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ABSTRACT 

Prickly sida (Sida spinosa L.) is widely distributed in the southern U.S. and is a 

troublesome weed in many agronomic crops. In northeastern Louisiana on silty clay loam and 

clay soils, prickly sida seedling emergence began in early March when soil temperature reached 

13.8 C and ceased in mid-October. Seasonal peaks in emergence were associated with rainfall 

events and variability in prickly sida emergence was observed between soil types and years. 

Total emergence was as high as 3,000 prickly sida plants m-2. In shade studies, prickly sida was 

able to emerge and persist under a heavy shade environment and to produce a significant amount 

of seed when exposed to both increasing and decreasing shade levels as the growing season 

progressed. Under a season-long 30% shade environment, around 3,000 prickly sida seed were 

produced per plant. With exposure to 90% shade in the early season followed by a gradual 

decrease in shade to full sun, total seed production was around 8,100 seed per plant. In a weed 

control programs study, late season prickly sida control was 93% when glyphosate was applied 

both at-planting in late April/early May and postemergence (POST) in mid-May/late June. 

Soybean yield was increased an average of 10% when the residual herbicides chlorimuron-ethyl 

and tribenuron-methyl were applied with glyphosate plus 2,4-D preplant in mid-March compared 

with glyphosate plus 2,4-D alone. Yield was equivalent when glyphosate or glyphosate plus the 

residual herbicides flumioxazin, chlorimuron-ethyl, and thifensulfuron-methyl were applied at-

planting and averaged approximately 25% greater than when no herbicide was applied at-

planting. Application of 2,4-D or glyphosate plus 2,4-D to prickly sida reduced total seed 

production 78% compared with glyphosate alone. Herbicide treatments most effective for control 

of prickly sida present after crop harvest included diuron and linuron applied with glufosinate, 

paraquat, or glyphosate (75 to 85% control); diuron, atrazine, or 2,4-D ester applied with 

paraquat (74 to 77%); and 2,4-D ester and dicamba applied with glyphosate (75%). 
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CHAPTER 1 

INTRODUCTION 

 

Prickly sida (Sida spinosa L.) is a widely distributed and troublesome broadleaf weed in 

cotton (Gossypium hirsutum L.), corn (Zea mays L.), peanut (Arachis hypogaea L.) and soybean 

[Glycine max (L.) Merr.] in the southern U.S (Webster and Coble 1997; Webster and Nichols 

2012). Prickly sida was reported as the most troublesome weed of cotton in 1974 and second 

most troublesome in 1983 (Webster and Coble 1997). By 2008 and 2009 prickly sida ranked as 

the 19th most troublesome weed in corn and soybean and 14th in cotton (Webster and Nichols 

2012). A Mississippi survey of weeds conducted by Rankins et al. (2005) found prickly sida 

present in 40% of soybean fields sampled, making it the most prevalent weed. Prickly sida was 

present in 45% of soybean fields in the Delta region, compared to 43% of fields in eastern 

Mississippi. Glyphosate, the foundation of most weed control programs, is most effective on 

prickly sida when applied at one to three leaf compared four or more leaves (Jordan et al. 1997). 

Variability in control of prickly sida with glyphosate was reduced when glyphosate was applied 

with of ammonium sulfate. In recent years in Louisiana, growers and consultants have reported 

increased problems with control of prickly sida in soybean. 

PRICKLY SIDA (SIDA SPINOSA) BIOLOGY 

 Prickly sida belongs to the Malvacea family and is widely distributed in the sub-tropical 

and tropical regions of both hemispheres (Woodson et al. 1965). Prickly sida is an annual weed 

and has a slender, sparingly branched, and erect stem that can reach a height of 1.2 m (Bryson 

and DeFelice 2009). Leaves are polymorphic, mostly with a lanceolate or linear-oblong shape, 

crenate-serrate at the margins, and 2 to 6 cm long and 0.3 to 1.8 cm wide. Flowers are axillary, 

solitary, often with a very short accessory flowering branchlet in the same axil, and is attached 

by a slender pedicle 2 to 9 mm long. The calyx contains 5 sepals, 5 to 5.5 mm long; there are 5 
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yellow petals strongly oblique and 6 to 7 mm long. The fruit is composed of 5 trigonous 

mericarps 2.5 mm long with two short (0.5 to 0.8 mm) aristae at the apex. Seedling cotyledons 

are heart-shaped and slightly indented at the apex. 

Eighteen to twenty one days of prickly sida seed development are required to be 

considered fully mature where seed contain less than 21 % moisture, are dormant, and do not 

imbibe water or germinate when incubated for 28 d (Egley 1976). Seeds that have acquired 12 to 

16 d of development contain greater than 20% moisture and exhibit 80% germination after 4 

week of incubation. Dehydration and seed coat-hardening occurs during the later stages of seed 

development, greater than 12 to 16 d-old seed. Storage at 35 C for 12 week or longer, resulted in 

greater than 90% germination (Baskin and Baskin 1984; Egley 1976). Puncturing the seed coat 

over the radicle or cotyledon allowed for water imbibition of all hard-seed, but the puncture over 

the radicle promoted greater than 90% germination (Egley 1976). Prickly sida has been observed 

to germinate in the field from April through September in north central Kentucky; suggesting 

that water permeability of seeds increases throughout the year (Baskin and Baskin 1984). 

Prickly sida is also capable of germination under limited soil moisture. After 96 hour of 

incubation, prickly sida germination and radicle length was unaffected by osmotic pressures of 0, 

-300, and -600 kPa (Hoveland and Buchanan 1973). Even though some prickly sida seed 

germinated at an osmotic pressure of -1000 kPa, a significant reduction in radicle length was 

observed. Smith et al. (1992) reported significant reduction in prickly sida germination when 

osmotic stress of -200 kPa was imposed for 2 week, and seed germination was inhibited when 

osmotic stress exceeded -600 kPa. Soil pH range of 5.0 to 8.0 did not affect prickly sida 

germination. Prickly sida emergence of 80% was noted when seeds were planted at a 0.5 cm 
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depth, while only 60, 50, 40, and 20% emergence was observed at depths of 1 to 1.5, 2.0 to 2.5, 

3.0, 5.0 cm, respectively. Prickly sida did not emerge from depths greater than 5.0 cm.   

Optimum temperatures for prickly sida germination occur from 30 to 40 C (Baskin and 

Baskin 1984; Smith et al. 1992) and light was not a requirement for germination in this 

temperature range. However, when scarified prickly sida seeds were maintained at day/night 

temperature regimes of 15/6 and 20/10 C, germination was greater in the dark than in the light 

(Baskin and Baskin 1984). Germination was not promoted by freezing and thawing or by 

incubation of seed at 5 C. Germination was enhanced by increasing temperature regimes and by 

subjecting seeds to wet/dry cycles; increasing temperature proved most effective in promoting 

germination. Both the number of permeable seeds and rate of germination increased with 

increasing temperatures. Seeds exposed to higher temperatures following a lower temperature 

regime germinated at greater percentages than those maintained continuously at the higher 

temperatures. Also, increasing the length of time the seeds remained at the lower temperature 

before transfer to higher temperatures increased germination. The lower temperature regime 

seemed to “precondition” the seed for a rapid increase in water permeability. Egley (1990) 

reported that in moist soil, viability of prickly sida seed exposed 1 d to 50 C was reduced to 45% 

and seed did not survive 12 hour at 60 C. Egley and Chandler (1983) reported that prickly sida 

viability was 21, 4, and less than 1%, after burial for 3.5, 4.5, and 5.5 years, respectively. Depth 

of burial did not influence prickly sida viability after 30 months, however, viable seed was only 

found at 8 cm (15%) and 38 cm (1%) (Egley and Chandler 1978). 

POST-HARVEST WEED CONTROL 

At harvest time, weed seeds can be classified based on the dispersal status and location: 

(1) shed a previous year and remaining in the soil seedbank; (2) not shed from the mother plant; 
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(3) shed the current year and remain on the soil surface; (4) shed the current year and gathered by 

the harvest operation (Davis 2008). Weed seed pools are dominated by a few grass and broadleaf 

weed species (Davis 2008; Kegode et al. 1999). Davis (2008) observed that in at least one crop 

(corn or soybean) during one of the two study years, the dominant weed species had a ratio ≥ 1 

of undispersed seeds to seeds in the soil seedbank, indicating the potential for 1 year of seed rain 

to replenish or augment the soil seedbank. The current year’s crop, corn or soybean, affected the 

risk for seedbank replenishment for certain weed species. Seedbank augmentation or 

replenishment is a common occurrence in commercial grain production systems managed with 

standard herbicide programs. Seed capture or destruction at harvest time may be practical, but it 

would require modifying harvesting equipment, whereas, management practices that target 

reducing seed production may be most effective. The development of effective management 

strategies that reduce weed fecundity, will be aided by species-level information that identify 

tactics most appropriate for a given weed spectrum.  

Research has demonstrated that herbicides applied at early flower or pod set can reduce 

potential seedbank replenishment (Bennet and Shaw 2000; Biniak and Aldrich 1986; Brewer and 

Oliver 2007; Clay and Griffin 2000; Fawcett and Slife 1978; Hartzler and Battles 2001; Isaacs et 

al. 1989; Jha and Norsworthy 2012; Maun and Cavers 1969; Taylor and Oliver 1997; Thomas et 

al. 2005; Walker and Oliver 2008). Additionally, seed weight reduction, seed viability, and 

seedling recruitment can affect presence of plant species the following season (Jha and 

Norsworthy 2012). Herbicides can be used before soybean harvest to negatively affect weed seed 

number, seed weight, germination, and seedling growth parameters (Bennett and Shaw 2000). 

Glyphosate at 1.1 or 2.2 kg ai ha-1 applied alone or in combination with sodium chlorate (3.4 or 
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6.7 kg ai ha-1) were effective in reducing weed seed production, seed weight, and seedling 

growth.  

Applications of glyphosate made to weeds prior to reproductive development has been 

shown to reduce weed seed production (Brewer and Oliver 2007; Thomas et al. 2005). In a 

greenhouse experiment, when averaged over application timings (4-leaf, 8-leaf, 4-leaf followed 

by 8-leaf, and 12-leaf), glyphosate applied at 280 g ai ha-1 reduced sicklepod pod [Senna 

obtusifolia (L.) H.S. Irwin & Barneby] and seed numbers and total seed weight 79, 80, and 81%, 

respectively, (Thomas et al. 2005). Brewer and Oliver (2007) found that regardless of glyphosate 

rate (0.42, 0.84, 1.68 kg ae ha-1) or application timing [3, 6, and 9 weeks after emergence 

(WAE)] spurred anoda [Anoda cristata (L.) Schlecht.] and hemp sesbania [Sesbania herbacea 

(P. Mill.) McVaugh] seed production was reduced at least 93%. It should be noted that by 9 

WAE spurred anoda and hemp sesbania had begun reproductive development (flowering). For 

entireleaf morningglory [Ipomoea hederacea (L.) Jacq.], seed production was reduced 37% to 

100% when glyphosate was applied at 3 or 6 WAE (prior to flowering). Seed production was 

reduced more when higher rates of glyphosate were used and when applications were made 3 

WAE compared to 6 WAE. Hemp sesbania seed production was reduced 93 to 100% regardless 

of glyphosate application timing (3, 6, or 9 WAE) or rate (0.42, 0.84, or 1.68 kg ae ha-1). When 

averaged over application timings of 8 to 10, 12 to 17, and 20 to 30 cm, glyphosate at 840 g ha-1 

reduced velvetleaf (Abutilon theophrasti Medik.) biomass and capsule number/plant at least 90% 

(Hartzler and Battles 2001). All application timings were effective in reducing capsule number 

per plant, however, the later application timings tended to be more effective. In general 

glyphosate at 840 g ha-1 reduced dry weight and capsule number greater than glyphosate at 420 g 
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ha-1. Results have shown that in general, higher glyphosate rates were more effective than lower 

rates when application was made to weeds prior to reproductive development.  

Glyphosate when applied to weeds at bud formation and early flower/heading has been 

shown to effectively reduce seed production (Biniak and Aldrich 1986; Brewer and Oliver 2007; 

Clay and Griffin 2000; Isaacs et al. 1989; Taylor and Oliver 1997; Walker and Oliver 2008). A 

33% solution of glyphosate applied to velvetleaf and giant foxtail (Seteria faberi Herrm.) at early 

flower and heading, respectively, using a roller paint brush to simulate a roller or ropewick 

applicator reduced seed numbers at least 96% (Biniak and Aldrich 1986). Early flower and 

heading applications were in general more effective at reducing seed number, seed weight, and 

germination percentage than later application timings. For entireleaf morningglory, an 

application made 9 WAE, when plants were in early reproductive development reduced seed 

production 64, 88, and 93% from glyphosate rates of 0.42, 0.84, and 1.68 kg ae ha-1, respectively 

(Brewer and Oliver 2007). Glyphosate applied at 0.28 kg ai ha-1 at early bloom (flowering 

without pods) reduced sicklepod seed production by 84% in 1984 and 100% in 1985 (Isaacs et 

al. 1989). Glyphosate rates of 0.21 kg ai ha-1 or greater applied to sicklepod at bud formation or 

flower to 9 cm pod stage reduced seed production 85% or more (Taylor and Oliver 1997). 

Glyphosate applied at 0.84 kg ae ha-1 to a complex of weeds when pitted morningglory (Ipomoea 

lacunosa L.) began flowering reduced seed production of Palmer amaranth (Amaranthus palmeri 

S. Wats.), barnyardgrass [Echinochloa crus-galli (L.) Beauv.], prickly sida, pitted morningglory 

(Ipomoea lacunosa L.), and sicklepod by 83, 88, 95, 98, and 99%, respectively (Walker and 

Oliver 2008).  

Glyphosate applied at early fruit or later reproductive stages has also been shown to 

reduce weed seed production (Clay and Griffin 200; Isaacs et al. 1989; Taylor and Oliver 1997). 
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Glyphosate applied to sicklepod containing pods up to 5.5 cm in length reduced seed production 

85%, but seed production was not reduced from applications made to sicklepod containing 

immature pods 9 cm or longer (Isaacs et al. 1989). Glyphosate at 0.84 kg ae ha-1 was required to 

reduce sicklepod seed production around 80% when applied at 15 to 30 cm pod development 

(Taylor and Oliver 1997). Hemp sesbania and common cocklebur (Xanthium strumarium L.) 

seed per plant was reduced 94 and 82%, respectively, when glyphosate was applied at initial seed 

set (75% of plants had set pods or burs 0-8 cm in length) (Clay and Griffin 2000). Sicklepod 

response to glyphosate applications at initial seed set was inconsistent, with no reduction in seed 

per plant or seedling emergence in the first year. In the second year, an initial seed set 

application reduced seed per plant 88% and seedling emergence 72%. Mid seed fill and 

physiological maturity applications of glyphosate were not effective in reducing seed number per 

plant for hemp sesbania, common cocklebur, or sicklepod.  

Applications of auxinic herbicides to weeds just prior to flowering/anthesis, early 

flowering, and early fruit stage have been shown to reduce seed number and germination 

(Fawcett and Slife 1978; Isaacs et al. 1989; Jha and Norsworthy 2012; Maun and Cavers 1969; 

Taylor and Oliver 1997). Curly dock (Rumex crispus L.) exposed to 2,4-D 12 days before 

anthesis produced no viable seed (Maun and Cavers 1969). Plants that were exposed at anthesis 

produced seed with minute embryos that were not capable of germination and when exposed 7 

days after anthesis only 5 to 15% of the seed were capable of germination. Seed production and 

germination were not reduced from exposure to 2,4-D 34 days after anthesis. Isaacs et al. (1989) 

reported that applications of 2,4-DB at 0.28 kg ai ha-1 and 2,4-D at 0.56 kg ai ha-1 to sicklepod at 

early bloom did not affect seed production, but applications at early fruit (full bloom and 

immature pods up to 5.5 cm long) reduced sicklepod seed numbers 96 and 34% for 2,4-DB and 
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2,4-D, respectively. Taylor and Oliver (1997) reported that dicamba at 1.1 and 2.2 kg ai ha-1 

when applied to sicklepod at bud formation, flower to 9 cm pod stage, and 15 to 30 cm pod stage 

reduced seed number 78 to > 80%. For 2,4-D at of 0.6 and 1.1 kg ha-1 seed production was 

reduced 99 and 99%, respectively, for common lambsquarters (Chenopodium album L.) when 

applied prior to flowering; 77 and 84%, respectively, for redroot pigweed (Amaranthus 

retroflexus L.) when applied during flowering with some mature seed; and 64 and 100%, 

respectively, for jimsonweed (Datura stramonium L.) when applied at flowering (Fawcett and 

Slife 1978). In contrast, giant foxtail seed production was increased 307 and 381% from 0.6 and 

1.1 kg ha-1 of 2,4-D, respectively, when applied prior to flowering. Although viability of 

common lambsquarters seeds produced was not greatly affected by 2,4-D, seedlings from seeds 

of plants treated with 2,4-D, were about half as vigorous as control plants. Additionally, 

jimsonweed seedling grown from seeds from 2,4-D treated plants exhibited phenoxy herbicide 

injury symptoms.  

Herbicides have also been effective in reducing glyphosate-resistant Palmer amaranth 

seed production (Jha and Norsworthy 2012; Crow et al. 2015). Glufosinate (820 g ai ha-1), 2,4-D 

(1060 g ae ha-1), and dicamba (280 g ae ha-1) applied at the first visible sign of inflorescence to 

glyphosate-resistant Palmer amaranth biotypes reduced seed production of LC biotype by 75 to 

87% and of the MC biotype by 94 to 95% compared to the non-treated plants (Jha and 

Norsworthy 2012). Glufosinate, 2,4-D and glyphosate (870 g ai ha-1) reduced 100 seed weight 

22%, irrespective of the biotype and seed viability was 45 to 61% compared with 97% in the 

non-treated plants. All herbicides reduced cumulative seedling recruitment by an average of 

84%.  
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Crow et al. (2015) evaluated after corn harvest (POST-harvest) weed management 

programs for Palmer amaranth control and seed production prevention. At the time of application 

weeds ranged from 6 to 50 cm with many of them beginning to flower. Paraquat at 840 g ai ha-1 

alone or in combination with s-metolachlor (1070 g ai ha-1), metribuzin (263 g ai ha-1), 

pyroxasulfone (149 g ai ha-1), saflufenacil (50 g ai ha-1), flumioxazin (72 g ai ha-1), 

pyroxasulfone + flumioxazin (70 and 89 g ai ha-1), or pyroxasulfone plus fluthiacet (128 and 4 g 

ai ha-1) controlled Palmer amaranth at least 91% 14 DAA. Paraquat applied with residual 

herbicides were more effective in reducing weed regrowth and new emergence compared with 

paraquat alone. All POST-harvest programs successfully prevented seed production of Palmer 

amaranth effectively, eliminating the addition of 1,200 seed m-2 or 12 million seed ha-1 return to 

the soil seedbank. 

A 3% solution of chlorsulfuron applied to velvetleaf and giant foxtail at early flower and 

heading, respectively, using a roller paint brush to simulate a roller or ropewick applicator 

prevented velvetleaf from setting seed and reduced giant foxtail seed numbers 70% (Biniak and 

Aldrich 1986). Early flower and heading applications were in general more effective at reducing 

seed number, seed weight, and germination percentage than later application timings. 

Chlorimuron and imazaquin at 0.28 kg ai ha-1 applied to sicklepod at early bloom (flowering no 

pods) and early fruit (having immature pods up to 5.5 cm) almost eliminated seed production, 

and none of the seed produced were able to germinate (Isaacs et al. 1989). Glufosinate at 0.84 kg 

ai ha-1 reduced seed production greater than 80% when applied to sicklepod at bud formation, 

flowering to 9 cm pod, and 15 to 30 cm pod (Taylor and Oliver 1997). Paraquat was more 

effective than glufosinate and a paraquat rate of 0.26 kg ai ha-1 or higher reduced seed production 

greater than 80% at all application timings.  
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SHADING EFFECTS ON PLANT GROWTH AND REPRODUCTION  

Light regulates plant growth and development through, photoperiod, quantity of total 

light and of photons, spectral quality, and duration (Holt 1995). Light influences the weed/crop 

ecosystem by regulating crop and weed growth and competition. Plant competitive ability is 

partly controlled by how efficient light is utilized for growth (Keeley and Thullen 1978; Santos 

et al. 1997). Irradiance, is determined by photoperiod and solar angle which varies with latitude 

and season, time of day, and prevailing weather (Holt 1995). Maximum growth and 

photosynthetic rates occur in full sunlight for most plants, and decrease upon reduced light. 

Changes in light level during the life cycle of a plant has profound effects on growth and 

development and is dependent on the plants ability to acclimate. Dall’Armellina and Zimdahl 

(1988) determined that total photosynthetic photon flux density was more important for growth 

and development of field bindweed (Convolvulus arvensis L.) regardless of whether it was 

exposed to low or high irradiance first early in its development.  

Many weeds when transferred from high irradiance to a shaded environment, which 

occurs during crop canopy development and closure, react by adaptations that reduce the growth-

limiting effects of shading (Holt 1995; Patterson 1980). Some plants can acclimate to reduced 

light situations by altering dry matter distribution and leaf anatomy, and by decreasing 

respiration rates, enzyme activities, and electron transport capacity (Holt 1995). Palmer amaranth 

showed morphological acclimation to shading by increasing specific leaf area (SLA) and 

decreasing leaf and main-stem branch appearance (Jha et al. 2008) and common waterhemp 

(Amaranthus rudis Sauer) responded to reduced irradiance by increasing leaf development at the 

expense of stem and seed and more time was required to accumulate biomass (Steckel et al. 
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2003). Also, time of weed emergence relative to the crop can affect its competition and response 

to environmental stress including reduced irradiance. 

Bazzaz and Carlson (1982) determined that early successional annuals (weeds) were not 

only well adapted to high irradiance, but were also capable of coping with extreme variation in 

the light environment, becoming like shade plants in response to low irradiance. Holt (1995) 

postulated that the plasticity observed in early successional weed species in their photosynthetic 

response to light level may result in survival and reproduction in low light environments. 

Therefore, weed management thru manipulation of the light environment in a crop would be 

difficult. Manipulation of the crop canopy to improve weed management and crop yield can only 

be accomplished with an understanding of the dynamics of light competition with the weed/crop 

canopy and the role of weed plasticity response to changing light conditions.  

Light is first intercepted in the drill where the crop is planted, followed by shoulders of 

planted beds and row middles/furrows (Keeley and Thullen 1978). Orientation of the planted 

drill (north to south, east to west) influences light interception in relation to the shoulders of 

beds, but differences become less pronounced as the crop canopy increases and intercepts more 

light. The rate of crop canopy development and interception of light varies with production 

practices and environmental conditions. Row spacing, plant population per hectare, date of 

planting, and inherent differences in vigor among crop varieties and hybrids will influence the 

level of crop light interception. Within 8 to 9 weeks after planting of corn 1 meter centers, 

interception of photosynthetically active radiation (PAR) was 90% or more. Because cotton and 

grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor]  canopy development was slower 

than corn, 12 to 16 weeks was required to obtain 80% light interception. Depending on plant 

population (32,900 to 56,300 plants ha-1), mean shade level measured in corn fields ranged from 
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92.4 to 97.3% (Knake 1972). An understanding of plants response to light and other 

environmental conditions can be used to develop weed management programs to exploit 

environmental interactions that favor crop competition with weeds (Dall’Armellina and Zimdahl 

1988).  

Bazzaz and Carlson (1982) measured photosynthetic flexibility as the difference in 

response between sun (full sunlight) and shade (approximately 1% of full sunlight) -grown 

plants. The following findings were reported 1) dark respiration rates for sun-grown plants were 

generally higher for early successional species than it was for mid- to late-successional species; 

2) for both sun- and shade-adapted plants, quantum yield tended to be higher for the annuals than 

for the other species; 3) the light compensation point (light intensity at which net photosynthesis 

is zero) was generally higher for sun-grown plants than it was for plants grown in the shade; 4) 

the differences in light compensation points between shade- and sun-grown plants was higher for 

annuals than for late successional species. Also, all species were able to change their 

photosynthetic rate in response to light, from low photosynthetic rates when grown in the shade 

to higher rates when grown in full sunlight, and this change was greater for early successional 

annuals than for late successional species. Early successional annuals were high in 

photosynthetic flexibility, mid-successional species were intermediate, and late successional 

species were low. It was concluded that early successional species were both well adapted to 

higher irradiance found in early successional habitats and were better able to deal with extreme 

fluctuation in light level. The ability of early successional species to dramatically change their 

patterns of photosynthetic response to light level made them became more like shade plants 

when grown under shade (Bazzaz and Carlson 1982).  
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For giant foxtail grown under varying shade levels, plant height was similar for 0, 30, and 

60% shade treatments (Knake 1972). As shade level increased internode length decreased for the 

first seven internodes. Giant foxtail under 30 and 60% shade maintained plant height, relative to 

no shade, with greater internode length for the eighth and ninth internodes. Number of stems per 

giant foxtail plant decreased with increasing shade, but even plants in 80% shade averaged 21 

stems. Giant foxtail leaf number decreased with increasing shade level. In 0% shade plants 

averaged almost four new leaves a day until approximately 5 to 6 weeks after initiation of 

treatments when total leaf number reached 188 per plant. In contrast, giant foxtail in 80% shade 

produced new leaves for about 4 weeks where the number remained steady at about 40 leaves per 

plant thereafter. Dry weight decreased linearly with increasing shade level. Compared to no 

shade, 80% shade reduced number of seeds per head by 50% and seed weight by 70%.     

As light quantity increased there was a direct proportional increase in average number of 

yellow nutsedge (Cyperus esculentus L.) shoots, tubers and total dry matter produced (Keeley 

and Thullen 1978). Thirty percent shade reduced dry matter and tuber production 32%. Yellow 

nutsedge height when grown in 30 to 80% shade was taller than that of plants grown in full 

sunlight or 94% shade. Dense shade (80 and 94% shade) did not prevent the formation of tubers 

and after 3 months, tubers population averaged 429 and 99 tubers per plot an average gain of 381 

and 51 tubers compared with initial tuber population.  

Dry weight of itchgrass [Rottboellia cochinchinensis (Lour.) W. D. Clayton] at 40 days 

after planting when grown in 2, 25, and 60% sunlight was 0.3, 16, and 55% of that for plants 

grown in full sunlight (Patterson 1979). Leaf area of itchgrass grown in 2, 25, and 60% sunlight 

was 2, 42 and 99% of that of plants growing in full sunlight. At 40 days after planting tiller 

production was not observed for 2% sunlight and was similar for the 100 and 60% sunlight 
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treatments. Root/shoot ratios were greatest for plants in full sunlight (0.52) and those transferred 

from 2 to 100% (0.53) sunlight. Photosynthetic rates decreased with increasing shade. For 

recently expanded, single, fully exposed leaves, photosynthetic rates were 22.5, 51.6, and 65.5 

mg CO2 dm-2 h-1 in 25, 60, and 100% sunlight, respectively. Photosynthetic rates did not 

significantly differ at saturating irradiance for itchgrass grown in 25, 60 or 100% sunlight and 

ranged from 76.4 to 78 mg CO2 dm-2 h-1. Stomatal resistance to CO2 flux also did not differ 

significantly among itchgrass plants grown in 100, 60, and 25% sunlight. This demonstrated that 

even when grown in shade, itchgrass maintained the capacity for high photosynthetic rates. 

After 89 days, cogongrass [Imperata cylindrica (L.) Beauv.] on average produced, three 

times more than total dry weight and leaf area in full light compared to 56% full light and 20 

times as much as in 115% full light (Patterson 1980). Shading significantly affected the 

distribution of plant biomass into leaves, stem, roots and rhizomes. As shading increased the 

distribution of plant biomass into leaves increased, but decreased for rhizomes. For cogongrass 

grown in 11% light and transferred to full light 39 days later, biomass was 16 times greater than 

for cogongrass plants that remained in 11% light. The transferred plants produced as many 

shoots and leaves and three-fourths as many rhizomes as plants that remained in full light.  

Silverleaf nightshade (Solanum elaeagnifolium Cav.) seedlings did not emerge under 

92% shade (Boyd and Murray 1982). Silverleaf nightshade seedlings, when exposed to 92% 

shade grew for only a short time but no plants survived. Silverleaf nightshade height declined 

with increasing shade density. Plants grown from seed produced more leaves in full sunlight than 

did plants grown in shade, and full sunlight plants produced an average of almost 2 leaves per 

day between July 10 and July 20. Plants growing under 63% shade, however, averaged less than 

one during the same time period. Established plants exhibited an almost linear decrease in dry 
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matter production with increasing shade level. Established plants in full sunlight produced more 

than 7 times the dry matter as plants in 92% shade. It was concluded that a shade level between 

63 and 97% would be necessary to prevent seed production.  

For field bindweed either grown from seed or rhizome segments, each decrease in light 

level (520, 325 and 236 μmol/m2/s or 74, 84, 88% shade) reduced flower number and leaf area 

(Dall’Armellina and Zimdahl 1988). High linear regression correlations, r2 = 0.95 to 0.98, 

indicated that reduced light could be used to reduce field bindweed seed production. They 

concluded that plants grown from seed were more vigorous than those grown from rhizome 

segments and plants from seeds were less sensitive to shading and better able to overcome the 

stress of growth under low light. For Russian knapweed (Centaurea repens L.) each decrease in 

light intensity decreased shoot and root dry weight. Total photosynthetic photon flux density was 

more important for growth than whether low or high light level occurred first.  

As shade level increased (0, 40, 60, and 80% shade) shoot and tuber number of yellow 

nutsedge and purple nutsedge (Cyperus rotundus L.) decreased (Santos et al. 1997). For both 

species, shade levels beyond 60% did not further decrease shoot and tuber production, and a 

linear relationship was observed between shading and dry biomass accumulation of shoots and 

tubers. For purple nutsedge shoot dry weight was decreased by exposure to 20% shade, with no 

further effect from higher shade levels. Shoot dry weight was decreased by an average of 76% 

when purple nutsedge was exposed to 40% or greater shade intensity. In contrast, yellow 

nutsedge dry weight did not differ between 0 and 20% shade, but there was a steady decrease in 

shoot dry weight from 40 to 80% shade. Purple nutsedge tuber dry weight decreased steadily as 

shade level increased, but did not differ for 60 and 80% shade. Yellow nutsedge tuber dry weight 

was not affected by 20% shade, but dry weight decreased from 40 to 80% shade.       
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Common cocklebur, jimsonweed, velvetleaf, and soybean exposure to reduced irradiance 

resulted in decreased leaf thickness and increased chlorophyll content and photosynthetic rate per 

unit leaf volume (Regnier et al. 1988). In field and growth chamber experiments, maximum 

photosynthetic rates were correlated to leaf thickness for all species. When plants were exposed 

to light intensities below 700 to 1000 μE m-2 s-1, photosynthetic rates of plants grown at low 

irradiance (180 μE m-2 s-1) were greater than those of their counterparts grown in 800 μE m-2 s-1. 

They postulated that higher photosynthetic rates may partially explain lower dark respiration 

rates (nonphotorespiratory mitochondrial CO2 release) per unit leaf volume exhibited by plants 

grown at 180 μE m-2 s-1. For plants grown at high-irradiance, chloroplast shading may occur 

from thicker palisade mesophyll layer, which in turn would lead to lower light harvest per unit 

leaf volume when light is sub-saturating compared to thinner leaves of the low-irradiance grown 

plants (little chloroplast shading). This increased photosynthetic rate partially compensated for 

the limited irradiance conditions of the shade plants. Leaf area ratio (ratio of leaf area to plant 

weight; LAR) was greater for all species grown at low irradiance and increase averaged 112% 

and 53% for growth chamber and field grown plants, respectively. All species compensated for 

reduced irradiance during growth by increasing LAR and photosynthesis per unit leaf volume 

when exposed to low light intensities. In response to high irradiance, all species increased light-

saturated photosynthetic rate per unit leaf area; this reaction is typical of sun-adapted plants. 

Changes in LAR and light-saturated photosynthetic rate per unit leaf area were due primarily to 

changes in leaf thickness. 

Differences in velvetleaf plant height, number of leaves, or branches/plant were not 

observed for plants in 30% shade compared to full sunlight (Bello et al. 1995). Exposure to shade 

for 3 weeks was required before difference in plant height were observed. Average leaf number 
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was reduced 89 and 70% by 76% shade in 1984 and 1985, respectively. Less than 8 branches per 

plant were produced by velvetleaf plants growing in 76% shade; approximately half the branches 

produced by plants in full sunlight and 30% shade. Branch formation was also delayed by one 

week when velvetleaf was grown in 76% shade. Neither time of flower initiation or capsule 

formation was affected by shading. Capsule number was reduced 63% and 90% by 30 and 75% 

shade treatments, respectively. Of interest is that plants grown in shade produced seed that broke 

dormancy earlier than seeds produced in shade. Seeds from plants grown in full sunlight were 

20% less likely to germinate under favorable conditions than were seed from plants produced in 

shade. 

For common waterhemp emerging in June, maximum dry matter accumulation decreased 

from 0, 40, and 68% shade and equaled 22, 17, 3 g g-1 d-1 (Steckel et al. 2003). For May 

emerging common waterhemp, the duration of growth increased 1.5, 2.7, and 2.2-fold compared 

to the June emergence date. For common waterhemp plants growing in 68% shade, the duration 

of growth was significantly longer than that of plants growing in 0 to 40% shade. This suggests 

that common waterhemp increases the duration of dry weight accumulation in response to low 

irradiance levels. Common waterhemp growing in low irradiance was able to produce viable 

seed indicating that even though dry matter accumulation was prolonged due to reduced 

irradiance, common waterhemp was still able to reach maturity under delayed emergence 

conditions. Shade treatments did not affect the maximum growth of common waterhemp plants 

emerging in June. However, shade treatments did affect the maximum growth rate of common 

waterhemp emerging in May, with the number of days to reach maximum growth rate increasing 

as shade intensity increased. Final plant height was not different for common waterhemp plants 

growing in 0, 40, and 68% shade. Dry matter produced by common waterhemp in full sunlight 
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for early and late emergence was 720 and 350 g plant-1, respectively. Biomass was reduced from 

each additional increase in shade by 24, 49 and 99% for the early emerging plants and 37, 51 and 

99% for late emerging plants. Averaged over emergence dates, each additional increase in shade 

over full sunlight, reduced seed production 51, 75, and 99%. They concluded that common 

waterhemp responded to reduced irradiance by increasing leaf development at the expense of 

stem and seed and more time was required to accumulate biomass.     

Light response curves for photosynthesis per unit leaf area were similar for Palmer 

amaranth plants growing in 0 and 47% shade, and increased as PAR increased (Jha et al. 2008). 

Leaves of plants grown in 0 and 47% light showed no evidence of light saturation at the highest 

PAR measured, 1,200 μmol/m2/s. Plants growing under 87% shade acclimated by lowering light 

compensation point 24% compared to full sunlight. In response to 87% shade, Palmer amaranth 

SLA was increased 28 and 42% over 47 and 0% shade, respectively. Palmer amaranth 

compensated for reduced PAR by increasing leaf surface area per unit of leaf biomass which 

would permit greater harvest of PAR per leaf. Palmar amaranth’s increase in SLA was 

concomitant with a decrease in light-saturated photosynthetic rates per unit leaf area. By 

producing thinner leaves Palmer amaranth lowered its light compensation point and dark 

respiration rate per unit leaf area. Leaf chlorophyll content of Palmer increased under 47% shade, 

however, chlorophyll content was similar between Palmer amaranth in full sunlight and 87% 

shade. The increased SLA of Palmer amaranth growing in 87% shade but the plants inability to 

increase leaf chlorophyll per unit leaf area caused reductions in the photosynthetic ability of 

those plants. In all shade treatments, Palmer amaranth height increased linearly with growing 

degree day (GDD), and the increase in plant height per GDD was not influenced by the decrease 

in PAR from shading. Palmer amaranth conserved limited assimilates and maintained growth 
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under low photosynthetic rates by decreasing the leaf production rate with increasing shade 

intensity. In all shade treatments main-stem branch appearance increased linearly with increasing 

GDD, but the main-stem appearance rate differed among shade treatments. Reducing main-stem 

branch production, is a shade acclimation strategy of Palmer amaranth that allows for less 

vegetative biomass allocation to branch components that deplete photosynthates, thereby 

ensuring sufficient resources to meet the demands of reproductive development. They concluded 

that Palmer amaranth showed morphological acclimation to shading by increasing its SLA and 

decreasing leaf and main-stem branch appearance.  

This research concentrates on prickly sida, a weed that can emerge in northeastern 

Louisiana in early March and that is becoming more problematic in crops. The shift in recent 

years toward earlier maturing crops has resulted in late-season prickly sida emergence both in-

crop and in harvested fields. Associated seed production has contributed to increased prickly sida 

presence and competition with crops. This research on prickly sida specifically addresses 1) 

emergence periodicity from March through October in fields with silty clay loam and clay soils, 

2) plant growth and seed production response to shade comparing gradual shade increase as 

would occur within a developing crop canopy and decrease in shade as would occur with crop 

senescence, 3) weed control and soybean yield using residual herbicides preplant, at-planting, 

and POST, and 4) POST harvest control programs to reduce seed production and seed viability 

using glyphosate and 2,4-D.  
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CHAPTER 2 

PRICKLY SIDA (SIDA SPINOSA) EMERGENCE PERIODICITY IN NORTHEASTERN 

LOUISIANA 

 

INTRODUCTION 

Prickly sida (Sida spinosa L.) is widely distributed in the southern U.S. and is a 

troublesome broadleaf weed in cotton (Gossypium hirsutum L.), corn (Zea mays L.), peanut 

(Arachis hypogaea L.), and soybean [Glycine max (L.) Merr.] (Webster and Coble 1997; 

Webster and Nichols 2012). A survey of weeds in Mississippi found prickly sida present in 40% 

of soybean fields sampled, making it the most prevalent weed (Rankins et al. 2005). Prickly sida 

was reported as the most troublesome weed of cotton in 1974 and second most troublesome in 

1983 (Webster and Coble 1997). By 2008 and 2009 prickly sida ranked as the 19th most 

troublesome weed in corn and soybean and 14th in cotton (Webster and Nichols 2012).  

For prickly sida light was not a requirement for germination when either freshly mature 

scarified seed or unscarified seed were incubated at temperatures between 30 and 40 C (Baskin 

and Baskin 1984; Smith et al. 1992). Germination of prickly sida seeds transferred from 15/6, 

20/10, 25/15, or 30/15 C to a higher regime of 20/10, 25/15, 30/15, or 40/25 C was greater than 

when maintained continuously at the lower temperature regime (Baskin and Baskin 1984). 

Wet/dry cycles also enhanced germination. Neither moist chilling at 5 C nor freezing and 

thawing stimulated prickly sida seed germination. 

Crop canopy development can influence weed emergence by affecting both light quality 

and diurnal soil temperatures (Jha and Norsworthy 2009; Norsworthy 2004; Benech-Arnold et al. 

1988). Meyers et al. (2004) observed that soil degree days were good predictors of emergence 

for common ragweed (Ambrosia artemisiifolia L.), common lambsquarters (Chenopodium album 

L.), velvetleaf (Abutilon theophrasti Medikus), giant foxtail (Seteria faberi Herrm.), yellow 
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foxtail [Seteria pumila (L.) Beauv], large crabgrass [Digitaria sanguinalis (L.) Scop.], smooth 

pigweed (Amaranthus hybridus L.), and eastern black nightshade (Solanum ptycanthum Dun.). 

Bagavathiannan et al. (2011), however, reported that growing degree days did not predict 

barnyardgrass emergence any better than calendar days. Stoller and Wax (1973) observed that 

for several weed species cumulative soil heat units above 10 C was not correlated with 

emergence initiation; instead initial emergence was attributed to stimuli associated with general 

soil warming.  

Although tillage has not been shown to affect emergence periodicity, it can affect total 

seedling emergence (Anderson and Nielsen 1996; Egley and Williams 1990; Ogg and Dawson 

1984). Egley and Williams (1991) reported that in most years prickly sida emerged during the 

midseason period and emergence periodicity was not affected by tillage at a 5 to 15 cm depth. 

Understanding the soil seed population and seedling emergence patterns associated with tillage 

systems may aid in predicting weed infestation levels in crops (Forcella et al. 1992). Knowledge 

of weed population dynamics would be useful in making weed management decisions (Jha and 

Norsworthy 2009; Myers et al. 2004; Norris 2007; Ogg and Dawson 1984). Weed species can 

vary in there emergence periodicity (Anderson and Nielsen 1996; Bagavathiannan et al. 2011; 

Eberlein et al. 1988; Egley and Williams 1991; Hilgenfeld et al. 2004; Ogg and Dawson 1984; 

Schwinghamer and Acker 2008; Stoller and Wax 1973) and in addition to light and temperature, 

seed dormancy status can also affect seasonal emergence (Baskin and Baskin 1985). Hilgenfeld 

et al. (2004) reported that ivyleaf morningglory [Ipomoea hederacea (L.) Jacq.] and shattercane 

[Sorghum bicolor (L.)] have prolonged emergence periodicity and were capable of re-infesting 

fields following early season postemergence applications of glyphosate. Consequently, an 
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integrated season long weed management plant would be critical to ensure that difficult to 

control weeds do not proliferate.  

A five-year study at Stoneville, MS, evaluated weed emergence where reseeding was 

restricted to allow for comparison of emergence patterns from only seed present in the soil 

(Egley and Williams 1991). For prickly sida, initial emergence occurred from early April to early 

May and peak emergence occurred between late-May and early-August. In Louisiana, prickly 

sida has emerged as early as the first week of March and has been observed to persist under a 

corn canopy and to germinate after corn harvest. A study was conducted to investigate prickly 

sida emergence periodicity in Northeastern Louisiana on silty clay loam and clay soils.  

MATERIALS AND METHODS 

A study was conducted in 2012 and 2013, at the LSU AgCenter Northeast Research 

Station (NERS) near St. Joseph, La. In 2012, three field sites were used: one a Commerce silty 

clay loam soil (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) with 

no fall seedbed preparation (Commerce-1) and the other two a Sharkey clay soil (very-fine, 

smectitic, thermic Chromic Epiaquerts) with seedbed preparation the previous fall (Sharkey-1 

and Sharkey-2). In 2013, two field sites were used: a Commerce silty clay loam soil with no fall 

seedbed preparation (Commerce-2) and a Sharkey clay soil with fall seedbed preparation 

(Sharkey-3). Each field site was selected based on presence of a natural prickly sida population. 

Six 1 m-2 randomly assigned plots at each site were flagged and used to collect prickly 

sida emergence data. Data collection was initiated on March 2, 2012 and on March 17, 2013 and 

continued every 14 days until October 23, 2012 and October 17, 2013. Immediately following 

data collection at each date plots were treated with paraquat (Gramoxone SL, Syngenta Crop 

Protection LLC, Greensboro, NC 24719) at 560 g ai ha-1 plus 1% v/v crop oil concentrate (COC) 
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(Superb HC, Winfield Solutions LLC, St. Paul, MN 55164) to remove all vegetation. Because 

prickly sida seedling and other weeds were less than 5 cm, paraquat completely controlled all 

vegetation present.  

Daily rainfall data for both years were obtained from the NERS weather station located 

approximately 1 mile from the experimental sites. In 2012, soil temperature data one week prior 

to prickly sida emergence were collected from the weather station and thereafter at each site 

using WatchDog B101 8K Temp data loggers (Spectrum Technologies Inc., Aurora, IL 60504) 

placed at a 3.8 cm depth and set to record every hour. In 2013, soil temperature was determined 

using data loggers at the Commerce site and at the NERS weather station. Weekly total rainfall 

and weekly average soil temperature data for 2012 and 2013 for each site are presented in Figure 

2.1. 

Actual prickly sida emergence data at each collection date and calculated cumulative data 

across the growing season were subjected to ANOVA using Standard Least Squares method in 

Fit Model functionality in JMP® software (JMP 2015). Because the effect of variation in soil 

seed bank levels and rainfall is confounded with the effect of soil type, data were analyzed 

separately for each site-year combination as a completely randomized design (CRD) with date as 

fixed effect and the six areas within each site-year as replications. Type III tests were used to test 

significance of fixed effects. LSMEANS were used to compare actual and cumulative emergence 

at different dates and Fisher’s protected LSD was used for mean separation. Data are presented 

in Tables 2.1 and 2.2. Actual and cumulative means plotted against date are presented in Figures 

2.2 and 2.3. For the plotted cumulative data, standard error bars for each date are included to 

show the variation among the six replicates. In other research evaluating emergence periodicity 
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Figure 2.1. Total weekly rainfall data for 2012 and 2013 (vertical bars) obtained from the 

Northeast Research Station (NERS) weather station located approximately one mile from the 

experimental sites and average soil temperature in 2012 for the Commerce silty clay loam 

(Commerce-1) and Sharkey clay sites (Sharkey-1 and Sharkey-2) and in 2013 for the Commerce 

site (Commerce-2) and the NERS weather station. 

 

0

20

40

60

80

100

120

0

5

10

15

20

25

30

35

40

1
0

-M
ar

2
4

-M
ar

7
-A

p
r

2
1

-A
p

r

5
-M

ay

1
9

-M
ay

2
-J

u
n

1
6

-J
u

n

3
0

-J
u

n

1
4

-J
u

l

2
8

-J
u

l

1
1

-A
u

g

2
5

-A
u

g

8
-S

ep

2
2

-S
ep

6
-O

ct

2
0

-O
ct

R
ai

n
fa

ll
 (

m
m

)

S
o

il
 t

em
p

er
at

u
re

 (
°C

)

2012

Rainfall Commerce-1 Sharkey-1 Sharkey-2

0

20

40

60

80

100

120

0

5

10

15

20

25

30

35

40

1
0

-M
ar

2
4

-M
ar

7
-A

p
r

2
1
-A

p
r

5
-M

ay

1
9
-M

ay

2
-J

u
n

1
6
-J

u
n

3
0
-J

u
n

1
4
-J

u
l

2
8
-J

u
l

1
1
-A

u
g

2
5
-A

u
g

8
-S

ep

2
2
-S

ep

6
-O

ct

2
0
-O

ct

R
ai

n
fa

ll
 (

m
m

)

S
o
il

 t
em

p
er

at
u
re

 (
°C

)

2013
Rainfall Commerce-2 NERS-WS



28 

 

Table 2.1. Actual and cumulative prickly sida emergence from March through October of 2012 at three sites at the Northeast Research 

Station, St. Joseph, LA on a Commerce silty clay loam soil (Commerce-1) and Sharkey clay soil (Sharkey-1 and Sharkey-2).  

Commerce-1  Sharkey-1  Sharkey-2 

 Prickly sida (no. m-2)   Prickly sida (no. m-2)   Prickly sida (no. m-2) 

Collection 

date Actual Cumulative 

 Collection 

date Actual Cumulative 

 Collection 

date Actual Cumulative 

3/2/2012 41 de1 41 f1  3/2/2012 41 cd 41 e  3/2/2012 2 c 2 f 

3/10/2012 48 de 88 ef  3/10/2012 7 cd 48 e  3/10/2012 1 c 2 f 

3/16/2012 279 c 367 e  3/16/2012 104 bc 152 de  3/16/2012 23 bc 25 f 

3/23/2012 338 c 706 d  3/23/2012 36 cd 188 cde  3/23/2012 26 bc 51 f 

3/31/2012 115 d 820 d  3/31/2012 52 cd 240 cde  3/31/2012 16 bc 67 f 

4/8/2012 57 de 877 d  4/8/2012 38 cd 278 cde  4/8/2012 98 b 165 f 

4/23/2012 55 de 932 d  4/23/2012 20 cd 298 cde  4/23/2012 19 bc 184 f 

5/1/2012 0 e 932 d  5/1/2012 8 cd 306 cde  5/1/2012 4 c 188 def 

5/14/2012 378 c 1310 c  5/14/2012 181 b 487 bcd  5/14/2012 289 a 476 cde 

5/30/2012 7 de 1317 c  5/30/2012 1 d 487 bcd  5/30/2012 1 c 477 cde 

6/4/2012 31 de 1348 c  6/4/2012 10 cd 497 bc  6/4/2012 0 c 477 cde 

6/18/2012 629 b 1976 b  6/18/2012 187 b 684 b  6/18/2012 8 c 485 bcd 

7/20/2012 943 a 2919 a  7/20/2012 563 a 1246 a  7/20/2012 275 a 761 abc 

8/3/2012 8 de 2927 a  8/3/2012 1 d 1247 a  8/3/2012 22 bc 783 ab 

8/28/2012 55 de 2982 a  8/28/2012 1 d 1249 a  8/28/2012 2 c 785 ab 

9/13/2012 10 de 2992 a  9/13/2012 3 d 1252 a  9/13/2012 5 c 790 a 

9/24/2012 3 de 2995 a  9/24/2012 1 d 1253 a  9/24/2012 2 c 791 a 

10/23/2012 0 e 2995 a  10/23/2012 0 d 1253 a  10/23/2012 0 c 792 a 
1Means within each column followed by a common letter are not significantly different using Fisher’s protected LSD at P = 0.05.  
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Table 2.2. Actual and cumulative prickly sida emergence from March through October of 2013 

at two sites at the Northeast Research Station, St. Joseph, LA on a Commerce silty clay loam soil 

(Commerce-2) and Sharkey clay soil (Sharkey-3).  

 Commerce-2  Sharkey-3 

 Prickly sida (no. m-2)   Prickly sida (no. m-2) 

Collection date Actual Cumulative  Collection date Actual Cumulative 

3/17/2013 0 d1 0 d1  3/17/2013 1 ef 1 g 

4/1/2013 0 d 0 d  4/1/2013 10 def 11 g 

4/8/2013 6 d 7 d  4/8/2013 30 def 41 g 

4/23/2013 0 d 7 d  4/23/2013 147 a 188 f 

5/6/2013 0 d 7 d  5/6/2013 158 a 346 e 

5/20/2013 0 d 7 d  5/20/2013 67 c 413 e 

6/3/2013 261 a 268 c  6/3/2013 173 a 586 d 

6/17/2013 105 bc 372 c  6/17/2013 31 de 617 cd 

7/1/2013 122 b 495 bc  7/1/2013 88 bc 705 bc 

7/15/2013 112 bc 607 b  7/15/2013 111 b 815 ab 

7/29/2013 4 d 611 b  7/29/2013 29 def 845 a 

8/12/2013 3 d 614 b  8/12/2013 4 def 849 a 

8/26/2013 40 cd 653 b  8/26/2013 33 d 881 a 

9/9/2013 0 d 653 b  9/9/2013 0 f 881 a 

10/2/2013 329 a 982 a  10/2/2013 13 def 895 a 

10/17/2013 21 d 1003 a  10/17/2013 2 ef 896 a 
1Means within each column followed by a common letter are not significantly different using 

Fisher’s protected LSD at P = 0.05. 

 

for six weeds, statistical analysis consisted of comparing emergence for each individual weed 

across the season using LSD (Egley and Williams 1991).  

RESULTS AND DISCUSSION 

Prickly sida emergence in 2012 was first observed on March 2 at all sites and averaged 

41, 41, and 2 plant m-2 for Commerce-1, Sharkey-1, and Sharkey-2 sites, respectively (Table 

2.1). In 2013, emergence was first observed on April 8 at the Commerce-2 site with 6 plant m-2 

and on March 17 at the Sharkey-3 site with1 plant m-2 (Table 2.2). Seedling emergence had 

ceased by late October both years. In contrast to findings reported by Egley and Williams (1991) 

at Stoneville, MS, prickly sida emergence in the present study was initiated around 4 weeks 

earlier and ceased around 6 weeks later.  
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Figure 2.2. Emergence periodicity of prickly sida from March through October at three sites on 

the Northeast Research Station in 2012: Commerce silty clay loam (Commerce-1) and Sharkey 

clay (Sharkey-1 and Sharkey-2) and at two sites in 2013 (Commerce-2 and Sharkey-3). 

  

0

200

400

600

800

1000

1
1
-F

eb

2
5
-F

eb

1
0
-M

ar

2
4
-M

ar

7
-A

p
r

2
1
-A

p
r

5
-M

ay

1
9
-M

ay

2
-J

u
n

1
6
-J

u
n

3
0
-J

u
n

1
4
-J

u
l

2
8
-J

u
l

1
1
-A

u
g

2
5
-A

u
g

8
-S

ep

2
2
-S

ep

6
-O

ct

2
0
-O

ct

3
-N

o
v

1
7
-N

o
v

P
ri

ck
ly

 s
id

a 
em

er
g
en

ce
 (

p
la

n
t/

m
2
)

2012

Commerce-1 Sharkey-1 Sharkey-2

0

50

100

150

200

250

300

350

400

2
3
-F

eb

9
-M

ar

2
3
-M

ar

6
-A

p
r

2
0
-A

p
r

4
-M

ay

1
8
-M

ay

1
-J

u
n

1
5
-J

u
n

2
9
-J

u
n

1
3
-J

u
l

2
7
-J

u
l

1
0
-A

u
g

2
4
-A

u
g

7
-S

ep

2
1
-S

ep

5
-O

ct

1
9
-O

ct

2
-N

o
v

P
ri

ck
ly

 s
id

a 
em

er
g
en

ce
 (

p
an

tl
/m

2
)

2013

Commerce-2 Sharkey-3



31 

 

 
 

 
 

Figure 2.3. Cumulative emergence of prickly sida from March through October at three sites on 

the Northeast Research Station in 2012: Commerce silty clay loam (Commerce-1) and Sharkey 

clay (Sharkey-1 and Sharkey-2) and at two sites in 2013 (Commerce-2 and Sharkey-3). Standard 

error bars included to denote variability.  
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In 2012, for the Commerce site, increased emergence of prickly sida emergence occurred 

at five periods during March through October corresponding to March 16, March 23, (279, 338, 

and plants m-2, respectively); May 14 (378 plants m-2); and June 18 and July 20 (629 and 943 

plants m-2, respectively) (Table 2.1 and Figure 2.2). For the Sharkey sites in 2012 peak 

emergence periods occurred on May 14 for Sharkey-1 and Sharkey-2 (181 plants m-2 and 289 

plants m-2, respectively); June 18 for Sharkey-1 (187 plants m-2); and July 20 for Sharkey-1 and 

Sharkey-2 (563 plants m-2 and 275 plants m-2, respectively). 

Rainfall in 2012 from March 4 through October 23 totaled 732 mm (Figure 2.1). For the 

three sites in 2012 the greatest increase in prickly sida emergence occurred on March 23 

(Commerce site only) and on May 14 and July 20 for all sites. For the 3 weeks preceding March 

23, 143 mm of rain was received. Rainfall of 18 and 108 mm was received during the two week 

period prior to May 14 and July 20, respectively.  

In 2013 for the Commerce-2 site, increased emergence of prickly sida occurred on June 3 

and June 17 (261 and 105 plants m-2, respectively); July 1 and July 15 (122 and 112 plants m-2, 

respectively); August 26 (40 plants m-2); and October 2 (329 plants m-2) (Table 2.2 and Figure 

2.2). For the Sharkey-3 site in 2013, emergence peaks occurred on April 23 (147 plants m-2); May 

6 and 20 (158 and 67 plants m-2, respectively); June 3 (173 plants m-2); and July 1 and July 15 (88 

plants and 111 plants m-2, respectively). The large peak in emergence observed on October 2 for 

the Commerce-2 site, corresponded to only a slight increase (13 plants m-2) for the Sharkey site. 

The increased emergence of prickly sida observed at both sites in late May and early June was also 

reported in research conducted in Mississippi (Egley and Williams 1991).  

 Rainfall in 2013 from March 4 through October 23 totaled 756 mm (Figure 2.1). The 

greatest increases in prickly sida emergence occurred on April 23 and May 6 at the Sharkey-3 
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site; on June 3, July 1, and July 15 at both sites; and on October 2 at the Commerce-2 site. For 

the three weeks preceding April 23, 110 mm of rainfall was received and for the 2 weeks 

preceding May 6, 136 mm was received. One week preceding the June 3 sampling, 75 mm of 

rain was received and from July 1 through July 15 rainfall totaled 119 mm. During the two 

weeks prior to the October 2 data collection at the Commerce-2 site a total of 73 mm of rain was 

received. It is noteworthy that from August 19 through September 22 only 14 mm of rainfall was 

received. Dry conditions followed by wet conditions have been shown to enhance prickly sida 

seed germination (Baskin and Baskin 1984). The reason for the large flush occurring at only the 

Commerce-2 site, is unclear and may be related soil texture and water holding capacity as well as 

differences in initial seed population and age, biological status, and stage of dormancy of the 

seed in the soil.  

Weekly average soil temperature at the NERS weather station one week prior to prickly 

sida emergence was 16.5 C in 2012 and 14.2 C in 2013 (data no shown). In 2013, the soil 

temperature average recorded by data loggers at the Commerce site one week prior to prickly 

sida emergence was 13.8 C (Figure 2.1). Results show that prickly sida can emerge in the field 

when average soil temperature at a 3.8 cm depth is 13.8 C. Little information is available 

concerning the relationship between field soil temperature and prickly sida emergence. Egley 

(1976) reported that under laboratory conditions 18% of mature prickly sida seed were capable 

of germination when seed was stored at 25 C for 9 months to break dormancy followed by dark 

incubation for 7 d at 15 C. In another study, germination of prickly sida seed was 42% after seed 

were held in dry storage in the laboratory for 12 weeks and subjected to alternating temperatures 

of 15/6 C (12 h/12 h) for 30 days (Baskin and Baskin 1984). Results of the current study show 
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that prickly sida is capable of emerging in the field under similar temperatures as those found in 

the previous studies. 

In 2012, cumulative emergence of prickly sida from March 2 through October 23 was 

2,995 seedlings m-2 for the Commerce site and 1,253 and 792 seedlings m-2 for the two Sharkey 

sites (Table 2.1 and Figure 2.3). Cumulative emergence was consistently greatest for the 

Commerce site compared with the Sharkey sites. It should be noted that unlike the Sharkey sites 

the Commerce site was not tilled in the fall. Egley and Williams (1990) evaluated weed 

emergence during a 5-year period where reseeding was prevented and found that in the first year, 

emergence of seven weeds was greater for non-tilled compared with tillage. In subsequent years 

tillage did not affect weed emergence. Although tillage has not been shown to affect emergence 

periodicity, it can affect total seedling emergence (Anderson and Nielsen 1996; Egley and 

Williams 1990; Ogg and Dawson 1984). For the Commerce site, 31% of the total prickly sida 

emergence for the season occurred from March 2 to April 23, 66% occurred from May 1 to July 

20, and 3% occurred from August 3 to September 24. For the Sharkey sites prickly sida 

emergence from early March until early June was fairly consistent and 23% of the total prickly 

sida emergence for the season occurred from March 2 to April 23. From May 1 to July 20, 

approximately 75 % of the total prickly emergence occurred for the season at both Sharkey sites. 

From August 3 to September 24 less than 5% of the total prickly sida emergence for the season 

occurred at the Sharkey sites. 

In contrast to 2012, cumulative emergence at the two sites from March 17 through early 

September 2013 was greatest for the Sharkey site (Table 2.1 and Figure 2.3). The large increase 

in prickly sida emergence at the Commerce site on October 2 (329 plants m-2), however, resulted 

in total cumulative emergence in 2013 being greatest for the Commerce site (1,003 plants m-2 



35 

 

compared with 896 plants m-2 for the Sharkey site). The reasons for the large increase in seedling 

emergence on October 2 at the Commerce site with only a slight increase at the Sharkey site was 

discussed previously. Based on total prickly sida seedling emergence for the growing season at 

the Commerce site, less than 0.7% occurred from March 17 to May 20, 60% from June 3 to July 

29, and 39% from August 12 to October 17. Wet conditions from standing water and poor 

drainage resulted in this low emergence percentage for March 17 to May 20 (Figure 2.1). For 

Sharkey site prickly sida emergence was 46% of the total emergence from March 17 to May 20, 

48% from June 3 to July 29, and less than 6% from August 12 to October 17.   

Results show that in both 2012 and 2013 regardless of soil type, prickly sida was able to 

emerge when average soil temperature at a 3.8 cm depth was approximately 15 C and emergence 

continued through early October. Total prickly sida emergence in 2012 from March through 

October averaged 193% (3 times) more for the Commerce compared with the Sharkey sites. In 

2013, total emergence from March through October was only 12% more for the Sharkey 

compared with the Commerce site. The Commerce site was not tilled in the fall either year of the 

study and the Sharkey sites were tilled in the fall both years. This disagreement in cumulative 

emergence between years for the Commerce silty clay loam and the Sharkey clay sites suggests 

that tillage was not a major factor affecting prickly sida emergence periodicity. Several studies 

report that tillage has no influence on weed emergernce periodicity (Anderson and Nielsen 1996; 

Egley and Williams 1990; Ogg and Dawson 1984). The prolonged emergence period for prickly 

sida support the need for a season long integrated weed management plan that reduces 

competition with the crop and seed production potential. 
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CHAPTER 3 

PRICKLY SIDA (SIDA SPINOSA) GROWTH AND SEED PRODUCTION AS 

INFLUENCED BY SHADE 

 

INTRODUCTION 

Prickly sida (Sida spinosa L.) is widely distributed in the southern U.S. and is a 

troublesome broadleaf weed in cotton (Gossypium hirsutum L.), corn (Zea mays L.), peanut 

(Arachis hypogaea L.), and soybean [(Glycine max (L.) Merr.] (Webster and Coble 1997; 

Webster and Nichols 2012). A Mississippi survey of weeds conducted by Rankins et al. (2005) 

found prickly sida present in 40% of soybean fields sampled, making it the most prevalent weed. 

Prickly sida was present in 45% of soybean fields in the Delta region, compared with 43% in 

eastern Mississippi. In 2008 and 2009, prickly sida ranked as the 19th most troublesome weed in 

corn and soybean and 14th in cotton (Webster and Nichols 2012). In recent years in Louisiana, 

growers and consultants have reported increased problems with control of prickly sida in 

soybean (Bill Williams, personal communication). Glyphosate, the foundation herbicide of most 

weed control programs in corn, cotton, and soybean, and is most effective when applied to one- 

to three-leaves compared with four or more leaves prickly sida (Jordan et al. 1997).  

Light regulates plant growth and development through, photoperiod, quantity of total 

light, spectral quality, and duration (Holt 1995). Light influences the weed/crop ecosystem by 

regulating crop and weed growth and competition. Plant competitive ability is partly controlled 

by efficiency in light utilized for growth (Keeley and Thullen 1978; Santos et al. 1997). Bazzaz 

and Carlson (1982) determined that early successional annuals (weeds) were not only well 

adapted to high irradiance, but were also capable of coping with extreme variation in the light 

environment, becoming like shade plants in response to low irradiance. Holt (1995) postulated 
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that the plasticity observed in early successional weed species in their photosynthetic response to 

light level may result in survival and reproduction in low light environments.  

Because of the adaptability of weeds, managing the light environment in a crop as a 

means to manage weeds would be difficult (Holt 1995). Manipulation of the crop canopy to 

improve weed management and crop yield can only be accomplished with an understanding of 

the light competition dynamics of the weed/crop canopy and the role of weed plasticity response 

to changing light conditions. An understanding of plants response to light and other 

environmental conditions can be used to develop weed management programs to exploit 

environmental interactions that favor crop competition with weeds (Dall’Armellina and Zimdahl 

1988).  

Maximum growth and photosynthetic rates occur in full sunlight for most plants, and 

decrease upon reduced light (Holt 1995). Many weeds when transferred from high irradiance to a 

shaded environment, which occurs during crop canopy development and closure, react by 

adaptations that reduce the growth-limiting effects of shading (Holt 1995; Patterson 1980). Some 

plants can acclimate to reduced light situations by altering dry matter distribution and leaf 

anatomy, and by decreasing respiration rates, enzyme activities, and electron transport capacity 

(Holt 1995). Palmer amaranth (Amaranthus palmeri S. Wats.) acclimated to shading by 

increasing specific leaf area (SLA) and decreasing leaf and main-stem branch appearance (Jha et 

al. 2008). Common waterhemp (Amaranthus rudis Sauer) responded to reduced irradiance by 

increasing leaf development at the expense of stem and seed production and biomass 

accumulation (Steckel et al. 2003). Patterson (1979) suggested that increased leaf area in 

proportion to total plant tissue could also constitute a response to excessive shade.  
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Photosynthetic efficiency and response to shade differs among weeds. Boyd and Murray 

(1982) reported silverleaf nightshade (Solanum elaeagnifolium Cav.) did not emerge under 92% 

shade and when seedlings were exposed to 92% shade, death occurred within a short time. Plants 

growing in full sunlight produced an average of approximately 2 leaves per day during a 10-day 

period; however, silverleaf nightshade under 63% shade averaged less than one leaf per day 

during the same time period. Established plants in full sunlight produced more than 7 times the 

dry matter compared with plants in 92% shade. It was concluded that a shade level between 63 to 

97% would be necessary to prevent seed production.  

Field bindweed (Convolvulus arvensis L.) plants established from seed were more 

vigorous than those established from rhizomes, and plants established from seed were less 

sensitive to shading (Dall’Armellina and Zimdahl 1988). These seedling of field bindweed were 

better adaptive under low light conditions. Common cocklebur (Xanthium strumarium L.), 

jimsonweed (Datura stramonium L.), velvetleaf (Abutilon theophrasti Medik.), and soybean, 

exposed to reduced irradiance resulted in decreased leaf thickness, increased chlorophyll content, 

and higher photosynthetic rate per unit leaf volume (Regnier et al. 1988). Godara et al. (2012) 

reported that Texasweed [Caperonia palustris (L.) St. Hil.] mitigated the adverse effect of shade 

by increasing SLA and percentage of leaf biomass. The adverse effects of shade can be 

overcome by increased plant height and shoot/root partitioning (Caton et al. 1997). 

Most shade studies have been conducted with plants grown under constant shade levels 

for the duration of the experiment (Bello et al. 1995; Boyd and Murray 1982; Jha et al. 2008; 

Jones and Griffin 2010; Keeley and Thullen 1978; Knake 1972; Regnier et al. 1988; Santos et al. 

1997; Steckel et al. 2003; Wiggans 1959). This methodology, although successful in determining 

weed response to shade, would not represent the conditions experienced under a crop canopy 
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where photosynthetically active radiation (PAR) decreases with crop growth. In a comparison of 

the effect of shade establishment methods, gradual transfer and direct transfer of plants to a given 

shade level, Texasweed plants transferred from 0 to 30% shade, gradually transferred, produced 

greater biomass than did plants held continuously in 30% shade (Godara et al. 2012). Differences 

in plant biomass between the transfer methods were not observed at 56, 70, and 100 days after 

emergence.  

Prickly sida has been observed in Louisiana to emerge in early March and to persist 

under a crop canopy. Following crop harvest, plants are able to initiate regrowth and to set seed.  

Little information is available concerning prickly sida response to shade. This research includes 

two studies. The first study evaluated prickly sida dry weight, plant height, node number, and 

seed production as affected by gradual increase in shade as would occur within a developing 

crop canopy. The intent was to simulate what would occur when prickly sida plants emerge in 

the crop early in the growing season and shade levels increase within the crop canopy as the 

season progresses. Plants exposed to a direct/constant shade level were also included for 

comparison with gradually transferred plants. The second shade study evaluated prickly sida 

seed production as affected by decreasing shade levels. The intent was to simulate what would 

occur for prickly sida plants that had persisted under the crop canopy for the entire growing 

season and with crop senescence and harvest, shade levels decrease within the crop canopy and 

weed regrowth occurs.   

MATERIALS AND METHODS 

Increasing Shade Level Study. A study evaluated prickly sida growth and reproduction 

as affected by both a constant shade regime and a gradual increase in shade exposure simulating 

growth with a crop. The study was conducted in 2011, 2012, and 2013 using potted plants under 
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field conditions at the LSU AgCenter Northeast Research Station (NERS) near St. Joseph, LA. 

Black polyethylene 20.3 cm diameter pots with 7.6 liter volume capacity (International 

Greenhouse Co., Danville, IL 61832), were filled with a Sharkey clay soil (very fine, smectitic, 

thermic Chromic Epiaquerts) with a pH of 6.1 and 2.1% organic matter collected from a field site 

that had been fallowed for several years. In 2011, prickly sida seed from Azlin Seed Service 

(Azlin Seed Service, Leland, MS 38756) were used and in 2012 and 2013 prickly sida seed 

collected from fields at the NERS were used. Seed were planted in pots on June 16, 2011; June 

8, 2012; and June 3, 2013. Prior to planting, all pots containing soil were watered to field 

capacity. After watering approximately 30 seed were placed in the center of the pot on top of the 

moist soil and covered with 0.5 cm of sand or Sharkey clay soil. 

Shade levels consisted of 0, 30, 50, 70, and 90% and were achieved using 3.7-m by 1.8-m 

polypropylene fabric shade-cloth (International Greenhouse Co., Danville, IL 61832) draped 

over and secured a wooden A-frame structure measuring approximately 1.67-m tall by 3.7-m 

using plastic zip ties (Figures 3.1, a. and b.). Shade tent openings faced north and south with the 

covered sides oriented east and west. Shade intensities inside the tents, expressed as a percentage 

of the PAR outside the tents, were confirmed to be within 3% of the desired shade level using an 

AccuPAR linear PAR ceptometer (Decagon Devices, Inc., 950 NE Nelson Court, Pullman, WA 

99163).  

A randomized complete-block design consisting of four replications and three pots per 

replicate each year. Trial initiation occurred when prickly sida emerged on June 22, 2011; June 

13, 2012; and June 6, 2013. Treatments included direct/constant shade regimes of 0 (no shade), 

30, 50, 70, and 90% shade for the duration of the experiment. The remaining treatments included 

a gradual transfer where plants grown in 0, 30, 50, or 70% shade for two weeks and were then 
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transferred to the next higher shade level. Prickly sida were thinned during the first two weeks of 

growth and four prickly sida plants remained in each pot prior at the first transfer.  

Figure 3.1. (a) A-frame shade structures showing watering system and wooden boxes used to 

catch seed; and (b) side view. 

 

At the time of each transfer, plants that had reached their final shade level were retained 

as a group in that shade level, and others were transferred as a group to the next shade level until 

they reached their final shade level. At the time of each transfer the pots were randomized and 

spaced to avoid close contact with other plants and competition for light. Once transferred to the 

final shade level for the respective shade regime at 56 days, prickly sida plants were allowed to 

grow undisturbed until September 14, 2011, October 22, 2012, and September 23, 2013 when 

a 

b 



44 

 

experiments were terminated. Throughout the duration of the experiment, pots were kept weed-

free of other weeds by regular hand weeding.  

A water supply system was built that allowed shade tents to be watered simultaneously 

(Figure 3.1, a.). Two brass ½ HH 30WSQ FullJet nozzles (Spraying Systems Co. Wheaton, IL 

60187) were used to deliver water to each shade tent (Figure 3.2, b.). Water was supplied to the 

irrigation system from a pull-type water trailer equipped with a 5.5 horsepower motor (Figure 

3.2, a.). Plants were watered as necessary to ensure that water was not a limiting factor to 

growth. This typically translated to watering the plants once a day. Because of the rapid growth 

and biomass accumulation early on for plants grown in full sun, pots for the 0% shade treatments 

were hand watered using either watering cans or water troughs measuring approximately 53 cm 

wide by 141 cm long by 22 cm deep (Figure 3.3, a.). Troughs held approximately 10 to 15 cm of 

water and plants/pots were sub-irrigated until the soil was visibly saturated. 

To aid in seed collection, pots within each treatment were placed in a 2.4 m x 3.7 m x 0.1 

m wooden box set under the A-frame watering structures (Figure 3.1, a. and b.). A water 

permeable weed suppressing fabric (Fabriscape Inc., Bedford Park, IL 60638) was attached to 

the bottom of the wooden boxes. The wooden boxes served to catch seed that may have fallen 

from the prickly sida plants. In 2012 and 2013, prickly sida mature seed capsules, a brown dry 

capsule with dried brown seed visible, were hand removed in the 0% constant shade treatment at 

regular intervals. For treatments 2 through 15 (Table 3.1) prickly sida plants in each treatment 

were hand harvested at the conclusion of the experiment and the remaining seed capsules were 

removed from the plant and threshed. Also, the wooden boxes were vacuumed out separately and 

the entire contents of the vacuum emptied into a cloth bag measuring 34.29 cm wide by 63.5 cm 

long.  
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Figure 3.2. (a) Water trailer used for water supply; (b) two brass ½ HH 30WSQ FullJet nozzles; 

and (c) prickly sida pots shortly after watering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Water troughs measuring approximately 53 cm wide by 141 cm long by 22 cm deep 

and contained approximately 10 to 15 cm of water. 
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Table 3.1. Starting shade level, days after transfer of prickly sida to each successive shade level, 

and final shade level for the 15 treatments evaluated in the increasing shade study at the 

Northeast Research Station, St. Joseph, LA.1 

Shade treatment2 

Starting shade 

level (%) 

Days after study initiation Final shade 

level (%) 
14 28 42 56 

  - shade level (%) transferred to -  

T1 0 -- -- -- -- 0 

T2 0 30 -- -- -- 30 

T3 0 30 50 -- -- 50 

T4 0 30 50 70 -- 70 

T5 0 30 50 70 90 90 

T6 30 -- -- -- -- 30 

T7 30 50 -- -- -- 50 

T8 30 50 70 -- -- 70 

T9 30 50 70 90 -- 90 

T10 50 -- -- -- -- 50 

T11 50 70 -- -- -- 70 

T12 50 70 90 -- -- 90 

T13 70 -- -- -- -- 70 

T14 70 90 -- -- -- 90 

T15 90 -- -- -- -- 90 

1Prickly sida seed were planted in pots on June 16, 2011; June 8, 2012; and June 3, 2013. 

Shade treatments were initiated 3 to 6 days later when prickly sida emerged. Termination of the 

experiments occurred on September 14, 2011; October 22, 2012; and September 23, 2013. 
2For treatments 1, 6, 10, and 15, prickly sida plants were exposed to starting shade levels of 0, 

30, 50, 70, and 90%, respectively, and these levels remained constant throughout the study. For 

the remaining treatments, prickly sida plants were transferred at 14 day intervals to the next 

higher shade level and from that point on plants were either transferred to the next higher shade 

level or remained at their current shade level for the duration of the study. The final shade level 

for each treatment is provided. 
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To account for all of the seed produced by plants, each pot was removed from the shade 

tents and the upper most top soil (soil that was loose) was separated from any seed which had 

fallen into the pots using a modified version of a water-spray system employed by Kovach et al. 

(1988). The seed extractor consisted of a base frame, an electric Dayton parallel shaft high 

torque AC gear motor with a 30 rpm rating (Grainger Inc., Baton Rouge, LA 70817), a plate 

metal shield where the motor attaches, a rotating cradle that holds an aluminum funnel to which 

a removable stainless steel sieve (Solutions Direct, Riverside, CA 92517) (20.3 cm diameter and 

no. 20 mesh size) is attached, and a water nozzle spraying system (Figure 3.4, a.- d.). A U.S. no. 

20 mesh size (0.841 mm) was chosen because prickly sida seed range between 1.0 to 3.0 mm in 

length (Bryson and DeFelice, 2009). 

The procedure for seed extraction was as follows: the entire soil volume from all pots in 

each shade regime/treatment was emptied into a 5 gallon bucket, water was added to the bucket 

until the soil was completely submersed, the soil/water was then stirred using an 18 volt 1.27 cm 

drive cordless power drill with a dry wall mixer attachment until water and soil were mixed 

thoroughly, the suspension was allowed to settle and remixed three more times while cleaning 

the mixer over the bucket each time used. The water-spray seed extractor was engaged and the 

slurry poured into the soil funnel, the water pressure and nozzle attachment was adjusted as 

needed to ensure a thorough wash. Once the soil had been separated from the seed, the funnel 

and sieve were removed from the cradle. Seeds and other material were removed from the sieve 

and air dried. Air drying allowed facilitation of prickly sida seed counting.  

Prickly sida seed number was determined by hand counting all the seed collected for a 

treatment sample or through estimation based on seed number, weight, and volume. Seed 

estimation was determined from 5 samples of 50 seed weight, and by hand counting 3 to 10, 2.5 
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ml sub-samples of seed from each treatment and measuring total treatment volume using a 

graduated cylinder. The method used (hand counting or estimation) was determined based on the 

number of seed and the amount of debris remaining after seed cleaning.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 (a,b) Water-spray system used to extract prickly sida seed from soil; (c) aluminum 

pipe and sieve; and (d) drill and dry wall mixer used in preparing soil slurry. 

 

Node number, plant height, and aboveground biomass data were measured for individual 

plants in each treatment at termination of the experiments. Plant height was measured from the 

cotyledon node to the top of the plant. Dry weight was determined after plants were air dried in a 

hot greenhouse. Dry weight per plant, plant height, and node number per plant data were 

subjected to ANOVA using Standard Least Squares method in Fit Model functionality in JMP® 

d 

b a 

c 
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software (JMP 2015). A mixed model with treatment (shade regime) as fixed effects was used. 

Years and replications within a year were considered random effects. Type III tests were used to 

test significance of fixed effects. LSMEANS were used for treatment comparison and Fisher’s 

protected LSD was used for mean separation. Data for seed per plant collected in 2012 and 2013 

were subjected to square root transformation to homogenize the variance and were analyzed by 

ANOVA and mean comparison as described above. Data were retransformed for presentation. 

Decreasing Shade Level Study. This study evaluated prickly sida seed production 

potential as influenced by a gradual decrease in shade level across the growing season. Selection 

of shade levels and the number of days exposed to each was to simulate prickly sida emergence 

under a heavy crop canopy (90% shade) with shade levels decreasing as the crop senesced. 

Movement of plants to full sun would represent crop canopy removal after harvest. Experiments 

were conducted in 2012 and 2013 at the LSU AgCenter NERS using potted plants under field 

conditions. Black polyethylene 28.3 cm diameter pots, 9.5 liter volume capacity (International 

Greenhouse Co., Danville, IL 61832) were filled with a Sharkey clay. On June 8, 2012 and June 

3, 2013, approximately 30 prickly sida seed collected from fields at the NERS were placed in the 

center of each pot on top of moist soil and covered with 0.5 cm of sand or Sharkey clay soil.  

Shade levels consisted of 0, 50, 70, and 90% and were achieved using shade cloth as 

described previously. A completely randomized design with 15 replications (15 pots) was used. 

Plants were placed under A-frame tent structures and were watered as described for the first 

shade study. On June 11, 2012 and June 4, 2012 prior to prickly sida emergence, pots were 

moved to the 90% shade tents and the experiment was initiated. Two treatments were included in 

each experiment and shade regimes represented a gradual transfer with plants starting at 90% 

shade and ending in 0% shade (full sun). For treatment 1, 15 pots were placed under 90% shade 
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for 30 days. When prickly sida reached four leaf, plants were thinned to one per pot and pots 

were kept free of other weeds by regular hand weeding. At the end of the 30-day period for 

treatment 1, 10 plants of the original 15 for each treatment were selected based on uniformity in 

height and were transferred to the 70% shade enclosure for 30 days and then moved to the 50% 

enclosure for 15 days. At the end of the 15-day period, plants were placed in full sun until the 

experiment was terminated.  

For treatment 2, pots were placed under 90% shade, as was also the case for treatment 1, 

and thinning and weed removal was as described for treatment 1. Unlike treatment 1, however, 

pots for treatment 2 remained under 90% shade for 60 days. The 30 additional days under 90% 

shade for treatment 2 was included to represent prickly sida plants that may emerge early in the 

growing season and experience a longer initial shade period. At the end of the 60-day period for 

treatment 2, 10 plants selected for uniformity and were transferred to the 70% shade enclosure 

for 30 days, to the 50% enclosure for 15 days, and to full sun until the experiment was 

terminated. Specific planting dates and duration of plant exposure to shade levels for the 

treatments each year are provided in Table 3.2.  

When plants were observed with mature seed capsules, capsules were removed and 

threshed by hand. Seed production was initiated on August 28, 2012, 78 days after 90% shade 

initiation and on August 9, 2013, 66 days after 90% shade initiation. As described for the first 

shade study, prickly sida seed that naturally shed from plants due to rain or windy conditions 

were vacuumed from each box on the day seed capsules were removed from plants. 

Based on the number of plants and the level of seed production that occurred at each seed 

collection date, total seed number for the 10 plants was either hand counted or estimated as 

described previously. Seed from the 10 plants in each treatment were composited. 
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Table 3.2. Prickly sida planting date and duration of plant exposure to 90, 70, 50, and 0% (full sun) shade levels for two treatments 

evaluated in 2012 and 2013 in the decreasing shade level study at the Northeast Research Station, St. Joseph, LA.  

  Shade level 

Treatment Planting date 90% shade 70% shade 50% shade 0% shade (full sun) 

      

1 June 8, 2012 June 11 - July 10 

(30 days) 

July 10 - August 9 

(30 days) 

August 9 - 24 

(15 days) 

August 24 - November 10 

(79 days) 

      

2 June 8, 2012 June 11 - August 10 

(60 days) 

August 10 - September 9 

(30 days) 

September 9 - 24 

(15 days) 

September 24 - November 10 

(48 days) 

      

1 June 3, 2013 June 4 - July 15 

(30 days) 

July 15 - August 6 

(30 days) 

August 6 - 21 

(15 days) 

August 21 - October 2 

(62 days) 

      

2 June 3, 2013 June 4 - August 6 

(60 days) 

August 6 - September 6 

(30 days) 

September 6 - 20 

(15 days) 

September 20 - October 2 

(13 days) 
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 Termination of the experiments occurred when seed set was completed, which 

corresponded to November 10, 2012 and October 2, 2013. Data are presented for each year as 

seed production per plant at each seed collection date and as cumulative seed production per 

plant across the growing season. Because seed for each of the 10 plants per treatment for each 

year were consolidated, statistical analysis for the two treatments could not be conducted.    

RESULTS AND DISCUSSION 

Increasing Shade Level Study. Prickly sida dry weight, plant height, node number per 

plant, and seed per plant data for the treatments are presented in Table 3.3. Treatments are 

arranged based on the final shade levels of 0, 30, 50, 70, and 90% to allow for ease in 

comparison of direct/constant shade and gradual transfer to the final/ending shade levels. Prickly 

sida dry weight was 48.4 g plant-1 for the 30% constant shade regime (Table 3.3) and equivalent 

to only the no shade for 14 days followed by 30% shade for the remainder of the study which 

produced 44.1 g plant-1 dry weight. For these two treatments with 30% as the final shade level 

dry weight per plant averaged 94% greater than for the no shade/full sun treatment. For the other 

treatments with final shade levels of 50, 70, or 90%, dry weight was equivalent to the full sun 

treatment. Godara et al (2012) reported Texasweed plants gradually transferred to 30% shade 

produced greater biomass than plants maintained continuously at 30% shade. As time progressed 

the differences observed between gradual transfer and constant shade treatments disappeared and 

differences were not observed at 56, 70, and 100 DAE. In the present study, for all of the shade 

treatments with an ending shade level of 90%, dry weight averaged 65 and 52% less compared 

with shade treatments ending in 30 and 50% shade, respectively. The fact that dry weight for 

30% final shade treatments was greater than no shade and dry weight for the 50, 70, and 90% 

final shade treatments was equivalent to no shade was not expected. Godara et al. (2012).  
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Table 3.3. Treatment shade regimes and resulting effects on prickly sida dry weight per plant, 

plant height, node number per plant, and seed production of prickly sida in the increasing shade 

level study at the Northeast Research Station, St. Joseph, LA. 

Shade regime (%)1 

Dry weight 

(g plant-1) 

Plant height 

(cm) 

Nodes per plant 

(no.) 

Seed per plant 

(no.) 

0-0-0-0-0 23.9 cdefg2 71.2 e2 35 a2 1851 abc3 

30-30-30-30-30 48.4 a 77.4 de 34 ab 2685 ab 

0-30-30-30-30 44.1 ab 77.3 de 34 abc 3008 a 

50-50-50-50-50 35.2 bc 88.3 abc 34 abc 1665 a-d 

0-30-50-50-50 30.0 cde 78.1 d 33 abc 1264 bcd 

30-50-50-50-50 34.6 bcd 90.8 ab 35 a 1622 a-d 

70-70-70-70-70 21.8 efg 88.3 abc 32 bcd 1142 bcd 

0-30-50-70-70 26.8 cdef 86.8 bc 35 a 1177 bcd 

30-50-70-70-70 22.7 defg 87.5 abc 35 a 1418 a-d 

50-70-70-70-70 29.6 cde 94.2 a 34 abc 904 cd 

90-90-90-90-90 17.0 fg 82.2 cd 29 e 604 cd 

0-30-50-70-90 14.4 g 88.0 abc 34 abc 780 cd 

30-50-70-90-90 17.3 fg 90.6 ab 33 abc 558 d 

50-70-90-90-90 16.4 fg 87.5 abc 30 de 684 cd 

70-90-90-90-90 14.7 fg 87.4 abc 31 cde 595 cd 
1See Table 3.1 for treatment descriptions and study information.  
2Means within each column followed by a common letter are not significantly different based 

on LSD at P = 0.05. 
3Data represent 2012 and 2013. Means followed by a common letter are not significantly 

different based on LSD at P = 0.10.reported 13, 20, 36, and 58% reduction in dry matter for final 

shade levels of 30, 50, 70, and 90%, respectively, compared with 0% shade. 

  

Bello et al. (1995) reported a decrease in velvetleaf (Abutilon theophrasti Medik.) dry weight as 

constant shade level increased from 0 to 76%, and Steckel et al. (2003) observed biomass 

reductions in common waterhemp as shade levels increased from 40 to 99%. 

Prickly sida height for treatments with a final shade level of 30% and did not differ, 

averaging 77.5 cm and were the only treatments where plant height was equivalent to no shade 

(Table 3.3). Plant height for treatments with a final shade level of 30% in most cases was less 

than for treatments ending in 50, 70, or 90% shade. For treatments with a 50% final shade level, 
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plant height for gradual transfer treatments was either equal to or less than that for the 50% 

constant shade. In contrast, for the treatments with 70 and 90% final shade level, plant height for 

gradual transfer was either equal to or greater than constant shade. In contrast to other research, 

velvetleaf height was reduced by 70% shade but was not reduced by 30% shade (Bello et al. 

1995) and common waterhemp final plant height was equivalent for plants growing in 0, 40, and 

68% shade (Steckel et al. 2003). 

Prickly sida node number was equivalent for treatments with 30 and 50% final shade 

levels (33 to 35 nodes plant-1) (Table 3.3). For plants with 70% final shade, node number was 

generally greater for gradual transfer compared with constant shade. Node number for plants 

ending in 90% shade with gradual transfer was either greater than or equal to that for 90% 

constant shade. Prickly sida node number for the no shade treatment (35 nodes per plant) was 

equivalent to that for the 30 and 50% constant shade treatments but was greater than that for the 

70 and 90% constant shade treatments.  

For each of the constant shade regimes of 30, 50, 70, and 90%, seed production per plant 

was no greater (P = 0.10) than when gradual transfer occurred to the final shade level of 30, 50, 

70, or 90% (Table 3.3). For the no shade treatment seed production per plant was 1851 and in 

most cases was equivalent to the other treatments. Seed production was equivalent for 50, 70, 

and 90% constant shade treatments. For 30% constant shade, seed production was 4.5 times 

greater compared with 90% constant shade. This large increase in seed production was 

accompanied by 2.8 times greater dry weight per plant for 30% constant shade compared with 

90% and 5 more nodes per plant for 30% constant shade compared with 90% constant shade. 

Other researchers have reported fruit/seed production decreases with increasing shade levels 

(Bello et al. 1995; Boyd and Murray 1982; Keeley and Thullen 1978; Santos et al. 1997; Steckel 
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et al. 2003). Godara et al. (2012) reported that Texasweed plants in constant full sunlight 

produced the greatest capsule number per plant, but capsule production was equal for plants 

ending in 30, 50, and 70% shade. 

Results show that a 30% shade environment (30% constant shade and 30% shade 

following 14 days of no shade) would favor both prickly sida biomass accumulation and seed 

production. The ability of prickly sida to readily tolerate 30% shade would account for its 

competitiveness with crops early in the growing season and its ability to recover from early 

season herbicide injury. Prickly sida was also able to reproduce when exposed to 90% shade 

season long. For silverleaf nightshade, Boyd and Murray (1982) concluded that seed production 

could be prevented by shade levels of 63 to 97%. The fact that prickly sida does not require light 

for germination (Baskin and Baskin 1984; Smith et al.1992) suggests that plants would be able to 

emerge later in the growing season and persist under a heavy crop canopy until crop harvest.     

Decreasing Shade Level Study. For treatment 1, plants were grown for 30 days in 90% 

shade, 30 days in 70% shade, 15 days in 50% shade, and in no shade (full sun) until the 

experiment was terminated (Table 3.2). For treatment 2, prickly sida plants were grown for 60 

days in 90% shade (30 days longer than for treatment 1), 30 days in 70% shade, 15 days in 50% 

shade, and in no shade (full sun) until the experiment was terminated.   

In 2012, seed production was first observed 78 days after 90% shade initiation for 

treatment 1 and 90 days after shade initiation for treatment 2 (Table 3.4). Seed production in 

2012 for treatment 1 totaled 15 in August; 3,680 in September (90 to 103 days after 90% shade 

initiation); 1,598 in October (118 and 133 days after shade initiation); and 23 in November (152 

days after shade initiation) and plants were under full sun at each of the seed collection dates. For 

treatment 2 in 2012, seed production was none in August; 2,718 in September; 2,100 in October; 
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Table 3.4. Influence of shade level on prickly sida seed production per plant from August 

through experiment termination in 2012 and 2013 in the decreasing shade level study, at the 

Northeast Research Station, St. Joseph, LA. 

  Treatment 11  Treatment 21 

Data collection 

date 

Days after 

90% shade 

initiation1 

Shade level 

at data 

collection 

(%) 

Seed 

production 

per plant 

 Shade level 

at data 

collection 

(%) 

Seed 

production 

per plant 

2012  

August 28 78 0 15  70 0 

September 9 90 0 283  70 99 

September 16 97 0 1880  50 471 

September 22 103 0 1517  50 2148 

October 7 118 0 992  0 1763 

October 22 133 0 606  0 337 

November 10 152 0 23  0 30 

2013  

August 9 66 50 5  70 0 

August 16 73 50 5  70 0 

August 23 80 0 245  70 2 

August 30 87 0 320  70 11 

September 8 96 0 1315  50 91 

September 16 104 0 2295  50 1275 

September 19 107 0 1428  50 1702 

September 25 113 0 1533  0 1628 

September 30 118 0 984  0 935 

October 2 120 0 35  0 31 
1For treatment 1, plants were grown for 30 days in 90% shade, 30 days in 70% shade, 15 days 

in 50% shade, and 0% shade (no shade/full sun) until experiment termination. For treatment 2, 

plants were grown for 60 days in 90% shade, 30 days in 70% shade, 15 days in 50% shade, and 

0% shade until experiment termination (See Table 3.1).  

 

and 30 in November. Seed production occurred when plants were under 70% shade in August 

and early September and under 50% shade in mid- and late-September. Plants were under full 

sun when data were collected in October and November.  

In 2013, seed production was first observed 66 days after 90% shade initiation for 

treatment1 and 80 days after shade initiation for treatment 2 (Table 3.4). For treatment 1 in 2013, 
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seed production was 10 in early August (66 and 73 days after 90% shade initiation); 565 in late 

August (80 and 87 days after shade initiation); 7,555 in September (96 to 118 days after shade 

initiation); and 35 in October (120 days after shade initiation). Seed production occurred when 

plants were under 50% shade in early August and full sun at each of the remaining seed 

collection dates. For treatment 2 in 2013, seed production was none in early August and 13 in 

late August; 5,631 in September; and 31 in October. Seed production occurred when plants were 

under 70% shade in August, 50% shade in September, and full sun in late September and 

October. 

In both years peak seed production occurred during September for both treatments. Even 

though data could not be analyzed statistically some interesting findings were observed. Total 

seed production both years during September was around 35% greater for treatment 1 compared 

with treatment 2 (Table 3.4). Additionally, total seed production for both treatments in 

September was 2.1 times greater in 2013 compared with 2012.  

Cumulative seed production per plant across the growing season clearly shows the 

consistent greater seed production for treatment 1 as well as the greater seed production for 2013 

(Figure 3.5). Data also show the ability of plants in both treatments to reproduce as shade levels 

decreased (Table 3.4). On September 9 of 2012, 90 days after 90% shade initiation, cumulative 

prickly sida seed production was 3.0 times greater for treatment 1 compared with treatment 2. In 

contrast, on August 30, 2013, 87 days after 90% shade initiation, cumulative prickly sida seed 

production was 44 times greater for treatment 1 compared with treatment 2. On both September 

9, 2012 and August 30, 2013, prickly sida in treatment 1 was growing in full sun whereas for 

treatment 2, plants were under 70% shade, which can explain the large difference in seed 

production observed. 
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Figure 3.5. Cumulative prickly sida seed production following exposure to 90, 70, 50, and 0% 

(full sun) shade in 2012 and 2013 in the decreasing shade level study. Treatment 1 = 90% shade 

for 30 days, 70% shade for 30 days, 50% shade for 15 days, and 0% shade until experiment 

termination. Treatment 2 = 90% shade for 60 days, 70% shade for 30 days, 50% shade for 15 

days, and 0% shade until experiment termination. (See Tables 3.3 and 3.4).  
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On September 22 in 2012, 103 days after 90% shade initiation, and on September 16 in 

2013, 104 days after 90% shade initiation, prickly sida plants were under full sun for treatment 1 

and under 50% shade for treatment 2 (Figure 3.5). Cumulative seed production was 1.4 times 

greater for treatment 1 in 2012 and 3.0 times greater for treatment 1 in 2013. At 118 days after 

90% shade initiation cumulative seed production on October 7, 2012 was only 5% greater for 

treatment 1 compared with treatment 2, but seed production on September 30, 2013 was 44% 

greater for treatment 1 compared with treatment 2. Comparing years, total cumulative seed 

production for treatment 1 was 10% greater than treatment 2 in 2012 and 44% greater in 2013. In 

2012, 83% of total seed production occurred between 97 and 118 days after 90% shade initiation 

for treatment 1 and 90% of total seed production occurred during the same period for treatment 

2. In 2013, 80 and 83% of the total seed production occurred for the treatments between 96 and 

113 days after 90% shade initiation.  

This study was conducted to evaluate potential seed production when prickly sida plants 

emerge under an actively growing crop and with crop senescence and dry down shade levels 

decrease. Although for treatment 2 plant exposure to 90% shade was 30 days longer than for 

treatment 2, prickly sida cumulative seed production was still significant for the two years and 

totaled in excess of 4800 seed per plant.  

Results from the shade studies show that prickly sida is adapted to heavy shade 

environments and has the potential to produce a significant amount of seed when exposed to both 

increasing and decreasing shade levels as the growing season progresses. Under a 30% shade 

environment, an optimal environment for prickly sida dry matter accumulation and seed 

production based on this research, around 3,000 prickly sida seed were produced per plant. 

Although only around 550 seed plant-1 were produced when shade levels gradually increased 
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from 30 to 90%, this level of fecundity would be considered significant. With exposure to 90% 

shade in the early season followed by a gradual decrease in shade to full sun, total seed 

production was as high as around 8,100 seed plant-1. Prickly sida is especially adept at producing 

seed later in the growing season after crop senescence and harvest.  

In recent years in Louisiana, growers and consultants have reported increased problems 

with control of prickly sida in soybean. From a long-term management approach it would be 

important to discourage weed seed production and replenishment of the soil seed bank. The 

innate ability of prickly sida to emerge and to persist under a heavy shade environment suggests 

that the crop itself would provide little competition for prickly sida. With corn harvest beginning 

in July in Louisiana and soybean harvest in August there would be ample time for established 

prickly sida plants to regrow or for new plants to set seed. This research shows that prickly sida 

seed production can occur as early as 78 days following 90% shade exposure. An integrated 

weed management strategy that includes weed control measures both early in the growing season 

and after crop harvest would be warranted to prevent substantial prickly sida seed production and 

replenishment of the soil seedbank. 
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CHAPTER 4 

PREPLANT AND IN-CROP HERBICIDE PROGRAMS FOR PRICKLY SIDA (SIDA 

SPINOSA) CONTROL IN SOYBEAN 

 

INTRODUCTION 

Weed competition in crops is dependent on row spacing (Knezevic et al. 2003), tillage 

system (Halford et al. 2001), weed species (Bensch et al. 2003; Cowan et al. 1998), and weed 

density (Bensch et al. 2003; Thurlow and Buchanan 1972). The effect of weed competition on 

yield can vary across locations and years (Halford et al. 2001; Van Acker et al. 1993). In 

soybeans, the critical time for weed removal can range from emergence to R3, but most research 

shows that weed removal within 2 to 4 weeks after crop emergence (WAE) can prevent yield 

loss (Ellis and Griffin 2002; Eyherabide and Cendoya 2002; Hager et al. 2002; Halford et al. 

2001; Thurlow and Buchanan 1972; Van Acker et al. 1993; Vangessel et al. 2000). The critical 

weed free period is from V1 to R3 or approximately 4 to 8 WAE (Eaton et al. 1976; Eyherabide 

and Cendoya 2002; Halford et al. 2001; Van Acker 1993; Wilson and Cole 1966). 

Prickly sida (Sida spinosa L.) is widely distributed in the southern U.S. and is a 

troublesome broadleaf weed in cotton (Gossypium hirsutum L.), corn (Zea mays L.), peanut 

(Arachis hypogaea L.), and soybean [Glycine max (L.) Merr.] (Webster and Coble 1997; 

Webster and Nichols 2012). Prickly sida densities of 50 to 120 plants m-2 are capable of reducing 

soybean yield 9 to 14% (Jeffery et al. 1976). A survey conducted in Mississippi showed prickly 

sida present in 40% of sampled fields, making it the most prevalent weed (Rankins et al. 2005). 

Prickly sida was reported as the most troublesome weed of cotton in 1974 and second most in 

1983 (Webster and Coble 1997). By 2008 and 2009 prickly sida ranked as the 19th most 

troublesome weed in corn and soybean and 14th in cotton (Webster and Nichols 2012).  
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Weed control in soybean changed dramatically in the mid 1990’s with the introduction 

and adoption of glyphosate-resistant (GR) soybean (Rankins et al. 2005). As a result tillage 

practices shifted toward reduced tillage practices and increased reliance on glyphosate both 

preplant and in-crop (Givens et al. 2009a; Givens et al. 2009b). These changes resulted in 

decreased use of residual herbicides and over dependence on postemergence (POST) herbicides 

(Carpenter and Gianessi 1999). Long-term use of glyphosate selected for glyphosate-resistant 

weeds (Heap 2016). Although prickly sida has not been documented as resistant to glyphosate it 

has become more prevalent in mid-South cropping systems. 

Effective control of prickly sida has been achieved in soybean using preemergence (PRE) 

herbicides (Askew et al. 1999; Barnes and Oliver 2004; Burke et al. 2002; Culpepper et al. 2000; 

Green et al. 1988; Jeffery et al. 1976; Reddy 2000; Vidrine et al. 1996) or using a POST 

herbicide following a PRE treatment (Askew et al. 1999; Jeffery et al. 1976; Vidrine et al. 1996). 

Prickly sida control with POST herbicides has been variable. Factors such as plant size at 

application (Jordan et al. 1997; Norris et al. 2001; Vidrine et al. 1993), environmental conditions 

prior to and after herbicide application (Vidrine et al. 1993), and growing conditions later in the 

season (Ellis and Griffin 2003) can all influence weed control. Vidrine et al. (1993) concluded 

that for adequate POST control of prickly sida, acifluorfen plus bentazon should be applied 

before weeds reach 5 cm in height or approximately the 4 leaf stage. Control was enhanced when 

rainfall was received one week before and after treatment. Glufosinate at 290 to 400 g ha-1 

controlled 3- to 4-leaf prickly sida 96 to 98% 8 weeks after application and control was 84 to 

88% when application was made at 10- to 14-leaf (Culpepper et al. 2000). Glyphosate applied at 

1- to 3-leaf controlled prickly sida at least 90% and control was more consistent than when 

applied at 4- to 6-leaf (Ellis and Griffin 2003). 
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A program approach for prickly sida control using herbicides with PRE and POST 

activity would be expected to provide consistent season long control. Herbicide programs that 

included residual herbicides applied prior to or at planting followed by single or multiple POST 

herbicide applications controlled prickly sida 80 to 98% with many of the programs providing 

greater than 90% control (Barnes and Oliver 2000; Beyers et al. 2002; Culpepper et al. 2000; 

Ellis and Griffin 2002; Payne and Oliver 2000). 

A common practice in the Mid-South is to “burndown” fields prior to planting with 

herbicides applied preplant in February/March to control winter weeds and to provide residual 

weed control until planting. Growers would then have the option if seedbeds are weed-free to 

omit a herbicide at planting and to follow with POST herbicides as needed. Assuming weeds are 

present at planting a burndown herbicide could be used and growers could opt as to whether or 

not a residual herbicide is added. The addition of residual herbicides in a weed control program 

would also be of value in the management of herbicide-resistant weeds (Heap 2016). Prickly sida 

emergence in northeastern Louisiana can occur as early as the first week of March. Producers 

have relied primarily on multiple glyphosate applications for weed management and prickly sida 

has become more prevalent in soybean fields. When residual herbicide is not used at planting, 

environmental conditions and time constraints may result in weeds too large for glyphosate to be 

effective. Prickly sida has been observed to germinate across the growing season, persist under a 

crop canopy, and regrow and produce seed after crop harvest. This suggests that a programs 

approach with residual herbicides applied burndown preplant and at-planting followed by POST 

herbicides in-crop may be needed to maximize control. This research addresses the value of 

residual herbicides applied preplant, at-planting, and POST for control of prickly sida in 
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glyphosate-resistant soybean and also the effect of prickly sida competition from lack of weed 

control on soybean growth and yield.  

MATERIALS AND METHODS 

 Preplant Herbicide Study. A study was conducted at the LSU AgCenter Northeast 

Research Station near St. Joseph, LA with a natural infestation of prickly sida. The soil type was 

a Sharkey clay (very-fine, smectitic, thermic Chromic Epiaquerts) with a pH of 5.7 and organic 

matter content of 2.5%. Fields were prepared in the fall by double disking and bedding of rows 

and remained fallow until the study was initiated. Glyphosate (Roundup PowerMax, Monsanto 

Co., St. Louis, MO 63167) at 866 g ae ha-1 plus 2,4-D ester at 1064 (2,4-D LV4, Albaugh Inc., 

Ankernny, IA 5021) at 1064 g ae ha-1 was applied alone and in combination with residual 

herbicides to evaluate prickly sida control. Specific residual herbicides applied with glyphosate 

plus 2,4-D and herbicide rates are provided in Table 4.1.  

The experimental design was a randomized complete block with four replications and 

plot size was 3 m x 9 m. Herbicides were applied March 19, 2011 and March 18, 2012 and a 

crop was not planted. Weed size at application was cotyledon to 2-leaf prickly sida, 10 to 20 cm 

henbit (Lamium amplexicaule L.) and buttercup (Ranunculus sarduous L.), and 15 to 30 cm 

curly dock (Rumex crispus L.). Treatments were applied using a CO2-pressurized backpack 

sprayer calibrated to deliver a volume of 140 L ha-1. Visual control of prickly sida was recorded 

at 21 and 35 days after application (DAA). Visual ratings were based on prickly sida population, 

stunting, necrosis, and chlorosis were made using a 0 to 100% with 0 = no control and 100 = 

plant death. Additionally at the 35 DAA rating, prickly sida weed density in a randomly selected 

0.3 m x 1 m area in each plot was recorded. 
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Table 4.1. Herbicide active ingredients, manufacturer, and rates for the preplant herbicide study for control of prickly sida in soybean 

production systems at the Northeast Research Station, St. Joseph, LA. 

 Active ingredients Manufacturer Rate (g ae or ai ha-1) 

1 Glyphosate + 2,4-D ester Roundup PowerMax2 + 2,4-D LV43 866 + 1064 

2 Flumioxazin1 Valor4 105.03 

3 Flumioxazin + Chlorimuron ethyl Valor XLT4 84.03 + 28.85 

4 Flumioxazin + Pyroxasulfone Fierce4 82.1 + 104.16 

5 Flumioxazin + Chlorimuron ethyl + Thifensulfuron methyl Envive5 71.56 + 22.56 + 7.11 

6 Chlorimuron ethyl + Tribenuron ethyl Canopy EX5 31.79 + 9.52 

7 Metribuzin + Chlorimuron ethyl Canopy DF5 270.15 + 44.95 

8 Rimsulfuron + Thifensulfuron methyl Resolve + Harmony SG5 17.51 + 17.51 

9 Saflufenacil + Dimethenamid-P Verdict6 24.95 + 218.82 

10 Saflufenacil Sharpen6 24.95 

11 Sulfentrazone + Metribuzin Authority MTZ7 226.87 + 340.31 

12 Oxyfluorfen Goal8 280.1 
1Herbicide treatments 2 – 12 included glyphosate + 2,4-D at 866 and 1064 g ae ha-1 
2 Monsanto Co., St. Louis, MO 63167 
3 Albaugh Inc., Ankenny, IA 50021 
4 Valent U.S.A. Corp., Walnut Creek, CA 94956 
5 I. E. du. Pont de Nemours and Co., Wilmington, DE 19898 
6 BASF Corp., Research Triangle Park, NC 27709 
7 FMC Corp, Agriculture Products Group Philadelphia, PA 19103 
8 Dow AgroSciences LLC, Indianapolis, IN 46268  
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Preplant, At-Planting, and POST Program Study. Experiments were conducted in 

fields with a natural infestation of prickly sida at the LSU AgCenter Northeast Research Station 

near St. Joseph, LA. Soil type was a Sharkey clay as previously described. Field preparation in 

the fall included double disking and bedding of rows, and rows remained fallow until 

experiments were initiated. Plot size was 3 m x 9.75 m. The study was a three-factor factorial 

treatment arrangement in a randomized complete block design with four replications. Factor A 

represented preplant treatments applied on March 19 both years. Factor B represented at-planting 

treatments applied on May 1, 2011 and April 26, 2012. Treatments for Factor C included early 

POST (EPOST) and late POST (LPOST) herbicide applications. Specific herbicide treatments 

are provided in Table 4.2. EPOST applications were made on June 1, 2011 and on May 15, 2012 

when soybean was at V3 to V5 and prickly sida was at cotyledon to approximately 30 cm. The 

LPOST application was made on June 22, 2011 and on June 7, 2012 when soybean was at R1 

and prickly sida was at cotyledon to approximately 30 cm.  

Rainfall data before and after each herbicide application for 2011 and 2012 are presented 

in Table 4.3. Herbicide treatments were applied using a tractor equipped with a compressed air 

pressurized sprayer calibrated to deliver a volume of 140 L ha-1 at a spray pressure of 207 kPA. 

For both years of the study clethodim (Arrow 2EC, Makhteshim Agan of North America Inc., 

Raleigh, NC 27604) was applied to all plots at 280 g ai ha-1 prior to planting to eliminate 

glyphosate-resistant Italian ryegrass (Lolium multiflorum Lam.) as a variable. Asgrow 5831 

(Monsanto Co., St. Louis, MO 63167) and Pioneer 94Y82 (Pioneer Hi-Bred Inc., Johnston, IA 

50131) soybean was planted on May 1, 2011 and April 25, 2012, respectively. A John Deere 

1700 vacuum planter (Deere and Company, Moline, IL 61625) was used to plant soybean at a 

rate of 6 to 8 seed per 31 cm of row and rows were spaced 102 cm apart.  
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The day prior to each of the preplant, at-planting, and POST applications visual ratings 

were made as described for the previous study. Prickly sida density was also determined the day 

prior to each of the applications by removing and counting prickly sida plants within a 0.305 m 

Table 4.2. Factors and herbicides for prickly sida control in the preplant, at-planting and POST 

program study in soybean at the Northeast Research Station, St. Joseph, LA. 

Factor A: PREPLANT 

1 Glyphosate1 + 2,4-D ester2 

2 Glyphosate1 + 2,4-D ester2 + Chlorimuron-ethyl3 + Tribenuron methyl3 

Factor B: PREEMERGE 

1 NO PRE 

2 Glyphosate1 

3 Glyphosate1 + Flumioxazin4+ Chlorimuron-ethyl4 + Thifensulfuron methyl4 

Factor C: POSTEMERGE 

1 Glyphosate1 fb Glyphosate1 

2 Glyphosate1 fb Chlorimuron-ethyl5 + Glyphosate1 

3 Glyphosate1 + Chlorimuron-ethyl5 fb Glyphosate1 

4 Glyphosate1 + S-metolachlor6 + Fomesafen6 fb Glyphosate1 

1 Roundup PowerMax applied at 866 g ae ha-1, Monsanto Co., St. Louis, MO 63167 
2 2,4-D LV4, applied at 798 g ae ha-1, Albaugh Inc., Ankenny, IA 50021)  
3 Canopy EX applied at 48.31 g ai ha-1, I. E. du. Pont de Nemours and Co., Wilmington, DE 

19898 

4 Envive applied at 101.23 g ai ha-1 I. E. du. Pont de Nemours and Co., Wilmington, DE 

19898 
5 Classic applied at 8.75 g ai ha-1, I. E. du. Pont de Nemours and Co., Wilmington, DE 19898 
6 Prefix applied at 1481.69 g ai ha-1, Syngenta Crop Protection LLC., Greensboro, NC 27419 

 

by 1 m randomly selected area in each plot. Due to the lack of timely rainfall in 2011 and 2012 

(Table 4.3) the study was irrigated on June 6, 2011 and June 2 and June 29, 2012. Soybean plant 

height taken from the soil to the top of the soybean canopy at 10 random locations within each 

plot was recorded on June 21, 2011 and June 28, 2012 which corresponded to R3 growth stage. 

On August 1, 2011 and July 31, 2012 ten soybean plants at R5 growth stage were harvested at 

ground level in each plot and dried in the greenhouse to determine dry weights.   
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Insecticide and fungicide applications were made each year according to LSU AgCenter 

recommendations. Once soybeans reached physiological maturity, the crop was desiccated with 

paraquat at 560 g ai ha-1 plus 1% v/v crop oil to facilitate harvesting (Boudreaux and Griffin 

2011). Soybean in the Preplant, At-Planting, and POST Program study were harvested 

September 23, 2011 and September 6, 2012 using a Massey Ferguson (Kincaid Equipment 

Manufacturing, Haven, KS 67543) combine equipped with a yield monitoring system produced 

by Juniper Systems Inc. (Juniper Systems Inc., Logan, UT 84321) that measures grain moisture 

content and grain yield of each plot. Grain yield per plot was adjusted to 13 percent moisture. 

Table 4.3. Rainfall prior to and following preplant, at-planting, and POST treatments in the 

prickly sida preplant, at-planting, and POST program study at the Northeast Research Station, St. 

Joseph, LA. 

 Rainfall (mm)  

Time period1 2011 2012 

Preplant treatments   

 14 days prior 138 61 

 14 days after 71 48 

At-planting treatments   

 7 days prior  51 13 

 7 days after 18 18 

POST treatments   

 14 days prior to EPOST -2 27 

 14 days after EPOST  0 5 

 14 days prior to LPOST  25 -3 

 14 days after LPOST 26 46 
1 Preplant treatments applied March 19, 2011 and 2012; at-planting treatments applied May 1, 

2011 and April 26, 2012; early POST (EPOST) treatments applied June 1, 2011 and May 15, 

2012; and late POST (LPOST) treatments applied June 22, 2011 and June 7, 2012. 
2 Due to lack of rainfall soybean was furrow irrigated on June 6, 2011. Between June 7 and 

June 9 39 mm of rainfall was received.  
3 Due to lack of rainfall the test was furrow irrigated on June 2 and June 29, 2012. 

Data for both studies was subjected to ANOVA using Standard Least Squares method in 

Fit Model functionality using JMP® software (JMP 2015). Treatments were considered fixed 

effects, whereas year and replication within year were considered random effects. Type III tests 
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were used to test significance of fixed effects. LSMEANS were used for treatment comparison 

and Fisher’s protected LSD was used for mean separation.  

RESULTS AND DISCUSSION 

Preplant Herbicide Study. In this study glyphosate plus 2,4-D ester was applied alone 

and in combination with residual herbicides to evaluate control of prickly sida. Complete control 

of the winter weeds henbit, buttercup, and curly dock and small prickly sida was observed for 

glyphosate plus 2,4-D (data not shown). Ten days after application (DAA) in 2011, 71.1 mm rain 

event occurred and in 2012, 39.4 mm of rainfall occurred within 3 DAA (data not shown) which 

provided activation of herbicide and encouraged emergence of prickly sida. At 21 DAA of 

glyphosate plus 2,4-D plus flumioxazin plus chlorimuron-ethyl plus thifensulfuron-methyl, 

prickly sida was controlled 90% and control was equivalent to that for flumioxazin plus 

chlorimuron-ethyl, flumioxazin plus pyroxasulfone, metribuzin plus chlorimuron-ethyl, and 

metribuzin plus sulfentrazone applied with glyphosate plus 2,4-D (68 to 81%) (Table 4.4). When 

glyphosate plus 2,4-D was applied alone, prickly sida control 21 DAA was 18% and control was 

not increased with the addition of rimsulfuron plus thifensulfuron-methyl or saflufenacil (25 and 

33% control, respectively). 

At 35 DAA, prickly sida control was 70 to 89% and equivalent when glyphosate plus 2,4-

D was applied with flumioxazin plus chlorimuron-ethyl, flumioxazin plus pyroxasulfone, 

flumioxazin plus chlorimuron-ethyl plus thifensulfuron-methyl, metribuzin plus chlorimuron-

ethyl, and metribuzin plus sulfentrazone (Table 4.4). At 35 DAA, the combinations of 

flumioxazin with chlorimuron-ethyl, pyroxasulfone, and chlorimuron-ethyl plus thifensulfuron-

methyl resulted in 89% control of prickly sida which was greater than that provided by 

flumioxazin. Flumioxazin alone controlled prickly sida 62% which was as effective in
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Table 4.4. Prickly sida control 21 and 35 days after herbicide application (DAA) and prickly sida density 35 DAA in the preplant 

herbicide study at the Northeast Research Station, St. Joseph, LA.1 

Herbicide treatment 

 

Prickly sida 

control (%) 

Prickly sida 

density (no. m-2) 

Rate 

(g ae or ai ha-1) 21 DAA 35 DAA 35 DAA 

Glyphosate + 2,4-D ester2  866 + 1064 18 e3 3 f 260 abc 

Flumioxazin 105 59 bc 62 bc 217 abc 

Flumioxazin + chlorimuron-ethyl 84 + 30 81 ab 89 a 92 c 

Flumioxazin + pyroxasulfone 82 + 104 76 ab 89 a 115 bc 

Flumioxazin + chlorimuron-ethyl + thifensulfuron-methyl 72 + 23 + 7 90 a 89 a 95 bc 

Chlorimuron ethyl + tribenuron-methyl 32 + 10 61 bc 68 bc 211 abc 

Metribuzin + chlorimuron-ethyl 270 + 45 70 abc 75 ab 135 bc 

Metribuzin + sulfentrazone 227 + 340 68 abc 70 ab 145 bc 

Rimsulfuron + thifensulfuron-methyl 18 + 18 25 e 22 ef 421 a 

Saflufenacil 25 33 de 38 de 286 ab 

Saflufenacil + dimethenamid-P 25 + 220 52 cd 48 cd 405 a 

Oxyfluorfen 280 61 bc 56 bcd 250 abc 
1 Field sites were prepared in fall by disking and bedding of rows. Henbit, buttercup, and curly dock 10 to 30 cm tall were present 

when herbicide treatments were applied on March 19, 2011 and March 18, 2012.  
2 Glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 + 798 g ae/ha was included in all treatments to eliminate winter weeds and to 

allow for evaluation of herbicide residual activity.   

3 Means within each column followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD. 

  



73 

 

controlling prickly sida as chlorimuron-ethyl plus tribenuron-methyl, metribuzin plus 

chlorimuron-ethyl, metribuzin plus sulfentrazone, saflufenacil plus dimethenamid-P, and 

oxyfluorfen (48 to 75%). In another study, Burke et al. (2002) reported flumioxazin applied PRE 

at 105 g ai ha-1 plus dimethenamid or ethafluralin controlled prickly sida 89 to 98%. Green et al. 

(1988) reported that metribuzin at 180 g ha-1 controlled prickly sida 79 to 98% compared with 

chlorimuron at 54 g ha-1 with 40 to 83% control. The combination of metribuzin at 240 g ha-1 

with chlorimuron at 0 to 54 g ha-1 controlled prickly sida 75 to 100% 34 days after treatment 

(DAT), whereas, in the current study metribuzin plus chlorimuron-ethyl controlled prickly sida 

only 75%. Vidrine et al. (1996) reported 83 to 94% prickly sida control with sulfentrazone at 420 

g ha-1 applied PRE and control was greater than for metribuzin at 420 g ha-1. In this study, at 35 

DAA, metribuzin at 227 g ha-1 plus sulfentrazone at 340 g ha-1 controlled prickly sida only 70%.   

 When residual herbicide was not applied with glyphosate plus 2,4-D prickly sida control 

was 3% at 35 DAA and was not increased when rimsulfuron plus thifensulfuron-methyl was 

applied with glyphosate plus 2,4-D (Table 4.4). Although differences in prickly sida control were 

observed among the herbicide treatments 21 and 35 DAA, the combination of residual herbicides 

with glyphosate plus 2,4-D did not decrease prickly sida density 35 DAA compared with 

glyphosate plus 2,4-D alone. Additionally differences in prickly sida density were not observed 

among treatments containing flumioxazin or between treatments containing metribuzin or 

saflufenacil.  

Preplant, At-Planting, and POST Program Study. During the 14 day period prior to 

application of the preplant treatments, 138 and 61 mm of rainfall was received in 2011 and 2012, 

respectively (Table 4.3) During the 14 day period after preplant treatments were applied rainfall 
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of 71 mm in 2011 and 48 mm in 2012 was received to activate herbicide and encourage 

germination and emergence of prickly sida.  

Ratings for prickly sida control 38 to 43 days after the preplant application averaged 4% 

where glyphosate plus 2,4-D was applied preplant compared with 62% control where the residual 

herbicides chlorimuron-ethyl and thifensulfuron-methyl were applied with glyphosate plus 2,4-D 

(Table 4.5). The addition of residual herbicides resulted in 50% reduction in prickly sida density 

compared with only glyphosate plus 2,4-D applied preplant (72 vs. 145 plants m-2).  

Table 4.5. Prickly sida control and prickly sida density 38 and 43 days after the preplant 

herbicide application in 2011 and 2012, respectively, in the preplant, at-planting, and POST 

program study at the Northeast Research Station, St. Joseph, LA.1 

Preplant treatment 

Rate 

g ae or ai ha-1 

Prickly sida 

control (%) 

Prickly sida 

density (no. m-2) 

Glyphosate + 2,4-D ester 866 + 798 4 a2 145 a 

Glyphosate + 2,4-D ester + chlorimuron-

ethyl + tribenuron-methyl 

866 + 798 + 

32 + 10 
62 b 72 b 

1 Field sites were prepared in fall by disking and bedding of rows. Winter weeds at 2 to 3 leaf 

and 7 to 10 cm tall were present when herbicide treatments were applied on March 19, 2011 and 

2012.  
2 Means within each column followed by same letter are not significantly different at P = 0.05 

using Fisher’s protected LSD. 

 

The day after the preplant ratings were made, soybean was planted and at-planting 

herbicide treatments were applied. Over the next 7 d period 18 mm of rain was received each 

year, assuring activation of the PRE herbicides (Table 4.3). Prickly sida control, 19 to 31 days 

after the at-planting herbicide application, a significant preplant by at-planting treatment 

interaction was observed (Table 4.6). When herbicide was not applied at-planting, prickly sida 

control was 2% for glyphosate plus 2,4-D applied preplant, but control was 24% for 

chlorimuron-ethyl plus tribenuron-methyl applied with glyphosate plus 2,4-D. In contrast, 

prickly sida control was 89 to 95% and equivalent when glyphosate was applied at-planting 

either alone or with the residual herbicides flumioxazin, chlorimuron-ethyl, and thifensulfuron-



75 

 

Table 4.6. Prickly sida control and density 19 and 31 days after the at-planting herbicide application in 2011 and 2012, respectively, in 

the preplant, at-planting, and POST program study at the Northeast Research Station, St. Joseph, LA.   

  
Prickly sida control (%) 

 
Prickly sida density (no. m-2) 

Preplant treatment1 

 At-planting treatment2   At-planting treatment  

Rate 

g ae or ai 

ha-1 None Gly 

Gly + 

Flumi + 

Chlor + 

Thifen Average  None Gly 

Gly + 

Flumi + 

Chlor + 

Thifen Average 

Glyphosate + 2,4-D ester 866 + 798 2 c3 89 a 89 a --  234 133 33 133 a 

Glyphosate + 2,4-D ester 

+ chlorimuron-ethyl + 

tribenuron-methyl 

866 + 798 

+ 32 + 10 
24 b 93 a 95 a --  178 95 23 98 b 

Average  -- -- --   206 a1 114 b 28 c  

1 Preplant treatments were applied on March 19, 2011 and 2012.   

2 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly plus flumioxazin plus chlorimuron-

ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 2011 and April 26, 

2012.   

3 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD. 

  



76 

 

methyl regardless of preplant herbicide treatment (Table 4.6). In the Preplant Herbicides Study 

discussed previously, treatments most effective on prickly sida were those containing 

flumioxazin and in particular flumioxazin plus chlorimuron-ethyl plus thifensulfuron-methyl 

(Table 4.4), the same herbicides and rates evaluated at-planting in the Preplant, At-Planting, and 

POST Program Study (Table 4.6). Other research has shown 89 to 98% residual control of 

prickly sida from PRE application of flumioxazin (Burke et al. 2002), cloransulam and 

cloransulam plus metribuzin (Barnes and Oliver 2004), sulfentrazone (Vidrine et al. 1996), and 

linuron (Jeffery at al. 1976). 

For prickly sida density 19 to 31 days after the at-planting herbicide application, only the 

preplant treatment and at-planting treatment main effects were significant (Table 4.6). Averaged 

across at-planting treatments, prickly sida density was 26% less when chlorimuron-ethyl and 

tribenuron-methyl were applied preplant with glyphosate plus 2,4-D compared with glyphosate 

plus 2,4-D alone (98 vs. 133 plants m-2). Averaged over the preplant treatments, prickly sida 

density was greatest when herbicide was not applied at-planting (206 plants m-2) and lowest 

when glyphosate was applied with flumioxazin, chlorimuron-ethyl, and thifensulfuron-methyl 

(28 plants m-2), an 86% reduction. For glyphosate applied alone at-planting, prickly sida density 

averaged 114 plants m-2, 45% less than when no herbicide was applied, but 410% higher 

compared to prickly sida population with glyphosate plus the residual herbicides.  

During the 14 day period before the EPOST application, soybean was irrigated in 2011 to 

assure that weeds were not drought stressed. In 2012, 27 mm of rain was received during the 14 

day period prior to EPOST application (Table 4.3) and irrigation was not needed. For the 14 day 

period after the EPOST application in 2011 rainfall was not received and soybean and prickly 
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sida growth were not negatively affected due to the earlier irrigation. In 2012, rainfall of 5 mm 

was received during the 14 day period after EPOST application.  

Prickly sida control ratings made one-day prior to LPOST applications corresponded to 

21 to 31 days after the EPOST application. A significant at-planting by POST treatment 

interaction was observed (Table 4.7). Averaged across preplant treatments of glyphosate plus 

2,4-D and glyphosate plus 2,4-D plus chlorimuron-ethyl plus tribenuron-methyl, prickly sida 

control when herbicide was not applied at-planting was 48 to 57% for the EPOST treatments. 

Control for EPOST treatments averaged across preplant treatments was 79 to 87% when only 

glyphosate was applied at-planting and 89 to 96% when glyphosate was applied with 

flumioxazin, plus chlorimuron-ethyl, plus thifensulfuron-methyl at-planting. Average prickly 

sida control for the individual EPOST treatments was lowest when no herbicide was applied at-

planting and greatest when glyphosate was applied with the residual herbicides at planting. 

Regardless of at-planting herbicide treatment, inclusion of the residual herbicides chlorimuron-

ethyl or s-metolachlor plus fomesafen with glyphosate POST in general did not increase prickly 

sida control compared with glyphosate alone.  

A significant preplant by at-planting treatment interaction was also observed for prickly 

sida control 21 to 31 days after the EPOST application (Table 4.7). When no herbicide or 

glyphosate alone was applied at-planting, prickly sida control averaged across EPOST treatments 

was greater following glyphosate plus 2,4-D plus chlorimuron-ethyl and tribenuron-methyl 

applied preplant compared with only glyphosate plus 2,4-D applied preplant (60 vs. 47% and 87 

vs. 78%, respectively). In contrast when glyphosate plus flumioxazin, chlorimuron-ethyl, and 

thifensulfuron-methyl were applied at-planting, prickly sida control was equivalent regardless of 

preplant treatment (90 and 93%).
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Table 4.7. Percent prickly sida control 21 and 31days after the early POST (EPOST) application in 2011 and 2012, respectively, in the preplant, at-

planting, and POST program study at the Northeast Research Station, St. Joseph, LA.  

 

EPOST treatment3 

Preplant treatment1 

Gly + 

2,4-D 

Gly + 2,4-

D ester + 

Chlor + 

Triben Average4 

Gly + 

2,4-D 

Gly + 2,4-

D ester + 

Chlor + 

Triben Average4 

Gly + 2,4-

D 

Gly + 

2,4-D 

ester + 

Chlor + 

Triben Average4 

At-planting treatment2  

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

 

Gly 51 61 56 d5 71 86 79 c 90 91 91 a 

Gly + Chlor 40 68 54 de 88 87 87 b 84 93 89 ab 

Gly + Meto + Fome 44 51 48 e 84 87 86 bc 96 95 96 a 

Gly 5 62 57 d 70 88 79 c 89 94 91 ab 

          

Preplant x At-planting Avg. 47 e 60 d  78 c 87 b  90 ab 93 a  

Preplant Avg. 72 80  -- --  -- --  

At-planting Avg. 54  83  92  

1 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g ae/ha + 798 g 

ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 19, 2011 and 2012.   

2 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin plus 

chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 2011 and April 26, 

2012.   

3 EPOST treatments included glyphosate (Gly) alone at 866 g ae/ha, Gly at 866 g ae/ha plus Chlor at 9 g ai/ha, Gly at 866 g ae/ha plus s-

metolachlor (Meto) plus fomesafen (Fome) at 1216 + 266 g ai/ha, and Gly alone at 866 g ae/ha. Treatments were applied June 1, 2011 and May 

15, 2012. The first Gly alone treatment was to receive a follow up treatment of Gly late POST and the second Gly alone treatment was to receive 

Gly plus Chlor late POST.   
4 Means represent the at-planting x POST interaction and are averaged across preplant treatments. 
5At-planting x POST interaction means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD. 
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For prickly sida density determined 21 to 31 days after the EPOST application a 

significant effect was noted for only the at-planting treatment main effect (Table 4.8). Prickly 

sida density was greatest and equivalent for no herbicide at-planting (378 plants m-2) and 

glyphosate applied alone (280 plants m-2). Prickly sida density was 4 and 3 times greater where 

no herbicide or glyphosate alone was applied at-planting compared to glyphosate plus residual 

herbicides flumioxazin, chlorimuron-ethyl, and thifensulfuron-methyl were applied at-planting 

(378 and 280 vs. 95 plants m-2).  

For the final prickly sida control rating made 21 to 26 days after the LPOST application 

only the preplant and at-planting treatments main effects were significant (Table 4.9). Averaged 

across at-planting and POST treatments, prickly sida control for the preplant treatments was 84% 

for glyphosate plus 2,4-D and 88% for glyphosate plus chlorimuron-ethyl and tribenuron-methyl. 

Regardless of the preplant or the POST treatments evaluated, prickly sida control averaged 74% 

when herbicide was not applied at-planting and control was less than when either glyphosate or 

glyphosate plus the residual herbicides was applied at planting (90 and 93%, respectively). It 

should be noted that in the Preplant Herbicide study, prickly sida was controlled 89% at 35 DAA 

(Table 4.4) and control was comparable to that observed when the same treatment was evaluated 

in the Programs Study (Table 4.9). The fact that control was equivalent for both glyphosate plus 

the residual herbicides and glyphosate alone applied at planting, emphasize the value of the crop 

canopy in providing weed control.   

For prickly sida density approximately 21 to 26 days after the LPOST application only 

the at-planting main effect was significant (Table 4.10). Averaged across preplant and POST 

treatments, prickly sida density was 49 plants m-2 when glyphosate was applied with flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl at-planting. Density observed when
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Table 4.8. Prickly sida density (no. m-2) 21 and 31 days after the early POST (EPOST) application in 2011 and 2012, respectively, in 

the preplant, at-planting, and POST program study at the Northeast Research Station, St. Joseph, LA.  

 

EPOST treatment3 

Preplant treatment1 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment2 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly 536 615  388 204  100 100 

Gly + Chlor 289 240  181 217  125 164 

Gly + Meto + Fome 464 266  151 247  40 76 

Gly 266 447  391 559  69 122 

         

Preplant x At-planting Avg. 382 378  266 293  79 115 

Preplant Avg. 247 224  -- --  -- -- 

At-planting Avg. 378 a4  280 a  95 b 
1 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ae/ha + 798 g ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

2 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 

2011 and April 26, 2012.   

3 Early POST treatments included glyphosate (Gly) alone at 866 g ae/ha, Gly at 866 g ae/ha plus Chlor at 9 g ai/ha, Gly at 866 g 

ae/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 1216 + 266 g ai/ha, and Gly alone at 866 g ae/ha. Treatments were applied 

June 1, 2011 and May 15, 2012. The first Gly alone treatment was to receive a follow up treatment of Gly late POST and the second 

Gly alone treatment was to receive Gly plus Chlor late POST.   

4 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD.  
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Table 4.9. Percent prickly sida control 21 and 26 days after the late POST (LPOST) application in 2011 and 2012, respectively, in the 

preplant, at-planting, and POST program study at the Northeast Research Station, St. Joseph, LA.  

 

POST treatment3 

Preplant treatment1 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment2 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly fb Gly 73 75  83 92  92 92 

Gly + Chlor fb Gly 67 80  91 92  90 95 

Gly + Meto + Fome fb Gly 67 76  91 91  93 94 

Gly fb Gly + Chlor 75 76  87 90  95 96 

         

Preplant x At-planting Avg. 71 77  88 91  93 94 

Preplant Avg. 84 b4 88 a  -- --  -- -- 

At-planting Avg. 74 c  90 b  93 a 

1 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ae/ha + 798 g ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

2 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 

2011 and April 26, 2012.   

3 POST treatments included glyphosate (Gly) at 866 g ae/ha EPOST followed by (fb) Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha 

plus Chlor at 9 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 

1216 + 266 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, and Gly at 866 g ae/ha EPOST fb Gly at 866 g ae/ha plus Chlor at 9 g ai/ha 

LPOST. EPOST treatments were applied June 1, 2011 and May 15, 2012 and LPOST treatments were applied June 22, 2011 and June 

7, 2012.   
4 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD.  
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Table 4.10. Prickly sida density (no. m-2) 21 and 26 days after the late POST (LPOST) application in 2011 and 2012, respectively, in 

the preplant, at-planting, and POST program study at the Northeast Research Station, St. Joseph, LA.  

 

POST treatment3 

Preplant treatment1 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment2 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly fb Gly 342 165  257 40  53 20 

Gly + Chlor fb Gly 326 30  16 66  92 161 

Gly + Meto + Fome fb Gly 211 56  43 99  13 56 

Gly fb Gly + Chlor 148 342  313 89  33 40 

         

Preplant x At-planting Avg. 250 125  125 72  43 59 

Preplant Avg. 125 82  -- --  -- -- 

At-planting Avg. 180 a4  95 ab  49 b 

1 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ae/ha + 798 g ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

2 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 

2011 and April 26, 2012.   

3 POST treatments included glyphosate (Gly) at 866 g ae/ha EPOST followed by (fb) Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha 

plus Chlor at 9 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 

1216 + 266 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, and Gly at 866 g ae/ha EPOST fb Gly at 866 g ae/ha plus Chlor at 9 g ai/ha 

LPOST. EPOST treatments were applied June 1, 2011 and May 15, 2012 and LPOST treatments were applied June 22, 2011 and June 

7, 2012.   
4 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD.
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glyphosate was applied with the residual herbicides was equivalent to glyphosate applied alone 

at-planting (95 plants m-2), but was 73% less than when no herbicide was applied (180 plants m-

2). Based on the prickly sida control and density data collected approximately 21 days after the 

LPOST application (Tables 4.9 and 4.10), it can be concluded that for the preplant, at-planting, 

and POST weed control programs evaluated, improvement in control was most affected by the 

inclusion of glyphosate or glyphosate plus the residual herbicides flumioxazin, chlorimuron-

ethyl, and thifensulfuron-methyl at-planting. Furthermore, weed control was not substantially 

improved when the residual herbicides chlorimuron-ethyl plus tribenuron-methyl were included 

preplant and when the residual herbicides chlorimuron-ethyl, s-metolachlor, and fomesafen were 

applied with glyphosate POST.  

For soybean height at R3 a significant preplant by at-planting interaction was observed 

(Table 4.11). For all at-planting treatments soybean height was greater when glyphosate plus 2,4-

D plus the residual herbicides chlorimuron-ethyl and tribenuron-methyl were applied preplant 

compared with glyphosate plus 2,4-D alone. Additionally, soybean height was greater when 

glyphosate or glyphosate plus the residual herbicides flumioxazin, chlorimuron-ethyl, and 

tribenuron-methyl was applied at-planting compared with no herbicide applied at planting. The 

observed soybean height reductions are likely the result of early season competition from poor 

prickly sida control in those treatments (Table 4.6). For soybean dry weight determined at R5 

only the preplant treatment and at-planting treatment main effects were significant (Table 4.12). 

Averaged across at-planting and POST treatments, soybean dry weight was 12% greater when 

glyphosate plus 2,4-D plus the residual herbicides were applied preplant compared with only 

glyphosate plus 2,4-D. Averaged across preplant and POST treatments, soybean dry weight was 

29 and 23% greater when glyphosate or glyphosate plus the residual herbicides were applied at-
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Table 4.11. Soybean height at R3 growth stage in the preplant, at-planting, and POST program study at the Northeast Research 

Station, St. Joseph, LA.1 

 

POST treatment4 

Preplant treatment2 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment3 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly fb Gly 54 63  67 79  70 78 

Gly + Chlor fb Gly 53 65  73 74  68 73 

Gly + Meto + Fome fb Gly 54 62  71 76  70 73 

Gly fb Gly + Chlor 53 68  71 77  72 77 

         

Preplant x At-planting Avg. 53 d5 64 c  70 b 77 a  70 b 75 a 

Preplant Avg. 65 72  -- --  -- -- 

At-planting Avg. 59  73  73 
1 Soybean height (cm) data were collected on June 21, 2011 and June 28, 2012 and represent an average for 10 randomly selected 

locations within each plot. 
2 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ae/ha + 798 g ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

3 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 

2011 and April 26, 2012.   

4 POST treatments included glyphosate (Gly) at 866 g ae/ha EPOST followed by (fb) Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha 

plus Chlor at 9 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 

1216 + 266 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, and Gly at 866 g ae/ha EPOST fb Gly at 866 g ae/ha plus Chlor at 9 g ai/ha 

LPOST. EPOST treatments were applied June 1, 2011 and May 15, 2012 and LPOST treatments were applied June 22, 2011 and June 

7, 2012.   
5 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD. 

  



85 

 

Table 4.12. Soybean dry weight biomass at R5 growth stage in the preplant, at-planting, and POST program study at the Northeast 

Research Station, St. Joseph, LA.1 

 

POST treatment4 

Preplant treatment2 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment3 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly fb Gly 183 303  301 301  287 344 

Gly + Chlor fb Gly 210 267  343 250  291 317 

Gly + Meto + Fome fb Gly 237 309  325 322  288 311 

Gly fb Gly + Chlor 237 246  317 321  304 315 

         

Preplant x At-planting Avg. 217 281  321 323  293 322 

Preplant Avg. 277 b5 309 a  -- --  -- -- 

At-planting Avg. 249 b  322 a  307 a 
1 Soybean dry weight biomass (g/plant) data were collected on August 1, 2011 and July 31, 2012 and represent an average for 10 

randomly selected plants within each plot. 
2 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ae/ha + 798 g ae/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

3 At-planting treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus flumioxazin 

plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were applied May 1, 

2011 and April 26, 2012.   

4 POST treatments included glyphosate (Gly) at 866 g ae/ha EPOST followed by (fb) Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha 

plus Chlor at 9 g/ha EPOST fb Gly at 866 g ae/ha LPOST, Gly at 1120 g ai/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 

1216 + 266 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, and Gly at 866 g ae/ha EPOST fb Gly at 866 g ae/ha plus Chlor at 9 g ai/ha 

LPOST. EPOST treatments were applied June 1, 2011 and May 15, 2012 and LPOST treatments were applied June 22, 2011 and June 

7, 2012.   
5 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD. 
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planting, respectively, compared with no herbicide at-planting. The observed soybean dry weight 

reductions is likely the result of early season competition from poor prickly sida control in those 

treatments (Table 4.6). 

For soybean yield, as was the case for prickly sida control 21 days after the LPOST 

application and soybean dry weight (Tables 4.9 and 4.12), only the preplant and at-planting 

treatment main effects were significant (Table 4.13). Averaged across at-planting and POST 

treatments soybean yield was increased 10% when residual herbicide was applied with 

glyphosate preplant compared with glyphosate alone. When glyphosate or glyphosate plus the 

residual herbicides was applied at-planting, yield was equivalent and averaged around 25% 

greater than when no herbicide was applied at-planting.  

In other research, Payne and Oliver (2000) reported that sequential glyphosate 

applications generally provided the highest and most consistent control of weed species 

evaluated, including prickly sida, and soybean yield was comparable to other herbicide programs 

involving PRE herbicides followed by glyphosate as needed, or glyphosate in combination with 

selective POST herbicides. Ellis and Griffin (2002) reported that use of soil residual herbicides at 

soybean planting was beneficial in delaying the initial glyphosate application by 3 and 6 days 

and in some years only a single POST application of glyphosate was needed. However where 

residual herbicide was not applied at planting and two applications of glyphosate were made, 

weed control and soybean yield were each equivalent to glyphosate programs that included a 

residual herbicide at planting. Dirks et al. (2000) also reported that when two POST applications 

of glyphosate were used in-crop, there was no yield benefit from the inclusion of residual 

herbicides at planting. 
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Table 4.13. Soybean yield in the preplant, at-planting, and POST program study at the Northeast Research Station, St. Joseph, LA.1 

 

POST treatment4 

Preplant treatment2 

Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben  Gly + 2,4-D 

Gly + 2,4-D 

ester + Chlor 

+ Triben 

At-planting treatment3 

None  Gly  

Gly + Flumi + Chlor + 

Thifen 

Gly fb Gly 2697 3287  3630 3778  3665 3988 

Gly + Chlor fb Gly 2479 3219  3746 3801  3668 3953 

Gly + Meto + Fome fb Gly 2621 3321  3523 3942  3774 3598 

Gly fb Gly + Chlor 3028 3262  3603 3945  3617 3823 

         

Preplant x At-planting Avg. 2706 3272  3625 3866  3681 3840 

Preplant Avg. 3340 b 3660 a  -- --  -- -- 

At-planting Avg. 2990 b  3750 a  3760 a 

1 Soybean yield (kg/ha) determined after harvest on September 23, 2011 and September 6, 2012. 
2 Preplant treatments included glyphosate plus 2,4-D ester (Gly + 2,4-D) at 866 g ae/ha + 798 g ae/ha and Gly plus 2,4-D at 866 g 

ai/ha + 798 g ai/ha plus chlorimuron-ethyl plus tribenuron-ethyl (Chlor + Triben) at 32 + 10 g ai/ha. Treatments were applied March 

19, 2011 and 2012.   

3 At-planting/PRE treatments included none (no herbicide), glyphosate (Gly) at 866 g ae/ha, and Gly at 866 g ae/ha plus 

flumioxazin plus chlorimuron-ethyl plus thifensulfuron-methyl (Flumi + Chlor + Thifen) at 72 + 23 + 7 g ai/ha. Treatments were 

applied May 1, 2011 and April 26, 2012.   

4 POST treatments included glyphosate (Gly) at 866 g ae/ha EPOST followed by (fb) Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha 

plus Chlor at 9 g/ha EPOST fb Gly at 866 g ae/ha LPOST, Gly at 866 g ae/ha plus s-metolachlor (Meto) plus fomesafen (Fome) at 

1216 + 266 g ai/ha EPOST fb Gly at 866 g ae/ha LPOST, and Gly at 866 g ae/ha EPOST fb Gly at 866 g ae/ha plus Chlor at 9 g ai/ha 

LPOST. EPOST treatments were applied June 1, 2011 and May 15, 2012 and LPOST treatments were applied June 22, 2011 and June 

7, 2012.   
5 Means followed by same letter are not significantly different at P = 0.05 using Fisher’s protected LSD.  
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In northeastern Louisiana it has been observed that prickly sida can emerge as early as 

the first week of March and continue throughout the growing season, suggesting the need for a 

season-long weed management program. A weed control program option in a reduced tillage 

system could include glyphosate plus 2,4-D preplant to control winter weeds, glyphosate at-

planting to eliminate emerged summer annual weeds, and glyphosate for broad spectrum 

postemergence weed control. In this research, late season prickly sida control was as high as 

93% following at-planting and POST applications that did not include residual herbicides. 

Soybean yield was maximized with glyphosate applied both at-planting and POST, whether or 

not the residual herbicides flumioxazin, chlorimuron-ethyl, and thifensulfuron-methyl were 

included at planting or the residual herbicides chlorimuron-ethyl, s-metolachlor, or fomesafen 

were included POST. Of interest is that when averaged across at planting and POST treatments, 

a 10% yield increase was observed when the residual herbicides chlorimuron-ethyl and 

tribenuron-methyl were applied with glyphosate plus 2,4-D a preplant compared with glyphosate 

plus 2,4-D alone. This is especially noteworthy since the preplant herbicides were applied on 

March 19, over 170 days prior to soybean harvest. The slight increase in prickly sida control 

observed late-season where residual herbicide was applied preplant combined with the decrease 

in prickly sida density and the increase in soybean height and biomass, although not always 

significant, may have contributed to the observed yield increase. 

In the present study emphasis was placed on control of prickly sida. In a soybean 

production system the presence of glyphosate-resistant weeds as well as other hard-to-control 

broadleaf weeds could also benefit from the inclusion of herbicides with residual activity. 

Although a weed control program for prickly sida that includes the predominant use of 

glyphosate preplant, at-planting, and postemergence can be both efficacious and economical, 
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exclusion of herbicides with alternative modes of action would be detrimental in respect to 

herbicide resistance management.  
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CHAPTER 5 

POST-HARVEST PRICKLY SIDA (SIDA SPINOSA) CONTROL 

 

INTRODUCTION 

Presence of weeds in fields late-season is often ignored because crop yield is rarely 

affected (Bagavathiannan and Norsworthy 2012). Weeds present at harvest can affect harvest 

efficiency and seed quality due to increased moisture and foreign material. Seed production from 

weeds can also assure weed problems in subsequent years. At the time of harvest, weed seeds 

can be classified based on the dispersal status and location: (1) dispersed the previous year and 

persisting in the soil seedbank; (2) undispersed, retained on the mother plant; (3) dispersed in the 

current year and on the soil surface; (4) dispersed the current year and collected by harvest 

equipment (Davis 2008). Weeds present in late-season comprise ones that survived early-season 

weed control programs and those that emerge after control measures have ceased or after the 

crop has been harvested (Bagavathiannan and Norsworthy 2012). Davis (2008) observed that if 

the ratio of undispersed seeds to seeds in the soil seedbank, for the dominant weed species was 

greater than or equal to 1, this indicated the potential for 1 year seed rain would replenish or 

augment the soil seedbank. The current year’s crop, corn or soybean, affected the risk for 

seedbank replenishment for some weed species.  

Seedbank augmentation or replenishment is a common occurrence in commercial grain 

production systems managed with standard herbicide programs (Davis 2008). Seed capture or 

destruction at harvest time may be practical, but it would require modifying harvesting 

equipment. The employment of management practices that target weed seed production may be 

most effective at reducing seed production. The development of effective management strategies 

that reduce weed fecundity would be aided by species-level information that identifies tactics 

most appropriate for a given weed spectrum. Research has demonstrated that herbicides applied 
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to weeds at early flower or pod set can reduce potential seedbank replenishment (Bennett and 

Shaw 2000; Biniak and Aldrich 1986; Brewer and Oliver 2007; Clay and Griffin 2000; Fawcett 

and Slife 1978; Hartzler and Battles 2001; Isaacs et al. 1989; Jha and Norsworthy 2012; Maun 

and Cavers 1969; Taylor and Oliver 1997; Thomas et al. 2005; Walker and Oliver 2008). Seed 

weight reduction, seed viability, and seedling recruitment can affect presence of weed species the 

following season (Jha and Norsworthy 2012). Weed species capable of prolific seed production, 

with an extended germination window, and potential for development of herbicide resistance 

there should be a zero-tolerance seed production policy (Crow et al. 2015). This research 

indicated that POST-harvest application of paraquat alone or in combination with residual 

herbicides prevented seed production of Palmer amaranth (Amaranthus palmeri S. Wats.). The 

herbicide treatments effectively eliminated the addition of 1,200 seed m-2 or 12 million seed ha-1 

to the soil seedbank. 

In north central Kentucky and in the Delta of Mississippi prickly sida has been observed 

to germinate in the field from April through September (Baskin and Baskin 1984; Egley and 

Williams 1991). Walker and Oliver (2008) reported that prickly sida seed production was 

eliminated when sequential glyphosate applications at 0.42 or 0.84 kg ai ha-1 were initiated when 

the first weed in the weed complex flowered, and a single glyphosate application to prickly sida 

at flowering reduced seed production by 95%. Effective long-term weed management should 

also include strategies that reduce late-season weed seed production.   

Little research has been conducted on the influence of glyphosate and 2,4-D applications 

on prickly sida seed production and viability. Prickly sida has become more prevalent in 

Louisiana crop production systems (Bill Williams, personal communication). The shift toward 

earlier maturing crops has resulted in late-season emergence of prickly sida both in-crop and in 
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harvested fields. Associated seed production may be contributing to the increased presence of 

prickly sida in crops. Research was conducted to evaluate the influence of POST-harvest 

application of glyphosate and 2,4-D on prickly sida seed production and seed viability and 

prickly sida control from herbicides applied following corn harvest.  

MATERIALS AND METHODS 

Prickly Sida POST-Harvest Seed Production/Viability Study. A study was conducted 

in 2011, 2012, and 2013 using prickly sida grown in pots at the LSU AgCenter Northeast 

Research Station near St. Joseph, La. Black polyethylene pots (International Greenhouse Co., 

Danville, IL 61832), 20.3 cm diameter pots with 7.6 L volume capacity, were filled with a 

Sharkey clay soil (very-fine, smectitic, thermic Chromic Epiaquerts). In the first year of the 

study soil was collected from a field with a natural population of prickly sida and was placed in 

pots on August 2, 2011. Seed present in the soil served as the source of plants for the experiment. 

During the second and third year of the study soil was collected from a fallowed field that had no 

prior infestation of prickly sida. Prickly sida seed collected from plants grown at the Northeast 

Research Station were planted in pots on June 8, 2012 and June 3, 2013.  

When prickly sida reached approximately the four leaf stage, plants were thinned to two 

plants per pot in 2011 and to one plant per pot in 2012 and 2013. An attempt was made at the 

thinning operation to retain uniform sized plants. Pots were hand weeded as needed. The 

experiment was an augmented two factor factorial conducted in a completely randomized design 

with 3 plants used for seed data and plant data. The first factor was herbicide treatments: 

glyphosate (Roundup PowerMax, Monsanto Co., St. Louis, MO 63167) at 433 g ae ha-1 applied 

in 2012 and 2013 and at 866 g ae ha-1 in 2011 and 2013 and 2,4-D ester (2,4-D LV4, Albaugh 

Inc., Ankenny, IA 50021) at 532 g ae ha-1 applied in 2012 and 2013 and at 1064 g ae ha-1 in 2011 
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and 2013. A nontreated was included as a comparison. The second factor was application timings 

based on prickly sida growth stage: beginning of flowering, when 50% of plants had begun to 

flower and beginning of seed set, when 50% of plants had a mature capsule with brown seed. 

The flowering application was made September 22, 2011; July 30, 2012; and July 19, 2013. The 

seed set application was made October 12, 2011; August 8, 2012; and July 31, 2013.  

Herbicide treatments were applied using a CO2-pressurized backpack sprayer calibrated 

to deliver a volume of 140 L ha-1 at a spray pressure of 207 kPA. The test area was located on the 

lawn behind the Northeast Research Station buildings away from research fields. The potted 

plants to be sprayed were removed from the test area before each herbicide application and 

relocated to a separate area designated for the application timing. This procedure was followed to 

ensure that no drift or volatility injury occurred between treatments and to prevent herbicide 

contamination of the non-treated plants. The pots remained in their respective treatment sites for 

1 to 3 days before they were returned to the study area.  

To accommodate watering of plants in 2011, soaker hoses were used. The hoses were 

strung along the top and sides of each pot and secured to wooden stakes driven in the ground. 

Pots were watered as needed receiving a watering period of 2 to 3 hours or until soil was 

saturated. In 2012 and 2013, pots within each treatment were placed in a 2.4 m x 2.4 m x 0.1 m 

wooden box. A water permeable weed suppressing fabric (Fabriscape Inc., Bedford Park, IL 

60638) was attached to the bottom of the wooden boxes to catch seed that may have fallen from 

plants prior to removal. For water, the three plants from each treatment were placed into a 53 cm 

wide by 70 cm long by 22 cm deep plastic container with approximately 10 to 15 cm of water. 

After the soil was visibly wet, pots were removed and returned to their respective boxes where 

they remained until the next watering event. For each year the study was terminated once a 
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killing frost had occurred or when plant growth has ceased. Termination dates were November 

15, 2011; October 22, 2012; and October 8, 2013. At termination, each plant per pot was 

harvested and node number was determined. Plants were dried in the greenhouse for 1 to 2 

months and dry weight was recorded. 

To evaluate herbicide treatment effect on seed production, mature seed capsules were 

removed at regular intervals from plants within a treatment and composited. A mature seed 

capsule was defined as a brown dry capsule with dried brown seeds visible. Prickly sida seed 

number was determined by hand counting all the seed collected for a treatment sample in 2011 

and 2012 and by estimation based on 50 or 100 seed weight in 2013. In 2013, either all possible 

samples of 100 seed weight were measured or five samples of 50 seed each were measured for 

each treatment. Total sample weight was then measured and seed number estimated for each 

treatment. The method used (hand counting or estimation) was determined based on the number 

of seed and the amount of debris remaining after seed cleaning.  

Seed removed from prickly sida plants, were stored in the lab at the Northeast Research 

Station and maintained at room temperature. Seed viability was determined in 2014 from 4 

replicates of 50 seeds for each year of the study. Seed number varied between treatments 

depending on herbicide treatment. The procedure used to evaluate viability was a modified 

method described by Webster et al. (2015). Prickly sida seed for each treatment were soaked in a 

50:50 (v/v) solution of chlorine bleach and distilled water for 5 to 10 minutes to reduce seedling 

disease. Once soaked, the seed were placed in a U.S. no. 20 mesh size (0.841 mm) sieve and 

thoroughly rinsed with distilled water. Seeds were placed on the surface of a Crocker Blue 

Blotter Circle paper (Anchor Paper Company, St. Paul, MN 55101) in a 9-cm petri dish and 5 or 

7 ml (experiment year 2013) of a 1% distilled water/azoxystrobin (Dynasty/Quadris, Syngenta 
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Crop Protection LLC., Greensboro, NC 27419) (100 ml of 10% Dynasty add to 900 ml of 

distilled water) solution was added to reduce seedling disease. Blotter paper was firmly placed 

over the seed and the petri dish top was replaced and sealed with Parafilm (SPI Supplies, 

Structure Probe Inc., West Chester, PA 19381) to prevent moisture loss. All petri dishes were 

placed in a dark temperature controlled incubator set at 35 C for 14 d and seed were scored as 

germinated if radicle protrusion was visible, dormant if no radicle was visible and seed did not 

crush under forceps pressure, and non-viable if no radicle was visible and crushed under forceps 

pressure. Average viability percentage was calculated for each treatment for each year. Total 

viable seed production was estimated by multiplying total seed production for each treatment in a 

given year by the respective viability percentage. Since not every treatment produced seeds to 

test viability, data were not analyzed statistically because of imbalanced data and missing values.  

The seed production and growth data were subjected to ANOVA using Standard Least 

Squares method in Fit Model functionality using JMP® software (JMP 2015). A mixed model 

with herbicide combinations and application timing as fixed effects was used. Herbicide rates in 

common among years (560 g ha-1 in 2012 and 2013 and 1120 g ha-1 in 2011 and 2013) were 

analyzed separately and years were considered random effects. Type III tests were used to test 

significance of fixed effects. LSMEANS were used for treatment comparison and Fisher’s 

protected LSD was used for mean separation. Contrast analysis was used to compare herbicide 

main effects with the nontreated. 

Prickly Sida POST-Harvest Control Study. A study was conducted in 2011, 2012, and 

2013 in fields with heavy prickly sida infestation at the LSU AgCenter Northeast Research 

Station near St. Joseph, La. In 2011 and 2013 the soil was a Sharkey clay soil (very-fine, 

smectitic, thermic Chromic Epiaquerts) with a pH of 5.7 and organic matter content of 2.5%. In 
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2012 a Commerce silty clay loam soil (fine-silty, mixed, superactive, nonacid, thermic 

Fluvaquentic Endoaquepts) with a pH of 6.7 and organic matter content of 1.7% was used.  

Specific herbicide treatments for this study are presented in Table 5.1. Treatments were 

arranged in a randomized complete block design with four replications. Plot size was 3.1 m x 7.5 

or 9 m.  In 2011, the study was conducted in a fallowed field and treatments were initiated on 

August 29, 2011. In 2012 and 2013, the study was conducted in a field following corn harvest 

and treatments were initiated on August 14, 2012 and September 11, 2013. In 2013, the study 

was conducted twice in the same field. Prickly sida height each year was 25 to 75 cm with some 

plants blooming and setting seed. Rainfall during the 2 weeks prior to and after treatment 

initiation totaled 6 and 104 mm in 2011, 55 and 91mm in 2012, and 0 and 151mm in 2013, 

respectively. Herbicide treatments were applied using a tractor mounted compressed air 

pressurized sprayer calibrated to deliver a volume of 140 L ha-1 at a spray pressure of 207 kPA.  

In 2011, 2012, and 2013 visual control ratings were made 2 (data not shown) and 6 weeks 

after application (WAA). Prickly sida control was based on a scale of 0 to 100% with 0 = no 

control and 100 = no plants present. Eight WAA in 2012 and 2013 each plot was closely 

observed to determine if surviving prickly sida plants were able to set seed. If at least one plant 

in each replicate was observed with a mature brown capsule and brown seed, it was considered 

to have set seed. Data were expressed as number of observations per replicate for each treatment. 

Four replicate plots for each treatment were assessed in 2012 and eight replicate plots, two 

experiments with four replications each, were assessed in 2013.  

Prickly sida control was subjected to ANOVA using Standard Least Squares method in 

Fit Model functionality using JMP® software (JMP 2015).Treatment LSMEANS were used for 

treatment comparison and Fisher’s protected LSD was used for mean separation. 
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Table 5.1. Herbicide treatments, rates, trade name, and manufacturer for the POST-harvest prickly sida control study at the Northeast Research Station, St. 

Joseph, LA. In 2013, the experiment was duplicated in the same field.  

Treatments1 

Rate 

(g ae or ai ha-1) Trade name Manufacturer 

Glyphosate 866 Roundup PowerMax 
Roundup PowerMax, Monsanto Co., St. Louis, MO 

63167 

Glyphosate + diuron 866 + 1120 Roundup PowerMax + Direx 4L 

Roundup PowerMax, Monsanto Co., St. Louis, MO 

+ Direx 4L, Makhteshim Agan of North America 

Inc., Raleigh, NC 27609 

Glyphosate + diuron + 

linuron 
866 + 560 + 560 Roundup PowerMax + Layby Pro 

Roundup PowerMax, Monsanto Co., St. Louis, MO 

+ Layby Pro, Tessenderlo Kerley Inc., Pheonix, AZ 

85008 

Glyphosate + atrazine 866 + 1120 Roundup PowerMax + Atrazine 4L 

Roundup PowerMax, Monsanto Co., St. Louis, MO 

+ Atrazine 4L, Makhteshim Agan of North America 

Inc., Raleigh, NC 27609 

Glyphosate + 2,4-D ester 866 + 1064 Roundup PowerMax + 2,4-D LV4 
Roundup PowerMax, Monsanto Co., St. Louis, MO 

+ 2,4-D LV4, Albaugh Inc., Ankenny, IA 50021 

Paraquat 560 Gramoxone SL 
Gramoxone SL, Syngenta Crop Protection LLC, 

Greensboro, NC 24719  

Paraquat + diuron 560 + 840 Gramoxone SL + Direx 4L 
Syngenta Crop Protection LLC + Makhteshim Agan 

of North America Inc. 

Paraquat + diuron + linuron 560 + 420 + 420 Gramoxone SL + Layby Pro 
Syngenta Crop Protection LLC + Tessenderlo 

Kerley Inc.  

Paraquat + atrazine 560 + 840 Gramoxone SL + Atrazine 4L 
Syngenta Crop Protection LLC + Makhteshim Agan 

of North America Inc. 

Paraquat + 2,4-D ester 560 + 798 Gramoxone SL + 2,4-D LV4 Syngenta Crop Protection LLC + Albaugh Inc. 

Glufosinate 655 Liberty 280 SL 
Bayer Crop Science LP, Reasearch Triangle Park, 

NC 27709 

Glufosinate + diuron + 

linuron 
655+ 420 + 420 Liberty 280 SL + Layby Pro Bayer Crop Science LP + Tessenderlo Kerley Inc. 

Glyphosate + 2,4-D ester + 

dicamba 
1120 + 1064 + 560 Roundup PowerMax + 2,4-D LV4 + Banvel 

Monsanto Co. + Albaugh Inc. + Arysta LifeScience 

North America LLC, Cary, NC 27513 
1 Crop oil concentrate was added to all of the glufosinate and paraquat treatments at 1% v/v, Superb HC, Winfield Solutions LLC, St. Paul, MN 55164 
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RESULTS AND DISCUSSION 

Prickly Sida POST-Harvest Seed Production/Viability Study. Seeds were first 

produced on October 12, 2011, August 8, 2012, and July 31, 2013 which corresponded to 52 and 

58 days after planting in 2012 and 2013, respectively. Seed collection dates included October 12, 

25, and 30 and November 5 and 15, 2011; August 28, September 9, 14, and 22, and October 15 

and 22, 2012; and July 31, August 4, 12, 20, and 28, September 2, 9, 19, and 25, and October 2, 

2013. A significant herbicide treatment effect was observed for total seed production for 

glyphosate and 2,4-D when applied at 1/2X rate, but not when glyphosate or 2,4-D was applied 

at 1X rate (Table 5.2). When averaged over application timing, total seed production for prickly 

sida plants treated with 2,4-D or glyphosate plus 2,4-D was equivalent and averaged 78% less 

compared with glyphosate alone and 79% less than the nontreated. There was no significant 

difference in total seed production between the beginning of flowering and beginning of seed set 

application timings for either rate. Walker and Oliver (2008), reported that a single 0.84 kg ha-1 

rate of glyphosate applied near or at prickly sida flowering reduced prickly sida seed production 

by 95%, whereas, earlier applications, based on the flowering of a weed in a weed complex, 

resulted in 69 to 86% seed reduction.   

For percent seed viability for both herbicides at either rate, although numerical 

differences were observed among the herbicide and timing treatments (Table 5.2), data were not 

analyzed statistically due to missing values resulting from lack of seed production for certain 

treatments. For total viable seed produced per plant for the 1/2X herbicide rate, there was a 

significant effect due to herbicides but not due to application timing (Table 5.2). Averaged across 

application timings, total viable seed production was equivalent for 2,4-D and for glyphosate 

plus 2,4-D and averaged 80% less compared with glyphosate alone and 84% less than the 
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Table 5.2. Influence of glyphosate and 2,4-D ester applied alone and in combination to prickly sida at beginning flower (Flower) and beginning seed set (Seed 

set) on total seed production, seed viability, total viable seed, nodes per plant, and dry weight at the Northeast Research Station, St. Joseph, LA.1  

  

Total seed production 

(no. per plant) 

Seed Viability 

 (%)2 

Total viable seed 

(no. per plant) 

Nodes 

(number per plant) 

Dry weight  

(g per plant) 

 

Application3 

Timing  

Application 

Timing  

Application 

Timing  

Application 

Timing  

Application 

Timing  

Treatment Flower 

Seed 

set 

Herbicide 

avg. Flower 

Seed 

set 

Herbicide 

avg. Flower 

Seed 

set 

Herbicide 

avg. Flower 

Seed 

set 

Herbicide 

avg. Flower 

Seed 

set 

Herbicide 

avg. 

 ------------------------------------------------------------------- 1/2X4 rate (2012 and 2013) ------------------------------------------------------------------------ 

Nontreated 5173 a5  70  3984 a  37 a  14.5 a  

Glyphosate 4046 6038 5042 a 71 76 74 3141 4607 3084 a 22 28 25 b 10.6 14.5 12.6 a 

2,4-D 529 1851 1190 b 77 33 55 445 596 521 b 29 34 31 a 7.5 6.4 7.0 b 

Glyphosate 

+ 2,4-D 
1526 488 1007 b 36 48 42 1098 337 718 b 21 27 24 b 3.9 5.4 4.7 b 

                

Timing avg. 2034 2792  61 52  1561 1847  24 b 30 a  7.3 8.8  

  

 -------------------------------------------------------------------- 1X4 rate (2011 and 2013)) ------------------------------------------------------------------------ 

Nontreated 4094  85  3662  40 a  16.8 a  

Glyphosate 3715 3909 3812 46 51 49 3385 2902 3144 24 28 26 b 11.7 13.8 12.8 a 

2,4-D 25 1463 744 3 35 19 1 457 229 23 28 26 b 0.6 8.4 4.5 b 

Glyphosate 

+ 2,4-D 
1381 1295 1338 44 2 23 1216 39 628 21 28 24 b 6.4 5.2 5.8 b 

                

Timing avg. 1707 2222  31 29  1534 1133  23 b 28 a  6.2 9.1  

1Glyphosate applied at 433 g ae ha-1 in 2012 and 2013; at 866 g ae ha-1 in 2011 and 2013. 2,4-D ester applied at 532 g ae ha-1 in 2012 and 2013; 1064 g ae ha-1 in 2011 and 

2013.  

2Seed viability was not statistically analyzed due to imbalanced data from missing values resulting from no seed production from certain treatments. 
3Application timings included Flower = beginning of flowering when 50% of plants had begun to flower and Seed set = beginning of seed set when 50% of plants had a mature 

capsule with brown seed. 
4Glyphosate 1/2X rate = 433 g ha-1 and 1X = 866 g ae ha-1; 2,4-D 1/2X rate = 532 g ae ha-1 and 1X = 1064 g ae ha-1.  
5Herbicide average and timing average means followed by the same letter or without letters for each variable are not significantly different using Fisher’s Protected LSD at P = 

0.05.  
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nontreated. Significant treatment effects were not observed for total viable seed production for 

the 1X rate herbicide rate.  

In contrast to the seed data, a significant main effects of application timing and herbicide 

treatment was observed for nodes per plant for both 1/2X and 1X rates (Table 5.2). For the 1/2X 

herbicide rate, node number per plant averaged across herbicide treatments at termination of the 

experiments on November 15, 2011; October 22, 2012; and October 5, 2013 was 20% less when 

herbicide was applied at the beginning of flowering compared with beginning of seed set. 

Averaged across treatment timings, nodes per plant where 2,4-D was applied alone was 24% 

greater than for glyphosate alone and 29% greater than for glyphosate plus 2,4-D. There was no 

difference in nodes per plant between glyphosate and glyphosate plus 2,4-D, or between 2,4-D 

and the nontreated. Average node number per plant for glyphosate and glyphosate plus 2,4-D 

was 32% less compared to the nontreated. For the 1X herbicide rate node number per plant 

averaged across herbicide treatments was 18% less when herbicide was applied at beginning 

flower compared to beginning of seed set. Averaged across herbicide timing, node number per 

plant was reduced equally by glyphosate, 2,4-D and glyphosate plus 2,4-D and averaged 37% 

less than the nontreated. 

For dry weight per plant, only a herbicide treatment effect was observed for the 1/2X and 

1X herbicide rates (Table 5.2). For the 1/2X herbicide rate, averaged across application timing, 

prickly sida when treated with 2,4-D or glyphosate plus 2,4-D had a dry weight of 7 and 4.7 g 

plant-1 and was not different. Dry weight of prickly sida treated with 1/2X rate of 2,4-D or 

glyphosate plus 2,4-D averaged 53% less than when glyphosate was applied alone and 59% less 

than the nontreated. Prickly sida dry weight per plant was no different for glyphosate applied 

alone and the nontreated. For the 1X herbicide rate averaged over application timings, prickly 
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sida dry weight per plant was equivalent for the nontreated and glyphosate applied alone. Prickly 

sida dry weight per plant was no different for 2,4-D and glyphosate plus 2,4-D and averaged 

59% less compared to glyphosate applied alone and 69% less compared to the nontreated. The 

effectiveness of 2,4-D and glyphosate plus 2,4-D in reducing total seed production per plant can 

be attributed to the corresponding reduction in plant dry weight. Walker and Oliver (2008) 

observed that prickly sida dry weight was on average reduced 55% from a single application of 

glyphosate at 0.84 kg ai ha-1. 

Prickly Sida POST-Harvest Control Study. At 6 WAA prickly sida was controlled 

85% with glufosinate applied with diuron and linuron, greater than when glufosinate was applied 

alone (68%), but no different to that for paraquat applied with diuron (77%) or diuron and 

linuron (82%), and glyphosate applied with 2,4-D ester and dicamba (75%) (Table 5.3). Prickly 

sida control was 46% and lowest when glyphosate was applied alone and control was increased 

to 57 and 75% when glyphosate was applied with diuron, diuron and linuron, atrazine, and 2,4-D 

ester. Paraquat applied alone controlled prickly sida 64% and control was 74 to 82% when 

paraquat was applied with diuron, diuron and linuron, atrazine, and 2,4-D ester. In a similar 

study evaluating Palmer amaranth control following corn harvest, Crow et al. (2015) reported 

91% or greater control of Palmer amaranth when paraquat was applied alone at 840 g ai ha-1 or 

with s-metolachlor, metribuzin, pyroxasulfone, saflufenacil, flumioxazin, pyroxasulfone plus 

flumioxazin, or pyroxasulfone plus fluthiacet. In the present study prickly sida control did not 

exceed 85%. 

At 8 WAA each plot was closely observed to determine if surviving prickly sida plants 

were able to set seed. If at least one plant in each replicate was observed with a mature brown 

capsule and brown seed, that plant was considered to have produced seed. In 2012, at least one  
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Table 5.3. Prickly sida control 6 weeks after application (WAA) of glyphosate, glufosinate, and paraquat applied alone and in 

combination with other herbicides and visual observation of treatments for prickly sida seed set at the Northeast Research Station, St. 

Joseph, LA. 

 

Rate (g/ha) 

Prickly sida control (%)2 

Seed set 

(observation/replicate)3 

Treatment1 6 WAA 2012 2013 

Glyphosate 866 46 h 4/4 8/8 

Glyphosate + diuron 866 + 1120 62 fg 4/4 7/8 

Glyphosate + diuron + linuron 866 + 560 + 560 75 cd 2/4 5/8 

Glyphosate + atrazine 866 + 1120 57 g 4/4 8/8 

Glyphosate + 2,4-D ester 866 + 1064 68 de 3/4 2/8 

Paraquat 560 64 ef 4/4 8/8 

Paraquat + diuron 560 + 840 77 bc 3/4 6/8 

Paraquat + diuron + linuron 560 + 420 + 420 82 ab 3/4 6/8 

Paraquat + atrazine 560 + 840 74 cd 3/4 8/8 

Paraquat + 2,4-D ester 560 + 798 74 cd 4/4 6/8 

Glufosinate 655 68 de 4/4 8/8 

Glufosinate + diuron + linuron 655+ 420 + 420 85 ab 3/4 5/8 

Glyphosate + 2,4-D ester + dicamba 866 + 1064 + 560 75 bc 2/4 2/8 
1Crop oil concentrate was added to all of the glufosinate and paraquat treatments at 1% v/v. 
2Ratings were made 2 and 6 WAA in 2011, 2012, and 2013.  
3Eight WAA in 2012 and 2013 each plot was observed to determine if surviving prickly sida plants were able to set seed. If at least 

one plant in each plot/replicate was observed with a mature brown capsule and brown seed, it was considered to have set seed. Four 

replicate plots for each treatment were assessed in 2012 and eight replicate plots (two experiments with four replications each) were 

assessed in 2013. 
4Means followed by same letters within each column are not significantly different using Fisher’s Protected LSD at P = 0.05. 
5 For the double disk treatment a tandem disk set to cut 20 cm deep was run in opposite directions. For the mowing treatment a 

rotary mower at a cutting height of 5 cm was used.  
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prickly sida plant in 4 of the 4 replicates was observed to set seed in most of the herbicide 

treatments (Table 5.3). For only glyphosate applied with diuron plus linuron or with 2,4-D ester 

plus dicamba was seed set observed in only 2 of 4 replicates (2/4) in 2012. Seed set was 

observed in 3 of 4 replicates for glyphosate applied with 2,4-D ester, for glufosinate applied with 

diuron and linuron, and for paraquat applied with diuron and linuron, atrazine, and diuron.  

In 2013, the study was conducted twice and observations were made on 8 replicates for 

each treatment. For most of the treatments evaluated, prickly sida seed set was observed in 7 of 8 

or 8 of 8 replicates (Table 5.3). For two treatments, glyphosate applied with 2,4-D ester and with 

2,4-D ester plus dicamba, seed set was observed in only 2 of 8 replicates (2/8). It is also 

noteworthy that seed set was observed in 5 of 8 replicates where glyphosate or glufosinate was 

applied with diuron plus linuron. In contrast to our research, Crow et al. (2015), observed that all 

herbicides treatments applied to Palmer amaranth following corn harvest prevented seed 

production, effectively eliminating the return of 12 million seed ha-1. 

Results show that none of the herbicide treatments provided complete control of prickly 

sida that was present in the field at corn harvest. The most effective herbicide treatments based 

on prickly sida control 6 WAA included glufosinate, paraquat, and glyphosate plus diuron and 

linuron (75 to 85%); paraquat plus diuron, atrazine, or 2,4-D ester (74 to 77%); and glyphosate 

plus 2,4-D ester and dicamba (75%). The effectiveness of glyphosate plus 2,4-D ester and 

dicamba in controlling prickly sida 75% along with decreasing seed set both years would make it 

a viable treatment option for prickly sida management after crop harvest in August and 

September. 
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CHAPTER 6 

SUMMARY 

 
This research concentrates on prickly sida, a weed that can emerge in northeastern 

Louisiana in early March and that is becoming more problematic in crops. The shift in recent 

years toward earlier maturing crops has resulted in late-season prickly sida emergence both in-

crop and in harvested fields. Associated seed production may have contributed to increased 

prickly sida presence and competition with crops. This research on prickly sida specifically 

addresses 1) emergence periodicity from March through October in fields with silty clay loam 

and clay soils, 2) plant growth and seed production response to shade comparing gradual shade 

increase as would occur within a developing crop canopy and decrease in shade as would occur 

with crop senescence, 3) weed control and soybean yield using residual herbicides preplant, at-

planting, and POST, and 4) POST harvest control programs to reduce seed production and seed 

viability using glyphosate and 2,4-D.  

Results from the emergence periodicity study show that in both 2012 and 2013 regardless 

of soil type (Commerce silty clay loam or Sharkey clay), prickly sida was able to emerge when 

average soil temperature at a 3.8 cm depth was around 15 C and emergence continued through 

early October. The largest percentage of prickly sida emergence occurred from May through 

July. Total prickly sida emergence in 2012 from March through October averaged 193% (3 

times) more for the Commerce compared with the Sharkey sites. In 2013 total emergence from 

March through October was only 12% more for the Sharkey compared with the Commerce site. 

The Commerce site was not tilled in the fall either year of the study and the Sharkey sites were 

tilled in the fall both years. This disagreement in cumulative emergence between years for the 

Commerce silty clay loam and the Sharkey clay sites suggests that tillage was not a major factor 

affecting prickly sida emergence periodicity. The prolonged emergence period for prickly sida 
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support the need for a season long integrated weed management plan that reduces competition 

with the crop and seed production potential. 

The shade studies results show that prickly sida is adapted to heavy shade environments 

and has the potential to produce a significant amount of seed when exposed to both increasing 

and decreasing shade levels as the growing season progresses. Under a 30% shade environment, 

an optimal environment for prickly sida dry matter accumulation and seed production based on 

this research, around 3,000 prickly sida seed were produced per plant. Although only around 550 

seed plant-1 were produced when shade levels gradually increased from 30 to 90%, this level of 

fecundity would be considered significant. With exposure to 90% shade in the early season 

followed by a gradual decrease in shade to full sun, total seed production was as high as around 

8,100 seed plant-1. Prickly sida is especially adept at producing seed later in the growing season 

after crop senescence and harvest.  

For weed control programs, an option in a reduced tillage system could include 

glyphosate plus 2,4-D preplant to control winter weeds, glyphosate at-planting to eliminate 

emerged summer annual weeds, and glyphosate for broad spectrum postemergence weed control. 

In this research late season prickly sida control was as high as 93% following at-planting and 

POST applications that did not include residual herbicides. Soybean yield was maximized with 

glyphosate applied both at-planting and POST, whether or not the residual herbicides 

flumioxazin, chlorimuron-ethyl, and thifensulfuron-methyl were included at planting or the 

residual herbicides chlorimuron-ethyl, s-metolachlor, or fomesafen were included POST. Of 

interest is that when averaged across at planting and POST treatments, a 10% yield increase was 

observed when the residual herbicides chlorimuron-ethyl and tribenuron-methyl were applied 

with glyphosate plus 2,4-D a preplant compared with glyphosate plus 2,4-D alone. This is 
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especially noteworthy since the preplant herbicides were applied on March 19, over 170 days 

prior to soybean harvest. The slight increase in prickly sida control observed late-season where 

residual herbicide was applied preplant combined with the decrease in prickly sida density and 

the increase in soybean height and biomass, although not always significant, may have 

contributed to the observed yield increase. 

In the herbicide program study emphasis was placed on control of prickly sida. In a 

soybean production system the presence of glyphosate-resistant weeds as well as other hard-to-

control broadleaf weeds could also benefit from the inclusion of herbicides with residual activity. 

Although a weed control program for prickly sida that includes the predominant use of 

glyphosate preplant, at-planting, and postemergence can be both efficacious and economical, 

exclusion of herbicides with alternative modes of action would be detrimental in respect to 

herbicide resistance management. 

For reduction in prickly sida seed production, applications of 2,4-D at 532 g ae ha-1 and 

glyphosate at 433 g ae ha-1 plus 2,4-D at 560 g ae ha-1 were more effective in reducing total seed 

production per plant and total viable seed compared to the nontreated, 79 and 84% reduction, 

respectively. This seed reduction can be attributed to the corresponding reduction in plant dry 

weight.  

For the POST-harvest study, results show that none of the herbicide treatments provided 

complete control of prickly sida that was present in the field at corn harvest. The most effective 

herbicide treatments based on prickly sida control 6 WAA included glufosinate, paraquat, and 

glyphosate plus diuron and linuron (75 to 85%); paraquat plus diuron, atrazine, or 2,4-D ester (74 

to 77%); and glyphosate plus 2,4-D ester and dicamba (75%). The effectiveness of glyphosate 

plus 2,4-D ester and dicamba in controlling prickly sida 75% along with decreasing seed set both 
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years would make it a viable treatment option for prickly sida management after crop harvest in 

August and September. 

 In northeastern Louisiana it has been observed that prickly sida can emerge as early as 

the first week of March and continue throughout the growing season, suggesting the need for a 

season-long weed management program. In recent years in Louisiana, growers and consultants 

have reported increased problems with control of prickly sida in soybean. From a long-term 

management approach it would be important to discourage weed seed production and 

replenishment of the soil seed bank. The innate ability of prickly sida to emerge and to persist 

under a heavy shade environment suggests that the crop itself would provide little competition 

for prickly sida. With corn harvest beginning in July in Louisiana and soybean harvest in August 

there would be ample time for established prickly sida plants to regrow or for new plants to set 

seed. This research shows that prickly sida seed production can occur as early as 78 days 

following 90% shade exposure. Although soybean yield and prickly sida control can be 

maximized with glyphosate only programs, the threat of herbicide resistant weeds and other 

difficult-to-control weeds warrant the use of soil residual herbicides. An integrated weed 

management strategy that includes weed control measures both early in the growing season and 

after crop harvest would be warranted to prevent substantial prickly sida seed production and 

replenishment of the soil seedbank. 
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