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Effective species recovery plans rely on adequate scientific data, being tailored to the species’ 

natural history and keeping up with rapid socioeconomic changes. My dissertation focuses on 

two great conservation success stories, Tibetan antelope (Pantholops hodgsonii) on the Tibetan 

Plateau and gray wolf (Canis lupus) in Washington state. These two species have different needs 

in terms of recovery. Tibetan antelope have a unique natural history that we need to consider in 

order to help them recover to their maximal potential. Whereas, for wolves, as apex predators, 

their recoveries rely on restoring the full suite of trophic interactions in their ecosystem. I used 

noninvasive fecal sampling and molecular tools to study the natural history of Tibetan antelope 

and trophic interactions of wolves.  



Chapter one shed light on how the movement of Tibetan antelope may be the genetic resilience 

mechanism in the face of dramatic population decline. It is crucial to ensure their migration 

routes remain unobstructed by growing human disturbances while continuing to enforce anti-

poaching law enforcement efforts. Chapter two took a more in-depth look at their seasonal 

female migration, as it is synchronized with the perinatal period when substantial physiological 

changes take place. I characterized the maternal gut microbiome of Tibetan antelope and 

demonstrated its shift in microbiome composition during the transition from late pregnancy to 

the postpartum period. It is essential to build a baseline for the changes in microbiome during 

this critical transition period when both the females and offspring are most vulnerable. If 

increasing human activities disrupt their migration routes and reproductive cycles, we can have a 

better understanding of the impacts on their reproductive health. 

Chapter three focused on characterizing the wolf-coyote interactions, how their interactions 

change over time and space, and how it might affect the local prey populations. I developed a 

dietary analysis protocol using fecal DNA and DNA metabarcoding to characterize their diet 

profiles with the fine-grained resolution. This protocol can be applied to other carnivore species 

to help understand the impacts of recovery of apex predators on the local ecosystems. 
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Abstract 

Population decline is assumed to reduce the population’s genetic diversity and its ability to adapt 

to environmental changes. If life history traits can buffer against such impacts, conservation 

efforts should aim to maintain those traits in vulnerable species. Tibetan antelope (Pantholops 

hodgsonii) have experienced population decline by 95% due to illegal poaching in the 20th 

century. We hypothesize that opportunities for gene flow provided by their female-specific 

migration buffer their genetic diversity from the poaching impacts. We measured the mtDNA 

(control region or CR) and nuDNA (microsatellites or STR) diversity and population 

differentiation and tested for a genetic bottleneck. Our results showed that Tibetan antelope 

maintained considerable genetic diversity in both mtDNA CR and STR markers (!" = 0.997; 

!#$% = 0.845). Post-poaching populations showed no evidence of a genetic bottleneck and no 

clear population structure. Pairwise &%' values using CR haplotype frequencies were higher than 

those using STR allele frequencies, suggesting different degrees of gene flow mediated by 

females and males. This study suggests that the movement conducted by either female or male 

Tibetan antelope may have buffered their loss of genetic diversity in the face of severe 

demographic decline. It is important to ensure the migration routes of Tibetan antelope remain 

unobstructed by growing human disturbances while continuing to enforce anti-poaching law 

enforcement efforts.  

Keywords resilience, genetic diversity, gene flow, Tibetan antelope, conservation  
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Introduction 

Biodiversity is one of the most important priorities in conservation biology, where genetic 

diversity is an essential pillar. The need to conserve genetic diversity within populations is based 

on two arguments: (1) the necessity of genetic diversity for evolution in response to changing 

environments (Lacy, 1987; Morris, Austin, & Belov, 2012); (2) the expected correlation between 

genetic diversity and population fitness (Reed & Frankham, 2003) and links to the “extinction 

vortex” from inbreeding depression among fragmented populations (Frankham, 2005; Keller & 

Waller, 2002). Many natural populations have experienced severe demographic reduction due to 

rapid human population growth, overexploitation, environmental change, and habitat 

fragmentation. While it is generally assumed that population decline can drive the loss of genetic 

diversity, some species are able to maintain high genetic diversity even after a significant 

population crash (Busch, Waser, & DeWoody, 2007; Gonzalez-Suarez, 2010; Hailer et al., 2006; 

Kuo & Janzen, 2004; Lippé, Dumont, & Bernatchez, 2006; O’ Donnell, Richter, Dool, Monks, & 

Kerth, 2015). In such cases, life-history traits appear to buffer against the loss of genetic 

diversity (Hailer et al., 2006; Kuo & Janzen, 2004; Lippé et al., 2006). The life history of many 

migratory species offers great opportunities for gene flow via migration, introducing new alleles 

to the existing genetic diversity that might otherwise be lost from genetic drift (Busch et al., 

2007; Frankham, 2015; Jangjoo, Matter, Roland, & Keyghobadi, 2016; Sremba, Hancock-

Hanser, Branch, LeDuc, & Baker, 2012). 

About one million Tibetan antelope (Pantholops hodgsonii) ranged across the Tibetan Plateau in 

the early 20th century (Buzzard, Wong, & Zhang, 2012). At the end of the 20th century, Tibetan 

antelope populations were reduced to the brink of extinction by illegal poaching for their 
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underfur, which was used to made Shahtoosh shawls. Its population size reached a low of 50,000 

individuals in 2003, declining by 95% relative to its size in 1950 (Leclerc, Bellard, Luque, & 

Courchamp, 2015). International conservation efforts successfully curbed poaching activities 

through law enforcement and habitat protection, and by 2011, the number of Tibetan antelope 

individuals was estimated to have increased to 200,000 (Leclerc et al., 2015). The severe 

population reduction due to illegal poaching raised concerns regarding the genetic viability of 

Tibetan antelope populations and how it would affect their recovery.  

Previous studies suggested that Tibetan antelope populations maintained high genetic variation 

with no signs of population structure (Ahmad et al., 2016; Du et al., 2016; Zhou, Li, Zhang, 

Yang, & Liu, 2007), although the genetic effects of the population crash on Tibetan antelope 

remain unclear. We hypothesize that the unique life history of Tibetan antelope may have 

buffered them against the loss of genetic diversity. Every summer, female Tibetan antelope from 

different wintering grounds migrate to the common calving ground to give birth, leave shortly 

after parturition and migrate back to their original wintering grounds with their newborn calves. 

However, not all females migrate back to their original wintering grounds (Buho et al., 2011). 

Male movements may also promote gene flow since there are no obvious geographic barriers on 

the Tibetan Plateau, although the movement of males remains unknown (Schaller, 1998). We 

assessed the genetic diversity, population differentiation, population structure and effective 

population size of Tibetan antelope with maternal mtDNA (control region or CR) and bi-parental 

genetic markers (microsatellites or STRs). We predict that due to sex-specific movement, 1) 

there will be no obvious population structure; 2) differences in sex-specific movement could be 

reflected by population differentiation values using maternal markers vs. bi-parental marker; 3) 
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Tibetan antelope populations are able to maintain high genetic diversity and show no signs of a 

genetic bottleneck despite an obvious	population	census	bottleneck.	 

Materials and Methods 

Ethics Statement 

Tibetan antelope is listed in the Category I of the National Key Protected Wild Animal Species 

under the China’s Wild Animal Protection Law. In September 2016, Tibetan antelope was 

reclassified on the International Union for Conservation of Nature (IUCN) Red List from 

Endangered to Near Threatened due to their increased population size. Sample collection and 

field studies adhered to the Wild Animals Protection Law of the People’s Republic of China. 

Fresh scat samples were collected under IACUC protocol #2850-12. Dry skin samples and 

placenta samples were acquired with approval from the Forestry Department of Qinghai 

Province, China.  

Study Area and Sampling 

The unique female migration pattern repeats itself for all the common calving grounds across the 

Tibetan Plateau (Schaller, 1998). The local-scale study described here focused on Zhuonai Lake 

in Kekexili Nature Reserve park (KKXL), Qinghai, China, which is the largest common calving 

ground for Tibetan antelope. Females from nearby wintering grounds migrate to Zhuonai Lake to 

give birth. Animals were observed with binoculars from a recommended viewing distance of ~ 

300m (Lian, Li, Zhou, & Yan, 2012) until they defecated and left the area. A total of 383 fresh 

scat samples were collected along with the date and GPS coordinates in ten different wintering 

grounds in KKXL (KKXL1 - KKXL10) and around the calving ground Zhuonai Lake 
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(KKXL_ZNH). Samples were kept frozen until lab analyses. The large-scale study focused on 

three geographic populations of Tibetan antelope on the Tibetan Plateau, including the KKXL, 

examined above, along with Aerjin (AEJ) and Qiang Tang (QT) populations, using dry skin 

samples and placenta samples. The total sample size for the large-scale study was 141 (KKXL, 

N=69; AEJ, N=20; QT, N=52). See Figure 1 for sampling locations and Supplemental Table 1 

for detailed sampling information.  

DNA Extraction and Amplification 

Fecal DNA was extracted and processed using the swabbing method (Wasser, Keim, Taper, & 

Lele, 2011). DNA in dry skins and placenta samples was extracted using the standard 

Phenol/Chloroform method (Strauss, 2001). The mtDNA control region (CR) was amplified and 

sequenced in all samples using the forward primer DF (5’ 

ACCAGAGAAGGAGAACTCACTAACCT 3’) and the reverse primer DR (5’ 

AAGGCTGGGACCAAACCTAT 3’). PCR was conducted using the Qiagen Multiplex PCR kit 

(Qiagen Inc.,) with 0.5 μl 500 μg/mL of bovine serum albumin (BSA). We followed the 

recommended thermocycling conditions of the kit with an annealing temperature of 51° C. 

Different sets of nuclear microsatellite loci (STR) were used for local-scale and large-scale 

studies. The local-scale study used six STR loci denoted BM1824, MCM38, ILSTS005, MB066, 

BM1225, and BM4107 (see Supplemental Table 2A) with the 5’ end of forward primers 

fluorescently labeled with dyes 6-FAM or HEX. Annealing temperatures for PCR reactions for 

each locus were shown in Supplemental Table 2A. Fragment analysis was conducted on the ABI 

3730 xl DNA Analyzer (Applied Biosystems). Alleles were scored with GeneMarker software 

(SoftGenetics, LLC.), and checked manually. We used duplicate fecal extracts and each extract 
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underwent at least two independent PCR reactions to confirm allele profiles and guard against 

allelic dropout. Genotypes were classified as heterozygotes if both alleles were observed at least 

twice with no other alleles present, and homozygotes if only a single fragment was observed at 

least three times with no other alleles present. The large-scale study used seven STR loci denoted 

L01, L03, L04, ILSTS005, TGLA68, MCM38, and BM1341 (see Supplemental Table 2B). 

Amplification of these seven loci used the same protocol described in the local-scale study, but 

with a single extract amplified once per sample due to higher DNA yield.  

Mitochondrial CR Sequence Analyses 

mtDNA CR sequences from both the local-scale and large-scale studies were pooled together. 

All sequences were aligned using the software CLC Main Workbench (Qiagen, Inc). DnaSP 

v5.10.01 (Librado & Rozas, 2009) was used to determine the number of CR haplotypes (H), the 

number of segregating sites (S), haplotype diversity (!") (Nei, 1978) and !" standard deviation, 

nucleotide diversity (π) (Nei, 1978) and π standard deviation. We performed network analyses by 

constructing median-joining networks (Bandelt, Forster, & Rohl, 1999) on the control region 

haplotypes using the software PopART 1.7 (http://popart.otago.ac.nz). 

Nuclear STR Analyses 

Expected heterozygosity (!()*	) observed heterozygosity (!,-.	), polymorphic information 

content (PIC) and estimated null allele frequency (&/011	) and combined probability of identity 

(PI, the probability of two independent samples having the save identical genotype by chance) 

were calculated using CERVUS v3.0.3 (Kalinowski, Taper, & Marshall, 2007). R packages 

pegas (Paradis, 2010) and poppr (Kamvar, Tabima, & Grünwald, 2014) were used to perform the 
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exact test for Hardy-Weinberg equilibrium (HWE) and Linkage Equilibrium, respectively, using 

the Monte Carlo test with 1,000 iterations. Significance level was adjusted with sequential 

Bonferroni correction for multiple comparisons. Duplicate samples from the same genotypes 

were identified and excluded with the software CERVUS v3.0.3 (Kalinowski et al., 2007).  

We evaluated population structure using Bayesian inference with the software STRUCTURE 

v2.2.3 considering an admixture model with correlated allele frequency (Pritchard, Stephens, & 

Donnelly, 2000). The individuals were assigned to possible genetic groups, K, varying from one 

to ten without a priori definition of populations. Twenty independent MCMC runs were carried 

out with 500,000 iterations following a burn-in period of 500,000 iterations for each value of the 

number of clusters (K). The best estimate of K was determined from both the likelihood of K and 

the ad hoc statistic delta K (Evanno, Regnaut, & Goudet, 2005). Genetic structure was also 

accessed through a discriminant analysis on principal components (DAPC) (Jombart, Devillard, 

& Balloux, 2010) implemented in the adegenet R package (Jombart, 2008).  

Population Differentiation Estimate 

Pairwise &%' was assessed with 20,000 permutations in Arlequin v3.5.2 (Excoffier & Lischer, 

2010) for mtDNA CR and STR data respectively. We performed an analysis of molecular 

variance (AMOVA) (Excoffier, Smouse, & Quattro, 1992) using Arlequin v3.5.2 to understand 

how genetic variation is partitioned. The significance of the proportion of variation at each 

category was obtained by MCMC test with 20,000 permutations. Isolation-by-distance (IBD) 

between Euclidean geographical distances and genetic distances (&%') were assessed using the 

Mantel test (Mantel 1967) with the hierfstat R package (Goudet, 2005) and 20,000 permutations. 
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Significance values were adjusted for multiple comparisons using the Bonferroni correction 

(Rice, 1989). 

Effective Population Size (23) Estimation 

We estimated historical (pre-poaching) and contemporary (post-poaching) effective population 

sizes of Tibetan antelope with the large-scale dataset. The historical effective population size 456 

of the mitochondrial genome was calculated from the CR region using the estimate of the 

female-specific theta (76 = 2456:). 76 estimate was derived from LAMARC (Kuhner, 2006) 

using Bayesian inference with 25 randomly selected samples, 10 initial search chains of 10,000 

steps and 2 final chains of 1,000,000 iterations. A range of substitution rates (3.60 ×

	10ABC	to	1.80	 ×	10AG	substitutions/site/gen) (Guo et al., 2006; Pesole, Gissi, De Chirico, & 

Saccone, 1999) in the CR region was used to reflect uncertainty in :. The historical effective 

population size 45 was calculated based on the parameter theta 7 = 445: from LAMARC as 

with the estimate of 76. 45 was estimated with 25 random samples using a range of STR 

mutation rates from 6.0	 ×	10AI	JK	1.0	 × 	10AL	mutations/locus/generation (Crawford & 

Cuthbertson, 1996; Waples & Do, 2008) and the same running configuration as mtDNA CR 

sequences. The contemporary 45	was estimated using the linkage disequilibrium (LD) method in 

the software Ne Estimator v.2 (Do et al., 2014) with Pcrit =0.01.  

Detection of Genetic Bottleneck 

We used four approaches to determine whether the overall Tibetan antelope population 

experienced a genetic bottleneck. First, we tested for allele frequency mode-shifts using 

BOTTLENECK v. 1.2.02 (Piry, Luikart, & Cornuet, 1999). Secondly, we tested for the presence 
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of heterozygosity excess by using the one-tailed Wilcoxon signed rank test (Busch et al., 2007; 

Cornuet & Luikart, 1996) implemented in BOTTLENECK v. 1.2.02. Heterozygote excess was 

tested under all three STR mutation models: infinite alleles model (IAM), step-wise mutation 

model (SMM) and two-phase model (TPM). For TPM, we set ps=0.9 (the frequency of single-

step mutations) and the variance of those mutations as 12 (Busch et al., 2007). Third, we 

calculated the M-ratio, the mean ratio of the number of alleles to the range in allele size, using 

the software M_P_VAL (Garza & Williamson, 2001). Critical values (Mc) set at the lower 5% 

tail of the distribution were determined using the program CRITICAL_M. If the observed ratio is 

below Mc, it can be assumed that the population has experienced a bottleneck (Garza & 

Williamson, 2001). To calculate Mc, we estimated three TPM parameters: ps, ∆g (the mean size 

of single-step changes) and pre-bottleneck 7 = 445:. We set ps = 0.9, and ∆g = 3.5. We varied 7 

from 0.01 to 500, encompassing a wide range of biologically plausible values. To ensure this 

range of 7 values was relevant, we estimated 7 using a common STR mutation rate : 

(5.0 × 10AZ mutations/generation/locus) (Garza & Williamson, 2001) and 45 estimates from 

LAMARC. Lastly, we employed coalescent simulations with the Approximate Bayesian 

Computation (ABC) approach to infer past demographic history, as implemented in DIYABC 

v2.1.0 (Cornuet et al., 2014; Cornuet, Ravigne, & Estoup, 2010). Simulations were conducted 

with STR and mtDNA CR data separately. Only samples in the large-scale study were included. 

We compared two competing scenarios, scenario 1 with constant 45, and scenario 2 with 

population bottleneck (Supplemental Figure 2). The parameter settings and priors were shown in 

the Supplemental Table 3A & 3B and Supplemental method.  

Results 
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Mitochondrial CR Sequence Analyses 

The final alignment included 524 CR sequences of 1029 bp excluding insertions-deletions 

(indels). In total, we found 381 different haplotypes. All three geographical populations (KKXL, 

AEJ, QT) had high haplotype diversity (0.989 - 1.000) and nucleotide diversity (0.020 - 0.024). 

The AEJ population had the largest standard deviation of haplotype diversity and nucleotide 

diversity, probably due to its small sample size (18 haplotypes in 20 sequences) (Table 1). The 

local-scale analysis of samples from 10 wintering locations in KKXL (KKXL1-KKXL10) 

revealed an overall pattern of haplotypes containing samples from multiple regions and no 

clusters with geographical affiliation (Supplemental Figure 1). In total, there were 17 haplotypes 

shared among 10 sampling locations from KKXL. The large-scale analysis of samples from 

KKXL, AEJ, and QT had a similar pattern (Supplemental Figure 1). There were two haplotypes 

shared between AEJ and QT, one haplotype shared between AEJ and KKXL, and one haplotype 

shared between QT and KKXL.  

Nuclear STR Analyses 

The set of STRs used in both local-scale and large-scale studies revealed high power and 

accuracy. Combined probability of identity (PI) and sib identity ([sib) using all STRs in either 

study was shown in Supplemental Table 4. In the local-scale study, the number of STR alleles 

per locus was 8-14, with an average of 11.167 (Table 2). All loci had high !()*	 (0.704 - 0.875) 

and PIC (0.655 - 0.859), with mean !()*	of 0.777 and PIC of 0.745. Most loci were in Hardy-

Weinberg equilibrium (HWE) and Linkage Equilibrium across all populations after Bonferroni 

Correction. BM1824 violated HWE in KKXL10 population and MB066 violated HWE across all 

populations. BM1824 and MB066 showed signs of an excess of observed homozygote genotypes 
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as suggested by relatively large positive &/011	values (0.041 and 0.072, respectively) (Table 2). It 

is difficult to identify a null allele with certainty in the absence of a known parent-offspring 

relationship. Therefore, all loci were kept for further analyses. In the large-scale study, the 

number of STR alleles per locus was 7-24, with an average of 14.714 (Table 2). All loci had high 

!,-.	except TGLA68 (0.314), and high PIC (0.679-0.921), with mean !()*	of 0.845 and PIC of 

0.824. Most loci were in HWE across all populations after Bonferroni Correction. L03 violated 

HWE only in AEJ population and TGLA68 violated HWE across all populations. All loci were 

in Linkage Equilibrium except the pair of L04 and TGLA68, and L03 and L04. TGLA68 had a 

very high &/011	value of 0.445 (Table 2). TGLA68 was excluded from further analyses. 

STRUCTURE analysis showed that the true K was equal to 1 for local-scale and large-scale 

studies. DAPC analyses showed that there was no clear separation of 10 wintering locations 

within KKXL, and a high degree of overlap among the three geographical populations, KKXL, 

AEJ and QT (Figure 2).  

Population Differentiation Estimate 

Population differentiation among geographic populations KKXL, AEJ and QT was low (Table 

3), and only the &%' value calculated between AEJ and QT was significantly different from zero 

(Table 3). Pairwise &%' values were higher using the CR haplotype frequencies than the STR 

allele frequencies. Most genetic variation was attributed within populations instead of among 

populations (\ values from AMOVA tests were 0.231 and 0.386 for CR haplotype frequency and 

STR allele frequency respectively). No significant correlation was detected between linearized 

genetic distances and geographic distance among KKXL, AEJ, and QT (\ values from Mantel 

tests were 0.827 and 0.486 for CR haplotype frequency and STR allele frequency respectively).  
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Effective Population Size 

The most probable estimate of 76 from LAMARC was 0.084 (95% CI 0.054 - 0.135) and the 

most probable estimate of 7 from LAMARC was 9.990 (95% CI 9.850 - 10.015). The long-term 

estimate of 456 was in the range of 1.53 ×	10] - 1.79 ×	10G, and the long-term estimate of 45 

was in the range of 4.93 ×	10L - 4.17 ×	10Z. The contemporary 45 estimate was 368.90 (95% 

CI of 249.30 - 660.60).  

Genetic Bottleneck Analyses 	

The mode-shift test did not detect any evidence of a genetic bottleneck (Table 4). Heterozygosity 

excess was detected only under the IAM mutation model (Table 4). While using ∆g=3.5, most 

M-ratio values were above the critical value thresholds except for the small pre-bottleneck	7 

values (0.01, 0.1 and 0.5) (See Table 4), which were very unlikely because historically Tibetan 

antelope had a large effective population size. All calculated M-ratios were above the suggested 

threshold value of 0.68 identified for bottlenecked populations (Garza & Williamson, 2001). 

ABC method also didn't support the scenario of a population bottleneck. The best-supported 

model was constant population size model, with a posterior probability of 0.526 (95% 

confidence interval CI: 0.515 - 0.537) for STR, and a posterior probability of 0.714 (95% 

confidence interval CI: 0.706 - 0.723) for mtDNA CR sequences (Supplemental Figure 3). 

Analyses to estimate confidence in scenario choice indicated that type I (false-positive) and type 

II (false-negative) errors for the best-supported scenario (scenario 1 with constant 45) were high 

(0.438 and 0.389 for STR, 0.320 and 0.455 for mtDNA CR), suggesting low confidence in 

choosing the true scenario. Point estimate for 45 was 4.44 ×	10I (95% CI: 2.29 ×	10I- 
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9.45 ×	10I) and 1.05 ×	10Z (95% CI: 4.80 ×	10L- 1.93 ×	10Z) for mtDNA CR and STR 

respectively.  

Discussion 

This study tests the hypothesis that female-specific migration can buffer populations from the 

impacts of population reduction with the case of migratory Tibetan antelope populations. Our 

results showed that 1) Tibetan antelope maintained high genetic diversity in both mtDNA CR 

and STR markers after a historical population decline; 2) No population genetic bottleneck was 

detected; 3) There was no obvious population structure among three geographical populations, 

which is a sign of high gene flow among populations. Males are also likely to contribute to gene 

flow than females since pairwise &%' values were higher using the maternal CR haplotype 

frequencies than the biparental STR allele frequencies. This study suggests that movement 

conducted by either female or male Tibetan antelope might have reduced their loss of genetic 

diversity in the face of severe demographic decline. However, Tibetan antelope have not fully 

recovered from poaching in terms of effective population size, since there is a marked reduction 

in post-poaching effective population size 368.9 (95% CI of 249.30 - 660.60) compared to the 

pre-poaching average (4.93 ×	10L - 4.17 ×	10Z). 

Tibetan antelope maintained high genetic diversity after a historical population decline 

Overall, CR haplotype diversity (!a	) was 0.998 and π was 0.020. The mean !()*	of STR loci 

was 0.777 and 0.845 for the local-scale and large-scale studies respectively. Our results are 

consistent with previous studies (Du et al., 2016; Zhang, Jiang, Xu, Zeng, & Li, 2013). At the 

species level, the genetic diversity of Tibetan antelope was higher than other endangered 
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ungulate species, such as Saiga antelope (Saiga tatarica: !a	 0.785; π 0.014) (Campos et al., 

2010) and Kashmir red deer (Cervus elaphus hanglu: !a	 0.589; π 0.008) (Mukesh, Kumar, 

Sharma, Shukla, & Sathyakumar, 2015). Comparing genetic diversity among species could be 

problematic, because the lineage-specific mutation rates, life history rates and external 

environmental factors can profoundly affect genetic diversity (Martinez, Willoughby, & Christie, 

2018; Nabholz, Mauffrey, Bazin, Galtier, & Glemin, 2008). A comparison of related species can 

factor out shared traits and clarify interpretation of the results (Roe & Boyer, 2015). Tibetan 

antelope is usually classified with Antilopinae by morphological studies, but P. hodgsonii is 

more closely related to Caprinae (O. aries and C.hircus), rather than to Antilopinae subfamily 

based on molecular data (Feng et al., 2008; Xu et al., 2001). The estimated divergence time is 

about 2.25 million years ago between P. hodgsonii and O.aries, and about 2.22 million years 

between P. hodgsonii with C. hircus (Xu et al., 2001). The genetic diversity of control region in 

Tibetan antelope is comparable to that of the non-threatened Caprinae species on the Tibetan 

Plateau, such as Tibetan goat (C.hircus: !a	0.983; π 0.036) (Zhao et al., 2011) and Tibetan sheep 

(O. aries: !a	0.990; π 0.020) (Liu et al., 2018).  

No population genetic bottleneck was detected 

Neither the mode-shift, heterozygosity excess, M-ratio nor ABC method revealed strong 

evidence of a population genetic bottleneck. The mode-shift test did not detect any evidence of a 

bottleneck. Heterozygosity excess was detected only under the IAM model. IAM is prone to 

incorrectly detect heterozygosity excess in non-bottlenecked populations. Therefore, to be 

statistically conservative, one should use the SMM or TPM when analyzing STR data to test for 

recent bottlenecks (Luikart & Cornuet, 1998). The M-ratio approach detected bottleneck 
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signatures, but only under extreme conditions (very small 7 values), suggesting a weak signal, if 

any. The model with constant population size has higher support over the model with population 

bottleneck based on ABC method, though it has high Type I and II errors. 

No obvious population structure was detected among three geographical populations 

Despite large-scale sampling efforts, phylogenetic analysis with Bayesian inference, haplotype 

network analysis of the CR region, STRUCURE and DAPC analyses of STR loci revealed no 

obvious geographic structure for Tibetan antelope in AEJ, QT, and KKXL populations. The 

Mantel test detected no IBD pattern with neither mtDNA CR nor STR loci. This finding suggests 

historically high gene flow, which is consistent with results of previous studies (Zhang et al., 

2013; Zhou et al., 2007). Tibetan antelope can ascent high hills, penetrate mountain ranges, and 

cross passes to neighboring valleys at elevations of 3,700 - 5,500 m and there are no obvious 

geographic barriers blocking population exchange on the Plateau (Ruan, He, Zhang, Wan, & 

Fang, 2005). During the course of female Tibetan antelope migration, it is possible that a number 

of females from one population translocate to another. This would promote gene exchange 

between populations of different localities, which is reflected in the shared haplotypes among 

different populations (Supplemental Figure 1). However, males are likely to play a bigger role in 

gene flow since pairwise &%' values were higher using the maternal CR haplotype frequencies 

than the biparental STR allele frequencies. Tibetan antelope have a harem polygyny mating 

system, in which a male generally mates with most or all of the females in his harem (5-10 

females) during the breeding season. Mate competition is an important driver explaining the 

spatial movement of males among populations during the breeding season. Breeding dispersal is 

not restricted to young males. It also occurs among prime-aged individuals and even among 
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harem holders (Jarnemo, 2011; Richard, White, & Côté, 2014).   

Tibetan antelope has not fully recovered from poaching yet in terms of effective population 

size 

In 2003, the estimation of Tibetan antelope population size reached the lowest number of 50,000 

individuals. Since then, the Tibetan antelope population has begun to recover, with about 

200,000 individuals currently (Leclerc et al., 2015). Their protection status has been changed 

from “endangered” to “near-threatened” by IUCN. However, our effective population size 

comparison analyses suggest that Tibetan antelope has not yet fully recovered. Their 

contemporary 45  estimate is 368.90 (95% CI of 249.30 - 660.60), which is markedly lower than 

their long-term 45	average (4.93 ×	10L - 4.17 ×	10Z). Long-term 45 estimate with ABC 

method using STR loci is 1.05 ×	10Z	(95% CI: 4.80 ×	10L- 1.93 ×	10Z), which mostly agrees 

with the estimate with LAMARC method. 45 is defined as the size of an ideal population that 

experiences genetic change at the same rate as the population under consideration (Waples, 

1991). It determines the rate of loss of genetic diversity. The magnitude of the difference is much 

greater for the effective population size than for measures of genetic diversity (Roe & Boyer, 

2015). This might be why there was a relatively large change in 45 whereas the genetic diversity 

remained consistently high over time.  

The contemporary Ne estimate has a wide confidence interval (95% CI of 249.30 - 660.60). In the 

LD method implemented in Ne Estimator v.2, CI of 45 is an increasing function of 45	(Posada & 

Crandall, 2001; Waples & Do, 2010). Like all the other genetic methods for estimating 

contemporary 45, LD method is most powerful with small populations and has difficulty 

distinguishing large populations from infinite ones. However, it should provide a useful lower 
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bound for 45 , which can be important in conservation biology where a major concern is 

avoidance and early detection of population bottlenecks (Bandelt et al., 1999; Waples & Do, 

2010).   

Surprisingly, the mtDNA CR-based estimate of 456 (1.53 ×	10] - 1.79 ×	10G) was larger than 

the STR-based estimate 45	(4.93 ×	10L - 4.17 ×	10Z).  Long-term 45 estimate with ABC 

method using mtDNA CR sequences is 4.44 ×	10I (95% CI: 2.29 ×	10I- 9.45 ×	10I), which 

is lower than the estimate with LAMARC, but still larger than the STR-based estimate. In theory, 

the mitochondrial genome has an effective population size one quarter that of an average nuclear 

locus because of the different inheritance modes of nuclear and mtDNA, as well as the haploid 

nature of the mitochondrial genome. The observed disparity between mtDNA and STR-based 

estimates could result from the Tibetan antelope’s mating system, historical demography, 

mutation or all three combined. Tibetan antelope have a harem polygyny mating system, as 

mentioned above. Non-independent mating paring has a large effect when there is intense male-

male competition for reproduction in a harem social system and reduces 45 for wholly or 

paternally inherited components of genome (Evans & Charlesworth, 2013; Nunney, 1996). 

Historical events may also explain the apparent discord between mtDNA and STR-based of 

long-term population size. For instance, if the historical source populations that contributed to 

the origin of the contemporary population were isolated from each other but with male-biased 

dispersal, then the populations would more rapidly diverge at mtDNA loci than nuclear loci 

because mtDNA is matrilineally inherited. A secondary contact of these isolates would merge a 

relatively homogenous pool of nuclear genes, but mtDNA lineages would remain differentiated. 

This evolutionary scenario is supported by our pairwise &%' results (Table 3) that Pairwise &%' 

values were higher using the CR haplotype frequencies than the STR allele frequencies. 456 may 
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reflect the collective genetic diversity of all source populations, which would possibly contribute 

to the reversal in expected sizes for 45 and 456. Another possibility is that size homoplasy of 

STRs might have obscured the signal on the historical origin of the study population. Some STR 

alleles can be identical in size but may not identical by descent due to convergent mutations. Size 

homoplasy is especially problematic in large populations (Estoup, Jarne, & Cornuet, 2002), such 

as Tibetan antelope population. Thus, STR-derived 45 estimates may not reflect the composite 

origin of these populations as well as 456. Regardless of the ultimate cause of the discord 

between 45 and 456, all estimators indicate that the historical population size of Tibetan antelope 

is very large.  

How did Tibetan antelope maintain such high genetic diversity despite a massive 

population decline?  

We expected the Tibetan antelope to have suffered a serious population bottleneck from the near 

95% decline in the original population due to poaching. However, we found no evidence of such 

an event by any of the methods used in the study. Tibetan antelope still maintains high genetic 

diversity. The high genetic variability in Tibetan antelope population after a population crash 

likely reflects the effect of gene flow. A few immigrants entering a population each generation 

can counteract the effects of genetic drift and obscure any genetic signature of this population’s 

decline. The great potential for gene flow can profoundly increases a species’ ability to maintain 

genetic diversity. For example, populations of outcrossing species tend to be more genetically 

diverse and less genetically differentiated (Hamrick & Godt, 1996). Anadromous Atlantic 

salmon populations have significantly higher level of genetic diversity and population 

differentiation than their freshwater Atlantic salmon counterparts (Tonteri, Veselov, Titov, 
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Lumme, & Primmer, 2007). Increasing human activities on the Tibetan Plateau is now 

threatening this once-paradise for wildlife. Habitat fragmentation, such as fencing and road 

construction, might affect gene flow among populations, impeding Tibetan antelope population’s 

recovery (Su et al., 2015). Here, we call for the conservation management efforts to maintain the 

historical patterns of between-population gene flow in Tibetan antelope.  

Additionally, other factors might also be important in maintaining high genetic diversity, such as 

historically large population size and recent population bottleneck. The contemporary Ne of 

Tibetan antelope estimate was 368.90, with a wide 95% confidence interval of 249.30 - 660.60, 

which could be large enough to preclude losses of neutral genetic diversity. Small populations 

caused by massive population reduction are at risk of extinction vortex due to demographic 

stochasticity and random genetic drift. An Ne of 500-1000 and census population size of 5000 - 

12,500 are required for endangered species to retain their evolutionary potential (Franklin & 

Frankham, 1998). The lower limit of the required Ne, 500, falls into the wide 95% confidence 

interval of the contemporary Ne estimate of Tibetan antelope (249.30 - 660.60) and their 

estimated census population size is around 200,000 (Leclerc et al., 2015). It is also possible that 

insufficient time has been elapsed since the start of population reduction to markedly reduce 

Tibetan antelope genetic diversity. It is hard to detect a recent population genetic bottleneck, as 

reflected by the high type I and II error in DIYABC analyses. According to the coalescent theory 

(Crow & Kimura, 1970), !'/!# (the ratio between heterozygosity at generation t vs. generation 

0) depends on (1 − 1/2N)'. For populations with fluctuating population size from generation to 

generation, one should replace N with harmonic mean of the generation-specific effective sizes 

45* If we assume that the year 1950 is time 0 and 45* = 249 (we chose the lower bound of 

contemporary effective population size as 45* to be conservative), by 2016 !'/!# would be 
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0.957 (assuming generation time is 6 years). Thus, we would not expect to see a significant loss 

of genetic diversity by genetic drift. We postulate that our data are not adequate to detect a recent 

genetic bottleneck event and we would not be able observe a significant loss of genetic diversity 

by genetic drift.  

Future Research Recommendations 

We acknowledge that the few loci used in this study provide limited resolution and considerable 

uncertainty for demographic inference. Each locus on the genome only provides a genealogy 

regarding this particular locus. The only way to reduce the uncertainty of the demographic model 

is to sample throughout the entire genome, which will contain a wealth of information for 

demographic inference.  

It is essential to establish a baseline for genetic diversity representing the pre-disturbing 

conditions when assessing the genetic changes of endangered species(Matocq & Villablanca, 

2001). The use of archival (e.g., museum samples) specimens may allow for a powerful test of 

loss in genetic diversity over time. If archival reference samples represent genetic variation 

found in a population prior to the events leading to endangered status (e.g. samples from the pre-

poaching era), such samples would provide the most appropriate reference to track temporal 

changes in genetic diversity (Dures et al., 2019; Feng et al., 2019). 
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Table 1 Genetic diversity of Control Region according to geographical regions based on 
alignment of 524 sequences excluding indels (1029bp). Note: S = number of segregating sites 

(excluding sites with gaps/missing data); Hd = haplotype diversity; HdSD= standard deviation of 
Hd; π = nucleotide diversity; πSD = standard deviation of π. 

 
Region n S Haplotypes Hd HdSD π πSD 

KKXL 
(local-scale) 

383 147 274 0.996 
 

0.001 
0.021 0.0004 

KKXL 69 119 68 1.000 0.003 0.020 0.0011 
AEJ 20 82 18 0.989 0.019 0.024 0.0018 

QT 52 95 48 0.997 0.004 0.020 0.0011 
Total 524 180 381 0.997 0.000 0.020 0.0003 
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Table 2 Genetic diversity and summary statistics of STR loci used in the study. A = number of 
alleles per locus; Hobs = observed heterozygosity; Hexp = expected heterozygosity; PIC = 

polymorphism information content; Fnull = estimated frequency of null alleles (note: * p<0.05).  
 

Study Loci A Hobs Hexp PIC Fnull 

Local-scale 
study 

BM1824 8 0.717 0.779 0.747 0.041 

MCM38 9 0.739 0.704 0.655 -0.031 

ILSTS005 12 0.875 0.875 0.859 -0.001 

MB066 14 0.637 0.739 0.705 0.072 

BM1225 12 0.768 0.785 0.762 0.010 

BM4107 12 0.737 0.778 0.743 0.027 

Large-scale 
study 

L01 12 0.707 0.772 0.743 0.051 
L03 24 0.887 0.928 0.921 0.020 

L04 23 0.900 0.928 0.919 0.014 
BM1341 15 0.858 0.885 0.872 0.015 

ILSTS005 13 0.871 0.866 0.848 -0.004 
TGLA68 7 0.314 0.815 0.788 0.445 

MCM38 9 0.702 0.716 0.679 0.013 
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Table 3 Pairwise Fst among populations KKXL, AEJ and QT calculated using control region 
haplotype frequencies (lower diagonal) and 6 microsatellite loci frequencies (six loci used in the 

large-scale study) (upper diagonal) with 20,000 permutations.  
 

 
 AEJ KKXL QT 

AEJ  0.004 0.008* 
KKXL 0.013  0.005 

QT 0.016** 0.009  
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Table 4 Summary of the parameters and results for the M-ratio and BOTTLENECK analyses 
used to detect genetic bottleneck. NS=non-significant. 

 

M-ratio BOTTLENECK 

7 
Mean 

M-ratio 
ef 

(∆g=3.5) 

Mode 
shift 

Mutation 
model 

Heterozygote 
excess 

0.01 0.754 0.817 

NS 
IAM 
TPM 
SMM 

p=0.008* 
NS 
NS 

0.1 0.754 0.817 
0.5 0.754 0.780 
1 0.754 0.749 
5 0.754 0.712 
10 0.754 0.710 
50 0.754 0.715 
100 0.754 0.705 
500 0.754 0.640 
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Figure 1 Sampling locations used for the large-scale study (left) and the local-scale study (right). 
Note: In the local-scale study, fresh scat samples were collected in ten different wintering grounds in 

KKXL (KKXL1 - KKXL10) and around the calving ground Zhuonai Lake (KKXL_ZNH). The large-
scale study focused on three geographic populations of Chiru on the Tibetan Plateau, including the 
KKXL, examined above, along with Aerjin (AEJ) and Qiang Tang (QT) populations.  
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Figure 2 DAPC analyses with three geographical populations KKXL, AEJ and QT (left panel) 

and 10 sampling locations within KKXL (KKXL1-KKXL10, excluding KKXL_ZHN) (right 
panel) with discriminant function 1 on the x-axis and discriminant 2 on the y-axis. 
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Supplemental Table 1 Sampling location Information 
 

Study 
Sampling 
Site ID 

Latitude Longitude 
Sample 
Type 

Sampling 
Time 

Sample 
Size 

Local-
scale 

KKXL1 35.504 93.714 Feces 
May, 2015/ 

April, 2016 
24 

KKXL 2 35.378 92.149 Feces May, 2015 10 

KKXL 3 35.880 90.939 Feces May, 2015 23 

KKXL 4 35.472 91.893 Feces May, 2015 44 

KKXL 5 34.941 92.928 Feces Apr, 2016 15 

KKXL 6 34.838 92.222 Feces Apr, 2016 20 

KKXL 7 34.914 91.821 Feces Apr, 2016 22 

KKXL 8 35.036 91.783 Feces Apr, 2016 20 

KKXL 9 35.054 91.570 Feces Apr, 2016 20 

KKXL 10 35.285 93.249 Feces 
May, 2015/ 

Apr, 2016 
36 

KKXL_ZNH 35.529 91.930 Feces Jul, 2015 149 

Large-
scale 

QT 33.696 82.639 Dry skin Sep, 2013 52 

AEJ 36.702 87.224 Placenta Jul, 2014 20 

KKXL 35.498 91.977 Placenta Jul, 2014 69 
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Supplemental Table 2A   Six polymorphic microsatellite loci selected for fecal samples in the 
local-scale study 

 

 
Note: All loci except for MCM38 were amplified as following: 95 ℃ (15 min), then 40 cycles at 

94℃ (30s) / Ta℃ (90s) / 72℃ (60s), and a final extension at 60℃ for 30 min. MB066 and 
BM1225 were amplified in a duplex PCR. *: MCM38 was amplified in a touchdown PCR. 95 ℃ 

(15 min), then 12 cycles at 94℃ (30s) / 70℃ (90s) (with decrement of 1℃ per cycle) / 72℃ 
(60s), 28 cycles at 94℃ (30s) / 58℃ (90s)/ 72℃ (60s) and a final extension at 60℃ for 30 min. 

 
  

Loci Primer (5’-3’) Ta (℃) 
Multiplex 

Set 
Reference 

BM1824 
F: GAGCAAGGTGTTTTTCCAATC 

58 1 
(Bishop et 
al., 1994) R: CATTCTCCAACTGCTTCCTTG 

MCM38 

F: TGGTGAATGGTGCTCTCATACCAG 

58* 2 

(H. Zhou, 
Li, Zhang, 

Yang, & 
Liu, 2007) 

R: CAGCCAGCAGCCTCTAAAGGAC 

ILSTS00
5 

F: GGAAGCAATGAAATCTATAGCC 
55 3 

(Brezinsky, 
Kemp, & 

Teale, 1993) 
R: TGTTCTGTGAGTTTGTAAGC 

MB066 
F: ATCTGCCTGAAGCCAGTCAC 

56 4 
(H. Zhou et 

al., 2007) R: GGTTTCCTGCACCTGCATGA 

BM1225 
F: TTTCTCAACAGAGGTGTCCAC 

56 4 
(Bishop et 
al., 1994) R: ACCCCTATCACCATGCTCTG 

BM4107 
F: AGCCCCTGCTATTGTGTGAG 

56 5 
(Bishop et 
al., 1994) R: ATAGGCTTTGCATTGTTCAGG 
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Supplemental Table 2B   Seven polymorphic microsatellite loci selected for dry skin and 
placenta samples in the large-scale study 

 
Loci Primer (5’-3’) Ta (℃) Reference 

L01 
F:TCTTGTGATCTCTTCCAGTAGAG 

R:CGTCAGGCAATGAAGGTAG 
54 

(Zhou et al., 
2014) 

L03 
F:CTGACTTCTTTCTCCCTACGA 
R:CAACCACTTTTGGATTCACAG 

54 
(Zhou et al., 

2014) 

L04 
F:CAAGGGATCATTTCAATGCT 
R:TGTTCTGTGAGTTTGTAAGC 

58.5 
(Zhou et al., 

2014) 

ILSTS005 
F:GGAAGCAATGAAATCTATAGCC 

R:TGTTCTGTGAGTTTGTAAGC 
58 

(Brezinsky et 
al., 1993) 

TGLA68 
F:ATCTTACTTACCTTCTCAGCGCT 

R:GGGACAAAATTTTACATATACACTT 
59 

(H. Zhou et al., 
2007) 

MCM38 
F:TGGTGAATGGTGCTCTCATACCAG 
R:CAGCCAGCAGCCTCTAAAGGAC 

58 
(H. Zhou et al., 

2007) 

BM1341 
F:CCTACCTACTGCACAGTTTTGC 
R:CTCCCATATAAGTTACCCACCC 

60 
(H. Zhou et al., 

2007) 

 
Note: All loci were amplified as following: as following: 95 ℃ (15 min), then 40 cycles at 94℃ 
(30s) / Ta℃ (90s) / 72℃ (60s), and a final extension at 60℃ for 30 min in singlex PCR. 

  



	
	

	 37	

Supplemental Table 3A   Demographic parameters used for the Approximate Bayesian 
Computation (ABC) models of constant population size, population bottleneck with local-scale 

microsatellite dataset. N – Effective population size; Na – Ancestral population size; Nc – 
Contemporary population size; t: time of population bottleneck.  

 

Parameter Prior (uniform distribution) 

Na 10-20,000 
Nb 10-20,000 

Nc (Nc<=Na) 10-20,000 
Tb (in generations) 0-100 

 
 
Supplemental Table 3B   Demographic parameters used for the Approximate Bayesian 

Computation (ABC) models of constant population size, population bottleneck with mtDNA CR 
sequences. N – Effective population size; Na – Ancestral population size; Nc – Contemporary 

population size; t: time of population bottleneck.  
 

Parameter Prior (uniform distribution) 

Na 10-1,000,000 
Nb 10-1,000,000 

Nc (Nc<=Na) 10-1,000,000 
Tb (in generations) 0-100,000 
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Supplemental Table 4 Combined non-exclusion probability for STR loci used in studies. PI: 
combined non-exclusion probability for identity; Psib: combined non-exclusion probability for sib 

identity. 
 

Study PI Psib 

Local-scale study 5.28 ×	10ABB 2.90 ×	−7 
Large-scale study 5.10 ×	10AZ 3.40 ×	10AL 
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Supplemental Figure 1 Median-joining network analysis based on 1029 bp control region 
haplotypes (excluding indels). Top panel shows 190 haplotypes from 10 wintering locations 

within KKXL (excluding KKXL_ZHN). Bottom panel shows 381 haplotypes from three 
geographical populations AEJ, QT, and KKXL.  
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Supplemental Figure 2 Demographic scenarios for comparison used for ABC simulations. 

Scenario 1 is for constant population size and Scenario 2 is for population bottleneck.  
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Supplemental Figure 3 Posterior probability of models in comparison with logistic regression 
implemented in DIYABC. Note: Scenario 1 is for constant population size and Scenario 2 is for 
population bottleneck. Top panel was based on simulation with mtDNA CR sequences and bottle panel 
was based on simulation with STR loci.  
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Supplemental Figure 4 Pre-evaluation of scenario-prior combination suitability with PCA analyses 
implemented in DIYABC. Observed dataset was placed within the 1% of simulated data sets. This 
suggests that the selected summary statistics and priors were suited for the models. Note: Scenario 1 is for 
constant population size and Scenario 2 is for population bottleneck. Top panel was based on simulation 
with mtDNA CR sequences and bottle panel was based on simulation with STR loci.  
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Supplemental Figure 5 Model checking to assess the goodness-of-fit for the best-supported scenario 
(Scenario 1 with constant population size) implemented in DIYABC. Model checking showed a large 
cluster of simulated data from the prior and a small cluster of data from the posterior predictive 
distribution with the observed data set placed within both, suggesting the model/posterior for scenario 1 
provided a good fit to the observed data. Note: Top panel was based on simulation with mtDNA CR 
sequences and bottle panel was based on simulation with STR loci.  

  



	
	

	 44	

Supplemental	method	---	DIYABC	methods	
 
Larger demographic and temporal prior ranges were given for mtDNA CR sequences due to their larger 

45 estimates from initials tests. Because no genetic structure was found in Chiru populations, both 
scenarios were simulated under the framework of a single population. We used a Generalized Stepwise 
Mutation (GSM) model with a mean STR mutation rate of 10-5 to 10-3 drawn from a uniform distribution. 
We set the shape to 0 so all individual loci took the same values (=mean). The prior for the mutation rate 

in mtDNA CR sequence was set to draw from a gamma distribution with mean 2.109 × 10Agwith 
mutation model as Hasegawa-Kishino-Yano or HKY (1985). All other default settings remained in place. 
We chose the following as summary statistics: 1) for mtDNA CR sequences: number of segregating sites, 
mean of pairwise differences, variance of pairwise differences and Tajima’s D; 2) for STRs: mean 

number of alleles. Mean genic diversity and mean size variance. A total of 2 × 10] data sets were 
simulated and summary statistics per scenario were calculated on each simulation, with roughly equal 
representation of each scenario in the reference table. We used Principal Component Analysis (PCA) in 
the “pre-evaluate” option to initially evaluate scenario-prior combinations. To compare scenarios, we 
computed the posterior probability of each of them by performing a logistic regression based on 1% of the 
simulated data closest to observed data. The scenario with the higher posterior probability was selected as 
the best.  For the best-supported scenario, we performed the option “model check” to assess the goodness-
of-fit. A good fitting model should produce a cloud of data points simulated from the priors, on top of 
which lies the observed data within a smaller cloud of datasets from the posterior predictions. To assess 
confidence in scenario choice, we calculated type I and II error rates from 20,000 pseudo-observed 
datasets (PODs) for the “logistic approach. We measured the proportion of times that the best-fit scenario 
had the highest posterior probability compared the competing scenario out of 1000 requested PODs. Point 
estimates for demographic and temporal parameters were obtained by local linear regression on the 1% of 
simulated data sets closest to the observed dataset for the best-supported scenarios.  
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Abstract	

Maternal	gut	microbiome	can	influence	and	be	affected	by	the	substantial	physiological	

changes	taking	place	during	the	perinatal	period.	However,	little	information	is	known	

about	the	changes	of	the	maternal	gut	microbiome	during	this	period.	Tibetan	antelope	

(Pantholops	hodgsonii)	provide	a	unique	system	to	address	this	issue	because	their	summer	

migration	cycle	is	synchronized	with	the	perinatal	period.	We	used	16S	rRNA	gene	

sequencing	to	generate	gut	microbiome	profiles	using	fecal	samples	collected	from	female	

migratory	Tibetan	antelope.	We	then	correlated	microbiome	diversity	with	fecal	hormone	

metabolite	concentrations	of	glucocorticoids	(GCs)	and	triiodothyronine	(T3)	extracted	

from	the	same	fecal	samples.	The	maternal	gut	microbiome	of	Tibetan	antelope	was	

dominated	by	Firmicutes	and	Bacteroidetes.	There	was	a	clear	separation	in	gut	microbial	

composition	by	female	reproductive	states	based	on	both	hierarchical	clustering	and	PCoA	

analyses.	The	shift	in	the	maternal	gut	microbiome	likely	reflects	the	metabolic	and	

immune	system	dynamics	during	the	perinatal	period.	Overall,	the	microbiome	diversity	

was	higher	in	the	late	pregnancy	compared	to	the	postpartum	period.	The	negative	

association	between	T3	and	microbiome	diversity	may	be	moderated	by	the	shift	of	

reproductive	states,	since	the	correlations	disappeared	when	considering	each	

reproductive	state	separately.	Integrating	microbiome	dimension,	migration	pattern	and	

reproduction	may	have	direct	conservation	implications	as	by	establishing	a	base	line	of	

the	physiological	changes	during	the	migration/perinatal	period,	we	can	have	a	better	

understanding	on	the	impacts	of	increasing	human	activities	on	the	Tibetan	Plateau	on	the	

reproductive	health	of	Tibetan	antelope.	
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Introduction	

The	transition	from	pregnancy	to	lactation	during	the	perinatal	period	is	among	the	most	

important	determinants	of	maternal-offspring	health	outcomes	(Blaser	&	Domínguez-Bello,	

2016;	Dunlop	et	al.,	2015;	Prince	et	al.,	2015).	Substantial	physiological	changes	occur	

during	this	transition,	including	changes	in	hormones,	immune	system	modulation,	and	

metabolism	to	shift	resource	allocation	from	energy	storage	to	milk	synthesis	and	preserve	

the	health	of	both	the	mother	and	her	offspring	(Lain	&	Catalano,	2007;	Zeng,	Liu,	&	Li,	

2017).	Both	late	pregnancy	and	lactation	are	the	two	most	energetic	demanding	female	

reproductive	periods,	with	even	more	pronounced	energy	demands	during	lactation	(Butte	

&	King,	2005).	Hormones	serve	as	mediators	in	the	process,	directing	nutrients	and	energy	

to	the	highly	specialized	maternal	reproductive	tissues	and	the	developing	fetus	(Picciano,	

2003).	Two	important	metabolic	hormones	are	involved	in	this	transition,	including	

glucocorticoids	(GCs)	and	thyroid	hormones	(THs).	GCs	are	released	from	the	adrenal	

glands	in	vertebrates	and	regulated	by	the	hypothalamic-pituitary-adrenal	(HPA)	axis.	GCs	

can	rapidly	mobilize	glucose	in	response	to	physiological	and	psychological	stress	(Palme,	

Rettenbacher,	Touma,	EL-Bahr,	&	Mostl,	2006).	GC	levels	are	elevated	during	pregnancy,	

allowing	for	greater	substrate	availability	for	fetal	growth	(Lain	&	Catalano,	2007;	Zeng	et	

al.,	2017).	THs	are	released	by	the	thyroid	gland	and	regulated	by	hypothalamus-pituitary-

thyroid	gland	axis.	THs	function	as	a	metabolic	thermostat,	continuously	monitoring	energy	

intake,	and	regulating	metabolism	accordingly	(Douyon	&	Schteingart,	2002).	Thyroid	

activity	increases	throughout	the	pregnancy.	During	the	transition	from	pregnancy	to	
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lactation,	metabolic	adjustments	of	thyroid	hormones	are	essential	in	establishing	

metabolic	priority	for	the	lactating	mammary	gland	(Capuco,	Connor,	&	Wood,	2008).		

Maternal	gut	microbiome	is	likely	to	influence	and	be	affected	by	the	physiological	changes	

during	the	perinatal	period	and	it	is	critical	for	the	establishment	and	development	of	the	

neonatal	microbiome	(Prince	et	al.,	2015).	Pregnancy	is	associated	with	a	profound	

alteration	of	maternal	gut	microbiota	(Koren	et	al.,	2012).	However,	little	research	has	been	

conducted	to	assess	whether	maternal	gut	microbiota	changes	during	the	transitionary	

perinatal	period.	Two	studies	focused	on	human	microbiome	but	had	inconsistent	results:	

one	study	found	that	human	maternal	gut	microbiota	remained	stable	over	the	perinatal	

period	(Jost,	Lacroix,	Braegger,	&	Chassard,	2013)	and	the	other	study	concluded	that	there	

was	a	change	in	microbial	community	structure	and	reduced	microbiome	diversity	from	

pregnancy	to	postpartum	in	humans	(Crusell	et	al.,	2018).	A	third	study,	conducted	on	

dairy	cows,	revealed	distinct	microbiome	profiles	between	pre-	and	postpartum	females,	

and	argued	that	these	changes	resulted	from	the	shifts	in	diet	regime	(Lima	et	al.,	2015).	

More	information	is	needed	to	document	the	shift	in	the	microbiota	composition	during	

this	critical	transition	period,	which	has	profound	impacts	on	the	health	outcomes	of	both	

females	and	offspring.		

Gut	microbiome	studies	have	been	conducted	predominantly	on	humans	and	nonhuman	

primates	(West	et	al.,	2019).	Comprehensive	surveys	of	the	microbiome	composition	in	

non-model	species	remain	relatively	rare,	with	primary	focuses	on	the	species	of	economic	

importance,	such	as	cattle	and	horse	(O’	Donnell,	Harris,	Ross,	&	O'Toole,	2017).	The	phyla	

Firmicutes	and	Bacteroidetes	have	been	identified	as	the	predominant	phyla	in	the	gut	
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microbiome	of	a	variety	of	mammals,	including	carnivores,	herbivores	(ruminant	and	

hindgut	fermenters)	and	omnivores	(Ley	et	al.,	2008).	Microbiome	research	in	wildlife	tend	

to	focus	on	the	impacts	of	land	use	change,	climate	change,	captive	breeding,	non-native	

species	invasion,	antibiotics,	infectious	disease	and	environmental	contamination	on	the	

microbiome	diversity	and	community	structure	(Redford,	Segre,	Salafsky,	del	Rio,	&	

McAloose,	2012;	Trevelline,	Fontaine,	Hartup,	&	Kohl,	2019).	We	found	no	research	

integrating	the	microbiome	dimension	into	wildlife	reproduction.		

Tibetan	antelope	(Pantholops	hodgsonii)	provide	a	unique	system	to	study	changes	in	

microbiome	during	the	perinatal	period.	Every	summer,	female	Tibetan	antelope	depart	

from	the	wintering	sites	to	the	calving	sites	in	May	-	June	and	return	with	their	newborns	in	

late	July	-	early	August	(Schaller,	1998).	Their	summer	migration	cycle	is	synchronized	

with	the	perinatal	period	(Buho	et	al.,	2011)	with	considerable	energy	demand	(Butte	&	

King,	2005)	when	both	the	females	and	offspring	are	most	vulnerable.	Tibetan	antelope	

were	reduced	to	the	brink	of	extinction	at	the	end	of	the	20th	century	by	illegal	poaching	for	

their	underfur.	International	conservation	efforts	successfully	curbed	the	poaching	through	

law	enforcement	and	habitat	protection.	Their	population	size	has	recovered	since	2011	

(Leclerc,	Bellard,	Luque,	&	Courchamp,	2015).	Integrating	microbiome	dimension,	

migration	pattern	and	reproduction	may	have	direct	conservation	implications	as	by	

establishing	a	baseline	of	the	physiological	changes	during	the	migration/perinatal	period,	

we	can	have	a	better	understanding	on	the	impacts	of	increasing	human	activities	on	the	

Tibetan	Plateau	on	the	reproductive	health	of	Tibetan	antelope.	
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The	aim	of	this	study	was	to	characterize	the	changes	in	the	maternal	gut	microbiome	of	

Tibetan	antelope	during	the	perinatal	period.	We	predicted	that	1)	the	maternal	gut	

microbiome	of	Tibetan	antelope	is	dominated	by	Firmicutes	and	Bacteroidetes	as	with	

other	mammals	(Ley	et	al.,	2008);	2)	there	is	a	shift	in	microbiome	community	composition	

in	the	perinatal	period	in	response	to	the	metabolic	adjustments	during	the	same	time	

period.	To	control	for	the	potential	confounding	impact	of	dietary	changes	during	the	

sampling	period	on	the	maternal	gut	microbiome	composition,	we	also	included	the	

sampling	time	into	our	linear	models.	We	also	explored	the	relationships	between	the	

changes	in	metabolic	hormones	and	the	gut	microbiome	diversity.	We	used	16S	rRNA	gene	

sequencing	to	generate	gut	microbiota	profile	in	the	perinatal	period	using	fecal	samples	

and	correlated	the	microbiome	diversity	with	fecal	hormone	metabolite	concentrations	of	

GC	and	triiodothyronine	(T3).	T3	is	the	most	biologically	active	form	of	THs.	Fecal	samples	

are	often	used	as	a	proxy	for	the	gut	microbiome	due	to	their	accessibility	and	non-invasive	

nature	(Yasuda	et	al.,	2015),	though	fecal	samples	are	not	completely	representative	of	the	

entire	gut	microbiome	(Ingala	et	al.,	2018).	This	study	sheds	light	on	how	the	microbiome	

composition	shifts	during	this	transition	period	and	emphasizes	the	importance	of	

incorporating	the	maternal	gut	microbiome	into	the	conservation	management	efforts	to	

support	animal	reproductive	health	and	overall	recovery	success	of	Tibetan	antelope.	

Materials	and	Methods	

Ethics	Statement	



	
	

	 52	

Tibetan	antelope	is	listed	in	the	Category	I	of	the	National	Key	Protected	Wild	Animal	

Species	under	China’s	Wild	Animal	Protection	Law.	In	September	2016,	Tibetan	antelope	

were	reclassified	from	Endangered	to	Near	Threatened	by	the	International	Union	for	

Conservation	of	Nature	(IUCN)	Red	List	due	to	the	recovery	of	their	population	size.	Sample	

collection	and	field	studies	adhered	to	the	Wild	Animals	Protection	Law	of	the	People’s	

Republic	of	China.	Fresh	scat	samples	were	collected	under	IACUC	protocol	#2850-12	and	

local	regulations	to	minimize	disturbance.		

Sample	Collection	

Qinghai-Tibet	Railway	bisects	the	migration	route	of	Tibetan	antelope	approximately	40	

km	from	their	summer	calving	area	at	Zhuonai	Lake.	Female	Tibetan	antelope	almost	

exclusively	use	the	Wubei	Bridge	underpass	(35	̊15’2.71"N,	93	̊	9’45.12"E),	a	198m	long,	

30m	wide	structure	(Xia,	Yang,	Li,	Wu,	&	Feng,	2007).	We	collected	fecal	samples	at	the	

Wubei	Bridge	underpass	when	females	migrated	to	and	returned	from	the	calving	ground	

in	2017.	Females	are	in	the	late	pregnancy	stage	when	migrating	to	the	calving	ground,	and	

in	the	postpartum	period	when	on	their	return	to	the	wintering	ground.	Animals	were	

observed	with	binoculars	from	a	recommended	viewing	distance	of	~	300	m	(Lian,	Zhang,	

Cao,	Su,	&	Thirgood,	2007)	until	they	defecated	and	left	the	area.	To	minimize	the	chance	of	

collecting	multiple	fecal	samples	from	the	same	individual,	three	field	assistants	were	

involved	in	sample	collection	in	three	different	directions.	We	excluded	fecal	samples	of	

small	size	to	avoid	collecting	fecal	samples	from	the	young	and	newborns.	Adult	males	do	

not	conduct	the	seasonal	migration.	A	total	of	65	fresh	scat	samples	were	collected	and	

placed	into	individual	zip-loc	bags	along	with	records	of	the	date	and	GPS	coordinates.	Fifty	
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samples	were	collected	during	the	late	pregnancy	stage	and	15	samples	collected	during	

the	postpartum	period.	Samples	were	kept	frozen	at	–	20	℃	until	lab	analyses.		

DNA	Extraction	and	Species	Identification	

To	minimize	environmental	contamination,	we	extracted	DNA	from	the	well-preserved	

core	of	one	fecal	pellet	per	sample	(Menke,	Meier,	&	Sommer,	2015)	using	the	E.Z.N.A.®	

DNA	isolation	kit	(Omega	Biotek,	Norcross,	GA,	U.S.).	The	DNA	concentration	and	quality	

were	evaluated	using	NanodropTM	2000	Spectrophotometer	(Nanodrop,	Wilmington,	DE,	

USA),	and	visualized	with	1%	agarose	gel	electrophoresis.	A	short	fragment	(196	bp)	of	

mtDNA	cytochrome	c	oxidase	subunit	I	gene	was	amplified	and	sequenced	using	the	

forward	primer	(5’	GCCCCTGATATAGCATTCCC	3’)	and	the	reverse	primer	(5’	

CTGCCAGGTGTAGGGAGAAG	3’).	PCR	was	conducted	using	EasyTaq	PCR	SuperMix	

(Transgen	Biotech,	Inc.)	with	4	ul	DNA	template.	2.5	ul	10	mg/ml	of	bovine	serum	albumin	

was	added	to	the	PCR	mix	to	improve	amplification	success.	We	followed	the	

recommended	thermo	protocol	in	the	kit	with	an	annealing	temperature	of	51°	C.	

Sequences	were	checked	against	the	NCBI	database	using	BLAST	for	species	confirmation.		

Library	Preparation	

The	V3-V4	region	of	the	16S	rRNA	gene	was	amplified	using	the	forward	primer	338F	(5’-

ACTCCTACGGGAGGCAGCAG-3’)	and	the	reverse	primer	806R	(5’-

GGACTACHVGGGTWTCTAAT-3’)	(Mori	et	al.,	2014).	Each	primer	was	designed	to	contain:	

1)	the	appropriate	Illumina	adapter	sequence	allowing	amplicons	to	bind	to	the	flow	cell;	

2)	an	8bp	index	sequence;	and	3)	gene-specific	primer	sequences	as	described	above.	PCR	
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reactions	were	conducted	using	the	TransStart®	FastPfu	DNA	Polymerase	kit	

(TransBionova	Co.,	Ltd,	Beijing,	China)	with	20	μL	reaction	solution	in	total	including	10	ng	

template	DNA,	4	μL	5×FastPfu	buffer,	2	μL	2.5	mM	dNTPs,	0.8	μL	of	each	primer	(5	μM),	0.4	

μL	FastPfu	Polymerase	and	0.2	μL	20	ng/	μL	of	bovine	serum	albumin.	The	PCR	cycling	

conditions	were	as	follows:	95	℃	for	3	min,	followed	by	27	cycles	of	95	℃	for	30	s,	55	℃	for	

30	s,	and	72	℃	for	45	s	and	a	final	extension	of	72	℃	for	10	min.	All	PCR	products	were	

visualized	on	agarose	gels	(2%	in	TAE	buffer)	and	purified	with	AxyPrep	DNA	Gel	

Extraction	Kit	(Axygen	Biosciences,	Union	City,	CA,	USA).	Before	sequencing,	DNA	samples	

were	quantified	using	QuantiFluor™-ST	(Promega,	USA).	Paired-end	amplicon	libraries	

were	constructed,	and	sequencing	was	performed	using	the	Illumina	MiSeq	PE300	

platform	at	Majorbio	BioPharm	Technology	Co.,	Ltd.,	Shanghai,	China.		

Bioinformatics	Analyses	

Sequencing	reads	were	analyzed	using	the	DADA2	pipeline	(Callahan	et	al.,	2016)	with	the	

following	steps:	1)	Initial	quality	filtering	was	performed	using	the	filterAndTrim	command	

with	default	parameters.	Forward	and	reverse	reads	were	truncated	at	290	bp	and	210	bp	

respectively;	2)	Amplicon	sequence	variants	(ASVs)	were	inferred	using	the	core	DADA2	

sample	inference	algorithm,	dada,	after	error	rate	model	generation	and	sequence	

dereplication;	3)	Forward	and	reverse	reads	were	merged	together	to	obtain	the	full	

denoised	sequences	using	the	mergePairs	command;	4)	Chimeric	sequences	were	identified	

and	removed	using	the	removeBimeraDenovo	command;	5)	Taxonomy	classification	was	

assigned	to	each	ASV	using	the	assignTaxonomy	command	using	the	Silva	reference	

database	(version	132/16s_bacteria)	(Quast	et	al.,	2012).	16S	rRNA	gene	analysis	is	limited	
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for	species-level	classification	because	closely	related	bacterial	species	may	have	near	

identical	16S	rRNA	gene	sequences	(Plummer	&	Twin,	2015).	Therefore,	each	ASV	was	

assigned	only	down	to	the	genus	level.	Finally,	ASVs	with	less	than	10	copies	in	the	

resulting	ASV	table	were	removed.	

Fecal	Hormone	Metabolite	Analyses	

Fecal	samples	were	freeze-dried	to	remove	water	content.	Fecal	GC	and	T3	metabolites	

were	then	extracted	from	freeze-dried	fecal	samples	following	previously	described	

protocols	(Wasser	et	al.,	2010;	2004;	2000).	Briefly,	each	freeze-dried	fecal	sample	was	

thoroughly	homogenized	before	suspending	~0.1	g	of	fecal	powder	in	15	ml	of	70%	

ethanol,	followed	by	30	min	continuous	agitation.	After	centrifugation	(1800	g;	20	min),	the	

supernatant	was	poured	into	a	new	vessel.	An	additional	15	ml	of	70%	ethanol	was	added	

to	the	remaining	fecal	power	for	a	second	extraction.	This	mixture	was	agitated	for	30	min	

and	centrifuged	at	1800	g	for	20	min.	Supernatants	from	both	extractions	were	combined	

and	stored	at	-20	℃.		

Since	most	native	hormones	are	excreted	as	metabolites	in	feces	(Palme,	Fischer,	

Schildorfer,	&	Ismail,	1996),	it	is	essential	to	select	an	appropriate	assay	system	that	

includes	a	group-specific	antibody,	which	is	capable	of	detecting	the	predominant	fecal	

metabolites	of	the	parent	hormone	in	the	species	investigated	(Palme	et	al.,	1996;	Touma	&	

Palme,	2006;	Wasser	et	al.,	2000).	Fecal	GC	metabolites	were	diluted	with	assay	buffer	at	

the	ratio	of	1:30	and	analyzed	using	DetectX®	Corticosterone	Immunoassay	kit	(Arbor	

Assays).	This	assay	kit	was	chosen	because	a	previous	study	has	shown	that	corticosterone	

antibody	has	the	highest	affinity	for	the	major	cortisol	metabolites	(Wasser	et	al.,	2000).	



	
	

	 56	

Fecal	T3	metabolites	were	diluted	at	the	ratio	of	1:60	and	analyzed	using	DetectX®	

Triiodothyronine	(T3)	Immunoassay	kit	(Arbor	Assays),	because	T3	metabolite	maintains	

its	pure	form	in	many	mammalian	species	(Wasser	et	al.,	2010).	Both	hormone	assays	were	

validated	using	serially	diluted	fecal	extracts	pooled	from	10	random	samples.	The	

displacement	curves	were	parallel	to	those	of	standard	hormone	preparations,	indicating	

that	hormone	concentrations	were	reliably	measured	across	their	ranges	of	concentrations.	

In	addition,	the	recovery	rate	of	the	GC	and	T3	standards	was	127.8%	and	127.6%	

respectively,	indicating	limited	amount	of	interference	in	hormone	binding	from	the	

substances	in	the	fecal	extracts	of	Tibetan	antelope.	

Statistical	Analyses	

Rarefaction	curves	were	plotted	for	each	sample	using	the	rarecurve	function	in	the	vegan	

R	package	to	assess	the	adequacy	of	sequencing	depth.	Variations	in	sequencing	depth	

among	samples	were	normalized	using	the	variance	stabilizing	transformation	(VST)	

implemented	in	the	DESeq2	R	package	(McMurdie	&	Holmes,	2014).	Hierarchical	clustering	

and	principal	coordinate	analyses	(PCoA)	based	on	the	Euclidean	distance	matrix	of	VST	

data	were	performed	to	visualize	microbial	composition	differences	as	a	function	of	

reproductive	states	(late	pregnancy	vs.	postpartum	period).	Analysis	of	Similarity	

(ANOSIM)	test	was	used	to	assess	significant	differences	in	microbial	community	

composition	as	a	function	of	reproductive	states,	while	controlling	for	the	time	of	the	year	

using	strata.	We	filtered	out	phyla,	classes	and	orders	with	relative	abundance	less	than	

0.1%	and	familiae	and	genera	with	a	relative	abundance	less	than	1%.	Changes	in	the	

relative	abundance	of	taxa	between	reproductive	states	were	analyzed	through	Wilcoxon	
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signed-rank	tests	and	p	values	were	adjusted	with	the	Benjamini-Hochberg	method	to	

control	for	false	discovery	rate.	We	used	the	Phyloseq	R	package	to	compute	alpha	diversity	

including	richness	measurements	(Observed	number	of	ASVs,	Chao	1	richness	estimator,	

Abundance-Based	Coverage	Estimator	or	ACE)	and	diversity	indices	(Shannon	diversity	

index,	Inverse	of	the	Simpson	diversity	estimator	or	InvSimpson,	Fisher’s	index).	T-tests	

were	conducted	to	compare	microbial	alpha	diversity	between	reproductive	states.	Fecal	

hormone	metabolite	concentrations	were	natural	log-transformed	to	meet	the	assumption	

of	normality.	We	used	Wilcoxon	signed-rank	tests	to	compare	fecal	hormone	metabolite	

concentrations	between	reproductive	states	since	the	assumption	of	homogeneity	of	

variance	was	not	met.	We	constructed	linear	models	of	microbial	alpha	diversity	as	a	

function	of	fecal	hormone	metabolite	concentrations	(natural-log	transformed),	

reproductive	states	and	interactions	between	main	effects.	We	used	analysis	of	covariance	

(ANCOVA)	to	compute	the	analysis	of	covariance	tables	for	fitted	models.		

Results	

Maternal	gut	microbiota	is	dominated	by	Firmicutes	and	Bacteroidetes	

After	quality	filtering,	denoising,	read	merging	and	singleton/chimera	removal,	1,415,743	

high	quality	sequence	reads	were	retained	with	an	average	of	21,781	reads	per	sample	

(from	15,129	to	32,148)	and	a	median	sequence	length	of	406	bp.	In	total,	there	were	6,026	

ASVs	identified.	The	rarefaction	curves	on	the	number	of	ASVs	reached	a	plateau,	

suggesting	that	the	sequencing	depth	was	adequate,	and	the	microbial	community	was	well	

surveyed	(Supplementary	Figure	1).	Taxonomic	assignments	revealed	8	bacterial	phyla	
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with	relative	abundance	above	0.1%	(Figure	1).	Dominant	phyla	were	Firmicutes	(67.97%),	

Bacteroidetes	(26.30%),	Verrucomicrobia	(2.94%)	and	Actinobacteria	(1.12%).	There	were	

11	classes	with	relative	abundance	above	0.1%	with	dominant	classes	including	Clostridia	

(phylum:	Firmicutes;	66.92%),	Bacteroidia	(phylum:	Bacteroidetes;	26.30%),	

Verrucomicrobiae	(phylum:	Verrucomicrobia;	2.94%)	and	Actinobacteria	(phylum:	

Actinobacteria;	1.03%)	(Supplementary	Figure	2).	All	sequence	reads	were	assigned	at	the	

levels	of	phylum	and	class,	suggesting	there	was	few	sequencing	artifacts	in	the	dataset.	At	

the	order	level,	we	found	11	orders	with	the	relative	abundance	above	0.1%,	with	

dominant	orders	including	Clostridiales	(phylum:	Firmicutes;	66.89%),	Bacteroidales	

(phylum:	Bacteroidetes;	26.06%),	Verrucomicrobiales	(phylum:	Verrucomicrobia;	2.93%)	

and	Micrococcales	(phylum:	Actinobacteria;	1.03%)	(Supplementary	Figure	3).	Ten	families	

with	relative	abundance	greater	than	1%	were	found	(Figure	2).	Dominant	families	

included	Ruminococcaceae	(phylum:	Firmicutes;	46.79%),	Lachnospiraceae	(phylum:	

Firmicutes;	12.17%),	Bacteroidaceae	(phylum:	Bacteroidetes;	9.21%),	Rikenellaceae	

(phylum:	Bacteroidetes;	8.42%)	and	Christensenellaceae	(phylum:	Firmicutes;	5.79%),	

Akkermansiaceae	(phylum:	Verrucomicrobia;	2.93%),	Prevotellaceae	(phylum:	

Bacteroidetes;	2.80%),	Muribaculaceae	(phylum:	Bacteroidetes;	1.21%)	and	

Micrococcaceae	(phylum:	Actinobacteria;	1.03%).	About	4.41%	of	sequence	reads	could	not	

be	assigned	at	the	family	level.	The	taxonomic	classification	at	the	genus	level	is	ambiguous	

as	about	21.58%	of	sequence	reads	could	not	be	assigned	at	the	genus	level	

(Supplementary	Figure	4).	

The	composition	of	maternal	gut	microbiota	shifts	in	the	perinatal	period	
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There	was	a	clear	separation	in	maternal	gut	microbial	composition	by	female	reproductive	

states	based	on	the	results	of	both	hierarchical	clustering	(Figure	3)	and	PCoA	analyses	

(Supplementary	Figure	5).	The	differences	in	the	microbial	composition	remained	

significant	after	controlling	for	the	time	of	the	year	(p	=	0.001).	The	core	set	of	maternal	gut	

microbiome	(including	the	dominant	phylum	Firmicutes,	Bacteroidetes	and	

Verrucomicrobia)	remained	stable	in	the	transition	from	the	late	pregnancy	to	the	

postpartum	period	(Figure	1).	However,	there	was	significant	enrichment	in	Actinobacteria	

(+1.44%;	adjusted	p	<	0.05),	Tenericutes	(+0.42%;	adjusted	p	<	0.01),	Cyanobacteria	

(+0.48%;	adjusted	p	<	0.001)	and	Proteobacteria	(+0.15%;	adjusted	p	<	0.05)	during	late	

pregnancy	compared	to	the	postpartum	period	(Figure	1).	At	the	family	level,	

Christensenellaceae	were	more	abundant	(+3.31%;	adjusted	p	<	0.001)	during	late	

pregnancy,	while	Muribaculaceae	were	more	abundant	during	the	postpartum	period	

(+1.6%;	adjusted	p	<	0.001).	At	the	genus	level,	Christensenellaceae_R-7_	group	(+3.33%;	

adjusted	p	<	0.001),	Ruminococcaceae_UCG-010	(+2.46%;	adjusted	p	<	0.01)	and	

Ruminococcaceae_UCG-014	(+0.95%;	adjusted	p	<	0.01)	were	significantly	enriched	during	

the	late	pregnancy,	whereas	Ruminococcaceae_UCG-005	(+9.04%;	adjusted	p	<	0.001),	

Alistipes	(1.87%;	adjusted	p	<	0.001)	and	Lachnospiraceae_NK4A136_	group	(+1.08%;	

adjusted	p	<	0.01)	were	significantly	enriched	during	the	postpartum	period.	

Impacts	of	hormonal	changes	on	gut	microbiome	diversity		

Overall, alpha diversity in the gut microbiota of female Tibetan antelope was significantly higher 

in the late pregnancy period compared to those in postpartum period across all alpha diversity 

indices we tested (observed number of ASVs: p < 0.0001; Chao1: p < 0.0001; ACE: p < 0.0001; 
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Shannon: p < 0.001; InvSimpson: p < 0.0001; Fisher: p < 0.0001) (Figure 4). Fecal GC 

metabolite concentrations did not significantly differ between reproductive states (p = 0.06; 

Figure 5, left). However, T3 concentrations were significantly higher in the postpartum period 

compared to late pregnancy (p < 0.0001; Figure 6, right). There was significant negative 

correlation between T3 and alpha diversity measurement (Observed, Chao1, ACE and Fisher) 

during the transition from late pregnancy to the postpartum period (p<0.05; Supplementary 

Figure 6), however this relationship became insignificant when only considering each 

reproductive state separately (Figure 6). There was no significant correlation between GC and 

any microbiome alpha diversity measurement (Figure 6 and Supplementary Figure 6). T3 only 

explained 5.70% of the total variance in microbiome alpha diversity among samples (adj R2 = 

0.057). When we included both T3 and the reproductive states in the linear model, the fit of the 

model increased with adj R2 as 0.306.  

Discussion	

In	this	study,	we	characterized	the	maternal	gut	microbiota	of	Tibetan	antelope	and	

revealed	a	significant	shift	in	the	microbiome	community	composition	and	reduced	

microbiome	diversity	in	the	transition	from	late	pregnancy	to	the	postpartum	period.	We	

also	found	that	there	was	significant	negative	correlation	between	T3	and	microbiome	

diversity	(Observed,	Chao1,	ACE	and	Fisher)	during	this	transition,	however	this	

relationship	became	insignificant	when	considering	each	reproductive	state	separately.		

The	maternal	gut	microbiota	of	Tibetan	antelope	is	dominated	by	Firmicutes	and	

Bacteroidetes	(Figure	1).	This	finding	is	consistent	with	the	microbiome	composition	in	

other	mammals	(Lau	et	al.,	2018;	Ley	et	al.,	2008).	In	herbivores,	these	two	dominant	phyla	
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accounted	for	79%	-	86%	of	the	total	microbiome	community	(O’	Donnell	et	al.,	2017).	

Microbiome	composition	responds	to	the	in	vivo	oxygen	level.	The	animal	gut	is	deeply	

anaerobic	and	thus	dominated	by	strict	anaerobes,	such	as	Firmicutes	and	Bacteroidetes	

(Friedman	et	al.,	2018).	Facultative	anaerobes,	such	as	Proteobacteria	and	Actinobacteria,	

are	typically	100-fold	lower	in	abundance	compared	to	strict	anaerobes	(Nagpal	et	al.,	

2017).	One	of	the	vital	roles	played	by	the	symbiont	gut	microbiome	is	nutrient	uptake	

(Krajmalnik-Brown,	Ilhan,	Kang,	&	DiBaise,	2012).	Animals	are	capable	of	digesting	

proteins,	lipids,	and	simple	sugars	through	enzymatic	breakdown.	However,	these	enzymes	

are	not	able	to	digest	the	complex	structural	polysaccharides	of	plants	(Dearing	&	Kohl,	

2017).	Microbes	can	break	down	these	structural	polysaccharides	into	volatile	fatty	acids,	

allowing	them	to	be	absorbed	and	assimilated	to	provide	energy	for	the	host	(Dearing	&	

Kohl,	2017).	The	average	ratio	between	Firmicutes	and	Bacteroidetes	in	Tibetan	antelope	is	

2.52:1,	which	corresponds	to	the	trade-offs	between	carbohydrate	and	protein	

fermentation.	Plant-based	diets	increase	the	relative	abundance	of	Firmicutes	that	

metabolize	dietary	plant	polysaccharides	while	decreasing	the	relative	abundance	of	

Bacteroidetes	that	is	closely	associated	with	protein-based	diets	(David	et	al.,	2013;	Lima	et	

al.,	2015).	Verrucomicrobia	is	the	third	most	abundant	phylum	(2.94%)	in	the	gut	

microbiome	of	Tibetan	antelope	(Figure	1)	and	is	reportedly	important	for	hydrolyzing	

multiple	polysaccharides,	including	laminarin,	xylan	and	chondroitin	sulfate	(Cardman	et	

al.,	2014).	The	majority	of	Verrucomicrobia-associated	sequences	were	classified	to	the	

genus	Akkermansia,	which	are	biomarkers	for	a	healthy	mucus	layer	in	the	animal	gut	and	

brings	a	competitive	advantage	during	nutrient	deprivation	(Belzer	&	de	Vos,	2012).	In	

total,	these	three	phyla	had	a	combined	relative	abundance	of	97.21%.	This	core	set	of	
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maternal	gut	microbiome	represents	a	significant	benefit	for	Tibetan	antelope	in	terms	of	

energy	and	nutrition	acquisition	from	food.	We	also	found	the	presence	of	Cyanobacteria	in	

the	gut	microbiome	community	of	Tibetan	antelope,	though	its	prevalence	was	only	

0.472%	(Figure	1).	Cyanobacteria	have	only	been	recently	recognized	in	the	gut	

microbiome,	and	is	specifically	common	in	the	guts	of	herbivores	(Di	Rienzi	et	al.,	2013).	

Recently,	these	Cyanobacteria-related	gut	bacteria	have	been	assigned	to	a	new	phylum,	

Melainabacteria.	In	addition	to	helping	with	the	digestion	of	plant	fibers,	Melainabacteria	

can	also	synthesize	several	B	and	K	vitamins	(Di	Rienzi	et	al.,	2013).	

There	was	a	significant	reduction	in	the	microbiome	alpha	diversity	from	late	pregnancy	to	

the	postpartum	period	(Figure	4),	consistent	with	a	previous	study	(Crusell	et	al.,	2018).	

We	also	found	distinct	microbiome	profiles	during	late	pregnancy	and	the	postpartum	

period	(Figure	3).	This	finding	is	not	surprising,	considering	the	postpartum	period	plays	a	

vital	role	in	“resetting”	maternal	changes	accumulated	during	pregnancy	(Stuebe	&	Rich-

Edwards,	2008).	Visceral	fat	accumulates	and	insulin	resistance	level	increase	throughout	

gestation	(Lain	&	Catalano,	2007;	Nelson,	Matthews,	&	Poston,	2010).	The	accumulated	fat	

stores	are	mobilized	post-partum	to	support	lactation,	shifting	resource	allocation	from	

energy	storage	to	milk	synthesis.	Lactation	results	in	improved	insulin	sensitivity,	drop	in	

inflammation	and	reduced	adiposity.	Microbiome	might	play	a	crucial	role	in	this	

transition,	ensuring	continuous	energy	supply	to	support	the	growth	and	development	of	

the	fetus	and	lactation.	We	found	increased	abundance	of	members	of	Actinobacteria	and	

Proteobacteria	during	late	pregnancy,	as	previously	reported	(Koren	et	al.,	2012).	

Actinobacteria	are	positively	related	to	the	plasma	glucose	level	(Crusell	et	al.,	2018)	and	

may	increase	insulin	insensitivity	during	pregnancy	(Koren	et	al.,	2012).	Proteobacteria	are	
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known	to	include	multiple	pathogens	and	to	drive	proinflammatory	change,	alter	the	gut	

microbiota	in	favor	of	dysbiosis,	and	ultimately	lead	to	inflammation	such	as	

gastrointestinal	disease	(Mukhopadhya,	Hansen,	El-Omar,	&	Hold,	2012;	Shin,	Whon,	&	Bae,	

2015).	Normal	healthy	pregnancy	is	characterized	with	controlled	mild	maternal	systemic	

inflammatory	response,	with	increased	leukocytes	(CD11b,	CD14	and	CD64)	and	increase	

intracellular	reactive	oxygen	species	(Sacks,	Studena,	Sargent,	&	Redman,	1998).	When	the	

fetus	has	completed	its	development	during	the	third	trimester,	the	maternal	

proinflammatory	environment	promotes	the	contraction	of	uterus,	expulsion	of	the	baby	

and	rejection	of	the	placenta	(Mor,	Cardenas,	Abrahams,	&	Guller,	2011).	But	heightened	

maternal	inflammation	during	pregnancy	can	have	adverse	impacts	on	the	offspring,	

including	increased	risk	of	brain	development	problems	(Rudolph	et	al.,	2018).	

Ruminococcaceae_UCG-005	was	significantly	enriched	during	postpartum	period	and	they	

are	positively	related	with	elevated	concentration	of	acetate,	butyrate	and	total	SCFA	(Gao	

et	al.,	2019).	Taken	collectively,	these	changes	in	microbiome	composition	represent	reflect	

the	metabolic	and	immune	changes	in	the	critical	transition	period	from	late	pregnancy	to	

the	postpartum	period.	However,	unexpectedly,	we	found	Christensenellaceae	were	more	

abundant	during	late	pregnancy.	Members	of	Christensenellaceae	are	reportedly	associated	

with	lean	host	phenotype	(Goodrich	et	al.,	2014),	however,	pregnancy	is	characterized	with	

excess	adiposity	and	weight	gain.	We	only	started	to	decipher	the	functions	of	gut	

microbiome	in	the	perinatal	period	and	many	unknowns	remain	to	be	explored.	For	

example,	the	family	Muribaculaceae	is	recently	classified	(Lagkouvardos	et	al.,	2019)	and	

we	are	not	sure	about	their	precise	roles	in	the	transition	from	late	pregnancy	to	

postpartum	period.	The	same	applies	to	other	taxa,	such	as	Christensenellaceae_R-7_	group,	
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Ruminococcaceae_UCG-010,	Ruminococcaceae_UCG-014,	Alistipes	and	

Lachnospiraceae_NK4A136_	group.	Additional	in-depth	genetic	analysis	and	functional	

studies	will	be	required	to	understand	the	roles	of	these	important	taxa	in	this	transition	

period.		

We found higher T3 levels in the postpartum period (Figure 5). T3 declines in response to 

persistent nutritional stress, slowing down metabolism to guard against the body using up its 

remaining reserves (Douyon & Schteingart, 2002). Majority studies have shown similar basal 

metabolic rate in the lactating and pregnancy state (Butte & King, 2005) and relatively constant 

T3 level in this transition period (Hendrick, Altshuler, & Suri, 2011). Study in wild Amazon 

river dolphin showed that lactating and non-pregnant adult females had significantly higher total 

T3 concentrations than pregnant females, and this difference was primarily driven by the drop in 

the total T3 concentrations during the late pregnancy, likely due to competition for circulating 

iodine from the fast-growing fetus (Robeck et al., 2019). The observed increased T3 level in the 

postpartum period in our study might also suggest an increase in energy intake and/or increase in 

energetic demands in migratory lactating female Tibetan antelope. In fact, their return trip takes 

twice as long as the trip migrating to the calving grounds (Buho et al., 2011). We did not observe 

a reduction in GC level in the postpartum period (Figure 5), unexpectedly. In humans, maternal 

plasma GC level increases throughout pregnancy, reaching a peak near term (Concannon, Butler, 

Hansel, Knight, & Hamilton, 1978). The GC level declines towards pre-pregnancy level after 

delivery as the HPA axis gradually recovers from its activated state during pregnancy (Hendrick 

et al., 2011; Mastorakos & Ilias, 2003). However, the rate of HPA normalization period varies 

from a couple of days to a couple of months in humans (Abou-Saleh, Ghubash, Karim, Krymski, 

& Bhai, 1998; Glynn, Davis, & Sandman, 2013; Jung et al., 2011; Mastorakos & Ilias, 2003). 
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Sampling time may have also been a factor in our study. It takes Tibetan antelope about 8 days to 

reach the calving ground from our sampling location at Wubei Bridge. The animals usually stay 

at the calving ground for 8-20 days, and the return trip takes about 14-16 days (Buho et al., 

2011). Since we did not collect samples immediately prior to parturition, we may have missed 

the samples with the peak GC level. By the time we collected the postpartum samples, the GC 

level could have dropped to the degree that is comparable to the level in the pregnant samples we 

collected. 

We	did	not	find	a	significant	correlation	between	hormonal	changes	(T3	or	GC)	and	the	

microbiome	diversity	when	considering	each	reproductive	state	separately	(Figure	6).	T3	

only	explained	5.70%	of	the	total	variance	in	microbiome	alpha	diversity	among	samples	

(adj	R2	=	0.057).	When	we	included	both	T3	and	the	reproductive	states	in	the	linear	model,	

the	fit	of	the	model	increased	to	30.6%.	Therefore,	the	observed	change	in	the	microbiome	

diversity	was	mainly	and	significantly	driven	by	the	reproductive	transition	in	the	linear	

models.	However,	our	results	do	not	rule	out	the	impacts	of	metabolic	hormones	on	

microbiome	diversity,	because	there	was	a	small	but	significant	negative	correlation	

between	T3	and	alpha	diversity	measurement	(Observed,	Chao1,	ACE	and	Fisher)	during	

the	transition	from	late	pregnancy	to	the	postpartum	period	(Supplementary	Figure	6).	We	

only	focused	on	the	perinatal	period,	which	was	a	relative	short	period	(about	45	days).	

The	lack	of	correlation	between	T3	and	microbiome	diversity	right	before	and	after	

parturition	should	not	be	generalized	to	the	whole	gestation	and	lactation	period.	There	

might	be	other	hormones	worth	investigating	in	the	future	studies,	such	as	insulin,	insulin-

like	growth	factor,	C-peptide,	glucagon,	gastrointestinal	polypeptide,	ghrelin,	leptin,	and	

resistin	(Gomez-Arango	et	al.,	2016).	However,	these	hormones	are	peptide	hormones	and	
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can	only	be	measured	with	serum	samples.	The	immune	system	can	also	have	profound	

effects	on	the	gut	microbiota	(Koren	et	al.,	2012),	which	was	not	investigated	in	this	study.	

Future	studies	should	also	look	at	metabolomics,	as	hormones	might	affect	metabolic	

activities	of	microbiome	as	well.	

One	assumption	we	made	throughout	this	study	is	that	fecal	samples	collected	in	May	-	

June	were	collected	from	pregnant	females	(during	westward	migration	to	the	calving	

ground),	and	the	samples	collected	in	July	-	August	(during	eastward	migration	back	to	the	

wintering	ground)	were	from	postpartum	females.	Since	only	female	Tibetan	antelope	

conduct	seasonal	long-distance	migration	(Schaller,	1998),	we	were	confident	that	there	

were	no	adult	male	samples	in	our	collection.	We	acknowledge	that	not	all	migratory	

females	are	pregnant	and	a	proportion	of	migratory	individuals	are	non-pregnant	yearlings	

(Schaller,	1998).	In	the	postpartum	period,	the	ratio	of	adult	to	young	females	is	about	2:1	

based	on	field	observations	(Schaller,	1998;	Xia	et	al.,	2007).	We	avoided	collecting	fecal	

samples	from	the	young	and	newborns	by	ignoring	smaller	sized	fecal	pellets.	Future	

studies	could	include	progesterone	in	the	suit	of	fecal	hormonal	metabolite	assays	to	filter	

out	nonpregnant	migratory	females.	However,	there	are	no	fecal	endocrine	measures	that	

can	identify	lactating	females	(Hodges	&	Heistermann,	2011).	

The	gut	microbiome	can	respond	rapidly	to	dietary	change	(David	et	al.,	2013)	and	thus	

seasonal	dietary	change	could	be	a	confounding	factor	in	this	study.	However,	the	

differences	in	the	microbial	composition	remained	significant	after	controlling	for	the	time	

of	the	year	(p	=	0.001).	We	collected	fecal	samples	at	the	same	location	when	female	

Tibetan	antelope	cross	the	Wubei	Bridge	during	the	late	pregnancy	and	postpartum	period,	



	
	

	 67	

so	the	vegetation	composition	in	their	diets	were	relatively	consistent.	Their	migration	

period	overlaps	with	the	short	plant-growing	season	on	the	Tibetan	Plateau	(Mo	et	al.,	

2018).	The	forage	quality	is	relatively	consistent	throughout	the	migratory	period,	and	only	

drops	after	September	(Leslie	&	Schaller,	2008).	Therefore,	the	impacts	of	dietary	changes	

on	microbiome	during	the	migration	period	were	likely	minimal	compared	to	the	shift	in	

reproductive	states.		

In	conclusion,	we	characterized	the	maternal	gut	microbiota	of	wild	Tibetan	antelope	and	

demonstrated	its	shift	during	the	transition	from	late	pregnancy	to	the	postpartum	period.	

These	changes	appear	to	support	energetic	demands	of	these	two	reproductive	states.	

Microbiome	diversity	was	significantly	reduced	in	the	postpartum	period.	Neither	GC	nor	

T3	significantly	affected	microbiome	diversity	when	only	considering	each	reproductive	

state	separately.	Further	investigations	on	other	metabolic	hormones	or	immune	system	

are	needed	in	order	to	clarify	underlying	reasons	for	community	shift	and	reduced	

diversity	of	maternal	gut	microbiome	during	the	perinatal	period.		Our	study	is	the	first	

case	to	integrate	microbiome	analysis	into	wildlife	reproduction	research.	More	

information	needs	to	be	gathered	about	how	the	microbiota	composition	shifts	during	the	

perinatal	period	in	order	to	optimize	the	reproductive	health	and	overall	recovery	success	

for	priority	species.		
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Figure 1 Phyla found in the maternal gut microbiome of Tibetan antelope with relative 
abundance greater than 0.1%. Changes in the relative abundance of phyla between reproductive 

states were analyzed through Wilcoxon signed-rank tests and p values were adjusted with the 

Benjamini-Hochberg method to control for false discovery rate.   
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Figure	2	Families	found	in	the	maternal	gut	microbiome	of	Tibetan	antelope	with	relative	
abundance	greater	than	1%.	Changes	in	the	relative	abundance	of	families	between	
reproductive	states	were	analyzed	through	Wilcoxon	signed-rank	tests	and	p	values	were	
adjusted	with	the	Benjamini-Hochberg	method	to	control	for	false	discovery	rate.	 	
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Figure	3	Hierarchical	clustering	analysis	of	maternal	gut	microbiota	in	female	Tibetan	
antelope	with	Euclidean	distance	matrix	after	variance	stabilizing	transformation.	Each	leaf	
of	the	dendrogram	represents	one	fecal	sample	(N=65).	
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Figure	4	Changes	in	alpha	diversity	metrics	of	maternal	gut	microbiome	of	female	Tibetan	
antelope	in	different	reproductive	states.		Statistical	significance	was	assessed	by	t-tests.	
Note:	***:	p	<	0.001;	****:	p	<	0.0001.		
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Figure 5 Changes in fecal GC and T3 metabolite concentrations (natural log-transformed) 
between reproductive states. Statistical significance was assessed by Wilcoxon signed-rank tests. 

Note: ns: not significant. ****: p < 0.0001.  
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Figure	6	Relationships	between	fecal	hormone	metabolite	concentrations	(GC	and	T3)	and	
microbiome	alpha	diversity	measurements	at	different	reproductive	states.		
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Supplementary	Figure	1	Rarefaction	curves	calculated	for	the	number	of	amplicon	sequence	
variants	(ASVs)	with	increasing	sequencing	depth.	Note:	each	curve	represents	a	sample	and	N=65.	
The	red	vertical	line	indicates	the	minimum	number	of	reads	found	in	the	dataset	after	filtering,	
which	is	15,129	reads.		
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Supplementary Figure 2 Classes found in the maternal gut microbiome of Tibetan antelope with relative 
abundance greater than 0.1%. Changes in the relative abundance of classes between reproductive states 
were analyzed through Wilcoxon signed-rank tests and p values were adjusted with the Benjamini-
Hochberg method to control for false discovery rate. 
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Supplementary Figure 3 Orders found in the maternal gut microbiome of Tibetan antelope with relative 
abundance greater than 0.1%. Changes in the relative abundance of orders between reproductive states 
were analyzed through Wilcoxon signed-rank tests and p values were adjusted with the Benjamini-
Hochberg method to control for false discovery rate. 
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Supplementary Figure 4 Genera found in the maternal gut microbiome of Tibetan antelope with relative 
abundance greater than 1%. Changes in the relative abundance of genera between reproductive states 
were analyzed through Wilcoxon signed-rank tests and p values were adjusted with the Benjamini-
Hochberg method to control for false discovery rate. 
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Supplementary Figure 5 Principal coordinates analysis (PCoA) for gut microbial communities as a 
function of reproductive state (N=65). The analysis was based on Euclidean distance after variance 
stabilizing transformation. 
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Supplementary Figure 6 Relationships between fecal hormone metabolite concentrations (GC and 

T3) and microbiome alpha diversity measurements regardless of reproductive states.
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Chapter	Three	

Prey	partitioning	between	sympatric	canid	species	revealed	by	

DNA	metabarcoding	

Yue	Shi1*,	Yves	Hoareau1,	Ellie	Reese2,	Samuel	K.	Wasser1	

1Department	of	Biology,	University	of	Washington,	Seattle,	WA	98195,	USA	

2	School	of	Environmental	and	Forest	Sciences,	University	of	Washington,	Seattle,	WA	

98105,	USA	

*Correspondence:	Yue	Shi	(yueshi@uw.edu)	
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Abstract	

The	recovery	of	apex	predators	relies	on	restoring	the	full	suite	of	trophic	interactions	

within	the	ecosystem.	Diet	analysis	with	DNA	metabarcoding	technology	can	help	deliver	

insights	into	these	trophic	interactions	with	fine-grained	resolution.	The	recovery	of	

wolves	in	Washington	state	offers	an	excellent	case	to	study	the	trophic	cascade	impacts	of	

the	apex	predators	on	the	ecosystem	and	explore	prey	partitioning	between	sympatric	

canid	species.	We	used	DNA	metabarcoding	technology	on	scats	to	characterize	the	diet	

composition	and	its	spatiotemporal	variations	of	wolves	and	coyotes	and	quantified	the	

diet	niche	overlap	between	these	two	canid	species	in	northeastern	Washington.	In	total,	

19	different	prey	taxa	were	detected.	Frequency	of	occurrence	data	showed	that	wolves	

primarily	preyed	upon	deer	(Odocoileus	sp.)	(47.47%)	and	moose	(Alces	alces)	(42.42%).	

Coyotes	also	consumed	moose	(30.10%)	and	deer	(21.36%),	but	snowshoe	hares	(Lepus	

americanus)	were	the	most	common	prey	(61.17%)	in	their	diet.	There	were	significant	

spatial	variations	in	the	wolf	diet	composition	(p	=	0.001)	with	wolves	in	the	Dirty	Shirt	

pack	range	consuming	more	moose	(71.43%).	Coyotes	showed	significant	spatial	and	

temporal	dietary	variations	(season:	p	=	0.037;	pack:	p	=	0.003;	pack:season	p	=	0.043).	Our	

data	suggested	that	coyotes	use	ungulate	carrion	subsidies	from	wolves	as	food	resources.	

DNA	metabarcoding	with	fecal	DNA	provides	an	excellent	noninvasive	tool	to	characterize	

diet	profile	at	the	fine-grained	level	and	can	be	applied	to	other	carnivore	species	to	help	

understand	the	impacts	of	recovery	of	apex	predators	on	the	local	ecosystems.	

Keywords	 metabarcoding,	diet,	wolf,	coyote,	fecal	DNA	
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Introduction	

Apex	predators	are	primarily	known	for	their	elevated	position	on	the	trophic	ladder	with		

impacts	that	cascade	throughout	their	ecosystem	(Wallach,	Izhaki,	Toms,	Ripple,	&	Shanas,	

2015).	The	widespread	decline	in	apex	predators	due	to	human	hunting	and	habitat	

fragmentation	has	been	observed	in	many	systems	(Estes	et	al.,	2011).	The	reestablishment	

of	large	predators	and	their	ecological	effects	is	fundamental	for	wildlife	management,	and	

relies	on	restoring	the	full	suite	of	ecological	interactions	within	the	ecosystem,	including	

predator-prey	and	predator-	predator	interactions	(Stier	et	al.,	2016).	From	a	social	

perspective,	apex	predator	recovery	can	introduce	significant	new	conservation	and	legal	

challenges.	Scientific	uncertainty	about	the	ecological	interactions	can	hinder	the	progress	

towards	resolving	such	challenges	(Marshall,	Stier,	Samhouri,	Kelly,	&	Ward,	2015).	

Therefore,	it	is	essential	to	track	changes	in	the	predator	diet	to	inform	conservation	

management	decisions	(Marshall	et	al.,	2015).	Diet	analysis	with	the	newly	developed	DNA	

metabarcoding	technology	can	help	deliver	valuable	insights	into	these	trophic	interactions	

and	the	mechanism	of	species	coexistence	with	the	fine-grained	resolution.		

Conventional	methods	of	diet	analysis	have	relied	on	macro-	or	microscopic	morphological	

identification	of	food	remains	in	scats,	such	as	hair	(Carrera	et	al.,	2008;	Gable,	Windels,	

Bruggink,	&	Barber-Meyer,	2018;	Wasser,	Keim,	Taper,	&	Lele,	2011)	and	hard-parts	(e.g.	

bones,	hooves	and	teeth)	(Drouilly,	Nattrass,	&	O'Riain,	2017;	Nelson,	Cherry,	Howze,	

Warren,	&	Mike,	2015).	Such	methods	are	very	labor	intensive	and	require	reliable	

reference	collection	of	prey	parts	as	well	as	research	expertise	in	identifying	species	from	

masticated,	semi-digested	food	remains	(Pompanon	et	al.,	2011).	These	methods	also	tend	
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to	underestimate	the	proportion	of	prey	species	whose	remains	are	not	found	(completely	

digested	or	not	consumed	at	all)	(Deagle,	Kirkwood,	&	Jarman,	2009).	Earlier	molecular	

attempts	use	a	conventional	genotyping	methodology,	involving	multiplex	PCR	followed	by	

fragment	size	determination	with	capillary	electrophoresis	and	known	sized	allelic	ladders	

(Morello,	Braglia,	Gavazzi,	Gianì,	&	Breviario,	2019).	Though	very	affordable,	this	method	

does	not	account	for	any	sequence-based	differences	between	fragments	of	the	same	size.	

DNA	metabarcoding	offers	a	promising	alternative,	whereby	customized	universal	primer	

pairs	amplify	a	standardized	DNA	region,	which	are	sequenced	and	compared	to	a	

reference	database	for	taxonomic	identification	(Modave,	MacDonald,	&	Sarre,	2017;	

Taberlet,	Coissac,	Pompanon,	Brochmann,	&	Willerslev,	2012).	Coupled	with	next-

generation	sequencing	(NGS),	DNA	metabarcoding	technology	can	sequence	many	samples	

in	a	high-throughput	and	cost-effective	fashion	and	reveal	the	entire	taxonomic	

composition	of	thousands	of	samples	simultaneously	(Pompanon	et	al.,	2011).	This	new	

molecular	approach	has	been	successfully	applied	for	the	diet	analyses	of	various	species,	

including	carnivores	(Berry	et	al.,	2017;	Smith,	Thomas,	Levi,	Wang,	&	Wilmers,	2018),	

omnivores	(De	Barba	et	al.,	2013;	Robeson	et	al.,	2017),	herbivores	(Kartzinel	et	al.,	2015),	

small	mammals	(Buglione	et	al.,	2018),	lizards	(Moreno-Rueda,	Melero,	Reguera,	Zamora-

Camacho,	&	Álvarez-Benito,	2017),	birds	(Sullins	et	al.,	2018)	and	invertebrates	

(Hawlitschek,	Fernández-González,	Balmori-de	la	Puente,	&	Castresana,	2018;	Kamenova,	

Bretagnolle,	Plantegenest,	&	Canard,	2018).		

Gray	wolves	(Canis	lupus)	were	extirpated	from	Washington	state	by	the	1930s	as	ranching	

and	farming	activities	expanded	(Wiles,	Allen,	&	Hayes,	2011).	Coyotes	(Canis	latrans)	

increased	in	range	and	abundance	over	the	same	period	(Gallagher	et	al.,	2019;	Hody	&	
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Kays,	2018).	Since	2008,	wolves	have	begun	reestablishing	territories	in	Washington	

through	natural	dispersal	from	adjacent	states	and	provinces	such	as	Idaho,	Montana,	

Oregon,	and	British	Columbia	(Wiles	et	al.,	2011)	after	being	absent	from	the	state	for	over	

80	years.	The	recovery	of	wolves	in	Washington	state	offers	an	excellent	case	to	study	the	

trophic	cascade	impacts	of	the	apex	predators	on	the	ecosystem	and	explore	prey	

partitioning	between	sympatric	canid	species.			

As	apex	predators,	wolves	are	keenly	adapted	to	prey	on	large	ungulates	(Gable	et	al.,	2018;	

Wasser	et	al.,	2011).	Wolves	are	also	opportunists	and	use	small	prey	as	seasonal	food	

sources	when	abundant	(Latham,	Latham,	Mccutchen,	&	Boutin,	2011).	Coyotes	are	

mesopredators	and	generally	viewed	as	opportunistic	generalists	(Kilgo,	Vukovich,	Ray,	

Shaw,	&	Ruth,	2014).	The	majority	of	the	coyote	diet	consists	of	small	mammals,	but	

coyotes	can	also	prey	on	ungulate	calves	(Chitwood	et	al.,	2015;	Kilgo,	Ray,	Vukovich,	

Goode,	&	Ruth,	2012;	Nelson	et	al.,	2015),	and	vulnerable	ungulate	adults	(Benson,	

Loveless,	Rutledge,	&	Patterson,	2017;	Patterson	&	Messier,	2000).	Birds	represent	a	

nonnegligible	proportion	of	the	coyote	diet	(Smith	et	al.,	2018).	In	addition,	carrion	

subsidies	from	wolves	is	also	a	highly	valued	food	resource	for	coyotes	(Sivy,	Pozzanghera,	

Colson,	Mumma,	&	Prugh,	2017).	Using	traditional	methods,	these	previous	studies	

generally	present	prey	species	as	three	groups:	ungulates,	small	mammals,	and	birds.	All	

these	groups	encompass	enormous	taxonomic	diversity,	yet	very	few	studies	have	

evaluated	resource	partitioning	of	these	sympatric	canid	species	at	a	fine-grained	

taxonomic	level.		
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In	order	to	recover	apex	predators,	it	is	critical	to	consider	the	ecological	roles	that	these	

top	predators	play	in	the	ecosystem,	rather	than	focusing	only	on	their	demography	

(Ripple,	Wirsing,	Beschta,	&	Buskirk,	2011).	Here,	we	use	DNA	metabarcoding	on	scats	to	

construct	high-resolution	diet	profiles	of	sympatric	wolves	and	coyotes	in	northeastern	

Washington	state,	USA,	with	a	focus	on	the	vertebrate	component	of	their	diets.	The	

purpose	of	the	study	is	to:	1)	evaluate	the	effectiveness	of	DNA	metabarcoding	approach	

for	the	canid	diet	analysis;	2)	assess	the	necessity	of	applying	predator-specific	blocking	

primers	to	construct	a	full	profile	of	prey	composition.	Predator	DNA	could	swamp	prey	

DNA	during	amplification	because	predator	DNA	is	much	more	abundant.	The	predator-

specific	blocking	primer	was	designed	in	a	way	that	its	3'	end	was	modified	by	replacing	

the	3'	hydroxyl	group	with	a	spacer-C3-CPG	to	prevent	polymerase	extension	(Vestheim	&	

Jarman,	2008);	3)	examine	spatiotemporal	variation	in	the	diet	profiles	of	wolves	and	

coyotes	as	both	pack-specific	prey	abundance	and	hunting-ability	could	affect	prey	

consumption	rates.	We	believe	it	is	crucial	to	develop	a	holistic	picture	of	what	dietary	

options	these	sympatric	canid	predators	exploit	in	different	ecological	contexts.		

Materials	and	Methods	

Ethics	Statement	

Currently, wolves in the western two-thirds of Washington are listed as endangered under federal 

law. Wolves in the eastern third of the state have been removed from the federal listing. 

However, all wolves in Washington are listed as endangered under state law (Wiles et al., 2011). 

Three recovery regions have been delineated in Washington: (1) Eastern Washington, (2) 
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Northern Cascades, and (3) Southern Cascades and Northwest Coast. Our study area is in the 

Eastern Washington recovery region. Coyotes are not protected under the Endangered Species 

Act anywhere in the contiguous United States. Fecal samples were collected using the detection 

dogs from the Conservation Canine Program at the University of Washington under IACUC 

protocol #2850-08. 

Sample	Collection	

Fecal samples were collected in the spring season (April and May in 2015 and 2017) and fall 

season (October and November in 2015 and 2016) in three wolf pack ranges: Smackout, Dirty 

Shirt and Goodman Meadows in Pend Oreille and Stevens counties, Washington (Figure 1). 

Upon collection, fecal samples were stored at -20°C until DNA extraction. Samples used in this 

study were subsampled from a larger ongoing project (wolf: 647 fecal samples; coyote: 1893 

fecal samples) (Supplementary Figure 1). Subsampling was based on relative kernel density, 

which was calculated using stat_density2d function in ggplot2 in R (Figure 1). We selected 

samples from the areas with highest and lowest estimated wolf and coyote densities in each of 

the three wolf pack ranges.  

DNA Extraction and Species Identification 

Fecal DNA was extracted using the swabbing method described previously (Wasser et al., 2011) 

with Qiagen DNeasy 96 Blood and Tissue Kit (Qiagen Inc.,). Multiple interior surfaces of each 

fecal sample were swabbed and extracted in duplicate. Extraction duplicates were pooled before 

PCR. One extraction blank was processed along with every 45 fecal samples. Predator species 

identification was conducted by targeting the partial mitochondrial control region, which was 
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amplified in duplicate using 5’6-FAM-labeled LTPROBB13 (5’-

CCACTATTAACACCCAAAGC-3’) and unlabeled HSF21 (5’ -

GTACATGCTTATATGCATGGG-3’) primers, following the instruction of Qiagen Multiplex 

PCR kit with annealing temperature at 60°C. Fragment analysis on a 3730 Genetic Analyzer 

(Applied Biosystems) was used to identify a fragment size of 170 bp unique to wolves and 

domestic dogs, and a fragment size of 165bp unique to coyotes. Samples identified as wolf/dog 

were further delineated by sequencing a 208bp cytochrome b fragment (Reese et al. 2019, in 

prep).  

Library Preparation and Sequencing 

We conducted in-silico analyses using ecoPrimer (Riaz et al., 2011) and ecoPCR (Ficetola et al., 

2010) before conducting the experiments to ensure that all target species could be successfully 

amplified with 12S V05F/R primers (Riaz et al., 2011). We followed the two-step library 

preparation protocol modified from Illumina’s 16S Metagenomic Sequencing Library 

Preparation (CT #: 15044223 Rev. B). Our protocol used customized library indices, which 

incorporated two distinct 10-bp index sequences on each end of the fragment. We first amplified 

the 12S rRNA gene V5 region using the 12SV05F/R primer pair with the addition of the 

overhang sequence to allow the subsequent annealing of index primers. Amplicon libraries were 

then amplified with index primers, which incorporated indices and Illumina sequencing adapters. 

We also tested the efficiency of a 10-fold excess of wolf-specific blocking oligonucleotide (via 

personal communication with Dr. Shehzad Wasim, University of Veterinary & Animal Sciences, 

Lahore, Pakistan). Since wolves and coyotes share the same sequence in the target 12S V5 

region, we used the same blocking primer for both wolf and coyote samples. In total, we 
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conducted three PCR replicates without predator-specific blocking primer, and three PCR 

replicates with predator-specific blocking primer. All PCR reactions were performed using the 

Qiagen Multiplex PCR kit along with PCR negative controls (5 PCR negative controls per 96-

well plate). Amplification products were purified with 1.8X SPRI bead solution after each PCR 

step (Rohland & Reich, 2012). See Supplementary File 1 for a detailed description of the library 

preparation protocol and primer sequences. 

Libraries were quantified using the Qubit dsDNA HS (High Sensitivity) Assay Kit (Invitrogen) 

and checked for integrity using Agilent 2200 TapeStation High Sensitivity DNA 1000 Kit (Santa 

Clara, CA). Successful libraries were pooled with an equimolar concentration of 2.5 nM, and the 

final library pool was further diluted to 2 nM. For specific methods about library QC and 

pooling, see Supplementary File 2. Sequencing was performed on the MiSeq platform using 

MiSeq Reagent kit v3 and 150 bp pair-end read length configuration. Library pool was loaded at 

a loading concentration of 8 pM with 25% PhiX control V3 spike-in to improve the quality of 

low-diversity libraries.  

Sequence Analysis and Taxonomic Assignment 

MiSeq automatically separated all reads by samples during the post-run process via recognized 

indices. Filtering of the sequences and taxonomic inference of molecular operational taxonomic 

units (MOTUs) was performed using the OBITools package (Boyer et al., 2015). The following 

steps were performed: 1) merge paired reads with illuminapairedend command and filter out 

reads with alignment score less than 200; 2) add “sample” attribute to all reads with obiannotate 

command; 3) concatenate all reads and dereplicate globally using obiuniq command while 

keeping sample attribute; 4) remove reads that are shorter than 80 bp and less than 400 copies 
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with obigrep command; 5) remove PCR and sequencing errors with obiclean command; 6) 

assign taxonomy for each MOTU to the species or genus level using the blastn with e-value < 1 

´ 10-20 and a minimum identity of 0.98. Taxonomic assignment was restricted to the local 

species in Washington state, compiled from three sources of information: 1) Mammal collection 

at the Burke Museum, University of Washington (https://www.burkemuseum.org/research-and-

collections/mammalogy/collections/mamwash/); 2) BirdWeb 

(http://www.birdweb.org/birdweb/); 3) Washington NatureMapping Program 

(http://naturemappingfoundation.org/natmap/maps/wa/). 

Further filtering on the MOTU table was conducted in R using the following steps: 1) remove 

any MOTU whose relative frequency across the entire dataset was found to be maximum in 

either extraction or PCR negative controls; 2) subtract the maximum abundance in extraction or 

PCR negative controls of the remaining MOTUs from their abundance in each sample replicate; 

3) suppress the read count of any MOTU in a sample replicate to zero when its relative 

abundance (abundance in a sample replicate / total abundance across the entire dataset) is below 

0.03%. The sequence read count data were converted into a MOTU table with presence/absence 

data. The reliability of extracting quantitative information with relative read abundance (RRA) is 

questionable because of variations in tissue cell density, gene copy, survival rates of tissue/DNA 

during digestion, variance in fragment size among different food items, and, more importantly, 

PCR bias due to primer-template mismatches (Piñol, Mir, Gomez-Polo, & Agustí, 2014; 

Pompanon et al., 2011). Therefore, we only used presence/absence data for the following 

analyses. However, we also generated a diet profile for each predator with RRA data for the 

purpose of comparison. A specific prey item in a given sample was only considered as present if 

it was detected in at least 2 replicates. 
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Statistical	Analyses	

Frequency	of	occurrence	(FOO)	of	a	prey	species	was	defined	as	the	proportion	of	scats	

found	to	contain	that	prey	item.	To	test	if	there	was	any	significant	interspecific	and	

spatiotemporal	variation	in	diet	composition,	we	conducted	permutational	multivariate	

analysis	of	variance	(perMANOVA)	using	the	adonis2	function	in	vegan	package	with	the	

jaccard	distance	matrix	and	999	permutations.	Pairwise	comparisons	were	conducted	

using	the	similarity	percentage	(SIMPER)	test	implemented	in	vegan	R	package	with	999	

permutations.	Significance	levels	were	adjusted	with	sequential	Bonferroni	correction	for	

multiple	comparisons.	The	SIMPER	function	also	reports	the	contribution	of	each	prey	item	

to	the	overall	diet	dissimilarity	and	displays	the	most	important	prey	item	for	each	pair	of	

comparison.	These	important	species	contribute	at	least	to	70%	of	the	differences	between	

each	pair	of	comparison.	The	rest	of	species	are	considered	to	have	minor	contributions.	

We	used	Pianka’s	adaptation	of	the	niche	overlap	(i	metric)	(Pianka,	1973)	to	determine	

dietary	overlap	between	wolves	and	coyotes	in	different	seasons	or	wolf	pack	ranges.	The	

i	metric	ranges	from	0	(no	overlap)	to	1	(complete	overlap).	

Results	

Prey	Species	Detected	in	the	Study	Area	

We	selected	99	genetically	confirmed	wolf	scats	and	103	genetically	confirmed	coyote	

scats.	In	total,	19	different	prey	species	were	identified,	including	5	ungulate	species	(deer	

Odocoileus	sp.,	moose	Alces	alces,	elk	Cervus	canadensis,	domestic	cow	Bos	taurus,	and	pig	

Sus	scrofa),	10	small	mammals	(snowshoe	hare	Lepus	americanus,	deer	mouse	Peromyscus	



	
	

	 97	

maniculatus,	meadow	vole	Microtus	pennsylvanicus,	red	squirrel	Tamiasciurus	hudsonicus,	

ground	squirrel	Spermophilus	sp.,	red-backed	vole	Myodes	sp.,	flying	squirrel	Glaucomys	sp.,	

rabbit	Oryctolagus	cuniculus,	muskrat	Ondatra	zibethicus,	and	chipmunk	Tamias	sp.)	and	4	

bird	species	(ruffed	grouse	Bonasa	umbellus,	wild	turkey	Meleagris	gallopavo,	common	

starling	Sturnus	vulgaris,	and	spruce	grouse	Dendragapus	canadensis).		

Effects	of	Predator-Specific	Blocking	Primer	

The use of a predator-specific blocking primer increased the proportion of prey sequences from 

26.40% to 65.97% (Figure 2). However, all prey species were detected regardless of whether the 

predator-specific blocking primer was added. The blocking primer increased the detection of 9 

prey species, while reducing the detection of chipmunk, domestic cow, muskrat, pig and 

snowshoe hare (Supplementary Table 1). The detection of common starling, ground squirrel, 

rabbit, spruce grouse and wild turkey remained the same (Supplementary Table 1). Chipmunk 

was not detected with addition of the blocking primer. For the subsequent analyses, we combined 

the data from all 6 PCR replicates of each sample. A specific prey item in a given sample was 

only considered present if it occurred in at least 2 out of 6 replicates. 

Interspecific	Differences	in	Diet	Profiles	

The	diet	compositions	of	wolves	and	coyotes	were	significantly	different	(p	=	0.001)	

(Figure	3).	Deer	and	moose	were	the	two	most	frequent	prey	species	(47.47%	and	42.42%	

respectively)	in	the	wolf	diet,	followed	by	elk	(17.17%)	and	domestic	cow	(16.16%).	

Domestic	cow	was	detected	in	16	out	of	99	wolf	scats	(Supplementary	Table	3).	By	

contrast,	snowshoe	hares	were	the	most	common	prey	species	(61.17%)	in	the	coyote	diet,	
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followed	by	moose	(30.10%)	and	deer	(21.36%)	(Figure	3).	Domestic	cow	was	only	

detected	in	2	out	of	103	coyote	scats	(Supplementary	Table	3).	Small	mammals	and	birds	

were	rarely	detected	in	the	wolf	diet,	whereas	they	occurred	relatively	more	common	in	

the	coyote	diet	(Figure	4).	In	total,	we	found	11	prey	species	in	the	wolf	diet	and	18	prey	

species	in	the	coyote	diet.	On	average,	there	were	1.48	prey	species	per	wolf	scat,	and	1.79	

prey	species	per	coyote	scat.	The	SIMPER	test	showed	that	snowshoe	hares	(p	=	0.001)	and	

deer	(p	=	0.002)	were	the	most	influential	prey	species,	significantly	contributing	to	the	

interspecific	dietary	differences.	Domestic	cow,	deer	mouse,	ground	squirrel,	meadow	vole	

and	red-backed	vole	also	significantly	contributed	(p	<	0.05)	to	the	interspecific	dietary	

differences,	through	their	contributions	were	minor.	The	diet	profiles	of	wolves	and	

coyotes	generated	with	RRA	data	was	similar	to	those	with	FOO	data	(Supplementary	

Figure	2),	except	that	each	prey	species	had	lower	proportion	with	RRA	data.	For	example,	

the	average	read	relative	abundance	of	domestic	cow	was	3.73%	with	RRA	data,	whereas	

the	its	FOO	was	16.16%.		

Spatiotemporal	Variations	in	the	Diet	Profile	of	Wolves	

The	dietary	differences	among	wolf	pack	ranges	were	significant	(p	=	0.001).	As	there	was	

no	significant	seasonal	difference	in	the	wolf	diet	(p	=	0.448)	or	significant	interaction	

between	seasons	and	wolf	pack	ranges	(p	=	0.095),	following	analyses	focused	only	on	the	

spatial	variation	in	the	wolf	diet	(Figure	5).	The	FOO	of	moose	was	the	highest	(71.43%)	in	

the	Dirty	Shirt	range,	followed	by	Smackout	(38.24%)	and	Goodman	Meadows	(24.32%).	

According	to	the	SIMPER	test,	moose	consumption	in	the	Dirty	Shirt	range	was	significantly	

higher	than	that	in	Goodman	Meadows	(p	=	0.001).	The	FOO	of	deer	was	highest	in	the	
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Smackout	range	(58.82%),	followed	by	Goodman	Meadows	(51.35%)	and	Dirty	Shirt	

(28.57%).	The	FOO	of	elk	was	the	highest	in	the	Goodman	Meadows	range	(29.73%),	

whereas	its	FOO	was	11.76%	and	7.14%	in	the	Smackout	and	Dirty	Shirt	ranges,	

respectively.	Common	starling	was	only	found	in	the	Goodman	Meadows	range	with	a	FOO	

of	2.70%.	Meadows	vole	and	ruffed	grouse	were	only	found	in	the	Smackout	and	Dirty	Shirt	

ranges	(Figure	5).		

Spatiotemporal	Variations	in	the	Diet	Profile	of	Coyotes	

There	were	significant	spatiotemporal	variations	in	the	coyote	diet	(season:	p	=	0.037;	

pack:	p	=	0.003)	(Figure	6).	Since	there	was	a	significant	interaction	between	seasons	and	

wolf	pack	ranges	(p	=	0.043),	we	investigated	the	spatial	dietary	changes	in	coyotes	in	each	

season	separately.	In	the	spring,	the	FOO	of	moose	in	the	Dirty	Shirt	range	was	highest	

(66.67%)	among	three	wolf	pack	ranges,	whereas	the	FOO	of	moose	in	the	Smackout	range	

was	the	lowest	(12.50%).	The	difference	in	FOO	of	moose	between	Dirty	Shirt	and	

Smackout	was	significant	(p	=	0.001).	In	the	fall,	deer	was	not	detected	in	the	coyote	diet	in	

the	Goodman	Meadows	range,	whereas	its	FOO	was	highest	in	Smackout	(60.00%).	

Muskrat	was	only	detected	in	the	Goodman	Meadows	range	(p	=	0.014)	and	wild	turkey	

was	detected	in	Dirty	Shirt	and	Smackout	ranges	but	not	in	Goodman	Meadows	(p	=	0.015).	

We	also	investigated	the	seasonal	dietary	changes	of	coyotes	in	each	wolf	pack	range	

separately.	In	the	Dirty	Shirt	range,	moose	consumption	was	higher	in	the	spring	(66.67%)	

than	in	the	fall	(15.38%),	though	the	difference	was	not	significant	after	correcting	for	

multiple	comparisons	(p	=	0.021,	adjusted	alpha=0.017).	In	the	Goodman	Meadows	range,	

muskrat	consumption	was	only	detected	in	the	fall	(p	=	0.011).	In	the	Smackout	range,	deer	
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consumption	was	significantly	higher	in	the	fall	(60.00%)	than	that	in	the	spring	(20.83%)	

(p	=	0.012).	

Spatiotemporal	Variations	in	Diet	Overlap	between	Wolves	and	Coyotes	

There	was	large	variation	in	dietary	overlap	(i)	between	wolves	and	coyotes,	ranging	from	

nearly	no	overlap	(0.08)	to	0.74.	Dietary	overlap	was	least	in	the	Goodman	Meadows	range	

in	the	fall,	at	0.08.	The	most	substantial	dietary	overlap	(i)	between	wolves	and	coyotes	

was	found	in	the	Smackout	range	in	the	fall	(0.74),	followed	by	the	Dirty	Shirt	range	in	the	

Spring	(0.70)	(Table	1).		

Discussion	

In	this	study,	we	characterized	the	high-resolution	diet	profiles	of	sympatric	wolves	and	

coyotes	in	northeastern	Washington,	and	also	revealed	their	dietary	spatiotemporal	

variations.	We	demonstrated	that	DNA	metabarcoding	was	a	successful	molecular	

approach	for	diet	analyses.		

Prey	Partitioning	between	Sympatric	Canids	in	Northeastern	Washington	

The	results	with	FOO	data	showed	that	wolves	primarily	preyed	on	deer	(47.47%)	and	

moose	(42.42%)	in	northeastern	Washington.	This	result	is	consistent	with	kill	site	

analyses	conducted	by	Washington	Department	of	Fish	and	Wildlife	(WDFW)	(Kertson,	

2018).	Across	much	of	the	boreal	forest	of	North	America,	wolves	hunted	moose,	their	

historic	primary	prey	in	upland	forest	(Latham,	Latham,	Knopff,	Hebblewhite,	&	Boutin,	

2013).	We	couldn’t	determine	the	specific	deer	species	with	12S	V5	sequence.	In	
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northeastern	Washington,	there	are	two	deer	species,	mule	deer	(Odocoileus	hemionus)	and	

white-tailed	deer	(Odocoileus	virginianus).	White-tailed	deer	is	the	predominant	deer	

species	as	there	is	limited	mule	deer	habitat	in	the	study	area	(Washington	Department	of	

Fish	and	Wildlife,	2017).	Snowshoe	hares	(61.17%)	were	the	most	common	prey	in	the	

coyote	diet,	which	is	consistent	with	previous	studies	(Latham	et	al.,	2011;	Smith	et	al.,	

2018).	The	high	snowshoe	hare	consumption	rate	by	coyotes	have	significant	impacts	on	

the	conservation	management	of	Canada	lynx	(Lynx	canadensis).	Lynx	are	usually	

considered	as	specialist	on	snowshoe	hares,	whereas	coyotes	are	often	considered	as	

generalist.	The	roughly	10	-	year	population	cycle	of	snowshoe	hare	is	among	the	most	

well-known	examples	of	cyclic	population	dynamics	(Stenseth,	Falck,	Bjornstad,	&	Krebs,	

1997).	Coyote	and	lynx	both	mostly	feed	on	snowshoe	share	except	during	its	cyclic	lows	

(O'Donoghue	et	al.,	1998).	In	2000,	Canada	lynx	was	listed	as	threatened	under	the	US	

Endangered	Species	Act	(ESA)	and	in	2016,	Canada	lynx	was	listed	as	endangered	in	

Washington	state.	In	the	absence	of	wolves,	coyotes	may	negatively	affect	lynx	populations	

by	increasing	predation	on	snowshoe	hares,	and/or	directly	killing	lynx	(Ripple	et	al.,	

2011).	The	recovery	of	wolf	populations	could	potentially	keep	the	populations	of	coyotes	

and	ungulates	in	check,	leading	to	recovery	of	plant	communities	and	eventually	

population	growth	in	snowshoe	hares	and	possibly	lynx	as	well	(Ripple	et	al.,	2011).	

Coyotes	also	consumed	a	significant	amount	of	moose	(30.10%)	and	deer	(21.36%).		

High	Moose	Consumption	by	Wolf	in	the	Dirty	Shirt	Pack	Range	

Differences in dietary composition among different wolf pack ranges may reflect prey abundance 

variations and pack-specific hunting behaviors. Generally, predators, such as wolves, select prey 
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items according to their availability and shift to consuming alternative food sources when the 

primary food source becomes scarce (Nordberg & Schwarzkopf, 2019; Randa, Cooper, Meserve, 

& Yunger, 2009). The FOO of moose was the highest (71.43%) in Dirty Shirt, followed by 

Smackout (38.24%) and Goodman Meadows (24.32%), which implies high moose abundance in 

the Dirty Shirt range. However, pack-specific hunting ability might also affect prey selection, 

with larger packs having higher success rates in capturing and killing formidable prey 

(MacNulty, Tallian, Stahler, & Smith, 2014), such as moose. The Dirty Shirt pack was the 

largest wolf pack (n = 7 - 13) with confirmed successful breeding pairs during the study period 

(April in 2015 - May in 2017) (Supplementary Table 2). Larger pack size could make wolves in 

the Dirty Shirt range more effective at preying on moose. Both pack-specific prey abundance and 

hunting-ability could affect prey consumption rates. The correlation between moose 

consumption rate and moose abundance in the Dirty Shirt pack range needs to be further 

investigated with the inclusion of prey abundance data in this ecosystem.  

Coyote	&	Ungulate:	Ungulate	Neonate	Predation	or	Scavenging?		

It has been widely assumed that coyotes are not efficient predators on adult deer and are 

incapable of killing adult moose, but coyotes can occasionally prey on ungulate neonates (<3 

months old) during the fawning season (mid-May to mid-June) (Benson & Patterson, 2013; 

Chitwood et al., 2015; Chitwood, Lashley, Moorman, & Deperno, 2014). Moose calves are 

vulnerable to coyote predation as well. Female ungulates in the late-gestation stage (April to 

early May) are also vulnerable targets for coyotes (Chitwood et al., 2014). Coyote pups are born 

in April, resulting in high lactation demands on females in the spring (Kilgo et al., 2012). This 

aspect of the coyote life cycle could result in higher pressure on ungulate neonates. The high 
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FOO of moose in the coyote spring diet in the Dirty Shirt range (66.67%) suggests that coyote 

might predate on moose calves. However, the ungulate neonate predation hypothesis cannot 

explain the high FOO of deer (60.00%) in the fall coyote diet in the Smackout range, when the 

deer consumption rate by coyotes in the spring was only 20.83%. Interestingly, moose 

consumption by wolves was highest in the Dirty Shirt range (71.43%) with no seasonal 

difference. Deer consumption by wolf was highest in the Smackout range (58.82%), especially in 

the fall (80.00%). Furthermore, the dietary overlap between these canid species was greatest in 

the Dirty Shirt range (0.70) in the spring and in the Smackout range in the fall (0.74). Overall, 

these multiple lines of evidence suggest that coyotes use ungulate carrion subsidies from wolves 

as a highly-valued food resource. The substantial deer consumption by wolf in the Smackout 

range in the fall (80%) could be due to severe weather or disease outbreak which might make 

deer more vulnerable to wolf predation. It could also be due to reduced interspecific competition 

with other ungulates in this area.  

Consumption	of	Domestic	Animals	by	Wolves	and	Coyotes	

We	detected	the	DNA	of	domestic	animals	in	the	diets	of	wolves	and	coyotes,	including	pigs,	

rabbits	and	domestic	cow	(Figure	3).	Pig	DNA	was	detected	in	three	wolf	samples	in	

Goodman	Meadows,	including	one	in	the	fall	and	two	in	the	spring.	Rabbit	DNA	was	

detected	in	two	coyote	samples,	including	one	in	the	Dirty	Shirt	in	the	fall	and	the	other	in	

the	Smackout	in	the	fall.	The	rabbit	DNA	was	matched	to	European	rabbit	(Oryctolagus	

cuniculus).	However,	this	could	be	from	domestic	pet	rabbits	since	European	rabbits	are	

mainly	found	on	the	San	Juan	Islands	in	Washington	state.	In	total,	we	found	18	samples	

containing	cow	DNA,	including	16	wolf	samples	and	2	coyote	samples.	The	occurrence	of	
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domestic	cow	DNA	in	our	samples	was	unlikely	to	be	due	to	contamination,	since	none	of	

the	negative	controls	were	found	to	contain	cow	DNA.	Here	we	only	focused	on	the	

domestic	cow	consumption	by	wolves.	Domestic	cow	was	the	fourth	most	frequently	

occurring	prey	in	the	wolf	diet,	with	a	FOO	of	16.16%.	However,	it	is	important	to	

emphasize	that	the	FOO	method	tends	to	overestimate	the	rare	prey	and	underestimate	the	

abundant	prey.	Indeed,	RRA	data	indicated	that	the	average	read	proportion	of	domestic	

cow	in	the	wolf	diet	was	quite	low,	only	3.73%.	The	16	wolf	samples	with	cow	DNA	were	

distributed	among	three	different	wolf	pack	ranges,	different	years	and	different	seasons.	If	

we	assume	that	1)	all	the	samples	we	collected	were	relatively	fresh	(based	on	the	high	

PCR	amplification	success	rate),		2)	consumption	of	any	given	cow	was	restricted	by	the	

same	wolf	pack	range,	in	the	same	season	of	the	same	year,	and	3)	movement	of	domestic	

cows	across	the	landscape	was	limited,	we	could	estimate	that	there	was	a	minimum	of	7	

domestic	cow	individuals	involved:	two	in	the	Dirty	Shirt	range	(2015	&	2016),	two	in	the	

Goodman	Meadows	range	in	2015	(fall	&	spring),	and	three	in	the	Smackout	range	(2015,	

2016,	2017).	Based	on	Washington	Gray	Wolf	Conservation	and	Management	Annual	

Reports	and	gray	wolf	updates	from	WDFW,	we	could	only	find	four	reported	wolf-cow	

conflicts	that	occurred	in	our	study	area	during	the	study	period,	including	one	incident	in	

Dirty	Shirt	on	Oct	2nd,	2016	(confirmed	wolf	depredation	which	injured	one	cow),	one	

incident	in	Smackout	on	September	21st,	2016	(a	confirmed	wolf	depredation	resulting	in	a	

dead	calf),	one	incident	in	Smackout	on	September	28,	2016	(a	probable	wolf	depredation	

resulting	in	a	dead	calf)	and	another	in	Smackout	on	September	29,	2016	(a	confirmed	wolf	

depredation	resulting	in	an	injured	calf).	These	four	incidents	appear	to	correspond	to	

three	samples	on	the	list	of	Supplementary	Table	3,	with	sample	ID	164077	(Dirty	Shirt,	
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Fall	2016),	164007	and	164010	(both	in	Smackout,	Fall,	2016).	We	could	not	find	wolf-

predation	reports	from	WDFW	that	could	represent	matches	of	the	rest	of	16	wolf	samples,	

making	it	difficult	to	establish	the	causes	of	domestic	cow	consumption.	Though	very	

promising,	DNA	metabarcoding	technology	cannot	differentiate	active	predation	from	

scavenging,	partial	prey	consumption	or	fecal	matter	consumption.	Therefore,	caution	is	

needed	when	interpreting	the	results	from	DNA	metabarcoding.	Conventional	methods	

such	as	field	necropsies	and	killing-bite	wound	examination	are	able	to	confirm	predator	

identification.	Camera	trap	provides	great	insights	into	the	feeding	behaviors	of	predators.	

DNA	metabarcoding	technology	should	supplement,	not	replace	conventional	methods.	

Local	ranchers,	wildlife	biologists,	and	government	agencies	can	work	together	to	examine	

multiple	lines	of	evidence	and	combine	expertise	from	each	stakeholder	to	achieve	a	better	

understanding	of	the	impact	of	wolf	recovery	on	the	local	ecosystem	in	Washington	state.	

Predator-Specific	Blocking	Primer	is	Not	Necessary	with	High-Throughput	

Sequencing	Platforms	

In	dietary	studies	with	fecal	DNA,	samples	contain	higher	amounts	of	predator	DNA	than	

prey	DNA,	which	can	cause	PCR	amplification	being	dominated	by	predator	DNA,	resulting	

in	low	sequencing	depth	for	prey	characterization.	Predator-specific	blocking	primers	can	

offer	a	solution	by	specifically	reducing	the	amplification	of	predator	DNA.	However,	with	

NGS	technology	becoming	faster	and	cheaper,	it	might	not	be	necessary	to	apply	predator-

specific	blocking	primer	in	the	diet	analyses	of	carnivores.	Indeed,	though	the	majority	of	

sequence	reads	in	our	study	were	from	the	predator	hosts,	the	amount	of	prey	sequences	

generated	was	large	enough	to	characterize	the	diet	profile	without	the	use	of	blocking	
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primers.	Moreover,	specific	blocking	oligos	can	block	prey	DNA	along	with	the	targeted	

predator	(Piñol	et	al.,	2014;	Robeson	et	al.,	2017)	or	cause	amplifications	to	fail	altogether	

(Shehzad	et	al.,	2012),	introducing	additional	bias	into	the	analysis	of	diet	composition.	In	

our	study,	the	use	of	blocking	primers	increased	the	proportion	of	prey	sequences	from	

26.40%	to	65.97%.	However,	all	prey	species	were	detected	without	adding	the	blocking	

primer	and	chipmunk	was	not	detected	when	the	blocking	primer	was	applied.	Given	the	

above,	we	do	not	believe	that	predator-specific	blocking	primer	is	cost-effective	in	the	diet	

analyses	of	carnivores,	and	this	will	likely	become	even	more	so	as	NGS	technology	

continues	to	become	faster	and	cheaper.		

Recommendations	for	Future	Research	

It	is	important	to	include	negative	controls	and	sequence	them	along	with	samples	for	

metabarcoding	studies.	A	low	amount	of	contamination	is	inevitable	with	NGS	technologies,	

especially	when	using	universal	primers,	despite	good	laboratory	practices	to	minimize	

contamination	risks.	We	found	noticeable	contamination	in	our	negative	controls	with	

sources	from	human,	striped	skunk,	wolf,	coyotes,	moose	and	deer.	Negative	controls	

should	always	be	included	to	check	for	potential	contamination	(De	Barba	et	al.,	2013).	

These	controls	are	often	included	during	steps	of	DNA	extraction	and	PCR,	but	they	are	not	

always	sequenced	and	may	only	get	checked	using	gel	electrophoresis.	Such	practice	can	be	

misleading	as	most	contaminating	sequences	cannot	be	visually	detected	via	gel	

electrophoresis.	By	contrast,	the	series	of	filtering	steps	we	conducted	to	remove	the	

impacts	of	contaminations	are	very	effective	and	provide	valuable	framework	for	

contamination	control.	We	also	recommend	the	use	of	PCR	replicates	that	are	sequenced	
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independently	as	a	way	to	help	confirm	the	presence	of	taxa	in	a	given	sample	and	further	

remove	false-positives	(De	Barba	et	al.,	2013;	Galan	et	al.,	2018).	Pooling	PCR	replicates	

prior	to	sequencing	masks	the	variation	among	PCR	replicates.	Therefore,	we	recommend	

this	multi-replicate	approach	that	the	presence	of	a	prey	item	in	a	given	sample	is	only	

confirmed	if	it	occurs	in	at	least	2	replicates.	

The	key	advantage	of	DNA	metabarcoding	relative	to	traditional	methods	is	its	high	

taxonomic	resolution.	However,	this	method	also	has	its	limitations.	Most	MOTUs	were	

assigned	at	the	species	level	except	for	deer,	ground	squirrel,	red-backed	vole,	flying	

squirrel,	and	chipmunk,	which	can	only	be	assigned	at	the	genus	level.	This	was	likely	due	

to	our	use	of	a	single	short	marker	(12SV05F/R,	~100	bp).	The	degree	of	DNA	degradation	

in	fecal	samples	limits	the	length	of	fragments	that	can	be	successfully	amplified.	For	this	

reason,	the	recommended	fragment	length	is	usually	in	the	range	of	100-250	bp,	which	

inevitably	reduces	taxonomic	resolution	(Pompanon	et	al.,	2011).	The	multigene	approach	

(Gunther,	Knebelsberger,	Neumann,	Laakmann,	&	Arbizu,	2018)	and	mitogenomics	

approach	(Piñol	et	al.,	2014;	Tang	et	al.,	2014)	have	been	proposed	as	the	next	phase	of	the	

current	single-locus	metabarcoding	method.	As	a	PCR-free	approach,	the	mitogenomics	

approach	can	alleviate	the	artifacts	caused	by	PCR	bias	while	expanding	single-gene	

metabarcoding	into	whole	mitochondria	metagenomics	(Taberlet	et	al.,	2012).	The	growing	

mitogenome	databases	and	the	continuously	decreasing	cost	of	sequencing	will	eventually	

make	the	mitogenomics	approach	much	more	affordable	and	favorable	over	the	single-

marker	DNA	metabarcoding	approach.		
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Figure 2 Sample selection based on relative kernel density (nlevel) map. Samples used in this study were 
selected from an ongoing project with 647 wolf fecal samples and 1893 coyote fecal samples. Kernel 
density was calculated using function stat_density2d in R ggplot2. Note: The color gradient indicates the 
relative density ranges from 0 to 1.  
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Figure 2 Effects of the predator-specific blocking primer on the proportion of reads mapped to the 
predators and preys.  
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Figure 3 Diet profile of wolves (N = 99) and coyotes (N = 103) using the frequency of occurrence of 19 
prey species. There was a significant difference in the diet profile between wolves and coyotes (p = 
0.001). 
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Figure 4 Differences in diet profile of wolves (N = 99) and coyotes (N = 103) using the frequency of 
occurrence of 19 prey species. Difference in the frequency of occurrence (FOO) of any prey species was 
calculated as FOO in wolf - FOO in coyote.  
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Figure 5 Significant spatial differences in the wolf diet profiles among three wolf pack ranges, using the 
frequency of occurrence of 19 prey species (p = 0.001).  
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Figure 6 Spatiotemporal variations in the diet profile of coyotes, using the frequency of occurrence of 19 
prey species. Both the main terms and the interaction term were significant based on perMANOVA 
analysis (season p = 0.037; Pack: p = 0.003; pack:season p = 0.043).  
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Table	1	Dietary	overlap	between	wolves	and	coyotes	in	different	seasons	or	wolf	pack	ranges.	
Dietary	overlap	was	determined	with	Pianka’s	adaptation	of	the	niche	overlap	(i	metric),	ranging	
from	0	(no	overlap)	to	1	(complete	overlap).	Sample	size	(N)	for	each	predator	in	each	season	or	
wolf	pack	range	was	also	given.		
	

	
	 	

	 Dirty	Shirt	 Goodman	Meadows	 Smackout	

	 Spring	 Fall	 Spring	 Fall	 Spring	 Fall	

N	(Wolf)	 7	 21	 13	 24	 24	 10	

N	(Coyote)	 21	 13	 23	 12	 24	 10	

i	metric	 0.70	 0.56	 0.58	 0.08	 0.41	 0.74	
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Supplementary Figure 3 Samples used in this study were selected from an ongoing project with 647 
wolf fecal samples, and 1893 coyote fecal samples.  
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Supplementary Figure 2 Diet profiles of wolves (N = 99) and coyotes (N = 103) using the average 
relative read abundance of 19 prey species.  
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Supplementary Figure 3 Spatiotemporal variations in the wolf diet profile, using the frequency of 
occurrence of 19 prey species. The dietary differences among wolf pack ranges were significant (p = 
0.001). There was no significant seasonal difference in wolf diet (p = 0.448) nor significant interaction 
between seasons and wolf pack ranges (p = 0.095).  
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Supplementary Table 1 Impacts of the predator-specific blocking primer on the occurrence of difference 
prey species.  

	
Prey	 Without	blocking	primer	 With	blocking	primer	

Chipmunk	 1	 0	
Common	starling	 2	 2	

Deer	 50	 60	
Deer	mouse	 8	 15	
Domestic	cow	 13	 12	

Elk	 19	 22	
Flying	squirrel	 2	 3	
Ground	squirrel	 6	 6	
Meadow	vole	 8	 10	

Moose	 60	 62	
Muskrat	 2	 1	
Pig	 4	 3	

Rabbit	 2	 2	
Red	squirrel	 5	 10	

Red-backed	vole	 3	 4	
Ruffed	grouse	 6	 11	
Snowshoe	hare	 68	 65	
Spruce	grouse	 1	 1	
Wild	turkey	 3	 3	
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Supplementary Table 2 Wolf pack size from 2015 to 2017 based on Washington Department of Fish 
and Wildlife Annual Report.  

	
Pack	 20151	 20162	 20173	

Dirty	Shirt	 8	 13	 7	
Goodman	Meadows	 7	 7	 5	
Smackout	 8	 8	 6	
	
Note:	1:	Washington	Gray	Wolf	Conservation	and	Management	2015	Annual	Report	
(https://wdfw.wa.gov/publications/01793);	2:	Washington	Gray	Wolf	Conservation	and	
Management	2016	Annual	Report	(https://wdfw.wa.gov/publications/01895);	3:	Washington	Gray	
Wolf	Conservation	and	Management	2017	Annual	Repot	
(https://wdfw.wa.gov/publications/01979);	
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Supplementary	Table	3	List	of	samples	found	to	contain	domestic	cow	DNA	
	

Sample	ID	 Predator	ID	 Cow	Read	Count	 Pack	Range	 Season	 Year	
9183	 COYOTE	 33	 Smackout	 Fall	 2015	
847	 COYOTE	 26	 Smackout	 Spring	 2015	

164077	 WOLF	 6	 DirtyShirt	 Fall	 2016	
9106	 WOLF	 32	 DirtyShirt	 Fall	 2015	
9107	 WOLF	 81	 DirtyShirt	 Fall	 2015	
9113	 WOLF	 220	 DirtyShirt	 Fall	 2015	
7190	 WOLF	 14	 GoodmanMeadow	 Fall	 2015	
7191	 WOLF	 528	 GoodmanMeadow	 Fall	 2015	
7193	 WOLF	 4	 GoodmanMeadow	 Fall	 2015	
7198	 WOLF	 17	 GoodmanMeadow	 Fall	 2015	
7204	 WOLF	 1585	 GoodmanMeadow	 Fall	 2015	
308	 WOLF	 56	 GoodmanMeadow	 Spring	 2015	

164007	 WOLF	 8	 Smackout	 Fall	 2016	
164010	 WOLF	 4	 Smackout	 Fall	 2016	
170859	 WOLF	 7	 Smackout	 Spring	 2017	
829	 WOLF	 127	 Smackout	 Spring	 2015	
831	 WOLF	 327	 Smackout	 Spring	 2015	
840	 WOLF	 158	 Smackout	 Spring	 2015	

	
	
	
 


