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Abstract 

Cow-calf operations in the southeastern United States (U.S.) are based on warm-season 

perennial grass pastures. Stored forage feeding during the non-grazing season constitutes more 

than half of a cattle operation’s annual expenses. Cool-season annuals can extend the grazing 

season, thereby reducing stored forage feeding. A two-year field trial was conducted to 

determine the forage potential of a variety of crops commonly used as winter cover crops in the 

southeastern U.S. The ten cover crop treatments included seven monocultures (annual ryegrass 

[Lolium multiflorum], rye [Secale cereal], oats [Avena sativa], triticale [Triticale hexaploide], 

tillage radish [Raphanus sativus], hairy vetch [Vicia villosa], crimson clover [Trifolium 

incarnatum]) and three mixtures. Harvests were made in late winter and early spring of each 

year. Spring harvest yielded more than twice as much dry matter (DM) as winter harvest across 

all treatments. Total dry matter yield per treatment ranged from 2,066 to 3,732 kg ha-1. Neutral 

and acid detergent fiber concentrations increased about 10% from winter to spring. Crude protein 

decreased about 8% between harvests, however, overall crude protein concentrations were high 

enough to meet the nutrient requirements of lactating cows and growing calves, ranging from 17 

to 25% in winter, and 11 to 22% in spring. All treatments proved to be highly digestible 

according to in vitro true digestibility analysis, ranging from 72-90% digestibility. High nutritive 

value across all treatments indicates feasible usage as winter forages and potential reduction of 

cattle production cost. Multispecies forage mixtures produced yields similar to monocultures 

with less risk from environmental impact and potential for a more evenly distributed yield.
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Introduction 
 

The majority (nearly 80%) of beef production in the southeastern U.S. comes from 

pasture based cow-calf operations (McBride and Mathews, 2011). These operations are mostly 

(78%) small-scale and run as part-time supplements to other enterprises, or as a retirement 

lifestyle (Short, 2001). The United States Department of Agriculture (USDA) considers a cow-

calf operation with fewer than 100 head to be a small-scale operation (USDA-APHIS, 2011). 

These small-scale farms comprise about 90% of all beef cattle operations in the U.S. (NASS, 

2012). This puts Louisiana right on par with the rest of the nation, having 11,237 of 12,355 farms 

under 100 head (Sheffield et al., 2012). Small-scale cow-calf operations are often associated with 

field/row crop production, and therefore can potentially benefit from grazing cover crops planted 

in rotation with the main cash crops. 

Benefits of Cover Crops 

 Encouraging field/row crop producers to incorporate cover crops has been a goal of the 

Natural Resources Conservation Service (NRCS) since the 1930’s (then, the Soil Conservation 

Service or SCS). The initial use of cover crops was to prevent erosion of the nation’s croplands, 

but over the years new research has revealed many additional benefits of cover cropping such as 

increasing soil organic matter, providing nitrogen fixed by rhizobial nodulation on legume roots, 

scavenging leachable nutrients, suppressing weeds, reducing soil compaction, promoting a 

healthy soil microbial ecology, offering habitat for wildlife and other beneficial organisms, 

conserving water, and providing forage for livestock (Havlin et al. 2014; Cherr et al. 2006; 

Dabney et al., 2001; Heath et al., 1985). Even with all these environmental benefits that come 

with cover cropping, economics is still the major concern for producers (Snapp et al., 2005).  
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Economics of Winter Feeding 

 For the beef cattle owner, feed cost is the largest operating expense, with winter hay 

feeding constituting the largest portion of that expense. On average, feed cost is around 63% of a 

producer’s operating budget (Miller et al., 2001). Therefore, reducing this cost is perhaps the 

most potent strategy to raise overall profitability. The most practical method to reduce winter 

feeding is to allow cattle to graze for as long as possible. The main drawback of this strategy is 

the time management involved, but if a producer operates a management-intensive operation 

within a suitable climate zone, studies show that extending the grazing season can be 

advantageous to their bottom line. Utley and McCormick (1978) demonstrated a boost in cow-

calf profitability in Georgia by reducing conventional hay feeding with a system of overseeding 

annual ryegrass onto bermudagrass (Cynodon dactylon) pastures. Bagley et al. (1984) credited 

the growing popularity of using cool-season annuals for beef cattle grazing to highly nutritional 

quality and high potential daily gains, and found, in Louisiana, that fattening calves by winter 

grazing annuals, such as rye and ryegrass/clover mixtures, to be an economically sound 

alternative to selling calves at weaning. In 1990, Coombs et al. had similar results, showing the 

possibility of economically finishing cattle on forages during certain times of the year, especially 

those slaughtered in March through May that were fattened on cool-season annuals.  

Grazing vs. Hay Feeding 

In almost all cases, grazing is superior to stored food, not only economically speaking, 

but also nutritionally and environmentally (Ball et al., 2008). Mechanically harvested hay is 

wasteful, especially in relation to a cow’s innate ability to harvest forage on its own with 

negligible nutritive or yield losses. Hay yield loss starts at cutting with leaf shatter (2%), and 

successive losses with raking (5%), curing (4-5%), and baling (4-6%), meaning even in fast 
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drying, rain free harvesting conditions there can be up to an 18% hay loss (Rotz and Muck, 

1994). Hay quality loss, in terms of total digestible nutrients (TDN), also occurs during these 

processes: cutting (0-1.4%), raking (0.6-1.2%), curing (1.5-1.8%), and baling (1-4%), again, 

meaning even in ideal harvesting conditions there can be more than an 8% loss in TDN (Rotz 

and Muck, 1994). Leaching of nutrients from hay continues during the curing process and while 

the hay is stored (Perry, 1980). Proper storage of hay requires laborious transportation and 

expensive sheltered facilities. Hay is lost during the transportation to feeding sites, and during 

feeding from trampling, refusal, and spillage. Moreover, feeding hay creates a centralized 

location for cattle to congregate which can result in ruts, soil compaction, and a concentration of 

manure around the feeding area (Flores and Tracy, 2012). Up to 60% of the hay fed can be 

wasted instead of consumed (Sheffield et al., 2012).  

In contrast to hay feeding, grazing allows cattle to benefit from the full nutritional value 

of forages while bearing all the transportation work for the producer, eliminates the need for 

large storage facilities, and more evenly distributes manure over the entire pasture (White et al., 

2001). Harvested hay represents nutrients permanently removed from the soil system of a field, 

whereas grazing promotes nutrient cycling and a redistribution of most ingested nutrients except 

those which the plants obtain from the atmosphere, i.e. carbon, hydrogen, and oxygen (Haynes 

and Williams, 1993). Even with all shortcomings considered, hay is still the typical feedstock 

utilized during winter because of its wide availability and convenient employment.  

Year-round Grazing 

           In suitable climates, where extending the grazing season is a viable option, planting cool-

season annuals to reduce hay feeding has been a proven method used in the U.S. since at least as 

early as the 1900’s (Bagley et al., 1984). In Louisiana, cow-calf operations are based on 
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bermudagrass or bahiagrass (Paspalum notatum) permanent pastures. Both species are warm-

season perennial grasses that produce the majority of their biomass during early summer months. 

They quickly lose forage quality with the heat and drought stresses of late summer and autumn, 

and are dormant from approximately November to April (Henderson and Robinson, 1982). This 

leaves a 5 to 6-month period for cool-season growth or hay feeding in the southeast (Hoveland, 

1992). With Louisiana’s mild winters, it is possible to have nearly year-round grazing, if proper 

management practices are implemented.  

Over the past 60 years, numerous studies have been performed to optimize year-round 

grazing practices for cow-calf operations in the southern U.S., prompted mostly by 

improvements made to the seed drill (Dudley and Wise, 1953). In 1978, Hoveland et al. 

prolonged the grazing season for 3 extra months and nearly doubled calf gain per ha by 

overseeding bermudagrass pastures with rye and clovers in Alabama. In another study, Hill et al. 

(1985) reduced hay consumption (21% on bahiagrass pastures and 28% on bermudagrass 

pastures) by pasturing calves on sod-seeded annual ryegrass in Georgia. This reduction, coupled 

with higher stocking rates, offset the extra seed and fertilizer expenses.  In Florida, an eight-year 

cow-calf study on bahiagrass pastures showed that sod-seeding rye or wheat (Triticum aestivum) 

with crimson clover and arrowleaf clover (Trifolium vesiculosum) decreased hay consumption by 

30%, increased calf weaning weight, and increased cow weight (DeRouen et al., 1991). Gunter et 

al. (2002) conducted a limit-grazing study in Arkansas using sod-seeded wheat, rye, and annual 

ryegrass mixtures to successfully reduce hay consumption by 12-14%. In Louisiana, Scaglia et 

al. (2014) were able to forage-finish steers on a bermudagrass and annual ryegrass system with 

only 55 days of hay feeding while maintaining an annual average daily gain of 0.67 kg and 

garnering over $700 per steer return on expenses.  
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 While sod-seeded cool-season annuals have had favorable outcomes and have proven to 

be economically viable, there are still some concerns as to establishment success and timing. Han 

et al. (2012) found there to be a general unreliability with sod-seeding clovers in Louisiana 

bermudagrass pastures; although when established successfully, crimson clover increased 

subsequent bermudagrass dry matter yield to the level of plots fertilized with 112 and 225 kg ha-1 

nitrogen. Other studies have shown similar results of varying establishment success (Bertrand 

and Dunavin, 1973; Burris et al., 1979; Faé et al., 2009). Establishment timing is important when 

trying to extend the grazing season, as is the concern of sod-seeded cool-season annuals 

inhibiting the growth of the perennial warm-season crops if left on the field.  

Conventional tillage methods can lead to earlier establishment, thereby earlier grazing 

than sod-seeding, which is crucial to successfully reducing hay feeding (Coffey et al., 2002). 

With conventional seedbed preparation, there is also the potential to maximize forage biomass 

accumulation, as well as forage nutritive quality. Therefore, while costlier, planting cool-season 

annuals in prepared seedbeds may be justified, especially on croplands where growing animals 

could benefit most from grazing highly nutritious forages (Ball et al, 2015). A Louisiana study 

(Bagley et al., 1987) showed the effectiveness of incorporating a portion of cultivated land (17%) 

with warm- and cool-season annuals to increase net returns of a cow-calf operation. A Georgia 

study (Utley et al., 1976) found that cool-season annuals planted in prepared seedbeds offered 

twice as many grazing days per ha as did sod-seeded pastures. Bagley et al. (1990) reported that, 

while cool-season annuals planted on prepared seedbeds in Louisiana had the highest costs (per 

ha grazing days) when compared with sod-seeded annuals and perennial pastures, these higher 

costs were offset by the higher quality forage resulting in greater daily gains (at least 0.9 kg d-1).  
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Animal Performance 

Reducing winter hay feeding can only be effective if animal performance is maintained 

or improved when using the supplement. Therefore, most studies of extending the grazing season 

have been systems trials in which direct measurements of animal performance were taken, i.e. 

daily gain, weaning rate, calving interval, etc. from herds fed different feedstock and/or under 

different grazing management. For example, Bertrand and Dunavin (1973) conducted a study in 

Florida, comparing sod-seeded small grain monocultures (wheat, oats, triticale, and rye), 

ryegrass, and clover mixtures on beef calf daily weight gain. They found that even though forage 

biomass production varied from year to year, calf daily gain was nearly 1 kg across all 

treatments. When good stands of cool-season annuals are established, body weight gains of 

calves grazing cool-season annuals can well exceed those fed hay. Even in a year of poor crop 

growth, grazing calves can still gain an equal amount of body weight as those fed hay (Coffey et 

al., 2002). It is, however, necessary to use appropriate forages for a region, as Allen et al. (2000) 

demonstrated the importance of site-specific optimization in grazing systems. The tested system 

in Virginia showed that rye did not yield the winter feed requirements, while other studies 

(Bertrand and Dunavin, 1973; Bagley et al., 1984; Edmisten et al., 1998) demonstrated rye’s 

ability to provide sufficient winter forage to supplement hay feeding.  

Animal performance can be influenced by weather conditions affecting the growth of 

certain forage species (Allen et al., 1992), and just as forage stands vary from year to year, the 

complexities with animal trials are compounded by the necessity to adjust for grazing intensity, 

stocking rate, cattle breed, etc. (Blaser et al., 1986). A cow-calf systems study in Louisiana 

demonstrated the inability of 0.4 ha of land to maintain a cow-calf unit year-round (Coombs et 

al., 1983). In this study, bermudagrass pastures were sod-seeded with clovers, ryegrass, or a 
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mixture of the two. None of the systems proved to be profitable. Bransby (1989) demonstrated 

that the dynamics of grazing intensity can drastically affect the results of a grazing trial.   

 Nutrient requirements of beef cattle are affected by many factors, including age, season, 

and environmental stresses. The most physically demanding period for beef cows is during 

lactation, when nutrient requirements can be more than 20% higher than for non-lactating cows 

(NRC, 2000). To maximize efficiency and profits, a cow-calf enterprise should schedule a 

calving season rather than have year-round calving (Gadberry et al., 2016). A herd that is on an 

autumn calving schedule can potentially benefit from reduced environmental stresses and the 

nutritive boost from grazing cool-season annuals which may also impact future productivity 

(Moore et al., 2009). The goal of any forage program should be to align the energy and nutrient 

requirements of the herd with the quality of usable forages. This means, not only knowing the 

nutritional demands of cattle, but also being able to predict the nutritive value of forages that will 

become available.  

Forage Nutritive Value 

Evaluation of forage nutritive value pertains to the relationship between laboratory 

analyses of forage composition and their estimations of animal performance based on known 

correlations (Allen et al., 2011). Animal performance is the definitive valuation of a forage, 

however, feeding trials are often laborious, time consuming, and costly. Thus, more practical 

procedures are used to determine forage composition so that animal performance can be 

predicted (Perry, 1984). These procedures involve gravimetrically quantitative, wet-chemistry 

analyses designed to estimate digestibility, potential animal intake, and metabolizable energy of 

a forage as related to the composite makeup of the plant cells (Van Soest, 1994).  
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Cells of forage biomass can be divided into two general parts: cellular contents and cell 

walls. Cell contents, consisting mostly of lipids, protein, soluble carbohydrates, and organic 

acids, are generally available to ruminant animals (Perry, 1980). Cell walls, on the other hand, 

are composed mostly of partially/non-digestible structural carbohydrates: cellulose, 

hemicellulose, and lignin (Ball et al., 2001). Cellulose, the most abundant carbohydrate, is the 

primary component of cell walls that can be hydrolyzed by ruminants for energy (Van Soest, 

1994). Hemicellulose is a polysaccharide that binds to cellulose within the primary cell wall 

(Gibson, 2012), and is nearly 50% digestible by ruminants (Hespell, 1988). Lignin is an 

indigestible structural substance with no nutritive value. The ratio of cell wall components is a 

major contributing factor to forage nutritive value, as they constitute the portion of fermentable 

carbohydrates that are necessary to maintain a healthy rumen (Perry et al., 1999). These 

proportions are highly variable, depending on plant species and plant maturity (Van Soest, 1967).  

Many factors contribute to varying forage quality, including species, phenotypic traits, 

soil fertility, and environmental conditions; however, the generalized hierarchy of forage quality 

is: young > mature, fresh > stored, annual > perennial, cool-season > warm-season, legumes > 

grasses, and leaf > stem (Ball et al, 2015). The most important factor influencing the forage 

quality of a species is the maturity of the plant, meaning the developmental growth stage, not 

necessarily the age of the plant nor the date of harvest. The general developmental stages of 

plants include vegetative, boot, flowering, and seed production (Van Soest, 1994). Plants are at 

their peak digestibility during the vegetative stage when meristematic plant cells are flush with 

highly digestible soluble carbohydrates (Edmisten et al., 1998). Then, as the plant matures past 

the boot stage, forage quality decreases. Holloway et al. (1979) showed that both, dams and their 

weaning calves, gained 18 kg more bodyweight (at 240-day weaning) when grazing younger, 
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higher quality pastures (tall fescue [Festuca arundinacea]-legume) than those on more mature, 

lower quality pastures. The difference between the pastures in this study was that one was 

clipped regularly to maintain a vegetative state while the other was allowed to mature.  

The time it takes for a plant to mature can be influenced by many factors, including 

species, cultivar, harvest dates, and environment (Helsel and Thomas, 1987). As the plant 

matures it accumulates biomass, therefore a tradeoff between a smaller amount of young, higher 

quality biomass, and a greater amount of mature, lower quality biomass should be accounted for 

in any grazing program (Blaser et al., 1986). Careful management practices are necessary to 

maximize pasture use efficiency by balancing forage yield and forage quality. 

As plants mature, there are multiple causes for decreasing digestibility, but is mostly 

affected by the chemical composition of the cell wall. Development of secondary cell walls 

contributes to rumen microbial degradation resistance. Cell walls are composed of structural 

carbohydrates that are necessary to lend rigidity and protection to the growing plant (Taiz et al., 

2015). This process involves the lignification of both primary and secondary cell walls. Lignin is 

both an almost completely indigestible substance, and also a hindrance to the microbial 

degradation of cellulose, hemicellulose, and other polysaccharides to which it is attached (Moore 

and Jung, 2001). Consequently, an increase in plant lignin necessarily results in a decrease in 

total ruminant digestibility. Also, no amount of lignin is shown to contribute to ruminant 

products such as milk or meat (Minson, 1990). The steady decrease in plant digestibility 

corresponds with the plant’s leaf to stem ratio decreasing as it reaches higher levels of maturity. 

Stems, generally but not always, contain a greater concentration of lignin-filled xylem tissue than 

leaves, making them more resistant to chemical breakdown (Jung, 2012). Also, ruminants have 

more difficulty chewing stems, resulting in larger fragments that are more difficult to physically 
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break down (Minson, 1990). Then, with the onset of seed development, sugars and starches are 

translocated to, and concentrated in the seed heads, further reducing the overall digestibility of 

the plant’s leaves and stems (Taiz et al., 2015).  

Forage Nutritive Value Analysis 

Because of the intricacies of plant cellular structure, multiple chemical analyses are 

necessary to determine the constitution of a forage, and thereby obtain a somewhat standardized 

prediction of animal performance (Van Soest, 1967). The first step in chemical analysis is the 

neutral-detergent fiber (NDF) procedure which uses a boiling neutral-detergent solution (pH=7) 

and a heat stable α-amylase rinse to solubilize cell contents (Robertson and Van Soest, 1981). 

The soluble cellular contents, or neutral detergent solubles (NDS), are stripped from the cell, and 

the remainder constitutes the approximate non-readily available cell wall portion that relies on 

the symbiotic microbial fermentation within the rumen before it can be digested by the animal 

(Goering and Van Soest, 1970). This fibrous mass accumulates in the rumen causing the animal 

to feel physically full, resulting in lower dry matter intake (DMI). Thus, because NDF is 

negatively correlated with dry matter digestibility, it has a strong correlation with DMI (Lalman, 

2004). A higher NDF concentration results in a smaller proportion of nutritious cell content and 

larger proportion of partially/non-digestible fiber; therefore, as NDF increases, digestibility 

decreases, digestion slows, passage through the animal slows, and DMI decreases (Rohweder et 

al., 1978). Dry matter intake is one of the most important indicators of potential animal 

performance, because the amount an animal eats is highly correlated to body weight gain, and 

ultimately is the primary limiting factor of ruminant production (Lippke, 1980). However, NDF 

is only an estimation of intake because of factors such as forage palatability and animal 

preference that vary across species (Abrams et al., 1987; Van Soest, 1994).  
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Acid-detergent fiber (ADF), typically used to estimate the digestible energy of a forage, 

is determined by boiling a forage sample in a 1.0 normality sulfuric acid-detergent solution (Van 

Soest, 1963). In addition to removing cell contents, the acid-detergent solution also dislodges 

hemicellulose from the cell walls. In all, the soluble portion is known as acid detergent solubles 

(ADS). The remaining portion represents the mostly non-digestible lignified cell wall material, 

while the ADS portion represents the readily available energy sources (Goering and Van Soest, 

1970). As the proportion of ADF increases, ruminants are less able to utilize the nutrients 

contained in the forage. Hemicellulose content can be calculated by subtracting the ADF value 

from NDF. However, this calculation is only an estimation due to some lignin and cell wall 

protein losses during the NDF procedure (Jung, 2012), and incomplete hemicellulose removal 

and some lignin loss during the ADF procedure (Van Soest and McQueen, 1973). Acid detergent 

fiber has a high correlation with digestible dry matter (DDM) and is therefore used as a 

satisfactory estimation of the energy value of a forage, even without a foundation in cellular 

biology or rumen chemistry (Van Soest, 1991). 

Because of lignin’s near total indigestibility, it is regarded as an anti-quality component, 

and is a limiting factor of forage digestibility (Moore and Jung, 2001). Lignin content can be 

determined by washing the acid-detergent insoluble fiber, mostly cellulose, lignin, and ash left 

from the ADF procedure, in 72% sulfuric acid (Goering and Van Soest, 1970). Cellulose is 

removed, leaving only lignin and acid-insoluble ash to remain. While too much lignified fiber 

makes forages unpalatable and difficult to digest, some amount is necessary for both healthy 

plants and healthy rumination. If a particular forage has a low fiber concentration and a high 

soluble nutrient concentration, it will quickly pass through the digestive tract, limiting microbial 

fermentation and fiber degradation in the rumen that is dependent on energy from cellulosic 
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digestion (Van Soest, 1994). Ruminants feeding heavily on low fiber forages, i.e. grains or pure 

legume stands, may develop acidosis from the disruption of the normal rumen pH of 6.0-6.7 

(Heath et al., 1985). Thus forage quality ultimately relies on a balance between palatability, 

digestibility, and available energy (Raymond, 1969).  

Wet chemistry analyses use uniform specimen and standardized procedures to provide a 

cellular constituent breakdown of forage samples. While this allows for useful inter-forage 

observations, chemical analyses of forages are limited by the exclusion of animal physiology 

from their evaluations.  In an attempt to account for rumen biology, the in vitro true digestibility 

(IVTD) procedure involves the fermentation of forage samples within a replicated rumen 

environment (Tilley and Terry, 1963). The IVTD procedure is an alternative to apparent 

digestion tests that involve measuring fecal output against animal intake. Both are predictors of 

in vivo digestibility, however IVTD is corrected for endogenous losses such as mucins, epithelial 

cells, and digestive enzymes (Van Soest et al., 1966). Although the IVTD method is rapid and 

relatively reproducible, the output is restricted to a singular value representative of digestibility, 

thus lacking information on factors limiting digestion and degradation kinetics which influence 

the digestive efficiency of the ruminant (Mould, 2003). 

Aside from digestible energy, the next most important nutritional quality of a forage is its 

protein content. Protein is used by ruminants for growth, tissue development, and maintenance, 

as well as needed by rumen microorganisms to maintain efficient fiber degradation (Perry et al., 

1999). Protein is usually the main limiting nutrient for growing or lactating ruminants, requiring 

between 7 and 12% of their DDM consumption to be protein (Ball et al., 2015). When protein 

constitutes less than 7% of total digestible nutrients in a forage there is drop in voluntary intake 

(Moore et al., 1999a). This is a result of the rumen microbes’ need to acquire nitrogen from 
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ingested protein, and when their requirement is not met there is an overall suppression of the 

ruminal digestion system (Coleman and Moore, 2003). Concentration of protein within forages is 

affected by species, climate, and management factors comparable to digestibility. The 

generalized hierarchy for forage protein content is: legumes > grasses, temperate grasses > 

tropical grasses, leaves > stems, young > mature (Minson, 1990). Maturity is the most influential 

factor determining protein concentration of a forage species. After boot stage, protein content 

quickly begins to drop, along with NDS, ADS, and IVTD (Edmisten et al., 1998). Bermudagrass 

and bahiagrass pastures can sufficiently fulfill summer protein demand when actively growing 

and kept at the vegetative stage, however, hay produced from these grasses is usually harvested 

at a more mature stage and is typically of too low quality to provide sufficient protein during 

winter feeding (Moore et al., 1999b). Cool-season annuals, on the other hand, generally exceed 

the nutrient requirements of livestock, and therefore can better match forage nutritive value to 

animal needs (Evers, 2008).  

Cover Crops and Forages 

A cover crop is essentially any plant growth that is not harvested as a cash crop, nor 

considered to be a weed (SARE, 2010). A forage is any plant growth used to feed an animal via 

grazing or harvesting (Allen et al., 2011). The two naturally coincide as all forages serve as 

ground cover, and most cover crop species planted in rotation with cash crops make nutritious 

feedstock for animals (Heath et al., 1985). The goal of cover crops, to maintain constant ground 

cover, may share the goal of forage producers, to have continuous forage production throughout 

the year. Incorporating winter crops traditionally used as cover crops into a grazing program 

helps to minimize the forage deficit periods in the southeastern U.S. from early autumn to late 

spring (Ball et al., 2015). 
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In the southern U.S., specifically zone A as distinguished by Ball et al. (2015), cool-

season annuals are planted due to the lack of persistence of cool-season perennials such as tall 

fescue and alfalfa (Medicago sativa). The typical cover crops planted in autumn are annual 

ryegrass, small grains, clovers, hairy vetch, and brassicas. Cool-season annuals can be seeded as 

early as September 1st, depending on species and seedbed preparation (Twidwell et al., 2015), 

but sporadic autumn rains can delay planting until after October when the threat of drought has 

passed. Seeding into cultivated land can typically be done earlier than overseeding into sod due 

to the lack of competition with the previous crop’s residue (Ball et al., 2015).  Most species 

establish root growth in autumn and produce only a small amount of biomass during the short 

winter, but some may provide enough growth for grazing in November and December (Bertrand 

and Dunavin, 1973; Coombs et al., 1990). Depending on temperature and precipitation, rapid 

growth can occur in late winter or early spring when the bulk of biomass is produced. Small 

grains and brassicas will senesce with the lengthening days of early spring, while clovers, vetch, 

and ryegrass may continue to grow until the end of spring.  

Many of the soils across the Southeast are highly weathered and contain a relatively low 

percentage of organic matter, creating a susceptibility to erosion (SARE, 2010).  Winter cover 

crops can alleviate this susceptibility by adding organic matter from the decomposition of plant 

biomass, and establishing ground cover to protect against sediment loss from wind and water 

(Havlin et al. 2014).  Louisiana’s particularly wet winters create conditions for nitrate leaching 

on fallow fields. Winter cover crops can capture some of the residual fertilizer nitrogen from the 

summer cash crop, and having growing plants on the field also reduces the amount of water that 

will permeate passed the root zone, thus further reducing nutrient loss. The breakdown of above 

and below ground cover crop biomass improves soil tilth, increases organic matter, and supports 
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soil biological activity. However, if left on the field, plant residue may interfere with subsequent 

crop growth due to nitrogen immobilization if the cover crop has a high carbon to nitrogen ratio 

(SARE, 2010), or physically impede growth if a thick thatch is present (Bollera and Bulluck, 

1994). This is less of a concern when cattle are used to remove the plant biomass from the field, 

leaving behind manure which is more readily converted to plant available nutrients (Havlin et al. 

2014). 

Annuals complete their life cycle in one growing season, limiting the amount of energy 

the plant spends developing secondary cell walls, which are less digestible. Cool-season plants 

are C3 plants which thrive in cool, moist conditions. The cell walls of C3 plants tend to be thin, 

and their cellular structure tends to make them more readily digestible for ruminants than the 

thick-walled bundle sheath cells of C4 plants (Sage and Monson, 1990).   Both, their short life 

cycle and cellular arrangement, contribute to the high digestibility of cool-season annual 

herbage.  

When used for forage in the south, cool-season annuals can be harvested for silage or 

high quality hay production, but are most often used for pasture grazing due to unfavorable 

weather conditions for forage preservation. Because of the high forage quality of cool-season 

annuals, creep-grazing, or limit-grazing for a few hours per day is recommended for maximum 

pasture use efficiency (Blaser et al., 1986), and to prevent animal health disorders such as bloat 

or rumen acidosis which can result from a low fiber diet (Perry, 1980). Cows that fatten too 

much from unrestricted access to high quality forage may also experience lower calving and 

breeding performance (Beck et al., 2013). 
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Annual Ryegrass 

Annual ryegrass (AR), also known as Italian ryegrass, is the most common winter pasture 

crop grown in the lower South where cool-season perennials do not persist (Ball et al., 2015). It 

is a fast-growing, upright, non-spreading bunch grass with dark, smooth leaves, growing to 30 

cm or taller. Annual ryegrass can be established by broadcast seeding or drill seeding, and if 

planted early enough on a prepared seedbed has potential for fall grazing, producing copious 

amounts of palatable DM, 2,200-13,500 kg ha-1 yr-1 (SARE, 2010; Twidwell et al., 2015). If not 

grazed too heavily (below 7.5 cm), AR regrows well and can be harvested multiple times 

throughout the season. Cattle grazing on AR benefit from its high protein content (over 20% of 

dry matter), and can achieve average daily gains of nearly 1 kg (Ball et al., 2001).  

Annual ryegrass can tolerate moderate to low soil fertility, and can grow in a wide range 

of edaphic conditions. Not only does it perform well in wet conditions, but AR also produces 

dense clusters of fibrous roots which lend strength to soil structure, reducing erosion from high 

rainfall and preventing rutting and compaction from livestock. These roots excel at nutrient 

scavenging, particularly nitrogen, because of their high moisture usage, which mitigates leaching 

(Shipley et al., 1992).  

Annual ryegrass is often planted as part of a mixture, either with small grains or legumes. 

Because of AR’s early and vigorous growth, it serves well as a weed suppressor, but can also be 

detrimental to the establishment of a companion crop. Therefore, the proportion of AR in the 

seed mixture should be reduced to ensure good stands of both crops.  

Seed cost is relatively low at less than $1 per 0.5 kg and, after all costs are considered, 

can be established for between $27 and $46 per ha (Fae et al., 2009; Beck et al., 2008). 

Depending on planting method and whether or not it is part of a mixture, the recommended 
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seeding rate for AR rate is between 22 and 34 kg ha-1 (Twidwell et al., 2015). Higher seeding 

rates can increase early season biomass yields, but may not necessarily be beneficial to a cow-

calf operation on a spring calving schedule (Venuto et al., 2004). 

Reliability, biomass production, animal performance, and cost combine to make AR the 

standard winter forage of the lower South (Heath et al., 1985), however, AR has a potent 

reseeding ability, which is beneficial in dedicated pasture situations, but can cause weediness in 

field/row crops. For all its many strengths, unwanted AR can inhibit the growth of a cash crop, 

therefore may not be the ideal choice for rotations on non-dedicated pasture fields.  

Small Grains 

 The small grains used in this study were oats, rye, and triticale. All three are fast-

growing, high biomass producing bunch grasses that can grow over 1 m tall. Small grains can be 

sod-seeded over perennial pastures or broadcast seeded on cultivated land, although drill seeding 

is recommended for faster germination to reduce root rot in moist soils (SARE, 2010). Seeding 

usually occurs in September or October, and due to their fast rate of germination and height, 

small grains act well as weed suppressors. The deep growing, fibrous roots of small grains are 

generally good at scavenging leachable nutrients and preventing topsoil erosion. As a forage, 

small grains can provide abundant feedstock to grazing animals during the winter, leading to 

over 1 kg average daily gains (Daniels et al., 2004). However, small grains are quick to mature in 

the spring, which significantly lowers forage quality during late spring grazing. Legumes are 

often planted with small grains to help extend their grazing period and improve nutritive value 

(Ball et al., 2015).  

 For non-forage cover crop purposes, rye is the most commonly used small grain in the 

U.S. Of all the small grains, rye is the hardiest, the tallest, and the fastest growing. Rye can be 
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relatively inexpensive to establish with seed cost of $5-8 per ha (Kaiser, 2014), and a 

recommended seeding rate of 56-100 kg ha-1 (Twidwell et al., 2015). After all costs, including 

seed, fertilizer, seedbed preparation, etc., are considered, rye can be planted for about $46 per ha 

(Beck et al., 2008). Rye tolerates low soil fertility and can grow in a wide range of edaphic 

conditions, producing between 3,400-11,000 kg ha-1 yr-1 DM. Moreover, rye is more cold 

tolerant and more drought tolerant than other small grains (SARE, 2010). This means that rye 

can be planted later in autumn than other small grains and still produce good stands. For these 

reasons, rye fits well into most crop rotations to work as a nutrient catch crop, weed suppressor, 

and/or erosion control, however, rye is quick to mature in spring, making it less palatable to 

grazing cattle. The lower palatability of rye is not necessarily a concern when grazing options are 

limited to only rye, and can be ameliorated with the incorporation of a legume companion plant.  

 In contrast to rye, oats are the least cold and drought tolerant of the small grains. Oats 

tend to perform better in warmer climates than rye, making them more suitable for warm, wet 

southern winters. Oats can be broadcast or drill seeded with recommended rates of 67-112 kg  

ha-1, and in Louisiana can produce more than 9,000 kg ha-1 yr-1 DM (Twidwell et al., 2015). The 

seed cost of planting oats is between $10-13 per ha (SARE, 2010). As a forage, oats are typically 

more palatable than rye, and some breeding work is being conducted to further improve 

palatability of forage-types, as well as grazing tolerance (Kim et al., 2014). Oats can provide 

high quality forage, rich in protein and energy, from late fall through spring (Mackowiak et al., 

2011). Oats have potential to be dual purposed as a grazed crop in autumn and winter, and as a 

grain crop with spring regrowth under proper management practices.  

 Triticale, a hybrid of rye and wheat, is mostly grown for forage purposes in the U.S., 

either for hay, silage, or grazing. Triticale tends to have more of the hardiness of rye combined 
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with the higher palatability of wheat. While DM yield is less than rye or wheat, between 3,000-

7,000 kg ha-1 yr-1 (Redmon et al., 1998a; Vigil and Poss, 2016), triticale generally provides a 

longer grazing period because it is slower to mature than other small grains (Schwarte et al., 

2005). Recommended seeding rates are 100-135 kg ha-1 (Blount et al., 2014), with seed costs of 

about $7 per ha (Miller et al., 2003). Because a pure stand of triticale typically does not provide 

sufficient biomass production for winter grazing, most work with triticale has been done with 

mixtures of other grasses or legumes to optimize biomass production and forage quality. Triticale 

combined with legumes decreases overall DM yield, but has a greater crude protein 

concentration (Karadag and Buyukburc, 2004). Annual ryegrass can be mixed with triticale as a 

companion plant to add forage quality without reducing yield (Drake and Orloff, 2002). 

Annual Legumes 

 Annual legumes, unlike grasses, are broadleaf dicots with shallow tap root systems. 

While legumes serve to prevent soil erosion and suppress weeds through aboveground biomass 

production, they are not as efficient at nutrient scavenging as grasses or brassicas (Shipley et al., 

1992). Their major contribution as a cover crop is their ability to biologically fix atmospheric 

nitrogen. Rhizobium bacteria live symbiotically within nodules on the root systems of legumes 

where the bacteria convert nitrogen gas into plant available ammonium (Havlin et al., 2014). 

This process can significantly reduce nitrogen fertilization requirements of subsequent crops 

(Hargrove, 1986) and can provide 50-70% of the required nitrogen to companion plants, 

depending on the legume species (Havlin et al., 2014). Proper inoculation of legume seeds with 

the appropriate rhizobia can help ensure maximum nitrogen fixation (Twidwell et al., 2015). 

While most legumes can tolerate many types of soil conditions, rhizobium nodulation can be 

inhibited by acidic soils (Havlin et al., 2014).   
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As a forage, legumes are highly nutritious and highly digestible. In the South, cool-

season legumes will establish in autumn and overwinter well, but most biomass production 

occurs in spring. When grown as a companion plant, their late growth can complement grasses, 

particularly small grains, which are maturing in spring and losing forage quality. Grazing pure 

stands of legumes is not necessarily the best use of pasture, as there will be limited biomass 

production compared to grasses, and the low fiber concentration of some legumes can lead to 

bloat (Van Soest, 1994). Combining cool-season legumes with cool-season grasses can increase 

the protein and lower NDF of the overall mixture more than monoculture grasses fertilized with 

76 kg ha-1 nitrogen (Han et al., 2013). It is possible that the legume, through competition with the 

grass, can reduce overall yield, however, the high concentration of protein in legumes will 

increase the overall protein content (Lithourgidis et al., 2006). The majority of legume nitrogen 

is located in the above ground plant portion, therefore grazing can reduce the amount of residual 

soil nitrogen available to subsequent crops (Decker et al., 1994; Caddel et al., 2012).  

Crimson clover is an upright, rapidly growing legume with relatively early spring growth. 

Crimson clover is adapted to well-drained soils but can thrive on clay soils with moderate acidity 

and in a wide range of climatic conditions (Heath et al., 1985). As a residual nitrogen scavenger, 

crimson clover only recovers about 10% (Shipley et al., 1992), however, it can fix, on average, 

between 78-168 kg ha-1 atmospheric nitrogen (SARE, 2010).  Crimson clover is a protein rich 

forage capable of accumulating between 4,000-6,000 kg ha-1 DM (SARE, 2010). Biomass can be 

harvested for hay, but also tolerates grazing, and will regrow well if not heavily grazed. Crimson 

clover will not typically reseed, so planting must be done each autumn at a rate of 13-34 kg ha-1, 

costing between $11-16 per ha (Twidwell et al. 2015; SARE, 2010). Seeding rates are dependent 
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on seedbed preparation, planting method, and whether planted as a monoculture or as part of a 

mixture. Crimson clover works well as a companion plant, typically with AR in the South.  

Hairy vetch is a vining cool-season legume that is perhaps the most commonly used cool-

season annual legume cover crop. Hairy vetch has very limited growth in autumn and winter, but 

produces vigorously sprawling biomass in the spring that can suppress spring weeds in 

subsequent crops and provide protein rich forage for ruminants. Hairy vetch is tolerant to a wide 

range of edaphic and climatic conditions, and has relatively low soil fertility requirements, but 

total biomass yields are less than other winter cover crops, averaging between 1,960-6,950 kg  

ha-1 yr-1 (Heath at al., 1985). Hairy vetch has a recommended seeding rate of 17-45 kg ha-1 at a 

cost of $14-26 per ha, and can fix an abundant amount of nitrogen, between 100-225 kg ha-1 

(SARE, 2010). Hairy vetch has poor nutrient scavenging ability with its short taproot, recovering 

only about 11% residual nitrogen fertilizer (Shipley et al., 1992), but works well as a companion 

to deep rooted small grains. Hairy vetch can also complement the growth patterns of faster 

maturing small grains, adding a boost to late spring forage quality (Ranells and Wagger, 1997). 

Grazing should not begin until plants reach about 15 cm, and close grazing should be avoided to 

ensure regrowth (Hoveland and Webster, 1963). As with all legumes, hairy vetch accumulates 

most of its nitrogen in aboveground plant tissue (90%), therefore, removing biomass by grazing 

will lessen the amount of nitrogen contributed to the soil (Shipley et al., 1992). Even with the 

removal of top biomass, hairy vetch can still contribute 10-22 kg N ha-1 from root degradation 

(Kuo and Jellum, 2002). 

Radish 

 Radish is a fast growing cool-season annual that produces tall, leafy top growth and a 

large, edible taproot.  This large taproot has the ability to scavenge nutrients deep within the soil 
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profile that would otherwise be unavailable. In addition to nutrient capturing, the taproot can 

ameliorate soil compaction by penetrating hardpans and creating deep, porous channels when the 

root decays. Radishes can be established by broadcast seeding with 11-22 kg ha-1 at a seed cost 

of $9-13 per ha, and should typically be planted earlier than small grains (SARE, 2010). 

Radishes do not tolerate poorly drained soils and generally require nitrogen fertilization for a 

strong stand (Ball et al., 2015). Radishes produce high amounts of biomass, up to 9,000 kg ha-1, 

that is palatable and highly nutritious. However, because of its high moisture content and low 

fiber, livestock should not graze radish exclusively as this may lead to health disorders such as 

bloat (Van Soest, 1994). Radishes can tolerate grazing and, if not grazed to the bulbous 

aboveground portion of the taproot, can have good regrowth (Ball et al., 2015).   

Forage Mixtures 

 The primary benefit of planting multiple species on one pasture is to insure against crop 

failures due to climatic extremes (Soder er al., 2007). Mixtures increase the success of 

establishment with varying weather conditions, as different species will thrive in different 

conditions. Forage mixtures will also increase the nutrient use efficiency of a pasture, and while 

overall biomass production may not increase, forage yield distribution can expand the grazing 

season due to the varying maturation rates of different species. Competition between species for 

light and nutrients may contribute to an overall decline in total biomass yield, however, forage 

quality will generally be higher (Deak et al, 2007). The increase in forage quality is determinant 

on the species composition, not the complexity of the mixture, thereby making it necessary to 

select the right species at the right seeding rates to maximize forage production (Brink et al., 

2015). Therefore, laboratory analyses of individual cool-season annuals can help determine the 
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forage potential of species mixtures, if not how competition between species will affect overall 

forage quality. 

Objective 

 The goal of this study was to determine the forage potential of cool-season annual cover 

crops, based on dry matter yield and nutritive value, for the purpose of extending the grazing 

season of the southeastern U.S into winter and spring. This study examined ten cover crops at 

two harvests, one in late winter, then one in early spring to determine the regrowth potential of 

the cover crop treatments. Prepared seed beds were used under the assumption that cover crops 

would be planted on cultivated cash crop fields. The assumed method of harvest would be 

ruminant grazing for the first harvest, followed by a second grazing period or the potential use of 

the cover crop as a green manure for the subsequent cash crop. 
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Materials and Methods 

A two-year field trial was conducted at the LSU AgCenter Ben Hur Research Station in 

Baton Rouge, LA. Winter cover crop treatments were planted on November 4, 2014, and 

December 9, 2015. Seven monoculture cover crops and three mixtures were planted in 1.8 m by 

4.3 m end-trimmed prepared seedbeds.  Plots were seeded with a 7-row plot drill set at 18 cm 

row spacing (Table 1 and Table 2). Each treatment plot alternated with a border plot of oats to 

reduce border effect (Peterson, 1994).  

 

Table 1. Seeding rates of cool-season annual cover crop monocultures. 

Cover Crop Species  Seeding Rate (kg ha-1) 

Annual Ryegrass (Lolium multiflorum)  57.7 

Oats (Avena sativa)  233.2 

Rye (Secale cereale)  260.6 

Triticale (Triticum secale)  261.2 

Crimson Clover (Trifolium incarnatum)  71.7 

Hairy Vetch (Vicia villosa)  142.9 

Radish (Raphanus sativus)  22.4 

 

Table 2. Seeding rates and ratios of cool-season annual cover crop mixtures. 

 Seeding Rate  

(kg ha-1) 

Approx. Seed Ratio by 

Forage Mixture  Weight Count 

Radish, Annual Ryegrass, & Crimson Clover 62.8 7:36:7 1:21:3 

Radish, Oats 132.3 1:9 11:39 

Radish, Triticale, Crimson Clover 215.8 7:85:8 9:52:39 

 

Soil type at the planting site was Cancienne silt loam. There were no soil fertility limiting 

factors based on LSU AgCenter Soil Testing Laboratory analysis. Soil pH was 6.16. First year 

treatments were fertilized with 18-52-67-11 kg N-P-K-S ha-1 on November 12, 2014, then top 



 

25 

 

dressed with 101 kg N ha-1 in mid-February. Second year treatments were pre-plant fertilized 

with 18-52-67-11 kg N-P-K-S ha-1, then received 13.6 kg urea ha-1 (46-0-0, N-P-K) in early 

February, and then top dressed with 40.8 kg N ha-1 in late February. 

Two harvests were made, one in late winter and one in early spring. The late winter 

harvest was made after all treatments had accumulated sufficient biomass and were all in a 

vegetative stage. The early spring harvest was made after all treatments had developed sufficient 

regrowth and were mostly beyond the vegetative stage. The first year harvests were made on 

February 16 and April 9, 2015. The second year harvests were made on March 7 and April 6, 

2016. Harvests were made with a push lawnmower with a 76 cm cutting width and blades set 8 

cm from the ground. An attached mulching bag was used to collect the herbage. A single center 

strip was collected from the entire length of each treatment plot. Therefore, the dimensions 76 

cm by 4.27 m were used to estimate forage yield per ha (.76 m x 4.27 m = 3.25 m2). The 

mulching bag was tared before each cut, then weighed after forage collection. A grab sample of 

the herbage was taken from the mulching bag, placed into a paper bag, weighed and dried. The 

grab samples were dried for three days at 55º C in a forced-air drying oven, then reweighed. The 

estimated DM yield per ha of each treatment was calculated as: 

 DM Yield Per ha = Fresh Weight x Percent DM x Plot-to-ha Conversion Factor, 

where  

Percentage Dry Matter = Dry Sample Weight / Wet Sample Weight, 

and 

Plot-to-ha Conversion Factor = 10,000 m2 / 3.25 m2 = 3,076.92. 

 Dried samples were ground in a Wiley mill (Thomas Scientific, Swedesboro, NJ) to pass 

through a 1-mm sieve, the size shown to be critical for legume and grass particle passage through 
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the rumen (Poppi et al., 1980). A 1-gram subsample was used to determine absolute dry matter 

by crucible drying in a 105º C oven for three hours.  

 Wet chemistry methods were used to determine nutritive quality. Acid detergent fiber and 

neutral detergent fiber contents were determined, non-sequentially, using an Ankom® 2000 

automated fiber analyzer (Methods 12 and 13, respectively, ANKOM Technology Corp., 

Macedon, NY) based on standard methods set by Robertson and Van Soest (1981). Acid 

detergent lignin was analyzed by washing post-ADF sample bags with 72% H2SO4 for 3 hours, 

according to ANKOM method 8. Crude protein (CP) was determined by combustion method 

(Dumas, 1831) using LECO® FP-528 nitrogen determinator (Method 3942, LECO Corp, St. 

Joseph, MI). Because most proteins contain roughly 16% nitrogen, protein content was estimated 

by multiplying the total nitrogen times 6.25. This calculation assumes all nitrogen is incorporated 

into protein, i.e. not free amino acids, and includes all forms of protein (Minson, 1990).   

In vitro true digestibility (IVTD) test was performed based on the Tilley and Terry (1963) 

method, modified with an additional third step (NDF) by Goering and Van Soest (1970). Rumen 

fluid was collected from a fistulated Holstein cow (Bos taurus) fed an alfalfa diet. Rumen fluid 

was kept warm during transportation in a sealed thermos. In the laboratory, rumen fluid was 

flushed with CO2 to maintain an anaerobic environment. Samples and reagents were prepared 

according to ANKOM method 3, and the samples were incubated for 48 hours using the 

ANKOM DAISYII incubator. After the incubation period, samples were sequentially run through 

the NDF procedure (ANKOM method 13) to remove any rumen-digestible residue, then weighed 

to determine IVTD DM disappearance. IVTD on a DM basis was calculated as: 

IVTD (DM) = ((Final Bag Weight – (Bag Tare Weight x Bag Correction)) / Sample 

Weight, 
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where 

 Bag Correction = Final Blank Bag Weight / Original Blank Bag Weight. 

 The forage yield of each treatment was multiplied with its corresponding IVTD 

percentage to determine in vitro true digestible dry matter (IVTDDM) yield. 

Statistical Analysis 

The experimental design was a randomized complete block. Data were analyzed using 

the GLIMMIX procedure of SAS (SAS Institute, 2004). Year was considered as a random effect 

because all treatments were annuals that were replanted each year in different plot locations. 

Replication within year was also treated as a random effect. Cover crop treatment and harvest 

date were treated as fixed effects.  
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Results and Discussion 

Response variables were DM yield, NDF, ADF, ADL, CP, IVTD, and IVTDDM. Mean 

separations were deemed significant at P < 0.05 (Table 3). 

 

 

 

 

 

 

 

 

Dry Matter Yield 

 Each year, all plots were successfully established in autumn, overwintered, then brought 

to physiological maturity in spring. No observable insect, fungal, or viral damage was noticeable 

in either growing season. However, DM yield was confounded by unusual weather events 

occurring in south Louisiana during autumn of 2015 and spring of 2016.  

The 2-year average early spring harvest yielded more than twice as much biomass 

(103%) than late winter harvest on average across all treatments (P<0.001). Yield distribution 

between late winter and early spring harvests varied among treatments with oats and radish/oats 

treatments being the most consistent, and crimson clover, triticale, and AR treatments being the 

least consistent (Table 4). Treatment x harvest interaction was not significant in forage 

production (P=0.4373).  

 

Table 3. Significance of fixed effects from analysis of variance for dry matter (DM) 

yield, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 

(ADL), crude protein (CP), in vitro true digestibility (IVTD), and in vitro true 

digestible dry matter (IVTDDM) by treatment and harvest. 

 

 

DM Yield 

(kg ha-1) 

NDF 

--- 

ADF 

--- 

ADL 

g kg-1 

CP 

--- 

IVTD 

--- 

IVTDM 

(kg ha-1) 

Treatment (T) NS† *** * * *** ** * 

Harvest (H) *** *** *** NS *** *** *** 

T x H NS *** * NS *** *** NS 

        

† NS, not significant; *, significant at P < 0.05; **, significant at P < 0.01; ***, 

significant at P < 0.001. 
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Table 4. Cool-season annual cover crop dry matter yield (Mg ha-1) per harvest, mean of 2 years. 

Cover Crop First Harvest† Second Harvest† Total 

Annual Ryegrass 0.77 2.17 2.94 

Rye 1.06 2.28 3.34 

Oats 1.45 2.03 3.48 

Triticale 0.86 2.43 3.30 

Crimson Clover 0.52 1.54 2.07 

Hairy Vetch 0.65 1.48 2.14 

Radish 0.91 1.67 2.58 

Radish/Oats 1.75 1.99 3.73 

Radish/Annual Ryegrass/Crimson Clover 1.09 2.15 3.24 

Radish/Triticale/Crimson Clover 0.83 2.32 3.15 

                 SE=0.51 

† Not significantly different (P=0.44). 

 

 

No treatment effect was detected in forage production (P=0.0816). However, 

numerically, oats out yielded other small grains, oats/radish treatment out yielded other mixtures, 

and legume and radish monocultures produced the least amount of biomass. Hairy vetch did not 

reach anthesis by the time of the early spring harvest of 2016, and regrowth continued 

accumulating biomass for a potential third harvest in late May.  

The range of DM yield on average per harvest was from 1031 kg ha-1 (crimson clover) to 

1866 kg ha-1 (radish/oats). Although DM yield comparisons are difficult to make between studies 

as many factors contribute to varying forage production, including regional climate, soil 

characteristics, cultivar, planting dates, harvest, number of harvests, etc. (Heath et al, 1985), 

average annual DM yield for all treatments was lower than the production ranges of other cover 

crop studies (SARE, 2010). Twidwell et al. (2015) reported that AR produced more than 11 Mg 

ha-1 annual DM yield in Louisiana, which is 274% more biomass than produced by this study. 

Oats monoculture was particularly low compared to their potential annual production in 
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Louisiana of nearly 9 Mg ha-1 (Allen et al., 1978). Soil fertility was not the limiting factor for 

biomass production as all levels were within sufficiency ranges (based on LSU AgCenter soils 

laboratory analyses) and nitrogen fertilizer was applied in sufficient amounts (in accordance with 

LSU AgCenter recommended rates). 

With year considered a random variable, weather variations between years influenced the 

variance of cover crop biomass in 2016 and resulted in a lack of detectable treatment mean 

difference. Unusually high rainfall in October and November of 2015 (more than twice the 30-

year average) postponed planting by one month (Figure 1). Delayed establishment in 2016 had 

no noticeable impact on the forage yield of the late winter harvest when compared to 2015, 

however, high rainfall occurred again in March of 2016 (81% higher than the 30-year average), 

resulting in waterlogging of the heavy silt loam soil and a diminished early spring harvest 

(Figure 2). While this study did not aim to compare forage production between years, it is 

important to highlight the substantial differences. Across all treatments, biomass accumulation at 

early spring of 2016 was only 36% of that in 2015. Among the treatments, rye showed the 

greatest biomass decrease (81%). Some single-harvest forage studies show similar rye and 

crimson clover DM yield results due to unfavorable weather conditions in some years and 

favorable weather conditions in others (Mitchell and Teel, 1977; Ranells and Wagger, 1996). 

Fluctuating weather conditions in Maryland resulted in fewer significant treatment responses, 

showing unexpectedly similar average DM yields among hairy vetch (3.4 Mg ha-1), crimson 

clover (3.7 Mg ha -1), and wheat (3.4 Mg ha-1) (Decker et al., 1994).
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Figure 1. Weather data for Louisiana State University AgCenter Ben Hur Research Station in Baton Rouge, LA for 2015, 2016, and 

30-year average. 
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† AR, annual ryegrass; CC, crimson clover; HV, hairy vetch; Rd, radish; Tr, triticale. 

 

Figure 2. Dry matter yield of cool-season annual cover crops at winter and spring harvests of 

2015 and 2016. 

 

The extended period of saturated heavy silt loam soil during March of 2016 probably 

resulted in anaerobic soil conditions. These conditions are known to restrict root growth in 

grasses and legumes, which in turn reduce above ground biomass (Cannell et al., 1985; Gibbered 

et al., 2001). Legume rhizobial nodulation is also impeded by waterlogged soils which inhibits 

their atmospheric nitrogen fixation capacity (Pugh et al., 1995). The reduction in cover crop 

growth, especially legumes, allowed for an incursion of weeds, mostly annual bluegrass (Poa 

annua) (Figure 3). Both, reduced cover crop growth and increased weed competition, caused a 

large error term (SE=470), resulting in a lack of statistical power to detect treatment effects in 

dry matter yield (kg ha-1).  
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Figure 3. Crimson clover monoculture plot with weed incursion. Photo taken March 30, 2016. 

 

 

Neutral Detergent Fiber 

 Differences in NDF were highly significant among cover crop treatments (P<0.001).  

There was a highly significant treatment x harvest interaction in NDF (P<0.001). Neutral 

detergent fiber increased nearly 10% across all treatments between late winter harvest and early 

spring harvest (P<0.001). Crimson clover had the most consistent NDF, maintaining around 420 

g kg-1 for both harvests. Triticale and radish/triticale/crimson clover treatments had the greatest 

increases in NDF between harvests at more than 18% each (Table 5). The lowest NDF 

concentration was detected at the late winter harvest of radish (332 g kg-1), while the highest 

NDF concentration was found in triticale at the early spring harvest (582 g kg-1).  

Neutral detergent fiber represents the fibrous mass of a forage that requires rumen 

microbial digestion before passing through a ruminant, contributing to ruminal fill. A lower NDF 

facilitates faster passage of forage through the ruminant, thus increasing the animal’s ability to 

intake more forage (Van Soest, 1994). A lower NDF typically means a forage will be more  
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Table 5. Neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) as a percentage of dry matter of 

cool-season annual cover crops at winter and spring harvests, mean of 2 years. 

 

 NDF ADF ADL‡ 

Cover Crop Winter Spring Winter Spring Winter Spring 

Annual Ryegrass 44.5ef† 50.2cd 31.5efg 35.8bcd 12.3 10.1 

Rye 41.5fg 52.0bcd 26.2h 35.4cde 11.4 12.7 

Oats 38.4gh 49.8cd 26.8h 37.8bc 6.6 12.6 

Triticale 39.6gh 58.2a 27.7gh 42.3a 9.4 10.8 

Crimson Clover 41.6fg 42.7fg 28.1gh 33.3def 10.8 12.6 

Hairy Vetch 36.7hi 39.3gh 26.2h 33.5def 9.3 11.1 

Radish 33.2i 47.5de 28.0gh 39.8ab 13.5 16.2 

Radish/Oats 39.5gh 52.3bc 27.7gh 38.3abc 6.3 9.1 

Radish/Annual Ryegrass/Crimson Clover 38.8gh 48.0cde 28.1gh 35.4cde 10.4 9.9 

Radish/Triticale/Crimson Clover 37.1hi 55.5ab 29.6fgh 38.4abc 11.8 10.3 

               SE=2.3     SE=1.6            SE=2.2 

 

† Values with different letters within NDF and ADF columns differ at P<0.05.  

‡ Not significantly different (P=0.49). 
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palatable, ruminants will intake more of it, and weight gains will be higher (Lippke, 1980). All 

NDF concentrations in this study were within a range that would be considered relatively low, 

being below 600 g kg-1 where NDF begins to negatively affect forage DMI of ruminants (Van 

Soest and Wine, 1967). Therefore, these NDF levels indicate potentially high animal intake, 

although animal preference must also be accounted for.  

On average, legume and radish monoculture treatments contained about 7% less NDF 

than the grass monocultures. Legumes and radishes typically contain less NDF than grasses, 

mostly due to differing amounts of fiber accumulation in the stems (Ball et al., 2015). A lower 

NDF means legumes contain more soluble cellular contents which results in their generally 

higher digestibility, however the NDF portion of grasses has been found to be more digestible 

than that of legumes (Buxton and Redfearn, 1997). 

Acid Detergent Fiber 

 There was about a 9% increase in ADF concentration between late winter and early 

spring harvests on average across all treatments (P<0.001). The increase of ADF between 

harvests would be expected, same as NDF, due to fiber accumulation as plants mature. 

Differences among treatments were detected (P=0.0130) and there was a significant treatment x 

harvest interaction in ADF (P=0.0354). Triticale had the highest ADF concentration, averaging 

350 g kg-1 per harvest. Hairy vetch had the lowest ADF concentration, averaging less than 298 g 

kg-1 per harvest. Annual ryegrass had the most consistent ADF concentration between harvests, 

increasing only 4.3%, whereas triticale increased the most (14.6%). On average, legume 

monocultures contained about 3% less ADF than grass monocultures.  

Acid detergent fiber is negatively correlated with the digestibility of a forage (Van Soest, 

1963). The ADF range in this study, 262 to 423 g kg-1, would be considered relatively low, 
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predicting high ruminant digestibility and a high energy availability. However, it is an 

approximate estimation of digestibility based on regression equations, not the biological or 

chemical composition of the extracted fiber (Van Soest, 1994). The main use of the ADF method 

in the study was to fractionate the cell wall portion of forages into its component parts. 

Cellular Fractionation 

Cellulose, hemicellulose, and lignin make up the majority of the cell wall portion of a 

forage, represented as a whole by NDF. Fractionation of these components can help predict 

digestibility within a ruminant (Van Soest, 1994) (Appendix). Lignin, and its association with 

other cell wall portions, is almost completely indigestible and therefore its concentration has the 

greatest influence on forage digestibility (Moore and Jung, 2001). Changes in lignin content 

between harvests were very small except for the 6% increase in the oats treatment. Differences in 

ADL levels were detected among cover crop treatments (P=0.0201). No differences were found 

between harvests in ADL (P=0.0845), nor was there a treatment x harvest interaction 

(P=0.4901). Average ADL concentrations of grass and legume monocultures were around 110 g 

kg-1. Radish monoculture was slightly higher at 148 g kg-1 ADL.  

Although lignin is not considered fiber, it is a major component of extracted NDF and 

ADF, and contributes to the indigestible portion of a forage. While the proportion of ADL within 

treatments had no significant increase with plant maturity, the decrease in digestibility (predicted 

by ADF) may reflect a greater association between lignin and cell wall constituents (Van Soest, 

1994). It is because the NDF portion of legumes is more lignified that causes it to be less 

digestible than grass fiber (Buxton and Redfearn, 1997). However, the lack of ADL increase is 

unusual as lignin levels increase as soluble cell contents decrease (Moore and Jung, 2001). The 

similar lignin levels between harvests may have been influenced by the sequential ADF-ADL 
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method, where the ADF method is known to remove a fraction of lignin (up to 50%), thus 

reducing ADL extracted lignin in proportion with their concentrations (Hatfield and Fukushima, 

2005). 

Hemicellulose was determined by subtracting ADF from NDF. Differences in 

hemicellulose levels were detected among treatments (P<0.001). There was a highly significant 

treatment x harvest interaction in hemicellulose (P<0.001). There was only a 1.6% increase in 

hemicellulose between harvests across all treatments (P=0.0147). All treatments increased 

hemicellulose concentration between late winter and early spring harvests except crimson clover 

and hairy vetch monocultures which decreased by 4.2% and 4.7%, respectively. This 

concentration decrease was due to the legumes’ unchanging soluble cellular contents while 

accumulating cellulose. Triticale had the highest increase among the grass treatments at 4.1%. 

The lowest hemicellulose concentration was 52 g kg-1 in radish at late winter harvest, and the 

highest was 172 g kg-1 in radish/triticale/crimson clover mixture at early spring harvest. 

Because changes in hemicellulose were also minimal, the largest cell wall composition 

change, resulting from an increase in the cell-wall:cell-content ratio, was the increase in cellulose 

content. The digestibility of cellulose in ruminants, depending on lignification, is about 58% and 

hemicellulose is about 49% (Hespell, 1988). As expected, cellulose represented the largest 

fraction of cell wall content of all treatments (Van Soest, 1994). 

 Cellulose was calculated by subtracting ADL from ADF. Differences in cellulose levels 

were detected among treatments (P<0.001). There was a significant treatment x harvest 

interaction (P=0.0394). There was a 7.7% increase in cellulose between harvests across all 

treatments (P<0.001). The lowest cellulose composition was 14.5% in radish at late winter 

harvest, and the highest was 31.5% in triticale at early spring harvest. Triticale had the largest 
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increase (14.1%) in cellulose between harvests. Grasses averaged 2.8% more cellulose than 

legumes or radish.  

 As with yield, forage nutritive value comparisons are difficult to make between studies. 

Due to the ever-increasing cell-wall components of maturing plants, the date of harvest 

influences the nutritive value of a forage (Helsel and Thomas, 1987). Nutritive value can also be 

affected by seedbed preparation, temperature, length of day, precipitation, harvesting, etc. (Heath 

et al, 1985). The unpredictability of soil and climatic conditions makes the nutritive value 

analysis of one harvest a poor predictor of the nutritive value of any subsequent harvests (Van 

Soest et al., 1978). This study assumed grazing would be the primary method of forage 

harvesting, therefore the two harvest dates are meant to give a brief appraisal of forage quality 

across the late winter grazing period, as well as demonstrate the regrowth ability of each 

treatment to provide forage for the early spring grazing period.  

Cellular composition of a forage species also assumes a pure stand at harvest. Due to 

copious rainfall during the second year, weed growth was present in the treatment plots. Weeds 

were collected along with forage treatments, as this study focused on ‘as is’ conditions to 

simulate an actual pasture environment. Reduced growth of cover crop treatments, combined 

with weed contamination, affected the yield and composition analysis of this study.  

Crude Protein 

 Differences in CP concentrations were detected among treatments (P<0.001) as well as a 

highly significant treatment x harvest interaction (P<0.001). There was an 8.4% decrease in CP 

concentration from late winter harvest to early spring harvest across all treatments (P<0.001). 

Beck et al. (2008) found a similar decrease (8.25% average) between February and April 
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harvests of annual ryegrass and rye. In this study, hairy vetch had the highest CP, averaging 

21.7% per harvest.  

As expected from maturing plants, protein concentrations decreased between the two 

harvests (Edmisten et al., 1998), with the exception of hairy vetch. Hairy vetch took longer to 

reach physiological maturity than the other treatments, remaining in a vegetative stage at early 

spring harvests. Hairy vetch was the only treatment that increased CP (1.2%) between harvests. 

Redmon et al. (1998b) reported a 4.85% CP decrease in hairy vetch from March to April in 

Oklahoma. Triticale fluctuated the most, dropping from the highest CP (246 g kg-1) at late winter 

harvest to the lowest CP (113 g kg-1) at early spring harvest. Hairy vetch and triticale CP 

concentrations in this study were slightly higher than the average 182 g kg-1 and 81.0 g kg-1 CP, 

respectively (harvested at early heading stage), reported by Karadag and Buyukburc (2004). A 

Michigan study showed a smaller CP percentage decrease of maturing small grains with rye 

decreasing 7% and oats only decreasing 3.4% on average (Helsel and Thomas, 1987). 

All treatments contained high amounts of protein throughout the growing season as 

would be predicted from cool-season annuals (Figure 4). All treatments, at both harvests, were 

well within or well above the required 7-12% protein levels for lactating cows and growing 

calves for optimal performance (Ball et al., 2015). This range represents the stages in ruminant 

animal development that requires the highest levels of protein, and the level of crude protein 

below which ruminal fermentation may be limited (Buxton et al., 1995). 

Winter protein levels in legumes were unexpectedly lower than all the grasses (Redmon 

et al., 1998b), except oats. Legumes typically have higher CP concentrations than grasses, but 

these treatments may have been affected by restricted nodulation from anaerobic soil  
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† Columns with different letters differ at P<0.05.  

‡ AR, annual ryegrass; CC, crimson clover; HV, hairy vetch; Rd, radish; Tr, triticale. 

 

Figure 4. Crude protein content of cool-season annual cover crops at winter and spring harvests, 

mean of 2 years. Shaded area indicates protein requirement of lactating cows and growing 

calves. 

 

conditions impeding plant uptake of nitrogen (Taiz et al., 2015). Because of their low CP levels, 

the addition of crimson clover to the radish/annual ryegrass and radish/triticale mixtures did not 

appear to increase overall CP concentrations. 

In Vitro True Digestibility 

 Again, as expected from cool-season annuals, all cover crop treatments were highly 

digestible (Wilman and Altimimi, 1984), even after decreasing in digestibility as they matured 

(Table 6). Differences in IVTD were detected among treatments (P=0.0035). A highly 

significant treatment x harvest interaction was found in IVTD (P<0.001). There was an 11.5% 

decrease in IVTD between harvests across all treatments (P<0.001).  
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Table 6. In vitro true digestibility (IVTD) and in vitro true digestible dry matter (IVTDDM) yield 

of cool-season annual cover crops at winter and spring harvests, mean of 2 years. 

 

 IVTD (%) IVTDDM (Mg ha-1)‡ 

Cover Crop Winter Spring Winter Spring Total 

Annual Ryegrass 87.7ab† 79.8de 0.67 1.73 2.41 

Rye 88.8ab 79.5de 0.93 1.80 2.73 

Oats 89.9ab 74.6fgh 1.31 1.55 2.86 

Triticale 90.5a 73.9gh 0.78 1.76 2.54 

Crimson Clover 81.9cd 75.9efgh 0.43 1.18 1.61 

Hairy Vetch 86.0bc 82.2cd 0.57 1.23 1.80 

Radish 88.0ab 72.4h 0.80 1.22 2.02 

Radish/Oats 90.0ab 76.5efg 1.57 1.52 3.10 

Radish/Annual Ryegrass/Crimson Clover 89.9ab 78.4def 0.97 1.70 2.68 

Radish/Triticale/Crimson Clover 90.5a 75.0fgh 0.75 1.69 2.43 

               SE=1.5           SE=0.38 

 

† Values with different letters within IVTD columns differ at P<0.05.  

‡ Not significantly different (P=0.35). 

 

In vitro true digestibility is a biological analysis of forage degradation that is dependent 

on the microbial population collected with the rumen fluid, and will therefore vary with the 

ruminant physiology (Tilley and Terry, 1963; Van Soest et al., 1966). As an estimation of 

digestibility, treatments in this study exceeded the digestibility of bermudagrass (50-60%), tall 

fescue (53-72%), and alfalfa (57-69%) which often serve as the basis of many forage programs 

(Ball et al., 2015). The highest IVTD levels were in triticale and radish/triticale/crimson clover 

treatments (905 g kg-1) at late winter harvest. The lowest IVTD level was in radish (724 g kg-1) at 

early spring harvest.  Hoveland et al. (1986) reported IVTD ranges for rye and hairy vetch to be 

70-79% and 77-82%, respectively, from vegetative to mature stages, which were numerically 

higher than this study but reflected similar percentage decreases. Oats, triticale, and radish had 

the greatest decrease in IVTD between harvests of the monocultures. This was reflected in their  
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NDF increase (negatively correlated with IVTD), resulting in a reduction of soluble cellular 

contents (Bertrand and Dunavin, 1975). Legume monocultures were less digestible than the 

grasses and radish at late winter harvest. However, their digestibility decrease was not as great, 

resulting in hairy vetch having the numerically highest digestibility of the early spring harvest. 

Hairy vetch only decreased 3.8% IVTD, again, due to the fact that it had not yet reached anthesis 

at the time of the early spring harvest.  

In Vitro True Digestible Dry Matter 

 In vitro true digestible DM was calculated by multiplying the treatment DM yield (kg   

ha-1) times its corresponding IVTD %. Differences in IVTDDM between harvests were highly 

significant (P<0.001). Differences between treatments were also detected (P=0.0485). No 

treatment x harvest interaction was detected (P=0.3502).  Even with the 11.5% decrease in 

IVTD, there was a 75% IVTDDM yield increase across all treatments between late winter and 

early spring harvests due to the much higher dry matter yield. Radish/oats mixture had the 

numerically highest IVTDDM yield average at 1547 kg ha-1 per harvest. Crimson clover, hairy 

vetch, and radish had the lowest IVTDDM at 807, 898, and 1010 kg ha-1, respectively.  

 While statistically similar, the numerical differences in the treatment x harvest interaction 

in IVTDDM illustrate potential consistency between harvests (Figure 5). Oats and radish/oats 

treatments maintained relatively high IVTDDM yields at both harvests. Annual ryegrass and 

triticale were particularly inconsistent, with low winter yields followed by abundant spring 

growth. Inconsistent IVTDDM distribution can severely limit the grazing options available to 

cattle producers. Studies have shown that multispecies mixtures may provide more consistent, if 

not more abundant, biomass production (Tilman et al., 1996; Deak et al., 2009; Bonin and Tracy, 

2012; Pollnac et al., 2014).  
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† AR, annual ryegrass; CC, crimson clover; HV, hairy vetch; Rd, radish; Tr, triticale. 

 

Figure 5. In vitro true digestible dry matter (IVTDDM) yield of cool-season annual cover crops 

at winter and spring harvests, mean of 2 years.  
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Summary and Conclusions 

 The cool-season annuals tested in this study proved to be highly digestible, nutritious, 

and productive. This suggests their feasible usage as late winter/early spring forages while, under 

proper management practices, maintaining their additional value as cover crops. All treatments, 

except for crimson clover, demonstrated excellent regrowth, indicating a potential for 

substantially extending the grazing season in the southeastern U.S. The three forage mixtures 

outperformed the radish and crimson clover monocultures, but not their respective grass 

component monocultures.  

 Oats and radish/oats mixture were the superior treatments in terms of consistent 

digestible dry matter production from late winter to early spring. For forage purposes, an oats or 

oats mixture cover crop may be the preferred cover crop choice. Annual ryegrass and 

radish/annual ryegrass/crimson clover mixture did not show consistent biomass production 

between harvests, however, annual ryegrass’s thick sod may be preferred for better grazability. 

Rye had satisfactory biomass production and only minor nutritive variation between harvests, 

however, rye is known to be less palatable to ruminants and, therefore, forage utilization should 

be made before its flowering stage. Triticale’s and radish/triticale/crimson clover mixture’s less 

vigorous winter production, followed by a precipitous drop in nutritive value between harvests, 

make them less attractive as a forage option.  

Legume monocultures can be highly beneficial as cover crops in terms of nitrogen 

contribution, however, the low biomass production from crimson clover and hairy vetch 

monocultures during late winter and early spring indicates some site-specific limitations to their 

usage. Crimson clover showed difficulty establishing in heavy, waterlogged soils, making it less 

competitive in mixtures with tall growing radishes and grasses. Hairy vetch may perform better 
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in a grass mixture with its climbing and later maturing growth habits. Hairy vetch also provided 

higher CP concentrations and a slightly more consistent digestible dry matter production across 

harvests than crimson clover. Tillage radish produced modest amounts of highly nutritious 

biomass, and showed no production nor nutritional benefit, nor drawback, to the forage mixtures. 

Due to the statistically similar yield results between monocultures and mixtures, as well 

as the high digestibility across all treatments, other factors may contribute more to deciding 

which cover crop would best fit a particular forage program. Agronomic factors include site-

specific climate and soil conditions, and maintaining consistent forage availability. Economic 

factors include seed prices and the reduction of winter feeding by extending the grazing season. 

Diverse forage mixtures can provide a longer grazing period than monocultures due to the 

developmental differences among species. Forage mixtures should be optimized for soil 

conditions, forage availability, and crop rotation schedules.  
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Figure A.1 Changes in cellular composition between winter and spring harvests of annual 

ryegrass dry matter. 
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Figure A.2 Changes in cellular composition between winter and spring harvests of rye dry 

matter. 
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Figure A.3 Changes in cellular composition between winter and spring harvests of oats dry 

matter. 
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Figure A.4 Changes in cellular composition between winter and spring harvests of triticale dry 

matter. 
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Figure A.5 Changes in cellular composition between winter and spring harvests of crimson 

clover dry matter. 
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Figure A.6 Changes in cellular composition between winter and spring harvests of hairy vetch 

dry matter. 
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Figure A.7 Changes in cellular composition between winter and spring harvests of radish dry 

matter. 
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