 

control emerged henbit at time of application and allow for evaluation of residual herbicides.  

Plot size was 2 m wide by 9 m in length.  All herbicide treatments were applied with a CO2-

pressurized sprayer calibrated to deliver 187 L ha-1 at 145 kPa using TeeJet 11002 flat-fan 

nozzles (Spraying Systems Co., P.O. Box 7900, Wheaton, IL 60189). 
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Visual evaluations of henbit control (0 = no control; 100 = no henbit plants present) were 

collected 28, 50, 85, and 100 d after each application; however, only 28 and 100 DAT control 

data are presented to illustrate short- and long-term henbit control.  Henbit density and heights 

were recorded in three, randomly selected m2 in each plot 28 and 100 DAT, but only 100 DAT 

density and height are presented.  Prior to analysis, henbit height and density were converted to a 

percentage of the nontreated.  Control data collected 50 and 85 DAT and henbit density and 

height as a percent of the nontreated collected 28 DAT are shown in Appendices 4.1 through 

4.12. 

Homogeneity of data was tested with PROC UNIVARIATE in SAS (SAS/STAT, version 

9.3, SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513).  Analysis indicated that data 

did not follow a normal distribution; therefore, henbit control, height, and density were arcsine 

square-root transformed.  Using appropriate transformation allows for correction of data that 

may have non-normality, non-additivity, and heterogeneity of variance (Ahrens et al. 1990; 

Bartlett 1947; Fernandez 1992; Finney 1989).  Transformed data were subjected to PROC 

GLIMMIX in SAS with year, application date, and herbicide as fixed effects and replication as a 

random effect.  Analysis indicated a year interaction, therefore, data were reanalyzed separately 

by year.  Least square means were calculated and separated using Tukey’s honest significant 

difference test at P ≤ 0.05.  Non-transformed means for each year are presented for discussion. 

Results and Discussions 

Precipitation, either via rainfall or irrigation, is required for activation of residual 

herbicides.  Norsworthy et al. (2012) stated that environmental conditions, such as temperature, 

rainfall, and soil moisture, may influence the application or activation of residual herbicides.  In 
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these studies, rainfall greatly influenced the efficacy of residual herbicides at all application 

dates.  Table 4.1 provides the number of days following application until first rain event, the 

rainfall amount at the first event, and total rainfall recorded during the month following each 

application to highlight the lack of or excessive rainfall that influenced the data. 

Table 4.1.  Number of days between the herbicide application and first rainfall event, 
amount of rainfall at first event, and total amount of rainfall for the month following the 
application for each application date in 2013, 2014, and 2015 

Year 
Application 

Date 

Days between 
herbicide 

application and 
first rainfall event 

Rainfall amount at 
first event 

Rainfall amount 
total for the month 

following the 
application 

no. of d __________________ cm __________________ 

2012/2013 Oct 15 0 0.13 1.40 
Nov 1 3 0.79 1.60 
Nov 15 11 0.33 4.30 
Dec 1 3 0.10 16.50 
Dec 15 2 4.40 41.50 
Average 4 1.10 13.10 

2013/2014 Oct 15 2 0.03 8.80 
Nov 1 0 0.03 9.80 
Nov 15 2 0.03 11.70 
Dec 1 2 0.25 3.80 
Dec 15 5 1.40 6.80 
Average 2 0.36 8.20 

2014/2015 Oct 15 6 0.03 8.20 
Nov 1 1 0.18 8.20 
Nov 15 2 5.56 7.80 
Dec 1 12 1.52 13.90 
Dec 15 0 0.03 22.90 
Average 4 1.47 12.20 

Improper activation or excessive rainfall following the application of residual herbicides can lead 

to variability in visual control, density, and height.  Oftentimes the environmental effect can be 

explained; however, reasons for herbicide failure sometimes cannot be determined.  Therefore, 
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data will be discussed as general trends of the application date and/or herbicide that were the 

most consistent across environments, i.e.at least 70% control 28 and 100 DAT in 2 or more 

years, for henbit control and reduction in density and height. 

 The interaction of application date and herbicide were significant 28 and 100 DAT for 

2012/2013, 2013/2014, and 2014/2015 (Table 4.2).  Furthermore, an interaction was observed 

for henbit density and height as a percent of the nontreated in 2012/2013 and 2014/2015.  In 

2013/2014, an application date main effect was observed for henbit height as a percent of the 

nontreated and the herbicide main effect was detected for henbit density and height. 

 Overall, residual herbicides provided at least 70% henbit control 28 and 100 DAT when 

applied Nov 1, Nov 15, or Dec 1 (Tables 4.3; 4.4; 4.5; 4.6; 4.7; 4.8).  Henbit density and height 

as a percent of the nontreated did not support control observations when all herbicides were 

applied on these three application dates due to variability among years and herbicides, but 

flumioxazin, oxyfluorfen, and rimsulfuron:thifensulfuron did reduce density and height to a 

range of 0 to 70% of the nontreated when applied Nov 1, Nov 15, or Dec 1 (Tables 4.9; 4.10; 

4.11; 4.12; 4.13).  Additionally, henbit height was influenced by application date in 2013/2014 

with all application dates reducing height to 16 to 38% of the nontreated compared to the Oct 15 

application date, which reduced height to 64% of the nontreated (data not shown; Appendix 

4.13).  Research of henbit emergence determined that a majority of henbit emerged between mid-

October through mid-December (Chapter 2).  This information supports the control values 

observed in these studies due to targeting either small or pre-germinated henbit with paraquat 

plus a residual herbicide.  Multiple studies concluded that increased weed control was observed 

following herbicides applied to weeds 5 cm or less (Baldwin et al. 1991; Baldwin and Frans 

1972; Barrentine 1989; Deflice et al. 1989; Harrison et al. 1989; Oliver 1989). 
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Table 4.2.  Significance of the main effects of application date, herbicide, and their 
interactions for henbit control 28 and 100 d after treatment and henbit density and height 
as a percent of the nontreated 100 DAT in 2012/2013, 2013/2014, and 2014/2015.a,b,c 
  Control  Density  Height 
Year Effect 28 DAT 100 DAT  100 DAT  100 DAT 
  __________________________ P-value __________________________ 

2012/2013 Date < 0.0001 < 0.0001  < 0.0001  < 0.0001 
 Herb < 0.0001 < 0.0001  < 0.0001  < 0.0001 
 Date x herb < 0.0001 < 0.0001  0.0001  0.0003 
        
2013/2014 Date < 0.0001 < 0.0001  0.1577  < 0.0001 
 Herb < 0.0001 < 0.0001  < 0.0001  < 0.0001 
 Date x herb < 0.0001 < 0.0001  0.8291  0.2743 
        
2014/2015 Date < 0.0001 < 0.0001  0.0024  0.0005 
 Herb < 0.0001 < 0.0001  < 0.0001  < 0.0001 
 Date x herb < 0.0001 < 0.0001  < 0.0001  0.0235 
a Abbreviations:  DAT, d after treatment. 
b Main effects and their interactions are considered significant at P ≤ 0.05. 
c Henbit control data 50 and 85 d after treatment and henbit density and height as a 
percent of the nontreated 28 DAT for each year are shown in the Appendix. 
 
 
 
Table 4.3.  Henbit control as influenced by application date and herbicide 28 d after treatment 
in 2012/2013.a 

 Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 
 _____________________________________ % __________________________________ 
diuron 0 j 74 cdef 90 abc 86 abcde 51 fgh 
flumioxazin 29 hi 81 bcde 92 abc 91 abc 96 ab 
oxyfluorfen 88 abcd 99 a 99 a 96 ab 99 a 
pyroxasulfone 0 j 92 abc 91 abc 93 ab 35 ghi 
rimsulfuron:thifensulfuron 0 j 84 abcde 90 abc 89 abc 60 efg 
S-metolachlor 0 j 86 abcd 91 abc 97 ab 20 i 
no residual 0 j 75 cdef 0 j 63 defg 0 j 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Table 4.4.  Henbit control as influenced by application date and herbicide 100 d after 
treatment in 2012/2013.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 0 e 83 ab 36 d 92 ab 0 e 
flumioxazin 41 d 96 ab 92 ab 99 a 75 ab 
oxyfluorfen 99 a 99 a 90 ab 97 a 80 ab 
pyroxasulfone 0 e 90 ab 50 cd 85 a 0 e 
rimsulfuron:thifensulfuron 0 e 91 ab 98 a 99 a 94 ab 
S-metolachlor 0 e 92 ab 84 ab 92 ab 0 e 
no residual 0 e 0 e 0 e 15 e 0 e 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Table 4.5.  Henbit control as influenced by application date and herbicide 28 d after treatment 
in 2013/2014.a 

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 95 ab 85 abc 97 a 98 a 94 ab 
flumioxazin 98 a 99 a 99 a 93 ab 96 abc 
oxyfluorfen 97 a 99 a 97 a 99 a 98 a 
pyroxasulfone 70 bc 95 ab 92 ab 61 c 90 abc 
rimsulfuron:thifensulfuron 95 ab 95 ab 97 a 90 abc 86 abc 
S-metolachlor 97 a 99 a 96 ab 92 ab 81 abc 
no residual 0 e 19 de 86 abc 0 e 21 d 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Table 4.6.  Henbit control as influenced by application date and herbicide 100 d after 
treatment in 2013/2014.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 70 efg 75 bcdefg 84 abcdefg 98 ab 96 abcd 
flumioxazin 80 abcdefg 90 abcdef 90 abcdef 97 abc 99 a 
oxyfluorfen 85 abcdefg 97 abc 95 abcde 99 a 97 abc 
pyroxasulfone 61 fg 81 abcdefg 86 abcdefg 69 defg 85 abcdefg 
rimsulfuron:thifensulfuron 85 abcdefg 95 abcde 95 abcde 95 abcde 94 abcd 
S-metolachlor 75 cdefg 92 abcde 90 abcdef 95 abcd 80 abcdefg 
no residual 0 h 0 h 55 g 0 h 0 h 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Table 4.7  Henbit control as influenced by application date and herbicide 28 d after treatment 
in 2014/2015.a 

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 48 ghi 68 defghi 81 abcdef 96 abc 79 abcdefg 
flumioxazin 97 ab 85 Abcde 93 abcd 98 ab 99 a 
oxyfluorfen 93 abc 97 Ab 95 abc 99 a 99 a 
pyroxasulfone 74 cdefgh 83 abcde 85 abcde 77 abcedfg 41 hi 
rimsulfuron:thifensulfuron 81 abcdefg 83 abcde 88 abcd 97 ab 10 j 
S-metolachlor 39 i 63 efghi 96 abc 97 ab 61 fghi 
no residual 0 j 54 fghi 68 defghi 48 ghi 78 bcdefg 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Table 4.8  Henbit control as influenced by application date and herbicide 100 d after 
treatment in 2014/2015.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 46 fghi 30 defgh 39 hi 70 bcdefg 71 bcde 
flumioxazin 44 ghi 61 abcd 88 abc 88 ab 93 a 
oxyfluorfen 76 abcde 78 ab 76 abcde 79 abcde 90 ab 
pyroxasulfone 0 j 60 abcde 65 cdefg 58 efgh 8 j 
rimsulfuron:thifensulfuron 38 hi 88 a 86 abc 90 ab 78 abcde 
S-metolachlor 25 i 9 i 80 abcde 88 abc 0 j 
no residual 0 j 0 j 0 j 0 j 0 j 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Table 4.9.  Henbit density as a percent of the nontreated as influenced by application date and 
herbicide treatment 100 d after treatment in 2012/2013.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 88 abcd 89 abc 36 abcde 15 bcde 62 abcde 
flumioxazin 48 abcde 0 e 0 e 0 e 0 e 
oxyfluorfen 0 e 0 e 0 e 0 e 0 e 
pyroxasulfone 100 a 50 abcde 93 ab 3 cde 98 ab 
rimsulfuron:thifensulfuron 29 abcde 0 e 0 e 0 e 0 e 
S-metolachlor 85 abcd 18 bcde 0 e 3 cde 100 a 
no residual 81 abcd 0 e 48 abcde 1 de 29 abcde 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Table 4.10.  Henbit height as a percent of the nontreated as influenced by application date and 
herbicide treatment 100 d after treatment in 2012/2013.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 100 a 100 a 50 ab 9 ab 85 ab 
flumioxazin 85 ab 0 b 0 b 0 b 0 b 
oxyfluorfen 0 b 0 b 0 b 0 b 0 b 
pyroxasulfone 100 a 50 ab 100 a 10 ab 100 a 
rimsulfuron:thifensulfuron 48 ab 0 b 0 b 0 b 0 b 
S-metolachlor 85 ab 50 ab 0 b 15 ab 100 a 
no residual 85 ab 0 b 78 ab 15 ab 44 ab 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Table 4.11.  Henbit density and height as a percent of nontreated as 
influenced by herbicide treatment 100 d after treatment in 2013/2014.a 
Herbicideb Density Height 

______________ % of nontreated _____________ 

diuron 14 bc 39 bc 
flumioxazin 7 c 17 cd 
oxyfluorfen 5 c 10 d 
pyroxasulfone 39 ab 44 b 
rimsulfuron:thifensulfuron 5 c 12 d 
S-metolachlor 26 abc 40 bc 
no residual 61 a 79 a 
a Data pooled over application date.  Means followed by the same 
letter for each parameter are not significantly different according to 
Tukey’s honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v 
applied with all residual herbicides on all application dates. 
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Table 4.12.  Henbit density as a percent of the nontreated as influenced by application date 
and herbicide treatment 100 d after treatment in 2014/2015.a 

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 76 abcdef 33 abcdef 81 abcde 67 abcdef 96 ab 
flumioxazin 3 ef 27 bcdef 20 bcdef 70 abcdef 7 def 
oxyfluorfen 9 cdef 2 f 1 f 7 def 1 f 
pyroxasulfone 94 ab 83 abcd 89 abcd 26 bcdef 62 abcdef 
rimsulfuron:thifensulfuron 49 abcdef 2 f 6 def 9 cdef 3 ef 
S-metolachlor 88 abcd 30 bcdef 56 abcdef 34 abccdef 65 abcdef 
no residual 100 a 90 abc 85 abcd 10 cdef 30 bcdef 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Table 4.13.  Henbit height as a percent of the nontreated as influenced by application date and 
herbicide treatment 100 d after treatment in 2014/2015.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 93 abcd 54 abcdefg 87 abcdef 33 abcdefg 79 abcdefg 
flumioxazin 44 abcdefg 25 abcdefg 35 abcdefg 19 abcdefg 13 cdefg 
oxyfluorfen 52 abcdefg 52 abcdefg 3 fg 4 fg 0 g 
pyroxasulfone 18 bcdefg 83 abcdef 53 abcdefg 41 abcdefg 64 abcdefg 
rimsulfuron:thifensulfuron 31 abcdefg 6 defg 10 cdefg 3 fg 2 fg 
S-metolachlor 51 abcdefg 95 abc 29 abcdefg 17 bcdefg 88 abcde 
no residual 99 ab 100 a 61 abcdefg 69 abcdefg 62 abcdefg 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 



51

Regardless of year or application timing, oxyfluorfen provided at least 88 and 76% henbit 

control 28 and 100 DAT, respectively (Tables 4.3; 4.4; 4.5; 4.6; 4.7; 4.8), which indicates that it 

was the most consistent fall-applied residual herbicide for henbit control.  Furthermore, henbit 

density and height ranged from 0 to 9% and 0 to 52% of the nontreated, respectively, following 

oxyfluorfen 100 DAT (Tables 4.9; 4.10; 4.11; 4.12; 4.13), which corroborates control 

observations.  Flumioxazin, rimsulfuron:thifensulfuron, and S-metolachlor controlled henbit 74 

to 99% in at least two of three years 28 and 100 DAT when applied Nov 1, Nov 15, or Dec 1, 

showing that these herbicides are also options for henbit control.  Furthermore, when the residual 

herbicide application was delayed until Dec 15, only flumioxazin and oxyfluorfen provided at 

least 75% control 28 and 100 DAT in all years.  Diuron and pyroxasulfone provided at least 70% 

control only when applied Nov 1 in 2012/2013 and 2013/2014 (Tables 4.3; 4.4; 4.5; 4.6), 

demonstrating that they are viable fall-applied options for henbit management when applied only 

on Nov 1. 

Residual herbicides require water, via rainfall or irrigation, for activation to provide 

control of weeds.  However, efficacy is greatly affected by the amount of rainfall or irrigation a 

residual herbicide is subjected to.  Physical characteristics of a herbicide such as vapor pressure, 

photodegradation potential, water solubility, soil adsorption coefficient (Koc), and chemical 

and/or microbial degradation are factors that can influence residual herbicide efficacy in 

situations where too little or too much rainfall or irrigation occurs.  Following the Oct 15 

application date in 2012/2013, 0.13 cm of rainfall was recorded on the day of application and 

only 1.40 cm of rainfall was observed for the following month.  The lack of rainfall may be the 

reason diuron, flumioxazin, pyroxasulfone, rimsulfuron:thifensulfuron, and S-metolachlor 

controlled henbit 41% or less 28 and 100 DAT (Tables 4.3; 4.4).  However, oxyfluorfen 
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provided 88 and 99% henbit control when applied Oct 15 in 2012/2013.  Oxyfluorfen has a 

vapor pressure of 2.67 x 10-4 Pa, is not susceptible to photodegradation, a water solubility of 0.1 

mg L-1, and a Koc of 100,000 ml g-1, indicating that it will not likely be lost in either dry or wet 

environments (Shaner 2014).  Oxyfluorfen’s physical characteristics may be the reason greater 

efficacy was observed following the Oct 15 2012/2013 application date because it remained in 

henbit’s germination zone.  Diuron and S-metolachlor are both susceptible to photodegradation 

(Shaner 2014), which may be a possible reason for poor control following the Oct 15 2012/2013 

application date.  The lack of efficacy following the application of flumioxazin, pyroxasulfone, 

rimsulfuron:thifensulfuron cannot be explained because no physical characteristic such as 

photodegradation, vapor pressure, water solubility, or Koc provide a reason for their failure with 

applied Oct 15 (Table 4.3; 4.4). 

Rainfall recorded the month following the Dec 15 application dates in 2012/2013 and 

2014/2015 was 41.5 and 22.9 cm of rainfall, respectively (Table 4.1).  Following the Dec 15 

2012/2013 and 2014/2015 applications, flumioxazin and oxyfluorfen controlled henbit at least 

96% 28 DAT (Table 4.3; 4.7).  However, at 100 DAT, flumioxazin, oxyfluorfen, and 

rimsulfuron:thifensulfuron provided 75 to 94% henbit control in 2012/2013 and 2014/2015 

(Table 4.4; 4.8).  Control data is supported by henbit density and height as a percent of the 

nontreated with density of 0% and height ranging from 0 to 13% of the nontreated (Tables 4.9; 

4.10; 4.13; 4.14).  Low water solubility and high Koc values of flumioxazin, oxyfluorfen, 

rimsulfuron, and thifensulfuron, indicating low leaching potential through the soil profile and 

high adsorbed to soil (Shaner 2014), may be two reasons these herbicides provided greater than 

70% control following high rainfall amounts in the month following application.  Diuron did not 

control henbit 100 DAT and henbit density and height were 62 and 85% of the nontreated in 
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2012/2013 (Table 4.4; 4.9; 4.10).  Although water solubility and Koc do not indicate that diuron 

would likely leach from henbit’s germination zone, the lack of control at 28 and 100 DAT in 

2012/2013 shows that potential following 41.5 cm of rainfall.  However, in 2014/2015, diuron 

applied Dec 15 controlled henbit 79 and 71% 28 and 100 DAT, respectively (Table 4.8), 

following 22.9 cm of rainfall the month after application.  However, henbit density and height 

100 DAT following diuron applied Dec 15 2014/2015 was 96 and 79% of the nontreated, 

respectively (4.13; 4.14), indicating that visual control does not match with density and height 

data.  The lack of control following 41.5 cm of rain, but greater than 70% control following 22.9 

cm of rain appears to be the primary difference between 2012/2013 and 2014/2015 for diuron.  

Pyroxasulfone and S-metolachlor both provided 0% control 100 DAT in 2012/2013 and 8 and 

0% control 100 DAT in 2014/2015, respectively, when applied Dec 15 (Table 4.4; 4.8) when 

41.5 and 22.9 cm of rainfall was recorded during the month following their application (Table 

4.1).  Henbit density and height data support the control data with density and height ranging 

from 62 to 100% of the nontreated in 2012/2013 and 2014/2015 (Tables 4.9; 4.10; 4.13; 4.14).  

Pyroxasulfone and S-metolachlor are not extremely mobile and are moderately adsorbed to soil, 

so there is not an identifiable reason for the poor control observed following their Dec 15 

application in 2012/2013 and 2014/2015. 

 Although variability in control due to variable rainfall was observed results do provide 

valuable information.  Choice of application date is herbicide dependent, but the most consistent 

control was observed following a Nov 1 through Dec 1 application date.  Following all 

application dates, oxyfluorfen provided 76% or greater henbit control 100 DAT, indicating that it 

is the best option for henbit management.  Flumioxazin and rimsulfuron:thifensulfuron should be 

applied Nov 1 through Dec 15 to achieve greater than 70% henbit control 100 DAT.  Producers 
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struggle controlling henbit with herbicide applications in the spring.  Data demonstrates that a 

paraquat plus flumioxazin, oxyfluorfen, or rimsulfuron:thifensulfuron applied between Nov 1 

and Dec 1 will control henbit throughout the winter and early-spring.
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Trials were conducted to elucidate emergence patterns for henbit (Lamium amplexicaule 

L).  Four sites, Northeast Research Station in St. Joseph, a producer’s field in Concordia Parish, 

Dean Lee Research and Extension near Alexandria, and Ben Hur Research Farm in Baton 

Rouge, were selected from northern to southern across Louisiana to evaluate emergence of 

henbit.  Six 1 m-2 plots were established mid-September at each of four locations, with each m2 

counted weekly from mid-September to late-March.  Data indicated an association of emergence 

when soil temperatures averaged between 10 and 18.5 C, which corresponded to soil 

temperatures during the weeks of Oct 17 to Dec 12 at all locations in each year.  Densities of at 

least 50 henbit m-2 were counted each week approximately Oct 20 through Dec 20 for the three 

northern most sites, Northeast Research Station, Concordia parish, and Dean Lee Research 

Station in the 2011/2012.  Large spikes occurred in certain years during November at all three 

northern most locations with henbit 1000 henbit m-2, indicating potential for high henbit density 

at these locations.  Henbit densities of at least 50 henbit m-2 were counted each week 

approximately Oct 20 through Dec 20 2012/2013, 2013/2014 and 2014/2015 at Northeast 

Research Station and Concordia Parish, however, densities were more sporadic at Dean Lee 

Research Station with densities not exceeding 40 henbit m-2  in 2012/2013 and 2013/2014.  

Larger spikes at did occur between mid- Oct to mid-Dec at those locations.  Regardless of year, 

densities at the southernmost Ben Hur Research Farm location were less overall.  This work 

confirms that henbit emerges in large numbers in Louisiana between mid-October and mid-

December.   

CHAPTER 5
SUMMARY
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Comparative growth of henbit based on emergence date studies compared the growth and 

development of September, October, and November emerged henbit.  Factors included henbit 

emergence dates of September, October, or November and destructive harvest intervals of 2, 3, 

4, 6, 8, 10, and 12 wk after emergence  Data averaged across harvest intervals, found leaf area 

ratio (LAR) for September and October were not significantly different at 0.012 and 0.010 cm2 g-

1, respectively, however November LAR was 67% less.  Specific leaf weight (SLW) for 

November was 119.0 g cm-2 , which is higher than September and October populations at 54 and 

89 g cm-2  respectively.  Additionally, averaged across emergence dates, henbit LAR was greatest 

at the 2, 3, and 4 WAE harvest intervals this may indicate the allocation of resources to leaf 

production in the earliest weeks of henbit growth.  Additionally, relative growth rate (RGR) for 

September emerged henbit averaged across harvest intervals was 0.194 g g-1 d-1, this is greater 

than both October and November emerged henbit with 0.121 and 0.092 g g-1 d-1, respectively.  

This data indicate September emerged henbit has a competitive advantage over November, and a 

not significant, but slight advantage over October emergence. 

Trials were conducted for three years to assess control of henbit with fall-applied residual 

herbicides.  Treatments included five application dates, seven herbicide treatments, and a 

nontreated.  The five application dates were Oct 15, Nov 1, Nov 15, Dec 1, and Dec 15 +/- 3 

days.  The seven herbicide treatments were diuron at 840 g ai ha-1, flumioxazin at 72 g ai ha-1, 

oxyfluorfen at 280 g ai ha-1, pyroxasulfone at 150 g ai ha-1, prepackaged mixture of rimsulfuron: 

thifensulfuron-methyl at 18:18 g ai ha-1, S-metolachlor at 1420 g ai ha-1, and a non-residual 

herbicide treatment.  Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v was co-

applied with all residual herbicide treatments to control emerged henbit at time of application.  

Data indicated rainfall can greatly influenced the efficacy of residual herbicides.  Although 
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variability across years existed, November 1 through December 1 application timings provided 

the most consistent henbit control.  Choice of application date is herbicide dependent, however, 

flumioxazin, oxyfluorfen, or rimsulfuron: thifensulfuron provide the most consistent control at 

these timings.  Data indicates that flumioxazin, oxyfluorfen, or rimsulfuron: thifensulfuron 

applied November 1 through December 1 will provide the greatest henbit control, density and 

height.  Oxyfluorfen provided 76% or greater henbit control 100 DAT following all application 

dates, indicating that it is the best option for henbit management.  Furthermore, flumioxazin and 

rimsulfuron: thifensulfuron should be applied Nov 1 through Dec 15 to achieve greater than 70% 

henbit control 100 DAT. 

 In conclusion, optimum timing for applying a herbicide to greatest efficacy is when a 

weedy species is small. The comparative growth data verifies September and/or October 

emerged henbit may be the populations producers have difficulty controlling with herbicide 

treatments in the spring of the year due to hardening off and senescing, which reduces their leaf 

area potentially leading to reduced herbicide absorption and translocation.  Data evaluating 

henbit emergence shows that greatest flush of seedling henbit occur between mid-October to 

mid-December.  This emergence timing correlates with control data that concluded November 1 

through December 1 application timings provided the most consistent henbit control.  

Additionally, data indicate that flumioxazin, oxyfluorfen, or rimsulfuron:thifensulfuron are the 

most consistent herbicides for henbit control, density and height reduction.  Furthermore, 

oxyfluorfen is the best option for henbit management providing 76% or greater henbit control 

100 DAT.  Flumioxazin and rimsulfuron:thifensulfuron should be applied Nov 1 through Dec 15 

to achieve greater than 70% henbit control 100 DAT.  Data demonstrates that a paraquat plus 
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flumioxazin, oxyfluorfen, or rimsulfuron:thifensulfuron applied between Nov 1 and Dec 1 will 

control henbit throughout the winter and early-spring 
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APPENDIX 

Appendix 2.1.  Decision tree outputted by PROC DTREE in SAS, which indicates that henbit emergence is the primary variable to 
predict emergence. 
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Appendix 2.2.  PROC REG output in SAS using R-square and Mallows’ Cp selection methods 
to determine if environmental variables could predict henbit emergence.a

Variable no. in 
model 

R-
squareb

Mallows’ 
Cp

b Variables in model 
1 0.2972 2.7472 Emerg. 
1 0.0137 126.0863 Air max. T. 
1 0.0077 128.6867 Soil min. T. 
1 0.0045 130.0836 Rainfall 
1 0.0010 131.5923 Soil max. T. 
1 0.0004 131.8769 Air min.T. 
1 0.0000 132.0385 Solar rad. 
2 0.3020 2.6687 Emerg.; Air max. T. 
2 0.2990 3.9462 Emerg.; Soil min. T. 
2 0.2990 3.9840 Emerg.; Rainfall 
2 0.2976 4.5799 Emerg.; Solar rad. 
2 0.2973 4.6935 Emerg.; Soil max. T. 
2 0.2972 4.7287 Emerg.; Air max. T 
2 0.0795 99.4753 Soil min. T; Air max. T. 
3 0.3117 0.4340 Emerg.; Air min. T.; Air max. T. 
3 0.3052 3.2599 Emerg.; Soil max. T.; Air min. T. 
3 0.3037 3.9263 Emerg.; Air min. T.; Rainfall 
3 0.3029 4.2683 Emerg.; Soil min. T.; Air max. T. 
3 0.3024 4.4871 Emerg.; Air min. T.; Solar rad. 
3 0.3024 4.4874 Emerg.; Soil min. T.; Air min. T. 
3 0.3014 4.9259 Emerg.; Soil min. T.; Soil max. T. 
4 0.3121 2.2548 Emerg.; Air min. T.; Air max. T.; Rainfall 
4 0.3121 2.2807 Emerg.; Soil min. T.; Air min. T.; Air max. T. 
4 0.3120 2.2992 Emerg.; Soil max. T.; Air min. T.; Air max. T. 
4 0.3118 2.4179 Emerg.; Air min. T.; Air max. T.; Solar rad. 
4 0.3062 4.8329 Emerg.; Soil max. T.; Air min. T.; Air min. T. 
4 0.3057 5.0427 Emerg.; Soil min. T.; Soil max. T.; Air min. T. 
4 0.3053 5.2465 Emerg.; Soil max. T.; Air min. T.; Solar rad. 

a Abbreviations:  Air max. T, average weekly maximum air temperature; Air min. T., average 
weekly minimum air temperature; Emerg. , no. of henbit emerged each week; Rainfall, sum of 
weekly amount of rainfall; Soil max. T., average weekly maximum soil temperature; Soil min. 
T., average weekly minimum soil temperature; solar rad., average weekly solar radiation. 
b R-square values nearest to 1.0 indicates the best model to predict henbit emergence at P ≤ 0.05. 
Mallows’ Cp values nearest to the number of variables in a model plus one indicates the best 
model to predict henbit emergence at P ≤ 0.05. 
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Appendix 3.1.  Net assimilation rate, specific leaf area, and stem-to-leaf ratio as 
influenced by henbit emergence date.a

Emergence date Net assimilation rate Specific leaf area Stem-to-leaf ratio 
g cm-2 d-1 cm2 g-1 g g-1 

September -122.8 a 0.018 a 0.623 a 
October 56.8 a 0.016 a 0.630 a 
November 226.0 a 0.016 a 0.985 a 
a Data pooled over harvest interval.  Means followed by the same letter for each 
parameter are not significantly different according to Tukey’s honest significant 
difference test at P ≤ 0.05. 

Appendix 3.2.  Net assimilation rate and relative growth rate as influenced by henbit 
harvest interval.a

Weekly harvest interval Net assimilation rate Relative growth rate 
g cm-2 d-1 g g-1 d-1 

wk 2 to 3 70.5 a 0.154 a 
wk 3 to 4 -286.6 a 0.116 a 
wk 4 to 6 252.9 a 0.152 a 
wk 6 to 8 -2.03 a 0.130 a 
wk 8 to 10 143.3 a 0.141 a 
wk 10 to 12 141.7 a 0.121 a 
a Data pooled over henbit emergence date.  Means followed by the same letter for each 
parameter are not significantly different according to Tukey’s honest significant 
difference test at P ≤ 0.05. 

Appendix 3.3.  Specific leaf area, stem-to-leaf ratio, and specific leaf weight as 
influenced by henbit harvest interval.a 
Harvest interval Specific leaf area Stem-to-leaf ratio Specific leaf weight 

cm2 g-1 g g-1 g cm-2 
wk 2 0.023 a 0.717 a 76.9 a 
wk 3 0.018 a 0.374 a 69.9 a 
wk 4 0.021 a 0.450 a 108.4 a 
wk 6 0.017 a 0.809 a 72.0 a 
wk 8 0.013 a 0.946 a 103.0 a 
wk 10 0.014 a 0.911 a 80.7 a 
wk 12 0.013 a 1.015 a 99.0 a 
a Data pooled over henbit emergence date.  Means followed by the same letter for each 
parameter are not significantly different according to Tukey’s honest significant 
difference test at P ≤ 0.05. 
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Appendix 4.1.  Significance of the main effects of application date, herbicide, and their 

interactions 50 and 100 d after treatment for henbit control and 28 DAT for henbit density 
and height 2012/2013, 2013/2014, 2014/2015.a, b 

  Control Density Height 
Year Effect 50 DAT 85 DAT 28 DAT 28 DAT 
  ______________________________ P-value ____________________________ 
2012/2013 Date < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 Herb < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 Date x herb < 0.0001 < 0.0001 0.0603 0.0002 
      
2013/2014 Date < 0.0001 < 0.0001 0.0002 < 0.0001 
 Herb < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 Date x herb < 0.0001 < 0.0001 0.1692 0.3318 
      
2014/2015 Date < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 Herb < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 Date x herb < 0.0001 < 0.0001 < 0.0001 < 0.0001 
a Abbreviations:  DAT, d after treatment. 
b Main effects and their interactions are considered significant at P ≤ 0.05. 
 
 
Appendix 4.2.  Henbit control as influenced by application date and herbicide 50 d after 
treatment in 2012/2013.a 

 Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 
 _____________________________________ % __________________________________ 
diuron 0 g 66 de 92 abc 98 a 51 e 
flumioxazin 23 f 86 abcd 97 a 96 a 98 a 
oxyfluorfen 97 a 99 a 99 a 99 a 99 a 
pyroxasulfone 0 g 91 abc 91 abc 97 a 49 e 
rimsulfuron:thifensulfuron 0 g 79 bcd 97 a 98 a 89 abc 
S-metolachlor 0 f 86 abcd 99 a 98 a 0 g 
no residual 0 g 0 g 0 g 71 cde 0 g 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Appendix 4.3.  Henbit control as influenced by application date and herbicide 85 d after 
treatment in 2012/2013.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 0 d 80 b 85 ab 91 ab 31 c 
flumioxazin 24 c 96 ab 99 a 88 ab 92 ab 
oxyfluorfen 99 a 99 a 97 ab 96 ab 95 ab 
pyroxasulfone 0 d 86 ab 91 ab 84 ab 6 d 
rimsulfuron:thifensulfuron 0 d 90 ab 99 a 98 ab 99 a 
S-metolachlor 0 d 91 ab 99 a 86 ab 0 d 
no residual 0 d 0 d 0 d 36 c 0 d 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Appendix 4.4.  Henbit control as influenced by application date and herbicide 50 d after 
treatment in 2013/2014.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 92 ab 75 bc 90 abc 98 a 98 a 
flumioxazin 99 ab 97 ab 92 ab 93 ab 99 a 
oxyfluorfen 99 ab 98 a 97 ab 99 a 99 a 
pyroxasulfone 70 bc 89 abc 86 abc 64 c 92 ab 
rimsulfuron:thifensulfuron 99 ab 91 ab 92 ab 91 abc 98 a 
S-metolachlor 93 ab 95 ab 93 ab 92 ab 76 bc 
no residual 0 d 0 d 78 bc 0 d 3 d 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Appendix 4.5.  Henbit control as influenced by application date and herbicide 85 d after 
treatment in 2013/2014.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 70 cdef 80 abcdef 88 abcdef 99 a 96 abcd 
flumioxazin 80 abcdef 94 abcde 95 abcd 97 a 99 a 
oxyfluorfen 84 abcdef 97 a 97 a 99 a 97 abc 
pyroxasulfone 69 def 86 abcdef 90 abcdef 62 ef 91 abcdefg 
rimsulfuron:thifensulfuron 85 abcdef 95 abc 93 abcd 95 abc 94 abcd 
S-metolachlor 71 bcdef 95 abcd 95 abc 89 abcdef 80 abcdefg 
no residual 0 g 0 g 61 f 0 g 0 h 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Appendix 4.6.  Henbit control as influenced by application date and herbicide 50 d after 
treatment in 2014/2015.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 56 fghij 70 defghi 80 bcdef 98 ab 75 bcdefg 
flumioxazin 97 ab 84 abcdef 90 abcd 99 a 99 a 
oxyfluorfen 83 abcdef 93 abcd 98 abc 99 a 97 ab 
pyroxasulfone 29 j 84 abcdef 79 abcdefgh 75 bcdefgh 33 j 
rimsulfuron:thifensulfuron 71 cdefghi 88 abcde 96 abc 99 a 3 k 
S-metolachlor 53 fghij 64 defghi 96 abc 99 a 48 ghij 
no residual 0 j 38 ij 45 hij 36 ij 81 abcdefg 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Appendix 4.7.  Henbit control as influenced by application date and herbicide 85 d after 
treatment in 2014/2015.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 53 defgh 60 cdefg 71 abcde 78 abcd 71 abcde 
flumioxazin 53 defgh 84 abc 85 ab 93 a 93 a 
oxyfluorfen 76 abcd 90 a 93 a 85 abc 90 a 
pyroxasulfone 0 i 79 abcd 74 abcde 64 bcdef 8 i 
rimsulfuron:thifensulfuron 45 efgh 93 a 91 a 93 a 0 i 
S-metolachlor 31 gh 29 h 93 a 91 a 0 i 
no residual 0 i 0 i 40 fgh 0 i 78 abcd 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Appendix 4.8.  Henbit density and height as a percent of nontreated as 
influenced by application date 28 d after treatment in 2012/2013 and 
2013/2014.a

Density Height 
Application date 2012/2013 2013/2014 2013/2014 

______________________ % of nontreated _____________________ 

Oct 15 94 a 16 ab 35 ab 
Nov 1 62 b 2 c 16 bc 
Nov 15 20 c 10 bc 19 bc 
Dec 1 28 bc 11 abc 47 a 
Dec 15 36 bc 32 a 8 c 
a Data pooled over herbicide treatment.  Means followed by the same 
letter for each year are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
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Appendix 4.9.  Henbit density and height as a percent of nontreated as influenced by 
herbicide treatment 28 d after treatment in 2012/2013 and 2013/2014.a

Density Height 
Herbicideb 2012/2013 2013/2014 2013/2014 

______________________ % of nontreated _____________________ 

diuron 59 ab 4 bcd 22 bc 
flumioxazin 43 bc 1 cd 5 cd 
oxyfluorfen 13 c 0 d 0 d 
pyroxasulfone 41 bc 23 b 42 ab 
rimsulfuron:thifensulfuron 50 bc 12 bc 30 abc 
S-metolachlor 42 bc 16 bc 33 ab 
no residual 94 a 66 a 61 a 
a Data pooled over application date.  Means followed by the same letter for each year are 
not significantly different according to Tukey’s honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Appendix 4.10.  Henbit density percent of the nontreated as influenced by application date 
and herbicide treatment 28 d after treatment in 2014/2015.a 

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 77 abcdefgh 54 abcdefghij 80 abcdefgh 4 ijk 14 fghijk 

flumioxazin 80 abcdef 3 jk 5 ijk 0 k 0 k 
oxyfluorfen 15 efghijk 1 jk 12 ghijk 0 k 0 k 
pyroxasulfone 98 abc 13 fghijk 36 cdefghijk 32 defghijk 99 ab 

rimsulfuron:thifensulfuron 62 abcdefghij 37 cdefghijk 100 a 10 ghijk 61 abcdefghij 

S-metolachlor 92 abcd 29 defghijk 8 hijk 2 jk 55 abcdefghij 

no residual 99 abc 46 bcdefghijk 72 abcdefghi 86 abcdef 88 abcd 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Appendix 4.11.  Henbit height percent of the nontreated as influenced by application date and 
herbicide 28 d after treatment in 2012/2013.a

Application date 
Herbicideb Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 100 ab 100 a 24 cdefghij 27 cdefghij 67 abcdefghi 
flumioxazin 100 ab 85 abcdefg 9 ghij 66 abcdefghi 3 ij 
oxyfluorfen 92 abcdef 1 ij 0 j 2 ij 0 j 
pyroxasulfone 97 abcd 99 abc 34 bcdefghij 15 fghij 74 abcdefghi 
rimsulfuron:thifensulfuron 90 abcdef 99 abc 23 defghij 19 efghij 24 cdefghij 
S-metolachlor 95 abcde 86 abcdefg 4 hij 5 hij 80 abcdefgh 
no residual 97 abcd 100 a 47 abcdefghi 89 abcdefg 83 abcdefgh 
a Means followed by the same letter are not significantly different according to Tukey’s honest 
significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 

Appendix 4.12.  Henbit height percent of the nontreated as influenced by application date and 
herbicide 28 d after treatment in 2014/2015.a

Application date 
Herbicide Oct 15 Nov 1 Nov 15 Dec 1 Dec 15 

_____________________________________ % __________________________________ 
diuron 96 a 56 bcde 11 ghijk 31 defghi 32 defghi 
flumioxazin 91 ab 49 cdefg 5 ijk 1 jk 0 k 
oxyfluorfen 55 bcde 12 ghijk 10 hijk 0 k 0 k 
pyroxasulfone 94 a 52 cdef 20 defghij 27 defghi 39 defgh 
rimsulfuron:thifensulfuron 94 a 40 defgh 10 hijk 23 defghij 41 defgh 
S-metolachlor 87 abc 57 bcd 15 fghijk 25 defghi 45 defgh 
no residual 100 a 60 bcd 17 efghjik 35 defghi 51 cdef 
a Means followed by the same letter are not significantly different according to Tukey’s 
honest significant difference at P ≤ 0.05. 
b Paraquat at 840 g ai ha-1 plus a non-ionic surfactant at 0.25% v/v applied with all residual 
herbicides on all application dates. 
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Appendix 4.13.  Henbit height as a percent of nontreated as 
influenced by application date 100 d after treatment in 
2013/2014.a 
Application date % of nontreated 
Oct 15 64 a 
Nov 1 33 bc 
Nov 15 38 b 
Dec 1 16 c 
Dec 15 18 bc 
a Data pooled over herbicide treatment.  Means followed by 
the same letter are not significantly different according to 
Tukey’s honest significant difference at P ≤ 0.05. 
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