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Evolution by natural selection is the primary creative force in biology. In order for
populations to thrive, or even survive, requires a continual generative process. An
understand of the process of natural selection, its strengths and weaknesses, is
necessary for both predictions about the future course of life, as well as its history.
Evolution by natural selection requires the combination of three elements:
variation, heredity, and selection. In natural populations, variation can be
introduced by random mutation, recombination (such as by sex), and migration
from differing populations. Heredity, or the correlation between traits of the parents

with that of their offspring, is mediated by genetic material. Selection is the process



whereby the traits of some members of the population are more successful (fit) and
hence contribute more offspring to future generations. When these three factors are
present, populations can (over the course of many generations) increase in fitness
to become better adapted to their environment. The ability to adapt is not restricted
to populations in natural environments, as artificial populations such as microbes
grown in laboratory settings can also evolve. In fact, simulated, digital populations
that possess the three features needed for evolution by natural selection can also
adapt. In this dissertation, I utilize both microbes evolving in artificial settings and
digital organisms, which exist only in a computer’s memory, to make general
statements about the process of evolution. Of course, such generalizations must be
taken with a grain of salt, as the specifics of any system may interfere with
assumptions made in the follow models. But, I present the following work as forays
into the possible; I demonstrate that certain processes can affect the course of
evolution, and such processes should be taken into account when seeking an
understand of evolution in other (perhaps more natural) situations. In Chapter 1, |
investigate how a non-transitive system of microbial competitors evolves, and
demonstrate that the phenomenon of “survival of the weakest” requires the
presence of population structure. In Chapter 2, I explore the effect of structure on
evolving populations, and I find that structure can enhance the rate of adaptation in
certain circumstances. Lastly in Chapter 3, [ describe and demonstrate

circumstances where environmental change can enhance the rate of adaption.






Chapter 1: The evolution of restraint in a structured rock-paper-scissors

community

Previously published as (1)

Abstract

[t is not immediately clear how costly behavior that benefits others evolves by
natural selection. By saving on inherent costs, individuals that do not contribute
socially have a selective advantage over altruists if both types receive equal benefits.
Restrained consumption of a common resource is a form of altruism. The cost of
this kind of prudent behavior is that restrained individuals give up resources to less
restrained individuals. The benefit of restraint is that better resource management
may prolong the persistence of the group. One way to dodge the problem of
defection is for altruists to interact disproportionately with other altruists. With
limited dispersal, restrained individuals persist due to interaction with like types,
while it is the unrestrained individuals that must face the negative long-term
consequences of their rapacity. Here, we study the evolution of restraint in a
community of three competitors exhibiting a non-transitive (“rock-paper-scissors”)
relationship. The non-transitivity ensures a form of negative feedback whereby
improvement in growth of one competitor has the counterintuitive consequence of
lowering the density of that ‘improved’ player. This negative feedback generates
detrimental long-term consequences for unrestrained growth. Using both computer

simulations and evolution experiments with a non-transitive community of



Escherichia coli, we find that restrained growth can evolve under conditions of
limited dispersal in which negative feedback is present. This research thus
highlights a set of ecological conditions sufficient for the evolution of one form of

altruism.

Keywords: bacteriocin, ecological feedback, experimental evolution, positive

assortment, survival of the weakest



Wisely and slow. They stumble that run fast.

William Shakespeare

The conflict between individual and group interests is a common element in many
social dilemmas. Consider the rate at which an organism consumes shared
resources. Prudent use of common resources promotes the longevity or fecundity of
the group; however, any individual that exhibits restraint suffers in competition
with those utilizing resources rapidly. Rapacity is selectively favored and the
displacement of prudent types by their unrestrained contemporaries occurs despite
harmful consequences for the group (2, 3). Restraint in the use of common
resources is a form of altruism: behavior that is self-sacrificial and pro-social. Like
other types of altruistic behavior, restraint faces a fundamental problem of
subversion (4, 5). How can restrained types persist in the midst of would-be
cheaters—individuals that have a competitive edge because they are

unrestrained? In this article, we address this question directly by outlining

ecological conditions sufficient to favor the evolution of restraint.

One ingredient found in most explanations for the evolution of altruism, and thus
relevant to the evolution of restraint, is positive assortment. Altruism stands a better
chance when altruistic individuals disproportionately help those possessing the
genes for altruism (6-10). One of the most obvious ways to achieve positive
assortment is through interactions between genetic relatives (11). In such a case,

altruistic individuals disproportionately experience beneficial social environments



(engineered by their kin); whereas selfish individuals tend to face a milieu lacking
pro-social behavior (as their kin tend to be less altruistic). Interaction with kin can
occur actively, via the choice of relatives as social contacts, or passively, via the
interaction with neighbors in a habitat with limited dispersal. There is now a large
body of literature on the effect of active and passive assortment on the evolution of
altruism (6, 10, 12-18). At a fundamental level, this research focuses on the
distribution of interactions among altruistic and selfish individuals. However, in
many systems, these individuals are also interacting with other members of their
community (e.g., competing species, predators, prey, mutualists, etc.). Itis less
common to consider the role of broader ecological interactions on the evolution of

various forms of altruism.

Here we consider the evolution of restraint in communities where ecological
interactions generate a type of negative feedback. One of the simplest communities
with this property involves three members engaged in non-transitive competition
reminiscent of the children’s game “rock-paper-scissors.” In this game, each
strategy beats one of the other two and is beaten by the third (e.g., paper covers
rock, but is cut by scissors). Imagine a community with three competitors forming a
non-transitivity—a situation in which no player is competitively superior to all
others. For convenience, call the players Rock, Paper and Scissors. Each type has a
rate at which it displaces its victim (e.g., Rocks “crush” Scissors at some rate). Next,
imagine a less restrained variant of Rock, call it Rock*, that displaces Scissors at a

faster rate. In a Rock*-Paper-Scissors community, the abundance of Scissors



decreases due to the increased prowess of Rock*. As a consequence, Scissors’ victim
(Paper) is liberated, which can displace Rock*. In an ironic twist, the “improved”
Rock* decreases in abundance due to the expansion of its victim'’s victim. This form
of negative feedback ensures that a higher displacement rate results in decreased
abundance (19-22). Thus, more restrained players may be less prone to extinction,
a phenomenon termed ‘survival of the weakest’ (19). A complication arises when
considering a community with multiple variants present simultaneously (e.g., Rock
and Rock* with Paper and Scissors). The same traits that allow Rock* to displace
Scissors faster may render Rock* a better competitor against Rock. In this case,
restraint has a selective disadvantage despite its positive effects on abundance.

How then can restraint evolve in a non-transitive community?

Spatial structure can play a critical role promoting restraint in non-transitive
systems. Returning to our Rock-Paper-Scissors community, limitation of dispersal
results in a patchwork of the three players. A patch of any one player chases its
victim and is chased by its enemy (23, 24). Within any patch, an unrestrained
variant (Rock*) will replace its restrained counterpart (Rock). However, patches of
unrestrained variants are more likely to go extinct. This difference in patch viability
favors restraint. Limited dispersal ensures a type of positive assortment where
restrained and unrestrained individuals tend to be surrounded by like types. This
means that the long-term negative consequences of faster displacement are visited
disproportionately on the less restrained type. Consequently, restraint can be

maintained evolutionarily in a structured non-transitive community. This outcome
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has been shown theoretically (25, 26), but there is little empirical work on this
topic. This is despite the fact that non-transitive dynamics have been described in

natural communities ranging from microbes to animals to plants (27-32).

One well-studied non-transitive system involves strains of Escherichia coli that
produce antimicrobial proteins termed colicins (2, 3). Colicin-producing cells
possess a plasmid housing the colicin gene, as well as a gene coding for a colicin-
specific immunity protein. Cells that lack the plasmid, and thus lack immunity, are
sensitive to the colicin. However, sensitive cells can experience mutations yielding
resistance to colicins. Resistance is due to alteration or loss of membrane proteins
that bind or translocate the colicin. As these same membrane components are
involved in nutrient acquisition, resistance is often costly in the absence of colicins
(measured by a reduced growth rate relative to sensitive cells) (33, 34). However, in
some cases, the producer incurs even greater costs to carry the colicin plasmid and
express immunity constitutively. Thus, these three players constitute a non-
transitive community: the sensitive strain outgrows the resistant strain, the
resistant strain outgrows the producer, and the producer kills the sensitive strain.
Previous work with the three members of the colicin E2 system has demonstrated
non-transitivity both in vitro (23) and in vivo (35). Nevertheless, there have been no

experimental studies of the evolution of restraint in this system.

In this article we describe experiments with bacteria that explore how positive

assortment and negative ecological feedback influence the evolution of restraint. Of
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the three players (sensitive, resistant, and producer), we focus on the resistant
strain. The mutations that define the resistant strain are costly and there is
evidence from numerous systems that secondary mutations can compensate for the
initial costs of antimicrobial resistance (36-40). Thus, we predict that this strain is
the most likely to increase its growth rate, making it the most attractive candidate to
study factors that would hinder such increase. We place the community in a
metapopulation, structured into many subpopulations. We manipulate the pattern
of migration within the metapopulation, which affects the degree of positive
assortment. Migrations are either restricted to occur between neighboring
subpopulations (Restricted treatment) or could occur between any subpopulations
(Unrestricted treatment). The evolution of the resistant strain can be compared
across migration treatments to gauge the effect of population structure on the
evolution of restraint. To identify the role of negative feedback, the evolution of the
resistant strain in the full community is compared to the evolution of the resistant
strain evolving alone (Community and Alone treatments, respectively). By
monitoring the resistant strain in three different types of metapopulations
(Restricted Community, Unrestricted Community, and Restricted Alone), we assess the
impact of both positive assortment and negative ecological feedback on the

evolution of restraint.

Results

Presence of non-transitivity
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As detailed in the Methods, we constructed a strain that produced two colicins
(Producer), a strain sensitive to both colicins (Sensitive) and a strain resistant to
both colicins (Resistant). The double colicin producer was used to decrease the
likelihood of de novo resistance arising from the sensitive population during the
evolution experiment. These three constructed strains are henceforth referred to as
the “ancestors.” To confirm the non-transitive relationship, we performed pairwise
competitions among the ancestral strains. Each competition was initiated with a
ratio matching the proportions of two competitors when they first meet via
migration within the metapopulation. The resistant ancestor was out-competed by
the sensitive ancestor (one-sample t test; ts=-5.78, p=0.0022). The producer
ancestor was outgrown by the resistant ancestor (one-sample t test; ts=-3.62,
p=0.015). The sensitive ancestor was always driven to extinction when mixed with
the producer (giving a relative fitness of zero in all five replicates). As each player
was competitively inferior to a second player (but superior to the third) these three

strains form a non-transitive system (Figure 1).

Ecological dynamics

We propagated our bacteria as metapopulations using 96-well microtiter plates,
where each well constituted a distinct subpopulation. We initialized the
metapopulations with the non-transitive community (Community treatment) or the
resistant strain alone (Alone treatment). Every 12 hours, all subpopulations were
diluted into fresh growth medium and migrations between subpopulations

occurred. Within each metapopulation, migrations occurred between neighboring
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wells (Restricted treatment) or among any wells (Unrestricted treatment). We
measured the abundances of all strains every six transfers. All three players were
maintained in the Restricted Community and Unrestricted Community treatments for
the duration of the experiment (Figure 2a,b). The resistant strain persisted at a
constant level in the Restricted Alone treatment for the length of the experiment

(Figure 2c).

Evolution of the resistant strain

We randomly sampled eight resistant isolates from the last transfer of the
experiment. Each of these isolates was competed against a marked variant of the
common resistant ancestor. To avoid pseudoreplication, we averaged relative
fitness across isolates within each of five replicates of each treatment. We found
that isolates from the Restricted Community treatment had the lowest competitive
ability (single factor ANOVA; F>,12=9.36, p=0.0036, multiple comparisons by Tukey’s
HSD). This is consistent with the evolution of a restrained growth rate. Resistant
cells in a full community evolved a significantly higher competitive ability under
unrestricted migration than under restricted migration (Unrestricted Community
versus Restricted Community in Figure 3). Resistant cells propagated alone evolved
a significantly higher competitive ability than resistant cells in a non-transitive
community (Restricted Alone versus Restricted Community in Figure 3). Thus, both
population structure and the presence of the full community were important to the

evolution of competitive restraint.
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Simulation of eco-evolutionary dynamics

To better understand the evolutionary behavior of our system, we modeled the
bacterial metapopulations using a lattice-based simulation (see Methods and SI
Methods for details). Each metapopulation was initialized with the three ancestral
strains in a spatially clumped pattern. The basic algorithm consisted of a cycle of
three stages: (i) growth/competition within wells, (ii) dilution of wells, (iii)
migration among wells. Thus, a simulated cycle corresponds to a transfer within
our experiment. Every cycle, mutations to growth rate were permitted in resistant
subpopulations. We simulated evolution within metapopulations in each of the
three treatments described above (Restricted Community, Unrestricted Community

and Restricted Alone).

While diversity was maintained in the Restricted Community treatment, the
community tended to lose players in the Unrestricted Community treatment in the
long run (e.g., after 100 transfers). Consequently, the Unrestricted Community
treatment was excluded from analysis. The loss of diversity was robust to changes
in several different parameters of the model and suggests that the Unrestricted
Community treatment in the laboratory may have lost strains had it been run for
more transfers. This result is also consistent with previous work on the importance
of limited dispersal to coexistence in this system (23, 24). After evolving the
metapopulations in each treatment, we determined the mean relative fitness of the

resistant population. Consistent with our empirical results, we found the average
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growth rate of resistant strains from the Restricted Community treatment to be
significantly lower than the average growth rate from the Restricted Alone treatment

(see SI Figure 3).

To confirm the importance of positive assortment in the evolution of restraint, we
ran an additional treatment: Restricted Community with Permutation. This
treatment was identical to the Restricted Community treatment, except that at the
beginning of each cycle, wells containing only resistant cells (ancestor or mutants)
were randomly permuted. This operation allowed for mixing between the patches
of resistant wells (capturing an element from the Unrestricted treatment). The
average growth rate of resistant strains from the Restricted Community treatment
was significantly lower than the average growth rate from the Restricted Community

with Permutation treatment (Figure 4).

The rate of displacement by fitter variants within any population will be slowed by
population subdivision. We were curious if the lower growth rate of our Restricted
Community treatment could be explained entirely by the fact that the evolving
resistant population was divided into semi-isolated patches. To explore this
possibility, we ran an additional simulation treatment: Restricted Alone with
Shadowing. In this treatment, a Restricted Alone metapopulation evolved alongside
a standard Restricted Community metapopulation, with the caveat that the Restricted
Alone metapopulation’s migrations and spatial distribution was forced to match the

resistant portion of its paired Restricted Community metapopulation. In this way,
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the Restricted Alone “shadowed” the Restricted Community. This meant that the
Restricted Alone metapopulation was divided into patches. However, because
mutation occurred independently in the Restricted Alone shadow and its Restricted
Community master, mutations within a given patch in the shadow world had no
effect on the survival of the patch in that world. We found that division into semi-
isolated patches accounted for some, but not all, of the effect of lowering growth
rate in the short term (Figure 44, single factor ANOVA; F2217=58.31, p<0.001,
multiple comparisons by Tukey’s HSD). However, simulations that ran for longer
(Figure 4b) show that the Shadowing treatment converges to the Permutation
treatment (single factor ANOVA; F2217=93.76, p<0.001, multiple comparisons by
Tukey’s HSD). We find the same patterns when we run simulations that exactly
match the metapopulation size and number of transfers used in our experiment (see
SI Figure 5). Thus, apparently the connection between the presence of fast growing
variants within a patch and a greater probability of patch extinction was an
important ingredient in explaining the evolution of restraint in the Restricted

Community treatment.

Discussion

For the resistant isolates considered here, the evolution of the lowest competitive
ability occurred in the treatment in which migration was restricted and all three
members of the non-transitive community were present (Figure 3). If either
migration was unrestricted or the resistant strain evolved alone, final competitive

ability was significantly higher. The low competitive ability in the Restricted
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Community treatment presumably reflects a relatively low growth rate. There are a
few possible explanations for this outcome. First, if the number of resistant cell
divisions in the Restricted Community treatment was less than the number of
divisions in the other treatments, isolates from the Restricted Community treatment
might not have enough opportunity to evolve a higher growth rate. However, we
find no significant difference among the treatments in the total number of resistant
cell divisions (SI Methods and SI Figure 6). A second explanation is that restricted
migration slows the spread of any advantageous mutant (41). In this case, resistant
mutants with a higher growth rate reach a lower frequency in the Restricted
Community treatment than in the Unrestricted Community treatment by the end of
the experiment. However, the resistant isolates with the highest growth rate came
from Restricted Alone treatment: thus, a restriction to migration does not uniformly
hinder the advent of fast-growing resistant mutants. A third explanation is that the
presence of producers constrains the manner in which a resistant strain can
compensate for the cost of resistance (e.g., reversion to sensitivity is not an option).
This would limit the set of evolutionary options for resistant cells in the Restricted
Community treatment relative to the Restricted Alone treatment. However, the
growth rate of isolates from the treatment with the highest level of interaction
between resistant cells and producers (Unrestricted Community) was similar to that
of the treatment without producers (Restricted Alone). Additionally, not a single
resistant isolate from any treatment reverted to sensitivity; thus, reversion did not
explain competitive differences. Lastly, the Restricted Community treatment’s

resistant population was divided into discontinuous regions by barriers consisting
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of the other strains (illustrated in Figure 5), and such barriers would inhibit the
spread of advantageous mutants. Our simulation-based treatment, Restricted Alone
with Shadowing, where the resistant type was restricted to the patchy spatial
distribution of Restricted Community, evolved a lower growth rate, indicating that a
population subdivision may contribute to the low growth rate in the Restricted
Community. Nonetheless, subdivision does not fully account for the restraint found
in the Restricted Community treatment (see Figure 4 and SI Figure 5). Thus, we do
not find complete support for any of these explanations and instead favor the

following alternative.

In the Restricted Community treatment, the non-transitivity of the full community
provides a form of negative feedback and the restricted migration ensures a form of
positive assortment. We suggest that it is these two factors, negative feedback and
positive assortment, that set the stage for the evolution of restraint. In the
Restricted Community treatment, we have a set of patches chasing one another (see
Figure 5). A faster growing resistant mutant has a competitive advantage within a
resistant patch, but a fast-growing resistant patch is more likely to burn through its
victim (the producer) and consequently face its enemy (the sensitive strain). This
sequence of events is shown in Figure 5 for a Restricted Community simulation in
which wells with a faster growing resistant mutant were labeled black. Limited
migration ensures that it is the unrestrained mutants that reap the negative long-
term consequences (patch extinction) of their myopic strategy. When assortment is
eradicated by shuffling the contents of multiple patches (as in the simulation-based

treatment Restricted Community with Permutation) restraint is not maintained
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(Figure 4). Without the negative feedback of the full community (e.g., in the
Restricted Alone treatment) or without the positive assortment resulting from
limited migration (e.g., in the Unrestricted Community treatment), the evolution of

restraint is not expected.

We have explored a bacterial system under laboratory conditions, but our findings
carry potential implications for other systems. Non-transitive relationships have
been described in a diverse set of organisms, including yeast (28), plants (32), coral
reef invertebrates (27) and lizards (29). At the moment, it is not clear whether non-
transitivities are common in natural ecosystems (42). In contrast, the ubiquity of
spatial structure is widely recognized. Structure may be most pronounced in sessile
organisms (e.g., plants, some marine invertebrates, microbes in biofilms); however,
even populations of motile organisms can possess some degree of structure due to
spatial limitations to dispersal and interaction. The spatial scale of ecological
processes has been shown to be an important factor in the invasion of rare types
(43, 44), coexistence of multiple types (45), the stability of communities (46), and
the evolutionary trajectory of community members (47). We have shown that
limited migration in a non-transitive community can promote the evolution of
restraint. However, spatial structure can be important for the evolution of restraint

in other types of communities as well.

As one example, limited dispersal can promote restraint within victim-exploiter
communities (48, 49). An inherent form of negative feedback exists when one

species (e.g., predator, parasite, herbivore) exploits another for critical resources
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(e.g., prey, host, plant). To see this, consider a simple version of the Lotka-Volterra

model where the dynamics of exploiters (at density E) and victims (at density V) are

described by:
dv
— = pV -AVE,
dt p
aE = AVE -JE,
dt

where b is the birth rate of victims, I measures the attack rate of the exploiter, and d

is the death rate of the exploiter. The non-trivial equilibrium for this community is:
(V.£)=(8/2.5/2)
As the exploiter reduces its attack rate, its equilibrium abundance increases (as I

drops, £ =8/ grows). Nonetheless, an exploiter with a higher attack rate will

displace a second exploiter exercising restraint (50). Selection for rapacious
exploitation that results in community collapse constitutes an example of the
“tragedy of the commons” (51). Limited dispersal ensures that any tragedy of the
commons that results from overexploitation befalls primarily the unrestrained
exploiters. Several theoretical studies have explored the role of spatial structure in
promoting restraint in victim-exploiter interactions (52, 53). There have also been
experimental demonstrations that limited dispersal favors restraint in host-parasite
communities, in the form of reduced parasite virulence and/or infectivity (48, 49,

54).

A second example involves the role of structure in promoting restraint in hypercycle

“communities.” A hypercycle is a series of self-replicative molecules that are
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cyclically linked, where each molecule catalyzes the replication of the next molecule
in the cycle. Unstructured hypercycles are plagued by ‘parasitic’ molecules, which
receive greater catalytic activity from the previous molecule in the cycle while
withholding catalytic support for the next molecule in the cycle. Boerlijst and
Hogeweg (55) showed theoretically that hypercycles in an incompletely mixed
medium could keep parasitic molecules at bay. In a structured habitat, the
hypercycle community organizes into a collage of rotating spirals. A parasitic
molecule originating at the center of a spiral can lead to spiral demise and
replacement by other spirals. Thus, short-term payoffs to the parasite
(displacement within a spiral) can generate negative long-term consequences
(spiral extinction) in a structured world. This favors the evolution of “restrained”

molecules that avoid the immediate gains of parasitism.

Spatial structure and ecological feedback can also favor mutualistic behavior
between species (56). Recently, Harcombe (57) studied a case of bacterial cross-
feeding. In lactose medium, Salmonella enterica consumes the acetate waste
products of a mutant strain of E. coli. The E. coli mutant was a methionine
auxotroph and could grow if S. enterica excreted methionine. Harcombe
demonstrated that even though methionine excretion was intrinsically costly, a
mutant of S. enterica that exported an excess of methionine was able to displace
wild-type S. enterica (which did not excrete methionine) when these types were
grown on lactose plates with E. coli. The cooperative excretion by S. enterica was

favored through a combination of ecological feedback (acetate was produced when
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E. coli obtained methionine) and spatial structure (ensuring that excreting cells had
disproportionate access to acetate). When Harcombe destroyed either the feedback
(by growing the community on acetate plates such that S. enterica did not rely on E.
coli) or the structure (by growing the community in lactose flasks), the excreting S.
enterica mutant was outcompeted by the wild-type. This work demonstrates that
ecological feedback and positive assortment can be important ingredients in other

forms of cooperation.

In all the communities described above, a form of altruism exists. The elements that
we have underlined as important to the evolution of restraint connect readily to
prominent theoretical frameworks used to understand the evolution of altruism. In
our non-transitive system, limited dispersal results in a preponderance of
interaction between relatives. Kin selection arguments often focus on the coefficient
of relatedness between interacting individuals (58, 59). In our system, limited
dispersal results in higher coefficients of relatedness than under conditions of
unlimited dispersal, a form of positive assortment (60). The multilevel selection
framework describes altruism as a behavior opposed by within-group selection, but
favored by between-group selection (61, 62). In the patchwork of a structured
community, a restrained variant is at a local disadvantage (e.g., within its patch), but
patches of restrained types may persist longer due to the negative feedback from
rapid growth. We propose that multiple frameworks have relevance for
understanding restraint in our system because each framework focuses on

(different) important elements underlying the evolution of altruism (63).
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Overall, we observe that a form of altruism can evolve in microbial
metacommunities. With limited migration, similar types associate into patches that
chase one another. The negative feedback resulting from the non-transitivity in our
system means that patches filled with unrestrained variants are more prone to
extinction. Thus, we see that altruistic restraint is favored precisely when those that

“run fast” tend to “stumble.”

Methods

Community players

The bacterial community consisted of three players: a toxin-producing strain (P), a
toxin-sensitive strain (S), and a toxin-resistant strain (R). The producer expressed
two toxins (colicin E2 and colicin D). This strain was constructed by transforming
the colicin D plasmid (Col D) into chemically competent BK2 cells (that already
possessed Col E2). This double producer was then marked with resistance to phage
T5. Strain BK10 (E. coli K-12, strain BZB1011) is identical to BK2, except that the
former lacks the Col E2 plasmid. The sensitive strain was constructed by
transforming the pACYC184 plasmid into competent BK10 cells. This
transformation accomplished two things: (i) the sensitive player had a positive
selectable marker (resistance to tetracycline) and (ii) the competitive differences
between the sensitive strain and other strains could be amplified by adding a low
concentration tetracycline to the media. Finally, the resistant strain was

constructed by a series of sequential selections: first, selecting BK10 that was

24



resistant to colicin E2, then selecting for resistance to colicin D, then selecting for
resistance to phage T6. We note that some of these markers are known to be costly
(e.g., T6 resistance). However, use of these costly markers was intentional: we were
attempting to construct a community with a pronounced rock-paper-scissors
dynamic. We note that even before the transformations and marker addition, these
strains exhibit a rock-paper-scissors relationship (sensitive outgrows resistant,
which outgrows producer, which kills sensitive). However, through marker
addition and medium manipulation (addition of a low concentration of tetracycline),
the growth rate differences were magnified leading to an intensified non-transitive
relationship. For this reason, in both the evolution experiment and assays, the
growth medium was lysogeny broth (LB-Miller) supplemented with 0.25mg/mL

tetracycline.

Experimental treatments

The evolution experiments involved propagating metapopulations of bacteria with
two factors manipulated. The first experimental factor was the identity of the
players in the metapopulation. Either the full community (S-R-P) was used or the
resistant strain (R) was propagated alone (the Community or Alone treatments,
respectively). In the Community treatments, each metapopulation consisted of two
microtiter plates (192 wells, each with 200ul growth medium). In the Alone
treatments, each metapopulation consisted of a single microtiter plate (96 wells,
each with 200pl of growth medium). The difference in the number of wells reflected

our attempt to balance the total number of resistant cells across treatments (see
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Figure 2). The second factor manipulated was the pattern of migration within the
metapopulations. Migration was either restricted to occur between wells directly
bordering each other along cardinal directions or was unrestricted (the Restricted or
Unrestricted treatments, respectively). In both treatments, every well had 1/3
probability of experiencing an immigration event from one random well in its
neighborhood. In the Restricted treatment, this neighborhood included the wells
directly north, east, south or west of the focal well (using wrap-around boundaries
to eliminate edge-effects). In the Unrestricted treatment, the neighborhood included
all wells minus the focal. Migration events directly followed dilution of the entire
metapopulation into fresh growth medium. Every 12 hours, 40-fold dilution was
accomplished using a 96 slot-pin multi-blot replicator (5pul into 200ul). Immediately
following dilution, a BioRobot 8000 liquid-handling robot (Qiagen) executed the
migrations, where each migration involved transferring 5ul from the source well
within the exhausted plate into the destination well within the fresh plate. Between
transfers, plates were incubated (37°C) and shaken (350 rpm using a microtiter
shaker). For the Alone treatment, the metapopulation was initiated with the
resistant strain in every well. For the Community treatment, the initial spatial
arrangement of strains was obtained from the 100t transfer of a 192-point lattice-
based simulation with a restricted neighborhood (see SI Methods). Each
metapopulation was propagated for a total of 36 transfers. The abundance of each
strain was gauged every 6 transfers by selective plating (using tetracycline, phage
T5, and phage T6). There were five replicates of each of three treatments: (1)

Restricted Community, (2) Unrestricted Community, and (3) Restricted Alone.
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Competition assay

We picked eight random resistant isolates from the last transfer of each
metapopulation (here we denote any one of these strains as Rg). We marked our
ancestral resistant strain with resistance to phage T5 (we denote this marked
ancestor as Ra). Before the competition, Rg and Ra are grown separately in 200pl of
growth medium for two 12-hour cycles (with 40-fold dilution at transfer). After this
acclimation phase, we added 5pl of Rg and 5pl of Ra to a well containing 200ul fresh
growth medium. The titer of each strain was assessed (through selective plating
with and without phage T5) immediately after the competition was initiated and
again after 12 hours. If Ri(t) is the titer of strain R; at time ¢, then the fitness of the

evolved strain relative to its ancestor is given by:

In(R; (1 2)/RE (0))

MReRO =R, (2R, (0))

The same competitive assay was used to establish the non-transitive dynamic
between the three ancestral players (simply with different selective plating

schemes).

Simulation

We model the metapopulation as an LxW regular square lattice with periodic
boundaries subjected to a cycle of three phases: (i) growth, (ii) dilution, and (iii)

migration. Each lattice point i at time t is described by the vector:
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%) = {5,0), p(0).17 (0.1 (O)s-e i (0))s
where si(t), 7’ (¢), and pi(t) are the abundances of sensitive, resistant and producer

ancestors, respectively. The variables 7' (¢), 7’ (¢), ... r;* (¢) are the abundances of each

of K types of mutant resistant strains. These abundances are expressed in units of
the limiting nutrient concentration (see SI Methods).
During the growth phase, the dynamics of each strain (y) of each lattice point
is described by the following differential equation (see SI Methods):
y=yGy(n)

where n, =1- Eyi and we assume a Monod growth curve:

n.
GY(”;’) = L
Ky +1,

The parameters my and ky give the maximum growth rate and Monod constant
(nutrient concentration yielding %> maximum growth rate) of player Y. Each growth
phase lasts T time units.

Dilution at time t is given by:

X, () = ¢x,(1),

where fis the dilution factor and ¢ marks the post-dilution state.

Migration happens with a uniform probability a. If a migration event occurs,
a point within the focal point’s neighborhood is chosen at random. For the
Restricted treatment, the neighborhood is the four nearest lattice points (the von
Neumann neighborhood). For the Unrestricted treatment, the neighborhood is the

entire lattice minus the focal point. In the case of migration, let the chosen neighbor
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of the focal point i be designated j. The state following migration (signified by ¢") is
given by
x,(t") = (1= 9)x, (1) + ¢x, (D).

Removal occurs next. At point i, any player whose abundance is less than or
equal to a critical value (acrit) is removed. Also, the sensitive player is removed if the
producer is present. A removed player has its abundance set to zero. In the
simulation, the dilution, migration and removal are assumed to be instantaneous
and followed by a new growth phase. Lastly mutation can occur with probability p.
In the case of a mutational event, a fraction g of the total abundance of the resistant
players (ancestral and mutant) of a point is converted to a random resistant type.

We initialize lattice point i with the starting abundances of each ancestral

player (si(0), "(0), and p;(0)) using the same method as in the bacterial experiment

(see SI Methods). After C growth cycles, we measured the average fitness of the

resistant mutants (the R* strains) in competition with the resistant ancestor ( R’).

Letting R* represent all resistant strains in an evolved metapopulation, the mean

relative resistant fitness is:

W(R',R") = Zf(k) w(R",R"),

where
LxW
2 7 (CT)
fk) =%
2 Y r(cr)
=0 =1
and
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_In((T) /7 (0))

MR R = D 0

In Table 1, we give the values for all the simulation parameters, which are tailored
to our experimental conditions or estimated from assays (e.g., see SI Methods). For
Figure 4, Figure 5, and SI Figure 3, we assume L=100, W=100. For SI Figure 4 and SI
Figure 5 (small lattice simulations) we assume L=16, W=12, and C=36, the values

corresponding to our laboratory experiment.
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Chapter 1 Figures
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Figure 1: Pair-wise competitions between the ancestral bacterial strains
demonstrate non-transitivity. The asterisks signify that relative fitness is
significantly less than one and the bars give the standard error of the mean. The
resistant ancestor is dominated by the sensitive ancestor and the ancestral producer
is outgrown by the resistant ancestor. The sensitive strain is killed by producer in
all replicates, yielding a uniform relative fitness of zero. As each strain out-
competes one other strain, but is out-competed by the third strain, a non-transitive

relation holds.
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Figure 2: Bacterial abundance in (a) the Restricted Community treatment, (b) the
Unrestricted Community treatment, and (c) the Restricted Alone treatment. Points
represent mean abundance of the sensitive strain (blue, S), resistant strain (yellow,
R) and producer strain (red, P). Shading gives the standard error of the mean. All

three players coexisted in the Community treatments for the duration of the
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experiment and the density of the resistant strain was comparable across all three

treatments.
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Figure 3: The fitness of evolved resistant isolates relative to their common ancestor.
Mean relative fitness of each treatment is shown and bars give the standard error of
the mean. The fitness of isolates from the Restricted Community treatment was
significantly lower than the fitness of isolates from the other treatments. Letters
distinguish treatments significantly different using post hoc comparisons. This
pattern is consistent with the evolution of restrained growth in the Restricted

Community treatment.
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Figure 4: The mean resistant fitness relative to the resistant ancestor after
simulated evolution in multiple treatments. Fitness values after (a) 100 and (b) 200
cycles are shown. Mean relative fitness of each treatment is shown and bars give
the standard error of the mean. Letters distinguish significantly different
treatments by post hoc comparisons. The fitness of resistant populations from the
Restricted Community treatment was significantly lower than that of the other

treatments at both time points. This pattern is consistent with the evolution of

restrained growth in the Restricted Community treatment.
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Figure 5: Snapshots of a metapopulation from an illustrative Restricted Community
simulation recorded every 20 cycles (a-h). The metapopulation was initialized with
the three bacterial strains: sensitive (blue), resistant (yellow) and producer (red), in
addition to a small patch of a mutant resistant strain (black) with an increased
growth rate. The mutant initially outcompetes nearby ancestor patches (a-e), but is

extinguished after outcompeting neighboring patches of the producer (f-h).
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SUPPORTING INFORMATION:

METHODS

Community Model. Within a single population, we track the densities of sensitive
cells (S), resistant cells (R), producers (P), and mutant resistant cells (M) (we
consider only a single mutant class here, but the model easily extends to cover an
arbitrary number of mutant classes). Below we measure density by absorbance in a
spectrophotometer, which has a linear relation to cell abundance. For convenience
we refer to the density of the player as well as its type by an italicized capital letter.
In the first version of our model, we also track the concentration of nutrients (n).

The system is described by the following set of ordinary differential equations:

= SG(n),
Be= RG,(n),
B= PG, (n),
Me= MG, (n),
B=—-£.SG,(n)— e, RG,(n) - €,PG,(n)-¢,,MG,,(n),

where ey is the amount of nutrients needed to shift the absorbance of strain Y by a
single unit and Gy(n) is the growth rate of strain Y. We use a change of variables,

where, for each player Y:
&Y=y,
such that bacterial density is expressed in terms of nutrient concentration. Thus, we

have
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‘8l= SGS (l’l),
&= VGR (l’l),

ﬁ‘= pGP(n),
= mG,,(n),
= —mG, (n) = sG;(n) = rGy(n) - pG,(n).

For convenience, the community is initialized with:
s(0)+7(0)+ p(0) +m(0) +n(0) =1.
Since

d(s+r+p+m+n) ~
dt

)

we know that s(¢) + 7(¢) + p(¢) + m(t) + n(t) =1 for all t. Thus, we can rewrite the

original system of five differential equations as a system of four:

&= 5G,(1-m-s-r-p),
B=rG,(1-m-s-r-p),

B=pGp(I-m—-s-r-p),
&=mG,(1-m-s-r-p).

Growth Parameter Estimation. In the previous section, the growth rate (Gy) of
strain Y'is a function of limiting nutrient concentration (n). A simple way to assess
this function would be to measure growth rate at different nutrient concentrations
and then fit a curve to yield G(n). Our experiment was conducted in a rich medium
(LB); therefore, there was no clear single nutrient to vary. Thus, we took an
approximate approach. We substituted fractions of the growth medium (LB) with
saline (0.86% NaCl), while maintaining the concentration of tetracycline at a

constant level. Each bacterial strain was grown in a microtiter well with 200ml of a
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given concentration of impoverished medium for a full 12 hours and then diluted 4-
fold into 200ml of medium of the same concentration and grown for 1 hour. This
actively growing bacterial culture was then diluted 4-fold into 200ml of medium of
the same concentration and incubated in a spectrophotometer (VersaMax,
Molecular Devices). Absorbance (600nm) was measured at 2-minute intervals for
an hour. Let Ayft) be the absorbance of strain Y in impoverished medium with a
fraction fof LB (and 1-fsaline) at time t. Let Gysbe the slope of the least-squares
line In(Ayy) = Gyt + b; thus, Gysis the Malthusian growth parameter corresponding
to exponential growth. We used the data from time point 1/15 to 7/10 (in hours) to
estimate Gyy. For a given strain, we measured Gyysat a number of different f values
(i.e., different concentrations of LB). Using the Monod growth model, we computed

the parameters for the least-squares curve:

G = quf
" Ky +f

where my is the maximal growth rate and ky is the fraction of LB necessary to grow
at half the maximal rate for strain Y. We first determined the least-squares value for
ms and ks. We then used ms to constrain the mg value (mr=ms) and the least-squares

mg value to constrain the mp value (mp=ms).

Initializing the Metapopulation. Each community’s starting spatial layout of the
three ancestral strains was determined by running a lattice-based model, in which
each lattice point corresponded to one well (subpopulation) within the

metapopulation. Using preliminary competition data of the ancestral strains, SI
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Figure 1 shows the number of dilution/growth cycles needed for one strain to

displace another.

*-¢-6-6-0-0-0

SR, SR,
RP, RP, RP, RP,

®-0
PS, P

SI Figure 1: The frequencies of two competing strains are given as pie charts. Sensitive cells (S, blue)
displace resistant cells (R, yellow) over 6 dilution/growth cycles. Resistant cells displace producers
(P, red) over 4 dilution/growth cycles. Producers Kkill sensitive cells within a single dilution/growth
cycle. The letters and subscript under each pie chart give each state the name used in the state

transition matrix.

If we record the state of a well (lattice point) directly after an incubation period, we
can describe community dynamics (approximately) by using the following discrete

state set:
{S, R, P, SRy, SRz, SR3, SR4, SRs, RP1, RP2, RP3}

For a well that does not experience an immigration event, the following transitions

occur for distinct strains X and Y over a dilution/growth cycle:
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X—=X,
X ifi is its maximum value, [S1]
XY,

i+l

XY, — ,
otherwise.

When migration occurs, the contents of wells in two (potentially different) states
are combined. Each entry in SI Table 1 gives the final state for a well that starts in
the row state, is diluted, experiences an immigration event from a well in the

column state, and then grows for one period.

SI Table 1: Transition Matrix

S R P SR1 SRz SR3 SR4 SRs RP1 RP2 RP3

S S SR1 P SRz SR3 SR4 SRs S RP2 RP3 R

R SR1 R RP1 SR1 SR1 SR1 SR1 SR1 RP2 RP3 R

P P RP1 P RP1 RP1 RP1 RP1 RP1 RP1 RP1 RP1

SR1 SRz SR1 RP1 SRz SRz SRz SRz SRz RP2 RP3 R

SRz SR3 SR1 RP1 SRz SR3 SR3 SR3 SR3 RP2 RP3 R

SR3 SR4 SR1 RP1 SRz SR3 SR4 SR4 SR4 RP2 RP3 R

SR4 SRs SR1 RP1 SRz SR3 SR4 SRs SRs RP2 RP3 R

SRs S SR1 RP1 SRz SR3 SR4 SRs S RP2 RP3 R

RP1 RP2 RP2 RP1 RP2 RP2 RP2 RP2 RP2 RP2 RP2 RP2

RP: RP3 RP3 RP1 RP3 RP3 RP3 RP3 RP3 RP2 RP3 RP3

RP3 R R RP1 R R R R R RP2 RP3 R

The lattice was initialized by randomly assigning each lattice point to the S, R, or P
state. At each transfer, each point experienced an immigration event with
probability 1/3. If an immigration event occurred, a point (representing the source

of a migration) within the focal point’s neighborhood was chosen at random. As this
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simulation emulated the Restricted Community treatment, the neighborhood was
restricted to the four nearest lattice points. In the event of migration, the transition
matrix in SI Table 1 was consulted. If migration did not occur, the transitions
outlined in [S1] were followed. The entire lattice was updated synchronously, using
the previous lattice as a source for all migrations. The resulting arrangement of
states after 100 cycles was using to initialize the experimental metapopulations of
the Community treatments (using a 12x16 lattice) as well as the Community

simulations (using a variety of lattice dimensions).

Calculating the number of cell divisions. We recorded the abundances of cells
every /=6 days. Let the number of resistant cells on day t be R(t). Thus, we have
recorded R(Ji) for i€{0,1,2,3,...I} (where =6 is the total number of recorded
intervals). For all positive t values less than JI for which we did not record
abundance, we linearly interpolate between the nearest known R values to estimate
the R(t) value. Thus, given a dilution factor of f=1/40, the total number of cell

divisions (D) is:

. 2 {( Urh-gs —D) R(J(i+1))+( Dot )R(Ji)}
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RESULTS

Growth Curves.

0.5

0.4

03

growth rate
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0.0 0.2 04 0.6 0.8 1.0
proportion LB
SI Figure 2: The growth curves for the three ancestral strains, sensitive (S), resistant (R), and
producer (P) are shown. The least-squares parameters for the corresponding Monod functions are
given in Table 1 in the Methods. The simulations described in the Methods used these fitted growth

curves.
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Simulations.
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SI Figure 3: The average fitness of resistant cells relative to their ancestor after 100 cycles of
simulated evolution (as described in the main text) in a 100x100 lattice. Mean relative fitness of
each treatment is shown and bars give the standard error of the mean. The asterisk indicates a

significant difference (Welch’s two sample t test; t7439=39.44, p<0.001).
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Small Lattice Simulations.

relative fitness
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1 1 |
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SI Figure 4: The average fitness of resistant cells relative to their ancestor after 36 cycles of
simulated evolution in a 12x16 lattice. Simulation runs in the Unrestricted Community treatment in
which the three strains did not coexist were excluded. Mean relative fitness of each treatment is
shown and bars give the standard error of the mean. Letters distinguish treatments significantly
different using post hoc comparisons (single factor ANOVA; F32208=1427.5, p<0.001, multiple

comparisons by Tukey’s HSD).
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SI Figure 5: The average fitness of resistant cells relative to their ancestor after 36 cycles of
simulated evolution in a 12x16 lattice. Mean relative fitness of each treatment is shown and bars
give the standard error of the mean. Letters distinguish treatments significantly different using post
hoc comparisons (single factor ANOVA; F33111=31.24, p<0.001, multiple comparisons by Tukey’s

HSD).
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Number of Divisions.
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SI Figure 6: The number of resistant cell divisions. Mean number of cell divisions in each treatment
is shown and bars give the standard error of the mean. Significant differences among the treatments

were not found (single factor ANOVA; F212=1.86, p=0.1976).
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Simulation Parameters.

Parameter Description (units) Value(s)
L Length of the lattice (points) 16 or 100
w Width of the lattice (points) 12 or 100
T Duration of growth phase (hours) 12
C Number of growth cycles (unitless) 36,100, or 400
K Number of mutant resistant strains (unitless) 7
my Maximum growth rate (abundance/hour) 0.61

(K, Kp, K o, K 1, K

RO b Rl b RZ b
K s o K g s K s s K o s K o}

Monod constant of ancestral strains and resistant

mutants (abundance)

{0.165, 0.93, 0.341, 0.27, 0.28,

0.29,0.30,0.31, 0.32, 0.33}

{r(0), r°(0) }

Initial competition amount (abundance)

{1/40, 1/40}

f Dilution factor (unitless) 1/40
a Probability of migration (unitless) 1/3
Acrit Critical abundance for persistence (abundance) 0.00275
Mutation probability per transfer per well
p 1/100
(unitless)
Fraction of resistant subpopulation converted to a
g 1/2

random mutant given a mutation event (unitless)
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Chapter 2: How the tortoise beats the hare: Slow and steady adaptation in

structured populations suggests a rugged fitness landscape in Escherichia coli

Abstract:

Historical contingency in evolution requires genetic epistasis. Using Wright's
metaphor of the adaptive landscape, epistasis can yield a multi-peaked or “rugged”
topography. In an unstructured population, a lineage with selective access to
multiple peaks is expected to rapidly fix on one, which may not be the highest peak.
Contrarily, beneficial mutations in a population with spatially restricted migration
take longer to fix, allowing distant parts of the population to explore the landscape
semi-independently. Such a population can simultaneous discover multiple peaks
and the genotype at the highest discovered peak is expected to fix eventually. Thus,
structured populations sacrifice speed of adaptation for breadth of search. As in the
Tortoise-Hare fable, the structured population (Tortoise) starts relatively slow, but
eventually surpasses the unstructured population (Hare) in average fitness. In
contrast, on single-peak landscapes (e.g., systems lacking epistasis), all uphill paths
converge. Given such “smooth” topography, breadth of search is devalued, and a
structured population only lags behind an unstructured population in average
fitness (ultimately converging). Thus, the Tortoise-Hare pattern is an indicator of
ruggedness. After verifying these predictions in simulated populations where
ruggedness is manipulable, we then explore average fitness in metapopulations of

Escherichia coli. Consistent with a rugged landscape topography, we find a Tortoise-
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Hare pattern. Further, we find that structured populations accumulate more
mutations, suggesting that distant peaks are higher. This approach can be used to
unveil landscape topography in other systems, and we discuss its application for
antibiotic resistance, engineering problems, and elements of Wright's Shifting

Balance Process.

51



Introduction

The degree to which evolution is constrained by historical events experienced by an
evolving lineage has been vigorously debated (64). Is it the case that distinct
adaptive paths tend to converge (the evolutionary equivalent of all of Chaucer’s
roads leading to Rome), or do initial disparities lead to different end points (as
where Frost’s road less traveled makes all the difference)? Gould suggested that
some evolutionary outcomes would be contingent on chance events, where an initial
difference would lead to an altered result if “life’s tape” was replayed (65). At the
level of mutations, Gould’s paradigm implies that different mutational steps lead to
different ultimate evolutionary outcomes. In contrast, evolutionary convergence is
predicted if every mutation has the same fitness effect despite the genotype in
which it occurs. In such a case, adaptive evolution would be the accumulation of
unconditionally beneficial mutations, and the endpoint of evolution would not
depend on the order in which mutations are acquired. Counter to such mutational
convergence, Gould’s conclusions would require that the fitness effect of a mutation
depends on genetic background. Does such genetic epistasis tend to make evolution

contingent? Here, we use a classic metaphor to address this question.

Introduced by Sewall Wright (66), the adaptive landscape is a useful visual
framework for discussing the factors that influence the contingency of evolutionary
trajectories. One incarnation of Wright's landscape portrays the relationship

between an organism's genotype and its fitness as a topographical map. Imagine
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placing all possible genotypes of an asexual organism together on a plane, where the
distance between two genotypes represents the number of mutations needed to
generate one genotype from the other. Each genotype is assigned a height directly
proportional to its fitness (the third dimension). An evolving population is
represented as a cloud of points on the resulting landscape, where each member of
the population is a point. Novel genotypes arise in the population via mutations,
expanding the extent of the cloud. In contrast, natural selection diminishes the range
of the cloud, shifting its weight uphill as less fit genotypes are culled. Thus the
combination of mutation and selection leads to the population "climbing" adaptive
hills to their "peak," which is a genotype from which all mutations are deleterious. If
we assume strong selection and weak mutation (SSWM), the population-cloud exists
as a single climbing point, where the rapid fixation of each rare beneficial mutation
shifts the point uphill (64, 67). Overall, a population’s evolutionary trajectory is

taken to be sensitive to the gradients on this three-dimensional landscape.

As pointed out by many authors, including Wright (68-70), the actual geometry of
the space of possible genotypes has extremely high dimensionality, which cannot be
projected into two dimensional space in a way that preserves all distances. We
explore an alteration of the classic representation (see (71-73) that ensures
genotypes differing by a single mutation are equidistant (while the distance
between genotypes differing by multiple mutations is distorted). This approach
involves creating a network, in which nodes are genotypes and edges connect

genotypes differing by a single substitution. This network is embedded in two
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dimensions, where genotypes are grouped along the abscissa by their distance from

a common genotype and along the ordinate by their fitness.

Using this representation, a mutation network without epistasis is shown in Figure
1a. This network would also be labeled as a “smooth landscape,” as the single peak
is accessible from any other genotype. Evolution of populations on this landscape
gives an example of mutational convergence. Under SSWM assumptions, we show
that despite three different initial mutational steps, independent evolutionary
trajectories converge at the peak (Fig. 1a) and fitness likewise converges (Fig.

1b). In contrast, Figure 1c shows a network with sign epistasis, where the sign of
the fitness effect of a mutation depends on the background in which it occurs. Such
sign epistasis is a necessary (but not sufficient) condition for the existence of
multiple peaks. On this “rugged” landscape, the final genotype reached under three
independent trajectories is contingent upon the initial mutation (Fig. 1c). In this
case, fitness values of different populations can remain divergent over time if peaks
are heterogeneous in height (Fig. 1d). Here we see that a population can become

trapped at a suboptimal peak in the presence of epistasis.

Because Sewall Wright thought epistasis was pervasive (74), he was particularly
concerned about confinement of populations at suboptimal peaks within rugged
landscapes. He proposed the Shifting Balance Process (SBP) to explain how
populations move from lower to higher peaks. Integral to the SBP is population

structure. Wright envisioned a population that was distributed into semi-isolated,
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sparsely-populated subpopulations (demes) in which genetic drift enabled some
subpopulations to take downward steps by fixing deleterious mutations. In this way,
a subset of the metapopulation is able to move from one peak's domain of attraction
to another, thus crossing "adaptive valleys." Therefore, Wright's SBP depends on
two critical assumptions: the presence of epistasis generating landscape ruggedness

and the presence of population structure.

[ronically, by using the content of one assumption as an experimental variable, the
other assumption can be tested: specifically, landscape ruggedness can be verified
by manipulating population structure. Upon first glance, population structure would
seem to hinder adaptation. For a population in which migration is not spatially
restricted (unstructured population), a beneficial mutant that arises can rapidly fix
in what is termed a selective sweep. On the other hand, a favored mutant arising in a
population with restricted migration (structured population) advances more slowly
in what might be termed a “selective creep.” By reducing the rate of initial
adaptation, the slow competitive displacement occurring within a structured
population may also allow multiple semi-independent searches of the fitness
landscape by geographically distant regions of the population. For a smooth
landscape (e.g., Fig 1a), this enhanced exploration is superfluous as all roads lead to
Rome (the single peak). Therefore, on smooth landscapes, structure only slows
adaptation. However, on a rugged landscape, additional exploration may reveal
alternate peaks. For instance, in Fig. 1¢c, while an unstructured population might

exclusively follow one of the colored trajectories, a structured population may be
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able to explore them all simultaneously. In this way, a structured population gets
more plays of “life’s tape,” and can compare the outcomes. As discovered peaks may
differ in height, on average such comparisons yield better endpoints. On a rugged
landscape, fitnesses in populations differing in structure emulate the classic
Tortoise-Hare fable. Specifically the unstructured population initially adapts faster
(the Hare) but is overtaken by the structured population (the Tortoise), which is a
poor starter but a strong finisher. Importantly, on a smooth landscape, the Tortoise
never takes the lead, and the crossing of average fitness trajectories is not predicted.
Thus, when manipulations to population structure produce a Tortoise-Hare pattern,

we have a signature of ruggedness.

Before investigating this signature in a biological system in which landscape
topography is cryptic, we confirm the above predictions using a computational
system in which landscape topography is known and manipulable. Specifically, we
control landscape ruggedness by employing Kaufmann’s NK model (75-77) and
then track evolving metapopulations of bit strings, in which the pattern of migration
between demes is manipulated. Following this simulation, we then turn to evolving
metapopulations of Escherichia coli under a similar experimental manipulation of
population structure. Discovery of a Tortoise-Hare pattern would be indicative of a

rugged topography, in which evolution could be historically contingent.
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Results and Discussion

Patterns of Average Fitness

In the NK model, simulated organisms are bit strings of length N, and the parameter
K is the number of loci affecting the fitness contribution of each locus (see Methods).
As Kincreases, the level of epistatic interaction increases, yielding more rugged
landscapes; hereafter, we refer to K as a “ruggedness” parameter. We explore how
ruggedness affects fitness trajectories in evolving metapopulations that differ in
population structure. We consider either metapopulations with spatial restrictions
to migration (hereafter, the Restricted treatment) or metapopulations where
migration can occur between any two demes (Unrestricted treatment). For a
smooth landscape topography (K=0, N=15), average fitness initially increases more
rapidly in the Unrestricted treatment relative to the Restricted treatment; however,
both trajectories converge over time (Fig. 2a). For a rugged landscape (K=8, N=15),
fitness in the Restricted treatment once again lags behind fitness in the Unrestricted
treatment at the outset. Instead of converging, however, the fitness trajectories
cross, yielding a higher final fitness for the spatially restricted treatment (Fig. 2b).
Indeed, we find significantly higher fitness in the Restricted treatment for K>3 at the
end of our simulation (Fig. 2c; Mann-Whitney tests with Bonferroni corrections,
p<0.001). The pattern in Figure 2b agrees with the Tortoise-Hare prediction, while
the crossing does not occur for the Unrestricted treatment in Figure 2a. More
generally, with sufficient ruggedness, a structured population can eventually

outperform an unstructured population (Fig. 2c). This pattern is not limited to our
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specific form of structure, as Bergman et al. (1995) (78) reported a similar result
using an NK model where bit strings dispersed variable distances along a single

dimension.

We next turned to examining fitness trajectories in evolving metapopulations of
Escherichia coli. Similar to the NK model, we propagated the bacteria under two
treatments differing in migration pattern: Restricted and Unrestricted (see
Methods). Early and late in the evolutionary run, we sampled five random isolates
from each metapopulation and determined their fitness relative to the common
ancestor. Early in the experiment (at transfer 12), fitness in the Restricted treatment
was significantly lower than the Unrestricted treatment (Fig. 3; Mann-Whitney test,
p=0.015). However, at the end of the experiment (transfer 36), the opposite pattern
was found, with fitness in the Restricted treatment surpassing the Unrestricted
treatment (Fig. 3; Mann-Whitney test, p=0.015). This pattern is consistent with a

rugged landscape topography.

Patterns of Evolutionary Distance

There are a few ways to account for the benefit that population structure confers on
rugged landscapes (Figs. 2b and 3). First, a population may have access to multiple
peaks that differ in height. A structured population can explore multiple domains in
parallel, eventually comparing the results. Thus, it will tend to attain a higher
endpoint; for the same reasons that the expectation of the maximum of a sample

increases with sample size. This effect holds when all peaks are equidistant from the
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ancestral population. A second possibility (not mutually exclusive with the first) is
that peaks differ in both height and distance from the ancestral population. Suppose
that initial mutations leading to the more distant peaks are less beneficial than
mutations leading to the nearby peaks. In this case, intermediate genotypes
approaching distant peaks risk being outcompeted in an unstructured population
(consider the first mutant on the blue path to the more distant peak in Fig. 1c
competing against the other first mutants). This is because the slower fixation of
these intermediates allows for better competitors (from domains of nearer peaks)
to arise. In contrast, these more distant peaks become accessible in a structured
population due to reduced competitive displacement. If some of these distant peaks
are also higher, then structured populations are predicted to both achieve better

fitness and accumulate more mutations.

To explore the number of mutations accrued by evolving populations, we first
return to the NK model. We define evolutionary distance to be the number of
mutational differences between an evolved isolate and its ancestor. In the NK
model, this is the Hamming distance (79). As ruggedness increases, the degree of
population structure affects final evolutionary distance from the ancestor; we find a
significantly higher distance in the Restricted treatment for K>3 at the end of our
simulation (Fig. 4; Mann-Whitney tests with Bonferroni corrections, p<0.001). Thus,
on a rugged landscape, a population with restricted migration moves both higher

(Fig. 2c) and further (Fig. 4) than a less structured population.
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Evolutionary distance was explored similarly in the E. coli metapopulations. In
addition to assessing fitness on the isolates from the end of the experiment (transfer
36), we sequenced their genomes to determine their evolutionary distance from the
common ancestor. The locations of all identified mutations in all sequenced isolates
are shown in Figure 5. The number of mutations accumulated in each isolate is the
evolutionary distance (the points to the right of the table in Fig. 5). We find that
isolates have moved a significantly greater distance in the Restricted treatment
(Mann-Whitney test, p=0.045). The increased distance traversed by digital and
bacterial populations is consistent with rugged landscapes in which more distant

peaks are being reached by structured populations.

The ability of the structured populations to move higher (in average fitness) and
further (in evolutionary distance) is engendered by the capacity for parallel search.
The presence of simultaneous selective creeps should increase the standing
diversity within a structured population relative to an unstructured one. In line with
this prediction, the metapopulations in the Restricted treatment had significantly
higher genotypic diversity than the Unrestricted treatment (Mann-Whitney test on
the nucleotide diversity index p, p=0.016). While greater diversity in structured
populations is expected despite the topography of the landscape (see Supplemental

Figure 1), this observation does substantiate the basic logic of our argument.

Previous Empirical Work
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An extreme form of population structure involves a set of completely isolated
populations. If the landscape contains multiple peaks of different heights, these
populations can diverge in fitness, genotype and phenotype. Korona et al. (80) and
Melnyk & Kassen (81) measured phenotypic diversity within, and diversity in
fitness among, a set of replicate evolving microbial populations. Under some growth
conditions (growth on agar surfaces for Rastonia eutropha (80) and growth in
minimal xylose for Pseudomonas fluorescens (81)) these authors found that both
forms of diversity remained high at the end of the experiment, which they took as
evidence for a rugged landscape. Under other growth conditions (growth in liquid
for R. eutropha (80) and growth in minimal glucose for P. fluorescens (81)) they
found lower diversity, consistent with a smoother landscape. Like the present study,
these earlier studies used statistical patterns to infer topographical properties of

landscapes.

This statistical approach was also used in a recent study by Kryazhimskiy et al. (82),
which strongly parallels our experiment. They propagated metapopulations of
asexual Saccharomyces cerevisiae and varied the rate (as opposed to pattern) of
migration. In contrast to the results we report, they find yeast from treatments with
higher rates of migration evolved higher fitness over the course of their experiment.
This led the authors to conclude that epistasis was weak and the landscape was
smooth. While it is absolutely plausible that their yeast and our bacteria differ in
landscape topography, we discuss some alternative interpretations of their results

in the Supplement.

61



Rather than inferring landscape topography from population-level statistical
patterns, an alternative approach involves fully characterizing the fitnesses of
genotypes in a small section of the landscape (83-91). This approach often involves
considering two genotypes differing by M mutations, engineering all 2" possible
combinations, and assessing the fitness of each constructed genotype. Epistasis can
be gauged directly by measuring the influence of genetic background on the fitness
effect of a mutation. Some studies using this approach have uncovered instances of
sign epistasis (83, 85, 90), while other studies have found only magnitude epistasis
(84, 87). Some studies have reported multiple peaks (85, 90), while others have
found only a single peak (83, 87). As with the inferential approach described above,
this engineering approach has revealed a potential diversity of landscape
topography. We suggest that combining the (top-down) inferential approach and
(bottom-up) engineering approach is a promising direction for exploring the nature

of adaptation.

Wright's Shifting Balance Process

During the Modern Synthesis, two divergent views on adaptation were born. One
view considers adaptation as the sequential fixation of unconditionally beneficial
mutations. This perspective (often associated with Fisher) does not highlight
epistatic contingency, focusing instead on selection and mutation as the major
processes of evolution. A second perspective (often linked to Wright) recognizes

epistatic interaction as constraining adaptation. Based on his empirical
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observations, Wright felt that such epistasis was pervasive, leading to multiple
peaks in his adaptive landscape metaphor (64). In this view, evolving populations
can become trapped in suboptimal positions. To illustrate how escape from the
domains of suboptimal peaks was possible, Wright introduced the Shifting Balance
Process (SBP). Importantly, he additionally assumed that adapting populations were
spatially structured as a metapopulation of semi-isolated demes. The SBP is
heuristically divided into three phases. In Phase I, the demes, which Wright posited
were small, drift in genotype space, enabling movement into other domains. In
Phase II, selection within demes produces a set of semi-independent hill-climbing
episodes. In Phase III, the resulting genotypes are exchanged among demes and the
best competitors spread through the metapopulation at large. Thus, Wright's view
of adaptation, in contrast to Fisher’s, invokes a complex combination of processes,

specifically brought together to solve a problem generated by epistatic contingency.

While there have been various theoretical explorations of the plausibility of SBP (78,
92-95), Wright's ideas have been criticized because they demand a delicate balance
of various evolutionary processes. For instance, populations need be small enough
for effective drift (Phase I), but large enough for effective selection within demes
(Phase II). Migration should be sufficiently restricted for drift and selection within
demes (Phase I and II), but sufficiently unrestricted for effective exchange of
genotypes among demes (Phase III). However, if we abandon Wright's goal of
explaining how populations cross valleys, many of these conflicts vanish. Both

Fisher and Wright acknowledged that environmental change could alter the
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landscape, and, in the process, reposition the peaks. Imagine that a population
experiences such a change and subsequently resides somewhere on the new
landscape with access to multiple domains. In our experiment, our ancestor
contained deleterious mutations and evolved in a stressful environment (see
Methods), which potentially yielded access to multiple peaks. In this case, demes
need not be small for the discovery of multiple peaks (and indeed, our experimental
demes were large). With large subpopulations, selection within demes will proceed
efficiently; however, limitations to migration between demes will still allow for
parallel exploration of a rugged landscape. Thus, Phases II and III can jointly yield
adapted populations even if Phase | is absent. If landscapes are indeed rugged,
population structure can retain the critical role Wright foresaw, even if all the

details of the SBP are not present.

Applications

One case where populations are potentially poised in multiple domains on a
landscape involves the evolution of microbes exposed to antibiotics. When a
bacterial population experiences a sufficiently high concentration of an antibiotic,
susceptible genotypes are replaced by resistant mutants. When the drug is removed,
these mutants tend to carry fitness costs relative to their susceptible progenitors.
The cost can be alleviated by a mutation resulting in reversion to susceptibility or a
mutation that compensates for the impairment without loss of resistance (37, 96).
There is some evidence that reversion and compensation constitute distinct peaks

in a rugged landscape (40, 97). Thus, we see that a changing environment (exposure
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and removal of a drug) may position a microbial population at a landscape position
where multiple peaks are accessible (71). It is at such a position that population
structure may influence the evolutionary trajectory. Bjorkman et al. (97) and
Nagaev et al. (40) evolved Salmonella typhimurium and Staphylococcus aureus
resistant to fusidic acid either in well-mixed flasks or within murids (mice or rats).
These authors found that the bacteria more often reverted when grown in vivo than
in vitro. They explain these results by noting that the flask and murid environments
differ markedly and may consequently place different selective pressures on
revertants and compensated strains (indeed, they present data to this effect). In our
terminology, the landscape in a flask and a mouse may be different. However, even if
the landscape was identical (but rugged) in both, the results might not be
unexpected because a murid environment is highly structured and a flask is not.
Thus, if the “reversion peak” is higher than most to all of the “compensation peaks”
(the authors present data consistent with this ordering) then evolution in a
structured environment is predicted to revert at higher frequency. In this way, the
structure that pathogenic bacteria experience (including in the bodies of human

hosts) can potentially influence the course of antibiotic resistance evolution.

Not only can the ideas in this paper apply in a medical context, but also they may
address practical engineering problems. Evolutionary principles have been utilized
to find solutions to computational problems, a discipline known as evolutionary
computation. In this field, putative solutions constitute a population, new solutions

are generated by mutation and recombination, and better solutions can outcompete
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their contemporaries. One defining feature of a difficult problem is the presence of
multiple optima in the map from the specification of a solution (i.e., genotype) to its
quality (i.e., fitness). As early as 1967, Bossert (98) suggested that dividing a
population of solutions into subpopulations could yield better evolutionary
outcomes. Subsequently, the inclusion of population subdivision in evolutionary
algorithms has produced better solutions in a variety of applications, including
analogue circuit design (99), financial trading models (100), and multi-objective
scheduling (101). Besides the efficiency in networked computational resources that
accompanies population subdivision, a deeper exploration of the landscape of
solutions is predicted to occur when multiple domains can be semi-independently

searched (102, 103).

Synthesis

The prevalence of contingency or convergence in evolution is affected by the
underlying topography of adaptive landscapes. When no epistasis is present, a
classic “smooth” landscape results, and ultimately evolution converges to the single
peak. Contingency requires (sign) epistasis, specifically of a kind generating multi-
peaked, or classic “rugged,” landscapes. (We again note that sign epistasis is not
sufficient for multi-peaked landscapes and indeed can constrain evolution to a
subset of paths to a single peak; see Weinreich et al. (83) for an example.) In the
case of heterogeneous peak height, population structure may enable the
simultaneous exploration of multiple domains and ultimately lead to the discovery

of higher peaks than would be possible in an unstructured population. Thus, using
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population structure as an experimental variable, we have a signal for this kind of
ruggedness. In the case of our bacterial populations, we have presented a pattern
consistent with ruggedness. Additionally, it appears that structured populations
move further in the landscape, suggesting that the most accessible peaks may not be
the highest. Ultimately it is an empirical issue whether other biological systems
posses such ruggedness. However, statistical patterns in fitness and evolutionary
distance may help to distinguish landscape topography, and thus shed light on the
prospects for contingency. Specifically, a rugged landscape topography can be
inferred by comparing structured (Tortoise) and unstructured (Hare) populations

and assessing whether slow and steady adaption “wins the race.”
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Methods

Ancestral strain

The bacterial ancestor was derived from a K-12 strain of E. coli (BZB1011) by
selecting for resistance to colicin E2, then colicin D, and then phage T6. Both

resistance to colicin E2 and phage T6 are known to be individually costly (34, 104).

Experimental treatments

Each metapopulation was comprised of 96 subpopulations (the 96 wells of an 8x12
microtiter plate). The metapopulation was initiated with the ancestral strain in
each well. These subpopulations grew for 12 hours in 200 mL of lysogeny broth (LB-
Miller) supplemented with a sub-inhibitory concentration of tetracycline (0.25
mg/mL). After growth, each well in the metapopulation was diluted 40-fold into
fresh growth medium using a 96 slot-pin multi-blot replicator (5 pL into 200 uL).
Immediately following dilution, migrations among wells occurred. Migration was
either restricted to occur between subpopulations adjacent to each other or was
unrestricted. In both treatments, every well had 1/3 probability of experiencing an
immigration event from one random well in its neighborhood. In the Restricted
treatment, this neighborhood included the wells directly north, east, south or west
of the focal well (using periodic boundary conditions to eliminate edge-effects). In
the Unrestricted treatment, the neighborhood included all wells minus the focal
well. All migration events were executed by a BioRobot 8000 liquid-handling robot
(Qiagen), which transferred 5 pL from the source well within the plate from the

previous transfer into the destination well within the plate from the current
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transfer. Between transfers, plates were incubated (37 °C) and shaken (350 rpm
using a microtiter shaker). Each metapopulation was propagated for a total of 36

transfers and each treatment contained five replicates.

Competition assay

We chose five random isolates from the last transfer of each metapopulation (here
we denote any one of these strains as E). We marked our ancestor with resistance to
phage T5 (we denote this marked ancestor as A.1). Before the competition, E and A
were grown separately in 200 pL of growth medium for two 12-hour cycles (with
40-fold dilution at transfer). After this acclimation phase, we added 5 pL of E and 5
uL of A to a well containing 200 pL of fresh growth medium. The titer of each strain
was assessed, through selective plating with and without phage T5, immediately
after the competition was initiated and again after 12 hours. If X(t) is the titer of
strain X at time ¢, then the fitness of the evolved strain relative to its ancestor is

given by:

_ In(E(12)/E(0))
In(A(12)/A(0))

w(E,A)
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Whole Genome Resequencing

Using the same isolates from the last transfer, we performed chromosomal DNA
extractions using Qiagen Mini DNA Kits. Each sample was barcoded and multiplexed
to 24 samples per lane with Illumina TruSeq. Whole genome resequencing
(University of Washington High Throughput Genomics Unit) was performed with
single-end 36-bp unpaired reads on Illumina HiSeq to an average of 30X coverage.
[llumina reads were aligned for mutational discovery by Breseq 0.19 (]. E. Barrick,
unpublished algorithm) against E. coli W311 [GenBank: AP009048]. Alighments
were considered only if they covered 95% of a read. For every isolate, Sanger
sequencing (Genewiz) of several loci (fimE, marR, ompF, and stfR) was used to

confirm putative mutations.

NK Model

For the simulations, individuals were embedded within 96 demes in an 8 x 12 array.
Each deme contained 1000 organisms. Each organism’s genotype was a bit string
(fixed length ordered list of 0’s and 1’s) of length N=15. The fitness of an organism
was the sum of the fitness contributions of each of the 15 loci divided by the number
of loci. The contribution of each locus was determined by its allelic state and the
allelic states of the subsequent K loci (wrapping to the beginning of the bit string as
needed). For each locus, 2¥*1 random numbers (uniformly distributed between 0
and 1) described all possible fitness contributions of that locus (given any possible
combination of alleles at relevant loci). Thus a mutation at a single locus affected the

fitness contribution of the mutated locus and K other loci. Selection within a deme
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involved the removal of a random organism, regardless of fitness, and its
replacement by the birth of an organism from the same deme chosen by a fitness-
weighted lottery. Upon birth, the offspring bit string differed from its parent at a
random locus with probability 0.1 (the mutation rate). This Moran death-birth
process was iterated 1000 times for each deme, followed by migration between
demes. During each migration event, 25 individuals were chosen at random and
removed from one deme (the destination), and then replaced by copies of 25
individuals chosen at random from the other deme (the source). Each deme
experienced an immigration event with probability 1/3. Migration was either
restricted or unrestricted in precisely the same manner as the bacterial experiment
above. Each replicate run of the Unrestricted treatment was paired with a replicate
of the Restricted treatment, where each member of the pair shared the same NK
landscape as well as the same ancestor (a random bit string used to populate the
entire metapopulation). In the figures, one selection-migration episode is termed an

“update.”
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Chapter 2 Figures:
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Figure 1. Adaptive paths in hypothetical landscapes. Here we consider a simple
biallelic three locus system. (a) The adaptive landscape can be visualized by plotting
genotype fitness as a function of the number of mutations on a wild type background.
Each of the 23=8 genotypes is given by a gray point and edges (arrows or gray lines)
connect genotypes differing by a single mutation. An adaptive peak is a genotype from
which all mutations are detrimental. A hypothetical landscape with a single peak (the
triple mutant) is shown here. A selectively accessible path exists between two
genotypes if a series of beneficial mutations connects the less fit genotype to the more
fit genotype. On this “smooth” landscape, all of the 3!=6 paths between the wild type
(lacking mutations) and the triple mutant are selectively accessible; three of these paths

are shown by the arrows in different colors. (b) Average fitness over time is shown for
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three possible populations following the paths in part a. If we assume that selection is
strong and mutation is weak, we can represent the fixation of each beneficial mutation
as a step up in the fitness trajectory. All trajectories converge on the same final fitness
value. (c) A hypothetical landscape with multiple peaks. Starting with the wild type,
selection can take the population to different adaptive peaks on this “rugged” landscape,
as illustrated by the different colored trajectories. (d) Average fitness over time is
shown again for three possible populations following the paths in part c. The final

fitness of different evolving populations can vary.
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Figure 2. Fitness in the NK model. Metapopulations of bit strings of length N=15
evolved where either migration was restricted to occur between neighboring demes or
migration was unrestricted (occurring between any two demes). (a) Average fitness in
the metapopulation is shown over time on a smooth landscape (K=0) or (b) a rugged
landscapes (K=8). (c) Average fitness at time point 1000 is shown as a function of the
ruggedness parameter, K. Note the values at K=0 and K=8 in part ¢ correspond to the
values at time point 1000 in parts a and b, respectively. In all plots, points represent the
mean of 50 replicates, shading gives the standard error of the mean and asterisks

indicate significant differences.
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Figure 3. Bacterial fitness. Metapopulations of bacteria evolved where migration was
spatially restricted or unrestricted. Average relative fitness of five isolates randomly
sampled from the metapopulation is shown early in the experiment (at transfer T=12)
and late in the experiment (at transfer T=36). As in Figure 2b, the ordering of fitnesses
for the two treatments flips over time. Bars represent the mean of 5 replicate
metapopulations, whiskers give the standard error, and asterisks denote significant

differences.

75



Restricted
—e— Unrestricted

distance

T T I I I
0 2 4 6 8

ruggedness (K)

Figure 4. Distance in the NK model. Metapopulations of bit strings of length N=15
evolved where migration was spatially restricted or unrestricted. Evolutionary distance
is the number of bits differing between an evolved isolate and its ancestor (the
Hamming distance). Average distance at time point 1000 is shown as a function of the
ruggedness parameter, K. Points represent the mean of 50 replicates, shading gives the

standard error of the mean, and asterisks denote significant differences.
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Figure 5. Bacterial distance. Metapopulations of bacteria evolved where migration
was spatially restricted or unrestricted. At the end of the experiment, five isolates from
each metapopulation were sequenced at the genome level. The top bar represents the
genome of Escherichia coli. Genome regions with mutations are magnified for the table.
Each isolate is a single row in the table and the location of each of its mutations is
indicated by a white mark. The five isolates from each of the five replicate
metapopulations are grouped by alternating shades of green (for the Restricted
treatment) or purple (for the Unrestricted treatment). The horizontal distance of the
point to the right of the table denotes the number of mutations in the isolate (its
evolutionary distance). The horizontal distance of the green bar and the purple bar to

the right of the table gives the average distance (the average of replicate averages) of
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isolates from the Restricted and Unrestricted treatments, respectively. The asterisk

denotes a significant difference between treatments.
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Supplementary Information:

Diversity in digital and bacterial populations

A structured population performs a broader search on the adaptive landscape, as the
rate of competitive displacement is lower. Consequently, the standing genetic diversity
of a structured population is expected to be greater than diversity in an unstructured
population. In Supplemental Figure 1a, we see that this pattern does not depend on
landscape ruggedness (Mann-Whitney tests, p<0.01 for K=0 and K=8). Thus, despite
landscape topography, we predict to find higher genetic diversity in a structured
population, and this is what we find in our bacterial metapopulations (Mann-Whitney

test, p=0.015; Supp. Fig. 1b).

Diversity methods
Consider a sample of G genotypes (bit strings or nucleotide sequences). We use the

diversity index of Nei and Li (1979) (105):

where pjj is average number of differences (in bits or bases) per site between genotype i
and genotype j. We refer to p as bit diversity (in the NK model) or nucleotide diversity

(for our bacterial system).
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Supplemental Figure 1: Genetic diversity in the digital and bacterial populations. (a)
Average bit diversity of a sample of eight evolved bit strings from time point 1000 in the
NK model simulations. Whether the landscape is smooth (K=0) or rugged (K=8),
diversity is significantly greater in the Restricted treatment than the Unrestricted
treatment. Bars represent the mean of 40 replicates. (b) Average nucleotide diversity
within bacterial metapopulations at the final transfer of the experiment (T=36). For
each metapopulation, full genome data from each of its five isolates was used to
compute the diversity index. Nucleotide diversity is significantly greater in the
Restricted treatment than the Unrestricted treatment. Bars represent the mean of 5
replicates. In both parts of the figure, whiskers give the standard error and asterisks

indicate significant differences.
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How a rugged landscape can fail to give a Tortoise-Hare signal

On a rugged landscape, fitness in a structured population will increase more slowly than
an unstructured population (the Tortoise initially lags behind, before overtaking, the
Hare; see Fig. 2b). That is, for populations differing in structure evolving on a rugged
landscape, early evolution will produce a pattern similar to that predicted under a
smooth landscape (e.g., before time point 250, the pattern in Figure 2b would be hard to
distinguish from the entire trajectory of Figure 2a). While the presence of a Tortoise-
Hare pattern indicates ruggedness, its absence does not necessarily imply a smooth

landscape.

For example, in the experiment of Kryazhimskiy et al. (2012) (82), the unstructured
population ended the experiment with higher average fitness. This pattern is consistent
with a smooth landscape, but is not inconsistent with a rugged one. As the authors
themselves acknowledge, had their experiment run longer, they may have observed

higher fitness under lower rates of migration (i.e., a fitness crossing).

Even when there is abundant time for evolution to take place, it is still possible that
evolution on a rugged landscape will fail to yield the Tortoise-Hare pattern.
For instance, it is possible that the landscape is rugged, but peaks are of a homogeneous

height. This could produce the fitness pattern shown in Figure 2a.

Finally, the landscape could be rugged with heterogeneous peak heights, but the
ancestor could be positioned in the domain of a single peak. Consistent with this

possibility, Kryazhimskiy et al. started their experiment with a lab-adapted strain of
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yeast and evolved their populations under standard laboratory conditions. If their yeast
had access to only a single domain in a rugged landscape, a Tortoise-Hare pattern would
not be expected. In such a case Kryazhimskiy et al. would be justified in claiming that
the local topography of such a landscape was smooth (and indeed, they restrict their

claim of smoothness accordingly).

As outlined in our Methods, we introduced several deleterious mutations into our
ancestor and evolved our populations under a stressful environment (in the presence of
sub-lethal concentrations of the antibiotic tetracycline). Such manipulation was
intended to displace our ancestral genotype from a peak, but it also may have placed it
at a point where multiple domains were accessible. To address the effect of ancestor
starting position, we describe additional NK simulations here. In addition to starting our
ancestor at a random bit string, we consider three other starting positions: (i) valley, (ii)
pre-adapted, and (iii) “silver-spoon.” For the valley simulations, we performed a “hill-
plunge of steepest descent,” moving downhill from a random genotype until we hit a
valley genotype (a genotype from which all mutations were beneficial), which served as
the ancestor. For the pre-adapted simulations, we allowed a random ancestor to evolve
briefly (in an unstructured population) to produce a “pre-adapted” ancestor. For the
silver-spoon simulations, all genotypes were ranked for fitness and the genotype

defining the 99t fitness percentile was chosen as the ancestor.

In the random and valley starting positions, the Tortoise-Hare pattern was observed
and the Structured treatment ended at significantly higher average fitness than the

Unrestricted treatment (Mann-Whitney tests, p<0.001; Supp. Fig. 1b). However, in the
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pre-adapted and silver-spoon starting positions, the Tortoise-Hare pattern was not seen
and fitness was indistinguishable between the treatments in the long run (Mann-
Whitney test, p=0.36 and p=0.57 respectively). These simulations demonstrate that the
starting position of a population in a landscape will influence the statistical pattern of

fitness of populations differing in structure.

Additional NK simulation methods

To study the effect of starting position in the adaptive trajectories in structured and
unstructured populations, we examined starting the population with different types of
ancestors. The “random” ancestor (used in the primary text) is simply a random bit
string. To generate the “valley” ancestor, we start with a random bit string and
substitutes the worst (lowest fitness) possible mutation until no deleterious mutations
are possible, and that bit string is the ancestor for the evolutionary run. To produce the
“pre-adapted” ancestor, we start with a random bit string and evolve a population
initialized with this bit string under unrestricted migration for 50 updates. Then bit
strings are sampled from the evolved population until one is found that has a higher
fitness than the starting bit string. That adapted bit string is the ancestor. To determine
the “silver-spoon” ancestor, all possible bit strings (215) are ranked according to fitness

and the 99t percentile genotype is the ancestor.
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Supplemental Figure 2: Metapopulations of bit strings of length N=15 evolved on a
rugged landscape (K=8), where migration was either restricted or unrestricted. Average
fitness in the metapopulation is shown at time point 1000 for a randomly chosen
ancestor, an ancestor starting in a valley, an ancestor resulting from adaptation before
the run, and an ancestor in the top percentile of fitness (the “silver-spoon” ancestor).
Bars represent the mean of 40 replicates, whiskers give the standard error of the mean,

and asterisks indicate significant differences.
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Chapter 3: Improved adaptation in exogenously and endogenously changing

environments

Introduction

On some level, all evolutionary studies involve exploration of how organisms
adapt to their environment over some period of time. Adaptation by natural
selection requires time in an environment to favor advantageous alleles. A
reasonable expectation would be that longer exposure to an environment should
yield increased adaptation, as there is more time for beneficial mutations to arise
and spread. However, adaptation may be constrained by more than the time for new
mutations to arrive. If the fitness effects of mutations depend on the genetic
background, then a population may have difficulty arriving at the genotype of

highest fitness, despite the length of time spent evolving.

To illustrate situations where adaptation is not limited solely by time, we turn to
the metaphor of the “adaptive landscape.” Introduced by Sewall Wright (66), an
adaptive landscape is the relationship between an organism’s genotype and its
fitness. Imagine placing all individual genotypes of an asexual organism together on
a plane where the distance between two genotypes represents the number of
mutations needed to generate one genotype from another. Each genotype is

assigned a height directly proportional to its fitness in a specified environment. The
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evolving population consists of a cloud of points (one point for each member of a
population). This cloud increases its range through mutation and shifts its weight
uphill through selection (see Figure 1a). Thus the combination of mutation and
selection leads to the population “climbing” fitness hills to their “peak,” which is a
genotype from which all mutations are deleterious (downhill). If the landscape is
rugged, i.e. having multiple peaks, merely climbing uphill doesn’t guarantee the
population reaches the most fit genotype (75). The population may become
“trapped” on a sub-optimal peak, a problem Wright addressed with his Shifting

Balance Process.

The primary idea behind Shifting Balance Process is that small populations can
escape sub-optimal adaptive peaks through genetic drift and begin climbing in a
new place. One assumption made to simplify the model is that the environment
remains constant during evolution (the peaks maintain their positions).
Interestingly, a changing environment may provide an alternative mechanism to
escape from sub-optimal peaks (66, 106-108). Different environments can produce
a change in the mapping from genotype to fitness (e.g., some mutations detrimental
in one environment may be beneficial in another). As an environment changes,
former adaptive peaks may disappear and new peaks can appear where formerly
there were none. In this reshaped adaptive landscape, even a large population,
which evolved to a former peak, can be selected to move to a novel genotypic
position. Upon returning to the original environment, the population can climb up to

a new, perhaps higher, peak (see Figure 1b).
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Changing environments can have profound effects on adaptation (109-112). Using a
variety of different computational systems, Kashtan et al. (113) found that when the
environment changed in specific ways (i.e., when goals from different environments
shared sub-problems), the population was able to more rapidly evolve solutions to
complex problems than in a constant environment. Alto et al. (114) found that
alternating exposure of vesicular stomatitis virus to two different temperatures led
to increased performance on both temperatures relative to virus evolved in a
constant environment. In these studies, change was externally imposed on the
evolving populations. Here we additionally investigate a qualitatively different form
of environmental change—namely, where organisms are the agents of change in

their environment.

We classify two different types of change in the environment: exogenous and
endogenous. Exogenously driven change is brought about by factors outside the
influence of the population (e.g., diurnal-noctural changes in light or seasonal
changes in temperature). In contrast, the evolving population itself affects
endogenous change. Actions of organisms in the population, including resource
usage, waste production and habitat modification, affect the environment and alter
the fitness landscape for themselves and future generations. The process whereby
organisms modify their environments has been termed niche construction (115-
118) or ecosystem engineering (119). Such niche construction can feed back to

affect the evolution of the population. For instance, if organisms reduce the quality
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of their environment by exploiting certain resources or become susceptible to
infectious pathogens, they can depress the fitness of their own, and related,
genotypes (see figure 1c and (120)). This change may additionally select for novel
genotypes that differ from those currently constituting the population. In theory,
both exogenous and endogenous change allows populations to leave (former)

adaptive peaks by selection.

To distinguish the effects of exogenously and endogenously changing
environments, we need a system that evolves in highly controlled settings. Ideally,
this system would be simple (to deduce the fitness effects of individual mutations),
fast (to allow for evolution across many generations), and tractable (to control the
environment, and the effect organisms have on it). For these reasons we chose to
perform our experiments with Avida, a digital platform for the study of evolution.
Avida provides an ideal system to test the effects of a changing environment and has
been used extensively to investigate a wide array of evolutionary questions (121).
The organisms within Avida are simple (the mappings between genotype,
phenotype, and fitness are easily determined) and fast (generations last less than a
second). The environment for an evolving population can be measured and
manipulated precisely. Most importantly, we can explore changing environments:
either via exogenous change or by allowing the digital organisms themselves to
influence the environment. For these reasons Avida serves as an ideal model system

to explore the effects of environmental change on adaptive evolution.
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The System

Avida is an evolution platform, wherein digital organisms (Avidians) can evolve
in world with 3600 sites, where each site can hold at most one Avidian. Each Avidian
has a genome composed of a sequence of simple computational instructions. For this
experiment, the length of the genome was fixed at 100 instructions. When
assembled in particular configurations, these commands perform functions like
asexual replication or numerical computation. An Avidian’s fitness (replication rate)
can be improved by the “metabolizing” of resources in the environment, which can
only be acquired by performing mathematical tasks determined by the
experimenter. Many different globally available resources can be present in the
environment, each paired with a particular task. During the replication of an
Avidian, the mutation rate is the frequency at which substitutions of random
instructions occur in the genome. Upon completion of replication, the offspring is
placed in the world at a random site, supplanting any previous occupant. Each Avida
run was seeded with an identical, self-replicating ancestor that initially could not
perform any tasks. The unit of time is an 'update’, the period for an organism to
perform 30 instructions on average (one generation is approximately seven

updates).

The environment within Avida is defined by the abundances of available
resources and their associated computational tasks. If an organism successfully
performs a task, it is rewarded with “merit” proportional to the abundance of the

resource associated with the task. The more merit accumulated by an organism, the
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faster the replication rate of its offspring. “Rigid” environments have unchanging
resource concentrations that are not influenced by the tasks performed. The
resources in a “Malleable” environment flow into the world at a fixed rate in a
chemostat-like manner and are consumed by organisms when associated tasks are
executed. The merit a task rewards is proportional to its abundance; hence, in a
Malleable environment, the consumption of resources reduces their availability to

other organisms.

In our experiments, every evolutionary run was broken into three periods,
where the environment in each period was either rigid or malleable. The Fixed
treatment uses the same rigid environment for each period. For all other
treatments, the first and third periods are the same rigid environment (termed the
“reference”) as the Fixed runs. However, the second period is a different
environment (termed the “alternative”). The middle period in the Flipped treatment
is arigid environment with different resources (i.e., where different tasks are
rewarded). The middle period of the Negative Frequency Dependent (NFD)
treatment is a malleable environment, where the resources available in the
reference environment become consumed when their task is performed. All

populations were evolved for 100,000 updates (~12,000 generations).
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Results

Evolution in Static and Dynamic Worlds

To assess the effect of a changing environment on evolution, a baseline for
adaptation in an unchanging environment is needed. To obtain this baseline, we
evolved populations in a single fixed environment (where rewards for resources did
not change). At the conclusion of each evolutionary run in this Fixed treatment, the
most abundant genotype was selected, and its line of descent to the ancestral
genotype was determined. The fitness trajectory along such a line of descent is
shown in Figure 2a for one Fixed population. For contrast, an example fitness
trajectory from a population evolved in a changing environment (the Flipped
treatment) is shown in Figure 2b. Here the shaded middle third of the evolutionary
run represents exposure to an alternate environment (whereas the population
evolves in the reference environment from Fig. 2a for the first and last third of the
run). The blue trajectory during the middle third represents the fitness of the
genotypes in the alternate environment (whereas the black trajectory gives fitness
in the reference environment). In both static and dynamic worlds, nearly all
mutations are beneficial with respect to the present environment. However, some
mutations that are favored in the alternate environment (a lift in the blue line)
would have been detrimental in the reference environment (a drop in the black
line). The average of many runs of Fixed and Flipped treatments (Fig. 2c and 2d,
respectively) demonstrate that fitness gains decrease over time to a plateau.
However, populations exposed to an alternate environment (Flipped treatment)

reach significantly higher fitness in the reference environment at the end of the run,
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regardless of the specific resources being rewarded (Fig. 2Ze, Mann-Whitney test,

p=0.03).

One possible advantage populations evolving in the Flipped treatment had relative
to the Fixed treatment, is a greater availability of beneficial trajectories over the
course of a run. If populations were exhausting potential beneficial mutations early
in the run (leading to constraints in adaptive potential), organisms in the reference
environment should have few possible beneficial mutations, but more possible
beneficial mutations with respect to the alternate environment. To investigate this
hypothesis, we extracted the organism in the lineage that existed at the conclusion
of the first third of the run. Then we constructed every possible single mutation at
every genome position and evaluated the fitness of each genotype in both the
reference and alternate environment (Figure 3). After excluding mutations that
were detrimental in both environments and nearly neutral in at least one
environment, we found that mutations beneficial in the reference environment
constituted a small minority (0.65%, Quadrants 1 and 4) of the possible mutations,
while a much greater fraction of mutations were detrimental in the reference
environment but beneficial in the alternate environment (99.35%, Quadrant 2).
Thus, mutations beneficial in the alternate environment are often detrimental in the
reference environment. This implies that the evolution in the alternate environment
yields more selectively beneficial mutational steps and may lead to genotypic

movement that could not have taken place in the reference environment. The
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improved fitness outcome in the Flipped treatment over the Fixed treatment can be

explained by a greater breadth of search of the adaptive landscape.

Evolution in Frequency Dependent Environments

Although populations can experience environmental change that is exogenous in
origin (as in the Flipped treatment), they can also be the endogenous actors of the
change as well. To model such a situation, we constructed an environment where
resources were finite and consumable (whereas the reference environment had an
infinite abundance of such resources). A small amount of each resource of the
reference environment is continually flowing into the world, but when the resource
is consumed (its associated task is performed) its availability is reduced and the
fitness reward for further performance of its task decreases. In such an
environment, when a phenotype increases in frequency, its relative fitness
decreases as it consumes more of its resources, a situation termed negative
frequency dependence (NFD). To examine the effect of endogenously driven change
we mirrored the structure of the first set of runs. Specifically, we applied the NFD
environment to the middle third (leaving the first and last third as the rigid
reference environment). Populations evolved in the NFD treatment were better
adapted to the reference environment than populations evolved in the Fixed

treatment (Figure 4a and 4b, Mann-Whitney, p=0.0075).

From the results in the Flipped treatment, we know that environmental change can

improve fitness. Was the effect of NFD merely a consequence of environmental
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change that accompanies the resource consumption? To address this, we ran an
additional treatment (Paired Transplant) where a population evolved in the
environment generated by a separate NFD run. Specifically, we first evolved one
population in the NFD treatment, where it affected its resources during the middle
third of the run. We then evolved a second population (the focus of the Paired
Transplant treatment) in the precise changing environment of the first. While this
second population experienced fully the fluctuating resources of the first
population, the latter population was completely unable to affect change in the
environment itself. This isolates the effect of change alone (i.e., without the
feedback between the population and environment). The mean final fitness of the
Paired Transplant runs was found to be significantly lower than the NFD runs (Fig.
4c, Mann-Whitney, p < 0.001), indicating that environmental change alone does not
account for the adaptive benefits conferred by negative frequency dependence. Thus
the interchange between the environment and populations is necessary for the

increased adaptation in the NFD treatment.

As feedback between an evolving population and its environment influences the
degree of adaptation, we next examined whether the exact nature of feedback was
important. We created another treatment where instead of depleting resources in
the environment (as in NFD) organisms increased the abundance of a resource
when its associated task was performed, an example of positive frequency
dependence. This Positive Frequency Dependence (PFD) treatment is also

characterized by feedback between the environment and the population during the
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middle third of the run. Despite the presence of feedback, populations in the PFD
treatment had significantly reduced mean final fitness relative to NFD and a trend
toward reduced mean fitness relative to Fixed treatments (Mann-Whitney, p<0.001
and p=0.08 respectively), implying that the negative environmental feedback of NFD

is necessary for enhanced adaptation.

One reason NFD may facilitate adaptation is that the population can become more
diverse during the middle third of the run; that is, it occupies a broader section of
the adaptive landscape. This increased distribution could yield improved outcome
when the reference is revisited due to greater accessibility of adaptive peaks. As
expected, during the middle third of runs, NFD treatments experienced an increase
in genotype diversity while PDF runs decreased in diversity relative to the Fixed
treatment (Fig 4j, Mann-Whitney, p<.001 and p<.001 respectively). With negative
frequency dependence, prevalent genotypes reduce their own fitness, flattening the
landscape and allowing for otherwise less fit genotypes to coexist. This leads to an

increase in genotypic diversity.

Discussion

We observed that populations in an exogenously changing environment
evolved to a higher fitness relative to populations in unchanging environments. We
surmise that populations became constrained in genotype space during the first

third of their evolutionary run, as only a few mutations in genotypes at this time
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conferred benefits (Fig. 3). Changing the environment for the middle third of the run
serves to liberate the population from the trap of a suboptimal peak. But this raises
the question of why populations in general evolved to better positions in the
reference landscape, as opposed to different positions. There is no immediate a
priori reason why such populations wouldn’t have moved into a section of the

reference landscape with worse evolutionary prospects.

We postulate two reasons why populations spending time in alternative
environments reach higher fitness genotypes after returning to their reference
environment. If the fitness of a peak (its “height”) is proportional to its basin of
attraction (the number of genotypes that the peak can be reached by solely
beneficial mutations), the additional movement in genotype space afforded by
evolving in a different environment, should be beneficial. For instance, if a
population initially evolved to a low peak, movement in the alternative environment
will likely shift the population to a different/better basin of attraction of a higher
peak. But if instead, the population initially evolved to a high peak, taking steps in
the other environment will be less likely to cause the population to leave the larger

basin, and thus it would likely return to the same high peak.

A second mechanism leading to better adaptation relies on association
between fitnesses of the reference and alternative environments. If regions of
higher fitness are shared between the environments (certain genotypes/traits may
be favored in both), traversing the alternative environment may favor traits that are

also beneficial in the reference environment. Prior work (122), finds that many of
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the more complex traits favored in our reference environment (requiring a specific
arrangement of instructions in the genome) could be co-opted by a few mutations to
be beneficial in the alternative environment, and vice versa. However, the benefit of
evolutionary exposure to a rigid, different environment will depend on the nature of
the alternative landscape and the position of the population in genotype space. For
instance, Kashtan et al. found that switching between environments, which shared

common sub-problems, would yield better solutions than unrelated environments.

In light of these findings, we return to Wright's Shifting Balance Theory
(SBT). Wright’s SBT relies on drift and selection; however, these features are
antagonistic, as circumstances that support drift hinder selection (e.g., small
population sizes). Both Fisher and Wright realized that a change in the environment
could move a population off a former peak. This requires environmental sign
epistasis, where the fitness effect of a mutation is beneficial in one environment, but
detrimental in another (86). Here we could imagine a recasting of SBT for a peak
shift in a reference environment. A population is structured into demes, which need
not be small. Suppose the whole population starts on some sub-optimal peak. If
demes experience heterogeneous environments (temporally or spatially), they may
be able to take different paths to different peaks. Migration between demes allows
the highest fitness genotype to spread and fix globally. With such a model, dynamic
environments may allow rapid evolution across rugged landscapes without the

requirement for small subpopulation size.
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In contrast to the previous descriptions of exogenously changed
environments, malleable environments are shaped by organisms and, in turn, can
affect their evolution. In our Negative Frequency Dependent treatment, as
phenotypes utilizing novel resources increased in frequency, they became devalued.
This “flattens” the landscape, as the rich (higher fitness genotypes) get poorer,
which diversifies the population into different niches. This promotes the exploration
of other regions of the genotype space, and indeed, in our Negative Frequency
Dependent treatment, diversity was enhanced during the middle third. In contrast,
in Paired Transplant runs, superior phenotypes found in this population remains
superior, in this situation some rich stay rich, leading to reduced diversity. In the
Paired Transplant of each NFD run, diversity does not increase, as novel phenotypes,
which didn’t occur in the NFD run, can spread and fix. In PNC, an initial solution
feeds back (enriches its environment) to make itself more superior. In this case the
rich get richer and displace other potential phenotypes. Thus certain, malleable
environments, such as NFD, can yield enhanced adaptation by favoring diversity and

innovation.

Incorporating dynamic environments, especially malleable ones, to our
models of evolutionary change may enhance our understanding of adaptation. Other
natural systems that demonstrate negative frequency dependence such as resource
consumption (123, 124) or host-pathogen coevolution (125-127) have stably
diverse populations that may be better able to adapt to their environments. By
incorporating common features of the natural world, namely, the dynamic aspect of

environments and the feedback between populations and their environments, we
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found that populations may be able to adapt faster. This result has implications for
understanding evolution in nature, but may also suggest useful features to
incorporate into evolutionary algorithms to solve engineering problems (128, 129).
For instance, if the fitness function of an evolutionary algorithm discounted current
high fitness solutions, alternative solutions can be more thoroughly explored,
perhaps leading to a better overall outcome. Thus natural and artificial populations
may yield adaptive benefits from exposure to exogenouslg or endogenously altered

environments.
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Chapter 3 Figures:

Figure 1: Adaptive Paths in Hypothetical Changing Landscapes. He we consider
two kinds of environmental change. The population is represented as one or more
spheres that climb on the adaptive landscape. (a) A population initially stuck on a
sub-optimal peak experiences an exogenous environmental shift, resulting in a
different adaptive landscape (illustrated in green). On this new landscape, the
selection allows the population to move to a new position in genotype space. Upon

returning to the original environment, the population can (in this case) climb to a
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new, higher peak. (b) A population initially stuck on a sub-optimal peak experiences
an endogenously malleable environment. Through negative frequency dependence,
the fitness of the genotype at the former peak is depressed (illustrated as a green
depression in the landscape), allowing selection to favor a diversity of new
genotypes (multiple spheres). When the population returns to the original

environment, these diverse genotypes initiate trajectories to multiple fitness peaks.
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Figure 2: Fitness in Static and Exogenously Changed Environments. (a) The
fitness trajectory of the line of descent over the course of a single Fixed treatment
run is shown. The black line denotes the fitness of the genotype in the reference
environment. (b) A fitness trajectory from a single Flipped treatment run is shown,
with the time in the alternate environment during the middle third shaded in blue.
The blue line denotes the fitness of the line of descent in the alternate environment,
whereas the black line gives fitness in the reference environment. Averaging 60
replicates, we next show mean fitness from the Fixed treatment (c) and the Flipped
treatment (d). (e) The final mean fitness from Fixed and Flipped treatments, as
measured in the reference environment. Ribbon and error whiskers denote

standard error of the mean.
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Figure 3: Mutational Distribution at the Environment Transition. We isolated a
single genotype from the line of descent from a Fixed run that existed at update
33,000, which is right before an exogenous shift would have occurred in the Flipped
treatment. All possible single mutations were introduced into this genotype and the
fitness effects in both the reference and alternate environment were measured. In

the lower plot, each point corresponds to a mutation and is positioned according to
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its fitness consequences in each of the environments. Note, mutations neutral in
both environments would fall on the origin. Red and blue points denote mutations
beneficial and detrimental, respectively, in the reference environment. Mutations
that are detrimental in both environments or have a fitness effect less than 5% in
either environment are not shown. In the upper plot, the transformed density
distribution (log(10 * abundance + 1) according to “ndr0” kernel smoothing) of non-

excluded mutations according to fitness in the reference environment.
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Figure 4: Fitness and Diversity in Endogenously Changed Environments.
Above, mean fitness of the line of descent from of 60 replicates of runs in the Fixed,
Negative Frequency Dependence, Paired Transplant, and Positive Frequency
Dependence treatments, and their final mean fitness as a bar plot. Below, the mean
genotypic diversity (measured by Shannon Entropy) of the populations over time
for the same treatments, and the mean diversity value at Update 50,000 (the
midpoint of the run). Blue shading denotes exposure to a different environment(s)

and ribbons and error whiskers denote standard error of the mean.
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Supplemental Methods

Environments:

Reference environment the resources associated with the tasks Not, Nand, And, Nor,
Xor and Equals are present in essentially infinite amounts, leading to no measurable
depletion when the associated task is performed. In the same manner, the alternate
environment (the middle third of the Flipped treatment) only contains the resources
associated with the tasks: OrNot, Or, and AndNot. The reward for each task is only
rewarded the first time an organism performs it and is equal to the complexity
(number of nand instuctions needed to compose) of the task. During the middle
third of frequency dependent runs, the rewarded resources are the same as the
reference, however, the resources have an inflow (100 units per update) and
outflow rates (.01 proportion of concentration per update). The inflow and outflow
rates are determined such that if an organism is the only one capable of performing
a task, if will receive the same reward as the reference environment. The reward of
each task is proportional to the resource concentration in a Michaelis-Menten
manner. See supplemental configuration files for specifics. For the middle third of
the Negative Frequency Dependence runs, performing a task consumed one unit of
the resource, whereas in the Positive Frequency Dependence runs, performing a task
increased the abundance of the resource associated with the task by 1. During the
middle third of the Paired Transplant treatment, the resource abundance of an
associated Negative Frequency Dependence was sampled every 1000 updates, and

that environment was imposed on the evolving transplant run.
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