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ABSTRACT 
 

 Aflatoxins are toxic and potent carcinogenic metabolites produced by Aspergillus flavus 

and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive environmental 

conditions. Much success has been achieved by the application of atoxigenic strains of A. flavus 

for controlling aflatoxin contamination in cotton, peanut and maize. Development of aflatoxin-

resistant cultivars overexpressing resistance-associated genes and/or knocking down aflatoxin 

biosynthesis of A. flavus could be an effective strategy for controlling aflatoxin contamination in 

cotton. In this study, differentially expressed genes (DEGs) were identified in response to 

infection with both toxigenic and atoxigenic strains of A. flavus pericarp and seed of cotton 

through genome-wide transcriptome profiling. The genes involved in antifungal response, 

oxidative burst, transcription factors, defense signaling pathways and stress response were highly 

differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-

wall modifying genes and genes involved in the production of antimicrobial substances were 

more active in pericarp than seed. Genes involved in defense response in cotton were highly 

induced in pericarp. The DEGs will serve as the source for identifying biomarkers for breeding, 

potential candidate genes for transgenic manipulation, and will help in understanding complex 

plant-fungal interaction for future downstream research. 

 The increasing volume of sequence data generated by the rapidly decreasing cost of RNA 

sequencing (RNA-Seq) necessitates the development of software pipeline(s) that can analyze the 

massive amounts of RNA-Seq data in an efficient manner. Through the present study, a 

comprehensive and flexible Standalone RNA-Seq Analysis Pipeline (SRAP) implemented with 

the parallel programming approach was developed, which can analyze transcriptome for any 

genome. SRAP consists of high-level modules, including sequence reads filtering, mapping to 
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reference genome (or transcriptome), sequence assembly, gene expression analysis and variant 

discovery along with low-level modules for other common NGS utilities. The high-level 

modules, unlike low-level modules, require intense computation in terms of memory and 

processor. SRAP is developed with in-house developed scripts (Python), parallel computing and 

open source bioinformatics tools. It can be executed as a batch and/or individual mode for single 

or multiple sample files. SRAP generates RNA-Seq data analysis output files with statistical 

summary and graphic visualization. 
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CHAPTER 1: INTRODUCTION 
 

1.1 OVERVIEW  

 Cotton (Gossypium sp.) is the most important fiber crop of high economic value. It is a 

polyploid model species for evolutionary studies in plants. Among different cotton species, 

Gossypium hirsutum (upland cotton) is the main source of cotton fiber and cottonseed which are 

used in the textile industry, as medical supplies, in the oil industry, as food for dairy cows, in 

currency manufacturing and for production of other diverse major consumer products [1] . 

However, the use of cottonseed is limited by its contamination with the highly potent 

carcinogenic aflatoxin (potent carcinogenic toxin produced from fungus Aspergillus flavus), 

which affects the economy of the crop worldwide. Contamination with aflatoxin is common 

during environmental stress in cotton crops. Co-inoculation of atoxigenic strains of Aspergillus 

was shown to greatly reduce the aflatoxin contamination in plants such as cotton, maize and 

peanuts [2-6]. However, inoculation causes wound injury which predisposes cotton to other 

diseases and insect pests. Host plant resistance has been the mainstay of integrated pest 

management in several agronomic crops. Unfortunately, there is no germplasm in cotton gene 

pool that is resistant to A. flavus [7]. Understanding the regulation of the genes involved in 

response to A. flavus infection in cotton will not only help unravel the complex genetic network 

of the host-pathogen interaction, but also will lead to identification of key candidate genes for 

genetic manipulation to develop A. flavus resistant cotton. The genetic complexity of cotton has 

hindered development of a complete reference genome of G. hirsutum. The proposed project will 

focus on the transcriptome analysis through next generation sequencing (NGS) such as RNA-Seq 

of cotton tissues (pericarp and seed) to analyze the global response of cotton to toxigenic strain 

of A. flavus infection. Bioinformatics analysis integrated with gene expression validation through 
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quantitative real-time PCR will enable identification of differentially expressed genes and novel 

transcripts, regulated by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus 

infection. The novel genes identified in response to fungal infection and the reference 

transcriptome developed will serve as a significant resource for genetic transformation of cotton 

to develop A. flavus resistant varieties. 

 RNA-Seq serves as a powerful tool to identify new genes and splice variants, low 

abundance transcripts and functional molecular markers. RNA-Seq has become the method of 

choice over traditional Sanger sequencing and microarray technologies in a couple of years due 

to its rapidly falling cost and high depth of sequencing. In addition, RNA-Seq allows the 

researcher to solve the research problems, which were out of scope by microarray and traditional 

Sanger sequencing technologies [8]. The analysis of RNA-Seq data involves multiple steps from 

filtering the raw reads to identifying differentially regulated genes and novel transcripts in a 

given sample. Many methods and tools are available to analyze the huge data points generated by 

RNA-Seq method [9-11]. In general, multiple steps require many methods that run in different 

software programs and computer languages, which make RNA-Seq data handling a herculean 

task. Each of these methods and software has its merits and demerits. Various tools that are 

available for RNA-Seq data analysis [12-14] focus on a single task and lack flexibility in the 

analysis. A few proprietary packages are available for menu-driven analysis of RNA-Seq data in 

a single platform, but their use is cost-prohibitive. Lack of a single and efficient publicly 

available pipeline which combines the entire data analysis steps in one program prompted us to 

devise a robust and flexible pipeline with the in-built computational tools that could be available 

to the scientific community for better biological understanding through analysis of massive NGS 

data.   
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1.2 ORIGIN, EVOLUTION AND DIVERSITY OF COTTON     

 Cotton belongs to the genus Gossypium under the family Malvaceae, which includes four 

domesticated species G. hirsutum, G. barbadense , G. arboreum and G. herbaceum. Among 

these, G. hirsutum and G. barbadense belong to New World allopolyploids (2n=52), and G.  

arboreum and G. herbaceum belong to Old World diploids (2n=26) [15]. The DNA sequence 

data of the polyploid cotton suggested that cotton originated during the mid-Pleistocene era, 

about 1-2 million years ago following rapid colonization [15, 16]. The exact place of origin of 

genus Gossypium is unknown, but it has three primary centers of diversity including Australia 

(particularly Kimberley region), the Horn of Africa and the southern part of the Arabian 

Peninsula, and the western part of central and southern Mexico [15].  Genetic survey of more 

than 500 accessions of G. hirsutum established that southern Mexico-Guatemala and the 

Caribbean were the centers of genetic diversity [17]. 

 Phylogenetic analysis based on chloroplast DNA restriction sites [17], 5S ribosomal 

sequences [18], the chloroplast gene ndhF and nuclear 5.8S genes [19] revealed that four major 

lineages of Gossypium diploid species spread  over three continents i.e. Australia (C, G and K 

genomes, Old World), America (D genome, New  World) and Africa/Arabia. Africa/Arabia 

contains two lineages (one containing A, B and F genomes and the other contains E-genome 

species, Old World). During evolutionary events, trans-oceanic dispersal of A-genome cotton 

(female) to the America caused hybridization with native D-genome diploid (male) resulting in 

allopolyploid cotton [15, 16]. The trans-oceanic dispersal and hybridization mechanisms played 

a vital role in diversification and speciation within Gossypium. 

 Although some of the old world Gossypium are cultivated as important crops in some 

part of the word, the new world tetraploid cultivars presently dominate the cotton production 
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worldwide [15]. G. hirsutum or “Upland” cotton contributes to more than 90% of the cotton crop 

production in textile industry, oil industry and animal food purposes internationally, ranging 

from native Meso-America to more than 50 countries around the world [15, 16].  G. hirsutum has 

mostly tropical and subtropical distribution and grows well in hot and dry weather with sufficient 

irrigation. G. barbadense has long, strong and fine fibers. However, it contributes to less than 

10% of the total world cotton production due to its low yield [15]. 

1.3 CONTAMINATION OF AFLATOXINS IN COTTON 

 Aflatoxins include four mycotoxins (B1, B2, G1 and G2) that are highly toxic and 

carcinogenic chemicals produced as secondary metabolites from the asexual fungi Aspergillus 

flavus and A. parasiticus [7, 20]. Aflatoxin B1 is the most potent carcinogen to humans and 

animal, and widely occurring aflatoxin in nature. Aflatoxins are known to cause suppression of 

the immune system, cancer, retardation in growth, and in extreme cases death of both humans 

and animals. Aflatoxins have the ability to contaminate a variety of crops such as corn, cotton, 

peanut and tree nuts during their growth and development, amounting to an estimated economic 

loss of ~$270 M annually worldwide [7, 20]. The occurrence of aflatoxins in agricultural 

products is highly regulated. U.S. Food and Drug Administration (FDA) has imposed strict limits 

on the levels of aflatoxin contamination in foods and feeds; the permitted aflatoxin levels in 

human food and milk is 20 parts per billion (ppb) and 0.5 ppb, respectively [21], but for the 

cereals, nuts, dried fruits more stringent aflatoxin standards are 4 ppb for total aflatoxin content 

and 2 ppb for aflatoxin B1 [21, 22]. 

 The infection by A. flavus, the soil borne saprophytic fungus, in cotton is well known. A.  

flavus grows well in high temperatures ranging from 28 °C to 37 °C, which is also favorable for 

cotton crop growth [21]. A. flavus contaminates cottonseed with aflatoxin by a two-phase 
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process. The first phase involves the damage of cotton bolls and partial suture opening that 

predisposes the bolls to A. flavus, which is followed by a second phase involving exposure of 

bolls to high humidity and warm temperature, during either pre- or post-harvest. The 

contamination of cottonseed with aflatoxins is of great concern to the cotton industry because 

cottonseed is used as a preferred protein source for dairy cows. It is also used for vegetable oil 

production. Cottonseed contributes ~15% of income of the farmers from cotton. Further, the 

aflatoxins can readily transfer from foods to milk of cows as aflatoxin M1 (hydroxylated 

derivative of metabolized aflatoxin B1) that ultimately will affect humans [21]. The price of 

cottonseed is largely determined by the content of aflatoxin. Aflatoxin contamination accounts to 

high annual economic losses in the USA. The highly affected states in USA are desert regions of 

Arizona, the Imperial Valley of California, South Texas, and to some extent, the Gulf Coast. 

1.4 CONTROL MEASURES OF AFLATOXINS IN COTTON 

 Considering the declining economy of the cottonseed industry due to infection by A.  

flavus, it is highly important to manage aflatoxin contamination. Both pre- and post-harvest 

strategies have been used to lessen aflatoxin contamination in crops such as cotton, peanuts and 

maize. Pre-harvest strategies include application of insect pests and proper irrigation to control 

the aflatoxin contamination. The postharvest strategies include use of controlled storage 

conditions that are less favorable to fungal growth, and detoxification of aflatoxins from 

contaminated seeds and grains [23]. Some plant metabolites such as linoleic acid derivative 

13(S)-hydroperoxide are known to inhibit aflatoxin synthesis [24, 25]. Further, the bio-

competition by application of atoxigenic strains A.flavus and/or A. parasiticus to outcompete 

toxigenic strains in the fields has been shown to be an effective strategy to reduce the aflatoxin 

contamination in the crops [3, 20, 21]. Atoxigenic strains of Aspergillus were reported to reduce 
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the contamination of aflatoxins by ~70-90% in peanut and cotton [4-6]. Bio-competition strategy 

is of utmost importance in cotton due to the fact that cotton has limited genetic diversity and to 

date, no aflatoxin-resistant genotype is available in cotton [7, 21]. For long term control of A. 

flavus infections in cotton, it is essential to develop germplasm, which can resist the fungal 

invasion and/or shut down toxin production [21]. This necessitates detailed investigation into the 

host-pathogen interaction to identify genes that are induced in cotton in response to A. flavus 

invasion or by toxin production. 

 Strategies such as expressed sequence tag (EST) and oligonucleotide microarray 

technologies have been used for the identification of genes induced or regulated in response to A.  

flavus infection in crops such as maize, peanuts and cotton [7, 26, 27].  Genetic engineering of 

genes induced or upregulated in response to A. flavus infection in cotton provides a promising 

approach to develop cotton varieties resistant to A.  flavus. To this end, Lee et al. [7] reported, for 

the first time, a set of up- or down-regulated genes, such as (a)biotic stress responsive genes, 

storage protein genes and transcription factors, in response to artificial A. flavus infection in 

cotton. But this study employed an annealing control primer (ACP) system that covered a small 

number of genes, considering the size of G. hirsutum genome (~2.83 Gbp) [28, 29]. To identify 

key regulators in the interaction of A. flavus infection with cotton, it is necessary to discover a 

gene expression atlas through a high-coverage transcriptome analysis approach. 

 In the past few years, high-throughput next-generation sequencing (NGS) technologies 

have been considered superior over the traditional methods of sequencing, in terms of time and 

cost, in addition to the amount of data generated. Various commercial sequencing platforms such 

as Roche/454, Illumina/Solexa, Ion Torrent and Applied Biosystems SOLiD are able to produce 

thousands to millions of sequencing reads in a single run with very low cost [30]. The NGS 
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technologies have revolutionized the area of genetics and genomics research, and are currently 

the methods of choice for understanding complex biological phenomenon through systems 

biology approaches. Despite high economic loss due to aflatoxin contamination in cotton 

(cottonseed), a high-throughput transcriptome study for discovering the underlying response 

mechanism of cotton to A. flavus invasion followed by aflatoxin contamination is lacking. In the 

present study, a high throughput RNA-Seq technology will be utilized to identify differentially 

regulated genes in response to aflatoxin contamination in cotton because of its high depth of 

sequence capture, the capability to generate longer and more accurate contigs despite short reads, 

lower cost and lower error rates compared to other technologies [31, 32]. 

1.5 DEVELOPMENT OF RNA-SEQ DATA ANALYSIS PIPELINE (COMPUTER 

PROGRAM/SOFTWARE)      

 Since its introduction in 2005, RNA-Seq technology has become increasingly popular 

within the biological research community, which is clearly evident by the large volume of 

sequence data submitted to the Sequence Nucleotide Archive (SRA) database each year. The 

conventional Sanger sequencing method is capable of producing sequence reads up to only 1kb 

long from a single sample at one time, and handling a maximum of 96 samples at one time with 

an advanced capillary-based sequencer [33]. Serial Analysis of Gene Expression (SAGE) and 

Cap Analysis of Gene Expression (CAGE), which provides count-based quantification of 

expressed transcripts involves high sequencing costs and not high-throughput [34]. With the 

advancement of next and third generation sequencing technologies, the sequencing platforms 

(e.g. Illumina/Solexa) are capable of generating several thousands to millions of sequence reads 

in parallel [10, 33, 35].  Due to rapidly decreasing cost and multifold increase in the output from 

NGS platforms, the NGS technologies have been applied extensively in transcriptome analysis 
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projects for discovery of novel transcripts and gene quantification in addition to genome 

sequencing [34]. The RNA-Seq, which involves sequencing of mRNA to study transcript 

structure, allelic information, and high resolution gene expression under a particular condition in 

individuals by sequencing complete transcriptome, has become a method of choice in most 

laboratories due to rapidly declining cost of NGS and the ability to explore non-model 

organisms.        

 The Illumina sequencers, such as HiSeq2000, HiSeq2500, HiSeq1000, Genome Analyzer 

IIx and MiSeq, can produce hundreds of GB of sequence output. The HiSeq2500 is the advanced 

version of HiSeq2000, which was introduced by Illumina in 2012, and is capable of producing an 

output of 120GB sequence data in 27 hours [33]. This massive amount of data generated from 

NGS platforms requires intense computational processing, which makes data analysis a daunting 

task. Further, the rate of increase in computational speed as compared to sequencing data output 

from NGS platforms is far behind [36]. Many different methodologies have been published to 

analyze diverse steps in RNA-Seq data analysis, but integrating them into a single pipeline has 

been a challenging task [37-39]. The steps and configuration parameters used in RNA-Seq data 

analysis are dependent on each other, and therefore influence the downstream analysis. Non-

availability of a one-go pipeline/package to handle and analyze such huge data imposes a 

limitation on the usefulness of RNA-Seq technology. Therefore, more robust and efficient tools 

are necessary to analyze such big data generated by NGS technologies. 

 Several pipelines developed for RNA-Seq analysis [37-40] require computational 

knowledge and bioinformatics background for their use. For example, RNA-Seq analysis 

pipeline developed by Goncalves et al. [38] is built in R package, which requires knowledge of R 

language. A RNA-Seq pipeline “Grape” lacks the statistical analysis for differential expression 
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of genes [37]. Besides, “Grape” uses a lot of computational configurations for installing the 

pipeline, for example configuration of MySQL database [37], which is not an easy interface for 

an inexperienced user. The pipeline introduced by Wang et al. [39] lacks the flexibility of using 

an aligner for mapping the sequence reads to a reference genome/transcriptome, and uses only 

BWA [13] aligner for mapping. Therefore, the present project is undertaken to develop an RNA-

Seq pipeline that would overcome most of the limitations described above. The RNA-Seq 

pipeline was designed by considering life science researchers from non-computational 

backgrounds and limited Bioinformatics skills. The proposed software pipeline also keeps up 

with the exponential increase in data output from sequencing technologies by providing parallel 

execution of multiple tasks.      

1.6 GOALS AND OBJECTIVES 

 With a long term goal of developing cotton germplasm with resistance to A. flavus, this 

project is formulated to identify underlying existing or novel genes that are regulated by 

toxigenic strains of A. flavus. Another goal is to provide the scientific community with an easy- 

to-handle, efficient, flexible and robust RNA-Seq pipeline.  The proposal is envisaged with the 

following objectives to accomplish the goals.    

A. Identification of differentially expressed genes in cotton (Gossypium hirsutum L.) in 

response to infection by Aspergillus flavus; 

B. Development and design of an efficient and flexible pipeline for analyzing the RNA-Seq 

data. 
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CHAPTER 2: IDENTIFICATION OF DIFFERENTIALLY EXPRESSED 
GENES IN COTTON (GOSSYPIUM HIRSUTUM L.) IN RESPONSE TO 
INFECTION BY ASPERGILLUS FLAVUS  
 
2.1 INTRODUCTION 

 Aflatoxins comprise a group of four polyketide-derived mycotoxins (B1, B2, G1 and G2) 

that are highly toxic and carcinogenic chemicals produced as secondary metabolites from 

toxigenic isolates of the saprophytic fungi Aspergillus flavus and A. parasiticus [1-6]. Aflatoxin 

B1 is the most widely occurring structure that is carcinogenic to humans and animals [2-4]. 

Aflatoxins cause suppression of the immune system, cancer, retardation in growth, and in 

extreme cases death of both humans and animals. Aflatoxins have the ability to contaminate a 

variety of crops including corn, cotton, peanut and tree nuts during their growth and 

development, accounting to an estimated economic loss of ~$270M annually worldwide [4], [5], 

[7]. The occurrence of aflatoxin in agricultural products is highly regulated. U.S. Food and Drug 

Administration (FDA) has imposed strict limits on the levels of aflatoxin contamination in foods 

and feeds; the permitted aflatoxin levels in human food and milk is 20 parts per billion (ppb) and 

0.5 ppb, respectively [8], but for the cereals, nuts and dried fruits, aflatoxin standards are more 

stringent, which is 4 ppb for total aflatoxin content and 2 ppb for aflatoxin B1 [8], [9]. The 

cottonseeds alone contribute ~15% of the income of the farmers from cotton. The contamination 

of cottonseed with aflatoxin is of high concern to the cotton industry because cottonseed are used 

as a preferred protein meal for dairy cows and cottonseed is also used for oil production. Further, 

cows fed with contaminated cottonseed meal can metabolize the aflatoxin B1 to M1 

(hydroxylated derivative of metabolized aflatoxin B1), which in their milk will ultimately affect 

humans [8]. The prices of cottonseeds are largely determined by the content of aflatoxin present. 
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Aflatoxin contamination is a major problem in the arid cotton growing regions of Arizona, the 

Imperial Valley of California, South Texas, and to some extent in Louisiana in the U.S., and 

accounts to high annual economic losses.  

 Considering the declining economy of the cottonseed industry due to the infection of 

cotton by A. flavus, it is highly important to take necessary steps to manage aflatoxin 

contamination in cotton. Both pre- and post-harvest strategies have been used to lessen the 

aflatoxin contamination in cotton and other crops. Pre-harvest strategies include control of insect 

pests and proper irrigation to manage aflatoxin contamination. The post-harvest strategies 

include control of storage conditions that are less favorable to fungal growth, and detoxification 

of aflatoxin from contaminated seeds and grains [10]. Some plant metabolites, such as linoleic 

acid derivative 13(S)-hydroperoxide, are known to inhibit aflatoxin synthesis [8, 11]. Further, the 

bio-competition by application of atoxigenic strains A. flavus and/or A. parasiticus to outcompete 

toxigenic strains in the fields has been shown to be an effective strategy to reduce the aflatoxin 

contamination [5, 8, 12]. Atoxigenic strains of Aspergillus were reported to reduce the 

contamination of aflatoxin by ~70–90% in cotton and peanut [13-15]. This bio-competition 

strategy is of utmost importance in cotton because cotton has limited genetic diversity, and to 

date, no aflatoxin-resistant genotype is available in cotton [4, 8].  

 The defense responses in plants depend on the type of pathogen [6, 16]. Among different 

mechanisms, defense responses in plants are known to be regulated by the phytohormones, such 

as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), cytokinin (CK) and auxins [6, 16, 17]. 

As a general rule, plant resistance to biotrophic pathogens is controlled by SA. In contrast, the 

resistance to necrotrophic pathogens is controlled by JA- and ET-dependent signaling pathways 

[6, 16, 17]. Moreover, resistance to necrotrophic fungal pathogens is known to be quantitative in 
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nature and regulated by multiple genes [6, 18]. Toxigenic strain of A. flavus is characterized with 

the features of a necrotrophic fungal pathogen [6]. It is essential to develop germplasm that can 

resist the fungal invasion and/or shut down toxin production for long-term control of A. flavus 

infections [4, 19]. However, conventional breeding for resistance to A. flavus in cotton has been 

handicapped due to the unavailability of the genetic resistance in the available cotton gene pool. 

Genetic engineering of cotton with genes induced or upregulated in response to A. flavus 

infection will provide a promising approach to develop cotton varieties resistant to A. flavus. 

This necessitates detailed investigation into the host-pathogen interaction to identify genes that 

are induced in cotton in response to A. flavus invasion or by toxin production. Further, 

understanding the largely unknown molecular basis of bio-competition strategy in controlling 

toxigenic A. flavus infection using atoxigenic strain of A. flavus could lead to identification of 

candidate genes for their use in manipulation of A. flavus resistance in cotton. Strategies such as 

small-scale expressed sequence tag (EST) library sequencing and oligonucleotide microarray 

have been used for the identification of genes induced or regulated in response to A. flavus 

infection in crops, such as maize, peanuts and cotton [4, 20, 21]. These small-scale targeted 

strategies based on the identification one or a few genes are not sufficient to understand the 

complex host-pathogen interaction responses [22]. Therefore, to identify key regulators in the 

interaction of A. flavus infection with cotton, it is necessary to discover genes on a global scale 

using high-coverage transcriptome analysis approach. We report here the identification of 

differentially expressed/regulated genes in the pericarp and seed tissues of cotton in response to 

A. flavus infection with an objective to understand the complex genetics involved in response of 

cotton to both toxigenic and atoxigenic strains of A. flavus infection. 
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2.2 MATERIALS AND METHODS 

2.2.1 Fungal Culture Preparation and Cotton Boll Inoculation 

 Fungal cultures of toxigenic (AF13) and atoxigenic (AF36) strains of A. flavus were 

prepared as described earlier [4]. Briefly, the strains were grown on maltose extract agar medium 

at 30°C for a week. Conidia were harvested by scrapping the mycelium in 9 µl of potato dextrose 

broth (PDB), and the suspension was adjusted to a concentration of 104 conidia/ml. Cotton 

variety ‘Coker 312’ was grown in the greenhouse for the present study as described 

earlier [4]. A hole to a depth of 5–10 mm was made in the center of one of the locules (L1) of 

cotton bolls (28–30 dpa) using a 3 mm dia cork borer. Ten µL of the conidia suspension was 

applied into the hole using a Pasteur pipet. Bolls inoculated with only PDB without conidia 

served as the control. Pericarp and fiber-free seeds from non-inoculated and inoculated locule 

(L1) and adjacent/distal (Adj) locules of cotton bolls were harvested and placed in liquid 

nitrogen at 6, 24, 48, and 72 h after inoculation, and stored at -80°C for RNA isolation. Three 

bolls each from two different plants (biological replicates) were used for each treatment. 

2.2.2 RNA Extraction, Library Preparation and Sequencing 

 The total RNA was separately extracted from seed and pericarp tissues from L1 and Adj 

locules collected at each time point by using Spectrum total RNA isolation kit (Sigma-Aldrich, 

St. Louis, MO). RNA quantity and integrity were assessed as described earlier [4]. For library 

preparation, 2 µg of RNA from each different time points and replications were mixed for each 

tissue and experimental condition in order to minimize the cost of library preparation. 

Altogether, six libraries–non-inoculated pericarp (NIP) and seed (NIS), Pericarp (NTP) and seed 

(NTS) inoculated with atoxigenic strain, and pericarp (TP) and seed (TS) inoculated with 

toxigenic strain were prepared as per the manual of Illumina RNA-library construction kit. The 
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libraries were single-end sequenced using the Illumina HiSeq-2000 platform at the sequencing 

facilities of the Iowa State University, Johnston, IA. 

2.2.3 Read Filtering and Sequence Assembly 

 The single-end raw short Illumina sequencing reads (100 bp) were subjected to filtering 

to obtain high quality reads for downstream analysis. The raw reads were filtered and trimmed 

for adapter contamination and low quality, ambiguous and uncalled nucleotide bases. The reads 

containing more than 5% of uncalled bases and of average quality <= 20 over a window size of 5 

bp in 5’ to 3’ direction were discarded. The filtering and trimming of the raw reads were 

performed by an in-house pipeline developed with Python programming. Subsequently, the high 

quality reads were assembled de novo using Trinity (release 2013-02-25) [23] with parameters of 

k-mer size 25, minimum contig length 200 bp and min_kmer_cov 2. The assembly was 

performed individually for reads of each of the six libraries. The overlapping k-mers were 

assembled into linear transcripts followed by clusters of overlapping transcripts. The transcripts 

for alternative spliced form and paralogous genes from these overlapping transcripts were 

obtained. All bioinformatics data analysis was performed using the Louisiana State University 

High Performance Computing (HPC) resource SuperMike-II configured with 16 CPUs. After the 

assembly was performed for each library, exactly duplicate (100% similar) transcripts were 

removed to determine the total unigenes. We have used the term “transcript” here to describe 

individual sequence assembly and “unigene” to denote the longest transcript from a particular 

alternatively spliced isoforms cluster. 
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2.2.4 Functional Annotation 

 The assembled transcripts were subjected to functional annotation using homology search 

against publicly available databases, such as G. raimondii protein database (http://phytozome.jgi. 

doe.gov/pz), G. arboreum protein database (http://cgp.genomics.org.cn/page/species/index.jsp), 

NCBI's non-redundant (nr) plant nucleotide sequence database (http://www.ncbi.nlm.nih.gov), 

and UniProtKB (SwissProt and Tr-EMBL plant sequences) database (http://www.uniprot.org). 

The homology search was performed using BLASTx algorithm [24] against the databases at an 

E-value cut-off of 1e-05. If the annotation from different databases conflicted with each other, 

priority was given to the match with G. raimondii protein database, NR and UniprotKB, in that 

order. The Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg) 

database was utilized for assigning biological pathways to the transcripts. Further, based on the 

sequence similarity with G. raimondii protein database, GO annotations for biological process, 

molecular function and cellular component were assigned to the assembled transcripts. The GO 

enrichment analysis was performed with agriGO analysis toolkit [25] with default P-value and 

false discovery rate (FDR). For identification of enrichment of metabolic pathways, the 

PathExpress analysis tool with criteria of P<0.05 was used [26]. 

2.2.5 Mapping Reads to Reference Sequence 

 The cleaned reads from each library were mapped individually to the D genome G. 

raimondii (http://www.phytozome.net/) and the A genome G. arboreum 

(http://cgp.genomics.org.cn/ page/species/index.jsp) [27, 28] using Tophat (version 2.0.9) spliced 

aligner [29] and Bowtie2 aligner [30] with number of threads set to 10. The unaligned reads were 

mapped by Bowtie2 that split these into smaller segments for realigning and finding potential 
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spliced sites. Mapped and unmapped reads were reported as BAM files, which were used for 

downstream analysis. 

2.2.6 Differential Gene Expression Analysis 

 Differentially expressed genes from the six RNA-Seq libraries were identified by using 

respective BAM files for alignment with Tophat-Cufflink pipeline (version 2.1.1) that produced 

the transcript assembly [31, 32]. The read counts were normalized as Fragments per Kilobase of 

Transcripts per Million mapped fragments (FPKM). The assembly files created across infected 

and uninfected control conditions were pooled in a single file using Cuffmerge for differential 

expression analysis. Finally, the pooled file from Cuffmerge was fetched to Cuffdiff for 

calculating expression level and statistical significance of genes across control and inoculated 

conditions. Cuffdiff employed a blind dispersion model, which conservatively treated all 

conditions as a replicate of each other in the absence of transcripts from biological replicates as 

is the case in the present study [31, 32]. The codes used in Cuffdiff for identifying DEGs under 

NIPvsTP were as follows: cuffdiff-o cuffdiff_out_NIP_TP-b GraimondiiGenome.fa-p 10-L NIP, 

TP -max-bundle-frags 10000000 -FDR -u merged.gtf accepted_hits_NIP.bam accepted_hits_TP. 

bam (Generalized code: cuffdiff-o cuffdiff_out_NIP_TP -b genome.fa -p 10 -L NIP,TP -u 

merged.gtf accepted_hits_NIP.bam accepted_hits_TP.bam). The same code was used for other 

experimental conditions. The heatmaps for gene expression analysis (log2 fold change) were 

plotted using heatmap.2 function within R package (version 3.1.2). Three-way comparisons– 

NIvsNT, NIvsT, and NTvsT were performed to understand the modulation of gene expression 

between different experimental conditions for both pericarp and seed. The (digital) expression of 

10 selected genes showing maximum log2 fold change under A. flavus infection in comparison to 
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non-inoculated control was validated by reverse-transcription PCR using gene specific primers 

(APPENDIX I; sheet 1) following the method described earlier [4]. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Illumina Sequencing, Quality Control and Alignment to the Reference Genome 

 Sequencing of the six libraries generated 911,040,814 reads of 100 bp long resulting in a 

total of 91.1 Gbp sequence data (Table 2.1). The average quality of the reads in the libraries after   

Table 2.1 Sequencing and assembly statistics of cotton transcriptome 

 Pericarp Seed  
Parameter NIP NTP TP NIS NTS TS Total 
# Raw single-
end reads 163,090,907 138,340,968 196,958,025 193,242,949 137,348,154 82,059,811 911,040,814 

Bases 
sequenced 
(Gbp) 

16.30 13.83 19.69 19.32 13.73 8.205 91.1 

Sequence 
coverage 65.24X 55.34X 78.78X 77.3X 54.94X 32.82X 364.42X 

# Cleaned 
reads used in 
assembly 

162,591,684 137,657,801 196,080,070 192,530,847 136,780,468 81,716,978 907,357,848 

Assembled 
unique 
transcripts 

99,772 107,294 122,657 100,510 82,896 73,440 586,569 

# Unigene 31,425 35,831 40,010 31,635 28,019 23,638 190,558 
Transcript 
N50 (bp) 1887 1842 1976 1927 1703 1787 1864 

Transcript 
N90 (bp) 701 647 699 705 634 658 675 

Max. 
transcript size 
(bp) 

15441 14102 15414 15383 10154 14933 15441 

Min. 
transcript size 
(bp) 

201 201 201 201 201 201 201 

Average 
transcript size 
(bp) 

1339.58 1275.85 1351.4 1353.22 1217.53 1278.19 1307.8 

Transcriptome 
size (Mbp) 133.65 136.89 165.75 136.01 100.92 93.87 767.11 

 
NIP = non-inoculated pericarp NTP = atoxigenic pericarp; TP = toxigenic pericarp; NIS = non-
inoculated seed; NTS = atoxigenic seed; TS = toxigenic seed. 
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filtering was > 33. There was negligible amount of adapter/primer contamination in the reads. 

Altogether, 907,357,848 high quality reads were obtained from all six libraries, which totaled to 

90.73 Gbp sequencing data (Table 2.1). The raw sequences have been deposited to the NCBI. 

SRA database (http://www.ncbi.nlm.nih.gov/sra/?term=PRJNA275482). Out of high quality 

filtered reads, 59.6% mapped to the D genome of cotton (Gossypium raimondii), whereas 75.6% 

mapped to the A genome (G. arboreum) across all six libraries. The higher percentage of 

alignment of the reads to the A genome could be due to its higher genome size as compared to 

the D genome. 

2.3.2 De Novo Sequence Assembly 

 The high quality reads from each of the six libraries from different experimental 

conditions were assembled independently into transcripts with a length more than 200 bp. The 

lengthwise distribution of transcripts of six independent libraries of cotton under different 

experimental conditions is shown in (Figure 2.1). Trinity has a better resolving power than others 

in identifying alternative spliced transcript, and thus produces less duplicates and chimeric 

transcripts [33]. However, redundancy was encountered in the assembled transcriptome due to 

high sequencing depth, duplication and assembly process. Therefore, exactly duplicate 

transcripts were removed from all six libraries to obtain 586,569 unique transcripts (Table 2.1). 

Further, total transcripts from six libraries clustered into 190,558 unigenes (Table 2.1). The size 

of the transcripts ranged from 201 to 15,441 bp with a mean of 1307.80 bp. Similarly, unigenes 

size ranged from 201 to 15,441 bp with a mean of 841.88 bp (Table 2.1). Of the total reads, 87% 

aligned to the assembled transcripts indicating good coverage of the transcriptome. The high N50 

and N90 values for unique transcriptome were 1864 bp and 675 bp, respectively, further 

suggesting a good quality assembly. Furthermore, complete alignment of the longest transcript 
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comp54729_c0_seq1_NIP (15,441 bp) from NIP library to a gene coding for auxin transport 

protein of Theobroma cacao (TCM_019010) in the NCBI database demonstrated that the 

transcript was not chimeric which could have occurred due to repetitive regions in the genes. 

These results strongly supported a high quality transcriptome assembly of cotton. 

 

Figure 2.1 Lengthwise (in bp) distributions of transcripts in RNA-Seq libraries from pericarp and 
seed tissues of cotton with and without Aspergillus flavus infection. NIP = non-inoculated 
pericarp, NTP = non-toxigenic pericarp, TP = toxigenic pericarp, NIS = non-inoculated seed, 
NTS = non-toxigenic seed, TS = toxigenic seed. 
 
2.3.3 Functional Annotation 

 Out of the 586,569 total unique transcripts, 466,054 (79.45%) were assigned functions 

based on their similarity to cotton protein database. The remaining un-annotated sequences were 
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searched against NCBI nr and UniProtKB plant databases. Longer sequences produced 

significant blast hits as compared to the shorter sequences. Out of the total annotated transcripts, 

405,652 (87.04%) transcripts with more than 500 bp length showed similarity to proteins in the 

cotton database. Of the remaining unmapped transcripts, 8,755 transcripts mapped to plant NCBI 

nr/nt and UniProtKB database. Further, the cotton unique transcriptome was mapped to the 

protein sequences of G. arboreum. In total, 19,750 un-annotated unique transcripts matched with 

G. arboreum protein sequences. Thus, we annotated total 494,559 transcripts (84.31%) of the 

cotton transcriptome. The transcripts which did not match to known genes may represent novel 

genes or genes that may have diverged from their homologs or noncoding RNAs [34]. The 

homology search showed 79.45% and 82.89% unique transcripts matching to G. raimondii and 

G. arboreum proteins, respectively. 

2.3.4 Identification of Differentially Expressed Genes (DEGs) in Response to Aspergillus 

flavus Infection 

 Statistically significant differentially expressed genes (DEGs) in terms of FPKM 

(fragments per kb per million mapped reads) were calculated using combination of log2FC and 

P-value criteria based on mapping of the cotton reads against the G. raimondii genome as 

reference. In pericarp tissue, 1265, 832 and 396 genes were up-regulated (log2FC³2, P<0.05) 

under NIPvsNTP, NIPvsTP and NTPvsTP conditions, respectively. On the other hand, 247, 123 

and 869 genes were down-regulated (log2FC£-2, P<0.05) under same experimental conditions, 

respectively. Similarly, in the seed tissue, 680, 492 and 369 genes were up-regulated under 

NISvsNTS, NISvsTS and NTSvsTS conditions, respectively, whereas, 321, 80 and 302 genes 

were down-regulated under same experimental conditions, respectively (Figure 2.2, A, B and C).  
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Figure 2.2 Gene expression profile of cotton in pericarp and seed tissue in response to A. flavus 
infection. A) Heatmap showing differentially expressed genes (DEGs) of cotton in response to 
infection by atoxigenic and toxigenic strains of Aspergillus flavus. The up-regulated genes 
(log2FC³2 and P<0.05) and down-regulated genes (log2FC£-2 and P<0.05) are represented by 
blue and yellow color, respectively. Genes with similar expression profiles were clustered 
together by hierarchical clustering. For description of the gene names represented in the 
heatmaps, please refer to the APPENDIX I, sheet 2. Venn diagram shows the unique and 
common DEGs in pericarp (B) and seed (C) tissues under different experimental conditions. 
 

Principal component analysis (PCA) showed distinct response of pericarp and seed tissues to 

toxigenic and atoxigenic strains of A. flavus (Figure 2.3). The total variance contributed by three 

principal components was 72% (Figure 2.3). The results further showed significant differences in 

the expression profile of genes in response to atoxigenic and toxigenic infection in pericarp, 
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whereas, in seed, the difference in response was not significant with the infection by both strains 

of A. flavus. This suggested that the pericarp tissue, being the primary tissue for inoculation,  

 

Figure 2.3 Principal component analysis (PCA) showing the variability (72% variance) of DEGs 
of cotton in pericarp and seed tissue in response to infection by toxigenic and atoxigenic strains 
of Aspergillus flavus. Expression of genes under different experimental conditions in seed (small 
oval) and pericarp (large oval) were distinct with the variability of expression higher in pericarp 
compared to seed. PC1, PC2 and PC3 explained 32%, 24% and 16% of the total variance. 
 

exhibited higher level of differential response of genes as compared to the seed tissue. Thus, 

identification of specific category of highly up-regulated genes from different clusters, and 

characterization of their biochemical response would provide potential candidates for functional 

characterization through genetic manipulation toward improvement of resistance to A. flavus 

infection. The distributions of DEGs under different conditions are shown in three-way Venn 
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diagrams for pericarp (Figure 2.2, B) and seed (Figure 2.2, C). The DEGs were further 

characterized into different groups based on their putative functional significance as described 

below. Because A. flavus is a necrotrophic fungus, JA and ET dependent signaling pathways 

presumably function in defense response and regulate the expression of defense related genes, 

genes involved in oxidative burst, synthesis of antimicrobial compounds, regulation of 

transcription factors and localized programmed cell death in cotton in response to the fungal 

infection. 

2.3.4.1 Genes interfering with fungal virulence and growth 

  Eleven transcripts encoding chitinases were differentially expressed under infection by 

both atoxigenic and toxigenic strains in pericarp and seed. The transcripts encoding B-CHI and 

CHIV were induced by infection with both atoxigenic and toxigenic strains in pericarp and seed. 

But, CTL2 was up-regulated specifically in pericarp by both strains, whereas, CHIA was 

specifically induced in seed by both strains. Among the transcripts encoding CTL2, 

Gorai.006G078900 and Gorai.011G198500 were induced under atoxigenic and toxigenic strain 

infection, respectively. The three genes encoding β-1,3-glucanases (BG) were up-regulated 

specifically in seed. BG3 (Gorai.006G134600) and BG1 (Gorai.006G134700) were highly 

induced by the atoxigenic strain, whereas, another BG3 transcript (Gorai.010G003600) was up-

regulated specifically by the toxigenic strain. Plant pathogenic fungi infect the plants through 

wounds or release of hydrolytic enzymes, such as pectinases, proteases and amylases for 

successful colonization [22]. Therefore, identification and characterization of plant genes, which 

interfere with invasion of fungus in plants, can be useful to reduce fungal pathogenicity. The 

hydrolytic enzymes chitinase and β-1,3-glucanase genes possess antifungal activity by degrading 
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the fungal cell wall containing chitins [22, 35, 36]. Plant chitinases possess lysozyme activity 

and are highly active in inhibiting fungal growth [37]. Moreover, over-expression of chitinase 

genes has conferred resistance to fungal infection in plants, such as tobacco, peanuts and rice 

[38-40]. 

 Five transcripts encoding trypsin and protease inhibitor proteins (TPI) were induced in 

pericarp, and only one TPI was induced in seed (Figure 2.4, A). The two transcripts, 

Gorai.011G254400 and Gorai.012G027700, were up-regulated under infections by both the 

strains in pericarp, but the TPI (Gorai.011G254900) was specifically induced under the 

atoxigenic infection in pericarp. Among the TPI genes induced in pericarp, Gorai.011G254500 

and Gorai.011G254600 were highly up-regulated by the toxigenic strain and down-regulated by 

the atoxigenic strain (Figure 2.4, A). For example, Gorai.011G254500 and Gorai.011G254600 

were up-regulated by 2.9- and 6.5-fold, and 9.8- and 12.7-fold higher by the toxigenic strain in 

comparison with the non-inoculated control and the atoxigenic strain, respectively (APPENDIX 

I, sheet 3). In seed, the TPI (Gorai.012G027600) was induced under the toxigenic strain 

infection only. Reduced growth of A. flavus has direct impact on aflatoxin production [41]. 

Trypsin inhibitors are known to possess antifungal activity [22, 41] and inhibit conidial 

germination and hyphal growth of A. flavus [41]. Four genes encoding serine protease inhibitors 

(SPI) were also differentially expressed in pericarp and seed. Gorai.012G105800 and 

Gorai.007G143500 were up-regulated specifically under the atoxigenic strain infection in 

pericarp and the toxigenic strain infection in seed, respectively. Serine protease inhibitor gene 

has been shown to be induced in response to infection with A. flavus in peanut [20]. 

 Plants accumulate hydroxyproline-rich glycoproteins (HRGPs), phytoalexins and lignin- 
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like substances as a resistance mechanism in response to fungal pathogen infection [42-44]. The 

HRGPs and lignification are involved in fortifying the cell-wall structure of plants and contribute 

to the resistance to pathogen invasion [45]. Among 20 DEGs encoding HRGP, 10 and two genes 

were specifically induced in pericarp and seed, respectively (Figure 2.4, A). In pericarp, most of  

 

Figure 2.4 Heatmaps showing DEGs involved in interference of fungal virulence and growth (A) 
and DEGs involved in defense signaling (B). The green color represents up-regulated 
(log2FC³2) genes and red color represents down-regulated (log2FC£- 2) genes. For description 
of the gene names represented in the heatmaps, please refer to the APPENDIX I, sheet 3. 
 
these genes were induced under the atoxigenic strain infection. Similarly, in seed the two genes 

were induced by the atoxigenic strain infection. The increase in the level of HRGP transcripts 

has been observed in several plants in response to wound or pathogen infection, and is associated 
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with higher resistance to pathogen [37]. The genes involved in the metabolism of 

phenylpropanoids, which serve as a source for furanocoumarin and isoflavonoid phytoalexins 

and lignins, were differentially expressed in the pericarp and seed tissues. The phenylpropanoid 

pathway precursors are also involved in the synthesis of lignin and phenolic substances, and 

possess antifungal activities [37, 42, 43]. The increase in cell wall lignification as a structural 

modification has been observed in plants for defense in response to fungal pathogen [37]. The 

enzymes phenylalanine ammonia-lyase (PAL), 4-coumarate CoA ligase (4CL) and chalcone 

synthase (CHS) are involved in the phenylpropanoid pathway [37, 42, 43]. Two genes encoding 

each PAL2 and 4CL1 were highly up-regulated in pericarp under the atoxigenic strain infection 

(Figure 2.4, A). The transcript encoding 4CL3 was up-regulated in both tissues, but had the 

higher fold change in gene expression in pericarp specifically under the atoxigenic strain 

infection as compared to the toxigenic strain infection. The enzyme chalcone synthase (CHS) 

was highly induced in pericarp (Figure 2.4, A). The three genes encoding CHS 

(Gorai.005G035100, Gorai.006G000200 and Gorai.009G339300) were specific to pericarp and 

showed higher expression under the atoxigenic strain infection. The two CHS genes 

(Gorai.011G161200 and Gorai.011G161300) were up-regulated in both tissues under the 

atoxigenic infection, but only in pericarp under the toxigenic infection, the fold change for these 

two CHS genes were higher in pericarp as compared to seed (Figure 2.4, A). Other genes 

involved in the lignin biosynthesis, such as cinnamate-4-hydroxylase (C4H), cinnamoyl-CoA 

reductase 1 (CCR), hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase 

(HCT) and caffeoyl-CoA 3-O-methyltrans- ferase (CCOAMT), were specifically up-regulated in 

the pericarp tissue under fungal infection (Figure 2.4, A). Two transcripts encoding C4H, one 

transcript encoding CCR1 and CCOAMT each were highly up-regulated under the atoxigenic 
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strain infection, while HCT was highly induced under the toxigenic strain infection in pericarp. 

Simultaneous up-regulation of PAL, 4CL and CHS genes of the phenylpropanoid pathway 

suggested that these genes are coordinately regulated in response to fungal infection and that 

wounding and fungal infection at pericarp induced and accumulated these transcripts at a much 

higher level in pericarp as a part of an induced plant defense response to the invading fungus. 

The genes involved in the phenylpropanoid pathway are also induced in response to wounding 

[46]. The production of phytoalexins and accumulation of PAL, CHS and HRGP upon infection 

indicates hypersensitivity response, thus establishing immunity of uninfected distant cells [37, 

42]. The increase in lignification was also shown to be associated with hypersensitive resistant 

reaction in wheat in response to Puccinia graminis f.sp. tritici infection [37, 47]. 

 Lipoxygenase (LOX) genes of the LOX biosynthesis pathway were differentially 

expressed in pericarp tissue under A. flavus infection. The LOX2 gene was up-regulated under 

infection by both the strains in pericarp, whereas, the LOX1 (Gorai.004G241400) was 

specifically up-regulated under the atoxigenic strain infection in pericarp. The LOX3 gene was 

down-regulated in the pericarp tissue under infection by both strains (Figure 2.4, A). However, 

the LOX genes did not show any change in response to A. flavus infection in seed. Most volatile 

compounds and hydroperoxy fatty acids are the products of the LOX biosynthesis pathway [22]. 

These results suggested that LOX genes expression was more abundant in pericarp as a possible 

mechanism of resistance against A. flavus infection. Plant-derived volatile compounds have the 

capability to inhibit A. flavus growth and aflatoxin biosynthesis [22]. Previous studies have 

reported anti-fungal role of LOX genes in peanut, corn and soybean [20]. In humans, LOX genes 

were shown to be involved in degradation of aflatoxin B1 by oxidative metabolism [20]. 

 Wounding and pathogen infection have also been shown to regulate the genes involved in 
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cell wall biosynthesis and modifications, such as pectins, cellulose and hemicellulose [46]. The 

transcripts encoding xyloglucan endotransglucosylase (XTH), cellulose synthase (CS), UDP-D-

galactose 4-epimerase (UGE), pectin methylesterase (PME), expansin (EXP) and 

glycosyltransferase (GT), which are involved in the cell wall modification, were regulated by A. 

flavus infection in both pericarp and seed (Figure 2.4, A). The results also suggested that cell-

wall modifying genes and genes involved in the production of antimicrobial substances were 

more active in pericarp as compared to seed. It is thus evident that the atoxigenic strain of A. 

flavus played a major role in activation of the antifungal and cell-wall modifying genes in the 

pericarp and seed tissues. Further, the characteristic response of these genes under specific 

fungal strain infection and tissue will help elucidate the mechanism of defense. 

2.3.4.2 The cross-talk between JA/ET and SA signaling pathway 

  Salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) are 

known to be involved in defense signaling pathways in response to pathogen infections and 

wounding [16, 17, 46, 48, 49]. SA- induced defense response generally involves resistance to 

biotrophic and hemibiotrophic pathogens, whereas JA and ET initiate the defense reaction in 

response to necrotrophic pathogens [16, 17]. The activation of SA and JA/ET pathways are 

pathogen dependent that involves mutually antagonistic activities [16]. JA and ET work 

synergistically in response to pathogen infection in plants [16]. In the present study, the 

transcripts encoding phospholipase, GDSL lipase, allene oxide synthase (AOS) and alcohol 

dehydrogenase (ADH), which are involved in the JA biosynthesis [46, 49], were induced in both 

pericarp and seed tissues (Figure 2.3, B). Similarly, the gene 1-aminocyclopropane-1-carboxylic 

acid synthase (ACS), involved in ET biosynthesis [46], was up-regulated in both pericarp and 

seed tissues (Figure 2.4, B). A higher number of lipase-encoding transcripts were induced in 



	
	

33 

pericarp as compared to seed (Figure 2.4, B). In pericarp, the lipases genes showed similar 

expression pattern under both atoxigenic and toxigenic strains infection, whereas in seed the 

genes were more active under the toxigenic strain infection (Figure 2.3, B). AOS and ACS6 genes 

were up-regulated under the atoxigenic strain infection in pericarp, while in seed AOS was up-

regulated by both strains, and ACS6 was specific to toxigenic strain infection (Figure 2.3, B). 

The jasmonate zim-domain protein (JAZ) inhibits the JA signaling in plants by interacting with 

JIN1/MYC2 gene and represses the expression of JA responsive genes [16]. The transcript 

encoding JAZ8 (Gorai.006G092400) was down-regulated in both pericarp and seed tissues under 

A. flavus infection (Figure 2.4, B). Further, SA mediated signaling pathway was inhibited by 

JA/ET signaling pathway in both pericarp and seed tissue in response to the fungal infection. The 

non-expresser of PR genes (NPR) which are a vital component of SA signaling pathway [16] 

was down-regulated in both pericarp and seed in response to A. flavus infection (APPENDIX I). 

The mitogen activated protein kinase gene, MPK4, acts as a positive regulator of JA and a 

negative regulator of SA signaling pathway in plants [16]. MPK4 was up-regulated under the 

atoxigenic strain infection in pericarp. Interestingly, the glutaredoxin (GRX), which is identified 

as a negative regulator of JA/ET signaling pathway [16], was up-regulated in pericarp, but down-

regulated in seed. The enhanced expression of JA-responsive marker gene plant defensin 1.2 

(PDF1.2) is known to be associated with resistance to necrotrophic pathogens [16]. In the 

present study, the transcript encoding PDF1.2c was specifically up-regulated under the 

atoxigenic A. flavus strain infection in pericarp tissue (Figure 2.4, B). The transcription factor 

ERF1 that acts as a positive regulator of JA and ET signaling pathway in Arabidopsis [16] was 

highly induced in seed by the infection with both strains of A. flavus. These results indicated that 
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JA/ET signaling pathway may be a component in the resistance mechanism of cotton to 

necrotrophic A. flavus. 

2.3.4.3 Genes involved in defense signaling pathways 

 Plant receptor protein kinases (RPK) represent PRRs that are involved in the perception 

of pathogen signal and trigger inducible defense [50]. The transcripts similar to receptor-like 

protein kinase (RLK), leucine-rich repeat receptor-like protein kinase (LRR-RLK), cysteine-rich 

RLK (CRK), lectin receptor kinase, inflorescence meristem receptor-like kinase (IMK) and 

receptor kinase (RK) were differentially expressed in both tissues under the atoxigenic and the 

toxigenic A. flavus strains infection (Figure 2.4, B). In seed, the transcripts encoding RLK were 

highly induced by the atoxigenic strain. The transcripts for LRR-RLK were specifically induced 

by the atoxigenic strain in pericarp and the toxigenic strain in seed. The CRK genes were induced 

in both tissues by both atoxigenic and toxigenic strains (Figure 2.4, B). Plants produce elicitors 

that are perceived by RPK to amplify immunity and resistance to fungal infection [51, 52]. The 

elicitor CLAVATA3 (CLV3), secreted by shoot apical meristem, binds to the LRR-RLK and 

activates it [51]. In pericarp, the transcript encoding CLAVATA3 (CLV3) was up-regulated 

under both atoxigenic and toxigenic strains infection (Figure 2.4, B). 

 The increase in the level of Ca2+ is indicative of the activation of plant’s innate immunity. 

The increase in Ca2+ levels is the result of release of pathogen elicitors after the infection in 

plants. The elevated levels of calcium under stress conditions are recognized by calcium binding 

proteins such as calcium dependent kinases (CDPKs), calmodulins (CaMs) and calcineurin B-

like proteins (CBL), which in turn induce downstream target gene expression [46, 51, 53]. The 

up-regulation of a large number of transcripts encoding calcium binding proteins including 

CaMs, CBL and calcium binding EF-hand family proteins (CBP) in the present study suggested 
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that there were elevated levels of Ca2+ after fungal infection in both pericarp and seed tissues 

(Figure 2.4, B). In pericarp, most of the transcripts encoding CBP were induced under the 

atoxigenic strain infection, whereas in seed these were under the toxigenic strain infection 

(Figure 2.4, B). Recent studies on plant-pathogen interactions reported that Ca2+-mediated 

activation of CaMs, CBL interacting protein kinases (CIPKs) and CDPKs are involved in plant’s 

immunity responses [51]. The transcripts similar to CIPK9, CIPK12, CIPK6 and CIPK21 were 

differentially expressed in both tissues under fungal infection (Figure 2.4, B). CIPK9 and CIPK6, 

and CIPK12 and CIPK6 genes were induced under the atoxigenic and the toxigenic infection in 

pericarp, respectively (Figure 2.4, B). However, in seed, only CIPK6 was induced under the 

toxigenic infection. The CIPK genes are involved in late immune responses (3-24 h after 

infection) and promote accumulation of phytoalexin, and expression of cell death and PR genes 

in response to fungal infection [51]. 

 The activation of MAPK pathway is also one of the defense responses that contribute to 

resistance to fungal infection in plants starting as early as 1 min after infection. Wounding and 

pathogen elicitors induce fast activation of MAPK cascade signaling [51]. The MAPK cascade 

signaling involves three components: MAPK kinase kinase (MAPKKK), MAPK kinase 

(MAPKK) and MAPK. In MAPK signaling cascade, the MAPKKK activates MAPKK, which in 

turn activates MAPK. The four transcripts encoding MAPKKK15, MPK17, MPK7 and MPK4 

were highly up-regulated specifically under the atoxigenic strain infection in pericarp (Figure 

2.4, B). MAPK cascade signaling was not induced in seed tissue in response to the fungal 

infection. The activation of MAPK signaling cascade regulates the downstream transcription 

factors, which further induce the expression of defense related genes leading to enhanced long-

term defense response and resistance to fungal infection by regulating the synthesis of 



	
	

36 

antimicrobial peptides and chemicals, programmed cell death, stress hormones (JA and ET), 

nitric oxide (NO) and reactive oxygen species (ROS) [51, 52]. The NO synthesis in plants is 

catalyzed by the enzyme nitrate reductase (NIA), which plays an important role in plant defense 

responses [54, 55]. Under the atoxigenic strain infection, the two transcripts encoding NIA2 were 

up-regulated in pericarp (Figure 2.4, B). In tobacco cells, the fungal elicitors contributed to 

prolonged activation of MAPKs, which regulate the expression of NO and ROS [51, 56]. The 

ROS, which play an important role in plant defense responses together with NO, are synthesized 

by the phagocyte enzyme complex of NADPH oxidase [54, 56]. The respiratory burst oxidase 

homolog (RBOH) which is plant NADPH oxidase [56, 57] was differentially expressed in both 

pericarp and seed tissues of cotton under fungal infection (Figure 2.4, B). The RBOH is regulated 

by MAPK signaling cascade and its increased expression is associated with resistance to 

pathogens [51, 56]. The three homologs of RBOH including RBOHF (Gorai.003G085100, 

Gorai.008G199100) and RBOHD (Gorai.009G202500) were highly induced specifically in 

pericarp (Figure 2.4, B). The RBOHF transcripts were induced under both atoxigenic and 

toxigenic strains infection in pericarp, whereas RBOHD was specifically up-regulated under the 

toxigenic strain infection (Figure 2.4, B). The production of NO and ROS together are necessary 

for inducing the hypersensitive response (HR) and cell death in plants [54]. 

 The phytohormone auxin (Aux), besides regulating growth and developments of plants, 

plays an important role in the defense responses to pathogens, [16, 58, 59]. Aux regulates the 

expression of Aux/IAA, Gretchenhagen-3 (GH3) family, Auxin response factor (ARF) and small 

auxin-up RNA (SAUR) genes [16, 58, 60]. Over-expression of OsGH3.1 in rice enhanced the 

resistance to fungal pathogen by reducing the auxin level and suppressing the expression of 

expansin genes [16, 59]. In this study, the transcripts similar to GH3.1 and GH3.10 were 
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specifically induced in pericarp by both strains (Figure 2.4, B). The GH3.6 (Gorai.005G208000) 

was specifically induced under the toxigenic strain infection in pericarp. Similarly, SAUR family 

genes were differentially expressed in pericarp and seed tissues under A. flavus infection (Figure 

2.4, B). SAUR genes have inhibitory activity on auxin biosynthesis and transport [60]. The over-

expression of SAUR39 transcript in rice showed reduced free IAA level and auxin transport [60]. 

 The role of phytohormone cytokinin has also been elucidated in disease resistance 

reaction in Arabidopsis [16, 61]. Arabidopsis lines overexpressing cytokinin 

oxidase/dehydrogenase (CKX) showed enhanced resistance to clubroot disease [61]. The 

transcripts similar to CKX6 (Gorai.012G081000 and Gorai.011G295400) were induced under 

atoxigenic and toxigenic strains infection only in pericarp. Contrastingly, CKX3 was down-

regulated in pericarp under the atoxigenic strain infection (Figure 2.4, B). The detailed 

characterization of these genes is necessary to understand the role and cross-talk of auxin- and 

cytokinin-signaling pathways in A. flavus-mediated defense response in cotton. 

2.3.4.4 Genes encoding transcription factors (TFs) 

 Transcription factors control the transcriptional regulation by activating or suppressing 

the expression of downstream genes in response to pathogens infection [62]. The transcription 

factor GhWRKY3 is known to be induced under wounding and fungal infection in cotton [62]. 

Mutation in WRKY70 and WRKY33 enhanced the susceptibility of Arabidopsis to necrotrophic B. 

cinerea fungal infection [17]. WRKY40, WRKY33, WRKY53, WRKY22, WRKY11, WRKY15 and 

WRKY60 are known to be induced under wounding in Arabidopsis [46]. In the present study, 28 

WRKY-related transcripts were differentially expressed under fungal infection in pericarp and 

seed of cotton (Figure 2.5, A). The WRKY75 (Gorai.001G057600 and Gorai.005G164300) and 

WRKY72 were induced in both pericarp and seed in response to A. flavus infection. Most of the 
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WRKY TFs were up-regulated under the atoxigenic strain infection in pericarp and the toxigenic 

strain infection in seed (Figure 2.5, A). WRKY75 (Gorai.006G043200) and WRKY40 

(Gorai.009G124000) were specifically up-regulated under the atoxigenic strain infection in both 

pericarp and seed. WRKY6 (Gorai.001G214800), WRKY53 (Gorai.008G253300), WRKY50 

(Gorai.001G021500) and WRKY41 (Gorai.007G014600) were down-regulated in pericarp. 

WRKY50 is reported to negatively regulate the plant-fungus interaction, and mutation in 

WRKY50 has been associated with enhanced resistance to pathogen [17]. It was also reported that 

the WRKY TFs regulate the expression of RLK genes, which are induced in response to 

pathogen infection [46, 63]. 

 

Figure 2.5 Heatmaps showing DEGs involved in transcriptional regulation (A), involved in 
oxidative burst (B) and stress response (C). The green color represents up-regulated 
(log2FC>=2) genes and red color represents down-regulated (log2FC£-2) genes. For gene names 
represented in the heatmaps, please refer to the APPENDIX I. 
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 The APETALA2 (AP2)/Ethylene responsive factor (ERF) family of TFs are known to be 

involved in the activation of defense-related genes in response to pathogen infection through ET 

and JA pathways [17, 64]. The members of AP2/ERF family were differentially expressed in 

response to the necrotrophic A. flavus infection in pericarp and seed (Figure 2.5, A). The 

transcripts similar to RAP2.6L (Gorai.012G125700) and ERF38 were up-regulated specifically 

in pericarp (Figure 2.5, A). RAP2.6L was induced under both atoxigenic and toxigenic strains 

infection, whereas, ERF38 expression was specific to the atoxigenic strain infection. The number 

of AP2/ERF TFs up-regulated in seed was higher as compared to pericarp. ERF1 

(Gorai.005G049300) and RAP2.6L (Gorai.005G197100) were induced specifically in seed under 

both strain infections. In seed, ERF2 (Gorai.009G165500) and RAP2.1 were up-regulated under 

the atoxigenic and the toxigenic strain infection, respectively. However, ERF2 

(Gorai.010G156600) was down-regulated under the toxigenic strain infection in pericarp. The 

AP2/ERF TF family genes are known to be highly induced in response to wounding in 

Arabidopsis [46]. Overexpression of an ERF TF in Arabidopsis conferred enhanced resistance to 

necrotrophic fungus B. cinerea [17]. A transcript encoding DREB1D/CBF4 gene was induced 

under the atoxigenic strain infection in pericarp (Figure 2.5, A). DREB/CBF TFs belong to 

AP2/ERF TF family and have been reported to be induced in response to wounding, in addition 

to abiotic stresses, such as cold, heat, salt and drought in Arabidopsis [46]. 

 The role of bZIP family TFs in biotic stress responses of plants is well established [65]. 

The bZIP-family TFs were induced in pericarp of cotton by A. flavus infection. The five bZIP 

TFs, bZIP14, GIA1, bZIP67, bZIP44 and bZIP42, were specifically induced under the atoxigenic 

strain infection, whereas bZIP1 and bZIP5 were induced under the toxigenic strain infection 
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(Figure 2.5, A). The bZIP TFs were not induced by the fungus in seed; bZIP70 and bZIP21 were 

down-regulated under the atoxigenic strain infection in seed. 

 Many MYB TFs were also differentially expressed under A. flavus infection in cotton. 

More MYB genes were up-regulated in pericarp as compared to seed (Figure 2.5, A). MYB93, 

MYB63, MYB102, MYB105, MYB102 and MYB36 were induced under both the atoxigenic and 

the toxigenic strains infection in pericarp, whereas MYB62 and MYB2 were induced in seed 

(Figure 2.5, A). The gene expression pattern of MYB TFs has been studied in Arabidopsis in 

response to wounding and pathogen infection [46]. The MYB TFs regulate the expression of 

flavonoid genes, PR genes and genes involved in secondary metabolism [46]. In the present 

study, MYB4, which is a repressor of phenylpropanoid pathway [49], was down-regulated under 

both strains infection in seed (Figure 2.5, A). 

 The gene expression profiles of zinc finger (ZF), heat shock factors (HSF) and homeobox 

(HB) type TFs were altered in response to wounding in Arabidopsis [46]. In cotton, a number of 

transcripts encoding ZF TFs were up-regulated in response to the atoxigenic strain infection in 

pericarp, whereas in seed, only one transcript similar to ZF-C2H2 (Gorai.002G223300) was 

induced under the toxigenic strain infection (Figure 2.5, A). The HB type TFs showed high 

activity in seed than pericarp, which was evident from the up-regulation of a large number of HB 

genes in seed as compared to pericarp (Figure 2.5, A). The HB TFs, HAT3, HB20 and HB4, were 

down-regulated in pericarp under A. flavus infection. The HSFs did not show any activity in 

pericarp, and were specifically induced in seed (Figure 2.5, A). The transcript showing similarity 

with HSFA2 was highly up-regulated in seed under both strains infections. Further 

characterization of these TFs is necessary to understand their regulatory mechanisms in 
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controlling expression of downstream genes and their roles in defense response of cotton to A. 

flavus infection. 

2.3.4.5 Genes involved in oxidative burst 

 Oxidative burst is one of the earliest defense responses of plants against pathogen 

infection and wounding, and is considered as the hallmark of pathogen recognition [46, 56, 57, 

66]. ROS production is observed in both plant triggered immunity (PTI) and effector triggered 

immunity ETI [57]. In addition to their involvement in direct defense reaction by killing the 

pathogens, ROS are also involved in the activation of defense-related genes through signaling 

mechanism [57]. ROS can regulate the TFs and produce antimicrobial phytoalexins and other 

secondary metabolites, which have inhibitory activity on pathogen growth [57]. As discussed 

earlier, the MAPK pathway activated the expression of RBOH genes in response to A. flavus 

infection, which could trigger the plant apoplastic oxidative burst. The transcripts encoding 

glutathione S-transferase (GST), ascorbate peroxidase (APX), copper amine oxidase (CAO), 

ferredoxin (FED) and peroxidase (POX), which are involved in ROS processing and scavenging, 

showed increased activity under A. flavus infection in cotton (Figure 2.5, B). Most of these genes 

were induced in pericarp, and their expression patterns were different under the atoxigenic and 

the toxigenic strains infection in both pericarp and seed tissues. The transcripts similar to copper 

amine oxidase (CAO) under atoxigenic strain infection and ferredoxin under both strains 

infections were specifically induced in pericarp tissue (Figure 2.5, B). Most of the transcripts 

encoding glutathione S-transferase (GST) were induced under the atoxigenic strain infection in 

both pericarp and seed (Figure 2.5, B). The expression patterns for peroxidase genes (POX) were 

similar under the atoxigenic and the toxigenic strain infection in pericarp, but in seed POX genes 

were highly induced under the toxigenic strain infection (Figure 2.5, B). The peroxidase 2 
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(POX2) genes were specifically induced in pericarp tissue under both the atoxigenic and the 

toxigenic strains infection. The transcript similar to glutathione peroxidase (GPX2) was induced 

under the atoxigenic strain infection in pericarp (Figure 2.5, B). Hydrogen peroxide can also act 

as a secondary messenger and initiate regulation of defense related genes [46]. These results 

suggested that wounding and subsequent A. flavus infection activated the ROS-regulated defense 

response in both pericarp and seed tissues of cotton. 

2.3.4.6 Genes involved in stress response 

 Many stress responsive genes have been implicated in plant’s response to fungal infection 

[4, 22]. The late embryogenesis abundant (LEA) storage protein was shown to be induced in 

response to A. flavus infection in cotton [4]. In this study, 12 transcripts similar to LEA genes 

were specifically up-regulated in response to the atoxigenic A. flavus infection in pericarp 

(Figure 2.5, C). In seed, only 4 LEA4 transcripts were differentially induced under the atoxigenic 

and the toxigenic strains infection. The heat shock proteins (HSP) play a major protective role in 

biotic and abiotic stresses by controlling chaperone activity and other cellular processes [22, 46]. 

The expression of HSPs is under the regulation of HSFs [46]. There are several HSPs and HSFs 

that have been reported to be induced by pathogen infection and wounding [22, 46]. Most of the 

transcripts similar to HSPs, in this study, were induced in seed as compared to pericarp tissue 

(Figure 2.5, C). HSP70B was specifically induced under the atoxigenic strain infection in 

pericarp. HSP23.6-MITO, HSP90.1, HSP21 and HSP17.6II were all induced in both pericarp and 

seed tissues by both the strains. HSP90.1 and DNAJ-HSP were up-regulated by both the strains 

specifically in seed, whereas HSP70 was up-regulated under the toxigenic strain infection. The 

DNAJ-HSP (Gorai.008G099300) was down-regulated in pericarp tissue. The up-regulation of a 

large number of HSPs in seed as compared to pericarp could be correlated to the induction of 
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HSFs specifically in seed tissue, as discussed earlier. Stress-inducible cold regulated gene 

(SRC2) was specifically up-regulated in the seed tissue (Figure 2.5, C). Two transcripts encoding 

glyoxal oxidase-related protein were specifically induced under the toxigenic strain infection in 

seed (Figure 2.5, C). The overexpression of glyoxal oxidase gene was shown to enhance the 

resistance of grape plant to fungal infection [67]. The stress responsive gene glyoxalase I was 

also known to be induced in response to abiotic and biotic stresses in plants [22, 68]. Glyoxalase 

I was up-regulated in response to necrotrophic hemibiotroph fungus T. basicola in G. hirsutum 

[68]. The expression of a transcript coding for a glyoxalase I family protein, GLYI8, was specific 

to pericarp and up-regulated in response to the atoxigenic A. flavus infection (Figure 2.5, C). The 

pathogenesis related genes (PR) that are associated with the resistance reactions [22, 68, 69] 

were also differentially expressed in the pericarp and seed tissues (Figure 2.5, C). Among the 15 

differentially expressed transcripts that were similar to PR genes, seven and three were specific 

to pericarp and seed, respectively. In pericarp, PR and PR-1 (Gorai.006G115900) were up-

regulated specifically under the atoxigenic strain infection, and PR-T (Gorai.007G193600) was 

up-regulated under the toxigenic strain infection. Two PR genes (PR-4 and PR-1) were equally 

induced in seed, while PR-T (Gorai.009G194000) was down-regulated under both strains 

infection in seed. Most of these stress responsive genes have also been known to be induced 

under abiotic stress conditions. 

2.4 GO AND KEGG ENRICHMENT ANALYSIS OF DEGS 

 In this study, GO enrichment analysis of the DEGs identified the functional categories, 

such as biological process, molecular function and cellular component that were distinctly 

represented by the atoxigenic and the toxigenic strain infection in pericarp and seed tissues of 

cotton. The GO categories under biological process, such as response to stimulus (GO:0050896), 
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response to wounding (GO:0009611), response to external stimulus (GO:0009605), response to 

chemical stimulus (GO:0042221) and flavonoid biosynthesis (GO:0009813) were highly 

represented under the atoxigenic strain infection in pericarp. On the other hand, response to 

biotic stimulus (GO:0009607), response to stress (GO:0006950), regulation of defense response 

(GO:0031347), response to chitin (GO:0010200), defense response to fungus (GO:0050832) and 

signal transduction (GO:0007165) were enriched under the toxigenic strain infection in seed 

(Figure 2.6). Under molecular function category, most of the responses were highly enriched in  

 

Figure 2.6 Gene ontology enrichment analysis of DEGs in pericarp and seed tissues of cotton in 
response to infection with atoxigenic and toxigenic strains of Aspergillus flavus. The X-axis 
represents the GO categories and Y-axis represents enrichment in terms of P-value. 
 
pericarp as compared to seed. In pericarp, transcription regulator activity (GO:0030528), 

transcription factor activity (GO:0003700), transmembrane transporter activity (GO:0022857) 
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and enzyme inhibitor activity (GO:0004857) were enriched under the atoxigenic strain infection 

in comparison with the toxigenic strain infection (Figure 2.6). Peroxidase activity (GO:0004601), 

pectate lyase activity (GO:0030570), antioxidant activity (GO: 0016209) and hydrolase activity 

(GO:0004553) were enriched under the toxigenic strain infection in pericarp as compared to the 

atoxigenic strain infection (Figure 2.6). Most of the cellular components were enriched in 

pericarp as compared to seed tissue (Figure 2.6). Component of cell wall, membrane and 

vacuoles were differentially enriched under the atoxigenic and the toxigenic strain infection in 

pericarp and seed. 

 Analysis of the biochemical pathways represented by the DEGs showed that 94, 77, 59, 

and 63 KEGG pathways were represented under the atoxigenic and the toxigenic strains 

infection in pericarp and seed, respectively. Highly enriched pathways (P < 0.05) in pericarp and 

seed are shown in Figure 2.7. The phenylpropanoid pathway, which is involved in the production 

of antimicrobial phytoalexins, lignins and phenolic substances [37, 42], was enriched in the 

toxigenic strain infection in pericarp, followed by the atoxigenic infection in pericarp and seed. 

The flavonoid biosynthesis pathway was the most highly enriched under the atoxigenic strain 

infection in seed followed by pericarp. Genes in the flavonoid pathway are involved in the 

production of antifungal compounds and are associated with defense reactions [70]. The alkaloid 

biosynthesis pathway was highly enriched under both atoxigenic and toxigenic strains infection 

in pericarp as compared to seed (Figure 2.7). In tobacco plants, alkaloid biosynthesis is induced 

in response to insect damage and application of jasmonate [71]. This suggests that JA-regulated 

defense response was activated in cotton in response to A. flavus infection. Further, enrichment 

of arachidonic acid (AA) metabolism was observed under the toxigenic strain infection in seed 

followed by the atoxigenic infection in pericarp (Figure 2.7). AA acts as a signaling molecule,  
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Figure 2.7 Highly represented KEGG metabolic pathways in pericarp and seed tissues of cotton 
under Aspergillus flavus infection. The X-axis represents the enrichment in terms of P-value and 
Y-axis represents the biochemical pathways.  
 
and activates plant’s defense responses through fatty acids. AA is a potent elicitor present in the 

pathogen, which activates plant innate immunity leading to programmed cell death and defense 

responses [72]. The alpha-linolenic acid metabolism pathway was enriched in pericarp in 

comparison to seed under both atoxigenic and toxigenic strains infection (Figure 2.7). JA and its 

derivatives, which are key regulators of plant defense responses to necrotrophic pathogens, are 

synthesized from the alpha-linolenic acid pathway [73, 74]. The primary metabolic pathways, 

such as starch and sucrose metabolism and glycerolipid metabolism, were also highly enriched 

under the atoxigenic strain infection in pericarp (Figure 2.7). The up-regulation of carbohydrate, 
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amino acids and lipid metabolisms was suggested to regulate the signal transduction cascade 

during plant defense responses [75]. The biochemical pathways involved in response to the 

atoxigenic strain of A. flavus infection in pericarp and seed tissue of cotton can be manipulated 

for stress tolerance in cotton. 

 Validity of the next generation sequence data was confirmed by reverse-transcription 

PCR of 10 genes belonging to different functional categories with fold change expression of 5-

fold or above (from sequence data) under experimental conditions relative to non-inoculated 

control. The results showed significant up-regulation of their mRNA accumulation under 

infection by the atoxigenic or the toxigenic strain infection in a tissue-dependent manner  

 

 

Figure 2.8 Gel image (upper panel) showing semiquantitative RT-PCR and fold-change 
expression through quantitative RT-PCR (lower panel) of genes under infection by atoxigenic 
and toxigenic strains of Aspergillus flavus in pericarp and seed tissues of cotton 
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CHAPTER 3: DEVELOPMENT OF AN AUTOMATED RNA-SEQ DATA 
ANALYSIS PIPELINE 
 
3.1 INTRODUCTION 

 The high-throughput Next Generation Sequencing (NGS) technologies have greatly 

revolutionized research in biology and have been increasingly used in life sciences in recent 

years over traditional technologies such as microarray and EST-based sequencing [1]. The 

million to billion short sequence reads produced by NGS platforms are widely used to study the 

genome, transcriptome and epigenome of organisms. Genome-wide transcriptome sequencing 

(RNA-Seq: sequencing of RNA in the form of cDNA in a biological sample) has been widely 

used as method of choice to study RNA regulation in a biological sample. The RNA-Seq is an 

advanced technology that overcomes the limitations imposed by previous technologies such as 

microarray where prior knowledge of the organism is necessary to study gene regulation [2, 3]. 

The RNA-Seq is a high resolution technique that provides a digital measure of gene expression 

and it allows studying allele-specific expression, isoform level gene regulation and transcript 

structure, which were not possible with previous technologies [1, 2, 4, 5]. In addition, RNA-Seq 

provides an opportunity to study alternative spliced sites, and identify novel transcripts, non-

coding RNAs, fusion transcripts and single nucleotide polymorphisms [6].  

 The datasets produced from NGS platforms such as Illumina for RNA-Seq are massive 

and complex with multiple biological samples comprising a million to a billion sequence reads 

(25 to 300 bp), which corresponds to hundreds of gigabytes of data. The analysis of RNA-Seq 

data involves various steps (Figure 3.1) and intensive computational processing, which further 

complicates the tasks of handling, retrieving and scientific and/or biological interpretation of the 

analyzed data. A typical workflow of RNA-Seq data analysis pipeline is depicted in Figure 3.1. 

The analysis of RNA-Seq data is not straightforward and requires skilled bioinformaticists. 
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Typically, in RNA-Seq data analysis, the sequence reads generated from NGS platforms are 

filtered to get high quality sequence reads and subsequently mapped to reference genome or 

transcriptome of the organism. The task of mapping involves identification of the locations on 

the genome where sequence reads are identical with genomic sequences. The high quality 

filtered reads and mapped sequence data are then used for their assembly into transcripts, and 

differential gene expression analysis and variant discovery.  

 

Figure 3.1 Typical overview of workflow of Standalone RNA-Seq analysis pipeline (SRAP) 

  As the sequencing output from NGS platforms and biological samples under study are 

increasing continuously [7, 8], it is highly necessary to develop automated computational tools 
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that can analyze massive amounts of RNA-Seq data with high accuracy, speed, flexibility and 

minimum manual intervention. Several tools are available to analyze RNA-Seq data [9-14], but 

those tools have limited capability and focus on a single point of analysis, such as assembly, 

splice sites, quantification or variant discovery. Further, the implementation of an automated 

software pipeline, which can process different steps in RNA-Seq workflow, is more difficult than 

processing single steps each time because of the parameters set up for each step, mathematical 

and statistical assumptions, and the intermediate files generated, which generally have different 

formats. Manual processing of each step of RNA-Seq is time-consuming, and requires additional 

effort and computational skill for processing output data from the previous step to the next step 

of downstream analysis. The various steps involved in the RNA-Seq data analysis are dependent 

on each other and therefore thorough knowledge is required for processing and analyzing 

massive RNA-Seq datasets. At present, no automated RNA-Seq data analysis pipeline is 

available that covers all the steps in RNA-Seq data analysis and provides the flexibility in the 

analysis parameters and wide range of tools. To overcome these limitations in RNA-Seq data 

analysis, an automated RNA-Seq data analysis pipeline was developed that can analyze different 

modules as a comprehensive automated flow or individual modules at a time with the parallel 

computing approach. The present pipeline integrates in-house developed algorithms along with 

open-source tools to provide users with broader option and flexibility to perform comprehensive 

RNA-Seq data analysis. The automated pipeline was tested on single and paired end sequence 

reads obtained from Illumina NGS platforms. The analysis pipeline produces the statistical 

summary and the visualization of the output dataset for each module. The proposed software 

SRAP (Standalone RNA-Seq Analysis Pipeline) is a comprehensive RNA-Seq data analysis 
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pipeline and it allows the life science researchers with minimal computational expertise to 

perform daunting RNA-Seq data analysis task in a single platform. 

3.2 IMPLEMENTATION 

 SRAP is a standalone software pipeline developed combining in-house coded scripts with 

open source bioinformatics tools using Python, matplotlib and Bash to analyze massive data 

from RNA-Seq and other NGS applications in an efficient manner. The software pipeline is user-

friendly without requiring extensive computational expertise. SRAP is implemented with the 

parallel programming approach to effectively analyze huge datasets generated from RNA-Seq 

experiments with multiple numbers of samples. SRAP can run on Linux/Unix based personal 

computers, workstations and high performance computers (HPC). It can also run on Windows 

based system using Virtual Box software.  

 The python packages, such as numpy, pysam, multiprocessing, matplotlib, itertools, 

datetime, math, shutil, subprocess, termcolor, glob, gzip and collections, need to be pre-installed 

on the given computational environment to run SRAP. If these packages are not installed, the 

installation module of SRAP will prompt and guide the users for installing all necessary 

packages. SRAP may still work in the absence of the required packages, but the performance 

will be slow, limited, and may result in errors. For running SRAP there is no minimum 

requirement of the physical memory, and it will run efficiently on all modest computers with 

memory ideally ≥2GB, depending on the size of datasets. The README file associated with 

SRAP provides complete details about dependencies, other third party tools and different modes 

to run the software pipeline. 

 SRAP comprises of different modules required for the analysis of RNA-Seq data and data 

from other NGS applications, including filtering of raw reads, mapping the reads to reference 
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genome/transcriptome sequences, assembly of cleaned sequences to form cotings, differential 

gene expression (DGE) analysis, variant discovery (single nucleotide polymorphism – SNP, 

insertion/deletion – indel) and other common NGS utilities. A complete workflow of SRAP to 

run as a batch and individual mode is shown in Figure 3.2.  

 

 

Figure 3.2 A schematic representation of the workflow of standalone RNA-Seq analysis pipeline 

(SRAP) 

 At this point, SRAP does not offer web interface, but it is under development. This 

pipeline implemented with shared parallel computing and distributed computing will be available 

soon. SRAP supports single (short reads from one end of RNA fragments) as well as paired end 

(short reads from both ends of RNA fragments) data. SRAP is unique in its ability to analyze the 
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data with different modes (Figure 3.2). Each mode has unique path, which performs specific task 

in a parallel fashion. SRAP covers a wide range of applications for RNA-Seq data analysis and 

their parameters can be adjusted according to the user requirement. 

3.3 RESULTS AND DISCUSSION 

 SRAP is a comprehensive automated standalone software pipeline designed for RNA-Seq 

data analysis, which comprises of four different modes to run the pipeline (Figure 3.1) for batch 

and individual NGS-produced single and paired end sequence reads files. SRAP is comprised of 

high level major modules for RNA-Seq data analysis, including sequence quality filtering, 

reference sequence mapping, sequence transcriptome assembly (Phase 1), differential gene 

expression analysis (Phase 2) and variant (SNP/Indel) discovery (Phase 3). Along with these five 

major modules, SRAP also comprises of low-level modules for different NGS applications, such 

as quality format detection, inter-conversion of quality formats, BAM and FASTA file utilities, 

and sequence coverage detection.  The high-level modules require robust computation resources, 

which use high memory and employs multiple processors to perform data-intensive tasks, and 

lacks in low-level modules. 

 SRAP can be executed as an automated pipeline through different phases for complete 

analysis or through individual modules to carry out a specific task (Table 3.1). The automated 

pipeline requires a configuration file where parameters for each module are mentioned and can 

be customized based on the user’s requirements. The configuration file is optional for an 

individual module (Phase 4) where parameters can be customized on the command line. The 

default parameters, which are used in the pipeline, are well optimized and suited for most of the 

analysis tasks. The configuration file can be constructed and edited by the user to modify, add 

and/or remove analysis modules since the input and output from each module is compatible with 
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the next module. SRAP analyzes the RNA-Seq data through different phases (Table 3.1) based 

on the number of input (sample) files and data analysis mode (Figure 3.1). The software pipeline 

supports data in various formats, such as the FASTQ format generated by most sequencing 

platforms, compressed FASTQ file format  (gz), FASTA format and aligned SAM/BAM format 

[15, 16]. Each module in the pipeline produces an output report file with the summary of the data 

and visualization.  

Table 3.1 Various phases of SRAP for performing different RNA-Seq data analysis tasks 
 
Phases Tasks Configuration file Description 

Phase 1 Filter, map and 
assemble 

fil_map_assembly.conf Filtering of sequence reads, 
mapping to reference and 
assembling of sequence reads to 
construct contigs 

Phase 2 Analyze gene 
expression 

gene_exp.conf Mapping of the sequence reads to 
reference transcriptome, differential 
gene expression 

Phase 3 Discover variant  Optional Identifying SNPs and Indels 

Phase 4 Individual tasks Optional Performing individual module 
analysis 

 

 In filter, map and assemble phase, the single and/or multiple sample sequence reads files 

are analyzed in filtering, sequence assembly and mapping modules. In the filtering step, the 

developed standalone filtering module effectively checks the sequence reads for various quality 

parameters, including adapter/primer contamination, low quality bases based on Phred score 

(<20) and content of uncalled bases (N). This module filters out or trims low quality sequence 

reads and keep the high quality sequence reads, which are utilized by different modules during 

the entire RNA-Seq data analysis steps. The sequence filtering was performed on the NIP (non-

inoculated pericarp) sample from cotton RNA-Seq data [17] and the results are shown in Figure 

3.3 and 3.4. The filtered high quality sequence data, which is indicated by green line (Figure 
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3.4A), has the Phred quality score more than 20. In the mapping module, the sequence reads are 

mapped to the reference genome or transcriptome to know the origin of sequenced reads on the 

genome. The in house-developed python script along with open-source tools such as Bowtie2 

[9], TopHat2 [10] and BWA [12] was deployed in the pipeline to cover a broader range of 

sequencing analysis options for users. The reference genome or transcriptome sequence must be 

provided by the user for mapping and/or assembly modules. The reference species sequences can 

be downloaded from the respective species sequence database. For example, the Rice genome 

sequence and annotation can be downloaded from Rice Genome Annotation Project database 

[18] or phytozome (www.phytozome.net).  The sequence reads mapping data obtained by 

aligning the high quality RNA-Seq reads from a NIP sample to reference cotton G. raimondii 

genome is shown in the Table 3.2. The sequence reads obtained from NGS platforms do not 

represent full length genes, therefore construction of full length genes by assembly of these 

sequence reads is important to study transcribed genes and their structure.  The high quality 

mapped sequence reads obtained from filtering and mapping modules respectively are retrieved 

for transcript construction. The in house-developed python script along with open-source tools 

such as Trinity [11], Cufflinks [13] and StringTie [14] was deployed in the pipeline to cover a 

broader range of sequencing analysis options for users. Trinity [11] was integrated into the 

pipeline for genome-guided and de-novo (without reference genome) assembly of transcripts to 

form full/partial length genes along with their transcript isoforms. With the de novo assembly 

method, novel transcripts can be determined, but it is less accurate as compared to genome-

guided assembly. The other genome guided and de novo assembly tools such as Cufflinks [13] 

and StringTie [14] were also included in SRAP to provide flexibility in the analysis to the users. 

The StringTie assembler combines both genome-guided and de novo assembly approaches and 
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identifies 36-60% transcripts more accurately than cufflinks [14]. In contrast to Cufflinks where 

identification of transcripts and their quantification are performed in different steps, the 

StringTie assembles and quantifies the expression levels of transcripts simultaneously [14]. This 

phase also provides the opportunity for quantifying the mRNA levels of the expressed genes 

using the parameters provided in the configuration file (Table 3.1). Along with high-throughput 

Cufflinks and StringTie tools for transcript assembly and quantification, SRAP is also integrated 

with the htseq-count [19] for quantifying the mapped sequence reads in absolute values (raw 

counts) instead of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) count 

produced by Cufflinks and StringTie [13, 14]. 

 

Figure 3.3 A screenshot of the filtering statistics output for the non-inoculated pericarp (NIP) 
library of cotton RNA-Seq data (Ref. 17) 
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Table 3.2 Sequence reads alignment statistics. The sequence reads from RNA-Seq dataset of 
non-inoculated pericarp (NIP) library of cotton (Gossypium hirsutum) was aligned to the G. 
raimondii reference genome 
 
Parameters NIP library 

Total sequence reads 158,757,887 

Sequence reads aligned 102,190,094 (64.36%) 
Sequence reads aligned to multiple locationsa 6,312,694 (3.97%) 
Sequence reads aligned to a single locationb 95,877,400 (60.39%) 
a: Same sequence reads from the data mapped to multiple locations on the genome sequence 
b: Same sequence reads from the data mapped to a single location on the genome sequence 
 
 

 

Figure 3.4 Filtering analysis of the RNA-Seq reads from cotton non-inoculated pericarp NIP 
library (Ref. 17). A) The comparison of filtered and unfiltered reads (raw sequence reads). The 
filtered sequence reads (green line) has the Phred quality score >20, whereas the unfiltered 
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sequence reads have the Phred quality score <20. The x-axis and y-axis represent Phred quality 
score and sequence read count, respectively.  B) The distribution of nucleotide bases (A, T, G, 
and C) in filtered and unfiltered sequence reads. A large number of low quality bases has been 
removed from the unfiltered sequence reads. C) The Phred quality score distribution of unfiltered 
sequence reads. D) The GC content distribution of filtered and unfiltered reads. The x-axis and 
y-axis represent % GC content and sequence read count, respectively. 
  

 In Phase 2, along with filtering, mapping and assembly, differential gene expression 

analysis is performed to measure the differences in the mRNA abundance of the genes between 

the control and an experimental condition (untreated vs treated, unstressed vs stressed, etc.) 

based on the counts obtained from the transcript quantification module. The Figure 3.5 

represents the volcano plot obtained from SRAP, which compares the expression of the genes 

between control (NIP-noninoculated pericarp) and experimental (TP-pericarp inoculated with 

toxigenic strain of A. flavus) tissues of cotton [17]. In the variant discovery phase (Phase 3), after 

the completion of the filtering and mapping modules, the SNPs and Indels in samples are 

identified in comparison with the reference sequences, using default parameters (Figure 3.6). The 

users can customize the parameters as per requirement such as reference sequences, number of 

processors, and algorithm by editing in the configuration file for each phase of analysis. The 

configuration file also allows the users to change the tools of their choice from the available 

options.  In the gene expression analysis with RNA-Seq experiments, the accuracy of the 

differential gene expression depends on the resolution of expression at gene and isoform level 

from the counts obtained from mapping data and sources of variability across the replicates. To 

address the issues that complicate the transcript level expression and to reduce false positive 

rates, Cuffdiff 2 [20] methodology was adopted for performing differential gene and transcript 

expression. Though replicates are necessary to reduce the rate of false positive detection in the 

differentially expressed transcripts, Cuffdiff 2 has a high precision in detecting the differentially 
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expressed transcripts regardless of the number of replicates [20]. In the case of absence of 

replicates in the experiment, Cuffdiff 2 counts biological samples in the control and experimental 

condition as replicates of each other and measures the variance [20]. 

 

Figure 3.5 Differential gene expression analysis in the cotton experimental RNA-Seq dataset 
(pericarp inoculated with toxigenic Aspergillus flavus, TP) in comparison to the control (non-
inoculated pericarp, NIP). Green and red dots represent the up-regulated genes (log2 fold change 
³ 2, P<0.05) and down-regulated genes (log2 fold change £ -2, P<0.05), respectively 
 
 Along with the different phases of SRAP, which runs high-level modules, the software 

pipeline also supports common utilities that are essential in the NGS data analysis. The common 

NGS utilities include format conversion (FASTQ to FASTA, SAM to BAM, BAM to SAM, 

TAB to FASTA and FASTA to TAB), detection of FASTQ quality variants, sequence reads 
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quality variants interconversion, finding the length of sequence reads, sequence coverage or 

depth analysis and merging bam files. These common NGS utilities are low-level modules and 

do not require intense computation unlike the high-level modules. The low-level modules are 

executed on command lines without a configuration file. 

 

Figure 3.6 A screenshot of the variant call format (VCF) file depicting the SNPs from Rice 
RNA-Seq dataset (Unpublished) 

 
 A user can select the automated pipeline per se or its individual modules to execute the 

relevant analysis. While the execution of the software pipeline and/or individual modules is 

ongoing, the users can monitor and track the progress of the analysis with verbose output on the 

screen. The output of the analysis including the graphical and statistical summary report for all 

the modules will be in the same directory from where SRAP is executed. 
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3.4 Availability and Requirements 

 SRAP software pipeline is a standalone application and can be downloaded from 

https://dl.dropboxusercontent.com/u/57407558/RSP.zip. The requirements, installation and usage 

of SRAP are described in the README file in the base directory of SRAP. SRAP is in zip 

compressed format and need to be extracted before installation. The installation module of SRAP 

will guide the users for pre-requisites and installation.  
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CHAPTER 4: CONCLUSIONS AND FUTURE PERSPECTIVES 
 
4.1 CONCLUSIONS 
 

• Understanding the expression profile of genes, especially in response to the atoxigenic 

strain infection, could provide clues to the molecular mechanisms of resistance, in 

addition to the physical barriers, conferred by the atoxigenic strains against the toxigenic 

strain.   

• Comparative analysis of the genes involved in specific gene ontology categories of the 

atoxigenic vis-à-vis the toxigenic strain infection will lead to the identification of 

promising candidates for genetic manipulation of cotton toward development of 

varieties resistant to A. flavus. For example, genes with transcriptional regulation 

involved in response to stress stimulus, involved in flavonoid biosynthesis and lipid 

biding in extracellular regions (Fig 6) could be considered promising candidates for 

further validation through functional characterization. 

• The sequencing reads and the assembled transcripts that were developed and utilized in 

the present study will enrich the cotton genomic resources in public databases. The 

sequencing reads data is publicly available and can be downloaded from the NCBI SRA 

database (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA275482). 

• The automated SRAP (Standalone RNA-Seq analysis pipeline) developed through this 

study will provide a powerful resource for the life scientists to analyze massive RNA-

Seq data in performing a complete analysis tasks, including filtering, mapping, sequence 

assembly, gene expression analysis and variant discovery. 

• The implementation of SRAP with parallel computing approach, its flexibility in the 

analysis, ability to handle multiple biological samples, ability to analyze any genome, 
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comprehensive output report with visualization from the modules and extensive 

statistical analysis make SRAP as a powerful tool for analysis of RNA-Seq data. 

• The output data obtained from the RNA-Seq pipeline can be utilized by other 

bioinformatics tools for downstream analysis, such as gene ontology and biological 

pathway enrichment analysis of differentially expressed genes. 

4.2 FUTURE PERSPECTIVES  

• The comparative analysis of the cotton transcriptome with available corn and peanut 

transcriptome, induced under A. flavus infection, will provide a better understanding of 

the genetic and biochemical basis of A. flavus-cotton interaction and also identify 

conserved orthologous genes in cotton for their functional translation in conferring 

resistance to A. flavus through genetic manipulation of cotton. 

• SRAP offers a unique platform for complete RNA-Seq data analysis. Other downstream 

applications, such as GO and pathway enrichment analysis for differentially expressed 

genes, would make the pipeline more attractive and competitive. 

• As SRAP is implemented with shared parallel computing approach, the implementation 

of the pipeline with distributed computing approach will enhance by multifold the speed 

of analysis.  

• The availability of the pipeline on web interface and as menu driven on Windows without 

command line will make it convenient for users especially those with no working 

knowledge of Linux OS. 
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APPENDIX I: DETAILS OF DIFFERENTIALLY EXPRESSED GENES 
UNDER INFECTION BY ATOXIGENIC AND TOXIGENIC STRAINS 
OF ASPERGILLUS FLAVUS IN SEED AND PERICARP TISSUES OF COTTON 

Description: 

Sheet 1, Nomenclature of genes and primer sequences used for expression analysis through RT-
PCR 
Sheet 2, All differentially expressed genes discussed in the manuscript and used for heatmap 
in Figure 2.2 
Sheet 3, Genes from different classes used in the generation of heatmaps for Figure 
2.3 and Figure 2.4 

File: 

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0138025.
s002  
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APPENDIX II: PERMISSION TO REPRINT PUBLISHED MANUSCRIPT 
(BEDRE ET AL., 2015) IN CHAPTER 2 
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Bedre R, Rajasekaran K, Mangu VR, Timm LES, Bhatnagar D, Baisakh N. Genome-Wide 
Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene 
Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus. Plos One. 2015;10(9). 
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