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In many contexts, animals must infer salient information about another individual indirectly

by observing some other characteristic of that individual. In Chapter 1 of this thesis, a

model of costly signaling is developed to investigate how stochastic signal costs influence the

overall cost of communication. Chapter 2 presents a model of mate choice where females

must infer from his appearance whether a potential mate will choose to be a good parent to

the future offspring.

Chapters 3 and 4 deal with mathematical models of anxiety disorders. These disorders

affect a huge number of people and can be tremendously disabling. But it is clear that the

capacity for anxiety is an evolutionary adaptation. This presents a puzzle: why has natural

selection not protected us from such a common malfunctioning of an adaptation? Chapter 3

develops a model that shows how the basic information constraints inherent in the problem

of learning about an environment can unavoidably cause a subset of the population to be

overly sensitive to signs of danger. Chapter 4 addresses the perplexing observation that as

the society of developed countries has continually become safer, anxiety has increased rather

than decreased. A model is presented that shoes how the mismatch between a modern

environment and the environment to which we adapted can cause this seemingly paradoxical

increase in levels of anxiety. This result is in some ways analogous to the well-known “hygiene

hypothesis” of inflammatory and autoimmune diseases.
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INTRODUCTION

Natural selection’s astonishing creative power is nowhere more evident than in the so-

phisticated behaviors of myriad animal species. These behaviors are produced by nervous

systems that are among the most complex structures known to us, each neuron of which is

built by equally complex interactions of thousands of biomolecules. Because of this nearly

impenetrable complexity, we are lucky that there are approaches to understanding the evo-

lution of behavior that are simpler.

From a theoretical perspective, some of the most efficient methods of reducing evolution-

ary complexity to a point where it can be understood are optimization and game-theoretic

models. These models outline precisely what the limits of natural selection are, and what

behaviors we can expect to evolve, while relying on a minimum of structural machinery.

Once the models are analyzed, this relative simplicity gives us the greatest chance of under-

standing what causes led to our theoretical result. Thus, these kinds of models can tell us

not only what to expect, but why we should expect it. The work in this thesis applies the

simplicity of these models to the complexity of behavior, with the hope of capturing some

essential insights that would be lost in the wash of more complicated models.

Halfway through my dissertation work, I became interested in the evolutionary cause

of depression and anxiety disorders, and decided to switch the focus of my research to this

problem. Because of this, the first two chapters of this dissertation are game-theoretic models

of the evolution of animal behaviors, and the last two chapters are optimization models of

the evolution of human behavior. The animal behavior models fall within a long-established

research tradition, and reflect a fascination with natural selection’s effect on animals that

must both cooperate and compete, while relying on information that is never complete. The

anxiety models fall within the field now known as evolutionary medicine, which emerged in
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the early 1990s [95, 64], and were in part my attempt to adapt the modeling paradigm I

had become familiar with to a problem with importance for human wellbeing. These two

subjects have more in common than is at first apparent. First, the animal studies can apply

to humans, and the human studies can apply to animals. Second, all four chapters describe

how individuals may have been shaped by natural selection to balance conflicting priorities

under conditions of uncertainty. Uncertainty is very tough to deal with, and as we will see,

even natural selection’s extraordinary power will not always be able to overcome it.

It is my hope that the models of anxiety can ultimately contribute to advancements in

treatment methods. Because of their abstract nature, however, they of course cannot be

used to discover anything about the physiological or neurological mechanisms that underly

these conditions. Instead, my hope is that they can be useful in proposing new hypotheses,

in changing how psychologists understand the role of uncertainty in decision making, and

perhaps even as a useful tool for how clinicians conceptualize and explain dysfunctioning

anxiety.



3

Chapter 1

HONEST SIGNALLING WITH COSTLY GAMBLES

By Frazer Meacham, Aaron K. Perlmutter, and Carl T. Bergstrom

Originally published in Journal of the Royal Society Interface, 2013

1.1 Abstract

Costly signalling theory is commonly invoked as an explanation for how honest communi-

cation can be stable when interests conflict. However, the signal costs predicted by costly

signalling models often turn out to be unrealistically high. These models generally assume

that signal cost is determinate. Here we consider the case where signal cost is instead

stochastic. We examine both discrete and continuous signalling games and show that, un-

der reasonable assumptions, stochasticity in signal costs can decrease the average cost at

equilibrium for all individuals. This effect of stochasticity for decreasing signal costs is a

fundamental mechanism that likely acts in a wide variety of circumstances.

1.2 Introduction

Signalling and communication abound in nature and human society [54]. Often, communica-

tion takes place between entities that do not share entirely coincident interests. Yet honest

communication frequently persists in spite of incentives to deceive. Evolutionary biologists

and economists alike have developed a suite of game-theoretic models that aim to explain

how communication can originate and be maintained among individuals with partially con-

flicting interests [13, 80]. Biologists have paid particular attention to the role of signal cost

in stabilizing communication [89]. Costly signalling models propose that appropriate signal

costs can facilitate honest communication by making deceptive signals so expensive that they
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become counter-productive. While this class of signalling models allows communication at

equilibrium, honesty often comes at considerable cost. Signal costs can be so high that all

participants in a costly signalling interaction end up worse off at the signalling equilibrium

than in an alternative equilibrium in which no communication takes place [8]. For this rea-

son, there has been considerable interest in understanding how honest signalling can occur

without high cost. Researchers have noted that honest signals need not be costly so long

as dishonest signals are expensive [38, 26, 88, 48], and proposed that mechanisms such as

punishment or spatial structure can further reduce signal costs while allowing honesty to

persist [81, 53, 47, 93, 9, 84, 97]. These analyses have generally assumed determinate signal

costs. In this paper we study signalling models with stochastic costs and show that this

simple difference can have substantial consequences for individuals in terms of their average

costs at equilibrium.

We examine a type of action-response game where a signaller with private information

may send a signal to a receiver who must then select a response. Sending a signal carries

a cost, which depends on the condition of the signaller. We study the case when this cost

is a random variable, and characterize how the average costs at equilibrium depend on the

risk preferences of signallers. We show that, when signallers have decreasing absolute risk

aversion (defined in the following section), stochasticity facilitates honest communication

at lower expected cost. We present two models: a discrete action-response game with two

signaller qualities, two signals, and two responses, and a continuous signalling game with a

continuum of qualities, signals, and responses.

1.3 Measures of risk preferences

To study the relative costliness of signals that involve risk, we must know how an individual’s

welfare depends on the risk taken. In a biological context, this means we must know how the

resource being risked translates into reproductive success or fitness. Many types of resources

exhibit diminishing returns. That is, a needy individual’s fitness will increase more than a

well-off individual’s fitness if they both obtain the same amount of additional resources. In an
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economic context, this is the same as saying that individuals have concave utility functions—

or equivalently that they are risk averse. An example of such a function is illustrated in figure

1.1. In the economic context, utility is the analogue of fitness and wealth is the resource of

interest. We present our models within an economic framework because economics provides

a well-developed theory of risk and precise terminology. However, the models we present

are general, and we interpret the implications of our results for biological contexts as well as

economic ones.

With the above points in mind, we describe some economic terminology for risk prefer-

ences. Any statement about the risk preferences of an individual can be translated into a

statement about the shape of her utility function, u. If an individual prefers a sure thing

of getting $10 to a bet that has an expected payoff of $10, i.e, the individual is risk-averse,

this is equivalent to saying that the second derivative of u is negative. If an individual is less

willing to risk $10 when poor than when rich, then her utility function exhibits decreasing

absolute risk aversion (DARA). The geometric equivalent is that −u′′/u′ is decreasing. The

assumption of DARA is standard in economics, and is supported by empirical studies in

humans [19]. In the biological context, assuming DARA means that the fitness consequences

of risking resources are more grave when resources are rare. The extent to which this is the

norm in nature is an empirical question, but it would be surprising if having more resources

did not often put an individual in a position to be more willing to risk some of them.

1.4 Discrete model

In order to understand how risk influences costly signalling, we will compare two signalling

games, one in which the signals involve risk and one in which they do not.

1.4.1 Deterministic signalling

We first establish the baseline for comparison: a standard costly signalling game in which

individuals signal their wealth by deterministically burning some portion of that wealth.

We assume that our signallers have a utility function u(·) that is increasing but concave in



6

w

utility

(wL − cmin) wL (wH − cmin) wH

b

u(w)

Figure 1.1: The signaller has a concave utility function u(w). The benefit of being accepted
by the signal receiver is a utility increment of magnitude b. The minimal cost for stable
honest signalling is cmin.



7

wealth, as in figure 1.1. (Within the economic framework, this utility is conceptualized as

von Neumann-Morgenstern utility.)

Our base discrete action-response game is illustrated in figure 1.2. The signaller may be

in one of two conditions: High, with a high wealth wH , or Low, with a low wealth wL. The

signaller chooses whether or not to send a costly signal by squandering a pre-set amount of

money c on a costly signal with no value beyond its communicative role (imagine burning

money or buying cut flowers). The receiver then decides whether to accept or to reject the

signaller. Receivers do best to accept High signallers and reject Low signallers. Signallers of

both types do best to be accepted. Specifically, if accepted, either type of signaller receives a

benefit of b (in units of utility, not of wealth). We can thus obtain the signaller’s payoffs for

each outcome directly from the signaller’s utility function. A signalling equilibrium exists

when the signal cost c satisfies the following condition:

wL − u−1 [u(wL)− b] < c < wH − u−1 [u(wH)− b] .

At the signalling equilibrium, High signallers will send a signal and Low signallers will not.

Receivers will accept those who signal and reject those who do not. The minimum signal

cost that allows honest signalling in this game is thus

cmin = wL − u−1 [u(wL)− b] .

This baseline model demonstrates that when signallers are risk averse (or equivalently, when

the utility of money is concave), it is possible to signal wealth by an “ideal handicap” [32],

directly burning some fraction of one’s endowment.

1.4.2 Stochastic signalling

To model stochastic signal cost, we alter the game described above by letting the cost for

a particular signal be drawn from some probability distribution rather than being a fixed

cost. Thus, instead of burning an amount of money c, a signaller now takes a risk where the

amount of money lost, Z, is a random variable. In this case we can obtain the signaller’s
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LowHigh

Don’t

Signal

Sender

Don’t

Signal

Sender

Receiver

Receiver

reject

u(wH − c)

accept

u(wH − c) + b

reject

u(wL − c)

accept

u(wL − c) + b

reject

u(wH)

accept

u(wH) + b

reject

u(wL)

accept

u(wL) + b

Figure 1.2: An action-response game with cost-free signals and partial conflict of interest.
The game begins at the central node (open circle). The first move is a move by “nature” to
determine the type of the signaller; this type is revealed to the signaller but not the receiver.
In the second move, the signaller conditions its behavior on its type and chooses whether or
not to send a signal. As the third move, the receiver must choose between two actions. The
receiver can condition on the signal, but not the type; this uncertainty is represented by the
dotted lines. Only the payoffs to the signaller are shown at the terminal nodes. Payoffs to
the receiver are 1 if accepting a high individual or rejecting a low individual, and 0 otherwise.
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expected payoffs from the utility function. Now a signalling equilibrium will exist when the

lottery Z that describes the stochastic signal cost satisfies

E(u(wL + Z)) + b < u(wL) and

E(u(wH + Z)) + b > u(wH).

A lottery Z that minimally allows honest signalling in this game thus satisfies

E(u(wL + Z)) + b = u(wL).

Example.

Suppose the signaller has a logrithmic utility function of the form u(x) = log2(x + 1).

Also suppose that the lottery Z that describes the cost in the stochastic game takes value

−c2 with probability p and value 0 with probability 1− p, where 0 < p < 1 and c2 > 0. For

this example we will let p = 1/4. Suppose that the low-quality signallers have wealth level

wL = 1 and the high-quality signallers have wealth level wH = 2. Finally, suppose that the

benefit to a signaller of being accepted is b = 1 util.

In the deterministic game, the minimal cost c1 needed to make the low-quality signallers

have no incentive to signal is given by u(wL − c1) + b = u(wL) and thus,

c1 = wL − u−1(u(wL)− b)

= wL − [2log2(wL+1)−b − 1]

= 1− [2log2(1+1)−1 − 1]

= 1.

This signal cost gives high-quality signallers a payoff of

u(wH − c1) + b = log2(wH − c1 + 1) + b

= log2(2− 1 + 1) + 1

= 2.
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In the stochastic game, the minimal value c2 needed to ensure that the low-quality signallers

have no expected gain from signalling is given by

E(u(wL + Z)) + b = u(wL)

p u(wL − c2) + (1− p)u(wL) + b = u(wL)

u(wL − c2) = u(wL)− 1
p
b

c2 = wL − u−1(u(wL)− 1
p
b)

c2 = wL − [2
log2(wL+1)−1

p
b − 1]

c2 = 1− [2log2(1+1)−4 − 1]

c2 =
15

8
.

Thus the expected loss of wealth is (1/4)(15/8)=15/32, which is substantially less than the

loss of 1 unit of wealth due to signalling in the deterministic game. This cost gives high-

quality signallers an expected payoff of

E(u(wH + Z)) + b = p u(wH − c2) + (1− p)u(wH) + b

= p[log2(wH − c2) + 1] + (1− p)[log2(wH) + 1] + b

= 1
4

log2(2− 15
8

) + 1 + (1− 1
4
)[log2(2) + 1] + 1

=
11

4
,

which is greater than the payoff of 2 to a high-quality signaller in the deterministic game.

So in this example, stochasticity decreases the average cost of signalling both in wealth and

in utility.

We want to understand the differences between the stochastic and deterministic signalling

games in general, and discover whether the outcome of the example above is typical. First,

we can say that signallers will lose less money on average in the stochastic game than in

the deterministic game. This is because signallers will not have to spend as much wealth on

average in the stochastic game. Because signallers are risk averse, their expected utility from

a fixed wealth is higher than their expected utility from a lottery with the same expected
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value. Therefore, in order to maintain the same average utility level (the level at which it

is worthwhile to signal) in the stochastic game as in the deterministic game, the expected

wealth loss must be less. Next, we want to know if signallers will be better off playing the

stochastic game or the deterministic game. This amounts to asking in which game will there

be less loss in expected utility due to the costs of signalling.

1.4.3 Stochasticity decreases average signal cost

Before stating our results for the discrete case, we describe the basic economic concepts of

certainty equivalents and the coefficient of absolute risk aversion. For any utility function

u, the certainty equivalent of some lottery X is the certain wealth level that has the same

utility as the expected utility of the lottery X. We will write this as C(X). An example

is shown in figure 1.3. Because u is concave, i.e., the second derivative is negative, the

certainty equivalent C(X) is less than E(X), the expected value of X. It turns out that the

certainty equivalent depends on the coefficient of absolute risk aversion, which is given by

A(x) =
−u′′(x)

u′(x)
.

Proposition 1 A successful signaller in the stochastic game will have higher expected utility

than a successful signaller in the deterministic game if and only if the players have decreasing

absolute risk aversion.

Proof. First consider the deterministic game. Let c be the maximum amount of money that

a low-quality signaller can spend to obtain the reward without receiving a net loss in utility.

Thus, c is defined by the equation

u(wL − c) = u(wL)− b. (1.1)

Therefore, in order to be successful, a high-quality signaller must pay a cost of c + ε1, for

some arbitrarily small ε1 > 0, and will receive a utility of

u(wH − c− ε1) + b.
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w

utility

a bE(X)C(X)

E(u(X))

u(w)

Figure 1.3: The certainty equivalent C(X) of a lottery X is the certain wealth amount
such that its utility is equal to the expected utility of the lottery X. Illustrated here is the
certainty equivalent of the lottery X that pays a with probability 1/2 and b with probability
1/2.
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Now consider the stochastic game. Let Z be any random variable with a distribution

described by some non-degenerate lottery (i.e., Z takes more than one possible value) such

that

E(u(wL + Z)) = u(wL)− b. (1.2)

So if a low-quality signaller risks money in the lottery Z in order to gain the reward, his

expected utility will not increase. Therefore, a high-quality signaller can be successful by

risking money in the lottery with outcome Z − ε2, for some arbitrarily small ε2 > 0, and will

receive an expected utility of

E(u(wH + Z − ε2)) + b.

Thus, a successful signaller in the stochastic game will have higher expected utility than a

successful signaller in the deterministic game when

E(u(wH + Z − ε2)) + b > u(wH − c− ε1) + b.

Since the epsilons are arbitrarily small, we may move them outside the utility functions and

cancel them out along with the b on both sides to get

E(u(wH + Z)) > u(wH − c). (1.3)

We now show that this condition holds when the players have decreasing absolute risk

aversion. Define utility function u+ by

u+(x) = u(x+ wH − wL).

Rewriting inequality 3 using u+ we have

E(u+(wL + Z)) > u+(wL − c).

Since u+ is increasing, so is u−1+ and we can write

u−1+ (E(u+(wL + Z))) > wL − c

u−1+ (E(u+(wL + Z))) > u−1(u(wL − c)).
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Equation 1 allows us to rewrite the right-hand side,

u−1+ (E(u+(wL + Z))) > u−1(u(wL)− b)

and from equation 2 this gives us

u−1+ (E(u+(wL + Z))) > u−1(E(u(wL + Z))).

This last line says that the certainty equivalent of the lottery wL + Z is greater for utility

function u+ than for u. Since the choice of wL is arbitrary, this is equivalent to the statement

that u exhibits greater absolute risk aversion than u+. (See, for example, Microeconomic

Theory by Mas-Colell, Whinston and Green, 1995 [52].) Since u+(x) = u(x + a) where

a = wH − wL > 0, this means that u exhibits decreasing absolute risk aversion. So a

successful signaller in the stochastic game will have higher expected utility than a successful

signaller in the deterministic game precisely when the players have decreasing absolute risk

aversion.

The next proposition states what probability distribution on the cost of signalling will

maximize the utility and wealth level of successful signallers in the stochastic game. We

suppose that the lottery Z that describes this cost has a range that is restricted to some

interval [α, β].

Proposition 2 If the signallers have DARA, the expected utility of a successful signaller is

maximized when the distribution for Z assigns positive probability only to the endpoints α and

β. This also maximizes the expected wealth level of signallers with concave utility (DARA or

otherwise).

Proof. As a preliminary note, if h is a convex function and X is some random variable

with E(X) fixed that takes values within [α, β], then the distribution for X that maximizes

E(h(X)) assigns positive probability only to the endpoints α and β. For suppose that to

the contrary there is a distribution for X with some probability mass not at the extreme
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points. Suppose c is a point between α and β that has some positive probability p > 0. Let

ε > 0 be a positive number with magnitude less than the distance between α and c and the

distance between c and β. Then consider the distribution where c has zero probability but

c− ε and c+ ε each have probability increased by 1
2
p. Then E(X) is not changed, but since

h is convex, 1
2
h(c− ε) + 1

2
h(c+ ε) > h(c). Thus, E(h(X)) is increased and so our supposition

that there exists a distribution for X with some probability mass not at the extreme points

that maximizes E(h(X)) is contradicted.

Since a high-quality signaller can be successful by risking money in the lottery Z, a low-

quality signaller must be just barely unwilling to risk money in this lottery. This gives us

the constraint on Z

E(u(wL + Z)) = u(wL)− b− ε (1.4)

for some arbitrarily small ε > 0. In other words, the distribution for Z is constrained by the

fact that E(u(wL + Z)) is constant.

The expected utility of a successful signaller is then

E(u(wH + Z)) + b = E(u+(wL + Z)) + b,

where we define u+(x) = u(x+ wH − wL) as in the proof of Proposition 1.

Since u is increasing, so is u+, and this implies that there exists an increasing function

g such that u(x) = g(u+(x)) for all x. If u exhibits DARA, than u+ has lower absolute risk

aversion than u and this means that g is concave. (See again reference [52].) Therefore,

there exists a convex function h = g−1 such that u+(x) = h(u(x)) for all x. This gives us

E(u+(wL + Z)) = E(h(u(wL + Z)))

and so we can find the distribution of u(wL + Z) that maximizes E(h(u(wL + Z))). Now

E(u(wL + Z)) is constant, so because h is convex, this distribution is the one that assigns

positive probability only to the extreme points, which are u(wL+α) and u(wL+β) (see note

above). Therefore, the distribution for Z that maximizes the expected utility of a successful

signaller is the one that assigns positive probability only to the endpoints α and β.
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Since u−1 is also convex regardless of whether u exhibits DARA, as long as u is concave,

an analogous argument shows that the expected wealth level of a successful signaller is also

maximized when the distribution for Z assigns positive probability only to the endpoints α

and β.

1.5 Continuous signalling

In our discrete model, there are only two types of signaller, two options for signalling, and

two types of response. Alternatively, we imagine a situation where there are signallers with

many different wealth levels, many possible signal intensities, and receivers may choose

many different responses. The extreme case is when wealth levels, signal intensities, and

responses may come from any point along a continuum. This produces a continuous signalling

game—a class of model which has been instrumental in the development of the theory of

costly signalling (for example, Grafen 1990 [27]). In Grafen’s biological interpretation, each

signaller has a “quality” instead of a wealth level. Receivers are typically thought of as

potential mates. Receivers must gauge a signaller’s quality based on the signal intensity, and

do best to respond more enthusiastically the higher the signaller’s quality.

Following the notation of Bergstrom et al. (2002), signallers have a payoff function

π(q, s, r) that depends on their own quality (q), the intensity of the signal they send (s),

and the level of response they receive from the receiver (r). This payoff function is conceived

of as the difference of a benefit function H(q, r) and a cost function C(q, s). The benefit

depends on the quality of the signaller and the response it receives, and the cost depends

on the quality of the signaller and the intensity of the signal that it chooses to send. Each

receiver has a payoff function G(q, r) that depends on how appropriate the response (r) is

given the signaller’s true quality (q). Of course the receiver knows only what signal intensity

(s) the signaller chose. A strategy for signallers is a function s = s(q) that specifies a choice

of signal intensity for all signaller qualities q. A strategy for a receiver is a function r = r(s)

that specifies a choice of response for all signal intensities that the signaller might send. If

the functions s(q) and r(s) make up a signalling equilibrium, this means that the function
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s is one-to-one and that neither player can benefit by unilaterally modifying its strategy

function.

Bergstrom et al. (2002) give a method of finding the functions s(q) and r(s) that make up

a signalling equilibrium for any particular game of the above form [10]. Building upon this

method, we prove that when signallers have decreasing absolute risk aversion, stochasticity

decreases average signal cost in continuous signalling games as well as in discrete games.

As we did for the discrete case, we will describe two signalling games, one deterministic

and one stochastic, and compare the average payoffs at equilibrium. For both games, we

assume that benefit is proportional to response level, and that signal intensity is proportional

to signal cost. The receiver’s payoff G(q, r), for how appropriate the response is given the

signaller’s true quality, is also the same for both games. We will call the signal intensity

functions for the deterministic and stochastic games SB and SG respectively (for Burning

money or Gambling money). So for the deterministic game, a signal of intensity SB will cost

SB units of wealth. For the stochastic game, a signal of intensity SG will cost SG units of

wealth with probability p and 0 units of wealth with probability 1− p, where 0 < p < 1.

For the deterministic regime, the payoff to a successful signaller with wealth level wH in

the discrete game was

b+ u(wH − c),

where c is the signal cost and b is the benefit of being accepted by the receiver. In the

continuous case, cost is proportional to signal intensity and the benefit is proportional to

response level. This gives us

πB = r + u(q − SB) (1.5)

as the payoff function for signallers in the continuous game with deterministic costs.

In the stochastic regime, the payoff to a successful signaller with wealth level wH in the

discrete game was b+ u(wH + Z) giving an expected payoff of

b+ E(u(wH + Z)).



18

Exchanging r for b and q for wH gives us the expected payoff for a signaller in the continuous

case.

πG = r + E(u(q + Z))

The lottery Z takes value −SG with probability p and value 0 with probability 1−p. There-

fore, we can write

πG = r + p u(q − SG) + (1− p)u(q). (1.6)

Having defined the strategy space and payoff functions for both games, the problem now

is to find a general solution for the equilibrium response functions of the signal intensities

and signal intensity functions of quality. We give the proof of the following proposition in

the appendix.

Proposition 3 If the players have decreasing absolute risk aversion, then at equilibrium they

will have higher expected utility in the stochastic signalling game than in the deterministic

signalling game.

1.6 Discussion

Signalling models in both biology and economics have typically assumed determinate costs.

In the real world, signal costs will often if not always be stochastic. This difference matters.

Here we show that when signallers have realistic risk preferences, stochastic signal costs

result in signals that are cheaper, on average, than when signals have determinate costs.

This comparative result holds in discrete and continuous models alike.

In biology, signal costs may be stochastic for a variety of reasons. Begging calls are

likely costly because of stochastic predation risk instead of determinate energy expenditures

[55, 50, 14, 31]. Physical ornamentation such as long tails or colorful plumage in birds may

similarly be costly due to predation risk [62]. Extravagant territorial and courtship displays

can be risky as well: instead of storing resources for lean times, an individual invests time

and energy in prolonged displays [96].
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Many if not most biological instances of stochastic signal costs will be more complicated

in form than the simple lotteries modeled here. The important point is that our analysis

shows that to simply treat stochastic costs as equivalent to their expectation will often lead

to a distorted picture of the true costs. And our results suggest that variable signal costs,

rather than undermining honesty in costly signalling, in fact bolster it.

Empirical studies could provide evidence for the action of gambles to decrease average

signal costs. The greater the variance in the stochastic cost of a signal, the more likely it

is that the signal cost is being reduced by the stochasticity (see our Proposition 2). This

suggests the need for empirical studies to take into account risk structure when measuring

signal costs. If the risk structure has high variance, then high average cost is not as important

for honest signalling.

In the last couple decades, researchers have described a number of systems in which honest

communication is less costly than in traditional handicap theory. Such efforts are essential

if we are to explain the large number of different contexts in which communication is found

to be stable. The effects of stochasticity for decreasing signal costs is another fundamental

mechanism that deserves attention because of the wide variety of circumstances in which it

likely acts.
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1.8 Appendix: Proof of proposition 3

We first use the method from Bergstrom et al. [10] to obtain differential equations for the

signalling strategy under burning money, SB(q), and under gambling money, SG(q). For

burning money, the signaller’s payoff function is

πB = r + u(q − SB).
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We can break this function into the difference of a benefit function H(q, r), that depends

on the signaller’s quality q and the receiver’s response level r, and a cost function CB(q, SB)

that depends on q and the signal intensity, SB. Indeed, if

H = r + u(q),

CB = u(q)− u(q − SB), (1.7)

then πB = H − CB.

Similarly, for gambling money we have

πG = r + p u(q − SG) + (1− p)u(q),

which is broken down into πG = H − CG as follows:

H = r + u(q), same as before, and

CG = p
(
u(q)− u(q − SG)

)
. (1.8)

Following Bergstrom et al (2002), we obtain the differential equation

dS

dq
=
∂H

∂r

dR∗

dq

/ ∂C

∂S
,

which provides the slope of the signalling strategy S(q) in terms of the benefit function H,

the cost function C (which depends on S(q) itself), and the equilibrium response level R∗(q).

From expressions (1.7) and (1.8) we see that ∂H/∂r = 1. And if we denote by r′(q) the

derivative dR∗/dq, then for burning money,

dSB
dq

=
∂H

∂r

dR∗

dq

/ ∂CB
∂SB

=
dR∗

dq

/ ∂CB
∂SB

=
r′(q)

u′(q − SB)
. (1.9)

And for gambling money,

dSG
dq

=
dR∗

dq

/ ∂CG
∂SG

=
r′(q)

p u′(q − SG)
. (1.10)
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Since the benefit function H is the same for both games, and at the separating equilibrium

the receiver’s response r will be the same for both games, signallers in the stochastic game

will do better than signallers in the deterministic game when CG < CB. Therefore, we want

to show that when u exhibits DARA, CG < CB. To do so, we first show that CG < CB is

equivalent to inequality (1.13) below, and then show that inequality (1.13) follows when u

exhibits DARA.

From equations (1.7) and (1.8), CG < CB gives us

p
(
u(q)− u(q − SG)

)
< u(q)− u(q − SB),

i.e.,

u(q − SB) < pu(q − SG) + (1− p)u(q). (1.11)

Rewriting to isolate SG, we have

1
p
u(q − SB) + (1− 1

p
)u(q) < u(q − SG).

Since u is increasing, so is u−1. Thus, CG < CB when

SG < q − u−1
(
1
p
u(q − SB) + (1− 1

p
)u(q)

)
.

Define

S∗G = q − u−1
(
1
p
u(q − SB) + (1− 1

p
)u(q)

)
(1.12)

so that CG < CB if SG < S∗G.

Note that S∗G is a function of q and consider the value of the differential equation (1.10),

i.e.,

dSG
dq

=
r′(q)

p u′(q − SG)

along the curve S∗G(q). Note that if dSG
dq

∣∣∣
SG=S

∗
G

<
dS∗G
dq

for q > 0 then SG < S∗G for q > 0

since SG(0) = 0 = S∗G(0). So CG < CB when dSG
dq

∣∣∣
SG=S

∗
G

<
dS∗G
dq

, i.e., when r′(q)
p u′(q−S∗G)

<
dS∗G
dq

.
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Substituting for S∗G:

r′(q)

p u′
(
q −

[
q − u−1

(
1
p
u(q − SB) + (1− 1

p
)u(q)

)])
<

d

dq
[q − u−1(1

p
u(q − SB) + (1− 1

p
)u(q))]

Simplifying the left hand side and evaluating the derivative on the right hand side,

r′(q)

p u′
(
u−1
(
1
p
u(q − SB) + (1− 1

p
)u(q)

))
< 1− (u−1)′

(
1
p
u(q − SB) + (1− 1

p
)u(q)

)(
1
p
u′(q − SB)

(
1− dSB

dq

)
+ (1− 1

p
)u′(q)

)
Applying the inverse rule for derivatives, we get

r′(q)

p u′
(
u−1
(
1
p
u(q − SB) + (1− 1

p
)u(q)

))
< 1− 1

u′(u−1(1
p
u(q − SB) + (1− 1

p
)u(q)))

(
1
p
u′(q − SB)

(
1− dSB

dq

)
+ (1− 1

p
)u′(q)

)
Multiplying by the (positive) denominator of the left hand side yields

r′(q) < pu′(u−1(1
p
u(q − SB) + (1− 1

p
)u(q)))−

(
u′(q − SB)

(
1− dSB

dq

)
− (1− p)u′(q)

)
Rearranging and substituting expression (1.9) gives

r′(q) < pu′(u−1(1
p
u(q − SB) + (1− 1

p
)u(q))) + (1− p)u′(q)− u′(q − SB)

(
1− r′(q)

u′(q − SB)

)
And after a bit of algebra we obtain

u′(q − SB) < pu′(u−1(u(q)− 1
p
(u(q)− u(q − SB)))) + (1− p)u′(q)

If we let d = u(q) − u(q − SB) be the distance between u(q) and u(q − SB), the above

inequality becomes

u′(q − SB) < pu′(u−1(u(q)− 1
p
d)) + (1− p)u′(q) (1.13)
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(1
p
− 1)d

u−1(u(q) − 1
p
d) q − SB q

y = u(w)

Figure 1.4: Inequality 1.13 says that the derivative of u at point M is less than the weighted
average of the derivatives at L and N . Notice that the weighted average of y = u(q) and
y = u(q)− 1

p
d is p (u(q)− 1

p
d) + (1− p)u(q) = u(q − SB).
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This inequality has a nice geometric interpretation, illustrated in figure 1.4. It says that the

derivative of u at point M is less than the weighted average of the derivative at points L and

N .

We now show that inequality (1.13) follows when u exhibits DARA. We first point out that

the statement that u exhibits DARA is equivalent to the statement that the rate of decrease

of u′(w), with respect to y, is decreasing. Thus, in figure 1.4, u′ decreases proportionately

more from L to M than from M to N . Thus, u′ at N is not small enough to balance out

the value of u′ at L, and so the weighted average is greater than the single value u′(q− SB).

Indeed, if u exhibits DARA, then by definition −u′′(w)/u′(w) is decreasing in w. Since

u−1 is increasing, this implies that −u′′(u−1(y))/u′(u−1(y)) is decreasing in y. Thus,

−u′′(u−1(y))

u′(u−1(y))
= −u′′(u−1(y))(u−1)′(y)

=
d

dy
[−u′(u−1(y))]

is decreasing as well (the above equalities follow from the inverse rule of derivatives and the

chain rule respectively). So the rate of decrease of u′(w), with respect to y, is decreasing.

This means that, in figure 1.4, the difference between u′ at L and u′ at M is more than

(1
p
− 1) times the difference between u′ at M and u′ at N . Let’s call these differences D1 and

D2 respectively, so we have D1 > (1
p
− 1)D2. Therefore, by the definitions of D1 and D2,

u′(u−1(u(q)− 1
p
d))− u′(q − SB) > (1

p
− 1)(u′(q − SB)− u′(q)).

Rearranging, we get

p u′(u−1(u(q)− 1
p
d)) + (1− p)u′(q) > u′(q − SB),

which is inequality (1.13). So DARA gives us inequality (1.13), which is equivalent to

CG < CB, and we have proved the result.

1.8.1 Equilibrium stability

We next apply the second part of Bergstrom et al’s result to show that the equilibrium

strategies SB(q) and SG(q) we found above are stable (i.e., the extrema are maxima rather
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than minima). Their result states that the equilibrium is stable when the following second-

order condition holds everywhere along the solution curve.

d

dq

d

dp
H(q, R∗(p)) >

∂2

∂s∂q
C(q, s) d

dq
H(q, R∗(p))

∂
∂s
C(q, s)

(1.14)

We have H(q, r) = r + u(q). So

H(q, R∗(p)) = R∗(p) + u(q).

Thus,
d

dp
H(q, R∗(p)) =

d

dp
R∗(p)

and so
d

dq

d

dp
H(q, R∗(p)) = 0.

Also,
d

dq
H(q, R∗(p)) = u′(q).

For the cost function, we have C(q, s) = u(q)−u(q− s) for burning money and C(q, s) =

p(u(q)− u(q − s)) for gambling money. For burning money, this gives us

∂

∂s
C(q, s) = u′(q − s)

and
∂2

∂s∂q
C(q, s) = u′′(q − s).

For gambling money, we have

∂2

∂s∂q
C(q, s) = p u′′(q − s).

For both cases, inequality 1.14 then reduces to

0 >
δ u′′(q − s)u′(q)

u′(q − s)
where δ is either 1 or p. Since u is increasing, u′ is positive, so the above inequality holds

when u′′(q − s) is negative, i.e., when utility is concave. Thus, the second-order condition

holds since we are only considering individuals with concave utility.
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Chapter 2

DEADBEATS OR LOSERS: DISCRETIONARY MALE
PARENTAL INVESTMENT CAN MAKE FEMALES LESS

CHOOSY

By Frazer Meacham and Thomas Getty

Originally published in Journal of Theoretical Biology, 2017

2.1 Abstract

Two of the most important reproductive decisions that animals face are how to choose mates

and how to invest in offspring. In species where both males and females provide offspring

care, these selection pressures will often be reciprocally intertwined: mate preferences may

depend on parental investment patterns while parental investment patterns may depend on

mate preferences. We describe and analyze a mathematical model of this interaction, in which

females can choose amongst males who have high attractiveness or low attractiveness, while

males can decide whether to provide offspring care. We compare the case where males decide

whether to provide care to the cases where males always provide care and where they never

provide care. For a wide range of parameter settings, we find that when males decide whether

to provide care, females are selected to be less choosy. This reduction in female choosiness

occurs even though discretionary male care leads to greater variation among males in their

offspring output. This finding contrasts with previous theoretical studies, and is driven by

our assumption that males can decide whether to help provide care after mating occurs. Our

results show how the interdependencies between mate choice and parental care can generate

outcomes that can only be understood by considering both processes simultaneously.
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2.2 Introduction

Two of the most important reproductive decisions that animals face are how to choose mates

and how to invest in offspring. Parental investment (PI) theory describes how individuals

balance investment in current offspring against future reproductive efforts [86], while sexual

selection theory has extensively investigated the strategies animals use to select good mates

[39, 77] and the outcomes of mate competition [46]. But studying mate choice and PI sepa-

rately ignores how these processes may sometimes be inextricably intertwined [1]. Especially

when both sexes care for offspring, mate preferences will depend in part on the amount of

PI that different potential mates will contribute. The amount of PI that individuals con-

tribute will depend on whether their time would be better spent pursuing new potential

mates [21, 94]. But whether an individual should pursue new potential mates depends on

the mate preferences of those other individuals. Thus, mate preferences depend on parental

investment patterns while parental investment patterns depend on mate preferences, creat-

ing a circle that cannot be disentangled. To understand either process, we must consider

both simultaneously. This means that even if we are only interested in mate preferences

for physical traits, we must incorporate how these preferences interact with offspring care

decisions.

Many studies at least partially address the interdependence of mate choice and parental

care. For example, “good father” theories of sexual selection are specifically interested in

how female choice influences male parental investment [33, 35]. However, few studies address

how this interdependence tempers mate preferences for other traits, even though there is

good evidence that tradeoffs exist between mate choice for parental care and for other traits

[23, 75]. These tradeoffs may result in females varying their preferences [4, 17, 79], or

even preferring “lower-quality” males [37, 78], instead of tending to prefer males of the best

physical quality.

[20] presented a mathematical model that showed that males of lower genetic quality can

be preferred by females if such males provide better parental care. However, their model
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did not include the evolutionary dynamics of female strategies, and so did not model the

interaction between male and female behavior. Other theoretical studies of mate choice and

parental investment tend to ignore physical quality of potential mates. Instead, studies have

addressed how female preference may select for observable male parental care [2], or how

honest male signaling might arise if females cannot observe the male’s future PI [33, 74, 45].

In this paper, we construct a model of interaction of female choice and male parental in-

vestment. The model explicitly includes selection for both mate choice decisions and parental

investment decisions. It also includes effects on reproductive success of both indirect and

direct benefits. This allows us to examine the interdependence of mate choice and parental

care as well as how this interdependence affects mate-choice tradeoffs between different kinds

of benefits. We therefore are able to show how female preferences for male physical quality

affect male PI decisions, and how these male decisions reciprocally influence female pref-

erences. Our model captures the entanglement of these two selection pressures, and gives

insight into what can result.

2.3 Model

We develop a game theory model with infinite populations. Because we are interested in

the interaction of several different factors, our model is designed to be as simple as possible

while capturing these interactions. As well as making the analyses more tractable, this also

makes the model more transparent so that we have the best chance of understanding the

causal mechanisms underlying the results.

2.3.1 Assumptions

Females are all of the same quality when it comes to their intrinsic ability to provide direct

and indirect maternal contributions to offspring fitness. We assume that females must always

stay with their young to provide parental care. In contrast, males can choose after mating

whether or not to help provide offspring care. We assume that development progresses

according to a time schedule that does not depend on whether the male helps provide care.
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Adult males come in two types: high-quality and low-quality. High quality males have

better indirect contributions to offspring fitness, as well as having more valuable parental

investment potential (if they should choose to provide it). Before adulthood, each male

randomly becomes either high-quality (with probability p) or low-quality (with probability

1− p). We assume infinite population sizes, so the fraction of all males that are high-quality

is p and the fraction that are low-quality is 1− p.

Male quality is perfectly discernible to females. A male’s inclination towards providing

future parental care is not.

Strategies

Each female has three possible strategies available to her: only mate with high-quality males,

only mate with low-quality males, or be indiscriminate and mate with both. We denote the

proportion of each of these strategies by xH , xL, and xI respectively. These proportions sum

to 1.

After mating, each male, whether high- or low-quality, chooses between staying to help his

mate care for their offspring or abandoning his mate to search for other females immediately.

Males take into account their own quality when making this decision. (Recall that females do

not vary in quality.) Thus, we have four male strategies: the male strategy that provides care

whether or not it is a high quality male (High:Care; Low:Care), the strategy that abandons

the female if it is high quality but provides care if it is low quality (High:Abandon; Low:Care),

the strategy that abandons the female whether or not it is high quality (High:Abandon;

Low:Abandon), and the strategy that provides care if it is high quality but abandons the

female if it is low quality (High:Care; Low:Abandon). We denote the proportions of males

that follow these strategies by yCC , yAC , yAA, yCA, respectively (see Table 2.1). The male

proportions also sum to 1.
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Offspring

The average number of offspring that a pair raises to adulthood depends on both the quality

of the father and on whether he stays to help the female care for the offspring. (We assume

that individuals reach adulthood as soon as they become independent.) The model does not

include any extra pair paternity, so by definition the mother of the brood and the father of

the brood get the same number of offspring from it.

We let B be the average number of offspring produced by a pair where the male is low

quality and abandons. Then we let mH > 1 be the multiplier for having the male be high

quality, and mC > 1 be the multiplier for having the male provide offspring care. Thus, the

average number of offspring produced by a pair where the male is both high quality and

helps care is mCmHB, the average number for a pair where the male is high quality and

does not help care is mHB, and the average number for a pair where the male is low quality

but helps care is mCB.

We express the benefits of the male being high quality or helping care for the offspring

as multipliers that are independent of each other because we do not want there to be a

difference in the intrinsic incentive to care for offspring for low quality and high quality

males. Otherwise, females might prefer low quality males for the straightforward reason that

low quality males intrinsically provide greater reproductive benefit. Allowing this kind of

situation would, it seems to us, start to blur the notion of what “low quality” would mean.

In general we assume that mC > mH . In other words, a female will do better to mate

with a low quality male who provides care than with a high quality male who does not. In

section 2.4.6 however, we briefly look at what happens if we relax this assumption.

Reproductive success and mate search

We calculate an individual’s reproductive success as its long-term average rate of offspring

production. In other words, we have an infinite time horizon, and are only interested in an

individual’s long-term rate of offspring production. So, not only does brood size matter, but
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so does the average time it takes an individual to find mates between raising broods. To model

this, we assume that at any time, all individuals are either caring for their current offspring

or searching for their next mate. We let T be the amount of time it takes for offspring to

reach adulthood and independence. (Recall that development progresses according to a time

schedule that does not depend on whether the male helps provide care.) Once individuals

are done caring for their offspring, they return to the search pool.

In the search pool, males and females encounter each other at a rate proportional to

their densities. We will let λ be the parameter that scales the encounter rate. (The critical

relationship is the amount of time it takes to search for mates compared to the amount of

time it takes to raise offspring.) We let r be the sex ratio of males per female. Let sH ,

sL, and sI be the densities of the three female strategies in the search pool. These are

the proportion of females that are searching and prefer high-quality males, the proportion

that are searching and prefer low-quality males, and the proportion that are searching and

indiscriminate, respectively. Let sH:C , sH:A, sL:C , sL:A be the relative density (proportion

multiplied by the sex ratio) of the four possible kinds of male. These are the relative searching

density of males that are high-quality and will provide care, high-quality and will abandon,

low-quality and will provide care, and low-quality and will abandon, respectively. Table 2.1

lists all the notation introduced above.

2.3.2 Derivations

For simplicity, we separate the time scales of the search dynamics and the evolutionary

dynamics. So for the purposes of calculating the fitness of each strategy, we assume that the

search dynamics are at equilibrium.

Search pool densities

Because they spend all their time in the search pool, the density of high-quality males who

abandon equals the sex ratio times the fraction of males that are high quality times the
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Parameters

Fraction of males that are high quality p

Sex ratio (males per female) r

Encounter rate λ

Time to raise offspring T

RS when male is low quality and abandons B

High quality multiplier mH

Caring multiplier mC

Strategy frequencies

Female strategy frequencies

Prefer high quality xH

Prefer low quality xL

Indiscriminate xI

Male strategy frequencies

High:Care; Low:Care yCC

High:Abandon; Low:Care yAC

High:Abandon; Low:Abandon yAA

High:Care; Low:Abandon yCA

Searching densities

Searching density of female strategies

Prefer high quality sH

Prefer low quality sL

Indiscriminate sI

Searching density of male types

High quality, provide care sH:C

High quality, abandon sH:A

Low quality, provide care sL:C

Low quality, abandon sL:A

Table 2.1: Model parameters and variables, introduced in Section 2.3.1.
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fraction of high-quality males who abandon:

sH:A = r p (yAC + yAA) (2.1)

Similarly for the density of low-quality males who abandon, we have

sL:A = r p (yAA + yCA) (2.2)

The density in the search pool of males who are high-quality and help care equals the sex

ratio (r) multiplied by the proportion of males of that type (p (yCC +yCA)) multiplied by the

proportion of time that a male of that type spends searching for mates rather than caring

for offspring. This proportion is given by the average time it takes for a male of that type

to find a willing mate divided by the average total time spent per mate. We have

sH:C = r p (yCC + yCA)

1
λ (sH+sI)

1
λ (sH+sI)

+ T

Rearranging,

sH:C =
r p (yCC + yCA)

1 + λ (sH + sI)T
(2.3)

Similarly for low-quality males who help care,

sL:C =
r (1− p) (yCC + yAC)

1 + λ (sL + sI)T
(2.4)

The same reasoning gives us the searching densities for the female strategies:

sH =
xH

1 + λ (sH:C + sH:A)T
(2.5)

sL =
xL

1 + λ (sL:C + sL:A)T
(2.6)

sI =
xI

1 + λ (sH:C + sH:A + sL:C + sL:A)T
(2.7)

Given any strategy frequencies, equations (2.1)–(2.7) determine the searching densities of

each of the 4 male and 3 female strategies.
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Strategy payoffs

The fitness payoff for a strategy is the average reproductive benefit obtained per mate divided

by the average time spent per mate. We denote by π? the fitness of the strategy of type ?.

For the females who prefer high-quality males, we have

πxH =

sH:CBmC mH+sH:ABmH
sH:C+sH:A

1
λ (sH:C+sH:A)

+ T

Rearranging,

πxH =
sH:CBmCmH + sH:ABmH

1
λ

+ (sH:C + sH:A)T
(2.8)

For females who prefer low-quality males and females who will mate with both, we have:

πxL =
sL:CBmC + sL:AB
1
λ

+ (sL:C + sL:A)T
(2.9)

πxI =
sH:CBmCmH + sH:ABmH + sL:CBmC + sL:AB

1
λ

+ (sH:C + sH:A + sL:C + sL:A)T
(2.10)

Each male strategy has two terms, each scaled according the the probability of being high

quality. We have

πyCC = p
(sH + sI)BmCmH

1
λ

+ (sH + sI)T
+ (1− p) (sL + sI)BmC

1
λ

+ (sL + sI)T
(2.11)

πyAC = p λ (sH + sI)BmH + (1− p) (sL + sI)BmC

1
λ

+ (sL + sI)T
(2.12)

πyAA = p λ (sH + sI)BmH + (1− p)λ (sL + sI)B (2.13)

πyCA = p
(sH + sI)BmCmH

1
λ

+ (sH + sI)T
+ (1− p)λ (sL + sI)B (2.14)

2.3.3 Analysis

We modeled evolutionary dynamics with the replicator-mutator equation [36]. Mutations

were included to eliminate unrealistic neutral equilibria. Thus, the strategy frequencies are

thought of as functions of time, t, and we have a mutation rate parameter, µx, for the female

strategies, and a mutation rate parameter, µy, for the male strategies. The dynamics for the
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female strategy of preferring high quality males is described by

x′H(t) = (1− µx)xH(t) πxH + 1
2
µx xL(t) πxL + 1

2
µx xL(t) πxL − xH(t)φx, (2.15)

where

φx = xH(t) πxH + xL(t) πxL + xL(t)πxL

is the average fitness. Similar expressions describe the dynamics for the other two female

strategies. For the male strategy of providing care whether or not it is high quality, the

dynamics is described by

y′CC(t) = (1−µy) yCC(t) πyCC+ 1
3
µy yAC(t) πyAC+ 1

3
µy xAA(t)πyAA+ 1

3
µy xCA(t)πyCA−yCC(t)φy,

(2.16)

where again,

φy = yCC(t)πyCC + yAC(t) πyAC + xAA(t) πyAA + xCA(t) πyCA

is the average fitness. Again, similar expressions describe the dynamics for the other three

male strategies.

Because we separated the time scales of the mate search and evolutionary dynamics,

contained within these equations is the algebraic system of equations that give the search

densities of the strategies at each time point. This means that our dynamical system is a sys-

tem of differential-algebraic equations, rather than simply a system of differential equations.

This makes it difficult to perform standard stability analyses of equilibria, so we instead sim-

ply numerically solved the differential-algebraic system, (see Figure 2.1 for an example), and

observed end points of the dynamics. It turns out that under the wide range of parameter

settings we explored, the dynamics settle towards a single point equilibrium.

We wrote scripts in Mathematica to automate the process of finding the endpoint of the

dynamics given any parameter settings and initial conditions. For each numerical solution,

the initial conditions were drawn uniformly at random from the unit simplex over female

strategy frequencies and the unit simplex over male strategy frequencies. We can then look
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at how the end point of the evolutionary dynamics changes as we vary different parameters

of the model. (Figure 2.2, below, will be an example of this.)

2.4 Results

To discover how discretionary male parental investment influences female preferences for

male physical quality, our approach is to compare female preferences at equilibrium across

three different models. The first model, which is described above, involves males having the

choice between providing care or not. The two models we compare this with are one in which

male parental care is obligate, and one in which males never provide offspring care. We get

these two models simply by making simplifications to our first model, by removing the male

option to abandon, or removing the male option to provide care, respectively.

We make this comparison in subsection 2.4.4 below, exploring how the evolutionary

equilibrium changes with respect to various parameters. But first we make some preliminary

comments. In the version of the model where males never provide care, as would be expected,

females often only accept high quality males. This is because, in that model, there is no

advantage to mating with a low quality male, and high quality males are readily available.

However, in the version of the model where all males provide care, even though again there

is no advantage to mating with a low quality male, often some females are indiscriminate.

The reason is that in this case high quality males become scarce in the search pool as they

are removed from it to care for offspring. Because some females only mate with high quality

males, more high quality males are removed from the search pool than low quality males. But

if every female prefers high quality males, indiscriminate females can invade the population

because it is so much quicker for them to find a mate. Thus, the female population generally

reaches a mixed equilibrium, with some females being indiscriminate, even though all males

provide care. This same observation was made by [58], but in the context of a different

question. This characteristic of the version of the model where males always provide care is

important to keep in mind when we compare the three versions of the model in subsection

2.4.4 below.
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Figure 2.1: An example trajectory of the evolutionary dynamics. Female strategies are shown
in the upper panel, males in the lower panel. For both males and females, the population
starts at the point where all strategies are equally common. The dynamics eventually stabilize
around the point where males never care for offspring when they are high quality, 8/10ths
of males care for offspring when they are low quality, 13/30ths of females mate with only
high-quality males, 17/30ths of females are indiscriminate, and no females mate with only
low-quality males. The parameter settings in this example are: sex ratio r = 1, fraction
of males that are high quality p = 0.5, relative encounter rate 100 (that is, the product
λT = 100), value of male care and male quality mC = 5/3, mH = 3/2.
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2.4.1 Evolutionary dynamics

Before exploring the effect of different parameter settings and comparing the case when

male care is discretionary against the other two possibilities, we provide an example of

one particular evolutionary trajectory (Figure 2.1). For this example, the sex ratio is even

(r = 1), half of the males are high quality and half low quality (p = 0.5), it takes 100 days

to raise offspring (T = 100), and the encounter rate is λ = 1. (Remember that a male’s

quality is perfectly discriminable to females but his paternal care strategy is not.) We let the

multiplier for male care be mC = 5/3 and the multiplier for the male being high quality be

mH = 3/2. These settings make male care more valuable than male quality, so it is possible

for a female to get greater benefit out of a low quality than a high quality male if the low

quality male provides care and the high quality male does not. We set the mutation rate

parameters, µx and µy, each at 10−6.

Figure 2.1 shows that with the above parameter settings, the dynamics stabilize towards

a point where low-quality males are more likely to care for offspring than high-quality males.

A slight majority of females will mate with either high- or low-quality males, a minority

only mates with high-quality males, and the female strategy of only mating with low-quality

males has died out.

2.4.2 No females refuse high-quality males at equilibrium

In the example dynamics of Figure 2.1, females who prefer low-quality males over high-

quality males are not present at equilibrium. This turns out to be the case generally. We

can show why by the following argument: Suppose that we have an equilibrium with a

nonzero frequency of females who only mate with low-quality males. Then either (A) there

are also females who prefer high-quality males in this equilibrium or (B) there are no females

who prefer high-quality males. If (B) there are no females that prefer high-quality males,

then low-quality males are in greater demand than high-quality males. In this case, selection

will act so that high-quality males will be at least as likely to care for offspring as low-quality
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males are. But this means that both indiscriminate females and females who prefer high-

quality males will have higher fitness than females who prefer low-quality males, and so this

cannot be an equilibrium. On the other hand, if (A) there are females who prefer high-quality

males as well as females who prefer low-quality males at this equilibrium, then they must

have equal payoffs. But then indiscriminate females will have a higher payoff, because they

find mates more quickly while receiving the same average payoff per mate. Thus, it cannot

be an equilibrium. Therefore, no equilibria include a nonzero frequency of females who only

mate with low-quality males.

In what follows we will compare the equilibrium frequencies between just the two fe-

male strategies of preferring high-quality males and being indiscriminate. We nevertheless

continue to include in the model the female strategy of preferring low-quality males for the

following analyses because it can influence the dynamics. We just omit this strategy from

our description of the equilibria because it is always absent at equilibrium.

2.4.3 Varying the encounter rate

Figure 2.2 shows how the equilibrium strategy frequencies depend on the search rate param-

eter, λ. At the left hand side of the plots, λ is very small, and it takes searching individuals

a long time to find potential mates. Because it takes so long to find a mate, females cannot

afford to be choosy, and males always provide care, even if they are high quality, because

they are unlikely to find new mates any time soon.

As we move right along the plot, at λ just above 0.01, mate search begins to be fast

enough that males start to sometimes abandon females. At λ = 0.02, males now always

abandon whether or not they are high quality. At λ = 0.04, it suddenly (discontinuously)

becomes worthwhile for some females to be choosy. At this point, mate search is quick

enough that if a female rejects a low quality male, she still has a chance of encountering a

high quality male in a reasonable amount of time.

The fact that some females are now choosy causes low quality males to start having

different incentives from high quality males. Low quality males are now less likely to find
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Figure 2.2: Equilibrium strategy frequencies as a function of the encounter rate, λ. The
other parameter settings are the same as for Figure 2.1. The female equilibrium frequencies
can be read from the upper plot; the male equilibrium frequencies can be read from the
lower plot. To reduce clutter, only 1 of the 3 female strategies and 3 of the 4 male strategies
are shown. For the males, the frequency of the 4th strategy at any point equals one minus
the frequencies of the others. As explained in subsection 2.4.2, at equilibrium, all females
either prefer high quality males or are indiscriminate. Thus, we only need the frequency of
indiscriminate females in the upper plot, because the frequency of females that prefer high
quality males is one minus the frequency of those that are indiscriminate. Subsection 2.4.3
interprets the pattern in these plots.
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Figure 2.3: Equilibrium female strategy frequencies for the three versions of the model.
When males never provide care for offspring (magenta), all females prefer high-quality males
except at very low encounter rates, in which case all females mate with both male types.
When males always care (orange), a minority of females accept low-quality males at higher
encounter rates, while at lower encounter rates all females mate with both male types. When
males are free to choose whether to provide care (blue), no matter the encounter rate, a
majority of females will mate with both male types.

new willing mates if they abandon their partner, and so males start to sometimes provide

care when they are low quality. As λ continues to increase, the search friction for finding

mates diminishes to nothing. Low quality males provide care more than 80 percent of the

time, high quality males never provide care, and females are choosy less than half of the

time. The next subsection compares what happens here to the two alternative models where

males cannot choose whether to provide care.

2.4.4 The effect of discretionary male PI on female preferences

Figure 2.3 shows the equilibrium frequency of female preferences for each of the 3 models,

plotted against λ. When males never provide care, females always prefer high quality males

(females are always choosy) unless the encounter rate is so small that they cannot afford to

refuse low quality males. At high encounter rates, fewer females accept low quality males

(females are more choosy), when all males care than when male care is discretionary. This

is because, when male care is discretionary, low quality males provide care more often than
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Figure 2.4: Equilibrium female strategy frequencies as a function of the sex ratio, r. The
other parameter settings are the same as for Figure 2.1.

high quality males, and so the difference to a female between getting a high quality male

and getting a low quality male is not as important.

At encounter rates lower than about λ = 0.4, the pattern reverses, and more females

accept low quality males when all males provide care than when male care is discretionary.

This is because high quality males are scarce in the search pool when all males provide care,

but they are not scarce in the search pool when male care is discretionary. When male care

is discretionary, high quality males do not provide care and are therefore always searching

for mates.

2.4.5 Varying the sex ratio

We next provide the same comparison as above but while varying the sex ratio instead of the

encounter rate. (The operational sex ratio of individuals in the search pool varies depending

on the strategies of both sexes. When we speak of the “sex ratio” in this section though,

we are referring to the fundamental sex ratio of total males per total females. This is the

parameter r in the model.)

Figure 2.4 shows equilibrium frequencies of female preferences for the three versions of the

model, where now the x-axis is the sex ratio instead of the encounter rate. The x-axis ranges
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from a sex ratio of 2:1 females per male (r = 0.5) to 2:1 males per female (r = 2). When

males never provide care, females are always choosy (prefer high quality males) throughout

this range. When males always provide care, female preferences are strongly sensitive to the

sex ratio. When the sex ratio is much above even, there are enough extra males that females

always prefer high quality males. On the other hand, when the sex ratio is much below even,

females quickly shift to being entirely indiscriminate.

This contrasts strongly with the case where male parental care is discretionary. In this

case, female preferences are not as sensitive to changes in the sex ratio, and throughout

most of the range there is a mixed equilibrium with some females preferring high quality

males and some females being indiscriminate. And, in contrast to the case where all males

provide offspring care, females actually become less choosy as the number of males per

female increases. To understand what is going on here, Figure 2.5 displays the male strategy

frequencies alongside the female, for the case where male care is discretionary. The range

is chosen to encompass all the different types of equilibria that are found along this cross

section of parameter space.

Figure 2.5 exhibits 6 regions with different equilibrium characteristics. We will go through

them as the sex ratio increases, from left to right on the plot. In the first region, at about

1 male per 25 females and fewer (r ≤ 0.04), the equilibrium consists of all females being

indiscriminate and males always abandoning. As r increases, we enter a region where females

have discontinuously begun to be mostly choosy, and males start to sometimes provide care

when they are low quality. This region continues from an r value of about 0.04 all the way

to an r value of a bit over 1.7. As we saw in Figure 2.4, in this region the proportion of

females who are indiscriminate increases as males become more common, counter to what

may be expected. The reason that this happens is that the proportion of males that provide

care when they are low quality is also increasing.

Between a sex ratio of about r = 1.7 and a sex ratio of r = 2, all females have become

indiscriminate again. At this point, because females are the sex in short supply, males begin

to sometimes provide care even when they are high quality. This behavior rises in frequency
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Figure 2.5: Equilibrium strategy frequencies as a function of the sex ratio, r. The other
parameter settings are the same as for Figure 2.1. As in Figure 2.2, only one of the three
female strategies and three of the four male strategies are shown.

until r = 2, at which point females can again afford to be choosy, because now both high

and low quality males sometimes provide care. (Because all females are indiscriminate in

this range, one might expect to see males behave the same whether they are high or low

quality. Yet males are more often providing care when they are low quality than when

they are high quality. The reason is that any infinitesimal increase in the proportion of

high quality males providing care upsets the equilibrium, and would lead to some females

preferring high quality males again. This would lead to males who abandon when they

are high quality getting a higher payoff, leading to fewer high quality males providing care,

leading to females going back to being indiscriminate. Thus, the equilibrium remains with

females being indiscriminate and males providing care more often when they are low quality.)

Note that in this range males still more often provide care when they are low quality

then when they are high quality, even though all females are indiscriminate. At first this
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may appear surprising because

Between r = 2 and an r value of about 3.2, the proportion of females who are in-

discriminate falls steadily, until, for the first time, all females are choosy. At this point,

the male strategy of providing care when low quality but abandoning when high quality

(High:Abandon, Low:Care), begins to fall in frequency, as a greater proportion of males

begins to provide care when high quality. Because all females are now choosy, there is no

selection on what males do when low quality, because they never get the opportunity to

reproduce. Finally, at a sex ratio of 5 males per female and above (r ≥ 5), females only mate

with high quality males, and all high quality males provide care.

2.4.6 Varying the importance of offspring care

Finally, in Figure 2.6 we show what happens when we vary the value of male care for offspring

(mC), including values where care is less important than quality (mC < mH). For both of the

alternative models, where males always provide care or never provide care, the proportion of

females that are indiscriminate does not vary with the value of male care. This is because

when all males behave the same way, changing the value of male care does not cause any

relative change between high and low quality males.

For the case when male care is discretionary, the proportion of females that are indis-

criminate is 0 when mC is less than mH (our parameter settings have mH = 1.5). When

mC < mH , low quality males are less valuable as mates than high quality males, even when

comparing a low quality male who provides care to a high quality male who does not. Thus,

as long as the encounter rate (λ) is high enough that females can afford to discriminate,

(here λ = 1), females will never have reason to select a low quality male. Once male care

becomes more valuable than male quality (mC > mH), we immediately see a substantial

fraction of females becoming indiscriminate. As the value of male care continues to increase,

the payoff to mating with a low quality male who cares becomes greater, so the proportion

of females that are indiscriminate increases. Finally, at very high values of mC , all females

are indiscriminate.
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Figure 2.6: Equilibrium female strategy frequencies as a function of the value of male care,
mC . The other parameter settings are the same as for Figure 2.1. In particular, the value
of the male being high quality, mH , equals 1.5, which can be seen as the location of the
discontinuity for the female strategy frequency in the discretionary male care model.

2.5 Discussion

Our main finding is that when males are free to choose whether to provide parental care,

females often become more willing to mate with low-quality males. This is as compared to

the case when males are not free to make this choice. This increase in female acceptance

of low quality males is not so large that it removes the overall preference for high-quality

males, it only reduces the magnitude of that preference.

In many species, females are selected to be choosy because males vary with respect to

physical traits that affect the female’s fitness [3]. When males vary not only physically but

also with respect to providing PI, it would seem that a female’s choice of a mate would be

all the more important. But we show that in fact it is often the reverse: for species in which

males vary with respect to PI as well as with respect to physical quality, females will often

evolve to be less choosy.

It should be emphasized that in this model, lower quality males are worse not only in

their fertility but also in their ability to care for the offspring. They are lower quality in

every way. Nonetheless, because low-quality males can choose to help the female, they can
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increase their value as mates even though their PI is less valuable than the PI of a high

quality male. But they do this even though they are free to abandon a female after mating

with her. In our model, females cannot directly select for males who care, so male care

does not result from females preferring good fathers. Instead, reduced female choosiness is

a result of how the mating market induces greater opportunity costs to providing offspring

care on high-quality males than on low-quality males. Because males of lower-quality have

less to gain from searching for additional mates, they gain relatively more by helping the

female care for offspring. This happens despite the fact that the value of low quality males’

offspring care is less than what it would be for a high quality male.

One area that addresses both offspring care and mate attractiveness is studies of the

differential allocation (DA) hypothesis, which predicts that less attractive mates may provide

more offspring care [15]. But here the emphasis is usually on how mates should allocate care

and not on how these care decisions influence mate choice. Also, while much empirical work

has addressed the DA hypothesis [16, 76], theoretical studies justifying the DA interpretation

are relatively scarce, while other models predict the opposite effect, in which high-quality

mates provide more PI instead of less [76].

By modeling the tradeoffs faced by males of different genetic qualities and with different

PI costs, [20] showed that males of lower genetic quality can be preferred by females if such

males provide better parental care. However, their model did not explicitly consider the

evolutionary dynamics acting on female strategies, and so they could not compare shifts in

relative female preference when low quality males are not intrinsically more incentivized to

provide offspring care. In contrast, by including both female and male strategies, our model

is able to compare relative strengths of female preferences. Thus, we can show how males of

genuinely lower quality become more valuable as mates even though females do not switch

completely to preferring low quality males. This allows us to discover how females sometimes

become less choosy when males control their own PI decisions.

One straightforward way in which our model agrees with empirical observations is that

in species where males provide significant parental care, males should invest less in physical
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displays for courtship [72]. This is likely often due to reduced female choice because males

are also exercising choice. But our model shows that this can result even if there is no mutual

mate choice and females monopolize mating decisions. Even in such cases, and even when

males vary greatly in their mate value, female choice may be weak.

Some of the predictions of the model could be tested in different species by determining

how much males vary with respect to fertility and if males of lower fertility provide more

offspring care. If males vary greatly in fertility even in species with weaker female choice,

and if males of lower fertility provide more offspring care, the model predictions would be

supported. In some species it may also be possible to directly test whether increased variation

in male PI leads to decreased female choice, but such experiments would be difficult.

Other factors can also affect the strength of mate-choice selection, including variation

in female quality, promiscuity, extra pair paternity etc. Future modeling work is needed to

provide predictions for how these phenomena should interact with the differential PI and

decreased female preferences described here.
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Chapter 3

ADAPTIVE BEHAVIOR CAN PRODUCE MALADAPTIVE
ANXIETY DUE TO INDIVIDUAL DIFFERENCES IN

EXPERIENCE

By Frazer Meacham and Carl T. Bergstrom

Originally published in Evolution, Medicine, and Public Health, 2016

3.1 Abstract

Normal anxiety is considered an adaptive response to the possible presence of danger, but is

susceptible to dysregulation. Anxiety disorders are prevalent at high frequency in contem-

porary human societies, yet impose substantial disability upon their sufferers. This raises a

puzzle: why has evolution left us vulnerable to anxiety disorders? We develop a signal de-

tection model in which individuals must learn how to calibrate their anxiety responses: they

need to learn which cues indicate danger in the environment. We derive the optimal strategy

for doing so, and find that individuals face an inevitable exploration-exploitation tradeoff

between obtaining a better estimate of the level of risk on one hand, and maximizing current

payoffs on the other. Because of this tradeoff, a subset of the population can become trapped

in a state of self-perpetuating over-sensitivity to threatening stimuli, even when individuals

learn optimally. This phenomenon arises because when individuals become too cautious,

they stop sampling the environment and fail to correct their misperceptions, whereas when

individuals become too careless they continue to sample the environment and soon discover

their mistakes. Thus, over-sensitivity to threats becomes common whereas under-sensitivity

becomes rare. We suggest that this process may be involved in the development of excessive

anxiety in humans.
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3.2 Introduction

Motile animals have evolved elaborate mechanisms for detecting and avoiding danger. Many

of these mechanisms are deeply conserved evolutionarily [61]. When an individual senses

possible danger, this triggers a cascade of physiological responses that prepare it to deal

with the threat. Behavioral ecological models treat the capacity for anxiety as a mechanism

of regulating how easily these defensive responses are induced [51, 65, 67, 34, 5, 69]. Greater

anxiety causes an individual to be alert to more subtle signs of potential danger, while

lowered anxiety causes the individual to react only to more obvious signs [18]. As unpleasant

as the experience of anxiety may be, the capacity for anxiety is helpful in tuning behavior

to environmental circumstance. This viewpoint is bolstered by epidemiological evidence

suggesting that long-term survival is worse for people with low anxiety-proneness than for

those in the middle of the distribution, due in part to increased rates of accidents and

accidental death in early adulthood [49, 63].

While the capacity for anxiety is adaptive, dysregulated anxiety is also common, at least

in humans. Of all classes of mental disorders, anxiety disorders affect the largest number of

patients [42]. The global prevalence of individuals who suffer from an anxiety disorder at

some point in their life is commonly estimated at around 15 percent [42, 85], with 5 to 10

percent of the population experiencing pathological anxiety in any given year [42, 85, 6]. The

consequences can be drastic: in a 12 month period in the US, 4 percent of individuals had an

anxiety disorder that was severe enough to cause work disability, substantial limitation, or

more than 30 days of inability to maintain their role [44]. The prevalence and magnitude of

anxiety disorders is also reflected in the aggregate losses they cause to economic productivity:

in the 1990s the annual cost was estimated at $42 billion in the US alone [28].

Episodes of clinically-significant anxiety are distributed broadly across the lifespan, and

anxiety disorders typically manifest before or during the child-rearing years [43]. Because of

the severity of impairment that often results from anxiety disorders, and the fact that onset

occurs before or during reproduction, these disorders will often have a substantial effect on
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Darwinian fitness. Thus, the prevalence of anxiety disorders poses an apparent problem for

the evolutionary viewpoint. If the capacity for anxiety is an adaptation shaped by natural

selection, why is it so prone to malfunction?

One possible explanation invokes the so-called smoke detector principle [65, 67]. The

basic idea is to think about how anxiety serves to help an organism detect danger, and

to note the asymmetry between the low cost of a false alarm and the high cost of failing

to detect a true threat. This allows us to frame anxiety in the context of signal detection

theory. Because of asymmetry in costs of false alarms versus false complacency, the theory

predicts that optimized warning systems will commonly generate far more false positives than

false negatives. This provides an explanation for why even optimal behavior can produce

seemingly excessive sensitivity in the form of frequent false alarms [64, 67]. More recently, the

signal detection framework has been expanded to describe how the sensitivity of a warning

system should track a changing environment and become more easily triggered in dangerous

situations [69]. This approach, together with error management theory [40], begins to provide

an account of how anxiety and mood regulate behavior over time, and why high levels of

anxiety may be adaptive even when true threats are scarce. Better to be skittish and alive

than calm but dead.

The smoke detector principle cannot be the whole story, however. There are a number of

aspects of anxiety that it does not readily explain. First, the smoke detector principle deals

with evolutionarily adaptive anxiety — but not with the issue of why evolution has left us

vulnerable to anxiety disorders. A fully satisfactory model of anxiety and anxiety disorders

should explain within-population variation: Why does a small subset of the population suffer

from an excess of anxiety, while the majority regulate anxiety levels appropriately? Second, a

critical component of anxiety disorders is the way they emerge from self-reinforcing negative

behavior patterns. Individuals with anxiety disorders often avoid situations or activities that

are in fact harmless or even beneficial. Effectively, these individuals are behaving too pes-

simistically, treating harmless situations as if they were dangerous. We would like to explain

how adaptive behavior might lead to self-reinforcing pessimism. Third, if the evolutionary
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function of anxiety is to modulate the threat response according to environmental circum-

stances [68], evolutionary models of anxiety will need to explicitly treat that modulation

process—that is, such models should incorporate the role of learning explicitly.

In this paper, we show that optimal learning can generate behavioral over-sensitivity

to threat that is truly harmful to the individual’s fitness, but expressed in only a subset

of the population. Our aim is not to account for the specific details of particular anxi-

ety disorders—phobias, generalized anxiety disorder, post-traumatic stress disorder, and so

forth—but rather to capture some of the general features of how anxiety is regulated and

how this process can go awry.

In section 2, we illustrate the basic mechanism behind our result using a very simple

model borrowed from foraging theory [56] in which an actor must learn by iterative trial and

error whether taking some action is unacceptably dangerous or sufficiently safe. (Trimmer

et al. [91] independently developed a related model to study clinical depression. Also see

Frankenhuis and Panchanathan [25] as well as [73] for closely related models of developmental

plasticity in general.) In section 3, we extend the model into the domain of signal detection

theory and consider how an actor learns to set the right threshold for responding to an

indication of danger. In most signal detection models, the agent making the decision is

assumed to know the distribution of cues generated by safe and by dangerous situations.

But where does this knowledge come from? Unless the environment is homogeneous in

time and space over evolutionary timescales, the distributions of cues must be learned. In

our model, therefore, the agent must actively learn how the cues it observes relate to the

presence of danger. We show that under these circumstances, some members of a population

of optimal learners will become overly pessimistic in their interpretations of cues, but fewer

will become overly optimistic.

3.3 Learning about an uncertain world

If we want to explain excess anxiety from an evolutionary perspective, we must account

for why only a subset of the population is affected. Although genetic differences may be
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partly responsible, random variation in individual experience can also lead to behavioral

differences among individuals. In particular, if an individual has been unfortunate during

its early experience, it may become trapped in a cycle of self-reinforcing pessimism. To

demonstrate this, we begin with a simple model that shows how responses to uncertain

conditions are shaped by individual learning. The model of this section does not include the

possibility of the individual observing cues of the potential danger. Thus, it does not capture

anxiety’s essential characteristic of threat detection. But this model does serve to illustrate

the underlying mechanism that can lead a subset of the population to be overly pessimistic.

3.3.1 Model

Because our aim is to reveal general principles around learned pessimism, rather than to

model specific human pathologies, we frame our model as a simple fable. Our protagonist

is a fox. In the course of its foraging, it occasionally comes across a burrow in the ground.

Sometimes the burrow will contain a rabbit that the fox can catch and eat, but sometimes

the burrow will contain a fierce badger that may injure the fox. Perhaps our fox lives in

an environment where badgers are common, or perhaps it lives in an environment where

badgers are rare, but the fox has no way of knowing beforehand which is the case. Where

badgers are rare, it is worth taking the minor risk involved in digging up a burrow to hunt

rabbits. Where badgers are common, it is not worth the risk and the fox should eschew

burrows in favor of safer foraging options: mice, birds, fruits, berries etc. The fox encounters

burrows one at a time, and faces the decision of whether to dig at the burrow or whether

to slink away. The only information available to the fox at each decision point is the prior

probability that badgers are common, and its own experiences with previous burrows.

To formalize this decision problem, we imagine that the fox encounters a sequence of

burrows, one after the other. The fox makes a single decision of whether to explore each

burrow before encountering the next burrow, and each burrow contains either a rabbit or a

badger. We let R be the payoff to the fox for digging up a burrow that contains a rabbit

and C be the cost of digging up a burrow that contains a badger. If the fox decides to
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leave a burrow undisturbed, its payoff is zero. When the fox decides to dig up a burrow, the

probability of finding a badger is pg if badgers are rare, and pb if badgers are common, where

pg < pb. If badgers are rare it is worthwhile for the fox to dig up burrows, in the sense that

the expected payoff for digging is greater than zero. That is, we assume that

(1− pg)R− pgC > 0.

If badgers are common, burrows are best avoided, because the expected payoff for digging is

less than zero:

(1− pb)R− pbC < 0.

We let q0 be the prior probability that badgers are common and we assume that the correct

prior probability is known to the fox. We assume a constant extrinsic death rate d for the

fox (and we assume that badger encounters are costly but not lethal), so that the present

value of future rewards is discounted by λ = 1− d per time step.

If the fox always encountered only a single burrow in its lifetime, calculating the optimal

behavior would be straightforward. If the expected value of digging exceeds the expected

value of not doing so, the fox should dig. That is, the fox should dig when

(1− q0)
(
(1− pg)R− pgC)

)
+ q0

(
(1− pb)R− pbC

)
> 0.

But the fox will very likely encounter a series of burrows, and so as we evaluate the fox’s

decision at each stage we must also consider the value of the information that the fox gets

from digging. Each time the fox digs up a burrow, it gets new information: did the burrow

contain a rabbit or a badger? Based on this information, the fox can update its estimate

of the probability that the environment is favorable. If the fox chooses not to dig, it learns

nothing and its beliefs remain unchanged. Thus even if the immediate expected value of

digging at the first burrow is less than 0, the fox may still benefit from digging because it

may learn that the environment is good and thereby benefit substantially from digging at

subsequent burrows. In other words, the fox faces an exploration-exploitation tradeoff [41]

in its decision about whether to dig or not. Because of this tradeoff, the model has the form
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of a one-armed bandit problem [12], where the bandit arm returns a payoff of either R or

−C, and the other arm always returns a payoff of zero.

3.3.2 Optimal behavior

As an example, suppose good and bad environments are equally likely a priori (q0 = 0.5) and

foxes die at a rate of d = 0.05 per time step. For simplicity we set the costs and rewards to

be symmetric: C = 1, R = 1, pg = 1/4, pb = 3/4. In a good environment where badgers are

less common, the expected value of digging up a burrow is positive (−0.25+(1−0.25) = 0.5)

whereas in a bad environment where badgers are common, the expected value of digging up

a burrow is negative (−0.75+(1−0.75) = −0.5). (Recall that the fox also has other foraging

options available, and therefore will not necessarily starve if it avoids the burrows.)

Applying dynamic programming to this scenario (see Appendix B), we find that the fox’s

optimal behavior is characterized by a threshold value of belief that the environment is bad,

above which the fox does not dig at the burrows. (This threshold is the same at all time

steps.) Figure 3.1 illustrates two different outcomes that a fox might experience when using

this optimal strategy. Along the upper path, shown in gray, a fox initially encounters a

badger. This is almost enough to cause the fox to conclude he is in a bad environment and

stop sampling. But not quite—the fox samples again, and this time finds a rabbit. In his

third and fourth attempts, however, the fox encounters a pair of badgers, and that’s enough

for him—at this point he does give up. Since he does not sample again, he gains no further

information and his probability estimate remains unchanged going forward. Along the lower

path, shown in black, the fox initially encounters a series of rabbits, and his probability

estimate that he is in a bad environment becomes quite low. Even the occasional encounter

with a badger does not alter this probability estimate enough that the fox ought to stop

sampling, so he continues to dig at every hole he encounters and each time adjusts his

probability estimate accordingly.
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Figure 3.1: Two examples of optimal behavior by the fox. The vertical axis indicates the
fox’s posterior subjective probability that it is in a bad environment. In the tan region, the
fox should dig. In the blue region, the fox should avoid the burrow. The grey path and black
path trace two possible outcomes of a fox’s foraging experience. The colored bars above and
below the graph indicate the fox’s experience along the upper and lower paths respectively:
brown indicates that the fox found a rabbit and blue indicates that the fox found a badger.
Along the grey path, the fox has a few bad experiences early. This shifts the fox’s subjective
probability that the environment is bad upward, into the blue region. The fox stops sampling,
its probability estimate stays fixed, and learning halts. Along the black path, the fox finds
two or more rabbits between each encounter with a badger. Its subjective probability remains
in the tan zone throughout, and the fox continues to sample—and learn—throughout the
experiment.
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3.3.3 Population outcomes

After solving for the optimal decision rule, we can examine statistically what happens to an

entire population of optimally-foraging foxes. To see what the foxes have learned, we can

calculate the population-wide distribution of individual subjective posterior probabilities

that the environment is bad. We find that almost all of the foxes who are in unfavorable

environments correctly infer that things are bad, but a substantial minority of foxes in

favorable circumstances fail to realize that things are good. In Appendix A we show that

the general pattern illustrated here is generally robust to variation in model parameters.

Figure 3.2 shows the distribution of posterior subjective probabilities that the environ-

ment is good among a population of optimally learning foxes for the above parameter choices.

We can see that a non-negligible number of individuals in the favorable environment come

to the false belief that the environment is probably bad. This occurs because even in a

favorable environment, some individuals will uncover enough badgers early on that it seems

to them probable that the environment is unfavorable. When this happens those individuals

will stop digging up burrows. They will therefore fail to gain any more information, and so

their pessimism is self-perpetuating.

3.3.4 Comments

This self-perpetuating pessimism is not a consequence of a poor heuristic for learning about

the environment; we have shown that this phenomenon occurs when individuals are using

the optimal learning strategy. Because of the asymmetry of information gain between being

cautious and being exploratory, there results an asymmetry in the numbers of individuals

who are overly pessimistic versus overly optimistic. Even when individuals follow the optimal

learning rule, a substantial subset of the population becomes too pessimistic but very few

individuals become too optimistic.

One might think, knowing that the current learning rule leads to excessive pessimism on

average, that we could do better on average by altering the learning rule to be a bit more
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Figure 3.2: Population distribution of individual posterior probabilities that the environment
is bad when the environment is indeed bad (upper panel), and when the environment is
actually good (lower panel). The horizontal axis is the individual’s posterior probability
estimate that environment is bad after 20 opportunities to dig at a burrow. (This is among
foxes who have lived that long. Conditioning in this way introduces no sampling bias because
survival is independent of environment and behavior in the model.) Frequency is plotted
on the vertical axis. Color indicates the number of times an individual has sampled the
environment. All individuals began with a prior probability of 0.5 that the environment
is bad. When the environment is indeed bad, only 0.2% of the population erroneously
believe the environment is likely to be good. When the environment is good, 11.1% of the
population erroneously believes that it is likely to be bad. The majority of these individuals
have sampled only a few times and then given up after a bit of bad luck.
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optimistic. This is not the case. Any learning rule that is more optimistic will result in lower

expected payoffs to the learners, and thus would be replaced under natural selection by our

optimal learning rule.

This scenario may reflect an important component of pathological human pessimism

or anxiety. For example, many people think that they “can’t sing” or “are no good at

math” because early failures, perhaps during childhood, led to beliefs that have never been

challenged. When someone believes he can’t sing, he may avoid singing and will therefore

never have the chance to learn that his voice is perfectly good. Thus, attitudes that stem

from earlier negative experiences become self-perpetuating.

3.4 Modeling anxiety by including cues

In the model we have just explored, the fox knows nothing about a new burrow beyond the

posterior probability it has inferred from its past experience. In many situations, however, an

individual will be able to use additional cues to determine the appropriate course of action.

For example, a cue of possible danger, such as a sudden noise or looming object, can trigger

a panic or flight response, and anxiety can be seen as conferring a heightened sensitivity to

such signs of threat. In this view, the anxiety level of an individual determines its sensitivity

to indications of potential danger. The higher the level of anxiety, the smaller the cue needed

to trigger a flight response [65, 67, 5, 69]. To model anxiety in this sense, we extend our

model of fox and burrow to explore how individuals respond to signs of potential threat. We

will find that even with the presence of cues, a substantial fraction of individuals will fall

into a self-perpetuating pattern where their anxiety levels are set too high.

The key consideration in our model is that individuals must learn how cues correspond

to potential threats. In other words, individuals need to calibrate their responses to environ-

mental cues, setting anxiety levels optimally to avoid predators without wasting too much

effort on unnecessary flight. Admittedly, if the environment is homogeneous in space and

extremely stable over many generations, then natural selection may be able to encode the

correspondence between cues and danger into the genome. But when the environment is less
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predictable, the individual faces the problem of learning to properly tune its responses to

cues of possible threat.

3.4.1 Model

We return to our story of the fox, who we now suppose can listen at the entrance to the

burrow before deciding whether to dig it up. Rabbits typically make less noise than badgers,

so listening can give the fox a clue as to the contents of the burrow. When the burrow is

relatively silent it is more likely to contain a rabbit, and when the fox hears distinct snuffling

and shuffling noises it is likely that the burrow contains a badger. But the sounds aren’t fully

reliable. Sometimes rabbits can be noisy, and sometimes badgers are quiet. So although the

amount of noise coming from the burrow gives the fox some information about how likely

the burrow is to contain a badger, the information is probabilistic and the fox can never be

certain.

In contrast to the model of the previous section, the difference between environments

is now a matter of how easy it is for the fox to distinguish between dangerous and safe

situations, rather than how common danger is. If the environment is good, the fox only

needs to be cautious if a burrow is quite noisy. But if the environment is bad, then the fox

should be cautious even if faint noises emanate from a burrow. This is because when the

environment is bad, it is too risky to dig up a burrow unless the burrow is nearly silent. The

fox does not know beforehand whether the environment is good or bad, and therefore it does

not know how the probability of finding a badger in the burrow depends on the amount of

noise it hears. The only way for it to gain information is to learn by experience.

To formalize the problem, we extend the model in section 2 by supposing that the fox

observes a cue before each decision. The cue is a continuous random variable drawn from

Gaussian distributions that depend on the environment and what is in the burrow. We

first consider the good environment. As before, we let pg be the probability that any given

burrow contains a badger. When the burrow contains a badger, the cue strength is drawn

from a Gaussian distribution with mean µg,c and standard deviation σg,c. When the burrow
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contains a rabbit, the cue strength is drawn from a Gaussian distribution with mean µg,r and

standard deviation σg,r. Similarly for the bad environment, we let pb be the probability that

any given burrow contains a badger, with a cue strength drawn from a Gaussian distribution

with mean µb,c and standard deviation σb,c when the burrow contains a badger, and mean

µb,r and standard deviation σb,r when the burrow contains a rabbit.

After observing the cue, the fox decides whether to dig or leave. If the fox decides to

leave, its payoff is zero. As before, the cost of encountering a badger is C and the reward

for finding a rabbit is R. The prior probability that the environment is bad is q0 and future

decisions are discounted at a rate of λ per time step. Although not as simple as before, we

can again use dynamic programming to calculate the optimal behavior (see Appendix B).

3.4.2 Optimal behavior

In this extended model, the good and bad environments can differ not only in the frequency

of badgers, but also in how readily badgers can be distinguished from rabbits by sound alone.

Here we will investigate what happens when in good environments, badgers are much louder

than rabbits, but in bad environments they are only a little bit louder. We are particularly

interested in this case because we want to know what happens when the fox must learn how

cues correspond to potential threats.

To model this situation, we set the mean loudness of rabbits to 0 in both good and

bad environments (µg,r = µb,r = 0). (The scale is arbitrary; we have chosen the value 0 for

convenience.) In the good environment, badgers are much louder than rabbits (µg,c = 2), and

are therefore usually easy to detect. In the bad environment, they are only a bit louder than

rabbits (µb,c = 1) which can make them more difficult to detect. Everything else about the

signal detection problem in the two environments is the same: σg,r = σg,c = σb,r = σb,c = 0.5,

and pg = pb = 0.2. Figure 3.3A shows the distributions of cue intensities for the two

environments. The punishment for encountering a badger is greater than the reward for

finding a rabbit (R = 1, C = 19) and as in the previous model, future rewards are discounted

at a rate of λ = 0.95 per time step and good and bad environments are equally common
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(q0 = 0.5).

The optimal decision rule for the fox, as found by dynamic programming, is illustrated

in Figure 3.3B. The fox now takes into account both its subjective probability that the

environment is bad and the intensity of the cue it observes. A curve separates the (cue,

probability) pairs at which the fox should dig from the (cue, probability) pairs at which

the fox should not. For cues below 0.11, the fox should dig irrespective of the state of

the environment; for cues above 0.81, the fox should not dig under any circumstance. In

between, the fox must balance the strength of the cue against its subjective probability that

the environment is bad. Here we can see the exploration-exploitation tradeoff in action.

Given the large payoff to be gained from exploiting a good environment over many time

steps, the possibility of discovering that the environment is good may compensate for the

risk of punishment—even when it is more likely than not that the environment is bad.

3.4.3 Population outcomes

In this signal detection model the fox has two ways to learn about its environment. As

before, the fox gains information from exploring a burrow and discovering either a rabbit

or badger. But even when the fox chooses not to dig, the fox still gains a small amount of

information from observing the cue itself, because the probability of observing a given cue is

generally different between the two environments. As a result, individuals will not become

stuck forever with an incorrect belief that the environment is bad the way they could in the

model of section 2. However, an asymmetry remains between the two kinds of mistakes: it

is easier for a fox to learn that it has mistakenly inferred that the environment is good than

it is for the fox to learn that it has mistakenly inferred that the environment is bad.

In this model, we observe a qualitatively similar pattern to what we found in the simpler

model without cues. Figure 3.4 shows the outcome for the whole population when individuals

follow the optimal strategy depicted in Figure 3.3B. When the environment is bad, the

majority of foxes correctly learn this. The population distribution of beliefs forms a curve

that increases roughly monotonically from left to right, with very few individuals believing
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Figure 3.3: The two environments differ in how loud badgers are (A). In the good envi-
ronment, badgers are easier to detect than they are in the bad environment. The optimal
decision rule is computed using dynamic programming and illustrated in the lower panel
(B). The decision about whether to dig depends on the value x of the cue and the subjective
probability that the environment is bad. A curve separates the region in which one should
dig (tan) from the region in which one should not (blue).
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Figure 3.4: Population distribution of subjective probabilities that the environment is bad
after 20 time steps, among foxes who have lived that long. When the environment is actually
bad (upper panel), all but 4.5 percent of the population accurately come to believe that the
environment is more likely to be bad than good. But when the environment is actually good
(lower panel), 8.8 percent of the population erroneously come to believe that it is more likely
that the environment is bad. All individuals began with a prior probability of 0.5 on the
environment being bad.
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that the environment is good, and the great majority correctly believing that the environment

is bad. When the environment is good, the majority of foxes learn this as well. But a

substantially minority reach the incorrect conclusion that the environment is bad. We see

this in the fatter tail of the population distribution of beliefs, and in the existence of a small

peak corresponding to the false conclusion that the environment is bad. In this example,

roughly twice as many individuals become overly sensitive to loud sounds because they think

the environment is bad as become insufficiently sensitive to loud sounds because they think

the environment is good (8.8 percent versus 4.5 percent).

One might have thought that having informative cues would always enable the individual

to learn to respond appropriately. The reason that it doesn’t is that if a fox is in a good

environment but is initially unlucky, and receives punishments after observing intermediate

cues, then the individual will no longer dig when faced with cues of similar or greater strength.

It thus becomes difficult for the fox to correct its mistake and learn that these cues indicate

a lower risk of danger than it believes. So this particular fox becomes stuck with an over-

sensitivity to the cues of potential danger. Its anxiety level is set too high. The same thing

does not happen when a fox in a bad environment is initially lucky. In that situation, the

fox continues to dig at burrows and is soon dealt a harsh punishment by the law of large

numbers.

3.5 Discussion

Researchers are discovering many ways in which adaptive behavior can result in seemingly

perverse consequences, such as apparent biases or “irrational” behavior [40, 22]. Exam-

ples include contrast effects [57], state-dependent cognitive biases [30, 69], optimism and

pessimism [59], and superstition [24].

The results of these studies generally explain that the apparently irrational behavior is

actually adaptive when understood in its appropriate evolutionary context. In this paper

we take a different approach by separating the question of optimal learning rules from the

question of whether each individual following such rules ends up behaving optimally. (See
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Trimmer et al. [91] for a similar approach applied to clinical depression.) We show how

behavior that is truly dysfunctional (in the sense that it reduces fitness) can arise in a

subset of a population whose members follow the optimal behavioral rule, i.e., the rule that

generates the highest expected payoff and would thus be favored by natural selection. This

approach is well suited to providing insight into behavioral disorders, since they afflict only

a subset of the population and are likely detrimental to fitness. We find that because an

exploration-exploitation tradeoff deters further exploration under unfavorable circumstances,

optimal learning strategies are vulnerable to erroneously concluding that an environment is

bad. A major strength of the model is that it predicts excessive anxiety in a subset of the

population, rather than in the entire population as we would expect from “adaptive defense

mechanism” or “environmental mismatch” arguments [66].

An interesting aspect of our model is that it predicts the effectiveness of exposure therapy

for anxiety disorders [70]. In the model, the individuals that are overly anxious become stuck

because they no longer observe what happens if they are undeterred by intermediate-valued

cues. If these individuals were forced to take risks in response to the cues that they believe are

dangerous but are actually safe, then they would learn that their beliefs were mistaken and

would correct their over-sensitivity. This exactly corresponds with the approach employed

in exposure therapy.

Of course such a simple model cannot explain the myriad specific characteristics of real

anxiety disorders. One example is that our model fails to capture the self-fulfilling prophecy,

or vicious circle aspect, common to excessive anxiety. Being afraid of badgers does not make

a fox more likely to encounter badgers in the future. But if a person is nervous because of

past failures, that nervousness may be a causal component of future failure. Test anxiety

is an example: a student performs poorly on one or more tests, becomes anxious about

subsequent tests, and that anxiety contributes to poor performance in the future. Though

it is challenging to see how such self-fulfilling anxiety fits into a framework of evolutionary

adaptation, modeling the runaway positive feedback aspect of anxiety is an intriguing area

for future work.
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Another interesting direction for future work would be to investigate the case when

the environment varies over time. Our current model is well suited to address a situation

in which offspring disperse to different patches in the environment that remain constant

over time (that is, when there is spacial variation but not temporal variation). But some

environments will also vary over the duration of an individual’s lifetime.

Before concluding, we want to point out a consequence in the second model of foxes being

able to learn about their environment even when they only observe the cue itself. This means

that there are actually two ways that a fox can end up being overly afraid despite living in

a good environment. The first parallels our example in the first model: the fox could have

had an unlucky early experience with a badger despite detecting only a modest signal, and

from this could have mistakenly concluded that it lives in a bad environment. But there is

another way that has no analog in the first model: It could be that or fox has never actually

encountered a badger firsthand, but rather has received a series of cues more consistent with

a bad environment then with a good one, and from these cues alone concluded that he lives

in a bad environment even though he’s never actually met a badger.

We speculate that these two different scenarios may correspond at least somewhat to

different types of anxiety disorders. In the former scenario, present anxiety is the result

of past trauma. Post-traumatic stress disorder would appear to be a very straightforward

example of such a situation. In the latter, present anxiety would be the result of the mistaken

belief that one lives in an unpredictable world, specifically one in which future trauma is

difficult to detect and avoid. In both cases, the excessive anxiety on the part of the fox is a

consequence of bad luck. But the bad luck can take different forms. In the former case the

bad luck comes in the form of a badger observed despite a low signal. In the latter, the bad

luck comes in the form of the unsampled signals taking a lower distribution than would be

expected given the state of the world.

In general, signal detection models of threat such as these can have a number of moving

parts. The degree to which the distribution of cues resulting from good events in bad worlds,

and bad events in good worlds happens to overlap is one important factor, and the one we
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focused on here. Another factor that we’ve mentioned is when the frequency of good and

bad events vary. A further possibility is that the benefits and costs of good and bad events

could vary as well. One might even consider mismatch models in which foxes have evolved

to distinguish between good and bad worlds but in fact badgers are entirely extinct. Here,

the fox might conclude that he lives in a bad world with low discriminability because he

has’t seen any of the high magnitude signals that he would see in a good world with high

discriminability. Considering this range of model possibilities one might be able to demarcate

a number of different types of anxiety with different etiology and different predicted forms

of treatment. We are currently developing models to explore these possibilities.

In this paper we have illustrated a fundamental design compromise: If an anxiety system

is able to learn from experience, even the most carefully optimized system is vulnerable to

becoming stuck in a state of self-perpetuating over-sensitivity. This effect is driven by the

tradeoff an individual faces between gaining information by experience and avoiding the risk

of failure when circumstances are likely unfavorable. Our results provide a new context

for thinking about anxiety disorders: rather than necessarily viewing excessive anxiety as a

result of dysregulated or imperfectly adapted neurological systems, we show that many of the

features of anxiety disorders can arise from individual differences in experience, even when

individuals are perfectly adapted to their environments. We suggest that this phenomenon

may be an important causal component of anxiety disorders.
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3.7 Appendix A: Sensitivity analysis for Model 1

A central point of this paper is that there is an asymmetry between the fraction of individuals

who are wrong about the environment when it is in fact good, and the fraction who are
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wrong about it when it is bad. In the example we chose in section 2, only 0.2 percent of

the population were optimistic in a bad environment, but 11.1 percent of the population

were pessimistic in a good environment. In this appendix we investigate the extent to which

changes in the model parameters affect this result.

There are 4 important independent values that parametrize the model. They are: the

probability pg of encountering a badger when the environment is good, the probability pb of

encountering a badger when the environment is bad, the discount factor λ, and the magnitude

of the cost of encountering a badger relative to the reward for finding a rabbit, C/R.

We first investigate the effect of varying pg and pb. In order for the state of the environ-

ment to matter—for there to be any use of gaining information—we must have the expected

payoff be positive when the environment is good, (1−pg)R−pgC > 0, and be negative when

the environment is bad, (1 − pb)R − pbC < 0. Rearranging these inequalities gives us the

constraints

pb >
R

R + C
> pg. (3.1)

When R = C, as in section 3, these constraints, along with the constraint that pg and pb

are probabilities that must lie between 0 and 1, restrict us to the square 0.5 < pb ≤ 1,

0 ≤ pg < 0.5. Figure 3.5 displays the results of analyzing the model over a grid of values for

pg and pb within this square. Plotted is the fraction of the population that is wrong about

the environment, as measured after 20 time steps among foxes who have survived that long.

In the upper left panel of Figure 3.5 (bad environment) the fraction of the population

that is wrong is negligible everywhere except for the lower left corner of the plot, where the

probabilities of encountering a badger in the good environment and in the bad environment

are so similar that 20 trials simply does not provide enough information for accurate dis-

crimination. But when the environment is actually good (upper right of Figure 3.5), it is

almost the entire parameter space in which a substantial fraction of the population is wrong

about the environment.

Instead of being smooth, the plots are textured by many discontinuities. Optimal behav-

ioral rules cease to explore after small numbers of failures. But these small numbers depend
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on the parameter values and so discontinuities result around curves in parameter space that

are thresholds for different optimal behavioral rules. However, in spite of the rugged shape

of the plot, the basic trend in the upper right-hand panel of Figure 3.5 is that the fraction

of the population that believes the environment is bad when it is actually good increases

with pg. In the lower panel of Figure 3.5 we see that for over 93 percent of the points in the

parameter grid more of the population is wrong in the good environment than in the bad

environment. And the small fraction of parameter combinations where this is not the case

all occur towards the edge of the parameter space (on the left side in the plot).

We next investigate the effect of varying the discount factor λ and the cost to reward ratio

C/R, while keeping pg and pb constant. Again, for it to matter whether the environment is

good or bad, our parameters must satisfy inequalities (3.1). Rearranging these gives us the

following constraint on the cost/reward ratio:

1− pb
pb

<
C

R
<

1− pg
pg

. (3.2)

When pg = 0.25 and pb = 0.75 this gives us 1
3
< C

R
< 3. Figure 3.6 shows results for the

model with values of C
R

sampled within this interval and values of λ ranging from 0.75 to

0.99. The beliefs are measured at the time step that is closest to 1
1−λ , the average lifespan

given a discount factor of λ.

Figure 3.6 shows that, similar to the pattern in Figure 3.5, the fraction of the population

that is wrong when the environment is bad is negligible except when there are not enough

time steps in which to make accurate discriminations (in the lower part of Figure 3.6).

By contrast, the fraction of the population that is wrong when the environment is good is

non-negligible throughout most of the parameter space.

Discontinuities due to optimal behavior being characterized by small integer values are

especially striking here, especially in the upper right panel of Figure 3.6. What is happening

is that the number of failures it takes before it is optimal to cease to explore is the main

outcome distinguishing different parameter choices. With pg and pb fixed, that number also

determines the fraction of the population that will hit that number of failures. And so
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Figure 3.5: Varying the probability of encountering badgers in each environment. With
λ = 0.95, C = 1, and R = 1, the upper panels show how the fraction of the population that
is wrong about the environment varies as a function of the parameters pg and pb. The upper
left shows the fraction that thinks the environment is good when it is actually bad. The
upper right panel shows the fraction that thinks the environment is bad when it is actually
good. This fraction is measured conditional on survival to the 20th time step, which is the
average lifespan when λ = 0.95. The lower panel illustrates the log (base 10) of the ratio of
incorrect inference rates in good and bad environments. For a small set of parameter values
(shown in orange), incorrect inferences are more common in the bad environment. The gray
area in each plot is a region in which it is not worthwhile to start exploring at all.
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Figure 3.6: Varying the discount factor and cost/reward ratio. With pg = 0.25 and pb = 0.75,
the upper panels show how the fraction of the population that is wrong about the environment
varies as a function of λ and C/R. The upper left plot displays the fraction that thinks the
environment is good when it is actually bad; the upper right plot displays the fraction that
thinks the environment is bad when it is actually good. This fraction is measured at the
time step that is closest to 1

1−λ , the average lifespan given λ. (The faint horizontal bands

towards the lower part of the plots are due to the fact that 1
1−λ must be rounded to the

nearest integer-valued time step.) The lower plot illustrates the log (base 10) of the ratio
of incorrect inference rates in good and bad environments. Here, incorrect inferences are
more common in good environments for all parameter values. The gray area in each plot is
a region in which it is not worthwhile to start exploring at all.
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the plot is characterized by a small number of curved bands in which the fraction of the

population that is wrong about the environment is nearly constant. Although the value is

nearly constant within each band, we can still describe the trend across these bands. We

see that the fraction of the population that believes that the environment is bad when it is

actually good increases with increasing relative cost or decreasing discount factor.

3.8 Appendix B: Finding optimal behavior

The signal detection model of section 3, in which the fox uses environmental cues, is defined

by the discount factor λ, the cost of encountering a badger C, the reward from catching a

rabbit R, the initial subjective probability of being in a bad environment q0, the probabilities

of badgers in the good environment (pg) and in the bad environment (pb), and the Gaussian

distribution parameters µg,c, σg,c, µg,r, σg,r, µb,c, σb,c, µb,r, and σb,r. The simpler model of

section 2 can be seen as a special case of the more complex model in which the cues carry

no information (because the means are all the same). Thus, analyzing the model with cues

will also provide an analysis of the simpler model. The problem can be framed as a Markov

decision process, and can be analyzed with a dynamic programming approach [11].

The fox knows the initial prior probability that the environment is bad, and at time

step t will also know the outcome of any attempts made before t. For each time step t and

all possible previous experience, a behavioral rule specifies the threshold cue level ut such

that the fox will not dig at the burrow if the observed cue intensity, xt, is greater than ut.

The only relevant aspect of previous experience is how this experience changes the current

conditional probability qt that the environment is bad. So an optimally behaving agent will

calculate qt using Bayes’ rule, and use this value to determine the threshold level ut. Thus,

we can express a behavioral rule as the set of functions ut(qt).

Let

fg,c(x) =
1

σg,c
√

2π
e
− (x−µg,c)2

2σ2g,c

be the Gaussian distribution function with mean µg,c and standard deviation σg,r and simi-

larly let fg,r(x), fb,c(x), and fb,r(x) be the other three corresponding Gaussian distributions.
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3.8.1 Expected immediate payoff

Let ιt be the indicator random variable that equals 1 if the burrow contains a badger and

equals 0 if the burrow contains a rabbit at time t. (Note that the random variables ιt and xt

covary.) We now define y(qt, ut, xt, ιt) to be the payoff the fox receives at time t as a function

of its threshold (ut), the probability qt that the environment is bad, and the random variables

xt and ιt. So

y(qt, ut, xt, ιt) =


0 if xt > ut

R if xt ≤ ut and ιt = 0

−C if xt ≤ ut and ιt = 1

In the bad environment, the probability density of badgers and a cue strength of xt is

fb,c(xt) pb. Likewise, fg,c(xt) pg gives the probability density of badgers and a cue strength

of xt in the good environment. Similarly fb,r(xt) (1− pb), and fg,r(xt) (1− pg) give the same

probability densities for rabbits. This allows us to calculate the expected immediate payoff

for the strategy of threshold ut as

E{y(qt, ut, xt, ιt)} =

∫ ut

−∞

[(
fb,c(xt) pb qt + fg,c(xt) pg (1− qt)

)
(−C)

+
(
fb,r(xt) (1− pb) qt + fg,r(xt) (1− pg) (1− qt)

)
R
]

dxt.

3.8.2 Bayesian updating

We now describe how the Bayesian probability that the environment is bad, qt, changes with

time t. That is, we show how qt+1 stochastically depends on qt and the threshold ut.

The probability that the cue intensity is less than or equal to the threshold (xt ≤ ut) is

given by∫ ut

−∞

[(
fb,c(xt) pb + fb,r(xt) (1− pb)

)
qt +

(
fg,c(xt) pg + fg,r(xt) (1− pg)

)
(1− qt)

]
dxt.

The probability that the cue intensity is greater than the threshold (xt > ut) is the comple-

ment (the above quantity subtracted from 1).
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If xt > ut, then the fox does not explore the burrow, but gains information about the

environment from the cue itself, xt. In the bad environment, the probability density on cues

x is given by

pb fb,c(x) + (1− pb)fb,r(x).

Similarly, in the good environment it is given by

pg fg,c(x) + (1− pg)fg,r(x).

So according to Bayes’ rule, the posterior distribution on qt+1 given an xt > ut is

qt+1 =
qt
(
pb fb,c(xt) + (1− pb)fb,r(xt)

)
qt
(
pb fb,c(xt) + (1− pb)fb,r(xt)

)
+ (1− qt)

(
pg fg,c(xt) + (1− pg)fg,r(xt)

) .
On the other hand if xt ≤ ut, the fox decides to dig. The fox will then observe both the

cue and whether the burrow contains a badger or a rabbit. The conditional probability that

the burrow contains a badger given the cue xt and a bad environment is

P(badger |xt, bad env.) =
P(xt | badger, bad env.) P(badger | bad env.)

P(xt | bad env.)

=
fb,c(xt) pb

fb,c(xt) pb + fb,r(xt) (1− pb)
.

(Note that technically some of these quantities are probability densities rather than proba-

bilities.) Similarly, if the environment is good, then

P(badger |xt, good env.) =
P(xt | badger, good env.) P(badger | good env.)

P(xt | good env.)

=
fg,c(xt) pg

fg,c(xt) pg + fg,r(xt) (1− pg)
.

Thus, the total probability of encountering a badger (ιt = 1) given an xt ≤ ut is

qt
fb,c(xt) pb

fb,c(xt) pb + fb,r(xt) (1− pb)
+ (1− qt)

fg,c(xt) pg
fg,c(xt) pg + fg,r(xt) (1− pg)

.

If the burrow does contain a badger, then by Bayes’ rule we can express the posterior
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probability that the environment is bad as follows.

P(bad env. |xt, badger) =
P(xt, badger | bad env.) P(bad env.)

P(xt, badger)

P(bad env. |xt, badger) =
P(xt | badger, bad env.) P(badger | bad env.) P(bad env.)

P(xt, badger)

qt+1 =
fb,c(xt) pb qt

fb,c(xt) pb qt + fg,c(xt) pg (1− qt)
.

Perfectly analogous calculations hold for the case when the burrow contains a rabbit (ιt = 0).

Below, we will express qt+1 as a function,

qt+1 = w(qt, ut, xt, ιt),

that depends on the threshold ut, the probability qt, and the random variables xt and ιt, as

described above.

3.8.3 Dynamic programming

The dynamic programming algorithm now consists of recursively calculating the maximum

payoff attainable over all time steps subsequent to t, as a function of the current probability

that the environment is bad. This maximum payoff is denoted Vt(qt), and the recursive

formula is

Vt(qt) = max
ut

E{y(qt, ut, xt, ιt) + λVt+1(w(qt, ut, xt, ιt))}.

And the optimal decision rule functions, u∗t , are given by

u∗t (qt) = arg max
ut

E{y(qt, ut, xt, ιt) + λVt+1(w(qt, ut, xt, ιt))}.

Because qt is a continuous variable, a discrete approximation must be used for the actual

computation. Then the table of values for Vt+1 is used to compute the values for Vt, indexed

by qt. For qt we used 1001 discrete values (0, 0.001, 0.002, . . . , 1). As mentioned in section 3,

we set µg,c = 2, µb,c = 1, µg,r = µb,r = 0, and σg,r = σg,c = σb,r = σb,c = 0.5. To discretize

xt, we must pick minimum and maximum values, which we set at −2 and 4, respectively.
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Within this interval we discretized xt to 200 values. Because there is a tiny area lost at the

ends of the distributions, we renormalized the total probabilities to 1.

The algorithm then gives us two tables: one containing the expected values and the other

containing the optimal decision rule functions, or thresholds, u∗t (qt), which are indexed by

our grid of values for qt. To find the optimal behavior in the limit as the possible lifetime

extends towards infinity, the recursion is repeated until the optimal decision rules converge

[11]. The algorithm was implemented in python.

Once we have found the optimal decision rule, for each time step we can calculate the

expected proportion of the population that has each value of qt as its estimate. Since the

behavioral rule specifies the threshold for each value of qt, we can use the distribution derived

above for qt+1 = w(qt, ut, xt, ιt) to calculate the proportions for time t+1 given the proportions

for time t. Because we discretized the qt values, we round the calculation of qt+1 to the nearest

one thousandth.
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Chapter 4

A HYGIENE HYPOTHESIS FOR ANXIETY?

By Frazer Meacham and Carl T. Bergstrom

4.1 Abstract

Anxiety disorders are a leading cause of disability and morbidity, especially in developed

countries, with rising incidence and limited effective treatments. The ultimate cause for

the frequency of anxiety disorders remains largely a mystery. Why has natural selection

not done a better job of preventing us from being vulnerable to such a common, chronic

condition? The evolutionary medicine approach has provided great insight into other kinds

of common chronic disorders. For example, the “hygiene hypothesis” for autoimmune and

inflammatory diseases (whether in its original form or an updated “old friends” version) has

provided an environmental mismatch explanation for the high prevalence of such diseases.

This hypothesis now has extensive empirical support showing that the decreased prevalence

of microorganisms and parasites has led, paradoxically, to increased immune activity that

causes these diseases of the immune system. In this paper, we explore an analogous ex-

planation for anxiety disorders, whereby the decreased prevalence of threats in our modern

environment is the cause of increased levels of anxiety. As an illustration, we develop and

analyze a mathematical model, based on previous canonical models of anxiety, to capture

this evolutionary mismatch phenomenon. We show that the agents of this simple model show

paradoxical excessive anxiety when exposed to an environment with fewer threats than the

environment in which they evolved. Although this work serves only to propose and explore

this hypothesis, if future empirical work supports it, this will have important implications

for the prevention and possibly the treatment of anxiety disorders.
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4.2 Introduction

By a myriad of measures, the modern environment of developed societies is safer and contains

vastly fewer threats to our survival than the environment of our ancestors during most of

our evolutionary history. Not only are we safer from accidents, diseases, and predators,

but evidence from contemporary primitive societies strongly suggests we are also safer from

threats from other humans such as homicides and warfare [29]. Our ancestors likely coped

with their dangerous environment by being vigilant to all sorts of potential threats. This

necessity for vigilance is the evolutionary explanation for our capacity to experience anxiety:

anxiety is an adaptive response to situations that involve potential threats, and it serves to

make us more alert and primed to deal with threats.

When an environment becomes safer, such as the modern environment of developed

societies, threatening situations become rarer, and the protective role of anxiety will not

need to be triggered as often. So given the evolutionary explanation for anxiety, one would

expect that a safer modern environment would lead to anxiety being less common. But this

is not what we see. Anxiety is extremely common in modern society, with a large subset of

the population suffering from anxiety disorders [85, 42, 6]. How do we make sense of this?

The evolutionary medicine approach to anxiety and anxiety disorders begins with Nesse’s

framing the problem in the context of signal detection theory [65, 67]. The central insight

was that even an adaptive anxiety response should be expected to exhibit false alarms the

majority of the time. Further modeling work has described how individuals may become

stuck in overly pessimistic states because of asymmetries of the learning process [91, 60].

However, none of these models explain why anxiety would increase as the environment be-

comes safer. In the absence of the dangers that anxiety was designed to protect us from,

anxiety itself is now causing us harm, and it is not clear why.

We notice a parallel in the biology of inflammatory and autoimmune diseases. These

diseases pose another example where a system that is built to protect us—in this case

the immune system—is now the cause of a disease. Recent history has shown a striking
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increase in the prevalence of these types of disease. One well supported explanation for this

increase, based on principles of evolutionary medicine, is the so-called “hygiene hypothesis”

[87, 71]. This hypothesis proposes that our immune system is adapted to an environment

where parasites and infectious agents are relatively common, and that it is not adapted to the

extremely low level of parasites and pathogens in modern developed societies. This mismatch

results in over-activation of the immune system. The hypothesis has been well supported

by many studies, such as studies showing how increasing rates of parasitism and microbial

infection correspond to decreasing rates of inflammatory diseases [92, 7]. The upshot is that

these diseases may actually be caused in part by our attempts to make the world more free

of disease.

We wonder if the same thing might be happening with anxiety. Could the increased safety

of modern society actually be a causal factor for anxiety disorders? This paper develops a

mathematical model to explore this question. In particular, our approach is to discover

whether this seemingly paradoxical outcome can occur within the standard evolutionary

medicine modeling framework used to model anxiety.

4.3 Modeling approach

The signal detection model of anxiety was proposed by Nesse and has since been expanded

upon by other researchers [65, 5, 69]. In its basic form, the model consists of an individual who

is trying to distinguish safe situations from dangerous situations. With each of these types of

situations is associated a normal distribution of cue intensities. These cue intensities might

represent how loud a noise is that might indicate an approaching predator, or how threatening

a rival is behaving that might indicate an imminent fight, etc. The cue distribution for

dangerous situations has a higher mean than the cue distribution for safe situations, so an

individual trying to avoid danger will flee from cues above some threshold level. If the

threshold is set relatively low, the individual is quite sensitive to signs of potential danger,

and this is conceptualized as corresponding to higher anxiety. If the individual sets its

threshold relatively high, it is not sensitive to signs of threat, which corresponds to low
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anxiety.

Given specific costs for false negatives and false positives, along with the means and

variances of both normal distributions, the simple version of the model described above can

be used to calculate optimal behavior. But individuals will not have all of these pieces

of information, and instead must learn some of them from observation. For example, an

individual might not know the cost of getting hurt, or the frequency of danger, or how

easy it is to distinguish dangerous situations from safe situations. Especially relevant to the

problem of how changing the amount of threatening stimuli affects anxiety is the process

whereby individuals learn from experience how much threat stimulus to expect. Thus, in this

paper we investigate a version of the model in which individuals must learn from observation

whether they are in an environment in which danger is easy to detect (more and stronger

threat stimuli) or in an environment in which danger is hard to detect (fewer and weaker

threat stimuli).

In the signal detection paradigm, danger is hard to detect when the means of the cue

distributions for safe and dangerous situations are close together. Danger is easy to detect

when the means of the distributions are far apart (see Figure 4.1). If an individual does not

know which kind of environment it has been born into, it must learn from experience how

easy danger is to detect. Natural selection will act towards optimizing the learning behavior

that the individual follows in this trial and error process. Therefore, after setting up our

model, we will solve for the optimal learning behavior, and then investigate how this optimal

behavioral strategy responds to a safer environment from the one to which it is adapted.

In this way, our model should give insight into how we should expect an anxiety system to

respond to a safer modern environment.

4.4 Model

We suppose that natural selection has acted to optimize individuals’ responses to the problem

of distinguishing between two environments: one in which danger is difficult to discriminate

from safety (the “hard” environment), and one in which danger is relatively easy to discrim-
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Figure 4.1: Cue distributions for safe and dangerous events in the easy environment and hard
environment. Cues generated from safe events have the same distribution in both environ-
ments. Cues generated by dangerous events in the easy environment have a distribution that
is far outside the distribution for safe events. Cues generated by dangerous events in the hard
environment, however, have a distribution with substantial overlap with the distribution for
safe events.
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inate from safety (the “easy” environment). In these ancestral conditions, upon birth an

individual finds itself in a hard environment with probability q0, and in an easy environment

with probability 1 − q0. In both environments, the probability that an event is dangerous

is p, the probability that an event is safe is 1 − p, and the mean of the cue distribution for

safe events is µ. In the hard environment, the mean of the cue distribution for danger is θH ,

whereas in the easy environment it is θE (where θE > θH). We assume that all distributions

have the same variance, σ2.

The individual will encounter a sequence of cues at successive time points during its

lifetime, and must decide at each one whether to flee from the cue or not. We let R > 0 be

the reward for staying when the event was safe, and C < 0 be the cost of staying when the

event was actually dangerous. If the individual decides to flee, the payoff is zero (regardless

of whether the event that the individual flees was actually dangerous or safe). Future rewards

are discounted at a rate of λ per time step, and the individual’s success is measured by its

total lifetime payoff. We discount the rewards to account for the death of individuals. A

discount rate of λ corresponds to individuals dying at a constant probability of 1 − λ per

time step. We assume infinite population size.

At each time step, the individual must make a decision as to what level of cue it will

explore. The individual gains information about the kind of environment it is in at each

time step by observing the cue, and also from the outcome of exploring the event if it does

decide to explore. So a strategy consists of a threshold cue setting for any sequence of

previous experiences. Luckily, the analysis is made simpler by the fact that all the relevant

information from the sequence of previous experiences is contained in the current conditional

probability that the individual’s environment is easy versus hard. Thus, a strategy consists

of a threshold setting for any given conditional probability that the environment is easy

versus hard. This optimal behavior is found with a dynamic programming algorithm (see

appendix).

Once we have found the optimal learning rule, we can look at a population of optimal

learners within any particular environment, and describe their threshold settings after expe-
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riencing a certain number of events. Because of the stochasticity involved, the cue thresholds

within a population of individuals will follow some distribution. This distribution is based

on the distribution of individual conditional probabilities that the environment is easy versus

hard, which result from the different specific experiences each individual has.

In the next section, we calculate these distributions for both the hard and easy environ-

ment, as well as for two cleansed environments where instead of the probability of danger

being p, it is pm < p (see Figure 4.2). These environments represent modern environments

that are mismatched to our ancestral conditions in that the great majority of dangerous

threats have been removed. One is a less dangerous version of the easy environment (de-

scribed below and shown in Figure 4.2), the other is a less dangerous version of the hard

environment (results described in the text).

4.5 Results

Figure 4.2 (upper panel) shows the distribution of thresholds for individuals who have experi-

enced 20 events in a hard environment, and Figure 4.2 (middle panel) shows the distribution

of thresholds for individuals who have experienced 20 events in an easy environment. (This

value is chosen because 20 time steps is the life expectancy given our value for λ.) The

parameter settings in this example are: safe cue distribution mean µ = 4, mean of the cue

distribution in the hard environment θH = 6, mean of the cue distribution in the easy en-

vironment θE = 9, distribution variances σ2 = 1, reward for staying when the event is safe

R = 1, cost of staying when the event is dangerous C = −20. The rate at which future re-

wards are discounted is λ = 0.95. The probability that an event is dangerous in the ancestral

environments is p = 0.25, in the modern environments it is pm = 0.025.

In the third panel of Figure 4.2 we show what happens when individuals are placed in

an environment mismatched to the ones in which they evolved. This environment is like the

one where danger is easy to detect, except that the frequency of danger has been reduced

by 90%. This is analogous to a modern developed society where imminent threats to basic

survival have been mostly removed. What we see is that, after individuals are exposed to
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Figure 4.2: Cue distributions and population thresholds after individuals observe 20 events.
The upper and middle panels show the hard environment and the easy environment, re-
spectively. The yellow curves give the cue distribution for safe events, the blue curves give
the cue distribution for dangerous events, and the dashed blue curves give the cue distri-
bution for dangerous events multiplied by the relative cost of a false negative. The black
area plot spikes give the population thresholds. For both the hard and easy environment,
the great majority of individuals learn how to set their thresholds close to optimally, placed
where the yellow curve intersects the blue dashed curve. In the cleansed environment (lower
panel), a great many of the individuals incorrectly believe that the environment is hard, and
consequently end up much too sensitive to cues of potential danger.
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20 events, a great many (over 50%) believe that the environment is one in which danger is

hard to detect, and thus are far too sensitive to cues of potential danger.

Another possible environment is one like the ancestral hard environment but with less

frequent danger. When we calculate expected behavior in such an environment where danger

has been reduced by 90%, the results are very similar to the ancestral hard environment,

with over 95% of individuals believing that the environment is hard (data not plotted). This

still causes individuals to set their thresholds too low because this cleansed environment is

of course safer than the ancestral hard environment.

The results we see here are driven by the way individuals in the model learn from the

observations they make. Because individuals must avoid danger, they set their thresholds

low enough so that it is rare that they stay in a situation that turns out to be dangerous.

Because of this, instead of learning about the environment by directly experiencing harmful

events, the majority of an individual’s learning comes from observing the intensities of the

cues that they do not explore. In the ancestral conditions, what they learn from observing

the cues is how often there are cues that strongly indicate danger. If cues that indicate

danger strongly are relatively common, this means that the individual is more likely to be

in an environment in which danger is easy to distinguish from safety. On the other hand, if

cues that indicate danger strongly are relatively rare, this means they are more likely to be

in an environment in which danger is difficult to detect. In the ancestral environments, this

strategy works. But when these individuals are placed in the environment in which danger

has been greatly reduced, their strategy malfunctions. We are left with the observation that

removing danger has caused anxiety to increase.

4.6 Discussion

We have demonstrated the surprising result that decreasing the amount of threatening stim-

uli has the potential to increase an individual’s anxiety. Another mechanism that could

produce a similar effect was recently demonstrated by [90]. As in previous work [91, 60],

both our model and their’s expand the basic signal detection framework by including mul-
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tiple successive trials. But rather than including environmental mismatch to the evolved

anxiety response, as we do, they add an assumption that the cost of fleeing is a loss of a for-

aging opportunity. This loss takes away from the individual’s energy reserves. With enough

such losses, energy reserves drop below a critical level and the individual dies. With these

assumptions, they find that an individual might become more sensitive to cues of danger

when such cues are rarer, not because they misinterpret the frequency of danger, as in our

model, but because the individual can afford to be more skittish because future safer forag-

ing opportunities will be more common. In this way, their model depends on varying energy

reserves, whereas our model depends on environmental mismatch. Because of this, the two

hypotheses could be distinguished by testing whether, for example, lower energy reserves

lead the individual to be less sensitive to cues of danger.

An important point in the background of our hypothesis, as well as the traditional hygiene

hypothesis for inflammatory and autoimmune diseases, is that the environment of modern

society has not changed from our ancestral environment in an arbitrary way. Instead, we hu-

mans have purposely modified our environment in ways that are consistent with our evolved

desires. We attempt to increase access to things that we are innately attracted to, and elim-

inate things we are innately averse to. In the case of parasites, pathogens, and threats of

danger, our society has generally tried to remove them, and has had much success in doing

so.

The above point has guided the development of our model. Our approach of modeling

an environment mismatched to the one that individuals are adapted to contrasts with the

traditional optimality approach used in much previous work [56, 91, 90, 60]. If our choice of

mismatched environments were arbitrary, then the objection could be raised that our results

would be equally arbitrary. But this is not the case, as our choice was constrained by the

fact that we humans have modified our environment to remove threatening stimuli. The

mismatch in our model reflects this exact case.

In recent years, alternative formulations have been proposed to revise the original hygiene

hypothesis. In particular, the “old friends” hypothesis points out that many autoimmune
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and inflammatory diseases may be caused not by the absence of pathogenic organisms but

by the absence of benign or beneficial microorganisms [83, 82]. But whichever version of

the hypothesis one accepts, the basic cause of the increase in prevalence of these diseases

is our own modification of our environment. And these modifications are usually a result

of our attempts to satisfy basic human wants. In this view, inflammatory and autoimmune

diseases are diseases of society’s over-indulgence of our evolved desires. Our suggestion is

that anxiety disorders may be another example of such a disease.
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4.8 Appendix: Model analysis

The model and analysis of this paper is similar to that of [60]. Similar to that paper, our

signal detection model is defined by the discount factor λ, the cost of failing to flee true

danger C, the reward for staying during safety R, the initial subjective probability of being

in the hard environment q0, the probability of danger in both ancestral environments p, the

Gaussian distribution parameters (cue variances σ2, mean cue for safety in both environments

µ, mean cue for danger in the hard environment θH , and in the easy environment θE). The

problem of finding optimal behavior can be framed as a Markov decision process, and can

be analyzed with a dynamic programming approach [11]. After finding optimal behavior, we

can calculate the expected population distribution of anxiety levels for both these ancestral

environments and for a mismatched modern environment where the probability of danger is

pm < p.

An individual is adapted to believe that the initial prior probability that the environment

is hard is q0, and at time step t will also know the outcome of any attempts made before

t. For each time step t and all possible previous experience, a behavioral rule specifies the

threshold cue level ut such that the individual will flee for any cue xt where xt > ut. The only
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relevant aspect of previous experience is how this experience changes the current conditional

probability qt that the environment is hard. So an optimally behaving agent will calculate

qt using Bayes’ rule, and use this value to determine the threshold level ut. Thus, we can

express a behavioral rule as the set of functions ut(qt).

4.8.1 Expected immediate payoff

For what follows, let

gθ(x) =
1

σ2
√

2π
e−

(x−θ)2

2σ2

be the Gaussian distribution function with mean θ and standard deviation σ2.

We let ιt be the indicator random variable that equals 1 if the event was dangerous and

equals 0 if the event was safe at time t. (Note that the random variables ιt and xt covary.)

We now define y(qt, ut, xt, ιt) to be the payoff the individual receives at time t as a function of

its threshold (ut), the probability qt that the environment is hard, and the random variables

xt and ιt. So

y(qt, ut, xt, ιt) =


0 if xt > ut

R if xt ≤ ut and ιt = 0

−C if xt ≤ ut and ιt = 1

In the hard environment, the probability density of danger and a cue strength of xt is

gθH (xt) p. Likewise, gθE(xt) p gives the probability density of danger and a cue strength of xt

in the easy environment. In both environments, the cue distribution for safety is gµ(xt) (1−p).
This allows us to calculate the expected immediate payoff for the strategy of threshold ut as

E{y(qt, ut, xt, ιt)} =

∫ ut

−∞

[(
gθH (xt) qt + gθE(xt) (1− qt)

)
p (−C) + gµ(xt) (1− p)R

]
dxt.

(4.1)
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4.8.2 Bayesian updating

We now describe how the individual’s subjective Bayesian probability that the environment

is hard, qt, changes with time t. That is, we show how qt+1 stochastically depends on qt and

the threshold ut. Keep in mind that qt is the probability that the environment is hard, which

we could also express as P(hard env.).

The probability that the cue intensity is greater than the threshold (xt > ut) is given by

P(xt > ut) =

∫ ∞
ut

[(
gθH (xt) qt + gθE(xt) (1− qt)

)
p+ gµ(xt) (1− p)

]
dxt. (4.2)

The probability that the cue intensity is less than or equal to the threshold, P(xt ≤ ut), is

the above quantity subtracted from 1.

If xt > ut, the individual flees, but gains information about the environment from the

cue itself, xt. In the hard environment, the probability density on cues xt (regardless of t) is

given by

f(xt | hard env.) = gθH (xt) p+ gµ(xt) (1− p).

Similarly, in the easy environment it is given by

f(xt | easy env.) = gθE(xt) p+ gµ(xt) (1− p).

So according to Bayes’ rule, the posterior value for qt+1 given an xt > ut is

P(hard env. |xt) =
f(xt | hard env.) P(hard env.)

f(xt | hard env.) P(hard env.) + f(xt | easy env.) P(easy env.)

qt+1 =

(
gθH (xt) p+ gµ(xt) (1− p)

)
qt(

gθH (xt) p+ gµ(xt) (1− p)
)
qt +

(
gθE(xt) p+ gµ(xt) (1− p)

)
(1− qt)

. (4.3)

On the other hand if xt ≤ ut, the individual decides to stay. The individual will then

observe both the cue and whether the event was actually dangerous or safe. The conditional

probability that the event was dangerous given the cue xt and a hard environment is

P(danger |xt, hard env.) =
f(xt | danger, hard env.) P(danger | hard env.)

f(xt | hard env.)

=
gθH (xt) p

gθH (xt) p+ gµ(xt) (1− p) .
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Similarly, if the environment is easy, then

P(danger |xt, easy env.) =
P(xt | danger, easy env.) P(danger | easy env.)

P(xt | easy env.)

=
gθE(xt) p

gθE(xt) p+ gµ(xt) (1− p) .

Thus, the total probability of the event being dangerous (ιt = 1) given an xt ≤ ut is

P(ιt = 1 |xt) = qt
gθH (xt) p

gθH (xt) p+ gµ(xt) (1− p) + (1− qt)
gθE(xt) p

gθE(xt) p+ gµ(xt) (1− p) . (4.4)

If the event indeed was dangerous, then by Bayes’ rule we can express the posterior proba-

bility that the environment is hard as follows.

P(hard env. |xt, danger) =
f(xt, danger | hard env.) P(hard env.)

f(xt, danger)

P(hard env. |xt, danger) =
f(xt | danger, hard env.) P(danger | hard env.) P(hard env.)

f(xt, danger)

qt+1 =
gθH (xt) p qt

gθH (xt) p qt + gθE(xt) p (1− qt)
. (4.5)

On the other hand if the event was safe, then the posterior probability that the environment

is hard is

qt+1 =
gµ(xt) p qt

gµ(xt) p qt + gµ(xt) p (1− qt)
.

qt+1 = qt. (4.6)

In other words, when the agent stays and the event was safe, this information does not

change the individual’s subjective probability that the environment is hard. This is because

the distribution on cues for safe events is the same in both the hard and easy environments.

In total, the above calculations allow us to express qt+1 as a function,

qt+1 = w(qt, ut, xt, ιt),

where

w(qt, ut, xt, ιt) =


[the quantity in eq. 4.3] with probability P(xt > ut)

gθH (xt) p qt

gθH (xt) p qt+gθE (xt) p (1−qt) with prob. P(ιt = 1 |xt) (1− P(xt > ut))

qt with prob. (1− P(ιt = 1 |xt) (1− P(xt > ut))
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from equations 4.3, 4.5, and 4.6 and where the values for P(xt > ut) and P(ιt = 1 |xt) are

given in equations 4.2 and 4.4, respectively.

4.8.3 Dynamic programming

The dynamic programming algorithm now consists of recursively calculating the maximum

payoff attainable over all time steps, t, as a function of qt, the probability that the environ-

ment is hard. The calculation is carried out over a discretization spanning all values of qt,

moving backwards in time. The maximum payoff is denoted Vt(qt), and the recursive formula

is

Vt(qt) = max
ut

E{y(qt, ut, xt, ιt) + λVt+1(w(qt, ut, xt, ιt))}.

And the optimal decision rule functions, u∗t , are given by

u∗t (qt) = arg max
ut

E{y(qt, ut, xt, ιt) + λVt+1(w(qt, ut, xt, ιt))}.

Where the functions y and w are described in the previous subsections.

Because qt is a continuous variable, a discrete approximation must be used for the actual

computation. Then the table of values for Vt+1 is used to compute the values for Vt, indexed

by qt. For qt we used 1001 discrete values (0, 0.001, 0.002, . . . , 1).

As for the cues, xt, as mentioned in section 3, we set the parameters of the distributions

to µ = 4, θH = 6, θE = 9, and σ2 = 1. To discretize xt, we must pick minimum and

maximum values, which we set at 0 and 13, respectively. Because there is a tiny area lost

at the ends of the distributions beyond [0, 13], we renormalized the total probabilities to 1.

Because the optimal threshold given qt will never be lower than the optimum for the hard

environment (when qt = 1), nor higher than the optimum for the easy environment (when

qt = 0), precision matters more for the values of xt within this interval than beyond it. So, to

increase computational efficiency, we discretized xt to intervals of size 0.0125 within [4.0, 6.2]

but only to size 0.05 outside of [4.0, 6.2].

The algorithm then gives us two tables: one containing the expected payoff values and

the other containing the optimal decision rule functions, or thresholds, u∗t (qt), which are
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indexed by our grid of values for qt. To find the optimal behavior in the limit as the possible

lifetime extends towards infinity, the recursion is repeated until the optimal decision rules

converge [11]. The algorithm was implemented in python.

Once we have found the optimal decision rule, for each time step we can calculate the

expected proportion of the population that has each value of qt as its estimate. Since the

behavioral rule specifies the threshold for each value of qt, we can use the distribution derived

above for qt+1 = w(qt, ut, xt, ιt) to calculate the proportions for time t+1 given the proportions

for time t. This can be done for different probabilities or distributions on ιt and xt than were

used to find the optimal behavior, so for the mismatched environments we used pm instead of

p as the marginal probability that ιt = 1. Because we discretized the qt values, we rounded

the calculations of qt+1 to the nearest one thousandth.
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