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Ecology in the 21st century faces the considerable challenge of predicting how ecosystem 

structure and function will respond to rapid global environmental change. In order to meet this 

challenge, ecology must transcend description through the development of broad ecological 

theory and ecological tools that can explain and predict ecological phenomena across multiple 

scales of spatial, temporal and taxonomic organization. This dissertation leverages within-species 

geographic variation in plant performance and functional traits to test the biogeographic 

predictive power of long-standing ecological theory, illuminate how tree drought resistance 

strategies will mediate geographic range shifts in a warming world, and explore the strengths and 

weaknesses of leaf functional traits as ecological tools. 

Species geographic ranges are, in essence, the spatial manifestation of their ecological 

niche, yet the exact mechanisms that constrain species ranges remain elusive, limiting our ability 

to predict range shifts. In the first chapter of this dissertation, I collected tree cores from over 700 

trees across the western U.S. to determine how climate and competition jointly constrain 



 

elevation tree ranges. This work is based on the longstanding but rarely tested hypothesis that 

biotic and abiotic stress trade off, with species interactions (competition) being the main fitness 

constraint in benign environments and abiotic/climatic stress proving the main constraint in harsh 

environments. I found broad-scale evidence for this tradeoff in the tree core record. Across 

multiple species on multiple mountains, populations with the fastest tree growth (the most 

‘benign’ sites) were most sensitive to competition while the slowest growing populations were 

the most sensitive to climate. However, this trade-off did not map cleanly onto range position. Of 

the nine species ranges examined, only two showed strong evidence for a trade-off between 

climatic and competitive growth constraints, although evidence for climatic constraints in harsh 

environments was more consistent. These findings highlight multiple processes that complicate 

local range dynamics, but suggest that the constraints on large-scale (e.g. latitudinal) tree 

distributions may still be predicted from ecological theory. Thus, existing correlational tools such 

as Climate Envelope Models may be appropriate for predicting shifts of large-scale plant range 

boundaries in climatically harsh environments. 

Second, I used within-species variation in drought tolerance traits to elucidate the 

physiological mechanisms by which drought controls two specific tree range boundaries. I 

quantified elevational variation in the drought tolerance and drought avoidance traits of a 

widespread gymnosperm (ponderosa pine –Pinus ponderosa) and angiosperm (trembling aspen – 

Populus tremuloides) tree species in the southwestern USA. Although water stress increased and 

growth declined strongly at the lower range margins of both species, ponderosa pine and aspen 

showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought 

tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf 

tissues, implying an increased cost of growth. By contrast, ponderosa pine showed little 



 

elevational trait variation but avoided drought stress at low elevations through stomatal closure, 

such that its dry range boundary experienced limited carbon assimilation even in good years. 

Thus, the same climatic factor (drought) may drive range boundaries through different 

physiological mechanisms – a result that has important implications for process-based modeling 

approaches to tree biogeography. Further, I show that comparing intraspecific patterns of trait 

variation across ranges, something rarely done in a range-limit context, helps elucidate a 

mechanistic understanding of range constraints. 

Finally, I collected and compiled an extensive dataset on leaf functional trait variation 

within and between species in order to test some of the foundational assumptions of trait-based 

ecology. Functional traits have great potential to stimulate a predictive ecology, providing scale-

free tools for understanding ecological interactions, community dynamics and ecosystem 

function. Yet their utility relies in part on four key assumptions: 1) that most trait variation lies 

between rather than within species, 2) that global patterns of trait covariation are the result of 

universal evolutionary or physiological trade-offs that are independent of taxonomic scale, and 

3) that traits respond predictably to environmental gradients. I examined three traits central to the 

leaf economics spectrum, leaf mass per area (LMA), leaf lifespan, and leaf nitrogen content, and 

quantified patterns of leaf trait variation, particularly within-species. Although I found that some 

foliar traits do vary primarily between species (as predicted), others – particularly area-based leaf 

nitrogen content – vary enormously within-species. I also found that some of the global trait 

relationships central to the leaf economics spectrum hold true across taxonomic scales. However, 

other patterns of trait covariation show surprisingly different patterns within- versus between-

species, calling into question some of the putative evolutionary and physiological mechanisms 

linking these leaf traits. Finally, in a subset of well sampled conifers in the northwestern U.S.A., 



 

I found that leaf lifespan was reasonably responsive to environmental gradients but other foliar 

traits had very weak links to environmental variation. Taken together, my results challenge the 

‘scale-free’ nature of the currently proposed mechanisms driving leaf trait covariation. However, 

my results demonstrate the potential power of intra-specific trait variation to deepen our 

understanding of the causes and consequences of functional trait variation. 

 
 

  



 

Acknowledgements 
 

This dissertation would not exist without the help of many people, most proximally my advisor 

Janneke Hille Ris Lambers and my various scientific counselors, mentors and collaborators. 

Thank you to Janneke for years of support and good advice, to my graduate committee, to Joe 

Berry and Margie Mayfield (whose labs I crashed for various lengths of time, and sorry Joe, 

there seems no end in sight for you). Thank you also to Bev Law for collecting and Logan 

Berner for compiling the trait data I drew upon in Chapter 3. Thank you to the small army of 

undergraduates, post-bachs, honors students, friends and family who helped me in the lab and the 

field. And thank you to the members of the Hille Ris Lambers Lab, who made the lab both fun 

and intellectually stimulating. More distally, this dissertation would not be were it not for the 

unfailing support of my wife, Ericka Sohlberg, my parents Maggie Love and Mike Anderegg, 

and of course my brother Bill Anderegg (who was at once an emotional support, a scientific 

consultant, and the major lender of much of my field equipment). Thank you also to Terry Root, 

who took me under her wing when I was an undergraduate and convinced me to be a global 

change ecologist.  

 

 

  



 

Table of Contents 

Introduction ………………………………………………………………………… 1 

Chapter 1 – Climate and competitive tree growth constraints trade off at large  

scales but not local scales ……………………………………………………. 11 

Chapter 2 – Drought stress limits the geographic ranges of two tree species  

via different physiological mechanisms …………………………………… … 40 

Chapter 3 – Within-species trait variation challenges our understanding of the  

causes and consequences of global trait variation ……………………………. 58 

Chapter 4 – Supplemental Materials ………………………………………………… 94 

 Appendix A: Supplemental Data and Analysis, climate/competition tradeoffs 94 

 Appendix B: Supplemental Methods, Mean growth and growth sensitivity  105 

 Appendix C: Supplemental Methods, Alternative metrics of climate sensitivity 106 

 Appendix D: Supplemental Data and Analysis, differing mechanisms drive  

  tree range limits ……………………………………………………….  115  

 Appendix E: Supplemental Data and Analysis, trait variation across taxonomic  

  scales ………………………………………...……………………….. 124 

Chapter 5 – Conclusion………………………………………………………………. 130 

 

 

  

 

 

 



      1 

Introduction 

Ecology in the 21st century will be the ecology of change. Anthropogenic influences on 

the climate system, global land cover, nutrient cycling and regional species pools (i.e. species 

extirpations and species introductions) guarantee that the magnitude and rate of 21st century 

environmental change will exceed anything experienced over the timespan of human civilization 

(Assessment, 2005). For instance, even the most optimistic projected rates of human-caused 

climate change over the coming century likely exceed by orders of magnitude the fastest 

potential rates of animal evolution (Quintero & Wiens, 2013). By the end of the century global 

temperatures may exceed anything the earth has experienced since the Eemian (125,000 yr ago) 

or even since the early Eocene (50 million yr ago) (Lunt et al., 2012; Masson-Delmotte et al., 

2013; Kidwell, 2015). Thus, ecologists are tasked with understanding complex natural systems 

that are probably changing faster than we can describe their initial conditions. Given this context, 

physiological ecology, community ecology, and ecosystem studies must do more than detail the 

who and the how of ecological systems. They must guide practitioners, land stewards, policy 

makers and the general public in efforts to mitigate and adapt to rapidly unfolding local and 

global environmental changes.  

To this end, this dissertation aims to help develop the theory and tools needed to predict 

ecosystem responses to global change. An increasing literature has focused on quantitative 

modeling of community or ecosystem properties for prediction (Clark et al., 2001; Evans et al., 

2013; Dakos et al., 2017). However, perhaps a more basic imperative in ecologic research is to 

develop and refine the robust, generalizable theory necessary to structure such models. Climate 

change-induced species range shifts are an excellent example of the need for such theory. 

Multiple quantitative modeling approaches exist, ranging from empirical (e.g. Climate Envelope 
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Models or CEMs), to semi-mechanistic (e.g. physiologically based CEMs or dispersal-

constrained CEMs) to fully mechanistic vegetation models (stand development models, land 

surface models). These many modeling approaches each have strengths and weaknesses, trading 

off the processes they capture, the assumptions on which they rely, and the data necessary to 

parameterize them. However, their resulting predictions of future range dynamics can differ quite 

dramatically (Morin & Thuiller, 2009; Buckley et al., 2011).  

The lack of robust predictions across modeling methods suggests a grave need for 

additional ecological theory to spur further model development and guide model implementation. 

Emerging biogeographic patterns such as the tendency for terrestrial ectotherms to extend 

beyond their physiological poleward boundary but not reach their physiological tropical 

boundary based on their thermal performance curves (Sunday et al., 2012) suggest that the 

ecological mechanisms of species range constraints may exhibit generalizable patterns. The 

Stress Tradeoff Hypothesis (STH) is one potentially powerful theory that provides general 

predictions of where species ranges are constrained directly by climate versus where they are 

constrained by species interactions. The STH posits that climate is the primary constraint on 

organismal fitness in harsh environments, and species interactions are the key constraint on 

fitness in benign environments (MacArthur, 1972; Brown, 1995). The biogeographic corollary of 

this theory is that species tend to be climatically constrained at their environmentally ‘harsh’ 

range boundary, and constrained by species interactions such as competition at their ‘benign’ 

range boundary (Loehle, 1998; Koehler et al., 2012; Savage & Cavender-Bares, 2013). Chapter 

one of this dissertation uses evidence from tree cores and forest surveys to test this theory across 

the elevation ranges of many tree species in many climates. The goal of this chapter is to test and 
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refine biogeographic theory to differentiate the potential mechanisms of range constraint using 

empirical observations of actual range constraints.  

The impetus for this chapter was a prevailing emphasis on the abiotic controls on species 

presence and performance in both the range shift modeling literature and the dendroecological 

literature. In the range shift literature, essentially all prediction-focused work has been based in 

some way on Climate Envelope Models, which explicitly attribute all range boundaries to abiotic 

factors (Lawler et al., 2009; Iverson et al., 2011; Higgins et al., 2012; Schloss et al., 2012; 

Lawler et al., 2013). Meanwhile, dendroecologists have been amassing large datasets of tree 

growth through space and time, datasets that can provide powerful inferences about spatial 

variation of the constraints on tree growth (Peterson & Peterson, 2002; Case & Peterson, 2005; 

Nakawatase & Peterson, 2006; Littell et al., 2008; Griesbauer & Green, 2010; D'Orangeville et 

al., 2016; Girardin et al., 2016; Restaino et al., 2016). However, possibly due to 

dendrochronology’s roots in dendroclimatology, this vast literature has focused almost entirely 

on climatic factors that control tree growth. Biotic interactions, particularly competition, have 

been explored extensively using tree rings in the forestry literature, but almost never with an 

explicit biogeographic focus (e.g. Contreras et al., 2011; Das et al., 2011). However, a growing 

body of evidence suggests that biotic interactions can prove the primary drivers of plant range 

boundaries (Ettinger et al., 2011; Ettinger & Hillerislambers, 2013; Brown & Vellend, 2014, 

reviewed in Hillerislambers et al., 2013). More-over, the few studies that have explicitly 

attempted to determine spatial patterns in the effects of competition on tree growth have revealed 

considerable variation along climate gradients (Kunstler et al., 2011; Copenhaver-Parry & 

Cannon, 2016). Thus, a multi-system, biogeographically explicit treatment of climatic versus 

biotic constraints on tree growth leveraging the power of tree rings seemed a high-yield approach 
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to push both the range constraint and tree ring literature and seek synthetic insight about how 

biotic and abiotic factors trade off in importance through climate space.  

The results of this analysis revealed complexity at essentially every level, the complexity 

of downscaling from large to local patterns of range constraint, the complexity of biotic 

interactions as the foil to purely abiotic range constraints, even the complexity of statistically 

modeling and detecting relatively straight-forward abiotic constraints on tree growth. This last 

complexity, in particular, shed light on the difficulty of translating abiotic harshness into plant 

physiological stress. I initially expected climatic range constraints to be relatively 

straightforward to detect using tree rings and then decompose into their particular climatic 

components (e.g. cold stress versus growing season length limitations versus drought stress). 

However, this proved surprisingly difficult due to the hidden microclimatic complexity along 

even the most simple real-world climate gradients, the temporal lags in climatic effects on tree 

growth that complicated statistical analyses, and complex interactions between climate and tree 

physiology that defied a priori attempts to define climatic ‘harshness’. Thus, even where abiotic 

factors appeared to constrain tree growth, complexity emerged. In an attempt to unpack this 

complexity, in the second chapter of this dissertation I focus specifically on ‘simple’, 

climatically controlled range boundaries to explore how climate stress (in this case water 

limitation) physiologically enforces elevational range boundaries. 

In addition to guiding theory, ecological prediction also requires tools for quantifying, 

synthesizing, and simplifying the biosphere’s ecological, evolutionary, and physiological 

complexity.  Chapter two focuses in on two of the climatic range boundaries identified from the 

tree ring record in Chapter one for a case study of the power of within-species physiological 

variation as a tool for ecological inference. Chapter two quantifies the drought avoidance and 
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drought tolerance strategies of two tree species based on the physiological trait and rate changes 

each species manifests approaching its dry range boundary. Drought resistance is a complex 

attribute to quantify, as it can be achieved via multiple strategies, through multiple physiological 

and morphological adjustments (Larcher et al., 1973; Levitt, 1980; Ludlow, 1989; Chaves et al., 

2003; Barbeta et al., 2016).  For example, plants can survive drought stress by limiting water 

loss, transpirational area, hydraulic resistance, etc. to avoid experiencing negative water 

potentials. Alternatively, they could grow stress tolerant roots, leaves and shoots to tolerate 

drought stress without suffering physiological damage. Finally, they could instead depend on a 

speedy recovery following drought to recover physiological function as soon as water is 

available again. Or they could employ some combination of the above. This diversity of drought 

resistance strategies, each of which involves a complex suite of physiological traits, pose a 

considerable challenge for physiologists seeking to predict, for example, tree mortality during 

drought (McDowell et al., 2011; Anderegg et al., 2012; 2013). As Chapter 1 revealed, this 

diversity of drought physiological strategies also challenge biogeographers seeking to predict the 

range dynamics of even obvious drought controlled plant distributions. Chapter two explores 

how within-species geographic variation in a suite of morphological and physiological traits can 

reveal the drought tolerance and avoidance strategies employed by two widespread tree species. 

By quantifying and simplifying each species’ complex drought physiology into their 

predominant drought resistance strategy, Chapter two seeks insight into the mechanisms that 

govern the dry range margin of each species. Knowledge of these mechanisms can then yield at 

least qualitative inferences about potential range dynamics in a changing climate. 

As shown in Chapter two, plant functional traits can be a powerful tool for understanding 

complex plant physiologies and life histories, potentially allowing ecologists to scale across time, 
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space and levels of taxonomic organization. Spurred by the utility of within-species trait 

variation to provide ecological inference not possible from between-species analyses shown in 

Chapter two, Chapter three of this dissertation explores within-species trait variation at much 

larger geographic scales in many more species. The results of Chapter Two suggested that 

within-species trait-by-environment relationships could provide fertile ground for understanding 

species geographic ranges. However, what I discovered instead is that our understanding of 

many plant functional traits themselves is imperfect. Before employing traits as an ecological 

tool, we need to better understand what exactly we have in our ecological toolbox. This chapter 

explores the functionality of one of the most widely acknowledge trait associations in the plant 

functional literature, the leaf economics spectrum. The leaf economics spectrum simplifies up to 

>75% of the world-wide variation in leaf morphology and physiological function into a single 

axis related to the rate of resource use and acquisition (Wright et al., 2004). Leaves from all parts 

of the tree of life tend to converge on a resource use strategy that ranges from ‘fast’ (with high 

physiological rates, low leaf mass per area, and short leaf lifespan) to ‘slow’ (with low 

physiological rates, high leaf mass per area, and long leaf lifespan). This dominant axis of leaf 

trait covariation is startling in its ubiquity, and is much stronger than trait variation across 

environmental gradients (Wright et al., 2004; 2005; Lamanna et al., 2014; Maire et al., 2015). 

There is more ‘fast’ to ‘slow’ leaf trait variation within most communities than there is stress 

tolerant to intolerant variation across biomes (Wright et al., 2004), suggesting that many of these 

leaf traits may be powerful proxies for general plant life history strategies (Reich, 2014). Chapter 

three tests whether the global trait associations of the LES hold true at various levels of 

taxonomic aggregation. If the putative physiological and evolutionary mechanisms that drive the 

LES are truly universal, we would expect patterns of LES trait covariation to be independent of 
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taxonomic scale. Chapter three compiles a global dataset of within-species and between-species 

trait variation to test whether most foliar trait variation is truly between species (as is often 

assumed), whether the LES trait correlations are consistent within- as well as between-species, 

and whether the LES traits respond to environmental gradients within a species. This chapter 

scrutinizes some of foundational assumptions about the utility of leaf functional traits, in order to 

further refine our understanding of what functional traits can and cannot do. By furthering our 

understanding of the causes and consequences of functional trait variation, Chapter three of this 

dissertation seeks to improve the tools with which many ecologists try to understand species 

interactions, community structure, and ecosystem function. 

Chapter four of this dissertation is composed of supplementary materials, including 

appendices for the first three chapters. Chapter five synthesizes the results of the previous 

chapters, and draws conclusions about what this dissertation accomplishes and fruitful paths 

forward. 
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Abstract:  

Knowledge of the mechanisms that constrain species geographic ranges is critical for 

anticipating and managing climate change-induced range shifts. Long-standing ecological theory 

suggests a tradeoff between climatic range constraints in harsh environments and biotic 

constraints in benign environments, but this theory has rarely been tested. We measured 

competitive and climatic constraints on tree growth in multiple species across their elevational 

ranges in three distinct climatic regions to test whether a climate-competition tradeoff can 

explain elevation distributions. We show that for most species, tree growth at environmentally 

harsh range boundaries is climatically constrained, but that tree growth at environmentally 

benign range boundaries was not often constrained by competition. As a result, a climate-

competition tradeoff explained few local ranges. Additionally, it was difficult to predict a-priori 

which range boundaries (low or high) were climatically vs. competitively constrained. However, 

across all species and study sites, climatic growth constraints increased and competitive 

constraints decreased in harsh environments consistent with a broad-scale climate-competition 

tradeoff. Our findings highlight multiple processes that complicate local range dynamics, but 

suggest that the constraints on large-scale (e.g. latitudinal) tree distributions may still be 

predicted from ecological theory. Thus, existing correlational tools such as Climate Envelope 

Models may be appropriate for predicting shifts of large scale plant range boundaries in 

climatically harsh environments. 

 

Significance statement:  

Species will respond and have already responded to human-caused climate change by shifting 

where they occur on the landscape. To anticipate these shifts, we need to understand the forces 
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that determine where species currently occur. We test whether a tradeoff between climate and 

competitive constraints explains where tree species grow on mountain slopes. We find that 

climate often controls environmentally harsh elevation range boundaries and that climate and 

competition trade off at large spatial scales. However, we find that climate-competition tradeoffs 

are rare at local scales (e.g. across one mountain slope). Our work underscores the difficulty of 

predicting local-scale range dynamics, but suggests that current tools for predicting range shifts 

may be appropriate for forecasting large-scale range limits, especially in harsh environments. 

 

 

Introduction:  

 Species geographic ranges are, in essence, the spatial manifestation of their ecological 

niche, and have thus fascinated ecologists for over two centuries (Humboldt & Bonpland, 1805; 

MacArthur, 1972; Gaston, 2009a).  One long-standing ecological hypothesis posits that biotic 

interactions are the dominant constraint on organismal fitness in benign environments, while 

abiotic stress is the dominant fitness constraint in harsh environments (henceforth the Stress 

Tradeoff Hypothesis, or STH - (Dobzhansky, 1950; MacArthur, 1972; Brown, 1995). This Stress 

Tradeoff Hypothesis implies that species inhabiting a gradient of climatic harshness (e.g. 

elevation or latitude) should be constrained by species interactions (e.g. competition) at their 

benign range boundary and by climatic stress (e.g. limits to their physiological tolerance) at their 

harsh range boundary (Loehle, 1998; Koehler et al., 2012; Lusk et al., 2013; Savage & 

Cavender-Bares, 2013). If so, the STH could broadly explain the mechanisms of geographic 

range constraints, helping scientists understand climate change-induced range shift dynamics for 

unstudied or poorly studied species.  
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With unprecedented rates of anthropogenic climate change expected during the next 

century (Quintero & Wiens, 2013), our need to understand geographic ranges has elevated from 

theoretical to practical. Yet few useful generalizations have emerged from the growing range 

constraint and range shift literature (Gaston, 2009b; Angert et al., 2011; Buckley & Kingsolver, 

2012; Sunday et al., 2012; Talluto et al., 2015). Broad concordance between species ranges and 

climate isoclines (e.g. (Woodward & Williams, 1987; Root, 1988; Buckley et al., 2010), records 

of paleo-range shifts with climate during the Quaternary (e.g. (Williams et al., 2004; Jackson & 

Blois, 2015), and ongoing range shifts coinciding with recent anthropogenic warming (Parmesan 

& Yohe, 2003; Root et al., 2003; Lenoir et al., 2008; Tingley et al., 2012) suggest that climate 

plays a large role in constraining species ranges. However, these recent range shifts have been 

extremely variable, ranging from unexpectedly large shifts to no shifts to shifts in the opposite of 

the predicted direction, suggesting climate is not the sole, uniform driver of range limits. 

Moreover, species interactions are known to greatly complicate the relationship between climate 

and species ranges, limiting robust predictions (Araújo & Luoto, 2007; Ettinger & 

Hillerislambers, 2013; Hillerislambers et al., 2013). The Stress Tradeoff Hypothesis provides 

testable predictions about where climate or competition is more likely to constrain a species 

geographic range. If true, the STH could provide critical guidance regarding the kinds of models 

and information needed to accurately forecast range shifts. 

Unfortunately, the Stress Tradeoff Hypothesis has rarely been tested empirically, due to 

the paucity of detailed information on range constraint mechanisms. The STH has been posited 

to explain the distributions of North American tree species (Loehle, 1998), but has received 

mixed support from small-scale investigations of tree elevation range boundaries (Ettinger et al. 

2011, Ettinger et al, in press) and a glasshouse experiment (Savage & Cavender-Bares, 2013). To 
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our knowledge, no study has tested the predictions of the STH in multiple species at a large 

geographic scale using actual observations of range constraint mechanisms. 

A robust test of the STH requires measurements of both climatic and biotic/competitive 

constraints on at least one component of organismal fitness across multiple geographic ranges, 

ideally in a variety of climatic settings. Tree rings offer a useful tool for testing the Stress 

Tradeoff Hypothesis because they can be used to reconstruct tree growth sensitivity to both inter-

annual climate fluctuations and competitive environment and can easily be collected across large 

geographic space. Within species, growth of adult trees is often correlated with both survival and 

fecundity (Wyckoff & Clark, 2000; 2002; Clark et al., 2004), making inferences on growth 

reasonable proxies for other fitness components that are harder to quantify. A burgeoning tree 

ring literature has documented increased growth sensitivity to climate near high latitude or 

elevation boundaries (Case & Peterson, 2005; Ettinger et al., 2011; Griesbauer & Green, 2012), 

or increasing competitive constraints approaching low elevation boundaries ((Callaway, 1998; 

Coomes & Allen, 2007; Copenhaver-Parry & Cannon, 2016) but see (Ettinger & Hillerislambers, 

2013)). However, collectively these studies cover a small number of species, sites, climates and 

range margins. More importantly, studies that quantify only one constraint type across space 

(e.g. growth sensitivity to climate across climate gradients (D'Orangeville et al., 2016; Restaino 

et al., 2016)), or both climatic and biotic growth constraints in small study areas (Sanchez-

Salguero et al., 2015; Copenhaver-Parry & Cannon, 2016) do not provide complete tests of the 

generality of the STH. 
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Figure 1: (a) Three sampled mountain transects in the western U.S.A. (b) Diagram of sampling 
scheme at each transect. We cored 20-30 trees each in elevation bands at the high range margin, 
low range margin and range center of the dominant low elevation, montane and subalpine tree 
species on each transect. (c) Transects in Mean Annual Temperature (MAT) – Mean Annual 
Precipitation (MAP) space, plotted over Whittaker’s biome map (Whittaker, 1975) – the 
transects cover much of temperate forest biome climate space (outlined in black). Climate 
normals were calculated for each elevation band using the ClimateWNA downscaling algorithm 
of the gridded PRISM 1970-2000 climate normals (Wang et al., 2012). 
 

We present a multi-species, multi-site analysis of both climatic and competitive constraints 

on tree growth across the elevation ranges of tree species throughout a large range of climates in 

the western U.S.A. (Figure 1). We collected tree cores along elevation transects of approximately 

1200m at three western U.S. sites in Colorado (CO), Montana (MT), and Washington (WA) 

encompassing 17 species elevation range boundaries (Figure S1). We used tree rings to quantify 

environmental harshness, climatic growth constraints and competitive growth constraints at the 

high and low range margins and range center of three dominant tree species per transect (Table 

1). Some species were sampled on multiple transects, so we refer to each species cored at each 

mountain as one species-replicate (i.e. we sampled three species-replicates per transect, see 
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Table S1 for transect descriptions). These three transects span much of the temperate climate 

space containing woody biomes (Figure 1c).  

Table 1: The three metrics calculated from tree ring records in order to test the Stress 
Tradeoff Hypotheses, including details and rational for their calculation. 

 
 Environmental 

Harshness 
Climatic 

 Constraint 
Competitive  
Constraint 

M
et

ric
 

Mean Growth Rate Population Growth 
Synchrony 

Growth Sensitivity to 
Competition 

D
et

ai
ls

 

Size- and competition-
standardized mean 
Basal Area Increment 
(2003-2012) 
calculated using linear 
mixed effects models 

Mean correlation of 
growth anomalies 
between trees in an 
population (synchrony of 
growth through time) 

Growth suppression from 
+1 sd increase in 
neighborhood density 
(based on tree-to-tree 
variation in mean growth) 

R
at

io
na

l 

Mean growth rates will 
reflect general 
environmental 
harshness, with 
slower growth rates 
indicating a harsher 
environment 

Synchronous growth 
anomalies between 
widespread trees indicate 
a broad-scale driver (i.e. 
climate), while 
asynchronous growth 
indicates that local factors 
(competition, 
pets/pathogens) drive 
growth anomalies 

Large growth differences 
between trees growing in 
low and high 
neighborhood densities 
indicate that competition 
greatly constrains tree 
growth.  

 

We tested whether the Stress Tradeoff Hypothesis explains elevational patterns of climate 

and competition sensitivity within species. At the scale of elevation ranges, the STH predicts that 

populations near environmentally harsh range boundaries should show high climatic growth 

constraints compared to the rest of the species’ range, while populations at ‘benign’ range 

boundaries should show increased competitive constraints (i.e. increasingly negative effect of 

neighbor density on annual growth). We adopted a tree-centric definition of harshness based on a 

population’s mean radial growth rate (size and competition standardized), rather than a-priori 

definitions based upon elevation or climate (Table 1). Populations with the highest radial growth 



     18 

rates were assumed to inhabit benign environments and populations with low growth rates harsh 

environments.  

We quantified climatic constraints based on how synchronous growth fluctuations were 

between trees in a population (Table 1). We consider synchronized annual growth a simple and 

intuitive proxy for climatic constraints, because climate is the most likely driver of synchronous 

growth fluctuations at the scale of an entire population (Ettinger et al., 2011; Shimatani & 

Kubota, 2011; Shestakova et al., 2016). We also calculated climate sensitivity based on multiple 

metrics from various statistical growth-climate models, but found growth synchrony to be the 

most parsimonious, assumption free and easily interpretable metric (see Supplemental Methods: 

Alternative metrics of climate sensitivity). We assessed the strength of competitive constraints 

based on how much increased stand density suppressed average tree growth rates in a population 

(See Table 1, Methods).  

We first evaluated the evidence for climatic and competitive range constraints for each 

elevation range boundary. We then examined climate and growth constraints more broadly 

across all species and sites, as it is also possible that the STH could manifest as a general tradeoff 

between climatic and competitive growth constraints at broad scales regardless of range position, 

even if local factors such as disturbance history, microclimate and small-scale edaphic variation 

obscure local-scale signals of the STH. Specifically, we differentiated harsh and benign range 

boundaries and calculate climatic and competitive growth constraint metrics from the tree ring 

record to ask: 

1) Do harsh elevation range boundaries exhibit increased growth sensitivity to climate and 

benign boundaries increased sensitivity to competitive environment? 
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2) Do species typically show a tradeoff between one climatically and one competitively 

constrained range boundary, suggesting that the STH applies at the scale of local 

elevation ranges? 

3) At a broader scale, do competitive growth constraints increase and climatic growth 

constraints decrease in populations with faster growth rates across all species and sites 

regardless of population range position? 

 

Results and Discussion: 

At the local level, we found that trees growing at harsh range boundaries did typically 

have greater sensitivity to climate, but trees were not more constrained by competition at benign 

boundaries. As a result, few species-replicates showed evidence of the climate-competition 

tradeoff hypothesized by the STH at the local scale. However, across all species and all 

mountains, we found broad evidence that climatic constraints on adult tree growth increase in 

harsh environments and competitive constraints increase in benign environments, consistent with 

the STH. We discuss our findings in more detail below. 

 

STH and local elevation range boundaries 

Surprisingly, we found only a few examples of elevational range boundaries that 

supported a tradeoff between climatic and competitive constraints on growth, as proposed by the 

STH. One such species was Pinus ponderosa in Colorado, which showed a large increase in 

basal area growth moving from the low elevation (hot-dry) range margin to the high elevation 

(cool-wet) range margin, suggesting that low elevations are more environmentally harsh and 

high elevations benign (Figure 2). Growth synchrony (interpreted as in index of climatic 
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constraint, See Table 1 and Methods) also increased from the range center to the lower range 

margin (beta regression p<0.0001, Table S2), and decreased from the range center to the high 

range margin (p<0.0001) consistent with a decreasing climatic growth constraint with increasing 

elevation and a climatically controlled low elevation range boundary. Meanwhile, the strength of 

competitive suppression was relatively small at mid and low elevation, but became much larger 

at the high elevation range margin (Figure 2f, linear mixed effects model p=0.0041), consistent 

with an increased competitive growth constraint at P. ponderosa’s high elevation, benign range 

boundary.  

 
Figure 2: Predicted and observed patterns of mean basal area growth (proxy for climatic 
harshness, a-d), growth synchrony (indicator of climatic growth constraint, e-h), and growth 
sensitivity to competition (competitive growth constraint, i-l). Pinus ponderosa in Colorado 
(b,f,d) shows the hypothesized tradeoff between a climatic growth constraint at its harsh (low 
elevation) range boundary and a competitive constraint at its benign (high elevation) range 
boundary. Pseudotsuga menziesii in Washington (c,g,k) showed no such tradeoff. Patterns for all 
species-replicates are shown in panels d,h and i. Error bars show ±SE (see Table S2 for full 
statistics). Note, the y axis for panel d is proportion of species-replicate maximum basal area 
growth, rather than mm2/yr as in a-c. 
 

However, growth of most species-replicates (seven of nine) did not show a clean tradeoff 

between climatic and competitive range constraints. For example, growth of Pseudotsuga 

menziesii from Washington changed little from low to mid and mid to high elevations, 
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suggesting only a slight environmental harshness gradient at most (Figure 2c, Table S2). 

Contrary to expectations, growth synchrony peaked at its mid-elevation range center (Fig 2g), 

and growth of trees at all elevations were relatively insensitive to competition (large error bars 

nearly overlapping zero on Fig. 2k). In short, we found a climate-competition tradeoff for only 

two of nine species-replicates (Fig. 3). Thus, the predictive power of the STH for determining the 

mechanisms driving local elevation range boundaries appears limited, at least in our data set. 

Despite the inability of the STH to map onto local elevation boundaries, useful patterns 

did emerge. First, all but one species-replicate reached its maximum growth rate at one range 

boundary and minimum growth rate at the other (Figure 2d, Fig. S2, Table S2). Thus, most 

species-replicates did appear to have one ‘harsh’ and one ‘benign’ range boundary. Second, the 

majority of harsh range boundaries (seven of nine) did show evidence of climatic growth 

limitation (Figure 3). However, only three of eight benign boundaries (one species-replicate did 

not have a benign range boundary, see Methods) showed evidence of competitive constraints – 

perhaps because competitive constraints are either less prevalent or more difficult to detect in the 

tree ring record, or because other biotic interactions constrain growth at these range boundaries. 

However, the preponderance of climatic range constraints at harsh boundaries supports the 

findings of various single species or single site dendroecological studies (Nakawatase & Peterson, 

2006; Case & Peterson, 2007; Griesbauer, 2010; Griesbauer et al., 2011; Lévesque et al., 2014). 

Together, the emerging evidence indicates that identifiably harsh range boundaries tend to be 

under climatic control (but see (Urli et al., 2016)). This result emerged across a wide range of 

climatic conditions (Figure 1), providing a useful rule of thumb for predicting where correlative 

distribution models may be used to forecast changes in suitable habitat under climate change.  
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However, our results also highlight the difficulty of predicting a-priori what range 

boundaries are actually ‘harsh’, and which tree populations are likely to be most sensitive to 

climate change. Our growth-rate related metric of environmental suitability identified both harsh 

upper margins (4/9 species-replicates) and harsh lower range margins (5/9 species-replicates).  

Patterns were neither consistent for the same species on different transects nor for different 

species on the same mountain (Figure 3, Figure S4). In fact, had we assumed either winter 

harshness or summer dryness to be the dominant climatic stress structuring all sampled ranges, 

we would have mis-identified four range margins as harsh that were actually the fastest growing 

populations for that species-replicate. Thus, the importance of both macroclimatic context 

(difference across mountains) and microclimatic context (difference between species on a 

mountain) appear paramount in determining how climatic harshness actually maps on to an 

elevational range.  

 
Figure 3: Summary of evidence for climatic and 
competitive constraints for 17 tree elevation range 
margins across the western U.S. (see also Table S2). The 
Stress Tradeoff Hypothesis predicts a climatic constrain 
(blue) at harsh boundaries and a competitive constraint 
(green) at benign boundaries. ‘Harsh’ and ‘benign’ were 
designated based on mean size- and competition-
standardized growth rate, with the margin showing the 
slowest growth designated as ‘harsh’ (as in Fig. 2). 
Letter in the Harsh column indicates whether the harsh 
boundary was low (‘L’) or high (‘H’) elevation.  Gray 
cell indicates that the range margin was not samples (T. 
heterophylla extends to sea level in Washington and has 
now lower margin). Strong evidence: p<0.01 difference 
between growth constraint at range margin and range 
center, weak evidence: 0.1 > p > 0.01 (or that 
competitive constraint was much stronger at the other 
range margin for Pi. Ponderosa in CO). PIPO: Pinus 
ponderos, POTR: Populus tremuloides, ABLA: Abies 
lasiocarpa, TSHE: Tsuga heterophylla, PSME: 
Pseudotsuga menziesii. 
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Figure 4: Across all species-replicates, population growth synchrony decreased with increasing 
mean size- and competition-standardized growth rate (panel a) while growth sensitivity to 
competitive environment increased with population mean growth rate (panel b). Points indicate 
population means, error bars indicate the standard deviation of growth synchrony (a) or the 
standard error of mean parameter estimates (b), dotted lines show trends for each species-
replicate, and the solid line shows the global trend line estimated from the site trends using 
hierarchical linear mixed effects models. P values indicate the significance of the global trend 
calculated from population means weighted by the inverse of the population SE.  
 

Broad scale evidence of STH 

 Although the STH did not consistently predict growth constraints at individual range 

boundaries, we did find broad evidence for the Stress Tradeoff Hypothesis at large scales. 

Specifically, we found that tree populations (across all species and sites) that grew more slowly 

on average had more tree-to-tree synchronized annual growth, suggesting greater climatic growth 

constraints in harsh environments (Figure 4a, SE-weighted linear mixed effects model p= 0.028). 

Across all populations, we also found that the fastest growing populations of trees (we assume 

experiencing the most benign environments) showed the largest growth suppression due to 
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competition (Figure 4b, p=0.001). This trend of increasing competitive growth suppression with 

increasing growth rates was qualitatively similar if growth suppression was expressed as a 

proportion of population growth rather than raw Basal Area Increment reduction (Figure S4), 

though the global relationship was no longer statistically significant (p=0.35). Thus, even though 

the relationships between mean growth and the climatic and competitive constraints on growth 

do not map cleanly onto individual range margins according to the STH, tree populations in the 

optimal conditions are generally most constrained by competition, while those in the least 

optimal conditions are more constrained by climate. 

 However, despite this broad scale evidence of the STH, mean growth, synchrony or 

competitive sensitivity did not vary consistently across any climate gradient we examined, 

highlighting the complexity of climate-growth relationships (Figure S5). Mean growth showed 

patterns somewhat indicative of a transition between radiation limitation and drought limitation 

with increasing aridity. Species-replicates in wet locations showed increased growth at higher 

Climatic Moisture Deficits (CMD or potential evapotranspiration – precipitation) while species-

replicates in dry locations showed decreased growth at higher CMDs (Fig S5c). But species at 

intermediate aridities (e.g. CMD between 150mm and 350mm) showed a mix of both positive 

and negative mean growth relationships with CMD, rather than a common inflection point. The 

only significant large-scale relationship across all species-replicates was between growth 

synchrony and Climatic Moisture Deficit, though this was driven primarily by the strong 

responses of the two driest species-replicates (Pinus ponderosa and Populus tremuloides in 

Colorado, Figure S2, p=XXX).  

 

Factors that complicate the STH at local scales 
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One reason growth constraints (regardless of whether they are competitive or climatic) 

may not have mapped onto elevational range boundaries is because growth is only one aspect of 

fitness. We found mixed evidence for lower performance at range limits for fitness components 

besides adult growth, implying this may partly but not entirely explain the complex results we 

observed with adult growth. For example, we found that recruitment (to seedling or sapling 

stages) and adult survival for roughly half of species-replicates was highest at ‘benign’ range 

boundaries, as predicted if recruitment and survival are correlated with growth (Fig. 5). 

However, these vital rates followed the opposite pattern at range boundaries of several species. 

In the case of the two species that show unexpected mortality trends (i.e. highest benign 

mortality and lowest harsh mortality), we suspect that these patterns reflect the importance of 

biotic agents of mortality (Fig. 5a, Fig. S3, Table S3). Both these species-replicates had benign 

range boundaries unexplained by adult growth, which could suggest a biotic range constraint 

driven by mortality from biotic agents rather than competition. In this case, one additional 

species-replicate (A. lasiocarpa in Montana) would conform to the STH.  

For recruitment density, we generally found unexpected elevational patterns in the closed 

canopy forests of WA and MT (Figure 5b, S3, S7). Specifically, regeneration densities were 

actually highest at the harsh range boundary if all three Montana species-replicates and hump or 

trough-shaped for species-replicates in Washington. For A. lasiocarpa in Montana, we believe 

this inverse relationship between regeneration and adult growth is likely a function of increased 

residency time at sapling stage at tree line and/or a switch from competitive suppression to 

facilitation near treeline (Fig. S7, (Callaway, 1998)). For the remaining species-replicates, 

however, these patterns could indicate that competition or pest/pathogen load controls the benign 

range boundary by limiting recruitment, despite an absence of evidence of competitive 
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constraints for adults. Regardless of the reasons, these demographic measurements suggest 

climatic / competitive constraints are likely to operate with different strengths at different life 

history stages – but that this alone is unlikely to explain the complexity of our results. 

 
 
 
 
 
 
 
Figure 5: Survival and recruitment near study trees 
at the harsh and benign range margins and range 
center of nine species-replicates. (a) Recent (approx. 
5 year) survival rates as a function of range position 
and (b) sapling/seedling density at mean stand 
density as a proportion of species-replicate 
maximum recruitment density. Black lines show 
expected patterns if survival 

 

 

 

 

The strong effects of disturbance on the establishment of tree populations may 

additionally complicate the interpretation of elevation range boundaries and range constraints for 

some species. For example, in the closed canopy, old growth forests of Montana and 

Washington, altitudinal ranges of shade intolerant species such as Pseudotsuga menziesii and 

Abies lasiocarpa may be the legacy of stand replacing fires, such that elevation range margins 

actually represent the distribution of historic fires rather than edges of the fundamental niche. 

Given large scale evidence for climatic growth constraints across the entire continental range of 

Pseudotsuga menziesii (Littell et al., 2008; Restaino et al., 2016), this could well explain at least 

a portion of the unexplained range boundaries in this study (Fig. 4). While our dispersed 
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sampling strategy attempted to sample across variation in edaphic environment and stand history 

in each range margin population (see Methods), there was some evidence for elevational 

differences in tree size that did not mirror mean growth trends (see MT-TSHE and WA-PSME in 

Table S1), suggesting the possibility of large disturbance events that homogenized stand age 

across a range margin or range center population and established contrasting stand ages between 

populations. This may be consistent with long-term disturbance history mediating some 

elevational distributions.   

Finally, our results highlight the complexity of real world climate gradients, where 

disconnects between micro- and macroclimate challenge the assumption that an elevation 

gradient represents a monotonic stress gradient. Specifically, while almost all species replicates 

showed monotonic growth increases from one range margin to the other, it was difficult to 

predict a-priori which (upper or lower) range margin is ‘harsh’ for any species. One tree-line 

species-replicate (Abies lasiocarpa in WA), for example, actually reached its highest growth 

rates at the apparent tree line, likely due to the intricacy of local microclimates across even small 

topographic and aspect variation that swamped the assumed elevation climate gradient. 

However, we suspect complex and unexpected results would have emerged even if we had had 

perfect information on the microclimate experienced at all sampling locations. This is because 

the complexity of plant physiology and phenology means the relationship between plant stress 

and climate is often complicated and unpredictable (Anderegg & HilleRisLambers, 2015), see 

Supplementary Methods: Alternative metrics of climate sensitivity).  

 

Conclusions: 
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In all, our findings suggest that the Stress Tradeoff Hypothesis operates at broad spatial 

scales and may be useful for inferring climate change responses at these scales (e.g. latitudinal 

range boundaries); especially in environmentally ‘harsh’ regions where range constraint 

mechanisms seem most predictable. One major implication of our work is that high latitude 

range boundaries or subcontinental scale dry range boundaries (e.g. across maritime to 

continental climate gradients) are likely climatically constrained for many trees. Correlative 

models such as Climate Envelope Models may provide useful predictions of future dynamics of 

these particular range boundaries (assuming the short-term mechanisms of range contraction or 

expansion are understood). At the same time, our findings also highlight complexities that might 

prevent the STH from being useful for climate change forecasts at finer spatial scales (e.g. 

altitudinal range limits). However, these are also fruitful areas of future study. For example, the 

location of the climatically harsh range boundary (upper or lower?) and the life history stages at 

which population growth is constrained are major unknowns, as is the role of non-competitive 

biotic interactions at benign range limits. The importance of historical contingency (e.g. 

disturbance history) and complex microclimate in determining current local ranges (which may 

not appear in equilibrium with assumed climate gradients) may also be important for predicting 

local-scale range dynamics. Despite these complexities, we are cautiously optimistic that future 

work on large scale range boundaries will continue to reveal generalizations about range 

constraint mechanisms that can guide the development and application of range shift modeling 

tools. We also hope that explicitly biogeographic studies of tree regeneration and survival 

constraints will continue to improve our ability to understand local range dynamics and yield 

land-management relevant knowledge. 
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Methods: 

Study Locations 

 We collected tree cores from a total of 740 trees along elevation transects climbing three 

mountains: Shark’s Tooth in the San Juan National Forest, Colorado (henceforth ‘CO’); Mt. 

Brown in Glacier National Park, Montana (‘MT’); and Hurricane Hill in Olympic National Park, 

Washington (‘WA’) (Figure 1a, Figure S1). We cored 20-30 trees each from populations at the 

high and low elevation range margins and range center of three species per transect (Figure 1b). 

Each transect contains a strong climate gradient across elevation, principally defined for all three 

mountains by decreasing summer aridity and decreasing growing season temperature with 

increasing elevation (Figure S2a). However, the three transects differ considerably in terms of 

winter/dormant season (Nov-April) precipitation, and seasonal temperature variation 

(continentality) (Figure S2b). At each of three study mountain slopes, we identified a transect 

running from the mountain base (or in Colorado the lower elevation boundary of closed forest) to 

high elevation tree line while maintaining a roughly western aspect. To identify the dominant 

low elevation, montane and subalpine species at each mountain and determine their elevation 

range boundaries, we quantified species relative abundance and turnover across elevation at each 

mountain via 3-6 strip transects (5m wide by 50m long counting every stem >10cm DBH) at 

every ~50m of elevation gain.  In CO, our study species going from low to high elevation were 

Pinus ponderosa, Populus tremuloides, and Abies lasiocarpa. In MT and WA, our study species 

(low to high elevation) were Tsuga heterophylla, Psuedotsuga menziesii, and Abies lasiocarpa 

(Figure S1). In total, we examined nine species-replicates and 17 elevation range boundaries (in 

Washington, Tsuga heterophylla’s range extends essentially to sea level, so we were only able to 
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sample its upper and not its lower range margin). We determined climate normals for each 

sampled population based on the 1961-1990 PRISM climate normals (Daly et al. 2008) using the 

scale-free interpolation technique of ClimateWNA (ClimateWNA version 5.21, Wang et al. 

2012). 

 

Sampling Design 

At each site we collected tree cores from dispersed trees in ~100m elevation bands along 

the high and low elevation range margins and the range center of each of the three focal species. 

The purpose of this dispersed sampling strategy was to accurately capture population radial 

growth rates and growth sensitivies while sampling across variation in microtopography and 

stand history. In each population, we cored 10-15 pairs of mature canopy trees (total of 20-30 

trees per elevation) selected to include a range of diameters representative of the forest structure. 

Trees in a pair were <30m apart and of a similar diameter, one tree growing in a high 

competitive environment and one in a low competitive environment (typically a tree-fall gap) in 

order to capture as much variation in competition as possible. Pairs of trees were >40m apart, 

and all were located away from visible drainages. We quantified competitive environment using 

multiple metrics including stand basal area (assessed using a variable radius wedge prism), 

number of trees within 5m of the focal tree, number of canopies touching the focal tree and the 

focal tree’s active crown fraction (percent of tree height supporting foliage). We also quantified 

the number of recent dead conspecific trees (i.e. still maintaining either needles or all bark and 

fine twigs) in the variable radius wedge prism plot around each tree to estimate mortality within 

the last ~5 years (Hicke et al., 2012). Finally, we counted all conspecific saplings and seedlings 

within 5m of the focal tree with a height >5cm but a diameter at breast height <5cm. 
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We collected two tree cores at 1.35m height from opposite sides of each tree 

perpendicular to the aspect. Cores were mounted on wooden blocks, sanded and scanned with a 

high resolution scanner, and annual growth rings were measured to 0.001 mm using 

WinDENDRO (Version 2008e; Regent Instruments, Quebec City, Quebec, Canada). All cores 

were visually crossdated using WinDENDRO and then statistically crossdated with the 

Dendrochronology Program Library (dplR) package (Bunn 2010, version 1.6.4) in the R 

statistical environment (R Core Team 2016, version 3.2.4).  One tree was excluded from further 

analysis because it could not be reliably crossdated. Annual ring widths from the two cores per 

individual tree were then averaged.  

Ring width data were analyzed in two forms. First, to assess the effect of competitive 

environment and elevation on mean growth, we used the annual ring widths, the tree diameter at 

breast height, and bark depth measured on each tree in the field to calculate annual Basal Area 

Increment (BAI) from the outside of the tree inward. We then calculated the mean annual BAI 

for each tree for the 2003-2012 decade, a time over which the competitive environment assessed 

in 2013 was likely accurate. Second, to determine the correlation between annual growth 

anomalies between trees in a population we created unitless ring index (RWI) time series for the 

analysis of climate sensitivity by detrending each tree’s ring width chronology using a spline 

(with 50% rigidity at 0.67*series length, Bunn 2010) and then pre-whitening this detrended 

timeseries using an AR1 autoregressive model. This removes low frequency growth variation 

due to both tree size/age and alterations in stand structure (Cook and Peters 1981).  

 

Mean growth and competition  
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We quantified mean annual basal area growth (averaged for each tree from the 2003-

2012 period) for each population by constructing linear models or linear mixed-effects models 

for each species-replicate relating tree mean basal area increment (BAI) to range position, tree 

size, and competitive environment. In short, we used an iterative model selection technique 

(Zuur et al. 2009) to determine whether tree pair was necessary as a random effect, and then 

determine the optimal variance structure and fixed structure (relating mean BAI to range 

position, tree DBH, and one or more non-colinear competitive metrics) using the nlme and stats 

packages in R (Pinheiro et al. 2016). Significant differences in mean growth at species-replicate 

mean tree size and competitive environment between range margins and the range center were 

determined by centering predictors and comparing range margin intercepts to the range center 

intercept with t-tests. Significant changes in competitive sensitivity (specific significant range 

position-by-competition interactions) were also assessed via t-tests. See Table S2 for a 

description of the final model selected for each species-replicate, and Supplemental Materials: 

Example code for example R code showing the model selection technique. 

Broadly speaking, we interpreted size- and competition- standardized mean growth as an 

indication of environmental suitability of a population. Populations with low growth were 

interpreted as being environmentally ‘harsh’ and high growth as environmentally ‘benign’. We 

present population mean growth both in raw form (mean BAI, Figure 4) and standardized as a 

proportion of the fastest growing elevation band for each species-replicate (Figure 2). We 

quantified the detrimental effect of competition on mean BAI as the raw growth suppression at 

each elevation band resulting from a one standard deviation increase in competitive environment, 

or standardized as the proportion of that elevation’s mean growth suppressed by a one standard 

deviation increase in competition. 
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Climatic growth constraints  

We estimated the general importance of climate for constraining growth by assessing the 

growth synchrony between trees in each population. Synchronous growth fluctuations across all 

trees in a population suggest that broad scale factors, namely climate, drive growth fluctuations. 

Conversely, asynchronous growth suggests that local factors (pathogen attack, mechanical 

damage, changes in competitive environment) drive growth fluctuations (Ettinger et al., 2011; 

Shimatani & Kubota, 2011; Housset et al., 2016). We quantified growth synchrony using the 

distribution of pair-wise correlations (Pearson’s r) between the RWI of all trees in an elevation 

band. All RWI timeseries for a species-site were trimmed to the length of the shortest time-series 

across the species’ three elevations to avoid artifacts due to differing chronology lengths across 

elevation. For each species-replicate, we then assessed significant differences in growth 

synchrony between range margins and the range center using beta-regressions (correlation 

coefficients were first transformed to be bounded 0 to 1 rather than -1 to 1) using the betareg 

function in the R package betareg (Cribari-Neto & Achim Zeileis, 2010, version 3.0-5) with logit 

link and elevationally varying precision.  

We explored several additional metrics of growth sensitivity to climate from linear 

mixed-effects models designed to identify specific climate drivers of growth anomalies (size of 

standardized climate coefficients, ΔAIC of best model from null model, marginal or conditional 

R2 of best model, mean R2 of individual tree growth-climate models, etc). However, specific 

inferences proved highly dependent on which model selection technique, climate dataset, and 

method for selecting potential climate covariates (i.e. choices for dealing with multi-colinearity) 

we employed (See Supplemental Methods: Alternative metrics of climate sensitivity). This was, 
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at least in part, due to the complexity of memory effects (lagged effects of climate on growth 

from years prior to the growth year, Figures S9-S16) and the difficulty of defining appropriate 

climate variables over such a wide range of climates (e.g. growing season length differed by up 

to three months across the study sites, making universal definitions of seasonal variables 

difficult). Moreover, the statistical properties of goodness-of-fit metrics on mixed-effects models 

based on standardized, unitless Ring Width Indices (whose variance properties depend on the 

standardization technique) and the difficulties of establishing a best model-selection technique 

limited the robustness of these metrics. Results from these analyses are presented in the 

Supplemental Material, and qualitatively agree with the growth synchrony results presented here. 

So we present only the results of growth synchrony, as this is the most assumption-free and 

easily interpreted metric of climatic constraint. 

 

Recruitment and Survival 

 Survival probabilities were calculated for each population based on the proportion of live 

versus recent dead conspecific trees measured in the variable radius plots around each cored tree.  

We turned count data into binary survival data and used generalized linear mixed models with a 

binomial error distribution, a logit link function, and a random plot effect to model recent 

survival as a function of range position. Models were fit in R using the glmer function in the 

lme4 package (Bates et al. 2015, version 1.1-12). Trees were considered ‘recent dead’ in the 

model if the maintained dead foliage in their canopy or if they retained all bark and fine branches 

(see Table S3 for full details).  

Sapling and seedling density was statistically modeled for each species-replicate as a 

function of elevation band, competitive density (either total stand basal area, stand basal area of 



     35 

conspecifics, or number of stems >10cm DBH within 5m) using generalized linear models with a 

poisson distribution and log link. Model structure (and best competitive environment predictor) 

was selected based on model AIC (model results are shown in Table S4 and Figure S7), and used 

to predict regeneration densities at species-replicate mean competitive densities for each 

elevation band. Models were fit in R using the glm function in the stats package (R Core Team 

2016). Significant differences between seedling/sapling densities at range margins and the range 

center (at species-replicate mean competitive density) were assessed by mean centering 

competitive predictor variables and using a Wald z test on the intercept parameters. Recruitment 

of Pinus ponderosa in Colorado could not be modeled in this way because sapling/seedling 

densities were extremely low. Instead, we present the median sapling/seedling densities from 10 

additional 10m by 50m seedling transects. 

  

Broad scale test of STH 

Broad scale relationships between mean growth and growth synchrony/sensitivity to 

competition were assessed using hierarchical linear mixed effects models with mean growth as a 

fixed effect and species-replicate as random slope and random intercept effects. Models were 

constructed with both unweighted data and data weighted by the inverse of the standard error, 

but results were qualitatively similar and only SE-weighted p-values are presented in the text. 

Models were fit using the lmer function in the lme4 and lmerTest R packages (Bates et al. 2015, 

Kuznetsova et al. 2016). Reported p-values are t-tests for the significance of the fixed effect of 

mean growth based on Satterthwaite’s estimated degrees of freedom. All statistical analyses were 

performed in the R statistical environment (R Core Team 2016, version 3.2.4). 
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Drought stress limits the geographic ranges of two tree
species via different physiological mechanisms
LEANDER D . L . ANDEREGG and JANNEKE HILLERISLAMBERS
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Abstract

Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large
consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly
understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by
which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance
and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine – Pinus ponderosa)
and angiosperm (trembling aspen – Populus tremuloides) tree species in the southwestern USA. Specifically, we quanti-
fied tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits
(branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits
(xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each
species. Although water stress increased and growth declined strongly at lower range margins of both species, pon-
derosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought
tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an
increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in
drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure,
such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions.
Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms – a
result that has important implications for process-based modeling approaches to tree biogeography. Further, we
show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit
context, helps elucidate a mechanistic understanding of range constraints.

Keywords: drought avoidance, drought tolerance, ecophysiology, functional trait, intraspecific trait variation, Pinus ponderosa,

ponderosa pine, Populus tremuloides, trembling aspen
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Introduction

Species geographic ranges are ideal ecological study
systems because they are a highly visible outcome of
the fundamental forces shaping the abundance and dis-
tribution of organisms. It is therefore surprising that
despite two centuries of study on geographic distribu-
tions, the processes controlling range boundaries are
still poorly understood (Von Humboldt & Bonpland,
1805; MacArthur, 1972; Gaston, 2009; Sexton et al.,
2009). Because evolutionary responses are likely to be
too slow to allow species to adapt to rapid anthro-
pogenic climate change in place (especially long-lived
species) – (Aitken et al., 2008; Dullinger et al., 2012;
Quintero & Wiens, 2013), range shifts are projected to
be a major ecological response to climate change over
the next century (Parmesan & Yohe, 2003; Root et al.,

2003). Unfortunately, ecologists and conservation biolo-
gists lack a strong understanding of the fundamental
physiological mechanisms that limit species ranges,
and therefore have little ability to predict and manage
for the ‘emergent risk’ (i.e., complex, multisystem risk
that spans local and national boundaries) of climate
change-induced range shifts and the resulting potential
for species extinction (IPCC, 2014). Indeed, current
approaches to predicting range boundary movement
are by necessity largely correlational and mechanistic
approaches are rare (Handa et al., 2005; Morin, 2009;
Sexton et al., 2009; Buckley et al., 2011). Within-species
patterns of functional trait variation may provide an
underexplored tool for identifying the physiological
mechanisms underpinning climate-controlled range
boundaries.
Plant functional traits are a fundamental link

between the environment and organismal fitness, thus
providing a powerful tool for ecological inquiry at mul-
tiple spatial, temporal, and taxonomic scales (Violle
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et al., 2014). Functional traits have therefore become a
pillar of many ecological subdisciplines. They serve as
a tool for understanding plant community assembly
(McGill et al., 2006), drive next-generation vegetation
dynamics in land-surface models (Moorcroft et al.,
2001; Medvigy et al., 2009; Pavlick et al., 2013; Scheiter
et al., 2013) and provide a generalized understanding of
plant responses to environmental change (Angert et al.,
2011; Buckley & Kingsolver, 2012; D!ıaz et al., 2013;
Mouillot et al., 2013; Soudzilovskaia et al., 2013). In par-
ticular, recent global between-species trait comparisons
have revealed fundamental constraints on plant physi-
ology (Reich et al., 2003; Reich, 2014) that translate into
powerful life history trade-offs (Adler et al., 2014). In
addition, intraspecific trait variation, which can be a
substantial fraction of between-species trait variation
(Albert et al., 2010; Messier et al., 2010), can influence
species coexistence (Clark, 2010), predict climate
change impacts on plant physiology (Anderegg, 2014),
or project future range shifts (Benito-Garz!on et al.,
2011). However, intraspecific functional trait variation
across species ranges is still poorly understood (Marti-
nez-Vilalta et al., 2009; Violle et al., 2014), but could
greatly improve our mechanistic understanding of
range constraints by suggesting limits to physiological
adjustment.
We explore within-species variation in a suite of

plant drought stress resistance traits to explore the
physiological basis underlying tree range limits along
an aridity gradient. Moisture availability controls plant
biogeography and productivity across much of the
globe (Boisvenue & Running, 2006), and water stress is
thought to control the lower elevation range bound-
aries of many plant species in semi-arid environments
(Kelly & Goulden, 2008; Fellows & Goulden, 2012).
Moreover, drought is likely to change in spatial and
temporal extent and magnitude over the coming cen-
tury (Dai, 2011; Hartmann, 2011), driving plant range
shifts. Thus, we focus on drought resistance traits near
the dry range margins of two widely distributed tree
species. These traits have classically been divided into
‘avoidance traits’, ‘tolerance traits’, and ‘recovery
traits’ (see parallel terms in Larcher et al., 1973 and
Levitt, 1980): traits that relate to the ability to avoid
experiencing drought stress, the ability to tolerate
stress without injury when stress occurs, and the abil-
ity to recover when stress injures performance. We
explore within-species variation in key plant hydraulic
traits (Maherali et al., 2004) and morphological traits
(Reich et al., 2003) that together represent multiple
aspects of drought avoidance and tolerance (Table 1).
We do not focus on recovery traits, belowground traits,
or phenological traits (all of which may vary within a
species and influence plant drought resistance),

Table 1 Physiological and morphological variables mea-

sured on study trees, categorized by whether traits are
thought to help trees avoid or tolerate drought stress

Drought avoidance

traits Physiological implication

Tree height (m) Decreased height lowers xylem
tensions by reducing gravity

potential and hydraulic
resistance due to path length
(Koch & Fredeen, 2005)

Sapwood area-to-leaf
area ratio (As:AL – m2

per cm2)

Decreased leaf area to sapwood
area increases hydraulic
efficiency and reduces the xylem
tensions required to supply

evaporative area with water
(Martinez-Vilalta et al., 2009)

Median Leaf Size (cm2) Decreased leaf size reduces

distances from major leaf veins,
decreasing hydraulic resistance
from xylem to the leaf

evaporative site (Zwieniecki &
Boyce, 2004)

Maximum xylem area-
specific hydraulic

conductivity (Kmax)

Increased Kmax indicates greater
potential xylem hydraulic

efficiency (in the absence of
embolism), which reduces
hydraulic resistance and

decreases the xylem tensions
needed to move water from root
to leaf (Maherali et al., 2004)

Leaf area-specific native
hydraulic conductivity
(Knat_Leaf)

Increased Knat_Leaf (conductivity
with native embolism present)
increases hydraulic efficiency
and indicates greater hydraulic

support of each unit leaf area
Decreased stomatal
conductance (gs)

Stomatal closure prevents the
development of large xylem

tensions by limiting water loss

Drought Tolerance
Traits Physiological Implication

Specific leaf area (SLA) Decreased SLA (leaf area per
unit dry mass) can increase
tolerance of leaves to large xylem

tensions (Mitchell et al., 2008)
Xylem vulnerability to
cavitation (in branches)

Decreased xylem vulnerability to
embolism increases the xylem

tensions possible before
conductivity is curtailed by
drought-induced xylem
embolism (Maherali et al., 2004)

Hydraulic safety margin Difference between most extreme
xylem tension experienced in the
field and xylem tension required

to cause 50% embolism (Choat
et al. 2012)
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because these are either poorly understood or difficult
to quantify. In general, tree species may avoid increas-
ing water stress at their dry range edge via adjust-
ments to tree height, leaf area-to-sapwood area ratio,
leaf size, hydraulic efficiency, and stomatal regulation
of water loss. By contrast, species may become more
tolerant to water stress at their range edge via changes
to specific leaf area, hydraulic vulnerability to cavita-
tion, or hydraulic safety margin (see Table 1).
In this study, we build on successful across-species

trait analyses (e.g., Carnicer et al., 2013; Reich, 2014) to
explore the strategies by which individual species deal
with water limitation across their ranges. We compare
two woody species, a dominant gymnosperm (pon-
derosa pine – Pinus ponderosa Dougl. ex Laws) and a
clonal angiosperm (trembling aspen – Populus tremu-
loides Michx.) in the southwestern USA. Annual growth
is increasingly sensitive to previous year moisture
availability at the low-elevation range boundaries of
both species (L.D.L. Anderegg & J. HilleRisLambers in
prep.), suggesting that ponderosa pine and aspen’s
low/dry range boundaries are both constrained by
moisture stress at the study site. First, we confirm that
performance is constrained at range limits by examin-
ing rangewide variations in radial growth and water
stress. Second, we quantify trait variation in multiple
functional traits to assess the physiological strategies by
which each species copes with increasing water stress.
Finally, we synthesize growth and trait variation pat-
terns to speculate how and whether the study species
differ in the physiological drivers of their dry range
limits.
We find that radial growth of both tree species

decreased dramatically at the dry range margins, but
the species showed contrasting patterns of trait varia-
tion. Ponderosa avoided water stress at low elevations
by curtailing water loss, whereas aspen maintained
transpirational losses but built more drought-tolerant –

yet carbon dense – tissues at its dry range boundary.
Thus, ponderosa pine may be limited at its dry range
boundary by lack of carbon assimilation, whereas
aspen faces the increasing carbon cost of growing
drought-tolerant organs.

Materials and methods

Study design

The study was conducted on the west slope of the La Plata
Mountains in the San Juan National Forest (37.4825°N,

108.1970°W), Southwest Colorado (USA) in the summer of
2014. Plant communities transition from lowland pi~non–
juniper woodland to ponderosa pine forest to montane aspen

forest to subalpine spruce–fir forest with elevation (Fig. S1),
crossing a large temperature and precipitation gradient while
maintaining a relatively consistent southwest aspect. Our
study sites (Table 2) start at the lower transition from closed

canopy forest to scrub/open woodland (at ~2250 m) and
nearly reach upper tree line (at ~3550 m). Mean annual tem-
perature ranges from 7.3 °C to 2.6 °C, and mean annual pre-

cipitation ranges from 480 mm to 760 mm (Fig. 1). Because
precipitation is bimodally distributed throughout the year
(~50% falls during the winter and the rest falls as summer

monsoons beginning mid- to late-July), these forests usually
experience peak water stress in early- to mid-July (Anderegg
et al., 2013a).

We investigated the gymnosperm ponderosa pine (Pinus
ponderosa Dougl. ex Laws) and the clonal angiosperm trem-
bling aspen (Populus tremuloides Michx.), both widespread
throughout North America and forming monodominant

stands across most of the study site. Focal species differ in
xylem anatomy (ponderosa have only tracheids, aspen have
tracheids and xylem vessels) and leaf lifespan (evergreen vs.

winter deciduous). Because aridity strongly increases with
decreasing elevation in semi-arid, midlatitude mountains
(e.g., Fig. 1), drought stress likely controls the low-elevation
limit of most tree species at the study site (Adams &

Kolb, 2005; Fellows & Goulden, 2012), including the two study
species.

Table 2 Characteristics (mean ! SD) of study stands (5 stands per elevation). DBH is the mean diameter at breast height (1.3 m)

of focal trees (3 per stand), while density and basal area are the mean number of trees per hectare and stand basal area per hectare
across stands based on the stand average density and basal area assessed for each focal tree using 15-m (ponderosa pine) or
10-m-diameter (trembling aspen) plots

Elevation (m) DBH (cm) Density (trees ha"1) Basal area (m2 ha"1) Age (years)

Ponderosa
Low 2320 ! 10 44 ! 11 248 ! 70 23 ! 11 100 ! 8

Mid 2480 ! 27 47 ! 7 356 ! 107 38 ! 8 102 ! 8
High 2676 ! 14 51 ! 4 281 ! 84 29 ! 10 101 ! 9

Aspen
Low 2665 ! 9 25 ! 4 588 ! 202 27 ! 8 101 ! 5

Mid 2889 ! 38 40 ! 9 949 ! 175 55 ! 16 98 ! 26
High 3081 ! 8 36 ! 7 1082 ! 431 57 ! 11 97 ! 24
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We located five mature stands each at the lower elevation
range margin, at the range center, and at the upper range mar-
gin of each species (total of 15 stands per species). Stands were

>100 m apart on gentle (<8% slope) southwest to west facing
aspects and were >30 m from any major topographic or
hydrological features such as drainages or hill tops (see
Table 2 for stand characteristics). In each stand, we randomly

selected three mature, dominant, visually healthy trees for
growth and trait measurements (below, see Table 1).

Trait measurements

Growth. To quantify growth, we collected two tree cores
from each focal tree at 1.3 m height on opposite sides of the
bole perpendicular to the aspect. Cores were sanded and

scanned with a high-resolution scanner, and annual growth
rings were measured to 0.001 mm using the WINDENDRO

software (Version 2008e. Regent Instruments, Quebec City,

Quebec, Canada). Cores were visually and statistically cross-
dated using the dplR package in R (Bunn, 2010, R Develop-
ment Core Team 2014), and ring widths averaged per tree.
We used diameter at breast height (DBH) and bark depth to

calculate annual basal area increment (BAI) from annual ring
widths, and then calculated mean annual BAI (2003–2012) for
each tree. To assess how stand density affects growth, we

performed stand surveys and calculated Hegyi’s distance-
dependent competitive index (Hegyi, 1974) for each tree.
Hegyi’s index sums the neighbor DBH divided by the focal

tree DBH and the distance to the neighbor for all neighboring
trees within 15 m (for ponderosa pine) or 10 m (for aspen) of
the focal tree. This competition index correlates with BAI in
ponderosa forests (Contreras et al., 2011), and was therefore

included as a covariate in all statistical tests involving BAI.
Because our response variable (BAI) and density covariate
(Hegyi’s competitive index) were highly variable, we

included growth data from 12 to 25 closely co-located trees
per elevation (cored in 2013 for a separate project) to increase
sample size and statistical power (L.D.L. Anderegg & J.

HilleRisLambers, in prep.). Unlike other focal individuals in
this study, 2013 trees were selected for high-vs.-low competi-
tive environments; however, other selection criteria were
identical to this study (see description with Fig. S2). Competi-

tive environment was estimated for 2013 trees via multiple
techniques, which we converted into Hegyi’s competitive
index (see Fig. S2). When excluding these additional trees,

results were qualitatively similar, albeit non-significant for
trembling aspen (Fig. S3). The combined dataset resulted in a
final sample size of 27–40 trees per elevation (mean = 35

trees) for growth estimates.

Xylem tension measurements. We estimated wmin (the lar-
gest xylem tension, i.e., most negative plant water potential)
for focal trees by measuring branch xylem tension between

June 29th and July 9th of 2014. This period captured the
driest portion of the growing season (monsoonal rains
began on July 10th) and largest xylem tensions of the year.

Although 2014 was an average year climatologically (the
water year precipitation was 4.7 cm or 6% below the 20-
year average, and mean annual temperature was 1.3 °C hot-

ter than the 20-year average at a SNOTEL station ~5 km
away), single growing season wmin is often used to approxi-
mate interannual wmin (Sperry, 2000; Choat et al., 2012). Fur-
thermore, our measured xylem tensions were quite similar

to previous maximum tensions measured in low-elevation
aspen stands in this region (~0.2 MPa less than most
extreme tensions measured since 2010; Anderegg et al.,
2012, 2013a, 2014).

Xylem tensions were measured twice daily on distal
twigs of focal trees: once predawn (03:00–05:30 local time,
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Fig. 1 Climate variation across the study elevation gradient in

SW Colorado, USA. Elevation ranges of ponderosa pine and

trembling aspen are shown at the bottom of the figure. Mean

annual growing season precipitation (light gray bars) and dor-

mant season precipitation (dark gray bars) at the three pon-

derosa study elevations and three aspen study elevations

increase with increasing elevation. Mean annual temperature

(solid line), as well as mean summer temperature (upper edge

of gray shading) and mean winter temperature (lower edge of

shading) decrease with elevation. Annual potential evapotran-

spiration (PET, points with lines) also decreases with elevation.

Data are from 30 years PRISM climate normals (Daly et al.,

2002) interpolated using the ClimateWNA algorithm (Wang

et al., 2012).
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generally considered lowest daily tensions) and again at

midday (13:00–15:00). Assuming no nighttime transpiration,
predawn xylem tensions reflect soil water potential across
the rooting depth of the tree and are an indication of soil

moisture limitation, whereas midday xylem tensions repre-
sent the maximum tensions experienced by the tree
(Ritchie & Hinckley, 1975). The assumption of limited

nighttime transpiration was supported for both species by
preliminary experiments comparing predawn water poten-
tials of juveniles bagged in plastic overnight vs. unbagged
juveniles (data not shown). Branches of ~5 cm diameter

were collected from the mid-to-upper, sun-exposed, south-
facing canopy via shotgun and immediately placed in
humid plastic bags. Xylem tension of 1–3 intact twigs from

these branches (recut >30 cm from the initial branch break)
was measured using a Scholander-type pressure bomb
(PMS Instruments, Corvalis, OR) within three minutes of

sample collection. Weather was sunny and cloud free
when xylem tensions were measured.

Morphological traits. Morphological traits can allow trees to

avoid water stress when soil moisture is limiting (Table 1).
Large reductions in tree height can limit maximum xylem ten-
sions by reducing gravitational potential and lowering the
hydraulic path length between soil and leaf (McDowell et al.,
2002; Koch & Fredeen, 2005), while decreased branch leaf
area-to-sapwood area ratio (AL: AS) can increase hydraulic effi-
ciency, thereby decreasing the xylem tensions necessary to

deliver water to the leaf (Martinez-Vilalta et al., 2009). In addi-
tion, decreased leaf size can increase leaf hydraulic efficiency
(decrease hydraulic resistance) by decreasing the distance

between leaf evaporative sites and large (low resistance) veins
(Zwieniecki & Boyce, 2004; Sack & Holbrook, 2006). We also
quantified elevational variation in specific leaf area
(SLA = leaf area/leaf dry mass), because decreasing SLA is

associated with increased drought tolerance as more structural
carbon increases a leaf’s ability to withstand high xylem ten-
sions without losing turgor (Mitchell et al., 2008). In addition,

water storage and capacitance can increase as SLA decreases
(Ishii et al., 2014).

We used various field and laboratory techniques to measure

these traits. Tree heights were measured with a digital incli-
nometer. We used digital photographs and ImageJ image pro-
cessing software (US National Institute of Health; http://
www.nih.gov/) to quantify total one-sided leaf area (AL) and

median leaf size (P!erez-Harguindeguy et al., 2013) of one sun-
exposed branch 3–15 mm in diameter from the south-facing
mid-to-upper canopy of each tree (collected for hydraulic

measurements discussed below). We calculated SLA (AL/leaf
dry mass) and calculated AL:AS using the sapwood diameter
at the basal end of the branch segment. When branch leaf area

was very large, leaf area was estimated by calculating the SLA
of a subset of leaves/needles and multiplying by the total
leaf/needle dry mass of the branch. Following measurement
of branch hydraulic conductivity, we measured branch wood

density on a 3- to 5-cm section by dividing the green volume
(assessed via water displacement on an analytical balance) by
sample dry mass.

Hydraulic traits. We measured branch hydraulic efficiency

across elevation in both species to quantify drought avoid-
ance-related hydraulic adjustment. We used a shotgun to
collect one large (diameter >10 cm), sun-exposed, mid-

to-upper canopy branch from the south side of each focal tree
at midday during maximum summer water stress (June 29th –
July 9th). Because branch severing under tension can cause

artificial embolism (Wheeler et al., 2013), an unbranched seg-
ment (>12 cm long, bearing no foliage and typically 5–9 mm
diameter) was immediately cut from the original branch under
water as far away from the initial break as possible (typically

>10 cm) to relax xylem tension. This segment was sprayed
with water, sealed in a moist plastic bag, and placed in a
cooler for transport back to the laboratory. In the laboratory,

branch segments were recut underwater using a sharp razor
(final length >8 cm). Aspen stems were cut as long as possible
(typically >10 cm in length) to accommodate long maximum

vessel lengths (between 8 cm and 15 cm, mean vessel length
is 1.9 cm; Sperry & Sullivan, 1992; Sperry et al., 1994; Zimmer-
mann & Jeje, 1981). Native or maximum conductivity and
branch length were uncorrelated, suggesting no open vessels

in shorter aspen branch segments (data not shown). Branch
native conductance (knat) was measured using the standard
pressure-flow method (Sperry et al., 1988), stems were flushed

of embolisms via vacuum infiltration, and then maximum con-
ductance (kmax) was measured. Native conductance values
were standardized by the leaf area of the branch and stem seg-

ment length to give leaf area-specific conductivity (Knat_Leaf),
reflecting how well hydraulically supported each unit of leaf
area is. Maximum conductance values were standardized by
stem sapwood area and stem length to give maximum sap-

wood specific conductivity (Kmax), representing maximum
hydraulic efficiency allowed by the branch xylem anatomy.
The degree of embolism present in these branches was also

quantified as the percentage loss of conductance:

PLC ¼ ðkmax # knatÞ
kmax

% 100: ð1Þ

On a second set of branch segments (collected as above but
following the onset of the summer monsoons), we quantified

xylem vulnerability to cavitation via a standard vulnerability
curve technique. Artificial xylem tensions were induced via
air injection, following the protocols of Anderegg et al. (2013b)
for aspen stems and Maherali & DeLucia (2000) for ponderosa

pine stems. Native conductance and maximum conductance
were measured for each branch, and then, conductance was
measured following air injection-induced xylem tensions of 1,

2, 3, and 4 MPa. This method has previously produced reli-
able vulnerability curves for both of these species, and results
for trembling aspen have been verified against the centrifuge

method (Anderegg et al., 2013b). For ponderosa pine, we had
difficulty maintaining the slight positive pressure recom-
mended by Maherali & DeLucia (2000) in the six-chamber
pressure manifold used to induce xylem tensions. Because of

this, we removed data from some branches that appeared to
refill considerable cavitation at higher xylem tensions (final
n = 25 branches). Xylem P50, the xylem tension at which

branches reach 50% loss of conductivity, was calculated for
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each elevation by fitting an exponential sigmoidal function of

the form:

PLC ¼ 100

1þ expðaðw$ bÞÞ
; ð2Þ

where PLC is the percentage loss of conductance, w is the

induced xylem tension, a is the shape parameter, and b is the
P50 value (i.e., the w that causes 50% loss of conductivity)
(Pammenter & Vander Willigen, 1998). Parameters a and b
and their 95% confidence intervals were estimated for each
elevation by nonlinear least squares using the R statistical soft-
ware (R Core Team 2014) combining data from all branches
from that elevation. Vulnerability curve results are reported in

terms of percentage loss of conductivity from maximum con-
ductance, but vulnerability curves were also constructed using
raw conductance values with qualitatively similar results (see

Fig. S4). The hydraulic safety margins (the difference between
the xylem tension required to induce 50% embolism – P50 –
and the strongest xylem tensions experience in the

field—wmin) for each elevation were calculated using the P50
estimated from xylem vulnerability curves (above) and the
actual midday xylem tensions measured at that elevation.

Finally, we integrated the xylem tension, AL:AS and stem

conductivity measurements to model stomatal conductance,
using the model proposed by Whitehead & Jarvis (1981) to
estimate water movement through a plant at steady state.

Specifically, canopy gas exchange is modeled as:

gs ¼ c
1

AL : AS
Ks

Dw
h

! "
1

VPD
; ð3Þ

where gs is stomatal conductance; c is a coefficient represent-

ing the specific heat and density of air, the latent heat of
vaporization, and the viscosity of water; AL:AS is the leaf area-
to-sapwood area ratio; Ks is the sapwood area-specific conduc-

tivity; Dw/h is the pressure drop across the plant (midday
xylem tension – predawn xylem tension) divided by the total
path length (typically approximated by tree height); and VPD

is the vapor pressure deficit (Whitehead & Jarvis, 1981). We
estimated mean midday VPD (average of measurements at
13:00 hours and 15:00 hours) for each elevation between June
1st and June 18th 2014 using four temperature and relative

humidity sensors (Maxim iButtons, DS1923) shielded by white
funnels and placed in the canopy of focal trees or nearby coni-
fers (Lundquist & Huggett, 2008), two at ponderosa’s low-

elevation range margin, one at the ponderosa/aspen transition
zone (high ponderosa margin, low aspen margin), and one at
aspen’s high-elevation margin, and then linearly interpolating

VPD at the range center of each species. Using the individual
values of branch AL:AS, branch Kmax, Dw (midday xylem ten-
sion minus predawn xylem tension), and h (tree height as a
proxy for total path length), we calculated relative gs for each
focal tree. We assume whole tree K and AL:AS values to be
proportional to branch values and report stomatal conduc-
tance values calculated via Eqn (3) as the percentage of

mean mid-elevation gs for each species. Ponderosa AL:AS and
Kmax were corrected for branch diameter based on the
branch diameter or log(branch diameter) coefficients from the

mixed-effects models for each trait discussed below. As is

heuristically evident by Eqn (3), stomatal conductance (gs) is
intimately tied to whole-plant hydraulics and multiple feed-
back and feedforward processes relate gs to leaf xylem tension.
Stomatal behavior is often discussed as falling on a spectrum

between ‘isohydric’ (plants that limit conductance to maintain
a stable maximum xylem tension) and ‘anisohydric’ (plants
that regulate stomata less strongly in response to either xylem

tension or evaporative demand and thus have larger varia-
tions in xylem tension)(Klein, 2014), and stomatal behavior
is tightly coupled with hydraulic parameters and a plant’s
general water use strategy (Sperry et al., 2002).

Statistics

To assess the effect of elevation on individual traits, we con-

structed mixed-effects models for each species relating raw
trait values, or in some cases, power transformed-trait values
(see Tables S1 and S2), to elevation, with a random effect of

stand to account for the nested data structure. We coded ele-
vation categorically (low, mid, and high), and tested for a sig-
nificant effect of elevation via a likelihood ratio test (LRT)

against a null model (model with only random effects and an
intercept). Where elevation proved significant via likelihood
ratio testing, we also used the Satterthwaite approximation of
marginal fixed effect significance implemented in the ‘lmerT-

est’ R package (Kuznetsova et al., 2014) to test post hoc
whether trait values at either range margin differed signifi-
cantly from the range center. We report these significant dif-

ferences with an asterisk (*) over significantly differing range
margins in figures. A subset of ponderosa pine traits showed
a relationship with branch diameter, so we also included

branch diameter (wood density, AL:AS) or log(branch diame-
ter) (SLA, Knat_Leaf, Kmax) as a covariate in these models
(Table S1). For mean annual BAI, we performed the same like-
lihood ratio test to assess the effect of elevation on growth, but

included Hegyi’s competitive index and diameter at breast
height as covariates.

Competitive index was never included in the best model as

determined by AIC for any trait other than growth, so we did
not include it in analyses of morphological and physiological
traits variation. Although tree age did not differ significantly

across elevation, we also built trait models including tree age
as a covariate to test for maturation-related effects on tree
traits. However, with the exception of tree height in ponderosa
pine, tree age was never included in the best-fit models and

was therefore excluded from the final analysis.
We also fit mixed-effects models with elevation as a contin-

uous linear predictor and a quadratic predictor to assess

whether these continuous models better described our results,
using AIC to compare categorical vs. continuous models.
However, continuous models never showed a DAIC of >2
from the null or best categorical models, and results were
qualitatively very similar to categorical elevation models, so
we report only results from the categorical models.

For xylem tension measurements, we performed model

selection on mixed-effects models (with stand and tree as ran-
dom effects to account for nested data structure) including a
null model, elevation as a continuous linear predictor, time of
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day, and an elevation*time of day interaction (quadratic eleva-

tion was not included due to the difficulty of interpreting ele-
vation*time of day interactions). We then selected the best-fit
model based on AIC and performed a likelihood ratio test

against the null model and the next best model. A best-fit
model including an interaction effect suggests that predawn
and midday xylem tensions of a species did not change

similarly across elevation. All models were constructed using
the ‘lme4’ package (Bates et al., 2014) and ‘lmerTest’ package
(Kuznetsova et al., 2014) in the R statistical environment
version 3.1.0 (R Core Team 2014). For xylem tension measure-

ments, significance of individual fixed effects was determined
using the Satterthwaite approximation implemented in the
‘lmerTest’ package (Kuznetsova et al., 2014). We verified the

normality of all model residuals visually, and either log
transformed or power transformed the trait data where
necessary (see Tables S1 and S2 for details). Where necessary,

extreme outliers were removed (see Tables S1 and S2 for final
samples sizes excluding missing data and extreme outliers).
Data files and R code for all analyses are provided in the
Appendix S1–S6.

Results

Growth analysis

Mean annual basal area increment (BAI) increased with
elevation, almost tripling from the low to the high-ele-
vation range margin in ponderosa (from 762 ! 75 to
2179 ! 186 mm2 yr "1, mean ! SE) and almost dou-
bling in aspen (from 696 ! 58 to 1245 ! 97 mm2 yr"1 –
Fig. 2). After accounting for the effects of DBH and
competitive index, BAI of ponderosa pine remained
low at the lower range margin and the mid-elevation
range center, and significantly increased only at high
elevations (P < 0.0001, Table S1). Meanwhile, aspen
BAI also increased nonlinearly with elevation, increas-
ing from low- to mid-elevation (P < 0.0001, Table S2),
but then remaining stable from mid- to high elevation.

Xylem tensions across elevation

Predawn measurements of branch xylem tension (a
proxy for soil water potential) of both species showed
increasingly limited midsummer soil moisture (higher
tensions) descending across the elevational range
(Fig. 3, effect of elevation on predawn tension from
mixed-effects model: ponderosa P < 0.00001, aspen
P = 0.008, see Table S3). For both species, the elev *
time of day interaction model was the best mixed-
effects model as determined by AIC (likelihood ratio
test, ponderosa: P =< 0.00001; aspen: P = 0.005). Inter-
estingly, predawn xylem tensions varied considerably
more across the range of ponderosa pine (1.44–
0.89 MPa from low- to high elevation) than across that

of aspen (0.58–0.47 MPa). This variation is more similar
to the nonlinear decrease in PET with increasing eleva-
tion than the linear increase in precipitation across
the study gradient (Fig. 1). Also, even though high-
elevation ponderosa stands and low-elevation aspen
stands were closely co-located in the ponderosa-aspen
transition zone (plot centers of aspen and ponderosa
stands sometimes differed by <100 m), aspens showed
lower predawn xylem tensions by on average 0.3 MPa.
This difference is not explained by their ~5 m height
difference at this elevation, which accounts for only
0.05 MPa of added gravitational potential.
Midday xylem tensions also were greater at low ele-

vation in both species (Fig. 3). However, in ponderosa
pine the increase in midday xylem tensions was signifi-
cantly less than the increase in predawn xylem tensions
(Fig. 3, elev*midday interaction P = 0.001), resulting in
an average daily change in xylem tension due to daily
transpiration (Dw) of 0.73 ! 0.08 MPa (mean ! SE) at
high elevation and only 0.31 ! 0.06 MPa at low eleva-
tion. This suggests either a very large increase in
hydraulic efficiency or considerable stomatal closure at
low elevations. In contrast, approaching the low-
elevation margin of aspen midday xylem tensions
increased slightly more than did predawn xylem ten-
sions, resulting in a predawn to midday tension differ-
ence of 0.94 ! 0.05 MPa at high elevations and
1.12 !0.04 MPa at low elevations (Fig. 3, Table S4,
elev*midday interaction P = 0.006).
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Morphological traits

The study species showed clinal variation in very differ-
ent morphological traits. Median leaf size decreased
strongly with decreasing elevation in ponderosa
(Fig. 4a, Table S1, LRT P = 0.0018) but not in aspen
(Table S2, LRT P = 0.14). The height of adult canopy
trees was similar for both tree species, and remained
stable across all elevations except at aspen’s low eleva-
tional range edge (Fig. 4b, ponderosa LRT P = 0.29;
aspen LRT P = 0.00003). In contrast, the ratio of leaf area
to sapwood area (AL:AS) showed no pattern in aspen
(P = 0.73) but increased significantly at the upper range
margin of ponderosa pine (Fig. 4c, LRT P = 0.025).
Finally, SLA and wood density showed an increase

in the carbon cost of tissues at aspen’s low-elevation
range boundary, but showed no elevational trends for
ponderosa pine. SLA of low-elevation aspen trees was
significantly lower (i.e., more carbon per unit leaf area)
than SLA at the range center or upper range margin
(Fig. 5a, LRT P = 0.012, low elevation differed from
mid P = 0.016) whereas ponderosa pine showed no sig-
nificant change in SLA. Branch wood density also
showed no significant relationship with elevation in
ponderosa pine (Fig. 5b), while wood density
decreased strongly across the elevational range of
aspen (LRT P = 0.0008).

Hydraulic traits

At the height of midsummer water stress, neither native
leaf area-specific hydraulic conductivity (Knat_Leaf:

a measure of how well hydraulically supported a unit
leaf area is) nor sapwood area-specific maximum con-
ductivity (Kmax: conductivity with embolism removed,
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a measure of maximum xylem hydraulic efficiency)
showed any trend with elevation in aspen (Fig. 6). In
ponderosa, once log(stem diameter) was included as a
covariate in the mixed-effects models, Knat_Leaf also
showed no relationship with elevation (Fig. 6a). Mean-
while, ponderosa Kmax decreased significantly from
mid- to low elevation (Fig. 6b, LRT P = 0.001, low
differs from mid-elevation P = 0.02).
Xylem vulnerability to cavitation increased signifi-

cantly with elevation in aspen, but showed no significant
clinal variation in ponderosa (Fig. 7). The vulnerability
curve of low-elevation aspen was considerably more
resistant than that of mid- and high-elevation aspen
(Fig. 7b), resulting in a higher P50 value (xylem tension
required to cause 50% cavitation) at low elevation
(Fig. 7b, 95% confidence interval 2.4–2.8 MPa at low ele-
vation vs. 1.6–1.9 MPa at mid-elevation and 1.4–
1.9 MPa at high elevation). We found a slight but non-
significant decrease in the P50 with increasing elevation
in ponderosa (Fig. 7a, all 95% confidence intervals over-
lap), although there was considerably more uncertainty
in our estimates of ponderosa P50 than aspen P50.
By subtracting the midday xylem tensions measured

in the field from P50 values estimated for each eleva-
tion from the xylem vulnerability curves above, we cal-
culated the ‘hydraulic safety margin’ for each elevation.
Even though aspen midday xylem tensions were ele-
vated at lower elevations, the hydraulic safety margin
was much larger in low-elevation trees than mid- or
high-elevation trees (e.g., low-elevation safety margin
of 0.96 ! 0.02 MPa compared to mid-elevation margin
of 0.21 ! 0.03 MPa, LRT P " 0.001 Fig. 8a). This sug-
gests that aspen do not just grow stronger xylem at low

elevations, but are actually more conservative in their
xylem anatomy at low elevations. Hydraulic safety
margin also decreased significantly with elevation in
ponderosa (P < 0.001, Fig. 8a, Table S2). However,
these calculations do not incorporate the relatively
large uncertainty in ponderosa P50 values (Fig. 7a)
because safety margins for each tree were calculated
using the elevation mean P50 value. Because the docu-
mented change in safety margin is small (0.25 MPa
from low- to mid-elevation) compared both to the
uncertainty in P50 value (mean P50 confidence interval
range was 1.1 MPa) as well as to the safety margin dif-
ferences observed in aspen (0.75 MPa from low- to
mid-elevation), the observed differences in hydraulic
safety margin for ponderosa pine are not necessarily
biologically significant.
Further corroborating a biologically relevant increase

in hydraulic safety margin in low-elevation aspens,
native embolism (measured as percentage loss of con-
ductivity or PLC) increased with increasing elevation in
this species (Fig. 8b, LRT P = 0.001, low differs from
mid P = 0.004), despite decreasing midday xylem ten-
sions. Meanwhile, ponderosa pine branch PLC at mid-
summer was consistently quite low at all elevations
(Fig. 8b), suggesting that the significant decrease in
hydraulic safety margin in this species may be either a
statistical artifact or not biologically significant.
Finally, estimates of steady state, midsummer stom-

atal conductance (gs) appeared stable across the eleva-
tional range of aspen (Fig. 8c), but decreased
precipitously across the elevation range of ponderosa
pine (Fig. 8c, LRT P = 0.002). In ponderosa, large differ-
ences in gs despite relatively small differences in
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maximum xylem tensions (Fig. 3) suggest a relatively
isohydric strategy compared to aspens, which experi-
ence larger geographic variation in xylem tensions with
no decrease in gs (although such a delineation can be
somewhat difficult, Klein, 2014; Franks et al. 2007). By
integrating values of morphological (Fig. 4c) and
hydraulic traits (Fig. 6b) with xylem tensions measured
in the field (Fig. 3) and changes in evaporative demand
(VPD, not shown), our model estimates suggest that
mid- and low-elevation ponderosas have 41% and 22%
(respectively) of the stomatal conductance of ponderosa
at the high-elevation range margin, implying drastically
curtailed transpiration near the dry range boundary of
this species. Meanwhile, the model suggests that,
decreases in height in low-elevation aspen sufficiently
offset increases in VPD to maintain gs equal to or
greater than mid-elevation gs.

Discussion

Our results suggest that two major North American
tree species occurring along different portions of an
aridity gradient employ drastically different strategies
for coping with increased water limitation at their
dry range boundary. Ponderosa pine showed little
variation in key morphological and hydraulic traits
influencing drought avoidance and drought tolerance,
and thus appeared to minimize water stress primar-
ily by strongly limiting transpiration in drier habi-
tats. In contrast, trembling aspen showed a
considerable decrease in the vulnerability of its
hydraulic system to drought-induced cavitation at its
dry range edge, suggesting a strategy of increased
drought tolerance in response to aridity. Despite
these adjustments, growth of both species was con-
strained at their low-elevation range boundary,
potentially indicative of a limit to ponderosa’s
drought avoidance capacity and aspen’s drought tol-
erance capacity at higher levels of aridity. Below we
discuss each species in turn.

Trembling aspen

Aspen trees tolerate water limitation near their dry
range edge by protecting their hydraulic system
against xylem cavitation during chronic stress, rather
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than by avoiding water stress through increased
hydraulic efficiency or decreased water use. Pre-
dawn xylem tension measurements suggested that
soil moisture becomes only slightly more limited
approaching aspen’s low-elevation boundary. How-
ever, maximum water stress (i.e., midday xylem ten-
sions) increased significantly approaching aspen’s
low-elevation margin (Fig. 3) presumably due to
increased evaporative demand. Aspens respond by
growing shorter trees with denser wood, bearing
smaller, lower SLA (i.e., more carbon dense) leaves,
and by growing stronger xylem. Previous research
suggests that the main mechanism of drought-
induced mortality in aspen is the deterioration of
hydraulic function caused by cavitation during
drought and subsequent xylem ‘cavitation fatigue’
(Anderegg et al., 2012, 2013b). Given the possibly
fatal consequences of cavitation, evolutionary forces
may drive aspen to become increasingly hydrauli-
cally conservative where drought is most prevalent
(Fig. 8). This intraspecific pattern contrasts with the
findings of Choat et al. (2012), who found little rela-
tionship between climate dryness and angiosperm
hydraulic safety margins across species.
Basal area growth decreased strongly in low-eleva-

tion aspen, even as leaf and stem tissue showed
increased carbon investment. Although wood density
arises through many aspects of xylem anatomy,
reduced xylem vulnerability to cavitation via
increased vessel wall thickness likely plays some
role in increasing branch wood density in low-eleva-
tion aspens (Lens et al., 2010) while making each
unit of conducting area more energy intensive to
grow. Likewise, SLA varies in response to multiple
environmental cues and anatomical differences, but
low SLA aspen leaves likely increase leaf drought
tolerance, possibly by decreasing leaf turgor loss
point, (Merchant et al., 2007; Bartlett et al., 2012)
and/or increasing leaf capacitance (Ishii et al., 2014).
This increased drought tolerance appears to come at
the cost of more structural carbon for every unit of
leaf area. We lack data on whole-plant carbon
balance, but a significant positive relationship
between SLA and mean BAI (LRT = 0.046) and a
negative but non-significant relationship between
wood density and BAI (LRT = 0.289) at the individ-
ual level supports this idea (Fig. S5). Even though
available photosynthate and nonstructural carbon
stores do not directly regulate growth (K€orner,
2015), this coordination between increased cost of
growth and decreased amount of growth may indi-
cate a limit to aspen’s drought tolerance with
increasing aridity mediated by the carbon cost of
tolerance traits.
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Ponderosa pine

Low-elevation ponderosa pines considerably curtail
their transpiration, and most likely carbon uptake, dur-
ing some if not most of the growing season. This
reduction in water use is associated with vastly
reduced growth at the low-elevation range margin and
range center compared to the high-elevation margin
(Fig. 2). In contrast to aspen, ponderosa pine showed
remarkably few trait adjustments toward either
increased drought tolerance or drought avoidance at
the lower range margin, despite increasing soil mois-
ture limitation and evaporative demand (Figs 1 and 3).
For example, ponderosa pine exhibited no elevational
variation in height and wood density, and only slight
clinal variation in leaf morphology (Fig. 4). Surpris-
ingly, we found only subtle, although statistically sig-
nificant, variation in branch-level leaf area:sapwood
area ratio – AL:AS (Fig. 4, 0.151 ! 0.027 m2 cm"2 at
low elevation vs. 0.199 ! 0.023 m2 cm"2 at high eleva-
tion), a trait that has been implicated as a main media-
tor for hydraulic adjustment across space in other pine
species (e.g., branch level: Martinez-Vilalta et al., 2009;
whole tree level: Mencuccini & Bonosi, 2001) and in
previous studies of montane vs. desert ponderosa pine
populations (Maherali & DeLucia, 2000; Maherali et al.,
2002). Variation in AL:AS appeared to be primarily dri-
ven by changes in leaf area, rather than branch scale
adjustments – as changes in leaf size and AL:AS were
similar in magnitude from high to low elevation
(median leaf area "28.2% and AL:AS "23.7% decrease).
Indeed, when trees were relativized to percentage
change from the high-elevation average, the slope of
the total least squares regression between %DAL:AS

and %Dmedian leaf area was near one (Fig. S5). A dif-
ferent study of water relations in ponderosa pine in a
contiguous riparian and hill-slope population did not
find ecotypic variation in branch AL:AS (Stout & Sala,
2002), which suggests that intraspecific variation in AL:
AS may only be detectable across larger geographic
gradients, possibly because specific hydraulic adjust-
ments are tailored to the moisture release curves of the
soils on which the trees grow (Barnard et al., 2011). In
addition, our study trees had limited variation in age,
density, and tree size (Table 2), which further con-
strains potential variation compared to previous stud-
ies. Future study is required to determine how
changes in branch AL:AS relate to whole tree AL:AS, as
whole tree characteristics can be modified by canopy
structure (Berninger et al., 1995) and stand develop-
ment/tree size (Mencuccini & Bonosi, 2001; McDowell
et al., 2002; Martinez-Vilalta et al., 2009) and repres-
ent an additional scale of hydraulic adjustment not
measured here.

Ponderosa pine also exhibited little hydraulic adjust-
ments to tolerate or avoid high xylem tensions in drier
habitats in our study. Specifically, we found no clinal
variation in branch vulnerability to cavitation, consis-
tent with previous work on ponderosa populations
(Maherali & DeLucia, 2000; Stout & Sala, 2002) and
more geographically extensive work in other pine spe-
cies (Martinez-Vilalta et al., 2009; Lamy et al., 2013;
S!aenz-Romero et al., 2013). We found a small increase
in hydraulic safety margins in low-elevation pon-
derosa; however, this did not translate into increased
cavitation in trees with smaller margins. We also found
slight elevational differences in xylem area-specific
maximum conductivity (Kmax), suggesting less hydrau-
lic efficiency at low elevation (Fig. 6) contrary to expec-
tations and to some previous findings in ponderosa
pine (Maherali et al., 2002; Barnard et al., 2011 but see
Stout & Sala, 2002). Xylem capacitance (the amount of
water stored in xylem) is a final mechanism that pon-
derosa may use to buffer their hydraulic system against
extreme xylem tensions without curtailing transpiration
(Domec & Gartner, 2003; Barnard et al., 2011). How-
ever, capacitance has previously been found to corre-
late strongly with xylem P50 and less strongly with
Kmax in trunk xylem of ponderosa pine (Domec & Gart-
ner, 2003; Barnard et al., 2011), suggesting minimal ele-
vational differences in xylem capacitance in our
system.
Our estimates of relative stomatal conductance (gs)

suggest that study ponderosa pines strongly regulate
water loss via stomatal closure at low elevations
(Fig. 8c), rather than avoiding or tolerating drought
through hydraulic or morphological adjustment. This
78% decrease in gs is likely associated with a smaller
but considerable decrease in assimilation. Maintaining
assimilation at such reduced conductance rates would
require water use efficiency (WUE) to more than dou-
ble, which is considerably beyond the ~40% increase in
WUE to be expected at low values of gs based on pon-
derosa assimilation curves (e.g., Cregg, 1994). Nor is
such a large WUE decrease consistent with plastic or
genetic differences in WUE documented in ponderosa
pine provenance trials (e.g., Cregg & Olivas-Garc!ıa,
2000), drought experiments (e.g., Cregg, 1994; Zhang
et al., 1997), or observations across elevation (McDowell
et al., 2010). Thus, the greatly reduced gs per leaf area
suggested by our measurements and decreased branch
AL:AS likely results in decreased whole-tree carbon
assimilation.
Alternatively, high transpiration and assimilation

could theoretically be maintained at low elevation
despite small potential differences between predawn
and midday xylem tensions (Dw) (Fig. 3) via drastic
increases in hydraulic efficiency or capacitance. How-
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ever, our hydraulic results show decreasing efficiency
(Kmax) at low elevations (Fig. 6). While mid- and low-
elevation branch AL:AS did show on average a ~25%
and ~27% decrease (respectively) from high elevation
AL:AS (Fig. 4), the Whitehead & Jarvis (1981) model
suggests that a decrease of 76% and 86% would be nec-
essary to offset the decreased Dw and increased VPD at
mid- and low elevation and maintain transpiration.
Martinez-Vilalta et al. (2009) found AL:AS changes
approaching this magnitude across the entire geo-
graphic range of Scots pine (Pinus sylvestris L.) in Eur-
ope, but this trait appears more constrained either in
ponderosa pine as a species, in the study population in
the absence of local adaptation, or in stands of very
similar structure.

Other factors influencing drought responses

Although this study suggests that trembling aspen is
drought tolerating and ponderosa pine is drought
avoiding at their dry range edges, additional drought
avoidance and tolerance mechanisms may also be
important. In particular, belowground traits related to
rooting depth, morphology, hydraulics, and allometry
(not measured in this study) could influence the eleva-
tional trends in xylem tensions that we documented.
Lower predawn xylem tensions of low-elevation aspen
compared to co-occuring high-elevation ponderosa
pine (some aspen and ponderosa stands were located
<50 m apart) suggests that rooting depth may play a
role in the two species’ drought resistance strategies
(Fig. 3). However, aspens at the study site have extre-
mely shallow functional rooting depths even when the
shallow soil is dry (i.e., during natural or experimental
drought, Anderegg et al., 2013a). This suggests that
lower predawn xylem tensions in aspen result from
either slightly wetter micro-sites or a more extensive
rooting area with less local soil-dry down, not from a
deeper rooting depth than ponderosa. In addition, ele-
vational differences in recovery potential following
drought stress (a third class of drought resistance strat-
egy) could be important. Assessment of recovery poten-
tial in the field is difficult because easily measured
functional traits have rarely been linked to recovery
ability, although some evidence suggests that embolism
refilling may be correlated with wood density and P50
in angiosperms (Ogasa et al., 2013). This relationship
suggests that low-elevation aspens may be both more
drought tolerant and better at postdrought recovery if
it holds within species as well as between species.
Finally, phenology of leaf/needle expansion and
senescence compared to xylem growth may vary across
elevation, and could alter plant hydraulics over the
growing season by shifting leaf area:sapwood area

ratios on relatively short time scales. Our study pro-
vides only a midsummer (peak water stress) snapshot
of these traits, and additional temporally resolved stud-
ies are warranted.
We also note that the clinal trait variation we

observed in trembling aspen may be somewhat larger
than that observed elsewhere in aspen’s range, owing
to a massive drought-induced mortality event in the
early 2000s (affecting ~20% of the aspen in the study
area – Huang & Anderegg, 2011), principally at low ele-
vations. This mortality event may have selected for
ramets with extreme trait values at low elevations,
although some of the traits showing clinal variation
have previously shown considerable temporal plastic-
ity in the study area (e.g., P50: Anderegg et al., 2013b;
leaf size: Anderegg et al., 2014). However, the P50 dif-
ferences within aspen documented herein are in the
opposite direction of the xylem fatigue documented by
Anderegg et al. (2013b) in low-elevation aspen follow-
ing the mortality inducing drought, suggesting this trait
may actually show larger clinal trait variation in other
parts of aspen’s geographic range.
In addition, the morphological and physiological

adjustments to geographic variations in water availabil-
ity documented here are distinct from but still relevant
to the short-term physiological responses of plants to
acute drought, including those leading to mortality.
Drought-induced tree mortality is an area of active
research (Hartmann et al., 2015), centering around the
interlinked roles of the hydraulic and carbon economies
in trees (McDowell et al., 2011; Anderegg et al., 2012). It
has become clear that mortality is a complex set of
many interacting processes and mechanisms, many of
which will be strongly influenced by the traits explored
here. In particular, widespread mortality of aspen in
the region has been linked to the gradual deterioration
of plant hydraulic transport (Anderegg et al., 2014,
2015), fitting our observation of increased drought tol-
erance with apparently little stomatal closure in chroni-
cally dry, low-elevation aspens (suggesting a relatively
anisohydric stomatal strategy).This may maximize tree
performance in dry habitats during most years but
make them susceptible to hydraulic damage during
drought. In addition, drought-induced mortality in
ponderosa pine has been associated with increased
growth sensitivity to climate and chronically con-
strained gas exchange (McDowell et al., 2010), which
aligns well with the responses to chronic water limita-
tion documented here.
Determining whether the functional trait variation

documented in this study is driven by phenotypic
plasticity or local genetic adaptation is critical for
understanding future range boundary dynamics of
these two species. We believe phenotypic plasticity
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likely plays a predominant role in this system. For pon-
derosa pine, gene flow is large and population differen-
tiation is low across much larger geographic distances
than studied here (Maherali et al., 2002), suggesting
that elevational trait differences in this species are prin-
cipally plastic. For aspen, much trait variation likely
resulted from phenotypic plasticity as well. We were
able to partially examine plasticity for this clonal spe-
cies by comparing trait variation within stand (repre-
senting within-individual variation) and between
stands (representing variation between individuals) for
all traits except P50 (not measured per individual).
Within-stand (likely plastic) variation was considerably
larger than between-stand variation for leaf size, SLA,
AL:AS, PLC, and wood density (Table S3), Meanwhile,
height, Knat_Leaf

, and gs showed equal or greater
between-stand variation than within-stand variation,
which may possibly indicate a genetic or micro-site signal.

Implications for range shifts

Both focal species showed very large decreases in basal
area growth at their low-elevation range boundary
likely related to general fitness decreases – implying
that the differences in the physiological strategies
employed by the two species to cope with drought
stress will matter during climate change-induced range
shifts. It is also possible that these growth decreases
may represent adaptive responses to water stress (par-
ticularly if carbon is invested below ground instead).
More study is clearly warranted, but we think fitness
differences are more likely. For one, reproductive out-
put is typically a function of tree size that then com-
pounds over a tree’s life time (such that growth and
fecundity are correlated if mortality rates are constant).
In addition, at least within a stand, growth and mortal-
ity rate tend to be inversely correlated (slow growing
trees die more often, Wyckoff & Clark, 2000, 2002).
While a trade-off between growth and survival (i.e. a
positive correlation between growth and mortality or
‘demographic compensation’) has been documented
across the range of alpine perennials (Doak & Morris,
2010), we found no evidence for such a trade-off, at
least in aspen (tree age did not differ between high and
low elevation in aspen, see Fig. S7).
The diametrically opposite drought tolerance and

drought avoidance strategies and (therefore) contrast-
ing physiological range constraints for ponderosa and
aspen may imply differing range boundary dynamics
over the coming century. Drought avoidance via stom-
atal closure is a rapid response to water stress (time-
scale of hours to days), likely helping ponderosa pine
avoid extreme spikes in water deficit such as single-
year droughts. However, heavy reliance on stomatal

closure rather than longer term adjustments may
decrease ponderosa pine’s ability to reach maturity
and/or maintain significant reproductive output under
sustained drought or long-term drying trends if low-
elevation trees are carbon limited. Long-term decreases
in assimilation in low-elevation ponderosas may also
increase their susceptibility to bark beetles, both
through decreased resin duct formation and decreased
resin pressures (Kane & Kolb, 2010). While ponderosa’s
drought-avoidant physiology would suggest that range
shifts driven by increasing drought and long-term arid-
ification should be gradual, the synergistic potential
between drought and insect attack could still lead to
very rapid range contractions via mass die-off. Indeed,
one such die-off-induced range contraction has been
documented in ponderosa pine, which occurred in con-
junction with an extreme drought as well as a bark bee-
tle outbreak (Allen & Breshears, 1998).
In contrast, trembling aspen’s strategy of increasing

drought tolerance by building more tolerant organs is a
much slower response than the stomatal closure of pon-
derosa pine (timescale of months to decades). This
could allow aspens to acclimate to long-term drying
trends but leaves them vulnerable to short-term
drought extremes. In the absence of short-term avoid-
ance measures such as stomatal closure, aspen experi-
ence catastrophic embolism that can lead to rapid
mortality (Anderegg et al., 2014), suggesting that aspen
range dynamics will be dominated by episodic contrac-
tions initiated by short but severe droughts. In addition,
aspen and ponderosa pine may be sensitive to different
changes in seasonal precipitation. Because it sustains
midsummer transpiration, aspen may be sensitive pri-
marily to extreme midsummer moisture stress tied to
summer precipitation, growing season length, and tem-
perature-driven evaporative demand. Indeed, a mas-
sive aspen die-off across much of the western United
States was precipitated in 2002 by the most extreme sin-
gle summer evaporative and soil moisture deficit of the
past century (Anderegg et al., 2013a), which caused
fatal hydraulic failure in affected aspens (Anderegg
et al., 2012). Ponderosa pine, on the other hand, can per-
form 50–70% of its carbon assimilation outside of the
growing season (Law et al., 2000). Thus, ponderosa pine
may respond most strongly to precipitation changes in
the fall, winter, and spring that curtail assimilation dur-
ing the productive ‘shoulder seasons’.
These inferences assume that low-elevation trees are

carbon limited. Emerging evidence suggests that this
may not necessarily be the case for all trees (K€orner,
2003; Sala et al., 2012). However, the range dynamic
implications of a drought-avoidant vs. drought-tolerant
strategy are supported by the recent landscape level
die-off event at the study site following the extreme
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2002 drought mentioned above, which affected aspen
but not ponderosa (Worrall et al., 2008). The hot 2002
drought predominantly affected stands at aspen’s
low-elevation range margin (Worrall et al., 2008, 2010)
indicating probable range contractions. Meanwhile
ponderosa pine trees at low elevations showed little or
no growth during the drought (LDL Anderegg unpub-
lished data). However, ponderosa pine experienced lit-
tle mortality at our site and showed elevated mortality
elsewhere in the southwestern USA only where beetle
outbreaks occurred (Negr!on et al., 2009). Given the pro-
jected drying of the southwestern USA over the next
century (Diffenbaugh et al., 2008), ponderosa’s dry
range boundary may slowly contract in response to
long-term drying trends that chronically depress assim-
ilation (in the absence of pest outbreak), while aspen
may be more prone to rapid and episodic range con-
tractions in response to extreme events.
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Abstract: 

Functional traits have great potential to stimulate a predictive ecology, providing spatial 

and temporal scale-independent tools for understanding ecological interactions, community 

dynamics and ecosystem function. Yet their utility relies in part on three key assumptions: 1) that 

most trait variation lies between rather than within species, 2) that global patterns of trait 

covariation are the result of universal evolutionary or physiological trade-offs that are 

independent of taxonomic scale and 3) that traits respond predictably to environmental gradients. 

We use an extensive dataset of within-species trait variation and a global dataset of between-

species variation to test these key assumptions at a global scale (including 939 plant genera and 

214 plant families). We examine three traits central to the leaf economics spectrum, leaf mass 

per area (LMA), leaf lifespan, and leaf nitrogen content, and quantify patterns of trait variation 

and trait covariation at multiple taxonomic scales. We also test whether site-level environmental 

variables reliably predict geographic trait variation within species. We find that log-transformed 

LMA, leaf lifespan, and mass-based nitrogen content do vary primarily between rather than 

within species, though area-based leaf nitrogen varies enormously within species (>25% of 

global variation is within-species). We also find that mass-based leaf nitrogen consistently 

decreases with LMA and leaf lifespan at all taxonomic scales. However, we find surprisingly 

different patterns of trait covariation between leaf lifespan, LMA, and area-based nitrogen 

content within versus between species. The positive global relationship between leaf lifespan and 

LMA disappears or reverses directions within-species, while the relationship between LMA and 

area-based nitrogen becomes more constrained within-species. In North American conifers, we 

find weak intra-specific relationships between site environmental factors and foliar traits. Taken 

together, our results challenge the ‘scale-free’ nature of the currently proposed mechanisms 
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driving leaf trait covariation. However, our results demonstrate the potential power if intra-

specific trait variation to deepen our understanding of the causes and consequences of functional 

trait variation.   

 

 

Introduction 

 

Trait-based ecology has the potential unify ecological disciplines and decades of 

ecological study, to provide a predictive framework for community ecology and to drive the 

development of the next generation of ecosystem models. In particular, plant functional traits 

have proven extremely useful proxies for both complex ecological ‘strategies’ and for key niche 

dimensions such as biotic stress tolerance.  Some notable successes of plant functional ecology 

include the identification of the ‘global leaf economics spectrum’ (Wright et al., 2004) and the 

linking of various functional traits to demographic outcomes (e.g. Kraft et al., 2010; Adler et al., 

2014; Falster et al., 2015) or climatic stress tolerance Maherali et al., 2004; Skelton et al., 2015).  

However, emergent challenges have begun to force a re-evaluation of functional traits as 

a taxonomy-independent, scale-transcending silver bullet for simplifying the complex ecologies 

and life histories that drive ecological interactions and ecosystem function (Shipley et al., 2016). 

An increasing awareness of the size and importance of within-species trait variation that is 

traditionally ignored (Clark, 2010; Jung et al., 2010; Albert et al., 2010a; 2010b; Violle et al., 

2012; Reich et al., 2014; Siefert et al., 2015). Ecosystem models often rely on a particularly 

fraught assumption that traits vary more between ‘Plant Functional Types’ (PFTs) than within 

PFTs (Wright et al., 2005; Poorter et al., 2009; Anderegg, 2014). Additionally, the 
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‘functionality’ of plant traits has proven surprisingly weak in a number of contexts, such as 

explaining differences in observed species range shifts (Buckley & Kingsolver, 2012), predicting 

sapling demographic rates (Paine et al., 2015), or explaining plant species coexistence (Kraft et 

al., 2015).  

These emerging complexities highlight three key, yet largely untested assumptions in 

trait-based plant ecology. First, most applications assume that trait variation within species (or 

for ecosystem models, within PFTs) is negligible compared to trait variation between species. 

Second, it is assumed that global spectra of trait co-variation are taxonomically scale 

independent, and result from universal physiological or evolutionary trade-offs. Third, traits are 

assumed to vary in a consistent and predictable way across environmental gradients. Here we use 

a large dataset of global leaf trait measurements and intensive within-species trait measurements 

from the northwestern U.S.A. to test these three assumptions. 

The study of trait variation within-species rather than between species has great potential 

to shed light on these fundamental assumptions about functional traits. From an evolutionary 

perspective, intra-specific trait variation is the very cloth out of which natural selection is cut. 

Heritable variation between individuals in a population is the core requirement of evolutionary 

change. Unfortunately, the sampling intensity needed to quantify within-species variation is 

often prohibitive, resulting on a pervasive focus on between-species trait variation. Yet within-

species patterns of trait variation have the huge advantage of holding constant many axes of life 

history variation that might otherwise obscure ecological patterns or create spurious, non-causal 

trait-trait, trait-environment, or trait-performance correlations. Additionally, within-species trait 

variation can potentially speak to evolutionary trade-offs at the scale at which we understand 

evolution to occur, namely between individuals or populations in a species. An understanding of 
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within-species trait variation is critical in order to understand trait variation across spatial, 

temporal, and taxonomic scales. For example, if we wish to build trait-based ecosystem models 

that capture key evolutionary and physiological trade-offs rather than simply modeling static 

Plant Functional Types informed primarily by plant physiognomy (e.g. Pavlick et al., 2013; 

Scheiter et al., 2013), we must first develop a robust framework that can explain evidently 

conflicting patterns of foliar traits within individual canopies versus across species (Poorter et al., 

2009; Bonan et al., 2012). Finally, intra-specific trait variation could prove particularly valuable 

for linking trait variation directly to environmental variation, because within-species 

comparisons naturally control for phylogenetic/biogeographic variation that can confound 

patterns across communities. 

 Ultimately, a strong understanding of the patterns of trait variation, the mechanisms 

driving this variation, and the links between this variation and organismal performance are 

critical foundation stones of plant functional ecology. We explore trait variation in leaf mass per 

area, leaf lifespan, and leaf nitrogen content (on either a mass or area basis) as an example of 

functional traits widely applied in the literature. These leaf traits are central to the leaf economics 

spectrum, the main between-species axis of leaf trait co-variation defining a continuum between 

‘fast’ leaves with low LMA, short leaf lifespan, high mass-based nitrogen content, and high 

photosynthetic and metabolic rates; and ‘slow’ leaves with high LMA, long leaf lifespan, low 

nitrogen and slow physiological rates (Wright et al., 2004; 2005; Reich, 2014). Here, we 

examine the magnitude of trait variation within versus between species in a large collection of 

published and unpublished trait data encompassing 4051 measurements of 1991 plant species 

from around the globe. Next we assess trait co-variation at multiple taxonomic scales to test 
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whether trait spectra are universal. We test whether foliar traits show consistent responses to 

environmental gradients within individual, extensively sampled species.  

We find surprisingly high within-species variation in some traits, particularly area-based 

leaf nitrogen content. We then identify conflicting patterns of between- versus within-species 

trait variation that challenge the ‘scale-free’ ubiquity of putative physiological and evolutionary 

trade-offs invoked to explain global patterns of trait co-variation. We also find that within-

species, key foliar traits of the leaf economics spectrum vary weakly across environmental 

gradients, and do not necessarily respond to the same environmental factors across traits or 

species.  

 

Methods: 

 

To assess trait variation and covariation at a variety of taxonomic scales, we collected leaf trait 

data from multiple published and unpublished datasets encompassing 4051 measurements of at 

least two foliar traits, including measurements from 1991 species, 939 genera, and 214 families. 

In total, we were able to compile within-species trait variation data for 44 species (mean of 37 

trait measurements per species). We focused on three leaf traits: leaf lifespan, leaf mass per area 

(LMA), and leaf nitrogen content (either on a mass basis - Nmass, or an area basis - Narea). We 

principally analyzed log10-transformed traits, due to the roughly log-normal distribution of these 

traits. However, because raw trait values are also widely used, particularly in vegetation 

modeling, we also performed a subset of analyses with raw trait values. These three foliar traits 

were common across all datasets, less dependent on the (typically unreported) measurement 

conditions than leaf gas exchange traits, and related to common plant parameters in Earth System 
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models. Moreover, these traits are central to the ‘Leaf Economics Spectrum’ (Wright et al., 

2004) but yet only loosely mechanistically linked in our current understanding (Osnas et al., 

2013; Blonder et al., 2015). A brief outline of datasets used follows:  

 

GLOPNET data 

This database contains leaf trait data from 175 sites and 2021 plant species from around 

the world (Wright et al., 2004; 2005). We utilized a subset of the dataset that had either both leaf 

lifespan and LMA measurements, both leaf lifespan and leaf % Nitrogen measurements, or both 

LMA and % Nitrogen. We associated the GLOPNET data with taxonomic data using the R 

package taxize to querry both the ITIS and NCBI taxonomic databases. Aliases and misspellings 

were looked up and corrected by hand, or removed from analyses (total of 48 species). 

 

PNW conifer data 

Leaf trait data were also acquired from the TERRA-PNW foliage, productivity and soil 

database (Berner & Law, 2016), henceforth PNW data, from 239 sites in Oregon and northern 

California. This database contains foliage traits (leaf lifespan, LMA, C:N ratio, %C and %N) 

from 35 tree and shrub species, primarily focusing on dominant conifer trees. A total of 16 

species had more than 10 trait measurements and were sampled at more than five sites (See 

Table S1 in Appendix E). All individual trait measurements from these species were included in 

within-species trait analyses. Trait values were also averaged to species for all 35 species in the 

dataset and included in genus-level, family-level and global trait analyses with the GLOPNET 

species.  
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Foliar traits were measured on one year-old needles from mid-canopy, sun exposed 

branches from the south side of the canopy of the dominant woody species at each site. Multiple 

stand characteristics were either measured at the site (soil properties from soil cores, stand 

surveys, Leaf Area Index measurements, and annual biomass growth) or extracted from gridded 

data products (elevation, 30 year climate normal). To our knowledge, this is the largest dataset of 

consistently collected tree leaf traits documenting within-species trait variation to date, and is 

associated with high quality site and stand metadata. Full methods descriptions can be found in 

Berner & Law (2016) and Law et al. (2008). 

 

Additional data 

Data on geographic variation in leaf traits was also drawn for Populus tremuloides from 

(Anderegg & HilleRisLambers, 2015) (LMA) and for cultivated Coffea arabica, from (Martin et 

al., 2016) (LMA and Nmass). Unpublished data on geographic variation in leaf traits in Quercus 

gambelii (LMA) and 2 Eucalyptus species (LMA and Nmass) collected by LDL Anderegg 

(unpublished) were also included. These datasets include elevational or landscape-scale trait 

variation, often with replicate measurements within individual. Leaf lifespan data for Populus 

tremuloides and Quercus gambelii were extracted from remotely sensed NDVI phenologies that 

can distinguish the elevational variation in growing season length. All data that were collected at 

scales smaller than the individual (i.e. leaf or branch) were averaged to the individual for 

analysis to be consistent with the above datasets. 

 

Variance Decomposition 
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We first performed a variance decomposition analysis to determine the dominant taxonomic 

scales of trait variation. We used linear mixed effects models with only a fixed intercept term 

and nested random effects for different taxonomic levels. The random effects variance 

parameters are directly comparable across random effects in a linear model with normally 

distributed random variance components. 

 Using all individual measurements from all datasets, we determined within-species, 

within-genus, within-family and between family variance components of both log10-transformed 

and raw LMA, leaf lifespan, and Nmass. Next, we assessed how trait variation is distributed within 

a single Plant Functional Type, the well-sampled needle-leaf conifers in the PNW dataset. We 

included trait measurements from all needle-leaf conifers that were dominant canopy species 

(made up at least 30% of the basal area in at least one site). Because the PNW dataset contains 

replicated measurements at a site, we decomposed within-PFT variation in the five foliar traits in 

the dataset (LMA, leaf lifespan, C/N ratio, % leaf carbon content, and % leaf nitrogen 

content/Nmass) into within-plot, between plots within species, between species and between genus 

variation.  

 

Trait co-variation 

 We assessed the strength of the covariance between leaf traits at multiple taxonomic 

scales by comparing the distributions of correlation coefficients and of standardized major axis 

(SMA) regression slopes, which account for error in both the x and y variables, within various 

taxa at increasing taxonomic scales. First, we created a dataset of within-species trait variation 

including all species in the global dataset used for variance decomposition that had more than 

five trait records (n = 44 species, 1624 trait measurements). Then, we averaged all data in the 
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GLOPNET, PNW and other data to the species level, all species-level averages to the genus 

level, and all genus level-averages to the family level (see Table S2 in Appendix E for total 

sample sizes for all trait pairs). We fit SMA regressions to the trait data within each species, each 

genus and each family that had at least five trait measurements (e.g. at least five measurements 

within a species, five species within a genus, or five genera within a family). We also calculated 

the trait-trait correlations and SMA regressions as across the family means of all families with at 

least three species and globally across all species means. We tested for significant differences of 

SMA slopes and correlation coefficients for within-species comparisons versus higher taxonomic 

levels using unweighted linear models and t-tests, or models weighted by the within-taxon trait 

variances or within-taxon sample size. We also created funnel plots (plotting individual SMA 

slopes and correlation coefficients as a function of the within-taxon variance or sample size) to 

visually verify that patterns were not driven by differences in sample sizes between taxonomic 

groups. 

 

Trait-environment relationships 

 We quantified the effect of site environmental factors on dominant conifer leaf lifespan, 

LMA and Narea for the six well sampled conifer species in the PNW dataset that had nearly 

complete site soil and LAI data. We fit linear mixed effects models with climate variables (see 

below), soil nitrogen content, log(stand age), stand Leaf Area Index, and stand annual biomass 

increment (see Berner & Law, 2016) and Law et al. 2008 for detailed methods of stand about 

stand characterization), as fixed effects and a stand level intercept random effect. All predictors 

were mean centered and z-score standardized so that effect sizes are comparable between 

predictors. We performed model selection on models including all possible variable 
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combinations using AIC. We report the most parsimonious model for each trait for each species. 

Because multiple models had similar AICs for many traits and species, we also calculated the 

variable importance values and model-averaged standardized effects sizes derived from a model 

ensemble of all models that had a ΔAIC of less than four from the best model. This provides a 

robust estimation of the relative importance of the stand-level predictors.  

Before including climate variables as predictors, we performed a PCA based on the 

PRISM 30 yr climatologies of mean annual temperature, mean annual precipitation, climate 

moisture index (potential evapotranspiration – mean annual precipitation), maximum vapor 

pressure deficit, and the mean soil moisture content of the topmost soil layer and the full soil 

column from the Variable Infiltration Capacity hydrology model. We used the first two principal 

components, which explained ~90% of the total variance, as the two climate predictors in the 

mixed effects models. The first principle component (‘climPC1’) explained 72% of the total 

variance and loaded strongly with precipitation, soil moisture, vapor pressure deficit and climate 

moisture index (Appendix E, Table S3). Thus, we refer to this PC as generally characterizing 

stand ‘wetness’. The second principle component (‘climPC2’) explained 18% of the total 

variance and loaded almost entirely with mean annual temperature and slightly with vapor 

pressure deficit. We refer to ‘climPC2’ as describing stand ‘warmth’. 

 

All analysis was performed in the R statistical environment (R Core Team 2016, version 

3.2.4). We fit standard major axis regressions using the ‘lmodel2’ function from the lmodel2. 

Mixed models were fitted using the lme4 and lmerTest packages in R (Bates et al. 2015, 

Kuznetsova et al. 2016), and model averaging was performed using the MuMIn package in R 

(Kamil Bartoń 2016).  
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Results 

Variance Decomposition 

 Analysis of our combined dataset of 4051 measurements of leaf lifespan, LMA, and leaf 

nitrogen content from 1991 species showed that inter-specific variation is typically larger than 

intra-specific variation. However, the proportion of intra-specific variation was remarkably high 

in area-based Nitrogen content (Narea), and was more variable in raw traits than log10 transformed 

traits (Figure 1). Global variation in log10 transformed LMA, leaf lifespan and Nmass was 

generally driven first by variation between families with a decreasing proportion of the total 

variance deriving from successively lower taxonomic scales (Figure 1a). Between family 

differences contributed between 38% (LMA) and 48% (Nmass) of the global variation in log10 trait 

variation, while within-species differences contributed between 12% (leaf lifespan) and 15% 

(Nmass). Area-based nitrogen, on the other hand, showed almost the reverse pattern of taxonomic 

variation, with 27% of total variation falling within-species, and the proportion of variance 

decreasing at the highest taxonomic scales (30% of variance was within genera, 25% within 

families and only 19% across families).  

The importance of intra-genus and intra-specific variation was much larger for raw, 

untransformed LMA and leaf lifespan, though our parameter estimates are likely more uncertain 

for raw traits (see Discussion). The taxonomic distribution of variance was relatively similar for 

log10(Nmass) and Nmass, but intra-genus variation made up the majority (54%) of raw LMA 

variation and intra-specific variation made up the majority (63%) of raw leaf lifespan variation. 

This discrepancy between log-transformed and raw variance decompositions implies that intra-

generic and intra-specific variation increases markedly for genera and species with large LMA 

and long leaf lifespan. Within-species variation remained the dominant source of Narea variation, 
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with the contrast between Nmass and Narea becoming even stronger in raw versus log10 

transformed traits.  

 Within the evergreen needle-leaf conifer PFT, a PFT that dominates much of the northern 

hemisphere in many models, within-species variation was large. In the well-sampled PNW 

dataset we found that intra-specific trait variation (the sum of within-plot and between-plot  

 

Figure 1: Variance decomposition of log10 (a) and raw (b) Leaf Mass per Area (LMA), leaf 
lifespan, mass-based nitrogen (Nmass), and area-based nitrogen (Narea) across different 
taxonomic scales. ‘WtinSpecies’ : within species variation, ‘BtwSpecies’: variation between 
species in a genus, ‘BtwGenera’: variation between genera in a family, ‘BtwFamilies’: trait 
variation between plant families. (c) The variance decomposition of leaf traits in the ‘ evergreen 
needle-leaf conifer’ Plant Functional Type represented by the PNW dataset, where intra-specific 
variation is high. (d) The proportion of global log10(leaf lifespan) and log10(LMA) traits space 
covered by these conifers (PNW species are open colored points, GLOPNET data are in grey, 
inset shows raw trait values). 
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variation) made up 30% log10LMA variation and >40% of log-trait variation in all other traits 

(Figure 1c). This is particularly pronounced in leaf chemical traits involving nitrogen, traits often 

used as physiological input parameters in ecosystem models. Within-species variation made up 

65% of variation in log10 Nmass and over 71% of the variation of (raw) leaf C:N ratio. In fact, 

variation within an individual plot made up >25% of the intra-PFT variation in log10 Nmass, log10 

NArea, and C:N ratio. In total, this dominant needle-leafed conifer dataset covers a large fraction 

of global trait variation in log10(leaf lifespan) and log10(LMA) (Figure 1d) and the majority of 

global raw leaf lifespan and LMA variation (Figure 1d inset).  

 
Trait covariation 

 We find that some of the trait relationships central to the leaf economics spectrum 

consistently scale across taxonomic levels, consistent with a ‘scale-free’ interpretation of the 

LES. In particular, the relationship between nitrogen content on a per-mass basis (Nmass) is 

consistently negative with increasing LMA and leaf lifespan (Figure 2, Table 1) at all levels of 

taxonomic aggregation. The average slopes of the Standardized Major Axis SMA regression 

between Nmass and both LMA and leaf lifespan do not differ statistically across taxonomic levels. 

This pattern is consistent in both unweighted linear models or linear models weighted by the 

variance in Nmass or LMA/leaf lifespan (Figure 2a,b, Table S4 in Appendix E). The mean within-

taxon correlation between Nmass and LMA/leaf lifespan does decrease at lower taxonomic 

groupings (Fig 2a,b, Table S4 in Appendix E), but this is likely an artifact of the restricted 

within-taxon variation in Nmass at lower taxonomic levels (Figure 2c,d). Funnel plots showing the 

strength of individual correlations plotted against the variance in Nmass contained in each 

comparison indicate that the trait correlations tend to converge on the global between-species 
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correlation as within-taxon Nmass variance increases, regardless of the taxonomic level of 

aggregation. 

 

 
Figure 2: The average SMA regression slope between log10-transformed Nmass and either LMA 
(a) or leaf lifespan (b) does not differ significantly across taxonomic levels and is roughly 
similar to the global between species-relationship. The strength of the correlations between Nmass 
and other leaf traits increases significantly with increasing taxonomic scale. However, based on 
the patterning of correlation coefficients of individual taxonomic comparisons with the variance 
in Nmass encompassed by the comparison, the increasing correlation strength is likely due to the 
increasing trait variance encompassed by higher taxonomic comparisons (c – correlations 
between Nmass and LMA, d – correlations between Nmass and leaf lifespan). The solid line in c and 
d shows the strength of the global between-species relationship. Numbers in a & b show the 
number of taxa included in each taxonomic level, parenthetical numbers show total sample size 
for between-family and global between-species trait relationships. 
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species (Figure 3, Table 1). The statistically significant difference between inter-and intra-

specific leaf lifespan and LMA co-variation is robust across weighting methods (Appendix E, 

Table S4), and is unlikely to be an artifact of small sample sizes or low trait variances at the 

within-species level (Appendix E, Figure S2). 

 
Figure 3: Species level relationships between log10(Leaf Lifespan) and log10(LMA) are the 
opposite of those seen in the leaf economics spectrum. (a) across the 18 species with >5 records 
the mean within-species Standardized Major Axis regression slope and correlation coefficient 
significantly differ from zero, and from the mean regression slopes/correlations within individual 
genera, and within families. Numbers indicate the number of individual within-taxon 
relationships fitted at each taxonomic level (parenthetical numbers show the number of families 
and species in the between family and global-between species relationships, respectively). (b) 
Scatterplot of log(LMA) versus log(leaf lifespan) from the global GLOPNET dataset (gray 
points), with the trait relationships for individual species shown as red lines, individual genera 
as blue lines, and families as purple lines. The relationship across families is shown in solid 
black, and the global between-species relationship is shown as a dotted black line. 
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taxonomic levels (Figure 4a,b). The Standardized Major Axis (SMA) regression slope within-

species is 1.25±0.02 (mean ± SE), but only 0.88±0.08 within genera, 0.86±0.08 across genus 
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means within families and only 0.65 globally across the entire GLOPNET dataset. SMA slopes 

differed significantly across taxonomic scale with all but the Narea variance-weighted model 

formulations (Table S4 in Appendix E), and contrasts between within-species SMA slopes and 

higher taxonomic level slopes were significant in all model formulations. Moreover, the 

correlation between LMA and Narea was similarly strong across all taxonomic levels (Figure 4b), 

which is striking given the tendency towards weaker correlations at lower taxonomic levels in all 

other trait relationships. Moreover, because of the reversal of the LMA~leaf lifespan relationship 

and strong link between LMA and Narea within-species, the globally weak positive relationship 

between leaf lifespan and Narea becomes a reasonably strong negative relationship within species 

(Figure 4c,d). 

Trait-environment Relationships 

 Contrary to the general assumption, stand climate, nutrient availability, and light 

environment were neither strong nor consistent predictors if intra-specific trait variation in 

log(LMA) and log(Narea), and only mediocre predictors of log(leaf lifespan) (Figure 5, Table 2). 

In six well-sampled conifers species in the PNW dataset, the mean marginal R2 of the best trait- 

environment model was 0.34 for leaf lifespan, 0.17 for LMA and only 0.12 for Narea. Few climate 

variables had large effect sizes for any species or trait (Figure 5a). Leaf lifespan was the only 

trait that showed consistent responses to any environmental variable across species, decreasing 

with increasing ‘warmness’ (PC2 of the climate PCA), and increasing with stand Leaf Area 

Index. Moreover, there was little consistency in which environmental variables proved important 

across species, or across traits (Table 2, Figure 5b). No climate variable was consistently 

included in the best trait model for all species (Table 2). ‘Warmth’ (climate PC2) and Leaf Area 
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Figure 4: Log-transformed area-based leaf nitrogen (Narea) is strongly positively correlated with 
log-transformed leaf LMA within species, and shows a stronger scaling slope within-species than 
at higher levels of taxonomic aggregation. Meanwhile, log10(leaf lifespan) shows a week positive 
relationship with log10(Narea) within higher taxa, but a negative relationship within-species (a, c) 
Boxplots of the distributions of Standardized Major Axis regression slopes and correlation 
coefficients fit to individual species, genera, and families, as well as the relationship across all 
plant families and the global between-species relationship. Numbers indicate the number of 
individual within-taxon relationships fitted at each taxonomic level (parenthetical numbers show 
the number of families and species in the between family and global-between species 
relationships, respectively).  Grey line in panel (a) indicates isometric (1:1) scaling. (b) 
Scatterplot of log(LMA) versus log(Narea) or (d) log(LL) versus log(Narea) from the global 
GLOPNET dataset (gray points), with the trait relationships for individual species shown as red 
lines, individual genera as blue lines, and families as purple lines. The relationship across 
families is shown in solid black, and the global between-species relationship is shown as a dotted 
black line. 
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Index had fairly high average variable importance for leaf lifespan, and ‘warmth’ had a high 

average variable importance for LMA (Figure 5b). But most other environmental variables were 

inconsistently important and did not even have a consistent direction of effect. Results were 

qualitatively similar for raw trait values and log10 transformed trait values, so only results for 

log10 transformed variables are shown.  

 
 

 
Figure 5: Site environmental characteristics rarely had large effects on or were consistently 
useful in explaining foliar trait variation. Distribution of standardized, model-averaged effect 
sizes (a) and variable importance (b) for six environmental variables from linear mixed effects 
models relating a leaf traits to site environmental factors for each of six conifer species. Model 
averaged effect sizes and variable importance were derived from the subset of all model 
formulations that had a ΔAIC of less than 4 from the best model for each species for each trait. 
Variable importances show which variables were consistently included in the top models across 
species (even if they had small effect sizes).  
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Discussion 

 Using an extensive global dataset documenting leaf trait variation with and between 

species, we tested four critical assumptions in plant functional ecology: 1) that within-species 

trait variation is small compared to between species variation, 2) that global trait spectrums are 

scale independent and represent universal physiological and/or evolutionary trade-offs, and 3) 

that trait variation can be linked to environmental variation. 

 

Small, but variable, intra-specific trait variation 

 We found that three traits central to the global ‘leaf economics spectrum’ do generally 

show more variation between than within species. Log10-transformed LMA, leaf lifespan and N-

per-unit-mass (Nmass) owed 40+% of their global variation to variation between plant families, 

and less than 20% of their global variation to intra-specific variation (Figure 1). For Nmass and 

LMA, this variance decomposition held true for raw trait values as well (though within-genus 

variation became much more important for raw LMA). This may imply that Nmass and LMA 

variation of sun leaves is fairly constrained within species, despite the well-documented large 

plasticity of LMA (Poorter et al., 2009). However, a fourth trait not originally part of the leaf 

economics spectrum, nitrogen content on a per-area basis (Narea), showed very large within-

species variability on both a log10 scale and a raw scale. Across species, leaf nitrogen content has 

been suggested to be primarily distributed on a per-area rather than per-mass basis (Osnas et al., 

2013), in which case the small inter-specific variability of Nmass may largely be the result of the 

fairly small intra-specific variation in LMA. Regardless, the consistent and large within-species 

variation in Narea poses a significant challenge to the assumption of larger inter- than intra-

specific variation. Leaf lifespan, a trait with extreme leverage over ecosystem function (Reich et 
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al., 2014), showed low intra-specific variation on a log basis, but potentially very high unlogged 

intra-specific variation. This may partially be a result of the fundamentally log-normal 

distribution (or perhaps more phenomenalogically gamma distributed) of leaf lifespan, and to a 

certain extent LMA, that hinders our ability to estimate variance components for raw trait values. 

However, it also suggests that proportional trait variation tends to be small within species and 

genera for LMA and leaf lifespan, but by extension the amount of absolute trait variation 

increases at higher trait values. An annual herb and conifer may both reasonably vary their leaf 

lifespan by 20%, but this translates into a difference of days for the herb and years for the 

conifer.  But the implication for applications such as ecosystem modeling that rely on raw trait 

values is important and unappreciated. Greater rigor is needed to understand hierarchical 

variation in raw trait values. 

 Focusing in on the evergreen needle-leafed conifer Plant Functional Type, which makes 

up ~30% of global forest cover (Reich et al., 2014), we found that intra-specific trait variation 

was a considerable fraction of within-PFT trait variation, and almost 50% of the variation in leaf 

chemical composition (Narea, leaf carbon content, and C:N ratio, Figure 1c). This PFT contains a 

considerable fraction of global leaf log10-trait variation and an even larger fraction of raw trait 

variation (Figure 1d) (Wright et al., 2005; Poorter et al., 2009; Anderegg, 2014), a considerable 

fraction of which can be found within a species or even within an individual population. In fact, 

a full 30% of the variation in Narea is found within individual sites (Figure 1c). This further 

supports our conclusion that ‘trait-based’ ecosystem modeling approaches (e.g. Scheiter et al., 

2013) require a new, synthetic understanding of foliar nitrogen variation that can scale across 

environmental gradients ranging from within a canopy to across communities. Due to the 

relatively low species diversity of the temperate/boreal conifer PFT and the continental range 
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sizes of many of most dominant conifers, it is possible that within-species variation makes up an 

abnormally large proportion of this PFT compared to other PFTs. However, we suspect that 

within-species trait variation may be substantial in other PFTs as well.  Because discretization of 

biological complexity will always be necessary for land surface modeling (meaning PFTs are, in 

some senses, unavoidable), understanding the underlying functional variation to be discretized is 

critical for determining where and how we can safely simplify functional complexity. The large 

fraction if intra-PFT trait variance made up by within-species trait variance that we document 

here highlights a need for taxonomy-independent theories of trait variation in order to develop 

more flexible and ‘trait-based’ PFT concepts for vegetation modeling. 

We note that the variance decompositions presented here are likely conservative 

estimates of intra-specific variation. Branch selection in the PNW dataset was designed to avoid 

within-canopy leaf variation while approximating the canopy mean foliar traits. Thus, even this 

extensive dataset is likely a conservative estimate of within-site trait variation in any species. At 

the global scale, the species with replication in the GLOPNET dataset represent site mean trait 

values from multiple sites. Thus, they represent only site-to-site variability, and are quite 

conservative as an indicator of total intra-specific variation. 

 

 Scale dependence of the Leaf Economics Spectrum 

 We found that some axes of trait co-variation that define the leaf economics spectrum are 

relatively consistent across taxonomic scales, but that the strong link between leaf lifespan and 

LMA breaks down within species. In general, LMA and leaf lifespan both retain their negative 

relationships with mass-based Nitrogen content (Nmass) at all taxonomic scales. These 

relationships are hypothesized to represent a physiological trade-off between structural biomass 
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and photosynthetic biomass (Nmass decreases as LMA increases, driving down the mass-based 

photosynthetic rate at high LMA) and an evolutionary trade-off between photosynthetic rates and 

leaf lifespans (leaves with low Nmass have low photosynthetic rates, and thus require long leaf 

lifespans to pay back their structural investment costs). The exact mechanisms of the 

physiological trade-offs that underlie these trait correlations with mass-based nitrogen content 

and assimilation rate are still under debate (Vasseur et al., 2012; Blonder et al., 2013; Osnas et 

al., 2013; Sack et al., 2013; Blonder et al., 2014; Sack et al., 2014; Blonder et al., 2015). 

However, the link between LMA and leaf lifespan is not a physiological trade-off but an 

evolutionary one, which is independent of normalization (Osnas et al., 2013) and not a result of 

mass-based physiological rates. Rather, it is the result of a theoretical evolutionary cost to 

structurally resilient leaves: high LMA leaves are costly to build and tend to have low 

photosynthetic rates, and therefore require long lifespans to pay off.   

 It is therefore surprising that we found a breakdown and even reversal of the positive 

relationship between leaf lifespan and LMA at the scale at which we understand evolution to 

occur, namely within individuals of a species. We found that, on average, leaf lifespan and LMA 

were slightly negatively related within individual species (Figure 3, Table 1). This poses a 

challenge to the evolutionary argument that leaf construction costs increase the ‘carbon payoff’ 

period that controls leaf lifespan, as we found no such trade-off at the scale at which evolution 

occurs (within-species).  This also challenges the hypothesis that the strong evolutionary 

coupling between leaf lifespan and LMA has caused the ‘contrariness’ of conifers (shade needles 

have lower LMA than sun needles on the same individual, but shade tolerant conifers have 

higher LMA than light-demanding conifers, (Lusk et al., 2008). 
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This negative intra-specific LMA~leaf lifespan trend may be unique to conifers, or unique to 

evergreen trees. Unfortunately, data on within-species variation in leaf lifespan is extremely 

limited except for conifers, which have easily counted annual bud scars. Our dataset includes 

intra-specific leaf lifespan data for only three angiosperms (Populus tremuloides, Quercus 

gambelii, and Quercus chrysolepis). The evergreen oak Q. chrysolepis showed a negative 

LMA~LL relationship similar to gymnosperms (SMA slope = -1.5, Pearson’s r = -0.63), but 

deciduous Q. gambelii and P. tremuloides  showed slightly positive LMA~LL relationships 

(SMA slopes of 0.97 and 0.92, Pearson’s r of 0.24 and 0.27 respectively). Additionally, an 

extensive growth chamber experiment with Arabidpsis thaliana found a positive relationship 

between leaf lifespan and LMA across A. thaliana lines and mutants (Blonder et al., 2015). 

However, more data on within-species variation in leaf lifespan is sorely needed. Indeed, given 

that leaf lifespan was the only trait that reliably correlated to stand environmental variables and 

was linked with stand relative growth rate in our analysis (see Figure S3 in Appendix E), we 

advocate for renewed study of leaf lifespan in non-gymnosperms. 

 At the same time that the link between log10 LMA and log10 leaf lifespan weakens within 

species, we found an increasingly tight link between log10 LMA and log area-based nitrogen 

content Narea (Figure 4). At a global scale, LMA and Narea are more weakly linked than LMA and 

mass-based nitrogen content (correlation 0.58 for Narea and -0.75 for Nmass, (Wright et al., 2004), 

similar in our expanded dataset, Table 1). However, taxonomic analysis revealed an increasingly 

strong scaling between log10 LMA and log10 Narea within lower taxonomic groupings. The slope 

of log-log relationships, or ‘scaling exponents’, indicate the proportionality of pairwise trait 

relationships. Within-species, we found that the scaling factor between Narea and LMA was 

slightly greater than one (1.17±0.01), meaning LMA and Narea scaled allometrically rather than 
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‘isometrically’ (i.e. in direct proportion to one another).  In other words a 10% increase in LMA 

yields roughly a 12% increase in Narea (i.e. raw Narea scales with LMA1.18). However this 

allometric scaling falls below one rapidly at all higher taxonomic levels. The mean scaling slope 

across species means within genera is 0.85 (a 10% increase in LMA results in an 8.5% increase 

in Narea), and globally across all species mean trait values log Narea scales with log LMA with a 

SMA slope of 0.65. This implies that, within-species, increasing LMA requires devoting a 

progressively larger fraction of total leaf nitrogen to leaf structure. However, between species the 

scaling slope of less than 1 implies that increasing LMA can be achieved while shifting 

allocation away from structural sources and maintaining nitrogen in photosynthetic and cytosolic 

pools. 

This intra-specific shift of the LMA-Narea scaling relationship could be the results of two 

processes: either an evolutionary constraint or a physiological/anatomical constraint. First, the 

pattern could result from an evolutionary constraint, with LMA proving a relatively canalized 

trait while Narea is much more evolutionary labile and/or plastic within a species. If this were 

true, we would expect to see strong phylogenetic signal in LMA across clades, and relatively 

weak phylogenetic signal in Narea (Crisp & Cook, 2012). The large proportion of global Narea 

variation and Narea variation in needle-leafed conifers that falls within species would also support 

the evolutionary constraint interpretation (Figure 1). However, this explanation seems unlikely 

because 1) LMA is known to be an extremely plastic trait even within the canopy of a single 

individual depending on light environment (Poorter et al., 2009), 2) the strong correlation 

between LMA and Narea would still require a physiological constraint linking LMA and nitrogen 

content in order to so consistently manifest within-species as well as across species, genera and 

families.  
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The second possibility is that Narea variation within species is strongly constrained by leaf 

cellular anatomy, such that the anatomical shifts that lead to increased LMA are mechanistically 

linked to increasing leaf nitrogen per unit leaf area. A recent extensive synthesis of the 

physiological and structural trade-offs that underpin the leaf economics spectrum found that the 

mass of cell walls per unit leaf area increases extremely strongly with LMA, with a scaling slope 

of 1.37 (Onoda et al., 2017). Because neither the nitrogen content of cell walls nor the mass of 

nitrogen allocated to rubisco are related to LMA, this results in a strong increase in the amount of 

nitrogen in cell walls per unit leaf area with increasing LMA and a concomitant increase in the 

proportion of total Narea that is found in cell walls (rather than photosynthetic machinery) at 

higher LMA (Onoda et al., 2017). In light of these global patterns, strong scaling of Narea with 

LMA within species is likely the result of a fixed nitrogen composition of cell walls (or perhaps 

bulk leaf structural tissue) and anatomically constrained mechanisms for increasing LMA within 

species. This is consistent with a strong intra-specific link between LMA and Narea and a 

relatively weak link between LMA and Nmass. If nitrogen allocation between phostosynthetic and 

cytosolic pools is fairly plastic within species but the nitrogen content of cell walls is relatively 

fixed, then the relationship between LMA and Nmass would be expected to be more variable than 

the LMA~Narea relationship, particularly if N allocation to photosynthetic and cytosolic pools is 

governed by different environmental cues than LMA. This aligns well observations of 

considerable reallocation of photosynthetic nitrogen (except for nitrogen in chlorophyll) even 

over the lifespan of individual leaves/needles, as foliage produced in high light becomes shaded 

(Brooks et al., 1994; 1996).  

Using the terminology Osnas et al. (2013), it appears that nitrogen is distributed strongly 

‘mass proportional’ within-species, but is largely ‘area proportional’ between species. In light of 
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this, the negative within-species relationship between log10 Narea and log10 leaf lifespan (Figure 

4,d) is principally driven by nitrogen’s strong relationship with LMA and LMA’s negative 

relationship with leaf lifespan. We suspect that this shift from area- to mass-proportionality is the 

result of constraints on the within-species variation in the leaf cellular anatomy. We hypothesize 

that many aspects of leaf cellular anatomy vary considerably more between than within species, 

leading to an anatomic constraint on nitrogen allocation within species that switches to 

biochemical or transport constraint on metabolic and photosynthetic rates at higher taxonomic 

levels and larger scales of anatomical variation. More research is needed on within-species 

variation in assimilation and respiration rates in relation to leaf mass, leaf area, and critically leaf 

anatomy and leaf rubisco content (e.g. within-species extensions of Onoda et al., 2017 and 

Poorter et al., 2013) to elucidate the mechanisms behind the LMA, leaf lifespan and nitrogen 

patterns documented here. 

  

Weak trait-environment relationships even within species 

 Our findings of relatively weak relationships between environmental variables and foliar 

traits challenge some fundamental assumptions about the functionality of leaf economics 

spectrum traits.  According to the definition of functional trait forwarded by (Violle et al., 2007), 

a functional trait is a morphological, physiological or phenological trait that influences some 

aspect of plant performance/fitness (i.e. growth, reproduction or survival) and that displays 

different values (either within or between species) across environmental gradients. By this 

definition, we found limited ‘functionality’ of leaf lifespan, LMA and Narea within species, 

because they neither relate strongly to easily measured stand-level environmental variables. We 

found that leaf lifespan was the most sensitive to environmental variables, with site climate, soil 
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and competition-related metrics explaining up to half the total variation in leaf lifespan in some 

species (Table 2).  

Consistent with previous studies of conifer needle longevity, we found that temperature 

(PC2 of our climate PCA) was generally negatively related to leaf lifespan, though its effect was 

considerably less ubiquitous than in the boreal-focused literature (Figure 5, Table 2 versus Reich 

et al., 2014). We also found that leaf lifespan tended to increase with stand leaf area index, 

which is consistent with observed patterns of leaf longevity in sun exposed versus shaded plants 

(Vincent, 2005). However, leaf lifespan was only slightly negatively related to stand biomass 

growth rate, which we hypothesized would be a good proxy for rate of self shading which should 

decrease leaf lifespan. This suggests that spatial variation in leaf lifespan within-species may 

partially result from the higher probability of sampling partially shaded branches in stands with 

higher LAI (Berner & Law, 2016). 

LMA and Narea, on the other hand, were quite weakly related to stand-level environmental 

variables. LMA was slightly negatively related to temperature for most species (Figure 5), 

similar to previously report LMA patterns in the evergreen Quercus ilex (Niinemets, 2014). 

However, the effects of all other environmental variables were both weak and somewhat 

inconsistent across species. Ultimately, environmental variables explained at most 38% of total 

LMA variation within a species (mean marginal R2 = .16) and the null model was the most 

parsimonious model for two of the six species. LMA is very plastic trait that has been found to 

vary consistently across environmental gradients in some species (e.g. Anderegg & 

HilleRisLambers, 2015, Niinemets, 2014, Vilà-Cabrera et al., 2015) and experimentally responds 

strongly to light and temperature gradients and somewhat to water stress and nutrient availability 

(Poorter et al., 2009). However, at least in these needle leaf conifers, LMA was fairly insensitive 
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to environmental variation even across the large geographic scales covered by the PNW dataset. 

Narea was even less well explained by environmental variables than LMA, which is consistent 

with the few other studies that have explore intra-specific Narea variation across environmental 

gradients (Auger & Shipley, 2012; Vilà-Cabrera et al., 2015).  

There may be at least two reasons for these weak trait-environment relationships. First, 

very local conditions (microclimate of the site, within-canopy variation in light availability) may 

be more important for some traits than larger scale environmental predictors at the stand scale. 

This seems particularly likely, given that within-stand variability actually exceeds between stand 

trait variability in LMA and Narea (Figure 1c). Even with a consistent branch selection protocol 

over the entire PNW dataset, variation in Narea between replicate samples in a plot was twice as 

large as variation between plots (30% of total variance within plots versus 15% between). 

Similar levels of large within-plot variation have been found in other systems as well, including 

Australian eucalypts (LDL Anderegg, unpublished data), deciduous aspen trees (Anderegg & 

HilleRisLambers, 2015), French alpine perennials (Albert et al., 2010a), and cultivated coffee 

(Martin et al., 2016).  It is clear from studies of sub-canopy heterogeneity that leaves adjust their 

morphology and physiology to their hyperlocal environement (Field, 1988; Williams et al., 

1989), so a large fraction of intra-specific trait variation can be expected a priori to be 

unexplainable from site environment.  

Second, LMA and Narea are compound traits that result from multiple anatomical and 

physiological leaf attributes that respond to environmental gradients in complicated and 

sometimes compensating ways. For instance, LMA is the emergent result of leaf thickness, leaf 

density, cell size, and a host of leaf anatomical characteristics (Poorter et al., 2009). Each of 

these characteristics may vary semi-orthogonally in response to temperature, water or light 



     87 

limitation (Baird et al. in press). Meanwhile, Narea is the result of nitrogen availability mediated 

by multiple allocation decisions, between structural tissue, cytosolic demands and photosynthetic 

machinery (Onoda et al., 2017). The result is that both traits do not necessarily show clean and 

unambiguous responses to different environmental stresses. As such, it is perhaps unsurprising 

that LMA and Narea are difficult to predict, even within species. It is, however, rather striking that 

the average within-species explanatory power found in this analysis is roughly similar to the 

weak trait-environment relationships that a recent global analysis found between species across 

multiple biomes (Maire et al., 2015). Indeed, the composite nature of LMA is likely also 

responsible at least in part for the unexpected reversal of the LMA~leaf lifespan relationship 

within species. LMA increases to boost leaf physical resilience to mechanical stress have been 

hypothesized to mechanistically link LMA and leaf lifespan (Wright et al., 2004; 2005; Lusk et 

al., 2008; Reich et al., 2014). But our results indicate that these alterations cannot be the main 

driver of LMA variation within species. 

The above weak trait-environment relationships indicate that the ‘functionality’ of LMA 

and leaf nitrogen content is somewhat fraught. These traits may capture important aspects of a 

plant’s foliar strategy, but their relative unresponsiveness to environmental gradients either 

between or within species makes them at best an imperfect characterization of some niche axis 

for community ecological purposes. While we lack data on individual performance (e.g. growth, 

reproduction, survival) with which to test the importance of these traits for organismal fitness, 

stand level trait averages were poo0r predictors of stand average growth in single species stands 

in the PNW dataset (see Figure S3 in Appendix E). Foliar traits were poorly predicted from stand 

environment, but also poor predictors of tree performance. Using two different formulations of 

stand growth rate, we found that stand mean log LMA and log Narea of mono-dominant stands 
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were unrelated to growth, while leaf lifespan was significantly related to one growth metric and 

only marginally related a second. This stand level analysis no doubt loses considerable power 

through its aggregation to the stand level, and additional research is needed on the fitness 

consequences of these leaf foliar traits. But their weak responses to environmental gradients and 

non-existent relationships with performance in long-lived woody organisms may limit their 

functionality in the evolutionary sense.  

 

Conclusion 

We found that (1) within-species trait variation is often but not universally small 

compared to between species variation, except for area-based nitrogen content (2) some critical 

trait relationship underpinning the leaf economic spectrum change with taxonomic scale, and (3) 

trait variation within-species is only weakly linked to environmental variation. These results 

highlight the need for additional study of within-species trait variation, particularly with respect 

to leaf nitrogen content, and for modeling the boreal conifer cover type where intra-specific 

variation represents a large fraction of total trait variation. Our results also challenge the strong 

evolutionary trade-off between leaf lifespan and leaf mass per area, as this trade-off does not 

manifest at the within-species scale at which evolution occurs. We also find a strong link 

between LMA and area-based nitrogen within species that has been overlooked due to their 

weaker global relationship. This link presents exciting avenues for further illuminating 

fundamental physiological links between structure and function that are hidden at higher 

taxonomic scales. Finally, our findings that, in conifers, LMA and leaf nitrogen content are less 

‘functional’ than leaf lifespan emphasize the need for renewed study of leaf lifespan as a global 

functional trait, particularly in angiosperms where it is difficult to quantify. 
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Within	Species	 Global	 		

Correlation	 LMA	 LL	 LMA	 LL	

LL	 -0.15±0.02	 -	 0.67	 -	
Nmass	 -0.2±0.01	 -0.06±0.02	 -0.76	 -0.67	
Narea	 0.67±0.01	 -0.21±0.02	 0.59	 0.21	
	 	 	 	 	
SMA	Slope	 LMA	 LL	 LMA	 LL	

LL	 -0.85±0.1	 -	 1.75	 -	
Nmass	 -0.37±0.03	 -0.8±0.14	 -0.77	 -2.29	
Narea	 1.17±0.02	 -0.51±0.05	 0.65	 0.41	

 
Table 1: Mean within-species trait correlations and SMA slopes versus global between-species 
relationships.  
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Table 2: Best linear mixed effects models relating geographic variation in foliar traits to site 
environmental factors for six conifer species. All predictors are z-score standardized to facilitate 
comparisons across environmental factors. ‘Mean’ column indicates the intercept term (with all 
predictors mean centered). ‘PC1’ is the first principle component of a climate PCA, generally 
representing site wetness. ‘PC2’ is the second climate principle component, generally 
representing site warmth. ‘Soil N’ was measured from multiple soil cores per plot (see (Berner & 
Law, 2016), while stand age, Leaf Area Index (LAI), and biomass growth were assessed with 
stand surveys and tree cores. ‘Marg R2’ indicates the marginal R2 of the best model (i.e. the R2 
of only the fixed portion of the model), while the conditional R2 (‘Cond R2’) indicates the R2 of 
both the fixed and random portions of the model.  
 

LEAF	LIFESPAN	 		 		 		 		 		 		 		 		 		 		

Species	
mean	
log(LL)	 PC1	 PC2	 soil	N	

log	
(Stand	
Age)	 LAI	

Biomass	
Growth	

Marg	
R2	

Cond	
R2	 n	

Pseudotsuga	
menziesii	 1.77	 -0.053	 		 		 0.078	 0.032	 		 0.48	 0.79	 221	
Pinus	ponderosa	 1.74	 		 -0.040	 -0.024	 		 		 0.027	 0.19	 0.36	 97	
Pinus	contorta	 1.96	 		 -0.082	 		 		 0.100	 -0.089	 0.52	 0.60	 34	
Pinus	jeffreyii	 1.86	 		 -0.092	 		 		 		 		 0.36	 0.54	 45	
Abies	concolor	 2.00	 		 		 		 		 0.061	 		 0.22	 0.64	 88	
Tsuga	
heterophylla	 1.79	 		 		 -0.050	 0.027	 		 		 0.26	 0.32	 60	
LMA	

	 	 	 	 	 	 	 	 	 	

Species	

mean	
log	
(LMA)	 PC1	 PC2	 soil	N	

log	
(Stand	
Age)	 LAI	

Biomass	
Growth	

Marg	
R2	

Cond	
R2	 n	

Pseudotsuga	
menziesii	 2.22	 		 -0.017	 -0.027	 0.015	

-
0.031	 0.034	 0.15	 0.34	 220	

Pinus	ponderosa	 2.38	 		 		 		 0.021	 		 		 0.14	 0.36	 135	
Pinus	contorta	 2.39	 		 		 		 		 		 		 0.00	 0.00	 34	
Pinus	jeffreyii	 2.37	 		 0.091	 		 		 0.056	 		 0.33	 0.33	 45	
Abies	concolor	 2.32	 		 		 		 		 		 		 0.00	 0.48	 88	
Tsuga	
heterophylla	 2.05	 		 -0.068	 		 		 		 		 0.38	 0.58	 60	
Narea	

	 	 	 	 	 	 	 	 	 	

Species	

mean	
log	
(Narea)	 PC1	 PC2	 soil	N	

log(Sta
nd	
Age)	 LAI	

Biomass	
Growth	

Marg	
R2	

Cond	
R2	 n	

Pseudotsuga	
menziesii	 0.25	 		 		 		 		 		 		 0.00	 0.19	 220	
Pinus	ponderosa	 0.45	 		 -0.015	 		 		 		 		 0.03	 0.25	 135	
Pinus	contorta	 0.41	 		 		 0.035	 		 		 		 0.11	 0.11	 34	
Pinus	jeffreyii	 0.36	 		 		 0.040	 0.052	 		 		 0.21	 0.21	 45	
Abies	concolor	 0.25	 		 		 		 		 		 0.022	 0.06	 0.35	 88	
Tsuga	
heterophylla	 0.07	 		 		 0.039	 -0.036	

-
0.052	 		 0.31	 0.50	 60	
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Chapter 4: Supplemental Materials for Chapters 1-3 
 
 

Appendix A: Supplemental Data and Analysis, climate/competition tradeoffs 
Supplemental Material for Chapter 1 

  
 
 
 

 
Figure S1: Relative abundance of canopy tree species across ~1000m elevation gradients on the 
three study mountains: Shark’s Tooth in San Jaun National Forest, Colorado (top), Mt. Brown in 
Glacier National Park, Montana (middle), and Hurricane Ridge in the Olympic National Park, 
Washington (bottom). Relative abundance was assessed via three to six 5x50m strip transects 
approximately every 50m of elevation gain. Sampled species are denoted with an asterisk (*). All 
transects ended at high elevation tree line. 
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Figure S2: (a) Growing season (May-Oct) average T and average grown season (May-Oct) 
Climate Moisture Deficit (CMD = potential evapotranspiration – precipitation) of the transect – 
summer temperature and water stress decrease with elevation on all three mountains. (b) 
Dormant season (Nov-Apr) precipitation and temperature seasonality (difference between mean 
warmest month temperature and mean coldest month temperature) of each transect – transects 
differ considerably in winter precipitation and seasonal temperature variation. Climate normal 
were calculated for each elevation band using the ClimateWNA downscaling algorithm of the 
gridded CRU T 1970-2000 climate normals (Wang et al. 2016). 
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Figure S3: Size- and competition-specific population mean annual basal area growth rate (filled 
bars, mm2yr-1) and strength of competitive suppression (open bars) for all nine species-replicates. 
Competitive suppression indicates the amount by which growth of a tree of mean size is reduced 
by increasing neighborhood density one standard deviation. Black points indicate proportion of 
maximum seedling/sapling density (at mean competitive density). Gray squares indicate 
proportion of max conspecific mortality documented from variable radius plots around focal 
trees. See Tables S2-S4 for statistical significance of changes between the range margins and 
range center for each species-replicate. 
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Figure S4: Species-site mean size and competition-standardized basal area increment as a 
proportion of species-site maximum growth across elevation. Harsh (slow growing) range 
margins occurred at both the upper and lower range margins of species on all three transects. 
 
 

 
Figure S5:  Comparison of the global relationship between mean populations growth rate and 
strength of competitive suppression (negative denotes stronger competitive suppression), 
assessed with proportional values (a) versus raw values (b). In (a), competitive suppression has 
been divided by the population mean growth rate to yield a growth suppression as a proportion of 
mean growth. Mean growth has been standardized by the mean growth of the fastest growing 
population (the benign range margin population) for each species-replicate. The trends are 
qualitatively similar, though the main effect is non-significant for proportional competitive 
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sensitivity (se-weighted linear mixed effects model, p=0.35) and significant for raw competitive 
sensitivity (p=0.001) 
 

 
Figure S5: Mean growth (a-c), growth synchrony (d-f) and sensitivity to competition (g-h) of 
each species/site against Meant annual Temperature, Mean annual precipitation, and Climatic 
Moisture Deficit (PET – MAP). Only the Synchrony~CMD relationship was significant. Colored 
lines show the trend for each species/site. 
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Figure S7: Regeneration dynamics across elevation and competitive environment for all species-
replicates. Pinus ponderosa densities were assessed through supplemental regeneration transects, 
and thus cannot be analyzed as a function of competition, only elevation. 
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Table S1: Summary statistics  (mean ± sd) for the low, mid and high elevation bands sampled 
for each of nine species-replicates (low elevation band was not sampled for Tsuga heterophylla 
in Washington because its range extends to sea level). PIPO = Pinus ponderosa, POTR = 
Populus tremuloides, ABLA = Abies lasiocarpa, TSHE = Tsuga heterophylla, PSME = 
Pseudotsuga menziesii. ‘Dist w/in pair’ referse to distance between paired trees (one in a high 
and one in a low competitive environment). ‘Dist btw pairs’ refers to the distance between 
centroids of all 10-15 tree pairs in an elevation band. ‘ACF’ refers to tree active crown fraction 
(% of tree height with foliage). 
 
 
State	 Speci

es	
Dist	w/in	
pair	(m)	

Dist	
btw	
pairs	
(m)	

DBH	
(cm)	

Height	
(m)	

Elev	(m)	 Basal	
Area	
(m2/h)	

Trees	in	
5m	

ACF	(%)	

CO	 PIPO	 18.4±12.6	 2134±
1452	

42.3±5.4	 18.4±3.9	 2280±31	 19±10	 4±3.1	 0.66±0.16	

CO	 PIPO	 25.9±12.7	 932±	
662	

46.6±8.3	 23.6±3.7	 2468±25	 28±11	 4.2±4	 0.49±0.14	

CO	 PIPO	 31.5±24.7	 1776±
1130	

56.2±9.7	 21.7±3	 2682±18	 14±7	 5±3.6	 0.69±0.12	

CO	 POTR	 29.3±17.6	 1831±
1038	

27.4±5.7	 16.1±3.3	 2693±21	 17±8	 6.4±3.2	 0.39±0.11	

CO	 POTR	 14±7.4	 803±	
859	

36.5±8.7	 20.8±4.5	 2876±23	 38±14	 6.7±3.9	 0.44±0.13	

CO	 POTR	 27.2±15.3	 1341±
927	

36.9±8.9	 23.1±3.8	 3085±13	 40±17	 10.9±7.5	 0.35±0.14	

CO	 ABLA	 31.9±18.2	 1439±
1001	

39.5±9.9	 21.1±3.9	 3087±16	 42±16	 8.7±6.3	 0.67±0.2	

CO	 ABLA	 32.9±21.5	 1386±
1154	

38.4±7.7	 22.2±4.5	 3291±11	 43±20	 6.3±4.8	 0.65±0.21	

CO	 ABLA	 41.1±28.8	 563±	
503	

31.2±7.4	 14.7±4.3	 3487±28	 24±13	 4±2.4	 0.85±0.14	

MT	 TSHE	 26.4±10.5	 379±	
212	

47.4±5.4	 29.1±3.6	 1025±12	 41±13	 2.5±1.8	 0.44±0.1	

MT	 TSHE	 16.9±7.6	 263±	
135	

31.2±7.2	 21.1±3.8	 1164±27	 39±12	 8±4.4	 0.57±0.14	

MT	 TSHE	 21.3±9.6	 294±	
173	

29.2±3.8	 18.3±3.6	 1299±29	 32±10	 7.5±4.4	 0.75±0.18	

MT	 PSME	 15.8±9.2	 315±	
179	

40.4±11.
7	

25±3.4	 1323±33	 33±12	 6.8±4.8	 0.49±0.14	

MT	 PSME	 14.6±7.6	 167±	
77	

36.1±3.9	 21.7±3.9	 1446±26	 32±12	 5.5±2.9	 0.5±0.07	

MT	 PSME	 16.7±10.6	 197±	
101	

36.1±10.
4	

21.9±4.6	 1610±25	 36±11	 7.2±4.2	 0.53±0.15	

MT	 ABLA	 15.8±5	 181±	
99	

23.6±4	 18.5±3.2	 1607±24	 33±11	 8.2±4.5	 0.57±0.15	

MT	 ABLA	 13.9±7.1	 114±	
53	

24.8±5	 15.8±3.1	 1906±22	 29±10	 11.3±5.7	 0.71±0.1	

MT	 ABLA	 10.5±5.1	 179±	
104	

21.2±4.2	 5.7±1	 2219±45	 18±7	 12±4.8	 0.78±0.14	
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Table S1 cont.: Summary statistics  (mean ± sd) for the low, mid and high elevation bands 
sampled for each of nine species-replicates (low elevation band was not sampled for Tsuga 
heterophylla in Washington because its range extends to sea level). PIPO = Pinus ponderosa, 
POTR = Populus tremuloides, ABLA = Abies lasiocarpa, TSHE = Tsuga heterophylla, PSME = 
Pseudotsuga menziesii. ‘Dist w/in pair’ referse to distance between paired trees (one in a high 
and one in a low competitive environment). ‘Dist btw pairs’ refers to the distance between 
centroids of all 10-15 tree pairs in an elevation band. ‘ACF’ refers to tree active crown fraction 
(% of tree height with foliage). 
 
 
  

WA	 TSHE	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	
WA	 TSHE	 20.7±11.1	 152±	

82	
51.8±13.
9	

37.5±8.6	 221±30	 59±19	 4±2	 0.56±0.14	

WA	 TSHE	 18.2±9	 161±	
85	

54.1±8	 40.2±7.6	 550±28	 62±13	 3.5±2	 0.51±0.12	

WA	 PSME	 28.5±12	 212±	
95	

81.8±15.
2	

38.1±10.
2	

394±43	 75±14	 3.8±2.3	 0.53±0.09	

WA	 PSME	 19.4±9.5	 135±	
66	

75.1±24.
9	

32.8±8.9	 857±23	 68±27	 4.2±2	 0.51±0.14	

WA	 PSME	 22±9.4	 126±	
51	

93.8±21.
9	

28.7±7	 1298±33	 67±28	 4.5±2.3	 0.58±0.12	

WA	 ABLA	 15.1±12.5	 74±37	 35.3±9.8	 19.5±5.1	 1250±22	 38±10	 4.3±3.2	 0.56±0.13	
WA	 ABLA	 13.4±9	 115±	

57	
42.4±14.
2	

19.6±4.2	 1393±16	 37±10	 8±4.1	 0.5±0.15	

WA	 ABLA	 10.5±6.3	 120±	
67	

38.5±10.
4	

16.9±3.4	 1506±16	 43±11	 8.3±4.4	 0.73±0.13	
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Table S2: Summary of linear models and linear mixed models of mean growth (mean Basal 
Area Increment from 2003-2012, mm2) and beta regression models of growth synchrony. Mean 
Basal Area Increment (BAI) was modeled as a potential function of tree size (‘DBH’), 
competitive environment (‘ACF’ = active crown fraction or the % of tree height with green 
foliage; ‘N_Cr’ = number of tree crowns touching the focal tree; ‘BA_tot’ = total basal area of 
living and recent dead trees around the focal tree assessed with a wedge prism), elevation band 
(‘Elev’) and DBH and competition’s potential interactions with elevation band (indicated by a 
‘*’). “Pair random effect” indicates whether a mixed model with a random effect of tree pair was 
included in the best model. “Variance Structure” indicates if variance was modeled as a function 
(either power or exponential) of either the fitted values or tree DBH. ‘t’ indicates a variance 
function coefficient, while ‘ | Elev’ indicates a different variance coefficient was fitted for each 
elevation band. Random effect, variance and fixed effect structure were selected with an iterative 
model selection approach based minimizing model AIC (See Methods). “L contrast” and “H 
contrast” indicate significant differences between the low elevation band or high elevation band 
(respectively) and the mid elevation range center, assessed using t-tests (with Sattherthwaite’s 
estimated degrees of freedom for mixed models). The “Sensitivity to Competition” columns 
indicate whether there was a significant interaction between the best competitive index and 
elevation band (“LRT” = significance of interaction based on a likelihood ratio test, “L int” and 
“H int” indicate significant differences between competitive effects at the low and high elevation 
range margins compared to the mid elevation range center assessed via t-tests). For growth 
synchrony models, all pairwise correlation coefficients between every pair of detrended tree 
growth chronologies in an elevation band (n=20-30 trees) were transformed to be bounded 
between 0 and 1 and then modeled as a function of elevation band using a beta-regression. 
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Table S3: Model results of generalized linear mixed models (bionomial error distribution with 
logit link, and tree as a random effect) modeling ~5 yr survival of conspecific trees falling within 
the variable-radius plot measured around each cored tree used to assess stand basal area. Trees 
were considered ‘recent dead’ in the model if the maintained dead foliage in their canopy or if 
they retained all bark and fine branches. These trees were assumed to have died within 
approximately the last five years. Trees without bark or fine branches were considered ‘snags’ 
and excluded from the analysis. Wedge prism basal area factor was selected to include 15-25 
trees in each plot (including non-conspecifics) to derive a robust estimate of stand basal area, and 
the minimum number of conspecific trees assessed per elevation band was 54 (mean 260 trees 
per elevation, max of 511). “L difference” and “H difference” indicate the sign of the survival 
difference at each range margin compared to the mid elevation range center, and p-values 
indicate the statistical significance of these differences based on t-tests of model parameters 
using on Satterthwaite's approximate degrees of freedom. The column “Follows Adult BAI?” 
indicates whether survival patterns mirror mean growth patterns across elevation (See Figure 
S2). If growth correlates with survival within each species-replicate, survival is expected to be 
lowest at the slowest growing or ‘harsh’ range boundary, and highest at the fastest growing or 
‘benign’ range boundary. ‘Yes’ indicates that both margins show the expected sign of difference 
compared to the range center and at least one margin shows a significant difference. ‘Partially’ 
indicates that one range boundary shows the expected difference from the range center, while the 
other shows the opposite of the expected difference. ‘no pattern’ indicates no significant 
differences in survival between elevation bands. ‘No’ indicates that both range margins showed 
the opposite of the expected difference from the range center (these species-replicates are 
highlighted in red in Figure 5a). 
State	 Species	 L	

difference	
p-value	 H	

difference	
p-value	 Follows	Adult	

BAI?	
CO	 PIPO	 +	 0.677	 +	 0.067	 Partially	
CO	 POTR	 -	 <0.001	 +	 0.267	 Yes	
CO	 ABLA	 +	 0.012	 -	 0.914	 Yes	
MT	 TSHE	 -	 0.655	 -	 0.3462	 no	pattern	
MT	 PSME	 +	 0.02	 +	 0.215	 Partially	
MT	 ABLA	 -	 <0.001	 +	 0.517	 No	
WA	 TSHE	 NA	 NA	 -	 0.784	 no	pattern	
WA	 PSME	 +	 0.175	 -	 0.826	 No	
WA	 ABLA	 -	 0.011	 +	 0.018	 Yes	
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Table S4: Model results of poisson regressions modeling density of seedlings/saplings within 
5m of cored trees as a potential function of elevation band, metrics of competitive environment 
(in5_tot = total number of adult trees within 5m of cored tree, BA_same = Basal area of 
conspecific trees near cored tree determined via a wedge prism, BA_tot = Basal area of all adult 
trees near cored tree determined via a wedge prism), and an interaction between elevation band 
and competition. Best models were selected based on AIC. ‘L/H int sign’ indicates whether, for 
models which include an elevation X competition interaction, the competition coefficient 
increased (+) or decreased (-) from the mid elevation range center to the low/high range margin 
(p-value indicates significance of this change based on a t-test). Because the competitive effects 
are generally negative, a decrease in the competitive coefficient (-) indicates an increased 
sensitivity of regeneration density to competitive environment. 
	 Density	at	mean	

competitive	environment	
	 Sensitivity	to	Competition	

(difference	from	Mid	
elevation)	

State	 Spp	 Best	
model	

L	
dif	

p-
value	

H	
dif	

p-
value	

Follows	
Adult	
BAI?	

L	
int	
sign	

p-
value	

H	
int	
sign	

p-
value	

CO	 PIPO	 Elev	 -	 0.007	 +	 <0.001	 Yes	 	 	 	 	
CO	 POTR	 Elev	*	

in5_tot	
-	 <0.001	 +	 <0.001	 Yes	 -	 <0.001	 +	 <0.001	

CO	 ABLA	 Elev	*	
in5_tot	

+	 0.002	 -	 <0.001	 Yes	 -	 0.003	 +	 0.927	

MT	 TSHE	 Elev	*	
BA_same	

+	 <0.001	 +	 0.025	 No	 -	 0.092	 +	 0.015	

MT	 PSME	 Elev	*	
BA_same	

-	 <0.001	 +	 0.085	 No	 +	 <0.001	 +	 <0.001	

MT	 ABLA	 Elev	*	
in5_tot	

-	 <0.001	 +	 <0.001	 No	 -	 <0.001	 -	 0.0106	

WA	 TSHE	 Elev	+	
in5_tot	+	
BA_same	

NA	 NA	 -	 0.79	 No	
trend	

NA	 NA	 	 	

WA	 PSME	 Elev	*	
BA_same	

-	 <0.001	 -	 <0.001	 Partiall
y	

+	 0.78	 -	 0.012	

WA	 ABLA	 Elev	*	
BA_same	

+	 <0.002	 +	 <0.001	 Partiall
y	

-	 0.082	 -	 <0.001	

 
  



     105 

Appendix B: Supplemental Methods, Mean growth and growth sensitivity  
Supplemental Material for Chapter 1 

 
We quantified environmental harshness and growth sensitivity to competition based on 

the relationship between mean annual Basal Area Increment (mm2) from the 2003-2012 period 
and tree size, range position and competitive environment. Using an iterative model selection 
technique based on the suggestions of Zurr et al. 2008, we first determined for each species-site 
whether tree pair was needed as a random effect (to account for edaphic similarities between 
trees in a pair) using an ‘over-the-top’ fixed-effect structure fit with restricted maximum 
likelihood and Likelihood Ratio Tests (tree pair was included as a random effect for four of nine 
species/sites, the remaining five did not require mixed-modeling). We then examined residual 
plots, removed extreme outliers (five trees total) and iteratively tested different variance 
structures (allowing error variance to change as some function of tree DBH, some function of the 
response variable, allowing different variances per elevation or some combination of the above). 
For each variance structure, we fit a large number of candidate models including combinations of 
elevation band, tree DBH, and one or more (non collinear, i.e. Variance Inflation Factor <2) 
competitive environment metrics and interactions between elevation and DBH or elevation and 
competitive metrics using maximum likelihood estimation. Potential competitive environment 
metrics included stand basal area (from a variable radius plot measured using a wedge prism), 
number of trees within 5m of the focal tree, active crown fraction of the focal tree (proportion of 
tree height that held foliage), and number of crowns touching the focal tree. We used AIC to 
select the best model for each variance structure, and then compared the AICs of the best models 
(which typically converged on identical fixed-effects structures) to determine the optimal 
variance structure. We then verified that that adding or deleting terms (including quadratic DBH 
and competition terms and interactions with elevation) did not improve the model, and refit the 
final model using restricted maximum likelihood estimation (Zurr et al. 2008).  

Models with were fit using the lme (where a random effect for pair was required) or gls 
(where no random effect was needed) functions from the {nlme} packaged in R, or in the 
simplest case using the lm function from the {stats} package if no random effect or complex 
variance structure was required. Significance of Elevation term and Elevation * Competition 
interactions were tested using Likelihood Ratio Tests against reduced models without these 
terms. In all models, mid elevation/range center was set as the model intercept so that built in 
model contrasts tested for differences in BAI between approaching range margins with t-tests 
(using Satterthwaite estimated degrees of freedom for mixed models). All predictor variables 
were converted to z-scores so that model coefficients can be directly compared between 
variables (i.e. model coefficients represent the BAI change for a one standard deviation change 
in any competitive metric). Mean growth estimates (elevation band intercepts) thus represent the 
mean basal area increment predicted for a tree of species-replicate mean DBH and species-
replicate mean competitive environment. Growth Sensitivity to Competition was calculated as 
the predicted reduction in growth associated with a one standard deviation increase in 
competitive environment (for all competitive metrics included in the best model) using the 
predictSE function from the {AICcmodavg} package. Reported standard errors are prediction 
errors. Best model formulations and statistics are reported in Table S2. Parameter estimates for 
mean size- and competition-standardized growth and Growth Sensitivity to Competition shown 
in Figures 2&3 in the main text were calculated using the full model (fixed effects of Band, 
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competition, and Band x competition interaction) for each species/site, but best model 
formulations, significance statistics, and elevation contrasts are reported in Table S2. 
 
 
 

Appendix C: Supplemental Methods, Alternative metrics of climate sensitivity 
Supplemental Material for Chapter 1 

 
 We applied multiple alternative methods to quantify growth sensitivity to climate, in 
addition to the growth synchrony metrics reported in the main text. We paired detrended and pre-
whitened Ring Width Index chronologies (either for each tree or robust bi-weighted mean 
chronologies for each population) with monthly 20th century climate data from various sources 
(see below). We then qualitatively assessed climate sensitivity to monthly climate variables 
following the traditional dendrochronological technique of plotting all individual correlations 
between population mean chronologies and 24 monthly climate variables from September of the 
growth year (when growth was assumed to have ceased) to October of the year prior to growth. 
These correlations are shown for each species-site in Figures S8-S16. Because these individual 
correlations are not independent (i.e. monthly climate is temporally autocorrelated with previous 
months and many different climate variables are strongly collinear), these monthly correlations 
cannot easily be summarized into a metric of total climate sensitivity across months and climate 
variables. The qualitative inferences that these plots reveal are that: 
1) The seasonality of climate sensitivity varies enormously between species-replicates, even 

for species-replicates on the same mountain. For example, compare the CMD sensitivity 
of Pinus ponderosa versus Abies lasiocarap in CO (Figs S8c and S10c); or the 
temperature sensitivity of Pseudotsuga menziesii versus Tsuga heterophylla in MT (Figs. 
S11a and S12a). 

2) Seasonal metrics (winter, spring, summer, or growing season vs dormant season) rarely 
capture important periods of climate sensitivity, and are in no way universal across all 
species-replicates. 

3) Lagged climate effects are reasonably common (e.g. to moisture availability in all MT 
species-replicates, Figures S11-13 b,d), and sometimes are of opposite sign to current 
year growth sensitivities to the same variable (e.g. late summer precipitation sensitivity in 
Abeis laisocarpa  in MT, Fig 13b,d; or summer temperature sensitivity in Abies 
lasiocarpa in WA, Fig. S16a,c). 

4) Differences in climate sensitivity across elevation are obvious for some species-replicates 
(e.g. temperature sensitivity of Abies lasiocarpa in CO, Fig. S10a,c), but difficult to 
objectively integrate across months and years to derive a total climate sensitivity for 
many species-replicates (e.g. precipitation sensitivity of Abies lasiocarpa in CO where 
low elevation is more sensitivity to precipitation in the growth year, but mid elevation is 
more sensitivity to precipitation in the previous year, Fig. S10b,d). 

 
Thus, we explored multiple statistical methods using linear mixed effects models (on 

individual tree growth chronologies) or linear models (on population master chronologies) to 
quantify total climate sensitivity and climate sensitivity to specific climate variables. We 
employed various model selection techniques, and numerous summary metrics as alternatives to 
quantify total climate sensitivity or climate sensitivity to particular climate stresses. However, 
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the inferences about climate sensitivities at range margins compared to range centers were often 
not robust across different modeling techniques, summary metrics, climate datasets, or climate 
covariate selection rationals. Due to the lack of robust inference from any particular modeling 
approach, we instead used growth synchrony (see Methods of Chapter 1) as the least problematic 
and easiest to interpret metric of growth sensitivity to climate. 
 
 
 
Figures S8-S16: Correlations between monthly climate variables, (a- mean temperature, b- total 
precipitation, c- Growing Degree Days, d- Climate Moisture Deficit or Potential 
evaoptranspriation minus precipitation) beginning with the September of the growth year and 
moving back through time through two water years (pySep indicates the September of the year 
previous to the growth year). Red lines indicate correlations with the master RWI chronology of 
the low elevation range margin, purple lines show correlations with the mid elevation/range 
center master chronology, and green lines show correlations with the high elevation range 
margin chronology. Points indicate correlations that were significant (alpha = 0.05, no correction 
more multiple tests). Vertical solid line divides the growth year (on the right) from the previous 
year (on the left). Red shading shows the growth year summer (June-Aug), green shading shows 
the growth year spring (Mar-May), and blue shows growth year winter (Dec-Feb). 
Figure S8: Pinus ponderosa in Colorad0 
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Figure S9: Populus tremuloides in Colorado 

 
 
 
Figure S10: Abies lasiocarpa in Colorado 
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Figure S11: Tsuga heterophyla in Montana 

 
 
 
Figure S12: Pseudotsuga menziesii in Montana 
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Figure S13: Abies lasiocarpa in Montana 

 
 
 
 
Figure S14: Tsuga heterophylla in Washington 
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Figure S15: Pseudotsuga menziesii in Washington 

 
 
 
 
Figure S16: Abies lasiocarpa in Washington 
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Climate data:  
 To determine the identity of the key climatic constraints on growth and to assess how 
these constraints vary across elevation for each species, we compared annual tree RWI 
chronologies with annual climate variables from 1902 to 2012. Monthly climate variable time 
series were acquired from three independent data sources. First, the CRU TS 3.1 gridded 
historical climate time series(Mitchell & Jones 2005) were interpolated to the midpoint of each 
elevation band for each species-replicate using the 1961-1990 PRISM climate normals (Daly et 
al. 2008) and the scale-free interpolation technique of ClimateWNA (ClimateWNA version 5.21, 
Wang et al. 2012). Additionally, NOAA monthly Divisional climate time series (divisions WA-
1, MT-1, CO-2) were downloaded for each mountain from 
http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp (5 May 2016). Finally, monthly time 
series (1950-2012) were extracted from the 4km PRISM dataset (Daly et al. 2008), and monthly 
soil moisture values at three soil depths were derived by averaging daily values from the 
Variable Infiltration Capacity Model (Livneh et al. 2015). Monthly climate variables were also 
aggregated into seasonal (wt, sp, sm, at), growing/dormant season (gs and ds), and water year 
(previous year Oct through current year Sept) summaries. 
 Correlations between climate variables from the different data products were usually 
strong but not perfect (Figure S17). The relationships between data products were also not 
consistent between climate variables (e.g. annual precipitation in Colorado was most strongly 
correlated between CRU and PRISM, but mean annual temperature in Colorado was most 
strongly correlated between CRU and NOAA Divisional Climate, Figure S17), nor were 
correlations between products consistent across mountains. We had little knowledge a-priori 
about which data product was likely the most accurate for each mountain, and thus included 
variables from all three products in most model selection approaches. However, we never 
allowed the same exact climate variable from multiple products to be included in candidate 
models. 
 
 
Figures S17-S19: Correlations between climate time series from CRU TS 3.1, PRISM 4km, and 
NOAA Divisional Climate summary data. Data shown from CRU and PRISM are for the mid 
elevation population of the mid elevation species for each mountain. Pairplots on the left show 
relationships between annual Precipitation (PPT_an = CRU, PPTPR_an = PRISM, PPTDiv_an = 
NOAA Divisional Climate), while pairplots on the left show relationships between mean annual 
temperature (Tave_an = CRU, TavePR_an = PRISM, TaveDiv_an= NOAA Divisional Climate). 
Note: CRU and PRISM are in metric units while NOAA divisional climate is in English units.   
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Figure S17: COLORADO   

     Annual Precipitation      Mean Annual Temperature 

 
 
Figure S18: MONTANA 

     Annual Precipitation      Mean Annual Temperature 
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Figure S19: WASHINGTON   
     Annual Precipitation      Mean Annual Temperature 
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Appendix D: Supplemental Data and Analysis, differing methods  
drive tree range limits 

Supplemental Material for Chapter 2 
 

 
 
Figure S1: Species relative abundance (Loess smoothed) across elevation at the study site in the 
La Plata Mountains, (San Juan National Forest, Colorado, USA). Relative abundance of all stems 
>5cm DBH was assessed via 3-6 strip transects (50m long by 5m wide) every 50m of elevation 
gain.  
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Methods for combining Basal Area Increment datasets: 
We combined estimates of Basal Area Increment from the trees sampled in this study (see 
Methods section) with nearby trees previously cored for a different study. In 2013, tree cores 
were collected from 20 to 30 trees per elevation at the range center and upper and lower range 
margins of ponderosa pine and trembling aspen for climate sensitivity analysis. These elevation 
bands were identical to the elevation bands used for stand selection in this study, cored trees 
were close (<500m) to the plots used in this study, and core collection and processing was 
identical to this study (see Methods section). Tree selection in 2013 was very similar to tree 
selection used in 2014 for this study (e.g. mature, healthy canopy trees far from visible 
drainages), except that, rather than being grouped in plots, trees were grouped in pairs comprised 
of one tree in a high competitive environment and one tree in a low competitive environment. 
Trees within a pair were <20m apart, and pairs were >40m apart (Anderegg & HilleRisLambers 
in prep.). In 2013, competitive environment was quantified using a variety of metrics including: 
number of trees within 5m of the focal tree, number of crowns touching the focal tree, active 
grown fraction (fraction of tree height with live foliage), and stand basal area estimated using a 
wedge prism. Based on 30 present in both datasets, we constructed linear models relating all of 
these measures (individually and together) to Hegyi’s competitive index. Based on AIC, number 
of trees within 5m alone was the best predictor of Hegyi’s competitive index and explained 64% 
of the variance (Figure S2). We then used this linear relationship to estimate Hegyi’s competitive 
index for all trees cored in 2013 in order to combine the 2013 and 2014 datasets. However, 
results were qualitatively very similar using only the data from 2014 (Figure S3), though with the 
decreased sample size the mixed-effects model including elevation as an explanatory variable 
was not significantly better than the null model (containing only competitive index and DBH) for 
aspen (ponderosa LRT p=0.0019, aspen LRT p=0.21). 
 
Figure S2: Linear relationship between Hegyi’s competitive index (distance and size dependent 
metric of competitive environment measured in 2014) and the number of live trees within 5m of 
the focal tree, which was a better predictor of Hegyi’s CI than any other single competitive index 
or combination of competitive indices measured in 2013. 
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Figure S3: Raw mean annual basal area increment (not standardized by tree size or competitive 
environment) for the 2002-2012 period. (a) only trees cored in 2014 (b) combined dataset of 
trees cored in 2013 and 2014. Results are qualitatively similar between datasets but sample size 
and thus statistical power are greatly increased in the combined dataset, resulting in a significant 
effect of elevation on BAI for both species in the combined dataset. Boxplots show the median 
(bar), interquartile range (box), range (lines) and outliers (circles). “*”  indicates a margin 
significantly different from the range center based on mixed-effects models with elevation coded 
categorically. 
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Figure S4: Xylem vulnerability curves showing raw xylem area specific conductivity (K) as a 
function of induced xylem tension. Conductance at 0 MPa is Kmax measured after embolism was 
removed via vacuum infiltration. 

 
 
Figure S5: Mean annual Basal Area Increment (BAI) for individual trembling aspen trees as a 
function of (a) SLA and (b) branch wood density. Statistics show the p value of Likelihood Ratio 
Tests comparing linear mixed effects models including only tree DBH and competitive 
environment (null) to models with DBH, competitive environment and either SLA or wood 
desnity (BAI was square root transformed for normality). Trend lines are added to indicate the 
slope of the relationship. Point colors denote tree elevation. Tissues with high carbon density 
(low SLA, high wood density) are associated with slow radial growth. 
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Figure S6: Percentage difference from high elevation average AL:AS and average median leaf 
area for individual ponderosa pine trees. AL:AS values were corrected for the effect of stem 
diameter. Dotted line shows the 1:1 line, while solid line shows the total least squares regression 
line. 
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Figure S7: Aspen tree age across elevation from all trees in the full dataset used to calculate BAI 
(see Methods for calculating Basal Area Increment) for which ages could be estimated from tree 
cores (n=86). Letters denote significant differences between elevation based on Tukey’s Honest 
Significant Differences test (alpha = 0.05). Trees in the dataset were selected to capture a 
representative size distribution of dominant canopy trees at each elevation.  
A large increase in tree age at low elevation might indicate increased survival in slow growing 
trees indicative of ‘demographic compensation’ that could offset the consequences of greatly 
decreased mean annual growth at the dry range margin. Mid elevation showed significantly 
decreased tree age compared to high elevation, but low (slowest growing) and high elevation 
(fastest growing) trees showed no significant difference (p=0.84). As all ponderosas in the area 
regenerated following complete clearcut ~100 years ago, tree ages are artificially uniform in this 
species. 
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Table S1: Pinus Ponderosa – Details for linear mixed-effects models of functional trait data. 
“Data Transformation” indicates if/how trait data were power transformed to achieve normality 
prior to model fitting. “Covariates included in model” lists any covariates controlled for during 
model construction. “LRT from null model” shows the likelihood ratio test p-value comparing a 
model with Elevation to a null model. If elevation was significant in a likelihood ratio test, “Low 
Elev p-value”/“High Elev p-value” show post-hoc differences between the lower/upper range 
margin and the range center assessed via the Satterthwaite approximation of marginal fixed 
effect significance using the mixed-effects model with elevation. “btw stand : w/in stand 
variation” shows ratio of the variance estimated between stands and variance within stands 
(between individual variation + measurement error) in the best fit mixed-effects model (0 
indicates no variance assigned to stand random effect). 
Trait  Data 

Transfor-
mation 

Covariate 
included 
in model 

LRT 
from 
null 
model 

Final 
sample 
size 

Low 
Elev 
p-
value 

High Elev 
p-value 

btw stand 
: w/in 
stand 
variation 

10yr mean 
annual 
BAI 

lambda=0.25 DBH + 
comp. 
Index 

*3.3e-8 96 0.16 *0.000001 0 

Median 
leaf size 

- - *0.0018 49 0.57 *0.01 0.10 

Height - - 0.2856 51 - - 0.84 
AL:AS - Stem 

diameter 
*0.0257 45 0.49 *0.0253 0.28 

SLA lambda = -1 log(stem 
diameter) 

0.4584 47 - - 0.23 

Wood 
Density 

- Stem 
diameter 

0.2044 46 - - 0.04 

Knat_Leaf lambda = -0.5 log(stem 
diameter) 

0.4714 35 - - 0.01 

Kmax lambda = 0.5 log(stem 
diameter) 

*0.0012 42 *0.020 0.45 0 

Safety 
margin 

- - *3e-7 46 *0.001 *0.001 0.05 

PLC  - 0.102 37 - - 0.40 
gs log transform - *0.0028 33 0.097 0.18 0.60 
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Table S2: Populus tremuloides – Details for linear mixed-effects models of functional trait data. 
“Data Transformation” indicates if/how trait data were power transformed to achieve normality 
prior to model fitting. “Covariates included in model” lists any covariates controlled for during 
model construction. “LRT from null model” shows the likelihood ratio test p-value comparing a 
model with Elevation to a null model. If elevation was significant in a likelihood ratio test, “Low 
Elev p-value”/“High Elev p-value” show post-hoc differences between the lower/upper range 
margin and the range center assessed via the Satterthwaite approximation of marginal fixed 
effect significance using the mixed-effects model with elevation. “btw stand : w/in stand 
variation” shows ratio of the variance estimated between stands and the variance within stands 
(between individual variation + measurement error) in the best fit mixed-effects model (0 
indicates no variance assigned to stand random effect). 
Trait  Data 

Transfor-
mation 

Covariate
s included 
in model 

LRT 
from 
null 
model 

Final 
sample 
size 

Low 
Elev p-
value 

High 
Elev p-
value 

btw stand 
: w/in 
stand 
variation 

10yr mean 
annual 
BAI 

lambda=0.5 DBH + 
comp. 
Index 

*0.0006 117 *0.005 0.70 0.74 

Median 
leaf size 

- - 0.17 45 - - 0.52 

Height - - *2.9e-5 45 *0.0002 0.98 0.95 
AL:AS - - 0.57 46 - - 0 
SLA - - *0.0102 45 *0.0138 0.65 0.43 
Wood 
Density 

lambda= -2 - *0.0007 44 *0.0214 *0.088 0 

Knat_Leaf lambda = 0.5 - 0.30 40 - - 1.33 
Kmax lambda = 

0.25 
- 0.49 41 - - 0.66 

Safety 
margin 

- - *4.3e-9 39 *2e-7 0.43 0.76 

PLC lambda = 0.5 - *0.001 36 *0.004 0.27 0 
gs log transform - 0.2761 36 - - 1.27 
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Table S3: Details from the best linear mixed effects models explaining branch xylem tensions 
with the possible explanatory variables of Time (predawn vs midday), Elevation (coded as a 
continuous variable), and a Time * Elevation interaction with a random effect of stand and tree. 
Possible models included null, Time only, Elevation only, Time + Elevation, and Time + 
Elevation + Time * Elevation. Model selection was performed using AIC, and the significance of 
the best model over the next simplest model was tested using a likelihood ratio test. The 
Satterthwaite approximation of marginal fixed effect significance was then used to estimate the 
significance of individual model coefficients. Significant p values (alpha = 0.05) are in bold and 
denoted by “*”.  
Species Best model  Δ AIC 

from 
null 
model 

Δ AIC from 
next best 
model 

LRT 
from 
next 
best 

Time Elev  Time * 
Elev 

Ponderosa 
pine 

Time + Elev 
+ Time * 
Elev 

112.6 23.0 (from 
Time + Elev) 

*2.7e-7 *<0.0001 *<0.0001 *<0.0001 

Trembling 
aspen 

Time + Elev 
+ Time * 
Elev 

256.6 5.7 (from 
Time + Elev) 

*0.005 *<0.0001 *0.0076 *0.006 
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Appendix E: Supplemental Data and Analysis, trait variation  
across taxonomic scales 

Supplemental Material for Chapter 3 
 
 
Table S1: Sample sizes for 16 common conifers from the PNW database used for within-species 
trait analyses. 
Species	 nplots	 nsamples	
Abies.amabilis	 9	 25	
Abies.concolor	 33	 89	
Abies.grandis	 30	 101	
Abies.procera	 8	 22	
Juniperus.occidentalis	 11	 68	
Picea.sitchensis	 10	 27	
Pinus.contorta	 19	 40	
Pinus.jeffreyi	 17	 45	
Pinus.ponderosa	 54	 267	
Pseudotsuga.menziesii	 113	 311	
Tsuga.heterophylla	 33	 82	
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Table S2: Total sample sizes by trait for trait variation by taxonomic level analysis. 

	

Within-
species	 		 Within-genus	 		

Within-family	(species	
means)	

	

N	
spp	

Mean	
reps	

Median	
reps	

N	
gen	

Mean	
reps	

Median	
Reps	

N	
fam	

Mean	
reps	

Media
n	Reps	

LL	 30	 28.7	 6.5	 61	 3.5	 2	 65	 7	 3	
LMA	 38	 35.3	 8.5	 73	 10.1	 7	 73	 18.9	 9	
N	 38	 32.9	 8.5	 73	 8.6	 6	 73	 16.4	 9	

 

	

Within-family	(species	
means)	

Within-family	(genus	
means)	 Between	families	

	

N	
fam	

Mean	
reps	

Median	
Reps	 N	fam	

Genera	
in	
Family	

Median	
Reps	 Families	

Familes	w/	at	
least	3	species	

LL	 65	 7	 3	 43	 6	 4	 115	 79	
LMA	 73	 18.9	 9	 44	 12.4	 8	 180	 96	
N	 73	 16.4	 9	 44	 11.5	 7	 164	 92	

 
 
 
 
 
Table S3: Details of the PCA on climate normal from sites in the PNW dataset. Mean annual 
temperature, precipitation, and climate moisture index (potential evapotranspiration – precipitation) were 
calculated from the PRISM 4km gridded climate normals (Daly et al., 2002). Max vapor pressure deficit 
and soil moisture content variables were calculated for each stand using the Variable Infiltration Capacity 
Model run with XX meteorological data (cite).  
 PC1 

(‘wetness’) 
PC2 
(‘warmth’) 

Variance explained 71.7% 18.0% 
Variable Loadings 
Mean Annual Temperature 0.081 0.943 
Mean Annual Precipitation 0.465 0.137 
Mean annual climate moisture 
index 0.474 0.055 
Max annual Vapor Pressure 
Deficit -0.401 0.258 
Mean soil moisture content – 
surface soil layer 0.439 0.009 
Mean soil moisture content – 
total soil column 0.446 -0.149 
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Table S4: Likelihood ratio test results testing the significance of taxonomic scale for standardized 
major axis regression slopes and correlation coefficients of trait-trait relationships. Columns show 
different weighting methods. 
	 unweighted	 sample	

size	
V1	
variance	

V2	
variance	

Nmass	v	LL	 SMA	slope	 0.31	 0.087	 0.61	 0.31	
Correlation	 0.018	 <0.0001	 0.005	 <0.0001	

Nmass	v	
LMA	

SMA	slope	 0.736	 0.96	 0.9	 0.44	
Correlation	 0.027	 <0.0001	 0.19	 0.0008	

LL	v	LMA	 SMA	slope	 0.044	 <0.0001	 0.002	 0.031	
Correlation	 0.007	 <0.0001	 <0.0001	 0.002	

LMA	v	
Narea	

SMA	slope	 0.02992	 <0.0001	 0.4077	 0.001735	
Correlation	 0.8787	 0.2666	 0.306	 0.1208	
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Figure S2: Funnel plots showing the slope of SMA regression lines (a,c) correlation coefficients (b,d) of 
all individual within-taxon trait relationships between log10(LMA) and log10(leaf lifespan) as a function of 
the within-taxon variance in LMA (a,b) and sample size (c,d). The black horizontal lines indicate the 
slope or correlation across families, while the red horizontal lines indicate the mean within-
species slope or correlation. Trait correlations between congeneric species (blue points) and 
between confamilial species or genera (green and purple points, respectively) largely converge 
on the between-family trait relationships at higher LMA variances and particularly at higher 
sample sizes. However, within-species LMA-leaf lifespan relationships do not converge on a 
positive relationship at higher LMA variances, and instead converge on a slight negative 
relationship at larger sample sizes. 
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Figure S3: The relationship between stand Relative Growth Rate (a-c) or raw biomass 
standardized growth (b-d) and stand mean log10 transformed leaf lifespan (a,d), LMA (b,e) and 
Narea (c,f). Colored lines show relationships for each of eight dominant conifer species that made 
up at least 50% of the basal area of at least three plots. Black lines show the mean relationship 
across species, significant or marginally significant mean relationships are solid lines (p values 
from Likelihood Ratio Tests shown in plots). 
Methods: The PNW dataset provides a unique opportunity to test the presumed link between 
plant functional traits and at least one fitness component, growth, in long live tree species. The 
PNW dataset was largely the result of projects characterizing primary productivity in Pacific 
Northwest forests. Because most of the sampled sites in the dataset are dominated by a single 
species (one species makes up >50% of the basal area of over 80% of the sampled sites), these 
productivity estimates can be used to estimate stand growth rates that can be related to stand 
average foliar trait values for mono-dominant stands.  

First, we calculated stand relative growth rate (RGR = ln(biomasst2) – ln(biomasst1)/ Δt, 
here in gC * (gC*m2*yr)-1), which presumes an exponential growth function. Because relative 
growth rate tends to decrease with plant age, particularly in trees (cite?), we also calculated 
biomass standardized growth that does not presume an exponential growth function by 
subtracting from the observed growth the mean growth expected from a general additive model 
of biomass gain as a function of stand biomass fit to the data from all sites using the gam 
function from the mgcv package in R (Woods 2011). Sites with positive biomass standardized 
growth grew faster than expected based on their standing biomass, while stands with negative 
biomass standardized growth grew slower than expected.  
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 Then, we related stand growth to the mean trait value of the dominant species for the 151 
plots that were dominated by a well sampled species (i.e. one species sampled in at least two 
other plots made up >50% of the plot basal area), and that had productivity and trait data. We 
used linear mixed effects models to relate Relative Growth Rate or biomass standardized growth 
rate to mean log LMA, log leaf lifespan or log Narea with a random slope and intercept per 
species. We tested the significance of the fixed effect (i.e. the mean growth vs. trait slope across 
all species) using likelihood ratio tests. Relative Growth Rate was somewhat log-normally 
distributed, but statistical results were qualitatively identical with raw RGR and log-RGR values, 
so only the results from the raw RGR analysis are presented. 
 As with the trait-environment relationships, trait relationships with stand growth rate 
were subtle at best (Figure S3). Log leaf lifespan was the only trait that had a consistent and 
significant or near significant relationship with stand growth across species (LRT p=0.0007 for 
growth as RGR, p=0.098 for biomass standardized growth). Relative growth rate consistently 
increased at sites with shorter leaf lifespans across all species (marginal R2 of fixed effect = 0.26, 
conditional R2 including random variations between species = 0.45). While the general trends 
were consistent with expectations for Narea (RGR increases with higher stand average Narea), 
neither log LMA nor log Narea were significantly related to either formulation of stand growth. 
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Chapter 5: Conclusion 
 

Ecology in the Anthropocene faces an extreme challenge: transitioning from a 

fundamentally descriptive science into a predictive science in time to provide management-

relevant understanding of how ecosystem structure and function will be altered by global 

environmental change (Clark et al., 2001; Moorcroft, 2006; Evans, 2011; Evans et al., 2013; 

Grimm & Berger, 2016; Houlahan et al., 2016; Torossian et al., 2016; Urban et al., 2016). While 

reductionist biology has experienced astounding breakthroughs in the past half century, the 

system science of ecology continues to labor to define the rules that govern species interactions, 

population dynamics, and ecosystem functions. The only universal rule seems to be that nothing 

is universal, and the most common ecological result by far is “it’s complicated.” While the task 

of the ecologist may feel a bit like trying to recreate Newtonian physics from quantum 

observations (Doak et al., 2008; Beckage et al., 2011; Blonder et al., 2017), establishing 

fundamental ecological principles is the key to predictive ecology. This dissertation helps work 

towards a predictive ecology by empirically testing a potentially powerful ecological theory, 

detailing an example of the predictive power of functional traits, and examining some of the 

foundational assumptions of trait-based plant ecology. In so doing, it attempts to contribute to the 

theory that guides eventual model development and application and to improve the tools (i.e. 

functional traits) with which eventual predictive models will likely be built. 

The first chapter of this dissertation furthers the development of predictive ecology by 

testing the power of a long held ecological theory to predict the mechanisms of tree range 

constraints. The Stress Trade-off Hypothesis is elegant and intuitive, positing that organismal 

fitness is more constrained by environmental stress in harsh environments and by species 

interactions in benign environments (MacArthur, 1972; Brown, 1995; Loehle, 1998). It also has 
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considerable predictive potential, because it implies that most organisms inhabiting a gradient of 

abiotic stress will face an abiotic range constraint at their harsh range boundary and a biotic 

constraint at their benign boundary (Loehle, 1998; Koehler et al., 2012; Savage & Cavender-

Bares, 2013). It is perhaps not surprising that the story is not quite so simple when this theory is 

applied to explain real-world tree elevation ranges (Chapter 1 of this dissertation). The 

challenges of defining abiotic ‘harshness’, difficulties of measuring range constraints with tree 

rings, and the disturbance-related ecology of many western tree species together decrease the 

predictive power of the STH at local scales. However, it is encouraging that, despite local 

complexities, a broad scale pattern emerged. While the exact mechanism of any particular local 

range constraint is difficult to predict, across all species and sites, climatic and competitive 

growth constraints did trade off. This chapter finds support for a basic ecological theory, but 

highlights the importance of spatial scale for the validity of the Stress Trade-off Hypothesis. This 

emergence of patterns at larger spatial scales is indicative of complex systems whose behavior 

can be ‘coarse-grained’ to develop probabilistic estimates of future system behavior (Beckage et 

al., 2011). Such behavior is not novel in spatial ecology (Schneider 2001), and has to some 

extent been predicted by the range shift literature (e.g. Araújo & Peterson, 2012). Nonetheless, 

our results provide some of the first plant-based evidence for generalizable patterns of range 

constraint mechanisms, and yield useful insights about where, when and at what spatial scale 

tools such as climate envelope models may be useful for predicting range shifts (see Chapter 1: 

Discussion). 

The second chapter provides an example of how spatial variation in plant functional traits 

and physiological rates can provide powerful inferences about complex tree drought tolerances, 

yielding at least qualitative predictions of how the low elevation range boundaries of two tree 
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species will respond to a drying climate. A combination of morphological, hydraulic, and plant 

water potential measurements revealed how ponderosa pine avoids drought stress by limiting 

water use, and how trembling aspen tolerates drought stress by maintaining transpiration but 

growing stress resilient tissues. These strategies imply a long-term limitation on carbon fixation 

at the dry range margin of ponderosa pine, and increased cost of growth and susceptibility to 

extreme events at aspen’s dry range margin. From knowledge of these range constraint 

mechanisms, we can then predict that range contractions due to decreased water availability will 

probably be gradual in ponderosa due to long-term suppression of growth. Meanwhile, range 

contractions will likely be sporadic in aspen due to mortality during extreme droughts. This type 

of prediction highlights the powerful potential of functional traits to simplify complex ecologies 

and physiologies. But it also hints at some limitations of functional ecology, in that any one or 

two of the physiological traits that we measured on their own would have provided an 

incomplete picture of either species’ drought resilience. More-over, without a priori knowledge 

that drought was the dominant low-elevation range constraint for these species, measuring traits 

related to other biotic or abiotic stresses would likely have yielded few inferences. While this 

point may seem obvious to plant physiologists, it provides a cautionary tale for community 

ecologists, and lines up strongly with community ecological results such as the relatively poor 

univariate strength of functional traits to predict co-existence in annual plants (Kraft et al., 

2015), the poor link between functional traits and global sapling survival and growth rates (Paine 

et al., 2015), or the inability of a small number of niche axes to explain coexistence in eastern 

hardwood forests (Clark et al., 2010).  

Two undergraduate research projects that spun out of this research also underscore this 

point. A. Baird found that the ubiquitous functional trait leaf mass per area (LMA) was only 
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weakly linked to either assimilation rate or water use efficiency in a greenhouse drought and 

shade study in trembling aspen (Baird et al. 2017). Instead, orthogonal light-related and water-

related leaf anatomical changes drove physiological changes, and LMA was a poor ‘functional’ 

predictor of these responses.  V. Reynolds characterized the drought resistance of four species 

from the Australian genus Brachychiton and found that traits and rates such as LMA, maximum 

unstressed assimilation rate, and unstressed water use efficiency were exceedingly poor 

predictors of the species aridity niche (where each species grew on an aridity gradient). Only by 

measuring multiple traits and rates in well watered versus drought stressed conditions was she 

able to show that dry-adapted Brachychiton species rely on physiological plasticity and drought 

avoidance as their key drought resistance strategy (Reynolds et al. in revision, Tree Phys.).  

Chapter 3 continues to focus on testing and developing the foundations for predictive 

ecology by further exploring the strengths and limitations of the trait-based approach of Chapter 

2. In this chapter, I used one of the most extensive datasets of within-species foliar trait variation 

gathered to date to test four foundational hypotheses of trait-based ecology. ‘Trait-based’ 

approaches have been heralded as the future of predictive ecology in both the plant and the 

animal literature (e.g. Pavlick et al., 2012; Scheiter et al., 2013; Grimm & Berger, 2016; 

Peaucelle et al., 2016; Urban et al., 2016). However, the ‘functional trait’ is only functional in-

so-far as 1) our assumptions about the appropriate scale for trait measurement are true, 2) the 

trait can reduce the complexity of biological diversity by serving as a proxy for universal axes of 

trait co-variation indicative of ecological, evolutionary or physiological ‘strategies’, 3) the trait 

responds in a predictable way to environmental gradients. Chapter 2 illustrated the potential 

power of within-species trait variation to quantify complex physiologies. Chapter 3 builds on this 

example to turn the data-intensive but potentially rewarding tool of within-species trait variation 
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to test these foundational assumptions of functional ecology.  I found that trait variation below 

the species level (within-population and between population trait variation) is small compared to 

between-species variation for some leaf economics traits, but that leaf nitrogen content per unit 

area is highly variable within an individual species. This suggests that species trait means are 

reasonable units of measure for some critical traits, but may fail to capture critical axes of 

diversity for some traits. I also found that the central relationships between leaf lifespan or leaf 

mass per area and mass-based leaf nitrogen content that are the backbone of the Leaf Economics 

Spectrum remain relatively stable across taxonomic scales. However, this stability hides 

fascinating taxonomic scale-dependence in the relationships between leaf lifespan and LMA, and 

leaf lifespan/LMA and area-based leaf nitrogen content. Moreover, with the exception of leaf 

lifespan, the assumed functionality of these leaf traits was called into question by the limited 

predictability of their within-species variation across environmental gradients. This chapter 

highlights the need for a mechanistic understanding of trait variation and covariation that can 

scale across space, time and taxonomic organization. As demonstrated in Chapter 2, within-

species patterns of trait variation and covariation have the potential to yield this mechanistic 

understanding. However, the poor trait-environment links documented in Chapter 3 and the 

multiple traits required to understand the physiological complexity of tree drought strategies in 

Chapter 2 together suggest that the dominant axes of plant functional variation are more 

complicated and nuanced than global patterns such as the Leaf Economics Spectrum might 

imply.  

In this dissertation, as with much of ecology, complexity abounds. However, this work 

has yielded some encouraging findings for the long-term development of a predictive ecology. 

The findings of Chapter 1 illuminated an emergent trade-off between climatic and competitive 
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growth constraints at broad spatial scales, and illuminated key local scale processes that warrant 

future study. The analysis of Chapter 2 demonstrates that functional traits can be used to 

understand organismal abiotic stress tolerance in a way that yields qualitative yet useful 

predictions about species responses to climate change. The results of Chapter 3 reveal that leaf 

lifespan is a relatively predictable trait that correlates with growth, and that the variable 

relationships between leaf lifespan and other foliar traits at different taxonomic scales may 

provide the cornerstone for a taxonomy-free understanding of trait covariation. While our current 

ecological understanding is still far from predicting species responses to climate change, the 

results of this dissertation provide nuance to existing biogeographic and functional trait theory, 

highlighting the causes of current weaknesses and suggesting critical avenues for future progress. 

 
Works cited: 

 
Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology, 

93, 1527–1539. 
Baird AS, Anderegg LD, Lacey ME, Hillerislambers J, Van Volkenburgh E (2017) Comparative 

leaf growth strategies in response to low-water and low-light availability: variation in leaf 
physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 
1–11. 

Beckage B, Gross LJ, Kauffman S (2011) The limits to prediction in ecological systems. 
Ecosphere, 2, art125. 

Blonder B, Moulton DE, Blois J et al. (2017) Predictability in community dynamics (ed Storch 
D). Ecology letters, 20, 293–306. 

Brown JH (1995) Macroecology.  The University of Chicago Press. Chicago, IL, USA. 
Clark JS, Bell D, Chu C et al. (2010) High-dimensional coexistence based on individual 

variation: a synthesis of evidence. Ecological Monographs, 80, 569–608. 
Clark JS, Carpenter SR, Barber M, Collins S (2001) Ecological forecasts: an emerging 

imperative. Science. 293, 657-659. 
Doak DF, Estes JA, Halpern BS, Jacob U (2008) Understanding and predicting ecological 

dynamics: are major surprises inevitable. Ecology. 
Evans MR (2011) Modelling ecological systems in a changing world. Philosophical transactions 

of the Royal Society of London. Series B, Biological sciences, 367, 181–190. 
Evans MR, Bithell M, Cornell SJ et al. (2013) Predictive systems ecology. Proceedings of the 

Royal Society B: Biological Sciences, 280, 20131452–20131452. 
Grimm V, Berger U (2016) Ecological Modelling. Ecological Modelling, 326, 177–187. 
Houlahan JE, McKinney ST, Anderson TM, McGill BJ (2016) The priority of prediction in 



     136 

ecological understanding. Oikos, 126, 1–7. 
Koehler K, Center A, Cavender-Bares J (2012) Evidence for a freezing tolerance-growth rate 

trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide. New 
Phytologist, 193, 730–744. 

Kraft NJB, Godoy O, Levine JM (2015) Plant functional traits and the multidimensional nature 
of species coexistence. Proceedings of the National Academy of Sciences of the United 
States of America, 112, 797–802. 

Loehle C (1998) Height growth rate tradeoffs determine northern and southern range limits for 
trees. Journal of Biogeography, 25, 735–742. 

MacArthur D (1972) Geographical Ecology: Patterns in the Distribution of Species. Harper & 
Row, New York. 

Moorcroft PR (2006) How close are we to a predictive science of the biosphere? Trends in 
Ecology & Evolution, 21, 400–407. 

Paine CET, Amissah L, Auge H et al. (2015) Globally, functional traits are weak predictors of 
juvenile tree growth, and we do not know why (ed Gibson D). Journal of Ecology. 

Pavlick R, Drewry DT, Bohn K (2013) The Jena Diversity-Dynamic Global Vegetation Model 
(JeDi-DGVM): a diverse approach to representing terrestrial biogeography and 
biogeochemistry based on plant functional trade-offs. Biogeosciences. 10, 4137-4177. 

Peaucelle M, Bellassen V, Ciais P, Peñuelas J, Viovy N (2016) A new approach to optimal 
discretization of plant functional types in a process-based ecosystem model with forest 
management: a case study for temperate conifers. Global ecology and biogeography, 26, 
486–499. 

Savage JA, Cavender-Bares J (2013) Phenological cues drive an apparent trade-off between 
freezing tolerance and growth in the family Salicaceae. Ecology, 94, 1708–1717. 

Scheiter S, Langan L, Higgins SI (2013) Next-generation dynamic global vegetation models: 
learning from community ecology. New Phytologist, 198, 957–969. 

Schneider DC (2001) The Rise of the Concept of Scale in Ecology. BioScience, 51, 545. 
Torossian JL, Kordas RL, Helmuth B (2016) Cross-Scale Approaches to Forecasting 

Biogeographic Responses to Climate Change, 1st edn, Vol. 55. Elsevier Ltd., 63 p. 
Urban MC, Bocedi G, Hendry AP et al. (2016) Improving the forecast for biodiversity under 

climate change. Science, 353, aad8466–aad8466. 
 
 


