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 Microtubules in neurons provide structural stability, and also provide a transport route for 

cellular cargo carried by motor proteins. Exactly how microtubules are organized and maintained 

in neurons is not clear, but microtubule organizing centers (MTOCs) in neurons are not required 

as in non-neuronal cells. Assembly of microtubules within neurons is a major factor that affects 

neuronal morphology, and is regulated by tubulin availability and other nucleating factors. 

Maintenance of microtubules is determined in large part by post-translational modifications 

(PTMs), and regulation of disassembly factors. Consequences of perturbed microtubule 

dynamics include failure to specify the axon and dendrite of neurons, and can lead to 

neurological defects due to failed neuronal migration. Inhibited microtubule dynamics in neurons 

also lead to morphological defects and dampened synaptic plasticity. This review discusses the 

current state of knowledge regarding the effect of microtubule dynamics on neuronal 

morphogenesis.   
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1. Introduction: Significance of (neuronal) microtubule dynamics. 

Structural support of cells derives in large part from formation and maintenance of 

cytoskeletal components. Actin based structures are often located at the periphery of cells. At the 

core of cells in nearly all organisms are microtubules composed of alternating tubulin subunits. 

In their best understood arrangement, α and β-tubulin dimerize and then build on a γ-tubulin ring 

complex to create a microtubule polymer. Equally important is the formation and maintenance of 

the spindle machinery in dividing cells, accomplished via microtubule dynamics that regulate 

attachment to and severance from centrosomes and kinetochores. Consequences of perturbed 

microtubule dynamics during cell division can be dire. In human germ cells, improper 

chromosome segregation can lead to mental retardation or non-viability1, and in somatic cells 

aberrant genetic transfer can cause malignant cancers2,3. In a neuron, microtubules are 

invaluable; not only does the cell often migrate long distances for proper function, but also it 

must stretch and maintain the ability to change in response to various stimuli. Mutations in α-

tubulin correlate highly with Lissencephaly and a small cerebellum in humans4. Thus complex 

regulation of microtubule dynamics on the cellular level supports healthy growth and 

development of an organism. 

In the nervous system, it is clear that neuronal growth (axon/dendrite specification), 

migration, and morphogenesis (neurite arborization) are particularly dependent on proper 

microtubule dynamics. Whether a neuron achieves the proper patterns and reaches its proper 

targets depend on the reliable transport of cargo along microtubules. The mechanistic basis for 

neuron patterning is still under investigation, especially in vivo, but it is well established that 

activity of cytoskeletal proteins like actin and tubulin are crucial for proper neurite formation5. 

The role of actin in neuronal morphogenesis is not discussed further here. Rather, this review 
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describes our current understanding of how microtubule dynamics are regulated in neurons, 

whether these mechanisms are known to function in neuronal morphogenesis, and explores the 

relationship between microtubule-based processes and neuron function. 

2. Microtubule organization in neurons: Intrinsic polarity of microtubules/neurons. 

Microtubules have intrinsic polarity but their organization can and often does change. In 

a typical cell, α and β-tubulin dimers assemble from a “minus-end” that is capped by γ-tubulin 

ring complex (γ-TURC) designated as the microtubule organizing center (MTOC)6. α−tubulin 

occupies the position closer to the MTOC, whereas β-tubulin is added to the more dynamic 

microtubule “plus-end”. The centrosome serves as the MTOC in most cells, including neurons, 

prior to axon and dendrite formation. In non-neuronal cells most microtubules originate from the 

MTOC7 for the duration of the cell’s life. In neurons however the role of a singular MTOC is not 

supported. In Drosophila larvae, the centrosome is dispensable for microtubule nucleation in 

mature non-ciliated sensory neurons and the centrosome is not required for maintenance of 

microtubule organization8. In mature hippocampal neurons, microtubules both detach from the 

centrosome and also nucleate from acentrosomal sites9. Rather than emanating only from the 

MTOC, most neuronal microtubule assembly correlates to Golgi structures, γ-TURC, or from 

other microtubule templates10 (Figure 1). 

Neurons also have intrinsic polarity which is established after an axon first forms.  

Stabilization of a subset of microtubules precedes axon formation and is detected by high levels 

of of acetylated α-tubulin (discussed in section 3.2)11. In cultured hippocampal neurons, axon 

formation correlates highly with centrosomal, Golgi and endosomal clusters, and centrosome 

motility is required for axon formation in the mouse neocortex12,13. However, in retinal ganglion 

cells of zebrafish, axon emergence does not correlate with the localization of centrosomes and 
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other apical determinants14.  Similarly, after differentiation, centrosome-dependent microtubule 

organization is no longer essential to the growth of axons in culture15. In this respect, axon 

formation in multidendritic sensory neurons of the invertebrate nervous systems, as well as in 

multidendritic neurons of the mammalian CNS (hippocampal and Purkinje), have different 

centrosomal requirements. Whether bipolar or unipolar/pseudo-unipolar neurons also dispense 

with MTOC requirements has not been elucidated. Similarly, the microtubule organization in 

interneurons and motor neurons remain to be studied. 

Across animals and neuron types, microtubule organization of the axon and dendrite 

differ16,17,18. One likely reason for this differential organization is so that compartments such as 

the axon initial segment (AIS) can form and the unidirectional information flow characteristic of 

neurons can be established19. The AIS contains a high density of voltage-gated Na+ channels not 

found elsewhere, which are crucial to membrane depolarization and generation of an action 

potential20. Thus neuronal polarity achieved from axon/dendrite formation is essential to the 

function of a neuron. 

3. Molecular mechanisms that regulate microtubule dynamics in neurons 

 Several types of mechanisms govern the growth and stability of microtubules in neurons. 

First, tubulin availability can preclude microtubule dynamics within a neuron. Post-translational 

modifications can stabilize or otherwise mark microtubules for growth/disassembly. Finally, 

severing enzymes and depolymerizing motors directly cause changes to microtubule length. All 

of these factors contribute to proper neuronal morphology and proper migration. 

Tubulin chaperones such as tubulin-specific chaperone E (TBCE) are essential to 

facilitate dimerization of αβ tubulin subunits, and Tbce mutants display decreased microtubule 

density and subsequent degeneration of motor neuron axons21,22,23. Also essential to the proper 
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density of axonal microtubules are the availability of nucleation sites, which could be γ-tubulin 

and associated proteins, golgi outposts, or as of yet unidentified nucleation components. 

Microtubule assembly can also occur in neurites after microtubules are cut and transported, such 

as axonal microtubules that are moved by the minus-end motor Dynein24. Because microtubule 

plus ends are more dynamic than their minus counterparts, one possibility is that short 

microtubules are added to the growing plus end. Another possibility, not mutually exclusive, is 

that microtubules severed by Katanin or similar ATPases provide additional free ends that can be 

built upon25. It is not yet clear whether short microtubules of neurons are added at the ends, 

incorporated along the shaft, or a combination thereof. 

The rate of polymerization at the plus end of microtubules also affects growth and 

stability, and is in large part determined by plus end tracking proteins (+TIPs) such as end-

binding protein (EB1/EB3)26 that track microtubules found in all neuronal compartments. 

Microtubule dynamics are also regulated by post-translational modifications (PTMs) such as 

tyrosination and acetylation of α-tubulin. Tyrosination alone promotes binding of +TIPs, 

cytoplasmic linker proteins, and motors to achieve rapid assembly or disassembly of the 

microtubule plus end27, 28. Other PTMs such as de-tyrosination, acetylation, and 

polyglutamylation are associated with microtubules that are less dynamic29,30. In particular, 

microtubule stretches are often acetylated and this correlates with stability.  

Acetylated microtubules are more abundant in axons than in dendrites and are often 

decorated with microtubule associated proteins (structural MAPs such as Tau, MAP1 and 

MAP2) known to confer stability31. α-Tubulin acetylation also promotes recruitment of Kinesin-

1, the main cargo-bearing motor responsible for deposition of ion channels that demarcate the 

AIS32,33,34. Local stabilization of microtubules causes axon formation and Kinesin-1 is required 
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for the initial microtubule movement to form an axon35. In this manner, cellular material can be 

transported long distances in neurons along the appropriate tracks within the proper axon or 

dendrite compartment. Paradoxically, acetylated microtubules are more prone to severing 

activity of Katanin than are deacetylated microtubules36. So systematic are PTMs that 

microtubule acetylation can mark microtubules over a certain age37. Thus, regulated dynamics at 

the microtubule plus end and appropriate PTMs along microtubule lengths are essential to 

development and maintenance of a neuron’s cytoskeleton. 

Other PTMs may also affect microtubule dynamics in neurons. For instance, 

polyglutamylation of microtubules promotes Spastin mediated severing of microtubules in HeLa 

cells38. As discussed, the number of microtubule ends affects microtubule dynamics. 

Polyglutamylation of microtubules is conspicuously high in centrioles, cilia, flagella, and 

neurons, but absent in other areas39. Indeed, loss of α-tubulin polyglutamylation coincides with 

abnormal KIF1A targeting and defective synaptic terminals40. In Chlamydomonas cilia, loss of 

long polyglutamate side chains disrupts flagellar function, which is dependent on inner-arm 

Dynein-microtubule interactions41. To what extent polyglutamylation of neuronal microtubules 

promotes Dynein mediated transport or movement is not yet known.  

Assembly dynamics also occur at microtubule minus ends, although much more slowly. 

As most neuronal microtubules are not attached to a centrosome, microtubule minus ends are 

susceptible to Kinesin-13 (MCAK) mediated depolymerization42. The minus-end targeting 

proteins (-TIPs) such as Patronin protect microtubule minus ends from the depolymerase activity 

of some kinesins43. MAPs can confer stability to microtubules, at least upon challenge by 

depolymerizing agents, and motors can confer extra assembly. The dynamics of microtubule 

minus ends are not well understood, but Patronin seems to be a factor in regulation of neurite 
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arborization. An important research focus is to understand how and where these mechanisms 

function in individual neurons and also to understand if they differ between different neuron 

types and points during development. 

4. Cellular consequences of perturbed neuronal MT dynamics in the nervous system 

After birth, a developing neuron often migrates a great distance to mature in context with 

its substrate and targets. Several models describe the process through which a neuron migrates 

through the brain. For instance, migrating cells of the rodent medial ganglionic eminence are 

thought to achieve movement via nucleokinesis wherein the cell moves in the direction of the 

centrosome located at the leading edge44. Yet another mechanism observed is interkinetic nuclear 

migration with radial glial cells, wherein nuclei move along microtubules independent of 

centrosome movement but dependent on activity of the plus-end directed motor KIF1A (a 

Kinesin-3 family protein, known as Unc104 in C. elegans)45.  

Mutations that lead to disrupted nucleokinesis in mouse cerebellar granule neurons, such 

as loss of Lis1 and/or Doublecortin lead to severe neurological defects resembling smooth 

brained lissencephaly46. However, work in the same neuron type also shows that centrosome 

translocation is not essential for proper nuclear migration47. In many neurons, multipolar 

morphology allows the unique migration path through the cortex as development ensues48. To 

what extent centrosomes direct neuronal migration remains unresolved; however, both minus and 

plus end microtubule based processes play a signficant role in an individual neuron’s migration 

and development. 

A requirement for microtubule minus-end mechanisms in neurodevelopment has been 

described. For instance, expression of microtubule minus end associated ninein is regulated by 

the transcription facter Sip1, loss of which causes defects in axon guidance of mouse cortical 
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projection neurons and also correlates with defects in development of the corpus callosum49. 

Consistent with the idea that microtubule dynamics and not centrosome association per se affect 

migration of neurons is the finding that Patronin functions in parallel with NOCA-1, a protein in 

C. elegans with homology to vertebrate ninein, to assemble acentrosomal microtubules50. Future 

work should clarify whether or not Patronin is required for proper migration of neurons in 

vertebrate nervous systems, and if so, whether its role in migration is dependent on its capping or 

nucleation function at the microtubule minus end. 

Recent evidence suggests that the state of microtubule PTMs within a neuron also affects 

its migration success. α-tubulin acetyltransferase (α-Tat1 or MEC-17), the enzyme primarily 

responsible for microtubule acetylation, is implicated in proper migration and morphogenesis of 

cortical projection neurons of the developing rat cerebral cortex51. Moreover, acetylation 

promotes microtubule severing, which is implicated in the tangential migration of cortical 

interneurons52. Thus, microtubule dynamics that influence PTMs are critical for proper migration 

of neurons and consequent brain function. 

 Ultimately, the success of neuronal migration depends on appropriate intracellular 

trafficking of material necessary for leading edge advancement and trailing edge retraction. 

Migrating cells depend on leading edge dynamics mediated by focal adhesion kinase (FAK) to 

stabilize microtubules53. Mutations in either α or β tubulin can result in migratory defects of 

neurons54,55. While microtubule minus end stability is important, a distinct role for the minus end 

lies in its role as a destination for the minus-end directed motors. For instance, Dynein 

complexes with Lis1 and thereafter trafficks to axons of migrating neurons56,57. During 

morphogenesis, KIF2 (also known as kinesin-13/MCAK) minus-end depolymerization regulates 

axon branching and also regulates axon pruning58,59. That KIF2 is required for proper positioning 
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of cortical granular neuron cell bodies is most likely due to its function restricting microtubule 

and subsequent axon length60,61. Thus the cargo bearing or depolymerizing activity of minus-end 

directed motors could separately or together contribute to development of neurons. While 

neuronal morphology and migration are connected, and KIF2 is important for the latter, the 

precise role of depolymerizing minus end motors in neuronal morphology is yet to be determined. 

Once an axon growth cone has reached the central nervous system, diffusible signals such 

as Netrin direct it to the appropriate position in the central nervous system62. Roundabout 

receptors on commissural axons activated by the Slit ligand at the midline repel the axon, which 

then turns longitudinally along the CNS63. Roundabout receptors and Commisureless function in 

axon growth cones and are likely transported there via microtubule-based motors64. The extent to 

which diffusible signals direct growth and elongation of these axons is still being studied; 

however, it is clear the axons would not be in the general area were it not for the force produced 

by microtubule-based motors and for ability to traffic cargo continuously for long-range growth. 

5. Cellular consequences of changed MT dynamics within a neuron 

During and after migration of a neuron, both dendrites and axons must grow towards the 

appropriate direction at the proper time. As discussed above, the general morphology of a neuron 

can reflect its identity, age, and/or function. This relationship is especially pronounced and 

visibly apparent in multidendritic neurons. For instance, in class 4 dendritic arborization (C4da) 

sensory neurons of Drosophila larvae, pattern complexity increases along with size during 

development65, and it is clear that full patterning is dependent on cargo provided by microtubule-

based transport. In support of this hypothesis, mutant C4da neurons that lack function of dynein 

light chain, kinesin heavy chain, or Rab5 containing endosomes are greatly simplified with much 

reduced arborization66,67.  
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  Branching of dendrites involves nucleation of microtubules, and dendrite patterning 

may also be microtubule-based. For instance, self-avoidance behavior of sensory dendrites in 

Drosophila and in mammals is made possible through function of the Down syndrome cell 

adhesion molecule (Dscam) and/or protocadherins68,69,70. Recent work on Drosophila olfactory 

projection neurons demonstrates that Dscam genetically interacts with tubulin binding cofactor D 

gene (Tbcd)71. Stereotyped cell arrangements reminiscent of patterning also occur in distal 

medulla interneurons of the Drosophila visual system72 but the mechanisms that underlie the 

complex arborization pattern of axons at the CNS are not fully understood. Future work will 

address the mechanisms of and the extent to which microtubule based processes guide self-

avoidance behaviors of neurons, and this work promises to be an exciting avenue for exploration. 

Not only dendrites but also axons display varied morphology, and in cases where axon 

morphology is not complex, the effect of microtubule dynamics can be overlooked. In nascent 

axons, microtubule growth labeled by EB1 signifies the presence of APC (adenomatous 

polyposis coli) that enhances microtubule stability73. Especially in developing axons, 

microtubule end numbers support growth and elongation74. Moreover, in Drosophila sensory 

neurons, axonal regeneration after ablation coincides with an increase of microtubule dynamics 

and reversed direction of microtubule growth75. Thus the regulation of microtubule assembly and 

microtubule dynamics are essential to axon development. 

 Due to the length of axons, a source of cellular energy at distal regions is vital. To this 

end, deposition of mitochondria at nerve terminals depends on microtubule-based, Milton-

mediated transport via kinesin heavy chain76. Synaptic vesicle precursors that contain Rab3 

depend on KIF1A-mediated transport through DENN/MADD association77. Further, axon 

specification in hippocampal neurons requires that Par proteins be properly segregated, which is 
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also a microtubule-dependent process78,79. While microtubule transport contributes to axon 

morphology, a distinct mechanism is that microtubule dynamics alone can affect axon 

morphology as well. In plated cortical neurons, distal axonal outgrowth and turning are inhibited 

after taxol or nocodazole induced disruption of microtubule dynamics, and conversely, growth 

cones turn towards local uncaging of photoactivateable taxol80. These results suggest that the role 

of microtubule dynamics may be distinct from the role of microtubule based cargo transport in 

neuronal morphogenesis. 

 Pruning of dendrites occurs during normal development, and is seen clearly during larval 

to pupal metamorphosis of Drosophila81,82. Recently calcium transients were shown to appear 

shortly prior to dendrite pruning during development83. Clearance of dendrites also occurs after 

laser ablation or other injury, which can be followed by regeneration84. Microtubule severing by 

Katanin is involved in regulation of dendrite maintenance and pruning; further evidence that 

regulation of microtubule severing controls neuron development lies in the finding that loss of 

Spastin function leads to hereditary spastic paraplegia85,86. Together, these findings suggest 

calcium signaling and microtubule dynamics are co-regulated, or at the very least correlated to 

control neuronal morphogenesis at the level of dendrite arborization in the peripheral nervous 

system. 

 Not unlike the phenomena in dendrites, axons also prune during metamorphosis and after 

injury87. Prior to local degeneration of Drosophila mushroom body axons during metamorphosis,  

synaptic and cytoskeletal markers are re-distributed, indicating a disruption of the microtubule 

cytoskeleton. Also, severed axons of mouse dorsal root ganglion neurons display Ca2+ mediated 

Calpain signaling prior to degeneration88. Because axon arborization is not as often readily 

accessible as dendrites, the relationship between microtubule dynamics and axon morphogenesis 
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requires further investigation. However, microtubule growth, organization, and maintenance 

likely inform axon arborization on some level. As axons relay information to post-synaptic 

partners, future studies should describe the connection between microtubule dynamics and axon 

targets.  

6. Implications of modified microtubule dynamics for neuron function/disease 

  Integral to neuron function is the ability of post-synaptic dendrites to receive and 

integrate information. To this end, NMDA receptors transported into dendrites via KIF17 are 

required for signaling via neurotransmitters89. Further membrane proteins like the AMPA 

receptor must be trafficked and deposited on dendrites for proper ion channel signaling, and 

mouse models have shown a binding motif of Kinesin heavy chain to fulfill this role90. Thus, the 

microtubules may act as tracks for cargo supporting the localization of various membrane 

proteins associated with dendrites. 

Also integral to neuron function is the ability of pre-synaptic axons to package and 

transmit neurotransmitters to targets. Loss of a Kinesin-3 family motor immaculate connections 

in Drosophila neuromuscular junction leads to a failure of synapse maturation, wherein growth 

cones can reach the proper area but not develop the electron dense membrane region that 

contains Ca2+ channels and vesicles characteristic of synaptic boutons91. Similarly, loss of 

KIF1A cause defects of mouse hippocampal synaptogenesis and learning enhancement induced 

by enrichment92. Taken together, these findings highlight the role of microtubules as transport 

tracks for components indispensable for neuron function. Certainly, microtubule associated 

proteins and microtubule PTMs contribute to the organization and stability of these tracks. 

Recent findings have highlighted the role of microtubules as more than mere tracks, but suggest 

that microtubules themselves could be regulators of neuronal function. 
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In mouse brain slices that contain hippocampal neurons, high frequency Schaffer 

Collateral stimulation induces a robust rise in excitatory post-synaptic potentials where long-

term potentiation occurs93. Inhibition of microtubule dynamics after application of low-dose 

nocodazole abolishes this robust response and reduces the number of spines per dendrite, which 

suggests that microtubule dynamics regulate dendrite spine morphology and synaptic plasticity 

in hippocampal neurons94. The implication from this study that microtubule dynamics affects 

neuronal activity is correlative, as is the relationship between morphology and activity. 

Nevertheless, future studies to determine the extent of this relationship will surely be intriguing.  

 One of the most robust assays to monitor neuronal activity in vivo is through the use of 

genetically encoded calcium indicators95. Calcium transients via NMDA receptor signaling also 

induce microtubule polymerization, and microtubule based motor KIF17 is required for 

trafficking of NMDA receptor subunits96,97. Furthermore, in cultured hamster cortical neurons, 

microtubule organization that precedes growth cone elongation and turning requires calmodulin 

dependent protein kinase II98. That calcium signaling reports neuronal activity and may also 

affect microtubule dynamics could be an important clue for future research to determine to what 

extent microtubule dynamics affects, or is affected by neuronal activity. 

 Perturbed microtubule dynamics can clearly affect neuronal morphogenesis. While 

research on the role of microtubule dynamics to inform developmental neurobiology is an 

ongoing and important area, significant attention should also be paid to the role of microtubule 

dynamics in mature neurons. Importantly, classical and recent findings from cancer research 

should be reviewed in the context of microtubule dynamics in neurons. Studies on the latter 

should build off recent findings that different microtubule-targeting drugs (used to treat cancer) 

affect peripheral nerves differently99. An exciting discovery is that systemic application of 
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epothilone B in rats after CNS injury promotes axon regeneration and decreases fibroblast-

induced scarring100. Better understanding of how microtubule-targeting drugs affect neurons can 

help mitigate the effect of chemotherapy-induced neuropathy. Secondarily, the efficacy of 

microtubule-targeting drugs that can cross the blood-brain barrier to treat neurodegenerative 

diseases merits attention to complement efforts to understand oxidative stress in neurons. 

 In extreme cases of disrupted microtubule dynamics, a neuron may fail to specify or 

extend the axon and dendrite. Migration could fail. Alternately a neuron could develop axons and 

dendrites that are malformed in shape or character due to disorganized microtubules. That 

disrupted neuronal morphology has negative consequences for the nervous system is obvious, 

but many questions remain. For instance, how microtuble dynamics affect a neuron’s function is 

not well understood. Similarly it is not clear how the morphological defects that result from 

aberrant microtubule dynamics in one neuron affect other neurons. In sum, the understanding of 

microtubule dynamics in neuronal morphology is evolving; rather than focus on the neuronal 

centrosome, present and future studies will likely focus on how -TIP proteins and motors 

directed toward the microtubule minus-end affect the development and maintenance of neuronal 

morphology.  
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Figure Legend 
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Figure 1. Microtubule organizing center (MTOC) or centrosome loses function in mature 
neurons. (A) Left, a typical cell with simple morphology uses the MTOC (light blue circle) to 
organize microtubules (dark blue lines) both early in development (A) and later in development 
(A’). (B) Right, the axon of a typical neuron is specified in the presence of a centrosome (light 
blue circle), but as the neuron develops, axonal microtubules detach from the centrosome and 
new microtubules nucleate from other loci. 
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