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Vegetation modifies Earth’s climate by controlling the fluxes of energy, carbon, and water.

Of critical importance is a better understanding of how vegetation responses to climate

change will feedback on climate. Observations show that plant leaf traits respond to elevated

carbon dioxide concentrations. These leaf trait responses have the potential to modify plant

functioning and competitive dynamics, and could therefore alter carbon cycling and surface

energy fluxes with implications for regional and global climate. Yet the climate impacts of

changes in leaf structural traits — such as increases in leaf mass per area and leaf carbon

to nitrogen ratio — in response to elevated carbon dioxide are not included in most climate

projections and remain to be tested and quantified.

Here we show that one leaf trait response to elevated carbon dioxide — a one-third

increase in leaf mass per area — significantly impacts climate and carbon cycling in Earth

system model simulations. Higher leaf mass per area enhances warming in response to

elevated carbon dioxide by reducing the increase in leaf area, which lowers carbon uptake

and evapotranspirative cooling by plants and leads to enhanced solar radiation absorbed at

the Earth’s surface. Our results suggest that leaf trait responses to carbon dioxide should

be considered in climate projections and provide additional motivation for ecological and

physiological experiments that improve our mechanistic understanding of plant responses to



environment.

Tropical forests exert extensive control over global energy, carbon, and water fluxes and

thus play a critical role in determining future climate. Using an ensemble of demographic

vegetation model simulations we quantify the influence of two leaf trait responses to elevated

carbon dioxide — increases in leaf mass per area and leaf carbon to nitrogen ratio — on

tropical forest functioning and competitive dynamics. We find that consideration of these

leaf trait responses reduces projected carbon uptake and evapotranspirative cooling when

plant type abundance is held invariant with time. However, given that more competitively

advantageous leaf trait responses also maintain higher levels of plant productivity and evap-

otranspiration, including changes in plant type abundance may mitigate these decreases in

ecosystem functioning. Models that explicitly represent competition between plants and leaf

responses to elevated carbon dioxide are needed to capture these influences on tropical forest

functioning and large-scale climate.

Lastly, we improve the simulation of present-day tropical forest functioning and structure

in a demographic vegetation model by including a gradient of leaf mass per area with canopy

depth, following observations. By benchmarking the modified model’s performance against

observations at a tropical forest test site across nearly 300 plausible plant trait parameteriza-

tions, we identify high-performing parameter sets and areas for further model development.
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Chapter 1

INTRODUCTION

This dissertation examines the interaction between vegetation and climate. That plants

respond to environmental drivers is widely appreciated. Nearly everyone has noticed plants

responding to their environment, whether it is flowers blooming with the coming of spring or

grass browning at the end of a dry summer. That plants also strongly influence large-scale

climate — by modifying the fluxes of energy, carbon, and water at the Earth’s surface [e.g.,

Bonan, 2008] — is less widely considered. The cyclical nature of the plant-climate relation-

ship means that plant responses to environmental change have the potential to feedback on,

and alter, large-scale climate.

Feedbacks between vegetation and climate change are of critical importance to future

climate projections but remain highly uncertain [e.g., Friedlingstein et al., 2014]. Rising at-

mospheric carbon dioxide concentrations, due to human activities such as fossil fuel burning,

are causing climate change by enhancing radiative warming of the Earth’s surface. Climate

change policy, mitigation, and adaptation strategies rely on Earth system model projec-

tions of 21st century climate. However, these projections are highly variable. Even for the

same carbon dioxide emissions scenario, there is large uncertainty across these models about

the amount of carbon dioxide that will remain in the atmosphere and, thus, the resulting

amount of expected warming. This uncertainty stems in large part from di�erences in how

these models represent plants and their responses to changes in environmental drivers, such

as rising atmospheric carbon dioxide concentrations. Identifying which plant responses to

environmental drivers matter most for future climate and how to accurately include them in

Earth system models can help reduce this uncertainty.
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Incorporating observations of plant trait distributions and their responses to environ-

mental drivers into Earth system models has been proposed as a way to improve predictions

of plant influences on climate [e.g., Kattge et al., 2011, Verheijen et al., 2013, 2015, Reich

et al., 2014, Fisher et al., 2015]. Previous studies have found that the responses of leaf-

level rates of carbon and water fluxes (i.e., photosynthesis and stomatal conductance) to

elevated carbon dioxide have profound e�ects on large-scale climate [e.g., Sellers et al., 1996,

Pu and Dickinson, 2012]. Other studies have shown that changes in climate can shift the

relative abundance of di�erent plant types within an ecosystem with implications for overall

ecosystem functioning and, thus, large-scale climate [e.g., Cox et al., 2000, Levine et al.,

2016].

The response of leaf structural traits to elevated carbon dioxide could similarly influ-

ence ecosystem functioning and large-scale climate. However, to date, the potential climate

impacts of these leaf structural trait responses are not fully understood. Among the most

widely observed changes in leaf structural traits in response to elevated carbon dioxide are

increases in the ratios of leaf mass to area and leaf carbon to nitrogen. These leaf trait re-

sponses have been observed in a wide range of plant types across biomes and continents [e.g.,

Poorter et al., 2009, Ainsworth and Long, 2005, Medlyn et al., 2015] and could therefore have

wide-ranging influences on plant functioning and climate. Leaf structural trait changes could

directly alter climate by modifying leaf-level carbon and water fluxes, as well as leaf area,

which provides the surface area over which these leaf-level processes are summed. These leaf

structural changes may also indirectly modify climate. Changes in plant functioning and leaf

area could impact competition among plants for light, which may influence the relative abun-

dance of di�erent plant types. Since plant types di�er in their rates of functioning, changes

in the relative abundance of plant types could alter the influence of plants on climate.

Despite the wide observance of changes in leaf structural traits in response to elevated

carbon dioxide, the influence of these leaf dynamics on climate is not included in many

climate projections and remains to be tested and quantified. This dissertation contributes to

this line of research by investigating how the responses of three leaf structural traits — leaf
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mass per area, leaf carbon to nitrogen ratio, and leaf nitrogen per area — to elevated carbon

dioxide impact ecosystems and large-scale climate. We consider both the direct and indirect

impacts on ecosystems and climate using Earth system model and demographic vegetation

model simulations.

The remainder of this introductory chapter provides background information on how

plants influence climate; how vegetation responses to elevated carbon dioxide are expected

to alter the influence of plants on climate; and the three leaf trait responses examined in this

dissertation and their potential e�ect on climate. This chapter also discusses the tools we

use to study the influences of leaf trait changes on ecosystems and climate.

1.1 Plant influences on climate

Plants influence climate by modifying the fluxes of carbon, water, and energy at the

Earth’s surface. This dissertation focuses on two ways in which plants control these fluxes:

the uptake of carbon dioxide from the atmosphere through photosynthesis (net primary

productivity) and the cooling of the Earth’s surface through evapotranspiration. The re-

mainder of this chapter may also refer to these two processes (net primary productivity and

evapotranspiration) as ecosystem functioning.

1.1.1 Carbon uptake

Plants remove carbon dioxide from the atmosphere through the process of photosynthesis.

Some of the carbon captured through photosynthesis is stored as biomass, some is respired

back into the atmosphere as plants use sugars to fuel their metabolic processes. The amount

of carbon dioxide captured during photosynthesis minus the amount respired back into the

atmosphere is referred to as net primary productivity. We use net primary productivity in

this dissertation to quantify the amount of carbon dioxide vegetation removes from the at-

mosphere. Greater net primary productivity means that plants remove more carbon dioxide

from the atmosphere, which reduces radiative warming of the Earth and thus has a cooling

e�ect.
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1.1.2 Evapotranspirative cooling

Evapotranspiration is the flux of water from the Earth’s surface to the atmosphere.

Evapotranspiration is comprised of three terms: transpiration, the evaporation of water

from the surface of leaves, and the evaporation of soil water. Transpiration is the biologically

controlled flux of water from soil through plants into the atmosphere. It occurs as plants open

pores on their leaves to allow carbon dioxide in for photosynthesis, simultaneously allowing

water vapor inside the leaf to move through these pores into the atmosphere. Vegetation also

exerts control over the amount of water evaporating from the surface of leaves, as evaporation

from leaf surfaces depends on the amount of leaf area present. Evapotranspiration of water

removes energy from the Earth’s surface and therefore has a cooling e�ect.

1.2 Scaling from leaf to ecosystem

Scaling leaf-level photosynthesis and transpiration to ecosystem measures of net primary

productivity and evapotranspiration requires information about the total amount of leaves

present and the relative abundance of di�erent plant types. We use leaf area index as a

measure of the total amount of leaves present. Leaf area index is defined as the total amount

of leaf area covering a given area of ground (m2 leaf area / m2 ground area). Greater leaf

area index enhances the surface area over which photosynthesis and transpiration occur and

thus has the potential to increase ecosystem carbon uptake and evapotranspirative cooling.

The capacity for photosynthesis and transpiration varies among plant types. Therefore,

information about the relative abundance of plant types is also necessary to scale photosyn-

thesis and transpiration to the ecosystem and global scales.

1.3 Expected plant responses to elevated carbon dioxide

Observations suggest that plant functioning is sensitive to atmospheric carbon dioxide

concentrations. At the leaf-level, elevated carbon dioxide is expected to stimulate photo-

synthesis and reduce transpiration, as an abundance of carbon allows plants to close their
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leaf pores more often and conserve water. Greater net primary productivity in response to

elevated carbon dioxide is expected to enhance leaf area index. Higher leaf area index could

further enhance carbon uptake and o�set leaf-level reductions in transpiration by increasing

the surface area over which photosynthesis and transpiration occur.

The sensitivity of plant functioning to elevated carbon dioxide varies among plant types.

This variation in responses could mean that elevated carbon dioxide enhances leaf area and

biomass more in some plant types than in others. As these properties influence the ability of

plants to compete for limiting resources such as light, changes in leaf area and biomass have

the potential to alter competitive dynamics between plants and, thus, the relative abundance

of di�erent plant types.

1.4 Expected climate impacts of plant responses to elevated carbon dioxide

Changes in carbon uptake and evapotranspiration due to elevated atmospheric carbon

dioxide concentrations have the potential to alter the influence of vegetation on Earth’s

climate. Elevated carbon dioxide is expected to enhance net primary productivity. This

response would remove more carbon dioxide from the atmosphere and have a cooling e�ect.

At the same time, elevated carbon dioxide is expected to reduce evapotranspiration, which

would warm the Earth’s surface. However, the magnitude, and even the sign, of changes

in net primary productivity and evapotranspiration in response to elevated carbon dioxide

remains uncertain. These ecosystem level measures of plant functioning are influenced by

many smaller scale processes, each of which may also respond to changing environmental

drivers. A better understanding of which plant responses to climate matter for net primary

productivity and evapotranspiration, and how to include these responses in Earth system

models, is urgently needed to improve projections of future climate. Changes in leaf struc-

tural traits in response to elevated carbon dioxide are one such plant response that may

influence ecosystem functioning, and thus feedback on climate, but their influence remains

poorly understood.
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1.5 Leaf trait dynamics

Observations show that plants change structural aspects of their leaves in response to el-

evated carbon dioxide concentrations. These leaf trait changes have the potential to directly

alter climate by modifying carbon uptake (net primary productivity) and evapotranspira-

tive cooling. They could also indirectly influence climate by altering competitive dynamics

between plants and, thus, the relative abundance of di�erent plant types.

This dissertation focuses on the responses of three leaf traits: leaf mass per area, leaf

carbon to nitrogen ratio, and leaf nitrogen per area. Leaf mass per area describes the carbon

cost of building a unit of leaf area (g C / m2 leaf area). This trait can also be referred to

by its inverse, specific leaf area (m2 leaf area / g C). Leaf carbon to nitrogen ratio describes

the mass-based amount of carbon relative to nitrogen within the leaf (g C / g N). Together

these two leaf traits determine the amount of nitrogen per leaf area (g N / m2 leaf area) as

follows:

Narea = LMA

C :Nleaf
(1.1)

where Narea is the leaf nitrogen per area (g N / m2 leaf), LMA is the leaf mass per area (g

C / m2 leaf), and C:Nleaf is the leaf carbon to nitrogen ratio (g C / g N). As nitrogen is a

critical component of photosynthetic enzymes, nitrogen per area is an important determinant

of photosynthetic capacity per leaf area.

Observations suggest that leaf mass per area and leaf carbon to nitrogen ratio increase

by as much as one third in response to a doubling of carbon dioxide in a wide range of C3

plants across ecosystems and continents. The leading hypothesis for why these leaf trait

changes occur in response to elevated carbon dioxide is that the abundance of carbon causes

non-structural carbohydrates (i.e., carbon) to accumulate in leaves as other resources, such

as nitrogen, begin to limit plant growth.
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1.6 Potential climate impacts of leaf trait dynamics

1.6.1 Direct influences

The direct influence of these leaf trait responses to elevated carbon dioxide on ecosystem

functioning and climate is challenging to predict as they present trade-o�s between enhanc-

ing leaf area and increasing photosynthetic rates per leaf area. Higher leaf carbon to nitrogen

ratio reduces leaf nitrogen per area following Equation 1.1 and thus reduces photosynthetic

capacity per leaf area in the absence of other leaf changes. Such lowering of photosynthetic

capacity per leaf area has the potential to reduce net primary productivity and evapotran-

spiration. However, greater leaf carbon to nitrogen ratio also makes leaf area less expensive

in terms of nitrogen to build. Making leaves cheaper to build in terms of nitrogen could

allow plants to enhance leaf area under nitrogen limitation of growth. Higher leaf area could

enhance net primary productivity and evapotranspiration. Whether increasing leaf carbon

to nitrogen ratio will enhance ecosystem functioning by increasing leaf area, or diminish

functioning by reducing photosynthesis per leaf area is not immediately apparent.

Increasing leaf mass per area also presents trade-o�s for plant functioning that make

predicting its influence on ecosystems and climate challenging. Greater leaf mass per area

makes leaf area more expensive in terms of carbon for plants to build. As such, consideration

of this leaf trait change has the potential to reduce the expected increase in leaf area in

response to elevated carbon dioxide. However, greater leaf mass per area also increases

the amount of nitrogen per leaf area (following Equation 1.1) and, thus, could enhance

photosynthetic capacity per leaf area in the absence of other leaf trait changes. Whether leaf

mass per area will diminish net primary productivity and evapotranspiration by reducing

leaf area, or increase these functions by enhancing photosynthesis per area is uncertain prior

to experimental testing.
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1.6.2 Indirect influences

Leaf trait responses to elevated carbon dioxide could also indirectly alter ecosystem func-

tioning and climate by modifying plant competitive dynamics, and thus the relative abun-

dance of di�erent plant types. Leaf area and biomass allow plants to shade neighboring

plants and, thus, exert control over competition for light in the canopy. Changes in leaf

mass per area and leaf carbon to nitrogen ratio could alter leaf area and biomass (through

their influence on net primary productivity) as described above. The magnitude of these leaf

trait changes in response to elevated carbon dioxide has been observed to di�er by species

and could therefore di�erentially alter competitive ability and, thus, modify the relative

abundance of di�erent plant types. As plant types di�er in their capacities for photosynthe-

sis and transpiration such changes in plant type abundance could modify the influences of

vegetation on ecosystem functioning and climate.

1.7 Tools for studying plant influences on climate

This dissertation uses Earth system model and demographic vegetation model simu-

lations to test how leaf trait responses to elevated carbon dioxide directly and indirectly

impact ecosystems and large-scale climate. Observations of plant responses to elevated car-

bon dioxide reported in the literature inform the leaf trait changes we make in our modeling

experiments.

1.7.1 Earth system model simulations

We use Earth system model simulations to quantify the direct influences of leaf trait

changes on global vegetation and climate. The National Center for Atmospheric Research’s

Community Earth System Model, used herein, simulates global land, atmosphere, ocean,

sea ice, and carbon cycling processes, as well as the coupling between these processes. The

land component of the model includes plants whose properties and functioning have the

potential to influence simulated climate by modifying the fluxes of energy, water, and car-
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bon between the Earth’s surface and the atmosphere. Broad plant functional types (e.g.,

broadleaf evergreen tropical trees, needleleaf evergreen temperate trees) represent variation

across plant types and di�er in properties including leaf mass per area, leaf carbon to ni-

trogen ratio, and maximum photosynthetic rates. In the model, photosynthesis responds to

environmental conditions (e.g., carbon dioxide concentration, temperature, water availabil-

ity, and sunlight) and net primary productivity controls the amount of plant growth and leaf

area simulated. As leaf mass per area and leaf carbon to nitrogen are used to calculate leaf

area and photosynthetic rates, changes in these leaf traits have the potential to alter leaf

area, carbon uptake, and evapotranspiration and, thus, influence climate in our simulations.

As our Earth system model simulations hold the spatial distribution of plant functional types

invariant with time, these experiments test the direct influence of changes in leaf traits on

ecosystems and climate.

1.7.2 Demographic vegetation model simulations

We use demographic vegetation model simulations to investigate how leaf trait responses

to elevated carbon dioxide alter plant competitive dynamics in a tropical forest ecosystem.

Specifically, we use the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)

embedded within the National Center for Atmospheric Research’s Community Land Model.

This model mechanistically simulates ecological dynamics and ecosystem assembly through

processes including plant growth, competition for light and water, recovery from disturbance,

reproduction, mortality, and recruitment. Height structured vegetation is explicitly repre-

sented, allowing us to test how leaf trait changes influence competition for light. The model

also tracks the leaf area and biomass of competing plant types, which we use to quantify

changes in competitive ability and improve our understanding of potential shifts in plant

type abundance.
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1.7.3 Observations

Observations from the literature inform the leaf responses to carbon dioxide that we test

in our modeling experiments. These observations come from manipulation experiments in

which plants are treated with elevated levels of carbon dioxide in greenhouses, outdoor cham-

bers, and ecosystem-scale Free-Air Carbon Dioxide Enrichment experiments. Manipulation

experiments have been used to measure many plant responses including those of photosyn-

thesis, transpiration, biomass, leaf area index, and leaf traits. We choose to test changes in

leaf structural traits that are observed in many di�erent plant types across ecosystems and

continents, as these are likely to have large-scale impacts on ecosystems and climate.

1.8 Dissertation Structure

Here we quantify the influence of leaf trait responses to elevated carbon dioxide on large-

scale climate using Earth system model experiments (Chapter 2) and on tropical forest func-

tioning and ecological dynamics using demographic vegetation model experiments (Chapter

3). Prior to using the demographic vegetation model to test the impacts of leaf trait re-

sponses to elevated carbon dioxide, we improved its ability to simulate present-day tropical

forest structure and functioning by modifying the model to include a within-canopy gradient

of leaf mass per area, following observations (Chapter 4).

1.9 Future Work

This work begins to develop a hierarchy of plant trait responses that are most important

to consider in projections of future ecosystems and climate. There are many other plant

trait responses whose impacts should be tested and quantified. Furthermore, our findings

provide additional motivation for physiological and ecological experiments that improve our

understanding of plant responses to environmental drivers and the underlying mechanisms.
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Chapter 2

LEAF TRAIT ACCLIMATION AMPLIFIES SIMULATED
CLIMATE WARMING IN RESPONSE TO ELEVATED

CARBON DIOXIDE

Marlies Kovenock1 and Abigail L.S. Swann2,1

1Department of Biology, University of Washington, Seattle, WA; 2Department of Atmo-

spheric Sciences, University of Washington, Seattle, WA.

Citation: Kovenock, M., and Swann, A. L. S. (2018). Leaf trait acclimation amplifies

simulated climate warming in response to elevated carbon dioxide. Global Biogeochemical

Cycles, 32, 1437-1448. https://doi.org/10.1029/2018GB005883

Key Points:

• Acclimation of leaf traits to elevated CO2 significantly altered global climate and carbon

cycling in Earth system model experiments

• Higher carbon cost of building leaf area under elevated CO2 o�sets gains in leaf area,

productivity, and evapotranspiration

• Results identify an urgent need to collect observations to constrain uncertainty in plant

trait responses to a changing climate

Supporting Information referenced in this chapter can be found in Appendix A.
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2.1 Abstract

Vegetation modifies Earth’s climate by controlling the fluxes of energy, carbon, and wa-

ter. Of critical importance is a better understanding of how vegetation responses to climate

change will feedback on climate. Observations show that plant traits respond to elevated

carbon dioxide concentrations. These plant trait acclimations can alter leaf area and, thus,

productivity and surface energy fluxes. Yet the climate impacts of plant structural trait ac-

climations remain to be tested and quantified. Here we show that one leaf trait acclimation

in response to elevated carbon dioxide — a one-third increase in leaf mass per area — signif-

icantly impacts climate and carbon cycling in Earth system model experiments. Global net

primary productivity decreases (-5.8 PgC/year, 95% confidence interval [CI95%] -5.5 to -6.0),

representing a decreased carbon dioxide sink of similar magnitude to current annual fossil

fuel emissions (8 PgC/year). Additional anomalous terrestrial warming (+0.3 ¶C globally,

CI95% 0.2 to 0.4), especially of the northern extratropics (+0.4 ¶C, CI95% 0.2 to 0.5), results

from reduced evapotranspiration and enhanced absorption of solar radiation at the surface.

Leaf trait acclimation drives declines in productivity and evapotranspiration by reducing leaf

area growth in response to elevated carbon dioxide, as a one-third increase in leaf mass per

area raises the cost of building leaf area and productivity fails to fully compensate. Our

results suggest that plant trait acclimations, such as changing leaf mass per area, should

be considered in climate projections and provide additional motivation for ecological and

physiological experiments that determine plant responses to environment.

2.2 Introduction

Feedbacks between vegetation and climate change are of critical importance to future

climate projections but remain highly uncertain [Friedlingstein et al., 2014, Pu and Dickin-

son, 2012, Arora et al., 2013, Lovenduski and Bonan, 2017]. Vegetation strongly influences

the Earth’s climate by controlling the fluxes of carbon, water, and energy between the land

surface and the atmosphere [Bonan, 2008]. Changes in biologically mediated carbon fluxes,



13

such as productivity and respiration, can alter the concentration of carbon dioxide (CO2)

in the atmosphere, leading to warming of the Earth due to the radiative e�ects of CO2.

Given that these radiative e�ects are driven by biological sources of carbon, we refer to the

associated temperature increase as biogeochemical warming. Since the start of the industrial

era, Earth’s vegetation has removed about 30% of anthropogenic CO2 emissions from the

atmosphere [Ciais et al., 2013]. Changes in vegetation can also induce warming by altering

water and energy fluxes through their influence on Earth surface properties such as evapo-

transpiration, albedo, and roughness. We refer to increases in temperature due to alterations

of the surface energy balance as biogeophysical warming. Transpiration, the biologically con-

trolled flux of water from soil through plants into the atmosphere, makes up an estimated

60% of current terrestrial water fluxes [Wei et al., 2017], which physically cool the land sur-

face. Rising CO2 concentrations are expected to have profound and wide reaching e�ects

on vegetation functioning and growth, with important implications for global carbon uptake

and evapotranspirative cooling. Yet large uncertainty exists in the magnitude, and even the

sign, of vegetation feedbacks on climate change [Friedlingstein et al., 2014, Pu and Dickin-

son, 2012, Arora et al., 2013, Lovenduski and Bonan, 2017]. This uncertainty stems in large

part from the challenge of representing complex and diverse life-forms at the global scale in

the Earth system models used to project future climate [Lovenduski and Bonan, 2017]. Key

biological processes must be missing or poorly constrained, but we lack a clear understanding

of which processes are essential for predicting climate and carbon cycling changes.

Incorporating observations of plant trait distributions and their responses to environmen-

tal drivers into Earth system models is proposed as a way to improve predictions of ecosystem

functioning [Butler et al., 2017, Wright et al., 2004, Kattge and Knorr, 2007, Kattge et al.,

2011, Van Bodegom et al., 2012, Verheijen et al., 2013, 2015, Reichstein et al., 2014, Fisher

et al., 2015, Pavlick et al., 2013, Scheiter et al., 2013, Reich et al., 2014]. Trait databases

and studies that aggregate observations across species are beginning to make it possible to

characterize current plant trait distributions and their responses to environmental drivers at

the global scale [e.g., Wright et al., 2004, Niinemets, 2001, Kattge and Knorr, 2007, Kattge
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et al., 2011, Van Bodegom et al., 2012, Verheijen et al., 2013]. However, the biogeographic

relationship between traits and climate across ecosystems, caused primarily by environmen-

tal filtering, does not tell us about short-term responses to changes in climate within an

ecosystem, caused by acclimation [Van Bodegom et al., 2012, Verheijen et al., 2013]. The cli-

mate impacts of these two distinct responses, environmental filtering and acclimation, have

been tested in previous work.

Studies focused on environmental filtering have shown that allowing traits to vary tempo-

rally based on observed spatial relationships between these traits and environmental drivers

(i.e., space-for-time substitution) has carbon uptake and climate implications [Verheijen

et al., 2013, 2015]. This approach estimates the integrated outcome of numerous biologi-

cal responses to climate [e.g., adaptation, changes in species distribution, and acclimation;

Van Bodegom et al., 2012, Verheijen et al., 2015]. However, it does not separate the impacts

of individual biological responses (e.g., acclimation, adaptation, and species turnover) from

one another and therefore cannot mechanistically explain the underlying causes of trait vari-

ation [Verheijen et al., 2013]. Further, it is uncertain if space-for-time relationships used in

the environmental filtering approach will hold under future climate in part because acclima-

tion of traits may alter these trait-environment relationships [Verheijen et al., 2015, Fisher

et al., 2015]. Acclimation responses can di�er in magnitude and even direction from trait

responses to environmental filtering [e.g., Verheijen et al., 2013, Poorter et al., 2009].

Other studies have directly investigated the influence of some trait acclimations to tem-

perature and elevated CO2 (e.g., photosynthetic and stomatal conductance rates) and found

profound e�ects on large-scale climate and carbon cycling [Sellers et al., 1996, Betts et al.,

1997, Cao et al., 2010, Pu and Dickinson, 2012, Lombardozzi et al., 2015, Smith et al., 2017].

Acclimation occurs within the same individual plant and on short-time scales (e.g., a growing

season), making it immediately relevant for 21st century climate. Prior studies have focused

on rate traits and have not considered the potential climate feedbacks of plant structural

traits. Trait responses to climate change that alter plant structure could feedback on climate

and carbon cycling by modifying the surface areas (e.g., leaf area) over which the rates of
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photosynthesis and stomatal conductance are summed.

Among the most widely observed plant structural trait responses to elevated CO2 is an

increase in leaf mass per area (g leaf carbon/m2 leaf area). Leaf mass per area represents

the carbon cost of building leaf area and is a quantity commonly used in Earth system

models to convert from carbon available for leaf growth to leaf area. Field and greenhouse

manipulation experiments show that leaf mass per area increases by as much as one third in

response to elevated CO2 in a wide range of C3 plants, including trees, shrubs, and crops,

across a variety of ecosystems on many continents [Medlyn et al., 1999, 2015, Ainsworth and

Long, 2005, Poorter et al., 2009]. Acclimation to warming temperatures could potentially

o�set leaf mass per area increases due to elevated CO2 but is limited to cold regions such

as the boreal and arctic [Poorter et al., 2009]. Most Earth system models project increases

in leaf area in response to CO2 over the 21st century [Mahowald et al., 2016, Swann et al.,

2016], which are expected to negatively feedback on climate change by promoting carbon

uptake from the atmosphere and evapotranspirative cooling over land [Betts et al., 1997,

Bounoua et al., 2010, Pu and Dickinson, 2012]. However, few models capture the decreased

sensitivity of leaf area index to increases in leaf biomass at elevated CO2 because they fail

to represent the concomitant increase in leaf mass per area [De Kauwe et al., 2014, Medlyn

et al., 2015].

Here we quantify the potential extent of climate and carbon cycling impacts of leaf

mass per area acclimation to rising CO2 using a series of Community Earth System Model

coupled atmosphere-land-carbon cycle simulations (supporting information Table A.1). In

the model, vegetation responds to climate by changing carbon assimilation, stomatal conduc-

tance, biomass, and leaf area. These vegetation responses can induce biogeophysical warming

through feedbacks on the surface energy balance and atmosphere via changes in albedo, evap-

otranspiration, and surface roughness. We quantify the additional climate impacts, beyond

those of elevated CO2, of leaf mass per area acclimation to CO2 as the di�erence between

a leaf acclimation experiment and a climate change control simulation (CCLMA-CC). As

atmospheric CO2 concentration is held invariant over time in all simulations, biogeochemi-
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cal warming is estimated from the di�erence in net primary productivity. The level of leaf

acclimation, a one-third increase in leaf mass per area in C3 plants, was estimated from

the upper bound of acclimation to a doubling of CO2 (355 to 710 ppm) from Poorter et al.

[2009]’s meta-analysis of approximately 200 studies, which provides the most plant-type-

specific CO2 acclimation relationships for leaf mass per area currently available. The control

simulation (CTRL) provides a reference for whether the e�ects of leaf acclimation at elevated

CO2 (CCLMA-CC) moderate (e.g., reduce the increase in leaf area) or enhance (e.g., further

increase leaf area) changes due to elevated CO2 alone (CC-CTRL). We also estimate the

e�ects of leaf mass per area acclimation to temperature (TCCLMA-CC) and the historical

influence of changing leaf mass per area (LMA-CTRL). Maximum photosynthetic rates (e.g.,

Vcmax25 and Jmax25) are the same across these simulations (CCLMA, CC, CTRL, TCCLMA,

and LMA) before acclimating to temperature following Kattge and Knorr [2007]. We test

the sensitivity of our results to increasing maximum photosynthetic rates concurrently with

leaf mass per area (CCLMAPS).

2.3 Materials and Methods

This study used the Community Earth System Model version 1.3beta11 with interactive

land and biogeochemistry [CLM4.5-BGC; Oleson et al., 2013], atmosphere [CAM5; Neale

et al., 2012], mixed-layer ocean [Neale et al., 2012], and sea ice [CICE4; Hunke and Lipscomb,

2010] models. Simulations that couple the land and atmosphere, such as performed here,

are required to quantify the climate impacts of changes in the land surface, as they capture

the atmospheric response and land-atmosphere feedbacks. To allow for ocean heat transport

and atmosphere-ocean interaction while retaining computational economy, we used a mixed-

layer ocean model with prescribed lateral heat fluxes rather than a more computationally

expensive full dynamical ocean model. We ran the simulations with a spatial resolution of

approximately 1.9¶ by 2.5¶ gridcells. The biogeochemistry model represents a full terrestrial

carbon cycle with growth, mortality, and decay — and hence leaf area and carbon storage

in aboveground and belowground pools. The distribution of 15 plant functional types was
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prescribed by a map of present day vegetation and held invariable; however, under unsuitable

growing conditions, plants diminish to a minimum leaf area.

The climate change control simulation (CC; 2xCO2, no leaf acclimation) represents the

mean climate state when atmospheric CO2 is fixed at 710 ppm. The CO2 leaf acclimation

experiment (CCLMA; 2xCO2, +1/3 leaf mass per area) is identical to the climate change

control simulation (CC) except that it includes a plausible extent of leaf mass per area

acclimation to CO2 in all C3 plants [Poorter et al., 2009]. (See Supporting Text A.1.2 for

details.) A second experiment (TCCLMA; 2xCO2, no change in leaf mass per area in boreal

and arctic biomes, +1/3 leaf mass per area in all other C3 plants) tests the impact of leaf

acclimation to both CO2 and temperature [Poorter et al., 2009]. (See Supporting Text A.1.3

and A.2.1 for further details.) Leaf mass per area acclimation to CO2 and temperature were

estimated using the most plant-type-specific acclimation relationships currently available

[Poorter et al., 2009]. A third experiment (CCLMAPS; 2xCO2, +1/3 leaf mass per area, +1/3

maximum photosynthetic rates) tests the sensitivity of our results to increasing maximum

photosynthetic rates and quantifies the increase in maximum photosynthetic rates required

to o�set the biogeophysical warming due CO2 acclimation of leaf mass per area. All elevated

CO2 simulations (CC, CCLMA, TCCLMA, and CCLMAPS) include the e�ects of CO2

radiative forcing, CO2 fertilization, and gains in water use e�ciency. A fourth experiment

(LMA; 1xCO2, +1/3 leaf mass per area) tests the sensitivity of historical climate to increased

leaf mass per area. A separate control simulation (CTRL; 1xCO2, no leaf acclimation)

represents the equilibrium climate state when CO2 concentration is fixed at 355 ppm, a

common baseline for Earth system model simulations.

We held maximum photosynthetic rates (Vcmax25, Jmax25, and Tp25) constant, so that

they did not di�er between the control (CC and CTRL) and CCLMA, TCCLMA, and LMA

simulations prior to temperature acclimation. As the default model calculates maximum

photosynthetic rates from leaf mass per area, we modified this relationship so that these

rates did not di�er (except CCLMAPS). In our simulations a decrease in leaf nitrogen con-

centration, which can also be thought of as an increase in leaf carbon-to-nitrogen ratio
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(gC/gN) and a reduction in leaf nutrition, is coupled to the increase in leaf mass per area

(except CCLMAPS) to maintain maximum photosynthetic rates at control (CTRL and CC)

levels. (See Supporting Text A.1.2 for details.) This represents a conservative estimate of

acclimation of maximum photosynthetic rates to CO2, as evidence supports a decrease in

these rates in response to elevated CO2 [Ainsworth and Long, 2005, Leakey et al., 2012b,

Smith and Dukes, 2013, Rogers et al., 2017]. The decrease in leaf nitrogen concentration

with elevated CO2 is also supported by observations [reviewed in Ainsworth and Long, 2005,

Leakey et al., 2012b, Way et al., 2015]. All simulations include temperature acclimation of

maximum photosynthetic rates [Kattge and Knorr, 2007, Oleson et al., 2013]. The maximum

photosynthetic rate values of all simulations were within the observed range used to generate

the empirical temperature acclimation function, and acclimation was not allowed outside of

the range of temperature values used to generate the empirical function.

All simulations were integrated for 85 years, except the CCLMAPS experiment was in-

tegrated for 44 years. All experiment simulations were initiated by branching from the

beginning of year 56 of the control run (CTRL). Temperature, leaf area index, net and gross

primary productivity, evapotranspiration, and live carbon pools (leaf, live stem, live root,

and fine root) reached equilibrium before year 30 in each simulation. The first 30 years of

each simulation were discarded to allow for spin up. The remaining years were used in our

analysis and represent many samples of the equilibrium state. Model results are available

through the University of Washington Libraries ResearchWorks digital repository. The URL

for the data in the ResearchWorks system is

https://digital.lib.washington.edu/researchworks/handle/1773/41856.

We use annual mean changes in biogeophysical warming and net primary productivity

to quantify the upper bound of the potential climate and carbon cycling influences of leaf

mass per area acclimation. We tested for di�erences between simulations in the annual mean

at the global, latitude band, zonal mean (average for a given latitude), and gridcell scales

using bootstrap methods (n = 50,000; Supporting Text A.1.4) with model years as the unit

of replication. Spatial relationships between variables at the gridcell scale were tested using
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simple, multiple, and stepwise linear regression methods on annual mean values. Di�erences

and relationships were considered significant at the 95% level. (See Supporting Text A.1.4

for details.) Latitude bands were defined as southern extratropics (60¶S to 20¶S), tropics

(20¶S to 20¶N), northern extratropics (20¶N to 65¶N), and northern high latitudes (65¶N to

90¶N).

Biogeochemical warming was calculated by converting the change in net primary pro-

ductivity to a change in atmospheric CO2 level (2 PgC to 1 ppm). After accounting for

compensatory carbon uptake by the ocean of 60-85% [Archer et al., 2009, Broecker et al.,

1979], we converted the change in atmospheric CO2 concentration to a radiative forcing in

watt per square meter following the methods of Hansen et al. [1998] and Myhre et al. [1998].

The resulting global temperature change was then estimated from the forcing using a range

of climate sensitivities (temperature change due to a doubling of CO2) from 1.5 to 4.5 ¶C.

2.4 Results

2.4.1 Biogeophysical Warming

Acclimation of leaf mass per area to elevated CO2 induced significant biogeophysical

warming in addition to the warming caused by the radiative e�ects of a doubling of CO2 in

Earth system model experiments. The change in temperature from the direct e�ects of a

doubling of CO2 (from 355 to 710 ppm) in our model (CC-CTRL) was 5.0 ¶C (95% confidence

interval [CI95%] 5.0 to 5.1), with a higher mean warming over land of 6.1 ¶C (CI95% 6.0 to

6.1). The influence of doubling CO2 included plant responses such as carbon fertilization

[Oleson et al., 2013] and increased water use e�ciency (+27% for CC-CTRL, CI95% 27 to

28) but did not account for acclimation of leaf mass per area. Consideration of leaf mass

per area acclimation to CO2 (CCLMA-CC) increased annual mean temperature over land

by an additional +0.3 ¶C (CI95% 0.2 to 0.4, Figure 2.1a and Tables 2.1 and A.2) and +0.2
¶C (CI95% 0.1 to 0.2) globally on top of the direct e�ects of CO2. This acclimation-driven

warming was especially pronounced over land in the northern extratropics (+0.4 ¶C, CI95%
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0.2 to 0.5) due to above average warming over Eurasia (Figures 2.1a and 2.2a and Table 2.1).

The influence of temperature acclimation of leaf mass per area (TCCLMA-CC) was limited

to cold biomes and did not significantly alter the amount of additional warming over land

and globally due to CO2 acclimation (Supporting Text A.2.1; Figure A.1). The influence of

leaf mass per area changes at historical CO2 levels (LMA-CTRL) was also small (Supporting

Text A.2.2).

Leaf trait acclimation enhanced biogeophysical warming over land under future CO2 levels

by o�setting the CO2-induced increase in leaf area index (m2 leaf area/m2 ground). Doubling

of CO2 (CC-CTRL) increased the annual mean leaf area index by 1.2 m2/m2 (CI95% 1.2 to

1.2) in our simulations. This magnitude of change is at the high end of Coupled Model

Intercomparison Project Phase 5 model leaf area responses to RCP8.5 over the 21st century

[Mahowald et al., 2016]. Inclusion of leaf mass per area acclimation strongly limited the

increase in leaf area index to 0.3 m2/m2 (CI95% 0.2 to 0.3) over the ambient CO2 simulation

(CCLMA- CTRL). This attenuation of leaf area growth occurred in almost all vegetated

areas (Figures 2.1b and 2.2b and Table 2.1). However, leaf area index decreased more in

response to leaf acclimation in places with high initial leaf areas, as shown by the negative

spatial relationship (r = -0.91, R2 = 0.83, Figure A.2a) between leaf area index in the control

climate change case (CC) and the change in leaf area index in response to leaf acclimation

(CCLMA-CC).

The reduced increase in leaf area in response to leaf trait acclimation (CCLMA-CC)

induced biogeophysical warming over land by shifting the balance between surface energy

budget terms. Near-surface temperature warmed in response to a moderation of the increase

in evapotranspirative cooling and an increase in solar radiation absorbed at the Earth’s sur-

face (Figures 2.2 and 2.3c and Tables 2.1 and A.2). These two factors shifted additional

energy to sensible heat, the term in the surface energy balance that directly drives surface

temperature changes. In the tropics, warming was primarily the result of reduced evapo-

transpiration, followed by greater solar radiation absorbed at the surface (Figures 2.2c,d and

Tables 2.1 and A.2). In the extratropics, increased absorption of solar radiation and reduced



21

evapotranspiration induced warming in more equal proportion (Figures 2.2b,c and Tables

2.1 and A.2). The strong influence on the surface energy budget of evapotranspiration in the

tropics and the combination of evapotranspiration and solar radiation in the midlatitudes is

consistent with previous studies [Bonan, 2008].

Evapotranspiration is the combination of several contributing water fluxes. Reduced

transpiration (CCLMA-CC) represented the largest contribution to evapotranspiration de-

clines in all regions, followed by lower evaporation from leaf surfaces (Tables 2.1 and A.2).

However, greater soil evaporation partially o�set the decline from transpiration and leaf

evaporation. The reduced increase in leaf area index in response to leaf acclimation drove

the reduction in evapotranspiration (Figure 2.2), aided by a slight increase in water use

e�ciency (CCLMA-CC; +0.5%, CI95% 0.2 to 0.8). Reductions in evapotranspiration were

spatially positively related to changes in leaf area (CCLMA-CC; r = 0.57, R2 = 0.32; Figure

A.2b). As leaf area provides the surface area over which transpiration and leaf evaporation

occur, the acclimation-induced reduction of leaf area index diminished evapotranspiration to

drive biogeophysical warming.

More solar radiation reached land when leaf mass per area acclimation was included (Fig-

ures 2.2d and 2.3c and Table 2.1) due to reduced low cloud cover over the tropics and northern

extratropics (Figure A.3a). Acclimation-driven warming decreased the relative humidity of

the lower atmosphere in these regions (Figure A.3b), making it less likely for water vapor to

saturate the air and condense to form clouds. Relative humidity decreased because warm-

ing of the atmosphere (Figure A.3c) raised the saturation vapor pressure, outcompeting the

influence of greater absolute amounts of water vapor (i.e., specific humidity) in some areas

(Figure A.3d). The overall increase in solar radiation at the surface demonstrates that the

e�ect of reduced cloud cover overwhelmed the opposing influence of a small surface albedo

increase. Albedo increased because the reduced increase in leaf area index (CCLMA-CC)

allowed more radiation to reach and reflect away from bare ground which is brighter than

vegetation [Bonan, 2008, Oleson et al., 2013]. Albedo changes (Figure A.4) were measured by

comparing the di�erence in solar radiation absorbed at the surface under clear-sky conditions
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(a model calculation that ignores the influence of clouds).

2.4.2 Carbon Cycle and Biogeochemical Warming

In addition to biogeophysical warming, acclimation of leaf mass per area reduced carbon

uptake by the biosphere (Figures 2.1c and 2.3c), which would induce further warming by in-

creasing atmospheric CO2 levels. Net primary productivity increased 51% (+30.1 PgC/year,

CI95% 29.8 to 30.4) in response to a doubling of CO2 (CC-CTRL). Acclimation of leaf mass

per area strongly moderated the positive e�ect of carbon fertilization on net primary pro-

ductivity in response to elevated CO2, reducing the gain in productivity by -5.8 PgC/year

(CCLMA-CC; CI95% -5.5 to -6.0, Tables 2.1 and A.2). This decrease in net primary produc-

tivity in response to leaf acclimation was driven by declines in the tropics, followed by the

northern extratropics (Tables 2.1 and A.2).

Smaller increases in leaf area and higher temperatures in response to leaf acclimation

both contributed to the reduced gains in productivity relative to the climate change control.

Decreases in gross primary productivity (CCLMA-CC) were best described by a multiple

regression using both changes (CCLMA-CC) in temperature and leaf area as predictors

(multiple regression R2 = 0.32; Figure A.2d). Changes in net primary productivity were

weakly but best related to temperature change (r = -0.49, R2 = 0.24; Figure A.2c).

From the reduced gains in carbon uptake in response to leaf mass per area acclimation we

estimate a change in global mean temperature. Our simulations did not directly account for

this biogeochemical warming, as atmospheric CO2 levels within each simulation were held

fixed in time. Instead, we estimate biogeochemical warming (see Materials and Methods

Section) associated with the net change in carbon storage from the di�erence in carbon

uptake by vegetation, as measured by net primary productivity, when leaf acclimation is

considered (CCLMA-CC). The -5.5 to -6.0-PgC/year reduction in net primary productivity

gains would increase global atmospheric CO2 concentration by +0.4 to +1.2 ppm/year when

considering the e�ect of oceanic bu�ering. We estimate that this additional atmospheric

CO2 induces biogeochemical warming of +0.1 to +1.0 ¶C over 100 years, the approximate
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average time scale for a doubling of CO2 from 355 to 710 ppm under the Intergovernmental

Panel on Climate Change RCP8.5 and RCP6 emissions scenarios [Cubasch et al., 2013]. The

sum of this biogeochemical warming and the biogeophysical warming reported above brings

the total additional warming over land due to leaf mass per area acclimation (CCLMA-CC)

to +0.3 to +1.4 ¶C greater than the warming due to a doubling of CO2 in the control climate

change simulation.

2.5 Discussion

We find that leaf trait responses could have significant large-scale climate implications.

Increased leaf mass per area enhances warming beyond the direct e�ects of elevated CO2 by

moderating evapotranspiration and enhancing absorption of solar radiation and by lessening

the rise in leaf area which lowers net primary productivity gains (Figure 2.3).

The surface temperature change in response to leaf trait acclimation is of comparable

magnitude to the climate response to other important climate forcings (Figure 2.4). For

example, the enhanced warming in our experiment (+0.3 to +1.4 ¶C) is smaller but of

the same order of magnitude as the change in temperature in response to a doubling of

CO2 estimated by the Intergovernmental Panel on Climate Change (+1.5 to +4.5 ¶C) from

observed 20th century climate change, paleoclimate, feedback analysis, and climate models

[Ciais et al., 2013]. While these comparisons are not exact, as the methods and measures of

uncertainty di�er, they provide an order of magnitude comparison for our results. Enhanced

warming in our experiment is also of greater or comparable magnitude to the temperature

response to large-scale land cover change (Figure 2.4d), such as anthropogenic land cover

change over the 20th century [-0.04 ¶C physical, +0.27 chemical, +0.22 total, over land;

Pongratz et al., 2010] and theoretical global deforestation [-1.1 ¶C biogeophysical over land;

Davin and de Noblet-Ducoudré, 2010].

Furthermore, our results show that the surface temperature change in response to leaf

trait acclimation can exceed or match several well-studied plant physiological feedbacks to

elevated CO2 that are included in most climate projections (Figure 2.4c). These include
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the vegetation carbon-concentration feedback [0 to -1.0 ¶C; estimated from the change in

CO2 implemented in this study of 355 to 710 ppm and the Coupled Model Intercomparison

Project Phase 5 model range for land carbon-concentration feedback parameter from Arora

et al., 2013]; stomatal conductance response to elevated CO2 [+0.2 to +0.5 ¶C biogeophysical

over land; Sellers et al., 1996, Betts et al., 1997, 2007, Cox et al., 1999, Boucher et al., 2009,

Cao et al., 2010, Pu and Dickinson, 2012]; photosynthetic down-regulation [-0.1 to +0.3 ¶C

biogeophysical over land; Bounoua et al., 2010, Pu and Dickinson, 2012]; and increased leaf

area index (+30 to 60%) due to CO2 fertilization and increased water use e�ciency under

elevated CO2 [-0.1 to -0.4 ¶C biogeophysical over land; Betts et al., 1997, Bounoua et al.,

2010, Pu and Dickinson, 2012].

The reduced increase in terrestrial productivity in response to leaf mass per area accli-

mation is on the order of other large-scale carbon cycle perturbations and moderates the

e�ect of CO2 fertilization on plant growth and carbon uptake from the atmosphere. The

-5.8-PgC/year (CI95% -5.5 to -6.0) reduction in net primary productivity in response to leaf

mass per area acclimation in our simulations (CCLMA-CC) is a reduced carbon sink com-

parable in magnitude to current global fossil fuel emissions [8 PgC/year; Ciais et al., 2013].

It is larger than the total current terrestrial biosphere uptake of CO2 from the atmosphere

[3 PgC/year; Le Quéré et al., 2016].

Leaf mass per area acclimation to CO2 represents a shift in the relationship between two

key ecosystem properties — productivity and leaf area. As such, this acclimation will remain

important for climate and carbon cycling if other trait responses further modify estimates

of productivity. Notably, the magnitude of maximum photosynthetic rate (e.g., Vcmax25 and

Jmax25) acclimation to CO2 remains uncertain and di�cult to represent at the global scale

[Smith and Dukes, 2013, Rogers et al., 2017]. While most estimates suggest that maximum

photosynthetic rates will decrease in response to CO2 [Ainsworth and Long, 2005, Leakey

et al., 2012b, Smith and Dukes, 2013, Rogers et al., 2017], which would amplify our results, we

conservatively do not change these rates in our primary experiment (CCLMA-CC). We note

that our results should be considered in relation to our treatment of maximum photosynthetic
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rates, which were equivalent across experiments prior to temperature acclimation in all sim-

ulations except CCLMAPS. The CCLMAPS experiment tests the sensitivity of our results

to increasing maximum photosynthetic rates. Using this experiment (CCLMAPS-CC), we

estimate that maximum photosynthetic rates would need to increase (opposite direction of

expected CO2 acclimation) by one third to bolster net primary productivity enough to o�set

the biogeophysical warming over land due to leaf acclimation in our experiments (Support-

ing Text A.2.3; CCLMAPS-CC). This altered balance between productivity (biogeochemical

warming) and leaf area (biogeophysical warming) demonstrates the importance of including

leaf mass per area acclimation to CO2.

In addition to leaf mass per area, other changes in coordinated leaf traits could be ex-

pected to occur under climate change and further influence biogeophysical and biogeochemi-

cal warming. Longer leaf lifespans are correlated with higher leaf mass per area across species

[Wright et al., 2004] and could be expected to o�set the climate influence of leaf mass per

area by enhancing productivity beyond current estimates. However, this correlation observed

across species does not necessarily hold for trait changes within a species, such as in response

to acclimation [Lusk et al., 2008, Fisher et al., 2015, Anderegg et al., 2018]. Observations

of leaf lifespan acclimation to elevated CO2 indicate that the response is highly variable

in magnitude and sign and inconsistently associated with higher leaf mass per area [e.g.,

Norby et al., 2003, 2010, Taylor et al., 2008, and references therein]. As the observational

evidence does not support an increase in leaf lifespan in coordination with leaf mass per area

acclimation to CO2, we chose not to impose this change in our simulations. However, we do

include changes in leaf area duration due to phenological responses to warming temperature

and soil moisture in all simulations [Oleson et al., 2013]. Litter decomposition has also been

hypothesized to slow with leaf responses to elevated CO2 with implications for carbon cycling

[Strain and Bazzaz, 1983]. However, a meta-analysis of observations found that the e�ect

of elevated CO2 on leaf decomposition processes was not significant, despite changes in leaf

litter traits [Norby et al., 2001]. We therefore do not test changes in litter decomposition

here. Lastly, changes in leaf nitrogen concentration and anatomy in response to climate
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change could alter albedo through their influence on leaf reflectance and transmittance [e.g.,

Ollinger, 2011], a possible avenue for future research. Leaf acclimation in our simulations

was allowed to influence albedo indirectly by altering leaf area index but did not alter leaf

optical characteristics because the influence of individual leaf traits (e.g., leaf mass per area)

on these properties remains highly uncertain especially under future conditions [Ollinger,

2011].

Several environmental drivers of leaf mass per area acclimation — CO2, temperature,

and nutrient limitation — will likely be modified by climate change. We estimate that the

influence of temperature acclimation of leaf mass per area globally is secondary to CO2

(Supporting Text A.2.1 and Figure A.1). The e�ect of temperature warming on leaf mass

per area occurs under cold conditions; thus, the acclimation is limited to high latitude boreal

regions (Figure A.5). Nutrient limitation is expected to increase with CO2 fertilization of

plant growth [Wieder et al., 2015, Norby et al., 2010] and has been found to enhance leaf mass

per area in manipulation experiments [Poorter et al., 2009], which could further amplify the

impacts of leaf acclimation to elevated CO2. The magnitude of leaf mass per area acclimation

in response to climate change may ultimately depend upon the combined influence, including

potential interaction e�ects, of multiple climate drivers.

Accounting for leaf acclimation in climate projections will require the ability to represent

the functional relationship between leaf mass per area and its climate drivers, especially

CO2, by biome at the global scale. This remains challenging [Medlyn et al., 2015]. Poorter

et al. [2009]’s empirical relationship, used herein, shows that on average leaf mass per area

increases with CO2 in C3 species. However, the proportion of variance in the magnitude of

acclimation explained by this relationship is relatively low [Poorter et al., 2009], suggesting

that other key drivers, such as plant type, still need to be incorporated. A mechanistic

model of leaf mass per area acclimation also remains elusive. The leading hypothesis for

why elevated CO2 increases leaf mass per area is that the abundance of carbon causes

nonstructural carbohydrates to accumulate in leaves [Poorter et al., 2009, 1997, Pritchard

et al., 1999, Roumet et al., 1999]. One possible advantage for plants of increasing leaf mass
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per area under elevated CO2 is that it maintains a high level of leaf nitrogen per leaf area

(gN/m2 leaf area), an essential component of photosynthetic machinery, by counteracting a

decrease in leaf nitrogen concentration (gN/g leaf) driven by larger pools of nonstructural

carbohydrates [N per area = N per mass x leaf mass per area; Luo et al., 1994, Poorter et al.,

1997, Peterson et al., 1999, Stitt and Krapp, 1999, Ishizaki et al., 2003]. However, this process

operates di�erently across environments, plant species, and even genotypes [Luo et al., 1994,

Körner et al., 1997, Poorter et al., 1997, 2009, Peterson et al., 1999, Stitt and Krapp, 1999,

Roumet et al., 1999, Pritchard et al., 1999]. Further research into the underlying mechanism,

influences of multiple environmental drivers, and di�erences in acclimation between plant

types is needed to develop a representation of leaf mass per area acclimation suitable for use

in Earth system models.

The climate implications of increased leaf mass per area reveal an urgent need for ob-

servational constraints on the magnitude and mechanism of leaf trait acclimation to future

climate conditions. Other structural trait acclimations that influence leaf area may have

similar climate implications that require testing. Our findings suggest that the uncertainty

in vegetation-climate feedbacks, and therefore climate change projections, is even larger than

previously thought.
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2.7 Figures and Tables

Figure 2.1: Annual mean change due to leaf acclimation to CO2 (CCLMA-CC) of (a) bio-
geophysical warming (¶C); (b) leaf area index (m2/m2); and (c) net primary productivity
(gC/m2/year). Stippling indicates significance at the 95% level.
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Figure 2.2: Zonal annual mean change over land due to leaf acclimation to CO2 (CCLMA-
CC) of (a) biogeophysical warming (¶C); (b) leaf area index (m2/m2); (c) evapotranspiration
(W/m2); and (d) net solar radiation absorbed at the surface (W/m2). The mean di�erence is
shown in blue, along with the 95% bootstrap confidence interval (black dashed) and average
zonal mean change on land (bold numbers) for each latitude band (bounded by gray lines).
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Figure 2.3: Schematic summary of changes due to leaf trait acclimation to elevated CO2. (a)
Leaf mass per area increases in response to elevated CO2 in C3 plants (CCLMA). Light green
represents leaf mass (gC); dark green represents leaf area (m2). (b) Leaf trait acclimation
reduces leaf area growth in response to elevated CO2 compared to the climate change control
(CCLMA-CC). (c) Lower leaf area growth drives additional biogeophysical warming over land
compared to the climate change control (CCLMA-CC) by diminishing evapotranspirative
(ET) cooling, reducing cloud cover, and enhancing solar radiation absorbed by the surface.
It also decreases net primary productivity (NPP), which can drive additional anomalous
biogeochemical warming by reducing land uptake of CO2 from the atmosphere. A positive
sign (+) indicates an increase and a negative sign (-) represents a decrease in response to
leaf trait acclimation (CCLMA-CC).
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Figure 2.4: Comparison of temperature changes in response to a doubling of CO2 (a) ra-
diative forcing; (b) acclimation of leaf mass per area; (c) other plant responses; and (d)
land cover change with color of text indicating biogeophysical warming (black text), biogeo-
chemical warming (purple text), and combined warming (blue text). Estimates were drawn
from the literature as follows: 1Ciais et al. [2013] range based on observations of 20th cen-
tury climate change, paleoclimate, Coupled Model Intercomparison Project Phase 5 climate
models, and feedback analysis; 2Estimated temperature response to radiative forcing from
carbon-concentration feedback parameters for land across Coupled Model Intercomparison
Project Phase 5 models [Arora et al., 2013] and CO2 doubling in this study (355 to 710
ppm); 3Mean responses across studies [Cao et al., 2010, Pu and Dickinson, 2012, Sellers et
al., 1996]; 4Mean responses across studies [Bounoua et al., 2010, Pu and Dickinson, 2012];
5Mean responses across studies [Bounoua et al., 2010, Pu and Dickinson, 2012]; 6Pongratz et
al. [2010]; and 7Davin and de Noblet-Ducoudré [2010]. Intergovernmental Panel on Climate
Change (IPCC).
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Chapter 3
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ABILITY AND FUNCTIONING OF SIMULATED TROPICAL
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3.1 Abstract

The response of tropical ecosystems to elevated carbon dioxide (CO2) remains a critical

uncertainty in projections of future climate. Here we investigate how leaf trait plasticity

in response to elevated CO2 alters projections of tropical forest competitive dynamics and

functioning. We use demographic vegetation model simulations to quantify how plasticity

in leaf mass per area and the ratio of leaf carbon to nitrogen alter the responses of car-

bon uptake, evapotranspiration, and competitive ability to a doubling of CO2 in a tropical

forest. We find that observationally constrained leaf trait plasticity levels in response to

CO2 fertilization reduce the enhancement in tropical tree carbon uptake (up to -14.7%, 95%

confidence interval [CI95%] -14.4 to -15.0), further diminish evapotranspiration (up to -7.0%,

CI95% -6.4 to -7.7), and lower competitive ability under a doubling of CO2 in our simula-

tions. Thus, consideration of leaf trait plasticity to elevated CO2 lowers simulated tropical

ecosystem carbon uptake and evapotranspirative cooling in the absence of changes in plant

type abundance. However, given that more competitively advantageous leaf trait plasticity

responses also maintain higher levels of plant productivity and evapotranspiration, including

changes in plant type abundance may mitigate these decreases in ecosystem functioning.

Models that explicitly represent competition between plants with alternative leaf trait plas-

ticity in response to elevated CO2 are needed to capture these influences on tropical forest

functioning and large-scale climate.

3.2 Introduction

Tropical forests currently exert strong control over large-scale carbon, water, and en-

ergy fluxes and thus strongly influence global climate [Bonan, 2008, Davin and de Noblet-

Ducoudré, 2010, Cusack et al., 2016, Cox et al., 2000]. Yet, the poorly understood response of

tropical ecosystems to elevated carbon dioxide (CO2) over the coming decades and centuries

remains a key uncertainty in projections of future climate [e.g., Ciais et al., 2013, Zhang

et al., 2015, Lloyd and Farquhar, 2008, Schimel et al., 2015, Brienen et al., 2015, Hickler
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et al., 2008, Cernusak et al., 2013, Leakey et al., 2012a, van der Sleen et al., 2015, Cusack

et al., 2016]. A number of leaf traits have been observed to respond to rising CO2 concen-

trations. This leaf trait plasticity could alter tropical ecosystem functioning, with potential

implications for large-scale climate. Alterations in leaf traits can modify plant photosynthe-

sis and evapotranspiration rates. Given this, the capacity for leaf trait plasticity to alter

ecosystem functioning could be direct, without changes in plant type abundance, as well as

indirect, through changes in plant competitive dynamics and, thus, the relative abundance

of di�erent plant types.

Among the most commonly observed plant trait responses to experimentally elevated CO2

are increases in leaf mass per area (LMA, g leaf carbon m≠2 leaf area) and the ratio of carbon

to nitrogen within leaves (C:Nleaf , g leaf carbon g≠1 leaf nitrogen). Observations suggest that

each of these leaf traits could increase by as much as one third in response to a doubling of

CO2 in a wide range of tropical tree species spanning successional classes [Figure 3.1; Lovelock

et al., 1998, Reekie and Bazzaz, 1989, Winter et al., 2000, Winter and Lovelock, 1999]

implying thicker leaves with lower per-mass nitrogen concentrations. Comparison of Earth

system model simulations to observations at ecosystem-scale CO2 enrichment experiments

suggests that accurately representing these two leaf traits is critical to predicting ecosystem

responses to elevated CO2 [Zaehle et al., 2014, De Kauwe et al., 2014, Medlyn et al., 2015].

The leading hypothesis for why C:Nleaf and LMA increase with elevated CO2 is that CO2

fertilization leads to nitrogen limitation of plant growth and the accumulation of nonstruc-

tural carbohydrates in leaves [Winter et al., 2001, Poorter et al., 2009, 1997, Pritchard et al.,

1999, Roumet et al., 1999, Meyerholt and Zaehle, 2015]. Here we use the term “plastic” to

describe these changes. While both trait changes have potential benefits (discussed below),

it is possible that these changes are forced upon plants as there is not enough nitrogen to

retain default leaf traits under high CO2.
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3.2.1 Direct E�ects

Plasticity in C:Nleaf and LMA could directly influence tropical forest functioning by

altering maximum area-based photosynthetic rates. C:Nleaf describes the amount of nitrogen

present in a given unit of leaf mass, with higher C:Nleaf indicating a lower amount of nitrogen

per unit leaf mass. LMA describes the amount of mass used to construct a unit of leaf area.

Together these two traits control the amount of nitrogen per leaf area (Narea, g leaf N m≠2

leaf area) as follows:

Narea = LMA

C :Nleaf
(3.1)

where LMA is leaf mass per area (g leaf C m≠2 leaf area) and C:Nleaf is the leaf carbon

to nitrogen ratio (g leaf C g≠1 leaf N). Given that nitrogen is an essential component of

photosynthetic enzymes, particularly rubisco, Narea is an important determinant of maximum

photosynthetic rates per leaf area [Drake et al., 1997, Kattge et al., 2009, 2011, Walker

et al., 2014, Norby et al., 2017]. Narea is therefore used in many terrestrial biosphere models

to estimate photosynthetic parameters, which in turn exert strong influence over modeled

carbon uptake [Verheijen et al., 2013, Bonan et al., 2011, Walker et al., 2017, Rogers et al.,

2017]. Changes in maximum photosynthetic rates due to altered Narea can also influence rates

of evapotranspirative cooling, as transpiration is coupled to photosynthesis in all commonly

used stomatal conductance algorithms [Ball et al., 1987, Medlyn et al., 2011].

Experimental manipulation of CO2 in tropical forest systems was observed to modify

both traits in a wide range of tropical tree species across successional classes [Lovelock et al.,

1998]. Observations suggest that co-occurring changes in LMA and C:Nleaf in response

to a doubling of CO2 most often cause Narea to decrease (Figure 3.1 below diagonal line)

or, in fewer cases, to be maintained [Figure 3.1 on diagonal line; Lovelock et al., 1998].

Thus, in the absence of other changes [such as adjusted partitioning of nitrogen between

di�erent photosynthetic processes; e.g., Xu et al., 2012, Leakey et al., 2012b, Smith et al.,
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2019] observed leaf trait plasticity in response to elevated CO2 has the potential to lower

projections of tropical ecosystem carbon uptake and evapotranspirative cooling by reducing

photosynthetic rates and stomatal conductance.

Leaf trait plasticity could also directly influence ecosystem functioning by modifying leaf

area index (m2 leaf area m≠2 ground), which provides the surface area over which photo-

synthesis and transpiration are scaled to the ecosystem level. Increasing LMA increases the

carbon cost of building leaf area, as thicker leaves require more carbon to build a given unit

of leaf area. For a given unit of mass carbon allocated to leaves, LMA is universally used

to calculate plant leaf area. For a given C:Nleaf , increasing LMA also increases nitrogen

requirements, while, increasing C:Nleaf makes leaf area less expensive in terms of nitrogen.

In models, these dynamics are of course only applicable when active nitrogen cycling is

represented.

The influences of leaf plasticity in C:Nleaf and LMA on photosynthetic rates and leaf

area exhibit trade-o�s under elevated CO2. Increases in C:Nleaf could reduce maximum

photosynthetic rates but do not alter the carbon cost of building leaf area; increases in LMA

could o�set reductions in maximum photosynthetic rates due to higher C:Nleaf but increase

the cost of building leaf area. Given both the conflicting impacts of increasing C:Nleaf and

LMA on Narea, and the secondary impacts on leaf area, the likely net response of ecosystems

to elevated CO2 taking into account this type of leaf trait plasticity is not immediately

apparent.

3.2.2 Indirect E�ects

Competition for light is recognized to be a dominant driver of community composition in

tropical forests [e.g., Sterck et al., 2011]. In addition to the direct influences described above,

tropical tree responses to increasing CO2 could also indirectly change ecosystem functioning

by altering plant competition for light and the relative abundance of di�erent plant types

[reviewed by Cusack et al., 2016]. The magnitude of leaf trait responses to elevated CO2 has

been observed to di�er among tropical tree species [Lovelock et al., 1998, Reekie and Bazzaz,
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1989, Winter et al., 2000, Winter and Lovelock, 1999]. Such variation in leaf trait plasticity

across tropical tree types could lead to di�erential changes in the competitive ability for light

in response to elevated CO2 and thus alter the abundance of di�erent plant types. Leaf area

index and biomass can influence plant competitive ability. In general, trees which accumulate

less biomass may not be able to grow as tall as their neighbors and may therefore become

more heavily shaded; while trees with lower leaf area index may not be able to capture as

much light or shade their neighbors in competition for light. LMA and C:Nleaf both can

alter leaf area index and biomass through their influence on per-area photosynthetic rates

as well as total leaf area. Thus changes in these traits are likely to di�erentially alter the

competitive ability of individuals depending on their magnitude of plasticity.

3.2.3 Critical Unknowns

Due to the trade-o�s associated with higher C:Nleaf and increases in LMA, it remains

unknown how leaf trait plasticity will alter overall tropical tree functioning and competitive

success under future elevated CO2 conditions. Manipulation experiments have shown that

tropical tree trait responses to CO2 are species-specific [Lovelock et al., 1998, Reekie and

Bazzaz, 1989, Winter et al., 2000, Winter and Lovelock, 1999] and suggest that di�erences

in CO2 responses across species could lead to changes in community structure [reviewed by

Cusack et al., 2016]. Investigating the relationship between individual traits and community

outcomes is challenging in empirical studies due to multiple, confounding changes in plants

treated with elevated CO2 [Lovelock et al., 1998, Reekie and Bazzaz, 1989]. Increasing C:Nleaf

may benefit plants. McMurtrie et al. [2008] showed that a temperate monoculture was able

to maximize productivity under limited nitrogen availability and elevated CO2 by increasing

C:Nleaf which enabled increased leaf area. Increasing LMA could also be beneficial. Previous

modeling studies have used observations of LMA and C:Nleaf change to simulate changes in

assimilation and individual plant growth and found that increasing LMA helps to o�set

negative e�ects of higher C:Nleaf on photosynthetic rates per leaf area under elevated CO2

[Luo et al., 1994, Ishizaki et al., 2003]. However, none of these studies considered communities
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of plants or the e�ects of competition between di�erent plant types, nor did they focus on

tropical tree species. Other modeling studies have found variability in plant traits, such as

LMA, to have strong influences on plant competition for resources and ecosystem functioning

under elevated CO2, but did not consider the observed concomitant changes in C:Nleaf [Ali

et al., 2015, Verheijen et al., 2015, Fisher et al., 2010]. This distinction is important because

without representing the potential benefit of increasing LMA, Ali et al. [2015] found that

decreasing LMA (opposite of observed change) was beneficial to competitive success under

elevated CO2. Thus, how the combination of these observed trait responses to CO2 will

influence plant competitive dynamics, the survival of responsive trees, and tropical ecosystem

structure and functioning in the future remains unknown. Further, leaf trait plasticity and its

influence on tropical ecosystem functioning could have implications for climate both locally,

through altering evapotranspirative cooling, and globally through altering tropical ecosystem

carbon uptake [Verheijen et al., 2015, Kovenock and Swann, 2018].

In this study we explore how plasticity in two key leaf traits mediates tropical ecosystem

carbon uptake and evapotranspirative cooling responses to a doubling of CO2 using an en-

semble of demographic vegetation model simulations run with the Functionally Assembled

Terrestrial Ecosystem Simulator [FATES, Fisher et al., 2015, 2018] at a tropical forest test

site, Barro Colorado Island, Panama. We investigate how di�erent levels of plasticity in

C:Nleaf and LMA (gray squares in Figure 3.1) in response to a doubling of CO2: 1) modify

ecosystem level carbon uptake and evapotranspirative cooling in the absence of competition;

2) alter biomass and leaf area index, which are key determinants of competitive ability for

light; and 3) alter competitive outcomes when two plant types with di�erent leaf trait plas-

ticity responses compete. We test leaf trait plasticity levels that decrease (-Narea), maintain

(=Narea), and increase Narea (+Narea). As our simulations do not explicitly represent growth

limitation by or competition for nitrogen, we are able to quantify whether the change in

total canopy nitrogen (g N m≠2 ground) required to support an ecosystem with each level of

leaf trait plasticity under a doubling of CO2 would be consistent with available soil nitrogen
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resources. We find that leaf trait plasticity levels that decrease Narea, as are consistent with

observed responses, could reduce projections of future carbon uptake and evapotranspiration

in the absence of competition. However, trees that maintain or increase Narea under elevated

CO2 would likely have a competitive advantage and also maintain higher levels of carbon

uptake and evapotranspirative cooling.

3.3 Materials and Methods

3.3.1 Model Overview

We use an ensemble of simulations of the Functionally Assembled Terrestrial Ecosys-

tem Simulator [FATES, Fisher et al., 2015, 2018] embedded within the Community Land

Model version 5 [Lawrence et al., 2018] to test the influence of leaf trait plasticity on tropical

ecosystem functioning and competitive dynamics. CLM(FATES) is a cohort-based demo-

graphic vegetation model [Fisher et al., 2018] that mechanistically simulates plant ecological

dynamics and ecosystem assembly via processes including plant growth, competition for

light, recovery from disturbance, reproduction, mortality, and recruitment. A key feature

of the model, based on the ecosystem demography concept [Moorcroft et al., 2001], is that

it resolves distributions of vegetation height and time since disturbance, which allows it

to simulate competition for light. In the model, disturbance, from tree mortality, fire, or

logging, periodically befalls some patches of the simulated ecosystem. Plants within these

“patches” are considered to share an age class, which represents their age since last distur-

bance. Within a patch, individual plants are grouped into “cohorts”, which can di�er in

height. Cohorts represent individual plants of the same plant type and height as a repre-

sentative average individual. The height structure of cohorts within a patch determines the

light profile experienced by each cohort. The leaf area of taller cohorts in the canopy can

shade cohorts deeper in the canopy, which is depicted as discrete layers using the perfect

plasticity approximation [Purves et al., 2008]. Photosynthesis, respiration, turnover, and

mortality, as well as the interaction of these processes with the abiotic environment, control
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the amount of carbon each cohort can use for growth. Growth and size-dependent allometric

equations then determine the height, biomass, and target leaf area of each cohort. Thus,

carbon uptake is dynamic and influences plant growth, leaf area, and size, which in turn

influence competition for light. Radiation streams for direct and di�use light are calculated

at the leaf layer level for each plant type. This incoming energy influences photosynthesis

and the leaf energy budget, and thus rates of carbon uptake and transpiration. In sum, the

model tracks fluxes of carbon, water, and energy throughout the ecosystem. CLM(FATES)

does not yet explicitly represent growth limitation by or competition for nutrients, which

allows us to implement C:Nleaf and LMA plasticity levels that represent the potential influ-

ences of nutrient limitation and quantify the total canopy nitrogen required to support each

leaf trait plasticity level.

Baseline parameters for the model (Table B.1) were chosen from a parameter ensemble

that sampled plant parameters from observations when possible. Our primary results used

the parameterization that allowed the simulated ecosystem to best match present-day mea-

surements of leaf area index, above-ground biomass, basal area, gross primary productivity,

latent heat fluxes, and sensible heat fluxes at our test site, Barro Colorado Island, Panama.

We also test the sensitivity of our results to the next two best performing parameter sets.

(See Supporting Information Text B.1.1 and B.2.1 for details.)

3.3.2 Leaf trait plasticity estimation and implementation

In this study we impose prescribed changes in two plant traits: C:Nleaf and LMA. Our

experiments test 13 levels of leaf plasticity in C:Nleaf and LMA sampled from the two-

dimensional leaf trait plasticity space in Figure 3.1 (gray squares). This leaf trait plasticity

space represents both observed (at or below diagonal line in Figure 3.1) and hypothetical

(above diagonal line in Figure 3.1) levels of leaf trait plasticity. The observed leaf trait

plasticity space is estimated from observations of leaf responses to a doubling of CO2 in

nine tropical tree species, including early, mid- and late successional classes [red circles in

Figure 3.1; Lovelock et al., 1998], and supported by additional studies in tropical trees and
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many other C3 plant types [e.g., Lovelock et al., 1998, Reekie and Bazzaz, 1989, Winter

et al., 2000, Winter and Lovelock, 1999, Poorter et al., 2009, Ainsworth and Long, 2005,

Medlyn et al., 2015]. These observations suggest that C:Nleaf and LMA could increase by

as much as one third in response to a doubling of CO2 with the result that Narea decreases

or remains constant following Equation 3.1. Thus, we define observed leaf trait plasticity

levels as those that maintain Narea at (=Narea) or below (-Narea) control (CTRL and CC)

levels. We also test leaf trait plasticity levels that increase Narea (+Narea), to determine if

such a response could help tropical trees enhance their productivity and competitive ability.

Given the wide diversity of tropical tree species it is possible that some tropical tree species,

perhaps those with traits that enhance nutrient foraging or fixing capabilities, increase Narea

(above diagonal line in Figure 3.1) in response to higher CO2.

Changes in C:Nleaf and LMA in our simulations drive changes in Narea, maximum pho-

tosynthetic and respiration rates, and leaf area index. We assume that LMA decreases with

canopy depth following the observations of Lloyd et al. [2010] as previously implemented in

CLM(FATES) in Chapter 4. As leaf area index responds dynamically to carbon available for

leaf growth, C:Nleaf drives changes in leaf area index through its influence on productivity.

(See Supporting Information Text B.1.2 for details.)

3.3.3 Simulations

We ran simulations for a tropical forest test site, Barro Colorado Island, Panama. All

simulations were forced with repeating meteorological data for this site from the years 2003-

2016 [Faybishenko et al., 2018]. Vegetation in our simulations is broadly categorized by

a single biogeographic plant functional type, the broadleaf evergreen tropical tree, which is

characteristic of our tropical forest test site. This plant functional type represents an average

of many species within the evergreen tropical tree plant type. Two control simulations

represent a baseline tropical forest ecosystem without leaf trait plasticity. The first control

simulates the ecosystem with CO2 concentration fixed at 400 ppm CO2 (CTRL; 1xCO2).

The second control is identical to the first except that the ecosystem experiences a fixed



43

atmospheric CO2 concentration of 800 ppm (CC; 2xCO2). Plants in these control simulations

do not experience leaf trait plasticity in response to elevated CO2 (gray square at origin in

Figure 3.1). The di�erence between the control simulations (CC - CTRL) quantifies the

influence of CO2 fertilization on the baseline simulated tropical ecosystem. Temperature

does not change in response to elevated CO2 in our simulations.

We quantify the direct influence of di�erent degrees of leaf trait plasticity, in the absence

of competition, using an ensemble of simulations that are identical to the 2xCO2 control

(CC). Each ensemble member imposes a di�erent level of leaf trait plasticity (gray squares

sampled from leaf trait plasticity space in Figure 3.1) on all plants in the simulation. We call

these simulations of the ecosystem “in absence of competition” between di�erent plant types.

We further group leaf trait plasticity experiments by whether they decrease (-Narea, below

diagonal line in Figure 3.1), maintain (=Narea, on diagonal line in Figure 3.1), or enhance

Narea (+Narea, above diagonal line in Figure 3.1). We calculate the total canopy nitrogen

required for each “in absence of competition” simulation as total canopy leaf carbon (g leaf

C m≠2 ground) divided by C:Nleaf (g C g≠1 N).

We test the influence of leaf trait plasticity level on competitive ability using a second

ensemble of simulations, which we refer to as “pairwise competition” simulations. These

simulations are identical to the 2xCO2 control (CC) except that each experiment includes

two di�erent plant types, which are identical in all traits except in their level of leaf trait

plasticity. The two plant types are allowed to compete for light within the ecosystem. We

repeat these pairwise competition experiments for all combinations of two levels of leaf trait

plasticity sampled from the leaf trait plasticity space (gray squares in Figure 3.1), including

the control “no leaf trait plasticity” plant type (gray square at origin in Figure 3.1). In

each competition simulation, one plant type (i.e., one level of leaf trait plasticity) always

eventually outcompetes the other. We define one plant type as “winning” the competition

when it overtakes at least two thirds of the total ecosystem biomass (see below for further

details). We quantify di�erences in competitive ability due to leaf trait plasticity using a

measure called percent wins (% wins), which is the percent of all pairwise competitions a
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plant type with a given leaf trait plasticity level wins.

The 1xCO2 control simulation (CTRL) was started from near-bare ground and integrated

for 700 years. All control variables came into equilibrium within 450 years, the time required

to grow a mature forest with our model set up. The 2xCO2 control simulation (CC) and

all experiments were branched from the 1xCO2 control simulation (mature forest) at year

500 and experienced an abrupt doubling of CO2 to a time-invariant concentration of 800

ppm CO2. The 2xCO2 control and experiment simulations were run until one plant type

had become dominant (taken over at least 67% of ecosystem biomass and trending towards

overtaking all ecosystem biomass). We analyze the last 100 years of each simulation as our

equilibrium ecosystem. All simulations were run on the National Center for Atmospheric

Research’s Cheyenne system.

3.3.4 Statistical Analysis

We quantify the influence of leaf trait plasticity on tropical ecosystem properties using dif-

ferences in annual mean ecosystem properties and relationships between leaf trait plasticity

levels and annual mean ecosystem properties across simulations in the absence of competition

(i.e., simulations with only one plant type). We use bootstrap methods with model years

as the unit of replication (n = 50,000) to construct confidence intervals for annual mean

leaf area index, biomass, net primary productivity, evapotranspiration, and total canopy

nitrogen and test for di�erences between simulations. We use simple, multiple, and stepwise

linear regression methods to test for relationships between leaf trait plasticity levels (C:Nleaf ,

LMA, Narea) and annual mean ecosystem properties across simulations. Correlations between

percent wins and annual mean net primary productivity and evapotranspiration across simu-

lations are quantified using Pearson’s linear correlation coe�cient. Di�erences, relationships,

and correlations were considered statistically significant at the 95% level. (See Supporting

Information Text B.1.4 for details.)
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3.4 Results

3.4.1 Elevated CO2 response in the control simulation

Previous observations, simulations, and theory show that elevated atmospheric CO2 con-

centration enhances photosynthesis and reduces stomatal conductance, which has the po-

tential to enhance productivity and reduce evapotranspiration at the ecosystem scale [e.g.,

Cernusak et al., 2013, Cusack et al., 2016, Zhu et al., 2016, Lloyd and Farquhar, 2008, Swann

et al., 2016, De Kauwe et al., 2013, and references therein]. In our control simulation (no leaf

trait plasticity; CC-CTRL) a doubling of atmospheric CO2 concentration from 400 ppm to

800 ppm increases annual mean net primary productivity (+74.2%, 95% confidence interval

[CI95%] 73.2 to 75.1), leaf area index (+7.0%, CI95% 6.8 to 7.2), and biomass (+102.6%,

CI95% 102.1 to 103.0), and reduces evapotranspiration (-9.2%, CI95% -8.6 to -9.8; Figures 3.2

and 3.4; Table 3.1). It is important to note that these results are in the absence of nutrient

limitation, as this allows us to implement leaf changes in our experiments that represent

potential influences of nutrient limitation and quantify the total canopy nitrogen required to

support each leaf trait plasticity level.

The actual expected magnitude of tropical forest responses to elevated CO2 is highly

uncertain and little experimental data exists, particularly at the ecosystem scale [Lloyd and

Farquhar, 2008, Hickler et al., 2008, Mahowald et al., 2016, Cusack et al., 2016, Norby et al.,

2016]. However, our control simulation response to elevated CO2 shows reasonable agreement

with observations from temperate forest FACE experiments [De Kauwe et al., 2013, 2014]

after scaling linearly for CO2 increase. For example, a +200ppm CO2 increase at Duke

Forest enhanced net primary productivity by approximately 30% [De Kauwe et al., 2013].

If the response scales linearly with CO2 [Cernusak et al., 2019], Duke Forest would see the

equivalent of a +60% increase in net primary productivity for a +400 ppm increase in CO2

as used herein. Similarly, these FACE experiments saw changes equivalent to approximately

+6% and +30% in leaf area index at Oak Ridge and Duke, respectively; -40% in transpiration

at Oak Ridge (no significant change at Duke Forest); and +100% in biomass increment at
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Duke for +400 ppm CO2. Although biomass increment and total biomass are not directly

comparable measures, the increase in total biomass in our control simulation (+102%) is of

similar magnitude. Thus our modeled changes are all roughly comparable with these ranges,

with slightly higher modeled increases in net primary productivity in our tropical simulations

compared to these observational estimates from temperate forests. Lastly, changes in each

of these ecosystem properties in our control simulation also fall within the simulated ranges

from 11 Earth system models at these two temperate forest FACE sites after linearly scaling

for CO2 concentration [De Kauwe et al., 2013, 2014]. While our control simulation response

to elevated CO2 is comparable to those estimated from observations in temperate forests,

tropical forest responses may of course be subject to di�erent constraints [e.g., De Graa�

et al., 2006, Luo et al., 2006, Hickler et al., 2008, Zaehle et al., 2014].

3.4.2 Influence of leaf trait plasticity on canopy structure in absence of competition

We find that leaf trait plasticity alters biomass and leaf area index responses to a doubling

of CO2 in the absence of competition (Figure 3.2). Under elevated CO2, increasing C:Nleaf

by one third (the upper bound of the observed range we test herein) diminishes the increase

in biomass (-10.6 kg C m≠2, CI95% -10.5 to -10.7) and decreases leaf area index (-0.7 m2 m≠2,

CI95% -0.7 to -0.8) compared to the control plant type (CN - CC). In contrast, increasing

LMA by one third enhances the increases in both biomass (+7.2 kg C m≠2, CI95% 7.1 to

7.4) and leaf area index (+1.4 m2 m≠2, CI95% 1.3 to 1.4) compared to the control plant

type (LMA - CC). Increasing both C:Nleaf and LMA simultaneously by one third under a

doubling of CO2 (CNLMA) results in only a slightly reduced increase in biomass (-2.6 kg C

m≠2, CI95% -2.4 to -2.7) and no change in leaf area index (0.0, CI95% 0.0 to 0.0) compared

to the control plant type (CNLMA - CC).

Leaf trait plasticity levels are significant predictors of leaf area index and biomass re-

sponses to elevated CO2. LMA and C:Nleaf are each significant predictors of leaf area index

(r = 0.67 and r = -0.71 , respectively) and biomass (r = 0.60, r = -0.80, respectively) across

simulations in the absence of competition and under a doubling of CO2. However, leaf area



47

index and biomass are best described using information about both leaf trait levels. Leaf area

index is best predicted by Narea (r = 0.99), which takes into account information about both

LMA and C:Nleaf (following Equation 3.1). Biomass is best described using both LMA and

C:Nleaf as predictors (multiple regression adjusted R2 = 0.996) or Narea (r = 0.98). Thus,

for any given increase in C:Nleaf , simultaneously increasing LMA helps plants to maintain

biomass and leaf area index that are closer to the control plant type.

The changes in biomass and leaf area index in the absence of competition we report here

provide mechanistic insight into how leaf trait plasticity could alter competitive ability. The

responses of biomass and leaf area index to leaf trait plasticity in the absence of competition

suggest that increases in C:Nleaf may diminish competitive ability by reducing plant biomass

and leaf area index compared to the control plant type; whereas, increasing LMA could

improve competitive ability by enhancing biomass and leaf area index.

3.4.3 Influence of leaf trait plasticity on competitive ability

We find that the control plant type, with no leaf trait plasticity, is more competitively

advantageous than all leaf trait plasticity levels sampled from the equal or reduced Narea

plasticity space under a doubling of CO2 (Figure 3.3). The control plant type (origin in

Figure 3.3) wins all pairwise competitions against plant types with leaf trait plasticity levels

sampled from the trait changes that maintain Narea (=Narea, along black dashed diagonal

line in Figure 3.3) or reduce Narea (-Narea, below black dashed diagonal line in Figure 3.3).

Increasing C:Nleaf strongly diminishes competitive ability, as evidenced by the decreasing

percentage of competitions a plant type wins as C:Nleaf increases (left to right, Figure 3.3).

At a given C:Nleaf , increasing LMA typically enhances competitive ability.

These results from our competition experiments are consistent with our findings in the

absence of competition (higher C:Nleaf leads to lower biomass and leaf area index and in-

creasing LMA results in biomass and leaf area index gains; Figure 3.2). However, LMA

increases sampled from leaf trait plasticity levels that maintain or decrease Narea do not,

in this model, fully compensate for the negative influence of higher C:Nleaf on competitive
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ability at any level. Furthermore, the competitive benefit of increasing LMA diminishes at

higher C:Nleaf , as evidenced by the sinusoidal shape of the 50% wins shading (white) in

Figure 3.3. In sum, plant types that can maintain higher Narea under elevated CO2, have

greater competitive ability.

Leaf trait plasticity levels that enhance Narea (+Narea, above diagonal line in Figure

3.3) enhance competitive ability compared to the control leaf type, as well as all leaf trait

plasticity levels sampled from the =Narea and -Narea space (Figure 3.3). In this part of the

leaf trait plasticity space, increasing LMA more than C:Nleaf , which enhances Narea, confers

a competitive advantage. This is consistent with our finding that increasing LMA in isolation

enhances biomass and leaf area index beyond the control in the absence of competition.

Competitive ability is related to leaf trait plasticity levels, as well as leaf area index and

biomass. The percent wins of a leaf trait plasticity level is best predicted by both C:Nleaf and

LMA levels (multiple regression adjusted R2 = 0.985), where C:Nleaf is negatively related

to percent wins (r = -0.92) and LMA is weakly but positively related to percent wins (r =

0.36). Percent wins is also highly related (r = 0.91) to Narea (i.e., LMA divided by C:Nleaf ).

As expected, percent wins is positively related to leaf area index (r = 0.90) and biomass (r

= 0.96).

3.4.4 Changes in carbon uptake and evapotranspirative cooling

Ecosystem carbon uptake and evapotranspiration are linked to leaf area and photosyn-

thetic rates, and thus have the potential to be altered by changes in LMA and C:Nleaf . Leaf

trait plasticity levels sampled from the -Narea space reduce carbon uptake and evapotran-

spiration compared to the control response to a doubling of CO2 (CC) in our experiments

(Figure 3.4, Table 3.2). On average the observed changes in C:Nleaf and LMA reduce the

increase in annual mean net primary productivity by -9.2% (CI95% -8.9 to -9.5) and further

reduce annual mean evapotranspiration by -4.4% (CI95% -3.9 to -5.0) compared to the 2xCO2

control (-Narea - CC). The largest reduction in net primary productivity (-14.7%, CI95% -

14.4 to -15.0) and evapotranspiration (-7.0%, CI95% -6.4 to -7.7) results from the leaf trait
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plasticity level that increases C:Nleaf by one third without a co-occurring increase in LMA

(CN - CC).

Leaf trait plasticity levels that maintain Narea equal to the control (=Narea) also maintain

carbon uptake and evapotranspiration at control levels (Figure 3.4, Table 3.2). Annual mean

net primary productivity and evapotranspiration do not di�er significantly between =Narea

simulations and the control simulation under a doubling of CO2 (=Narea - CC).

Leaf changes that enhance Narea (+Narea) increase carbon uptake and lessen the reduction

in evapotranspiration compared to the control response to a doubling of CO2 (Figure 3.4,

Table 3.2). On average +Narea leaf trait plasticity levels increase annual mean net primary

productivity by +8.4% (CI95% 8.1 to 8.8) and lessen the reduction in evapotranspiration by

+4.8% (CI95% 4.2 to 5.3; +Narea - CC). The largest enhancement of net primary productivity

(+13.4%, CI95% 12.9 to 13.9) and evapotranspiration (+7.9%, CI95% 7.2 to 8.6) results from

the leaf trait plasticity level that increases LMA by one third but does not alter C:Nleaf

(LMA - CC).

We find that the level of leaf Narea, which combines information about changes in LMA

and C:Nleaf , best explains di�erences in annual mean net primary productivity (r = 0.99)

and evapotranspiration (r = 1.00) among simulations. As expected, LMA is positively cor-

related with both net primary productivity (r = 0.71) and evapotranspiration (r = 0.70);

while C:Nleaf is negatively correlated with net primary productivity (r = -0.71) and evapo-

transpiration (r = -0.71).

3.4.5 Influence of competition on carbon uptake and evapotranspirative cooling

Leaf trait plasticity levels that confer a higher competitive advantage also result in higher

carbon uptake and evapotranspirative cooling (Figure 3.4). The competitive ability of a plant

type with a given level of leaf trait plasticity, as measured by the percent of pairwise compe-

titions won against plant types with other levels of plasticity (percent wins), is significantly

correlated with net primary productivity (r = 0.91) and evapotranspiration (r = 0.91).
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3.4.6 Total canopy nitrogen

Progressive nitrogen limitation is hypothesized to limit plant growth in response to ele-

vated CO2 [Luo et al., 2004] and may be a cause of C:Nleaf and LMA plasticity in response

to elevated CO2 [Poorter et al., 2009, 1997, Pritchard et al., 1999, Roumet et al., 1999, Mey-

erholt and Zaehle, 2015]. Here we report the total amounts of canopy nitrogen required for

ecosystems with di�ering levels of leaf trait plasticity in the absence of nitrogen limitation

and compare them to the 1xCO2 control simulation (CTRL). The 1xCO2 control (CTRL)

provides a reference for the amount of nitrogen used by canopies in the simulated current-

day ecosystem. Variation in total canopy nitrogen across simulations results from the leaf

trait plasticity changes we imposed and changes in overall leaf carbon, which is an emergent

property of each simulation.

We find that leaf trait plasticity levels that reduce leaf Narea (-Narea) are required to

maintain or reduce the ecosystem’s total canopy nitrogen requirement. Under 1xCO2 condi-

tions, our control simulation had a total canopy nitrogen requirement of 8.3 g N m≠2 ground

(CI95% 8.3 to 8.3; CTRL). Doubling CO2 increased the control ecosystem’s total canopy

nitrogen requirement by +0.3 g N m≠2 (CI95% 0.3 to 0.3) or +3.2% (CI95% 3.1 to 3.3; CC -

CTRL; Figure 3.3). Leaf trait plasticity levels that maintain Narea at control levels (=Narea)

also increase the total amount of canopy nitrogen required beyond the 1xCO2 control level

but by slightly less with the mean change across =Narea simulations ranging from +2.1% to

3.0% (=Narea - CTRL; Figure 3.3). Leaf trait plasticity levels that reduce Narea compared

to the control (-Narea) are needed to maintain total canopy nitrogen at or below the 1xCO2

control level (-Narea; Figure 3.3). Across the observed range of leaf trait plasticity the total

canopy nitrogen requirement was lowered by as much as -23.2% (CI95% -23.2 to -23.3; CN -

CTRL). Leaf trait plasticity levels that enhance Narea (+Narea) increased the total canopy

nitrogen requirement beyond the 1xCO2 by as much as +36.3% (CI95% 36.2 to 36.5; LMA -

CTRL; Figure 3.3).
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3.5 Discussion

3.5.1 Large-scale climate implications

We find that observed changes in C:Nleaf and LMA reduce model predictions of tropical

tree productivity, evapotranspiration, and competitive ability under high CO2 and alter

carbon and water fluxes, with implications for projections of future large-scale climate. We

expect that reductions in evapotranspirative cooling over tropical forests would lead directly

to local warming [Kovenock and Swann, 2018]. Reductions in carbon uptake leave more CO2

in the atmosphere. If these reductions were to be widespread over tropical forests this could

have global scale implications for warming through the greenhouse e�ect of CO2 [Kovenock

and Swann, 2018]. Tropical trees which are more able to maintain their leaf Narea near

present-day levels have the highest competitive abilities and also show the smallest changes

in carbon and water fluxes (Figure 3.4), suggesting that if changes in plant type abundance

shift to reflect the most competitive members of the community this will allow maintenance

of higher gas exchange rates, leaf area index, and biomass.

3.5.2 Constraints from canopy nitrogen budgets

Maintaining present-day Narea with a doubling of CO2 requires an increase in canopy

nitrogen for the control case (CC) as well as an increase in canopy nitrogen for all leaf trait

plasticity levels which track (=Narea) or enhance (+Narea) the Narea of the control (Figure

3.3). Thus, if conservation of total canopy nitrogen due to ecosystem nitrogen limitation

were to be imposed as a requirement of the possible trait plasticity space, the control (CC),

=Narea, and +Narea plant types (central diagonal line and upper-left triangle in Figure 3.3)

would be excluded. This may partially explain why the control case is not observed in the

real world [Lovelock et al., 1998]. Although phosphorus limitation is thought to be the

primary nutrient constraint on plant growth in the tropics, evidence from empirical studies

and manipulation experiments suggests that tree growth is also limited by nitrogen in the

tropics [e.g., Winter et al., 2001, Cernusak et al., 2013]. Most of the changes observed by
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Lovelock et al. [1998] show reduced Narea, which given our simulations suggests that total

canopy nitrogen also decreased. This could be due to a change in nitrogen allocation. For

example, nitrogen allocation to roots could increase or woody biomass gains could require

greater total amounts of nitrogen (see discussion below).

3.5.3 Why do leaf changes occur?

Our model results suggest that observed increases in C:Nleaf in response to elevated CO2

do not confer a competitive advantage. We find that plant types in which C:Nleaf increases

in response to elevated CO2 su�er in several metrics of plant fitness, including biomass,

leaf area index, net primary productivity, and competitive ability. Thus our results suggest

that changes in C:Nleaf are likely forced upon plants by changes in elevated CO2, rather

than as a beneficial acclimation. This is consistent with the leading hypothesis for the

mechanism underlying C:Nleaf increases with elevated CO2. Nitrogen limitation has been

proposed as a cause for lower mass-based nitrogen concentrations in leaves [e.g., Poorter

et al., 1997, Winter et al., 2001, Fyllas et al., 2009, Cusack et al., 2016]. As carbon dioxide

fertilizes plant growth the demand for nutrients is likely to increase and eventually result in

the depletion of nitrogen available for growth [Luo et al., 2004, Hungate et al., 2003]. The

limited availability of nitrogen, as well as accumulation of nonstructural carbohydrates due

to sink limitation of growth, could lower mass-based leaf nitrogen concentrations and result

in higher C:Nleaf [e.g., Poorter et al., 1997, Winter et al., 2001]. Manipulation experiments

in which tropical tree seedlings are treated with elevated CO2 provide evidence that CO2

stimulation of growth is enhanced by the addition of soil nutrients, suggesting that nutrient

limitation does indeed impact leaf trait responses [Winter et al., 2001]. Plants in which

C:Nleaf increases more in response to elevated CO2 may be those that are unable to adjust

to lower nitrogen availability or higher competition for nitrogen. Tropical trees with traits

that allow them to better acquire nitrogen, for example associations with nitrogen fixing

bacteria or fungi, may be better able to maintain C:Nleaf levels under elevated CO2 with

advantages for growth and competitive success [Lovelock et al., 1998, Cusack et al., 2016,
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Cernusak et al., 2013].

Further, it has been suggested that the increase in LMA with elevated CO2 is mediated by

nitrogen (or other resource limitation of plant growth) causing nonstructural carbohydrate

accumulation in leaves [Poorter et al., 2009, 1997, Pritchard et al., 1999, Roumet et al., 1999].

Our results suggest a possible alternative: plants that are able to increase LMA most for a

given level of C:Nleaf change are those that are best able to maintain high levels of function-

ing (including biomass, leaf area index, productivity, and competitive ability). Concurrently

increasing LMA along with C:Nleaf leads to maintenance of equal Narea by counteracting

decreases in mass-based nitrogen concentration [Luo et al., 1994, Ishizaki et al., 2003]. In-

deed, we find that even when limited to control levels of total canopy nitrogen, plants could

maintain close to equal amounts of Narea. As nitrogen is an essential component of pho-

tosynthetic enzymes, maintaining Narea can maintain area-based maximum photosynthetic

rates [Kattge et al., 2009, 2011, Walker et al., 2014, Norby et al., 2017]. Lovelock et al.

[1998]’s observations of tropical tree leaf trait responses to a doubling of CO2 (Figure 3.1)

suggest that increases in LMA are generally higher for larger increases in C:Nleaf , helping to

maintain Narea — and thus functioning — closer to control levels (Figure 3.4).

3.5.4 Other potential leaf trait plasticity trade-o�s

Other coordinated plant responses to elevated CO2 and nutrient limitation could fur-

ther influence the impacts of leaf trait plasticity on competitive ability and tropical forest

functioning. Observations show that many trees, including tropical trees, enhance carbon

and nitrogen allocation to root growth at the expense of leaf growth in response to elevated

CO2 [e.g., Luo et al., 2006, Körner and Arnone, 1992, Cusack et al., 2016, Cernusak et al.,

2013, and references therein]. Such partitioning of nitrogen away from leaves could increase

C:Nleaf but benefit plants if they use the nitrogen to build other structures that help alleviate

resource limitation, such as roots that can access further nutrients [reviewed in Cusack et al.,

2016, Cernusak et al., 2013]. However, in some cases this growth strategy has been found

to be ine�ective [Norby et al., 2010]. Our primary results isolate the influence of leaf trait
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plasticity changes and do not include changes in the target ratio of root mass to leaf area.

However, we test the sensitivity of our results to increasing target root mass in coordination

with leaf trait plasticity using additional simulations (Supporting Information Text B.1.3

and B.2.1). In these additional experiments, trees increase target root mass in proportion

with increases in LMA. This accounts for the additional carbon cost of growing more roots to

support the additional nutrient requirements for greater leaf mass. This makes it even more

costly to increase LMA, which we expect should reduce the competitive advantage of doing

so. In this case, we find that the control plant type is always at a competitive advantage,

and the benefit of increasing LMA that we saw in our primary results no longer consistently

occurs (Figure B.3).

Other potential trade-o�s for leaf trait plasticity responses could be thought to alter

their influence on tropical forest ecosystem dynamics and functioning. For example, en-

hanced leaf lifespan is associated with greater LMA across species [Wright et al., 2004] and

could be expected to further enhance productivity and competitive outcomes. However, this

relationship across species does not necessarily hold for within species changes [Anderegg

et al., 2018, Fisher et al., 2015, Lusk et al., 2008] and varies in response to elevated CO2

[Norby et al., 2003, 2010, Taylor et al., 2008, Lovelock et al., 1998]. We therefore choose not

to couple increases in leaf lifespan with increases in LMA in our experiments. Higher carbon

to nitrogen ratios are also associated with defense against herbivory [reviewed in Cusack

et al., 2016], which could increase with climate change [e.g., Deutsch et al., 2018] but are not

considered in our simulations.

3.5.5 Indirect e�ects of plant type abundance

With limited changes in the spatial distributions of plant types, the observed plastic re-

sponse of plants under high CO2 is likely to lead to decreases in Narea and thus to overall

decreases in carbon uptake and evapotranspirative cooling. On the other hand, if the distri-

bution of plants in an ecosystem changes due to di�erences in competitive ability, plant types

that can maintain higher Narea and have a greater competitive advantage could, in the longer
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term, increase in abundance and bring carbon uptake and evapotranspirative cooling more

in line with projections that assume leaf traits remain as in the control. Presumably this

community-scale re-assembly would play out over longer timescales than leaf trait plasticity

responses. However, leaf characteristics that maximize competitive ability, carbon uptake,

and evapotranspirative cooling — namely high Narea achieved through higher LMA — lie

outside the observed range of leaf trait plasticity in response to a doubling of CO2 from

Lovelock et al. [1998]. If some tropical tree types achieve levels of leaf trait plasticity that

increase Narea, we find that these tree types would be more competitively advantageous and

enhance both carbon uptake and evapotranspiration compared to current projections. Plant

types with the ability to increase Narea may currently exist but remain unsampled due to

high diversity and small number of samples, or could potentially occur through evolution.

3.5.6 Potential role of rising temperatures

Warming temperatures could be expected to alter the response of leaf traits to CO2, with

implications for the influence of leaf trait plasticity on ecosystem functioning and composi-

tion. For example, warmer temperatures have been found to be associated with lower leaf

nitrogen content across a spatial gradient in present-day tropical forests [Cusack et al., 2016,

Fyllas et al., 2009, Tully and Lawrence, 2010], plausibly via the negative impacts of plant

respiration with high nitrogen content [Cernusak et al., 2013]. Such decreases in leaf nutrient

concentration could amplify the leaf responses to elevated CO2 we test here. Higher tempera-

tures have also been associated with lower LMA in manipulation experiments [Poorter et al.,

2009], as well as across an elevational gradient in present-day tropical forests [Doughty et al.,

2018]. This influence could be expected to o�set the LMA increase in response to CO2 we

implement herein. However, warming and CO2 are hypothesized to influence LMA through

di�erent mechanisms (leaf expansion vs. accumulation of carbohydrates, respectively), mak-

ing it di�cult to predict the combined influence of these two environmental factors on LMA.

The combined influence of elevated CO2 and temperature on tropical tree traits remains

poorly constrained [Cusack et al., 2016, Cernusak et al., 2013].
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3.5.7 Recommendations for including leaf trait plasticity in projections of future climate

We illustrate here that a better understanding of tropical tree responses to environmental

change, as well as the use of plant competition models, will be required to accurately include

the e�ects of leaf trait plasticity in projections of future climate.

First, more observations are required to constrain tropical tree leaf responses to multiple

environmental factors — including CO2, nutrient availability, and temperature — and how

these responses di�er by tree type (e.g., successional class or species) and developmental

stage [e.g., Cusack et al., 2016]. Our ability to characterize leaf trait plasticity in response to

environmental change may ultimately require a better understanding of whole plant carbon

and nutrient dynamics, as leaf carbon and nitrogen can depend on supply and demand from

other plant organs [e.g., Luo et al., 1994, Pritchard et al., 1999, Norby et al., 2010, Xu et al.,

2012].

Second, numerous models of the terrestrial biosphere represent the cycling of nutrients,

and a subset of these represent flexibility in tissue carbon to nitrogen ratios in response

to nitrogen availability [Zaehle and Friend, 2010, Zaehle et al., 2014]. Here we show that

simulation of changes in C:Nleaf in isolation of apparently coordinated changes in LMA may

overestimate the impact of changing stoichiometry on future gas exchange. Complex as it

is, models should thus strive to represent the temporal dynamics of important plant traits

themselves under changing environmental conditions, either empirically (as here), or using

predictions from optimality theory [Prentice et al., 2014, Dewar et al., 2012].

Finally, we show here that models of plant competition are necessary to include the full

influence of leaf trait plasticity on climate, as changes in leaf traits can alter plant compet-

itive dynamics and the abundance of di�erent plant types with implications for ecosystem

functioning. Biosphere models that include competition between plants for resources are

included in some Earth system models used to predict future climate but remain an area of

active research [e.g., Fisher et al., 2018].
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3.5.8 Implications

Here we show that leaf trait plasticity in response to elevated CO2 could alter tropical

forest influences on climate directly, by altering the functioning of tropical trees, and indi-

rectly, by modifying plant competitive dynamics and the abundance of di�erent plant types.

As such, including the e�ects of leaf trait plasticity could have a significant influence on

projections of future climate. These results further support the need for more observations

of tropical tree responses to environmental change and the use of plant competition models

within Earth system models used to predict future climate change.
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3.7 Figures and Tables

Figure 3.1: Leaf trait plasticity in response to a doubling of CO2 in tropical trees for leaf
C:N (leaf g C g≠1 N) and leaf mass per area (g C m≠2 leaf area). Observed changes across
nine tropical tree species (red circles) from Lovelock et al. [1998]. Leaf trait plasticity levels
sampled for our experiments (gray squares). Diagonal black line indicates where nitrogen
per area (Narea, g N m≠2 leaf area) remains at control levels. Above the diagonal line leaf
nitrogen per area increases (+Narea) compared to the control; below the diagonal line it
decreases (-Narea).
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Figure 3.2: Annual mean (a) biomass (kg C m≠2) and (b) leaf area index (m2 m≠2) for
the 1xCO2 control, 2xCO2 control (black), and the following leaf trait plasticity levels in
the absence of competition: a one-third increase in leaf C:N alone (+CN, light green), a
one-third increase in leaf mass per area alone (+LMA, purple), and a one-third increase in
both leaf C:N and leaf mass per area (+CN+LMA, dark green). Error bars show bootstrap
95% confidence intervals for the mean value.
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Figure 3.3: The percent of pairwise competitions won (% Wins, color shading and black
numbers) and percent change in total canopy nitrogen compared to the 1xCO2 control (red
contours) for each leaf trait plasticity level of leaf C:N and leaf mass per area. Percent wins
for sampled trait changes (black numbers). Diagonal line (dashed black) indicates where
nitrogen per area (Narea, g N m≠2 leaf area) remains at control levels (=Narea). Leaf trait
plasticity levels below the diagonal line reduce Narea (-Narea) compared to the control plant
type. Leaf trait plasticity levels above the diagonal line enhance Narea (+Narea) compared
to the control plant type. Linear interpolation used to estimate percent wins and change in
total canopy nitrogen between sampled trait changes.
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Figure 3.4: Annual mean (a) net primary productivity (NPP, kg C m≠2 yr≠1) and (b) evap-
otranspiration (ET, W m≠2) for the 1xCO2 control, 2xCO2 control (no leaf trait plasticity),
and 12 ecosystems each consisting entirely of one plant type with a di�erent level of leaf trait
plasticity sampled from the -Narea, =Narea, and +Narea plasticity spaces. Color indicates the
percentage of all pairwise competitions won by each level of leaf trait plasticity (% Wins).
Error bars show bootstrap 95% confidence intervals for the mean value.
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Table 3.1: Change in tropical ecosystem properties due to a doubling of CO2 in the control
simulation (no leaf trait plasticity, CC - CTRL)

Mean (CI95%) % (CI95%)

Biomass (kg C m≠2) +30.1 (30.0, 30.2) +102.6% (102.1, 103.0)

LAI (m2 m≠2) +0.4 (0.4, 0.5) +7.0% (6.8, 7.2)

NPP (kg C m≠2 yr≠1) +1.0 (1.0, 1.0) +74.2% (73.2, 75.1)

ET (W m≠2) -7.3 (-6.8, -7.8) -9.2% (-8.6, -9.8)

Note. Leaf area index (LAI), net primary productivity (NPP), evapotranspiration (ET).

Bootstrap 95% confidence intervals (CI95%) in parentheses. Mean and percent (%) changes

calculated as (CC - CTRL) and (CC - CTRL)/CTRL, respectively, where CTRL and CC

are the control simulations at 400 ppm and 800 ppm CO2, respectively.
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Chapter 4

WITHIN-CANOPY GRADIENT OF SPECIFIC LEAF AREA
IMPROVES SIMULATION OF TROPICAL FOREST

STRUCTURE AND FUNCTIONING IN A
DEMOGRAPHIC VEGETATION MODEL

Marlies Kovenock1, Charles D. Koven2, Ryan G. Knox2, Rosie A. Fisher3, and Abigail L.S.

Swann4,1

1Department of Biology, University of Washington, Seattle, WA; 2Lawrence Berkeley Na-
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4Department of Atmospheric Sciences, University of Washington, Seattle, WA.

Supporting Information referenced in this chapter can be found in Appendix C.
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4.1 Abstract

Tropical forests exert extensive control over global carbon, water, and energy fluxes and

thus they play a critical role in determining future climate. Yet, their responses to climate

change and the resulting vegetation feedbacks on climate remain uncertain. Explicit rep-

resentation of vegetation dynamics in Earth system models has been proposed as a way

to improve predictions of vegetation feedbacks on future climate, particularly in tropical

ecosystems. The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) model

improves process-based representation of ecosystem dynamics and demography, and can be

embedded within Earth system models. However, the model simulates leaf area index that is

well below observations at tropical forest sites, which could have significant implications for

predictions of ecosystem dynamics, structure, and functioning. Here we implement a canopy

profile of specific leaf area in the FATES model, following observations, and benchmark the

modified model’s performance against observations at a tropical forest site, Barro Colorado

Island, Panama, across 287 plausible plant trait parameterizations. We find that our more

realistic representation of within-canopy leaf trait dynamics improves the simulation of leaf

area index and several other measures of ecosystem structure and functioning — gross pri-

mary productivity, latent heat, and sensible heat fluxes; above-ground biomass; and basal

area. We also identify three high-performing parameter sets for use in future experiments

and suggest constrained parameter ranges for a selection of individual plant trait parameters

that strongly influence performance in our benchmarking analysis. In sum, this work im-

proves the simulation of tropical forest structure and functioning in the FATES vegetation

demography model through a more realistic representation of within-canopy leaf dynamics,

and suggests high-performing parameter sets and constrained parameter ranges for use in

future experiments.
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4.2 Introduction

Tropical forests exert strong control over Earth’s carbon, energy, and water fluxes [Bonan,

2008]. The responses of tropical forests to climate change and the resulting feedbacks on

climate and carbon cycling remain critical uncertainties in projections of future climate

[e.g., Ciais et al., 2013, Zhang et al., 2015, Lloyd and Farquhar, 2008, Schimel et al., 2015,

Brienen et al., 2015, Hickler et al., 2008, Fisher et al., 2010, Cernusak et al., 2013, Leakey

et al., 2012a, van der Sleen et al., 2015, Cusack et al., 2016]. Better representation of

terrestrial ecological dynamics in Earth system models has been proposed as a way to improve

the simulation of vegetation responses and feedbacks on climate and carbon cycling [e.g.,

Evans, 2012, Fisher et al., 2018, Moorcroft, 2006, Purves and Pacala, 2008]. Consideration

of ecological and demographic processes could be particularly important in tropical forests, as

these dynamics play a dominant role in shaping tropical ecosystem structure and functioning

[e.g., Fisher et al., 2010, Levine et al., 2016, Moorcroft et al., 2001]. Demographic vegetation

models that include mechanistic representations of ecological and demographic processes and

can be embedded within Earth system models o�er a promising avenue forward. However,

with additional ecological complexity comes the necessity to validate these models and their

processes by benchmarking their performance against observations [e.g., Fisher et al., 2018,

Moorcroft, 2006, Purves and Pacala, 2008]. A key test prior to simulating future biosphere

changes is the ability to simulate the current biosphere as benchmarked against observations.

FATES is a vegetation demography model [Fisher et al., 2015, 2018] that can be embed-

ded within Earth system models and adds more realistic representation of the biosphere by

mechanistically simulating plant ecological dynamics and ecosystem assembly via processes

including plant growth, competition for light and water, recovery from disturbance, repro-

duction, mortality, and recruitment. In present day simulations of tropical forests, FATES

simulates many aspects of ecosystem structure and functioning well [Koven et al., unpub-

lished]. However, it severely underestimates a critical ecosystem property – leaf area index.

Insu�cient leaf area index compared to observations could have significant implications for
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simulated ecosystem functioning, as leaf area provides the surface area over which the veg-

etation fluxes of carbon, water, and energy are summed. Additionally, low leaf area could

alter ecosystem assembly and demographic processes by altering the light environment and

competition between plants for this limiting resource. At the same time, the FATES model

matches observations of tropical forest productivity well, suggesting the issue lies in the

conversion of carbon available for leaf growth to leaf area.

One reason for the underestimation of leaf area index could be that FATES does not

include a vertical gradient in the area to mass ratio of leaves with depth in the canopy (Figure

4.1a). This quantity can be referred to as specific leaf area (m2 leaf area/gC), or, inversely as

leaf mass per area (gC/m2 leaf area). Here we will use specific leaf area. Observations show

that specific leaf area increases with overlying leaf area index in tropical forests [Lloyd et al.,

2010, Poorter et al., 1995, Ishida and Toma, 1999, Carswell et al., 2000, Souza and Válio,

2003], as well as in many other plant types and ecosystems across continents [reviewed in

Thornton and Zimmermann, 2007, Niinemets et al., 2015]. This increase in specific leaf area

with depth in the canopy, makes leaf area at the bottom of the canopy cheaper in terms of

carbon to build than leaf area at the top of the canopy. Thus, the observed specific leaf area

profile decreases the average carbon cost of building leaf area and therefore increases leaf area

index for a give carbon investment in leaves (Figure 4.1b). Models that do not represent

this profile, including FATES, could therefore incorrectly simulate the trade-o� between

productivity and leaf area, with consequences for simulated leaf area; carbon, water, and

energy fluxes; and ecological dynamics.

The specific leaf area profile is related to the widely observed within-canopy gradients

of leaf nitrogen per area and maximum photosynthetic rates, which are often represented

in models of the terrestrial biosphere. In fact, the specific leaf area profile is thought to

cause the vertical gradients in leaf nitrogen per area and maximum photosynthetic rates.

As mass-based leaf nitrogen concentrations remain constant through the canopy, increasing

specific leaf area with canopy depth drives declines in nitrogen per area (N per area =

N per mass / specific leaf area) and per-area photosynthetic enzyme concentrations [e.g.,
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Lloyd et al., 2010, Reich et al., 1998, Ellsworth and Reich, 1993, Evans and Poorter, 2001].

The gradients in these leaf traits are thought to maximize photosynthetic carbon gain given

the gradient of light within canopies [Lloyd et al., 2010, Bonan et al., 2011, and references

therein]. The profiles of nitrogen per area and photosynthetic rates through the canopy

have been found to significantly influence simulations of the terrestrial biosphere and have

therefore been included in a wide range of canopy, demographic vegetation, and land surface

models [reviewed in Thornton and Zimmermann, 2007, Bonan et al., 2012], including FATES

[Fisher et al., 2015].

Yet few biosphere models represent the corresponding profile of specific leaf area, despite

its influence on the relationship between productivity and leaf area and potential to alter

competition for light. In their analysis of 11 ecosystem models, De Kauwe et al. [2014] found

that only one model includes the specific leaf area profile, the Community Land Model

[for implementation see Thornton and Zimmermann, 2007, Bonan et al., 2011]. Sensitivity

tests with this land surface model show that the specific leaf area profile can significantly

influence the simulation of leaf area index and productivity [Thornton and Zimmermann,

2007]. Models missing this profile could be misrepresenting the relationship between carbon

available for growth and leaf area, with significant implications for ecosystem dynamics,

structure, and functioning.

Here we implement a specific leaf area profile in the FATES model; benchmark the mod-

ified model’s performance against observations at a tropical forest test site; and select high-

performing parameter sets that can be used as a baseline for future FATES experiments.

We modify the FATES model structure to include the specific leaf area profile, following

observations from Lloyd et al. [2010]. We then test the influence of the specific leaf area pro-

file on ecosystem structure and functioning at a tropical forest site, Barro Colorado Island,

Panama. To test the influence of the specific leaf area profile across plausible model param-

eterizations and identify parameters that strongly influence model performance, we repeat

the control and specific leaf area simulations for 287 model parameter sets. Each parameter

set samples the observed trait space for six plant trait values (maximum carboxylation rate,
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specific leaf area, wood density, leaf carbon to nitrogen ratio, leaf longevity, and background

mortality rate) and plausible trait space for an additional six plant trait values for which ob-

servational constraints are lacking (slope of stomatal conductance equation and parameters

used in allometric equations). We benchmark the performance of each ensemble member

against six observed variables at our test site: leaf area index, above-ground biomass, basal

area, gross primary productivity, latent heat fluxes, and sensible heat fluxes. Lastly, we use

our benchmarking analysis to identify individual parameters that strongly influence model

performance and suggest constraints on their plausible ranges.

4.3 Materials and Methods

4.3.1 FATES Model Description

We test the influence of varying specific leaf area with depth in the canopy on ecosystem

composition and functioning using the Functionally Assembled Terrestrial Ecosystem Simu-

lator [FATES; Fisher et al., 2015, 2018]. FATES is a demographic vegetation model which

can be embedded within the Community Land Model [CLM; Lawrence et al., 2018] of the

Community Earth System Model. The CLM(FATES) model mechanistically simulates plant

ecological dynamics and ecosystem assembly via processes including plant growth, competi-

tion for light and water, recovery from disturbance, reproduction, mortality, and recruitment.

Plants are represented by a user-defined number of plant functional types, which can di�er in

numerous traits including but not limited to maximum photosynthetic rates, wood density,

and mortality rates. FATES tracks carbon cycling through several plant biomass and litter

pools. It also accounts for hydrology, surface energy fluxes, and soil carbon in coordination

with its host land model.

A key feature of FATES is that the model tracks vegetation type, height, and time

since disturbance. Disturbance periodically and mechanistically befalls some patches of the

simulated ecosystem. Plants within these "patches" are considered to share an age class,

which represents their age since last disturbance. Within a patch, individual plants are



70

grouped into "cohorts", which can di�er in height. Cohorts represent individual plants of

the same plant type and height as a representative average individual. The height structure

of cohorts within a patch determines the light profile experienced by each cohort. The leaf

area of taller cohorts in the canopy can shade cohorts deeper in the canopy. Photosynthesis,

respiration, turnover, and mortality, as well as the interaction of these processes with the

abiotic environment, control the amount of carbon each cohort can use for growth. Growth

and size-dependent allometric equations then determine the height and leaf area of each

cohort. Radiation streams for direct and di�use light are calculated at the leaf layer level for

each plant type. This incoming energy is required for photosynthesis and influences the leaf

energy budget. In addition to competition for light, FATES represents competition for water

by allowing di�erences in rooting depth profile between plant functional types to influence

access to a shared soil moisture profile.

4.3.2 Specific Leaf Area Profile Implementation

Here we implement a specific leaf area profile in FATES that increases specific leaf area

exponentially with depth in the canopy (Figure 4.1a). Previously FATES represented specific

leaf area as a constant value for each plant functional type that did not change with depth

in the canopy (Figure 4.1a, static SLA). Observations in tropical forests [Lloyd et al., 2010,

Poorter et al., 1995, Ishida and Toma, 1999, Carswell et al., 2000, Souza and Válio, 2003], as

well as in many other plant types and ecosystems across continents [reviewed in Thornton

and Zimmermann, 2007, Niinemets et al., 2015], show that specific leaf area varies with depth

in the canopy. We implement a new specific leaf area profile which causes the carbon cost

of building leaf area — represented by the inverse of specific leaf area — to follow the same

profile through the canopy as that of nitrogen per leaf area and maximum photosynthetic

rates (i.e., Vcmax25, Jmax25, Tpu25) and respiration rates, as supported by observations [e.g.,

Lloyd et al., 2010, Thornton and Zimmermann, 2007]. Canopy depth-varying profiles of

nitrogen per area, photosynthetic rates, and respiration rates were already included in the

baseline FATES model. The scaling factor for these profiles is calculated as follows:
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nscaler(x) = exp(≠kn · x) (4.1)

where x is the canopy depth in terms of overlying leaf area index (m2 leaf area/m2 ground)

and kn is the coe�cient that describes nitrogen per area decay with depth in the canopy. The

exponential rate of change through the canopy of these leaf traits (specific leaf area, nitrogen

per area, and maximum photosynthetic rates), often referred to as kn, di�ers by plant type

and has been empirically related to the magnitude of maximum photosynthetic rates at the

top of the canopy [Lloyd et al., 2010]. Plant types with low maximum photosynthetic rates

at the top of the canopy have shallower gradients in these leaf traits, including specific leaf

area; whereas, plant types with high maximum photosynthetic rates have steeper gradients.

The model relates the nitrogen decay coe�cient (kn) to the maximum rate of carboxylation

at top of the canopy (Vcmax25top) following the empirical relationship from Lloyd et al. [2010]:

kn = exp(0.00963 · Vcmax25top ≠ 2.43) (4.2)

Here we additionally vary the value of specific leaf area with depth in the canopy as

follows:

SLA(x) = SLAtop

nscaler(x) (4.3)

where SLA(x) is the specific leaf area (m2 leaf area/gC) when overlying leaf area index equals

x and SLAtop is the specific leaf area at the top of the canopy (m2 leaf area/gC). Specific leaf

area is allowed to increase with canopy depth until it reaches an observationally constrained

maximum value [the upper 95% confidence interval for all observations in the TRY database;

Kattge et al., 2011], at which point it remains at the maximum value even if overlying leaf

area continues to increase. That is, leaves are allowed to become thinner relative to their mass
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at lower depths in the canopy where there is less light, and this relationship is exponential

to depth up to the observed maximum of specific leaf area.

FATES uses specific leaf area to calculate the carbon cost of building leaf area. The spe-

cific leaf area profile implemented herein changes the relationship between carbon allocated

to leaves and leaf area from a linear to an exponential relationship (Figure 4.1b). Previously,

the static specific leaf area value caused leaf area index of a tree to increase linearly with

carbon allocated to leaves (Figure 4.1b) as follows:

LAItree = Cleaf · SLA (4.4)

where LAItree is leaf area index (m2 leaf area/m2 ground) for a representative average in-

dividual tree of a cohort (group of plants of the same plant type and height); Cleaf is the

amount of carbon available within this tree to build leaves per area ground (gC/m2 ground);

and SLA is a constant value of specific leaf area (m2 leaf area/gC).

With the specific leaf area profile, leaf area index increases exponentially with leaf carbon

(Figure 4.1b). This occurs because specific leaf area, which represents the amount of leaf

area built per unit of carbon, increases exponentially with increasing overlying leaf area

index. When using the specific leaf area profile, we calculate leaf area index as a function of

a dynamic specific leaf area value that increases with overlying leaf area index. We derive

the relationship between leaf area index and leaf carbon in two steps. First, we set the

total amount of carbon available for building leaves equal to the integrated value of one over

specific leaf area, which represents the carbon cost of building one unit of leaf area, at each

canopy depth x expressed in overly lying leaf area index:

Cleaf =
⁄ LAItree

0

nscaler(x + LAIabove)
SLAtop

dx (4.5)

where Cleaf is the total amount of carbon available for building leaves in this tree; LAItree is
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the leaf area index of an individual tree, which we wish to calculate; SLAtop is the specific

leaf area at the top of the canopy; nscaler is the scaling factor for the decay of nitrogen with

canopy depth (as defined in equation 4.1); and LAIabove is the cumulative overlying leaf area

index above this tree. Equation 4.5 can then be rearranged to solve for the leaf area index

of a tree given the amount of carbon allocated to leaves as follows:

LAItree = ln (e(≠kn·LAIabove) ≠ kn · SLAtop · Cleaf ) + kn · LAIabove

≠kn
(4.6)

This exponential growth equation is used to calculate leaf area index until specific leaf area

reaches the observational constraint we set for maximum specific leaf area. If specific leaf

area reaches this maximum value, leaf area index beyond this point increases linearly with

additional leaf carbon (Figure 4.1a), as in Equation 4.4.

FATES also uses specific leaf area to determine whether a leaf layer is in positive carbon

balance. If a leaf layer costs more to build in terms of carbon than it brings in through

net primary productivity, the model reduces the amount of carbon allocated to leaf growth

until all leaf layers are in positive annual carbon balance. Previously, FATES calculated the

carbon cost of a leaf layer using a static value for specific leaf area as follows:

Costleaf = 1 + GRperc

SLA · LL
(4.7)

where Costleaf (gC/m2 leaf area/yr) is the carbon mass required to build a leaf layer; SLA

is the specific leaf area (gC/m2 leaf area); LL is the leaf longevity (years); and GRperc is

a fraction that accounts for the growth respiration cost. The specific leaf area profile we

implement herein uses the same equation to calculate leaf cost, except that the specific leaf

area value is calculated for each leaf layer following Equation 4.3. This modification reduces

the cost of leaves with depth in the canopy as specific leaf area increases with overlying leaf

area.
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Appendix C contains the FATES code changes associated with the specific leaf area profile

implemented herein.

4.3.3 Testing the Influences on Ecosystem Structure and Functioning

We tested the influence of the specific leaf area profile on tropical forest structure and

functioning through an ensemble of FATES simulations at Barro Colorado Island, Panama.

We compare simulations run with two model structures – a control and a specific leaf area

profile structure. Simulations run with the control model structure (CTRL) represent specific

leaf area as a constant value regardless of depth in the canopy. Experiment simulations (SLA)

are set up identically to the control simulations except that specific leaf area varies with depth

in the canopy.

To account for model parameter uncertainty, we run both the control and specific leaf

area profile simulations under 287 di�erent plant trait parameterizations. These parameter-

izations are drawn from samples of the tropical tree trait space for 12 parameters, following

[Koven et al., unpublished]. In the sampling process, values for six of these parameters —

specific leaf area at the top of the canopy, maximum rate of carboxylation at the top of the

canopy (Vcmax25top), wood density, leaf carbon to nitrogen ratio, leaf longevity, and back-

ground mortality rate — were sampled from the observed trait space for tropical trees at our

study location and two nearby sites, Parque Natural Metropolitano and Bosque Protector

San Lorenzo, Panama. Values for the remaining six parameters were sampled from plausible

distributions as observational constraints are lacking. These parameters include the slope

parameter in the Ball-Berry stomatal conductance model and several allometric parameters:

parameters that control the intercepts in the relationships between diameter at breast height

and plant crown area, as well as diameter at breast height and target allometric leaf biomass;

a parameter that controls the exponential in the relationships between diameter at breast

height and both plant crown area and target allometric leaf biomass; the ratio of target leaf

biomass to target fine root biomass; and the intercept of the relationship between sapwood

area to leaf area. The parameter sampling maintained observed covariance between traits.
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CTRL and SLA simulations used the same 287 parameter combinations.

All simulations were forced with observed meteorological data for years 2003-2016 from

Barro Colorado Island [Faybishenko et al., 2018]. All vegetation patches experienced the

same meteorological forcing within a single grid cell. Plants in all simulations are represented

by a single plant functional type that is characteristic of this site, the broadleaf evergreen

tropical tree. Simulations started from near-bare ground and ran for 300 years, the time

required to grow a mature forest in the model with our setup. We tested all control and

experiment simulations at two, time-invariant atmospheric carbon dioxide concentrations,

367ppm and 400ppm. These carbon dioxide concentrations bookend the change in carbon

dioxide concentration between 2000-2015 [NOAA Earth System Research Laboratory, 2018],

the approximate time period over which the observations to which we benchmark model

performance (see Section 4.3.4) were made. All variables used in analysis came to equilibrium

before 250 years. We used the last 50 years of each simulation in our analysis.

4.3.4 Evaluation of Simulations Against Observations

We benchmark each SLA simulation against observations from the Barro Colorado Island

site and use this evaluation to select model parameterizations that result in the highest model

skill. Barro Colorado Island is home to a 50-hectare long-term tropical forest monitoring

plot with observations dating back to 1980, and is one of the best sampled sites in a tropical

forest. It is a Smithsonian Tropical Research Institute site and ForestGEO site. We compare

model annual mean output to reported observations of annual mean leaf area index and gross

primary productivity, latent heat, and sensible heat fluxes; and annual values of above-ground

biomass and basal area. Leaf area index observations come from Detto et al. [2018] and

were made using hemispherical photographs approximately monthly from January 2015 to

August 2017 at 188 locations at Barro Colorado Island. We use basal area observations that

were collected during census surveys of a 50-hectare plot on Barro Colorado Island in 1992,

1996, 2001, 2006, and 2011 [Condit et al., 2017, 2012, Condit, 1998, Hubbell et al., 1999].

Above-ground carbon biomass estimates for Barro Colorado Island were calculated from the
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1995 census survey data by Meakem et al. [2018]. They estimated above-ground biomass

from two di�erent allometric formulations, which we use to represent uncertainty in this

measure. We also tested the sensitivity of our results to representing the uncertainty in above-

ground biomass estimates across time, using estimates by Feeley et al. [2007] and Baraloto

et al. [2013] derived from 5 year census data at Barro Colorado Island between 1985-2005.

We converted their estimates of above-ground biomass (g biomass) to above-ground carbon

biomass (gC) using a conversion factor of 0.47 gC/g biomass, following Meakem et al. [2018].

Our results and conclusions were not sensitive to this alternative measure of uncertainty (time

variation vs. allometric formulation). Results reported herein represent uncertainty across

allometric formulations. We use observations of gross primary productivity, latent heat, and

sensible heat fluxes from flux tower eddy covariance measurements at Barro Colorado Island

from July 2012 to August 2017 [Koven et al., unpublished].

We evaluate each SLA simulation against observations using two scoring metrics. The

first metric, which we refer to as the range score (Rscore) measures the percentage of each

simulation’s annual mean values that fall within the observed range. The second metric

measures the distance of each simulation’s annual mean values from the observed mean.

We refer to this second metric as the distance score (Dscore). We calculate both scores

for each variable (leaf area index, gross primary productivity, etc). We then calculate a

weighted average across all variables for each metric. Finally, we rank the simulations by

the weighted average metrics and use these rankings to select the highest performing model

parameterizations.

The Rscore measures the reliability with which the modeled values for each variable fall

within the observed range. We calculate this metric for each observed variable in each SLA

simulation as the proportion of years in which the model output falls within the observed

range. Rscore values range from 0 to 100, where 100 indicates the model output falls within

the observed range during all years analyzed. To account for relatively small sample sizes

and potential measurement error within the observations we extend the observational range

by 10% in either direction in this calculation. We also test the sensitivity of our results
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to extending the range by 20%. A similar approach to extending the observed limits was

taken by Fisher et al. [2010] when selecting parameterizations of the Ecosystem Demography

model [Moorcroft et al., 2001] using observed limits of ecosystem properties.

The Dscore measures the spread, or distance, of each simulation’s modeled annual mean

values about the average observed value. We calculate the Dscore for each simulation and

variable as the normalized root mean square error between the observed and model values.

To account for the spread in the observed values when considering this distance, we normalize

the root mean square error by the range in observed values. Thus the Dscore is calculated

as follows:

Dscore =

Ú
qn

k=1
(X̄obs≠xmodel,k)2

n

xobs,max ≠ xobs,min
(4.8)

where X̄obs is the mean observed value, xmodel,k is the kth model annual mean of n number

of years of model output, and xobs,max and xobs,min are the maximum and minimum observed

values, respectively. Dscore values near zero indicate that model output for the given sim-

ulation and variable is close in value to the observed mean. We also calculate the Dscore

using an alternative formulation, the normalized mean absolute error. This alternative for-

mulation normalizes the mean absolute di�erence between each model annual mean and the

overall observed annual mean by the range in observations. This alternative formulation

yields similar results and conclusions as the formulation reported above.

To measure the aggregate performance across all observed variables we calculate weighted

average Rscores and Dscores for each SLA simulation. The weighted average for Rscores is

calculated as follows:

Rscoreavg =
mÿ

i=1
(Êi · Rscorei) (4.9)

where m is the number of variables we consider (e.g., leaf area index, basal area, etc); Rscorei
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is the range score for each variable; and Êi is the weighting for each variable. For the weighted

average distance score (Dscoreavg), we use the Euclidean Distance to calculate the distance

from the mean observation across all variables as follows:

Dscoreavg =
ı̂ıÙ

mÿ

i=1
(Êi · Dscorei)2 (4.10)

where m is the number of variables we consider; Dscorei is the distance score for each

variable; and Êi is the weighting for each variable.

To identify the parameter sets that robustly performed well regardless of how variables

were weighted, we tested several weighting schemes in our average score calculations. First,

an even weighting scheme applied the same weighting to all variables (Ê = 1/6). A second

weighting scheme favored structural ecosystem properties – leaf area index, above-ground

biomass, and basal area. This weighting scheme reflects the likelihood that structural prop-

erty measurements at Barro Colorado Island include less uncertainty than the flux mea-

surements. The flux measurements include valuable additional information but may be

challenging to accurately collect due to the island geography of this test site, as well as

the challenges of maintaining an eddy covariance tower in a tropical forest. This weighting

scheme assigned an Ê = 0.3 to each structural property and the remaining weighting evenly

to the flux properties — gross primary productivity, latent heat flux, and sensible heat flux.

Lastly, we tested a weighting scheme that favors leaf area index (Ê = 0.4), followed by

above-ground biomass and basal area (each with Ê = 0.25), and the remaining weighting

evenly distributed among the flux properties. This last weighting scheme was informed by

correlations between individual variable scores. Scores for flux variables were correlated with

leaf area index and with one another. As leaf area index observations likely include smaller

measurement uncertainty, we chose to weight leaf area index more highly at the expense of

flux measurements. We also reduced the weightings of basal area and above-ground biomass

to account for their correlation with one another.

When observations had years that were not full (e.g., 28 months) we calculated annual
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means starting from the beginning of the time series (e.g., months 1-24) and the end of

the time series (e.g., months 5-28). For the Rscore, we allowed the observed minimum and

maximum to be selected from the values in both sets of annual means. For the Dscore, we

calculated the model distance from each set of annual means and selected the score with

the best fit for use in the weighted averaging. Di�erent start dates were used for observed

leaf area index (January and September start dates) and for flux measurements (July and

September start dates).

4.3.5 Selection of High-Performing Parameter Sets

We chose three high-performing parameter sets by ranking all simulations in order of their

ability to match observations as measured by their weighted average Rscores and Dscores.

Our aim was to select parameter sets that consistently perform well and whose performance is

not dependent on a single formulation of model skill. We therefore test the sensitivity of each

simulation’s performance score to twelve di�erent ranking methods. These ranking methods

test all combinations of three weighting schemes (structure, correlation, and even; same

weighting applied to each Dscore and Rscore pairing); two carbon dioxide concentrations

(367ppm and 400ppm, which approximately bookend the carbon dioxide change over the

observational period); and two formulations of the Rscore, in which the observed limits

are extended by 10% and then by 20% to account for measurement error and sample size

limitations in the observations. For all twelve combinations of weighting scheme, carbon

dioxide concentration, and observed limit relaxation, we rank parameter sets by both their

Dscores and Rscores. We then sum the rankings across the Dscore and Rscore pairing for

each parameter. Finally, we calculate the average performance rank for each simulation

across the ranking methods and use this overall average ranking to identify the parameter

sets with the best performance.
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4.3.6 Comparison to Additional Observations

We also compare all SLA ensemble members and high-performing members to observa-

tions of three variables that were not used in the benchmarking evaluation and selection of

high-performing parameter sets: leaf height distribution, tree size distribution, and mortality

rates. We use estimates of leaf area density (m2 leaf area/m3) made by Detto et al. [2015]

using airborne waveform light detection and ranging (lidar) measurements from 2012 for our

test site, Barro Colorado Island. Tree size abundance and mortality rate observations come

from census surveys of a 50-hectare plot on Barro Colorado Island in 1992, 1996, 2001, 2006,

and 2011 [Condit et al., 2017, 2012, Condit, 1998, Hubbell et al., 1999].

4.4 Results

The specific leaf area profile increases leaf area index in our FATES simulations. Across

parameter sets, the distribution of average annual mean leaf area index shifts higher when

simulations include the specific leaf area profile (SLA) compared to the control (CTRL)

simulations (Figure 4.2a). This was expected given that increasing specific leaf area with

canopy depth decreases the carbon cost of building leaf area lower in the canopy. The

higher values of leaf area index in the SLA simulations are more aligned with observed limits

and mean values (arrows and triangles in Figure 4.2). Thus, the specific leaf area profile

enhances the model’s ability to represent this key ecosystem property. Including the profile

also increases the number of parameter combinations that match the observational means

and limits for leaf area index.

The shift to higher leaf area in response to implementing the specific leaf area profile drives

smaller changes in other ecosystem properties. The distribution of average annual mean gross

primary productivity shifts slightly higher in the SLA simulations (Figure 4.2d). Increases in

leaf area index in response to the specific leaf area profile cause gross primary productivity

to rise because leaf area index provides the surface area over which photosynthesis occurs.

The change in gross primary productivity is smaller than that of leaf area index because the
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response of productivity to leaf area index saturates. As leaves are added to the bottom

of the canopy their maximum photosynthetic rates decrease following the exponential decay

of light and leaf nitrogen per area through the canopy. Thus, as leaf area increases, gross

primary productivity increases but at a diminishing rate. Overall, gross primary productivity

across model parameterizations continues to match observations well when the specific leaf

area profile is included.

The distributions of above-ground biomass and basal area across parameterizations also

shift slightly higher when the specific leaf area profile is included (Figure 4.2b,c). Increased

biomass and tree size are consistent with higher gross primary productivity in the SLA

simulations. As the specific leaf area profile shifts the ecosystem to a more productive state,

trees have more carbon for structural growth. These shifts bring the SLA simulations in

closer alignment with observations, although most parameterizations still produce above-

ground biomass and basal area values that are low compared to observations.

The specific leaf area profile also drives a slight increase in the distribution of latent heat

fluxes and slight decrease in sensible heat fluxes across parameterizations (Figure 4.2e,d).

Latent heat flux is comprised of three components: transpiration, evaporation from leaf sur-

faces, and evaporation from soil. Higher leaf areas resulting from the specific leaf area profile

provide more surface area for two of these components — transpiration and evaporation from

leaf surfaces. Furthermore, transpiration is coupled to gross primary productivity as water

exits leaves through stomatal pores when they open to take up carbon dioxide for photosyn-

thesis. As gross primary productivity increases in response to the specific leaf area profile,

so does transpiration. The response of transpiration is smaller than that of leaf area index

because of the saturating response of gross primary productivity to leaf area. Additionally,

solar radiation provides energy to evaporate water and increasingly diminishes with depth

in the canopy at higher leaf areas. Sensible heat fluxes shift to lower values (Figure 4.2f) to

balance the increase in latent heat fluxes. Overall, the specific leaf area profile brings the

distribution of latent and sensible heat fluxes more in line with mean observations.

Figure 4.2 shows these changes for simulations run at 400ppm of carbon dioxide. Results
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are similar for simulations run at 367ppm and are shown in Figure 4.3.

4.4.1 Benchmarking to Observations

We benchmark each SLA simulation against observations at our test site to select the

highest performing parameter sets for use in future simulations. We use two measures of

model skill to evaluate each simulation for each observed variable (leaf area index, above-

ground biomass, basal area, gross primary productivity, latent heat flux, and sensible heat

flux). The first metric, the Dscore, measures the distance of each simulation’s annual mean

values from the observed mean for each variable. Dscore values close to zero (yellow in

Figures 4.4a and 4.5a) indicate that model values are close to the observed mean relative to

the observed range for that variable. The second metric, the Rscore, measures the percent of

model annual means that fall within the observed limits for each variable. Rscore values close

to 100 (yellow in Figures 4.4b,c and 4.5b,c) indicate that a high proportion of model annual

means fall within the observed limits. To account for measurement and sampling error in the

observations, we extend the observed limits by both 10% and 20%. We measure the overall

performance across all variables for each metric, Dscore and Rsore, using a weighted average

of the individual variable scores. Our weighted average Dscores and Rscores test three

weighting schemes: a weighting that favors structural properties (leaf area index, above-

ground biomass, and basal area); a weighting that takes into account correlation between

scores for individual variables, which favors leaf area index; and an even weighting across all

variables. (See Section 4.3.4 for details.)

Many parameter sets perform well in several of the observed variables; however, very few

parameter sets score well in all of the observed variables (Figures 4.4 and 4.5). Leaf area index

is captured by a high proportion of parameter sets, as indicated by both Dscores and Rscores

(Figures 4.4 and 4.5). The high proportion of parameter sets that match observations for leaf

area index is also seen in the distributions of annual mean leaf area index across parameter

sets (Figures 4.2a and 4.3a) as the mode of the model distribution aligns well with the

observed mean and range.
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Fewer parameter sets perform well against observations of basal area and above-ground

biomass (Figures 4.4 and 4.5). Most parameter sets result in annual mean basal area and

above-ground biomass values that are low compared to observations, a result that is slightly

mediated by the new model structure that includes the specific leaf area profile (Figures

4.2b,c and 4.3b,c). Additionally, performance metrics for above-ground biomass and basal

area are particularly polarizing — parameter sets generally score very well or very poorly

with few mid-level values. This happens because these variables have low interannual vari-

ability (Figure 4.6b,c), resulting in model values with narrow ranges that are either all within

or all outside of the observed range. Furthermore, the small observational range for basal

area contributes to poor Dscores across parameter sets, as the distance between observa-

tions and model values is evaluated relative to the range in observed values. Even small

di�erences between modeled and observed values will produce poor Dscore values when they

are normalized by a small observed range. Overall, the polarizing performance metrics for

above-ground biomass and basal area help to distinguish the highest performing parameter

sets.

Modeled fluxes — gross primary productivity, latent heat, and sensible heat fluxes —

align with observations particularly well across parameter sets. Latent heat flux and gross

primary productivity scores indicate that many parameter sets match observations for this

variable well, both in terms of distance from the observed mean (Dscores) and remaining

within the observed limits (Rscores). The good correspondence between many parameter

sets and the observed gross primary productivity and latent heat fluxes can also be seen in

Figures 4.2 and 4.3, where the modes of the distributions of model means across parameter

sets aligns with the observed means and ranges. For sensible heat fluxes, on the other hand,

many parameter sets perform well in terms of distance from the observed mean (Dscores) but,

fewer parameter sets consistently fall within the observed limits (Rscores). This di�erence in

Dscore and Rscore performance for sensible heat fluxes occurs in part because the observed

mean value lies towards the higher end of the observed range (Figures 4.2f and 4.3f). Thus

many model annual means fall outside of the observed range while still remaining close in
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value to the observed mean (Figures 4.2 and 4.3). Furthermore, higher variability in sensible

heat fluxes in the model compared to the observations allows model values to agree well with

the observed mean but extend past the observed range (Figure 4.6f).

4.4.2 High-Performing Parameter Sets

Three parameter sets performed particularly well when benchmarked against observations

at our test site — parameter set numbers 86, 260, and 151 (ordered by skill). We recom-

mend these parameters sets for use in future experiments and refer to them as our “high-

performing” parameter sets. They are publicly available through the University of Washing-

ton Libraries ResearchWorks digital repository at http://hdl.handle.net/1773/43779. These

parameter sets had the highest average performance rankings across the 12 combinations of

ranking methods we tested. (See Materials and Methods for details.) They also consistently

ranked in the seven highest performing parameter sets out of the 287 parameter sets we

tested (parameter set 86 consistently ranked in the highest four), showing little sensitivity to

the weighting scheme applied to average skill scores, the level of observed range extension in

calculating Rscores, and carbon dioxide concentration. No other parameter sets consistently

ranked in the top ten across ranking methods and the next best performing parameter set had

an average ranking approximately twice as high as these three highest performing parameter

sets. We report Dscores and Rscores for the three high-performing parameter sets, as well as

the next seven highest performing parameter sets by average ranking, in Figures 4.4 and 4.5.

The three high-performing parameter sets resulted in slightly di�erent ecosystem properties,

which we discuss in the following paragraphs.

Parameter set number 86 resulted in the best overall performance skill score for our

test site and benchmarking variables. It scored well in all observed variables at both car-

bon dioxide concentrations, with slight exceptions for above-ground biomass and basal area

(Figure 4.6). Annual mean leaf area index matched observations well at both carbon diox-

ide concentrations and was higher than for the other two high-performing parameter sets.

Gross primary productivity, latent heat fluxes, and sensible heat fluxes matched observed
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values well at both carbon dioxide concentrations. As discussed above, good performance

in above-ground biomass and basal area is challenging across parameter sets. This param-

eterization performs relatively well in both of these variables. When run with a carbon

dioxide concentration of 400ppm, parameter set 86 results in basal area that is close to the

observed mean (Figures 4.4 and 4.6) and above-ground biomass that is slightly high (Figure

4.6) but relatively close to observations compared to other parameter sets (Dscore in Figure

4.4a). This high above-ground biomass could be in part due to higher wood density in this

parameter set, relative to other high-performing parameter sets (Figure 4.9). At a carbon

dioxide concentration of 367 ppm, this parameter set produces above-ground biomass that

matches observations well. Although its basal area value is slightly low at a carbon dioxide

concentration of 367ppm (Dscore in Figure 4.5a) it still falls within the observed range when

extended by 10% (Rscore in Figure 4.5b). Overall, this parameter set matched benchmarking

observations well at our tropical forest test site.

We also compare results from each parameter set to three observations at our test site

that were not included in the benchmarking evaluation: leaf height distribution, tree size

distribution, and tree mortality rates (Figures 4.7 and 4.8). While matching observations

relatively well compared to many other parameter sets, the leaf height distribution in pa-

rameter set 86 results in higher than observed leaf area index midway through the canopy

(20-30m in height) and lower than observed leaf area deeper in the canopy (below ≥15m in

height). This parameter set also results in a tree size distribution that matches observations

relatively well for trees with large diameters but has fewer small trees than observed. Con-

sistent with these findings, parameter set 86 results in mortality rates for large trees that

match observations but has higher than observed mortality rates for small trees. Overall,

these results indicate that parameter set 86 favors large trees.

Parameter set number 260 had the second highest performance ranking in our bench-

marking analysis. Like parameter set number 86, it results in leaf area index, gross primary

productivity, latent heat fluxes, and sensible heat fluxes that match observations well (Fig-

ures 4.4, 4.5, and 4.6). It results in slightly lower leaf area index than observations and
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parameter set 86, but still corresponds well with observations. This parameter set also re-

sults in gross primary productivity that closely matches observations and performs well in

above-ground biomass across carbon dioxide concentrations. Basal area results agree well

with observations at 367ppm carbon dioxide but are slightly high at 400ppm. Slightly higher

latent heat fluxes than the other two high-performing parameter sets could be explained in

part by this parameter set’s high value for the slope parameter in the Ball-Berry stomatal

conductance model (BB_slope in Figure 4.10). In comparison to observations not used in

our benchmarking analysis, this parameter set’s leaf height distribution matched observa-

tions relatively well (Figures 4.7 and 4.8). It resulted in leaf area index in the upper canopy

that matched observations well but, like parameter set 86, leaf area in the lower canopy (be-

low 15m in height) was slightly lower than observations. Also similar to parameter set 86,

this parameter set resulted in a lower than observed number of trees with diameters below

10cm, and higher than observed mortality rates for these smaller sized trees.

The third high-performing parameter set, number 151, results in a di�erent combination

of ecosystem properties than parameter sets 86 and 260, making it an interesting parameter

set for sensitivity testing. It performs well in both above-ground biomass and basal area

measures at both carbon dioxide levels (Figures 4.4, 4.5, and 4.6). Latent heat fluxes and

sensible heat fluxes are also in line with observations at both carbon dioxide concentrations.

However, compared to observations and the other two high-performing parameter sets, it

results in low leaf area index and high gross primary productivity (Figure 4.6a,d). Gross

primary productivity is likely high despite low leaf area because this parameter set has a

high Vcmax25 value (Figure 4.9). Low leaf area index despite high productivity could be

explained in part by this parameter set’s relatively low value for specific leaf area at the

top of the canopy (Figure 4.9), which represents a high carbon cost of building leaf area.

Despite its poor performance in overall leaf area index and gross primary productivity, this

parameter set better matches observations of leaf height distribution, tree size distribution,

and mortality rates than the other two high-performing parameter sets.
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4.4.3 Parameter Constraints from Benchmarking Analysis

We can use the skill rankings across the parameter ensemble simulations to constrain

the range in trait parameter values that confer the best model skill for our tropical forest

test site, Barro Colorado Island. Figures 4.9 and 4.10 show the performance ranking of each

parameter ensemble simulation mapped onto their respective parameter trait values. For

some traits, high-performing parameter sets (low average ranks, pink and dark blue color

indicate 10 highest performing parameter sets in Figures 4.9 and 4.10) cluster around a

narrow range of values. This indicates that these traits and values are likely to be important

to simulating ecosystem structure and functioning and constrains the parameter space for

this site.

In our simulations, high-performing parameter sets had values that clustered around

narrow ranges for several trait parameters. Parameter sets that resulted in the best model

skill had medium to high values of maximum carboxylation rates (Vcmax25) compared to the

tropical tree trait space from which they were sampled. They also had low to medium values

for specific leaf area and wood density. Additionally, high-performing ensemble members

tended to have low to intermediate mortality rates. Constrained and original ranges for

these trait parameters based on the ten highest performing parameter sets are reported in

Table 4.1.

Several parameters used in allometric relationships within the model also stand out as

having narrow ranges across high-performing parameter sets. High-performing parameter

sets tended to have mid-level values for the parameter that controls the exponent in both

the relationships between diameter at breast height and crown area and in the relationship be-

tween diameter at breast height and target leaf biomass (crown_dbh_exp). High-performing

parameter sets also had intermediate values of the parameter that controls the intercept in

the allometric relationship between diameter at breast height and the target allometric leaf

biomass (bleaf_dbh). Additionally, high-performing parameter sets generally had low values

for the intercept in the relationship between leaf area and sapwood area (la_to_sa, cm2



88

sapwood/m2 leaf area). Constrained and original ranges for these trait parameters are also

reported in Table 4.1.

4.5 Discussion

We find that including a profile of specific leaf area with canopy depth improves model

skill in matching observations at a tropical forest test site. The specific leaf area profile in-

creases leaf area index across parameterizations in the FATES demographic vegetation model

as expected, bringing model values more in line with observations. The profile also improves

modeled above-ground biomass, basal area, latent heat fluxes, and sensible heat fluxes by

shifting the distribution of these variables across parameterizations closer to observed values,

while maintaining good agreement between simulated and observed gross primary produc-

tivity.

By benchmarking many parameterizations of a single model structure against several

observed variables we were able to identify ecosystem properties that this model structure

successfully captures across many parameterizations (easily attained via parameterization),

as well as ecosystem properties that remain challenging to simulate across parameterizations

(potential areas for model structure improvement or parameter selection). In general, the

model structure with specific leaf area profile captures the observed structural ecosystem

property leaf area index and ecosystem functioning properties gross primary productivity,

latent heat fluxes, and sensible heat fluxes with high skill across many parameterizations.

The specific leaf area profile improved simulated leaf area index, which provides the surface

area over which gross primary productivity and latent heat fluxes are summed. Thus by

improving modeled leaf area index we also made improvements to these fluxes.

Despite good correspondence in leaf area index and ecosystem functioning, the model

matches observed above-ground biomass and basal area in far fewer parameterizations. In

general, it underestimates these structural properties across the parameter sets we tested.

These two variables are both measures of tree size. Basal area measures the combined

cross-sectional area of tree stems for a given area of ground (m2 tree cross-sectional area/ha
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ground), while above-ground biomass is a measure carbon mass across trees for a given

area of ground (kgC/m2 ground). Basal area is more representative of all tree size classes,

while above-ground biomass is more heavily weighted toward larger trees. Although both

variables challenge the model’s skill, basal area is the most challenging to capture across

ensemble members (Figures 4.4 and 4.5). This suggests that capturing smaller size trees is

exceptionally challenging for all but a few parameterizations. Low skill scores for above-

ground biomass and basal area could result in part from low interannual variability of these

properties, particularly in basal area observations, which allows for less overlap between

observed and modeled distributions. Yet, this finding is unlikely to be merely an artifact of

how we calculate skill scores. Figure 4.7 shows that the model simulates too few small trees

and higher than observed mortality rates for small trees across parameter sets. We even see

this behavior in our high-performing parameter sets, with the exception that parameter set

151 underestimates small tree mortality rates (Figure 4.7). Overall, the small number of

parameter sets with high skill in simulating above-ground biomass and basal area indicates

that improvements to model structure could be required to improve performance in these

metrics and that, for this model structure, these are critical benchmarking properties for

parameter selection.

We identify three parameter sets that performed particularly well when benchmarked

against observations at our test site — parameter set numbers 86, 260, and 151 (ordered by

skill). We recommend these high-performing parameter sets for use in future experiments

and have made them available for public use (see Results Section). The two highest per-

forming parameterizations, parameter sets 86 and 260, show high skill in all variables across

benchmarking metrics and carbon dioxide concentrations we tested. They result in similar

ecosystem properties but di�er slightly. Parameter set 86 simulates leaf area index, gross

primary productivity, and above-ground biomass that are on the high end of observations.

Parameter set 260 results in slightly lower leaf area index and above-ground biomass, while

aligning with observed gross primary productivity fluxes very well. Both parameterizations

simulate above-ground biomass and basal area that match observations relatively well but
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show slight weaknesses.

The third best performing parameterization, parameter set 151, results in ecosystem

properties that di�er from parameter sets 86 and 260. It shows high skill in simulating basal

area and above-ground biomass but results in gross primary productivity that is high and leaf

area index that is low compared to the benchmarking observations we used. Notably, this

parameterization matched observations of leaf height distribution and tree size distribution,

observations not used in our benchmarking evaluation, better than the two highest perform-

ing parameter sets by simulating higher understory leaf area index and a higher number of

small sized trees. Overall, this parameter set provides a useful alternative parameterization

and ecosystem characterization for sensitivity tests in future simulations.

In addition to identifying entire parameter sets for future use, our analysis constrains the

range of viable parameter values for key individual plant traits. We evaluate the range in

parameter values using the overall performance scores for each parameter set in our bench-

marking analysis (Figures 4.9 and 4.10). Several parameters stand out as having narrower

ranges among the highest performing parameter sets than the plausible trait space from

which all parameter sets were sampled. This clustering of high-performing parameter sets

around narrow trait values indicates that model skill is highly sensitive to the magnitude

of these parameters. It also reveals that values for these parameters must fall in narrower

ranges than those we sampled from to match observations at our test site well with this model

structure. We sampled an observed trait space across tropical forest sites for parameters in

Figure 4.9 and a plausible trait space for parameters in Figure 4.10 for which observational

constraints are lacking. (See Materials and Methods for details.) High-performing param-

eter values clustered around narrower ranges for the following observed traits: maximum

carboxylation rate (Vcmax25), specific leaf area, wood density, and mortality rate. Covari-

ance between maximum carboxylation rate, specific leaf area, and wood density in the trait

space from which our parameter sets were sampled [Koven et al., unpublished] could explain

why they are all identified as strongly influencing model performance. It is possible that

sensitivity to one trait drives the narrow ranges for all of the traits. For example Vcmax25 has
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been shown to be a highly influential parameter in terrestrial biosphere models and di�ers

greatly across vegetation models in part because it provides a strong parametric control over

productivity that can balance model structural errors [Bonan et al., 2011, 2012]. We also saw

narrower ranges for three allometric relationship parameters — the crown area to diameter

at breast height exponent (crown_dbh_exp), the target leaf biomass to diameter at breast

height intercept (bleaf_dbh), and the intercept for calculating sapwood area from leaf area

(la_to_sa). We report constrained ranges for these key parameters in Table 4.1, which can

be used in future parameter selection and testing. Future studies could use this approach

to better understand each trait parameter’s influence on model results and performance for

individual variables. Such analysis could help to determine which traits most strongly influ-

ence ecosystem properties that remain challenging for the model to capture, such as basal

area and above-ground biomass.

4.6 Conclusions

Inclusion of the observed within-canopy gradient of leaf area to mass ratio, also called

specific leaf area, drastically improves the relationship between leaf area index and produc-

tivity, as well as related ecosystem structure and functioning properties, in our demographic

vegetation model simulations. With few exceptions, this structural leaf trait profile is not

considered in most terrestrial biosphere models, although many consider the associated pro-

files of per-area leaf nitrogen and photosynthetic rates. Thus many terrestrial biosphere

models could be misrepresenting the relationship between productivity and leaf area index,

with severe consequences for vegetation structure, functioning, ecological dynamics, and

vegetation impacts on large-scale climate. The e�ect of the specific leaf area profile is likely

greatest in ecosystems with high leaf area index and high maximum rates of photosynthesis,

such as tropical forests, as cumulative overlying leaf area index drives the change in specific

leaf area with depth in the canopy and high maximum rates of photosynthesis are empirically

related to steeper rates of change in specific leaf area. Highly productive and leafy ecosys-

tems also tend to exert strong control over the Earth’s carbon cycle and climate. As such,
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the inclusion of the specific leaf area profile in land surface models could have large-scale

impacts on simulations of Earth’s current and future climate and carbon cycling.

This work improves the simulation of ecosystem structure and functioning in the FATES

vegetation demography model through a more realistic representation of the within-canopy

profile of the leaf area to mass ratio (specific leaf area), and suggests high-performing pa-

rameter sets and constrained parameter ranges for use in future tropical forest FATES ex-

periments. In addition to providing an improved FATES model, our implementation of

the specific leaf area profile provides a blueprint for including this important within-canopy

gradient in other models of the terrestrial biosphere.
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4.8 Figures and Tables

Figure 4.1: Dependence of (a) specific leaf area (m2 leaf area/gC) on overlying leaf area
index (m2 leaf area/m2 ground area); and (b) leaf area index (m2 leaf area/m2 ground area)
on leaf carbon per area ground (kgC/m2 ground) in the control model structure (blue lines)
and the experiment model structure that includes the profile of specific leaf area through
the canopy and an observational constraint on maximum specific leaf area (green lines), and
the experiment model if it did not include a maximum specific leaf area constraint (black
dashed lines).
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Figure 4.2: Histograms of modeled annual mean (a) leaf area index (LAI, m2/m2); (b) above-
ground biomass (AGB, kgC/m2); (c) basal area (BA, m2/ha); (d) gross primary productivity
(GPP, kgC/m2/year); (e) latent heat flux (LH, W/m2); and (f) sensible heat flux (SH, W/m2)
comparing each parameter ensemble member run with the control (CTRL, blue) and specific
leaf area (SLA, green) model structures at 400ppm carbon dioxide. Observed means (green
triangles) and limits (black arrows) are included for each variable as a reference. Observations
of leaf area index come from Detto et al. [2018]; basal area from Condit et al. [2017, 2012],
Condit [1998], and Hubbell et al. [1999]; above-ground biomass from Meakem et al. [2018];
and gross primary productivity, latent heat flux, and sensible heat flux from [Koven et
al., unpublished]. When observations span partial years we report two annual means, one
spanning the beginning of the time series and the other the end of the time series.
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Figure 4.3: Histograms of modeled annual mean (a) leaf area index (LAI, m2/m2); (b) above-
ground biomass (AGB, kgC/m2); (c) basal area (BA, m2/ha); (d) gross primary productivity
(GPP, kgC/m2/year); (e) latent heat flux (LH, W/m2); and (f) sensible heat flux (SH, W/m2)
comparing each parameter ensemble member run with the control (CTRL, blue) and specific
leaf area (SLA, green) model structures at 367ppm carbon dioxide. Observed means (green
triangles) and limits (black arrows) are included for each variable as a reference. Observations
of leaf area index come from Detto et al. [2018]; basal area from Condit et al. [2017, 2012],
Condit [1998], and Hubbell et al. [1999]; above-ground biomass from Meakem et al. [2018];
and gross primary productivity, latent heat flux, and sensible heat flux from [Koven et
al., unpublished]. When observations span partial years we report two annual means, one
spanning the beginning of the time series and the other the end of the time series.
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Figure 4.4: Model skill scores for ten high-performing and, for comparison, all parameter
sets as measured by (a) distance between model annual mean values and observed mean
(Dscore), (b) percentage of model annual means that fall within observed range when it is
extended by 10% (Rscore w. 10% Degradation), and (c) percentage of model annual means
that fall within observed range when it is extended by 20% (Rscore w. 20% Degradation).
Each metric is reported for leaf area index (LAI), above-ground biomass (AGB), basal area
(BA), gross primary productivity (GPP), latent heat flux (LH), sensible heat flux (SH), and
weighted averages across variables using di�erent weighting schemes: favoring structural
properties (AvS), based on correlations between individual variable scores and favoring leaf
area index (AvC), and evenly weighted across variables (AvE). Good model agreement with
observations (yellow), poor agreement (dark blue). Model results for simulations run at
400ppm carbon dioxide.
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Figure 4.5: Model skill scores for ten high-performing and, for comparison, all parameter
sets as measured by (a) distance between model annual mean values and observed mean
(Dscore), (b) percentage of model annual means that fall within observed range when it is
extended by 10% (Rscore w. 10% Degradation), and (c) percentage of model annual means
that fall within observed range when it is extended by 20% (Rscore w. 20% Degradation).
Each metric is reported for leaf area index (LAI), above-ground biomass (AGB), basal area
(BA), gross primary productivity (GPP), latent heat flux (LH), sensible heat flux (SH), and
weighted averages across variables using di�erent weighting schemes: favoring structural
properties (AvS), based on correlations between individual variable scores and favoring leaf
area index (AvC), and evenly weighted across variables (AvE). Good model agreement with
observations (yellow), poor agreement (dark blue). Model results for simulations run at
367ppm carbon dioxide.
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Figure 4.6: Boxplots of observed and high-performing parameter set modeled annual mean
(a) leaf area index (LAI, m2/m2); (b) above-ground biomass (AGB, kgC/m2); (c) basal
area (BA, m2/ha); (d) gross primary productivity (GPP, kgC/m2/year); (e) latent heat flux
(LH, W/m2); and (f) sensible heat flux (SH, W/m2). Median (orange line), interquartile
range (box), range (whiskers). Parameter set indicated by number (86, 260, and 151).
Subscript letters indicate carbon dioxide concentration at approximately beginning (b =
367ppm) and end of observational period (e = 400ppm). Observations of leaf area index
come from Detto et al. [2018]; basal area from Condit et al. [2017, 2012], Condit [1998], and
Hubbell et al. [1999]; above-ground biomass from Meakem et al. [2018]; and gross primary
productivity, latent heat flux, and sensible heat flux from [Koven et al., unpublished]. Two
sets of observations are reported for variables when the time period spanned incomplete years.
The first observation (Obs1) reports results for annual means starting from the beginning of
the time period. The second observation (Obs2) reports annual means that include the end
of the time period.
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Figure 4.7: Comparison of modeled and observed (a) leaf height distribution, estimated
as leaf area index vertical density (LAI Vertical Density; m2 leaf area/m3); (b) tree size
distribution, measured by the tree number density (number of plants/ha/cm) for each tree
diameter size class (cm); and (c) tree mortality rates (yr≠1) by tree diameter size class (cm).
Mean estimates from observations at Barro Colorado Island (blue lines), mean values for
all parameter sets (green lines); and mean values for three high-performing parameter sets:
number 86 (black circles), number 260 (black squares), and number 151 (black triangles).
All simulations run at carbon dioxide concentration of 400ppm. Estimates of leaf area
index vertical density at our test site from Detto et al. [2015]. Tree size and mortality rate
observations from census surveys at our test site [Condit et al., 2017, 2012, Condit, 1998,
Hubbell et al., 1999].
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Figure 4.8: Comparison of modeled and observed (a) leaf height distribution, estimated
as leaf area index vertical density (LAI Vertical Density; m2 leaf area/m3); (b) tree size
distribution, measured by the tree number density (number of plants/ha/cm) for each tree
diameter size class (cm); and (c) tree mortality rates (yr≠1) by tree diameter size class (cm).
Mean estimates from observations at Barro Colorado Island (blue lines), mean values for
all parameter sets (green lines); and mean values for three high-performing parameter sets:
number 86 (black circles), number 260 (black squares), and number 151 (black triangles).
All simulations run at carbon dioxide concentration of 367ppm. Estimates of leaf area
index vertical density at our test site from Detto et al. [2015]. Tree size and mortality rate
observations from census surveys at our test site [Condit et al., 2017, 2012, Condit, 1998,
Hubbell et al., 1999].
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Figure 4.9: Trait covariance across parameter sets for all trait values sampled from observed
trait space. Diagonal plots show the sampled distribution for each trait. Color indicates the
overall average performance ranking for each parameter set. The three highest performing
parameter sets (PS 86, 260, and 151) are indicated in shades of pink; the next seven highest
performing parameter sets (with average rankings of 10+ and below 25) are shown in blue.
Parameters: maximum rate of carboxylation at the top of the canopy (Vcmax25, µmol
CO2/m2/s), wood density (g/cm3), specific leaf area at the top of the canopy (SLA, m2 leaf
area/gC), leaf nitrogen per area (Narea, gN/m2 leaf area), leaf lifespan (Lifespan, days), and
background mortality rate (Mortality, 1/100yrs).
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Figure 4.10: Trait covariance across parameter sets for all trait values sampled from plausible
trait space. Diagonal plots show the sampled distribution for each trait. Color legend as in
Figure 4.9. Parameters: intercept in the relationship between diameter at breast height and
plant crown area (crown_dbh_coef), exponent in both the relationship between diameter
at breast height and crown area and in the relationship between diameter at breast height
and target leaf biomass (crown_dbh_exp), intercept in the allometric relationship between
diameter at breast height and the target allometric leaf biomass (bleaf_dbh), ratio of fine root
carbon to leaf carbon (fineroot_leaf, gC fine root/gC leaf), Ball-Berry stomatal conductance
equation slope (BB_slope, unitless), and intercept of leaf area to sapwood area conversion
(latosa, cm2 sapwood/m2 leaf area).
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Table 4.1: Parameter constraints from ten highest performing parameter sets.

Trait Parameter
Constrained Original

Mean Range Mean Range

Vcmax25 (µmol CO2/m2/s) 63.9 (36.7, 106.6) 51.1 (0.4, 121.8)

Specific leaf area (m2/gC) 0.029 (0.014, 0.060) 0.028 (0.008, 0.084)

Wood density (g/cm3) 0.41 (0.26, 0.61) 0.54 (0.12, 0.97)

Mortality (1/100yrs) 2.49 (0.46, 5.12) 3.57 (0.12, 22.98)

Crown to dbh exponent 1.29 (1.22, 1.35) 1.30 (1.15, 1.47)

Leaf biomass to dbh 0.18 (0.09, 0.26) 0.20 (0.07, 0.34)

Sapwood area to leaf area (cm2/m2) 0.13 (0.051,0.25) 0.32 (0.0011, 0.85)

Notes. Maximum rate of carboxylation (Vcmax25), diameter at breast height (dbh).



104

BIBLIOGRAPHY

E. A. Ainsworth and S. P. Long. What have we learned from 15 years of free-air CO2

enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy

properties and plant production to rising CO2. New Phytologist, 165(2):351–371, 2005.

E. A. Ainsworth and A. Rogers. The response of photosynthesis and stomatal conductance to

rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment,

30(3):258–270, 2007.

A. A. Ali, B. E. Medlyn, T. G. Aubier, K. Y. Crous, and P. B. Reich. Elevated carbon

dioxide is predicted to promote coexistence among competing species in a trait-based

model. Ecology and Evolution, 5(20):4717–4733, 2015.

L. D. Anderegg, L. T. Berner, G. Badgley, M. L. Sethi, B. E. Law, and J. HilleRisLambers.

Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol-

ogy Letters, 21(5):734–744, 2018.

D. Archer, M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Mat-

sumoto, G. Munhoven, A. Montenegro, and K. Tokos. Atmospheric Lifetime of Fossil Fuel

Carbon Dioxide. Annual Review of Earth and Planetary Sciences, 37(1):117–134, 2009.

V. K. Arora, G. J. Boer, P. Friedlingstein, and M. Eby. Carbon–concentration and car-

bon–climate feedbacks in CMIP5 Earth system models. Journal of Climate, 26(15):5289–

5314, 2013.

J. T. Ball, I. E. Woodrow, and J. A. Berry. A model predicting stomatal conductance and

its contribution to the control of photosynthesis under di�erent environmental conditions.

Progress in Photosynthesis Research, 4:221–224, 1987.



105

C. Baraloto, Q. Molto, S. Rabaud, B. Hérault, R. Valencia, L. Blanc, P. V. Fine, and

J. Thompson. Rapid simultaneous estimation of aboveground biomass and tree diversity

across Neotropical forests: a comparison of field inventory methods. Biotropica, 45(3):

288–298, 2013.

R. A. Betts, P. M. Cox, S. E. Lee, and F. I. Woodward. Contrasting physiological and

structural vegetation feedbacks in climate change simulations. Nature, 387(6635):796–799,

1997.

R. A. Betts, O. Boucher, M. Collins, P. M. Cox, P. D. Falloon, N. Gedney, D. L. Hemming,

C. Huntingford, C. D. Jones, D. M. H. Sexton, and M. J. Webb. Projected increase in

continental runo� due to plant responses to increasing carbon dioxide. Nature, 448(7157):

1037–1041, 2007.

G. B. Bonan. Forests and climate change: forcings, feedbacks, and the climate benefits of

forests. Science, 320:1444–1449, 2008.

G. B. Bonan, P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M.

Lawrence, and S. C. Swenson. Improving canopy processes in the Community Land Model

version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. Jour-

nal of Geophysical Research, 116(G2):G02014, 2011.

G. B. Bonan, K. W. Oleson, R. A. Fisher, G. Lasslop, and M. Reichstein. Reconciling leaf

physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in

the Community Land Model version 4. Journal of Geophysical Research, 117(G2), 2012.

O. Boucher, A. Jones, and R. A. Betts. Climate response to the physiological impact of

carbon dioxide on plants in the Met O�ce Unified Model HadCM3. Climate Dynamics,

32(2-3):237–249, 2009.

L. Bounoua, F. G. Hall, P. J. Sellers, A. Kumar, G. J. Collatz, C. J. Tucker, and M. L.



106

Imho�. Quantifying the negative feedback of vegetation to greenhouse warming: A mod-

eling approach. Geophysical Research Letters, 37(23), 2010.

R. J. W. Brienen, O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-

Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vasquez Martinez, M. Alex-

iades, E. Alvarez Davila, P. Alvarez-Loayza, A. Andrade, L. E. O. C. Aragao, A. Araujo-

Murakami, E. J. M. M. Arets, L. Arroyo, G. A. Aymard C, O. S. Banki, C. Baraloto,

J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C. V. Castilho, V. Chama, K. J.

Chao, J. Chave, J. A. Comiskey, F. Cornejo Valverde, L. da Costa, E. A. de Oliveira,

A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, D. R. Galbraith, E. S. Grahame,

N. Groot, B. Herault, N. Higuchi, E. N. H. Coronado, H. Keeling, T. J. Killeen, W. F.

Laurance, S. Laurance, J. Licona, W. E. Magnussen, B. S. Marimon, B. H. Marimon-

Junior, C. Mendoza, D. A. Neill, E. M. Nogueira, P. Nunez, N. C. Pallqui Camacho,

A. Parada, G. Pardo-Molina, J. Peacock, M. Pena-Claros, G. C. Pickavance, N. C. A. Pit-

man, L. Poorter, A. Prieto, C. A. Quesada, F. Ramirez, H. Ramirez-Angulo, Z. Restrepo,

A. Roopsind, A. Rudas, R. P. Salomao, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Sil-

veira, J. Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar,

M. Toledo, M. Torello-Raventos, R. K. Umetsu, G. M. F. Van der Heijden, P. Van der

Hout, I. C. G. Vieira, S. A. Vieira, E. Vilanova, V. A. Vos, and R. J. Zagt. Long-term

decline of the Amazon carbon sink. Nature, 519, 2015.

W. S. Broecker, T. Takahashi, H. J. Simpson, and T. H. Peng. Fate of Fossil Fuel Carbon

Dioxide and the Global Carbon Budget. Science, 206(4417):409–418, 1979.

E. E. Butler, A. Datta, H. Flores-Moreno, M. Chen, K. R. Wythers, F. Fazayeli, A. Banerjee,

O. K. Atkin, J. Kattge, B. Amiaud, and others. Mapping local and global variability in

plant trait distributions. Proceedings of the National Academy of Sciences of the United

States of America, 114(51):E10937–E10946, 2017.

L. Cao, G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss. Importance of carbon dioxide



107

physiological forcing to future climate change. Proceedings of the National Academy of

Sciences of the United States of America, 107(21):9513–9518, 2010.

F. E. Carswell, P. Meir, E. V. Wandelli, L. Bonates, B. Kruijt, E. M. Barbosa, A. D. Nobre,

J. Grace, and P. G. Jarvis. Photosynthetic capacity in a central Amazonian rain forest.

Tree Physiology, 20(3):179–186, 2000.

L. A. Cernusak, K. Winter, J. W. Dalling, J. A. M. Holtum, C. Jaramillo, C. Koerner,

A. D. B. Leakey, R. J. Norby, B. Poulter, B. L. Turner, and S. J. Wright. Tropical forest

responses to increasing atmospheric CO2: current knowledge and opportunities for future

research. Functional Plant Biology, 40(6):531–551, 2013.

L. A. Cernusak, V. Haverd, O. Brendel, D. Le Thiec, J.-M. Guehl, and M. Cuntz. Robust

Response of Terrestrial Plants to Rising CO2. Trends in Plant Science, 2019.

P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries,

J. Galloway, M. Heimann, and others. Carbon and Other Biogeochemical Cycles. In

Climate change 2013: the physical science basis. Contribution of Working Group I to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 465–

570. Cambridge University Press, 2013.

Computational and Information Systems Laboratory. Cheyenne: HPE/SGI ICE XA System

(University Community Computing). National Center for Atmospheric Research, Boulder,

CO, 2017.

R. Condit. Tropical forest census plots. Springer-Verlag and R. G. Landes Company, Berlin,

Germany, and Georgetown, Texas, 1998.

R. Condit, S. Lao, R. Pérez, S. B. Dolins, R. Foster, and S. Hubbell. Barro Colorado forest

census plot data (version 2012). Center for Tropical Forest Science Databases. https://dx.

doi. org/10.5479/data. bci, 2012.



108

R. S. Condit, S. Aguilar, R. Perez, S. Lao, S. P. Hubbell, and R. B. Foster. Barro Colorado

50-ha Plot Taxonomy as of 2017. 2017.

P. M. Cox, R. A. Betts, C. B. Bunton, R. Essery, P. R. Rowntree, and J. Smith. The impact

of new land surface physics on the GCM simulation of climate and climate sensitivity.

Climate Dynamics, 15(3):183–203, 1999.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell. Acceleration of global

warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809):

184–187, 2000.

U. Cubasch, D. Wuebbles, D. Chen, M. C. Facchini, D. Frame, N. Mahowald, and J. G.

Winther. Introduction. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen,

J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors, Climate Change 2013:

The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change, pages 121–158. Cambridge

University Press, Cambridge, UK, 2013.

D. F. Cusack, J. Karpman, D. Ashdown, Q. Cao, M. Ciochina, S. Halterman, S. Lydon, and

A. Neupane. Global change e�ects on humid tropical forests: Evidence for biogeochemical

and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 54(3):523–610, 2016.

E. L. Davin and N. de Noblet-Ducoudré. Climatic Impact of Global-Scale Deforestation:

Radiative versus Nonradiative Processes. Journal of Climate, 23(1):97–112, 2010.

M.-A. De Graa�, K. J. Van Groenigen, J. Six, B. Hungate, and C. van Kessel. Interactions

between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Global

Change Biology, 12(11):2077–2091, 2006.

M. G. De Kauwe, B. E. Medlyn, S. Zaehle, A. P. Walker, M. C. Dietze, T. Hickler, A. K.

Jain, Y. Luo, W. J. Parton, I. C. Prentice, B. Smith, P. E. Thornton, S. Wang, Y.-P.

Wang, D. Wårlind, E. Weng, K. Y. Crous, D. S. Ellsworth, P. J. Hanson, H. Seok Kim,



109

J. M. Warren, R. Oren, and R. J. Norby. Forest water use and water use e�ciency at

elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE

sites. Global Change Biology, 19(6):1759–1779, 2013.

M. G. De Kauwe, B. E. Medlyn, S. Zaehle, A. P. Walker, M. C. Dietze, Y.-P. Wang, Y. Luo,

A. K. Jain, B. El-Masri, T. Hickler, D. Wårlind, E. Weng, W. J. Parton, P. E. Thornton,

S. Wang, I. C. Prentice, S. Asao, B. Smith, H. R. McCarthy, C. M. Iversen, P. J. Hanson,

J. M. Warren, R. Oren, and R. J. Norby. Where does the carbon go? A model-data

intercomparison of vegetation carbon allocation and turnover processes at two temperate

forest free-air CO2 enrichment sites. New Phytologist, 203:883–899, 2014.

M. Detto, G. P. Asner, H. C. Muller-Landau, and O. Sonnentag. Spatial variability in trop-

ical forest leaf area density from multireturn lidar and modeling. Journal of Geophysical

Research: Biogeosciences, 120(2):294–309, 2015.

M. Detto, S. J. Wright, O. Calderón, and H. C. Muller-Landau. Resource acquisition and

reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation.

Nature Communications, 9(1):913, 2018.

C. A. Deutsch, J. J. Tewksbury, M. Tigchelaar, D. S. Battisti, S. C. Merrill, R. B. Huey, and

R. L. Naylor. Increase in crop losses to insect pests in a warming climate. Science, 361

(6405):916–919, 2018.

R. C. Dewar, L. Tarvainen, K. Parker, G. Wallin, and R. E. McMurtrie. Why does leaf nitro-

gen decline within tree canopies less rapidly than light? An explanation from optimization

subject to a lower bound on leaf mass per area. Tree Physiology, 32(5):520–534, 2012.

C. E. Doughty, P. E. Santos-Andrade, A. Shenkin, G. R. Goldsmith, L. P. Bentley, B. Blon-

der, S. Díaz, N. Salinas, B. J. Enquist, R. E. Martin, and others. Tropical forest leaves

may darken in response to climate change. Nature Ecology & Evolution, 2(12):1918–1924,

2018.



110

B. G. Drake, M. A. Gonzàlez-Meler, and S. P. Long. More e�cient plants: a consequence of

rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology,

48(1):609–639, 1997.

R. A. Duursma and D. S. Falster. Leaf mass per area, not total leaf area, drives di�erences in

above-ground biomass distribution among woody plant functional types. New Phytologist,

2016.

B. Efron and G. Gong. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-

Validation. The American Statistician, 37(1):36–48, 1983.

B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.

D. S. Ellsworth and P. B. Reich. Canopy structure and vertical patterns of photosynthesis

and related leaf traits in a deciduous forest. Oecologia, 96(2):169–178, 1993.

J. R. Evans and H. Poorter. Photosynthetic acclimation of plants to growth irradiance: the

relative importance of specific leaf area and nitrogen partitioning in maximizing carbon

gain. Plant, Cell and Environment, 24(8):755–767, 2001.

M. R. Evans. Modelling ecological systems in a changing world. Philosophical Transactions

of the Royal Society B: Biological Sciences, 367(1586):181–190, 2012.

B. Faybishenko, S. Paton, T. Powell, R. Knox, G. Pastorello, C. Varadharajan, D. Christian-

son, and D. Agarwal. QA/QC-ed BCI meteorological drivers. Next-Generation Ecosystem

Experiments Tropics; STRI; LBNL, 2018.

K. J. Feeley, S. J. Davies, P. S. Ashton, S. Bunyavejchewin, M. N. Supardi, A. R. Kassim,

S. Tan, and J. Chave. The role of gap phase processes in the biomass dynamics of tropical

forests. Proceedings of the Royal Society of London B: Biological Sciences, 274(1627):

2857–2864, 2007.



111

R. Fisher, N. McDowell, D. Purves, P. Moorcroft, S. Sitch, P. Cox, C. Huntingford, P. Meir,

and F. Ian Woodward. Assessing uncertainties in a second-generation dynamic vegetation

model caused by ecological scale limitations. New Phytologist, 187(3):666–681, 2010.

R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G.

Knox, C. Koven, J. Holm, B. M. Rogers, D. Lawrence, and G. Bonan. Taking o� the

training wheels: the properties of a dynamic vegetation model without climate envelopes.

Geoscientific Model Development Discussions, 8(4):3293–3357, 2015.

R. A. Fisher, C. D. Koven, W. R. Anderegg, B. O. Christo�ersen, M. C. Dietze, C. E.

Farrior, J. A. Holm, G. C. Hurtt, R. G. Knox, P. J. Lawrence, and others. Vegetation

demographics in Earth System Models: A review of progress and priorities. Global Change

Biology, 24(1):35–54, 2018.

P. Friedlingstein, M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and

R. Knutti. Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks.

Journal of Climate, 27(2):511–526, 2014.

N. M. Fyllas, S. Patiño, T. R. Baker, G. Bielefeld Nardoto, L. A. Martinelli, C. A. Quesada,

R. Paiva, M. Schwarz, V. Horna, L. M. Mercado, and others. Basin-wide variations in

foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 6:

2677–2708, 2009.

J. E. Hansen, M. Sato, A. Lacis, R. Ruedy, I. Tegen, and E. Matthews. Climate forcings in

the Industrial era. Proceedings of the National Academy of Sciences of the United States

of America, 95(22):12753–12758, 1998.

T. Hickler, B. Smith, I. C. Prentice, K. Mjöfors, P. Miller, A. Arneth, and M. T. Sykes. CO2

fertilization in temperate FACE experiments not representative of boreal and tropical

forests. Global Change Biology, 14(7):1531–1542, 2008.



112

S. P. Hubbell, R. B. Foster, S. T. O’Brien, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright,

and S. L. De Lao. Light-gap disturbances, recruitment limitation, and tree diversity in a

neotropical forest. Science, 283(5401):554–557, 1999.

B. A. Hungate, J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field. Nitrogen and climate

change. Science, 302:1512–1513, 2003.

E. C. Hunke and W. H. Lipscomb. CICE: the Los Alamos Sea Ice Model Documentation

and Software User’s Manual Version 4.1 LA-CC-06-012. pages 1–76, 2010.

A. Ishida and T. Toma. Leaf gas exchange and cholorphyll fluorescence in relation to leaf

angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree

Physiology, 19(2):117–124, 1999.

S. Ishizaki, K. Hikosaka, and T. Hirose. Increase in leaf mass per area benefits plant growth

at elevated CO2 concentration. Annals of Botany, 91(7):905–914, 2003.

J. Kattge and W. Knorr. Temperature acclimation in a biochemical model of photosynthesis:

a reanalysis of data from 36 species. Plant, Cell and Environment, 30(9):1176–1190, 2007.

J. Kattge, W. Knorr, T. Raddatz, and C. Wirth. Quantifying photosynthetic capacity and

its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global

Change Biology, 15(4):976–991, 2009.

J. Kattge, S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bonisch, E. Garnier, M. Westoby,

P. B. Reich, I. J. Wright, J. H. C. Cornelissen, C. Violle, S. P. Harrison, P. M. Van Bode-

gom, M. Reichstein, B. J. Enquist, N. A. Soudzilovskaia, et al. TRY–a global database of

plant traits. Global Change Biology, 17:2905–2935, 2011.

C. Körner and J. A. Arnone. Responses to elevated carbon dioxide in artificial tropical

ecosystems. Science, 257(5077):1672–1675, 1992.



113

C. Körner, M. Diemer, B. Schäppi, P. Niklaus, and J. Arnone. The responses of alpine

grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica, 18(3):165–175,

1997.

C. D. Koven, D. M. Lawrence, and W. J. Riley. Permafrost carbon-climate feedback is sensi-

tive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings

of the National Academy of Sciences of the United States of America, 112(12):3752–3757,

2015.

C. D. Koven et al. Benchmarking and Parameter Sensitivity of Predictions of Ecophysio-

logical and Vegetation Dynamics using the Functionally Assembled Terrestrial Ecosystem

Simulator (FATES) at Barro Colorado Island, Panama. Unpublished.

M. Kovenock and A. L. S. Swann. Leaf Trait Acclimation Amplifies Simulated Climate

Warming in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles, 32,

Oct. 2018.

D. Lawrence, R. A. Fisher, C. D. Koven, K. W. Oleson, S. C. Swenson, M. Vertenstein,

B. Andre, G. B. Bonan, B. Ghimire, L. van Kampenhout, D. Kennedy, E. Kluzek, R. G.

Knox, P. Lawrence, F. Li, H. Li, D. L. Lombardozzi, Y. Lu, J. Perket, W. J. Riley,

W. Sacks, M. Shi, W. R. Wieder, and C. Xu. Technical Description of version 5.0 of the

Community Land Model (CLM). 2018.

C. Le Quéré, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, G. P. Peters, A. C.

Manning, T. A. Boden, P. P. Tans, R. A. Houghton, R. F. Keeling, S. Alin, O. D. Andrews,

P. Anthoni, L. Barbero, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, K. Currie, C. Delire,

S. C. Doney, P. Friedlingstein, T. Gkritzalis, I. Harris, J. Hauck, V. Haverd, M. Hoppema,

K. Klein Goldewijk, A. K. Jain, E. Kato, A. Körtzinger, P. Landschützer, N. Lefèvre,

A. Lenton, S. Lienert, D. Lombardozzi, J. R. Melton, N. Metzl, F. Millero, P. M. S.

Monteiro, D. R. Munro, J. E. M. S. Nabel, S.-i. Nakaoka, K. O amp apos Brien, A. Olsen,

A. M. Omar, T. Ono, D. Pierrot, B. Poulter, C. Rödenbeck, J. Salisbury, U. Schuster,



114

J. Schwinger, R. Séférian, I. Skjelvan, B. D. Stocker, A. J. Sutton, T. Takahashi, H. Tian,

B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, N. Viovy, A. P. Walker, A. J.

Wiltshire, and S. Zaehle. Global Carbon Budget 2016. Earth System Science Data, 8(2):

605–649, 2016.

A. D. Leakey, K. A. Bishop, and E. A. Ainsworth. A multi-biome gap in understanding of

crop and ecosystem responses to elevated CO2. Current Opinion in Plant Biology, 15(3):

228–236, 2012a.

A. D. B. Leakey, E. A. Ainsworth, C. J. Bernacchi, X. Zhu, S. P. Long, and D. R. Ort.

Photosynthesis in a CO2-Rich Atmosphere. In Photosynthesis in silico, pages 733–768.

Springer Netherlands, Dordrecht, 2012b.

N. M. Levine, K. Zhang, M. Longo, A. Baccini, O. L. Phillips, S. L. Lewis, E. Alvarez-

Dávila, A. C. Segalin de Andrade, R. J. W. Brienen, T. L. Erwin, T. R. Feldpausch, A. L.

Monteagudo Mendoza, P. Nuñez Vargas, A. Prieto, J. E. Silva-Espejo, Y. Malhi, and P. R.

Moorcroft. Ecosystem heterogeneity determines the ecological resilience of the Amazon to

climate change. Proceedings of the National Academy of Sciences of the United States of

America, 113(3):793–797, 2016.

J. Lloyd and G. D. Farquhar. E�ects of rising temperatures and [CO2] on the physiology of

tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences,

363(1498):1811–1817, 2008.

J. Lloyd, S. Patiño, R. Q. Paiva, C. A. N. Quesada, G. B. Nardoto, A. J. B. Santos, T. R.

Baker, W. A. Brand, I. Hilke, H. Gielmann, M. Raessler, F. J. Luizao, L. A. Martinelli, and

L. M. Mercado. Optimisation of photosynthetic carbon gain and within-canopy gradients

of associated foliar traits for Amazon forest trees. Biogeosciences, 7(6):1833–1859, 2010.

D. L. Lombardozzi, G. B. Bonan, N. G. Smith, J. S. Dukes, and R. A. Fisher. Temperature



115

acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-

climate feedback. Geophysical Research Letters, 42(20):8624–8631, 2015.

C. E. Lovelock, K. Winter, R. Mersits, and M. Popp. Responses of communities of tropical

tree species to elevated CO2 in a forest clearing. Oecologia, 116(1-2):207–218, 1998.

N. S. Lovenduski and G. B. Bonan. Reducing uncertainty in projections of terrestrial carbon

uptake. Environmental Research Letters, 12(4):044020, 2017.

Y. Luo, C. B. Field, and H. A. Mooney. Predicting responses of photosynthesis and root

fraction to elevated [CO2]a: interactions among carbon, nitrogen, and growth. Plant, Cell

and Environment, 17(11):1195–1204, 1994.

Y. Luo, B. Su, W. S. Currie, J. S. Dukes, A. C. Finzi, U. Hartwig, B. Hungate, R. E.

McMurtrie, R. Oren, W. J. Parton, D. E. Pataki, M. R. Shaw, D. R. Zak, and C. B.

Field. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon

dioxide. BioScience, 54(8):731–739, 2004.

Y. Luo, D. Hui, and D. Zhang. Elevated CO2 stimulates net accumulations of carbon and

nitrogen in land ecosystems: A meta-analysis. Ecology, 87(1):53–63, 2006.

C. H. Lusk, P. B. Reich, R. A. Montgomery, D. D. Ackerly, and J. Cavender-Bares. Why are

evergreen leaves so contrary about shade? Trends in Ecology & Evolution, 23(6):299–303,

2008.

N. Mahowald, F. Lo, Y. Zheng, L. Harrison, C. Funk, D. Lombardozzi, and C. Goodale.

Projections of leaf area index in earth system models. Earth System Dynamics, 7(1):

211–229, 2016.

R. E. McMurtrie, R. J. Norby, B. E. Medlyn, R. C. Dewar, D. A. Pepper, P. B. Reich,

and C. V. Barton. Why is plant-growth response to elevated CO2 amplified when water

is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis.

Functional Plant Biology, 35(6):521–534, 2008.



116

V. Meakem, A. J. Tepley, E. B. Gonzalez-Akre, V. Herrmann, H. C. Muller-Landau, S. J.

Wright, S. P. Hubbell, R. Condit, and K. J. Anderson-Teixeira. Role of tree size in moist

tropical forest carbon cycling and water deficit responses. New Phytologist, 219:947–958,

2018.

B. E. Medlyn, F. W. Badeck, D. De Pury, C. Barton, M. Broadmeadow, R. Ceulemans,

P. De Angelis, M. Forstreuter, M. E. Jach, S. Kellomaki, E. Laitat, M. Marek, S. Philippot,

A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P. Roberntz, K. Wang, and

P. G. Jarvis. E�ects of elevated [CO2] on photosynthesis in European forest species: a

meta-analysis of model parameters. Plant, Cell and Environment, 22:1475–1495, 1999.

B. E. Medlyn, R. A. Duursma, D. Eamus, D. S. Ellsworth, I. C. Prentice, C. V. M. Barton,

K. Y. Crous, P. De Angelis, M. Freeman, and L. Wingate. Reconciling the optimal and

empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6):

2134–2144, 2011.

B. E. Medlyn, S. Zaehle, M. G. De Kauwe, A. P. Walker, M. C. Dietze, P. J. Hanson,

T. Hickler, A. K. Jain, Y. Luo, W. Parton, I. C. Prentice, P. E. Thornton, S. Wang, Y.-P.

Wang, E. Weng, C. M. Iversen, H. R. McCarthy, J. M. Warren, R. Oren, and R. J. Norby.

Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5

(6):528–534, 2015.

J. Meyerholt and S. Zaehle. The role of stoichiometric flexibility in modelling forest ecosystem

responses to nitrogen fertilization. New Phytologist, 208:1042–1055, 2015.

P. R. Moorcroft. How close are we to a predictive science of the biosphere? Trends in Ecology

& Evolution, 21(7):400–407, 2006.

P. R. Moorcroft, G. C. Hurtt, and S. W. Pacala. A method for scaling vegetation dynamics:

the ecosystem demography model (ED). Ecological monographs, 71:557–586, 2001.



117

G. Myhre, E. J. Highwood, K. P. Shine, and F. Stordal. New estimates of radiative forcing

due to well mixed greenhouse gases. Geophysical Research Letters, 25(14):2715–2718, 1998.

R. B. Neale, C.-C. Chen, A. Gettelman, P. H. Lauritzen, S. Park, D. L. Williamson, and

Coauthors. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR

Technical Note. NCAR/TN-486+STR. pages 1–289, 2012.

Ü. Niinemets. Global-scale climatic controls of leaf dry mass per area, density, and thickness

in trees and shrubs. Ecology, 82(2):453–469, 2001.

Ü. Niinemets, T. F. Keenan, and L. Hallik. A worldwide analysis of within-canopy variations

in leaf structural, chemical and physiological traits across plant functional types. New

phytologist, 205(3):973–993, 2015.

NOAA Earth System Research Laboratory. Atmospheric Carbon Dioxide at Mauna Loa

Observatory (1958-2019), 2018.

R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O’Neill, and J. G. Canadell. Elevated CO2,

litter chemistry, and decomposition: a synthesis. Oecologia, 127(2):153–165, 2001.

R. J. Norby, J. D. Sholtis, C. A. Gunderson, and S. S. Jawdy. Leaf dynamics of a deciduous

forest canopy: no response to elevated CO2. Oecologia, 136(4):574–584, 2003.

R. J. Norby, J. M. Warren, C. M. Iversen, B. E. Medlyn, and R. E. McMurtrie. CO2 enhance-

ment of forest productivity constrained by limited nitrogen availability. Proceedings of the

National Academy of Sciences of the United States of America, 107(45):19368–19373, 2010.

R. J. Norby, M. G. De Kauwe, and T. F. Domingues. Model–data synthesis for the next

generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209

(1):17–28, 2016.

R. J. Norby, L. Gu, I. C. Haworth, A. M. Jensen, B. L. Turner, A. P. Walker, J. M. Warren,

D. J. Weston, C. Xu, and K. Winter. Informing models through empirical relationships



118

between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in

tropical forests of Panama. New Phytologist, 215(4):1425–1437, 2017.

K. W. Oleson, D. M. Lawrence, G. B. Bonan, B. Drewniak, M. Huang, C. D. Koven, S. Levis,

F. Li, W. J. Riley, Z. M. Subin, S. C. Swenson, and P. E. Thornton. Technical Description of

the version 4.5 of the Community Land Model (CLM). NCAR Technical Note. NCAR/TN-

503+STR. 2013.

S. V. Ollinger. Sources of variability in canopy reflectance and the convergent properties of

plants. New Phytologist, 189(2):375–394, 2011.

A. Patton. Automatic Block Length Selection Procedure, 2007.

A. Patton, D. N. Politis, and H. White. Correction to “Automatic block-length selection for

the dependent bootstrap” by D. Politis and H. White. Econometric Reviews, 2009.

R. Pavlick, D. T. Drewry, K. Bohn, B. Reu, and A. Kleidon. The Jena Diversity-Dynamic

Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial

biogeography and biogeochemistry based on plant functional trade-o�s. Biogeosciences,

10(6):4137–4177, 2013.

A. G. Peterson, J. T. Ball, Y. Luo, C. B. Field, P. S. Curtis, K. L. Gri�n, C. A. Gunderson,

R. J. Norby, D. T. Tissue, M. Forstreuter, and others. Quantifying the response of photo-

synthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under

atmospheric CO2 enrichment. Plant, Cell and Environment, 22(9):1109–1119, 1999.

D. N. Politis and J. P. Romano. The Stationary Bootstrap. Journal of the American Statis-

tical Association, 89(428):1303–1313, 1994.

D. N. Politis and H. White. Automatic Block-Length Selection for the Dependent Bootstrap.

Econometric Reviews, 23(1):53–70, 2004.



119

J. Pongratz, C. H. Reick, T. Raddatz, and M. Claussen. Biogeophysical versus biogeochem-

ical climate response to historical anthropogenic land cover change. Geophysical Research

Letters, 37:L08702, 2010.

H. Poorter, Y. v. Berkel, R. Baxter, J. d. Hertog, P. Dijkstra, R. M. Gi�ord, K. L. Gri�n,

C. Roumet, J. Roy, and S. C. Wong. The e�ect of elevated CO2 on the chemical compo-

sition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment, 20

(4):472–482, 1997.

H. Poorter, Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar. Causes and consequences

of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182:565–588,

2009.

L. Poorter, S. F. Oberbauer, and D. B. Clark. Leaf optical properties along a vertical

gradient in a tropical rain forest canopy in Costa Rica. American Journal of Botany, 82

(10):1257–1263, 1995.

I. C. Prentice, N. Dong, S. M. Gleason, V. Maire, and I. J. Wright. Balancing the costs of

carbon gain and water transport: testing a new theoretical framework for plant functional

ecology. Ecology Letters, 17(1):82–91, 2014.

S. H. Pritchard, H. O. Rogers, S. A. Prior, and C. M. Peterson. Elevated CO2 and plant

structure: a review. Global Change Biology, 5(7):807–837, 1999.

B. Pu and R. E. Dickinson. Examining vegetation feedbacks on global warming in the

Community Earth System Model. Journal of Geophysical Research, 117:D20110, 2012.

D. Purves and S. Pacala. Predictive models of forest dynamics. Science, 320(5882):1452–

1453, 2008.

D. W. Purves, J. W. Lichstein, N. Strigul, and S. W. Pacala. Predicting and understanding

forest dynamics using a simple tractable model. Proceedings of the National Academy of

Sciences of the United States of America, 105(44):17018–17022, 2008.



120

E. M. Quilis. Bootstrapping Time Series. Version 1.0., 2015.

E. G. Reekie and F. A. Bazzaz. Competition and patterns of resource use among seedlings

of five tropical trees grown at ambient and elevated CO2. Oecologia, 79(2):212–222, 1989.

P. B. Reich, D. S. Ellsworth, and M. B. Walters. Leaf Structure (Specific Leaf Area) Mod-

ulates Photosynthesis-Nitrogen Relations: Evidence from within and Across Species and

Functional Groups. Functional Ecology, 12(6):948–958, 1998.

P. B. Reich, M. G. Tjoelker, K. S. Pregitzer, I. J. Wright, J. Oleksyn, and J.-L. Machado.

Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology

Letters, 11(8):793–801, 2008.

P. B. Reich, R. L. Rich, X. Lu, Y.-P. Wang, and J. Oleksyn. Biogeographic variation in

evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections.

Proceedings of the National Academy of Sciences of the United States of America, 111(38):

13703–13708, 2014.

M. Reichstein, M. Bahn, M. D. Mahecha, J. Kattge, and D. D. Baldocchi. Linking plant

and ecosystem functional biogeography. Proceedings of the National Academy of Sciences

of the United States of America, 111(38):13697–13702, 2014.

A. Rogers, B. E. Medlyn, J. S. Dukes, G. Bonan, S. von Caemmerer, M. C. Dietze, J. Kattge,

A. D. B. Leakey, L. M. Mercado, Ü. Niinemets, I. C. Prentice, S. P. Serbin, S. Sitch, D. A.

Way, and S. Zaehle. A roadmap for improving the representation of photosynthesis in

Earth system models. New phytologist, 213(1):22–42, 2017.

C. Roumet, G. Laurent, and J. Roy. Leaf structure and chemical composition as a�ected

by elevated CO2: genotypic responses of two perennial grasses. New Phytologist, 143(1):

73–81, 1999.

S. E. Said and D. A. Dickey. Testing for Unit Roots in Autoregressive-Moving Average

Models of Unknown Order. Biometrika, 71(3):599–607, 1984.



121

S. Scheiter, L. Langan, and S. I. Higgins. Next-generation dynamic global vegetation models:

learning from community ecology. New Phytologist, 198(3):957–969, 2013.

D. Schimel, B. B. Stephens, and J. B. Fisher. E�ect of increasing CO2 on the terrestrial

carbon cycle. Proceedings of the National Academy of Sciences of the United States of

America, 112(2):436–441, 2015.

P. J. Sellers, L. Bounoua, G. J. Collatz, D. A. Randall, D. A. Dazlich, S. O. Los, J. A.

Berry, I. Fung, C. J. Tucker, C. B. Field, and T. G. Jensen. Comparison of radiative

and physiological e�ects of doubled atmospheric CO2 on climate. Science, 271(5254):

1402–1406, 1996.

N. G. Smith and J. S. Dukes. Plant respiration and photosynthesis in global-scale models:

incorporating acclimation to temperature and CO2. Global Change Biology, 19(1):45–63,

2013.

N. G. Smith, D. Lombardozzi, A. Tawfik, G. Bonan, and J. S. Dukes. Biophysical conse-

quences of photosynthetic temperature acclimation for climate. Journal of Advances in

Modeling Earth Systems, 2017.

N. G. Smith, T. F. Keenan, I. Colin Prentice, H. Wang, I. J. Wright, Ü. Niinemets, K. Y.

Crous, T. F. Domingues, R. Guerrieri, F. Yoko Ishida, and others. Global photosynthetic

capacity is optimized to the environment. Ecology Letters, 22(3):506–517, 2019.

R. P. Souza and I. F. Válio. Leaf optical properties as a�ected by shade in saplings of six

tropical tree species di�ering in successional status. Brazilian Journal of Plant Physiology,

15(1):49–54, 2003.

F. Sterck, L. Markesteijn, F. Schieving, and L. Poorter. Functional traits determine trade-

o�s and niches in a tropical forest community. Proceedings of the National Academy of

Sciences of the United States of America, 108(51):20627–20632, 2011.



122

M. Stitt and A. Krapp. The interaction between elevated carbon dioxide and nitrogen

nutrition: the physiological and molecular background. Plant, Cell and Environment, 22

(6):583–621, 1999.

B. R. Strain and F. A. Bazzaz. Terrestrial plant communities. In E. R. Lemon, editor,

CO2 and plants, pages 177–222. Am. Assoc. Adv. Sci., Symp.;(United States), Boulder,

Colorado, 1983.

A. L. S. Swann, F. M. Ho�man, C. D. Koven, and J. T. Randerson. Plant responses to

increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of

the National Academy of Sciences of the United States of America, 113(36):10019–10024,

2016.

G. Taylor, M. J. Tallis, C. P. Giardina, K. E. Percy, F. Miglietta, P. S. Gupta, B. Gioli,

C. Calfapietra, B. Gielen, M. E. Kubiske, G. E. Scarascia-Mugnozza, K. Kets, S. P. Long,

and D. F. Karnosky. Future atmospheric CO2 leads to delayed autumnal senescence. Global

Change Biology, 14(2):264–275, 2008.

P. E. Thornton and N. E. Zimmermann. An improved canopy integration scheme for a land

surface model with prognostic canopy structure. Journal of Climate, 20(15):3902–3923,

2007.

K. Tully and D. Lawrence. Declines in leaf litter nitrogen linked to rising temperatures in a

wet tropical forest. Biotropica, 42(5):526–530, 2010.

P. M. Van Bodegom, J. C. Douma, J. P. M. Witte, J. C. Ordoñez, R. P. Bartholomeus,

and R. Aerts. Going beyond limitations of plant functional types when predicting global

ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global

Ecology and Biogeography, 21(6):625–636, 2012.

P. van der Sleen, P. Groenendijk, M. Vlam, N. P. R. Anten, A. Boom, F. Bongers, T. L.



123

Pons, G. Terburg, and P. A. Zuidema. No growth stimulation of tropical trees by 150 years

of CO2 fertilization but water-use e�ciency increased. Nature, 8(1):24–28, 2015.

L. M. Verheijen, V. Brovkin, R. Aerts, G. Bonisch, J. H. C. Cornelissen, J. Kattge, P. B.

Reich, I. J. Wright, and P. M. Van Bodegom. Impacts of trait variation through ob-

served trait–climate relationships on performance of an Earth system model: a conceptual

analysis. Biogeosciences, 10(8):5497–5515, 2013.

L. M. Verheijen, R. Aerts, V. Brovkin, J. Cavender-Bares, J. H. C. Cornelissen, J. Kattge,

and P. M. van Bodegom. Inclusion of ecologically based trait variation in plant functional

types reduces the projected land carbon sink in an earth system model. Global Change

Biology, 21(8):3074–3086, 2015.

A. P. Walker, A. P. Beckerman, L. Gu, J. Kattge, L. A. Cernusak, T. F. Domingues, J. C.

Scales, G. Wohlfahrt, S. D. Wullschleger, and F. I. Woodward. The relationship of leaf

photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf

area: a meta-analysis and modeling study. Ecology and Evolution, 4(16):3218–3235, 2014.

A. P. Walker, T. Quaife, P. M. van Bodegom, M. G. De Kauwe, T. F. Keenan, J. Joiner,

M. R. Lomas, N. MacBean, C. Xu, X. Yang, and others. The impact of alternative trait-

scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global

gross primary production. New Phytologist, 215(4):1370–1386, 2017.

D. A. Way, R. Oren, and Y. Kroner. The space-time continuum: the e�ects of elevated CO2

and temperature on trees and the importance of scaling. Plant, Cell and Environment, 38

(6):991–1007, 2015.

Z. Wei, K. Yoshimura, L. Wang, D. G. Miralles, S. Jasechko, and X. Lee. Revisiting the

contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research

Letters, 44(6):2792–2801, 2017.



124

M. A. White, P. E. Thornton, S. W. Running, and R. R. Nemani. Parameterization and sen-

sitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production

controls. Earth Interactions, 4(3):1–85, 2000.

W. R. Wieder, C. C. Cleveland, W. K. Smith, and K. Todd-Brown. Future productivity and

carbon storage limited by terrestrial nutrient availability. Nature, 8(6):441–444, 2015.

K. Winter and C. E. Lovelock. Growth responses of seedlings of early and late successional

tropical forest trees to elevated atmospheric CO2. Flora, 194(2):221–227, 1999.

K. Winter, M. Garcia, C. E. Lovelock, R. Gottsberger, and M. Popp. Responses of model

communities of two tropical tree species to elevated atmospheric CO2: growth on unfer-

tilized soil. Flora, 195(4):289–302, 2000.

K. Winter, M. Garcia, R. Gottsberger, and M. Popp. Marked growth response of communities

of two tropical tree species to elevated CO2 when soil nutrient limitation is removed. Flora,

196(1):47–58, 2001.

I. J. Wright, P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-

Bares, T. Chapin, J. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias,

K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, Ü. Ni-

inemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet,

S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. The worldwide leaf eco-

nomics spectrum. Nature, 428(6985):821–827, 2004.

C. Xu, R. Fisher, S. D. Wullschleger, C. J. Wilson, M. Cai, and N. G. McDowell. Toward

a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE, 7(5):

e37914, 2012.

S. Zaehle and A. D. Friend. Carbon and nitrogen cycle dynamics in the O-CN land surface

model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates.

Global Biogeochemical Cycles, 24:GB1005, 2010.



125

S. Zaehle, B. E. Medlyn, M. G. De Kauwe, A. P. Walker, M. C. Dietze, T. Hickler, Y. Luo,

Y.-P. Wang, B. El-Masri, P. Thornton, A. Jain, S. Wang, D. Wårlind, E. Weng, W. Parton,

C. M. Iversen, A. Gallet-Budynek, H. McCarthy, A. Finzi, P. J. Hanson, I. C. Prentice,

R. Oren, and R. J. Norby. Evaluation of 11 terrestrial carbon-nitrogen cycle models against

observations from two temperate Free-Air CO2 Enrichment studies. New Phytologist, 202

(3):803–822, 2014.

K. Zhang, J. S. Kimball, R. R. Nemani, S. W. Running, Y. Hong, J. J. Gourley, and Z. Yu.

Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land

Evapotranspiration. Scientific Reports, 5:15956, 2015.

B. Zhou and W. H. Wong. A Bootstrap-Based Non-Parametric Anova Method with Appli-

cations to Factorial Microarray Data. Statistica Sinica, 21(2):495–514, 2011.

Z. Zhu, S. Piao, R. B. Myneni, M. Huang, Z. Zeng, J. G. Canadell, P. Ciais, S. Sitch,

P. Friedlingstein, A. Arneth, C. Cao, L. Cheng, E. Kato, C. Koven, Y. Li, X. Lian, Y. Liu,

R. Liu, J. Mao, Y. Pan, S. Peng, J. Peñuelas, B. Poulter, T. A. M. Pugh, B. D. Stocker,

N. Viovy, X. Wang, Y. Wang, Z. Xiao, H. Yang, S. Zaehle, and N. Zeng. Greening of the

Earth and its drivers. Nature Climate Change, 2016.



126

Appendix A

SUPPORTING INFORMATION FOR CHAPTER 2

Marlies Kovenock1 and Abigail L.S. Swann2,1

1Department of Biology, University of Washington, Seattle, WA; 2Department of Atmo-

spheric Sciences, University of Washington, Seattle, WA.

Supporting Information for:

Kovenock, M., and Swann, A. L. S. (2018). Leaf trait acclimation amplifies simulated climate

warming in response to elevated carbon dioxide. Global Biogeochemical Cycles, 32, 1437-

1448. https://doi.org/10.1029/2018GB005883



127

A.1 Materials and Methods

A.1.1 Nitrogen Cycle

As the default model’s interactive nitrogen cycle breaks the relationship between tran-

spiration fluxes and gross primary productivity [De Kauwe et al., 2013] we disabled it and

represented nitrogen limitation with a fractional reduction in the rate of photosynthesis for

each plant functional type following the methods of Koven et al. [2015].

A.1.2 CO2 Acclimation of Leaf Mass per Area Estimation and Implementation

We estimated the plausible extent of leaf mass per area acclimation using Poorter et al.

[2009]’s meta-analysis of approximately 200 studies of leaf mass per area response to CO2

level. Specifically, we added the approximate interquartile range for the response of leaf

mass per area to a doubling of CO2 in all plants (no interquartile range for C3 plants was

reported) to the median response for C3 plants. The resulting level of change, a one-third

increase in leaf mass per area, was implemented by directly modifying the model parameter

controlling leaf mass per area at the top of the canopy. This model parameter, SLAo,

represents specific leaf area (m2 leaf area/g leaf carbon), the inverse of leaf mass per area.

We therefore multiplied the SLAo parameter for all C3 plant types by 0.75 to implement a

one-third increase in leaf mass per area.

As formulated by default, increasing leaf mass per area in this Earth system model raises

area-based maximum photosynthetic rates (µmol/m2/s) as follows:

Vcmax25 = – · LMA

CNleaf
(A.1)

where Vcmax25 is the maximum rate of carboxylation at 25¶C (µmol C/m2/s), LMA is the

leaf mass per area (gC/m2 leaf area), CNleaf is the leaf carbon-to-nitrogen ratio (gC/gN),

and – accounts for the amount of nitrogen in Rubisco and the specific activity of Rubisco.
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Other area-based maximum photosynthetic rate parameters (Jmax25, Tp25) are calculated

in proportion to Vcmax25. In all but one simulation (CCLMAPS), we maintained control

levels of area-based maximum photosynthetic rates by increasing the parameter values for

CNleaf (leaf gC/gN) for each C3 plant type by one third. This change encompasses both

increases in CNleaf and decreases in the fraction of nitrogen in Rubisco, which have been

observed in response to elevated CO2 in manipulation experiments [reviewed in Ainsworth

and Long, 2005, Leakey et al., 2012b, Way et al., 2015]. Prior studies have identified trait-

climate relationships in the literature that suggest that Vcmax25 and Jmax25 decrease with CO2

[Ainsworth and Rogers, 2007, Medlyn et al., 1999]. However, estimating an exact magnitude

of acclimation remains challenging because empirical relationships conflate the physiological

e�ects of CO2, nitrogen limitation, and altered within-plant nitrogen allocation [Rogers et al.,

2017, Smith and Dukes, 2013]. We chose here to make a conservative estimate that maximum

photosynthetic rates stay constant as CO2 increases. This approach is conservative as most

estimates predict a decrease in maximum photosynthetic rates which would enhance the

climate impacts of leaf mass per area acclimation by further reducing the increase in leaf

area in response to elevated CO2. The CCLMAPS simulation tested the sensitivity of climate

impacts to a simultaneous one-third increase in maximum photosynthetic rates.

A.1.3 Temperature Acclimation of Leaf Mass per Area Estimation and Implementation

We estimated the potential extent of leaf mass per area acclimation to temperature using

biome-specific acclimation relationships from Poorter et al. [2009]’s meta-analysis of 40 stud-

ies and the growing season temperature change due to doubling CO2 (CC - CTRL; northern

hemisphere JJA and southern hemisphere DJF) at each gridcell. We estimated the upper

bound of leaf mass per area response to temperature by adding the interquartile range for all

plant types reported by Poorter et al. [2009] to the biome-specific median response (biome-

specific interquartile ranges were not reported). The magnitude of temperature acclimation

was not sensitive to interannual variability in CC - CTRL growing season temperature.

We found that temperature could be an influential driver of leaf mass per area acclima-
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tion in boreal and arctic biomes (Figure A.5a). This is because temperature acclimation

occurs when leaves warm from growth-limiting cold temperatures to temperatures suitable

for growth [Poorter et al., 2009]. The acclimation response declines to zero when warming

begins from temperatures closer to those suitable for growth [Poorter et al., 2009]. Growing

season temperatures below this threshold occur primarily in boreal and arctic biomes in our

simulation. Using a threshold of at least 10% response we found that four plant functional

types - boreal needleleaf evergreen and deciduous trees, boreal deciduous shrubs, and C3

arctic grasses - cover 90% of the vegetated area that we estimate could be impacted by leaf

mass per area acclimation to temperature (Figure A.5b).

To test the climate influence of temperature acclimation on our results, we use an exper-

iment (TCCLMA) that includes a conservative estimate of the upper bound of leaf mass per

area acclimation to both temperature and CO2. The TCCLMA simulation is identical to

CCLMA (2xCO2; +1/3 leaf mass per area in C3 plants) except that leaf mass per area of four

plant functional types — boreal needleleaf evergreen and deciduous trees, boreal deciduous

shrubs, and C3 arctic grasses — were held at control (CTRL) levels. The corresponding

average response of leaf mass per area acclimation to temperature alone was -15% for grid-

cells with temperature acclimation. Combining the acclimation of leaf mass per area to CO2

(+33%) with the decrease due to temperature acclimation (average value -15%) results in an

average overall increase of +13%. We therefore conservatively left leaf mass per area values

at control levels for these four plant types, representing an implied 25% decrease in leaf mass

per area due to temperature.

This approach included a number of assumptions but o�ered the best estimate of leaf

mass per area temperature acclimation influences on climate and carbon cycling given the

options. It assumes that the temperature acclimation relationship reported by Poorter et al.

[2009] holds at temperatures below 7¶C, despite lack of data below this point; that as shown

by Poorter et al. [2009] (Figure 5j) there is no response above 18¶C; and, based on the

underlying mechanisms of temperature limiting leaf expansion and sink growth [Poorter

et al., 2009], that growing season rather than annual mean temperature is the driver. It also
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assumes that temperature and CO2 acclimation are additive (no interaction e�ect).

A.1.4 Statistical Analysis

Several variables had time series that were non-normally distributed and temporally au-

tocorrelated. We therefore used stationary bootstrap methods [Politis and Romano, 1994,

Quilis, 2015] with n = 50,000 to test for di�erences. The optimal block length for each

stationary bootstrap was determined by automatic estimation [Patton, 2007, Patton et al.,

2009, Politis and White, 2004]. Time series that failed the Augmented Dickey-Fuller test

for stationarity [Said and Dickey, 1984, and Matlab version 2015b adftest function] were de-

trended prior to bootstrap analysis. Di�erences were considered significant at the 95% level

using the percentile method [Efron and Gong, 1983, Efron and Tibshirani, 1994]. Confidence

intervals for average annual means and di�erences were constructed from their bootstrap dis-

tributions. T-test and Non-parametric Analysis of Variance [Zhou and Wong, 2011, modified

to use stationary bootstrap] analyses support the reported findings and conclusions.

We tested for spatial relationships between variables at the gridcell scale using simple,

multiple, and stepwise linear regression methods on annual mean values (CCLMA - CC).

Only continental land gridcells (no ocean or coast) that were a least 40% vegetated were

included in the regression analysis. Results were not sensitive to the selected percentage

vegetation. Relationships were considered significant at the 95% level.

A.2 Results

A.2.1 Temperature Acclimation of Leaf Mass per Area

Observations of leaf acclimation show that warming temperatures and rising CO2 levels

have opposing influences on leaf mass per area. As such, warming temperatures could be

hypothesized to o�set the influence of CO2 on leaf mass per area and the resulting climate

and carbon cycling impacts. However, temperature acclimation of leaf mass per area only

occurs at low temperatures [Poorter et al., 2009] and is therefore limited to boreal and arctic
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regions.

We quantified the influence of temperature acclimation on our CO2 acclimation results

using a simulation that represents the potential extent of leaf mass per area acclimation

to both temperature and CO2 (TCCLMA). Specifically, we compared the di�erences in the

change from the climate change control between two leaf mass per area acclimation cases: leaf

mass per area acclimation to CO2 alone (CCLMA - CC) and leaf mass per area acclimation

to both CO2 and temperature (TCCLMA - CC).

We found that temperature acclimation of leaf mass per area did not significantly alter

the additional warming beyond the climate change control induced by CO2 acclimation

of leaf mass per area. Physical warming was unaltered at the global and latitude band

scales (TCCLMA - CC ¥ CCLMA - CC) because temperature acclimation of leaf mass per

area did not significantly o�set changes in evapotranspiration and solar radiation absorbed

at the surface, despite slightly compensating for changes in leaf area index (Figure A.1).

Furthermore, temperature acclimation o�set only a small portion (≥1 PgC/yr) of the net

primary productivity change induced by CO2 acclimation (TCCLMA - CC; -5.0 PgC/yr,

CI95% -4.7 to -5.3). Thus, our estimate of additional biogeochemical warming due to leaf

mass per area acclimation was also similar (+0.1 to +0.9¶C over 100 years for TCCLMA -

CC compared to +0.1 to +1.0¶C over 100 years for CCLMA - CC).

A.2.2 Historical Climate Sensitivity to Leaf Mass per Area Change

We found that the influence of historical leaf mass per area acclimation on climate is

likely to be small. From the relationship reported by Poorter et al. [2009], we estimated

that the largest potential extent of historical leaf mass per area change compared to the pre-

industrial period (from 280ppm CO2 to 355ppm) is +8%. We tested a much larger one-third

increase in leaf mass per area for historical simulations at the control CO2 concentration of

355ppm (LMA: 1xCO2, +1/3 leaf mass per area). This experiment showed that a stronger

than expected increase in leaf mass per area did not significantly alter historical temperature

over land (LMA - CTRL; -0.1¶C over land, CI95% 0 to -0.2; -0.2¶C globally, CI95% -0.1 to
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-0.2).

The e�ect of leaf mass per area change in the historical period is limited for two reasons.

First, the decrease in leaf area in response to a one-third increase in leaf mass per area was

smaller at historical CO2 (LMA - CTRL: -0.67 m2/m2, CI95% -0.65 to 0.69) than at future

CO2 (CCLMA - CTRL). This smaller change in leaf area when beginning from low initial

leaf area is consistent with our findings under future CO2 conditions (see main text Results,

Figure A.2). The small change in leaf area at historical CO2 levels muted the decrease in

evapotranspiration (LMA - CTRL: -0.6 W/m2, CI95% -0.4 to -0.8) compared to the change

at future CO2 levels (CCLMA - CC). Second, the change in solar radiation absorbed at

the surface was reduced in the historical simulations (LMA - CTRL; -0.3 W/m2, CI95% -

0.1 to -0.6) compared to future simulations (CCLMA - CC), as reduced leaf area increased

albedo (as measured by a change in clear-sky shortwave radiation absorbed at the surface

of -0.2 W/m2, CI95% -0.1 to -0.4). Overall, the small decrease in solar radiation absorbed

at the surface and small increase in evapotranspiration resulted in a near zero change in

temperature.

Historical net primary productivity was significantly decreased in response to the one-

third leaf mass per area increase (-6.9 PgC/yr, CI95% -6.6 to -7.2). However, this value

likely overestimates the decrease in productivity by a factor of four, as the predicted 8%

increase in leaf mass per area for historical climate change is approximately one fourth of

the experimental change of 33%. We therefore suggest that -2 PgC/yr is a more reasonable

ballpark estimate for the sensitivity of simulated productivity to leaf mass per area change

at historical CO2. We also note that while the LMA experiment (355ppm CO2, +1/3 leaf

mass per area) is useful for testing the model sensitivity to changes in leaf mass per area

at a historical CO2 concentration, we do not expect leaf mass per area to di�er from the

control values at 355ppm because these values are based on observations of leaf mass per

area during the present day [White et al., 2000].



133

A.2.3 Acclimation Altered Balance between Biogeophysical and Biogeochemical Warming

Leaf mass per area represents the conversion factor between carbon available for leaf

growth and leaf area. Thus increasing leaf mass per area in response to rising CO2 alters

the balance between biogeophysical and biogeochemical warming by altering the total leaf

area displayed for a given amount of productivity. Plants could overcome this reduced leaf

area by increasing maximum photosynthetic rates. We quantified the approximate increase

in maximum photosynthetic rates and productivity required to o�set the biogeophysical

warming induced by leaf acclimation to CO2 using a simulation that simultaneously increased

area-based maximum photosynthetic rates (Vcmax25, Jmax25, Tp25,) and leaf mass per area by

one third (CCLMAPS) compared to the control climate change simulation (CC).

The greater photosynthetic capacity increased global net primary productivity by +9

PgC/yr (CI95% 8 to 9) compared to the control climate change simulation (CCLMAPS - CC)

and +14 PgC/yr (CI95% 14 to 15) compared to the leaf acclimation simulation (CCLMAPS

- CCLMA). This large increase in productivity mitigated approximately half of the decline

in global leaf area index incurred due to leaf mass per area acclimation (leaf area index

decreased by -14% in CCLMAPS - CC compared to -26% in CCLMA - CC). While leaf

area decline was not fully compensated for by increasing photosynthetic rates, total evap-

otranspiration was no longer significantly reduced compared to the control climate change

simulation (CCLMAPS - CC). Transpiration remained unchanged and decreased evaporation

from leaf surfaces (CCLMAPS - CC; -0.4 W/m2, CI95% -0.4 to -0.5) was compensated for

by an increase in evaporation from the soil (+0.4 W/m2, CI95% +0.2 to +0.5). The albedo

of the land surface increased slightly globally (-0.3 W/m2, CI95% -0.1 to -0.4) compared to

the climate change control consistent with the change in leaf area but did not significantly

alter the amount of solar radiation absorbed at the surface (-0.2 W/m2, CI95% -0.6 to +0.1).

As a result, the biogeophysical warming of the land surface due to a one-third increase in

leaf mass per area (CCLMA - CC) was mitigated by a proportional increase in maximum

photosynthetic rates (CCLMAPS - CC; -0.1¶C, CI95% 0 to -0.2;). Thus, a large increase in
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productivity above that estimated in our control climate change simulation o�set the biogeo-

physical warming due to leaf acclimation. However, leaf mass per area acclimation altered

the balance between productivity and biogeophysical land surface processes.
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A.3 Figures and Tables

Figure A.1: Zonal annual mean change over land due to leaf mass per area acclimation to
temperature and CO2 (red, TCCLMA - CC) and leaf mass per area acclimation to CO2
alone (blue, CCLMA - CC) of (a) biogeophysical warming (¶C); (b) leaf area index (m2/m2);
(c) evapotranspiration (W/m2); and (d) net solar radiation absorbed at the surface (W/m2).
Mean di�erences are shown as solid lines, along with the 95% bootstrap confidence interval
(dashed lines). Average zonal mean change on land due to leaf acclimation to temperature
and CO2 (bold numbers) for each latitude band (bounded by gray lines). Latitude band dif-
ferences between (CCLMA - CC) and (TCCLMA - CC) significant at the 95% level indicated
with asterisk (ú).
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Figure A.2: Scatterplot of gridcell level (a) initial leaf area index (CC) and the change in
leaf area in response to leaf acclimation to CO2 (r = -0.91, R2 = 0.83); (b) the changes in
leaf area and evapotranspiration (r = 0.57, R2 = 0.32); (c) the changes in temperature and
net primary productivity (r = -0.49, R2 = 0.24); and (d) the changes in temperature, leaf
area index, and gross primary productivity (multiple regression R2 = 0.32). Ordinary least
squares regression lines plotted in red (a-c). All changes are CCLMA - CC.
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Figure A.3: Zonal annual mean change over land due to leaf acclimation to CO2 of (a)
cloud fraction; (b) relative humidity (%); (c) biogeophysical warming (¶C); and (d) specific
humidity (Kg Water/Kg). Stippling indicates significance at the 95% level.
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Figure A.4: Zonal annual mean change over land due to leaf acclimation (CCLMA - CC)
of clear-sky solar radiation absorbed at the surface (W/m2). The mean di�erence is shown
in blue, along with the 95% bootstrap confidence interval (dashed black) and average zonal
mean change on land (bold numbers) for each latitude band (bounded by gray lines).

Figure A.5: (a) Potential extent of leaf mass per area change (%) due to temperature accli-
mation estimated from growing season temperature change (CC - CTRL) and biome-specific
acclimation relationships from Poorter et al. [2009]. (b) Percent of simulated vegetated
area covered by boreal plant types (boreal needleleaf evergreen and deciduous trees, boreal
deciduous shrubs, and C3 arctic grasses). Purple contours indicate -5% threshold for change
in leaf mass per area due to temperature acclimation.
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B.1 Materials and Methods

B.1.1 Background Parameter Selection and Sensitivity Tests

We select baseline parameters for the model from an evaluation of the model’s perfor-

mance against observations at our tropical forest site, Barro Colorado Island, Panama, across

a plant trait parameter ensemble (see Chapter 4 for details). Briefly, the benchmarking study

in Chapter 4 sampled 287 plausible parameterizations from the tropical tree trait space for

12 parameters, following Koven et al., [unpublished]. In the sampling process, values for

six parameters — leaf mass per area at the top of the canopy, maximum rate of carboxyla-

tion at the top of the canopy (Vcmax25top), wood density, leaf carbon to nitrogen ratio, leaf

longevity, and background mortality rate — were sampled from the observed trait space for

tropical trees at Barro Colorado Island and two nearby sites, Parque Natural Metropolitano

and Bosque Protector San Lorenzo, Panama. Values for the remaining six parameters were

sampled from plausible distributions as observational constraints are lacking. These param-

eters include the slope parameter in the Ball-Berry stomatal conductance model and several

allometric parameters: parameters that control the intercepts in the relationships between

diameter at breast height and plant crown area, as well as diameter at breast height and

target allometric leaf biomass; a parameter that controls the exponential in the relationships

between diameter at breast height and both plant crown area and target allometric leaf

biomass; the ratio of target leaf biomass to target fine root biomass; and the intercept of the

relationship between sapwood area to leaf area. Parameter sampling maintained observed

covariance between traits.

The performance of each ensemble member was evaluated against six observed variables

at our test site: leaf area index [Detto et al., 2018], above-ground biomass [Meakem et al.,

2018, Feeley et al., 2007, Baraloto et al., 2013], basal area [Condit et al., 2017, 2012, Condit,

1998, Hubbell et al., 1999], and gross primary productivity, latent heat, and sensible heat

fluxes from eddy covariance measurements [Koven et al., unpublished].

Three parameter sets performed particularly well when benchmarked against these ob-
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servations across several formulations of model skill. The main text of this paper reports

results from the highest performing parameter set. We test the sensitivity of the results

in the main text to parameter selection using the next two highest performing parameter

sets, and report results in Section B.2. These parameter sets are described in further detail

in Chapter 4 and made publicly available through the University of Washington Libraries

ResearchWorks digital repository. The URL for the parameter files in the ResearchWorks sys-

tem is http://hdl.handle.net/1773/43779. Two changes were made to the publicly available

parameter sets prior to running our competition experiments. First, we allowed the simu-

lation of two plant functional types by changing the parameter controlling initial seedling

density (recruit_initd) from 0 to 0.2 for the second plant type in the parameter file; and

2) we changed the competitive exclusion parameter (comp_excln) from -1 to 3 to minimize

random stochastic influences on competitive outcomes in our simulations. Parameter set

numbers 1, 2, and 3 herein correspond to parameter set numbers 86, 151, and 260 in the

publicly available files, respectively.

B.1.2 Leaf Trait Plasticity Implementation

We implemented 13 combinations of leaf mass per area (LMA) and leaf carbon to nitrogen

ratio (C:Nleaf ) responses to a doubling of carbon dioxide (CO2) in the FATES model by

directly manipulating the parameters that control these traits. In the FATES model, LMA

is controlled by a parameter for specific leaf area at the top of the canopy (fates_leaf_slatop,

m2 leaf area g≠1 C), which is the inverse of LMA. C:Nleaf is set by a separate parameter

(fates_leaf_cn_ratio, g C g≠1 N). In our experiments, we scaled the parameters controlling

LMA and C:Nleaf so that these traits changed by magnitudes we sampled from the observed

trait space. These levels of change included no change and one-twelfth, one-sixth, one-fourth,

and one-third increases (gray squares in main text Figure 3.1).

Together LMA and C:Nleaf control the amount of nitrogen present per leaf area (Narea,

g N m≠2 leaf area) in the FATES model, as described by Equation 3.1 in the main text. As

leaves gain more mass per area (increase LMA), the amount of leaf nitrogen per leaf area
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increases. As leaves increase the ratio of carbon to nitrogen in leaves (increase C:Nleaf ), less

nitrogen is present per leaf area.

As photosynthetic enzymes require nitrogen, the magnitude of leaf nitrogen per area is

closely associated with area-based maximum photosynthetic and respiration rates [Drake

et al., 1997, Kattge et al., 2009, 2011, Walker et al., 2014, Norby et al., 2017, Reich et al.,

2008]. FATES explicitly represents this relationship between leaf nitrogen per area and leaf

maintenance respiration rates as follows:

Rm25 = Rm · Narea (B.1)

where Rm25 is the rate of leaf maintenance respiration at the top of the canopy at 25¶C (µ

mol CO2 m≠2 s≠1), Rm is a baseline leaf maintenance respiration rate at 25¶C at the top of

the canopy, and Narea is the nitrogen per leaf area (g N m≠2 leaf area). As leaf maintenance

respiration per area scales with leaf Narea following Equation B.1, it too increases with

LMA. On the other hand, increasing the C:Nleaf lowers leaf Narea and leaf maintenance

respiration rates. As FATES does not explicitly represent the relationship between leaf Narea

and maximum photosynthetic rates (Vcmax25, Jmax25, Tpmax25), we impose this dependency in

our simulations by scaling the maximum photosynthetic rates by the proportional change in

leaf Narea resulting from our experimental changes in LMA and C:Nleaf (following Equation

3.1 in the main text). In our experiments, we scale the parameter for Vcmax25 at the top of

the canopy by the proportional change in Narea using the following relationship (based on

Equation B.1):

Vcmax25,plasticity = Vcmax25 · �Narea (B.2)

where Vcmax25,plasticity is the maximum rate of carboxylation at the top of the canopy at 25¶C

in our leaf trait plasticity experiments, Vcmax25 is the control parameter value representing
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the maximum rate of carboxylation at the top of the canopy at 25¶C, and �Narea is the

proportional change in leaf nitrogen per area due to changes in LMA and C:Nleaf in each

of our leaf trait plasticity experiments. In the model, other maximum photosynthetic rates

Jmax25 and Tpmax25 are calculated in proportion to Vcmax25 and thus change in proportion

to leaf Narea in our experiments as well. Experimental evidence shows that plants can alter

the fraction of leaf nitrogen used for photosynthetic enzymes, and the partitioning between

the di�erent photosynthetic enzymes that carry out the di�erent photosynthetic rates [e.g.,

Vcmax, Jmax; Xu et al., 2012, Leakey et al., 2012b]. Here we test the baseline assumption

that this does not occur. Future work could investigate these changes in nitrogen allocation.

B.1.3 Allometric Assumptions and Sensitivity Tests

We test the sensitivity of our results to two alternative assumptions about tree allometry,

described below. We report the results of these sensitivity tests in Section B.2.

Conserve Leaf Area vs. Leaf Biomass

The model set up for the experiments reported in the main text assumes that tropical trees

conserve target leaf area, rather than a target leaf biomass, when LMA changes in response

to elevated CO2. In the default version of the model, all trees have a target “on allometry”

leaf biomass that is determined by the allometry parameters for that plant functional type

and the tree size as measured by diameter at breast height. Trees in the model try to

maintain this leaf biomass when enough carbon is available, and if leaf layers remain in

positive carbon balance (i.e., leaf layer annual productivity is greater or equal to the carbon

cost of building and maintaining the leaf layer). This explicit target leaf biomass corresponds

with an implicit target leaf area index. Experiments presented in the main text assume that

trees can attempt to maintain their control target leaf area index by allocating additional

carbon to leaves when a unit of leaf area becomes more expensive in terms of carbon to build

as a result of increasing LMA. Meta-analysis of observations across over 650 woody plant
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species support this “conserve leaf area” allometry assumption [Duursma and Falster, 2016],

which we use in our main text experiments.

We implement the conserved leaf area allometry assumption in the model by increasing

the target “on allometry” leaf biomass in proportion with changes in LMA. More specifically,

we increase the parameter that directly scales target leaf biomass in proportion with the

changes we make to LMA in each experiment. This parameter is called the diameter to

leaf biomass parameter (allom_d2bl1) and linearly scales target leaf biomass in the FATES

model. This approach allows us to test the sensitivity of our results to the allometry scheme

chosen by allowing higher LMA trees to approximately maintain control levels of leaf area,

when they have enough carbon to do so. However, it is an estimation of the target leaf area

(not necessarily exactly equal to the control target leaf area) because several other factors

influence the amount of leaf area that can be produced from a given amount of carbon.

First, LMA decreases with overlying leaf area index in our model, following observations

[e.g., Lloyd et al., 2010]. Thus the actual cost of building leaf area depends on the overlying

leaf area index, which could vary between simulations. Second, the rate of LMA decrease

through the canopy depends on the maximum rate of carboxylation, following an empirical

formula [Lloyd et al., 2010]. Thus, the overall cost of building leaf area also depends on the

maximum rate of carboxylation, which can di�er between simulations, as it is one of the

trait changes we test herein. Third, the actual amount of biomass plants allocate toward

leaf growth in our model can di�er from the target amount based on their productivity and

whether leaves at the bottom of the canopy are able to achieve carbon balance. If leaves are

in negative carbon balance (i.e., require more carbon to build and maintain then they bring

in through photosynthesis each year), trees allocate less carbon to leaves until they reach a

positive carbon balance for each leaf layer in the canopy.

We test the sensitivity of our results to the “conserve leaf area” allometric assumption by

repeating all simulations with the alternative assumption that trees “conserve leaf biomass.”

Under the “conserve leaf biomass” assumption leaf area is more limited when LMA is in-

creased because leaf area becomes more expensive to build in terms of carbon but trees do
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not increase the overall target amount of leaf biomass they attempt to allocate to leaves.

Thus, leaf area index is expected to decrease with increases in LMA under this allometry

assumption. This is the default allometric assumption in the FATES model, and does not

require model modifications to implement. This assumption also conserves the relationship

between leaf and fine root biomass (details below).

Conserve Area- vs. Mass-Based Relationship between Leaves and Fine Roots

Our main text experiments assume that trees conserve the relationship between leaf area

and fine root surface area, which we refer to as the “area-based” relationship. This area-

based relationship between leaves and roots could be driven by the need for root surface

area to match leaf area for water transport. In the default model set up, target fine root

biomass is calculated in proportion to target leaf biomass. In order to test the influence of

instead conserving the area-based relationship between leaves and fine roots when leaf traits

respond to elevated CO2 we alter this relationship for the experiments reported in the main

text. To conserve the target fine root biomass while altering the target leaf biomass (in order

to conserve the target leaf area and root area when LMA changes), we make a simultaneous

and inversely proportional change to the ratio of fine root to leaf area parameter (allom_l2fr),

which linearly scales target leaf biomass to calculate target fine root biomass.

Alternatively, trees could conserve the mass-based (rather than area-based) relationship

between leaves and fine roots to support water transport. We therefore test the sensitivity

of our main text results, which conserve the area-based relationship, to conserving the mass-

based relationship instead by repeating all simulations with the mass-based relationship.

This is the default assumption in our model setup and therefore does not require changes to

implement. Under this assumption trees can increase carbon allocation to leaves to attempt

to conserve leaf area as LMA increases but, they must also pay a carbon cost to additionally

allocate more carbon to fine roots. We refer to this case as the “conserved leaf area, with

mass-based leaf to root relationship.”
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B.1.4 Statistical Analysis

Several variables have time series that are non-normally distributed, have unequal vari-

ances, and temporal autocorrelation. Thus, we tested for di�erences between means using

stationary bootstrap methods [Politis and Romano, 1994, Quilis, 2015] with n=50,000. We

used automatic estimation [Patton, 2007, Patton et al., 2009, Politis and White, 2004] to

determine the optimal block length for each stationary bootstrap. Time series that failed the

Augmented Dickey-Fuller test for stationarity [Said and Dickey, 1984, and Matlab version

2015b adftest function] were de-trended prior to statistical analysis. We used the percentile

method [Efron and Gong, 1983, Efron and Tibshirani, 1994] to determine di�erences signif-

icant at the 95% level. Confidence intervals for average annual means and di�erences were

constructed from their bootstrap distributions.

B.2 Results

B.2.1 Sensitivity to Background Parameterization and Allometric Assumptions

Ecosystem Properties

We find that the qualitative influence of leaf trait plasticity on biomass, carbon uptake,

and evapotranspiration is not generally sensitive to the parameterizations and allometry

assumptions we tested (Figures B.1, B.4, B.5).

The influence of leaf trait plasticity on leaf area index is also qualitatively robust across

our sensitivity tests with one exception. The response pattern for leaf area index di�ers when

the alternative allometric assumption is made that trees conserve a target leaf biomass rather

than a target leaf area when LMA changes. Under this alternative allometric assumption

increasing LMA no longer consistently enhances leaf area index (Figure B.2). This result is

expected given that increasing LMA raises the carbon cost of building leaf area but, trees

do not increase their target leaf biomass to compensate for this additional cost under the

alternative “conserve leaf biomass” assumption. However, a meta-analysis of observations

[Duursma and Falster, 2016] suggests that trees adhere to the allometric assumption we
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use in our main text experiments by conserving leaf area across variation in LMA, lending

support to the robustness of our main text results.

Competitive Ability

Our finding that the control leaf (no leaf trait plasticity) is more competitively advanta-

geous than leaf trait plasticity levels that result in decreases in Narea (-Narea) is qualitatively

robust to the background parameterizations and allometry assumptions we tested (Figure

B.3).

However, whether increasing LMA enhances competitive ability, as found in our main

text experiments, is sensitive to assumptions about tree allometry. Notably, increasing LMA

no longer consistently enhances competitive ability when the assumption is made that trees

conserve the mass-based relationship between leaves and fine roots (rather than area-based

relationship as in the main text results; Figure B.3). Under this assumption, trees increase

target root mass in proportion with increases in LMA. This increase in root mass with leaf

mass could occur to support water transport or the additional nutrient requirements for leaves

with greater LMA. The additional root mass requirement under this assumption makes it

even more costly to increase LMA, which we expect should reduce the competitive advantage

of doing so. In this case, we find that the control plant type is always at a competitive

advantage, and the benefit of increasing LMA that we saw in our primary results no longer

consistently occurs (Figure B.3). We hypothesize that higher baseline photosynthetic rates,

as occur in parameterization #2 (Table B.1), could enable plants to o�set this additional

cost of root mass and allow them to enhance competitive advantage through increases in

LMA despite the higher root mass requirement (parameterization #2, Figure B.3).

Total Canopy Nitrogen

Total canopy nitrogen can be calculated from the inverse of C:Nleaf , which describes the

amount of nitrogen required to support each unit of leaf carbon biomass (g N g≠1 C leaf),

and the total carbon leaf biomass (g C). In our main text experiments changes in LMA
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can influence total canopy nitrogen by altering the target total carbon leaf biomass (details

in Section B.1), as is supported by observations [Duursma and Falster, 2016]. Under this

allometric assumption, we find that a decrease in leaf Narea, which incorporates information

about both C:Nleaf and LMA (main text Equation 3.1), is required to maintain the total

canopy nitrogen requirement at the 1xCO2 level (Figure B.3).

This finding is robust across our sensitivity tests with one notable exception. C:Nleaf

rather than Narea is the dominant driver of changes in total canopy nitrogen under the

“conserve leaf biomass” allometric assumption (Figure B.3). Under this assumption, trees

conserve their target leaf biomass rather than their target leaf area and changes in LMA

no longer directly alter target leaf biomass. As target leaf biomass no longer varies with

LMA, changes in C:Nleaf become the dominant driver of total canopy nitrogen under this

allometric assumption. However, it is important to note that while this alternative allomet-

ric assumption provides an interesting sensitivity test, observations support the allometric

assumption used in our main text experiments [Duursma and Falster, 2016].
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B.3 Figures and Tables

Figure B.1: Annual mean biomass (kg C m≠2) for the 1xCO2 control, 2xCO2 control (black),
and the following leaf trait plasticity levels in the absence of competition: a one-third increase
in leaf C:N alone (+CN, light green), a one-third increase in leaf mass per area alone (+LMA,
purple), and a one-third increase in both leaf C:N and leaf mass per area (+CN+LMA, dark
green). Error bars show bootstrap 95% confidence intervals for the mean value. Main text
results shown in panel (a). Rows group results by the three background parameterizations
tested. Columns group results by allometry assumption: experiments that conserve target
leaf area and the area-based leaf to fine root relationship (a, d, g), experiments that conserve
target leaf area and the mass-based leaf to fine root relationship (b, e, h), and experiments
that conserve target leaf biomass (c, f, i).



152

Figure B.2: Annual mean leaf area index (LAI, m2 m≠2) for the 1xCO2 control, 2xCO2
control (black), and the following leaf trait plasticity levels in the absence of competition: a
one-third increase in leaf C:N alone (+CN, light green), a one-third increase in leaf mass per
area alone (+LMA, purple), and a one-third increase in both leaf C:N and leaf mass per area
(+CN+LMA, dark green). Error bars show bootstrap 95% confidence intervals for the mean
value. Main text results shown in panel (a). Rows group results by the three background
parameterizations tested. Columns group results by allometry assumption: experiments
that conserve target leaf area and the area-based leaf to fine root relationship (a, d, g),
experiments that conserve target leaf area and the mass-based leaf to fine root relationship
(b, e, h), and experiments that conserve target leaf biomass (c, f, i). +CN+LMA and +CN
overlap in panel (i).
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Figure B.3: The percent of pairwise competitions won (% Wins, color shading and black
numbers) and percent change in total canopy nitrogen compared to the 1xCO2 control (red
contours) for each leaf trait plasticity level of leaf C:N and leaf mass per area. Percent wins
for sampled trait changes (black numbers). Diagonal line (dashed black) indicates where
nitrogen per area (Narea, g N m≠2 leaf area) remains at control levels (=Narea). Leaf trait
plasticity levels below the diagonal line reduce Narea (-Narea) compared to the control plant
type. Leaf trait plasticity levels above the diagonal line enhance Narea (+Narea) compared
to the control plant type. Linear interpolation used to estimate percent wins and change
in total canopy nitrogen between sampled trait changes. Main text results shown in panel
(a). Rows group results by the three background parameterizations tested. Columns group
results by allometry assumption: experiments that conserve target leaf area and the area-
based leaf to fine root relationship (a, d, g), experiments that conserve target leaf area and
the mass-based leaf to fine root relationship (b, e, h), and experiments that conserve target
leaf biomass (c, f, i).
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Figure B.4: Annual mean net primary productivity (NPP, kg C m≠2 yr≠1) for the 1xCO2
control, 2xCO2 control (no leaf trait plasticity), and 12 ecosystems each consisting entirely of
one plant type with a di�erent level of leaf trait plasticity sampled from the -Narea, =Narea,
and +Narea plasticity spaces. Color indicates the percentage of all pairwise competitions won
by each level of leaf trait plasticity (% Wins). Error bars show bootstrap 95% confidence
intervals for the mean value. Main text results shown in panel (a). Rows group results by the
three background parameterizations tested. Columns group results by allometry assumption:
experiments that conserve target leaf area and the area-based leaf to fine root relationship
(a, d, g), experiments that conserve target leaf area and the mass-based leaf to fine root
relationship (b, e, h), and experiments that conserve target leaf biomass (c, f, i).
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Figure B.5: Annual mean evapotranspiration (ET, W m≠2) for the 1xCO2 control, 2xCO2
control (no leaf trait plasticity), and 12 ecosystems each consisting entirely of one plant
type with a di�erent level of leaf trait plasticity sampled from the -Narea, =Narea, and
+Narea plasticity spaces. Color indicates the percentage of all pairwise competitions won
by each level of leaf trait plasticity (% Wins). Error bars show bootstrap 95% confidence
intervals for the mean value. Main text results shown in panel (a). Rows group results by the
three background parameterizations tested. Columns group results by allometry assumption:
experiments that conserve target leaf area and the area-based leaf to fine root relationship
(a, d, g), experiments that conserve target leaf area and the mass-based leaf to fine root
relationship (b, e, h), and experiments that conserve target leaf biomass (c, f, i).
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Table B.1: Baseline values for parameter sensitivity test

Trait Parameter
Set #1 Set #2 Set #3

Main Results Sensitivity Test Sensitivity Test

Leaf C:N ratio (g C g≠1 N) 20.9 24.1 21.3

Leaf mass per area (g C m≠2) 44.4 70.4 54.3

Vcmax25 (µmol CO2 m≠2 s≠1) 62.6 106.6 52.1

Notes. Maximum rate of carboxylation at 25¶C (Vcmax25) and leaf mass per area values are

at top of canopy.
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Appendix C

SUPPORTING INFORMATION FOR CHAPTER 4

This appendix describes the code changes made to the Functionally Assembled Terrestrial

Ecosystem Simulator (FATES) to implement the canopy profile of specific leaf area described

in Chapter 4.

C.1 Tree Leaf Area Index Function

The following code was implemented in the FatesAllometryMod.F90 file of the FATES

code to calculate leaf area index using dynamic values of specific leaf area that increase with

overlying leaf area index.
real(r8) function tree_lai ( bl , pft , c_area , nplant , cl , canopy_lai )

! --------------------------------------------------------------------------

! LAI of individual trees is a function of the total leaf area

! and the total canopy area.

! --------------------------------------------------------------------------

! ! ARGUMENTS

real(r8), intent (in) :: bl ! plant leaf biomass [kg]

integer , intent (in) :: pft ! plant functional type index

real(r8), intent (in) :: c_area ! areal extent of canopy (m2)

real(r8), intent (in) :: nplant ! number individuals in cohort /ha

integer , intent (in) :: cl ! canopy layer index

real(r8), intent (in) :: canopy_lai ( nclmax ) ! total leaf area index of

! each canopy layer

! ! LOCAL VARIABLES :

real(r8) :: leafc_per_unitarea ! KgC of leaf per m2 area of ground .

real(r8) :: slat ! the sla of the top leaf layer . m2/kgC

real(r8) :: canopy_lai_above ! total LAI of canopy layer overlying this tree

real(r8) :: vai_per_lai ! ratio of vegetation area index (ie. sai+lai)

! to lai for individual tree
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real(r8) :: kn ! coefficient for exponential decay of 1/ sla and

! vcmax with canopy depth

real(r8) :: sla_max ! Observational constraint on how large sla

! (m2/gC) can become

real(r8) :: leafc_slamax ! Leafc_per_unitarea at which sla_max is reached

real(r8) :: clim ! Upper limit for leafc_per_unitarea in exponential

! tree_lai function

! ----------------------------------------------------------------------

if( bl < 0. _r8 .or. pft == 0 ) then

write ( fates_log () ,*) ’problem �in� treelai ’,bl ,pft

endif

slat = g_per_kg * EDPftvarcon_inst % slatop (pft) ! m2/g to m2/kg

leafc_per_unitarea = bl /( c_area / nplant ) !KgC/m2

if( leafc_per_unitarea > 0.0 _r8)then

if (cl ==1) then ! if in we are in the canopy (top) layer )

canopy_lai_above = 0. _r8

else

canopy_lai_above = sum( canopy_lai (1:cl -1))

end if

! Coefficient for exponential decay of 1/ sla with canopy depth :

kn = decay_coeff_kn (pft)

! take PFT - level maximum SLA value ,

! even if under a thick canopy ( which has units of m2/gC),

! and put into units of m2/kgC

sla_max = g_per_kg * EDPftvarcon_inst % slamax (pft)

! Leafc_per_unitarea at which sla_max is reached

! due to exponential sla profile in canopy :

leafc_slamax = (slat - sla_max * exp ( -1.0 _r8 * kn * canopy_lai_above )) / &

( -1.0 _r8 * kn * slat * sla_max )

if( leafc_slamax < 0.0 _r8)then

leafc_slamax = 0.0 _r8

endif

! Calculate tree_lai (m2 leaf area /m2 ground ) = unitless LAI
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! ----------------------------------------------------------------------

! If leafc_per_unitarea is less than leafc_slamax ,

! sla with depth in the canopy will not exceed sla_max .

! In this case , we can use an exponential profile for

! sla throughout the entire canopy .

! The exponential profile for sla is given by:

! sla(at a given canopy depth ) = slat / exp(-kn ( canopy_lai_above + tree_lai )

!

! We can solve for tree_lai using the above function for the sla profile

! and first setting

! leafc_per_unitarea = integral of e^(-kn(x + canopy_lai_above )) / slatop

! over x = 0 to tree_lai

! Then , rearranging the equation to solve for tree_lai .

if ( leafc_per_unitarea <= leafc_slamax )then

tree_lai = (log(exp ( -1.0 _r8 * kn * canopy_lai_above ) - &

kn * slat * leafc_per_unitarea ) + &

(kn * canopy_lai_above )) / ( -1.0 _r8 * kn)

! If leafc_per_unitarea becomes too large ,

! tree_lai becomes an imaginary number

! ( because the tree_lai equation requires us to

! take the natural log of something >0)

! Thus , we include the following error message

! in case leafc_per_unitarea becomes too large .

clim = (exp ( -1.0 _r8 * kn * canopy_lai_above )) / (kn * slat)

if ( leafc_per_unitarea >= clim) then

write ( fates_log () ,*) ’too�much� leafc_per_unitarea ’ , &

leafc_per_unitarea , clim , pft , canopy_lai_above

write ( fates_log () ,*) ’Aborting ’

call endrun (msg= errMsg ( sourcefile , __LINE__ ))

endif

! When leafc_per_unitarea is greater than leafc_slamax ,

! tree_lai could become so great that the sla profile

! surpasses sla_max at depth .

! In this case , we use the exponential profile to calculate tree_lai until

! we reach the maximum allowed value for sla ( sla_max ).

! Then , calculate the remaining tree_lai using a linear function of

! sla_max and the remaining leafc .

else if( leafc_per_unitarea > leafc_slamax )then
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! Add exponential and linear portions of tree_lai

! Exponential term for leafc = leafc_slamax ;

! Linear term ( static sla = sla_max ) for portion of leafc > leafc_slamax

tree_lai = (( log(exp ( -1.0 _r8 * kn * canopy_lai_above ) - &

kn * slat * leafc_slamax ) + &

(kn * canopy_lai_above )) / ( -1.0 _r8 * kn )) + &

( leafc_per_unitarea - leafc_slamax ) * sla_max

! if leafc_slamax becomes too large ,

! tree_lai_exp becomes an imaginary number

! ( because the tree_lai equation requires us to

! take the natural log of something >0)

! Thus , we include the following error message

! in case leafc_slamax becomes too large .

clim = (exp ( -1.0 _r8 * kn * canopy_lai_above )) / (kn * slat)

if( leafc_slamax >= clim)then

write ( fates_log () ,*) ’too�much� leafc_slamax ’ , &

leafc_per_unitarea , leafc_slamax , clim , pft , canopy_lai_above

write ( fates_log () ,*) ’Aborting ’

call endrun (msg= errMsg ( sourcefile , __LINE__ ))

endif

end if ! ( leafc_per_unitarea > leafc_slamax )

else

tree_lai = 0.0 _r8

endif ! ( leafc_per_unitarea > 0.0 _r8)

return

end function tree_lai

C.2 Decay Coe�cient Function

The following code was implemented in the FatesAllometryMod.F90 file of the FATES

code to calculate the decay coe�cient used to estimate the profiles of specific leaf area and

maximum photosynthetic rates.
real(r8) function decay_coeff_kn (pft)

! ------------------------------------------------------------------------

! This function estimates the decay coefficient used to estimate vertical

! attenuation of properties in the canopy .

!
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! Decay coefficient (kn) is a function of vcmax25top for each pft.

!

! Currently , this decay is applied to vcmax attenuation , and SLA ( optionally )

!

! ------------------------------------------------------------------------

! ARGUMENTS

integer , intent (in) :: pft

! LOCAL VARIABLES

! ------------------------------------------------------------------------

! Bonan et al (2011) JGR , 116 , doi :10.1029/2010 JG001593 used

! kn = 0.11. Here , we derive kn from vcmax25 as in Lloyd et al

! (2010) Biogeosciences , 7, 1833 -1859

decay_coeff_kn = exp (0.00963 _r8 * EDPftvarcon_inst % vcmax25top (pft) - 2.43 _r8)

return

end function decay_coeff_kn

C.3 Canopy Trimming Function

The trim_canopy subroutine within the EDPhysiologyMod.F90 file of the FATES source

code was modified to account for increasing values of specific leaf area through the canopy.

This subroutine determines if each leaf layer is in positive carbon balance. Specific leaf area

is used to determine the carbon cost of each leaf layer.
subroutine trim_canopy ( currentSite )

!

! ! DESCRIPTION :

! Canopy trimming / leaf optimisation .

! Removes leaves in negative annual carbon balance .

!

! !USES:

! ! ARGUMENTS

type ( ed_site_type ), intent ( inout ), target :: currentSite

!

! ! LOCAL VARIABLES :
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type ( ed_cohort_type ) , pointer :: currentCohort

type ( ed_patch_type ) , pointer :: currentPatch

integer :: z ! leaf layer

integer :: ipft ! pft index

logical :: trimmed ! was this layer trimmed in this year?

!If not expand the canopy .

real(r8) :: tar_bl ! target leaf biomass ( leaves flushed , trimmed )

real(r8) :: tar_bfr ! target fine -root biomass ( leaves flushed , trimmed )

real(r8) :: bfr_per_bleaf ! ratio of fine root per leaf biomass

real(r8) :: sla_levleaf ! sla at leaf level z

real(r8) :: nscaler_levleaf ! nscaler value at leaf level z

integer :: cl ! canopy layer index

real(r8) :: kn ! nitrogen decay coefficient

real(r8) :: sla_max ! Observational constraint on how large

! sla (m2/gC) can become

real(r8) :: leaf_inc ! LAI -only portion of the vegetation increment of dinc_ed

real(r8) :: lai_canopy_above ! the LAI in the canopy layers above the layer of interest

real(r8) :: lai_layers_above ! the LAI in the leaf layers , within the current canopy ,

! above the leaf layer of interest

real(r8) :: lai_current ! the LAI in the current leaf layer

real(r8) :: cumulative_lai ! the cumulative LAI , top down ,

! to the leaf layer of interest

! ----------------------------------------------------------------------

currentPatch => currentSite % youngest_patch

do while ( associated ( currentPatch ))

currentCohort => currentPatch % tallest

do while ( associated ( currentCohort ))

trimmed = . false .

ipft = currentCohort %pft

call carea_allom ( currentCohort %dbh , currentCohort %n, currentSite %spread , &

currentCohort %pft , currentCohort % c_area )

currentCohort % treelai = tree_lai ( currentCohort %bl , currentCohort %pft , &

currentCohort %c_area , currentCohort %n, &

currentCohort % canopy_layer , &

currentPatch % canopy_layer_tlai )
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currentCohort % treesai = tree_sai ( currentCohort %pft , currentCohort %dbh , &

currentCohort % canopy_trim , &

currentCohort %c_area , currentCohort %n, &

currentCohort % canopy_layer , &

currentPatch % canopy_layer_tlai , &

currentCohort % treelai )

currentCohort %nv = ceiling (( currentCohort % treelai + &

currentCohort % treesai )/ dinc_ed )

if ( currentCohort %nv > nlevleaf )then

write ( fates_log () ,*) ’nv�>� nlevleaf ’,currentCohort %nv , &

currentCohort %treelai , currentCohort %treesai , &

currentCohort %c_area , currentCohort %n, currentCohort %bl

call endrun (msg= errMsg ( sourcefile , __LINE__ ))

endif

call bleaf ( currentcohort %dbh ,ipft , currentcohort % canopy_trim , tar_bl )

if ( int( EDPftvarcon_inst % allom_fmode (ipft )) .eq. 1 ) then

! only query fine root biomass if using a fine root allometric model

! that takes leaf trim into account

call bfineroot ( currentcohort %dbh ,ipft , currentcohort % canopy_trim , tar_bfr )

bfr_per_bleaf = tar_bfr / tar_bl

endif

! Identify current canopy layer (cl)

cl = currentCohort % canopy_layer

! PFT - level maximum SLA value , even if under a thick canopy (same units as slatop )

sla_max = EDPftvarcon_inst % slamax (ipft)

!Leaf cost vs netuptake for each leaf layer .

do z = 1, currentCohort %nv

! Calculate the cumulative total vegetation area index

! (no snow occlusion , stems and leaves )

leaf_inc = dinc_ed * &

currentCohort % treelai /( currentCohort % treelai + currentCohort % treesai )

! Now calculate the cumulative top -down lai of the current layer ’s midpoint
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lai_canopy_above = sum( currentPatch % canopy_layer_tlai (1:cl -1))

lai_layers_above = leaf_inc * (z -1)

lai_current = min(leaf_inc , currentCohort % treelai - lai_layers_above )

cumulative_lai = lai_canopy_above + lai_layers_above + 0.5* lai_current

if ( currentCohort % year_net_uptake (z) /= 999. _r8)then

! there was activity this year in this leaf layer .

! Calculate sla_levleaf following the sla profile with overlying leaf area

! Scale for leaf nitrogen profile

kn = decay_coeff_kn (ipft)

! Nscaler value at leaf level z

nscaler_levleaf = exp(-kn * cumulative_lai )

! Sla value at leaf level z after nitrogen profile scaling (m2/gC)

sla_levleaf = EDPftvarcon_inst % slatop (ipft )/ nscaler_levleaf

if( sla_levleaf > sla_max )then

sla_levleaf = sla_max

end if

!Leaf Cost kgC/m2/year -1

! decidous costs .

if ( EDPftvarcon_inst % season_decid (ipft) == 1. or. &

EDPftvarcon_inst % stress_decid (ipft) == 1) then

! Leaf cost at leaf level z accounting for sla profile (kgC/m2)

currentCohort % leaf_cost = 1. _r8 /( sla_levleaf *1000.0 _r8)

if ( int( EDPftvarcon_inst % allom_fmode (ipft )) .eq. 1 ) then

! if using trimmed leaf for fine root biomass allometry ,

! add the cost of the root increment

! to the leaf increment ; otherwise do not.

currentCohort % leaf_cost = currentCohort % leaf_cost + &

1.0 _r8 /( sla_levleaf *1000.0 _r8) * &

bfr_per_bleaf / EDPftvarcon_inst % root_long (ipft)

endif

currentCohort % leaf_cost = currentCohort % leaf_cost * &

( EDPftvarcon_inst % grperc (ipft) + 1. _r8)

else ! evergreen costs

! Leaf cost at leaf level z accounting for sla profile
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currentCohort % leaf_cost = 1.0 _r8 /( sla_levleaf * &

EDPftvarcon_inst % leaf_long (ipft )*1000.0 _r8)

! convert from sla in m2g -1 to m2kg -1

if ( int( EDPftvarcon_inst % allom_fmode (ipft )) .eq. 1 ) then

! if using trimmed leaf for fine root biomass allometry ,

! add the cost of the root increment

! to the leaf increment ; otherwise do not.

currentCohort % leaf_cost = currentCohort % leaf_cost + &

1.0 _r8 /( sla_levleaf *1000.0 _r8) * &

bfr_per_bleaf / EDPftvarcon_inst % root_long (ipft)

endif

currentCohort % leaf_cost = currentCohort % leaf_cost * &

( EDPftvarcon_inst % grperc (ipft) + 1. _r8)

endif

if ( currentCohort % year_net_uptake (z) < currentCohort % leaf_cost )then

if ( currentCohort % canopy_trim > EDPftvarcon_inst % trim_limit (ipft )) then

if ( DEBUG ) then

write ( fates_log () ,*) ’trimming � leaves ’, &

currentCohort % canopy_trim , currentCohort % leaf_cost

endif

! keep trimming until none of the canopy is

! in negative carbon balance .

if ( currentCohort %hite > EDPftvarcon_inst % hgt_min (ipft )) then

currentCohort % canopy_trim = currentCohort % canopy_trim - &

EDPftvarcon_inst % trim_inc (ipft)

if ( EDPftvarcon_inst % evergreen (ipft) /= 1) then

currentCohort % laimemory = currentCohort % laimemory * &

(1.0 _r8 - EDPftvarcon_inst % trim_inc (ipft ))

endif

trimmed = .true.

endif

endif

endif

endif !leaf activity ?

enddo !z

currentCohort % year_net_uptake (:) = 999.0 _r8

if ( (. not. trimmed ) .and. currentCohort % canopy_trim < 1.0 _r8)then

currentCohort % canopy_trim = currentCohort % canopy_trim + &

EDPftvarcon_inst % trim_inc (ipft)
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endif

if ( DEBUG ) then

write ( fates_log () ,*) ’trimming ’,currentCohort % canopy_trim

endif

! currentCohort % canopy_trim = 1.0 _r8 !FIX(RF ,032414)

! this turns off ctrim for now.

currentCohort => currentCohort % shorter

enddo

currentPatch => currentPatch % older

enddo

end subroutine trim_canopy


