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Chapter 1. Dispersal and migration are spatially limited in many natural populations. Such limitations 

can lead to clustering of like types, which weakens competition between unlike types; thus, the rate by 

which a fitter type displaces an inferior competitor can be affected by the spatial scale of movement. 

We use a birth-death model to show that, by creating competitive refugia, limited migration can 

increase the frequency of deleterious mutants at mutation-selection balance. 

Chapter 2. For a novel genotype to establish in a population, it must (1) be created, and (2) not be 

subsequently lost. Recombination is a double-edged sword in this process, potentially fostering 

creation, but also hastening loss as the novel genotype is being recombined with other genotypes, 

especially when rare. In this chapter, we find that spatial structure may allow a population to harness 

the creative side of sex while avoiding its destructive side; that is, it may allow a population to create 

rare genotypes via recombination, and allow those rare genotypes to persist despite recombination. 

Chapter 3. In this chapter, we show that classical rules for predicting competitive outcomes in 

continuous-time systems are appropriate for a certain subset of discrete-time systems, which motivates 

a new discrete-time competitive exclusion principle. However, in discrete-time systems in which our 

proof's assumptions are not held, we show that classical rules can fail dramatically. 
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Abstract: Typical mutation-selection models assume well-mixed populations, but dispersal and 78 

migration within many natural populations is spatially limited. Such limitations can lead to enhanced 79 

variation among locations as different types become clustered in different places. Such clustering 80 

weakens competition between unlike types relative to competition between like types; thus, the rate by 81 

which a fitter type displaces an inferior competitor can be affected by the spatial scale of movement. In 82 

this paper, we use a birth-death model to show that limited migration can affect asexual populations by 83 

creating competitive refugia. We use a moment closure approach to show that as population structure 84 

is introduced by limiting migration, the equilibrial frequency of deleterious mutants increases. We 85 

support and extend the model through stochastic simulation, and we use a spatially explicit cellular 86 

automaton approach to corroborate the results. We discuss the implications of these results for standing 87 

variation in structured populations and adaptive valley crossing in Wright’s “shifting balance” process. 88 
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Most mutations affecting fitness appear to be deleterious (see review by Eyre-Walker and Keightley, 101 

2007). A deleterious mutation is expected to persist in a population at a level influenced by the rate at 102 

which it is generated and the strength of selection against it. This mutation-selection balance was first 103 

developed mathematically by Haldane and Fisher in the 1920’s in models that assumed well-mixed 104 

populations (Fisher, 1930; Haldane, 1927). However, many natural populations are not well mixed: 105 

individuals may not disperse, and even if they do, dispersal or migration is often restricted to nearby 106 

locations (Evans et al., 2009; Howells et al., 2013; Martin and Canham, 2010). Such limited movement 107 

may influence the proportion of deleterious mutants at equilibrium in several ways. In mating diploid 108 

populations, the Wahlund effect (in which population-level heterozygosity is depressed when 109 

subpopulations differ in allele frequency) combines with dominance relationships among genotypes to 110 

influence the frequency of deleterious mutant alleles (Roze and Rousset, 2004; Whitlock, 2002). In 111 

haploid asexual models, limiting migration increases between-deme variation and decreases within-112 

deme variation, but the extent to which this shift in variation affects evolution is unclear. 113 

Limitations to migration are not predicted to affect the equilibrium frequency of deleterious 114 

mutants in asexual populations when fitness is independent of local composition and density. For 115 

instance, Whitlock (2002) finds no effect of migration under a “hard selection” scheme (in which 116 

absolute fitness is determined solely by genotype, and thus demes of different compositions may differ 117 

in productivity). However, in “soft selection” regimes (in which relative fitness within a deme depends 118 

on genotype, but each deme’s productivity is the same regardless of composition), demes enriched for 119 

mutants are as productive as demes enriched for wild types. Such mutant-rich demes may serve as 120 

competitive refugia. Thus, in soft selection schemes, limiting migration can increase the frequencies of 121 

deleterious mutants (Roze and Rousset, 2004; Whitlock, 2002). 122 
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As mutation, selection and migration occur in a subdivided population, both first-order 123 

moments (i.e., the mean) and higher-order moments (i.e., variance, skew, kurtosis, etc.) of allele 124 

frequencies across demes can change. Previous models have estimated higher-order moments (or 125 

related quantities like FST) in terms of first-order moments under an assumption of weak selection. In 126 

this paper, we take a different approach. We build an ecological model of a subdivided population, in 127 

which higher-order moments are dynamic variables. No assumptions about the strength of selection or 128 

mutation are required. Using this model, we find that limited migration increases the fraction of 129 

mutants at mutation-selection balance. However, our moment-closure approach (in which we express 130 

third-order moments in terms of lower-order moments) is exact only under total migration. Thus, our 131 

analytical results are accurate when there is minimal subdivision. Similar moment closure approaches 132 

have been used to model ecological neutrality, competition, and stability (Bolker and Pacala, 1997; 133 

Haegeman and Loreau, 2011; Neuhauser, 2002; Vanpeteghem and Haegeman, 2010). We use 134 

computer simulations to confirm that the fraction of mutants at equilibrium increases under limited 135 

migration (where the mathematical analysis is approximate). The simulations also show spatial 136 

segregation of types, suggesting that mutant-rich areas act as competitive refugia. 137 

 138 

MUTATION-SELECTION BALANCE IN A SUBDIVIDED POPULATION  139 

In our model, a population inhabits a metapopulation of patches. Space is implicit in this model; all 140 

patches are equally “far” from any given patch. Migration between patches occurs at birth with a 141 

specified probability. When the probability is one, every offspring migrates to a random patch, and the 142 

population is essentially well mixed. When the probability is lowered slightly from one, there is a 143 

small chance an offspring will stay in its natal patch, and thus a modicum of spatial structure is 144 

introduced. 145 
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Terminology and Life Cycle: Consider two genotypes 𝑊 and 𝑀, for wild type and mutant, 146 

respectively, inhabiting a metapopulation with an infinite number of patches. The population size of 147 

each patch is finite. In all that follows, genotype indices 𝑖 and 𝑗 will be used where 𝑖, 𝑗 ∈ {𝑊,𝑀} and 148 

𝑖 ≠ 𝑗. The per capita birth rate of genotype 𝑖 is given by 𝐹+ 𝑛+, 𝑛- = 𝑓+ − 𝛽+(𝑛+ + 𝛼+-𝑛-), where 𝑛+ and 149 

𝑛- are the numbers of genotype 𝑖 and 𝑗 in the patch, 𝑓+ is the intrinsic growth rate of genotype 𝑖, 𝛽+ 150 

measures the effect of intra-genotypic competition, and 𝛼+- is an inter-genotypic conversion factor (i.e., 151 

one individual of genotype 𝑗 counts as 𝛼+- individuals of genotype 𝑖). Genotype 𝑖 dies with rate 𝛿+. 152 

Mutation from genotype 𝑖 to 𝑗 occurs during the birth process with probability 𝜇+→-. Migration also 153 

occurs at birth, when genotype 𝑖 migrates to a random patch with probability 𝑚+. The population 154 

evolves stochastically in continuous time. 155 

 156 

Moment Dynamics: Let 𝑁+(𝑡) be the expected number of genotype 𝑖 per patch at time 𝑡. For 157 

typographical convenience, we drop the explicit reference to time dependence in our notation for the 158 

terms and equations that follow (e.g., 𝑁+(𝑡) is written 𝑁+). In Appendix 1 we show that 159 

<=>
<?
= 1 − 𝜇+→- 	𝑁+	𝐹+ 𝑁+ +, 𝑁- + + 𝜇-→+	𝑁-	𝐹- 𝑁- -, 𝑁+ - − 𝛿+	𝑁+,                                 (1) 160 

where 𝑁+ - is the expected number of individuals of genotype 𝑖 in the patch of a randomly chosen 161 

individual of genotype 𝑗, with 𝑖, 𝑗 ∈ {𝑊,𝑀}. 162 

It can be shown that 𝑁+ + = 𝑁+ + 𝜎+C 𝑁+, where 𝜎+C is the variance in the number of genotype 𝑖. 163 

When individuals of the given genotype are uniformly distributed (i.e., variance is zero), this reduces 164 

to the mean 𝑁+. Similarly, 𝑁+ - = 𝑁+ + 𝐶 𝑁-, where 𝐶 is the covariance between the numbers of 165 

genotypes 𝑖 and 𝑗. When the two genotypes are independently distributed (i.e., covariance is zero) this 166 
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term reduces to the mean 𝑁+. Covariance may be positive, indicating association between types, or 167 

negative, indicating segregation of types. 168 

Thus the dynamics of the first order moments 𝑁+ and 𝑁- rely on second order moments 𝜎+C, 𝜎-C, 169 

and 𝐶. The equations governing the dynamics of these second order moments involve third order 170 

moments, the differential equations for the third order moments involve fourth order moments, and so 171 

on. Our task is similar to Hercules’ battle with the Hydra (in spirit, not magnitude!). With each Hydra 172 

head Hercules sliced off, new heads popped up in its place. For each moment dynamical equation we 173 

describe, the description of new, higher-order moment equations becomes necessary. We must find a 174 

way to stem the endless flow of higher-order moments. Hercules seared the necks of the Hydra to 175 

prevent the regrowth of the heads; we close our system of differential equations by a second-order 176 

moment closure technique. We approximate third-order moments in terms of lower-order moments 177 

(see Appendix 1 for details), thus sealing the endless flow. Our moment closure approximation is exact 178 

when migration is absolute (i.e., 𝑚E = 𝑚F = 1), and we are not limited by assumptions of near 179 

neutrality (Neuhauser, 2002). With this approximation, the dynamics for the second order moments are 180 

given by: 181 

 182 

𝑑𝜎+C

𝑑𝑡 =
𝑑𝑁+
𝑑𝑡 + 2𝛿+ 𝑁+ − 𝜎+

C + 2 1 −𝑚+ 1 − 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑁+ + 2𝑁+𝜎+C − 𝛽+𝛼+- 𝑁+𝐶 + 𝑁-𝜎+C  183 

																									+2 1 − 𝑚- 	𝜇-→+	 𝑓-𝐶 − 𝛽-2𝑁-𝐶 − 𝛽-𝛼-+ 𝑁+𝐶 + 𝑁-𝜎+C                  (2) 184 
 185 

𝑑𝐶
𝑑𝑡 = − 𝛿+ + 𝛿- 𝐶 + 1 −𝑚+ 1 − 𝜇+→- 𝑓+𝐶 − 𝛽+2𝑁+𝐶 − 𝛽+𝛼+- 𝑁-𝐶 + 𝑁+𝜎-C  186 

																																				+ 1 − 𝑚- 𝜇-→+ 𝑓-𝜎-C − 𝛽- 𝑁- + 2𝑁-𝜎-C − 𝛽-𝛼-+ 𝑁-𝐶 + 𝑁+𝜎-C  187 
																																				+ 1 − 𝑚- 1 − 𝜇-→+ 𝑓-𝐶 − 𝛽-2𝑁-𝐶 − 𝛽-𝛼-+ 𝑁+𝐶 + 𝑁-𝜎+C  188 
																																				+ 1 − 𝑚+ 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑁+ + 2𝑁+𝜎+C − 𝛽+𝛼+- 𝑁+𝐶 + 𝑁-𝜎+C                            (3)       189 

      190 
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Mutation-Selection Balance: Our dynamical system contains many parameters. To simplify matters, 191 

we assume 𝑚E = 𝑚F = 𝑚, 𝑓E = 𝑓F = 𝑓, 𝛽E = 𝛽F = 𝛽, 𝛼EF = 𝛼FE = 1, 𝜇E→F = 𝜇, and 192 

𝜇F→E = 0. Thus, we assume our genotypes are identical in all parameters except their death rates, 193 

which define a 𝑊 to 𝑀 mutation as deleterious (i.e. 𝛿F > 𝛿E > 0), and their mutation rates. 194 

Consequently, we only consider viability selection in this analysis, though we simulate other 195 

possibilities below. We have also assumed that intra-genotypic competition is identical to inter-196 

genotypic competition (the 𝛼 parameters are set to unity), and that back mutation does not occur. This 197 

might be realistic if the mutation from wild type to the mutant involves a deletion, but even if this 198 

mutation is a base substitution, the density of mutants is often so low that back mutation does not 199 

greatly affect our results (see simulations below). 200 

In Appendix 2, we derive the mutant fraction of the population at equilibrium under full 201 

migration (𝑚 = 1). Because the fraction of mutants cannot be greater than one, there are parameter 202 

constraints on the analysis to ensure mutation does not “overwhelm” selection. Within those parameter 203 

constraints, the fraction of mutants at mutation-selection balance is 204 

Φ = LMN
(OPL)(MQPMN)

 .                    (4) 205 

Like the classical result for a panmictic haploid population, for which Φ = L
R
 where 1 − 𝑠 is the fitness 206 

of a mutant relative to a wild-type (Crow and Kimura, 1970), our expression is proportional to 𝜇 (for 207 

small 𝜇) and inversely proportional to a measure of the selective disadvantage of the mutant (	MQ
MN
− 1).  208 

How does this fraction change as spatial structure is introduced; that is, what happens to Φ as 209 

𝑚 is lowered from unity? Since Equations (2) and (3) are exact for 𝑚 = 1, the partial derivative of Φ 210 

with respect to 𝑚 can be computed exactly at 𝑚 = 1 (Neuhauser, 2002). In Appendix 3, we derive the 211 

following:  212 
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TU
VW XYZ

= − [L
(OPL)\MQ (MQ MN)\PO

 .                         (5) 213 

This expression demonstrates that TU
VW XYZ

< 0 for 0 < 𝜇 < 1, so the fraction of deleterious mutants at 214 

equilibrium always increases when a small amount of structure is introduced into the model. 215 

 216 

Simulation of the Spatial Model 217 

Our analysis is exact when all offspring migrate, but becomes approximate as soon as some offspring 218 

remain in their natal patches. How well do the approximations capture actual dynamics? Here, we 219 

explore the model via simulation. 220 

In the simulation, we seed a finite (but large) number of patches P with wild type and mutant 221 

individuals, and simulate evolution using a Gillespie algorithm in which birth and death events occur 222 

stochastically (see Appendix 4 for details). In simulation runs with absolute migration, all first order 223 

moments and second order moments approach our analytic predictions as equilibrium is reached, even 224 

when initialized far from the calculated equilibrium (Sup. Fig. 1). This is expected, as our analysis is 225 

exact when migration is absolute. As the probability of migration is lowered from unity, our analysis 226 

becomes approximate. Figure 1 shows simulation results across a range of migration probabilities, and 227 

the analytical prediction extrapolated from Equation (5). At high levels of migration, the simulation 228 

corresponds well with the analysis, with Φ following its derivative calculated at 𝑚 = 1 (Fig. 1, inset). 229 

As migration drops further, the mutant frequency rises faster than the linear extrapolation from our 230 

analytical model (Fig. 1). The correspondence between our finite simulation and our deterministic 231 

analysis for high migration indicates that the number of patches P is large enough for the 232 

metapopulation to behave deterministically. Moreover, results are not appreciably affected when fewer 233 

patches are used (Sup. Fig. 2B). Results are also not appreciably affected when back mutation is 234 

allowed (Sup. Fig. 2A). 235 
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 236 

Figure 1. Stochastic simulation under various migration rates. Frequency of deleterious 237 
mutants at mutation-selection balance across various probabilities of migration as found by 238 
simulation (red circles), compared to the m=1 derivative of our analytical model (black dashed 239 
line). The analytically calculated mutant fraction at full migration is given as a gray dotted 240 
horizontal line for comparison. At high migration probabilities, the simulation results agree 241 
well with our analytical model (see inset). As the probability of migration decreases further 242 
from unity, the fraction of deleterious mutants increases faster than the analytical 243 
extrapolation. Large data points and shading represent mean values and standard deviation 244 
of 20-40 replicate simulations (small data points) using parameter values 𝑃 = 10_, 𝑓 = 0.5, 245 
𝛽 = 0.2, 𝜇 = 0.1, 𝛿E = 0.05, 𝛿F = 0.1, corresponding to a per-patch carrying capacity of 246 
approximately bPMN

[
= 2.25. 247 

 248 
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Parameters for Figure 1 were chosen to illustrate a large effect of limited migration on the 249 

mutant fraction at mutation-selection balance. When the competition parameter 𝛽 is decreased, 250 

abs TU
VW XYZ

 is proportionately decreased (see Eq. 5) and the per-patch carrying capacity is increased, 251 

but the simulated mutant frequency still rises faster than the linear extrapolation from our model (Sup. 252 

Fig. 2C). Similar results to those shown in Figure 1 occur when both the mutation rate and the selective 253 

disadvantage of mutants are decreased (Sup. Fig. 2D). 254 

To see why limited migration increases the fraction of deleterious mutants in a population, we 255 

follow a simulation (Fig. 2) as it transitions from absolute migration to limited migration (i.e., 𝑚 = 1 256 

to 𝑚 = 0.5). We see that when limited migration is introduced, the mutant frequency increases (Fig. 257 

2A), the variance in mutant density increases (i.e., the mutants become more clumped), and the 258 

covariance between the densities of the two genotypes becomes negative (i.e., patches with many wild-259 

type genotypes tend to have fewer mutant genotypes, and vice versa) (Fig. 2B).  260 



 16 

 261 

Figure 2. A simulated shift in the probability of migration. When migration becomes limited 262 
(grey-shaded portion of plots), the increase in deleterious mutant frequency (A) coincides 263 
with an increase in the variance in mutant density and a decrease in the covariance between 264 
mutant and wild type densities (B, variances are divided by the means of their corresponding 265 
variables, and covariance is divided by the product of the roots of the two means). Time units 266 
are relative, and defined by a Gillespie algorithm described in Appendix 4. Solid lines and 267 
colored shading represent the mean ± SD of 16 replicate simulations using the parameter 268 
values listed in Figure 1. 269 
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Such spatial segregation leads to an increase in the fraction of inhabited patches that house 270 

mutant-only populations (Sup. Fig. 3A). The fraction of mutants in mutant-only patches also increases 271 

as the migration rate decreases (Sup. Fig. 3B). Notably, the fraction of mutants in patches that also 272 

house wild type genotypes does not increase as the migration rate decreases (Sup. Fig. 3B). Thus, the 273 

increase of mutants in mutant-only patches may suffice to explain the overall increase in mutants at 274 

limited migration rates. 275 

We conclude that limited migration leads to a higher mutant frequency at mutation-selection 276 

balance because the less fit mutant is able to escape competition with the wild type due to spatial 277 

segregation. Thus, mutant-rich patches are competitive refugia that allow the mutant genotype to 278 

persist in relative isolation from the competitively superior wild type. If this explanation is correct, 279 

limited migration should safeguard deleterious mutants regardless of whether selection occurs via 280 

differences in viability or fecundity, whether space is explicit or implicit, and whether the spatially 281 

distributed units are populations or individuals. 282 

 283 

A LATTICE-BASED APPROACH 284 

Our next approach considers individuals that are embedded in a lattice. Here, unlike our first approach, 285 

(a) space is explicit, (b) population structure varies with dispersal distance, (c) the “patches” house 286 

individuals rather than subpopulations, and (d) we consider both viability and fecundity selection. A 287 

similar lattice-based approach has been used to explore many eco-evolutionary aspects of spatially 288 

structured populations, including the invasion of rare types, species coexistence, host-parasite 289 

evolution, spatial structuring of communities, and evolutionary trajectories (Débarre et al., 2012; 290 

Durrett and Levin, 1997; Hauert and Doebeli, 2004; Kerr et al., 2002). 291 
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In our simulation, we consider two haploid asexual genotypes: wild type (𝑊) and mutant (𝑀). 292 

These genotypes occupy an 𝐿×𝐿 regular square lattice with periodic boundaries (i.e., a toroidal 293 

geometry). Each lattice point may take one of three states: empty, wild type, or mutant. At each update, 294 

a point is chosen at random. If this focal point is “filled” with a wild type, the wild type dies with 295 

probability 𝛿E∗ , giving a transformation to the empty state. Likewise, a mutant that is chosen will die 296 

with probability 𝛿F∗  (where 𝛿F∗ ≥ 𝛿E∗ > 0).   297 

If the focal point is already empty, then a birth event can occur, where an individual in a pre-298 

defined neighborhood of the focal point produces an offspring that fills the focal point (giving a 299 

transformation to a filled state). Let 𝑥E and 𝑥F be the fraction of the focal point’s neighborhood 300 

occupied by wild type and mutant lattice points, respectively. Then with probabilities 𝑓E∗ 𝑥E and 𝑓F∗𝑥F 301 

the parent of the individual “born into” the focal point is wild type and mutant, respectively. The 302 

parameters 𝑓E∗  and 𝑓F∗  represent the fecundities of wild-type and mutant individuals (where 303 

0 ≤ 𝑓F∗ ≤ 𝑓E∗ ≤ 1). The focal point stays empty with probability 1 − 𝑓E∗ 𝑥E − 𝑓F∗𝑥F. Mutation occurs 304 

at birth: from wild type to mutant with probability 𝜇E→F
∗ , and from mutant to wild type with 305 

probability 𝜇F→E∗ . The degree of population structure is controlled by adjusting the size of the 306 

neighborhood around any focal point (effectively altering the distribution of distance at dispersal). We 307 

focus on three cases: a von Neumann neighborhood (where the lattice points immediately to the north, 308 

east, south and west of the focal point comprise the neighborhood), a Moore neighborhood (where the 309 

eight lattice points nearest the focal point constitute the neighborhood), and a Global neighborhood 310 

(where the entire lattice, minus the focal point, comprises the neighborhood). Thus, the evolving 311 

population can range from highly structured (von Neumann neighborhood) to effectively well mixed 312 

(Global neighborhood).  313 
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Figure 3 shows that smaller dispersal neighborhoods lead to higher mutant frequencies at 314 

equilibrium, corroborating our prior analysis. This pattern holds under both pure viability selection 315 

(𝛿F∗ > 𝛿E∗  and 𝑓F∗ = 𝑓E∗ ) and pure fecundity selection (𝛿F∗ = 𝛿E∗  and 𝑓F∗ < 𝑓E∗ ).  316 

 317 

 318 

 319 

 320 

 321 
 322 

 323 
Figure 3. Lattice-based simulation results. The frequency of deleterious mutants at mutation-324 
selection balance across various neighborhood sizes in lattice-based simulations with viability 325 
selection (A) or fecundity selection (B). As dispersal is limited to smaller neighborhoods, the 326 
frequency of deleterious mutants increases. Large data points represent mean values of 24 327 
replicate simulations (small data points) using parameter values 𝐿 = 200, 𝜇E→F

∗ = 0.1, 328 
𝜇F→E∗ = 0.02, and either viability selection (A, with 𝛿E∗ = 0.1, 𝛿F∗ = 0.2, 𝑓E∗ = 𝑓F∗ = 1) or 329 
fecundity selection (B, with 𝛿E∗ = 𝛿F∗ = 0.1, 𝑓E∗ = 1, 𝑓F∗ = 0.5). 330 

 331 
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DISCUSSION 332 

We find analytically and computationally that limited migration increases the frequency of deleterious 333 

mutants, and this increase is not restricted to a specific form of space or mode of selection. Prior 334 

models of selection in metapopulations have shown effects of limited migration when local 335 

interactions are defined by mating, or when mutant-rich demes have similar productivity to wild type 336 

enriched demes, and can thus act as competitive refugia for mutants (Glémin et al., 2003; Roze and 337 

Rousset, 2004; Whitlock, 2002). In this paper, we embedded competition in an explicitly ecological 338 

framework, which allows us to manifest local interactions explicitly as density-dependent fecundity. 339 

We used a moment closure approach that expresses higher-order moments in terms of lower-order 340 

moments, therefore allowing those higher-order moments to vary dynamically as we began to limit 341 

migration. We showed that limited migration can affect asexual populations by segregating types. 342 

Essentially, limiting migration has no effect on the generation of mutants, but hampers the effective 343 

strength of selection (Cherry and Wakeley, 2003) by sheltering alleles from global competition, and so 344 

tips the mutation-selection balance in favor of deleterious mutations. Generally, whenever there is both 345 

variation in localities and local interaction, migration rate will be a salient factor in determining the 346 

frequency of deleterious mutants. 347 

Mutant frequency is sometimes used to estimate mutation rates of microbes. Using such a 348 

method, a structured environment may appear mutagenic because a higher frequency of mutants is 349 

found. For example, Bjedov et al. (2003) find a disparity in mutant frequencies between liquid and 350 

agar bacterial cultures, and attribute it to oxidative stress incurred during colonial growth on agar. This 351 

explanation is certainly plausible, but the colony structure itself may contribute to the increased mutant 352 

frequency. When going from an unstructured to a structured environment (e.g., a flask to an agar 353 

plate), the frequency of deleterious mutants may increase even if the mutation rate is constant. 354 
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Adaptive valley crossing: If a single deleterious mutation is complemented by a second mutation that 355 

improves the fitness of the organism above the wild type, the frequency (and number) of the original 356 

mutant may be relevant for crossing “adaptive valleys”. Recent theoretical studies have elucidated how 357 

well-mixed populations cross adaptive valleys, and at what rate (Weissman et al., 2010, 2009). 358 

However, Sewall Wright’s shifting balance process is predicated on the idea that, collectively, semi-359 

isolated subpopulations would explore a landscape in a way unavailable to well-mixed populations 360 

(Pigliucci, 2008; Wright, 1988, 1932). To cross a valley, a population must first discover a new peak, 361 

and then have the peak genotype spread through the population. Increasing migration between 362 

separated patches hinders exploration of novel genotypes (Whitlock, 2003), but, once a beneficial 363 

genotype is discovered, the increased migration facilitates its spread (Jain et al., 2011; Rozen et al., 364 

2008). In the rugged landscapes that were the focus of Wright’s shifting balance, the rate-limiting step 365 

in adaptation may be the discovery of novel genotypes (i.e., finding new peaks) rather than their spread 366 

through a population. If this is the case, limited migration may speed the rate of adaptation. 367 

If valley crossing requires multiple “downward” steps, the facilitating effect of limited 368 

migration is amplified. Limited migration protects not only deleterious single mutants from 369 

competition with wild types, but also relatively deleterious double mutants from competition with 370 

single mutants (and wild types). When deleterious double mutants are added to our metapopulation 371 

simulation, we see the amplified effect of limited migration on the double-mutant frequency (Fig. 4A); 372 

when we add triple mutants, the effect of limited migration amplifies further (Fig. 4B). This effect on 373 

double and triple mutants is also observed in our lattice-based approach (Sup. Fig. 4).  374 

 375 

 376 

 377 
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 378 

 379 

Figure 4. Stochastic simulations with a chain of sequential deleterious mutants in a 380 
metapopulation approach. The wild-type genotype yields the first mutant via mutation; the 381 
first mutant yields the relatively deleterious double mutant via mutation; and so on. The 382 
density of each genotype is shown relative to its density in a well-mixed population (given by 383 
the dotted line at unity). The effect of migration probability on relative density in a community 384 
with two (A) and three (B) mutants are shown. Points and colored shading represent the 385 
mean ± SD of 12 replicate simulations, while dashed lines roughly matching the double-386 
mutant frequency represent the square of the mutant to wild-type ratio, multiplied by the wild-387 
type density, for each m. In (B), the cubes of the ratios are also shown, roughly matching the 388 
triple-mutant density. Parameter values used in this simulation are: 𝑃 = 10_, 𝑓 = 0.5, 𝛽 = 0.2, 389 
𝜇E→F = 𝜇F→FC = 𝜇FC→Fi = 0.1, 𝜇Fi→FC = 𝜇FC→F = 𝜇F→E = 0.01, 𝛿E = 0.05, 𝛿F = 0.1, 𝛿FC =390 
0.2, 𝛿Fi = 0.4. 391 
 392 
 393 

For sufficiently wide valleys, a population starting with only wild type individuals may 394 

discover the peak genotype faster when its migration is limited (Fig. 5). For certain parameter values, a 395 

population whose migration is limited may cross even the narrowest valley—one deleterious mutant 396 

between two peak genotypes—faster than an unstructured population (Bitbol and Schwab, 2014). Note 397 
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that when only upward steps are required for adaptation (e.g., a smooth landscape) then the rate-398 

limiting step in adaptation is the spread of beneficial genotypes, and thus limited migration will inhibit 399 

adaptation (Kryazhimskiy et al., 2012).  400 

 401 

 402 

Figure 5. Discovery versus spread in simulated populations. Both metapopulation (A) and 403 
lattice (B) simulations were initialized with wild type genotypes only. There are three 404 
successively more deleterious mutants comprising a valley between the wild type genotype 405 
and a highly beneficial mutant (accessible from the third deleterious mutant). The waiting time 406 
before the beneficial mutant reaches a given frequency is shown. As migration becomes 407 
more limited, the waiting time to the discovery of the beneficial mutant decreases (as 𝑚 408 
decreases from 1, the 0.01% profile drops; as the dispersal neighborhood shrinks, the 0.01% 409 
profile drops). However, a greater degree of structure inhibits the spread of these beneficial 410 
mutants (and thus the time to reach a substantial frequency of the beneficial mutant can 411 
increase under initial limitations to migration—see 1% and 50% trajectories). Extremely 412 
limited migration decreases total population size, facilitating spread. Fixation does not occur 413 
as back mutation is allowed and the numbers of patches are large. Points and shaded 414 
regions represent the mean ± SEM of 24-36 (A) or 16 (B) replicate simulations using 415 
parameter values 𝑓 = 0.5, 𝛽 = 0.2, 𝜇E→F = 𝜇F→FC = 𝜇FC→Fi = 0.1, 𝜇Fi→FC = 𝜇FC→F =416 
𝜇F→E = 0.01, 𝛿E = 0.05, 𝛿F = 0.1, 𝛿FC = 0.2, 𝛿Fi = 0.4, 𝛿F_ = 0.025. For (A), 𝑃 = 10_. For 417 
(B) 𝐿 = 200. 418 
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The limited migration of individuals generally slows the spread of advantageous traits. 419 

However, it is precisely this dampening of competition that can allow spatially structured populations 420 

to safeguard deleterious mutants. By harboring this diversity, it may be possible for structured 421 

populations to discover novel genotypes faster, even if the benefit spreads more slowly. 422 

 423 

 424 
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Supplemental Figures 532 

 533 
 534 

 535 
Supplemental Figure 1. Stochastic simulation under full migration (𝑚 = 1). The equilibrium 536 
values for all first and second order moments (dashed lines) are calculated from the model. 537 
The initial conditions used for the simulation are far removed from these equilibria: each 538 
patch starts either empty or with one wild type and one mutant, each with equal probability. 539 
All first order moments (A) and second order moments (B) converged to their expected 540 
values. In (B), variances are divided by the means of their corresponding variables, and 541 
covariance is divided by the product of the roots of the two means. Time units are relative, 542 
and defined by a Gillespie algorithm described in Appendix 4. Solid lines and shaded areas 543 
represent means ± SDs of eight replicate simulations using parameter values 𝑃 = 10_, 𝑓 =544 
0.5, 𝛽 = 0.2, 𝜇 = 0.1, 𝛿E = 0.05, 𝛿F = 0.1. 545 



 28 

 546 
 547 
Supplemental Figure 2. Stochastic simulations under various migration rates, with 548 
parameters identical to those used for Figure 1 (𝑃 = 10_, 𝑓 = 0.5, 𝛽 = 0.2, 𝜇 = 0.1, 𝛿E = 0.05, 549 
𝛿F = 0.1) except with (A) non-zero back mutation rate, (B) fewer patches, (C) decreased 550 
competition parameter, and (D) decreased selective disadvantage of mutants with a 551 
compensating decrease in mutation rate (see Eq. 4). Frequency of deleterious mutants at 552 
mutation-selection balance plotted across various probabilities of migration as found by 553 
simulation (red circles), compared to the m=1 derivative of our analytical model (black dashed 554 
line). The simulated (A) or analytically calculated (B, C, D) mutant fraction at full migration is 555 
given as a gray dotted horizontal line for comparison. Large data points and shading 556 
represent means ± SDs of 12-36 replicate simulations (small data points).  557 
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 566 
 567 
 568 

 569 
Supplemental Figure 3. Patches as competitive refugia for deleterious mutants. The 570 
proportion of homotypic, heterotypic, and empty patches at approximately steady-state for a 571 
range of migration rates is shown (A). At very low migration rates, the frequency of empty 572 
patches increases due to the low rate of reseeding after stochastic within-patch extinctions. 573 
The proportion of wild type and mutant individuals ‘housed’ in homotypic and heterotypic 574 
patches is also shown (B). Each bar represents the mean values of two replicate simulations 575 
using parameter values 𝑃 = 10_, 𝑓 = 0.5, 𝛽 = 0.2, 𝜇 = 0.1, 𝛿E = 0.05, 𝛿F = 0.1. 576 



 30 

 577 
 578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 

 590 
Supplemental Figure 4. Lattice-based simulations with a chain of sequential deleterious 591 
mutants (as in Figure 4). The density of each genotype is shown relative to its density in a 592 
population with a global neighborhood (given by the value of unity). Large data points 593 
represent mean values of 24 replicate simulations (small data points) using parameter values 594 
𝐿 = 200, 𝜇E→F

∗ = 𝜇F→FC∗ = 𝜇FC→Fi∗ = 0.1, 𝜇Fi→FC∗ = 𝜇FC→F∗ = 𝜇F→E∗ = 0.02, 𝛿E∗ = 0.1, 𝛿F∗ =595 
0.2, 𝛿FC∗ = 0.4, 𝛿Fi∗ = 0.8, 𝑓E∗ = 𝑓F∗ = 𝑓FC∗ = 𝑓Fi∗ = 1. 596 
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Appendices 597 

Appendix 1: Moment Equations 598 

Mean Density Dynamics 599 

In this appendix, we derive the dynamical equations for our first and second-order moments. 600 

We assume our population inhabits a metapopulation of infinite patches (each of which houses a finite 601 

population), allowing us to use expectation values for our patch dynamics. We start with the dynamics 602 

of the mean genotype abundances. Let 𝑞+(𝑡) be a random variable giving the number of individuals of 603 

genotype 𝑖 ∈ {𝑊,𝑀} within a randomly selected patch at time 𝑡. If we consider a period of time, Δ𝑡, 604 

small enough that the probabilty of more than one event occuring during that interval is vanishing 605 

small, we have the following: 606 

𝑞+ 𝑡 + Δ𝑡 =
𝑞+ 𝑡 − 1						with	probability	𝑃+P	
𝑞+ 𝑡 + 1						with	probability	𝑃+y

 ,                                      (A1.1) 607 

where 608 

𝑃+P = 𝛿+𝑞+ 𝑡 Δ𝑡,     (A1.2) 609 

and 610 

𝑃+y = 1 −𝑚+ 1 − 𝜇+→- 𝐹+ 𝑞+ 𝑡 , 𝑞- 𝑡 𝑞+ 𝑡 Δ𝑡 + 1 −𝑚- 𝜇-→+𝐹- 𝑞- 𝑡 , 𝑞+ 𝑡 𝑞- 𝑡 Δ𝑡 611 

											+𝑚+ 1 − 𝜇+→- 𝐸 𝐹+ 𝑞+ 𝑡 , 𝑞- 𝑡 𝑞+ 𝑡 Δ𝑡 + 𝑚-𝜇-→+𝐸 𝐹- 𝑞- 𝑡 , 𝑞+ 𝑡 𝑞- 𝑡 Δ𝑡.         (A1.3) 612 

where 𝐸 is the expectation value over all patches. Thus, the expected change in 𝑞+ over our small 613 

interval of time is given by: 614 

𝐸 Δ𝑞+ = 𝐸 𝑃+y − 𝑃+P .      (A1.4) 615 

For typographical convenience, we drop the explicit time dependence in our notation for the terms and 616 

equations that follow. We use the following notations 617 

𝑁+ = 𝐸 𝑞+ , 618 
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𝜎+C = var 𝑞+ , 619 

𝐶 = cov 𝑞+, 𝑞- = cov 𝑞-, 𝑞+ , 620 

and we have the following relations 621 

𝐸 𝑞+C = 𝑁+C + 𝜎+C,               (A1.5) 622 

𝐸 𝑞+𝑞- = 𝑁+𝑁- + 𝐶.                            (A1.6) 623 

Using (A1.5), (A1.6), and our per capita birth rate of 𝐹+ 𝑛+, 𝑛- = 𝑓+ − 𝛽+ 𝑛+ + 𝛼+-𝑛-  we can rewrite 624 

(A1.4) as follows: 625 

𝐸 Δ𝑞+
Δ𝑡 = −𝛿+𝑁+ + 1 − 𝜇+→- 𝑓+𝑁+ − 𝛽+ 𝑁+C + 𝜎+C + 𝛼+- 𝑁+𝑁- + 𝐶  626 

																																+𝜇-→+ 𝑓-𝑁- − 𝛽- 𝑁-C + 𝜎-C + 𝛼-+(𝑁+𝑁- + 𝐶) .               (A1.7) 627 

Taking the limit Δ𝑡 → 0, and factoring 𝑁+ from the second term and 𝑁- from the third term, we have 628 

d𝑁+
d𝑡 = −𝛿+𝑁+ + 1 − 𝜇+→- 𝑓+ − 𝛽+ 𝑁+ +

𝜎+C

𝑁+
+ 𝛼+- 𝑁- +

𝐶
𝑁+

𝑁+  629 

																									+𝜇-→+ 𝑓- − 𝛽- 𝑁- +
~�
\

=�
+ 𝛼-+ 𝑁+ +

�
=�

𝑁- .                                                  (A1.8) 630 

The terms 𝑁+ + 𝜎+C 𝑁+ and 𝑁- + 𝐶 𝑁+ (and the two other similar terms) are more approachable if we 631 

allow 𝑁- + to represent the expected number of individuals of genotype 𝑗 in the patch of a randomly 632 

chosen individual of genotype 𝑖 (rather than a randomly chosen patch). Eq. A1.6 can now be rewritten 633 

as 𝑁+𝑁- + = 𝐸 𝑞+𝑞- = 𝑁+𝑁- + 𝐶, and therefore 𝑁- + = 𝑁- + 𝐶 𝑁+. Similarly, Eq. A1.5 yields 𝑁+ + =634 

𝑁+ + 𝜎+C 𝑁+. Using this notation, (A1.8) can be simplified to 635 

�=>
�?
= −𝛿+	𝑁+ + 1 − 𝜇+→- 	𝐹+ 𝑁+ +, 𝑁- + 	𝑁+ + 𝜇-→+	𝐹- 𝑁- -, 𝑁+ - 	𝑁-.                        (A1.9) 636 

From these equations we see that change in the first order moment (the expected density of genotype 𝑖) 637 

depends on second order moments (the variances and covariance of genotype densities). Thus, we now 638 

derive the dynamical equations for the change in these second order moments.  639 
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 640 

Variance Dynamics 641 

Again, we consider a very small interval of time, Δ𝑡. The following holds: 642 

Δ𝑞+C 𝑡 = 𝑞+C 𝑡 + Δ𝑡 − 𝑞+C 𝑡 .                         (A1.10) 643 

Using (A1.1), (A1.2), (A1.3) and (A1.10), and again dropping the explicit time dependence in our 644 

notation, we see that  645 

Δ𝑞+C = 𝑞+ − 1 C − 𝑞+C = −2𝑞+ + 1 with probability 𝑃+P, and                  (A1.11) 646 

Δ𝑞+C = 𝑞+ + 1 C − 𝑞+C = 2𝑞+ + 1 with probability 𝑃+y.     (A1.12) 647 

Thus, the expected change in 𝑞+C is given by: 648 

𝐸 Δ𝑞+C = 𝐸 2𝑞+ + 1 𝑃+y + −2𝑞+ + 1 𝑃+P           (A1.13) 649 

We have the following relations: 650 

𝐸 𝑞+i = 𝑇+++ + 3𝑁+𝜎+C + 𝑁+i,                  (A1.14) 651 

𝐸 𝑞+C𝑞- = 𝑇++- + 2𝑁+𝐶 + 𝑁-𝜎+C+𝑁+C𝑁- ,       (A1.15) 652 

where 𝑇+++ and 𝑇++- are the central third-order moments. Because of (A1.5), we also have 653 

�[��>
\]

�?
= �=>

\

�?
+ �~>

\

�?
                             (A1.16) 654 

Using (A1.5), (A1.6), (A1.14), (A1.15) and (A1.16), taking the limit Δ𝑡 → 0 and using the chain rule 655 

(i.e., �=>
\

�?
= 2𝑁+

<=>
�?

) , we have 656 

d𝜎+C

d𝑡 =
d𝑁+
d𝑡 + 2 𝑁+ − 𝜎+

C 𝛿+  657 

																					+	2 1 − 𝑚+ 1 − 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑇+++ + 2𝑁+𝜎+C + 𝛼+- 𝑇++- + 𝑁+𝐶 + 𝑁-𝜎+C  658 
																					+2 1 − 𝑚- 𝜇-→+ 𝑓-𝐶 − 𝛽- 𝑇--+ + 2𝑁-𝐶 + 𝛼-+ 𝑇++- + 𝑁+𝐶 + 𝑁-𝜎+C .                       (A1.17) 659 
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If we describe the third order moments exactly, we will find ourselves needing to describe fourth order 660 

moments, which will in turn require fifth order moments, and so on. Here we use our moment closure 661 

technique.  662 

 663 

Closing the Moments 664 

When migration is absolute (i.e., 𝑚+ = 𝑚- = 1), the random variables 𝑞+ and 𝑞- are 665 

independently Poisson distributed among the patches with means equal to 𝑁+  and 𝑁-, respectively (see 666 

Neuhauser, 2002). For any independent Poisson-distributed random variables, their third order 667 

moments can be described exactly in terms of lower-order moments; the homogeneous third central 668 

moment is the corresponding first-order moment, while all mixed third central moments are zero: 669 

𝑇+++ = 𝑁+ 670 

𝑇++- = 0 671 

By using these substitutions as approximations when 𝑚+ ≈ 𝑚- ≈ 1, we obviate the need to describe 672 

higher order moments. This moment closure technique is exact when 𝑚+ = 𝑚- = 1, and approximate 673 

when 𝑚+ ≈ 𝑚- ≈ 1. 674 

Substituting our approximations for the third central moments into equation (A1.17), we have 675 

d𝜎+C

d𝑡 =
d𝑁+
d𝑡 + 2 𝑁+ − 𝜎+

C 𝛿+  676 

																					+	2 1 − 𝑚+ 1 − 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑁+ + 2𝑁+𝜎+C + 𝛼+- 𝑁+𝐶 + 𝑁-𝜎+C  677 

																					+2 1 − 𝑚- 𝜇-→+ 𝑓-𝐶 − 𝛽- 2𝑁-𝐶 + 𝛼-+ 𝑁+𝐶 + 𝑁-𝜎+C  .                                           (A1.18) 678 

 679 

 680 

Covariance Dynamics 681 

Again, we consider a very small interval of time, Δ𝑡. The following holds: 682 
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Δ 𝑞+ 𝑡 𝑞- 𝑡 = 𝑞+ 𝑡 + Δ𝑡 𝑞- 𝑡 + Δ𝑡 − 𝑞+ 𝑡 𝑞- 𝑡             (A1.19) 683 

Using, (A1.1), (A1.2), (A1.3) and (A1.16), and again dropping the explicit time dependence in our 684 

notations, we see that  685 

Δ 𝑞+𝑞- = 𝑞+ − 1 𝑞- − 𝑞+𝑞- = −𝑞- with probability 𝑃+P, and          (A1.20) 686 

Δ 𝑞+𝑞- = 𝑞+ + 1 𝑞- − 𝑞+𝑞- = 𝑞- with probability 𝑃+y.            (A1.21) 687 

Thus, the expected change in the quantity 𝑞+𝑞- is: 688 

𝐸 Δ 𝑞+𝑞- = 𝐸 −𝑞-𝑃+P − 𝑞+𝑃-P + 𝑞-𝑃+y + 𝑞+𝑃-y .              (A1.22) 689 

From (A1.6), we have the following relation: 690 

�[� �>�� ]
�?

= � =>=�
�?

+ ��
�? .                         (A1.23) 691 

Using (A1.5), (A1.6), (A1.14), (A1.15) and (A1.23), taking the limit Δ𝑡 → 0, and using the product 692 

rule (i.e., 
� =>=�

�?
= 𝑁+

�=�
�?
+ 𝑁-

�=>
�?

), we have  693 

d𝐶
d𝑡 = − 𝛿+ + 𝛿- 𝐶 + 1 −𝑚+ 1 − 𝜇+→- 𝑓+𝐶 − 𝛽+ 𝑇++- + 2𝑁+𝐶 + 𝛼+- 𝑇--+ + 𝑁-𝐶 + 𝑁+𝜎-C 											 694 

																																				+ 1 − 𝑚- 𝜇-→+ 𝑓-𝜎-C − 𝛽- 𝑇--- + 2𝑁-𝜎-C + 𝛼-+ 𝑇--+ + 𝑁-𝐶 + 𝑁+𝜎-C  695 

																																				+ 1 − 𝑚- 1 − 𝜇-→+ 𝑓-𝐶 − 𝛽- 𝑇--+ + 2𝑁-𝐶 + 𝛼-+ 𝑇++- + 𝑁+𝐶 + 𝑁-𝜎+C  696 

																																				+ 1 − 𝑚+ 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑇+++ + 2𝑁+𝜎+C + 𝛼+- 𝑇++- + 𝑁+𝐶 + 𝑁-𝜎+C . 697 

Substituting our approximations for the third central moments yields 698 

d𝐶
d𝑡 = − 𝛿+ + 𝛿- 𝐶 + 1 −𝑚+ 1 − 𝜇+→- 𝑓+𝐶 − 𝛽+ 2𝑁+𝐶 + 𝛼+- 𝑁-𝐶 + 𝑁+𝜎-C  699 

																																				+ 1 − 𝑚- 𝜇-→+ 𝑓-𝜎-C − 𝛽- 𝑁- + 2𝑁-𝜎-C + 𝛼-+ 𝑁-𝐶 + 𝑁+𝜎-C  700 
																																				+ 1 − 𝑚- 1 − 𝜇-→+ 𝑓-𝐶 − 𝛽- 2𝑁-𝐶 + 𝛼-+ 𝑁+𝐶 + 𝑁-𝜎+C  701 
																																				+ 1 − 𝑚+ 𝜇+→- 𝑓+𝜎+C − 𝛽+ 𝑁+ + 2𝑁+𝜎+C + 𝛼+- 𝑁+𝐶 + 𝑁-𝜎+C .         (A1.24) 702 

With equations (A1.8), (A1.18) and (A1.24), we have a closed system of five differential equations 703 

describing the dynamics of 𝑁E, 𝑁F, 𝜎EC , 𝜎FC  and 𝐶. 704 
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Appendix 2: Equilibrium Densities 705 

At equilibrium,	�=N
�?

= �=Q
�?

= 0. In this appendix, we assume 𝑚E = 𝑚F = 𝑚, 𝑓E = 𝑓F = 𝑓, 706 

𝛽E = 𝛽F = 𝛽, 𝛼EF = 𝛼FE = 1, 𝜇E→F = 𝜇 and 𝜇F→E = 0. Using these assumptions and equation 707 

(A1.8), the equilibrium value 𝑁E must satisfy the following:  708 

0 = −𝛿E𝑁E + 1 − 𝜇 𝑓𝑁E − 𝛽 𝑁EC + 𝜎EC + 𝑁E𝑁F + 𝐶 .      (A2.1) 709 

If we assume that 𝑚 = 1, then 𝑞+ and 𝑞- are independently Poisson distributed, and therefore: 710 

𝜎EC = 𝑁E ,            (A2.2) 711 

𝐶 = 0.            (A2.3) 712 

Using (A2.2) and (A2.3), the non-zero equilibrium in (A2.1) is 713 

𝑁E = OPL bP[ PMN
OPL [

− 𝑁F .               (A2.4) 714 

We denote the total density at equilibrium 𝑇 = 𝑁E + 𝑁F. So, we have 715 

𝑇 = OPL bP[ PMN
OPL [

,                         (A2.5) 716 

and 717 

𝑁E = 𝑇 − 𝑁F .                   (A2.6) 718 

Now we turn to the equilibrial density of the mutant genotype, 𝑁F, again using (A1.8):  719 

0 = −𝛿F𝑁F + 𝑓𝑁F − 𝛽 𝑁FC + 𝜎FC + 𝑁F𝑁E + 𝐶 + 𝜇 𝑓𝑁E − 𝛽 𝑁EC + 𝜎EC + 𝑁F𝑁E + 𝐶 .  (A2.7) 720 

If we are assuming 𝑚 = 1, the resulting Poisson distribution yields 721 

𝜎FC = 𝑁F ,            (A2.8) 722 

Using (A2.3), (A2.6), and (A2.8), the non-zero mutant equilibrium in (A2.7) is 723 

𝑁F = PL� bP[(�yO)
PMQy OPL bP[(�yO) .                                  (A2.9) 724 

After substituting, using (A2.5), and simplifying, equations (A2.4) and (A2.9) simplify to the 725 

following: 726 
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𝑁E = OPL MQPMN bP[ OPL PMN
[ MQPMN OPL \ ,                       (A2.10) 727 

𝑁F = LMN bP[ OPL PMN
[ MQPMN OPL \ .              (A2.11) 728 

In order for 𝑁E and 𝑁F to be positive, we must have the following two conditions: 729 

 1 − 𝜇 𝑓 − 𝛽 > 𝛿E ,                           (A2.12) 730 

1 − 𝜇 𝛿F > 𝛿E .                                              (A2.13) 731 

Note that (A2.13) is more stringent than the already assumed 𝛿F > 𝛿E. In all of what follows, we will 732 

assume conditions (A2.12) and (A2.13), except where explicitly mentioned. When 𝜇 = 0, equations 733 

(A2.10) and (A2.11) simplify to:  734 

𝑁E = bP[PMN
[  ,   𝑁F = 0,                          (A2.14) 735 

which gives a positive density of the wild type (by condition (A2.12)) and no mutant density. When 736 

1 − 𝜇 𝛿F = 𝛿E (i.e., right where equation (A2.13) starts to be violated), equations (A2.10) and 737 

(A2.11) simplify to: 738 

𝑁E = 0 ,   𝑁F = bP[PMQ
[  ,                          (A2.15) 739 

which gives a positive density of the mutant (by condition (A2.12), replacing 𝛿E with 1 − 𝜇 𝛿F) and 740 

no wild-type density. Equilibria in (A2.14) and (A2.15) agree with single species equilibria from 741 

ecological models (Neuhauser, 2002; Pacala and Levin, 1997). 742 

We let the fraction of mutants in the population be given by Φ(𝑡), where 743 

	Φ 𝑡 = =Q(?)
=N ? y=Q(?)

.                                        (A2.16) 744 

Using equations (A2.10) and (A2.11), the mutation-selection balance under full migration is: 745 

Φ =	 LMN
OPL MQPMN

.                                     (A2.17) 746 
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Note that if 𝜇 = 0, then Φ = 0. That is, when there is no supply of new mutants through mutation, 747 

selection “wins” and no mutants remain at equilibrium; this corresponds to the special case of (A2.14). 748 

If 𝜇 = 𝛿F − 𝛿E /𝛿F, then Φ = 1. That is, as 𝜇 → 𝛿F − 𝛿E /𝛿F, mutation “wins” by overwhelming 749 

selection and only mutants remain at equilibrium; this corresponds to the special case of (A2.15). 750 

 751 

Appendix 3: The Effect of Structure on Mutation-Selection Balance 752 

In order to explore the role of structure on the mutant frequency, we look at 753 

TU
VW

=
��Q
�X =NP

��N
�X =Q

=Ny=Q \ .        (A3.1) 754 

Here we will evaluate TU
VW W�O

. In order to do so, we must find T=N
VW W�O

 and T=Q
VW W�O

, which we 755 

abbreviate with T=N
VW O

 and T=Q
VW O

. To do this we differentiate (A1.8) with respect to 𝑚 and evaluate at 756 

the 𝑚 = 1 equilibrium. We start with equation (A1.8) where 𝑖 = 𝑊. 757 

0 = 1 − 𝜇 𝑓 − 𝛽(2𝑁E + 𝑁F) − 𝛿E
T=N
VW O

− 𝛽 1 − 𝜇 𝑁E
T=Q
VW O

− 𝛽 1 − 𝜇 T~N
\

VW O
− 𝛽 1 − 𝜇 T�

VW O
.  (A3.2) 758 

Again, we see that we will need to consider partial derivatives of higher-order moments with respect to 759 

𝑚 to solve (A3.1). By differentiating equations (A1.8) with 𝑖 = 𝑀, (A1.18) with 𝑖 = 𝑊, (A1.18) with 760 

𝑖 = 𝑀, and (A1.24), all with respect to 𝑚 and making the appropriate substitutions for when 𝑚 = 1, 761 

we obtain other equalities involving partial derivatives (similar to (A3.2)). This leads to the following 762 

linear system: 763 

𝐀𝜕O = 𝑐,         (A3.3) 764 

where, 765 

𝐀 =

1 − 𝜇 𝑓 − 𝛽(2𝑁E + 𝑁F) − 𝛿E −𝛽 1 − 𝜇 𝑁E −𝛽 1 − 𝜇 0 −𝛽 1 − 𝜇
−𝛽 1 + 𝜇 𝑁F + 𝜇(𝑓 − 2𝛽𝑁E) 𝑓 − 2𝛽𝑁F − 𝛽 1 + 𝜇 𝑁E − 𝛿F −𝛽𝜇 −𝛽 −𝛽 1 + 𝜇

𝛿E 0 −𝛿E 0 0
0 𝛿F 0 −𝛿F 0
0 0 0 0 −𝛿E−𝛿F

, 766 
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𝜕O =

∂𝑁𝑊
𝜕𝑚 1
∂𝑁𝑀
𝜕𝑚 1
∂𝜎𝑊

2

𝜕𝑚 1
∂𝜎𝑀

2

𝜕𝑚 1
∂𝐶

𝜕𝑚 1

, and 𝑐 =

0
0

𝑁𝑊(1 − 𝜇) 𝑓 − 𝛽 1 + 2𝑁𝑊 + 𝑁𝑀
𝑁𝑀 𝑓 − 𝛽 1 + 2𝑁𝑀 + 1 + 𝜇 𝑁𝑊
𝑁𝑊 𝜇 𝑓 − 𝛽 1 + 2𝑁𝑊 − 2𝛽𝑁𝑀

. 767 

Solving system (A3.3) and using T=N
VW O

 and T=Q
VW O

 for equation (A3.1) gives the following: 768 

TU
VW W�O

= − 𝛽𝜇

(1−𝜇)2𝛿𝑀 𝛿𝑀 𝛿𝑊 2−1
.                          (A3.4) 769 

We abbreviate TU
VW W�O

 as ∂WΦ. From equation (A3.4), it is not difficult to show that T TXU
T[

> 0, 770 

T TXU
TL

> 0, T TXU
T𝛿𝑀

< 0, and T TXU
T𝛿𝑊

> 0. That is, as the competition coefficient 𝛽, the mutation rate 𝜇, 771 

or the death rate of the wild type genotype increase, the addition of structure to an unstructured system 772 

leads to a greater increase in the mutant class frequency. As the death rate of the mutant is increased, 773 

the addition of structure to an unstructured system leads to a smaller increase in the mutant class 774 

frequency.  775 

 776 

Appendix 4: Gillespie Algorithm 777 

Our simulation is based on a Gillespie algorithm (Gillespie, 1977) that we coded in the Python 778 

2.7 scripting language. The Gillespie algorithm simulates a possible trajectory of a continuous time 779 

stochastic system. 780 

In our system of P connected patches, patches must be initialized before simulating evolution. 781 

Unless otherwise indicated, we seeded our patches with wild-type and mutant individuals by 782 

repeatedly drawing from independent Poisson distributions whose parameters are the full migration 783 

equilibria 𝑁E and 𝑁F from (A2.10) and (A2.11), respectively. The initial population defines update 784 
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zero, for which the time variable 𝑡 is also zero. As the populations are seeded from their corresponding 785 

𝑚 = 1 equilibrium distributions, structure is introduced as any limited migration simulation begins. 786 

Evolution of the population occurs over “update” steps. First, for update 𝑢 each patch 𝑝 787 

receives four “weights”, corresponding to the four possible events in that patch: a wild-type birth, a 788 

mutant birth, a wild-type death, and a mutant death. Each event’s weight is proportional to its rate. If 789 

we let the number of genotypes 𝑊 and 𝑀 in a patch 𝑝 at update step 𝑢 be given by 𝑛E(𝑢, 𝑝) and 790 

𝑛F(𝑢, 𝑝), respectively, then the weights are defined as follows: 791 

𝑘O 𝑢, 𝑝 = 𝑓𝑛E 𝑢, 𝑝 − 𝛽𝑛E 𝑢, 𝑝 𝑛E 𝑢, 𝑝 + 𝑛F 𝑢, 𝑝 ,   (A4.1) 792 

𝑘C 𝑢, 𝑝 = 𝑓𝑛F 𝑢, 𝑝 − 𝛽𝑛F 𝑢, 𝑝 𝑛E 𝑢, 𝑝 + 𝑛F 𝑢, 𝑝 ,   (A4.2) 793 

𝑘i 𝑢, 𝑝 = 𝛿E𝑛E 𝑢, 𝑝 ,         (A4.3) 794 

𝑘_ 𝑢, 𝑝 = 𝛿F𝑛F 𝑢, 𝑝 .         (A4.4) 795 

The event that is attempted at update step 𝑢 is either a death, a birth with migration, or a birth without 796 

migration, and the decision is made stochastically using the following weights: 797 

𝐾<��?� 𝑢 = 𝑘i 𝑢, 𝑝�
��O + 𝑘_ 𝑢, 𝑝�

��O ,    (A4.5) 798 

𝐾�+�?�_W+  𝑢 = 𝑚 𝑘O 𝑢, 𝑝�
��O + 𝑘C 𝑢, 𝑝�

��O ,      (A4.6) 799 

𝐾�+�?�_¡�?�¢ 𝑢 = (1 − 𝑚) 𝑘O 𝑢, 𝑝�
��O + 𝑘C 𝑢, 𝑝�

��O .   (A4.7) 800 

Time increment Δ𝑡 is drawn from an exponential distribution whose rate is equal to	𝐾<��?� 𝑢 +801 

𝐾�+�?�_W+  𝑢 + 𝐾�+�?�_¡�?�¢ 𝑢 , and time parameter 𝑡 is incremented to 𝑡 + Δ𝑡. For Figure 2 and 802 

Supplementary Figure 1, the time increment’s exponential distribution rate is equal to 𝑘O + 𝑘C + 𝑘i +803 

𝑘_, which does not noticeably affect the resulting time steps. 804 

The 𝐾�+�?�_¡�?�¢ 𝑢  terms are summed using absolute values due to potentially negative intra-805 

patch birth rates. Since birth rates decrease linearly with density, 𝑘O 𝑢, 𝑝  and 𝑘C 𝑢, 𝑝  may be 806 

negative occasionally in particularly crowded patches. For migrating events, the negative births reduce 807 
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the mean birth rate, which was never negative for the conditions of our simulations. For non-migrating 808 

births, a negative birth event decrements, rather than increments, the chosen genotype population in a 809 

patch.   Thus, for any patch 𝑟, if a non-migrating birth event is chosen: 810 

𝑛E 𝑢 + 1, 𝑟 = 𝑛E 𝑢, 𝑟 + sgn(𝑘O 𝑢, 𝑟 ) with probability (1 − 𝜇) §Z ¨,�
©ª>«¬­_®¯¬¯°(±)

,            (A4.8) 811 

𝑛F 𝑢 + 1, 𝑟 = 𝑛F 𝑢, 𝑟 + sgn(𝑘C 𝑢, 𝑟 ) with probability §\ ¨,�
©ª>«¬­_®¯¬¯° ¨

+ 𝜇 §Z ¨,�
©ª>«¬­_®¯¬¯° ¨

,    (A4.9) 812 

If a migrating birth event is chosen (i.e., a migrant will ‘land’ on a random patch): 813 

𝑛E 𝑢 + 1, 𝑟 = 𝑛E 𝑢, 𝑟 + 1 with probability OPL
�

§Z ¨,�
©ª>«¬­_X>² ¨

�
��O ,                           (A4.10) 814 

𝑛F 𝑢 + 1, 𝑟 = 𝑛F 𝑢, 𝑟 + 1 with probability O
�

§\ ¨,�
©ª>«¬­_X>² ¨

�
��O + 𝜇 §Z ¨,�

©ª>«¬­_X>² ¨
�
��O ,      (A4.11) 815 

If a death event is chosen: 816 

𝑛E 𝑢 + 1, 𝑟 = 𝑛E 𝑢, 𝑟 − 1 with probability §³ ¨,�
©´µ¯¬­ ¨

,                                     (A4.12) 817 

𝑛F 𝑢 + 1, 𝑟 = 𝑛F 𝑢, 𝑟 − 1 with probability §¶ ¨,�
©´µ¯¬­ ¨

                                     (A4.13) 818 

Simulations were run for 200,000 updates (for 1 ≥ 𝑚 ≥ 0.95), 500,000 updates (for 0.95 > 𝑚 ≥ 0.7), 819 

or 1,000,000 updates (for 0.7 > 𝑚 > 0). Data was recorded every 5000 updates, and equilibrial values 820 

represent a simulation’s average state over its final 10,000 updates. 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 
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Abstract:  921 

Epistatic interactions among genes can give rise to rugged fitness landscapes, in which multiple 922 

“peaks” of high-fitness allele combinations are separated by “valleys” of low-fitness genotypes. How 923 

populations traverse rugged fitness landscapes is a long-standing question in evolutionary biology. 924 

Sexual reproduction may affect how a population moves within a rugged fitness landscape. Sex may 925 

generate new high-fitness genotypes by recombination, but it may also destroy high-fitness genotypes 926 

by shuffling the genes of a fit parent with a genetically distinct mate, creating low-fitness offspring. 927 

Either of these opposing aspects of sex require genotypic diversity in the population. Spatially 928 

structured populations may harbor more diversity than well-mixed populations, potentially amplifying 929 

both positive and negative effects of sex. On the other hand, spatial structure leads to clumping in 930 

which mating is more likely to occur between like types, diminishing the effects of recombination. In 931 

this study, we use computer simulations to investigate the combined effects of recombination and 932 

spatial structure on adaptation in rugged fitness landscapes. We find that spatially restricted mating and 933 

offspring dispersal may allow multiple genotypes inhabiting suboptimal peaks to coexist, and 934 

recombination at the “sutures” between the clusters of these genotypes can create genetically novel 935 

offspring. Sometimes such an offspring genotype inhabits a new peak on the fitness landscape. In such 936 

a case, spatially restricted mating allows this fledgling subpopulation to avoid recombination with 937 

distinct genotypes, as mates are more likely to be the same genotype. Such population “centers” can 938 

allow nascent peaks to establish despite recombination. Spatial structure may therefore allow an 939 

evolving population to enjoy the creative side of sexual recombination while avoiding its destructive 940 

side. 941 

 942 

 943 
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Author Summary:  944 

For a novel genotype to establish in a population, it must (1) be created, and (2) not be subsequently 945 

lost. Recombination is a double-edged sword in this process, potentially fostering creation, but also 946 

hastening loss as the novel genotype is being recombined with other genotypes, especially when rare. 947 

In this study, we find that spatial structure may affect both the creative and destructive aspects of 948 

recombination in rugged fitness landscapes. By slowing the spread of high-fitness genotypes, spatially 949 

restricted mating and dispersal may allow diverse subpopulations to arise. Reproduction across the 950 

borders of these subpopulations—at “sutures”—may create genetic novelty. Depending on the 951 

topography of the fitness landscape, such novelty may be in the domain of attraction of a new, higher 952 

peak; the population may “peak-jump” to an area of genotype space unlikely to be explored by 953 

mutation alone. Lineages founded by peak-jumping events are particularly prone to early extinction, as 954 

recombination with unlike genotypes may disrupt the rare allele combination and thereby produce low-955 

fitness offspring. However, these fledgling peak lineages may be protected from early extinction by 956 

mating within small homotypic clusters—in “centers”. Thus, spatial structure may allow a population 957 

to create rare genotypes via recombination, and allow those rare genotypes to persist despite 958 

recombination. 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 
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Introduction 967 

Sexual recombination has long been a puzzling evolutionary strategy (see [1,2]). Recombination has 968 

the potential to create novel high-fitness genotypes in a population, but also to destroy high-fitness 969 

lineages by recombining them with genetically distinct lineages. Whether recombination speeds or 970 

slows adaptation depends largely on the relative strengths of its creative and destructive effects. 971 

 972 

One of the earliest adaptive explanations for recombination is the Fisher-Muller effect, in which 973 

beneficial alleles in different lineages can recombine into a single lineage, speeding adaptation [3,4]. 974 

The Fisher-Muller effect exemplifies the creative aspect of sex, and many studies have shown faster 975 

adaptation due to Fisher-Muller dynamics [5–8]. However, the Fisher-Muller effect assumes that 976 

beneficial alleles remain beneficial when recombined into new genetic backgrounds. This assumption 977 

is necessarily broken in multi-peaked fitness landscapes [9], which arise when genetic interactions 978 

among loci yield multiple high-fitness allele combinations separated by valleys of low-fitness 979 

intermediate genotypes. In such landscapes, the adaptive effects of recombination are more complex. 980 

 981 

Studies on two-locus rugged landscapes focus on escape from suboptimal peaks, and have found that 982 

modest levels of recombination may speed adaptation slightly, while substantial recombination slows 983 

or halts adaptation entirely [10–12]. However, studies on rugged landscapes with more than two loci 984 

yield conflicting results, variously reporting recombination as slowing adaptation [13], speeding 985 

adaptation [14], or having complex effects dependent on the topography of a fitness landscape, the 986 

population inhabiting it, and the time scale considered [15–17]. Studies on empirical fitness landscapes 987 

report recombination as speeding adaptation [6,18] or having complex effects dependent on the fitness 988 

topography and rate of recombination [15]. The varied results described above may partly depend on 989 
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the genetic variation that a particular landscape supports. If there are multiple suboptimal peak 990 

genotypes, these competing lineages may interact. Depending on the topography of the fitness 991 

landscape, recombination between individuals on different suboptimal peaks may create an offspring 992 

in the attractive domain of a novel peak, termed “peak-jumping” [15,19]. Thus, in topographies that 993 

permit peak-jumping, when subpopulations occupy different suboptimal peaks, recombination may 994 

allow peak-jumping to novel, higher peaks. 995 

 996 

What conditions might enable a recombining population to maintain the diversity required for peak-997 

jumping? Restricted mating and dispersal (which we call “local reproduction”) may promote 998 

population-wide diversity by slowing the spread of high-fitness genotypes and creating competitive 999 

refugia for lower-fitness genotypes [20,21]. However, the same spatial restriction that allows 1000 

population-wide diversity also impedes recombination between those diverse types, as mating occurs 1001 

largely within monotypic clusters. Martens and Hallatschek [21] show that recombination between 1002 

spatially abutting lineages (which we call “sutures”) can be sufficient to speed adaptation due to 1003 

Fisher-Muller effects in their smooth landscape model. In some rugged landscapes, recombination at 1004 

sutures may allow peak-jumping. However, lineages founded by peak-jumping events are particularly 1005 

prone to early extinction as recombination may disrupt the rare allele combinations and consequently 1006 

prevent establishment—recombination with the majority genotype may pull fledgling peak populations 1007 

off their precipices and into the valley between [22]. On the other hand, recombination within 1008 

monotypic clusters (which we call “centers”) may allow high fidelity of rare allele combinations, but 1009 

also prevent the creation of such rare allele combinations as no effective recombination is occurring. 1010 

Which effects of sutures and centers dominate, and in what circumstances? In this paper, we examine 1011 

the combined effects of recombination and local reproduction on adaptation on rugged landscapes. 1012 
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Model 1013 

In our simulation, a population inhabits an 𝐿×𝐿 regular square lattice with wraparound edges (a 1014 

toroid). Each lattice point may be empty or may house one organism. Organisms have a haploid 1015 

genotype of 𝑁 loci, where the allele at each locus is either a 0 or a 1. Each genotype has an associated 1016 

survival probability (𝑠¹). Populations are initialized with individuals of the genotype farthest from the 1017 

optimal genotype (that is, 𝐺» such that 𝐻(𝐺», 𝐺½�?) = 𝑁, where 𝐻 is the Hamming distance operator 1018 

and 𝐺½�? is the optimal genotype), unless otherwise indicated. Evolution occurs via discrete update 1019 

steps described below, and simulations conclude when the optimal genotype reaches a predefined 1020 

frequency, or when a predefined number of epochs have occurred, where an epoch is defined as 𝐿×𝐿 1021 

updates. 1022 

 1023 

At each update, a point is chosen at random. If this focal point houses an individual of genotype 𝐺, the 1024 

individual dies with probability 1 − 𝑠¹ , and the lattice point becomes empty. If the focal point is 1025 

already empty, then a birth event can occur. For a birth event, two parents are needed. The first parent 1026 

is chosen from a pre-defined dispersal neighborhood about the focal point, and second parent is chosen 1027 

from a pre-defined mating neighborhood about the first parent. For simplicity, we set the sizes of these 1028 

two neighborhoods equal, and call the radius of this neighborhood the “reproductive distance”. We 1029 

focus on two extreme cases. In our “local reproduction” condition, a focal point’s neighborhood is 1030 

defined by the lattice points immediately to the north, east, south and west (the Von Neumann 1031 

neighborhood); in our “global reproduction” condition, the neighborhood is defined as the entire 1032 

lattice, minus the focal point. 1033 

 1034 
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Once the parents are chosen, an offspring genotype is formed by recombination and mutation. To 1035 

simulate recombination, one of the two parents is chosen at random to contribute the allele at the first 1036 

locus, and between-locus crossover occurs with probability 𝑟. Thus 𝑟 = 0 yields no crossing over, 1037 

while 𝑟 = 0.5 yields independent assortment of parental alleles. To simulate mutation, each locus of 1038 

the recombined offspring’s binary genotype changes its allelic state (0à1 or 1à0) with probability	𝜇. 1039 

Finally, the offspring is born, and inhabits the initially-empty lattice point. 1040 

 1041 

Results and Discussion 1042 

To investigate the interplay of recombination and reproductive distance, we use a 4x2 factorial design: 1043 

four recombination probabilities and two neighborhood sizes. For each factorial combination, we 1044 

simulate replicate populations evolving on a multi-peaked rugged landscape. Our default fitness 1045 

landscape is defined to allow peak-jumping; that is, there exist two suboptimal peaks (0011 and 1100) 1046 

which can recombine to produce the optimal genotype (1111). We will relax this contrivance later in 1047 

our results. In our 4x2 experiment, all populations are initialized on a suboptimal peak (0000), and all 1048 

parameters (lattice size, initial density, mutation rate, etc.) are held constant for all simulations. We 1049 

find that the qualitative effect of recombination – whether it speeds or slows the traversal of the rugged 1050 

fitness landscape – can depend on whether reproduction is localized (Figure 1), and this interaction 1051 

between recombination and reproductive neighborhood is significant (p<0.001, Manly’s permutation 1052 

test [23]). When reproduction is global, recombination never speeds, and can even slow, peak 1053 

establishment. Conversely, when reproduction is local, recombination never slows but can speed peak 1054 

establishment.  1055 

 1056 

 1057 
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 1058 

 1059 

 1060 

 1061 

 1062 

 1063 
Figure 1. Waiting time to establishment of an optimal peak genotype at various recombination rates. 1064 
We define establishment as discovery without subsequent extinction, and time as simulation epochs 1065 
(see Methods). Data points and error bars represent mean values and standard error of 75 replicate 1066 
simulations using parameter values 𝐿 = 70, 𝜇 = 0.002, 𝑠¹ = 0.2, 𝑠»»»» = 0.6, 𝑠OO»» = 𝑠»»OO = 0.85, 1067 
𝑠OOOO = 0.9, where 𝐺 represents all non-specified genotypes. Within each reproductive distance, data 1068 
points with no shared letter are significantly different (Tukey’s HSD, 𝛼 = 0.05). The upward arrow 1069 
indicates that establishment never occurred by the simulation maximum of 2000 epochs. 1070 
 1071 
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To investigate why the effect of recombination may depend on reproductive distance, we focus on two 1072 

aspects of a genotype's spread through a population: discovery and establishment. For a peak genotype 1073 

to establish in a population, it must (1) be created, and (2) not be subsequently lost.  1074 

 1075 

Local reproduction fosters the creation of novel genotypes via recombination 1076 

On rugged fitness landscapes, populations may become trapped on a suboptimal fitness peak. It is also 1077 

possible for a population to discover multiple distinct suboptimal peaks before any single peak 1078 

genotype has fixed. Localized reproduction may promote the coexistence of multiple peaks by 1079 

increasing the time-to-fixation of a newly discovered peak. Thus, localized reproduction may foster the 1080 

diversity of genotypes required for peak-jumping via recombination (e.g., the creation of peak 1081 

genotype 1111 due to recombination between suboptimal peak genotypes 0011 and 1100). However, 1082 

localized reproduction precludes peak-jumping unless the peak lineages are physically close. Physical 1083 

proximity could result if two expanding peak lineages eventually abut, allowing meaningful 1084 

recombination at the suture between the distinct genotypes. Such sutures between subpopulations may 1085 

allow repeated discovery of genotypes in the domain of attraction of a higher fitness genotype. Indeed, 1086 

in a representative simulation of intermediate recombination with local reproduction from Figure 1, 1087 

multiple suboptimal peak genotypes coexist (0011 and 1100), and the globally optimal genotype 1088 

(1111) is repeatedly created at the sutures between these subpopulations (Figure 2B, supplemental 1089 

video). In a parallel representative run with global reproduction, no such sutures exist, because an 1090 

intermediate genotype, once discovered, quickly sweeps to near fixation (Figure 2A, supplemental 1091 

video). 1092 

 1093 

 1094 
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 1095 

 1096 

 1097 

Figure 2. Population snapshots of representative runs from Figure 1 with a recombination rate between 1098 
adjacent loci of 0.1. When reproduction is global (A), a suboptimal peak (purple) fixes by epoch 100, 1099 
rendering recombination ineffective. When reproduction is local (B), two suboptimal peaks (purple and 1100 
red) exist by epoch 150, and these subpopulations expand to physical proximity by epoch 200. The 1101 
optimal genotype (yellow) is then created multiple times via peak-jumping at the suture between the 1102 
two suboptimal peaks. 1103 
 1104 

 1105 

Does local reproduction encourage sutures between subpopulations? To test this, we simulate a two-1106 

locus landscape with two peak genotypes (10 and 01) and two valley genotypes (00 and 11, the latter 1107 

of which is lethal). The population is initialized on genotype 00, and we track how frequently genotype 1108 

11 is created, and how it is created. We find that genotype 11 is created by recombination more 1109 

frequently in local rather than global reproductive schemes, while it is created by mutation at 1110 

approximately the same frequency in the two schemes (Supplemental Figure 1). 1111 

 1112 
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Local reproduction mitigates the loss of novel genotypes via recombination 1113 

Once a peak genotype is discovered, it may be lost due to subsequent recombination with unlike types, 1114 

lowering the genotypic fidelity of its lineage. When recombination rates are high, such loss may 1115 

prevent a genotype from establishing. However, spatially segregated populations may harbor 1116 

population “centers”, in which mating pairs are likely to be genetically similar, preserving genotypic 1117 

fidelity. Such centers may allow rare genotypes to persist in a population despite recombination. To 1118 

examine the effect of centers on the establishment of a novel peak genotype, we model adaptation on a 1119 

two-locus landscape in which a population may escape from suboptimal peak genotype 00 by crossing 1120 

an adaptive valley (genotypes 10 and 01) to optimal peak genotype 11. We find a three-way interaction 1121 

between recombination, reproductive distance, and centers (p=0.03, Manly’s permutation test). 1122 

Frequent recombination slows the establishment of the optimal peak genotype in global but not local 1123 

reproductive schemes (Figure 3, top row). However, if optimal peak genotypes are prohibited from 1124 

mating with each other when rare (i.e., when they comprise less than 1% of the population), the local 1125 

and global reproductive schemes have similar results when recombination is frequent (Fig 3, bottom 1126 

row). 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 
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 1136 

 1137 
Figure 3. Waiting time to establishment of an optimal peak genotype at various recombination rates, 1138 
with and without prohibiting “centers”. Populations are initialized on suboptimal peak genotype 00, 1139 
and must cross an adaptive valley to optimal peak genotype 11. Clustered genotype centers allow 1140 
nascent peaks to establish despite frequent recombination. When reproduction is global, frequent 1141 
recombination prevents valley-crossing. Likewise, when genotype 11 individuals are prohibited from 1142 
mating with each other until they have reached a frequency of 1% (“centers prohibited” treatments), 1143 
frequent recombination prevents valley-crossing. However, local reproduction with naturally occurring 1144 
clusters of rare genotypes (“centers”) allows valley-crossing even with frequent recombination (top-1145 
right, shaded). Data points and error bars represent mean values and standard error of 40 replicate 1146 
simulations using parameter values 𝐿 = 70, 𝜇 = 0.001, 𝑠»» = 0.8, 𝑠O» = 𝑠»O = 0.6, 𝑠OO = 0.9. 1147 
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While recombination may allow a population to more quickly climb a local peak, it can also trap 1148 

populations on suboptimal peaks [17]. However, recombination may aid escape from suboptimal peaks 1149 

if the landscape topography supports a diversity of genotypes and permits peak-jumping [14,19,24]. 1150 

Sutures should be most effective when recombination between two suboptimal peaks can create 1151 

offspring in the attraction basin of a third, higher peak, allowing for peak-jumping. Centers should be 1152 

most effective when novel peaks are discovered via peak-jumping, as recombination between the 1153 

nascent peak and the majority genotypes can create low-fitness offspring. Thus the ability of sutures 1154 

and centers to modulate the effects of recombination—to harness the creative aspect and mitigate the 1155 

destructive aspect—may be sensitive to the particular topography of a rugged landscape. 1156 

 1157 

Sutures and centers in empirically derived fitness landscapes  1158 

The full topographies of some naturally occurring fitness landscapes have been measured for small 1159 

subsets of their genotype spaces [25]. De Visser et al. [15] generated 5-locus empirical fitness 1160 

landscapes by introducing deleterious mutations into the asexual fungus A. niger, and measuring the 1161 

fitness effects of five individual mutations and all combinations thereof. Two complete 5-locus fitness 1162 

landscapes were generated, with 32 genotypes each (though the landscapes are not completely 1163 

independent as they share four of their five loci of interest). Both landscapes were found to be rugged, 1164 

with multiple local maxima and minima. However, only one of the landscapes (which we call PJ+) had 1165 

suboptimal peaks which could recombine into the attraction basin of the optimal peak; the other 1166 

landscape (PJ–) did not. De Visser et al. found that recombination generally slows or halts the 1167 

establishment of the optimal genotype in either landscape, though there was a window of very 1168 

infrequent recombination that could speed adaptation in PJ+ and very slightly and rarely speed 1169 

adaptation in PJ– (see [15], supplement B1). We create landscapes parallel to PJ+ and PJ– for our model 1170 
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(e.g., replacing relative fitness with relative survival probabilities), and simulate evolution as before. 1171 

We find a significant three-way interaction between recombination, reproductive distance, and fitness 1172 

landscape topology on the waiting time for optimal genotype establishment (p<0.001, Manly’s 1173 

permutation test). On PJ+, recombination slows or prevents the establishment of the optimal genotype 1174 

when reproduction is global, but never slows or prevents adaptation when reproduction is local. On PJ–1175 

, whose topography is less conducive to landscape exploration via recombination, we find similar 1176 

results to PJ+ when reproduction is global, but high recombination (r=0.5) still slows the generation 1177 

and establishment of the optimal genotype when reproduction is local. 1178 
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 1179 
Figure 4. Waiting time to establishment of optimal genotypes on empirically-derived rugged 1180 
landscapes at various recombination rates. When reproduction is global, recombination slows or 1181 
prevents the establishment of an optimal genotype (left column). Local reproduction mitigates the 1182 
slowing effect of recombination in both landscapes. In the landscape whose topography allows 1183 
recombination between suboptimal peaks to create an offspring in the attractive basin of the optimal 1184 
genotype—a landscape that permits peak-jumping—recombination can speed the establishment of the 1185 
optimal genotype (top-right panel). Data points and error bars represent mean values and standard error 1186 
of 15 replicate simulations using parameter values 𝐿 = 70, 𝜇 = 0.001. Upward arrows indicate that 1187 
establishment never occurred by the simulation maximum of 5000 epochs. For an explanation of the 1188 
conversion from relative fitnesses (as reported in [15] to comparable survival probabilities (as used in 1189 
this model), see Appendix. 1190 
 1191 
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In our test landscape and in two empirically-derived landscapes, sufficiently high rates of 1192 

recombination prohibit the establishment of a novel high-fitness peak when reproduction is global, but 1193 

this destructive side of recombination is alleviated when reproduction is local. Moreover, in landscape 1194 

topographies that allow peak-jumping (our test landscape and, to a lesser extent, PJ+), recombination 1195 

can speed the establishment of novel high-fitness peaks. Thus, the landscape topography affects the 1196 

ability of local reproduction to mediate the effects of recombination: accentuating exploration via 1197 

“sutures” while mitigating recombinatory destruction of rare genotypes via “centers”. We suggest the 1198 

greatest effect of sutures occurs when peak-jumping is possible, and the greatest effect of centers 1199 

occurs when novel peaks are created via peak-jumping. Indeed, we see an amplified effect of local 1200 

reproduction on a contrived fitness landscape with six suboptimal peaks and many opportunities for 1201 

peak-jumping (Supplemental Figure 2). The prevalence of such topographical features and spatial 1202 

restrictions—and therefore how relevant “sutures” and “centers” are to natural populations—remains 1203 

an empirical question. It is possible, though, that by creating “sutures”, spatially structured populations 1204 

may efficiently explore rugged landscapes via recombination, and by creating “centers”, those same 1205 

populations may permit the establishment of novel peaks despite recombination. Spatially structured 1206 

populations may therefore harness recombination’s constructive effects while mitigating its destructive 1207 

effects on adaptation in rugged landscapes. 1208 

 1209 

 1210 

 1211 

 1212 

 1213 

 1214 
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Supplemental Figures 1288 

 1289 

 1290 

 1291 

 1292 

 1293 

 1294 

 1295 

 1296 

 1297 
Supplemental Figure 1. “Sutures” between suboptimal peaks allow landscape exploration. 1298 
Populations are initialized with genotype 00 on a fitness landscape with peak genotypes 01 and 10. 1299 
Lethal genotype 11 is created via recombination (green bars) frequently only when reproduction is 1300 
local. Genotype 11 is created via mutation (blue bars) at a low rate at both reproductive distances. Bars 1301 
represent mean values of 15 replicate simulations using parameter values 𝐿 = 70, 𝜇 = 10P¿, 𝑓OO = 0, 1302 
𝑠»» = 0.6, 𝑠O» = 𝑠»O = 0.85, 𝑠OO = 0. 1303 
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 1304 
Supplemental Figure 2. Similar to Figure 1, but with organisms of six loci (rather than four), and six 1305 
suboptimal peaks (rather than two). The pattern seen in Figure 1 appears more pronounced, likely due 1306 
to increased opportunity for peak-jumping. Data points and error bars represent mean values and 1307 
standard error of 25 replicate simulations using parameter values 𝐿 = 70, 𝜇 = 0.002, 𝑠¹ = 0.2, 1308 
𝑠»»»»»» = 0.6, 𝑠OO»»»» = 𝑠»»OO»» = 𝑠»»»»OO = 0.85, 𝑠OOOO»» = 𝑠OO»»OO = 𝑠»»OOOO = 0.9, 𝑠OOOOOO =1309 
0.95, where 𝐺 represents all non-specified genotypes. Data points with no shared letter are 1310 
significantly different (Tukey’s HSD, 𝛼 = 0.05). The upward arrow indicates that establishment never 1311 
occurred by the simulation maximum of 20,000 epochs. 1312 
 1313 

 1314 

[Supplemental Video] 1315 
Supplemental Video. Population composition through time of the simulations depicted in Figure 2. 1316 
The starting genotype (0000) is represented by green; the two other suboptimal peak genotypes (0011 1317 
and 1100) are represented by red and purple, respectively; the optimal genotype (1111) is represented 1318 
by yellow. All other genotypes are represented by grey. 1319 
 1320 
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Appendix 1321 

De Visser et al (2009) created their empirical fitness landscapes (which they call CS1 and CS2) by 1322 

measuring growth rates of all 32 relevant genotypes, and define relative fitness as a genotype’s growth 1323 

rate divided by the maximum growth rate of that landscape’s genotypes. We convert these fitnesses 1324 

(𝜔¹) to survival probabilities (𝑠¹) with the formula 𝑠¹ =
ÁÂ
CÁ

, where 𝜔 is the average fitness on the 1325 

landscape. 1326 

 1327 
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 PJ+ (CS1) PJ- (CS2) 
genotype 𝝎𝑮 𝜹𝑮 𝝎𝑮 𝜹𝑮 
00000 1.000 0.638 1.000 0.628 

10000 0.878 0.560 0.878 0.551 

01000 0.835 0.533 0.835 0.524 

00100 0.870 0.555 0.870 0.546 

00010 0.772 0.493 0.909 0.571 

00001 0.793 0.506 0.772 0.485 

11000 0.865 0.552 0.865 0.543 

10100 0.854 0.545 0.854 0.536 

10010 0.773 0.493 0.923 0.580 

10001 0.873 0.557 0.773 0.485 

01100 0.816 0.521 0.816 0.512 

01010 0.716 0.457 0.852 0.535 

01001 0.848 0.541 0.716 0.450 

00110 0.778 0.497 0.855 0.537 

00101 0.820 0.523 0.778 0.488 

00011 0.972 0.620 0.785 0.493 

11100 0.816 0.521 0.816 0.512 

11010 0.748 0.477 0.879 0.552 

11001 0.832 0.531 0.748 0.470 

10110 0.749 0.478 0.942 0.592 

10101 0.792 0.506 0.749 0.470 

10011 0.753 0.481 0.795 0.499 

01110 0.617 0.394 0.858 0.539 

01101 0.810 0.517 0.617 0.387 

01011 0.643 0.410 0.724 0.455 

00111 0.671 0.428 0.745 0.468 

11110 0.690 0.440 0.825 0.518 

11101 0.855 0.546 0.690 0.433 

11011 0.649 0.414 0.665 0.418 

10111 0.692 0.442 0.686 0.431 

01111 0.643 0.410 0.640 0.402 

11111 0.645 0.412 0.622 0.391 

mean  0.783 0.500 0.796 0.500 
SD 0.095 0.061 0.095 0.060 
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Abstract: 1416 

Many species reproduce in discrete bursts, often synchronized with the seasons. Although such 1417 

discrete-time dynamics of single populations have been modeled systematically, the corresponding 1418 

theory for multiple populations is less developed. Here we show that classical rules for predicting 1419 

competitive outcomes are appropriate for a certain subset of discrete-time systems, which motivates a 1420 

new discrete-time competitive exclusion principle. Nonetheless, classical rules can fail dramatically for 1421 

other discrete-time systems. As a striking example, a classically inferior species (e.g., low K or high 1422 

R*) can drive a classically superior competitor (high K or low R*) to extinction. The reasons relate to 1423 

(1) the shifting of statistical moments in abundance accompanying population fluctuations (cycles or 1424 

chaos), and (2) how such moments are filtered by non-linearities in the logarithm of growth curves. We 1425 

discuss some implications of these results for competition theory as well as other applications, 1426 

including management and epidemiology.  1427 

 1428 

 1429 

 1430 

 1431 

 1432 

 1433 

 1434 

 1435 

 1436 

 1437 

 1438 
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Introduction 1439 

The introduction of discrete-time population dynamics into ecology was a theoretical bombshell 1440 

(Hassell, 1975; Hassell and Comins, 1976; Hassell et al., 1976; May, 1974, 1975; May and Oster, 1441 

1976). These early studies demonstrated that population dynamics resulting from structurally simple 1442 

equations could be richly complex—exhibiting fixed points, cycles, and chaos. Indeed, erratic 1443 

fluctuations in population data no longer required explanations of experimental error or stochastic 1444 

noise, but rather could result from completely deterministic density-dependent population growth. 1445 

There was also something of a heterodox character to these dynamics; discrete-time systems did not 1446 

behave like their continuous-time counterparts. In this paper, we explore how discrete-time dynamics 1447 

conform and deviate from expectations from continuous-time theory in the context of multiple 1448 

competing species. 1449 

 1450 

One of the simplest continuous-time models of ecological communities is the Lotka-Volterra 1451 

framework for two-species competition. At any instant, the abundances of the two species are given by 1452 

a point in a phase plane (Fig. 1). Movement of this point represents change in the competitors’ 1453 

abundances. The full dynamics can be discerned from the manner in which the zero-growth curves 1454 

(isoclines) of the species are positioned. For example, in Figure 1a, the region in which species 1 1455 

increases in abundance (dotted red region) completely encloses the corresponding region for species 2 1456 

(solid blue region). There are no population values where species 1 decreases while species 2 increases 1457 

(Figure 1b), and species 1 drives species 2 extinct (Figure 1c). This is a simple example of a more 1458 

general exclusion principle proved by Volterra (1928) and explored empirically and philosophically by 1459 

subsequent authors (e.g., Gause, 1934; Hardin, 1960). 1460 



 71 

 1461 

Figure 1: Continuous-time competitor dynamics.  (a) The dynamics of two competitors are given by 1462 
dN1/dt=(1-(N1+N2)/2)N1 and dN2/dt=(1-N1-N2)N2. The isoclines of species 1 and species 2 are red and 1463 
blue, respectively. A point in the plane gives species’ densities. For three example points (X, Y, and Z), 1464 
community change is given (roughly) by the black vector, which is broken into red (change in N1) and 1465 
blue (change in N2) components. The red-hatched and solid-blue regions indicate where N1 and N2 1466 
increase, respectively. (b) The corresponding slope field, showing locally stable (yellow circle) and 1467 
unstable (green circle) equilibria. (c) The community trajectory when N1(0)=N2(0)=2.2. 1468 
 1469 

Here we ask how such continuous-time theory translates to discrete-time. Does a species whose region 1470 

of increase completely encloses its competitor’s (as in Fig. 1a) always have the competitive advantage? 1471 

In fact, it is already known that two species can coexist under such circumstances (Adler, 1990; 1472 

Asmussen, 1979; Edmunds et al., 2003; Franke and Yakubu, 1991; Gatto, 1993). But, as we outline 1473 

below, a stranger turn of events is possible—a traditionally inferior species 2 can increase to high 1474 

abundance while driving species 1 extinct, even though at no instant of time does species 2 increase 1475 

while species 1 is decreasing. We turn to an example of such a scenario first.  1476 

 1477 

A Motivating Example 1478 

A generic discrete-time competition model for two species can be expressed as: 1479 

𝑁O 𝑡 + 1 = 𝐺O 𝑁O 𝑡 , 𝑁C 𝑡 	𝑁O 𝑡     (1a) 1480 

	𝑁C 𝑡 + 1 = 𝐺C 𝑁O 𝑡 , 𝑁C 𝑡 	𝑁C 𝑡    (1b) 1481 
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where Gi is the factor by which the abundance of species i, Ni, increases (Gi>1) or decreases (Gi<1) 1482 

from generation t to t+1. Since the species interact, Gi is a function of both species’ abundances. 1483 

Henceforth we assume that growth always slows with increasing abundances (Gi→0 as N1→¥ or 1484 

N2→¥) and both species thrive when abundances are low (Gi>1 when N1»0 and N2»0). 1485 

 1486 

As a concrete example, consider an extended version of the widely-used Ricker model (Gatto, 1993; 1487 

May, 1974; Ricker, 1954). In this model,  1488 

𝐺+ 𝑁O 𝑡 , 𝑁C 𝑡 = exp ln(𝑟+) 1 − 𝑁O 𝑡 + 𝑁C 𝑡 /𝐾+
È> 	 1489 

where ri is the growth factor when abundances are low, Ki is the carrying capacity, and gi is a ‘shape 1490 

parameter’ for species i. This model is a discrete-time incarnation of the theta-logistic (Nelder, 1961). 1491 

In Figure 2, the region of positive growth for species 1 completely encloses that of species 2. We might 1492 

expect species 1 to out-compete species 2, which is what the isocline arrangement would dictate if 1493 

reproduction were continuous (e.g., Fig. 1). In fact, species 2 invades from low abundance and coexists 1494 

with species 1 (Figs. 2a,c). Species 1 likewise invades and coexists (Figs. 2b,d). At higher growth rates 1495 

of species 2, though the isoclines are unchanged, species 2 invades and displaces species 1 (Figs. 2e,g). 1496 

The classically superior species 1 cannot invade species 2 (Fig. 2f). It seems we have a competitive 1497 

David slaying Goliath. What is going on? 1498 
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 1499 
Figure 2: Discrete-time competitor dynamics. (a) Dynamics of two competitors with 1500 
Gi=exp{ln(ri)(1-[(N1(t)+N2(t))/Ki]gi)}, where r1=4.4, r2=6, K1=10, K2=9.25, g1=2, and g2=1. The isoclines 1501 
do not cross and species 1 is the classically superior competitor. Nonetheless, species 2 invades and 1502 
coexists with species 1. (b) Coexistence also results when species 1 starts rare and species 2 begins near 1503 
its fixed point. (c) A phase plane representation of the dynamics from part a. We ran 500 simulations 1504 
with different initial conditions where a small point giving abundances was plotted for 1000 time steps 1505 
each. The community starts near species 1’s axis and proceeds (curved black arrow) through oscillations 1506 
of decreasing complexity to a period-2 cycle with both species coexisting (yellow circles with rings). 1507 
The isoclines are also shown. (d) A phase plane representation of the dynamics from part b (500 1508 
simulations). The community moves off species 2’s axis toward extinction of species 1 (straight grey 1509 
arrow) until oscillations develop and the community turns around (curved grey arrows), approaching the 1510 
same period-2 cycle. (e) The model from part a, except with r2=11. Species 2 now replaces species 1 1511 
when starting from a low abundance. (f) Species 2 resists invasion by species 1. (g) A phase plane 1512 
representation (500 simulations) of the dynamics from part e. The chaotic trajectory on the N1 axis is 1513 
unstable to invasion by species 2 (curved black arrow), whereas the period-2 cycle on the N2 axis is 1514 
stable to invasion by species 1 (yellow circles with rings). 1515 
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Oscillations are a conspicuous feature in Figure 2. Coexistence of multiple species on fewer resources 1516 

than predicted by classical theory has been shown to occur when populations oscillate periodically or 1517 

chaotically, in both continuous-time (Armstrong and McGehee, 1980; Huisman and Weissing, 1999; 1518 

Vandermeer et al., 2002) and discrete-time (Adler, 1990; Asmussen, 1979; Edmunds et al., 2003; 1519 

Franke and Yakubu, 1991; Gatto, 1993). When systems are oscillating, conclusions based on equilibria 1520 

(or isoclines) can be unreliable. Is it ever reasonable to expect information about where abundance is 1521 

static (e.g., equilibria) to say something useful about systems where abundance is perpetually 1522 

changing? Interestingly, the answer is ‘yes.’ For a class of common discrete-time systems, equilibria 1523 

tell the whole story about competitive outcomes, even when the system oscillates wildly and never 1524 

reaches equilibrium. For such systems we present and prove a competitive exclusion principle, which 1525 

corresponds to expectations from continuous-time theory (Volterra, 1928). We then show how models 1526 

outside of this class (e.g., Fig. 2) can overturn our expectations. 1527 

 1528 

 1529 

Discrete-Time Competitive Exclusion Principle 1530 

Consider a community of S competitors in which the dynamics of species i is: 1531 

𝑁+ 𝑡 + 1 = 𝐺+ 𝚴 𝑡 𝑁+ 𝑡      (2) 1532 

where 𝚴 𝑡 ≡ 𝑁O 𝑡 , 𝑁C 𝑡 , 𝑁i 𝑡 , … , 𝑁Ì 𝑡  gives the abundances of each species at t. Equation (2) 1533 

generalizes equation (1). Let 𝚴+ 𝑡 ≡ 0, 0, 0, … , 0, 𝑁+ 𝑡 , 0, … , 0 , where only species i is present (at 1534 

density 𝚴+ 𝑡 ); and 𝟎 ≡ 0, 0, 0, … , 0 , where all species are absent.  1535 

 1536 

Here we describe competition for a type of common “abiotic resource” (sensu Armstrong and 1537 

McGehee, 1980). We will call a community “Volterrian” if the logarithm of each growth factor can be 1538 

written as follows: 1539 
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ln 𝐺+ 𝚴 𝑡 = 𝛼+ − 𝛽+	𝐻 𝚴 𝑡       (3) 1540 

where 𝑖 ∈ 1, 2, 3, … , S , and with 𝛼+ > 0 and 𝛽+ > 0. H is a continuous function with 𝐻 𝟎 = 0, 1541 

𝜕𝐻 𝜕𝑁+ > 0, and lim
=�→Ð

𝐻(𝐍) = ∞, for all	𝑗 ∈ 1, 2, 3, … , S  and any N. Finally, we require that 1542 

H(Ni)=H(Nj) whenever 𝐍+ = 𝐍-  (we note that the norm 𝐍+ 𝑡 = 𝑁+ 𝑡  here). The function H 1543 

gauges the negative impact of species on the shared “abiotic resource.” Condition (3) describes a class 1544 

of models that includes familiar members (Table 1). 1545 

 1546 
Table 1: Models obeying the competitive exclusion principle 1547 

Model* Growth Factor (Gi) 
Single-Species 

Equilibrium (𝑵Ô) 
Condition (3) Details† 
ai bi H(x) 

Ricker‡ 
𝐞𝐱𝐩 𝐥𝐧 𝒓𝒊 𝟏

−
𝑵𝒋 𝒕𝑺

𝒋�𝟏

𝑲𝒊

𝜸

 
𝑲𝒊 𝐥𝐧 𝒓𝒊 

𝐥𝐧 𝒓𝒊
𝑲𝒊

 𝒙𝜸 

Hassell§ 
𝝀𝒊

𝟏 + 𝒂 𝑵𝒋 𝒕𝑺
𝒋�𝟏

𝒃𝒊
 𝐞𝐱𝐩 𝝀𝒊 𝒃𝒊 − 𝟏

𝒂  𝐥𝐧 𝝀𝒊 𝒃𝒊 
𝐥𝐧 𝟏
+ 𝒂𝒙  

Unnamed 

𝝀𝒊 𝐞𝐱𝐩 𝟏

− 𝐞𝐱𝐩 𝑵𝒋 𝒕
𝑺

𝒋�𝟏

𝒘𝒊

 

𝐥𝐧 𝐥𝐧 𝒗𝒊 𝒘𝒊 + 𝟏  𝐥𝐧 𝒗𝒊 𝒘𝒊 
𝐞𝐱𝐩 𝒙
− 𝟏 

 1548 
† In all cases shown the variable x is total abundance: 𝑥 = 𝑁𝑗 𝑡

𝑆
𝑗=1  1549 

* In all of the models presented, standard competition coefficients are assumed to be unity 1550 
‡ This is an extended version of the standard Ricker model (as normally g=1). 1551 
§ In this version of the Hassell model, the parameter a is assumed to be the same for every competitor.  1552 
 1553 

In a Volterrian community, if species k has the highest equilibrium abundance when alone, it will 1554 

displace all other species. We prove this in Appendix A and show how a community can be isolated to 1555 

a shifting lower-dimensional subspace during its trajectory. Thus, condition (3) yields a competitive 1556 
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exclusion principle, which operates regardless of oscillations (Supplementary Information, section 1557 

B.7). Even if trajectories are chaotic, in Volterrian communities, there is order in the chaos.  1558 

 1559 

In Figure 3, the equilibrium abundance of species 1 is slightly greater than species 2 for two 1560 

communities satisfying condition (3). Despite oscillations, species 1 displaces species 2, dynamically 1561 

etching a bifurcation diagram in the phase plane. This outcome is in agreement with the classical 1562 

expectations based on isocline or other analyses. 1563 

 1564 

 1565 

 1566 
Figure 3: Illustrations of the competitive exclusion principle. (a) The Ricker model (Table 1) with r1=3, 1567 
r2=30, K1=10, K2=9.995, g=1. A phase plane representation in which species 1 starts out rare and species 1568 
2 starts out common. We ran 10 simulations (80,000 time steps each) with slightly different initial 1569 
conditions, plotting a small point for abundances at each time step. The community starts near species 1570 
2’s axis and proceeds (curved black arrow) through oscillations of decreasing complexity to a fixed point 1571 
with species 1 excluding species 2. (b) The Hassell model (Table 1) with l1=150, l2=8, b1=7.2284, b2=3, 1572 
a=1. The community starts near species 2’s axis and proceeds (curved black arrow) through oscillations 1573 
of increasing complexity to a chaotic trajectory with species 1 excluding species 2. 1574 
 1575 
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Explaining Unexpected Outcomes 1576 

Communities that do not satisfy condition (3) can violate classical expectations. Consider a two-1577 

species community where species 1 is a resident and species 2 is a rare invader. When extremely rare, 1578 

the appropriate measure for the invader’s long-term growth is 𝐺C = lim
�→Ð

𝐺C 𝑁O 𝑡 , 0�PO
?�»

é . 1579 

Mathematically, 𝐺C is a Lyapunov number (Ferriere and Gatto, 1995; Gatto, 1993; Hastings et al., 1580 

1993; Metz et al., 1992). For species 2 to increase from rarity, 𝐺C must exceed 1. Using an approach 1581 

similar to Chesson’s (2000), this growth rate can be approximated as: 1582 

𝐺C ≈ 𝐺C 𝑁O, 0 𝑒 M\ C ~�Z
\

,                (4a) 1583 

where 1584 

𝛿C =
<\ ëì¹\ ¡,»

<¡\ ¡�=Z
                                                (4b) 1585 

Equations (4) define an ‘invasion heuristic’ (Appendix B outlines the derivation for two species and 1586 

the heuristic is generalized in the Supplementary Information, section C). Because our invasion 1587 

heuristic highlights measurable quantities, such as the mean (𝑁O) and variance (𝜎=Z
C ) in resident 1588 

abundance, it is an empirically useful approximation of the Lyapunov number (see Ferriere & Gatto 1589 

(1995) for details on Lyapunov analysis). The heuristic is generally suitable when the fluctuations in 1590 

the resident’s abundance are small. 1591 

 1592 

A smaller mean abundance in a fluctuating resident, 𝑁O, will make 𝐺C 𝑁O, 0  greater, which helps the 1593 

invader. The effect of the variance in resident abundance, 𝜎=Z
C , depends on the sign of d2, which reflects 1594 

the curvature of the invader’s growth function. If 2lnG  is concave (d2<0), then a lower variance in the 1595 

resident’s abundance will make 𝑒 M\ C ~�Z
\

 larger, helping the rare species invade. On the other hand, if 1596 

ln 𝐺C is convex (d2>0), a higher resident variance helps the rare species.  1597 
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Thus, in the first approximation, successful invasion depends on the shape of the invader’s growth 1598 

function and on the statistical moments of the resident’s population distribution. Such moments change 1599 

with parameter values like the resident’s intrinsic growth rate, r1. The bifurcation diagrams in Figure 4 1600 

show how the variance of the resident tends to increase with r1. If the resident oscillates, its mean 1601 

abundance is affected by the shape of its own growth curve. If the logarithm of the resident’s growth 1602 

function is concave, then the mean abundance of a fluctuating population is less than its single-species 1603 

equilibrium. However, if the fluctuating resident’s growth function is log-convex, then mean 1604 

abundance is greater than its single-species equilibrium (Supplementary Information, section A.4). In 1605 

general, if the resident’s growth function is log-concave, larger oscillations will lower average 1606 

abundance; whereas if the growth function is log-convex, oscillations will raise average abundance 1607 

(Figs. 4a and 4c). 1608 

 1609 

 1610 

 1611 
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 1612 
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Figure 4: Effects of growth function log-concavity. (a) For a single-species Ricker model (Table 1), if 1613 
g>1, lnG is concave (inlet: g=2). The bifurcation diagram gives long-term abundances as a function of 1614 
intrinsic growth rate (more intensely visited regions are darker grey). The mean abundance (red line) 1615 
decreases below the carrying capacity as fluctuations develop. (b) When g=1, lnG is linear. The mean 1616 
abundance does not deviate from the carrying capacity as fluctuations develop. (c) When g<1, lnG is 1617 
convex (inlet: g=½). As fluctuations develop, the mean abundance increases above the carrying 1618 
capacity. (d) A two-species model with Gi=exp{ln(ri)(1-[(N1(t)+N2(t))/Ki]gi)} and rinv=11, Kres=10, 1619 
Kinv=9.25. We use gi=2, gi=1, and gi=0.5 for log-concave, log-linear, and log-convex growth, 1620 
respectively. From classical analysis, the resident is “superior.” We plot the invader’s long-term growth 1621 
( inv) in terms of the resident’s intrinsic growth rate (rres) for different log-concavity combinations. The 1622 
dots are from (4), using simulated resident moments. The jagged line is the invader’s growth computed 1623 
as the long-term geometric mean. For ginv=1 or ginv=2, approximation (4) is exact. When ginv=gres our 1624 
exclusion principle applies (row 1, Table 1). However, when the “inferior” invader has a growth function 1625 
that is more log-convex than the “superior” resident, then the invader’s long-term growth factor can be 1626 
greater than unity (i.e., it can invade). This can be due to a “mean effect”: the oscillation-mediated 1627 
reduction in the resident’s mean abundance (2nd row, 1st column); a “variance effect”: the oscillation-1628 
mediated increase in the invader’s effective growth (3rd row, 2nd column); or both (3rd row, 1st column). 1629 
(e) The same model as in part d, except rinv=4.4, Kres=9.25, Kinv=10. Now the invader is “superior.” 1630 
Approximation (4) can be inaccurate, as seen when both species have log-convex growth. The “superior” 1631 
competitor may not be able to invade (long-term growth drops below unity) due to a “mean effect”, a 1632 
“variance effect” or both (plots above the diagonal). Figure 2 can be understood by making species 1 the 1633 
“superior” and species 2 the “inferior” and looking at the plot in 2nd row and 1st column of part d and the 1634 
plot in the 1st row and 2nd column of part e. 1635 
 1636 

 1637 

Now it can be seen why a traditionally inferior competitor need not be inferior under discrete 1638 

reproduction. When species 1 in Figure 2 is alone with a low growth rate (r1), its abundance is equal to 1639 

its carrying capacity (K1). However, at higher growth rates, species 1 can oscillate. For the parameters 1640 

in Figures 2a-d, species 1 follows a chaotic trajectory if alone. Because the growth function of species 1641 

1 is log-concave, oscillations lower its mean abundance below K1. Consequently, as an invader, species 1642 

2 ‘feels’ a lower abundance of its competitor, on average, than it would if species 1 were at its fixed 1643 

point. Given that the growth curve of species 2 is log-linear, the invading species 2 is aided by species 1644 

1’s changed mean (lower 𝑁O increases 𝐺C) while it is unaffected by species 1’s changed variance 1645 

(higher 𝜎=Z
C  does not change 𝐺C when d2=0).  1646 
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The same analysis is relevant when considering species 2 as the resident and species 1 as the invader 1647 

(i.e., 𝐺O ≈ 𝐺O 0, 𝑁C 𝑒 MZ C ~�\
\

 with 𝛿C = 𝑑C ln 𝐺C 𝑛, 0 𝑑𝑛C ¡�=Z). Consider the case of 1648 

coexistence (Figs. 2a-d). Here, species 2 approaches its carrying capacity when alone (r2 small—see 1649 

Fig. 4b). In such a case, 𝜎=\
C = 0, 𝑁C = 𝐾C, and 𝐺O 0, 𝐾C > 1. Consequently, 𝐺O > 1  and species 1 1650 

can invade. Thus, for Figures 2a-d, 𝐺O > 1 and 𝐺C > 1. In this case, coexistence results.  1651 

 1652 

However, what happens if the intrinsic growth of species 2 increases, such that it oscillates when 1653 

alone? In such a case, 𝜎=\
C > 0 and 𝑁C = 𝐾C (due to log-linear growth). Given that species 1’s growth 1654 

is log-concave, the variance in species 2 harms the invasion potential of species 1 (𝐺O decreases as 𝜎=\
C  1655 

increases when d1<0). It is possible for 𝐺O < 1 if the variance in species 2 is large enough. The end 1656 

result is that species 2 replaces species 1 (Figs. 2e-g)—opposite of expectations from continuous-time 1657 

theory and our exclusion principle (compare the axis bearing yellow circles in Fig. 2g to that in Fig. 1658 

1b). Such reversals can also occur in the simplest resource-based competition models. R* is a 1659 

measurable resource level below which a given species grown in monoculture cannot persist (Tilman, 1660 

1982). Classically, the species with the lowest R* displaces its competitors. Yet when reproduction 1661 

occurs discretely, a species with a higher R* can displace one with a lower R* (Supplementary 1662 

Information, section D.3). 1663 

 1664 

In the case of Figure 2, condition (3) is violated because g1≠g2. When g1=g2=g, condition (3) is satisfied 1665 

(Table 1) and classical expectations hold (Fig. 3a). The parameter gi controls the log-concavity of the 1666 

growth function of species i. By setting g1=2 and g2=1, the log-concavities of the two species differ (a 1667 

form of relative non-linearity (Chesson, 2000)). As a resident, species 1 is harmed by its own 1668 

fluctuations. As an invader, species 1 is harmed by the fluctuations in species 2. Meanwhile, species 2 1669 



 82 

is not directly affected by fluctuations in the system. Thus, as the community experiences larger 1670 

fluctuations (as r1 and r2 increase), the outlook for species 2 can improve to the point of exclusion of 1671 

the classically superior species 1. Given differences in log-concavity, changes to the mean resident 1672 

abundance (𝑁í), variance in resident abundance (𝜎=>
C ), or both simultaneously can lead to a reversal of 1673 

fortune for an invader (Figs. 4d,e). Growth log-concavities are critical because the shape of the growth 1674 

curve affects the mean abundance of a resident as well as the way that an invader ‘filters’ the variance 1675 

in a resident. 1676 

 1677 

Discussion 1678 

The ecological theory of interacting species has developed over almost a century and has illuminated a 1679 

diversity of applications, including management of wildlife populations, harvesting of natural 1680 

resources, and control of epidemics. Much of this theory concerns species that reproduce continuously 1681 

throughout the year, yet many species in nature reproduce only at discrete times, often synchronised 1682 

with the seasons. 1683 

 1684 

In May’s classic paper, he outlined how simple density dependent growth in a single species in a 1685 

discrete-time framework could produce dynamics foreign to an equivalent continuous-time framework 1686 

(May, 1974). At the end of the very same paper, May discussed deviation between a discrete-time two-1687 

species version of the Lotka-Volterra model and its continuous-time equivalent. The continuous-time 1688 

Lotka-Volterra model predicts four basic competitive outcomes depending on the orientation of 1689 

isoclines: (i) species 1 excludes species 2, (ii) species 2 excludes species 1, (iii) both species coexist, or 1690 

(iv) either species can exclude the other depending on initial conditions (bistability). For discrete 1691 

models that do not satisfy condition (3), we have shown that expectations based on this Lotka-Volterra 1692 

framework can be misleading. Indeed, all four dynamical outcomes are consistent with a single 1693 
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isocline arrangement (Supplementary Information, section D.1). Furthermore, novel outcomes are 1694 

possible and lead to potential applications in the laboratory and the field.  1695 

 1696 

A first sample application is Park’s famous Tribolium competition experiments. These have often been 1697 

interpreted using the standard Lotka-Volterra taxonomy (see Edmunds et al. (2003) for a historical 1698 

overview), in spite of the fact that Park discovered unconventional competitive outcomes in a final 1699 

experiment with two competitors (Leslie et al., 1968). In most of the competitions, Park observed that 1700 

one species excluded the other (consistent with bistability); but, in one competition, the two species 1701 

were found to coexist over 30 generations. Discrete time models incorporating life cycle stages (e.g., 1702 

larvae, pupae, and adults) have showcased the existence of multiple attractors corresponding to both 1703 

coexistence and exclusion that are consistent with these results (Cushing et al., 2004; Edmunds et al., 1704 

2003). However, it has been posed as an open question (Cushing et al., 2004) whether simple 1705 

competition models without explicit life cycle stages (such as the two-species Ricker) can also 1706 

demonstrate such dynamics. Figures 5a and 5b address this question by showing that the extended 1707 

Ricker is capable of producing such multiple attractors (we show cases with one exclusion attractor 1708 

and one coexistence attractor). Due to oscillations and a difference in the log-concavity of growth 1709 

between species, traditional cases of bistability (Fig. 5a) and coexistence (Fig. 5b) are transformed into 1710 

these novel competitive outcomes. 1711 

 1712 
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 1713 

Figure 5: Multiple attractors. (a) Dynamics of two competitors with growth functions given by 1714 
Gi=exp{ln(ri)(1-[(Ni(t)+cijNj(t))/Ki]gi)}, where r1=5, r2=2, K1=K2=10, g1=2, g2=1, c12=c21=1.1. Note that 1715 
cij is the standard “competition coefficient” and that condition (3) may not be satisfied upon inclusion of 1716 
arbitrary coefficients (previously we have assumed cij=cji=1). Here the classical expectation from 1717 
isocline orientation is bistability, where one or the other species, but not both, can persist. Instead we 1718 
find coexistence (approaching a period-2 cycle) from the initial conditions given in white region and 1719 
exclusion of species 1 by species 2 from the initial conditions given by the blue region. Example 1720 
trajectories are shown to the right, corresponding to initial conditions given by the “x’s”. (b) The same 1721 
model with r1=7, r2=80, K1=K2=10, g1=0.9, g2=0.5, c12=c21=0.9. Here the classical expectation (from 1722 
isocline orientation) is coexistence. Instead we find coexistence (approaching a fixed point) from the 1723 
initial conditions given in white region and exclusion of species 1 by species 2 (approaching a period 2 1724 
cycle) from the initial conditions given by the blue region. Example trajectories are shown to the right, 1725 
corresponding to initial conditions given by the “x’s”.  1726 



 85 

A second sample application of our framework involves the management of harvested species. Some 1727 

species are managed so that harvesting only occurs once an abundance threshold is surpassed (Lande et 1728 

al., 1997). If the managed species has a competitor and both species reproduce in discrete events, then 1729 

it is theoretically possible that a management policy of this kind will actually drive the competitor of 1730 

the managed species extinct. This can occur because the competitor may depend on existing 1731 

fluctuations in the managed species. If harvesting has the effect of reducing these fluctuations (Lande 1732 

et al., 1997), the competitor can permanently exit the system (Supplementary Information, Fig D4a). 1733 

On the flip side, Anderson et al. (2008) have suggested that harvesting may destabilize populations, 1734 

perhaps due to selection for altered intrinsic growth rates. In the Supplementary Information, we 1735 

demonstrate that selection for a higher growth rate in one harvested species can drive a competitor 1736 

extinct (Fig. D4c). These harvesting impacts can also have the reverse effect, allowing a previously 1737 

excluded competitor to invade (Supplementary Information, Figs. D4b and D4d). 1738 

 1739 

A third sample application of our framework shows that these same ideas are not restricted to 1740 

ecological competition alone but apply to other species interactions. In epidemiology, the quantity R0 is 1741 

related to the rate of increase of a pathogen when extremely rare. If R0<1, the disease declines to 1742 

extinction. Generally, R0 is evaluated at some equilibrium host abundance. However, if the host 1743 

population (with a log-convex growth curve) reproduces discretely, then a disease can spread even 1744 

when the equilibrium-based R0<1 (Supplementary Information, Fig. D5a). Conversely, oscillations in a 1745 

host (with a log-concave growth curve) could force the disease extinct even if the equilibrium-based 1746 

R0>1 (Supplementary Information, Fig. D5b). Thus, it is essential to consider host fluctuations when 1747 

predicting the likelihood of an epidemic.  1748 

 1749 
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Beyond these sample applications, many species in nature exhibit discrete bursts of reproduction, 1750 

frequently coincident with seasonal patterns (e.g., annual plants and various insects). From the analysis 1751 

of time-series data in natural and laboratory populations, and from evolutionary theoretical 1752 

considerations, several authors have suggested that natural populations likely exhibit periodic and 1753 

perhaps chaotic fluctuations (Anderson et al., 2008; Benincà et al., 2008; Edmunds et al., 2003; 1754 

Ferriere and Gatto, 1993; Schaffer and Kot, 1986; Tilman and Wedin, 1991), although the subject has 1755 

hardly been free from debate (Doebeli and Koella, 1996, 1995; Hassell et al., 1976; Lande et al., 1997). 1756 

If endogenous fluctuations are possible, our analysis suggests that the shape (log-concavity) of growth 1757 

functions will affect both the moments of a resident species as well as the way in which these moments 1758 

are “felt” by an invader. In experimental or observational systems, empirical assessment of the shape 1759 

of per capita growth curves in competitive, host-pathogen, and predator-prey systems will help 1760 

determine whether such endogenous fluctuations can promote species diversity or even reverse 1761 

expected outcomes in nature.  1762 

 1763 

Appendix A: Proof of the discrete-time competitive exclusion principle  1764 

Suppose that species k has the highest equilibrium when alone of S competing species in a Volterrian 1765 

community. For any i≠k, we define: 1766 

Ω+ 𝑡 =
𝑁+ 𝑡 O [>

𝑁§ 𝑡 O [ï
 1767 

By equation (2), it follows that 1768 

Ω+ 𝑡 + 1 =
𝐺+ 𝚴 𝑡 O [>

𝐺§ 𝚴 𝑡 O [ï
Ω+ 𝑡  1769 

By condition (3), 𝐺+ 𝚴 𝑡 = 𝑒𝑥𝑝 𝛼+ − 𝛽+𝐻 𝚴 𝑡  and we have 1770 

Ω+ 𝑡 + 1 = 𝑒 U>PUï Ω+ 𝑡  1771 
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where Φ+ = 𝛼+ 𝛽+. Letting η+ = 𝑒 U>PUï , we have the following solution for Ω+ 𝑡 : 1772 

Ω+ 𝑡 = η+ ?Ω+ 0  1773 

Since Φ+ < Φ§ (see section B.5 of the Supplementary Information), we have 0 < η+ < 1. Thus, 1774 

lim
?→Ð

Ω+ 𝑡 = lim
?→Ð

η+ ?Ω+ 0 = 0 1775 

Each species has an upper bound (see section B.2 of the Supplementary Information). Let the upper 1776 

bound of species k be given by 𝑁§ñòó. We must have 1777 

0 ≤
𝑁+ 𝑡 O [>

𝑁§ñòó O [ï
≤
𝑁- 𝑡 O [>

𝑁§ 𝑡 O [ï
 1778 

Since lim
?→Ð

0 = 0 and lim
?→Ð

=� ? Z ô>

=ï ? Z ôï
= 0, the squeeze rule for limits guarantees lim

?→Ð

=> ? Z ô>

=ï
õö÷ Z ôï

= 0. 1779 

Using the scalar rule for limits, it follows that lim
?→Ð

𝑁+ 𝑡 O [> = 0. 1780 

Because bi>0 and 𝑁+ 𝑡 > 0 for all t,  1781 

lim
?→Ð

𝑁+ 𝑡 = 0 1782 

This means all species other than species k go extinct. We now turn to species k. 1783 

 1784 

Assume that species k also goes extinct, meaning lim
?→Ð

𝑁§ 𝑡 = 0. Given that Gk is continuous and 1785 

𝐺§ 𝟎 > 1, there exists some e>0, such that if 𝐍 < 𝜀, Gk(N)>1. If lim
?→Ð

𝑁§ 𝑡 = 0, then, at some time 1786 

point t*, N(t*) will be located closer than e to the origin and N(t) will stay closer to the origin than e for 1787 

all t³t*. However, this means that Nk(t+1)=Gk(N(t))Nk(t)> Nk(t) for all t³t*. Given that 𝑁§ 𝑡∗ > 0, it 1788 

cannot then be the case that lim
?→Ð

𝑁§ 𝑡 = 0, which contradicts our assumption that species k goes 1789 

extinct. Therefore, we may conclude that species k persists and all other species are driven to 1790 

extinction, which completes the proof of the competitive exclusion principle. 1791 

 1792 
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Given some initial condition for a Volterrian community, we now show that it must be contained 1793 

within a shifting lower-dimensional subspace. To do this, we define: 1794 

Λ(t) =
𝑁- 𝑡 O [>

𝑁§ 𝑡 O [ï

Ì

+�O

O Ì

 1795 

By equation (2), we have the following: 1796 

Λ(t + 1) =
𝐺+ 𝚴 𝑡 O [>

𝐺§ 𝚴 𝑡 O [ï

Ì

+�O

O Ì

Λ(t) 1797 

Following the earlier approach starting from condition (3), this can be rewritten as 1798 

Λ(t + 1) = 𝑒 UPUï Λ(t) 1799 

where Φ = O
Ì

Φ+
Ì
+�O . Iterating gives us the general formula: 1800 

Λ(t) = 𝜅?Λ(0) 1801 

with 𝜅 = 𝑒 UPUï . Using this relationship, we know that the community must be in a subspace at t 1802 

satisfying: 1803 

𝑁§ = 𝜅PÁï ? Λ 0 PÁï 𝑁+
Áï Ì[>

+∈Ìûï

 1804 

where 𝜔§ = 𝛽§𝑆 (𝑆 − 1) and S-k is the set of integers from 1 to S without k. Here we take the density 1805 

of species k as the dependent variable. In Figure 3 and the Supplementary Information (section B.7) we 1806 

show how dynamics (in particular, competitive exclusion) can be visualized using this moving 1807 

subspace.  1808 

 1809 

Appendix B: Derivation of the invasion heuristic for 2-species communities 1810 

Consider two species, labeled 1 and 2. Species 1 will be the resident species. In the absence of species 1811 

2, the abundance of species 1 enters a bounded positive interval (given our assumptions about growth 1812 
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functions; see Supplementary Information, section A.3). Species 2 is the invader and starts at a very 1813 

low density (such that its initial success is determined by its growth function and the abundance of 1814 

species 1, but not its own abundance). The population recursion for the invader is given by: 1815 

𝑁C 𝑡 + 1 = 𝐺C 𝑁O 𝑡 , 𝑁C 𝑡 𝑁C 𝑡  1816 

If an invader is to increase from very low density, then its long-term per capita growth rate (the 1817 

relevant Lyapunov number, 𝐺C) must be greater than unity. In other words: 1818 

𝐺C = lim
�→Ð

𝐺C 𝑁O 𝑡 , 0
�PO

?�»

é

> 1 1819 

Alternatively, this can be expressed as: 1820 

ln 𝐺C = lim
�→Ð

1
𝑇 ln𝐺C 𝑁O 𝑡 , 0
�PO

?�»

> 0 1821 

Given that the density of species 1 gets trapped in a bounded interval, the mean abundance and 1822 

variance in abundance of the resident are: 1823 

𝑁O = lim
�→Ð

1
𝑇 𝑁O 𝑡
�PO

?�»

 1824 

𝜎=Z
C = lim

�→Ð

1
𝑇 𝑁O 𝑡 − 𝑁O C
�PO

?�»

 1825 

assuming both limits exist. To estimate ln 𝐺C, we use a second-order Taylor series approximation of 1826 

ln 𝐺C 𝑁O 𝑡 , 0  centered at the mean resident abundance, 𝑁O: 1827 

ln 𝐺C ≈ lim
�→Ð

1
𝑇 ln𝐺C 𝑁O, 0 + 𝑁O 𝑡 − 𝑁O

𝑑 ln𝐺C 𝑁O, 0
𝑑𝑁O =Z�=Z

�PO

?�»

1828 

+
𝑁O 𝑡 − 𝑁O C

2
𝑑C ln 𝐺C 𝑁O, 0

𝑑𝑁O
C

=Z�=Z

 1829 
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By using the scalar and additive rules for limits, we have: 1830 

ln 𝐺C ≈ ln𝐺C 𝑁O, 0 + lim
�→Ð

1
𝑇 𝑁O 𝑡

�

?�»

𝑑 ln 𝐺C 𝑁O, 0
𝑑𝑁O =Z�=Z

− 𝑁O
𝑑 ln𝐺C 𝑁O, 0

𝑑𝑁O =Z�=Z

1831 

+ lim
�→Ð

1
𝑇 𝑁O 𝑡 − 𝑁O C

�

?�»

1
2
𝑑C ln 𝐺C 𝑁O, 0

𝑑𝑁O
C

=Z�=Z

 1832 

Using the definitions of the mean and variance, we have: 1833 

ln 𝐺C ≈ ln𝐺C 𝑁O, 0 +
𝜎=Z
C

2
𝑑C ln 𝐺C 𝑁O, 0

𝑑𝑁O
C

=Z�=Z

 1834 

Or simply 1835 

𝐺C ≈ 𝐺C 𝑁O, 0 exp
𝜎=Z
C

2
𝑑C ln 𝐺C 𝑁O, 0

𝑑𝑁O
C

=Z�=Z

 1836 

This approximation derives from a second-order Taylor series. If the logarithm of the invader’s growth 1837 

function (lnG2) is linear or quadratic, then the approximation is exact.  1838 

 1839 
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