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Chapter 1. Compensatory mutations play a critical role in the evolution of drug resistance

in microorganisms. Most directly, they serve to alleviate the fitness cost commonly associ-

ated with initial drug resistance mutations. Here we use experimental evolution to examine

adaptation to the cost of rifampicin resistance in an antibiotic-free environment, and ask

whether compensatory mutations that restore fitness back to ancestral levels could also be

further increasing the level of drug tolerance in these resistant isolates. We suggest that the

identity of the initial resistance conferring mutations may influence the relative frequency at

which drug tolerance increases during compensatory evolution through epistatic interactions.

Chapter 2. The evolutionary transition to multicellularity likely began with the formation

of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages

of extant unicellular taxa, suggesting that there are few genetic barriers to this first key

step. In this chapter, we focus on how the transition to multicellularity may be stabilized

against evolutionary reversion when environmental conditions change and tip the balance of

selection back in favor of unicellularity. Using mathematical modeling, we show how multi-

cellular adaptations can act as evolutionary ”ratchets”, limiting the potential for reversion

to unicellularity. Chapter 3. Evolutionary transitions in individuality (ETIs) occur when



formerly autonomous organisms evolve to become parts of a new, ‘higher-level’ organism.

Here we explore the key role that simple multicellular life cycles in facilitating this transi-

tion. Specifically, we use mathematical models to compute how canonical early life cycles

vary in their ability to fix beneficial mutations via mathematical modeling. Building on our

prevous work (Chapter 2), we show how life cycles that lack a persistent single-cell stage

and develop clonally are far more likely to fix ‘ratcheting’ mutations that limit evolutionary

reversion to the pre-ETI state. Chapter 4. Phenotypic plasticity is the ability of a single

genotype to produce different phenotypes in response to changes in the environment. Theory

suggests that the adaptive value of plasticity depends on the degree of environmental het-

erogeneity and the existence of environmental cues that provide reliable information about

selective conditions. We tested this prediction using experimental evolution. We find that

temporally varying selection can favor the evolution of phenotypic plasticity in experimental

populations of yeast when selection is predictable but that plasticity is lost when selection

in unpredictable. Chapter 5. Fitness trade-offs, while central to all of life history theory, are

thought to take on a particularly important role during major evolutionary transitions such

as the evolution of multicellularity. Specifically, trade-offs between survival and reproduc-

tion may drive increases in complexity and cellular differentiation. Here we used computer

simulations of digital mulitcellular organisms to explore how trade-offs could promote the

evolution of multicellular complexity. Chapter 6. In this chapter, we review how game theory

can be a useful first step in modeling and understanding interactions among bacteria that

produce and resist antibiotics. We introduce the basic features of evolutionary game theory

and explore model microbial systems that correspond to some classical games. Each game

discussed defines a different category of social interaction with different resulting population

dynamics (exclusion, coexistence, bistability, cycling). We then explore how the framework

can be extended to incorporate some of the complexity of natural microbial communities.
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(see Supplement for details). This matrix conforms to the Prisoner’s Dilemma.
Fitness of a focal player depends not only on its genotype (blue or red rows)
but also the genotype of its partner (columns). (b) Predicted population
dynamics of a simple game theoretical model, given the fitnesses in part a
(see Supplement for details). Despite its initial proportion, the producer ap-
proaches extinction. The vertical line segment to the right is identical to
the y-axis of the graph and large circles represent equilibria. Because N will
invade a population of mostly P (top arrow), fixation for P is an unstable
equilibrium (unfilled circle). Because P fails to invade a population of mostly
N (bottom arrow), fixation for N is a stable equilibrium (filled circle) and
N is an ESS. (c) A generic fitness matrix for a two-strategy two-player game.
The fitness of a focal P individual (blue entries) is and when paired with a
partner of genotype P and N, respectively. The fitness of a focal N individual
(red entries) is and when paired with P and N, respectively. (d-g) Here we
rotate the vertical line segment of part b clockwise by 90. If , N will invade
a population of P. If , P will invade a population of N. On the other hand,
if or , then P or N, respectively, is an ESS. (d) For the Prisoner’s Dilemma,
P fixation is unstable and N is stable to invasion (i.e., N the sole ESS). (e)
When the fitness inequalities are reversed, N fixation is unstable and P is
the sole ESS. (f) When both fixation states are unstable (i.e., no ESS), stable
coexistence is achieved (purple filled circle). (g) When both fixation states are
stable (i.e., two ESS’s), either strategy can dominate depending on whether
the initial proportion of P is above or below the unstable equilibrium (purple
unfilled circle). Such dynamics are termed bistable. . . . . . . . . . . . . . 145
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6.2 Snowdrift game. (a) Results of a laboratory experiment tracking the pro-
portion of bacteria producing an antibiotic-inactivating enzyme β-lactamase).
In the presence of the antibiotic (ampicillin), the producers and non-producers
coexist, approaching the same final proportions despite their initial fractions
(data reproduced with permission from Yurtsev et al. (2013)). (b) In this
cartoon, we consider two genotypes: producers of an antibiotic-inactivating
extracellular enzyme (blue cells) and non-producers (red cells). Shown are
three possible pairwise interactions in the presence of an antibiotic (top) and
the outcome of each interaction (bottom). A producer benefits neighboring
cells by inactivating the antibiotic (purple shading represents enzyme concen-
tration), but also receives greater private protection (indicated by the purple
“halo”). (c) The fitness matrix for the cartoon in part b is shown. Com-
pared with Fig. 1a, the producer now has a higher fitness when the partner
is a non-producer because the enzyme (public good) is partially privatized.
This arrangement of fitnesses is known as the Snowdrift game. (d) Predicted
average fitnesses of each genotype given random interaction (note that the
end points are the values in part c). The small empty circles correspond to
points where the average fitness is not strictly defined (e.g., where producers
or non-producers are absent). The point where the red and blue lines cross
corresponds to a producer proportion where the fitness of each genotype is
equal; thus, this point is an equilibrium. (e) Predicted population dynamics
of a simple game theoretical model, given the average fitnesses in part d. The
proportion of producers increases when producers are rare and decreases when
producers are common. Thus, the producer proportion reaches a stable inte-
rior equilibrium, regardless of the initial fraction. There is no pure strategy
ESS here (see also Fig. 1f). . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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6.3 Choosing Sides. (a) In this cartoon, the two genotypes are producers of a
toxin (blue cells) and sensitive non-producers (red cells). Three possible pair-
wise interactions (top) result in different outcomes (bottom). A non-producer
is killed by the producer’s toxin (where grey shading indicates toxin concen-
tration), whereas the producer is immune to its own toxin. The producer does
incur a growth cost for production; thus, the producer is less fit when paired
with itself than the non-producer when paired with itself. (b) The fitness
matrix for part a is shown. A producer has a higher fitness when the partner
is a producer (first column), while the non-producer has a higher fitness when
the partner is a non-producer (second column). This arrangement of fitnesses
is similar to the Choosing Sides game. (c) Predicted average fitness of each
genotype given random interaction. The point where the red and blue lines
cross is an equilibrium. (d) Predicted population dynamics of a simple game
theoretical model, given the average fitnesses in part c. The proportion of pro-
ducers increases when producers are common and decreases when producers
are rare. Thus, the producer proportion either approaches 0 or 1, depending
on the initial fraction. The internal equilibrium is unstable and there are two
ESS’s: production and non-production (see also Fig. 1g). . . . . . . . . . . 150

6.4 Spatial games. (a) An experiment tracking the proportion of colicin E3
producers in liquid culture. If the producers start above a critical fraction
( 0.02), then the producers drive the sensitive non-producers extinct. Other-
wise, the producers go extinct (data reproduced with permission from Chao &
Levin (1981)). (b) When the same community is propagated in a structured
environment (soft agar), the producers increase despite initial proportion. (c)
A second experiment tracking the density of three genotypes. In a well-mixed
flask, the sensitive non-producer (S) quickly goes extinct (due to the ubiq-
uitous toxin) and then the producer (P) is outcompeted by the resistant
non-producer (R) (data reproduced with permission from Kerr et al. (2002)).
(d) All three genotypes are maintained at high density when the community
is propagated on the surface of an agar plate. (e) Time series photographs of
a representative replicate of the RPS community propagated on agar. (Top
row) The changing spatial configuration of the experimental community is
shown in this first panel of photographs. Because borders could be identified
where P interacted with R or S, the direction of clump movement over trans-
fers could be inferred. (Bottom row) ‘Chasing’ between clumps is highlighted
in this second panel. The borders where P chased S are colored in purple and
the borders where R chased P are in green. . . . . . . . . . . . . . . . . . . 152
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Abstract

Compensatory mutations play a critical role in the evolution of drug resistance in

microorganisms. Most directly, they serve to alleviate the fitness cost commonly associated

with initial drug resistance mutations. When compensatory mutations are deleterious in

the absence of the initial resistance mutation, they also make drug resistance more stable

by making reversion selectively disadvantageous. The fitness effects of compensatory

mutations have been extensively studied, but more recent work has begun to highlight the

possible role of compensatory mutations in the evolution of increased drug resistance. We

hypothesized that compensatory mutations could lead to changes in the level of drug

resistance due to strong pleiotropic effects, especially in cases where second-site mutations

occur within the same gene as the original resistance conferring mutation. We tested this

hypothesis using a highly replicated evolution experiment in which 30 replicate populations

of 20 strains of Escherichia coli with varying levels of rifampicin resistance were evolved for

100 generations in the absence of antibiotics. We present data suggesting that antibiotic

resistance can increase even in the absence of antibiotics. Furthermore, we explore the

effect of the identity of initial resistance mutation on the observed outcomes.

Introduction

Mutations conferring antibiotic resistance in bacteria often impose a fitness cost in the

absence of selecting drugs (Andersson and Levin 1999; Andersson and Hughes 2010;

MacLean and Vogwill 2014; Melnyk et al. 2015). Removal of the selecting drug should

therefore favor reversion back to sensitivity. Contrary to this expectation, experimental

studies have found that resistance is often stably maintained in populations of drug

resistant microorganisms even in the absence of antibiotics (Schrag et al. 1997; Björkman

et al. 1998, 2000; Levin et al. 2000; Reynolds 2000; Maisnier-Patin and Andersson 2004;

Gifford and MacLean 2013). This occurs when bacteria acquire second-site mutations that
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ameliorate the cost of resistance, called compensatory mutations.

Compensatory mutations are thought to play a critical role in the evolution of drug

resistance. By partially, or completely, restoring the fitness of drug resistant bacteria back

to ancestral levels, compensatory mutations may effectively mitigate the selective pressure

against resistance in the absence of drug exposure. Additionally, compensatory mutations

are often deleterious or neutral in the absence of the initial resistance mutation (Schrag et

al. 1997; Maisnier-Patin et al. 2002), a phenomenon known as genetic epistasis (Weinreich

et al. 2005). In the case of reciprocal sign epistasis, where each mutation is deleterious in

the wild-type background but beneficial in the presence of the other mutation, the fixation

of a compensatory mutation may prevent direct reversion to sensitivity as either single-step

mutation will be selectively disadvantageous (Tanaka and Valckenborgh 2011). Theoretical

studies have found that compensatory mutations can promote the emergence and spread of

epidemics (Handel et al. 2006) and suggest that compensatory mutations could be one of

the primary reasons that costly antibiotic resistance persists even after drugs have stop

being used (Zur Wiesch et al. 2010). (But see MacLean and Vogwill (2014) for a discussion

of why compensatory adaptation may be less effective in natural populations.)

In some cases, compensation can occur between two individually costly resistance

mutations (Hall and MacLean 2011), resulting in a genotype with both increased fitness

and increased resistance. Mutations that concomitantly increase fitness and drug resistance

are of obvious concern because they could create a situation of cost-free, high-level drug

resistance (which may be very difficult to reverse due to sign epistatic interactions between

the mutations). Meftahi et al (2015) specifically suggest that such a mutation may have

contributed to the successful transmission of a multidrug-resistant strain of Mycobacterium

tuberculosis that caused a disease outbreak in northern Tunisia. In the laboratory, this

phenomenon has been observed between pairs of mutations conferring resistance to

rifampicin (Hall and MacLean 2011; Brandis et al. 2012) and among sets of 2 to 4 alleles

conferring resistance to fluoroquinolones (Lindgren et al. 2005; Rozen et al. 2007;
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Marcusson et al. 2009). However, beyond the aforementioned studies, changes in drug

tolerance after compensatory evolution has occurred are not widely reported. This led us

to ask whether resistance increases following compensation are simply rare or if their

occurrence could be explained by some biological factor.

We hypothesized that different drug resistance alleles may differ in their likelihood of

acquiring compensatory mutations that improve their level of drug resistance due to

epistatic interactions between mutations. Most laboratory studies of compensation examine

the evolution of a small number of spontaneously generated drug-resistant mutants or

engineer specific combinations of naturally occurring resistance alleles. We chose to

examine this hypothesis using the evolution of rifampicin resistance in Escherichia coli as

our model system. The drug rifampicin, an important front-line drug used to treat

tuberculosis, binds to the β-subunit of the bacterial DNA-directed RNA polymerase and

inhibits transcription (Campbell et al. 2001). Mutations conferring resistance to rifampicin

occur primarily in the rpoB gene (Jin and Gross 1988; Reynolds 2000). Our goal in this

work is to estimate the frequency of compensatory mutations that raise drug resistance and

to determine the extent to which this frequency of occurrence is contingent upon genetic

background. To address these issues, we evolved 30 replicate populations of 20 E. coli

strains carrying different rpoB alleles for 100 generations in the absence of rifampicin. We

found that MIC increases in the absence of antibiotic selection are relatively common,

occurring in 108/600 of our evolved populations. Here we report on the identification of

putative compensatory mutations and their effects on rifampicin resistance.

Methods

Isolation of mutant strains

Escherichia coli B (REL606) was used as our ancestral strain. Rifampicin-resistant strains,

derived from this REL606 ancestor, were isolated by plating 200µl of an overnight culture
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grown in lysogeny broth (LB) onto LB agar containing 50µg/ml rifampicin. From each

plate that had colonies, a single representative colony was inoculated into 5ml of LB

medium and shaken at 205 r.p.m. overnight at 37°C. Then 1ml of the culture was mixed

with 160µl of 80% glycerol and stored at -80°C for later sequencing and phenotypic

characterization. In total, 14 unique spontaneous mutant genotypes were isolated by

plating. All mutations were non-synonymous. We refer to these strains as “single mutants”

because the opportunity for double mutations to arise during the isolation of strains by

plating on selective media is thought to be low (Kassen and Bataillon 2006). However, we

cannot rule out the possibility that some of our strains have mutations elsewhere in the

genome. An additional 5 non-synonymous single mutant genotypes, previously constructed

in our lab using allelic replacement (Link et al. 1997; Lindsey et al. 2013), were also

included for a total of 19 unique mutant alleles (Table 1).

Experimental evolution

30 replicate populations of each genotype were initiated in 96-well flat-bottom microtiter

plates by a 1:100,000 dilution ( 1,000 cells per well) from overnight cultures grown in a 1%

minimal glucose (MG) medium. Bacterial cultures were propagated in 96-well flat-bottom

microtiter plates via daily 1:40 dilutions into 200µl of fresh MG media using a pin

replicator that transfers 5µl of culture / well for a total of 20 days ( 100 generations). Each

growth cycle lasted 24h, during which time the microtiter plates were incubated and

shaken at 405 r.p.m. in an orbital microtiter plate shaker at 37°C. At the end of the

evolution experiment, 32µl of 80% glycerol was added to each well of the microtiter plate

and whole populations were stored at -80ºC.

Growth rate assays

We used maximum growth rate (Vmax) in MG media in the absence of rifampicin as a proxy

for bacterial fitness. Although several other factors can influence bacterial fitness (Vasi et



6

Table 1.1: Strains of Escherichia coli and associated rpoB mutations.

Strain	ID Isolate Nucleotide change Codon change Amino acid change Mutated region Strain origin
Ancestor Ancestor – – – – –
41 RifR -1 g436t GTT→TTT V146F N-term This study
5 RifR -2 a443t CAG→CTG Q148L N-term This study
1 RifR -3 c1527a AGC→AGA S509R rpoB (I) This study
4 RifR -4 t1534c TCT→CCT S512P rpoB (I) This study
3 RifR -5 c1535t TCT→TTT S512F rpoB (I) This study
42 RifR -6 a1538c CAG→CCG Q513P rpoB (I) This study
31 RifR -7 c1576t CAC→TAC H526Y rpoB (I) This study
38 RifR -8 a1577t CAC→CTC H526L rpoB (I) This study
17 RifR -9 g1586a CGT→CAT R529H rpoB (I) This study
11 RifR -10 c1592t TCC→TTC S531F rpoB (I) This study
9 RifR -11 t1598c CTC→CCC L533P rpoB (I) This study
37 RifR -12 a1714t ATC→TTC I572F rpoB (II) This study
39 RifR -13 t1715g ATC→AGC I572S rpoB (II) This study
10 RifR -14 c1721t TCT→TTT S574F rpoB (II) This study
e1 RifR -e1 g428a CGT→CAT R143H N-term Lindsey et al (2013)
e2 RifR -e2 t437a GTT→GAT V146D N-term Lindsey et al (2013)
e3 RifR -e3 t1532g CTG→CGG L511R rpoB (I) Lindsey et al (2013)
e4 RifR -e4 g1546a GAC→AAC D516N rpoB (I) Lindsey et al (2013)
e5 RifR -e5 a1685c GAA→GCA E562A rpoB (II) Lindsey et al (2013)
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al. 1994; Wiser and Lenski 2015), we found a positive correlation between bacterial growth

rate and competitive fitness in our rpoB single mutants (Spearman’s rank correlation test;

ρ = 0.654, p = 0.003; Fig. S1). Briefly, bacteria were grown in 96-well microtiter plates in

MG medium for 20 hours at 37ºC in a Molecular Devices VersaMax plate reader. Optical

density (OD450) was measured every 20 seconds. Raw data was exported as a text file.

Maximum growth rate (Vmax) was calculated from kinetic plate reader data using the grofit

package in R (Kahm et al. 2010). A spline smoothing factor of 0.85 was chosen on the

basis of visual inspection of fitted curves to avoid problems with over-estimation of Vmax

that arose when OD450 data was noisy. See Supplemental Materials for further details and

example Vmax calculations (Fig. S2).

Minimum inhibitory concentration (MIC) assays

Changes in rifampicin resistance after evolution were gauged using a minimum inhibitory

concentration (MIC) assay using the broth micro-dilution method (Wiegand et al. 2008).

Briefly, evolved populations were revived from the -80ºC freezer in 96-well microtiter plates

and grown overnight in minimal glucose media. Bacterial populations were then diluted

1:1600 to achieve a bacterial inoculum of 5× 105 colony forming units (cfu) ml−1 and

exposed to increasing concentrations of rifampicin using 2-fold dilutions in MG media.

Microtiter plates were then incubated for 20 hours under standard growth conditions (405

r.p.m. in an orbital microtiter plate shaker at 37°C). Finally, OD650 was measured as a

proxy for growth for using a Molecular Devices VersaMax plate reader. The MIC of a

population was determined as the lowest drug concentration that caused a greater than

50% decrease in OD650 relative to the maximal OD650 achieved by that genotype. We

note the difference in wavelength used for MIC assays (OD650 instead of OD450, used for

growth assays). The absorbance spectrum of the drug rifampicin has a peak at 474nm

(Dabbs 1987). Thus, this change was necessary in order to measure absorbance of bacterial

cultures at very high concentrations of rifampicin without interference.
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Sequencing

PCR amplification of the rpoB gene was performed using the primers described in Reynolds

(2000). After confirmation of successful amplification via gel electrophoresis, the PCR

product was purified using the ExoI/SAP (shrimp alkaline phosphatase) method. Purified

products were sent for sequencing (GeneWiz) and analyzed with ClustalX (version 2.1).

Statistical analyses

All plotting and statistical analyses were performed using the R software environment (R

Core Team 2018).

Results and discussion

Characterization of rpoB single mutants

We characterized each of the 14 unique spontaneous mutant genotypes and the 5 previously

engineered rpoB mutants by measuring minimum inhibitory concentration (MIC) in

rifampicin and maximum growth rate, Vmax, in the absence of the drug (Fig. 1). In keeping

with previous studies of rpoB single mutants, we found that most rifampicin resistance

mutations are costly (Reynolds 2000; Gagneux et al. 2006): only three rpoB mutant

genotypes (R143H, L511R, and S574F) had growth rates comparable to the ancestor while

the rest had growth rate costs ranging from 3-40% that of the ancestor. Additionally, we

found no strong relationship between MIC and the cost of resistance for rpoB mutants with

an MIC greater than that of the ancestor (Spearman’s rank correlation test; ρ = -0.276, p

= 0.284). Note that two of the engineered single mutants were excluded from this analysis

because they showed no significant increase in MIC relative to the ancestor.
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Figure 1.1: Phenotypic characterization of rpoB single mutant isolates. Strains exhib-
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Growth rates of evolved populations

We measured the maximal growth rates of all 600 evolved populations and their respective

single mutant ancestors in MG media in the absence of the drug rifampicin to check for

evidence of compensation. Growth rates for all evolved populations and single mutant

strains are reported here in relative terms, as the maximal growth rate achieved relative to

the mean maximal growth rate of 6 replicate wells of the wild type ancestor REL606 grown

in the same microtiter plate. Four rpoB genotypes (V146F, Q513R, H526Y and L533P)

showed significant improvements in growth rate relative to their single mutant ancestors

(Fig. 2; significant improvements indicated by background shading). The remaining strains

showed no significant changes in growth rate. In Supplemental Materials we examine the

effect of varying the smoothing parameter used to fit the bacterial growth curves (Fig. S3).

The lack of observable growth rate improvement for several evolved populations was

somewhat unexpected, especially in those that had initially low growth rates relative to the

wild-type ancestor (such as strains R529H, S531F, and I572F). However, we find that the

overall growth rate improvements are proportional to the initial cost of resistance

(Spearman’s rank correlation test; ρ = 0.696, p < 0.001), consistent with the findings of a

previous study of E. coli rpoB mutants adapting to the fitness costs of resistance in a

drug-free medium (Barrick et al. 2010). Thus, it is likely that some populations

experienced an insufficient number of generations for beneficial mutations to rise to

high-enough frequencies to substantially affect the population growth rate. Despite the lack

of evidence that growth rate compensation had occurred in many of our populations, we

reasoned that fitness improving mutations should still be present in the evolved

populations, albeit at low frequencies.
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Figure 1.2: Relative growth rates of replicate populations after 100 generations of evo-
lution. Bacteria were revived from freezer in 96-well microtiter plates and grown overnight in
minimal glucose media before being transferred with a 1:40 dilution to fresh media for the growth
assay. Maximal growth rates were extracted for each well using the spline fitting function from the
grofit package in R. Evolved populations are shown in white (n=1 for each of the 30 populations),
single mutant ancestors in grey (n=6 per genotype). Measurements of evolved populations and their
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plate. Strains that exhibit a significant change in growth rate relative to their respective single mu-
tant ancestor are indicated by background shading. Significant differences were determined using
a Welch Two Sample t-test (p < 0.00238 after Bonferroni correction).
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Increases in minimum inhibitory concentration

We measured the minimum inhibitory concentration (MIC) of all 600 evolved populations

using 2–fold dilutions of rifampicin. All MIC assays were performed in triplicate using 3

separate microtiter plates for which well-position had been reassigned by row to limit the

potential for spatial biases (Blomberg 2011). Each of the three replicate MIC assays

represents an independent sampling from the evolved population. A population was said to

show an increase in MIC only if the same population grew at a rifampicin concentration

beyond that of its single mutant ancestor’s MIC in two of three replicates. Using this

approach, we determined that any mutations conferring an increase in rifampicin resistance

must be present at a frequency greater than 1:286,000 cells ( 3.5× 10−6) in order to be

detected by our MIC assay (see Supplemental Materials for details; Fig. S4).

In total, 108/600 (18%) evolved populations exhibited an increase in MIC while 6/600 (1%)

evolved populations exhibited a decrease. In most cases, populations that exhibited an

elevated MIC increased by 2-fold, but in some cases MIC increased by as much as 16 to

32-fold. The largest decrease in MIC we observed was 2-fold lower than the single mutant

ancestor. The MIC shifts exhibit a markedly non-random distribution (Pearson’s

Chi-squared test; X2 = 483.92, df = 19, p < 0.001) with 102/108 ( 94%) increases falling on

the background of only 4/20 (20%) genotypes tested. This is consistent with the hypothesis

that different genotypes may differ in their likelihood of acquiring compensatory mutations

that improve their level of drug resistance due to epistasis. We examined the effect of

varying the threshold used to distinguish growth from non-growth in our spectrophotometer

data and found no significant differences in our qualitative results. See supplemental

materials for detailed analyses of MIC data using different thresholds (Fig. S5).
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Figure 1.3: Changes in MIC after 100 generations of evolution. Bacteria were revived from
freezer in 96-well microtiter plates and grown overnight in minimal glucose media. Each MIC assay
was initiated with a 1:1600 dilution from revived overnight cultures. A population is said to show
an increase in MIC only if the same population grows beyond its previously identified MIC in two of
three replicate MIC assays. Each column shows the change in MIC for all 30 replicate populations
of each genotype. Changes in MIC are indicated by the color of the cell as indicated by the scale
bar on the right-hand side of the plot.
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Correlation between MIC increase and growth rate compensation

We hypothesized that MIC increases could occur as a pleiotropic effect of selection for

growth compensatory mutations in rifampicin resistant E. coli. The results of our MIC and

growth assays generally support this hypothesis; three of the four genotypes that exhibited

significant growth improvements also exhibit MIC increases in the majority of evolved

replicate populations and there is a weak but significant correlation between MIC shifts

and change in growth rate (Fig. 4; Spearman’s rank correlation test; ρ = 0.281, p < 0.001).

However, there are a few notable exceptions to this rule. In the case of rpoB R529H, we

found that 25/30 populations exhibited MIC increases without detectable growth rate

increases. This suggests that a significantly detectable increase in growth rate is not

necessary for an MIC shift in our study. However, we note that although we use maximal

growth rate as a convenient proxy for bacterial fitness due to the large number of

populations, growth assays are typically successful in identifying fitness differences >5%

(Andersson and Hughes 2010). Therefore, it is possible that we would identify significant

differences in fitness if we were to instead measure relative fitness directly using pairwise

competitions (Lenski et al. 1991). In the case of rpoB L533P, we found that evolved

populations had a significant improvement in growth rate but there was no change in MIC.

Thus, a significantly detectable increase in growth rate is not sufficient for MIC shift.

rpoB mutations as adaptation to growth in minimal glucose media

Mutations in rpoB are known to confer fitness benefits in certain laboratory culture

environments. Specifically, increases in rifampicin resistance in the absence of antibiotic

exposure have been found under starvation conditions in aging bacterial colonies (Wrande

et al. 2008; Katz and Hershberg 2013), during adaptation to thermal stress

(Rodríguez-Verdugo et al. 2013), and during adaptation to growth in minimal glucose

media (Knöppel et al. 2017). The latter case is particularly relevant to our study since we

used a very similar growth medium for our evolution experiment. Briefly, Knöppel et al.
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Figure 1.4: Shifts in MIC exhibit a weak correlation with changes in growth rate. The
difference in maximum growth rate for each evolved population relative to its single mutant ancestor
is plotted on the y-axis; difference in MIC value on the x-axis. Points have been jittered along the
x-axis to improve readability. The grey dashed line is a linear best fit with all 600 populations
treated as independent data points.
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(2017) evolved 8 replicate populations of an initially drug sensitive E. coli K-12 strain for

500 generations in M9 minimal glucose media and found 1/8 populations where rifampicin

resistance had increased. Although we cannot rule out the possibility that adaptation to

growth in minimal media played a role here, the fact that we observe such a strong effect of

initial resistance mutation and no MIC increases on the background of our initially drug

sensitive ancestor suggest that minimal media adaptation is unlikely to be the cause of the

MIC increases seen in our study. We also observe MIC increases in a higher percentage of

evolved populations and in fewer generations (e.g., 18% in 100 generations compared to

12.5% in 500 generations); providing further evidence that initial resistance mutations were

important to our findings.

Limitations of this study

In a study similar to ours, Brandis et al. (2012) explored growth compensation in ten

replicate populations of Salmonella enterica harboring the rifampicin resistance mutation

rpoB R529C. After 60 generations of growth in the absence of antibiotic selection, they

found evidence of one compensatory mutation that increased MIC (rpoB D516G) as well as

one that caused an MIC decrease (rpoB P564S). These results suggest that increases and

decreases in rifampicin resistance associated with compensatory mutations could be equally

common (at least for this particular rpoB mutation and this strain of S. enterica), yet we

observe MIC decreases extremely rarely. The most probable cause of this discrepancy can

be traced back to our choice to perform MIC assays using evolved populations rather than

clones. A whole population MIC assay is unlikely to detect alleles with decreased

rifampicin resistance because even a small subpopulation of more resistant bacteria will

grow to high density, effectively masking the presence of more sensitive genotypes. The

choice to perform whole population MIC assays was made to facilitate the screening of

hundreds of populations in parallel. However, as a consequence, we are likely missing many

instances of MIC decrease.
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A second limitation of our study is that we have not elucidated the underlying causes of

the MIC increases or the influence of genetic background. We hypothesized that different

resistance mutations might differ in their likelihood of acquiring compensatory mutations

that improve their level of drug resistance due to epistatic interactions. While our results

are consistent with this hypothesis, a formal test of epistasis would require that we do the

following for putative compensatory mutations arising on different genetic backgrounds: (i)

identify the secondary mutation responsible for compensation and (ii) construct the

relevant single and double mutants to assess their individual and combined effects on MIC

and growth rate.

Conclusion

While the historical emphasis has been on the fitness effects of compensation, a growing

number of studies have reported the existence of compensatory mutations that also

significantly increase the level of drug resistance (Lindgren et al. 2005; Rozen et al. 2007;

Marcusson et al. 2009; Hall and MacLean 2011; Brandis et al. 2012; Meftahi et al. 2015).

Fitness improvements have also been documented between sets of alleles conferring

resistance to different antibiotics (Trindade et al. 2009; Ward et al. 2009; Silva et al. 2011;

Borrell et al. 2013). However, existing studies have largely focused on interactions among

small sets of resistance mutations, making it hard to determine how common these

pleiotropic resistance increases might be in populations harboring large amounts of genetic

variation. We chose to investigate this phenomenon by evolving 20 strains of rifampicin

resistant Escherichia coli carrying different rpoB alleles in the absence of antibiotics for 100

generations. We found that increases in drug resistance occur quite commonly in the

absence of antibiotic selection, but that MIC increases occur disproportionately on certain

genetic backgrounds. Significant growth improvement was correlated with an increase in

MIC, but the dependency on genetic background cannot be explained by overall growth

improvement alone.
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Rather than being rare exceptions to the rule, we speculate that increases in MIC due to

compensatory mutations may be fairly common, especially in cases where second-site

mutations occur within the same gene as the original resistance conferring mutation. In the

case of rifampicin resistance, for example, resistance is typically achieved by structural

modification of the β-subunit of the bacterial DNA-directed RNA polymerase, encoded by

the rpoB gene (Campbell et al. 2001). Thus, it is reasonable to expect that a second-site

mutation in the same protein coding gene where the initial resistance mutation occurred

(rpoB) could impact the level of drug resistance by causing further structural changes to

the protein. Intragenic compensatory mutations may also be among the most likely to

exhibit idiosyncratic effects due to the identity of the initial resistance mutation because

compensatory mutations have been found to cluster around the site of their associated

deleterious mutation (Davis et al. 2009). Hopefully further studies of compensatory

mutations and their pleiotropic effects on resistance will clarify this point.
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Abstract

The evolutionary transition to multicellularity likely began with the formation of simple

undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant

unicellular taxa, suggesting that there are few genetic barriers to this first key step. This

may act as a double-edged sword: labile transitions between uni- and multicellular states

may facilitate the evolution of simple multicellularity, but reversion to a unicellular state

may inhibit the evolution of increased complexity. In this paper, we examine how multi-

cellular adaptations can act as evolutionary “ratchets”, limiting the potential for reversion

to unicellularity. We consider a nascent multicellular lineage growing in an environment

that varies between favoring multicellularity and favoring unicellularity. The first type of

ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a

single-celled context, reducing the fitness of revertants. The second type of ratcheting mu-

tations directly decrease the probability that a mutation will result in reversion (either as a

pleiotropic consequence or via direct modification of switch rates). We show that both types

of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic

effects between the two types of ratcheting mutations in which the presence of one creates

the selective conditions favoring the other. Ratcheting mutations may play a key role in

diverse evolutionary transitions in individuality, sustaining selection on the new higher-level

organism by constraining evolutionary reversion.

Introduction

Complex life has evolved through a series of events in which organisms evolve to become spe-

cialized parts of new, “higher-level” organisms [12]. These events have come to be known as

major transitions in evolution [2], or evolutionary transitions in individuality [3], and include

the origin of cells from groups of interacting replicators, the origin of eukaryotes from mutu-

alistic prokaryotes, the evolution of multicellular organisms from unicellular ancestors, and
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the evolution of eusocial “superorganisms” from solitary individual multicellular organisms.

The hierarchical nature of life, with genes nested within cells nested within multicellular

organisms nested within societies, is a historical signature of these repeated evolutionary

transitions in individuality.

Here, we focus on the evolution of multicellular organisms from unicellular ancestors. Mul-

ticellular organisms are a ubiquitous part of our environment. As Kirk (2005)[44] rightly

observed, “…if all multicellular eukaryotes suddenly vanished from Earth, our planet would

appear as barren as Mars.” Despite the profound challenges involved in making the transi-

tion, multicellularity has evolved at least 25 times in taxonomically and ecologically diverse

microbial lineages [56]. Filamentous cyanobacteria are the first lineage known to evolve

multicellularity on Earth, dating between 2.25 and 2.45 billion years ago [6]. Centimeter-

scale macrofossils of putative multicellular organisms composed of cells growing in radially-

organized sheets have also been recovered from a period of elevated oxygen 2.1 billion years

ago [7], though little is known about their biology. The red algae Bangiomorpha is the first

known multicellular eukaryote, making this transition approximately 1.2 billion years ago

[63]. Within the last billion years, there have been numerous transitions to multicellularity

across lineages spanning the deepest divergences within eukaryotes [9, 10, 11] and within

archaea [12].

The fact that multicellularity has independently arisen so many times in diverse lineages

suggests that the selective conditions favoring this transition must be rather common [56].

Theoretical and experimental works support this hypothesis, and indeed the formation of

simple clusters of cells (the first step in the transition) can be adaptive under a number

of distinct ecological scenarios [13]. For example: clusters may provide protection from

predation [14, 15, 16], protection from environmental stress [17], or improved utilization of

diffusible nutrients [18, 19, 20]. Experimental studies have also demonstrated that (under the

right selective conditions) simple undifferentiated multicellularity evolves readily in diverse

species [16, 21, 32, 23, 24]; suggesting that the genetic changes necessary to achieve simple
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undifferentiated multicellularity are few.

Two independent experiments observed the evolution of multicellularity in the budding

yeast, Saccharomyces cerevisiae [32, 23, 19]. Both found that a loss of function mutation in

the transcription factor ACE2 was enough to produce simple undifferentiated multicellularity

[23, 19]. In Pseudomonas fluorescens, another model organism for studying the evolution

of multicellularity, switching between multicellular “wrinkly spreader” (WS) and unicellular

“smooth morph” (SM) states can be achieved readily by mutations in a small number of loci

that affect the production of an extracellular glue [26, 27, 28].

The evolutionary lability of multicellularity seen in experimental systems raises an inter-

esting issue: if simple multicellularity is so easy to achieve, shouldn’t it also be easy to lose?

Reversion to unicellularity may therefore represent a significant threat to the long-term sta-

bility of multicellularity, particularly when its benefits are environmentally dependent (e.g.,

when predators are present). Experiments with microbes have also highlighted costs of multi-

cellularity. In a study where selection for rapid sedimentation in liquid media promoted the

evolution of multicellularity in yeast, Ratcliff et al (2012) [32] found that multicellularity was

associated with 10% reduced fitness in the absence of settling selection, likely due to slower

growth rates caused by diffusional limitation [29]. In addition, Rainey and Rainey (2003)

[27] found that the WS genotype suffered a 20% fitness cost relative to the ancestral SM

genotype under conditions that did not require colonization of the air-liquid interface. Sim-

ilar results have been found in natural systems. For example, the green alga Desmodesmus

subspicatus facultatively forms multicellular colonies when it senses chemical cues released

by its predator Daphnia, increasing fitness during predation, but in the absence of predation

the unicellular phenotype displaces multicelled phenotypes [30]. This suggests that there

would be strong selection for unicellular revertants from nascent multicellular organisms if

the environment were to shift in such a way that groups of cells were no longer favored. How

then is multicellularity stabilized in the face of this threat?

Questions of the evolutionary stability of major transitions have long been considered of
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key importance [2]. Historically, evolutionary conflict between lower and higher levels of

selection have been regarded as the largest threat to nascent higher-level entities [12, 52, 32].

During the transition to multicellularity, for example, the focus has been on explaining why

selection among competing cell lineages within a single multicellular entity does not disrupt

the integrity of the group. Indeed, multicellular organisms are rife with the potential for

such conflict, which in animals manifests as cancer [33]. Several mechanisms that limit

within-organism variation, and thus limit the potential for conflict among lower level units,

have evolved in multicellular organisms such as the early sequestration of the germ line [12]

and the evolution of a single-cell bottleneck during development [34, 17, 18]. Other conflict

minimizing strategies, such as greenbeard genes [17, 37] and policing [38, 39], have evolved in

cooperative groups that lack clonal development such as social amoebae and myxobacteria.

In this paper, we focus on how the transition to multicellularity may be stabilized against

evolutionary reversion when environmental conditions change and tip the balance of selection

back in favor of unicellularity. Solving this problem is necessary for the long-term success

of a major transition. There are two ways that evolutionary change can limit the potential

effects of reversion. The first solution we consider is for mutations that are adaptive in

the multicellular context to be disadvantageous in the single-celled context. This could

make reversion less beneficial and maintain selection for group cohesiveness even when the

environment favors unicellularity [40, 41]. Here, we refer to the accumulation of mutations

that have this effect as a “ratcheting” process (and traits that have this property may be

referred to as “ratcheting” traits). Similarly, multicellularity can be stabilized if unicellularity

simply becomes less accessible by mutation. This could happen via deletion of a gene essential

for unicellularity or if the genetic architecture evolves in such a way that it increases the

number of mutations needed to return to the unicellular state. As these processes also limit

the potential effects of reversion, they can also be considered as a form of ratcheting. To

delineate between the two processes we label the accumulation of traits with different fitness

characteristics in uni- and multicellular contexts as “type 1 ratcheting” and the reduction in
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the switch rate between uni- and multicellular states as “type 2 ratcheting”.

Here, we examine both types of ratcheting and their potential to stabilize multicellularity

in environments that fluctuate between selecting for uni- and multicellular states. Through

the use of mathematical models we show that both forms of ratcheting can be effective

on their own under certain conditions. Furthermore, when both types of ratcheting are

permitted there are synergistic effects that increase the stability of multicellularity.

Model

We consider the evolutionary dynamics of a population of genotypes with the capacity to

switch between unicellular/independent (I) cell types and cells that exist as part of multi-

cellular/group states (G cells). While there are many modes by which multicellular groups

grow and reproduce, we choose a more general, cell-level approach. We do not explicitly

model a particular multicellular form or group structure. Rather, we consider the popula-

tion dynamics of I and G cells where the benefit (or cost) of being multicellular manifests

in the fitness values of G cells. So in an environment that favors multicellularity the G cells

have higher fitness than the I cells. This approach eliminates the need to track which G

cells belong to which multicellular organisms.

If there were only one environmental state then either multicellular or unicellular cell

types would have a selective advantage and drive the other extinct. Instead, we assume

that there is an environment that fluctuates between two states: EG and EI . The EI state

favors unicellular I cells and the EG environmental state favors multicellular G cells. When

exposed to either environmental state, cells reproduce until they reach a certain number, N ,

the carrying capacity (N = 105 in this paper). Each reproductive event is chosen randomly

from the current population based on the fitness values of cells. So, if there is an I cell with

fitness ki and two G cells with fitness kg then the probability that the I cell would reproduce

next would be ki
ki+2kg

. The manner in which we simulate population expansion is based on

the Gillespie algorithm [42] and permits simulation of large populations with different fitness
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values and rare, stochastic events such as mutations. After the population reaches carrying

capacity, it experiences a bottleneck whereby a fraction of individuals (102 in this paper) are

chosen randomly from the population to seed growth in the next round/environmental state.

Thus populations experience cycles of expansion to 105 and contraction to 102.

As populations expand, reproductive events allow for chance mutations that change the

fitness value of cells. At the start the fitness values are shown in Table 1, where c is a cost

of being maladapted (c > 0). With each reproduction there is a fixed probability pf ( 10−3

Table 2.1: Initial fitness values

type EG EI

I 1-c 1
G 1 1-c

in this paper) that a cell will gain a mutation that improves its fitness. For simplicity, we

ignore deleterious mutations and consider only beneficial mutations. The maximum fitness

benefit of a mutation, ∆s, is sampled from an exponential distribution with λ = 35 [43].

This is assigned to I cells in EI and G cells in EG. In addition, we assume that there is a

correlation for fitness gaining mutations such that a cell also gains a fraction of this benefit

in the environment to which it is not well-suited. We use a fraction of 1
5

throughout this

paper. Thus, as a result of a single mutation the following fitness values can be obtained in

I or G cells. (Table 2).

Table 2.2: Fitness values after a beneficial mutation

type EG EI

I 1-c+1
5
∆s 1+∆s

G 1+∆s 1-c +1
5
∆s
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At reproduction, there is also a chance that a cell can switch types between I and G cell

types. This occurs randomly with probability ps and is the same for both I to G and G to I

cell switching. We also assume that this probability is fixed and independent of other evolved

traits including fitness increasing mutations– later we relax part of this assumption and allow

ps to evolve. If we assume that the I and G cell switch is independent of fitness-affecting

mutations, it implies that the responsible mechanisms reside at different loci and have no

epistatic interactions with the fitness-affecting mutations.

As a consequence of allowing the cell types to switch, we must track four fitness values:

the EG and EI fitness for the current cell type and the EG and EI fitness for the opposite

cell type should a switch occur. This permits the possibility that a fitness-affecting mutation

in the current cell type may also affect the fitness values of the opposite cell type which

would only manifest following a switch. We consider two possibilities: coupled, contrasting

fitness effects (ratcheting) or uncoupled, independent fitness effects (non-ratcheting). In the

ratcheting case, a beneficial mutation in one cell type has deleterious pleiotropic effects in

the opposite cell type (see Table 3).

Table 2.3: Fitness values after a beneficial mutation with ratcheting

current type EG EI opposite type EG EI

I 1-c+1
5
∆s 1+∆s G 1- ∆s 1-c-∆s

G 1+∆s 1-c +1
5
∆s I 1-c- ∆s 1-∆s

Results: Ratcheting type 1

The first type of ratcheting is when the accumulation of fitness-affecting traits in the multi-

cellular context, i.e. as a G cell, have corresponding negative consequences in the I cell form.

Without ratcheting, as G cells improve in fitness in environment EG there are no effects for
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(a)

(b) With ratcheting type 1 mutations

Without ratcheting type 1 mutations

Figure 2.1: Schematic showing the effects of evolution in an EG environment on the
fitness of I and G cells in environments EG and EI . (a) Evolution of G cells in an EG

environment leads to increased fitness in both EG and EI environments, though the effect is smaller
in EI . These fitness changes have no consequences on the fitness of I cells in either environment.
(b) The addition of ratcheting effects couples increases in G cell fitness with decreases in I cell
fitness in both EI and EG. Ultimately, the effect is that the relative advantage of I cells (derived
from G cells by mutation) in EI is significantly decreased while the relative advantage of G cells in
EG is increased.
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the I cells (see (a) in Figure 1). When compared to systems that evolve with ratcheting traits

(see (b) in Figure 1), there are two key differences: 1. the selective benefit of being a G cell in

an EG environment increases and 2. the selective cost of being a G cell in an EI environment

decreases. As a result of the first effect, G cells progressively outcompete unicellular types

driving them from the population. The second effect acts to stabilize the multicellular form

because it reduces the fitness benefit of being unicellular in an EI environment. Should the

environment switch from an EG state to an EI state, it will take longer for unicellular I cells

to overtake a population of multicellular G cells.

To observe the stabilizing effect of ratcheting traits, we simulated the evolution of popu-

lations grown in an EG environment for different periods of time that were then switched

to an EI environment. We then determined the time it took for the I cell types to occupy

99% of the population (see Figure 2). The longer populations were exposed to the EG envi-

ronment, the more ratcheting traits they accumulated and the longer it took for I cells to

reach numerical dominance. Populations that spent too little time in EG did not accumulate

enough ratcheting traits to stabilize the multicellular form. Since the strength of ratcheting

depends on the remaining fitness gap between G and I cells in EI , it depends on factors

that influence this– such as the distribution of fitness effects for beneficial mutations and the

initial fitness difference between types. If there is a larger initial gap in fitnesses between I

and G cells and mutations tend to confer little advantage then it takes longer to reduce the

fitness gap by a meaningful amount. In our model, if we increase the initial fitness difference

from .1 to .5 then we find that the time frame and population size examined here are not

enough to show a difference between evolution with and without ratcheting traits (data not

shown). Inversely, an increase in the carrying capacity or the bottleneck size affords more

opportunity to gain ratcheting mutations and have them fix in a population.

A more extreme form of ratcheting can occur if I cells lose fitness in EI until G cells are

fitter (see Figure 3). In this case, once a sufficient number of mutations have occurred there

is no longer a selective advantage to producing I cells in any environment. Even if G cells
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were to revert to unicellular I cells, they would be quickly outcompeted. While this type

of ratcheting might seem unlikely, it may be quite common. For example, the evolution of

mutualistic interdependence among cells, a common trait in complex multicellular organisms,

may result in extremely steep costs of reversion in which single cells lack the capacity to

survive autonomously.

Results: Ratcheting type 2

Another way that organisms can become ratcheted in a multicellular form is if the switch

from G cells to I cells becomes less accessible by mutation, or if a switch is no longer possible.

Such a decrease in switch rate could arise as a pleiotropic consequence of mutations that are

adaptive in the multicellular context, analogous to the type 1 ratcheting case. Alternatively,

when growing and evolving in an EG environment (where G cells have a fitness advantage), it

could be independently advantageous to lower the rate of switching back to I cells– assuming

that this trait is evolvable. To demonstrate this latter possibility, we consider a simple

model with discrete time steps (see Eqn 2.1). During each time step, G cells reproduce and

with probability p produce I cells. Also during the time step, a smaller fraction of I cells

reproduce– the c term is the reproductive cost for being an I cell in an EG environment. For

simplicity we do not permit I cells to switch back into G cells– this removes higher order

terms that include the unlikely event that a cell switches between G and I forms upon every

reproduction.

Gt+1 = Gt + (1− p)Gt (2.1)

It+1 = It + (1− c)It + (p)Gt

The total population of cells at time t can be solved analytically (see Eqn. 2.2).

It +Gt = (2− c)tI0 +
p(2− c)t − c(2− p)t

p− c
G0 (2.2)
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(a) (b)

(c)

Figure 2.2: Ratcheting type 1 increases the stability of multicellularity. (a) The duration of
G cells in an EI environment is shown as a function of the duration of growth in the EG environment.
Each point is the median of 100 simulations. If type 1 ratcheting mutations do not occur (red) then
the duration in EG has only a small effect on the stability of multicellularity by removing all pre-
existing I cells from the population. In contrast, if ratcheting type 1 mutations occur (blue) there
is a much larger increase in the stability of the multicellular form. Increased duration of growth in
EG leads to increased accumulation of ratcheting traits and greater multicellular stability. (b) An
empirical cumulative distribution function plot shows the effect of the duration of growth in EG

on the variation in the persistence of multicellularity when ratcheting mutations occur. Depending
on the magnitude and number of ratcheting mutations that fix in the population, the stability of
multicellularity can be 3-5 times greater than the median. (c) For comparison, a similar plot is
shown when there are no ratcheting mutations.
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(a) (b)

(c)

Figure 2.3: The case when I cells become less fit than G cells in the EI environment.
(a) As a result of G cells evolving in an EG environment, the evolution of ratcheting traits drive
the fitness of I cells in EI below G cells. (b) The consequence of this is that once such mutations
fix, there is no selective benefit for G cells to revert back to I cells even when grown in an EI

environment. The time it takes for I cells to occupy 99% of the population is shown by the blue
curve. Each point is the median of 100 simulations. Simulations were run for only 300 rounds so
a value of 300 means that G cells are still dominant for the entire duration of the simulation. For
comparison, the red curve shows the case without type 1 ratcheting mutations. (c) An empirical
cumulative distribution function plot shows the variation in the stability of multicellularity for
different durations of growth in EG. The value of each curve at 300 shows the percentage of
simulations in which I cells eventually dominated the population. Those that do not reach 100
correspond to simulations in which G cells remained dominant.



37

Whenever c > 0, i.e. there is a cost to being an I cell and Eqn. 2.2 is a decreasing function

over the range p ∈ [0, 1]. The rate of population growth is at a maximum when p = 0, i.e.

when G cells stop switching to I cells (this is readily apparent for the extreme case of c = 2

where Eqn. 2.2 reduces to It +Gt = 2(2− p)t−1G0). Thus, with prolonged growth in the EG

environment, it is advantageous for multicellular cells to decrease the rate of switching to

unicellular types. We can see this in our simulation model with prolonged growth in the EG

environment assuming cells can switch bidirectionally between G and I types. The average

population switch rate from G to I (and vice versa) decreases with time when grown in the

same environment (see Figure 4). Cells initially switch with probability p = .1 and evolve

to switch a hundred fold less frequently, at p = .001. In theory populations could do better

to switch less often than p = .001 but the relative benefit is much smaller compared to the

difference between p = .1 and p = .001 and a population size of 105, i.e. the benefit of slower

switching declines as p approaches 0.

Results: Combining types

Each type of ratcheting has particular conditions that make it more successful. The type 1

form of ratcheting relies on the accumulation of mutations that lower the fitness gap between

G and I cells in the EI environment. As a consequence, the effectiveness of this type of

ratcheting depends on the distribution of mutations and the initial gap in fitnesses that must

be overcome. If there is a small fitness gap and beneficial mutations are common then type 1

ratcheting can quickly decrease the benefit of being unicellular in the EI environment. This,

in turn, improves the evolutionary stability of the multicellular form should the environment

switch from EG to EI . If, instead, there is a large fitness gap and beneficial mutations of

sizable effect are rare then type 1 ratcheting may not be effective without prolonged time

or opportunity to gain mutations in the EG environment. While large fitness gaps between

I and G cells may limit the effectiveness of type 1 ratcheting, they are conducive to type

2 ratcheting. A large fitness gap imposes a significant cost on producing the maladapted
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Figure 2.4: Selection for lower probability of switching. The probability of switching between
I and G cells is shown as a function of the number of rounds grown in EG. Each curve is the median
of 10 evolved simulations and colors correspond to different c values– fitness differences between I
and G cells– such that blue is c = .1, red is c = .2, and black is c = .9. All populations evolve lower
probabilities of switching, starting at p = 10−1 and evolving close to p = 10−3 which is the same
value as the probability that a mutation changes the probability of switching.
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phenotypes in the wrong environment and can generate selection to reduce the switch rate.

In contrast, smaller fitness gaps reduce the selective pressure– which is the opposite case

for type 1 ratcheting. Thus, because the two types of ratcheting are suited to different

conditions, we expect that in a single selective environment one type of ratcheting will be

more effective and, therefore, more likely to occur than the other.

Although the types of ratcheting are better suited to different environmental conditions,

there can be a synergistic effect such that one type of ratcheting changes the selective con-

ditions to promote the other type of ratcheting. We consider a fluctuating environment that

cycles between EG and EI after a fixed period of growth in each: ng reproductive genera-

tions in EG and ni reproductive generations in EI . Eqn. 2.3 shows the population dynamics

for growth in both environments with fitness differences cg and ci between G and I cells

(cg, ci ≥ 0) in EG and EI environmental states, respectively.

(1− ci)(1− p) + 1 p

(1− ci)p 1 + (1− p)

ni
1 + (1− p) (1− cg)p

p (1− cg)(1− p) + 1

ng
Gt

It

 =

Gt+ng+ni

It+ng+ni


(2.3)

If the two periods are equal, ni = ng and the benefit of being I in EI is the same as being

G in EG (cg = ci), then a non-zero, switch rate, p, maximizes growth of the collective I and

G cells (see blue curve in Figure 5). The exact value of the optimal switch rate depends on

the particular duration in each environmental state– the longer the duration the slower the

switch rate that maximizes growth. When ni, ng = 10 there is selection for a high switch

rate, close to p ≈ 0.2, between I and G cells. In such a case, evolution of the switch rate

would not generate type 2 ratcheting. If, however, a G cell were to gain a type 1 ratcheting

mutation that creates an asymmetry in fitness such that cg > ci then the benefit of being G

in EG would be greater than the benefit of being I in EI . This fitness asymmetry creates

selective pressure to lower the switch rate. Figure 5 shows that larger fitness asymmetries

result in stronger selection against high rates of switching. Thus, the acquisition of type 1

ratcheting mutations can create the selective conditions that drive the evolution of type 2
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ratcheting.

Alternatively type 2 ratcheting can increase the probability of gaining type 1 ratcheting

mutations. A key factor for the effectiveness of type 1 ratcheting is the time it takes to

gain a mutation that can decrease the fitness gap between G and I cells in EI . Increasing

the number of G cell reproductive events can improve the odds of finding such a mutation–

especially if the fitness gap is large. To this end, type 2 ratcheting can help by decreasing the

switch rate between G and I cells and thereby giving G cells more reproductive opportunities

to obtain a useful type 1 ratcheting mutation. If the fitness gap to overcome is c then the

chances of getting a beneficial mutation of c or higher within n reproductive events and a

mutation rate of m is 1− (1− eλc)nm, where λ is the rate parameter for the distribution of

beneficial mutations. As the fitness gap increases, the usefulness of decreasing the switch

rate, i.e. type 2 ratcheting, increases (see Figure 6). Indeed, type 2 ratcheting can improve

the odds of finding a beneficial mutation to overcome c = .5 by a factor of 2.4 and c = .75

by a factor of 3.

Discussion

A confluence of evidence suggests that simple multicellularity is relatively easy to evolve, but

it is also susceptible to loss due to reversion when environmental conditions change. The

simple model presented here illustrates two possible solutions to the problem of reversion

(referred to here as ratcheting type 1 and type 2). In ratcheting type 1, we explore the

evolution of traits that increase fitness in the multicellular context and decrease fitness in

the unicellular context. As expected, with more time spent in an environment that favors

multicellularity (EG) there is fixation of a greater number of ratcheting type 1 mutations.

Accumulation of these mutations decreases the selective advantage of a multicellular (G) to

unicellular (I) reversion mutation should the environment switch to favor unicellularity (EI).

This makes it more difficult for unicellularity to re-invade and increases the chances that the

multicellular form can survive until the environment switches back to favor multicellularity
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(a) (b)

Figure 2.5: Combining ratcheting types. (a) Type 1 ratcheting can promote type 2 ratcheting.
The fraction of maximal growth rate, as determined by the largest eigenvalues of Eqn. 2.3, is shown
as a function of the switch rate p for different values of ci (cg is fixed at .1). The blue curve shows
that when cg = ci = .1 the optimal switch rate is p ≈ 0.5. When cg > ci, as a consequence of
ratcheting type 1 mutations, then the optimal switch rate is p < 10−6. The red (ci = .07), green
(ci = .05), and black (ci = .01) curves show that as the fitness asymmetry increases there is stronger
selection against switching frequently. (b) Type 2 ratcheting can promote type 1 ratcheting. The
probability of finding a beneficial mutation to overcome a fitness gap of c is shown as a function
of the switch rate p for different values of c. Each curve represents a different fitness gap (blue
is c = .1, red is c = .2, green is c = .3, and black is c = .5) and is scaled by the probability of
finding a beneficial mutation when p = 1, i.e. the worst case scenario. Thus, the vertical axis
shows the factor of improvement when switching is lowered from p = 1. The chance of finding a
beneficial mutation to overcome c increases as the switch rate is lowered, which can result from
type 2 ratcheting.
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again. In ratcheting type 2, the reversion probability itself can evolve. With more time spent

in the EG environment, there is a selective benefit to decreasing the switch rate– reducing

the likelihood of a a G to I reversion mutation. Although the conditions that select for each

type of ratcheting are different, we found that one type of ratcheting can alter conditions to

promote the other type of ratcheting and increase the stability of the multicellular state.

This work highlights the types of traits that stabilize a major evolutionary transition

against reversion to a previous form/lower level. In the case of multicellularity, these traits

increase fitness in the multicellular context and decrease it in the unicellular context. We

speculate that traits with such an effect could be common during the early stages of a

major transition because the only requirement is that they be disadvantageous outside of

a multicellular context. A putative example of a trait with a ratcheting effect has been

identified in a yeast model of multicellularity where selection for rapid settling in liquid media

resulted in the evolution of multicellular clusters [32]. In independent replicate populations,

researchers have repeatedly observed the evolution of elevated rates of apoptosis– a trait

which is presumably maladaptive in the unicellular context. Mathematical modeling suggests

that elevated rates of apoptosis may benefit cells in large multicellular clusters by decreasing

cluster size [44]. Smaller clusters face less volumetric and nutrient flow limitations and

allow populations to grow faster. In the volvocine green algae, a model system for the

evolution of multicellularity with species that range from unicellular to large multicellular

spherical colonies, it has been suggested that changes in the regulation of growth or in the

number of successive (palintomic) cell divisions that cells undergo could be early targets for

adaptation to a primitive multicellular life cycle [40, 45]. If the optimal regulation of these

traits for small colonial forms differs from that of the unicellular form, these traits could also

behave as evolutionary ratchets. However, the distribution of ratcheting mutations is an

empirical question that can only be addressed with more data. Ideally, future experimental

work could assess the fitness effects of candidate ratcheting traits by performing controlled

pairwise competitions where the presence of the trait of interest is manipulated in both the
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multicellular and unicellular context.

While ratcheting traits may act to stabilize some forms of multicellularity, there are other

forms in which ratcheting traits would be detrimental. In this paper, we have been assuming

that once organisms make the transition to multicellularity they no longer require a persistent

unicellular form. Yet, some multicellular life cycles require alternation between unicellular

and multicellular life stages [30]. For instance, the slime mold Dictyostelium discoideum

regularly switches between free-living unicellular amoeba and multicellular slugs. The multi-

cellular form acts as a type of stress response that is triggered when resources are depleted.

It allows D. discoideum to find new environments with abundant resources. However, D.

discoideum cannot reap any benefits without reverting back to the unicellular form because

colonization only takes place as spores that generate free-living amoeba. As a consequence

of this mutual reliance on types, ratcheting into either form would be detrimental to D.

discoideum and other organisms that rely on plasticity. It is interesting to consider whether

organisms that rely on plasticity to shift between uni- and multicellular forms have different

evolutionary trajectories than those that break the plasticity to stabilize the multicellular

state.

Discussions of a major transition in evolution are rarely without mention of a shift in

the level of selection. Often times this distinction is made in terms of MLS1 and MLS2

theory [47]: with MLS1 being used to describe the early stages of the transition where the

fitness of the group is a function of the fitness of its component parts and MLS2 applying

to cases where group fitness can no longer be defined in terms of its component parts. The

latter typically signifies that a successful transition has been made [48, 49] and that groups

themselves now exist as Darwinian individuals (that is, they exhibit variation, heredity, and

differences in reproductive success [50]). One aspect of our modeling approach that has

interesting implications is that we did not explicitly model multicellular groups or their

reproduction. As such, the fitness of groups only acts indirectly in our model via the fitness

of G cells, without assigning G cells to particular multicellular groups. This suggests that
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the stabilizing effects we observe due to the accumulation of ratcheting traits could apply

during the early (MLS1) as well as the late (MLS2) stages of a major evolutionary transition.

However, we do not provide a mechanistic explanation for how and why such traits would

be favored by natural selection.

An important limitation to our modeling approach is the lack of specificity in considering

the multicellular form. We adopted a general model in which unicellular I and multicellular

G cells compete in the same niche and the success of multicellularity is defined by the fitness

and frequency of G cells without regard to how they interact with the environment or each

other. Yet, the benefits of multicellularity are often derived from the spatial structure of

the multicellular group. For example, multicellular yeast are capable of growing at low

density in media containing the sugar sucrose, which they break down extracellularly into

monosaccharides (glucose and fructose) that can be easily imported into the cell. Without the

benefit of group metabolism generating high concentrations of consumable sugars, solitary

cells are unable to grow [19, 23]. Not only can the spatial structure imposed by a group

of cells underlie the benefit of multicellularity, it can influence the evolution of novel traits

[44, 19, 51] and may play a role in determining the likelihood of reversion. Structures that

impose reproductive division of labor or physical barriers to cells abandoning groups may

inhibit reversion and stabilize multicellularity. In contrast, more flexible spatial structures

such as the wrinkly mats in the P. fluorescens experimental system permit frequent reversions

to unicellularity [26, 27, 28]. Although the specific reasons that multicellular groups benefit

in the EG environment will depend on the details of the system under study, our models

do not consider the causal link between multicellular form and fitness. Instead, we identify

general conditions under which mutations limiting evolutionary reversion to unicellularity

can evolve.

In this paper, we explore how adaptations that limit the potential effects of evolutionary

reversion may stabilize nascent major evolutionary transitions. Using the evolution of mul-

ticellularity from unicellular ancestors as an example, we allowed for two types of mutations
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to occur in our model: mutations that are beneficial in the multicellular context but dele-

terious in the unicellular context and mutations that affect the rate at which cells switch

from the multicellular to the unicellular state. The evolution of these “ratcheting” traits

may also play a key role in facilitating the evolution of increased complexity. By limiting

the rate that unicellular revertants are produced (type 2) and the benefit of reversion (type

1), ratcheting mutations ensure that selection has sufficient time to act in the higher-level

context, allowing lineages in the early stages of a major evolutionary transition opportunities

to evolve increased complexity (i.e., functional integration, division of labor, etc.) via the

gradual accumulation of novel traits that improve fitness in this higher-level context. By

stabilizing the earliest steps in an evolutionary transition in individuality, ratcheting traits

may provide a simple and robust stepping stone on the path towards increased biological

complexity.

Data accessibility

Sample computer code is provided as supplementary material. Additional data and code are

available upon request.

Competing interests

We have no competing interests.

Author contributions

EL, WR, PC, & BK conceived of the study and designed the research agenda. EL conducted

the modeling and analyzed the data. All authors helped draft the manuscript and gave final

approval for publication.



46

Acknowledgments

The authors thank Ricard Solé and Eörs Szathmáry for organizing the working group and

theme issue on “The major synthetic evolutionary transitions”.

Funding

This work was supported by NASA Exobiology Award #NNX15AR33G and the National Sci-

ence Foundation under Cooperative Agreement Number DBI-0939454. PLC was supported

by a National Science Foundation Graduate Research Fellowship under Grant Number DGE-

1256082.



47

BIBLIOGRAPHY

[1] Buss LW. 1987 The evolution of individuality. Princeton, N.J. : Princeton University
Press.

[2] Smith JM & Szathmary E. 1995 The major transitions in evolution. Oxford, UK: Oxford
University Press.

[3] Michod RE & Roze D. 1999 Cooperation and conflict in the evolution of individual-
ity. III. Transitions in the unit of fitness. In Mathematical and Computational Biology:
Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution (ed. CL
Nehaniv (Ed.), pp. 47-92. Providence, Rhode Island: American Mathematical Society.

[4] Kirk DL. 2005 A twelve-step program for evolving multicellularity and a division of
labor. BioEssays 27, 299–310.

[5] Grosberg RK & Strathmann RR. 2007 The evolution of multicellularity: A minor major
transition? Annual Review of Ecology, Evolution, and Systematics 38, 621–654.

[6] Schirrmeister BE, Anisimova M, Antonelli A, & Bagheri HC. 2011 Evolution of
cyanobacterial morphotypes: Taxa required for improved phylogenomic approaches.
Communicative & Integrative Biology 4(4), 424–427.

[7] El Albani A, Bengtson S, Canfield D. E, Bekker A, Macchiarelli R, et al.. 2010 Large
colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago.
Nature 466: 100–104.

[8] Butterfield NJ. 2000 Bangiomorpha pubescens n. gen., n. sp.: implications for the evo-
lution of sex, multicellularity, and the Mesoproterozoic/ Neoproterozoic radiation of
eukaryotes. Paleobiology 26: 386–404.

[9] King N. 2004 The unicellular ancestry of animal development. Developmental cell 7:
313–325.

[10] Bonner JT. 1998 The origins of multicellularity. Integrative Biology: Issues, News, and
Reviews 1: 27–36.



48

[11] Herron MD, Hackett JD, Aylward FO & Michod RE. 2009 Triassic origin and early
radiation of multicellular volvocine algae. Proc Natl Acad Sci USA 106: 3254–3258.

[12] Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, Fitzhugh W et al..
The genome of M. acetivorans reveals extensive metabolic and physiological diversity.
Genome Res. 2002; 12:532-42.

[13] Bonner JT. 2001 First Signals: The Evolution of Multicellular Development. Princeton,
N.J. : Princeton University Press.

[14] Stanley SM. 1973 An ecological theory for the sudden origin of multicellular life in the
late Precambrian. Proc Natl Acad Sci USA 70: 1486–1489.

[15] Kessin RH, Gundersen GG, Zaydfudim V, Grimson M. 1996 How cellular slime molds
evade nematodes. Proc Natl Acad Sci USA 93: 4857–4861.

[16] Boraas M, Seale D, Boxhorn J. 1998 Phagotrophy by a flagellate selects for colonial
prey: a possible origin of multicellularity. Evol Ecol 12: 153–164.

[17] Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD,
Jansen A, Prevost MC, Latgé J-P, Fink GR, Foster KR & Verstrepen KJ. 2008 FLO1
Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast.
Cell 135: 726–737.

[18] Pfeiffer T & Bonhoeffer S. 2003 An evolutionary scenario for the transition to undiffer-
entiated multicellularity. Proc Natl Acad Sci USA 100: 1095–1098.

[19] Koschwanez JH, Foster KR & Murray A. 2011 Sucrose Utilization in Budding Yeast as
a Model for the Origin of Undifferentiated Multicellularity. PLoS Biol 9(8): e1001122.

[20] Biernaskie JM & West SA. 2015 Cooperation, clumping and the evolution of multicel-
lularity. Proc Biol Sci. 282(1813): 20151075.

[21] Becks L, Ellner SP, Jones LE & Hairston Jr. NG. 2010. Reduction of adaptive genetic
diversity radically alters eco-evolutionary community dynamics.Ecol. Lett. 13: 989–997.

[22] Ratcliff WC, Denison RF, Borrello M & Travisano M. 2012 Experimental evolution of
multicellularity Proc Natl Acad Sci USA 109: 1595–1600.

[23] Koschwanez JH, Foster KR & Murray A. 2013 Improved use of a public good selects for
the evolution of undifferentiated multicellularity. eLife 2:e00367.



49

[24] Ratcliff WC, Herron M, Howell K, Pentz J, Rosenzweig F & Travisano M. 2013 Exper-
imental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas
reinhardtii. Nature Communications 4: 2742.

[25] Ratcliff WC, Fankhauser JF, Rogers D, Greig D & Travisano M. 2015 Origins of multi-
cellular evolvability in snowflake yeast. Nature Communications 6: 6102.

[26] Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB. 2002 Adaptive divergence in
experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases
of wrinkly spreader fitness. Genetics 161(1):33–46.

[27] Rainey PB, Rainey K. 2003 Evolution of cooperation and conflict in experimental bac-
terial populations. Nature 425(4): 72–74.

[28] McDonald MJ, Gehrig SM, Meintjes PL, Zhang XX, Rainey PB. 2009 Adaptive diver-
gence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints
guide evolutionary trajectories in a parallel adaptive radiation. Genetics 183(3):1041–
1053.

[29] Lavrentovich MO, Koschwanez JH, Nelson DR. 2013 Nutrient shielding in clusters of
cells. Phys Rev E Stat Nonlin Soft Matter Phys. 87(6): 062703.

[30] Yokota K & Sterner RW. 2011. Trade-offs limiting the evolution of coloniality: ecological
displacement rates used to measure small costs. Proc. Biol. Sci. 278: 458–463.

[31] Simpson C. 2011. How many levels are there? How insights from evolutionary transi-
tions in individuality help measure the hierarchical complexity of life. In, The Major
Transitions in Evolution Revisited, Brett Calcott & Kim Sterelny eds. MIT Press.

[32] Michod RE. 1996 Cooperation and conflict in the evolution of individuality. II. Conflict
mediation. Proc Biol Sci. 263(1372):813–22.

[33] Nunney L. 1999 Lineage selection and the evolution of multistage carcinogenesis. Proc.R.
Sci. London Ser B 266: 493–498.

[34] Kondrashov AS. 1994. Mutation load under vegetative reproduction and cytoplasmic
inheritance Genetics 137: 311–318.

[35] Grosberg RK & Strathmann RR. 1998 One cell, two cell, red cell, blue cell: the persis-
tence of a unicellular stage in multicellular life histories. Trends Ecol. Evol. 13: 112–116.



50

[36] Roze D & Michod RE. 2001 Mutation, multilevel selection, and the evolution of propag-
ule size during the origin of multicellularity. Am. Nat. 158: 638–654.

[37] Queller DC, Ponte E, Bozzaro S & Strassmann JE. 2003 Single gene greenbeard effects
in the social amoeba Dictyostelium discoideum. Science 299: 105–106.

[38] Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A & Shaulsky G. 2009
Cheater-resistance is not futile. Nature 461: 980–982.

[39] Manhes P & Velicer GJ. 2011 Experimental evolution of selfish policing in social bacteria.
Proc. Natl Acad. Sci. USA 108: 8357–8362.

[40] Shelton DE & Michod RE. 2014 Group Selection and Group Adaptation During a Major
Evolutionary Transition: Insights from the Evolution of Multicellularity in the Volvocine
Algae. Biological Theory 9 (4):452–469.

[41] Libby E & Ratcliff WC. 2014 Ratcheting the evolution of multicellularity. Science
346(6208): 426–427.

[42] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys
Chem 81: 2340–2361.

[43] Gerrish PJ & Lenski RE. 1998 The fate of competing beneficial mutations in an asexual
population. Genetica 102/103(0): 127–144.

[44] Libby E, Ratcliff WC, Travisano M & Kerr B. 2014 Geometry shapes evolution of early
multicellularity. PLoS Computational Biology 10(9): e1003803, 1–12.

[45] Maliet O, Shelton DE, & Michod RE. 2015 A model for the origin of group reproduction
during the evolutionary transition to multicellularity. Biology Letters 11: 20150157.

[46] Libby E & Rainey PB. 2013 A conceptual framework for the evolutionary origins of
multicellularity. Phys Biol. 10(3): 035001.

[47] Damuth J & Heisler IL. 1988 Alternative formulations of multilevel selection. Biol. Phi-
los. 3: 407–430.

[48] Okasha S. 2005 Multilevel Selection and the Major Transitions in Evolution. Philosophy
of Science 72: 1013–1025.

[49] Michod RE & Nedelcu AM. 2003 On the reorganization of fitness during evolutionary
transitions in individuality. Integr. Comp. Biol. 43: 64–73.



51

[50] Godfrey-Smith P. 2009 Darwinian Populations and Natural Selection. Oxford Univ.
Press, New York.

[51] Conlin PL & Ratcliff WC. 2016 Trade-offs Drive the Evolution of Increased Complexity
in Nascent Multicellular Digital Organisms. In, Multicellularity: Origins and Evolution,
Karl Niklas & Stuart Newman eds. MIT Press.



52

Chapter 3

NASCENT LIFE CYCLES AND THE EMERGENCE OF
HIGHER-LEVEL INDIVIDUALITY

William C. Ratcliff1,∗ Matthew Herron1 Peter L. Conlin2 Eric Libby3

1Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, United States

of America
2Department of Biology and BEACON Center for the Study of Evolution in Action,

University of Washington, Seattle, WA 98195, United States of America
3Santa Fe Institute, Santa Fe, NM 87501, United States of America

∗ corresponding author, email: will.ratcliff@biology.gatech.edu

Keywords: multicellularity | life cycles | major transition | evolution | ratcheting



53

Abstract

Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms

evolve to become parts of a new, ‘higher-level’ organism. One of the first major hurdles

that must be overcome during an ETI is the emergence of Darwinian evolvability in the

higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in

the lower-level unit (e.g. individual cells). Here we examine how simple higher-level life

cycles are a key innovation during an ETI, allowing this transfer of fitness to occur ‘for free’.

Specifically, we show how novel life cycles can arise and lead to the origin of higher-level

individuals by i) mitigating conflicts between levels of selection, ii) engendering the expression

of heritable higher-level traits, and iii) allowing selection to efficiently act on these emergent

higher-level traits. Further, we compute how canonical early life cycles vary in their ability

to fix beneficial mutations via mathematical modeling. Life cycles that lack a persistent

lower-level stage and develop clonally are far more likely to fix ‘ratcheting’ mutations that

limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an

evolutionary transition in individuality, nascent higher-level life cycles may play a crucial

role in the origin of complex life.

Introduction

Few biological phenomena have created more scope for evolutionary innovation than the

creation of new ‘levels of selection’, and the resulting rise of new types of biological indi-

viduals. All known organisms that populate Earth today are the result of at least one such

Evolutionary Transition in Individuality (ETI [1, 2]). Notable ETIs include the origin of

membrane-bounded protocells encapsulating chemical replicators, the aggregation of genetic

replicators into chromosomes, the domain-spanning symbiotic origins of eukaryotic cells, the

origin of multicellular organisms from unicellular ancestors, and the evolution of colonial

‘super-organisms’ from solitary multicellular organisms [2]. Like layers to an onion, Earth’s
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organisms maintain the signature of their multi-level evolutionary history.

Despite the profound differences in these evolutionary transitions, they appear to proceed

in an analogous manner. Extant individuals (e.g. single-celled organisms) first form a new

unit of selection—this typically occurs through tight spatial coupling between cooperating

individuals in a collective (e.g. a cluster of cells). Increased complexity subsequently arises as

the result of adaptation taking place in collective-level traits, not in the traits of the lower-

level individuals [2]. Such a shift in evolutionary process would appear to be susceptible

to evolutionary conflict, with contrasting Darwinian dynamics playing out at the lower-

and higher-levels. Indeed, lower-level units would appear to have numerous advantages,

including a shorter generation time, a larger population size, and greater trait heritability.

This rationale will sound familiar to many evolutionary biologists, as it forms the core of the

argument made against group selection since the 1960s [3, 4].

Unfortunately for ETIs, it gets worse. Perhaps the largest obstacle they must overcome is

an organizational asymmetry. Lower-level units tend to be fully-fledged organisms that have

long been evolving as the primary unit of selection, gaining adaptations that enhance fitness

at their organismal level. In fact, some philosophers consider this to be a defining feature of

biological individuality [5, 6], though it is important to remember that not all traits that are

beneficial at level X are the result of selection acting at level X [7]—they may have arisen

through non-adaptive means. In the terminology of Godfrey-Smith, ‘Darwinian individuals’

are the members of populations that are capable of adaptive evolution, i.e. those that

possess heritable variation in traits that affect fitness [5, 8]. Their long history as Darwinian

individuals gives lower-level units ample opportunity to evolve traits that make them more

effective Darwinian individuals (e.g. by increasing robustness [9, 10] and evolvability [11], or

by mitigating conflicts between levels of selection [2, 12, 13]), while novel collectives have no

such advantage. Thus, during an ETI, novel collectives face a daunting challenge: they must

overcome these systemic biases in favor of lower-level adaptation in order for the higher-level

unit to be the ‘dominant’ Darwinian individual. Interestingly, it appears very difficult to
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fully remove the potential for Darwinian individuality from an entity that once had it: cells

in multicellular organisms readily mutate and grow in an unchecked manner, causing cancer

[14], non-functional mitochondria take over yeast cells when given the opportunity [15], and

‘selfish’ genetic elements reproduce at the rest of the genome’s expense [16]. Still, in each

case, the balance of selection, and corresponding adaptation, is clearly on the higher-level

individual.

In this paper, we examine how nascent life cycles arise and drive the origin of new biolog-

ical individuals. We examine how critical elements of the life cycle necessary to satisfy the

Darwinian algorithm arise ‘for free’ as a side effect of physical interactions among particles

within the collective. Specifically, we focus on how collectives gain the capacity to act as

Darwinian individuals: that is, how heritable collective-level traits emerge from particle-level

traits, and how key elements of the life cycle potentiate collective-level evolvability. We ex-

amine the role of life cycles in collective-level adaptation by modeling the spread of beneficial

mutations across various life cycles. Finally, we examine how mutations that epistatically

increase collective-level fitness while reducing the fitness of particles can de-Darwinize lower-

level units, reinforcing the ETI. Taken together, we demonstrate that biological consortia

readily form, grow, and reproduce in a manner that catalyzes the emergence of higher-level

individuals, facilitate selection for beneficial mutations at this new biological level, and can

fix mutations that stabilize the ETI by stripping lower level units of their evolutionary au-

tonomy.

Life cycles

For conceptual and empirical simplicity, we will focus on the transition from uni- to multi-

cellularity, but our arguments should apply to other ETIs that occur through an analogous

process of multilevel selection (e.g. symbiosis or the evolution of super-organisms). Life

cycles in well-established multicellular organisms (e.g. plants and animals) describe the pro-

cess through which individuals grow and reproduce. Similarly, we may describe the process
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through which any multicellular collective forms, grows and reproduces as its ‘life cycle’, even

if the collective is not organismal (e.g. a bacterial biofilm).

One of the most important consequences of nascent life cycles is the extent to which they

partition cellular variation among groups [17]. Life cycles that reduce within-group genetic

diversity and increase between-group diversity help establish the collective as a Darwinian

individual in a number of key ways (Box 1). While there are many routes through which

microbial collectives form and reproduce, there are two key elements that affect within-group

genetic diversity: 1) Is growth clonal, or do growing collectives merge or incorporate cells

from other lineages? 2) How genetically diverse are propagules? The latter depends both

on propagule size (smaller propagules are less diverse) [18] and on the physical structure

of cells within collectives. Multicellular clusters that develop clonally via branching (such

as filamentous bacteria or snowflake yeast) spatially partition genetic variation, so even

multicellular propagules generated by fragmentation tend to have low genetic diversity [19].

Box 1. The importance of limiting within-collective variation.

“We designate something as an organism, not because it is n steps up on the ladder of

life, but because it is a consolidated unit of design, the focal point where lines of adaptation

converge. It is where history has conspired to make between-unit selection efficacious and

within-unit selection impotent.” -David Queller, 1997 [20]

Life cycles that strongly partition genetic variation (e.g. through clonal development

and a unicellular bottleneck in ontogeny) help make among-collective selection efficacious

through three key steps: 1) Limiting the potential for evolutionary conflict between levels

of selection. Within-collective cellular evolution cannot occur if there are no heritable

differences among those cells for selection to act on. 2) Facilitating the emergence of heri-

table multicellular traits. When the cells in a collective are genetically identical, selection
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on multicellular traits may correspond directly with genes affecting those multicellular

traits. Within-collective genetic diversity should lower the heritability of multicellular

traits if the genetic composition of collectives changes across generations (the logic here

is identical to why epistatic variation does not contribute to standard measures of narrow

sense heritability). 3) Increasing among-collective variation, accelerating collective-level

adaptation. As long as cellular genotypes produce heritable multicellular phenotypes,

then the variance of collective-level traits in the population will be maximized when each

group is formed by a single genotype. Applying Fisher’s fundamental theorem [21], this

accelerates collective-level adaptation. Taken together, life cycles that limit within-group

genetic diversity should produce more effective Darwinian individuals.

Extant microbes display an extensive variety of nascent multicellular life cycles. While

a comprehensive review is beyond the scope of this paper, we will examine several repre-

sentative examples (Figure 1). Perhaps the most ubiquitous multicellular collectives formed

by microbes are biofilms. There are many ways to form a biofilm [22, 23], but in general,

they require the production of adhesive polymers. When biofilms grow by aggregation and

reproduce via multicellular propagules (Figure 1), it is difficult for selection to act on biofilm-

level traits, as this growth form leaves them susceptible to within-group genetic conflict and

reduces the heritability of collective-level traits [19, 24]. One notable exception is that of

Pseudomonas fluorescens ‘wrinkly spreaders’. In free-swimming Pseudomonas, mutations

cause the bacteria to begin producing a cell-cell adhesive [25]. This wrinkly spreader mu-

tant then forms a multicellular mat at the air-water interface through clonal division, and

produces unicellular propagules when mutations cease production of the cellular adhesive.

In principle, this life cycle includes single-cell bottlenecks at each life stage transition (dic-

tated by the mutational steps that alternate between unicellular and multicellular growth),

and experimental work shows that it is capable of multicellular adaptation [26]. Although

initially unstable, due to a reliance on de novo mutations to complete the multicellular life
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cycle, the formation of such a ‘proto-life cycle’ may set the stage for developmental control

which could arise via an epigenetic mechanism that enables switching between multicellular

and unicellular states [26, 27, 28, 29, 30, 31].

Experimentally-evolved ‘snowflake’ yeast have an obligately multicellular life cycle, caused

by a loss-of-function mutation at the gene ACE2 [19]. As a result, daughter cells remain

attached to mother cells after mitosis, forming a fractal-like branched growth form. Propag-

ules are produced whenever a cell-cell connection is severed. Despite the rarity of unicellular

propagules [32], the physical structure of snowflake yeast introduces regular genetic bottle-

necks, as every cell in a propagule is clonally derived from the cell at its base (Figure 1) [19].

Simple multicellular traits, such as cluster size, are highly heritable (H2 = 0.84) [19], and

snowflake yeast readily respond to multicellular selection [32, 33].

Figure 3.1: Nascent microbial multicellular life cycles in extant microrganisms.

The volvocine green algae and their unicellular relatives possess a cell cycle that has

decoupled growth and reproduction. Individual cells grow, sometimes many times larger than

their starting size, then rapidly divide to produce 2, 4, or 8 daughter cells [34]. In unicellular
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Chlamydomonas, daughter cells can remain attached after division, forming multicellular

palmelloids [35]. Regardless of whether these collectives disperse via unicells or small clusters

of cells, each dispersing unit experiences a unicellular genetic bottleneck (Figure 1).

The transition to a multicellular life cycle in the volvocine algae appears to have occurred

primarily through the co-option of existing genes rather than through the origin of de novo

genes [36, 37]. Genomic comparisons among unicellular C. reinhardtii, undifferentiated Go-

nium pectorale, and germ/soma differentiated V. carteri show that few genes are uniquely

shared between G. pectorale and V. carteri, i.e. that few genes are specific to the multicellu-

lar members of the clade [36]. Direct experimental evidence of the importance of co-option

comes from a complementation experiment: replacement of the cell cycle regulator mat3, a

retinoblastoma homolog, with the G. pectorale version of the gene causes C. reinhardtii to

form colonies of 2–16 cells [36]. Thus a change to the coding sequence of a cell cycle regulator

is sufficient to cause a shift to a multicellular life cycle.

Choanoflagellates are a group of unicellular and colony-forming aquatic eukaryotes. They

have generated intense interest among evolutionary biologists because they are the closest

known living unicellular relatives of animals [38]. Some species possess extensive develop-

mental plasticity, switching between unicellular and multicellular growth ([39]). Multicellular

rosettes typically develop from unicells via clonal reproduction [40], but these bottlenecks

are not strict, as rosettes can generate additional rosettes via multicellular propagules [39].

While genetic conflict is rightfully seen as a major impediment to ETIs, the above examples

demonstrate that diverse microbes readily form collectives with little within-group genetic

diversity. In the case of small, relatively short-lived collectives such as these, clonal devel-

opment and regular genetic bottlenecks should be sufficient to maintain this low diversity

state, largely immunizing them from within-collective genetic conflict. Conflict, of course,

is not the only issue ETIs face: in the next section, we examine how heritable multicellular

traits emerge from the properties of cells.
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Origin of higher-level traits: volvocine algae as a case study

Individuals have traits, and adaptive phenotypic change results from selection on those traits.

The outcome of an ETI is a new kind of individual, which has traits that did not exist before

the transition. Selection on these novel traits results in adaptations at the new, higher level,

but where do the new traits come from?

A Volvox colony (or spheroid), for example, has a diameter, a behavioral response to light,

and an anterior-posterior polarity. A Volvox cell, and for that matter a Chlamydomonas cell,

has these traits as well, but in each case the colony-level trait is not the cell-level trait. In

the most recent unicellular ancestor of Volvox, these traits were defined at the cell level, but

in Volvox we can define them at both the cell level and the colony level. Somehow, during

the transition from a unicellular to a multicellular life cycle, the colony-level traits came into

existence. How did these new traits arise, and how are their values determined?

The initial transition to a multicellular life cycle necessarily begins with some mechanism

of keeping (or bringing) cells together [41, 42]. In the volvocine algae, this was accomplished

through modifications to the cell wall that resulted in the formation of an extracellular matrix

[43, 44]. The resulting colonies may have been similar to those of the modern Basichlamys

[45], in which four Chlamydomonas-like cells are held together by a common extracellular

matrix.

By forming simple multicellular structures, the ancestors of Basichlamys acquired traits

that are defined at the colony level, such as colony diameter and number of cells. In McShea’s

[46] terminology, they underwent an increase in hierarchical object complexity, adding an

additional hierarchical level (the colony) while retaining all those nested within it (the cell

and lower levels). The new, colony-level traits could conceivably affect fitness and vary in

heritable ways, thus meeting Lewontin’s criteria for adaptive evolution [8]. Colony diameter

is meaningless in the context of unicells. Although unicells have a cell number, they have no

heritable variation in cell number. The formation of multicellular structures automatically
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generates new traits that are potentially capable of adaptive evolution.

In both cases, these traits are simple functions of cell-level traits. Colony cell number

(N) is determined by the number of rounds of cell division (n) each cell undergoes to form

a daughter colony: N = 2n. The colony-level trait N potentially meets Lewontin’s criteria

for adaptive evolution, but it is completely and uniquely determined by the cell-level trait

n. Genetic variation in n generates genetic variation in N, which is potentially subject to

selection, for example if small N colonies reproduce more quickly than large N colonies.

Colony diameter (D) is also potentially subject to selection, for example, if a gape-limited

predator preferentially consumes colonies smaller than a threshold diameter. For a spheroidal

colony such as Eudorina, D is a function of n, cell volume (v), and the volume of extracellular

matrix produced by each cell (e): D = 2 3

√
n(v+e)

4π
. Genetic variation in n, v, and/or e

generates genetic variation in D. The colony-level trait D is completely determined by the

cell-level traits, but different combinations of n, v, and e values can generate the same value

of D.

Colony diameter and cell number are colony-level traits that come into existence as a

necessary consequence of the transition to a multicellular life cycle. Although they are simple

functions of cell-level traits, neither is defined at the cell level. Rather, they emerge from

the properties of the cells. These colony-level traits have the potential to meet Lewontin’s

criteria for evolution by natural selection at the colony level, and we can expect that selection

on the colony-level traits will drive adaptive change in the colony-level traits (provided there

is genetic variation).

The functions relating colony diameter and cell number to cell-level traits are among the

simplest such functions possible. We now consider a colony-level trait whose relationship

to cell-level traits is more complicated and more difficult to define. In the volvocine family

Volvocaceae, which includes Volvox and a number of smaller spheroidal genera, the process

of embryogenesis includes a complete inversion of the developing daughter colony. After cell

division, the flagella of the cells are oriented toward the inside of the colony, a situation not
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conducive to efficient motility. Over the course of an hour or so, the embryos turn themselves

inside-out, moving the flagella to the outside surface of the colony.

Although the details of the inversion process vary among Volvocaceaean species, the funda-

mentals are similar. Inversion involves a combination of changes in cell shape and movements

of the cytoplasmic bridges that connect cells during embryogenesis [47]. Cells elongate to

become spindle-shaped, and the cytoplasmic bridges migrate to the narrow ends of the cells,

causing local changes in the curvature of the cell sheet. These changes propagate through the

embryo in a spatially and temporally coordinated wave, eventually reversing the curvature

of the entire cell sheet and inverting the embryo.

How this process is coordinated is not known; cells could be responding to mechanical

signals (e.g. stresses from local curvature) [48] or to chemical signals transmitted through

the cytoplasmic bridges. Regardless, inversion is driven by cell-level developmental pro-

cesses, possibly influenced by plastic responses to local environmental cues. In principle, the

colony-level process of inversion could be described as a function of cell-level traits, with

arguments possibly including the degree of cell elongation, the number of cytoplasmic con-

nections formed by each cell, and the shapes of reaction norms describing cellular responses

to mechanical or chemical signals. The likely complexity of such a function does not change

the fact that the colony-level process of inversion is entirely controlled by cell-level traits.

The analogous functions underlying many colony-level traits will be even more complex

and even inscrutable. They may include signaling, positional information, feedbacks, and

more complicated cell-cell interactions. However, their obscurity and complexity do not

imply their nonexistence. Traits of multicellular organisms must emerge from the traits of

their cells; there is no other source.

Heritability of higher-level traits

Predicting the magnitude of a response to selection requires estimates of both the strength

of selection and the heritability of the trait under selection. This relationship is expressed
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in the breeder’s equation of quantitative genetics: R = h2S, where R is the response to

selection (the difference between mean trait value before and after selection), h2 is the narrow-

sense heritability, and S is the selection differential. Narrow-sense heritability is the ratio

of additive genetic variance to total phenotypic variance [49], i.e. V ar(A)/V ar(P ). In

addition to additive genetic variance, the denominator may include environmental effects

and the effects of dominance, epistasis (interactions among genes), genotype by environment

interactions, maternal effects, etc.

For asexual reproduction, the appropriate expression uses broad-sense heritability H2,

[49]: R = H2S. Broad-sense heritability is the ratio of total genetic variance to total

phenotypic variance: V ar(G)/V ar(P ). In this case genetic effects that are not additive

(dominance, epistasis, etc.) are included in the numerator. Because these effects persist in

subsequent generations in asexual reproduction, broad-sense heritability, rather than narrow-

sense heritability, correctly predicts the response to selection in this case.

Both forms of the breeder’s equation succinctly capture the basic insight that heritability

is just as important as the strength of selection in predicting the magnitude of a response

to selection. This is important for any process that involves multilevel selection. Regardless

of the strength of selection on a collective-level trait, no adaptive response is possible unless

there is heritable variation in the collective-level trait.

Since colony-level traits are functions of cell-level traits, the heritability of colony-level

traits can, in principle, be related to that of cell-level traits. For complex functions, esti-

mating this relationship may be intractable, but for simple functions it can be calculated.

Herron and Ratcliff derived an analytical solution for the relationship between cell-level and

collective-level heritability for traits for which the colony-level trait is a linear function of

the cell-level traits [50]. Under reasonable assumptions, the heritability of a collective-level

trait is never less than that of the cell-level trait to which it is linearly related. This asym-

metry is driven by an advantage groups have over cells: emergent group-level traits depend

on the sum of constituent cell phenotypes, which cancels out (by averaging) much of the
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heritability-lowering effects of cellular phenotypic noise. For more complicated functions re-

lating cell-level to colony-level traits, collective-level heritability is higher under most (but

not all) conditions [50].

A crucial assumption underlying these models is that the development of collectives is

clonal, i.e. that particles reproduce asexually within a collective. This roughly corresponds

to Queller’s ‘fraternal’ major transitions (Tarnita’s ‘staying together’), in which collectives

consist of genetically similar (or identical) particles [20, 42, 51], and it characterizes most

multicellular organisms. Land plants, animals, multicellular fungi, red algae, Ulvophyte and

Chlorophyte green algae, and brown algae develop clonally.

Clonal development ensures that within-collective genetic variability is low; the only source

of such variability is de novo mutations during development. For a particular trait, especially

for small collectives (as are likely early in a transition), it will usually be zero. Nevertheless,

phenotypic variability among particles within a collective is inevitable, as stochastic and

micro-environmental effects will influence particle phenotypes (both sources of non-genetic

variation are treated as ‘environmental’ components in quantitative genetics models). As

long as phenotypic variability is randomly distributed around the genetic mean, though,

collectives benefit from an averaging effect, which reduces their non-heritable phenotypic

variation relative to the particles that comprise them [50].

Although collective-level heritability has sometimes been considered a hurdle that must be

overcome during an ETI [1, 52], these results show that it comes ‘for free’ when development

is clonal [50]. Heritability of collective-level traits does not have to ‘arise’ during the transi-

tion to a multicellular life cycle (given clonal development)—it must necessarily exist if the

underlying cell-level traits are heritable. This is likely true for other ‘fraternal’ transitions

as well.

Next, we quantitatively examine how nascent multicellular life cycles affect the ability

for evolutionary innovation. Specifically, we examine the spread of beneficial mutations

across three canonical simple multicellular life cycles and consider the implications of key
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differences.

The spread of a beneficial mutation across different life cycles

The structure of a life cycle may affect its capacity to harness beneficial mutations. To

explore this idea we introduce a modeling framework that enables direct comparison of the

fixation dynamics of beneficial mutations within different nascent multicellular life cycles

(see Figure 3.2). In each life cycle, we assume that a mutation arises in a single group during

the group stage of a multicellular life cycle. For life cycles that alternate between group and

single cell stages, we assume that the mutation occurs right at the end of the group stage so

that it begins at some low frequency x0 within the single cell population. For the life cycle

that forgoes a unicellular stage, we assume that, for comparison, the mutation occurs in a

group of size N at relative frequency x0. In each case, we compute the relative frequency of

the mutation in the group’s lineage over the course of many life cycles.

The beneficial aspect of a mutation can potentially occur at two levels: cell and group. At

the cell level, a beneficial mutation may increase the frequency of the mutant in a population

of single cells or within the group depending on the structure of the life cycle. At the group

level, the mutation may improve the ability for the group to leave offspring. To explore these

different aspects and potential interactions between them, we use two parameters: sc and sg

that correspond to the fitness benefit conferred to cells and groups. In the following sections

we determine how a beneficial mutation spreads in three canonical multicellular life cycles.

Model: Aggregative life cycle

To compute the spreading dynamics of a beneficial mutation in the aggregative life cycle, we

split the life cycle into three phases: 1) growth as single cells, 2) formation of aggregates,

and 3) survival of aggregates followed by the release of single cells.

During the unicellular phase, cells reproduce, causing the population to expand. We
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Figure 3.2: Schematics of canonical early microbial multicellular life cycles. We depict

three multicellular life cycles in which groups of cells replicate. The top two life cycles alternate

between unicellular and multicellular stages. The primary difference between them is how they

form groups. In the aggregative group life cycle, cells form groups through random binding similar

to flocculating yeast. The groups eventually dissociate, releasing cells so as return to the unicellular

phase. In the clonal development alternating life cycle, groups are formed from single cells, similar

to the formation of wrinkly mats by smooth cells in the Pseudomonas fluorescens experimental

system [25]. Groups release single cells, usually through a phenotypic switch, indicated by the box

and circle shaped cells. Finally, there is the strictly multicellular life cycle in which there is no

unicellular phase. Cells reproduce within groups and groups eventually split into smaller groups,

similar to snowflake yeast [32].
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assume that if there is a benefit during this phase, i.e. sc > 0, then the relative frequency

of the mutants should increase in the population. So if the mutants start at a certain

proportion, x0, in the population then they will increase to x1 by the end of this first phase

where x1 > x0. The new proportion will depend on many factors including x0, sc, and

the population growth structure. For simplicity, we assume that the new proportion x1 is

a simple function of x0 and sc, called fc(x0, sc), where fc(x0, sc) = (1 + sc)x0/(1 + scx0).

This form of fc(x0, sc) follows from a simple model of an exponentially growing population;

Eqn.3.1 shows the derivation of fc(x, sc) where λ is the growth rate of non-mutant single

cells and we assume that esct = (1 + sc). We use the assumption that esct = (1 + sc) so

that the relative frequency of the mutant compared to the non-mutants increases by 1 + sc.

Choosing this time enables us to more easily compare between sc and sg. We could choose a

different time but would then need to rescale sg so that their effects would be comparable.

x0e
(λ+sc)t

x0e(λ+sc)t + (1− x0)eλt
=

x0e
sct

x0esct + (1− x0)
=

x0(1 + sc)

x0(1 + sc) + (1− x0)
=

(1 + sc)x0

(1 + scx0)
(3.1)

After the single cell growth phase, there is an aggregation phase. We assume that cells

randomly aggregate to form groups of size N . If we assume that the populations of mutants

and non-mutants are very large, then the binomial distribution approximates the distribution

of aggregates with different proportions of mutants. Thus, a group with proportion x = i/N

of mutants has probability
(
N
i

)
xi
1(1− x1)

N−i of forming, which we denote as p(x;N, x1) for

x ∈ [0/N, 1/N, . . . , N/N ] and 0 otherwise.

In the last phase, aggregates compete for survival so as to release single cells and complete

the life cycle. For simplicity, we assume that cells do not reproduce while in the aggregate

phase. If the mutation confers a fitness benefit to the group, i.e. sg > 0, then this benefit

increases the ability of the group to release single cells, either via increased fecundity or

increased survival. We do not need to specify the precise mechanism by which the mutation

confers a benefit. Instead, we only need a measure of fitness that can be used to translate

the distribution of groups with different proportions of mutants p(x;N, x1) into a scalar



68

corresponding to the population proportion of single-celled mutants, x0. To this end, we

define a group fitness function fg(x) that assumes the fitness of groups only depends on the

frequency of the mutant within the group and groups with higher proportions of mutants are

fitter. We assign a group that only contains mutants, x = 1, with fitness fg(1) = 1+sg while

a group that has no mutants, x = 0, with fitness fg(0) = 1. For intermediate proportions we

consider a simple linear fitness function: fg(x) = 1+ sgx. The new population proportion of

the mutant following this final phase is simply:
∫ 1
0 xfg(x)p(x;N,x1)∂x∫ 1
0 fg(x)p(x;N,x1)∂x

where the denominator is

a normalization term.

Eqn. 3.2 shows the combined effect on the population proportion of the mutant (x0 → x′
0)

after the three phases of the life cycle.

x′
0 =

∫ 1

0
xfg(x)p(x;N, fc(x0, sc))∂x∫ 1

0
fg(x)p(x;N, fc(x0, sc))∂x

(3.2)

Model: Alternating life cycle (clonal development)

We can determine the spreading dynamics of a beneficial mutation in the alternating life

cycle with clonal development by using a similar approach as before with the aggregative life

cycle. Again, we split the life cycle into three phases: 1) growth as single cells, 2) formation

of groups, and 3) survival of groups so as to release single cells. The approaches for phases

1 and 3 are the same as with the aggregative life style. The main difference is in the second

phase where groups are formed.

In the aggregative life cycle, groups form randomly such that different types of chimeras

are possible. In the case with clonal development, all groups grow from a single cell. This

means that there are no chimeric groups and there are only two possibilities: groups with

x = 0 and groups with x = 1. The proportion of groups with x = 1 and x = 0 is the same

as the proportion of mutant and non-mutant cells in the population, respectively. As before,

we use the function p to characterize the distribution of groups. We omit the parameter N
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for group size since it has no effect in the context of this life cycle. The result is p(x;x1)

where p(1;x1) = x1, p(0;x1) = 1−x1, and p(x;x1) = 0 for 0 < x < 1. We note that although

there is growth during the group stage we assume that the function fg, as described in the

aggregative life cycle, adequately encapsulates the combined process of growth in the group

stage and selection on groups in the alternating life cycle with clonal development.

Model: Strictly multicellular life cycle

In the strictly multicellular life cycle there is no unicellular phase. Instead groups of cells

grow and reproduce via fission. Nonetheless, we can adopt a similar approach to that used

to model the two alternating life cycles. Again, we break the life cycle into three phases

analogous to the other life cycles: 1. growth within the group, 2. group fission, and 3. group

survival.

In the previous life cycles, we were able to model the spreading dynamics of a beneficial

mutation via x0, the proportion of mutants in the general population. However, in the

strictly multicellular life cycle cells are always members of groups and their distribution

across groups may be important to the spreading dynamics. Thus, we use P (x) to track the

relative frequency of groups with different proportions of mutants, e.g. P (0) is the proportion

of groups with no mutants. If the groups are the same size then we can relate the proportion

of mutants across all cells to the distribution across groups through x0 =
∫ 1

0
xP (x)∂x.

The actual structure of the group plays a key role in determining the spread of a beneficial

mutation in the same way that population structure does in the other models. It is outside

the scope of this paper, however, to consider the gamut of group morphologies. So for

simplicity, we will only consider the simplest (and one of the earliest-evolving, within the

cyanobacteria) life cycles: a linear cellular filament. Cells are each connected in linear chains

and all cells can reproduce. Eventually filaments fragment into smaller filaments and thereby

complete the life cycle (see Figure 3.3). For simplicity, we assume that a beneficial mutation

occurs at a terminal cell in a group of size N . As a consequence, all new mutant cells will be
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connected to each other and only the original mutant will be connected to a wild type cell.

sc > 0 sc < 0sc > 0 sc < 0sc > 0 sc < 0sc > 0 sc < 0sc > 0 sc < 0sc > 0 sc < 0

Figure 3.3: Filament reproduction. Filaments reproduce through binary fission. The mutant

(red) increases in relative frequency within the filament when sc > 0 and decreases when sc < 0. In

either case, because the mutant increases in absolute numbers this can lead to offspring filaments

with high proportions of mutants.

The manner in which cells grow within the filament makes it difficult to apply both the

same form of fc(x, sc) from Eqn.3.1 and its underlying theoretical framework. Since mutant

and non-mutant cells reproduce at different rates, if all groups reproduce via fission after

some fixed time then the filaments will be of different lengths. Moreover, depending on the

choices for parameters, the length of one type of filament (either mutant or non-mutant)

would perpetually increase or decrease. To circumvent this issue, we consider two cases:

one that uses the same form as fc(x, sc) as in the other models and one that uses the same

underlying theoretical model. For the first case, we assume that the fragments all grow to

reach the same size prior to fragmentation, at which point they all reproduce simultaneously.

During the growth phase of the filaments, the proportion of mutants in a group increases

according to fc(x, sc) from Eqn.3.1. While this model is directly comparable to the other life

cycles, it invokes a mechanism other than simple exponential growth. For the second case,

we assume that the cells are all growing exponentially and filaments reproduce whenever

they reach a size N—this will occur at different times for mutant and non-mutant filaments.
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The different time scales for the life cycles of non-mutants and mutants means that group

reproduction will not be synchronous and so the methodology must be modified. As a result

the spreading dynamics are not directly comparable to the two alternating life cycles. The

mutation can still fix in the population even when sc < 0 but the analysis is more involved

and thus considered in the Supplementary material.

Following growth within filaments, there is a second phase of the life cycle in which groups

reproduce through fission. We assume that the filament breaks evenly such that all new

filaments are the same size. So if the filament splits into k smaller filaments, then every 1/kth

segment of the large filament is a group offspring. This process results in three possible types

of offspring depending on the proportions and the number of offspring: homogeneous with

all non-mutant cells, homogeneous with all mutant cells, and one possible heterogeneous

filament. If the mutant makes up proportion x1 of a large filament then the number of

homogeneous mutant offspring filaments are ⌊kx1⌋ (or floor(kx1), which returns the largest

preceding integer to kx1). Similarly the number of homogeneous non-mutant filaments is

⌊k(1 − x1)⌋. If x1 cannot be divided evenly by 1/k then there is a heterogeneous filament

that contains proportion (kx1 − ⌊kx1⌋)/(kx1 − ⌊kx1⌋ + k(1 − x1) − ⌊k(1 − x1)⌋) which we

label x̂x1 . We define a distribution function pG(x;x1, k) that describes the fraction of group

offspring with mutant proportion x produced by a group with mutant proportion x1. Eqn.

3.3 shows the possible values of pG(x;x1, k). We use a subscript G to denote that this p

function is different in character from the previous ones. Here, pG describes the distribution

of types of groups following fission from a single type of group, while the previous p functions

described the distribution of types of groups in the population.

pG(x;x1, k)



⌊kx1⌋/k, for x = 1

⌊k(1− x1)⌋/k, for x = 0

1/k, for x = x̂x1

0, otherwise

(3.3)
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The third and last phase of the life cycle has groups with different distributions of mutants

competing for survival and reproduction. We can apply the same functional form, fg(x), as

used earlier in the other life cycles. The effect of the life cycle on the distribution of groups

is shown in Eqn. 3.4. The primary difference in form from Eqn. 3.2 is a consequence of the

shift in focus from x0 to P (x).

P ′(x) =
∫ 1
0 fg(x)pG(x;fc(x̃,sc),k))P (x̃)∂x̃∫ 1

0

∫ 1
0 fg(x)pG(x;fc(x̃,sc),k))P (x̃)∂x̃∂x

(3.4)

x′
0 =

∫ 1
0 x

∫ 1
0 fg(x)pG(x;fc(x̃,sc),k))P (x̃)∂x̃∂x∫ 1

0

∫ 1
0 fg(x)pG(x;fc(x̃,sc),k))P (x̃)∂x̃∂x

Comparison of spreading dynamics

With our modeling framework, we can now directly compare the spread of mutations in

different life cycles. Figure 3.4 shows the spreading dynamics for mutations with different

values of sc, sg > 0 (see Figure S3 for a broader set of parameter sweeps). In all cases, the

mutation spreads the fastest in the alternating life cycle with clonal development. Between

the other two life cycles, the mutation spreads faster in the aggregative life cycle in 3 of the

4 cases corresponding to sc ≥ sg. One reason the mutation spreads slowest in the strictly

multicellular life cycle is the manner of the sc fitness benefit. The sc benefit manifests such

that the mutant has a competitive advantage to the wild type. This is important in life cycles

with a unicellular phase because the different cell types are in direct competition as single

cells. In the strictly multicellular life cycle, the cell types are only in direct competition within

heterogeneous groups. Since heterogeneous groups (filaments) make up a small proportion

of the population, the sc advantage is effectively masked. Interestingly, the heterogeneity

of groups explains why the mutation spreads slower in the aggregative life cycle than the

alternating clonal life cycle. The heterogeneity of aggregative groups dilutes the sg benefit

of the mutation and inhibits its spread.
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Figure 3.4: Spreading dynamics of mutations beneficial to both cells and groups in

different life cycles. The plots show the proportion of the mutation in a population as a function

of the number of rounds through different life cycles for different values of sc > 0 and sg > 0. The

aggregative life cycles are shown in the red area (spanning N = 5 to N = 100), the alternating

clonal life cycle is in black, and the strictly multicellular life cycles are in the blue area (spanning

k = 2 to k = 50). In all cases the mutation spreads fastest in the alternating clonal life cycle. When

sg ≤ sc the mutation spreads faster in the aggregative life cycle than the strictly multicellular life

cycle.
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Figure 3.5: Spreading dynamics of mutations beneficial for groups but deleterious for

cells in different life cycles. The plots show the proportion of the mutation in a population as

a function of the number of rounds through different life cycles for different values of sc < 0 and

sg > 0. The coloring is the same as in Fig. 3.4. In all cases the mutation spreads fastest in the

strictly multicellular life cycle. It does not spread in the aggregative life cycle and only spreads in

the alternating clonal life cycle when sg > −sc.
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If we compare the spread of a mutation that has opposite group-level and cell-level effects,

i.e. sg > 0, sc < 0, then we find different spreading dynamics. These mutations spread fastest

in the strictly multicellular life cycle (Figure 3.5; see Figure S4 for a broader set of parameter

sweeps). This is a result of the same phenomenon that made sc > 0 mutations spread more

slowly: this life cycle is shielded from the effects of cell-level fitness, which in this case is

negative. As a result, mutations that improve group-level fitness can spread even when

they are costly to the fitness of individuals cells. This mutation is generally prevented from

spreading when the life cycle includes a unicellular stage: it never spreads in the aggregative

life cycle and did so only in the clonal life cycle when sg > −sc, sg > 0. While the sg > −sc

mutation should confer a net benefit, selection could only act on it in the clonal life cycle

where group-level fitness benefits were not shared with non-mutant competitors cells.

The evolutionary stability of multicellularity

Mutations where sc < 0 and sg > 0 are of particular interest because they may act to

increase the stability of the multicellular collective and facilitate the evolution of increased

multicellular complexity [53, 54]. The reason for this can be seen by imagining the fitness

effect of such a mutation if that genotype were to revert to a purely unicellular lifestyle (this

is similar to the ‘counterfactual fitness’ approach developed by Shelton and Michod [53]).

With the group context eliminated, competition occurs in a way analogous to phase 1 of

the aggregative life cycle with a global population of cells multiplying according to Eqn.1.

In such a scenario, the beneficial effects of sg never manifest and mutant cells with sc < 0

would be expected to be driven extinct. This differs from the case of uniformly beneficial

mutations (where sc, sg > 0) because even if a genotype were to revert back to unicellularity

it would have fitness higher than its ancestor.

Libby et al. (2016) previously studied the effect of mutations that are beneficial in the

multicellular context but deleterious in the unicellular context, which they referred to as

”ratcheting” mutations, in populations of genotypes that could switch between unicellular
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and multicellular states [55]. They found that longer periods of time spent in an environment

favoring multicellularity led to the fixation of more ratcheting mutations; this made it more

difficult for groups to revert to unicellularity even when environmental conditions favored

single cells. Furthermore, the fixation of ratcheting mutations was shown to favor lower rates

of switching between multicellular and unicellular states. Which suggests that ratcheting

mutations can promote further commitment to the multicellular lifestyle. However, this

study did not consider alternating multicellular life cycles, and the deleterious consequences

of the ratcheting mutations did not manifest unless a mutation caused reversion back to

unicellularity.

Here we find that the spreading dynamics of ratcheting mutations (sc < 0 and sg > 0) vary

dramatically depending on the details of the multicellular life cycle. Strictly multicellular

life cycles are able to fix ratcheting mutations for some value of k under all conditions tested

in which sg > 0 (Figures S2 and S4). Alternating clonal life cycles can also fix ratcheting

mutations, but only under restrictive conditions (where sg > −sc and sg > 0). Clonality

appears to be essential for the spread of ratcheting mutations, as we did not observe their

spread in the aggregative life cycle under any of the conditions tested. However, we note the

possibility that mutations exhibiting magnitude epistasis (where sc, sg ≥ 0 and sg >> sc)

could also behave in a ratchet-like manner, although this would not result in cells that are

maladapted in the unicellular phase. Collectively, our modeling suggests that ratcheting

mutations fix most easily in clonally-developing life cycles that do not exhibit a persistent

unicellular phase, which is consistent with the observation that all lineages that have evolved

complex multicellularity (e.g. metazoans, plants, brown algae, and large multicellular fungi)

possess this life cycle [62].

Summary / concluding remarks

One of the most astonishing facts about life on Earth is the remarkable fluidity of biological

individuality: life, since its inception more than 3.5 billion years ago, has experimented
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endlessly with novel collaborations, some of which have resulted in new kinds of organism

and paved the way for transformative adaptive radiations. These Evolutionary Transitions in

Individuality (ETIs) have been surprisingly common, occurring repeatedly in diverse lineages

[2]. In this paper, we examine how simple, emergent life cycles can provide a critical scaffold

supporting an ETI during its fragile beginning.

At least in principle, ETIs would appear to be exceptionally restrictive. During an ETI,

novel collectives must form and become the focal point of adaptation while not being undone

by adaptations occurring among lower-level units. This is challenging, because lower-level

units should possess numerous evolutionary advantages (i.e. larger population size, shorter

generation time, direct expression of traits that are heritable, and prior adaptations that

enhance evolvability). Using the transition to multicellularity as a model to explore ETIs

in general, we find that the structure of nascent multicellular life cycles can mitigate these

factors.

Life cycles that restrict within-group genetic variation through frequent cellular bottle-

necks and clonal development evolve readily in diverse taxa (e.g. Figure 1), in some cases

(e.g., Pseudomonas [25], snowflake yeast [19], and unicellular relatives of volvocine algae [36])

through a single mutation. These life cycles limit the potential for within-group evolution

and facilitate the emergence of heritable multicellular traits (Box 1). As a result, selection

shifts to the higher level, efficiently acting on mutations that increase multicellular fitness,

even if these mutations reduce single-cell fitness (Figure 5) and can restrict the lineage’s

ability to revert back to strict unicellularity. Given sufficient time, the accumulation of

‘ratcheting’ mutations can erode cellular autonomy and transform cells into mere parts of

the multicellular individual. Taken together, it appears trivially easy for unicellular organ-

isms to form multicellular collectives that grow and reproduce in a manner that is ideal for

spurring an ETI.

We are not the first to note that multicelluarity appears to evolve readily—Grosberg and

Strathmann (2007) labeled it a ‘minor major transition’ [56], but our life-cycle focused results
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provide additional insight into how and why multicellularity has evolved so many times. Our

argument also extends beyond multicellularity, applying to any ETI that evolves through

the creation of a new level of selection. The same features that make a multicellular life

cycle efficacious at spurring an ETI (Box 1) apply to the origins of cells, super-organisms,

and novel organisms emerging from symbiosis. For example, monogamy is ancestral to euso-

cial hymenopterans [57], super-organismal siphonophores are composed of clonal individual

animals [58], and the symbiotic origins of cellular plastids occurs readily when symbionts are

vertically transmitted [59] (a process facilitated by a uniparental bottleneck at fertilization

[60]). While much less is known about the origin of cells, when particle movement between

cells is limited and sub-cellular replicators reproduce mainly through protocellular fission,

this simple life cycle efficiently allows for selection to act on cell-level fitness [61], minimizing

within-cell conflict, improving cell-level heritability, and promoting cell-level adaptation. In

each case, the life cycle involves a strong ontogenetic bottleneck (or, in the case of symbiosis

and protocells, a mechanism that ensures partner fidelity across multiple generations) that

limits the potential for within-collective conflict and increases the heritability of collective-

level traits.

Observations of extant multicellular organisms are consistent with the idea that clonal

development and unicellular bottlenecks facilitate the evolution of complex multicellularity.

All extant clades that have evolved complex multicellularity (in the sense of Knoll [62])

develop clonally and have strong genetic bottlenecks, though not necessarily every generation.

Unfortunately, this hypothesis is difficult to test. Modern life cycles cannot be assumed to

represent ancestral life cycles, and most origins of multicellular life are ancient, with little

or no fossil evidence that illuminates the first steps in the transition. However, an increased

focus on small, soft-bodied, ancient fossils provides reason for optimism that this situation

will improve. Some such fossils are sufficiently abundant that they can be arranged into a

developmental series. For example, the large number of fossils of the red alga Bangiomorpha

preserved at different developmental stages allows a nearly complete re–construction of their
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ontogeny [63]. Our results suggest a prediction: if clonal development and single-celled

bottlenecks are prerequisites for complex multicellularity, we should expect that future fossil

discoveries will show that the ancestors of complex multicellular groups had these traits.

The evolution of complex life on Earth provides us with a model for how complexity might

evolve elsewhere in the Universe. Taking Darwinian evolution as a necessary step for the

origin of life [64], we see no reason that independently-derived replicators would be prevented

from forming collectives characterized by life cycles that potentiate higher-level adaptation,

especially over planetary scales of size and time. While other factors may limit the origin of

complex life [65], the potential for evolutionary innovation is probably not a major constraint.
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Abstract

Phenotypic plasticity, the ability of a single genotype to produce different phenotypes in

response to changes in the environment, is common in nature. Its commonness, however,

should not be taken as an indication that plasticity is necessarily adaptive: Theory suggests

that the adaptive value of plasticity depends on the degree of environmental heterogeneity

and the existence of environmental cues that provide reliable information about selective

conditions. We tested this prediction using experimental evolution. Populations of cluster-

forming “snowflake” yeast were grown in alternating environments with selection for either

small or large size following each 24-hour growth phase. We manipulated cue reliability

(the degree to which environmental cues and selective conditions are correlated) by pairing

selection for small or large cluster size to pairs of growth media environments in different com-

binations. We find that temporally varying selection can favor the evolution of phenotypic

plasticity in experimental populations of snowflake yeast when selection is predictable. When

selection is unpredictable, we find that phenotypic plasticity is frequently lost; populations

evolve flat reaction norms. Furthermore, the adaptive benefits of evolved plasticity under

different regimes of environmental change were shown to be specific to the exact pairs of

growth environment and size selection experienced during the evolution experiment. Micro-

scopic analysis of single-cell morphology revealed a plausible physical mechanism to explain

how plastic changes in cluster size are achieved. These findings support a critical role for

cue reliability in the evolution of phenotypic plasticity and suggest that adaptive phenotypic

plasticity can evolve rapidly.

Introduction

Organisms living in variable environments must contend with changing, often opposing, selec-

tion pressures or risk extinction (Burger and Lynch 1995; Bell and Collins 2008). In order to

buffer against the risk of environmental change, organisms may evolve strategies that ensure
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successful reproduction across a range of environments (Simons 2011). One way to do this

is to be a generalist, producing an intermediate phenotype that performs moderately well in

most environments but excels in none, a strategy also referred to as conservative bet hedging

(Seger and Brockmann 1987). In other cases, it may be advantageous to evolve high variance

in the phenotype under selection so that some proportion of offspring will successfully re-

produce regardless of environmental conditions, a strategy called diversification bet hedging

(Cohen 1966; Seger and Brockmann 1987). Both of the above strategies maximize long-term

fitness in unpredictably changing environments by reducing the variance in fitness across

environments (Slatkin 1974; Seger and Brockmann 1987; Philippi and Seger 1989; Starrfelt

and Kokko 2012). If changing selective conditions are instead predictable, organisms may

evolve to alter their phenotype based on the state of the environment; phenotypic plasticity

may evolve (Scheiner 1993).

Phenotypic plasticity is the ability of a single genotype to produce different phenotypes

in response to changes in the environment (Bradshaw 1965; Via et al. 1995; DeWitt and

Scheiner 2004). Plasticity can occur for almost any phenotype and is found across all levels

of biological complexity. For instance, plants elongate in response to shading (Schmitt et

al. 1999; Smith 2000), water fleas grow protective head shields in the presence of predators

(Dodson 1988; Tollrian 1995), and soil bacteria sporulate in nutrient-poor environments

(López and Kolter 2010). Plasticity may confer an adaptive benefit, as expected in the

examples above, but it can also be maladaptive or neutral (Ghalambor et al. 2007). The

adaptive value of phenotypic plasticity depends on many factors that can be broadly grouped

as either costs or limits of plasticity (Dewitt et al. 1998; Murren et al. 2015). Costs include

any energetic demands associated with the sensory or developmental machinery necessary

for a plastic response whereas limits refer to anything that might lead to the expression

of a maladapted phenotype such as the lag-time between the environmental change and

phenotypic response due to development.

As suggested above, the availability of reliable cues is thought to be a central constraint on
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the evolution of phenotypic plasticity. We define a cue as any environmental factor, biotic

or abiotic, that could be used as a guide for future action (Hasson 1994; Maynard Smith

and Harper 2003). In some cases, the cue can be the same as the environmental factor im-

posing the selective pressure (e.g., upregulating heat shock genes in response to heat stress).

However, it is commonly the case that development of the phenotype must occur before the

organism faces the selective conditions. This type of predictive plasticity is the focus of our

present study. Theory predicts that predictive plasticity should be favored under conditions

when environments fluctuate temporally, environmental cues provide reliable information

about selection, and the costs of plasticity are low (Moran 1992; Tufto 2000; Sultan and

Spencer 2002; Scheiner and Holt 2012). This prediction is supported by the observation that

the degree of plasticity observed in natural populations is positively correlated with environ-

mental heterogeneity (Lind and Johansson 2007; Van Buskirk 2017) and by experiments that

demonstrate a selective advantage of plasticity in response to relevant environmental cues

(Lively 1986; Van Buskirk and Relyea 1998). Similar constraints are thought to apply to the

origin of an adaptive plastic response to a novel environmental cue. However, the extent

to which plasticity can evolve, even under favorable conditions, depends on the availability

of genetic variation (Via and Lande 1985; Scheiner 1993) and the existence of genetic con-

straints, which may depend on the type of environmental factors that covary with selection

(Izem and Kingsolver 2005; Snell-Rood et al. 2010; Murren et al. 2015).

Here we investigate the role of cue reliability on the de novo evolution of phenotypic

plasticity. We experimentally evolved multicellular “snowflake” yeast (Ratcliff et al. 2012)

under alternating growth environments with paired selection for either small or large size

following each 24-hour growth phase. Cue reliability was manipulated by changing the cor-

relation between growth environment and post-growth size selection. Using this approach,

we explored the evolution of plasticity for cluster size under three different cue reliability

regimes. Here we report the rapid evolution of adaptive phenotypic plasticity in response

to divergent selection in alternating growth environments. We present data on the fitness
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effects of evolved plasticity under different regimes of environmental change and discuss

constraints on the evolution of phenotypic plasticity in relation to the complexity of environ-

mental variation. Finally, using microscopic analysis of individual yeast cells, we identified

environment-dependent shifts in an aspect of cellular morphology, cell aspect ratio, that

could serve as the mechanism for plastic changes in cluster size.

Study system

Multicellular ‘snowflake yeast’ clusters were previously evolved from a heterozygous diploid

strain of Saccharomyces cerevisiae under daily selection for rapid sedimentation in liquid

media (Ratcliff et al. 2012). The multicellular phenotype is a consequence of a cell separation

defect caused by a loss-of-function mutation in the transcription factor ACE2 that results in

the formation of multicellular clusters (Nelson et al. 2003; Voth et al. 2005; Oud et al. 2013;

Ratcliff et al. 2015). Snowflake yeast clusters grow via budding of existing cells and reproduce

by fragmentation when internal stresses caused by physical crowding of cells become too

great (Ratcliff et al. 2015; Jacobeen et al. 2017, 2018). As a consequence of fragmentation,

snowflake yeast strains produce a distribution of cluster sizes at the end of a 24-hour growth

cycle in liquid media (Fig. 1a). Interestingly, we found that the distribution of cluster sizes

at the end of a 24-hour growth cycle was variable in different growth environments (evidence

of preexisting plasticity; Fig. 1b) and for different snowflake yeast genotypes (evidence of

GxE interaction; Fig. S1). We discuss all four of the growth environments depicted in Fig.

1b further in the following section.

Experimental evolution and predictions

Populations of snowflake yeast were grown in alternating environments (denoted E1 and E2)

with selection for either small or large size (denoted SS and SL) following each 24-hour growth

phase (Fig. 2a). Briefly, size selection was performed by pre-diluting overnight cultures 1:10

into 900ml of sterile growth media in a 1.5ml microcentrifuge tube and then passaging the
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Figure 4.1: (a) Bright-field image of snowflake yeast clusters. (b) Cluster size distribu-
tions of the ancestral C1W6 genotype after 24-hour growth in different media types.
The standard growth medium for our experiments, Yeast Peptone Dextrose (YPD), is shown in
yellow (top right). Additional growth media types used in our evolution experiment appear in grey:
YPD+1%NaCl, (bottom left) YPD incubated at 33ºC, (bottom right) Synthetic complete (SC)
media. All cluster size measurements done by flow cytometry.
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sample through a sterile nylon mesh filter. For small selection, a 30µm was used and the

flow-through was propagated. For large selection, a 70µm nylon mesh filter was used and

the filter was back-flushed to collect and propagate clusters that were larger than 70µm. A

full description of our size selection protocols can be found in “Methods”. The evolution

experiment was run for a total of 56 transfers. Whole population samples were frozen each

week.

We manipulated cue reliability by pairing selection for small or large size to environments

E1 and E2 with different probabilities to form three “cue reliability regimes” (Fig. 2b). In

our first regime, growth in E1 was always followed by selection for large size and growth in E2

always followed by selection for small size. Because there is perfect correlation between the

growth environment and subsequent size selection, this regime is said to be “predictable”. To

visualize the plastic strategy predicted to evolve under these conditions we use the reaction

norm, a curve that describes the range of phenotypes produced by a given genotype across

a range of environments (Schlichting and Pigliucci 1998). In our case, the phenotype under

investigation is mean cluster size (shown on the y-axis) and the range of environments are

simply E1 and E2 (on the left and right sides of the x-axis, respectively). Clusters should

evolve to be larger in E1 and smaller in E2. Thus, we predict that the evolved reaction

norms will have a negative slope (Fig. 2c, left). Accordingly, we designate this regime

P- (predictable, favoring negatively sloped reaction norms). Our second regime is exactly

the inverse of the P- regime: growth in E1 was always followed by selection for small size

and growth in E2 always followed by selection for large size; we call this the P+ regime

(predictable, favoring positively sloped reaction norms; Fig. 2c, right). For the third cue

reliability regime, the growth environment alternated in the same way as above, but size

selection was random with respect to growth environment. Importantly, selection for small

and large size occurred with equal frequency but in a random order so as to eliminate the

correlation between growth environment and size selection without biasing selection in favor

of one size or the other. We refer to this as the U regime (unpredictable). Here plasticity is
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expected to be unfavorable so we predict a flat reaction norm (Fig. 2c, middle).

To maximize our chances of observing the evolution of phenotypic plasticity, three different

pairs of growth environments were used to form three “cue identity treatments” which we

refer to as ∆Osmolarity, ∆Temperature, and ∆Nutrients. Yeast Peptone Dextrose (YPD: 10

g l−1 yeast extract, 20 g l−1 peptone and 20 g l−1 dextrose) was used as E1 for all three cue

identity pairs. E2 varied according to treatment as follows: In the ∆Osmolarity treatment,

E2A was YPD with an additional 1% NaCl (YPD + 10 g l−1 NaCl). In the ∆Temperature

treatment, E2B was YPD incubated at 33ºC rather than the standard 30ºC. And in the

∆Nutrients treatment, E2C was Synthetic Complete medium (SC: 6.7 g l−1 yeast nitrogen

base with amino acids + 20 g l−1 dextrose).

Results

Mean trait value evolution

Cluster size distributions were measured by flow cytometry twice weekly on consecutive days

to track changes in cluster size over time in environments E1 and E2. We found that the

average size of yeast clusters across both environments E1 and E2 decreased uniformly in

nearly all replicate populations regardless of cue identity or cue reliability treatment (Fig.

S2). This was somewhat expected since the large size filter cutoff of 70 µm is smaller than

the average snowflake yeast cluster of our ancestral strain in most environments. Changes in

mean trait value were least pronounced in the ∆Nutrients treatment where mean trait value

started off much lower.

Reaction norm evolution

At the end of the evolution experiment, four single colony isolates were collected from each of

the 45 evolved populations to characterize evolved reaction norms. Each individual genotype

was then grown for 24 hours in each of the two cue environments it experienced during the
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Figure 4.2: (a) Structure of evolution experiments. E1 and E2 represent cue environments,
and SS and SL represent selective conditions. Environment E2 takes on three different identities in
our experiment that define our three “cue identity” regimes. Environment E2A is shown here for the
purpose of illustration. (b) Cue reliability regimes. Cue reliability regimes are defined by the
associations between growth environment and size selection. Here we highlight the combinations
that occur in each of our three cue reliability treatments: P- (predictable, favoring negative slopes),
U (unpredictable), and P+ (predictable, favoring positive slopes). Each cue-selection pair is color-
coded: E1SL, E2SS in red and E1SS , E2SL in blue. Only four days are shown in the diagram,
but the evolution experiment was run for a total of 56 transfers. (c) Predictions. Qualitatively
different reaction norms are expected to evolve in response to our three cue reliability regimes.
High cue reliability is predicted to lead to phenotypic plasticity while unpredictable environmental
change should select for non-plastic, flat reaction norms.
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evolution experiment and cluster size distributions were measured in triplicate using flow

cytometry (45 samples x 4 single strain isolates x 2 environments x 3 technical replicates for

a total of 1080 measurements). Here we examine the patterns of reaction norm evolution

across all treatments to assess general patterns at the aggregate level and within treatments

to assess cue environment pair specific patterns.

We found significant variation in our evolved isolates for reaction norm slope indicating a

significant effect of cue reliability (Fig. 3a; significant cue identity by cue reliability treat-

ment interaction; mixed effects ANOVA, F=0.007184, p=0.001). Phenotypic plasticity was

maintained under all environments where the slope of the preexisting reaction norm was

expected to be coincidentally adaptive and more frequently lost in the unpredictably fluctu-

ating environment than in either of the predictable ones (reaction norm slopes between -0.1

and 0.1 were considered to be non-plastic; Fisher’s exact test, two-tailed P=0.0072). When

preexisting plasticity was maladaptive, however, we found that the response to selection

varied widely depending on the cue environment pair. We observed the evolution of adap-

tive plasticity from initially maladaptive plasticity in the ∆Nutrients treatment (Fig. 3b).

Because each pair of cue environments in our study is an independent experiment with the

same structure, we perform separate analyses for each cue environment treatment below.

We used generalized linear models to compare differences in the slopes of reaction norms

evolved in different populations and under different cue reliability treatments. We found

statistically significant differences in evolved slopes for 7/9 pairwise comparisons conducted

(indicated by an asterisk, Fig. 3b) and 6/7 significant differences are in the direction pre-

dicted. Most interestingly, reaction norm slopes shifted from negative to positive in 4/5

populations from the ∆Nutrients P+ treatment.

Changes in relative fitness

One pair of cue environments produced results entirely consistent with theoretical predic-

tions, ∆Nutrients. To determine whether the changes in plasticity observed in this treatment
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Figure 4.3: (a) Comparison of evolved reaction norms. Reaction norms illustrate differences
in the way that mean cluster size in the two cue environments has changed after 56 days of evolution.
The ancestral reaction norm for each cue environment pair is shown by the orange dotted line.
Evolved isolates exhibiting a positive slope are colored in blue; neutral in black; negative in red.
(b) Comparison of evolved slopes. These plots highlight two key aspects of the data shown
in Figure 4a, slope and origin of the single colony isolates. Slope = log2(size in E2 / size in E1).
Isolates from different replicate populations are marked with a different symbol. Comparison of
evolved slopes was carried out using linear mixed-effects models with cue reliability treatment as
a fixed factor and variance among isolates derived from replicate populations as random effects
followed by post-hoc Tukey’s pairwise comparisons. An asterisk indicates statistically significant
differences in evolved slopes within a given set of cue environments.
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were adaptive, we performed a set of pairwise competitions (Lenski et al. 1991). We selected

evolved strains from the ∆Nutrients P- and P+ treatments that exhibited either the mini-

mum or maximum reaction norm slopes to get an idea of the range of phenotypes selected

under different cue reliability regimes (Fig. 4a). Each selected strain was labeled with an

inducible fluorescent GFP to enable competitions using the flow cytometer. Selective neu-

trality of the fluorescent markers was confirmed by competing GFP-labeled strains against

an otherwise isogeneic unlabeled strain in the absence of size selection to confirm that there

was no cost associated with the fluorescent marker (Fig. S3).

In order to closely replicate the conditions of growth and selection during the evolution

experiment, we exposed the co-cultures to both combinations of growth environment and

size selection experienced by either the P- or the P+ selection treatment according to the

cue reliability conditions experienced by the focal strain. Competitions involving the evolved

strains from the U treatment were not performed because of the difficulties associated with

reproducing the selective pressures experienced by populations evolved under this regime of

environmental change (4 different pairs of growth environment and post-growth size selection

are possible).

We first competed each evolved strain in its native conditions against the ancestor. We

found that the fitness of the evolved isolates is greater than or equal to that of the ancestral

strain (Fig. 4b-c; grey bars); indicating that some adaptation has occurred. Next, we

performed “reciprocal transplant” competitions by measuring the fitness of evolved strains

in their native conditions against strains that had evolved in the opposite cue reliability

conditions. We found that all focal strains had higher fitness when competing under their

native cue reliability conditions than when serving as competitor strain in the transplant

environment (e.g., fitness of P- strains in the P- environment > fitness of P- strains in the

P+ environment). This suggests that adaptation is specific to the exact pairs of growth

environment and size selection experienced during the evolution experiment.

We predicted that more negatively sloped reaction norms would be favored in the P-
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environment while more positively sloped reaction norms would be favored in the P+ envi-

ronment. In keeping with these predictions, we found that P-min had a consistently higher

fitness than P-max across each of the three pairs of competitions in the P- environment. In

the P+ environment, P+max had a higher fitness than P+min across all three competitions.

A simple linear regression was performed to determine if competitive fitness could be ex-

plained by the difference in the reaction norm slopes of the focal strain and its competitor.

In the P- environment, we found a negative relationship between the difference in reaction

norm slopes and competitive fitness (Fig. 4d; β = -0.03612) but the difference was non-

significant (adjusted r2 = 0.529, F1,4 = 6.618, p = 0.06181). In the P+ environment, relative

fitness of the focal strain increased as the difference in reaction norm slopes increased (Fig.

4e; β = 0.10870, adjusted r2 = 0.6585, F1,4 = 10.64, p = 0.03103).

Phenotypic changes associated with adaptive plasticity

To investigate the mechanistic basis for the evolved changes in phenotypic plasticity we

visualized populations of snowflake yeast with different reaction norms slopes after growth

in either YPD or SC media. We hypothesized that changes in yeast cell morphology could

have led to the observed changes in cluster size distribution. For example, cell shape has a

pronounced effect on the size at which snowflake yeast clusters fracture: more elongate cells

produce larger clusters (Jacobeen et al. 2017, 2018). Environment-dependent changes in cell

aspect ratio could be a possible route to adaptive changes in mean cluster size. Similarly,

environment-dependent changes in cell size (with shape held constant) could lead to an

adaptive shift in the stationary phase cluster size distribution, assuming that cluster size

scales linearly with cell size. We manually measured aspect ratio and area for 50 budded

yeast cells after 24 hours of growth in either YPD or SC for three representative evolved

strains from the P-, U, and P+ treatments and the ancestor using the ellipse drawing tool

in ImageJ (Rueden et al. 2017).

We tested for significant differences in cell aspect ratio and cell size using a Mann-Whitney
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Figure 4.4: (a) Selecting strains for pairwise competitions. To compare strains evolved
under different regimes of environmental change, we chose isolates with the minimum and maximum
slope from each treatment. Each highlighted strain was transformed with an inducible GFP and
competed against an unlabeled version of itself to test for a fitness cost of the marker. (b-c)
Competitive fitness of evolved strains. Relative fitness of the focal strain is reported as
the ratio of Malthusian parameters. Bars are grouped by focal strain and colored according to
the competitor strain. Letters indicate statistically significant differences between fitness values
(determined with a one-way ANOVA and a post-hoc Tukey’s HSD test). (d-e) Relationship
between reaction norm slopes and relative fitness. Fitness values from the corresponding
panel above are plotted against the difference between reaction norm slope of the focal strain minus
that of the competitor strain.
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U test with a Bonferroni correction for multiple comparisons. We found that cell aspect ratio

was significantly smaller in the SC environment for both the Ancestral strain and the evolved

strain from the P- treatment (p = 4.208 × 10−10 and p = 8.623 × 10−3, respectively) but

significantly larger in SC for the evolved strain from the P+ treatment (p = 9.677 × 10−5;

Fig. 5a). The evolved strain from the U treatment showed no significant difference in cell

aspect ratio between YPD and SC (p = 0.428). This pattern is entirely consistent with the

hypothesis that more elongate cells will produce larger clusters. Significant differences in cell

size were also detected for both the P+ treatment and the U treatment (p = 4.851 × 10−3

and p = 7.295 × 10−4, respectively). However, the differences in cell size were opposite of

that which would be expected if environment-dependent changes in cell size were responsible

for the observed changes in cluster size.
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Figure 4.5: (a) Cell aspect ratio measurements and (b) cell area measurements. Yellow
box plots indicate measurements taken after 24-hour growth in Yeast Peptone Dextrose (YPD)
media. Grey box plots indicate measurements take after 24-hour growth in Synthetic Complete
(SC) media. Significant differences between mean trait value in YPD versus SC, indicated by a grey
bar and asterisk, were determined using a Mann-Whitney U test with a Bonferroni correction for
multiple comparisons (p < 0.0125).
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Discussion

Predictable environmental fluctuations have been suggested to select for phenotypic plastic-

ity when different environments favor different phenotypes and fluctuations occur between

organismal generations. Here we provide direct evidence in support of this prediction us-

ing experimental evolution. In the ∆Nutrients treatment, we found that plasticity was

maintained under conditions where it was coincidentally adaptive, commonly lost in the

unpredictably fluctuating environments, and we observed major changes in the slope of the

reaction norm in the form of multiple independent shifts from negative to a positive. Pair-

wise reciprocal transplant competitions with evolved isolates in the P- and P+ environments

suggest that evolved reaction norms are adaptive and specific to the exact pairs of growth

environment and size selection experienced during the evolution experiment.

Unexpected changes in reaction norms

In the other two cue identity treatments (∆Osmolarity and ∆Temperature), evolutionary

outcomes differed significantly from our predictions. Specifically, populations in these treat-

ments failed to evolve adaptive plasticity when preexisting plasticity was initially maladap-

tive. It is possible that trade-offs with other traits, or across life history stages, may have

constrained the evolution of plastic responses to certain types of environmental change more

than others (Dewitt et al. 1998; Scheiner and Berrigan 1998). Plastic responses to tempera-

ture, in particular, have been previously suggested to be highly constrained due to the strong

influence of temperature on the rate of biochemical reactions (Huey and Kingsolver 1989).

Perhaps this could help to explain why evolved changes in phenotypic plasticity for cluster

size were so limited in the ∆Temperature treatment in our study. Interestingly, plastic re-

sponses to temporally varying selection were also found to be very weak or absent in two

other experimental evolution studies that examined the effect of cue reliability in alternating

thermal environments (Scheiner and Yampolsky 1998; Manenti et al. 2015).
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Another possible explanation for the observed differences between cue identity treatments

is that the complexity of environmental variations can influence an organism’s ability to

evolve predictive plasticity. Although we did not design this experiment with the inten-

tion to explore the effects of environmental complexity, we find it interesting that adaptive

plastcity repeatedly evolved in the ∆Nutrients treatment (where multiple correlated environ-

mental factors varied simultaneously) while reaction norm evolution was more constrained in

the ∆Osmolarity and ∆Temperature treatments (where only a single environmental factor

varied). We speculate that it may be easier to evolve new associations between cue and

phenotype in the ∆Nutrients treatment because several correlated environmental factors

were varied simultaneously. Our rationale is two-fold. First, the use of multiple covarying

environmental factors as a cue for plastic changes in morphology could be favored because

the combination of environmental variables acts as a stronger predictor of future selective

pressures. A second possible explanation is that the availability of multiple environmen-

tal factors that could serve as cues simply provided a larger set of possible evolutionary

responses due to an increase in genetic variation for plastic responses to the individual envi-

ronmental components. Chevin and Lande (2015) modeled the evolution of linear reaction

norms in response to several correlated environmental variables in a population undergoing

stationary environmental fluctuations and found that populations evolved to use a combina-

tion of environmental variables as cues for the plastic trait under selection. Consequently,

plastic responses to any single environmental variable were sometimes found to be maladap-

tive (Chevin and Lande 2015). Understanding the role of multiple environmental cues for

plasticity remains a critically important area for future study.

Mechanistic basis of phenotypic plasticity

One unique aspect of this work is that we were able to identify a plausible physical mechanism

for the plastic changes in cluster size we observe in the evolved strains isolated from the

∆Nutrients treatment. We identified environment-dependent changes in an aspect of cellular
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morphology, cell aspect ratio, that are positively correlated with changes in mean cluster size.

The discovery of this correlation was facilitated by the relative simplicity of the snowflake

yeast growth form and the existence of earlier studies into the biophysics of cluster growth

and fragmentation (Jacobeen et al. 2017, 2018). Prior work showed that cells evolved

an 8% increase in cellular aspect ratio in response to 7 weeks of selection for increased

cluster size; this change accounted for a 1.7-fold increase in the radius of snowflake yeast

clusters (Jacobeen et al. 2017). Here we observe comparable differences in cellular aspect

ratio when snowflake yeast are grown in different media types and an associated change

in cluster size. The link between cell aspect ratio and cluster size is of interest because it

illustrates how subtle changes in cellular morphology can filter up to affect morphology on

a macroscopic level. The finding that simple multicellular clusters of yeast can evolve to

conditionally express cell-level phenotypes in response to external environmental cues may

also have important implications for the evolution of multicellular development.

Limitations and future directions

An important limitation of our study is that we able to explore only the extremes of cue

reliability: perfect information (P+ and P- treatments) and total lack of information (U

treatment). Our predictions were accordingly simple: perfect phenotypic plasticity should

evolve in the P+ and P- treatments while the U treatment should favor a non-plastic bet-

hedging strategy of some sort. Phenotypic plasticity and bet-hedging, however, should not

be thought of as mutually exclusive possibilities. When incomplete information about the

state of the environment is available, the optimal strategy may involve some combination of

the two (Donaldson-Matasci et al. 2013; Simons 2014; Maxwell and Magwene 2017). For

example, Emex spinosa, an amphicarpic annual plant that produces two types of propagules

with different dispersal abilities, changes the proportion of short vs. long-range propagules

in response to nutrient availability and the density of neighboring plants (Sadeh et al. 2009).

In the same way that mean cluster size changes over evolutionary time, snowflake yeast
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can evolve to increase or decrease the variance in cluster size around the phenotypic mean.

If we allow for some looseness in the application of the term “bet-hedging”, equating bet-

hedging with the simple generation of phenotypic variance within a single environment, we

can measure how both phenotypic plasticity and bet-hedging change in response to different

degrees of cue reliability as well as exploring their joint expression (DeWitt and Langerhans

2004).

Conclusion

Selection experiments have been used for decades to investigate the evolution of phenotypic

plasticity (Scheiner 2002) and have played a central role in advancing our understanding of

nearly all aspects of phenotypic plasticity. Early studies demonstrated that plasticity was a

heritable trait that could be directly selected (Waddington 1960; Kindred 1965; Druger 1967;

Brumpton et al. 1977; Jinks et al. 1977). Later, selection experiments helped to establish the

adaptive significance of phenotypic plasticity and began to probe the genetic bases of plastic

traits (Van Buskirk and Relyea 1998; Schmitt et al. 1999; Dorn et al. 2000). Our study adds

to this growing body of work in a few ways. First, our results provide further evidence that

adaptive changes in plasticity can evolve rapidly (Sikkink et al. 2014; Yi and Dean 2016;

López García de Lomana et al. 2017). Second, we demonstrate that adaptive plasticity can

evolve in response to temporally heterogeneous selection for opposing phenotypes in different

environments. This has been shown previously by laboratory evolution experiments (Bell and

Reboud 1997; Reboud and Bell 1997; Kassen and Bell 1998), but direct experimental tests

of the conditions favoring the evolution of adaptive phenotypic plasticity remain relatively

rare. Lastly, we confirm the critical role that cue reliability plays in shaping the evolution

of reaction norms. Because natural environments are more complex than the environments

studied here and because unpredictable environmental changes are increasingly common, we

encourage future studies of plasticity evolution that consider multiple environmental cues

and/or intermediate degrees of cue reliability.
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Methods

Strain construction

A detailed list of all strains used in this study can be found in Table S1.

All populations for the evolution experiment were initiated with a homozygous diploid

strain of Saccharomyces cerevisiae Y55 derived from a previously described strain (C1W6)

(Ratcliff et al. 2012). Briefly, the ancestral strain for our study was obtained by au-

todiploidization of a single spore collected via tetrad dissection onto Yeast Peptone Dextrose

agar plates (YPD agar: 10 g l−1 yeast extract, 20 g l−1 peptone, 20 g l−1 dextrose, 15 g l−1

agarose). Fluorescently-labeled strains prepared for competition experiments were derived

from single colony isolates and transformed with an inducible ura3::met25-GFP using the

LiAc/SS-DNA/PEG method of transformation (Gietz and Schiestl 2007).

Culture conditions and storage

Unless otherwise stated, strains were grown in 10 ml of media in 25mm tubes shaken at

250 rpm at 30ºC for approximately 20 hours. Freezer stocks of single strain isolates and

whole populations were prepared by mixing 0.7ml of an overnight culture with 0.3ml of 70%

glycerol and stored at -80ºC.

Microscopy

Microscopic measurements of yeast clusters were conducted using an inverted fluorescence

microscope (Nikon, Eclipse Ti). Large-field mosaic images were collected for each isolate by

combining 24 separate images (each collected at 100 magnification) using a Nikon Eclipse Ti

inverted microscope with a computer-controlled Prior stage, resulting in a 17424x17134 pixel

composite image. This technique results in large sample sizes and minimizes sample bias

arising from single images in which yeast touching the edge of the field of view are discarded.
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Images were analyzed using ImageJ and Fiji image analysis software tools (Schindelin et

al. 2012; Rueden et al. 2017).

Flow cytometry

All flow cytometry was carried out on a CyFlow Cube8 with autoloading station and cell-

sorting cuvette (Sysmex). Samples can be loaded manually or automatically using an in-

tegrated autoloading station capable of handling up to 192 samples at a time (two 96-well

plates). Prior to measurement, samples were diluted 1:10 into DI water, mixed by inverted

(or using a custom mixing script in the case of the autoloader) and then run through the

flow cytometer for 15 seconds to prime the instrument. After the flow rate reached equi-

librium, data was cleared and collection began. After each sample, we performed the same

procedure with DI water followed by a wash cycle to flush the instrument of any remaining

yeast clusters.

FCS files were exported as CSV files using FSC Express software and analyzed in R (R

Core Team 2018).

Measuring cluster size distributions

Cultures were acclimated in YPD prior to growth in the cue environment but experienced

no size selection prior to measurement. Size measurements were collected via flow cytometry

using side scatter (SSC) as a proxy for cluster size to enable high-throughput measurement.

SSC was chosen as a proxy for cluster size because in a comparison of flow cytometric

data collection channels (FSC, SSC, FL1) against cluster area measurements collected via

microscopy, SSC was found to have the lowest Kullback-Leibler divergence (KLD = 0.0412

compared to 0.1137 and 0.0842 for FSC and FL1, respectively; see supplement for details,

Fig. S3).
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Size selection

Nylon mesh filters were used to selection for small or large yeast cluster sizes. Given the

variance in mean cluster size across the 3 cue identity treatments, we tried to choose size

thresholds that would select for small and large size, respectively, regardless of treatment.

Selection for small cluster size was performed by passaging yeast cultures through a sterile

30µm nylon mesh filter (Sysmex, CellTrics®) and propagating only clusters that were small

enough to pass through. Selection for large cluster size was performed by passaging yeast

cultures through a sterile 70µm nylon mesh filter (Fisher Scientific, Corning®) then back-

flushing to collect clusters that were too large to pass through. Filters were re-sterilized

each day after use as follows: nylon filters were first soaked in a 1% bleach solution for >10

minutes, rinsed repeatedly in DI water (washed >5X), transferred to a 70% ethanol bath for

15 minutes, and then left to dry in an open sterile glass container inside of a laminar flow

hood. Mesh filters were reused until they showed signs of wear.

Competition assay

Relative fitness of evolved isolates was assessed using pairwise competitions against a fluo-

rescently marked competitor (Lenski et al. 1991; Desai et al. 2007). GFP-labeled strains

were mixed with unlabeled strains at a 1:1 ratio by cluster number and grown in alternating

environments (E1, E2, E1) with selection for small and large size according to the cue relia-

bility conditions experienced by the focal strain. Samples were taken at the beginning and

end of the competition (t = 0 and t = 72), diluted 1:5 into 4ml of Methionine dropout media

(6.7 g l−1 yeast nitrogen base without amino acids + 845 mg l−1 amino acid mix + 10 g l−1

dextrose) and grown for 2 hours to induce expression of GFP. Flow cytometry was used to

determine the ratio of GFP-labeled and unlabeled strains. Six replicate competitions were

run in parallel for each pair of strains. Relative fitness of fluorescently labeled strains was

assessed as described above but in the absence of size selection in order to account for any

potential negative effects on growth rate.
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Statistical analyses

All statistical analyses were performed using the R software environment (R Core Team

2018).
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Introduction

The transition to multicellularity was a major step in the evolution of large, complex life on

Earth (Maynard Smith and Szathmáry 1995). Unlike other major evolutionary transitions,

which have occurred only once (e.g., prokaryotes to eukaryotes), multicellularity has evolved

multiple times in diverse lineages including archaea (Jahn et al. 2008), bacteria (Velicer

and Vos 2009; Overmann 2010; Schirrmeister et al. 2011), and eukaryotes (Bonner 1998;

King 2004; Grosberg and Strathmann 2007; Herron et al. 2013). Prior work suggests that

the formation of simple clusters of cells, the first step in the transition to multicellularity,

may be adaptive under a number of distinct ecological scenarios. For example, clusters may

provide protection from predation (Kessin et al. 1996; Boraas et al. 1998), protection from

environmental stress (Smukalla et al. 2008), or improved utilization of diffusible nutrients

(Pfeiffer and Bonhoeffer 2003, Koschwanez et al. 2011; Koschwanez et al. 2013). Never-

theless, how and why nascent multicellular lineages evolve increased complexity remains a

fundamental question in evolutionary biology. Progress has been impeded by a lack of ex-

perimental systems due to the fact that most nascent multicellular lineages have been lost

to extinction.

To sidestep this historical limitation, we (and colleagues) have been using experimental

evolution to re-create this major transition under controlled laboratory conditions (reviewed

in Ratcliff and Travisano, 2014). Starting with outbred diploid unicellular yeast, we selected

for cluster formation by favoring yeast that settle rapidly through liquid medium. In all ten

replicate populations, cluster-forming ‘snowflake’ yeast readily evolved and displaced their

unicellular ancestors. Snowflake yeast consist of daughter cells that remain attached after

mitotic division, forming spherical branched structures of genetically-identical cells. Over

the next several hundred generations, several traits of interest evolved as snowflake yeast

further adapted to this selection regime.

In response to selection for rapid settling, snowflake yeast first evolved to form clusters
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that contain more cells. Later, snowflake yeast evolved a 2.1-fold increase in the volume

of individual cells, further increasing cluster biomass and thus settling speeds (Ratcliff et

al. 2013). Large-bodied yeast also evolved higher rates of programmed cell death, hereafter

referred to as apoptosis. Prior experiments suggest that these dead cells act as ‘weak links’ in

the chains of cells that make up the cluster, resulting in greater reproductive asymmetry (i.e.,

smaller propagules relative to cluster size). This conclusion is based on comparisons between

high and low-apoptosis strains, direct experiments modifying the frequency of apoptosis

chemically, and the observation that dead cells are found at the site of propagule scission

~12 times more frequently than is expected by chance (Ratcliff et al. 2012).

Fitness trade-offs, while central to all of life history theory (Roff 2001), are thought to

take on a particularly important role during major evolutionary transitions such as the

evolution of multicellularity (Michod et al. 2006). Specifically, trade-offs between survival

and reproduction may drive increases in complexity and cellular differentiation (Michod et al.

2006). Perhaps the best-known example comes from the evolution of multicellularity in the

volvocine algae: individual cells cannot reproduce and phototax simultaneously (Koufopanou

1994), favoring the evolution of divided labor through germ-soma differentiation (Koufopanou

1994; Solari et al. 2006). More generally, simple clusters of cells may benefit from increased

size (e.g., reduced consumption by predators [Boraas et al. 1998; Becks et al. 2012]), but

cellular clusters face greater diffusional limitation than single-cells, impeding resource uptake

from their environment (Lavrentovich et al. 2013). Our experimental results suggest that

trade-offs also play a role in the evolution of multicellularity in snowflake yeast. Evolving

larger clusters increases settling speed, but decreases growth rates, likely because cells in the

interior of large clusters become resource limited as a result of greater diffusional impedance

(Ratcliff et al. 2012; Lavrentovich et al. 2013). Similarly, increasing cell size may decrease the

rate at which individual cells are produced, again because larger cells have a proportionally

greater surface area to volume ratio (but see Jorgensen et al. 2002). The effects of apoptosis

are a bit more complicated. A small fraction of the cells in the cluster (~1.5-2.5%) die, a
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direct viability cost. However, by producing proportionally smaller propagules, large clusters

produce offspring that are less diffusionally-limited. Thus, apoptosis increases growth rates

but decreases survival during settling selection, and will only be adaptive when the sum of

these effects is positive.

Here we investigate the role of simple trade-offs during the evolution of increased multicel-

lular complexity in snowflake yeast by modeling the evolution of simple multicellular digital

organisms. We find that apoptosis, which results in the production of smaller propagules

at the expense of the acting cell’s life, is adaptive under a broad suite of conditions. This

is because it can increase growth rates enough to compensate for the loss of apoptotic cells

and reduced survival during settling selection. In our models, competition for faster settling

results in an evolutionary arms race that drives a modest (maximum of 150 cells) increase

in cluster size and apoptosis. Much larger clusters only evolved if the size required for

surviving settling selection was increased through time. Using a two-player tournament-style

evolutionary algorithm, we find that snowflake yeast that are initially mismatched in size

will niche partition, with the smaller strain evolving into a growth specialist and the

larger strain a settling specialist. Finally, we find that increasing the dimensionality of the

multicellular trait space from two (cells per cluster and apoptosis) to three (adding cell size)

increases the degree to which competing strains in a single population will diverge. This

work demonstrates that multicellular complexity readily arises when trade-offs between

group size and growth rates are ameliorated by the evolution of novel multicellular traits.
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Model description

Cluster growth and reproduction

The model we develop here considers competition occurring between two genetically distinct

snowflake yeast strains within a single population. As in our laboratory experiments, the

transfer cycle involves two discrete phases: growth and settling selection (summarized in

Figure 1). For each time step, clusters grow by adding cells in proportion to their initial

number following the equation:

n′ = n(2− nd)− na, (5.1)

where n is cell number per cluster, d is the diffusional limitation cost (ranging from 0.001

to 0.002) and a is the rate of apoptosis (see Table 1 for a summary of model parameter).

In comparison to single-cells, clusters are diffusionally-limited, and thus grow less rapidly

(Ratcliff et al. 2012). For simplicity, we model the cost of diffusional limitation as a linear

trade-off between cluster size (# of cells) and growth rate, such that a single cell doubles

during each time step, and larger clusters grow to size n(2 − nd) cells. Cluster growth is

offset by apoptosis where the number of cells that undergo cell death at each time step is

calculated as:

n(a) =
n(α− 0.5)

50
, (5.2)

Table 1: Summary of model parameters.

Parameter Description Base value

a Rate of apoptosis 0.001

α Reproductive asymmetry 0.55

d Cost of diffusional limitation 0.001
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Parameter Description Base value

nmin Minimum number of cells within a cluster 1

nmax Maximum number of cells within a cluster 2000

N Population size 8× 106

r Size at reproduction 150

s Size threshold for settling selection 140

Figure 5.1: Model schematic. The model is separated into two distinct phases. First, clusters
grow, competing for finite resources. Larger clusters face greater diffusional limitation and thus
gain proportionally fewer cells during each time step. If a cluster’s growth causes it to exceed its
reproductive size r, then propagules are produced sequentially until cell number n < r. Settling
selection is applied once resources are exhausted. All clusters above size threshold (thresh.) s settle
to the bottom of the tube. Not all cells at the bottom are large, however: 6.6% of the clusters in the
population simply start out there by chance. Finally, clusters are transferred to fresh medium. To
allow for sufficient growth between rounds of settling selection, we transfer 1/20 of the stationary
phase biomass to fresh medium. Clusters are transferred in proportion to the biomass of each strain
in the pellet.

where α is reproductive asymmetry, a parameter that specifies the propagule size when a

cluster undergoes reproduction (discussed below). For most of our simulations, the rate of

apoptosis is equal to ~0.001 unless otherwise noted. For a 148-cell cluster growing up from
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a 10-cell propagule during a single culture cycle, this corresponds to a cumulative death

rate of 1.93%, which is similar to what we observe in our experiments (Ratcliff et al. 2012).

Importantly, this step occurs before new cells are added so only cells ≥ one generation old

are capable of dying from apoptosis.

When a cluster grows larger than r cells, they split, producing daughter propagules sequen-

tially until they are smaller than the reproductive threshold. Offspring size depends on the

cluster’s reproductive asymmetry, α. Specifically, mean propagule size is n(1− α). Because

snowflake yeast produce offspring that vary in size, we implemented a stochastic smoothing

function into our model, such that asymmetry at each reproductive event is drawn from a

uniform probability distribution bounded by (α− 0.05, α + 0.05). Similarly, a cluster’s size

at reproduction is drawn from a uniform probability distribution bounded by (r − 5, r + 5).

This has the effect of preventing the accumulation of many clusters of exactly the same size,

which can result in simulation artifacts (e.g., abrupt changes in fitness with small changes

in traits). For all simulations, asymmetry was bounded between 0.5 and 0.9.

Population growth and settling selection

We model our experimental regime as two distinct phases, a growth phase and a settling

phase. During the growth phase, resources are consumed by both strains of yeast until they

are exhausted (in most simulation runs, we allow for 8 × 106 cellular reproductions) with

each yeast strain growing and producing propagules according to the equations given above.

After resource exhaustion, settling selection is applied. In our laboratory experiments, we

transfer the cells found in the lower 100 µl of a microcentrifuge tube after settling selection

to 10 ml of fresh medium. There are two ways that clusters can get to the bottom of the test

tube: first, a small fraction of clusters (~6.6%) simply start out there after the tube is mixed.

These clusters need not be large – they are simply lucky. Second, clusters can settle rapidly

enough to sink to the bottom of the tube. Here, we impose a simple threshold, such that

clusters containing more than s cells make it to the bottom of the test tube, and those smaller
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do not. In our laboratory experiments, settling selection results in a 20 to 25-fold dilution

per day for relatively fast-settling snowflake yeast. We model this by selecting clusters from

each strain (in proportion to their biomass in the pellet) until 1/20 of the carrying capacity

of the population is met. These clusters are then transferred to fresh medium and the cycle

repeated.

In reality, settling selection is less precise: small clusters starting out just above the lower

100 µl may still join the pellet, while larger cluster starting at the very top of the tube may

fail to make it to the bottom. Still, this simplifying assumption does not change the basic

dynamics of size selection favoring larger sized clusters. Selection can be made more or less

stringent by increasing or decreasing the threshold cluster size, s.

Results

Local fitness landscapes reveal the conditions favoring elevated apoptosis

We first examined the snowflake yeast fitness landscape under different nutrient diffusion

regimes, d, as a function of both the rate of apoptosis and cluster size at reproduction.

In each case, we competed a single strain (demarcated by the black circle in Figure 2a-d)

against 1554 different competitor strains that varied in these traits. We measure relative

fitness as the change in frequency of strain 1 cells relative to strain 2 cells between stationary

phase in transfer two and stationary phase in transfer three. The threshold for surviving

settling selection s was 140 cells, which is similar to what we have observed in early snowflake

yeast (1-3 weeks of evolution). Competition between smaller clusters with little diffusional

limitation (d=0.001) favors larger clusters with negligible apoptosis (Figure 2a). Increasing

the severity of diffusional limitation (d = 0.002) favors elevated apoptosis (Figure 2c). We

note, however, that the genotype with the highest fitness under these conditions still has the

lowest rate of apoptosis. Among clusters that are much larger than the size necessary to

survive settling selection (Figure 2b and 2d; which start out at size 225, but need only be
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140 cells in size to survive selection), smaller size is beneficial. Importantly, higher rates of

apoptosis can be selectively advantageous among these larger clusters, even when diffusional

limitation is mild (d = 0.001).

Snowflake yeast compete in two key arenas: for resources during the 24 h of batch culture,

and for a spot at the bottom of the tube during settling selection. It is in these two arenas

where fitness trade-offs are realized. For example, large clusters settle quickly but grow

slowly. By increasing reproductive asymmetry (reducing propagule size), increased rates of

apoptosis should increase growth rates at the expense of survival during settling selection.

Whether or not these traits are adaptive for a given environmental context depends on the

benefit of faster growth relative to the cost of reduced survival during settling. To directly

compare the magnitude of this fitness trade-off, we calculated the selection rate constants

(following Travisano and Lenski 1996) for growth and settling for the landscape in Figure 2c.

This approach allows us to compare each phase of competition using fitness as a common

currency. As expected, elevated apoptosis increased growth rates, but reduced survival for

settling selection, and larger cluster size was uniformly favored during settling (Figure 3).

The benefits of faster growth out-weighed the cost of slower settling for part of the trait space

(asymmetry between 0.62 and 0.75 and cluster size between 200-220 cells; Figure 2c). This

result also highlights the fine-line being walked during the evolution of elevated apoptosis:

mutations of large effect may produce strains with too much apoptosis, such that the costs

of slower settling exceed the costs of faster growth.

Competition drives an evolutionary arms race for increased cluster size

Static fitness landscapes (e.g., Figures 2 and 3) are useful for examining the interaction

between traits and fitness over only a limited range of conditions, because relative fitness

is contextual and changes over evolutionary time along with the traits of the two competi-

tors. To examine how cluster size and apoptosis rates might coevolve as the competitor also

changes, we implemented a two-player evolutionary algorithm. For each time step, 10 deriva-
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Figure 5.2: Fitness landscapes vary depending on the extent of resource diffusion and
on cluster size. In each fitness landscape plotted above, a single strain (filled circle) competes
against 1,554 competitor strains varying in cluster size at reproduction and apoptosis. Large size
and low apoptosis are favored in small clusters with little diffusion limitation (A), while increasing
the growth cost of diffusion favors smaller clusters with higher rates of apoptosis (C). Increasing
cluster size at reproduction by 100 favors smaller cluster size (B, D). Apoptosis provides more of
a benefit to larger clusters (lower region of B, D). Here s = 140, d = 0.001, and the growth phase
contains sufficient resources for the production of 8 × 106 cells. The dashed line demarcates a
relative fitness of 0.
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Figure 5.3: Disentangling fitness contributions from growth (a) and settling (b). We
calculated the relative fitness consequences (as selection rate constants) during growth and settling
for the landscape shown in figure 2c. Smaller cluster size at maturity and apoptosis increases
fitness during growth at a cost to settling. Here s = 140, d = 0.002, and the growth phase contains
sufficient resources for the production of 8× 106 cells. The dashed line demarcates a selection rate
constant of 0.
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tives of each snowflake yeast genotype were generated, each with a 90% chance of mutation

in cluster size at maturity or reproductive asymmetry. Each mutation was drawn from a

normal distribution, with the mean being the former trait value with standard deviation of

1 (for cluster size at reproduction) or 0.003 (for reproductive asymmetry). All 10 variants of

strain 1 were competed against last-round’s strain 2 winner, then all 10 variants of strain 2

are competed against the best strain 1 variant. The strain with the highest relative fitness

after three transfers was selected as the parent strain for the next round. For all simulations,

the size threshold for surviving settling selection (s) was 140.

Figure 5.4: Arms races and niche partitioning. Larger clusters with higher rates of apoptosis
evolve when both starting strains are similarly sized (a, b). If the initial size difference is substantial,
arms-race dynamics are prevented, and instead the smaller strain evolves smaller size, becoming
a growth specialist (c). The frequency of niche partitioning declines linearly as strain (Str.) 1’s
starting size increases from 150 to 160 (c, insert). Plotted are 100 simulations for each strain (strains
1 and 2 are demarcated by dark X’s and light circles, respectively) over 150 transfers. Here s = 140,
d = 0.0015, and the growth phase contains sufficient resources for the production of 2× 106 cells.

When competition occurs between two similarly-sized strains, both readily evolve larger
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cluster size and higher rates of apoptosis (Figure 4a and b). In contrast, when we compete

two strains that vary substantially in size (150 vs. 200 cells at reproduction), snowflake yeast

rapidly partition their niches (Figure 4c). Specifically, the 150-celled strain evolved to form

clusters that were ~15 cells smaller than its ancestor over 150 rounds of competition against

a 200-celled strain, while the same starting genotype evolved to form clusters that were an

average of 67 cells larger when competed against another 150-celled strain (Figure 4a vs. 4c;

t157 = 114, p < 0.0001, Bonferroni-corrected two-way t-test). This effect appears to be due

to competitive exclusion during settling selection, driving the smaller strain to evolve smaller

size and increased competitiveness during the growth phase of competition. We examined

the size difference required for niche partitioning to occur, varying strain 1’s starting size

from 150 to 160 cells while leaving strain 2’s starting size at 200 cells. For each competition,

we ran 100 simulations for 150 transfers. The percent of runs in which strain 1 evolved to

be a growth specialist declined linearly as their size increased (y = 1503.9− 9.3x, r2 = 0.97,

F1,10 = 254.9, p < 0.001; Figure 4c, insert). Interestingly, we also found that the 200-celled

strain evolved to form clusters that were ~30 cells larger when competing against another

200-celled strain, but not against a 150-celled strain (Figure 4b vs. 4c; t196 = 30, p < 0.0001,

Bonferroni-corrected two-way t-test), further illustrating the importance of coevolution in

our model. One caveat of this simulation is that it ensures coexistence of the two competing

strains. It is possible that extinction in real populations would limit the ability for the

evolution of niche partitioning.

The results of the two-player games (Figure 4) illustrate the importance of arms-race dy-

namics among similarly-sized competitors in the evolution of increased cluster size. The

extent of directional change is limited, however, as the trade-off between settling and growth

components of fitness result in stable coexistence at modest (250-340 cell) cluster size and

low apoptosis (reproductive asymmetry ≈ 0.57, Figure 5a). To examine how size and apop-

tosis coevolve in response to different size-selection thresholds, we simulated competition in

environments where the size threshold for surviving settling selection, s, varied from 50 to
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750. We initialized each competition with two identical strains whose maximum size was just

10 cells larger than that required for settling, and then allowed them to come to equilibrium

(1000 transfers per competition). While larger clusters readily evolved, they rarely got more

than 150 cells larger than the threshold for surviving settling selection (Figure 5a, insert).

Larger size clearly evolves in response to selection for faster settling, but imposing severe

selection for rapid settling on small clusters can be counterproductive: selection cannot favor

faster settling clusters if none survive. How then do large clusters evolve? In our experiments,

we periodically increased the strength of settling selection (Ratcliff et al. 2013), favoring the

progressive evolution of faster settling. We thus reran the above simulation, starting with a

small snowflake yeast (r = 140), and increased the size of settling selection by 1 cell every

10 time steps. Here, much larger (>900 celled) clusters evolved, along with maximal rates

of apoptosis (reproductive asymmetry ≈ 0.9 in strain 1, Figure 5B).

In our experiments, in addition to evolving an increased number of cells per cluster,

snowflake yeast also evolved a 2.1-fold increase in cell size within two months (~400 gen-

erations, Ratcliff et al. 2013), increasing the settling speed of clusters. We thus modified the

model to allow for the evolution of increased cell size, changing the settling selection step to

count cluster biomass equivalents in addition to cell number. Further, we imposed a linear

growth penalty for larger cells, assuming that cells with twice the volume grow at 98% the

speed of a wild type cell. We repeated the two-player tournament simulations, allowing for

mutations that increase cell size to occur with 90% probability (the distribution of mutational

effect sizes was identical to that of reproductive asymmetry). Increasing the strength of set-

tling selection was again essential for the evolution of both large and many-celled snowflake

yeast (Figure 6).

Increasing the dimensionality of the multicellular trait space makes it possible for ge-

netically and phenotypically distinct strains to arrive at the same multicellular solution

(i.e., strains differing in cell size and cell number can nonetheless evolve the same overall

cluster biomass). To examine how allowing a third multicellular trait to evolve affected
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Figure 5.5: Pushing the envelope—the evolution of large clusters. (a) When the environ-
ment is constant (s = 140 for all 7,600 transfers), equilibrium dynamics rapidly establish themselves
with the evolution of modest cluster size and low apoptosis. For a range of s from 50–750, cluster
size at equilibrium (1,000 transfers, purple circles in 5a inset) is only modestly larger than required
for surviving settling selection (black line, inset). (b) Slowly ratcheting up the threshold for set-
tling to the bottom of the tube (s starts at 140 and increases by 1 every 10 transfers) results in the
evolution of very large clusters with high rates of apoptosis. Filled circles and triangles refer to the
two strains in competition. In these simulations the growth phase contains sufficient resources for
the production of 2× 106 cells and d = 0.001.
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Figure 5.6: Evolution of larger cell size. Coevolution in a static (s = 140; a) or gradually
more stringent size-selective environment (s starts at 140 and increases by 1 every 10 transfers; b).
Increasing the strength of settling selection favors the evolution of all three key multicellular traits:
large cluster size at reproductive maturity, high rates of apoptosis, and large individual cells. Here
the growth phase contains sufficient resources for the production of 2 × 106 cells, d = 0.001, and
marker shade reflects the yeast strain.
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within-population divergence, we calculated the Euclidian distance of normalized trait val-

ues between competitors in each microcosm, either with or without cell size mutations, after

equilibrium was reached (1000 time steps, s = 140). Increasing the dimensionality of the

multicellular trait-space increased the opportunity for within-population diversification: com-

petitors were an average of 32% more phenotypically divergent (t196.7 = 3.07, p = 0.0024,

two-sided t-test) when cell size was allowed to evolve (Figure 7). Because there was only

a 1% difference in cluster biomass (mean of 272 and 279 wild type cell equivalents for 2D

and 3D simulations, respectively) and no difference in apoptosis (mean of 55.9% for both 2D

and 3D simulations), it appears that yeast capable of evolving both greater cell number per

cluster and larger cell size took different, though ecologically equivalent, paths to increased

cluster size. This demonstrates that the evolution of additional multicellular traits may, as

a side effect, increase the population’s capacity to support the coexistence of ecologically

equivalent (though genetically and phenotypically distinct) isolates.

Discussion

One of the most surprising results from our yeast experiments is the rapidity of adaptation

after simple multicellularity evolves. After just ~400 generations, snowflake yeast evolve to

form clusters containing twice as many cells, higher rates of apoptosis, and cells that are

more than twice as large as the ancestor. These clusters settled 28% faster, on average

(Ratcliff et al. 2013). Further, we have found that after a similar length of time (but in a

different experiment), 9/10 replicate populations contained at least two strains that varied

in size (Rebolleda-Gomez et al. 2012). The modeling results presented above help to explain

both of these observations.

In both this model and in evolving populations of yeast (Ratcliff et al. 2012; Ratcliff et

al. 2013), initially-small clusters of cells are under strong selection for increased size. The

model described here shows why: even small increases in settling speed dramatically improve

relative fitness, and at this small size, diffusional limitation is not yet very restrictive. As a



132

Figure 5.7: Divergence in 2-D versus 3-D games. Competing pairs of snowflake yeast evolved
more divergent multicellular traits, measured as the Euclidian distance of each competitor after
1,000 generations. Plotted are the results of 2-D simulations where cell size was held constant (A)
and 3-D simulations where cell size was allowed to evolve (B).

result, competition among co-evolving yeast results in a short-term arms race for increased

size. As larger cluster size evolves, apoptosis becomes increasingly beneficial, allowing large-

bodied yeast to produce proportionally smaller offspring that are temporarily freed from

strong diffusional limitation. Competition in a static environment (no change in s) thus

results in a modest increase in both size and apoptosis. However, we find that for very large,

high apoptosis clusters to evolve, the strength of settling selection must increase through

time. Long-term experiments running in our lab suggest that this increase in the strength of

settling selection is also required for the in vitro evolution of large snowflake yeast clusters

(unpublished).

Apoptosis readily evolves in this simple simulation model, ameliorating the growth rate

cost incurred by large body size. This effect appears to be due to the fact that apoptosis

produces proportionally smaller offspring that have a growth rate advantage when resource

diffusion is more limiting. Specifically, increased rates of apoptosis are favored under con-

ditions of low resource penetration into the cluster (high d), or for low values of d, as a
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consequence of selection favoring the evolution of progressively larger slower growing clus-

ters (but see Duran-Nebreda and Solé 2015 for a non-adaptive explanation for elevated rates

of apoptosis). Apoptosis may therefore be a general solution to the biophysical constraint

of diffusionally-limited growth so long as: i) selection favors larger clusters of cells, ii) larger

clusters grow less rapidly than smaller clusters, iii) cell death results in propagule production,

and iv) propagules that are produced by apoptosis are related (high Hamliton’s r) (Hamil-

ton 1964) to apoptotic cells. Both iii and iv likely require that clusters are formed through

incomplete mother-daughter cell separation. Finally, it is also important that propagules

have sufficient time to grow large enough to survive the next round of size-based selection.

Programmed cell death (PCD, a category of cell death mechanisms that includes apoptosis)

plays a critical role in the evolution of multicellular complexity. In independently-evolved

multicellular lineages, PCD is used to modify multicellular form during development (Jacob-

son et al. 1997; Pennell and Lamb 1997; Umar and Van Griensven 1997), plays a central

role maintaining the multicellular body (e.g., removal of damaged [Jacobson et al. 1997],

infected [Lam 2004] or cancerous cells [Lee and Bernstein 1995]), and can be useful in coor-

dinated multicellular behaviors (e.g., leaf abscission [Bleecker and Patterson 1997]). Indeed,

PCD plays such an important role in multicellular organization that it is difficult to imagine

complex multicellular life in its absence. PCD, however, is not a multicellular invention:

many diverse unicellular organisms possess active, genetically regulated cell death mecha-

nisms (Nedelcu et al. 2011). Comparative work demonstrates that some PCD pathways

in multicellular organisms arose in their unicellular ancestors (Nedelcu 2009), suggesting

they were co-opted for novel use after the transition to multicellularity. The work presented

here provides a simple, general explanation for how unicellular PCD can be co-opted for a

novel multicellular purpose. See Duran-Nebreda et al. (this volume) for a discussion of how

multicellular complexity can emerge as a consequence of interactions among the component

cells.

Within-population diversity is present in both our lab experiments (Rebolleda-Gomez
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et al. 2012), and this simulation model. The model predicts that some of this diversity

may simply be the result of different lineages taking divergent trajectories during adaptation

(Figures 5 and 6). This may be especially important when the multicellular trait-space is high

dimensional, because, all else equal, these contain a greater number of ecologically equivalent

trajectories. There are a number of potential multicellular traits that we did not include in

the model, but which may be relevant and would further increase the dimensionality of the

multicellular trait-space. For example, the architecture of snowflake yeast clusters (Libby et

al. 2014) might change, affecting both d and how size relates to surviving during settling

selection. This can be due to simple alterations, like the shape of individual cells, or more

complex modifications. Indeed, after 227 days of selection, we see the evolution of more

spherical, hydrodynamic clusters that settle 35% faster per increase in unit mass (Ratcliff et

al. 2013). We do not yet know the mechanistic basis of this trait, but it is potentially due

to a modified branching pattern, or changes in the location and timing of cellular apoptosis.

How multicellular complexity arises in evolution is a fundamental question in biology.

In combination with our experimental work (Ratcliff et al. 2012; Rebolleda-Gomez et al.

2012; Ratcliff et al. 2013; Ratcliff et al. 2015), the results described here demonstrate that

multicellular complexity readily arises as a solution to a trade-off between selection for fast

growth and large size. While selection for rapid sedimentation is likely not a good proxy for

natural systems, selection for large size is certainly common in microbial populations (e.g.,

cluster formation increases survival in the face of predators [Kessin et al. 1996; Boraas et

al. 1998; Becks et al. 2012], but cluster formation slows growth [Yokota and Sterner 2011;

Becks et al. 2012]). This work, along with other pioneering work experimentally evolving

novel multicellularity (Boraas et al. 1998; Rainey and Rainey, 2003; Koschwanez et al. 2011;

Koschwanez et al. 2013; Ratcliff et al. 2013), has shown that the first steps in this transition

readily occur. The challenge before us is to determine how more complex, functionally

integrated multicellular individuals (e.g., an organism that consists of multiple cell types

whose multicellular life cycle is developmentally regulated) evolve from simple multicellular
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ancestors.
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Abstract

In this review, we demonstrate how game theory can be a useful first step in modeling and

understanding interactions among bacteria that produce and resist antibiotics. We introduce

the basic features of evolutionary game theory and explore model microbial systems that

correspond to some classical games. Each game discussed defines a different category of social

interaction with different resulting population dynamics (exclusion, coexistence, bistability,

cycling). We then explore how the framework can be extended to incorporate some of the

complexity of natural microbial communities. Overall, the game theoretical perspective

helps to guide our expectations about the evolution of some forms of antibiotic resistance

and production because it makes clear the precise nature of social interaction in this context.

Introduction

Although antibiotic resistance has been traditionally viewed as asocial, recent studies show

that in some important cases antibiotic resistance is in fact the product of social interactions

[1–5]. For example, an extracellular enzyme that inactivates an antibiotic can protect both

the bacterium that produces it and its neighbors [6,7]. In such cases, drug susceptibility

depends on social context. Social interactions are also important in the case of antibiotic

production, where the density of producers can considerably impact the survival of sensitive

competitors.

Here we demonstrate how evolutionary game theory [8,9], a mathematical framework fo-

cused on social interaction, is particularly helpful in understanding evolutionary outcomes

in circumstances where antibiotic resistance and production involve a social dimension. Evo-

lutionary game theory has been successfully applied to study topics including the evolution

of cooperation [10,11], ritual fighting among animals [12], and more recently to the study of

microbial interactions [13–18], but its usage in cases of antibiotic resistance and production

is less common. In the following sections, we will review some basic features of game theory,
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highlight microbial systems that exhibit classical game dynamics, discuss natural features

that increase the complexity of the framework, and suggest some possible areas of interest

for future study.

Game theory basics

In classical game theory [19], a game is a contest between individual players. Each player

employs a strategy that yields some payoff. Generally the payoff to a player using a given

strategy depends on the strategy employed by its partner(s). A simple illustration of this

can be seen in the child’s game Rock-Paper-Scissors, which is a two-player game with three

strategies. This game is non-transitive: each strategy beats one other strategy and is beaten

by the third. Specifically, Rock crushes Scissors, Scissors cuts Paper, and Paper covers Rock.

Were you to play this game with a friend, your payoff would be given by the following table

(or payoff matrix):

Table 6.1: Payoff matrix for Rock-Paper-Scissors

Rock Paper Scissors

Draw Lose Win
Win Draw Lose
Lose Win Draw

Your strategy
   Rock
   Paper
   Scissors

Your partner's strategy

This game illustrates how the payoff of one player’s strategy can be conditional on the

strategy of another player. Playing Rock is exactly the right thing to do if your partner plays

Scissors, but is precisely the wrong thing to do if your partner decides on Paper.
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In evolutionary game theory, the focus shifts from the handful of players in a single game

to a very large population of individuals playing many instances of a game in parallel[8].

The strategies are genetically determined and the payoffs are expressed in terms of fitness,

which can be organized into a fitness matrix (similar to the payoff matrix above).The most

successful genotype has the most offspring. Because offspring inherit the strategy of their

parent, successful genotypes increase in proportion in the population. When a genotype

that is very rare employs the most successful strategy, it is said to “invade” the population.

Under certain conditions (see Supplement I), the fitness matrix contains all the information

necessary to predict such evolutionary invasion [20,21].

To illustrate the idea, we consider a two-player game in which it is possible for an individual

to produce a compound (termed a “public good”) that benefits itself and its partner. There

are two genotypes in this game: producers (P) and non-producers (N), and one possible

fitness matrix is shown in Figure 1a. This fitness matrix assumes that the cost of production

outweighs the benefit a producer receives from its own production. When P is common

and N is rare, both genotypes tend to pair up with P partners when pairs form randomly.

Because genotype N has a higher fitness than genotype P in such matches (i.e., 4 > 3 in Fig.

1a), N can invade. Conversely, when N is common and P is rare, genotype P fails to invade

because it has a lower fitness than N (i.e., 1 < 2 in Fig. 1a). In this case, we say that N

is stable to invasion, and genotype N is termed an Evolutionarily Stable Strategy (ESS). In

this example, a pair of producers has higher collective fitness than a pair of non-producers

(as in Fig. 1a). This is an instance of the famous Prisoner’s Dilemma [10]. Despite initial

proportions, N is predicted to drive P to extinction (Fig. 1b). Here, evolution is predicted

to eliminate public good production, lowering average fitness in the process.

More generally, inequalities in the fitness matrix govern whether each genotype is an ESS.

In a two-strategy two-player game (Fig. 1c) there are four possible ESS configurations (Figs.

1d-1g). Each configuration corresponds to a distinct evolutionary outcome. Specifically,

the form of the fitness matrix determines whether a certain genotype dominates, whether
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coexistence is predicted, or whether initial genotype proportions matter. That is, the nature

of the game informs us about evolution of the population. In the next few sections we will

illustrate this connection, where we discuss cases of antibiotic resistance and production as

simple games, revisiting some of the evolutionary behavior shown in Figure 1.

Antibiotic resistance: the dilemma of being ‘snowed in’

A common mechanism of antibiotic resistance in bacteria involves the production of an

enzyme that deactivates the antibiotic [22,23]. For instance, β-lactamase hydrolyzes β-lactam

antibiotics (e.g., ampicillin). This enzyme is costly to produce and can work outside the

producing cell [24], and thus might be considered a public good. (Note, even if detoxification

of the drug occurs exclusively within the cell it can still be considered a public good because

it detoxifies the local environment [25,26].) We discussed costly public good production in

the context of the Prisoner’s Dilemma (Fig. 1a), which makes a clear evolutionary prediction:

in a population of producers and non-producers, the producers are driven to extinction (Fig.

1b). Does the β-lactamase system conform to the predictions of the Prisoner’s Dilemma?

Recent studies of β-lactamase production in Escherichia coli have shown that producer

and non-producer cells can coexist in an environment containing ampicillin [1,3] Indeed,

Yurtsev et al. [3] found that producer cells settled to a stable equilibrium regardless of

initial proportions (Fig. 2a). This is not consistent with the predictions of the Prisoner’s

Dilemma, as producers have a relative growth advantage when rare [15]. This deviation can

be explained by the finding that the antibiotic-degrading enzyme is primarily contained in

the periplasmic space of the producing cell [6,24]; thus, there is partial “privatization” of

the public good (Fig. 2b). When producers are rare, their private detoxification yields an

advantage over the non-producers that depend solely on public detoxification.

The dynamics exhibited in the above experiments can be understood as a Snowdrift game

[27,28]. In this game, two drivers are stuck behind a snowdrift. Each has the option of staying

in their car or clearing a path. The payoff is always greater if you choose to do the opposite of
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your opponent. Analogously, when there are many producing cells in a population it pays to

not produce, as the cost of production is avoided (compare entries in the first column of Fig.

2c). Conversely, when there are many non-producing cells in a population it pays to produce,

as greater protection from the antibiotic is achieved (compare entries in the second column

of Fig. 2c). If interactions occur randomly, then average fitnesses of the two strategies cross

as the producer proportion increases (Fig. 2d) and a stable equilibrium is predicted (Fig. 2e

and Fig. 1f). When moving from the Prisoner’s Dilemma (Fig. 1d) to the Snowdrift game

(Fig. 1f) the ordering of fitnesses of the two genotypes when paired with a non-producer has

flipped (compare payoff matrices in Fig. 1a and Fig. 2c). Given that partial privatization

is common among many public good systems [15,26,29], the Snowdrift game may be widely

applicable in natural systems [28,30].

In the case of E. coli β-lactamase production, the experimentally described stable interior

equilibrium is consistent with a snowdrift game (Fig. 2A). However it should also be noted

that the results shown in Yurtsev et al. display dynamics that would not be predicted from a

simple snowdrift game (for instance, when started at a low proportion, β-lactamase producers

rise to a high proportion before decreasing to the interior equilibrium). This suggests the

two player game framework is oversimplified; however, more detailed models (incorporating

antibiotic deactivation dynamics and modeling the growth rate of the non-producer as a

function of antibiotic concentration) can faithfully generate experimental results (see [3]).

Yurtsev et al. [3] also showed that the stable equilibrium shifts in response to changes

in drug concentration. Specifically, the fitness of non-producers (red entries in Fig. 2c)

decreases as drug concentration increases. Above a certain level of the drug, the fitness of

the producer becomes higher than the non-producer across all possible scenarios (i.e., a shift

from Fig. 1f to Fig. 1e). This would lead to the eventual fixation of the producer despite its

starting proportion (an outcome predicted for the so-called Harmony game [31]).
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Figure 6.2: Snowdrift game. (a) Results of a laboratory experiment tracking the proportion of
bacteria producing an antibiotic-inactivating enzyme β-lactamase). In the presence of the antibi-
otic (ampicillin), the producers and non-producers coexist, approaching the same final proportions
despite their initial fractions (data reproduced with permission from Yurtsev et al. (2013)). (b)
In this cartoon, we consider two genotypes: producers of an antibiotic-inactivating extracellular
enzyme (blue cells) and non-producers (red cells). Shown are three possible pairwise interactions
in the presence of an antibiotic (top) and the outcome of each interaction (bottom). A producer
benefits neighboring cells by inactivating the antibiotic (purple shading represents enzyme concen-
tration), but also receives greater private protection (indicated by the purple “halo”). (c) The
fitness matrix for the cartoon in part b is shown. Compared with Fig. 1a, the producer now has
a higher fitness when the partner is a non-producer because the enzyme (public good) is partially
privatized. This arrangement of fitnesses is known as the Snowdrift game. (d) Predicted average
fitnesses of each genotype given random interaction (note that the end points are the values in part
c). The small empty circles correspond to points where the average fitness is not strictly defined
(e.g., where producers or non-producers are absent). The point where the red and blue lines cross
corresponds to a producer proportion where the fitness of each genotype is equal; thus, this point
is an equilibrium. (e) Predicted population dynamics of a simple game theoretical model, given
the average fitnesses in part d. The proportion of producers increases when producers are rare and
decreases when producers are common. Thus, the producer proportion reaches a stable interior
equilibrium, regardless of the initial fraction. There is no pure strategy ESS here (see also Fig. 1f).
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Antibiotic production: choosing sides in a deadly game

In the previous section we considered a public good that can protect other cells from an-

tibiotics, but many bacteria also produce their own proteinaceous antibiotics [32,33]. A

strain that produces such a toxin (known as a bacteriocin) carries genes for both toxin pro-

duction and immunity, while a non-producing strain has neither and consequently avoids

associated costs [34]. In a mixed population of producers and non-producers the bacteriocin

kills only non-producing types. Given that producers compete with non-producers for lim-

ited resources, producers can help one another by destroying mutual competitors. In this

light, bacteriocins can be seen as an indirect “public good” [35,36]. However, as we shall

see, this kind of public good game has very different dynamics than any we have previously

considered.

In a study of bacteriocin production (colicin E3) in E. coli, Chao & Levin [37] found that

the outcome of competition between the producer and a sensitive non-producer was depen-

dent on initial genotype proportions. In contrast to the case of β-lactamase production where

the producing strain has an advantage when rare, they found that the producer only had an

advantage when fairly common (>2%). For a rare producer, the cost of production outweighs

the diluted benefit of colicin production. For a common producer, the concentrated toxic

benefit offsets the production costs. Thus, the fitness payoffs are such that each genotype

does better when matched with its own type (Fig. 3a-b). If interactions occur randomly,

each genotype is fitter than the other when common (Fig. 3c), which leads to a bistability

(Fig. 3d and Fig. 1g).

The payoff structure here is roughly equivalent to the “coordination” game called Choosing

Sides, which involves two drivers speeding toward each other on a dirt road [38]. Each driver

must choose a direction to swerve (Left or Right) in order to avoid a crash. If both execute

the same swerving maneuver they will manage to pass each other, but if they choose differing

maneuvers they will collide. A rare non-producer in a population of colicin producers fares
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poorly in the same way a Right Swerver fares poorly in a population of Left Swervers, and

vice versa.

Complex games I: more strategies

The experiments presented above involve only two strategies, but new strategies can readily

evolve in large populations of bacteria. The addition of new strategies to a game involves

adding additional rows and columns to the payoff matrix (consider moving from a 2 x 2 to a

3 x 3 payoff matrix). For example, colicin resistance mutations occasionally arise in sensitive

populations of E. coli [32,39,40]. When the resistant strain has a fitness intermediate between

the sensitive and producer strain, the new strategy can lead to a cyclical dynamic [41,42].

Specifically, the sensitive strain outgrows the resistant strain, the resistant strain outgrows

the producer, and a sufficiently common producer displaces the sensitive type through toxic

killing in a relationship analogous to the game of rock–paper–scissors. The strategy set gets

even larger still when further evolution of the three genotypes is considered [43–47].

Of course, natural microbial communities contain a diverse assortment of species with

much richer strategy sets than we have considered [48]. This is beginning to be explored

with pair-wise studies of antibiotic production and resistance in co-occurring species from

natural communities [49–54]. By constructing large interaction matrices with this type of

data, the nature of the multi-species game is elucidated. In particular, these enlarged payoff

matrices provide critical information on the network structure of microbial communities (e.g.,

the symmetry and transitivity of killing interactions) [49,53,54].

Complex games II: non-random interaction

The experiments presented above were conducted under “well-mixed” conditions where extra-

cellular products were uniformly distributed throughout the microbial community. However,

microbes often live in complex biofilms where the distribution of extracellular products may
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is similar to the Choosing Sides game. (c) Predicted average fitness of each genotype given random
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of producers increases when producers are common and decreases when producers are rare. Thus,
the producer proportion either approaches 0 or 1, depending on the initial fraction. The internal
equilibrium is unstable and there are two ESS’s: production and non-production (see also Fig. 1g).
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be highly non-uniform [55–58]. Theoretically, limited diffusion and local interaction can

completely transform the population dynamics of a system because a producer may dispro-

portionately experience its own products (if diffusion is limited) and the products of its clone

mates (if dispersal is limited) [59–63]. This effect of “spatial structure” has been illustrated

experimentally in two of the examples we previously discussed (and elsewhere [64,65]).

Chao & Levin [37] showed that spatial structure can promote successful invasion by a

colicin producer. In contrast to the bistability observed under well-mixed liquid culture con-

ditions (Fig. 4a), the colicin-producing strain always displaced the non-producing sensitive

strain in soft agar (Fig. 4b). Even if the producer was at a very low proportion globally,

spatial structure gave colicin producers an advantage because the toxin became concentrated

around producer microcolonies and killed neighboring non-producers; subsequently, the pro-

ducer was able to capitalize on the local resources liberated.

Kerr et al. [41] demonstrated that spatial structure can promote the maintenance of

diversity in a rock-paper-scissors community. In an unstructured habitat (a stirred flask),

the distributed toxin rapidly killed the sensitive strain and the resistant strain then displaced

the producer (Fig. 4c). Diversity was rapidly lost. However, in the structured habitat (the

surface of an agar plate), local dispersal gave rise to patches of each cell type, and these

patches ‘chased’ one another according to the rock-paper-scissors relationship (Fig. 4d-

e). Given that such non-transitive relationships have been reported in natural microbial

communities [49,50], it will be interesting to explore the role of spatial structure in the

maintenance of diversity within natural systems (see [66–70]).

Complex games III: more players

In this review we have focused on games involving two players. However, interactions among

bacteria rarely occur among discrete pairs. For this reason n-player games are often useful for

modeling bacterial interactions (see Supplement III for the n-player case and Supplements

II and IV for connections to dynamics in a single well-mixed population). Unlike increasing
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Figure 6.4: Spatial games. (a) An experiment tracking the proportion of colicin E3 producers
in liquid culture. If the producers start above a critical fraction ( 0.02), then the producers drive
the sensitive non-producers extinct. Otherwise, the producers go extinct (data reproduced with
permission from Chao & Levin (1981)). (b) When the same community is propagated in a structured
environment (soft agar), the producers increase despite initial proportion. (c) A second experiment
tracking the density of three genotypes. In a well-mixed flask, the sensitive non-producer (S)
quickly goes extinct (due to the ubiquitous toxin) and then the producer (P) is outcompeted by
the resistant non-producer (R) (data reproduced with permission from Kerr et al. (2002)). (d) All
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‘Chasing’ between clumps is highlighted in this second panel. The borders where P chased S are
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the number of strategies (which adds rows and columns to the payoff matrix), increasing

the number of players requires that the dimensionality of the payoff matrix increase (for

example, moving from a 2 x 2 to a 2 x 2 x 2 payoff matrix). Games involving an arbitrary

number of players lead naturally to an explicit consideration of how fitness depends on the

density of other players (density-dependent selection). Many bacteria have regulatory sys-

tems that can be activated at a specific cell density [71], some of which are known to control

antibiotic production [72–74]. The relationship between cell density-dependent regulation

and antibiotic production and resistance is an area that is just beginning to be explored,

but one theoretical model suggests that linking antibiotic production to cell density may be

important for competition because it can help to delay the cost of producing the antibiotic,

thus improving the fitness of the producing cell ([75], but see [76,77]). Another area for

future study related to density issues is the role of signaling in the production of antibiotic

resistance phenotypes [4,5].

Conclusions

We demonstrate how evolutionary game theory can be a useful framework for understanding

cases of antibiotic resistance and production that involve social interaction. We illustrated

that the population dynamics found in microbial experiments are predicted by different two-

strategy, two-player games. Certainly, the consideration of more strategies, more players

and more complex interaction are promising directions for future research. Nonetheless, we

feel that there is also value in the very simplest models. Specifically, these simple games

define different categories of social interaction with different resulting dynamics. The game

theoretical perspective focuses our attention on the precise nature of interaction, which

can guide our expectations about the evolution of some forms of antibiotic resistance and

production.
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