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The profound fragmentation and degradation of Neotropical forests over the past 50-100 years 

poses a significant threat to the wildlife populations in Mesoamerica.  Neotropical large carnivores, 

jaguars (Panthera onca) and pumas (Puma concolor), are at particular risk from forest conversion due to 

their large spatial requirements and high vagility, and are key contributors to ecosystem function in their 

roles as top predators.  Diminishing structural connectivity of the landscape is likely to impede gene flow 

for both species, with potential impacts on population or species persistence.  However, the mechanistic 

drivers behind gene flow are poorly understood.  In this dissertation, I explore how landscape patterns 

and habitat selection interact to influence gene flow of jaguars and pumas in southern Mexico.   

The first half of this dissertation is dedicated to the quantification of jaguar and puma landscape 

use, gene flow, and genetic diversity in southern Mexico, where we know little about the remaining 

populations (Chapters 1 & 2).  This work was based on noninvasive genetic samples, collected with the 

aid of wildlife detector dogs, in the Uxpanapa valley of Veracruz, and northern Quintana Roo.  Resource 

selection analysis suggests less ubiquitous use of the landscape by jaguars due to greater habitat 

specificity for natural vegetation, rugged terrain, and avoidance of human activity, as compared to use 

of a broader array of habitats by pumas.  However, I did not find evidence of gene flow restriction within 

Uxpanapa despite low predicted connectivity between forest patches.  At the regional scale between 



study locations, pumas exhibited greater genetic discontinuity than sympatric jaguars.  These findings 

are also echoed in the literature and highlight an apparent disconnect between predicted structural 

connectivity at fine-scales and gene flow at broader scales, suggesting that behavioral components of 

movement ecology may differ between resource use within home ranges and juvenile dispersal.   

In the second half of this dissertation, I turned to computer simulations to explore the possible 

drivers of gene flow by scaling-up fine-scale processes, such as resource selection, to broader-scale 

patterns, such as gene flow (Chapters 3 & 4).  I explored the utility of an individual-based modeling 

(IBM) platform, HexSim, for integrating population dynamics, movement ecology and behavior, and 

evolutionary processes on spatially explicit landscapes.  I then employed this modeling platform to build 

a biologically and spatially realistic eco-evo IBM of large felid gene flow.  I used this model to conduct a 

pilot test of hypothesized drivers of gene flow through Mexico, Guatemala, and Belize.  Results suggest 

that gene flow was decreased by territorial habitat specialization and increased by sensitivity to 

landscape features during dispersal.  My results showcase the model’s ability to investigate how specific 

components of complex movement behavior drive of gene flow.   

 The large-felid eco-evo IBM offers a powerful tool for future investigations of mechanistic 

connections between fine-scale resource selection and gene flow at broader scales, as well as for 

forecasting the effects of habitat preservation versus connectivity conservation.  Jaguars appear to have 

greater forest selectivity and sensitivity to human activity as compared to pumas, highlighting the need 

to bolster the existing national incentives for forest preservation in order to protect this declining 

species.  Finally, my results stress the need for state or federal protection of the Uxpanapa valley, 

Veracruz, as a biological hotspot that provides a stepping stone for movement between Central and 

North American wildlife populations.   
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ABSTRACT: 

The Isthmus of Tehuantepec of southern Mexico is a vital biogeographic bridge through central 

Mesoamerica.  The three native large mammals within this region are puma (Puma concolor), jaguar 

(Panthera onca), and the endangered Baird’s tapir (Tapirus bairdii).  All three are species of conservation 

concern, threatened with deforestation, urbanization, and road development through Tehuantepec.  

Determining how these species interact with the landscape can help inform conservation actions such as 

corridor design or species-specific habitat protection plans.  Landscape use information is especially 

needed within human-dominated landscapes, outside of protected parks, where regional connectivity 

and species resilience is likely to be decided.  Our study quantifies landscape use for these three species 

in the Uxpanapa valley, Veracruz, a human-dominated unprotected area in the center of Tehuantepec.   

The Uxpanapa valley study site (~ 5,000 km2) contains remnant forest fragments embedded in a 

matrix of pasture and agriculture.  Prior to this study, it was unknown if jaguar or Baird’s tapir were 

extant within the valley or if they had been extirpated by poaching and habitat loss.  We employed 

wildlife detector dogs to collect noninvasive scat samples, which we identified to species using 

mitochondrial DNA sequencing.  We used the confirmed species locations (scat and tracks) to conduct 

multiple-scale resource selection analyses, which were in turn, used as the basis for modeling 

connectivity through the valley using a circuit-theory approach. 

We collected 126 putative felid samples and 26 tapir dung samples over survey transects 

totaling approximately 550 km.  Of the putative felid samples, we confirmed 44 jaguar, 18 puma, and 20 

unknown felid, via genetic analysis or identification of the felid hair within the scat.  An additional 10 

scats were identified as unknown felid, based on large-bodied prey content.  We also recorded 9 large-

felid track locations and 20 tapir track locations.  Resource selection models for jaguars indicate a 

selection for rugged terrain and tall forest, and avoidance of pasture and villages.  Puma models indicate 
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a selection for moderate terrain and avoidance of areas with high stream density.  Tapir models indicate 

a selection for higher elevation (correlated with interior of forest fragments) and avoidance of human-

dominated land cover and roads.  Selection for land cover by the large felids appears to occur at a 

relatively fine spatial scale (625 m radius) rather than at the scale of a home-range.  Conversely, 

selection by tapirs appears to occur at broader spatial scales (2.5-5 km radius).  Structural connectivity 

modeling highlighted movement corridor locations that differed between jaguar and puma, and suggest 

a lower overall connectivity throughout the valley for jaguar than for puma.  The level of forest patch 

connectivity appears positively correlated with the density of individuals.   

Baird’s tapir appear to be obligate forest specialists in this region, making conservation of forest 

habitat of paramount importance for this endangered species.  Our results support the relative forest 

specialization and sensitivity to human activity of jaguars as compared to puma.  While we are pleased 

to confirm the existence of all three species within the Uxpanapa valley, our study highlights an 

immediate need for controlling the rate of deforestation to ensure the continued presence of these 

species in Uxpanapa.   

 

Keywords: deforestation, conservation, large carnivores, resource selection, habitat connectivity, 

noninvasive genetics, wildlife detector dogs   
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INTRODUCTION: 

The profound fragmentation and degradation of neo-tropical forests over the past 50 years has 

led to ambitious large-scale wildlife conservation initiatives.  The delineation and monitoring of a 

network of Jaguar Conservation Units (JCUs) from Argentina through northern Mexico is one such 

international initiative (Sanderson et al. 2002; Rabinowitz and Zeller 2010; Olsoy et al. 2016).  

Approximately 50% of the historical jaguar (Panthera onca) species range remains today (Sanderson et 

al. 2002; Zeller 2007).  Jaguars in the Isthmus of Tehuantepec JCU in southern Mexico connect the 

populations in northern Mexico and the Yucatan Peninsula / Central America (Rabinowitz and Zeller 

2010).  The Tehuantepec JCU area has experienced approximately 25-50% woody deforestation 

between 2001-2010 alone (Clark, Aide, and Riner 2012).  The two other megafauna species within the 

Tehuantepec JCU, are puma (Puma concolor), and Baird’s tapir (Tapirus bairdii) (an herbivorous odd-

toed ungulate).  Jaguars are considered near-threatened and Baird’s tapir are considered endangered by 

the International Union for Conservation of Nature (IUCN) and both are listed as Appendix I species 

under the Convention on International Trade in Endangered Species (CITES).      

Large carnivores and tapirs contribute to Neotropical ecosystem function in their roles as top 

predators (Terborgh et al. 2001; Terborgh 1992) and large-seed dispersers (Fragoso 1997), respectively.  

These large mammals are at particular risk from forest conversion.  The large spatial extent of their 

home-ranges require large contiguous tracts of habitat.  Additionally, their high vagility increases the 

chance of human conflicts.  Protected forested reserves, while important, will likely be insufficient to 

sustain megafauna species through the Anthropocene (Woodroffe and Ginsberg 1998).  For example, 

the proposed JCUs, while an ambitious conservation goal, cover just 14% of the estimated jaguar habitat 

within Mexico (Rodríguez-Soto et al. 2011).  Their resilience will depend, in part, on the degree of 

connectivity provided by the non-forest matrix between forest patches, in human-dominated 

landscapes (Chazdon et al. 2009; Franklin and Lindenmayer 2009).  Connectivity is driven by a 
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combination of landscape pattern (e.g. quality of the non-forest matrix), biology (e.g. movement ability, 

dietary requirements, or sensory ability), and behavioral traits (e.g. tolerance of roads or preference for 

concealment).  The goal of our study is to quantify landscape use for these species in a human-

dominated unprotected area in the center of Tehuantepec for the purpose of predicting connectivity 

patterns relevant to conservation strategies, including corridor identification and species-specific 

management recommendations.  Our methodological approach couples noninvasive molecular 

scatology with resource selection analyses to predict connectivity for the three species in the Uxpanapa 

valley, on the northern border of the Tehuantepec JCU in Veracruz, Mexico.     

All three species are classified as under threat of extinction in Uxpanapa (Sandoval-Mendoza et 

al. 2007).   We lack confirmed georeferenced reports for any of the wild felids in the Uxpanapa valley 

(Figure 1), and it is unknown if jaguars or Baird’s tapir persist in the valley (Sandoval-Mendoza et al. 

2007).  The landscape use by pumas is unknown within the region.  Pumas are generally considered 

capable of using many different land-cover types, are less constrained by the matrix surrounding habitat 

patches, and more adaptable to changes in the landscape (De Angelo, Paviolo, and Di Bitetti 2011; 

Elbroch and Wittmer 2012; Goulart et al. 2009).  Conversely, jaguar are reported to be more sensitive to 

human activity, and more constrained to undisturbed vegetation (Monroy-Vilchis et al. 2009; Petracca et 

al. 2014; Carly Vynne, Keim, et al. 2011; Zeller 2007).  However, in other regions, patterns of habitat 

preference and human-avoidance behavior appear reversed (Foster, Harmsen, and Doncaster 2010).  

What little is known about Baird’s tapir in Mexico indicates that the estimated 2,600 individuals are 

located in isolated populations scattered across southern Mexico (Naranjo 2009).    Baird’s tapir are 

reported to use a variety of lands cover types, with habitat use being influenced by hunting pressure 

(Naranjo 2009).  We predict that selection for forest cover and avoidance of human-dominated 

landscapes will be stronger for jaguar and tapir than for puma, resulting in lower predicted connectivity 

through the valley for these “specialists” versus the more “generalist” puma.     
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Our study includes three objectives building to our goal of understanding landscape use by 

these species.  First and foremost, we determine if all three species are extant in the valley, or whether 

jaguar or tapir have been extirpated.  Secondly, we quantify patterns of resource use, including the 

identification of selected or avoided landscape features, and the spatial scale of these behaviors.   The 

third objective is to use the results of our resource selection analyses to predict connectivity through the 

valley, including the identifying movement corridor locations and determining if connectivity influences 

species density within habitat patches.  Addressing these objectives will help determine whether 

conservation priorities can benefit multiple species at once, or if species-specific plans are needed.   

 

 

 

 

Figure 1. Global Biodiversity Information Facility (GBIF) species records for jaguars, pumas, and smaller cats, as well as their 
common prey species in Mexico.  There are no GBIF records within the Uxpanapa valley study site. 

    

 

● = All Felidae species records 

∆ = Common prey of large felids 

Uxpanapa Study Site 
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METHODS: 

Study Site and Noninvasive Sample Collection:  The Uxpanapa valley study area is approximately 

4,775km2, and is a mosaic dominated by pasture (26%) and secondary forest (38%), with smaller 

portions consisting of small corn plantations and rubber tree cultivations (15%), remnant mature tall 

canopy forest (16%), and village settlements (5%) (Figure 2).  Vegetation data were collected by a single 

field team member throughout the survey for continuity in classification of vegetation types.  These data 

were used to inform a supervised classification of five SPOT 5 satellite images captured in the dry season 

of March and April 2011 (88.25% classification accuracy, Kappa coefficient = 0.8482).  Of the 2,535km2 

forest remaining in 2011, approximately 1,266km2 were mid-successional secondary forest, 491km2 

were late-successional secondary forest, and 778km2 were mature tall-canopy forest.   

Land ownership in the valley is primarily in the form of small communities (ejidos), but also 

includes areas of national land.  There are two areas within Veracruz’s Uxpanapa valley that are 

contiguous with Selva Zoque to the south of the study site in Oaxaca and Chiapas states (Figure 2).  Selva 

Zoque is a large area of steep cliffs and dense jungle, that makes up the majority of the Tehuantepec 

JCU (Rabinowitz and Zeller 2010).     

We divided the study area into 275 grid cells of 5 km x 5 km.  We targeted cells that contained 

over 36% forest cover, assuming wildlife are more likely to inhabit areas that contain some natural 

vegetation.  Surveys of each targeted cell consisted of one to two transects approximately 10 km long.  A 

typical survey began at an access point closest to a forest fragment, continued through ranchland for 1-

10 km, followed by a quasi-circular path through a forest fragment, returning through pasture to the 

access point.  Surveys often followed human or game trails, but also included off-trail and roads.  The 

extent to which we were able to survey each targeted cell was determined by our guides’ knowledge of 

the local forest.  The western portion of the valley was surveyed from March-May 2010, and the eastern 

portion (including some revisits to the western side) from March-May 2011.         
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Scat samples were found with the aid of wildlife scat detection dogs from the University of 

Washington Conservation Canines program.  We chose to use noninvasive sample collection with 

wildlife detector dogs for the following reasons.  Trapping and collaring approaches to large mammal 

research are often cost prohibitive over large tracts of land where terrain limits access.  Noninvasive 

methods requiring repeated checks of static sample locations, such as camera-traps or hair-snags, 

become untenable when the target species exist in low densities across large spatial extents.  

Additionally, these methods often rely on luring wildlife to a station location, potentially disrupting 

movement behavior.  Therefore, we employed detection dogs to locate puma, jaguar, and tapir scats, 

allowing us to cover a large area effectively without requiring the target species to alter their movement 

behavior.  Wildlife detector dogs are less biased and more systematic compared to opportunistic scat 

collection by humans because the olfactory search of the dogs does not rely on visually-conspicuous scat 

deposition on trails or roads, a behavior that may be sex-biased (Vynne et al. 2011).   

The survey team included a dog and dog-handler, orienteer, and one to two guides hired from 

the ejido.  The detection dog was trained to find scat from jaguars, pumas, and Baird’s tapirs.  Smaller 

carnivore samples that were investigated but passed-up by the detector dog were also collected, as they 

were suspected to be from the smaller wild felids (ocelots, margays, or jaguarondis).  Survey tracks were 

recorded continuously via a GPS unit worn by the detector dog.  We collected vegetation and 

microhabitat data at each scat location along with a description of the scat’s visible condition and 

content.  A portion of the scat was collected in sterile urine cups with silica desiccation beads (3:1 ratio 

of silica beads to scat volume) separated from the sample by filter paper.  Given sufficient size of the 

sample, a portion was left in the field to minimize disruption of any territorial marking behavior.  

Immediately upon returning to the field station each day, scat samples were swabbed for epithelial cells 

using sterile cotton swabs soaked in PBS buffer.  During the first field survey, swabs were stored in 

1.5mL tubes with either silica beads, ethanol, or lysis buffer, and kept refrigerated.  Based on a limited 
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analysis of these storage methods, lysis buffer was chosen as the optimal storage technique for the 

second season (data not shown).  The remaining fecal material was frozen in a -20oC freezer in the field 

station, and later freeze-dried for long-term preservation.     

 

 

 

Figure 2. Uxpanapa valley study site in Veracruz, Mexico.  Confirmed locations of puma, jaguar, and Baird's tapir. 
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Species Identification of Scat Samples:   We extracted DNA from the sample swabs using the 

Qiagen Tissue kit (Qiagen, Inc., Valencia, CA).  Because jaguar and puma scats are visually 

indistinguishable from each other, we identified the species using forward and reverse sequencing of 

the ATP6 ribosomal region (~175bp) of mitochondrial DNA (mtDNA) (primers: F 5’- AAC GAA AAT CTA 

TTC GCC TCT -3’, R 5’- CCA GTA TTT GTT TTG ATG TTA GTT G -3’)(Chaves et al. 2012), and fragment 

length polymorphism within the mtDNA control region (D-loop) using primers HSF21 (GTA CAT GCT TAT 

ATG CAT GGG) and LTPROB13 (CCA CTA TTA ACA CCC AAA GC) (S. K. Wasser et al. 1997; C. Vynne et al. 

2012).  Each 10uL PCR amplification reaction consisted of 1uL 10X PCR buffer, 0.6uL 50mM mgCl2, 0.3uL 

10mM dNTPs, 1uL Bovine Serum Albumin (BSA), 0.6 5uM Forward Primer, 0.6uM Reverse Primer, 0.15 

5U/uL Taq Polymerase, 3.75uL water, and 2uL DNA extract.  PCR thermocycling program began with a 5 

minute 95oC denaturation, followed by 40 amplification cycles (30 s 95 oC denaturation, 30 s 62 oC 

annealing, 30 s 72 oC elongation), followed by a final 8 minute 72oC elongation.   

ATP6 sequences were aligned using SEQUENCHER, and assigned to species by alignment to 

reference sequences obtained from all sympatric carnivore species from either the University of 

Washington Burke Museum (UWBM) Genetic Resources Collection, or from fecal samples from captive 

animals at Zoologico Miguel Alvarez del Toro (ZOOMAT), Chiapas, Mexico (Panthera onca: UWBM # 

76494 Tissue # JR 1521; Puma concolor: UWBM # 81677 Tissue # JEB 1488, UWBM # 81679 Tissue # JEB 

1490, UWBM # 81680 Tissue # JEB 1491, UWBM # 81682 Tissue # JEB 1493).  Sequence identification 

was also confirmed via National Center for Biotechnology Information (NCBI) Basic Locus Alignment 

Search Tool (BLAST).  Baird’s tapir scat was visually identified by its unique, cuboid, morphology (the 

majority of locations lacked sympatric animals with comparable scat content, such as horse or donkey).  

Tapir scats were also frequently accompanied by their distinctive three-toed tracks.  Analysis of the hair 

contained within the carnivore scat (both predator and prey) was conducted by a student trained by B. 
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Sorlozano in morphological identification hair scale pattern and cuticle morphology and based on 

published reference guides (Baca-Ibarra and Sánchez-Cordero 2004; Juarez et al. 2010). 

 

Preparation of Geographic Information:  We considered four categories of landscape variables: 

Human Activity, Water, Vegetation, and Terrain.  For puma, we also considered the presence of jaguars 

as a potential determinant of landscape use due to competitive exclusion.  Geographic analysis was 

done within ArcGIS10.2-3 and the Geospatial Modeling Environment 0.7.3-4 (GME) (Beyer, n.d.).  

Geographic data layers included roads (manually classified into three use levels), villages, large rivers, 

detailed streams, classified vegetation, and digital elevation model (DEM) (appendix Table S1).  The field 

team observed that there were different qualities to the “rugged” terrain within the study area.  There 

were steep slopes in the southwestern part of the study area that were difficult to navigate, but other 

areas of jagged karstic limestone substrate that were impossible to traverse.  This observed 

heterogeneity was not captured by any of the numerous metrics commonly used to quantify 

ruggedness.  Therefore, we created a novel ruggedness metric, termed “Insuperable Terrain Index” (ITI), 

designed to distinguish these two types of terrain.  We calculated ITI based on DEM within an eight-cell 

neighborhood as follows: 

 

    [(Mean-Min)/(Max-Min)] | slope>30 

ITI was classified into three levels (rough, moderate, and flat) based on ground-truthed locations of 

jagged karstic rock slopes, non-jagged slopes, and valley floor, respectively (appendix Text S1).   

For each geographic layer, we extracted geographic data relative to each sample.  For each 

location, we quantified distance to nearest feature (e.g. distance to road), value at the location (e.g. 

land-cover class), or amount of feature within circular zones around each sample (e.g. amount of 

pasture within 2.5 km).  For the latter, we chose four radii around each sample (625m, 1.25km, 2.5km, 
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and 5km) to assess the scale of landscape use behavior (appendix Text S2).  The larger two radii 

approximate female and male jaguar home range sizes.  We had two linear features of interest, roads 

and large rivers, for which we wanted to account for both proximity and density simultaneously.  To do 

so, we created buffers surrounding the features (Road Buffers: 100 m and 1 km, River Buffers: 1 km, 5 

km, and 10 km) and then measured the amount of those buffers within the circular zones (e.g. % of a 2.5 

km zone covered by 100 m Road Buffer).  We used ArcGIS for distance to nearest feature or sampling 

the value at a given location.  We used the GME isectpolyrst function to calculate the % of feature within 

each circular radius, as the Tabulate Intersection tool within ArcGIS does not calculate these values 

correctly.  In total, we calculated 77 geographic metrics for downstream analysis (Table 1)       

   

Table 1.  Geographic metrics calculated for used (scat) and available locations for use in resource selection analysis.  .  

 

  

Resource Selection Analysis:  Resource selection models examine use of landscape features 

relative to what is available. Landscape characteristics were measured at “used” (scat) locations and at 

Human Activity Distance to Nearest Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(17 metrics) Village Number of Villages Number of Villages Number of Villages Number of Villages

Road % 100m Road Buffer % 100m Road Buffer % 100m Road Buffer % 100m Road Buffer

Primary Road % 1km Road Buffer % 1km Road Buffer % 1km Road Buffer % 1km Road Buffer

Secondary Road

Tertiary Road

Water Distance to Nearest Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(15 metrics) River Total meters of Streams Total meters of Streams Total meters of Streams Total meters of Streams

Stream % 1km River Buffer % 1km River Buffer % 1km River Buffer % 1km River Buffer

% 5km River Buffer % 5km River Buffer % 5km River Buffer % 5km River Buffer

% 10km River Buffer

Vegetation Value at Location Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(31 metrics) VegClass (HC,P,CR,SF,TF) % HC % HC % HC % HC

VegForestClass (SF, TF, or AH) % P % P % P % P

VegSimple (Forest/Human) % CR % CR % CR % CR

% All Human (HC+P+CR) % All Human (HC+P+CR) % All Human (HC+P+CR) % All Human (HC+P+CR)

% SF % SF % SF % SF

% TF % TF % TF % TF

% All Forest (SF+TF) % All Forest (SF+TF) % All Forest (SF+TF) % All Forest (SF+TF)

Terrain Value at Location Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(14 metrics) ITI Class (Flat, Mod., Rough) % Flat ITI % Flat ITI % Flat ITI % Flat ITI

Elevation (DEM) % Moderate ITI % Moderate ITI % Moderate ITI % Moderate ITI

% Rough ITI % Rough ITI % Rough ITI % Rough ITI

* Human Settlement or Clear (HC), Pasture (P), Citrus or Rubber (CR), Secondary Forest (SF), Tall forest (TF)
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1,000 randomly generated “available” locations.  To limit bias in our assessment of what is considered 

“available”, generated locations were restricted to within a 50 m buffer around each survey track.  

Although local vegetation and wind will obviously influence the odor distribution from any given sample, 

this approach provides a conservative estimate of the effective olfactory search area of the detector dog 

(Wasser et al. 2012). We have chosen a used-versus-available resource selection approach for analysis 

of habitat associations, as opposed to a use-only approach or species distribution modeling, for the 

following two reasons.  First, resource selection is arguably more pertinent for conservation applications 

than a resource use-only approach, which has the potential to undervalue landscape resources that are 

relatively rare in the landscape.   Secondly, resource-selection is constrained by eco-physiological limits 

(such as thermal tolerances) at coarse spatial scales and realized by more plastic behavioral dynamics 

occurring at finer spatial scales (such as food-seeking movement behavior).  We argue that it is at this 

intermediate spatial scale, of home range or smaller (second/third-order spatial scale; Johnson 1980), 

that our results will be most applicable for connectivity conservation within Tehuantepec.   

 The majority of the geographic covariates that were quantified as percentages (e.g. % 1Km Road 

Buffer within 625m Radius) required logit transformation to improve normality in the data distribution.  

Others required log10 or square-root transformation prior to analysis, or were unusable due to skewness 

(appendix Table S2).  Resource Selection (RSF) and Resource Selection Probability Functions (RSPF) use a 

logistic-regression framework (binomial response variable of 0 = available and 1 = used) to model the 

effect of geographic variables on the probability that a location is used or unused if encountered (Lele et 

al. 2013; Lele and Keim 2006; Keim, DeWitt, and Lele 2011).  In brief, RSF is a relative metric (e.g. a 

forest site has a 4.6x higher probability of being used than a pasture site) and models are fit with an 

exponential function.  RSPF is an absolute metric (e.g. a forest site has a 0.8 probability of being used if 

encountered) and models are fit with a logistic function.  It is recommend to use both model forms for 

analysis, as either may fit a given dataset best (Lele et al. 2013; Keim, DeWitt, and Lele 2011).  RSF and 
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RSPF analyses were implemented with the R Resource Selection package (settings: m = 0, B = 99)(Lele, 

Keim, and Solymos 2014).  Model selection was based on information criteria of Log-likelihood scores. 

Analysis was done in two phases: 1. Determination of optimal spatial scale for those geographic 

variables measured at multiple scales and, 2. Model building across categories.  In the first phase, for 

each covariate (e.g. % Secondary Forest [SF]), RSF and RSPF models were fit for each scale of 

measurement (e.g. %SF within 625 m Radius, %SF within 1.25 Radius, etc.).  The top RSF/RSPF models 

were chosen via BIC for consideration in phase two of analysis (see Text S2 for an example of the impact 

of scale selection).  The second phase of analysis combined the top variables from the first phase across 

all categories of geographic metrics.  To examine the potential of species-specificity in resource 

selection, we conduced both phases of analysis on each species separately, as well as for all felids 

together.  The later included scat locations that were confirmed as jaguar or puma, as well as samples 

that were from unknown felids.  Unknown felid samples were either scat samples for which genetic 

species identification was inconclusive, scat samples that contained large-bodied prey (peccary or deer), 

and large-felid track locations.     

Predicted values from the top resource selection models (<2 delta BIC) were mapped across the 

study area and averaged to create a composite resource selection map for each species.  Resource 

selection functions are not constrained to range between 0-1 as are RSPF.  Therefore, we re-scaled 

those top models that were fit with the RSF exponential function to range between 0-1, prior to building 

the composite map.   

 

Connectivity Analysis:  We modeled connectivity using a resistance framework within the 

program CIRCUITSCAPE (B. McRae, Shah, and Mohapatra 2013; B. H. McRae 2006).  In brief, 

CIRCUITSCAPE models movement as electrical current through a network of nodes and resistors.  In our 

case, the electrical network is in the form of a raster grid, where each cell contains an electrical 
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conductance value.  The higher the conductance, the greater the amount of movement (current) 

through that cell.  We used our composite species-specific resource selection maps as conductance 

grids.   

In addition to the conductance grid, CIRCUITSCAPE requires an electrical source and ground(s) to 

model current through the landscape.  We modeled two different scenarios of source-ground input, to 

address two different biological questions of connectivity within the Uxpanapa valley.  First, we modeled 

connectivity between putative population source and sink locations within the valley to identify 

movement corridors and pinch points relevant to maintaining populations of our target species.  For this 

scenario, we considered the majority of the remnant forest fragments of Uxpanapa to be potential 

population sinks due to their small area in relation to average home-range sizes (Stoner et al. 2013).  

These forest patches were modeled as electrical grounds.  The probable source population is within the 

Selva Zoque, the large forest at the southern edge of Uxpanapa.  There are two areas within Uxpanapa 

that are contiguous with Selva Zoque, and it is these two areas that are modeled as electrical sources 

within this first scenario.  With our second scenario, we wanted to quantify the amount of modeled 

connectivity between the various forest fragments in the study area, and compare across species.  To do 

so, we modeled connectivity in a pairwise manner between all forest fragment centroids, each one 

acting as an electrical source and ground.  We compared species-specific connectivity estimates via a 

paired-t-test.     

To test for the effect of forest patch connectivity on species density, we calculated the average 

density of individuals per km2 surveyed by our field team for each forest patch.  To limit bias due to 

recaptures of the same individual, we considered all scats within 1.5 km of each other as one 

observation, as they have a higher probability of being from the same individual (Haag et al. 2009; Day 

et al. this dissertation Chapter 2).  We plotted density against connectivity results from both scenarios 

above: the amount of current reaching each fragment from Selva Zoque (first scenario), or the average 
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movement resistance to other patches (second scenario).  For the purposes of visualization, we assigned 

high current values to the patches contiguous with the Selva Zoque source, as they are receiving infinite 

current under the first scenario.     

 

 

RESULTS:  

Species Identification and Vegetation at Sample Locations:  The survey path lengths totaled 

approximately 550 km, ~68% within forest (recovering, secondary, or tall forest) and 32% within human 

dominated land cover (pasture, agriculture, or urban areas) (Figure 2).  Our field team collected 29 

putative Baird’s tapir samples and 126 putative felid samples (123 scat and 3 wads of regurgitated grass) 

from the study area in approximately 100 active survey days over approximately five months.   Of the 

126 putative felid scat samples, we identified 82 as felid (jaguar = 44, puma = 18, unknown felid = 20) via 

genetic analysis or identification of the felid hair within the scat (Figure 3).  The genetic markers used 

are designed to amplify all carnivores, yet none of the amplified samples were identified as non-felid, 

attesting to the specificity of the detector dog method.  The remaining 27% of unidentified samples 

were too degraded for DNA analysis.  At times, single sequence reads (either forward or reverse) of 

single replicates were identified as domestic dog, while the other sequences from that sample were 

identified as wild felid, possibly due to contamination from CK9 DNA at the field station.  There were 

several samples suspected to be linked to jaguar predation, included a gnawed cattle horn, remains of a 

goat, pierced pieces of armadillo shell, and a tube-like bundle of porcupine quills.  These samples were 

swabbed for genetic analysis, but unfortunately did not yield DNA for predator species identification.  

Many of the samples located by the team were degraded to the point where only prey hair remained (a 

tube of peccary hair was not uncommon), and yet some of these samples yielded DNA.  Additionally, 
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one of the three regurgitated grass samples yielded jaguar DNA sequences.  These results suggest 

caution when culling samples prior to analysis based on visual inspection.   

An additional 10 scat samples were identified as unknown felid based on the identification of 

hair from large-bodied prey (deer or peccary) and scat morphology. An additional jaguar location was 

based on a CK9 alert at an obvious urine deposit with strong felid musk odor at a frequented location for 

jaguar urine marking, and the genetic identification of a jaguar scat further along the same trail.  Despite 

the short length of the ATP6 mtDNA sequence, we were able to reconstruct the basic phylogenetic 

relationships between the wild felids (appendix Figure S1).  A portion of our unidentified felid samples 

phylogenetically clustered to reference samples of each of the other small sympatric felids, including 

jaguarondi, ocelot, and margay (Figure S1).  We collected 29 putative tapir dung samples.  However, 

three were removed from further analysis due to questionable morphology and the presence of horses 

within the vicinity. We also recorded 9 unique track locations of felids and 20 of tapir.  Species locations 

are shown in Figure 2.   

The local perception is that these species are only present in the valley during the wet season, 

and migrate to higher elevations within Selva Zoque during the dry season.  During the wet season, local 

residents report seeing tracks of all three species, but as the soil turns rigid in the dry season, the tracks 

are eroded away and no new tracks are created, giving the perception that the animals “leave”.  The 

large quantity of scat and dung samples located during our dry-season survey and the presence of 

freshly deposited samples are inconsistent with that assumption.  Furthermore, fecal material is rapidly 

recycled by insects and bacteria (Peck and Forsyth 1982; Sanchez et al. 2004), making it unlikely that the 

samples we located during the dry season were deposited months prior during the wet season.  

Therefore, we conclude that there is a resident population of all three species in the Uxpanapa valley. 
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Figure 3. Method of species location ID.  Samples were often identified using multiple methods.  Numbers here indicate unique 
locations added by each method, beginning with scat samples identified by ATP6 mtDNA sequencing.   

Elevation of scat locations reflected the relatively small range in elevation in the study area, with 

felid samples generally located below 500m.  However, tapir locations had a higher average elevation 

than did the felid locations (appendix Figure S2).  Most samples were found in natural vegetation 

including various successional stages of secondary forest (appendix Figure S3).  Felid scat samples were 

found in a wider range of vegetation types than tapir dung (Figure 4).  Jaguar scat samples were 

predominantly found in forested vegetation, but forest quality varied from low canopy recovering 

secondary forest to high-canopy mature forest.  One jaguar scat sample was found on an unpaved road, 

and several were found within corn fields and pasture.  Baird’s tapir samples were only found in forest, 

with the majority in mature tall-canopy forest.     
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Figure 4. Vegetation identified in the field by confirmed Scat Samples 

 

Resource Selection Results:  The optimal scale for the zonal measurement of geographic features 

varied between metrics and between species.  Tapir resource selection was best predicted by zonal 

covariates measured at the larger geographic scales, either 2.5 km or 5.0 km radius.  Within the felid 

selection models, several scales did equally well for terrain, water, and human impact metrics.  

However, the top performing vegetation metrics were almost uniformly measured at the smallest scale 

of a 625 m radius.     

Both exponential RSF and logistic RSPF models were included in the final suite of top models 

(∆BIC < 2).  The top models for all felid locations together (including unknown felid samples) revealed a 

pattern of selection for rough terrain and tall forest vegetation, with avoidance of roads (Table 2; Figure 

5) (appendix Table S3-4).  The top jaguar-specific resource selection models share a collection of four 

variables: positive selection for tall forest and rough terrain (similar to the combined cat models), and 

avoidance of human-dominated land cover (including pasture, agriculture, or rubber plantations) and 

villages.  The top puma-specific models demonstrate a selection for moderate rather than rough terrain, 
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and an avoidance of areas with high stream density.  The top tapir resource selection models 

demonstrate a selection for higher elevation and avoidance of roads and human land cover.   

 

Table 2. Top resource selection models (∆ BIC <2).  CATS models includes sample locations of unknown felid as well as both 
jaguar and puma locations.  Arrows indicate either positive or negative beta-parameter estimates, suggesting selection or 
avoidance, respectively.  Values in parentheses indicate the spatial scale of the metric (radius around each location).  

 

 

 

Terrain Vegetation Human Activity Water

CATS: Exponential RSF ↑ITIRough(2.5km) * ↑TallForest(625m) + ↓100m RoadBuffer(1.25km)

Exponential RSF ↑ITIRough(2.5km) * ↑TallForest(625m) + ↓1km RoadBuffer(625m)

JAGUAR: Logistic RSPF ↑ITIRough(2.5km) + ↑TallForest(625m)

Logistic RSPF ↑ITIRough(2.5km) + ↑TallForest(625m) + ↓Human Landcover

Exponential RSF ↑ITIRough(2.5km) * ↓Pasture(625m) + ↓Villages(5km)

Exponential RSF ↑ITIRough(2.5km) * ↑TallForest(625m) + ↓Villages(5km)

Exponential RSF ↑ITIRough(2.5km) * ↓Pasture(625m)

PUMA: Logistic RSPF ↑ITIModerate(625m) * ↓StreamDensity(5km)

Logistic RSPF ↑ITIModerate(1.25km) * ↓StreamDensity(2.5km)

TAPIR: Logistic RSPF ↑Elevation + ↓1km RoadBuffer (2.5km)

Logistic RSPF ↑Elevation + ↓Human Landcover + ↓1km RoadBuffer (2.5km)

*Human Landcover: 0 = Forest, 1 = Pasture, Human Settlement, or Corn/Rubber Plantations

MODEL COVARIATES, SYNTAX, AND BETA PARAMETER DIRECITONALITY
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Figure 5. Used and Available notched median-quartile plots for top covariates from resource-selection analyses.  Non-
overlapping notches between used (species) and Available indicate significant difference between medians.  The spatial scale of 
measurement is indicated after the “|” (e.g. “Streams (m) | 5 km” is the total amount of stream lengths within a 5 km radius 
around each location).    

 

Connectivity Modeling Results:  For jaguar, the small scale of the top covariates and large beta-

parameter coefficients in the top resource selection models resulted in a patchy predicted distribution 

of selected habitat (Figure 6).  The areas of high predicted resource selection are composed of rough 
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terrain and tall forest, with a penalty if there are numerous villages in the vicinity or human land cover.  

For puma, the larger spatial scale of the top performing covariates and smaller beta-parameter 

coefficient resulted in a more diffuse predicted habitat.  In stark contrast, the magnitude the of the 

beta-parameter coefficients in the top tapir selection models resulted in a binary landscape of suitable 

habitat and completely avoided matrix.  The lack of a resource selection gradient in the predicted tapir 

maps precluded further connectivity modeling.     

 

Figure 6. Predicted resource selection, averaged over top resource selection models for each species.  Hot colors are higher 
predicted resource selection, cool colors are lower (colors are stretched equalized over the data histogram). 

 The predicted resource selection maps were used as conductance grids to model structural 

connectivity under two scenarios (Figure 7).  Under our first scenario, connectivity was modeled as a 

source-sink dynamic generated by the Selva Zoque (green shaded areas; Figure 7 left) with forest 

fragments (black bolts) as grounds.  The location of predicted movement corridors are different 

between species.  For example, both species have corridors in the south-west of the valley span the 
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single paved, highest trafficked road in the study area.  However, the strongest jaguar corridor is further 

east than for puma.  Similarly, the narrow corridors connecting the fragment furthest west (named 

“Media Luna”) differ in location by species.  For both species, we identified wide corridors connecting 

the central forest patches to the eastern Selva Zoque area, and little to no predicted connectivity 

extending to the forest fragments in the degraded landscape of Chimalapas in the northeast.  

Under our second scenario, connectivity was modeled between each forest fragment (outlined 

in green; Figure 7 right).  These models reveal an overall difference in the level of connectivity across the 

study site, reflecting the patchiness of habitat selection.  Jaguar resource selection models predicted low 

selection between forest fragments which resulted in higher resistance to movement between forest 

fragments in the connectivity model (Figure 8).  Conversely, the more diffuse puma resource selection 

predictions result in a lower movement resistance between forest fragments. 

 

Figure 7. LEFT: Connectivity (current) from southerly Selva Zoque source population (shaded green) to remaining forest 
fragments sinks (bolts).  RIGHT: connectivity between Uxpanapa forest fragments (outlined in green lines).  Warm colors = high, 
cool colors = low (colors are stretched over data standard deviations).  .       
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Connectivity, as modeled by either scenario, appears to be positively correlated with the sample 

density.  Sample density increased with current received from Selva Zoque under the first, source-sink 

scenario (Figure 9 left).  Sample density decreases with resistance between forest fragments under the 

second scenario (Figure 9 right).   

 

 

Figure 9.  Modeled connectivity influences sample density within survey tracks.  Left – Connectivity modeled as current received 
from Selva Zoque under a source-sink scenario.  Right – Connectivity modeled as resistance to patch from other patches.   

 

 

Figure 8. Landscape resistance between forest fragments in Uxpanapa study site. 
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DISCUSSION: 

Our study identifies key differences in landscape use and habitat connectivity between the three 

large mammal species of Tehuantepec, Mexico.  The presence of jaguar samples in both pasture and 

corn fields suggests that their movements may not be exclusively restricted to forests (Foster, Harmsen, 

and Doncaster 2010).  However, when we compare used locations to availability, we see a clear pattern 

of selection for rugged terrain covered by tall forest, with some evidence for avoidance of villages.  

These results confirm the relative forest specialization of this species and sensitivity to human presence.  

The insuperability of the rugged terrain likely creates a natural fortification preventing expansion of 

cattle ranchland or human settlement.  We were limited in our ability to survey this rough terrain, and it 

is unknown how or if wildlife populations can be sustained within such areas.  Therefore, all areas of tall 

forest should remain a top conservation priority for jaguar habitat in Uxpanapa.   

The endangered Baird’s tapir appears to be an extreme forest specialist in this region, avoiding 

of human activity at large spatial scales.  While we are pleased to confirm the presence of Baird’s tapir in 

Uxpanapa, the rate of deforestation in the valley represents a direct threat to their continued presence.  

This is an especially urgent concern given the predicted lack of structural connectivity to other 

populations.     

The moderately rugged terrain selected for by puma, primarily lays between the flat valley floor, 

where human activity is highest, and the rugged terrain selected by jaguar.  Therefore, selection of 

moderate terrain may be evidence of simultaneous avoidance of high human activity and of competitive 

exclusion by jaguars.  However, areas of high predicted jaguar resource use were not uniformly avoided 

by pumas, and close proximity of scat samples from both species reduces the support for spatial 

avoidance, but does not preclude temporal avoidance.  The apparent avoidance of areas of high stream 

density was an unexpected result, potentially resulting from water avoidance behavior, spatial 
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avoidance of jaguars in areas with high stream density, undocumented prey distribution, or an artifact of 

our small number of puma locations.   

Jaguar selection for tall forest appears to occur at a spatial scale that is much smaller than a 

home range, suggesting fine-grain movement behavior.  Selection for other features occurred at the 

scale approximating a female home range.  Including multiple scales in resource selection analyses can 

thus provide insight into movement behavior of a species (Lyra-Jorge et al. 2009; Cudworth and 

Koprowski 2011).  Other movement patterns relevant to conservation include the possible use of linear 

features by jaguars, as one sample was found on a disused road and another in a dry riverbed.  

However, results from our combined felid models suggest avoidance of actively-used roads.     

Our connectivity models identified that, while both jaguar and puma selection is highest in 

forest patches, movement corridors in the matrix between patches are in different locations depending 

on species.  For both species, connectivity to the western “Media Luna” forest patch is threatened by 

the one primary road, and connectivity to the remnant patches in the northeastern portion are 

threatened by matrix degradation and isolation.  Overall, structural connectivity between the remaining 

forest patches is lower for jaguars than for pumas.  For both felid species, the level of connectivity to a 

forest patch appears to affect the density of species locations within a given patch.  Therefore, while 

habitat protection of forest patches remains important, connectivity through the matrix may also play a 

significant role in maintaining the populations of jaguars and puma within Uxpanapa.       

 Our study has highlighted Uxpanapa as a biodiversity hotspot, providing habitat for three 

species of conservation concern as well as other smaller wild felids.  These results speak to the 

prioritization of Uxpanapa for state and/or federal protection.  Road development and deforestation of 

Uxpanapa are a threat to the species within this critical stepping-stone through Mesoamerica, as well as 

to the ecosystem services provided to the local communities.  We hope our study has provided the 

information and impetus to invest in the future of the Uxpanapa valley.       
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SUPPLEMENTARY TABLES AND FIGURES: 

 

Table S1. Sources of Geographic Information 

 

 

 

Table S2. Type of Data Transformation for each geographic covariate.  No transformation necessary (black), Logit 
transformation (orange), Log10 transformation (green), SQRT transformation (blue), unusable metric due to skewness (grey) 

 

 

 

 

 

 

Geographic Data Layer Source Provider

Digital Elevation Model: Shuttle Radar Topography Mission (STRM) 3 Arc Second (~90 m) NASA & NGA (National Geospatial-Intelligence Agency)

Roads: Capa de Datos - Vias de comunicacion INEGI (Instituto Nacional de Estadistica y Geografia

Villages: Capa de Datos - Toponimos (INTR_VILL) INEGI (Instituto Nacional de Estadistica y Geografia

Streams: Capa de Datos - Hidrografico INEGI (Instituto Nacional de Estadistica y Geografia

Rivers: Digital Chart of the World DIVA-GIS

Human Activity Distance to Nearest Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(17 metrics) Village Number of Villages Number of Villages Number of Villages Number of Villages

Road % 100m Road Buffer % 100m Road Buffer % 100m Road Buffer % 100m Road Buffer

Primary Road % 1km Road Buffer % 1km Road Buffer % 1km Road Buffer % 1km Road Buffer

Secondary Road

Tertiary Road

Water Distance to Nearest Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(15 metrics) River Total meters of Streams Total meters of Streams Total meters of Streams Total meters of Streams

Stream % 1km River Buffer % 1km River Buffer % 1km River Buffer % 1km River Buffer

% 5km River Buffer % 5km River Buffer % 5km River Buffer % 5km River Buffer

% 10km River Buffer

Vegetation Value at Location Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(31 metrics) VegClass (HC,P,CR,SF,TF) % Human Settlement (HC) % Human Settlement (HC) % Human Settlement (HC) % Human Settlement (HC)

VegForestClass (SF, TF, or AH) % Pasture (P) % Pasture (P) % Pasture (P) % Pasture (P)

VegSimple (Forest/Human) % Citrus or Rubber (CR) % Citrus or Rubber (CR) % Citrus or Rubber (CR) % Citrus or Rubber (CR)

% All Human (HC+P+CR) % All Human (HC+P+CR) % All Human (HC+P+CR) % All Human (HC+P+CR)

% Secondary Forest (SF) % Secondary Forest (SF) % Secondary Forest (SF) % Secondary Forest (SF)

% Tall Forest (TF) % Tall Forest (TF) % Tall Forest (TF) % Tall Forest (TF)

% All Forest (SF+TF) % All Forest (SF+TF) % All Forest (SF+TF) % All Forest (SF+TF)

Terrain Value at Location Within 625m Radius Within 1.25km Radius Within 2.5km Radius Within 5km Radius

(14 metrics) ITI Class (Flat, Moderate, Rough) % Flat ITI % Flat ITI % Flat ITI % Flat ITI

Elevation (DEM) % Moderate ITI % Moderate ITI % Moderate ITI % Moderate ITI

% Rough ITI % Rough ITI % Rough ITI % Rough ITI
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Table S3. Model Selection using Information Criteria (BIC).  Top models for each species, using logistic Resource Selection Probability Function (RSPF) and exponential Resource 
Selection Function (RSF).  Delta BIC was calculated across both RSPF and RSF models.  

 

 

ID df BIC delta ID df BIC deltaBIC

CATS m228e ITIBigRough*VegSmallTF+RdMedium100 5 1364.294 4.625 m228e ITIBigRough*VegSmallTF+RdMedium100 4 1359.669 0.000

m228f ITIBigRough*VegSmallTF+RdSmallOne 5 1364.479 4.810 m228f ITIBigRough*VegSmallTF+RdSmallOne 4 1359.854 0.185

m228 ITIBigRough*VegSmallTF 4 1367.971 8.302 m228 ITIBigRough*VegSmallTF 3 1363.346 3.677

m227 ITIBigRough*VegMediumAH 4 1370.691 11.022 m228c ITIBigRough*VegSmallTF+VegSimple 4 1366.520 6.851

m028 ITIBigRough+VegSmallTF 3 1371.096 11.427 m228g ITIBigRough*VegSmallTF*RdMedium100 7 1368.700 9.031

JAGUAR m011 ITIBigRough+VegSmallTF 3 604.238 0.287 m210b ITIBigRough*VegSmallP+VillageGiant 4 603.951 0.000

m011c ITIBigRough+VegSmallTF+VegSimple 4 604.575 0.625 m211b ITIBigRough*VegSmallTF+VillageGiant 4 605.743 1.792

m071 VegMediumW + VegSmallTF 3 606.261 2.311 m210 ITIBigRough*VegSmallP 3 605.811 1.860

m268 VegGiantW*VegSmallTF 4 606.480 2.529 m211 ITIBigRough*VegSmallTF 3 606.842 2.891

m211b ITIBigRough*VegSmallTF+VillageGiant 5 607.013 3.062 m211e ITIBigRough*VegSmallTF+VegForestClass 5 607.984 4.033

PUMA m233 ITISmallMod*RiosGiant 4 227.254 0.000 m112 ITIMediumMod+RiosBig+RdSmallOne 3 231.195 3.941

m221 ITIMediumMod*RiosBig 4 229.118 1.864 m110 ITIMediumMod+RiosGiant+RdSmallOne 3 231.734 4.480

m311 ITIMediumMod*RiosBig+RdMedium100 5 231.057 3.802 m111 ITIMediumMod+RiosBig+RdMedium100 3 231.943 4.688

m235 ITISmallMod*VegGiantP 4 231.494 4.240 m109 ITIMediumMod+RiosGiant+RdMedium100 3 232.372 5.117

m224 ITIMediumMod*VegGiantP 4 231.892 4.638 m307 ITIMediumMod*RiosBig+RdSmallOne 4 232.393 5.139

TAPIR m002 DEM+RdBigOne 3 430.424 0.000 m102 RdSecondaryDist*VegGiantHC 4 439.592 9.168

m002c DEM+RdBigOne+VegSimple 4 431.147 0.723 m103 RdGiantOne*VegGiantHC 3 440.341 9.917

m104 RdMediumOne*VegGiantHC 4 433.453 3.029 m109 RdMediumOne*VegGiantP 3 441.014 10.590

Resource Selection Probability Function Resource Selection Function
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Model Form Model Equation with Beta-Parameter Estimates

CATS Exponential RSF Exp((-0.19232 ITIBigRough)+(-0.35293 VegSmallTF)+(-0.41881 RdMedium100)+(-0.20467 ITIBigRough* VegSmallTF))

Exponential RSF Exp((-0.18444 ITIBigRough)+(-0.35543 VegSmallTF)+(-0.7001 RdSmallOne)+(-0.20137 ITIBigRough*VegSmallTF))

JAGUAR Logistic RSPF Exp(11.031+(1.336 ITIBigRough)+(2.409* VegSmallTF)) / (1+(Exp(11.031+(1.336 ITIBigRough)+(2.409 VegSmallTF))) 

Logistic RSPF Exp(11.488+(1.432 ITIBigRough)+(2.066 VegSmallTF)+(-2.408 VegSimple)) / (1+(Exp(11.488+(1.432 ITIBigRough)+(2.066 VegSmallTF)+(-2.408 VegSimple)))

Exponential RSF Exp((0.50944 ITIBigRough)+(0.21254 VegSmallP)+(-0.22685 VillageGiant)+(0.14317 ITIBigRough*VegSmallP)))

Exponential RSF Exp((-0.21708 ITIBigRough)+(-0.31007* VegSmallTF)+(-0.21110 VillageGiant)+(-0.20721 ITIBigRough* VegSmallTF)) 

Exponential RSF Exp((0.57952 ITIBigRough)+(0.19129 VegSmallP)+(0.13849 ITIBigRough* VegSmallP))

PUMA Logistic RSPF Exp(0.0002143+(0.004017 ITISmallMod)+(-0.1450 RiosGiant)+(-0.02129 RiosGiant*ITISmallMod)) / (1+(Exp(0.0002143+(0.004017 ITISmallMod)+(-0.1450 RiosGiant)+(-0.02129 RiosGiant* ITISmallMod)))

Logistic RSPF Exp(-6.924+(20.72 ITIMediumMod)+(-0.00009328 RiosBig)+(0.0004505 ITIMediumMod*RiosBig)) /  (1+(Exp(-6.924+(20.72 ITIMediumMod)+(-0.00009328 RiosBig)+(0.0004505 ITIMediumMod* RiosBig)))

TAPIR Logistic RSPF Exp(-18819.2+(8818.2 DEM)+(-245.9 RdBigOne)) /  (1+(Exp(-18819.2+(8818.2 DEM)+(-245.9 RdBigOne)))

Logistic RSPF Exp(-7175.14+(3341.54 DEM)+(-80.22 RdBigOne)) +(-3473.08 Human Landcover)) /  (1+Exp(-7175.14+(3341.54 DEM)+(-80.22 RdBigOne)) +(-3473.08 Human Landcover)))

Table S4. Top resource selection models (∆BIC<2) 



 42 

 

 

Figure S1. Neighbor-joining phylogenetic relationship of samples and control sequences, based on ATP6 mtDNA (~176bp). 
Samples from field begin with either “U” (Uxpanapa) or “Y” (Quintana Roo), while reference samples begin with either “ATP6” or 
common name.  Dark blue = jaguar, red = puma, green = jaguarondi, teal = margay, pink = ocelot, yellow = bobcat controls, 
brown = canids, orange = unknown. 
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Figure S2. Elevation of confirmed scat samples as measured by field GPS 

 

 

 

Figure S3. Confirmed Scat Samples ID in each Vegetation Class identified in the Field 
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SUPPLEMENTARY TEXT: 

 

Text S1.  Navigating “roughness” metrics:  The path to analyzing terrain roughness (unevenness, 

texture, rugosity, surface relief, ruggedness, etc.) can be, well, rocky.  The “roughness” ArcGIS tool 

calculates the neighborhood elevation variance.  If elevational variance does not capture the pattern of 

roughness of interest, there are many other options for evaluating terrain unevenness, nicely 

summarized in “Terrain Roughness – 13 ways” at S. Cooley’s blog, GIS 4 Geomorphology.  Different 

metrics will perform better for different goals, levels of elevational relief, and spatial extents.   

 Of the numerous available metrics, Riley’s Terrain Ruggedness Index (TRI) is widely used in the 

literature (Riley, DeGloria, and Elliot 1999).  The appeal of Riley’s TRI is its calculation simplicity and a 

perception that it creates a standardized classification system.  However, the goal of standardization is 

undermined by ambiguity in the original paper.  Many people are misled to average the squared 

differences before taking the square root [equation here] rather than taking the sum [equation here].  

This will give you very different values.  Moreover, neither of these formulas produce the values of 

worked example within the manuscript, adding to the confusion because users cannot check their 

understanding of the equation.  Elsewhere you can find “Riley’s TRI” cited as a neighborhood min and 

max [SquareRoot(Abs((Square(“3x3max”) – Square(“3x3min”))))], other equations, or without specific 

equations listed.  Therefore, it is hard to consider TRI as a standardized "index" across studies, especially 

when specific equations used are not supplied.   

 For the purposes of evaluating resource selection of jaguars and pumas within the Uxpanapa 

valley, Veracruz, we needed to capture the ruggedness difference observed in two areas.  One is 

exposed karstic limestone and extremely jagged and pitted, and the other has steep ridges, but the 

slopes are relatively smooth.  Using a 3 arc second DEM (~90m2 pixels), neither Riley’s TRI nor any of the 

other metrics available successfully captured the terrain difference between these locations.  Surface 
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Relief Ratio (SRR) did capture the heterogeneity within the study area.  However, upon scaling up to 

southern Mexico, there were areas that were flat, but with high SRR.  Therefore, I produced a new 

metric, Insuperable Terrain Index (ITI) as SRR|slope>30 to capture areas that are impassable due to 

combined steepness and jaggedness.    

 

 

  

Text S1 Figure 1. Novel ruggedness metric: Insuperable Terrain Index (ITI).  Rough (orange) areas were very steep and jagged, 
primarily composed of exposed karstic limestone.  Moderate terrain (yellow) included rolling to steep hills, but lacked the 
impassable limestone.  Flat terrain (white) dominated the valley floor.  Locations of confirmed jaguar (blue dots) and puma (red 
dots).      
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Text S2. Considerations of Scale in Resource Selection: 

Selection of landscape features by wildlife can be exercised at different spatial scales (Owen 1972).  In 

1980, Johnson formalized this idea into the following hierarchy:  First Order = species range, Second-

order = individual home-range, Third order = Usage of habitat (e.g. feeding site), Fourth order = Where 

actions contribute to reproduction (e.g. procurement of food).   

Evaluating geographic features at point locations, or distance to nearest feature, may fail to 

capture the nature of the geographic feature.  For example, sampling the nearest road does not 

necessarily capture information regarding the density of roads.  Similarly, taking a land cover value at a 

point fails to capture the amount of that land cover in the vicinity.  Therefore, given the distribution of a 

given geographic feature, it may be best quantified within zones around identified locations.  But, how 

big should these zones be?  A common approach is to use the average home range size of the study 

species, as it is a biologically justifiable and often reported in the literature.   This second-order scale 

seems appropriate for assessing habitat capacity or delineating population boundaries.  However, the 

resource-selection analysis explicitly assess third-order scale behavior, the probability of use of a 

location with given characteristics if that location is encountered.  This third-order spatial scale is 

suitable for addressing questions such as wildlife interaction with human-dominated land cover or 

movement connectivity.  Using larger scale sizes may fail to capture the importance of a given landscape 

variable at smaller scales.          

In our study of resource selection, we examined a geometric progression of zonal scales around 

our sample locations.  The larger two zone sizes approximate male and female jaguar home range size, 

and the smaller two were decreased by a factor of 0.5 from there.  We found evidence of the 

importance of scale in several of our geographic metrics.  Below, we show an example of where, at the 

largest scale, there is no discernable difference in the density of observations (in this case, the % forest 
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within the zone) between the used (scat sample) versus available locations.  However, at smaller zone 

sizes, a pattern of selection for higher % forest cover becomes evident.  The importance forest would 

have been missed if we had only evaluated this metric at a home-range scale.    

 

 

Text S2 - Figure 1. Resource selection of a single geographic variable at four spatial scales ranging from 0.625 m to 5 km radius 
around each used (scat samples) or available (randomly generated locations within surveyed area) location.  The pattern of 
selection for high forest cover (left) is lost at larger spatial scales (right). 
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CHAPTER 2:  Effects of Deforestation on Gene flow in Jaguars (Panthera onca) and Pumas (Puma 

concolor) in the Isthmus of Tehuantepec, Filling in Gaps of the Mesoamerican Puzzle.   

 

Jennifer M.W. Day1*, Brenda Solorzano2, Samuel K. Wasser1 

 

1 Center for Conservation Biology, Department of Biology, University of Washington, Seattle, USA 
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ABSTRACT:  

The Isthmus of Tehuantepec in southern Mexico is a biogeographic link between North and 

Central American populations of both jaguars and pumas.  Little is known about the demographic status 

or the genetic diversity of the putative populations within the isthmus.  Our study fills this gap in our 

knowledge regarding the genetic diversity of jaguar and puma in central Tehuantepec, while examining 

whether gene flow has been restricted by deforestation within the Uxpanapa valley, Veracruz.  

Additionally, we compare regional gene flow for jaguar to regional gene flow for puma by examining the 

level of genetic differentiation between Uxpanapa and northern Quintana Roo, Mexico.   

We collected noninvasive genetic samples with the aid of wildlife detection dogs, in Uxpanapa 

(UX) (4,775 km2) and northern Quintana Roo (QR) (4,202 km2).  We identified 7 individual jaguars and 5 

pumas in Uxpanapa, and 9 jaguars and 6 pumas in Quintana Roo, using 10 nuclear microsatellite 

markers.  These results refute the notion that jaguars have been extirpated from Uxpanapa.  Individual-

based analysis of gene flow within Uxpanapa did not find significant relationships between landscape 

resistance and relatedness between individuals for either species, suggesting that deforestation has not 

limited gene flow between forest patches at this small scale. Genetic diversity estimates for jaguars (Ar = 

3.81 UX, 3.21 QR, He = 0.63 UX, 0.58 QR, Ho = 0.72 UX, 0.62 QR) fall within published ranges from the 

surrounding areas, suggesting that the deforestation over the past 50-100 years has not resulted in a 

reduction of genetic diversity to date.  At the regional scale, we found less genetic differentiation 

between the jaguars of Uxpanapa and northern Quintana Roo (Fst = 0.0719) as compared to the 

sympatric pumas (Fst = 0.1770).    Our data support an emerging pattern at the species-range scale, of 

lower genetic diversity in Mexican populations of jaguars than in Central or South America.   

Our study suggests that gene flow of both species persists through the non-forest matrix at the 

local level (within Uxpanapa), but is greater for jaguars than for puma at the regional level (between 
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locations).  The drivers producing greater gene flow in jaguars as compared to sympatric puma 

populations, remain unclear.  Our results highlight the importance of the Uxpanapa valley as a stepping-

stone for gene flow through the Isthmus of Tehuantepec for both species.  Preserving large-scale gene 

flow of these highly vagile large carnivores is a key component of their species conservation.   
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INTRODUCTION: 

The Isthmus of Tehuantepec is a critical movement corridor between Central and North 

American wildlife populations.  Tehuantepec is at the center of the Mesoamerican global biodiversity 

hotspot (Myers et al. 2000) and is at the northern most extent of the Mesoamerican Biological Corridor 

(MBC).  Wildlife populations within this region have the potential to serve as connectivity stepping 

stones between the MBC and populations in central-northern Mexico.  There is a paucity of 

demographic or genetic data for the two top carnivores in this region, jaguar (Panthera onca) and puma 

(Puma concolor) (Zeller 2007; Zanin et al. 2016; Wultsch et al. 2016).  The two most comprehensive 

studies of Mesoamerican jaguar genetic population structure and diversity to date, both published this 

year, highlight the need for data from Tehuantepec.  Wultsch et al. (2016b) report seven jaguars 

genotyped in Mexico, and only a portion of those were from a site within the isthmus (Sierra Mixe, 

Oaxaca).  Zanin et al. (2016) successfully genotyped 22 puma in Tehuantepec, but only one jaguar.   

The overarching goal of this project is to investigate potential impacts of deforestation on gene 

flow at multiple spatial scales, while filling in our knowledge gap for jaguars and pumas in Tehuantepec.  

We used wildlife detection dogs to aid in the collection of noninvasive genetic samples at two study 

sites, and we genotyped samples using 10 microsatellite loci.   

Our two study sites are the Uxpanapa valley, Veracruz, in central Tehuantepec, and northern 

Quintana Roo in the Yucatan Peninsula (Figure 1).  Uxpanapa is one of Veracruz’s last remaining 

biological hotspots, laying across the northern edge of the Selva Zoque, a large swath of dense jungle 

and steep cliffs that makes up the bulk of the Isthmus of Tehuantepec Jaguar Conservation Unit (JCU) 

(Sanderson et al. 2002).  Until now, it was unknown if these large Neotropical felids have been 

extirpated from Uxpanapa (Sandoval-Mendoza et al. 2007) despite potential sightings and tracks 

reported by local residents.  Our first study objective is to ascertain if jaguars and puma have been 

extirpated from the valley, by determining the number of unique individuals represented in our 
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noninvasive scat samples, and identification of any genetic recaptures (matching genotypes) using 

nuclear microsatellite genotyping.  We also measure the geographic distance between recaptures of the 

same individuals, providing a limited estimate of movement distances.          

Uxpanapa has undergone intensive land conversion from forest to agriculture and pasture 

within the past 100-50 years (Gomez-Irving, Edward A., and Gomez-Cesar A. 2011; Sandoval-Mendoza et 

al. 2007) and deforestation continues today.  It is unknown if jaguars and pumas are able to disperse 

between the remnant forest patches which are separated by 7-20 km of intervening non-habitat matrix 

(Day et al. this dissertation Chapter 1), or if this isolation has been in place for a long enough period of 

time to impact gene flow between forest patches, despite the generational lag-time (Epps and 

Keyghobadi 2015).  Our second study objective addresses this question by using an individual-based 

analysis to determine if genetic relatedness is associated with landscape resistance within the Uxpanapa 

valley.   

Deforestation within and surrounding Uxpanapa/Selva Zoque may also have resulted in reduced 

population genetic diversity (allelic richness and heterozygosity) as compared to other sites in 

Mesoamerica.  To address this third objective, we collected and genotyped noninvasive samples in 

northern Quintana Roo for comparison to Uxpanapa.  The Quintana Roo study site is approximately 

1,000 km to the northeast of Uxpanapa, and has greater purported habitat connectivity to the rest of 

the species’ ranges (Rabinowitz and Zeller 2010).   

In additional to investigating fine-scale gene flow within Uxpanapa, we were interested in how 

movement ecology at fine scales, such as resource use, scale-up to broader-scale processes, such as 

gene flow.  If we make the assumption that intrinsic dispersal ability is comparable between species 

(there is a void of information regarding dispersal capacity of jaguar), then realized dispersal distance 

will depend on the interaction of movement behavior and landscape pattern.  Jaguars are considered to 

be more selective of forest habitat and less tolerant of human activity as compared to puma (Day et al. 
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this dissertation Chapter 1; Sunquist and Sunquist 2002).  If we scale up local resource selection to the 

regional level, there are two alternate predictions: P1) habitat selectivity of jaguars influences the search 

for suitable territory, leading to greater gene flow between populations due to prolonged searches, as 

compared to sympatric puma populations, or P2) habitat selectivity of jaguars impacts dispersal 

behavior, leading to less gene flow between populations due to dispersal restriction, as compared to 

sympatric puma populations.   

Previous studies provide conflicting evidence regarding the relative amount of gene flow 

between sympatric jaguar and puma populations.  In support of P1 (jaguar gene flow > puma gene flow), 

previous range-wide analysis of jaguar population structure found little evidence of genetic structuring 

(Eizirik et al. 2001).  In contrast, within the same spatial extent, there are eight genetically distinct puma 

sub-species (Culver et al. 2000).  Additionally, within Belize, puma populations are more genetically 

distinct from each other than sympatric jaguar populations (Wultsch, Waits, and Kelly 2016) and within 

the Yucatan Peninsula, there is evidence for more sub-populations of puma than jaguar (Zanin et al. 

2016).  In support of P2 (jaguar gene flow < puma gene flow) recent studies have refuted genetic 

panmixia of Mesoamerican jaguars (Wultsch et al. 2016), and found greater genetic isolation of jaguars 

in western Mexico than sympatric pumas (Zanin et al. 2016).  Our fourth objective was to investigate 

whether gene flow at the regional level (Mesoamerica) is more restricted for jaguars versus puma by 

comparing indirect metrics of gene flow (e.g. genetic distance between sampling localities, and 

partitioning of genetic variance within and among sampling localities) between Uxpanapa and Quintana 

Roo, adding a valuable data point to the existing literature on species differences in gene flow.   

In summary, this study uses noninvasive genetic sample collection and microsatellite genotyping 

for four specific objectives:  (1) Assess the potential for a resident population of each species in 

Uxpanapa, by determining the number of unique individuals represented in our noninvasive sample 

collection and presence of recaptures.  (2) Evaluate genetic connectivity between the forest fragments 
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within Uxpanapa using individual-based analysis of gene flow.  (3) Determine if isolation of the 

Uxpanapa valley has impacted jaguar and puma population genetic diversity relative to northern 

Quintana Roo.  (4) Compare the level of gene flow between Uxpanapa and Quintana Roo locations, for 

jaguar versus puma.   

 

METHODS 

Field Collection of Noninvasive Samples:  The Uxpanapa valley study area (UX) is approximately 

4,775km2 (Figure 1).  Uxpanapa consists of a mosaic of land cover, dominated by pasture (26%) and 

secondary forest (38%), with smaller portions consisting of small corn plantations and rubber tree 

cultivations (15%), remnant mature tall canopy forest (16%), and village settlements (5%).  The 4,202km2 

study site in northern Quintana Roo study site (QR) is dominated by low-canopy secondary forest, 

interspersed with ranchland and urban developments.  Sample collection surveys were conducted in the 

spring 2008 (QR), 2010 (UX- western half), and 2011 (UX – eastern half and revisits to the western half).  

Scat samples were found with the aid of wildlife scat detection dogs from the University of Washington 

Conservation Canines (CK9) program.  A portion of each scat sample was collected in sterile plastic cups 

containing silica desiccation beads separated from the sample by filter paper (3:1 ratio of silica beads to 

scat volume).  Previous molecular scatology studies caution against culling samples based on visual 

appearance, because visual appearance does not always indicate DNA quality (White 2010).  Therefore, 

all samples were collected, regardless of the degradation appearance.  Whenever possible, a portion of 

the sample was left in the field to minimize disruption of territorial marking behavior.  In Uxpanapa, 

each scat sample was swabbed for epithelial cells using sterile cotton swabs soaked in PBS buffer, 

immediately upon returning to the field station each day.  Swabs were stored in 1.5mL tubes with 

Qiagen ATL lysis buffer, and kept frozen for further DNA extraction and amplification via polymerase 

chain reaction (PCR).  The remaining fecal material was kept refrigerated (4°C), and later freeze-dried for 
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long-term preservation.  In Quintana Roo, fecal samples were immediately frozen (-20oC) in 2008, and 

were swabbed for epithelial cells two years later (2010) following unsuccessful DNA amplification by a 

laboratory in Mexico.   

 

Laboratory Analysis:  Scat samples were identified as either jaguar or puma by sequencing the 

ATP6 region of mitochondrial DNA (mtDNA) (Day et al. this dissertation Chapter 1).  Only samples that 

were confirmed to species were further processed for nuclear markers, as it is unlikely that nuclear DNA 

will amplify if the significantly more abundant mtDNA fails to amplify.  All DNA extracts were done in 

duplicate, with epithelial samples taken from different areas along the scat surface, to account for 

uneven distribution of DNA in feces.  DNA extraction was done using the Qiagen Tissue kit (Qiagen, Inc., 

Valencia, CA).  Jaguar and puma samples were genotyped at 10 unlinked microsatellite loci originally 

developed for domestic cat (Menotti-Raymond et al. 1999) and widely applied to wild felids, including 

jaguar and puma (see appendix Table S1 for primer sequences).  Due to the cost associated with the 

repeated PCRs required when analyzing noninvasive samples, we minimized the number of PCR 

reactions by multiplexing loci as follows:  Multiplex#1 (FCA026, FCA090, FCA132), Multiplex#2 (FCA008, 

FCA043, FCA096), Multiplex#4 (FCA082, FCA275), with FCA126 and FCA057 run in independent PCR 

reactions.  Each 10uL PCR amplification reaction consisted of 0.05uL Bovine Serum Albumin (BSA), 5uL 

1X Qiagen Master Mix (Quiagen, Inc., Valencia, CA), 1uL (0.2uM of each primer), 0.5uL water, and 3uL 

DNA extract.  PCR thermocycling program began with a 15 minutes 95oC denaturation, followed by 45 

amplification cycles (30 s 94 oC denaturation, 90 s 55 oC annealing, 60 s 75 oC elongation), followed by a 

final 30 minute 60 oC elongation.  PCR amplification of each extract was replicated (multiple-tubes 

approach) and genotyping followed standard allele confirmation protocols for noninvasive samples: a 

minimum of two amplifications to identify alleles of a heterozygous genotype, and a minimum of three 

amplifications to identify a homozygous genotype.  Due to the small amount of target DNA per sample, 
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we included a PCR negative (reagents only) in all PCR plates to control for possible contamination from 

other samples caused by pipetting errors.  PCR positives (one jaguar and one puma sample of known 

genotype with relatively high quality DNA) were included in each plate to monitor for possible PCR 

failure related to laboratory protocols as opposed to lack of genetic material in samples.  DNA extraction 

and PCR preparation were conducted in a separate laboratory space and using designated equipment 

kept free from post-PCR product.        

 Sample PCR amplification and genotyping proceeded through an initial triage phase using a 

subset of seven loci (Multiplex #2, #4, FCA125, and FCA 057) and four replicates (two extracts, each with 

2 PCR replicates).  If these four replicates confirmed fewer than two of the 14 alleles, no further 

genotyping was attempted for that sample.  This conservative approach was performed to focus 

resources on samples that might yield multi-locus genotypes with further PCR replicates.  Genotyping 

was considered “successful”, and those individuals included in downstream statistical analysis, if a 

minimum of 9 of 20 alleles and genotypes at 3 of 10 loci were confirmed.  Out of the successfully 

genotyped individuals, the average number of confirmed alleles was 17.89 (median = 20) and the 

average number of confirmed genotypes was 8.44 (median=10).  Genotypes were considered to be from 

the same individual if they matched at 16 of 20 alleles and if remaining differences were due to a lack of 

a unique allele in one individual, either due to a homozygous genotype or missing data.  In other words, 

samples would be considered a match if 8 loci matched perfectly, but one locus had only one matching 

allele due a homozygote (e.g. 1/1 versus 1/2) and another due to missing data (e.g. 1/2 versus 1/NA).  

Probability that these matching genotypes were from different individuals ranged from 2.91E-06 – 

1.21E-04 (PID) or, if they were siblings, 0.005 – 0.021 (PSIB), calculated using CERVUS (Kalinowski, Taper, 

and Marshall 2007)   

Data Analyses:  We measured the geographic distance between samples from the same 

individual (matching genotypes) to estimate minimum distance moved within the time period of scat 
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degradation (which is unknown, yet assumed to be especially rapid in tropical environments).  We 

checked for the possible presence of null alleles with MICROCHECKER (Van Oosterhout et al. 2004).  

There was no evidence for null alleles within the jaguar genotypes.  The small sample size of puma 

genotypes prevented an analysis for null alleles.  All downstream statistical analyses of multi-locus 

genotypes were conducted in R statistical computing platform version 3.3.1, unless otherwise noted (R 

Core Team 2016).   

Genetic Diversity by Study Site:  Allelic richness and inbreeding coefficient (FIS) at study site were 

calculated using the R diveRsity package divBasic function (Keenan et al. 2013).  Number of alleles and 

observed and expected heterozygosity at each location was calculated using the adegenet package using 

summary(genind) (Jombart 2008).  Tests for departures from Hardy-Weinberg equilibrium were 

calculated for each sampling location using diveRsity, and overall using the R package pegas/adegenet, 

with significance tests based on 1000 Monte-Carlo permutations of alleles (Paradis 2010).    

Relatedness between Individuals:  The reliability and precision of genetic relatedness estimators 

depend on the characteristics of the microsatellite markers (e.g. polymorphism) and the dataset (e.g. 

amount of missing data, which is common in data from scat samples) and it is difficult to predict which 

estimator will be the most reliable for a given data set and suite of loci (Van De Casteele, Galbusera, and 

Matthysen 2001).  Therefore, we calculated six estimators via the R related package (Pew et al. 2016) 

and performed an ad hoc evaluation of their reliability for our dataset.    Initial inspection revealed that 

the two samples with the most missing data had significantly increased the average relatedness values 

using the relationship coefficient of Wang (2002) and the similarity index of Li et al. (1993)(Appendix 

Figure S1).  Accordingly, we dropped the two samples from relatedness analysis and rejected those 

estimators.  From the remaining four estimators, we chose one marker-based estimator and one 

likelihood-based estimator:  the relationship coefficient of Queller and Goodnight (1989) and the dyadic 

likelihood estimator of relatedness (Milligan 2003).   
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Individual-based Analysis of Gene flow within Uxpanapa:  To test whether geographic variables 

impact pairwise relatedness between individuals, we calculated the amount of connectivity (measured 

as “current”) between each pair of samples through movement resistance surfaces using CIRCUITSCAPE 

in pair-wise mode with each individual as a focal node (B. H. McRae 2006; B. McRae, Shah, and 

Mohapatra 2013).  We chose 10 geographic features for the generation of resistance surfaces based on 

their significance in our previous resource selection analysis (Day et al. this dissertation Chapter 1).  They 

included three terrain ruggedness metrics (Insuperable Terrain Index [ITI]), three vegetation metrics, 

two stream density metrics, and three human activity metrics (Table 1).  The values within each 

geographic layer were considered as either conductivity or resistance to movement, depending on 

whether that feature was selected or avoided, respectively (Table 1).  We used a Multiple Regression on 

Distance Model (MRDM) approach to quantify the effect of landscape connectivity on pairwise 

relatedness (Balkenhol, Waits, and Dezzani 2009).  The MRDM regression treats each pair-wise matrix of 

landscape connectivity between individuals as an independent variable, with the genetic relatedness 

matrix as the dependent variable.  In addition to the 10 connectivity matrices generated from single 

geographic variables, we also calculated pairwise connectivity based on the top multivariate resource 

selection functions (RSF) from our previous study, one for each species.  These RSF surfaces take 

multiple geographic variables into account at once, with beta-parameters weighting each variable in the 

function.  We also calculated the pair-wise Euclidean distance between each pair of samples.  We tested 

32 MRDM models for jaguar, and 30 for puma (See Appendix Table S2).  Each candidate model 

contained either one or two independent variables, with either the Queller-Goodnight or dyadic-

likelihood relatedness values as the dependent variables.  MRDM analysis was conducted with the R 

ecodist package MRM function, with 100 permutations to estimate statistical significance of regression 

coefficients and R2  (Goslee and Urban 2007).   
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Table 3. Geographic features used in analysis of landscape effects on genetic relatedness between individuals.  Geographic 
features were chosen based on previous study of resource selection and fall into four general categories of Human Activity, 
Water, Vegetation, and Terrain ruggedness (See Chapter 1 for further detail regarding geographic features).  Connectivity 
Influence indicates whether the values of each geographic feature were considered as resistance or conductance to movement 
when calculating connectivity between individuals. 

 

 

Genetic Differentiation between Locations, Comparison of Jaguar versus Puma:  The relative 

genetic differentiation between the two locations for jaguars versus pumas was assessed using five 

approaches.  Our goal was to use a comparative approach to determine whether there was a consensus 

pattern describing differences in population structure between the two sympatric species.  First, we use 

the Bayesian clustering program, STRUCTURE, to determine the number of clusters of related individuals 

for each species (Pritchard, Stephens, and Donnelly 2000).  Second, we compared the relatedness 

between individuals within-versus-among locations (see Iacchei et al. 2013 for an example of this 

approach).  Our third approach was to calculate the summary statistics of genetic distance between 

locations for each species, including Gst, G’st, Djost, and Weir and Cockerham’s Fst (Weir and 

Cockerham 1984; Jost 2008; Hedrick 2005; Nei and Chesser 1983).  The fourth was to partition 

molecular variance into hierarchical components, including within versus among locations (Analysis of 

Molecular Variance [AMOVA]) (Excoffier, Smouse, and Quattro 1992).  Our final approach was to 

Geographic feature Connectivity Influence

Human Activity % 1km Road Buffer within 626m Radius Resistance

% 100m Road Buffer within 1.25km Radius Resistance

Number of Villages within 5km Radius Resistance (Jaguar only)

Water Total meters of Streams within 2.5km Radius Resistance (Puma only)

Total meters of Streams within 5km Radius Resistance (Puma only)

Vegetation % Pasture within 625m Radius Resistance (Jaguar only)

% Tall forest within 625 Radius Conductance 

Forest (0) Human(1) Landcover Resistance (Jaguar only)

Terrain % Moderate ITI within 625m Radius Conductance (Puma only)

% Moderate ITI within 1.25km Radius Conductance (Puma only)

% Rough ITI within 2.5km Radius Conductance

* ITI = Insuperable Terrain Index of ruggedness
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determine the level of differentiation based on Discriminant Analysis of Principle Components (DAPC) 

for each species (Jombart, Devillard, and Balloux 2010).  

If jaguar gene flow is more restricted between Uxpanapa and Quintana Roo, than puma gene 

flow, then one would predict the following for each approach.  1) Analysis of population genetic 

structure will have highest support for two genetic clusters of jaguar and one for puma.  2) Individual 

jaguars within a location will be more related to each other than they are to individuals in the other 

location, but pumas will be (on average) as related to individuals in their own location as they are to 

individuals in the other.  3)  Genetic distance will be greater between the two locations for jaguar than 

for puma. 4) When partitioning genetic variance, the hierarchical level with the most genetic variance 

will be between locations for jaguar, and either within individuals (heterozygosity) or within locations 

for puma. 5) There will be a greater separation of the locations based on DAPC for jaguar than for puma.          

  

(1) Genetic Structure:  STRUCTURE analyses were run with a burn-in period of 10,000 iterations, 

with an additional 10,000 analysis iterations. We performed 20 replicate trials for each possible K value 

(number of genetic clusters) using the default settings.  We limited possible K values to 5, due to the 

small number of samples.  We ran two sets of analyses, one with and one without using the sample 

location as a prior for cluster identification.  The best supported K values were identified using two 

methods: 1) plotting the replicate average Ln P(D|K), and visually determining the minimum K of the 

curve’s asymptote (Pritchard, Wen, and Falush 2010), and 2) using Evanno’s ∆K method (Evanno, 

Regnaut, and Goudet 2005).  Assignment plots for each supported K>1 were organized by sample 

location.   

(2) Individual Relatedness within versus among Locations:  Average relatedness between 

individuals was calculated with the R related package, grouprel permutation function.  This function 

randomly shuffles individual genotypes among groups (locations in our case) while maintaining group 
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sizes.  We choose to use 500 permutations since the number of permutations should not be much larger 

than the binomial coefficient (
𝑛
𝑘

), where n = number of observations and k = number of groups, which in 

our case is (11
5

) = 462 for puma, and (16
7

) = 11,440 for jaguar.   

(3) Summary statistics of Genetic Distance:  F-statistics were calculated using the diveRsity 

including Gst, G’st, and D(Jost) in addition to Weir and Cockerham’s Fst.   

(4) Analysis of Molecular Variance:  AMOVA was conducted via R poppr v2.2.1 package 

poppr.amova function with the quasieuclid correction, method from the ade4 package and ignoring 

missing data (alternate options were not tenable given our data) (Kamvar, Brooks, and Grünwald 2015; 

Kamvar, Tabima, and Grünwald 2014).  Each hierarchical variance component (partition level) was 

tested for statistical significance using a Monte-Carlo permutation test (Excoffier, Smouse, and Quattro 

1992) with 99 permutations (randtest.amova function).   

(5) Discriminant Analysis of Principle Components:  DAPC was conducted using the R adegenet 

package dapc.genind function with default settings.  DAPC first uses a principle component analysis to 

reduce the number of genetic variables (alleles) into synthetic variables that maximize between-group 

variance and minimize within-group variance.  The axis that provides the most discriminatory power 

between groups is the first discriminant function.  In our case, we specified individual cluster assignment 

a priori, with 2 clusters (K=2) specifically to test for the relative amount of differentiation between the 

two study sites.  We visualize the differentiation between clusters by plotting density of individuals 

along the discriminant function axis.   

 

Further Exploration of Gene flow between Jaguar Populations:  In order to place our analysis of 

gene flow into a larger context, we attempted an ad hoc merger of our jaguar microsatellite genotypes 

to those published from other studies.  A suite of three microsatellite loci (FCA043, FCA090, and 

FCA126) were used by this study and two others, Roques et al. (2015) in the Yucatan Peninsula, and 
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Wultsch et al. (2016) in Belize (see Figure 7).  Assuming a significant amount of gene flow between these 

sites, differences in the range allele sizes between these studies are most likely due to laboratory 

conditions causing shifts in the size ranges.  For each locus, we adjusted allele sizes hand by adding or 

subtracting integers until we maximized visual concordance between allele size ranges.  The process of 

visual alignment was relatively straightforward, as the range of allele sizes and the shape of the 

frequency distributions were similar across the three studies (Appendix Figure S2).  In order to examine 

the relative levels of gene flow between the three study areas, we calculated Fst between the three sites 

based on these three microsatellite loci.  This is a non-traditional approach to pooling microsatellite data 

across labs, and was done for preliminary investigation only, in the hopes of enticing further 

collaboration between research labs.   

 

 

RESULTS 

Field Collection and Genotyping of Noninvasive Samples:  We obtained 16 unique jaguar 

genotypes (9UX+ 7QR) and 11 unique puma genotypes (6UX + 5QR).  Within Uxpanapa (UX), 29 

confirmed jaguar scats yielded 9 unique jaguar genotypes (11 genotypes with 2 sets of matching 

genotypes from the same individuals) and 9 confirmed puma scats yielded 6 unique puma genotypes 

(38% and 67% genotyping success for jaguar and puma, respectively) (Figure 1 & 3) (see appendix Table 

S3 for sample genotypes).  One of the jaguar genotypes was from the pelt of a locally poached animal.  

That individual was not included in the downstream analyses that required a precise geographic 

location.  Within the Quintana Roo study area (QR), 18 confirmed jaguar scat samples yielded 7 unique 

jaguar genotypes (10 genotypes with a set of 2 and another set of 3 matching genotypes) and 11 

confirmed puma scats yielded 5 unique puma genotypes (8 genotypes with 3 matching sets)(56% and 
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73% genotyping success for jaguar and puma, respectively).  Our nuclear marker amplification success of 

samples confirmed to species via mtDNA markers (44% jaguar, 70% puma) was comparable to those 

reported for other studies (Michalski et al. 2011)(Allele frequencies: appendix Figure S3-S4) 

     

Figure 1. Sampling locations and number of genotypes obtained for each species within Mexico with satellite imagery.     

 

 

Distance between genetic recaptures of the same individual ranged from <1 –  4,543 m (Figure 2).  The 

longest distances between scat samples with matching genotypes were approximately 2km for jaguar, 

and 4.5km for puma.     
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Figure 2. Geographic distance (m) between recaptures of individuals.  Each black circle represents the distance between two 
locations of a unique individual (two locations for a single individual = one distance between those locations = one black circle).  
Colored symbols are distances between multiple recaptures of one individual.  One jaguar (orange) had three locations (three 
locations = three distances between those locations = three orange diamonds), one puma (green) had three locations.   

 

Individual-based Analysis of Gene flow within Uxpanapa:  Multiple Regression on Distance 

Modeling did not reveal any statistically significant association between the relatedness metrics and 

geographic metrics for either jaguar or puma within Uxpanapa (appendix Table S2).  Genetic relatedness 

estimates between individuals within Uxpanapa varied from -0.6307-0.1692 for the Queller-Goodnight 

estimator, and from 0-0.3077 for the dyadic likelihood estimator (latter visualized in Figure 3).  Euclidean 

geographic distance alone was also not a significant predictor of genetic distance, suggesting no 

isolation by distance at this spatial scale (appendix Table S2).   
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Figure 3. Genetic relatedness between individuals as measured by the dyadic likelihood estimator of genetic relatedness.  Line 
thickness scaled to relatedness, unlabeled lines had an estimated relatedness of zero.  Recaptured individuals are represented by 
a single dot, as all recaptures within Uxpanapa were <1km from each other.        

 

Genetic Diversity by Study Site:  Results from tests of departure from Hardy-Weinberg 

equilibrium (HWE) were inconclusive.  One locus (FCA132) was significantly out of HWE for puma 

samples, both within and across sampling locations (appendix Table S4).  It is unclear if this is a biological 

result or an artifact of the small number of samples.  Standard measures of genetic diversity were 

calculated for Uxpanapa (UX) and Quintana Roo (QR) as well overall, summarized by locus in Table 2.   

B. Puma  

A. Jaguar  
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Table 2. Genetic diversity of jaguar and puma populations in Uxpanapa, Veracruz (UX) and northern Quintana Roo (QR) Mexico.  
Number of unique alleles observed per locus (No.Alleles/Locus), rarefacted allelic richness, and Observed (Obs) and Expected 
(Exp) Heterozygosity.   

 

 

Overall metrics of genetic diversity for the Uxpanapa and Quintana Roo jaguar and puma 

populations were similar to published values, with a few exceptions (Table 3).  Jaguar allelic richness and 

expected heterozygosity within the two populations are lower than those published in other areas such 

as Colombia, Brazil, and Venezuela, but are similar to those reported from Mexico and Belize.  The 

observed heterozygosity in the puma populations are similar to others reported from Mexico, and 

higher than reported from populations within the USA.  Comparisons between studies should be viewed 

with caution, given that each study used different suites of microsatellite loci (with some loci 

overlapping between studies).    

 

 

 

FCa008 FCa043 FCa096 FCa126 FCa026 FCa090 FCa132 FCa082 FCa275 FCa056

JAGUAR UX No.Alleles/Locus 5 3 7 3 3 4 3 2 3 6

QR No.Alleles/Locus 4 2 3 3 3 4 1 2 4 2

Overall No.Alleles/Locus 6 3 7 4 3 4 3 3 4 6

UX Allelic Richness 4.05 3.16 6.22 3.51 3.29 4.67 2.78 2.41 2.79 5.26

QR Allelic Richness 3.98 1.98 3.73 3.85 3.34 4.15 1.91 2.64 3.99 2.55

UX Obs Heterozygosity 1 0.67 0.89 0.89 0.56 0.89 0.43 0.38 0.78 0.78

QR Obs Heterozygosity 0.57 0.17 1 0.71 0.71 0.43 0.4 0.83 0.86 0.5

Overall Obs Heterozygosity 0.8 0.47 0.93 0.81 0.62 0.69 0.42 0.57 0.81 0.67

UX Exp Heterozygosity 0.7 0.6 0.83 0.65 0.56 0.78 0.58 0.32 0.54 0.78

QR Exp Heterozygosity 0.67 0.49 0.72 0.7 0.58 0.68 0.32 0.54 0.67 0.4

Overall Exp Heterozygosity 0.71 0.56 0.82 0.7 0.57 0.76 0.52 0.44 0.61 0.69

PUMA UX No.Alleles/Locus 3 5 6 3 3 6 5 4 4 3

QR No.Alleles/Locus 2 4 3 2 4 3 3 5 4 5

Overall No.Alleles/Locus 4 6 7 4 5 7 5 5 5 5

UX Allelic Richness 2.59 3.79 4.54 2.59 2.83 4.03 3.77 3.68 3.68 2.96

QR Allelic Richness 1.69 4.18 2.35 1.68 3.53 3.35 3.25 3.93 3.5 4.26

UX Obs Heterozygosity 1 1 0.83 0.5 0.83 0.67 0.67 0.83 0.83 0.83

QR Obs Heterozygosity 0.2 1 0.2 0.2 1 1 0.4 0.8 0.6 1

Overall Obs Heterozygosity 0.64 1 0.55 0.36 0.91 0.82 0.55 0.82 0.73 0.91

UX Exp Heterozygosity 0.57 0.69 0.79 0.49 0.57 0.62 0.72 0.61 0.71 0.65

QR Exp Heterozygosity 0.18 0.74 0.34 0.18 0.66 0.64 0.64 0.74 0.7 0.76

Overall Exp Heterozygosity 0.48 0.78 0.78 0.38 0.64 0.66 0.75 0.74 0.72 0.76
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Table 3. Comparison of genetic diversity metrics of Uxpanapa and Quintana Roo populations from this study (our study, Day 2016, in bold at top) to other published records. The 
one other entry for Tehuantepec, Mexico is under Puma, by Zanin et al. 2016 in Los Ocotones.  Genetic diversity metrics include rarefracted allelic richness, observed (Obs) and 
expected (Exp) heterozygosity and inbreeding coefficient (Fis).   

 

 

First Author & Year Location Allelic Richness Obs Het Exp Het FIS

JAGUAR Day 2016 Uxpanapa, Mexico (n=9 ) 3.81 (3.1-4.4 CI) 0.72 0.63 -0.1422 (-0.2989 - -0.0150 BC CI)

Quintana Roo, Mexico (n=7 ) 3.21 (2.7-3.6 CI) 0.62 0.58 -0.0689 (-0.2819 - 0.1008 BC CI)

Zanin 2016 ElEden& Zapotal, Mexico 2.79 0.62 0.58 -0.06

Petcab, Caoba & Calakmul, Mexico 3.24 0.70 0.66 -0.03

ElCarmen, Mexico 2.57 0.64 0.59 -0.03

Wultch 2016 Belize 3.36 0.57 0.57 0.04

Ruiz-Garcia 2001 Columbia 0.76

Ruiz-Garcia 2006 Columbia 10.083±2.570 0.835±0.083

Guatemala, Paraguay, Peru, Bolivia, 

Venezuela & Brazil 11.33±2.570

0.846±0.066

Haag 2010 Brazil (Atlantic Forest) 7.23 0.682 (0.548-0.782) 0.732 (0.498-0.782)

Roques 2016 Mexico 4.45 0.684 0.645

Brazil 9.45 0.734-0.848 0.709-0.837

Eizirik 2001 range-wide 8.31 0.739

Wultch 2016 Mexico 3.14 0.52 0.54 0.13 (0.00-0.29 CI)

Mesoamerica mean (incl Mex) 3.43 0.59 0.59 0.05

PUMA Day 2016 Uxpanapa, Mexico (n=6 ) 3.45 (2.7-4.0 CI) 0.8 0.64 -0.2441 (-0.4101 - -0.1418 BC CI)

Quintana Roo, Mexico (n=5 ) 3.17 (2.3-3.8 CI) 0.64 0.56 -0.147 (-0.4236 - -0.0159 BC CI)

Zanin 2016 Loc Ocotones, Mexico 1.67 0.69 0.55 -0.22

ElEden& Zapotal, Mexico 3.22 0.61 0.65 0.12

Petcab, Caoba & Calakmul, Mexico 3.29 0.65 0.66 0.06

ElCarmen, Mexico 4.00 0.71 0.76 0.12

Wultch 2016 Belize 4.20 0.60 0.57 0.06

Ruiz-Garcia 2001 Columbia 0.75

Benson 2016 Southern CA, USA 2.220 (SE 0.123) 0.388 (SE 0.040) 0.352 (SE 0.032) 0.127 (SE 0.022)

Andreasen 2012

Great Basin, Nevada & Sierra 

Nevadas, USA 3.8-4.7 0.50-0.57 0.50-0.57
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Genetic Differentiation between Locations, Comparison of Jaguar and Puma:   

1) Genetic Structure: We conclude that the jaguar samples collected from the two locations 

represent one genetic cluster, while puma represent two genetic clusters.  Evanno’s ∆K method 

supported either K=2 or K=4 for jaguar and puma (see Appendix Figure S5 & S6).  However, visual 

inspection of the assignment bar plots refuted K=4 for both species, as all individuals had approximately 

equal assignment probability to alternative clusters (Appendix Figure S7).  Likewise, no assignment 

pattern was seen for K=2 in jaguar, regardless of whether location information was used as a prior.  

However, the assignment probabilities of pumas for K=2 using location as prior supported two 

significant clusters.   

2) Individual Relatedness within versus among Locations:  Individual jaguars within each location 

(group) are no more related (on average) than they are to individuals at the other location (regardless of 

which relatedness estimator was used).  However, pumas within the groups are more related to each 

other than between groups.  Average relatedness between individuals within the same location was 

calculated for both species (Figure 4, red arrows).  Shuffling jaguar individuals between groups did not 

significantly change the average relatedness between individuals within a group (Figure 4, histogram), 

from the observed average.  However, shuffling individual pumas between groups produced lower 

within-group average relatedness than observed (Figure 4).  To make sure that the significant difference 

in the puma results was not due to excessive permutations, we reanalyzed with 100 permutations (far 

below the binomial coefficient) and still obtained statistically significant difference between observed 

and permuted average within-group relatedness (p <0.01).   
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Figure 4. Observed average within-group genetic relatedness between individuals (red arrow).  Permuted within-group average 
relatedness based on shuffling genotypes between groups (Uxpanapa and Quintana Roo) for 500 permutations (histogram).  P-
values are the % of expected observations that are greater or equal to the observed value.   

 

3) Summary statistics of Genetic Distance:  Despite differences in magnitude between metrics, 

all genetic distance metrics showed the same pattern of greater differentiation between the puma 

populations than the sympatric jaguar populations (Table 4).   
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Table 4. Genetic distance between Uxpanapa and Quintana Roo for jaguar and puma.  Nei’s Gst, Hedrick’s G’st, Jost’s D (Djost), 
and Weir and Cockerham’s Fst (Fst[WC]).   

 

 

 

4) Analysis of Molecular Variance:  The amount of genetic variance that was partitioned into the 

between-locations hierarchical level (as opposed to within-samples or between-samples) was significant 

for puma (p = 0.02), but not for jaguar (p = 0.46) (Table 5; Figure 5).  However, for both species, the 

amount of variance was small as compared to the amount of genetic variance attributed to within 

samples (heterozygosity) (Table 5).   

 

 

Table 5. Hierarchical Analysis of Molecular Variance 

 

 

 

Gst G'st Djost Fst (WC)

JAGUAR Estimate 0.0343 0.1391 0.0386 0.0719

(n=16 ) 95% CI 0.0056-0.0814 0.0241-0.2868 0.0000-0.1215 0.0124-0.1558

Bias Corrected 0.0023 0.0110 -0.0001 0.0062

95% CI -0.0264-0.0494 -0.1041-0.1586 -0.0387-0.0828 -0.0533-0.0901

PUMA Estimate 0.0887 0.3625 0.1553 0.1770

(n=11 ) 95% CI 0.0432-0.1527 0.1966-0.5364 0.0591-0.3067 0.0964-0.2861

Bias Corrected 0.0501 0.2455 0.0669 0.1040

95% CI 0.0046-0.1141 0.0795-0.4193 -0.0293-0.2182 0.0234-0.2131

Source d.f. Sum of Squares Variance Component Variation % P  value

JAGUAR Between Populations 1 2.674 -0.007 -0.242 0.46

Between Samples within Populations 14 39.047 -0.224 -7.446 0.9

Within Samples 16 51.786 3.237 107.688 0.89

Total 31 93.507 3.005 100

PUMA Between Populations 1 7.108 0.382 10.399 0.02

Between Samples within Populations 9 26.483 -0.347 -9.449 0.86

Within Samples 11 40.000 3.636 99.049 0.73

Total 21 73.591 3.671 100
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Figure 5. Visualization of significance tests of hierarchical AMOVA for JAGUAR (left) and PUMA (right). Variance component 
estimates observed from our data (sticks) and expected by Monte-Carlo permutations (histogram).  All of the observed values 
fall within the random distribution, indicating non-significant variance component at that hierarchical level, with one exception; 
the observed variance component between puma populations (lower right) is significantly outside of the permuted distribution, 
indicating significant structure between puma populations.      

 

5) Discriminant Analysis of Principle Components:  The DAPC clustering approach showed 

greater differentiation between the two puma populations than the two jaguar populations (Figure 6).  

The density of individuals along the first discriminant function axis had greater overlap between the two 

locations for jaguar than for puma.    
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Figure 6. Discriminant Analysis of Principle Components for two locations (K=2).  Density of individuals along the first 
discriminant function axis show greater overlap in between the two locations for jaguar, and less overlap for puma.  .   

 

Further Exploration of Gene flow between Jaguar Populations:  By adjusting the allele sizes for three 

microsatellite loci, we pooled jaguar genetic data from three studies to examine genetic distance 

between our sites and those in Belize.  The estimates of Fst between the three jaguar populations 

studied shows a greater distance between the Uxpanapa valley and Belize populations than between QR 

and either population (Figure 7).  Preliminary results from our ad hoc merger of three shared 

microsatellite loci suggest less genetic connectivity between the Uxpanapa valley and Belize, than 

between the Yucatan Peninsula populations and either region, indicating benefits of the network of 

protected areas throughout the Yucatan Peninsula and/or greater movement barriers between Belize 

and Uxpanapa.  Future collaboration with these other research groups, including genetic sample 

exchange, will determine the validity of this approach.     
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Figure 7. Genetic distance (Fst) between three jaguar populations surveyed by three research groups (First authors Day, Roques, 
and Wultsch).  Fst values are based on three microsatellite loci.  Bias-corrected (BC) 95% confidence intervals (CI) are based on 
100 bootstrap iterations.   

 

DISCUSSION 

Our study suggests that gene flow of these highly vagile species is not restricted between forest 

fragments within Uxpanapa, nor has the genetic diversity within the valley been reduced by surrounding 

deforestation.  Alternatively, our results could be due to a combination of the following: A) our sample 

size was too small to detect patterns in genetic relatedness or reduction in genetic diversity, B) the 

habitat fragmentation that has occurred over the past 50 years (Gomez-Irving, Edward A., and Gomez-

Cesar A. 2011) has not yet influenced the pattern of relatedness between individuals due generational 

lag-time (Epps and Keyghobadi 2015; Landguth et al. 2010), or C. the number and polymorphism of the 

genetic markers used were insufficient to capture landscape genetic patterns.  Therefore, we urge 

continued monitoring of the large felids in Uxpanapa, especially given the ongoing deforestation and 

habitat degradation within and surrounding the valley. 
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At the regional scale, all of our analyses of genetic differentiation between locations concur that 

pumas at the two locations are more genetically distinct from each other than the sympatric jaguars.  

Wultsch et al. (2016) identified spatial autocorrelation in the genetic structure of jaguars to the distance 

of ~340km.  However, we found no evidence of genetic structure between jaguars at our two sites 

separated by approximately 1,000km.  We do not think this failure to find genetic structure can be 

attributed to sample size alone, as other studies have found genetic structure with similar sample sizes, 

albeit between sites farther apart.  Additionally, despite our limited number of samples, our estimate of 

Fst between the puma populations is remarkably similar to that reported by Zanin et al. 2016 (0.1770 

and 0.1700 respectively), lending credence to our conclusions.  The greater genetic differentiation 

between puma populations than jaguar has been generally hypothesized to be due to a shorter dispersal 

distance of pumas versus jaguars.  However, this has not been substantiated by field observation.  The 

behavioral drivers of dispersal distance in large Neotropical felids remains an open question.  Future 

studies of movement ecology may shed light on how local resource selection processes scale-up to 

regional processes such as gene flow, leading to species differences in gene flow such as we’ve found in 

our study.   

Our study confirms the persistence of both jaguar and puma within the Uxpanapa valley.  Our 

success in identifying numerous individuals within this challenging region is testimony to the utility of 

using detection dogs to locate big cat samples; previous attempts have been relatively unsuccessful 

using either observer located scats (Zanin et al. 2016) or camera trapping (Figel, Duran, and Bray 2011).  

The geographic distances between genetic recaptures are similar to the 2.4km average daily jaguar 

movement estimated from radio-telemetry data in the Brazilian Pantanal (Crawshaw and Quigley 1991) 

and are under the maximum 10km/day or 14km/day estimated for jaguar (Colchero et al. 2011) or puma 

(Elbroch and Wittmer 2012) respectively.  Unfortunately, we did not observe a sufficient number of 

recaptures to enable a genetics-based mark-recapture or territory delineation.  However, these 
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approaches may be feasible with greater sampling effort, offering a noninvasive alternative to trapping 

and marking or collaring animals.     

At the species-range scale, our study contributes to an emerging pattern of lower genetic 

diversity in the jaguar populations of Mexico and neighboring Belize as compared to populations in 

South America.  Additionally, puma population expected heterozygosity appears slightly higher in 

Mexico than the more northerly populations in the USA.  This difference in species genetic diversity may 

be due to niche-centrality (Lira-Noriega and Manthey 2014; Eckert, Samis, and Lougheed 2008), Mexican 

jaguars being further away from their species range center than puma.  An alternate hypotheses, as 

postulated by Zanin et al. (2016), is that the lower genetic diversity in Mexican jaguars could be due to 

reduced gene flow through parts of Nicaragua and Honduras (Sanderson et al. 2002).     

Our study has provided a glimpse into three spatial scales of gene flow dynamics for jaguars and 

pumas, and highlights the need for further work elucidating potential behavioral drivers governing 

movement during juvenile dispersal versus movements within home-ranges (Roffler et al. 2016).  Our 

study fills a gap in genetic data for the Mesoamerican jaguars, which we hope will contribute to 

international efforts monitoring genetic connectivity throughout their species ranges.  We argue that 

the Uxpanapa valley has the potential to contribute to the long-term preservation of both species by 

providing a stepping-stone for gene flow through Mesoamerica.   
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PERMIT INFORMATION: 
 
Wildlife detector dogs were cared for under the Scat Detection Dog Program IACUC approved protocol 

#2850-08.  All samples collected from the wild were naturally deposited fecal samples.  Sample 

collection was conducted under the license SGPA/DGVS/07120/09 (22-Oct-09), provided by M.V.Z. 

Martin Vargas Prieto of the DirecciÓn General de Vida Silvestre (Semarnat).  Faecal samples were 

exported from Mexico to USA under the export licenses MX #49045 (14-Oct-10) and MX #54703 (01-Dic-

11) of the Secertaria de Medio Ambiente/CITES.   
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APPENDIX - TABLES: 

Table S1. Microsatellite Loci and Primer Sequences 

 
 
 
 

 

 

 

 

 

 

 

 

Locus Name Primer Sequence

FCA026_F 5' - AGC CCT TAG AGT CAT GCA - 3'

FCA026_R 5' - GTTTCTT TGT ACA CGC ACC AAA AAC AA - 3'

FCA090_F 5' - ATC AAA AGT CTT GAA GAG CAT GG - 3'

FCA090_R 5' - GTTTCTT TGT TAG CTC ATG TTC ATG TGT CC - 3'

FCA132_F 5' - ATC AAG GCC AAC TGT CCG - 3

FCA132_R 5' - GTTTCTT GAT GCC TCA TTA GAA AAA TGG C - 3'

FCA008_F 5' - ACT GTA AAT TTC TGA GCT GGC C - 3'

FCA008_R 5' - GTTTCTT TGA CAG ACT GTT CTG GGT ATG G - 3'

FCA043_F 5' - GAG CCA CCC TAG CAC ATA TAC C - 3'

FCA043_R 5' - GTTTCTT AGA CGG GAT TGC ATG AAA AG - 3'

FCA096_F 5' - CAC GCC AAA CTC TAT GCT GA - 3'

FCA096_R 5' - GTTTCTT CAA TGT GCC GTC CAA GAA C - 3'

FCA035_F 5' - CTT GCC TCT GAA AAA TGT AAA ATG - 3'

FCA035_R 5' - GTTTCTT AAA CGT AGG TGG GGT TAG TGG - 3'

FCA082_F 5' - TCC CTT GGG ACT AAC CTG TG - 3'

FCA082_R 5' - GTTTCTT AAG GTG TGA AGC TTC CGA AA - 3'

FCA275_F 5' - TTG GCT GCC CAG TTT TAG TT - 3'

FCA275_R 5' - GTTTCTT ACG AAG GGG CAG GAC TAT CT - 3'

FCA126_F 5' - GCC CCT GAT ACC CTG AAT G - 3

FCA126_R 5' - GTTTCTT CTA TCC TTG CTG GCT GAA GG - 3'

FCA057_F 5' - AAG TGT GGG ATT GGG TGA AA - 3'

FCA057_R 5' - GTTTCTT CCA TAA GAG GCT CTT AAA AAC TGA - 3'

** Reverse primers modified from original published squence through the addition of "GTTTCTT" 

to encourage adenylation (addition of +a)

*Menotti-Raymond et al. 1999
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Table S2. Multiple Regression on Distance Models.  Two relatedness estimates of relatedness (Dyadic Likelihood and Queller-
Goodnight) as independent variables and resistance distances based on geographic layers as independent variables, including 
species-specific Resource Selection Functions (RSPF) from Day et al. 2016 this dissertation.  P-value calculated from 100 
permutations.  

 

 

 

 

 

 

Model ID Dyadic Likelihood R2 p-value Queller Goodnight R2 p-value

JAGUAR Jnull dyadml~EuclidDist 0.0866 0.340 quellergt~EuclidDist 0.0345 0.530

J01 dyadml~RSPF 0.0966 0.250 quellergt~RSPF 0.0444 0.380

J02 dyadml~EuclidDist*RSPF 0.0967 0.610 quellergt~EuclidDist*RSPF 0.0477 0.640

J03 dyadml~EuclidDist+ITIBigRough 0.1896 0.261 quellergt~EuclidDist+ITIBigRough 0.0398 0.777

J04 dyadml~EuclidDist+VegSmP 0.1884 0.310 quellergt~EuclidDist+VegSmP 0.1780 0.135

J05 dyadml~EuclidDist+VegSmTF 0.1191 0.480 quellergt~EuclidDist+VegSmTF 0.0382 0.756

J06 dyadml~EuclidDist+VegSimpH 0.1530 0.365 quellergt~EuclidDist+VegSimpH 0.0584 0.683

J07 dyadml~LogEuclidDist 0.0493 0.464 quellergt~LogEuclidDist 0.0268 0.549

J08 dyadml~EuclidDist+VillagesGiant 0.1593 0.361 quellergt~EuclidDist+VillagesGiant 0.1099 0.450

J09 dyadml~EuclidDist+RdSmOne 0.1626 0.344 quellergt~EuclidDist+RdSmOne 0.0982 0.460

J10 dyadml~EuclidDist+RdMed100 0.1636 0.362 quellergt~EuclidDist+RdMed100 0.1036 0.431

J11 dyadml~EuclidDist+VegSmTF+RdSmOne 0.1630 0.597 quellergt~EuclidDist+VegSmTF+RdSmOne 0.1262 0.661

J12 dyadml~VegSmTF 0.0426 0.508 quellergt~VegSmTF 0.0224 0.578

J13 dyadml~VegSmP 0.0549 0.460 quellergt~VegSmP 0.1021 0.219

J14 dyadml~VegSimpH 0.1287 0.252 quellergt~VegSimpH 0.0502 0.412

J15 dyadml~VegSimpH+VegSmTF 0.2487 0.100 quellergt~VegSimpH+VegSmTF 0.0755 0.643

PUMA Pnull dyadml~EuclidDist 0.0062 0.770 quellergt~EuclidDist 0.0204 0.580

P01 dyadml~RSPF 0.0123 0.640 quellergt~RSPF 0.0036 0.930

P02 dyadml~EuclidDist+RSPF 0.0756 0.610 quellergt~EuclidDist+RSPF 0.2601 0.820

P03 dyadml~EuclidDist+ITImedMod 0.0584 0.741 quellergt~EuclidDist+ITImedMod 0.0267 0.819

P04 dyadml~EuclidDist+ITIsmMod 0.0696 0.670 quellergt~EuclidDist+ITIsmMod 0.0298 0.779

P05 dyadml~EuclidDist+RdMed100 0.0065 0.967 quellergt~EuclidDist+RdMed100 0.0484 0.707

P06 dyadml~EuclidDist+RdSmOne 0.0445 0.809 quellergt~EuclidDist+RdSmOne 0.0271 0.847

P07 dyadml~LogEuclidDist 0.0147 0.657 quellergt~LogEuclidDist 0.0096 0.683

P08 dyadml~EuclidDist+RiosBig 0.0527 0.706 quellergt~EuclidDist+RiosBig 0.0786 0.570

P09 dyadml~EuclidDist+RiosGiant 0.0076 0.942 quellergt~EuclidDist+RiosGiant 0.1368 0.345

P10 dyadml~RiosBig 0.0237 0.594 quellergt~RiosBig 0.0215 0.591

P11 dyadml~ITImedMod 0.0085 0.776 quellergt~ITImedMod 0.0029 0.838

P12 dyadml~RdMed100 0.0036 0.845 quellergt~RdMed100 0.0018 0.848

P13 dyadml~ITImedMod+RdMed100+RiosBig 0.1805 0.608 quellergt~ITImedMod+RdMed100+RiosBig 0.0333 0.899

P14 dyadml~ITIsmMod+RdSmOne+RiosGiant 0.2472 0.459 quellergt~ITIsmMod+RdSmOne+RiosGiant 0.0426 0.874
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Table S3. Genotypes for Jaguar and Puma using 10 nuclear microsatellite loci.  Samples were collected from two locations, Uxpanapa (UX) and northern Quintana Roo (QR). A 
subset of Uxpanapa samples were used for analysis of Individual Relatedness (x=used, - =unused due to missing data or lack of geographic location).  Matching genotypes are 
clusterd and indicated with a single “X”.   

 

 

Location Species SampleID

Individual 

Relatedness

Location 

Comparison FCA008 FCA008 FCA043 FCA043 FCA096 FCA096 FCA126 FCA126 FCA026 FCA026 FCA090 FCA090 FCA132 FCA132 FCA082 FCA082 FCA275 FCA275 FCA056 FCA056

Confirmed 

Alleles (20)

Confirmed 

Genoytpe (10)

UX JAGUAR U10JJ21 - x -99 -99 120 122 198 -99 -99 161 -99 154 114 -99 -99 -99 263 263 140 140 154 -99 9 4

UX JAGUAR U10JJ51 x x 122 132 120 120 190 190 157 161 154 156 114 116 178 178 263 263 130 140 156 158 20 10

UX JAGUAR U10JJ60 122 132 122 122 184 200 157 161 154 154 118 120 178 178 263 263 130 140 158 158

UX JAGUAR U10JJ63 122 132 122 122 184 200 157 161 154 154 118 120 178 178 263 265 130 140 158 158

UX JAGUAR U11JJ09 x x 116 122 122 124 -99 206 161 161 156 156 116 118 178 178 263 -99 140 140 154 160 18 8

UX JAGUAR U11JJ20 - x 120 122 -99 122 184 200 157 159 152 154 116 120 178 180 263 265 130 140 158 160 19 9

UX JAGUAR U11JJ51 116 122 120 122 190 206 159 161 154 154 120 120 180 182 263 263 136 140 152 158

UX JAGUAR U11JJ52 116 122 120 122 190 206 159 161 154 154 118 120 180 182 -99 263 136 140 -99 158

UX JAGUAR U11JJ57 x x 122 132 120 120 190 204 159 161 154 156 114 114 182 182 -99 263 130 140 160 160 19 9

UX JAGUAR U11JJ59 - x 116 122 120 122 190 -99 159 161 -99 154 120 -99 -99 -99 -99 -99 136 140 158 -99 12 5

UX JAGUAR U11JJ64 x x 114 116 120 122 200 202 157 161 154 154 114 116 178 180 263 263 130 140 160 164 20 10

QR JAGUAR Y08EDEN3 x 122 132 122 122 -99 -99 159 -99 -99 156 -99 118 -99 -99 -99 -99 130 140 -99 -99 9 3

QR JAGUAR Y08S22 122 122 122 124 190 206 -99 -99 154 154 114 114 178 178 263 -99 128 130 -99 160

QR JAGUAR Y08S23 122 122 120 122 190 206 159 165 154 154 114 114 178 178 261 263 128 130 158 160

QR JAGUAR Y08S25 122 122 120 122 190 206 159 165 154 -99 114 114 178 178 263 -99 130 130 158 160

QR JAGUAR Y08S40 x 132 132 122 122 -99 200 161 161 154 156 114 120 178 178 263 -99 140 140 158 160 18 8

QR JAGUAR Y08S54 116 122 120 120 190 206 161 161 154 154 116 116 178 178 263 263 130 136 160 160

QR JAGUAR Y08S55 116 122 120 120 190 206 161 161 154 154 116 116 178 178 263 263 130 136 -99 160

QR JAGUAR Y08S60 x 122 122 -99 -99 190 -99 159 161 152 154 -99 118 178 -99 263 -99 140 -99 160 160 13 4

QR JAGUAR Y08S89 x 130 132 120 120 190 200 161 165 154 156 114 114 178 -99 -99 263 130 140 -99 160 17 7

QR JAGUAR Y08S93 x 132 -99 120 120 -99 -99 -99 165 154 156 114 114 -99 -99 263 -99 130 140 160 160 13 5

UX PUMA U10JJ12 x x 154 172 138 140 198 212 140 140 146 156 116 116 182 186 249 249 136 140 156 158 20 10

UX PUMA U11JJ06 x x 154 172 128 136 196 198 136 140 140 146 116 116 176 176 249 -99 136 146 156 158 19 9

UX PUMA U11JJ21 x x 154 172 128 138 198 216 136 138 140 146 112 116 176 184 249 255 142 146 152 158 20 10

UX PUMA U11JJ43 x x 154 156 128 138 202 202 140 140 146 146 108 116 176 186 249 251 140 142 152 152 20 10

UX PUMA U11JJ44 x x 154 172 128 138 196 214 136 140 146 156 104 120 176 186 249 257 142 142 152 156 20 10

UX PUMA U11JJ47 x x 154 172 138 142 198 216 140 140 140 146 114 116 178 178 249 255 142 146 152 156 20 10

QR PUMA Y08S15 154 154 130 -99 208 208 134 140 140 146 116 118 176 182 251 257 142 142 152 158

QR PUMA Y08S18 154 154 -99 130 208 208 134 140 140 146 116 118 -99 -99 251 -99 142 142 152 158

QR PUMA Y08S31 154 154 138 140 208 -99 140 140 -99 -99 108 116 176 176 251 255 142 142 -99 160

QR PUMA Y08S34 154 154 138 140 208 208 140 140 146 158 108 116 176 176 251 255 142 142 158 160

QR PUMA Y08S47 154 154 128 130 -99 208 140 140 146 154 108 116 182 182 -99 -99 146 150 156 160

QR PUMA Y08S49 154 154 128 130 208 208 140 140 146 154 108 116 182 182 251 253 146 150 156 160

QR PUMA Y08S51 x 152 154 128 130 208 208 140 140 146 154 108 116 182 182 251 253 146 150 156 160 20 10

QR PUMA Y08S66 x 154 154 130 138 198 216 140 140 146 158 -99 116 178 -99 249 249 140 146 148 158 18 8
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Table S4. Tests for departures from Hardy-Weinberg equilibrium by locus for all samples (Overall), or by location (UX = 
Uxpanapa, QR = Quintana Roo). 

 

 

  

JAGUAR Locus UX (n=9 ) QR (n=7 )

chi^2 df Pr(chi^2 >) Pr.exact Pr.exact Pr.exact

FCA008 21.2263 15 0.129753427 0.028 0.02 0.161

FCA043 22.21895 6 0.001105068 0.036 0.535 0.207

FCA096 36.07545 28 0.140686532 0.046 0.001 0.566

FCA126 13.06485 10 0.220068578 0.234 0.268 0.949

FCA026 1.65155 6 0.948800099 0.837 1 1

FCA090 17.1307 10 0.071521547 0.013 1 0.001

FCA132 24.84771 6 0.000364348 0 0.262 1

FCA082 1.819226 6 0.93555087 0.819 0.428 0.186

FCA275 6.685264 10 0.754786188 0.709 0.165 1

FCA056 9.709366 21 0.98244419 0.844 0.566 0.469

PUMA Locus UX (n=6 ) QR (n=5 )

chi^2 df Pr(chi^2 >) Pr.exact Pr.exact Pr.exact

FCA008 1.983471 10 0.99646527 1 0.001 1

FCA043 28.0102 21 0.139862171 0.079 0.331 0.17

FCA096 57.79882 28 0.00077207 0.001 0.09 0.001

FCA126 18.67769 10 0.044552773 0.071 0.187 1

FCA026 16.6 15 0.343333012 0.321 0.733 1

FCA090 43.4 28 0.031826883 0.166 0.001 0.001

FCA132 25.72917 15 0.040967615 0.002 0.001 0.001

FCA082 12.5713 15 0.63537273 0.591 1 0.132

FCA275 23.09277 15 0.0821899 0.02 1 0.001

FCA056 18.06122 15 0.259460489 0.339 1 0.001

Overall (n=11 )

Overall (n=16 )
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APPENDIX- FIGURES: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Potential Bias in Relatedness estimation (y-axis) with missing genotype 
data across multiple estimators (x-axis categories).  Blue lines indicate the two 
samples with more missing data than the other samples.   



 
 

 89 

    

Figure S2. Visual adjustment of three microsatellite allele frequencies from three jaguar research groups.  LEFT: Original 
distribution of alleles for each study.  RIGHT: Maximum concordance of allele sizes achieved by adding or subtracting integers.   
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Figure S3. Jaguar allele frequencies 
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Figure S4. Puma allele frequencies 
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Figure S5. Support for number of Bayesian clusters for Jaguar, either with or without using location as a prior.  
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Figure S6. Support for number of Bayesian clusters for puma, either with or without using location as a prior 
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Figure S7. Representative assignment bar plots for two (K=2) or four (K=4) genetic clusters for jaguar and puma, either without 
(A) or with (B) using location as a prior.     
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ABSTRACT 

The inherent complexity of eco-evolutionary (hereafter eco-evo) dynamics make the 

development of both theory and applications challenging, thus increasing researchers’ reliance on 

computer simulations.  This manuscript begins with an introduction to eco-evo dynamics, highlighting 

specific challenges to eco-evo modeling within four focal disciplines (1) Landscape Genetics, (2) 

Population Genetics, (3) Conservation Biology, and (4) Evolutionary Ecology.  We then describe a 

theoretical model within the platform, HexSim, that explores how spatial pattern can drive eco-evo 

dynamics.   

HexSim has the capacity for integrating complex movement ecology and demographics while 

also including flexible genetic traits.  The purpose of this manuscript is twofold: (1) Illustrate the 

platform’s ability to recapitulate expectations from theory, here referred to as “core concepts”, in each 

focal discipline, thereby demonstrating the platform’s reliability. (2) Provide simple examples of how the 

platform’s capacity for biological realism may be used to address methodological challenges in each 

discipline.     

Our theoretical model was designed to illustrate gene flow, drift, and selection on populations 

inhabiting a spatially-subdivided landscape.  The simulation model treatments include two levels of 

landscape permeability, two types of dispersal behavior, and two rules governing the strength of 

selection acting on locally adaptive alleles.  Our results exhibit plausible patterns of isolation by distance, 

genetic drift, extinction probabilities, and population growth in response to landscape pattern and 

model treatment.  We highlight results that overcome some of the existing methodological challenges to 

eco-evo modeling, such as reliance on resistance surfaces as a proxy for past gene flow, and the 

treatment of migration-rates as a model input rather than a synthetic emergent model output.   
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Future applications of HexSim may include investigating how eco-evo dynamics are affected by 

complex movement ecology such as territoriality, herd-movement, or natal affinities.  Other potential 

applications include examining the driving force of landscape pattern in eco-evo dynamics, with either 

theoretical, geographically explicit, or dynamic landscapes. The flexible genetic traits of HexSim allow for 

linkage, polymorphic loci, multiple mutation models and more.  The platform tracks demo-genetic 

output simultaneously.  Future applications may use the demographic and genetic output to complete 

the eco-evo feedback loop, with genetic traits dynamically impacting ecological traits.  The work 

described here is an exploration of new methods that capture some of the biological realism that 

researchers have long agreed drives ecology and evolution, but which are difficult to incorporate into 

theories, models, and policies.   

 

Keywords: individual-based modeling, conservation genetics, population genetics, landscape genetics, 

evolutionary ecology   



 
 

 100 

INTRODUCTION 

Eco-evolutionary dynamics include unidirectional and reciprocal interactions between biological 

forces at both the ecological and evolutionary ends of the spatio-temporal spectrum (Figure S1).  Eco-

evolutionary (hereafter “eco-evo”) dynamics include the classic unidirectional eco-evo dynamic, natural 

selection, in which ecological change affects the evolution of allele frequencies within a population.  

While reciprocal feedbacks have been theorized for a long time, the longer time scales at which 

evolutionary forces operate has generally been viewed as too slow to influence observable ecological 

responses.  This perception of temporal disparity, as well as past methodological limitations in tracking 

the molecular genetics of selection, slowed the development of research into eco-evolutionary 

dynamics until recently.  With advances in molecular genetics, the time scales between evolutionary and 

ecological forces have been shown to be sufficiently coincident (Kinnison and Hendry 2001) and 

feedbacks from rapid-evolution impinging on ecological processes have been directly observed in an 

increasing number of natural systems (Thompson 1998; Hairston et al. 2005; Fanie Pelletier et al. 2007; 

Sinervo, Svensson, and Comendant 2000; Laland, Odling-Smee, and Feldman 1999; Yoshida et al. 2003).  

This has accelerated the resurgence of research into eco-evolutionary dynamics (F. Pelletier, Garant, and 

Hendry 2009; Ezard, Côté, and Pelletier 2009; Saccheri and Hanski 2006; Fussmann, Loreau, and Abrams 

2007; Carroll et al. 2007), with recent work including observational (Palkovacs and Post 2008; Hanski and 

Saccheri 2006), experimental (Sinervo, Svensson, and Comendant 2000; Yoshida et al. 2003), and 

theoretical approaches (Laland, Odling-Smee, and Feldman 1999). 

Eco-evo dynamics are shaped by landscape spatial pattern and thus mediated by movement 

(Figure S1).  The influence of spatial pattern on eco-evo dynamics spans all spatio-temporal scales and 

many scientific disciplines, from cancer development within spatially structured populations of somatic 

cells (Martens et al. 2011) to ecosystem responses to climate change [reviewed in (Walther et al. 2002).  

The eco-evo responses of interest vary by discipline, yet again are all influenced by spatial pattern and 
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movement.  For example, evolutionary geneticists may follow the evolution of heritable traits 

responding to spatially heterogeneous selection pressures, population geneticists may examine changes 

in allele frequencies influenced by spatially-restricted gene flow, phylogeographers may investigate 

coalescent timing across glaciations, and conservation biologists may explore links between genetic 

diversity and resilience in spatially isolated populations.  As the rate of anthropogenic landscape change 

increases, determining how spatial pattern influences eco-evo dynamics becomes a more crucial 

component of predicting biotic resilience. 

Here, we illustrate how the simulation platform, HexSim can model spatial drivers of eco-evo 

dynamics.  We propose that this linkage might be used to better explore and communicate eco-evo 

dynamics within four focal disciplines; 1. Landscape Genetics, 2. Population Genetics, 3. Conservation 

Biology, and 4. Evolutionary Ecology.  Spatially-explicit individual-based simulation models capable of 

linking both ecological and evolutionary processes are growing in number and improving in quality 

(Hoban, Bertorelle, and Gaggiotti 2012; Epperson et al. 2010).  However, HexSim is capable of modeling 

a full complement of genetic and demographic sophistication.  HexSim differs from other available 

platforms in several aspects relevant to the study of eco-evo dynamics.  First, life history processes are 

directly linked to static or dynamic landscape maps, and multiple spatial drivers can simultaneously 

influence different parts of the same simulation.  Further, movement responses to landscape structure 

are not constrained by a reliance on resistance surfaces, patch-mosaic structures, stepping stones, or 

the use of graph-theoretic networks – all simplifications that are frequently employed to speed model 

development or improve tractability, but at a cost to biological realism.   

Below, we briefly discuss the methodological challenges currently limiting simulation 

approaches within each of four focal disciplines.  Descriptions of each discipline below are simplified for 

the sake of brevity.        
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(1) Landscape Genetics seeks to understand how landscape pattern influences gene flow.  A 

standard approach is to compare inter-individual genetic distance to metrics of landscape structure, 

often quantified as distance cost across a resistance surface.  Currently available landscape genetics 

modeling platforms have been limited in either spatial, demographic, or behavior sophistication 

(Balkenhol, Waits, and Dezzani 2009).  While these constraints may not pose issues for many studies, 

some species of interest will require a full complement of complexity to realistically model gene flow.  

Additionally, most platforms cannot simultaneously simulate multiple interacting eco-evo drivers of 

gene flow, such as local adaptation along with source-sink demographics (Hoban, Bertorelle, and 

Gaggiotti 2012). 

 (2) Population Genetics investigates the causes and consequences of population genetic 

structure.  Biological forces such as selection and mutation rates can be spatially patterned by landscape 

structure, yet are often assumed to be spatially uniform for simplicity.  Additionally, in classic population 

genetic models, spatial complexity is reduced to discrete populations, and migration processes are 

characterized by a single univariate input parameter, ‘m’.  These simplifications have facilitated the 

generation of a wealth of theory; but, a lack of biological realism and/or spatial complexity limits 

application of this theory to systems in which space is continuous and dynamic (e.g. successional forest 

under a disturbance regime), or cases where gene flow is governed by complex movement and mating 

behavior (e.g. stage-specific movement behavior and territoriality). 

(3) Conservation Biology is a broadly defined discipline, but at its core investigates forces 

affecting population viability.  Landscape pattern drives population viability through its influence on 

ecological and evolutionary processes.  The relative importance of demography versus genetics is 

actively debated in the conservation literature (Lande 1988; Frankham 2005).  Some forecasting tools 

can simulate inbreeding rates and incorporate them into probabilities of extinction (e.g. Vortex), but 

existing models simplify the linkages between ecological and evolutionary processes, which limits the 
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applied utility of such forecasts.  For example, a platform capable of simulating complex interacting 

demographic and genetic traits is necessary to forecast the consequences of landscape changes that will 

alter an organism’s habitat quality and pattern (eco), while simultaneously impacting its mate-finding or 

natural selection processes (evo). 

 (4) Evolutionary Ecology explicitly explores the interactions and feedbacks between ecological 

and evolutionary forces that subsequently affect demographic and genetic traits.  As addressed above, 

landscape pattern shapes the myriad feedbacks through which biological forces influence population 

and community demo-genetic traits.  A resurgence of interest in these processes has underscored the 

need for biologically sophisticated, mechanistic simulation platforms capable of explicitly modeling 

dynamic eco-evo feedbacks in a spatially-realistic setting.   

Here, we demonstrate how the explicit inclusion of spatial pattern and movement ecology can 

advance eco-evo theory and its applications to the four focal fields listed above, using a theoretical 

model built within the HexSim platform.  Our model individuals have a simple life-cycle with density 

dependent reproduction, juvenile dispersal, probabilistic mortality, and local adaptation during part of 

the simulation.  Biological forces (e.g. migration rates and genetic drift) and observable demographic 

and genetic responses (e.g. population size and allele frequencies) emerge mechanistically from changes 

to landscape structure.  Our model landscape consists of adjoining habitat patches of three sizes, and 

the connectivity between those patches varies through the simulation.  For each discipline, we highlight 

results that (a) illustrate a priori expectations of an eco-evo dynamic fundamental to the discipline, here 

referred to as “core concepts”, and that (b) illustrate how adding biological and spatial complexity can 

enhance modeling applications (Table 1).   
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Table 1.  How landscape spatial pattern and biological realism are important to four focal disciplines.  For each 
discipline we illustrate one core concept, and one advancement our work brings to eco-evo investigations. 

Discipline Research Question Topics of Highlighted Results 

  Core Concept  Advancement 

LANDSCAPE 

GENETICS 

How is gene flow 

controlled by the 

landscape? 

Isolation by Distance is a 

function of dispersal 

behavior. 

Replacing resistance surfaces and cost-

distance matrices with measures of genetic 

distance arising from eco-evo processes and 

species-landscape interactions.   

POPULATIONS 

GENETICS 

How is genetic structure 

controlled by the 

landscape? 

Genetic structure is 

influenced by IBD & 

demographics. 

Allowing migration rates between 

populations to emerge mechanistically from 

the interplay between dispersal behavior 

and landscape structure. 

CONSERVATION 

BIOLOGY 

How are inbreeding and 

population viability 

controlled by the 

landscape? 

Homozygosity and 

stochastic extinction are 

consequences of 

demographic processes. 

Insuring that forecasts of genetic 

degradation are driven by spatially-realistic 

movement models and incorporate pre-

existing genetic structure and diversity. 

EVOLUTIONARY 

ECOLOGY 

How are feedbacks 

between ecological and 

heritable traits controlled 

by the landscape? 

Population size is an 

ecological response to the 

evolutionary force of 

selection. 

Creating eco-evo feedback loops between 

local selection for specific alleles and 

counteracting asymmetric migration 

stemming from source-sink dynamics in 

heterogeneous landscapes. 

 

 

MATERIALS AND METHODS 

Our study was built around a theoretical simulation that is relatively simple compared to the 

ecological complexity capable within the HexSim modeling platform (Schumaker 2016).  HexSim is a 

windows-based platform with graphical user interface.  Originally designed for population viability 

analysis, HexSim itself has evolved, and the platform now contains a large collection of features for 

developing demographic models, includes a thoroughly-integrated genetics toolkit, and can track 

multiple demographic and genetic outputs simultaneously. 
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Landscape Structure:  HexSim spatial data (maps) are assembled from a space-filling arrays of 

hexagonal cells.  Our landscape was composed of six adjacent habitat patches (2 of each small, medium, 

and large patches) built up from multiple hexagonal cells (each of equal quality), embedded in a non-

habitat “matrix”, without gradients (Fig 1) (Text S1 for more detail).  A set of movement barriers was, at 

times, used to isolate the six patches from each other.  At other times, small semi-permeable openings 

in the movement barriers allowed limited dispersal between neighboring patches.  These barrier 

openings were identical in size, and assigned equal transmission probabilities (within any given 

simulation).  

 

Ecological Characteristics:  Our simulations ran for a series of “time steps” (implicitly defined in 

HexSim, but corresponding here to a year), with a sequence of life history events and species-landscape 

interactions being performed at each step.  In brief, the life cycle consisted of (a) resource acquisition, 

(b) pair formation, (c) reproduction, (d) juvenile dispersal, and (e) survival (Figure S2).  The individuals 

making up our simulated population included both sexes and two age classes (juvenile and adults).  

Females were allowed to reproduce only if they could pair with a male within a circular neighborhood.  

Reproductive rates were normally distributed with mean values based on the amount of resource 

individuals were able to acquire, which introduced a density-dependent feedback that was further 

modified by the requirement for pair-formation.  Individuals acquired their resources from a roughly-

circular neighborhood of 37 hexagonal cells, and these resources were shared equally among all 

individuals attempting to utilize them (scramble competition).  Juveniles dispersed from their natal site 

in the year of their birth, and transitioned to adults at the start of the subsequent year (there was no 

neonatal mortality).  Adults did not move in our simulations.  Dispersal within HexSim can be intricately 

parameterized, but our simulated movement behavior was simple.  Dispersal path lengths were drawn 
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from one of two uniform distributions, either “short” (1-5 hexagon steps) or “long” (5-25 hexagon 

steps).  Dispersal paths were moderately auto-correlated, but otherwise random.  Individual dispersers 

took a series of steps from hexagon to adjacent hexagon, and stopped when their path length had been 

reached.  Yearly survival probability was determined on the basis of stage class (juvenile = 0.5, adult = 

0.885), but individuals with less than 20% of their resource goal experienced an additional 10% 

probability of mortality.  Our simulations included a period in which survival decisions were also based 

on genetic adaptation.  In these cases, mortality rates that were previously determined by stage class 

became jointly determined by stage class, location, and genotype (see below). 

 

Evolutionary Characteristics:  Our simulation agents were diploid with ten loci and zero linkage 

between loci.  The starting population was assigned alleles drawn randomly from a collection of five per 

locus, labeled A1-A5, based upon locus-specific initial allele frequencies of our choosing (Table S1).  The 

initial allele frequencies were not spatially stratified, and we did not simulate mutation.  Offspring 

genotypes were assembled by drawing a single allele from each parent at each locus, without linkage.  

Individuals possessed five purely neutral loci (L1-L5), and five loci (L6-L10) containing at least one allele 

capable of conferring a fitness advantage.  These locally adaptive alleles imparted a survival gain to 

juveniles when they were in the habitat type (type “A” vs. type “B”) to which they were genetically pre-

adapted (Table S1).  The survival gain (S) per adaptive allele was either strong (S = 0.10) or weak (S = 

0.01).  Selection, modeled this way, was a predictable process because genotype dictated the mean 

juvenile survival probability.  Selection was initiated at time-step 3000.  All ten loci were used for all 

genetic analyses described below, with the exception of adaptation, for which only L6-L10 were used. 

 

Progression of Landscape Change:  Our initial landscape was continuous, of uniform quality, and 

free from movement barriers.  This landscape persisted for the first 1000 simulation time steps, 
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hereafter referred to as the Continuous epoch (Fig 1).  We anticipated that Isolation by Distance (IBD) 

would be the predominant evolutionary force in this landscape.  To simulate the effect of drift alone, we 

then imposed absolute movement barriers that isolated sub-populations from each other within 

landscape patches for the subsequent 1000 simulation time steps.  We refer to this epoch as Isolated 

Patches.  Six separate patches were delineated by the movement barriers, with two patches each of 

three different sizes.  Following patch isolation, we created small gaps in the movement barriers 

between patches, allowing infrequent migration between the previously isolated sub-populations.  

Barrier gaps varied in permeability (high = 0.70 transmission probability per encounter, low = 0.02 

transmission probability per encounter), affecting the likelihood that agents would cross the barrier 

when they encountered a gap during dispersal.  We refer to this third epoch of 1000 time-steps as Semi-

connected.  During the final 1000 time steps, the landscape patches were each assigned one of two 

“habitat types” that conferred increased fitness to juveniles with specific genotypes, as previously 

described.  We refer to this landscape as Semi-connected with Local Selection. 

 

Treatments and Observable Responses:  Agent dispersal behavior (long vs. short), strength of 

selection (strong vs. weak), and barrier gap permeability (low vs. high) together formed eight treatment 

combinations.  Each treatment was repeated in ten replicates.  For each treatment, we tracked 

individual genotypes, per-capita homozygosity, per-patch population size, and the number of dispersers 

moving between the patches.  We did not track individual pedigree information.  Upon completion of 

the simulations, we used HexSim’s report generator to create files suitable for input to the genetic 
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software package STRUCTURE (Pritchard, Stephens, and Donnelly 2000).  See S2 Text for processing time 

and computational requirements. 

 

Analysis:  Generation time was not an input parameter in our model, but instead was calculated 

from simulation results.  The female agents in our model could reproduce beginning in their second 

time-step, and could continue to do so in each time step until their death, thereby producing 

overlapping generations.  We measured generation time as the observed average age of reproducing 

females (Hamilton 1966). 

Migration rates between patches were calculated using the recorded number of patch 

transitions during the Semi-connected epoch. To qualify as a migrant, individuals had to both cross 

through a barrier gap connecting two patches, and subsequently reproduce somewhere other than their 

natal patch.  Collected this way, our migration data intentionally excluded non-breeders (mostly those 

who died as juveniles), and individuals that reproduced in their natal patch after making a temporary 

excursion elsewhere.  For the purpose of computing the average number of migrants per generation, 

each barrier crossing location (barrier gap) was treated as an independent sample, thus migration is 

reported at the scale of the landscape patch. 

The four highlighted disciplines differ not only in their central research questions, as described 

above, but also in their genetic analytical approaches.  We analyzed the results of our simulations with 

an eye to each of these approaches: 

 Landscape Genetics:  Isolation by distance (IBD) produced by dispersal limitations (Wright 1943) 

is a core concept in landscape genetics.  We used results from the Continuous epoch to illustrate the 

degree of IBD for our short and long-distance dispersal treatment groups.  We constructed dispersal 

kernels by plotting the frequency of observed dispersal distances for all individuals in all replicates from 

time step 1 to 1000.  We visually assessed the degree of IBD using correlograms generated by the 



 
 

 109 

application Alleles in Space (Miller 2005), where the average genetic distance between individuals is 

plotted for varying distance classes.  We also plotted the frequency of observations for each distance 

class, to ensure that the inter-individual genetic distances were not due to underlying distribution of 

individuals on the landscape. 

We calculated inter-individual genetic-distances resulting cumulatively from each landscape 

history.  For ease of illustration, we subset our results as follows:  For each treatment group, we 

randomly selected a single replicate simulation.  From the selected replicate, we extracted genotype 

reports from the last time step of each of the four landscape epochs.  From those reports, we randomly 

selected 25 individuals from each of the six patch locations.  For those 150 individuals, we calculated a 

simple metric of pairwise genetic distance (number loci for which alleles differ between individuals / 

total number loci) using the “ape” R (v3.2.2) package “dist.gene” function with “percentage” method (R 

Core Team 2013; Paradis, Claude, and Strimmer 2004).  We visualized the 150x150 pairwise genetic 

distances as triangular matrices. 

 Population Genetics:  We used a Bayesian clustering method, implemented by the program 

STRUCTURE (v 2.3.4), to analyze population genetic structure (Pritchard, Stephens, and Donnelly 2000).  

At the end of each landscape epoch, we collected genotype information stratified by putative 

population (patch), and imported these data into STRUCTURE.  Unequal sample sizes (small patches ≈ 25 

individuals, large patches ≈ 1000) interfered with the assessment of the number of subpopulations and 

assignment probabilities (data not shown).  This known limitation of the software (Pritchard, Wen, and 

Falush 2010) was overcome by randomly drawing a fixed number of individuals (n=25) from each patch 

for analysis.  In cases where there were fewer than 25 individuals extant in a given patch, genotypes 

were randomly selected for inclusion with replacement until each patch had a sample of 25, for 150 

total individuals.  This created an analogous sampling scheme to that common in noninvasive genetic 
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sampling, where a small fraction of large populations are sampled, and small populations are sampled 

thoroughly, potentially repeatedly sampling the same individual. 

We expect the number of unique genetic clusters (commonly referred to as “K”) to vary from 1 

to 6 based on landscape structure.  Therefore, following convention, we tested possible values of K 

ranging from 1 to 20.   All STRUCTURE analyses were run with a burn-in period of 10,000 iterations, with 

an additional 10,000 analysis iterations. We performed 20 replicate trials for each possible K value using 

the default settings of the admixture model and correlated allele frequencies.  Each individual was given 

a “sample location” based on patch location, regardless of whether the landscape was continuous or 

patchy at that time (“sample location” was not used to aid in determination of the number of 

subpopulations).  The best supported K values were identified using two methods: 1) plotting the 

replicate average Ln P(D|K), and visually determining the minimum K of the curve’s asymptote 

(Pritchard, Wen, and Falush 2010), and 2) using Evanno’s ∆K method (Evanno, Regnaut, and Goudet 

2005).  If there were close ties between supported K values, using either method, we considered them 

all for individual assignment analyses.  Assignment plots were generated for the 150 individuals, 

organized by patch location. 

 Conservation Biology:  We used a separate series of model simulations to finely manipulate 

barrier gap permeability and carefully examine the effect of landscape connectivity on the amelioration 

of accumulated homozygosity.  We calculated Per-capita Homozygosity as the percent of homozygous 

genotypes across all alleles and individuals within a given landscape patch.  Large values of Per-capita 

Homozygosity could result from a few highly inbred individuals or from many slightly inbred individuals.  

These separate simulations were otherwise identical to the primary models described above. 

We used the primary set of 80 simulations (8 treatments, 10 replicates each) to examine the effect of 

patch isolation on allele frequencies.  We extracted genotype results from each replicate for two time 

steps, the ends of the Continuous and Isolated Patches epochs.  We calculated three metrics of genetic 
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degradation for each locus in each sub-population using output from the “‘diveRsity” R package 

“divBasic” function (Keenan et al. 2013), as described below: 

(1) Allelic richness = the number of unique alleles per locus.  All ten loci began with 5 alleles 

each. 

(2) Allelic evenness = ∑(𝑝𝑖𝐿𝑛(𝑝𝑖)) 𝐿𝑛(5)⁄ , where 𝑝𝑖  is the frequency of the 𝑖𝑡ℎ allele within each 

locus, and 𝐿𝑛(5) is the maximum evenness in each locus, given that all were initiated with 5 alleles.  

(This expression for allelic evenness is analogous to the Shannon-Weaver biodiversity metric.)  The 

starting population had different initial allele frequencies corresponding to allelic evenness values of 1.0 

= “Equal”, 0.96 = “Unequal”, and 0.72 = “Rare” (Table S1).   

(3) Heterozygosity deficit  =  𝐻𝑜𝑏𝑠 − 𝐻𝑒𝑥𝑝, where observed heterozygosity (𝐻𝑜𝑏𝑠) is the number 

of observed heterozygous genotypes and expected heterozygosity is calculated as: 𝐻𝑒𝑥𝑝 = 1 −

∑ (𝑞𝑖)2𝑛
𝑖=1  where 𝑛 = number of alleles and 𝑞𝑖 is the frequency of the 𝑖𝑡ℎ of 𝑛 alleles at a locus.  Note 

that 𝐻𝑒𝑥𝑝 is calculated based on the number extant alleles at a locus, and will fluctuate dramatically as 

alleles are lost from a population.  Therefore, unlike Allelic richness or Allelic evenness, this metric has a 

shifting baseline. 

For each metric, we calculated mean and standard deviation across all replicates within the 

same patch size (small, medium, or large) and of the same initial allele frequency (equal, unequal, or 

rare) for each of the two time points of interest (at the end of the Continuous and Isolated Patches 

epochs). 

 Evolutionary Ecology:  Population size was tracked for each patch across all time steps to 

facilitate measuring the response to adaptation.  Additionally, we computed the change in frequency of 

adaptive alleles within each landscape patch during the Semi-Connected with Selection epoch.  L6 

contained two adaptive alleles and 3 neutral, while L7-through L10 each contained one adaptive allele 

and 4 neutral.  L7-A5 and L9-A1 were adaptive in habitat type A, while L8-A5 and L10-A1 were adaptive 
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in habitat type B.  Within L6, A2 was adaptive in habitat type A, and A4 was adaptive in habitat type B.  

Tracking adaptive allele frequencies in L6 allowed us to examine the effect of local adaptation on allele 

frequency in combination with asymmetric migration from adjacent patches, where the opposite allele 

was advantageous. 

 

 

RESULTS 

The age-class structure that arose from our model resulted in an average age of reproducing 

females of 8.7 years (time-steps).  Therefore, each landscape epoch of 1000 simulation time steps 

spanned approximately 115 generations (Fig 1).  During the Semi-Connected epoch, migration rate 

between semi-connected patches varied with dispersal distance, barrier gap permeability, and patch 

size (Fig 2).  The vast majority of individuals remained in their natal patch regardless of dispersal ability, 

barrier permeability, or natal patch size.  As anticipated, we observed higher migration rates when 

agents were assigned the long-distance dispersal behavior and the barrier gaps were highly permeable.  

Migration was asymmetric, with small patches generating proportionately large numbers of emigrants, 

and large patches experiencing proportionately high numbers of immigrants. 
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Fig 1.  Progression of landscape epochs over 4000 time steps.  Barriers to movement are reflective, shown here as 
black lines.  Landscape edges are also reflective.  Gaps in the barriers, shown in yellow and introduced at time step 
2000, are of the same total length for each barrier.  Gaps vary in permeability (either high or low), determining the 
chance of an agent passing through the barrier when the gap is encountered during dispersal.  At time step 3000, 
the landscape is assigned two habitat types (shown in blue and orange) that confer genotype-specific adaptive 
advantage to juvenile survival (See, Agent Evolutionary Characteristics). 

 

 

Fig 2.  Observed migration rates of long or short-dispersing individuals across barriers of varying permeability 
during the Semi-Connected epoch.  Left: Percent of the population that is born and reproduces in the same patch. 
Middle: Emigration rates, sorted by size of sending patch.  Right: Immigration rates, sorted by size of receiving 
patch. 

 

Landscape Genetics:  The short and long distance dispersal behaviors, measured during the Continuous 

landscape epoch, produced notably different dispersal kernels (Fig 3 left).  IBD was evident in the 

relationship between geographic distance and genetic distance when dispersal distances were short, but 
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not when dispersal distances were long (Fig 3 right).  We did not observe any change in population 

spatial distribution associated with dispersal ability, therefore, the observed IBD was not due to a patchy 

distribution of individuals.   

 

Fig 3. Landscape Genetics Core Concept.  In a spatially-continuous landscape, the observed dispersal kernels 
reflected juvenile dispersal ability (left), but no discernable difference in the population spatial distribution (right, 
bar plots).  Genetic IBD was evident when dispersal path lengths were short, but not with longer dispersal ability 
(right, line plots). These data were gathered at the end of the Continuous landscape epoch, after 115 generations of 
unobstructed movement.   

 

We treated the series of four landscape epochs as four nested hypothetical landscape histories: 

H0, H1, H2, H3.  Genetic distance matrices observed at the conclusion of each epoch illustrate the 

effectiveness of gene flow at mixing the subpopulations, given the landscape history and dispersal 

behavior (Fig 4).  Additionally, barrier gap permeability affects gene flow in H2 &H3, and selection 

strength affects gene flow in H3. 
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Fig 4.  Landscape Genetics Advancement.  Modeling gene flow for four landscape histories, beginning with IBD 
only, and building to a complex history of sequential epochs of IBD, drift, migration, and finally, local selection.  The 
resulting pairwise genetic distance matrices (colored triangles) illustrate the strength of gene flow within a given 
landscape history, where increasing contrast in the geometric patterns visible within the matrices results from 
reduced gene flow between landscape patches.  Data collected at time step 4000 illustrate the interacting effects of 
gene flow and local adaptation on genetic-distance.   

 

Population Genetics:  For each supported K value, we plotted the assignment probability for each of 150 

sampled individuals (Fig 5).  Individuals are represented by vertical lines, and the distribution of colors 

within a line indicates the assignment probability to each distinct genetic cluster.  Accordingly, a 

monochromatic line indicates that an individual has been assigned with certainty to a single genetic 

cluster.  Solid blocks of color in a given sample location indicate that all individuals at that location have 

been confidently assigned to a unique genetic cluster.  The assignment of individuals to multiple clusters 

(i.e. multi-colored vertical lines) can result from biological phenomenon such as retained genetic 

diversity in large populations or recent migration events.  But importantly, when many individuals are 

assigned to multiple clusters, this may indicate that the inferred K value is inaccurate. 
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Fig 5.  Population Genetics Core Concept.  The inferred number of genetic subpopulations (Possible K value) 
resulting from either the visual interpretation of likelihood probabilities (denoted by L(K)) or from Evanno's ∆K 
method (denoted by E), presented as a function of dispersal distance.  The corresponding assignment probability 
plots, obtained from program STRUCTURE, are displayed in color, with individuals (small vertical bars) sorted by 
patch.  When a single method produced multiple equally-supported estimates of K, then all values were included in 
the table.   

 

We know that, in the Continuous epoch, there is a single biological population present on the 

landscape.  But without the benefit (inherent in modeling) of knowing the true population dynamics, 

genetic analysis can easily lead to a conclusion that there are several distinct populations present on the 

landscape.  For example, in our simulations, short distance dispersal and resulting IBD led to the 

inference of multiple genetic clusters (Fig 5).  When dispersers moved longer distances, and IBD was 

therefore absent, the L(K) method produced the expected result: a single population. 

We know that in the Isolated Patches epoch, there are 6 distinct populations isolated by 

absolute barriers.  By the end of the epoch, 5-8 unique genetic clusters were identified by our genetic 

analyses, regardless of dispersal behavior.  Evanno’s method tended to produce inflated estimates of K 

that exceeded the true number of 6 genetic subpopulations.  The STRUCTURE plots indicate clearly that 

the 4 smaller patches were each home to a single genetic cluster, made unique by drift.  The two large 
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patches housed either one or two genetic clusters, due to a weak effect of drift in these larger 

populations. 

The population genetic structure produced by drift during the Isolated Patches epoch was 

mitigated by the limited inter-patch migration that characterized the subsequent Semi-Connected epoch 

(Fig 6).  The differing numbers of migrants per generation produced varying degrees of genetic mixing 

over the course of these 115 generations.  The observed 15.46 migrants per generation resulting from 

long distance dispersal and high barrier gap permeability produced sufficient genetic mixing to return to 

panmixia, while the other treatments failed to do so.  Long-distance dispersal with low barrier 

permeability resulted in 0.76 migrants per generation, and this migration rate was insufficient to return 

the population to panmixia within the 115 generations of the epoch.  A return to panmixia by the end of 

the Semi-Connected epoch was not expected in simulations employing a short dispersal distance, and no 

such outcome was observed. 

 

Fig 6. Population Genetics Advancement.  The average (across replicates) of observed migrants per generation, 
presented as a function of dispersal distance and barrier gap permeability.  Population genetic structure (Change in 
Possible K) at the end of the Semi-Connected epoch declined from where it began in the prior Isolated Patches 

epoch.  The corresponding assignment probability plots, obtained from program STRUCTURE, are displayed in color.   

 

Conservation Biology:  As described in the Methods, we used a separate series of otherwise identical 

model simulations to finely manipulate barrier gap permeability, with the goal of examining the effect of 
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landscape connectivity on population homozygosity.  We calculated Per-capita Homozygosity as the 

percent of homozygous genotypes across all alleles and individuals within a given landscape patch.  High 

Per-capita Homozygosity could result from a few highly inbred individuals or many slightly inbred 

individuals.  This analysis included the Continuous, Isolated Patches, and Semi-Connected epochs only. 

Per-capita homozygostiy varied dramatically with landscape epoch, and fluctuated more in the 

small patches than the large ones (Fig 7).  While we observed little accumulation of homozygosity during 

the Continuous epoch, this changed when migration between patches was limited by dispersal barriers.  

During the Isolated Patches epoch, homozygosity increased rapidly, but this general trend was strongly 

influenced by patch size.  Both patch size and barrier gap permeability affected the amount of “genetic 

rescue” resulting from migration during the Semi-connected epoch. 

 

Fig 7. Conservation Biology Core Concept.  Per-capita homozygosity across simulation time steps spanning the 
Continuous, Isolated Patches, and Semi-Connected landscape epochs, displayed by patch size.  The degree of 
genetic rescue, attributable to migration, changed depending on barrier gap permeability during the Semi-
Connected epoch.  Our simulated low and high barrier crossing probabilities corresponded to P(transmission) values 
of 0.02 and 0.70, respectively.   
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Changes in allele frequencies observed during the Continuous and Isolated Patches epochs were 

affected by patch size, locus-specific initial allele frequencies, and dispersal distance (Fig 8).  Even during 

the Continuous epoch, prior to patch isolation, rare alleles were lost due to drift.  As anticipated, this 

process became more pronounced when dispersal was limited by impermeable barriers (the Isolated 

Patches epoch).  The loss of allelic richness and evenness during patch isolation was most pronounced in 

the small patches, and least severe in the large patches.  Short-distance dispersal also influenced loss of 

allelic richness and evenness in both epochs, but only in medium and small patches.   A heterozygosity 

deficit was observed when dispersal distances were short, but only in large and medium patches. 
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Fig 8. Conservation Biology Advancement.  Mean and standard deviation of three genetic degradation metrics 
derived from allele frequencies (rows) sorted by patch size (columns).  Allele frequencies fluctuated over the 
Continuous and Isolated Patches epochs shown here, and vary by initial allele frequencies and dispersal distance.   

 

Evolutionary Ecology:  Selection pressure was initiated at the beginning of the final landscape epoch, at 

time step 3000.  Carrying capacity and population sizes emerged mechanistically from our model.  

Population size was most stochastic in the smaller patches, and most stable in the large patches (Fig 9).  

A non-zero probability of extinction was observed only for the small patches, and was greatest when the 
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dispersal distances were short and movement barriers were present.  We observed that adaptation to 

local conditions effectively increased patch carrying capacity.  These effects of adaptation were more 

pronounced when selection pressure was strong. 

 

Fig 9.  Evolutionary Ecology Core Concept.  Observed trends in population size stratified by patch size.  Results from 
all ten simulation replicates are shown.  Data were collected for an additional 1000 time steps during the final 
landscape epoch in order to better visualize the long-term population response to selection pressure.  Carrying 
capacity was effectively increased by local adaptation, but the magnitude of this effect depended on the strength of 
selection.  Extinction events can be inferred from occasional very low population sizes observed for the small 
patches.   

 

Loci L7-L10 had one each of five alleles that was locally adaptive during the Semi-connected with 

Selection epoch.  The frequency of the adaptive alleles increased globally across all subpopulations as 

selection acted locally and migration moved the adaptive alleles across the landscape.  Locus L6 had two 

adaptive alleles that each conferred a survival advantages in a different habitat type.  The effect of local 
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selection increasing the frequency of locally adaptive alleles was counteracted by asymmetric migration 

(see Fig 2) between adjacent patches of different habitat types.  L6-A2 was under local selection in half 

of the patches, and L6-A4 was under local selection in the other half (Fig 10).  In small patches, local 

selection was almost always swamped by migration from the neighboring large patches, except when 

selection was strong, dispersal distance was short, and gap permeability was low.  In the small and 

medium patches of the remaining treatments, the extent to which selection was swamped by migration 

varied more continuously based on the strength of selection, barrier gap permeability, and dispersal 

distance.  In large patches, selection was often able to act effectively regardless of selection strength or 

migration rate, except when selection was weak and dispersal distance was long. 
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Fig 10. Evolutionary Ecology Advancement.  Average change in allele frequencies at a single locus (L6) across all 
replicates in response to selection during the Semi-connected with Selection epoch.  Each bar plot displays the 
patch-specific change in frequency of all 5 of L6's alleles.  Allele A2 (blue bars) conferred an increase in juvenile 
survival if an individual was located in a blue patch, and allele A4 (orange bars) does so in the orange patches. 

 



 
 

 124 

DISCUSSION 

We purposefully developed a simple individual-based model to clearly illustrate how spatial 

structure drives eco-evo dynamics and demonstrate the ability of HexSim to recapitulate core-concepts 

in each focal discipline.  By imposing landscape change on functionally-static eco-evolutionary models, 

we were able to alter key emergent forces, such as gene flow, genetic drift, and adaptive selection, as 

well as demo-genetic responses such as population size, probability of extinction, and allele frequencies.  

Our model also demonstrated how critical demo-genetic traits, including generation time and migration 

rate, can arise from a parsimonious mechanistic model, rather than being specified a priori.   

A common approach in landscape genetics is to assume that current genetic pattern is a result 

of landscape pattern (with some lag-time) represented by resistance surfaces.  Hypothetical “resistance 

distances” between individuals are compared to actual genetic distances between sampled individuals 

or groups, and tests are performed to infer which elements in the landscape most strongly influence 

gene flow.  But complex movement behavior and dynamic landscape histories are not always easily 

captured by resistance surfaces, and this in turn limits the ability to infer past gene flow.  We 

demonstrated how the cumulative effects of gene flow, genetic drift, and selection can be simulated 

over several hypothetical landscape histories.  The resulting inter-individual genetic distance matrices 

simultaneously captured the influences of dynamic landscape structure, dispersal behavior, and 

demography.   

An ongoing challenge for empirical population geneticists and phylogeneticists has been 

determining the number of populations represented within a given sample.  Our model corroborates 

previous work demonstrating that small amounts of IBD inflate inferences, made by program 

STRUCTURE and using Evanno’s ∆K method, demonstrating the utility of our simulation approach as a 

tool for investigating disconnects between statistical theory and empirical practice.  One of the biggest 

advances of our approach for population genetics is the ability to parameterize movement based on 
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biological mechanisms, and to then let migration rates emerge from species-landscape interactions.  For 

example, theory meets practice when it becomes necessary to increase the connectivity between 

isolated subpopulations because the benefit that landscape changes will have on gene flow cannot be 

known in advance.  Our model demonstrates how a simple spatially-explicit landscape and movement 

process produces departures from the “one-migrant-per-generation” theoretically-derived guideline for 

re-establishing genetic panmixia between subdivided populations within a reasonable timeframe (over 

100 generations in our model).  Our approach illustrates how researchers might elucidate the landscape 

conditions necessary, given a specific eco-evo history, for recovering genetic panmixia within a target 

number of generations.   

Forecasting genetic degradation in small populations facing extinction is a challenging task that 

should ideally acknowledge the influences of both demographic and genetic processes.  Our simple 

theoretical model exhibited nuanced differences in the rate and severity of genetic degradation, 

suggesting that complex demo-genetic feedbacks are likely ubiquitous in practice, given real-world 

complexity.  Although our theoretical model is simple, our results highlight how HexSim may be used in 

future studies to improve understanding of inbreeding and outbreeding depression, and explore the 

relative importance of genetic versus demographic components of population or species viability. 

The complexity inherent in evolutionary ecology necessitates simulation toolkits containing 

dynamic feedbacks linking evolutionary and ecological forces.  The HexSim modeling platform provides 

such an integration.  Our model captured one such feedback, namely, the counteracting forces of local 

selection and asymmetric migration from spatially proximal sub-populations.  The interplay between 

local selection and asymmetric migration that we found in our smaller patches are likely to be observed 

as species ranges expand due to climate change. 

Future applications of this approach may benefit from the modeling platform’s ability to include 

both theoretical and geographically explicit (e.g. imported from GIS) landscapes, as well as the ability to 
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include dynamic landscapes (e.g. herbaceous ground cover in response to herbivore population density) 

within the model itself.  HexSim models can incorporate empirically-derived life history information, 

multiple-species interactions, or multiple-disturbances.  While our model included only simple 

genotypes without mutation, we anticipate future projects investigating how mode of inheritance, 

linkage between alleles, initial geographic distributions of allele frequencies, and multiple mutation 

regimes (e.g. stepwise, infinite alleles, or two-phase models) interact with landscape spatial pattern and 

movement.  For example, conservation geneticists may use HexSim to simulate mutation rates based on 

exposure to spatially-distributed chemical mutagens encountered during dispersal and mitigated by 

selection against deleterious alleles.  Rates and patterns of gene flow may be investigated within the 

context of nuanced, biologically-realistic movement behaviors, including rare long-distance dispersal 

events, site fidelity and memory, attraction and avoidance, or sex-specific behaviors, to name a few.  In 

addition to the four disciplines highlighted here, our methods may have applications in the fields of 

phylogenetics, phylogeography, medical science, and evolutionary theory.  For example, 

phylogeneticists could use HexSim to simulate past species range shifts, model incomplete lineage 

sorting, or ask how linkage affects coalescent metrics.  Phylogeographers could use the platform to 

explore the stability of admixtures zones over time, or improve the demarcation of evolutionary 

significant units. 

 

 

CONCLUSIONS 

As is true with science in general, ecologists often make use of simplifying assumptions in order 

to keep model development tractable.  The cost of these simplifications has been that theory often lacks 

grounding in the very biological detail that we know governs species’ interactions with their 



 
 

 127 

environments, and with each other.  HexSim allows us to improve modeling applications by challenging 

the assumptions upon which they have been constructed and show how the details matter.   
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SUPPLEMENTARY MATERIAL:  

 

 

Figure S1. Conceptual Framework of Spatially-explicit Eco-evolutionary Dynamics.  This framework 
presents eco-evolutionary dynamics as a feedback loop between interacting biological forces and 
observable responses operating along a pseudo-hierarchical spectrum.  Feedback between observable 
responses and biological forces is mediated by processes such as resource use and adaptation, and 
modified by stochasticity.  Landscape spatial pattern (extent, arrangement, and connectivity) shapes and 
constrains eco-evolutionary dynamics.  Movement (of genes, individuals, nutrients, etc.) is the mediating 
process through which eco-evolutionary dynamics are affected by spatial pattern.  Changes in the spatial 
distribution of eco-evolutionary dynamics can, in-turn, change the landscape spatial pattern.  This 
framework assumes significant overlap in the rate at which “ecological” and “evolutionary” forces 
produce responses.  Vertical linear arrows approximate where biological forces operate and at what level 
we typically observe responses (those underlined are highlighted in this study).     
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Figure S2.  Agent lifecycle for each time-step.  Starting in the upper right, adults evaluate resources 
within an “explored zone” around their location.  Resources (pixels) are divided by the number of 
individuals that have a given pixel within their explored zone.  Males and female adults form pairs and 
females reproduce probabilistically based on their resources within their explored zone.  New juveniles 
disperse from their natal location with either short or long-distance dispersal behavior.  Survival is 
determined by both life stage (juvenile survival < adult survival) and amount of resources within their 
explored zone (sub-optimal resource acquisition < resource goal satiated).   Survival probability based on 
genotype and location is initiated at time step 3000.  At the end of the time step, juveniles become adults 
and do not disperse again in their lifetime.   
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Table S1. Initial Allele-Frequency Conditions for 10-Locus Genotypes 

 

 

 

 

LOCUS ALLELE INITIAL ALLELE FREQUENCY LOCAL ADAPTATION TO HABIAT TYPE 

1 1-5 0.20, 0.20, 0.20, 0.20, 0.20 Neutral 

2 1-5 0.30, 0.25, 0.20, 0.15, 0.10 Neutral 

3 1-5 0.10, 0.15, 0.20, 0.25, 0.30 Neutral  

4 1-5 0.01, 0.04, 0.15, 0.30, 0.50 Neutral 

5 1-5 0.50, 0.30, 0.15, 0.04, 0.01 Neutral  

6 1 0.20 Neutral 

 2 0.20 Locally Adapted - Habitat Type A 

 3 0.20 Neutral 

 4 0.20 Locally Adapted - Habitat Type B 

 5 0.20 Neutral 

7 1 0.30 Neutral 

 2 0.25 Neutral 

 3 0.20 Neutral 

 4 0.15 Neutral  

 5 0.10 Locally Adapted - Habitat Type A 

8 1 0.10 Neutral  

 2 0.15 Neutral 

 3 0.20 Neutral 

 4 0.25 Neutral 

 5 0.30 Locally Adapted - Habitat Type B 

9 1 0.01 Locally Adapted - Habitat Type A 

 2 0.04 Neutral 

 3 0.15 Neutral 

 4 0.30 Neutral 

 5 0.50 Neutral  

10 1 0.50  Locally Adapted - Habitat Type B 

 2 0.30 Neutral 

 3 0.15 Neutral 

 4 0.04 Neutral 

 5 0.01 Neutral  
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Text S1: Landscape Structure Details 

Our maps contained 72 columns and 51 rows, and thus 3672 hexagons total.  Two large adjoining 

patches were each assembled from 1326 separate hexagons. Two medium-sized patches (200 hexagons 

each) and two small patches (50 hexagons each) abutted the large patches, but not each other.  Patch 

dimensions expressed as columns x rows, were 26x51, 10x20, and 5x10.  The total habitat area was 

72x51 hexagons in extent, but this region contained 520 matrix hexagons.  Our simulated individuals 

were never allowed to leave the habitat patches and enter the non-habitat matrix.   

 

Text S2: Processing Time and Computational Requirements 

All 80 simulations were run on a Dell PowerEdge R820 server.  Individual model runs took 

roughly four hours of processing time to complete.  Our simulations could be replicated at a similar 

speed on a modern desktop or laptop computer, and use of the server simply made it possible to run all 

80 simulations at the same time.  Two subsequent computationally-intensive post-processing steps 

added many additional hours of computer time.  These involved (1) combining the raw output files (over 

4 Gbytes per file) from each of the 8 collections of 10 replicate simulations into a single multi-replicate 

output file, and (2) producing HexSim report files from the 80 simulations.  These steps are simple to 

perform in HexSim, but the file sizes involved were large; the total size of all raw output files reached 

1/3 Terabyte.  The collection of reports from which we derive our results totaled about 13 Gbytes in 

size. 
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ABSTRACT: 

The mechanistic relationship between resource selection at fine scales and gene flow at broader 

spatial scales is poorly understood.  There are several components of movement ecology that may 

influence realized dispersal, including intrinsic dispersal capability, sensitivity to the landscape during 

movement, and criteria for territory establishment.  This study aims to investigate how sensitivity to the 

landscape and territorial behavior impact gene flow in the large Neotropical felids of Mesoamerica.   

The primary goal of this study is to develop a spatially-explicit individual-based model (SIBM) 

that captures the complex movement ecology of Neotropical felids, and tracks gene flow across 

generations.  The secondary goal is to conduct a pilot-simulation to test behavioral drivers of gene flow 

in this system.  Specifically, we model the effect of (A) increased land-cover selectivity in territory 

establishment and (B) increased dispersal sensitivity to land-cover, on gene flow.  Gene flow is assessed 

by genetic-distances between proposed Jaguar Conservation Units (JCU).  The landscape of our model 

has a 25 hectare (0.25 km2) resolution, a biologically relevant spatial scale for modeling resource 

selection behavior.  The geographically-explicit extent of the landscape includes Mexico, Guatemala, and 

Belize, a spatial extent appropriate for observing gene flow for highly vagile Neotropical felids. 

Our results demonstrate male-competition for territories, resource-driven landscape carrying-

capacity, and sex-specific dispersal patterns.  Preliminary results from our experimental treatments 

suggest that selectivity for territory establishment and dispersal sensitivity to the landscape have 

antagonistic effects on gene flow.  However, additional model years are required to determine if these 

behavioral influences on gene flow persist over many generations.  Specific JCUs were found to be 

particularly sensitive to our experimental treatments, highlighting these locations for further study. 

Our model provides a powerful tool for investigating movement ecology drivers of gene flow in these 

behaviorally-complex species.  The spatial scale (extent and grain) of our model landscape allows us to 

make empirically-relevant predictions regarding gene flow and movement, and maximizes the potential 
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for conservation applications.  The preliminary results from our pilot experiments take the first step 

toward understanding the behavioral mechanics driving realized dispersal and gene flow of Neotropical 

felids.                   
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INTRODUCTION:   

Gene flow within and among populations is controlled by a combination of intrinsic (biology, physiology, 

and behavior) and extrinsic (landscape patterns and quality) factors (Bender and Fahrig 2005; Nathan et 

al. 2008).  Human alteration of wildlife habitat, both quality and pattern, has affected the spatial genetic 

patterns of organisms across the planet.  Our study is motivated by a need to predict how landscape 

degradation affects gene flow, as well as how proposed conservation actions may help ameliorate those 

effects.  Predicting gene flow is especially challenging when species are highly vagile and behaviorally 

complex, such as in the case of large carnivores.  The large carnivores of Mesoamerica face increasing 

habitat loss and degradation due to forest conversion to pasture and agriculture, along with habitat 

fragmentation due to road expansion.  The goal of this study is to investigate possible drivers of gene 

flow of large felids in Mesoamerica.  Our study takes the first step toward reconciling the apparent 

contradiction between the greater resource selectivity by jaguars (Panthera onca) relative to pumas 

(Puma concolor), and yet greater genetic differentiation within pumas (indicating higher gene flow 

through Mesoamerica) relative to jaguars.      

Our study aims to investigate how fine-scale movement ecology dynamics scale up to produce 

broader-scale patterns of gene flow.  We use spatially-explicit individual-based simulations (SIBM) 

designed to capture the complexity of movement ecology of large felids, including male-competition for 

home range territory, sex-specific home range size and dispersal distances, and selection/avoidance of 

landscape features at a fine spatial grain.  We chose to build our model within the HexSim platform 

(Schumaker 2016), due its ecological flexibility.  Our model includes the behavioral complexity we 

deemed necessary to capture the spatial dynamics of these territorial species, while maintaining as 

much model simplicity as possible.  We implement our model over a 25 hectare (0.25 km2) resolution 

landscape covering Mexico, Guatemala, and Belize (MGB).  We track demographic (e.g. carrying capacity 

and sex-ratio) and spatial output (e.g. dispersal distance, territory size) across the entire study area, and 
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monitor gene flow using genotypic data from five polymorphic loci, sampled from within the 16 

proposed Jaguar Conservation Units (JCUs) in our study area (Sanderson et al. 2002; Zeller 2007).  This is 

principally a study in methods development, and as such is focused primarily on model description and 

parameter justification.   

The quality and heterogeneity of the non-habitat matrix has been shown to impact the 

functional connectivity between wild felid populations, in addition to the effects of intrinsic dispersal 

ability (Revilla et al. 2004).  However, the behavioral mechanisms underlying realized dispersal remain 

largely unknown.  We use our model to conduct a pilot-simulation of two experimental treatments to 

investigate the effect of two aspects of movement ecology on gene flow, while holding intrinsic 

dispersal capacity constant: (1) selectivity toward land-cover types for the establishment of home range 

territory, and (2) strength of selection/avoidance of land-cover types during dispersal movements.  Our 

baseline model includes all of the movement complexity we deemed necessary to create a realistic rate 

of gene flow between JCUs, and is then modified to address the following two research questions: 

 

Question 1: How does selectivity in territorial requirements interact with the Mexico, Guatemala, and 

Belize (MGB) landscape to influence gene flow? 

Experimental Treatment:  Lower the resource quality of non-forested land-cover for the establishment 

of territories. 

 H0: Specialization in territorial requirements does not influence gene flow 

Prediction: Gene flow between JCUs does not change from baseline conditions 

 H1: Territorial requirements influence gene flow by impacting the probability of newly 

established territories being near to forested natal sites. 

Prediction: Gene flow is reduced between JCUs 
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 H2: Territorial requirements influences gene flow by impacting the search duration for 

suitable territory. 

Predictions: Gene flow is increased between JCUs 

 

Question 2: How does more sensitivity (higher attraction and stronger avoidance) toward landscape 

features interact with MGB landscape pattern during juvenile dispersal to impact gene flow? 

Experimental Treatment:  Alter movement behavior by increasing attraction to forest land-cover and 

strengthen repulsion from human-dominated land-cover.   

 H0: Dispersal behavior sensitivity does not influence gene flow 

Prediction: Gene flow between JCUs does not change from baseline conditions 

 H1: Dispersal behavior sensitivity limits realized dispersal. 

Prediction: Gene flow is reduced between JCUs 

 H2: Dispersal behavior sensitivity produces rare, long-distance realized dispersal 

Predictions: Gene flow is increased between JCUs 

 

For each of these two experimental treatments we will monitor the change in gene flow from 

our baseline model, as assessed by genetic distance between JCUs.  Our larger goal is to build a large 

felid model with enough biological realism to enable future studies to explore how ecological and 

evolutionary dynamics are affected by territorial behavior, mating behaviors, barriers such as roads and 

rivers, climate-change, inter-species competition, genetic mutational models, genotype-phenotype 

feedbacks, habitat loss, poaching pressure, and more.   
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MODEL DESCRIPTION: 

Evolutionary characteristics:  Each individual within the model carries a diploid genotype for five 

polymorphic loci modeled after empirical estimates of number of unique alleles and allele frequencies 

for microsatellite loci commonly used in felid genetics studies (Table 1).  Loci are neutral and unlinked. 

Alleles are inherited bi-parentally with Mendelian segregation.  While we have not implemented 

mutation within this initial model, HexSim has the capacity to model mutation by specifying a matrix of 

mutation transition probabilities from one allele to another.   

 

Table 4. Initial parameterization of allele frequencies for five loci carried by each individual. 

 

 

Ecological characteristics:  Individuals are either male or female.  Individuals are considered juveniles 

from 1-2 years old, and adults >3 years old (Sunquist and Sunquist 2002).  The period where cubs stay 

with their mother does not contribute to spatial territorial dynamics or gene flow.  Therefore, when 

individuals are “born” into the model, they immediately undergo dispersal from their natal site.  In order 

to simulate the typical pattern of spatial territoriality of wild cats, while minimizing model complexity, 

we had males form territories that could contain up to 3 females, depending on resources within that 

territory.  The resources available within a male territory depends on both the size of the territory and 

quality of the landscape (see “Landscape ecology; Resource Quality” below).  Females join male 

territories if they were not already fully occupied.  We have implemented mechanisms within the model 

so that female site fidelity will remain fairly constant, even if the resident male dies or is outcompeted 

by other males (see next section).  While we recognize this to be a simplification of a biological system 

Locus ID No. Alleles Allele0 Allele1 Allele2 Allele3 Allele4 Allele5 Allele6 Allele7 Allele8 Allele9

FCA043 10 0.0300 0.0700 0.1000 0.1300 0.1700 0.1700 0.1300 0.1000 0.0700 0.0300

FCA090 5 0.1000 0.1000 0.6000 0.1000 0.1000

FCA126 6 0.0800 0.1700 0.2500 0.2500 0.1700 0.0800

FCA056 5 0.2000 0.2000 0.2000 0.2000 0.2000

FCA096 7 0.0625 0.1250 0.1875 0.2500 0.1875 0.1250 0.0625

Allele Frequency at Initialization
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where females maintain independent territories, we feel this is an adequate approximation of the 

territorial dynamics of these wild felids.  Combining male and female territories in this way allowed us to 

simplify mate-findings and territorial dynamics.  Throughout the simulation, if individuals do not have a 

home range (males) or do not belong to a male group (females) then they are deemed “floaters”.  

Floaters cannot reproduce, and experience additional mortality relative to group members (see next 

section).     

 

Annual series of events:  We begin our description of an annual cycle when an individual is born into the 

model, ready to disperse from their natal site (in Figure 1).  The age at which wild felids disperse away 

from their mother is not necessarily concurrent with sexual maturity.  Dispersal happens between 1-3 

years of age, and sexual maturity ranges from 3-5 years of age (Foster 2008; Sunquist and Sunquist 

2002; Benson et al. 2016).  Therefore, we drew our age at birth randomly from a uniform distribution 

between 1-3 years.  This means that some females will have a probability of reproducing in their first 

year post dispersal (provided they find a mate), while others will remain juveniles for 1-2 years post-

dispersal.   

New individuals encounter a landscape that is divided up into male territories, with some areas 

potentially unclaimed.  In the first step of the annual series of events, any males that do not have a 

territory (first-years and those who did not secure a territory in previous years) will disperse through the 

landscape (see Intrinsic Dispersal) and claim any unoccupied land, as long as it contains the sufficient 

resources for a single female to join his group (see Landscape ecology; Resource Quality).  Claiming 

unoccupied territory is not the only way that a wild felid male may obtain a territory.  Older males may 

be displaced from their territory, or forced to contract their range due to competition with other males 

(Schaller and Crawshaw 1980; A. R. Rabinowitz and Nottingham Jr. 1986; Sunquist and Sunquist 2002).  

Therefore, in the next step of our annual cycle, males have a chance of losing their hold over their 
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territory (becoming a temporary floater), with vulnerability increasing with age.  Specifically, one year 

old territory holders have a 4% probability of becoming a floater, and this probability increases linearly 

to 100% at 25 years of age.  However, the only males that this applies to, are those with a male floater 

(challenger) located within their territory.   

Next, all floater males compete in a scramble competition for available territory.  To clarify, at 

this point in the model, there are two ways that a male could be a floater competing for territory: (1) 

they were unable to find any suitable unoccupied territory during dispersal, or (2) they held territory the 

previous year but became a floater this year due to the presence of a challenger within their territory 

(which be more likely for older males).  The maximum size of a territory formed during this process is 

1/3 smaller than the maximum size possible when claiming unavailable territory.  This is intended to 

simulate naturally occurring range-contraction resulting from competition (Sunquist and Sunquist 2002).   

 Any females that lost their groups due to male competition, immediately rejoin the newly 

formed local male groups, before the new female dispersers have left their natal site.  We based the 

order of who rejoins the group by age, with older females going first.  This is to ensure that resident 

females rejoin local groups, rather than a female that failed to secure a home range in the previous 

cycle, but happens to be nearby.  However, if there are resources available for an additional female, 

then a nearby floater may join a group at this time.  This process maintains female site fidelity, a 

reasonable surrogate for female territoriality.  Next, the female floaters disperse through the landscape 

(see Intrinsic Dispersal) and join male groups if there are enough available resources and the group has 

not met its maximum membership of 3 females.   

 At this point in the annual cycle, both females and males have either successfully found 

territories, or were unsuccessful and remained floaters.  Next, we increment each individual’s age, and 

also increment a trait tracking of the number of consecutive years that an individual has been a floater.  

Dispersal is a risky time in the life of a big cat (Sunquist and Sunquist 2002; Crawshaw JR. et al. 2004).  
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Therefore, probabilistic mortality in the next step is based on both age, and years floating.  The age-

based survival is modeled to be a Type I survivorship curve, with a maximum lifespan of 25 years (Nowell 

and Jackson 1996; Caso et al. 2008).  The floater-based survival probability drops steeply to mimic the 

danger of prolonged search for territory (1st year as floater = 0.75, 2nd = 0.50, 3rd = 0.25, 4th = 0.00 

survival).  Therefore, individuals that have been floating for four consecutive years will die, regardless of 

age.   

 When a territorial male dies, neighboring males with sub-optimal territories may expand into 

recently vacated territory.  This is intended to simulate naturally occurring range expansion (Schaller and 

Crawshaw 1980; A. R. Rabinowitz and Nottingham Jr. 1986; Sunquist and Sunquist 2002).  Once again, 

any females that lose their group due to the death of a male will rejoin the new group right away, with 

more senior females rejoining first, and nearby floaters joining last.  To summarize, there are three ways 

in which a male can gain home range territory: (1) Claim unoccupied territory, (2) Claim territory 

through competition with a territory-holding male, (3) Expand an existing sub-optimal range into a 

neighboring territory of a recently deceased male.   

Reproduction is the final step before the model returns to male dispersal.  Only female adults (3 

years or older) reproduce, mating with the male of their group (all males are capable of being mates, 

regardless of age).  We calculated the mean reproductive output based on the following:  1. Average of 

2 cubs per litter (Seymour 1989; Benson et al. 2016), 2. An average inter-birth period of 2 years (Benson 

et al. 2016; Sunquist and Sunquist 2002), and 3. Cub survival to juvenile dispersal age between 0.3-0.6 

(Bernal-Escobar, Payan, and Cordovez 2015).  This results in an average of 0.45 cubs per paired female 

per year.  Sex ratio of offspring was 1:1 females to males.     
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Figure 3. Event sequence of a single year.  Star indicates beginning of model description narrative.   

 

Landscape Ecology: A primary goal in building this model, is to enable an exploration of how landscape 

change (e.g. climate change or forest fragmentation) impacts demographics and genetics.  Therefore, 

we created a landscape of ambitious spatial scale.  The spatial extent is from the Mexico/USA border 

south through Guatemala and Belize.  The spatial grain (resolution) of the landscape is 25 hectares (0.25 

km2) per hexagon, for a total of approximately 2,000,000 km2 area composed of 7,870,267 terrestrial 

hexagons embedded within >23 million hexagon landscape.  There are two principle maps used within 

the model, 1. Resource Quality, and 2. Dispersal Suitability.  These separate maps give us the flexibility 

to implement separate movement behaviors for territorial dynamics versus dispersal dynamics.  

Additionally, we included a geographic Barriers to Movement map, containing roads and rivers.  Data 

sources are summarized in appendix Table S1. 
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Resource Quality:  This landscape contains the “resource” data for forming (males) or joining (females) 

territorial groups.  Resource values relate to land-cover type (USGS LandCover 2001-2010), and were 

assigned based on previous resource selection analyses (Day et al. this dissertation Chapter 1; 

(Crawshaw and Quigley 1991; Schaller and Crawshaw 1980; Monroy-Vilchis et al. 2009; A. R. Rabinowitz 

and Nottingham Jr. 1986; Aranda 1996), expert opinion (A. Rabinowitz and Zeller 2010; Sanderson et al. 

2002), and precedents in large-felid modeling studies (Rodríguez-Soto et al. 2011; Bernal-Escobar, 

Payan, and Cordovez 2015)(Table 2).  In brief, resource values range from 0 (urban or barren) to 100 

(forest).  The minimum size of a male territory, capable of having one female group member, required a 

minimum of 6,000 resource units (and an additional 6,000 units for each additional female, up to 3).  

Therefore, the smallest male territory possible would be composed of completely high quality habitat, 

and 15 km2 (1500ha, 60 hexagons).  On the upper end, a male territory composed completely of 

grassland would need to be 300 km2 (1,200 hexagons) in order to have 3 female group members.  

Territories will not necessarily be circular; the shape will be dictated by an “adaptive” exploration (see 

Intrinsic Dispersal), which combines the goals of energy conservation (promoting compactness) and 

resource selection.  There is some evidence that these species avoid higher elevation (A. Rabinowitz and 

Zeller 2010; Rodríguez-Soto et al. 2011; Nowell and Jackson 1996).  Therefore, the resource quality 

values were multiplied by an elevation coefficient (1.0 = 0 – 2,000 m; 0.9 = 2,000 m – 3,000 m; 0.8 = 

above 3,000 m).   
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Table 2. Baseline model Landscape Ecology parameters.   

 

 

Dispersal Suitability:  Dispersal suitability values were also based on land-cover types, and form the basis 

for the attraction and repulsion movement behavior of dispersing individuals.  Assigning values for this 

landscape is more speculative, due to the paucity of information regarding habitat selection during 

dispersal.  We make the assumption that individuals are able to move through areas that are not 

suitable for territories (Table 2). The probability of which neighboring hexagon will be chosen for the 

next step in dispersal movement is the product of both autocorrelation (how strongly we specify 

forward directionality) and the attraction/repulsion coefficient.  The attraction/repulsion coefficient, in 

turn, is based on the both the Dispersal Suitability value and the minimum and maximum 

attraction/repulsion settings.  These settings operate along the continuum of dispersal suitability values 

(Figure 2).  The highest possible value for an attraction coefficient is set to 10 (attraction multiplier), 

which drives the strength of attraction.                   

 

ID Landcover No. Hexagons % Landscape Resource  Quality Dispersal Suitability

0 Salt Water 0 0 0 0

15 Snow and Ice 0 0 0 0

13 Urban and Built-Up 28750 0.3653 0 1

16 Barren or Sparsely Vegetated 106921 1.3585 0 2

12 Croplands 658632 8.3686 3 3

17 Fresh Water 25355 0.3222 0 4

14 Cropland/Natural Vegetation Mosaic 829745 10.5428 5 5

7 Open Shrublands 2370147 30.1152 15 6

10 Grasslands 673738 8.5605 15 6

11 Permanent Wetland 53688 0.6822 70 6

9 Savannas 63973 0.8128 30 7

6 Closed Shrublands 9953 0.1265 30 8

8 Woody Savannas 1705231 21.6667 50 8

1 Evergreen Needle leaf Forest 1129 0.0143 100 9

3 Deciduous Needle leaf Forest 357 0.0045 100 9

2 Evergreen Broadleaf Forest 880892 11.1927 100 10

4 Deciduous Broadleaf Forest 175928 2.2353 100 10

5 Mixed Forests 285828 3.6317 100 10

USGS LandCover 2001-2010 Neotropical Felid Model
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Figure 4. Baseline model attraction and repulsion to land-cover types in the Dispersal Suitability landscape. 

 

Barriers to Movement:  The barriers in our model include both major roads and large rivers (appendix 

Table S1).  Territories may span roads or rivers (Mazzolli 2010), therefore, barriers do not impact our 

simulated territory establishment.  However, barriers do influence dispersing individuals, both through 

direct mortality (Fischer et al. 2003; Miotto et al. 2012) or via avoidance behavior (Day et al. this 

dissertation Chapter 1;(Monroy-Vilchis et al. 2009; Angelieri et al. 2016)).  There are three possible 

outcomes of individuals encountering a barrier in our model; they will either be killed, deflected, or 

cross (transmission).  The roads in our model were assigned an equal 0.10 probability of mortality or 

deflection, and the remaining 0.80 probability of crossing.  The river barriers did not incur any mortality 

if encountered, but deflected individuals at a 0.10 probability, with a corresponding 0.90 probability of 

crossing. 

 

Intrinsic Dispersal:  The scant data on the juvenile dispersal ability of Neotropical felids suggest that 

females tend to disperse shorter distances than males, but there is a large range of documented 

distances (<10 – 370 km) and they overlap across sexes (Crawshaw and Quigley 1991; Stoner et al. 2008; 



 
 

 150 

Crawshaw and Quigley 1984; Crawshaw JR. et al. 2004; Stoner et al. 2013; Weaver, Paquet, and 

Ruggiero 1996; Sunquist and Sunquist 2002). 

A single movement event (during one year) consists of a “dispersal” phase and an “exploration” 

phase (example Figure 3).  During the dispersal phase, individuals move from hexagon to neighboring 

hexagon with semi-autocorrelated (70%) directionality, meaning that they move predominantly in a 

“forward” direction.  The “forward” direction is determined by the most frequently observed direction 

over the past 25 movement steps.  This allows their movement paths to bend around smaller obstacles 

(e.g. a small lake) without ricocheting off into a completely new direction, and to gradually change 

course around larger obstacles (e.g. an urban area).  During the exploration phase, individuals explore 

the surrounding 35,000 hectares.  For males, the goal of this exploration is to determine if there is 

enough available (unclaimed) territory to establish a territory with enough resources to sustain at least 

one female.  For females, the goal of this exploration is to determine if there is a male group with 

enough available resources for it to join.  If the goal is not met, then the individual remains a floater.   

We implemented two sex differences in movement behavior.  When beginning their movement 

event, males disperse first and then explore, as described above.  Females, however, explore first and 

then disperse.  This simulates the tendency of females to establish territories (join groups in our 

simulation) close by to their mother’s home range (Sunquist and Sunquist 2002; Crawshaw and Quigley 

1991; Miotto et al. 2012; Stoner et al. 2013).  Additionally, female path lengths during dispersal are 50% 

shorter, on average, than males.  The distance of each dispersal phase is drawn randomly from a log-

normal distribution with a mean of 53.7 km (100 hexagons) for males, and 26.9 km (50 hexagons) for 

females, both with a standard deviation of 2.5 hexagons.   The min-max bounds on the length of the 

dispersal phase are 0 and 537 km (1,000 hexagons) for both males and females.  However, the realized 

dispersal distance, hereafter referred to as “displacement”, will depend on both the intrinsic dispersal 

and interactions with the landscape.   
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Figure 3. Example of movement from the Baseline model.  Thin black lines indicate paths during the Dispersal phase of 
movement, while the black areas indicate the area evaluated for territories during the Exploration phase. Background colors are 
land-cover types in the Dispersal Suitability (inset). 

 

Model Initiation:  Our models were initialized with 50,000 individuals, randomly located throughout the 

landscape. Individual genotypes were drawn at random from the initial allele frequencies specified in 

Table 1, without spatial stratification, thereby initializing a panmictic population.  We allowed for a 

burn-in period of 10 time-steps prior to tracking individual demo-genetic traits.     

 

 

EXPERIMENTAL TREATMENTS: 

Our two research questions were addressed with experimental treatments to our “Baseline” 

model described above.  The first experimental treatment changed the resource quality of land-cover 

types for establishment of territories during the exploration phase of movement (Table 3).  This 

experimental treatment, hereafter referred to as “Habitat Selectivity”, did not change intrinsic dispersal 
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ability or behavior during the dispersal phase of movement.  This treatment directly affected the 

likelihood and locations of males establishing territories during the exploration phase of movement.  It 

indirectly affected females by changing the spatial arrangement and available resources within groups 

they were trying to join.  This treatment changed the carrying capacity of the landscape, due to the fact 

that the landscape held less suitable habitat.   

 

Table 3. Experimental treatment of the “Habitat Suitability” for establishing territories.  Changes to the Baseline model 
highlighted in red. 

 

 

 

 

The second experimental treatment altered behavior during the dispersal phase of movement.  

A greater range of land-cover types incured movement repulsion, and the degree of attraction to 

forested land-cover was increased (Figure 4).  This treatment is hereafter referred to as “Dispersal 

Sensitivity”.   
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Figure 4. Baseline (black) and experimental “Dispersal Sensitivity” treatment (blue).  Experimental treatment includes in higher 
minimum repulsion (7), and a higher attraction multiplier (25), resulting in avoidance of land-cover ranked 7 or lower, and 
stronger attraction to land-cover ranked 9 or higher, respectively.   

 

We monitored the effect of these treatments on gene flow by assessing the change in genetic 

distance between Jaguar Conservation Units (JCUs) using individual genotypes from time-step 35.  Our 

model’s complexity and extent caused computational challenges that prevented further time steps from 

being included in this manuscript.  While 35 years may not be a sufficient time period in which to 

observe statistically significant changes in gene flow, it may give an indication of the direction of change 

in gene flow given our treatments.  Three metrics of genetic distance, Nei’s Gst (Nei and Chesser 1983), 

Jost’s D (Jost 2008), and Weir & Cockerham’s Fst (Weir and Cockerham 1984) were calculated using the 

diveRsity R-package (Keenan et al. 2013).   
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RESULTS:  

Demographics:  Carrying capacity of the entire study area stabilized between 48,000 – 66,000 

individuals (Figure 5).  While it is not possible to ground-truth this number directly, we can use empirical 

density estimates to determine biological plausible upper and lower limits.  Density estimates for big-

cats vary widely from study to study, but average near 3.5 individuals/100km2 (Ceballos et al. 2002; 

Núñez, Miller, and Lindzey 2002; Vynne et al. 2011; Payan Garrido 2009; Kelly et al. 2008; Sollmann et al. 

2011; Sollmann et al. 2013; Mazzolli 2010; Lindzey et al. 1994; Aranda 1996)  Our entire study area is 

approximately 2,000,000 km2.  If big cats occupied the entire area at this average density, we would 

anticipate ~71,000 individuals.  However, not all of the landscape can support resident populations.  

There are approximately 335,750 km2 of forested landscape in our study area.  The average density 

applied to this area would result in ~12,000 individuals.  If we consider these to be our upper and lower 

limits, our steady state population sizes are reasonable.   

With increased selectivity in territorial requirements (Habitat Selectivity) a smaller portion of 

the population exists outside of the Jaguar Conservation Units (JCUs), there being higher concentration 

of forest habitat within JCUs (Figure 5).  The sex ratio that emerged from our model was approximately 

2:1 females to males, and was consistent across experimental treatments, even with a smaller 

population in the Habitat Selectivity treatment (Figure 5).   
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Figure 5. Demographics summary at time step 35 for each model (Baseline, Habitat Selectivity, and Dispersal Sensitivity).  
Percentages shown are the proportion of the population found outside of Jaguar Conservation Units (JCU).  Ratios indicate the 
sex ratio (females : males) of individuals within JCUs.  Total population size is smaller in the Habitat Selectivity model due to 
reduced carrying capacity of the landscape, caused by our experimental treatment reducing the quality of territorial resources.   

 

Territory Size:  We tracked male territory size immediately following each of the shifts in male 

tenancy: post dispersal/prospecting, competition/range-contraction, and mortality/range-expansion).  

We observed significantly reduced territory size following range-contraction, and near-optimal territory 

sizes following range expansion (Figure 6).  These results validate the functionality of our modeled 

territorial dynamics.       
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Figure 6. Median with max-min whiskers for male territory size, by period in which the territory was established: during dispersal 
and exploration (Prospecting), during competition (Contraction), or Expanding into territories vacated due to mortality.  Sample 
sizes above each category indicate the number of individuals over a ten-year period (time step 26-35).   

 

Dispersal Displacement and JCU Fidelity:  Intrinsic dispersal capability (path length and degree of 

autocorrelation) was not changed between experimental treatments.  Therefore any change in 

displacement (realized dispersal distance) between treatments, is due to the interaction of movement 

behavior (habitat selectivity or dispersal sensitivity) and the landscape.  Displacement was not changed 

by Habitat Specialization, but reduced by Dispersal Sensitivity (Figure 7).   

We also examined how our experimental treatments influenced the probability of individuals 

staying within their natal JCU, versus dispersing into the non-JCU matrix or to another JCU.  The 

increased Habitat Selectivity decreased the probability of transitioning out of a natal JCU into the non-

JCU matrix, which has a lower proportion of forested land-cover (Figure 8, A).  The Habitat Selectivity 

treatment increased the probability of staying within the natal JCU, with the exception of JCU10 (Figure 

8, A).  JCU10, in northern Belize, is predominantly composed of grassland rather than forest, limiting 

territory establishment in our experimental treatment.  Our Dispersal Sensitivity treatment produced 

the largest change in transition probabilities for JCU4 (Figure 8, B).  JCU4 is a small, isolated location in 

northeast Mexico.  Increased Dispersal Sensitivity decreased the probability of staying within JCU4 (JCU4 
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to JCU4 transition).  However, it also decreased the probability of transitioning into the non-JCU matrix, 

likely due to the dispersal sensitivity behavior preventing leaving the relatively good habitat inside the 

JCU.  The results indicate a high number of perishing floaters in JCU4 under this treatment.   
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Figure 7. Realized dispersal "displacement" for three models, Baseline (A), Increased Habitat Selectivity (B), and Increased 
Dispersal Sensitivity (C) over a ten-year period (time-step 26-35).  Median-quartile plots for males and females in panels D & E 
respectively.  Sample sizes above each plot indicate the number of individuals over a ten-year period. 
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Figure 8. Change in transition probability matrices from the Baseline model to the experimental treatments, increased Habitat 
Selectivity (A) and increased Dispersal Sensitivity (B).  Red flags indicate a lower probability of transition given the experiment 
treatment, and blue flags indicate a higher probability of transition.  The upper row indicates the source, and left column 
indicates the destination location from one year to the next.  Transition probabilities were compiled over 35 years (time step 1-
35).   

 

 Genetic Distance between JCUs:  Overall changes in genetic distances due to experimental 

treatments were assessed with a paired (by JCU) t-tests.  We analyzed the sexes separately to examine 

how our sex-specific dispersal and territorial dynamics impacted gene flow.  Our increased Habitat 

Selectivity treatment increased genetic distances for both males and females (Figure 9).  Conversely, 

Dispersal Sensitivity decreased genetic distances for males, but had no significant effect for females.   



 
 

 160 

  

Figure 9. Median-quartile plots of genetic-distance (Nei’s Gst, Jost’s D, and Weir & Cockerham’s Fst)  for three models at time-
step 35: Baseline (Null), Habitat Selectivity (Territory), and Dispersal Sensitivity (Dispersal).  Non-significant (N.S.), * p<0.05, *** 
p<0.001. 
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 In addition to overall patterns in genetic distance, we wanted to determine if there were 

location-specific changes in gene flow.  We plotted each pair-wise genetic-distance (16 JCUs, 120 pair-

wise comparisons) to visualize the comparison of our experimental treatments to the Baseline model 

(Figure 10).  For males, there was a cluster of observations from our Habitat Selectivity treatment that 

fell above the Baseline values of genetic-distance (Figure 10, left, green dots).  These observations all 

involved JCU10 in northern Belize.  The transition probability results show that this JCU in particular was 

impacted by our Habitat Selectivity treatment, causing an increase in emigration due to poor-quality 

habitat and reduction in population size.  The smaller number of individuals remaining within JCU10 

under our Habitat Selectivity treatment is the likely cause of the increased genetic-distance to this JCU, 

due to the random retention of specific genotypes (similar to genetic founder effects).  

 For both sexes, and across both treatments, there are a greater number of pair-wise estimates 

that fall below the Baseline values at the upper end of Baseline genetic distance.  Several of these 

below-baseline observations involve JCU4 in northeastern Mexico.  Both of our experimental treatments 

are reducing genetic distance to this small, isolated JCU as compared to our Baseline model.  Our 

transition probability results do not explain this result, as we do not see a greater probability of 

individuals transitioning to or from JCU4 under our experimental treatments.  However, this does not 

preclude a change in gene flow over generations, despite our limited number of simulation years.        

 



 
 

 162 

 

Figure 10. 120 Pair-wise genetic distances between 16 JCUs at time-step 35.  Pairs are ordered by ascending genetic distance in 
Baseline model.  Genetic distance metrics are Nei’s Gst (A), Jost’s D (B), and Wier & Cockerham’s Fst (C). 
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DISCUSSION: 

Our model of Neotropical felid spatial dynamics and gene flow provides a powerful new tool for 

investigating drivers of gene flow in these behaviorally complex species.  By including separate 

behavioral dynamics for dispersal through the landscape, versus establishing territories, we can examine 

how landscape influences each of these components of movement ecology separately, and track the 

resulting changes in gene flow.  We demonstrated this potential with our experimental treatments.  Our 

model of increased habitat selectivity resulted in decreased gene flow between JCUs, supporting our 

hypothesis that territorial requirements influence gene flow by impacting the probability of newly 

established territories being near to forested natal sites.  This hypothesized mechanism is supported by 

an observation of increased JCU fidelity in our Habitat Selectivity treatment.  Conversely, our model of 

increased dispersal sensitivity resulted in increased gene flow.  This would seem to support our 

hypothesis that dispersal behavior sensitivity produces rare, long-distance realized dispersal.  We 

propose that the specific patterns in structural connectivity of the landscape may facilitate gene flow 

between JCUs without significantly increasing displacement distance.  For example, dispersal paths that 

strictly follow riparian corridors may facilitate locating a suitable territory.  It should be kept in mind, 

however, that our preliminary gene flow results are from time step 35.  Therefore, the observed 

changes in gene flow have taken place over just a few generations at most, and primarily due to first or 

second-generation migrants.  Additional simulation time steps will be needed to determine if these 

patterns persist over future generations.   

Our preliminary results also demonstrate the utility of a geographically-explicit simulation 

landscape, highlighting JCU4 and JCU10 as particularly sensitive to our experimental treatments.  Future 

investigation of these sites, both via simulations and empirical data, may provide guidance for 

conservation at these locations.  For example, if we hypothesize that territorial habitat selectivity 

contributes to gene flow in jaguars, then our model predictions suggest that JCU10 is a contentious 
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place for conservation efforts, as it contains lower quality habitat, yet may contain a genetically-distinct 

population.        

    In order to have the highest possible applicability to conservation, the spatial scale (both grain 

and extent) of an SIBM should match the scales relevant to the organism.  This is an especially 

demanding task when modeling large, highly vagile carnivores.  Our model’s spatial grain and extent are 

the most ambitious Neotropical felid modeling effort to date, matching the fine grain of resource 

selection in these species (Day et al. this dissertation Chapter 1), and covering a large enough spatial 

extent to capture the effects of gene flow (Day et al. this dissertation, Chapter 2; Wultsch et al. 2016; 

Zanin et al. 2016).        

 Our future applications of this model will include investigating the effect of barriers (rivers and 

roads) on gene flow, and adding multiple dispersal-exploration phases within a single annual cycle, to 

allow for multiple territory searches prior to floater-based mortality.  Other future applications of our 

model may include forecasting the effects of specific landscape changes; road construction or climate-

induced land-cover change, for example.   In short, our eco-evo SIBM model paves the way for 

generating conservation-relevant predictions of how movement ecology and landscape pattern interact 

to influence the genetic connectivity of Neotropical felids. 
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APPENDIX 

 

Table S1. Geographic data layers used to generate model land-cover maps, barrier maps, and sampling locations. 

 

 

 

 

 

 

 

Geographic Data Layer Source Provider/Host Web Address

Land cover 0.5 km MODIS-based Global Land Cover Climatology USGS Land Cover Institute (LCI) http://landcover.usgs.gov/global_climatology.php

Jaguar Conservation Units Kathy Zeller, Wildlife Conservation Society Data-Basin http://databasin.org/datasets/

Elevation SRTM 90m Digital Elevation Data CGIAR-CSI GeoPortal http://srtm.csi.cgiar.org/

Roads Digital Chart of the World DIVA-GIS www.diva-gis.org/Data

Rivers Digital Chart of the World DIVA-GIS www.diva-gis.org/Data


