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ABSTRACT 

Modem FPGA and microprocessor have complex logic inside them, which draw 

current from the Power Distribution Network (PDN). This current drawn from the PDN 

creates disturbance on the PDN, which then propagates to other IC in different places on 

the Printed Circuit Board (PCB), and appears as a noise voltage. Ability to predict noise 

voltage at any point on the PCB gives a greater ability to carefully design the board and 

the PDN. In order to accurately predict the noise, it is important to accurately predict the 

current drawn and the transfer impedance from the source to the victim point. A 

methodology is presented herein to accurately predict noise at any point on the PCB for 

any given logic running inside the FPGA. 

The second problem in this work is the study of composite absorbing and 

reflecting shielding materials capable of providing shielding to electronic equipment. 

Both composite dielectric materials and carbon-filled foam materials are studied for 

advantages, disadvantages, and for their practical use. For the carbon-filled materials, the 

frequency dependence of S-parameter data is approximated using the parameters of the 

corresponding Debye dielectric frequency dependencies. These Debye parameters are 

used in simulating the complex structures in 3-D full-wave simulation tools for 

evaluating their electromagnetic shielding performance. 

Another problem studied in this work is an antenna calibration benchmark 

validation problem. This problem is studied using such software as EZ-FDTD and 

WireMoM. Different geometries (without ground plane, with infinite ground plane, and 

with finite ground plane) are analyzed, using these numerical tools and the results are 

compared. 
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INTRODUCTION 

1.1. CHARACTERIZATION OF NOISE ON PDN 

Modem FPGA and microprocessors contain complex circuits which draw a 

significant current during switching. The switching current creates a disturbance on the 

power distribution network (PDN) on the PCB. DC components of the current are 

relatively simple to predict and account for. However, AC current components have 

frequency contents, which must be carefully analyzed in power distribution network 

design of dies, packages, and printed circuit boards. Traditional techniques call for broad

band frequency compensation, which adds cost and complexity to designs. This research 

presents a methodology to model the FPGA noise source and use the model to predict the 

dynamic current draw ofFPGA devices in time and frequency domains [1]. With an 

accurate prediction of the noise currents frequency components, the power distribution 

network can be optimized for obtaining maximum benefit and minimum cost. Other 

benefits include prediction of voltage fluctuations in the power network during switching 

activity. 

Stratix® II GX FPGAs are the third generation of Altera's FPGAs with embedded 

transceivers. Stratix II GX devices provide a robust solution for the growing number of 

applications and protocols requiring multi-gigabit serial 110. 

Quartus® II design software[2] provides the most advanced suite of tools for 

system-level design, embedded software programming, FPGA and CPLD design, 

synthesis, place-and-route, verification, and device programming. Quartus II software 

supports all of Altera's latest device families. 

1.1.1. Altera Stratix II GX. The Stratix II GX is the Altera's third generation 

FPGA for combining high speed serial transceivers with high performance logic arrays 

[2]. Stratix II GX includes 4 to 20 high speed transceiver channels, each incorporating a 

clock/data recovery unit and embedded SERDES capability up to 6.375 Gbps. The 

transceivers are grouped into 4-channel transceiver blocks. 

The main features of Altera Stratix II GX are listed below: 

• TriMatrix™ memory blocks with dual-ports and FIFO buffers implemented with 

performance up to 550 MHz. 

1



• 16 global clock trees and 32 regional clock trees. 

• High speed DSP blocks with dedicated multipliers (upto 450 MHz), multi-

accumulators, and FIR filters. 

• Support ofnumerous single-ended and differential I/0 standards. 

• High-speed, source-synchronous differential I/0 up to 71 channels. 

• The FPGA used in the experiments has 15 I/0 banks with 1152 FBGA 

encapsulation. 

• The FPGA supports SSTL, L VTTL, and other I/0 standards. Its core power level 

is 1.2V. 

2 

1.1.2. Quartos. Quartus is Altera's integrated VHDL design system. It supports 

VHDL, Verilog HDL, AHDL, and schematic design. Quartus also provides its own built

in Intellectual Property (IP) library with many built functionalities. The Quartus interface 

is shown in Figure 1.1. 

•'Bi§'*M 1M!414QM@!IIM iiMHilfi@i 
tli filo tdt ~ l!lo;oct /10- ""' ...... 1""'- to~> 

II D ~ !;! 1• 1 j, ~ e "' c. IW llm,,u... ::J i )( I' <1 . • G:i I • ") •• I ~ • t• l ~ 
::_ • • Tine .:J.!!l -~·~~::::::=::::::::::::;:::;.:::::::::;.;:,.:.:;..,.,.,_~.,.!..::.,......::..=~~~~~...-!...-.~~~~~~~-:-

A •• 

· ·~ 

L~~ 
~~M- .i.I.!J ""' ---------------- -- -

I"Gr/iltl,preHI"I 31SS, XH 

Figure 1.1. Quartus Interface 
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Special patterns are developed in Quartus to analyze the current drawn in a known 

way. For example, aT-Flip Flop (TFF) will switch once every two clock cycles and 

hence has halfthe frequency as a clock. Thousands ofTFF's can be made to switch 

together to draw a huge amount of current at a single time. Such patterns have predictive 

behavior and are implemented at the initial stages to help predict the current drawn. 

Measurements and simulations are then performed using these patterns and then 

compared to each other. 

1.2. ELECTROMAGNETIC SHEILDING 

In today's world there is a need to reduce unwanted electromagnetic radiation, emitted by 

electronic devices, and also there is a need to protect sensitive circuits from the outside 

electromagnetic radiation. Sometimes, electromagnetic radiation can be intentionally 

generated to disrupt the electronic devices. Shielding material can be used to shield 

sensitive equipment to reduce the emissions and improve the immunity of electronic 

equipment. Usually a highly conductive material (metal) is used to form a shielding 

enclosure. The effectiveness of such shielding enclosure is mainly determined by the 

presence of slots and aperture arrays for heat dissipation. Moreover, metal enclosures are 

massive, large size, and difficult to move around and manipulate. Materials designed 

from the conductive fibers and carbon-rich foam materials tend to absorb and reflect 

electromagnetic waves, and, hence, can be used to design shielding enclosures. Shields 

made of these kinds of materials tend to be lighter and easy to shape, move, and 

manipulate. These materials can be stacked up together to provide better shielding. 

Shielding is characterized by the parameter called Shielding Effectiveness (S.E). It can be 

calculated as 

(SEts =lOlog(P;ncidenr / . ) 
/ ptransmztred 

(1.1) 

Composite materials, including carbon-filled ones, are measured for their 

shielding effectiveness. The Debye dielectric parameters are obtained by approximating 

frequency dependencies of S-parameters taken from measurements. The De bye 

parameters are then used to simulate complex structures using 3-D simulation tools to 

evaluate shielding effectiveness [7]. 

3
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1.3. MODELING AND VALIDATION 

Full-wave modeling is an important method to solve complex electromagnetic 

models. There are many commercially available tools out in the market, and each is 

designed to solve a specific set of problems. Common methods that are employed in 

commercial tools to solve the Maxwell equations are Finite Difference Time Domain 

method (FDTD), Finite Element Method (FEM), Integral Equation Solution or Method of 

Moments (MOM). Each method has its own advantages and disadvantages. A method to 

be employed should be chosen depending on a type o fa problem to be solved and 

accuracy required. However, solution offered by new 3-D simulation software cannot be 

considered correct, until it is validated by different method. Validating the solution can 

be done either by using the other software with a different solution method, or by making 

real measurements, or by analytically solving the problem. Measurements of an adequate 

prototype are not always possible, and analytically solving a problem can be too 

complicated. Thus, using two different software solutions to the same problem is a good 

validation approach. An antenna over different ground planes is studied herein, using the 

EZ-FDTD tool and the WireMoM. These two types of software use different numerical 

methods- Finite Difference Time Domain (FDTD) technique and Method of Moments 

(MoM). 

4



2. CHARACTERIZATION OF NOISE ON PDN 

Special patterns are developed in Quartus to understand and estimate the current 

drawn from the PDN in a known way. 

2.1. PATTERN 

5 

In this experiment, the FPGA logic (pattern) is called the single frequency parallel 

toggling flip-flop (TFF) pattern with one single clock input and one testing output pin 

terminated using LVTTL standard [2]. 

To implement different percentages of the FPGA utilization using this pattern, 

simply connect the enabled bits from different blocks to the GND or vee, as shown in 

Figure 2.1. Parallel TFF Pattern the top 2 blocks are connected to the vee and the res 

are connected to the ground, thus implementing a 1 0% parallel TFF pattern. 

The clock input pin (PIN_U31) directly drives six parallel TFF modules, each of 

which includes around 2.7K TFFs or about 5% ofthe total FPGA logic utilization as 

shown in Figure 2.2. A total of30% ofthe FPGA utilization can be implemented using 

this pattern. 

The advantage of using all6 blocks for percentages between 0% and 30% is to 

maintain certain amounts of routing and clock tree structures so that it will be easy to 

quantize the resulting core noise. 

Figure 2.1. Parallel TFF Pattern 
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All TFFs are then connected with the OR gate to the output pin (A19) to use the 

oscilloscope to check if the signal is correctly passed through the FPGA. The output pin 

will create a certain amount of I/0 noise despite the core noise created by the parallel 

toggling logic inside the chip. The I/0 noise is a constant compared to the core noise. 

CNG_FF _5 

f-- tff _elk tff_output f--

- enable 

inst7 

Figure 2.2. Parallel TFF Block Containing 5% of Logic 

It is not possible to eliminate the output pin because the Quartus will then 

optimize and remove any logic that does not have a direct output associated with it. 

2.2. CORE NOISE TEST VEHICLE 

In order to characterize and correctly depict the noise from the FPGA core it is 

important to have a good test vehicle. A special board shown in Figure 2.3 was designed 

and manufactured to achieve the following goals: 

• Isolate core power plane from rest of the power planes. 

• A void any loss of resonances associated FPGA placement. 

• Provide good measurements points to measure noise directly on the power plane. 

• Provide enough decoupling capacitor pads. 

• Provide enough signal measurement pins from all banks of the FPGA. 

In order to achieve the goals listed above, several steps were taken during the 

board design stages. Stack up as shown in Figure 2.4 was chosen carefully to provide 

enough isolation and backdrilling was used to ensure that there was no coupling from the 

via. Capacitor pads for V cc were all placed at the top layer. Capacitor pads were mainly 

concentrated around FPGA. FPGA was placed asymmetrically to avoid missing any 

6 
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resonance. Many differential signal lines were brought out ofFPGA for the purpose of 

measuring jitter. 

Figure 2.3. Test PCB Board 

3 
_L 

6 
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Figure 2.4. Board Stack Up 
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The first phase during the development of the test vehicle is to choose the stack 

up of the board. The Altera Stratix II-GX FPGA required three power levels vee, vee

VO, and VDD- pre driver for VO. Research interest is in the core power layer vee. The 

main concern during stack up design was to make sure that any noise observed in the 

vee layer is due to switching activity in the vee layer only, not to coupling between 

vee-VO or vee-PD. In order to achieve this isolation, the vee layer was placed at the 

top of the stack and rest of the power layers were placed below as shown in Figure 2.5. 

SIG1 

-:-:.:-:.;.;.;.;.;.;.·.·. 

GND 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
·.·.·.·.·.·.·.·.·.·. ·.·.· . .·. :-:-:-: .·-:·:-:-: -:-: -:-: PWR1 • VCC- Core power 

GND 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

SIG2 

GND 

GND 

IIIIIIIIIIIIIUIII!!H!HUIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIU!IUIH!IIIIIIIIIIIIIIIIIIII PWR3 - VCCN - 10 power 
GND ..... · .. :- . :- · .-:·. · · · ::- · : · -:: . . · .. ·.· . .. . . 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!HIIII!HIIIIIIIIIIIIIIIIIIIIIIIII!HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!HIIIIIIIIIIIIIIIIII 
·.·.·.· .· . ·.·. 

SIG3 

GND 

Stack up is 
chosen carefully 
to minimize the 
coupling 
between the 
three power 
layers 

!HIIIIIIIIIIIIIIII!H!HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIII!HIIIIIIIIIIIIIII PWR2 - VCC PO - Pre-driver power 
GND 

.;.;-:-:-:- ·.·.·.· . . . ;.;. .. . ::::-: ·. ·. ·.· . 
SIG4 

Figure 2.5. Stack Up 

In order to present coupling between the power planes due to via-coupling, all the 

vias were back drilled as shown in Figure 2.6. Back drilling was performed on following 

pms: 

• All SMA connectors connected to power planes and signal traces. 

• All capacitor pads. 

• From the bottom of the board for vee layer and from top of the board for other 

two layers. 

The pins from FPGA were not back drilled in order to provide signal probing 

underneath the FPGA. Also, all ground was stitched together. 
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Back Drilling 
was used in 
order to 
minimize the 
coupling 
between 
power planes 
due to vias. 

Back drilling 
was used to 
drill out the 
capacitor and 
power vias 

LAYUl c 

I ,AYI[R) 

, l AY(R. 

lAYtRr 

, LAY .. R I 

LAYlAn 

, lAYDI: t2 

. lAY[_A t~ 

Back drilling 
from the top to 
remove the vias 
for capacitors 

:<--- -==-that are placed 
on the bottom 
layer 

Figure 2.6. Backdrilling of Vias 
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Another important consideration during board design was the FPGA placement as 

shown in Figure 2.7. FPGA is the noise source that has to be characterized. If the noise 

source is exactly at the center, then the noise produced at some of the resonant modes 

will not be picked up by the observation points. This will be demonstrated with an 

example using simulations. 

Board 

~Asymmetric 
Placement 

Figure 2. 7. FPGA Placement 
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The importance ofFPGA placement is shown by an example using simulations as 

shown in Figure 2.8. Three ports were placed on a board. Port 1, assumed to be the 

location of the FPGA, was placed at the center in one simulation and asymmetrically in 

another. [Z12[ was compared between two simulations. The simulation clearly shows that 

when the Port 1 is at the center not all the resonances can be observed at port 2 and 3. So, 

any noise produced at these frequencies cannot be observed at any observation point and, 

hence, cannot be characterized correctly. These are only simulations, to prove the point 

that placing an FPGA at the center will result in improper observation of noise at the 

measurement points. 

~--;r-- Port 1 -
exactly at 
the center 

Board hrt2 • Port 1 - placed 
asymmetrically 

-70 '---~-'--'-~'-"-::-~~~ ........... -,----~~~ 
10"3 10-l 10.1 10° 

Frequtncy (GHz) 

Figure 2.8. Importance ofFPGA Placement 

In order to directly measure noise on the power plane, the SMA connector is 

attached directly to the power layer. Two such SMAs are attached to one power layer 

with a total of6 SMA for three power layers as shown in Figure 2.9. The purpose of this 

SMA is to measure noise voltage on the power plane. Placing one SMA closer to the 

FPGA and the other far from FPGA provides two different measurement points for noise 

observation. Ideally, a measurement point would have been placed directly underneath 

10
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the FPGA, but due to routing issues the SMA must be placed at least1.5 inches away 

from the FPGA. To avoid the stub effect, the probing point was also placed at least 1 inch 

away from the FPGA instead of directly underneath it. 

/ 
SMA connected to 
VCCPD- pre-driver 
power 

SMA connected to /vee- core power 

· · SMA connected to 
VCCN - 10 power 

1 inch 

Actual Board 

Figure 2.9. SMA Connectors on Board 

Placement of capacitor pads was also carefully considered during the broad 

design [3]. All the capacitors for the VCC power plane were placed on the top side of the 

board and all the capacitors for the VCCN and the VCC PD were placed on the bottom 

side of the board as shown in Figure 2.10. This ensured minimal inductance associated 

with capacitor vias especially for vee power plane and also eliminates coupling between 

11



capacitor vias of different power planes. The capacitor vias were also back drilled in 

order to ensure that there was no coupling due to vias. 

All the capacitors to vee 
power plane are placed on 
top to reduce inductance 

SIG1 

.. ·.·.·.· .. 

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
SIG2 

·-:-::: .. .. · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . : . . . . . 
GND 

GND 

1111111111111111111111111111111111111111111111111111 111111111111111111111111111 1111111111111111111111 PWR3 - veeN - 10 power 
GND 

SIG3 
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

.-.·:·>:. ·.·-:-:-:···· . . GND 

111111111111111111111 1111111111111111111111111111111111111111111111111111111 1111111 1111111111111111111111111 PWR2 - vee PD -Pre-driver power 

: :: :j: :: :::. · .· .· .·. ·.· :-:-· . . ·.· ... :-:-:-:-:-: - GND 

SIG4 

Figure 2.1 0. Capacitor Placement for Power Planes 
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All the capacitor pads for the VCC power layer were placed around FPGA as 

shown in Figure 2.11. Considering the routing issues, some ofthem were placed a fairly 

far from FPGA. Placing the capacitors as close as possible to the FPGA provided an 

opportunity to develop a better decoupling strategy. 

About 50 
capacitor pads 
are placed all 
around FPGA 
forVCC powe 
plane 

Figure 2.11. Capacitor Placement Around FPGA 
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2.3. IMPEDANCE MODELING 

One of the main requirements for the project's success is correct modeling of the 

broad's impedance profile. The self impedance and transfer impedance between any ports 

on the board should be estimated accurately both with and without capacitors. A Maxwell 

equation solver tool- EZ-Power Plane [6] developed by UMR was used for estimation. 

Also, commercially available HSPieE was used to include the effects of package and 

port inductances. 

Simulations using these tools were then compared to measurements in order to 

verify modeling accuracy. Simulations were also used during the design of the board to 

roughly estimate the number of capacitor pads required for the vee power plane as 

shown in Figure 2.12. 

During the broad design the approximate number of capacitor pads required to be 

placed on board was determined. Simulations indicated that the target impedance of 0.1 

ohm was easily achievable with around 50 capacitor pads placed closed to FPGA, 

assuming the use of different capacitor values and sizes as shown in Figure 2.13. The 

effects of package/FPGA were not considered during these simulations. 

A Simulation with 50 capacitors 
of different size and values* 
located close to chip 

Pft7 

Assumed 
FPGA Location 

PRS 

Pft2 Pft4 Pft3 

Port 3 
. 

Port2 

Pft10 PR1 1 

yr---------------------------------~ 

•CJO -<:22 -<:21 -<:23 -<:24 -<:25 •C26 '07 -<:28 -<:29 

-<:31 

"(;33 

< 10 
<11 <35 
-<:12 R1 

'CJ6 

-<:37 

'(:38 

-cso OC39 

--' 
OC49 oe<a OC47 OC46 -<:45 OC44 -<:43 'C42 -<:41 -<:40 

•PR1 

Port 1 

Capacitor 
number 
and 
location 
varied* 

Figure 2.12. Simulation Setup 
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FPGA. 

0.3 

0.25 

0.1 

··········· 15-cap 
-·-·-·- 30-cap 
------ 40-cap 

• 50-cap:close 
50-cap:distnbuted on board 

Figure 2.13. Target Impedance Check 

__ ,_ __ ,_ __ _._ .. 

-'---'-- _.J_J 

- 2-+ -~-~ 
41\ I I I 

3 
10 

The target impedance was met up to 500 MHz with 50 capacitor pads close to 

14 

2.3.1. Transfer Impedance- Measurements vs. Simulations. Once the board 

was manufactured, it was important to validate the impedance simulations. A full S

parameter measurement was made between two points on the board. The two points 

shown in Figure 2.14 the far point (far from FPGA location) and the near point (near 

FPGA location), are used as measurement points. In order to validate the simulations, a 

board without FPGA on it was taken for measurements. The S-parameters measured were 

then converted into Z-parameters and compared to the simulated impedance profile. 

It has to be noted here that the near point SMA mounting point was damaged at 

the time of mounting. A decoupling capacitor mounting pad was used to mount a coaxial 

cable at the near point. 
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Far point 

Figure 2.14. Port Locations and Port Names 

The simulations matched the measurements taken on the board between the ports 

near point and far points on the board as shown in Figure 2.15, please note here that the 

board does not have FPGA on it and it is completely bare without any capacitors. The 

board was not powered up and did not have any type of DC connection. 

IZ21 1 Bareboard without FPGA 
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Figure 2.15. Transfer Impedance Between Far Point (Port 1) and Near Point (Port 2) 
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Figure 2.16 illustrates the board sirnulation points with FPGA on it. 

Figure 2.16. Port Location and Port Name for FPGA 

Once the FPGA was placed on the board, the sarne measurements as above were 

repeated and compared to simulations. Simulations in this case still did not consider the 

effects of FPGA on the board as shown in Figure 2.17. The board again did not contain 

any capacitors, was not powered up and did not have any type of DC connection. 

-60 L6~;......· ._;_· ~___;_;_;_;.t.J 0-7 ...___;__;__-'---.:_~1-'--08 _ _;__' _ . .__.,__~~9____;.____, 
10 ]0 

Frequnecy [liz] 

Figure 2.17. Sirnvlation Without Considerio~ Effect ofFPGA vs. Measurements 
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Figure 2.17 illustrate that the FPGA is contributing a great deal of, more like a big 

capacitor. Simulations, on the other hand, are just two ports between two power planes 

and did not take anything else into account. So, the simulations which did not take this 

effect into account did not match the measurements. 

17 

2.3.2. Modeling FPGA as a Capacitor- Low Frequency Model. Taking into 

account the effects of FPGA requires accurately modeling. If FPGA is thought of as one 

big capacitor sitting on the top of the board, then it can be modeled as a simple capacitor 

with some capacitance and series inductance. In order to obtain the capacitance of FPGA, 

two transfer or self impedance measurements were made, one on the board with out 

FPGA and one on the board with FPGA. By calculating the difference in capacitive slope 

at low frequencies, the value of capacitance contributed by FPGA alone was obtained. 

The series inductance can be obtained by carefully studying the resonant peaks from the 

measurements. The calculated values for capacitance ofFPGA and inductance ofFPGA 

from these measurements for a powered down board were 238.3nF and 10pH, 

respectively. 

Remember that these values are for the powered down board. Powering up the 

board changes the capacitance contributed by FPGA. The calculated values for 

capacitance of FPGA and inductance of FPGA from these measurements for powered up 

board were 440nF and 10pH respectively. Low frequency model ofFPGA as a capacitor 

is shown in Figure 2.18. Low Frequency FPGA Model is only valid for low frequency. 

GND 

PWR 

Port2 
Port1 

CFPGA = 238.3nF 

Figure 2.18. Low Frequency FPGA Model 
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With the capacitance and inductance values extracted from calculations, it is 

possible to model the FPGA as a capacitor in the simulations. A capacitor was placed 

between power and ground planes with values extracted and simulation is done using EZ

powerplane. It can be seen from the above Figure 2.19 that the simulation, in which 

considering the FPGA is modeled as a capacitor, matches up with the measurements. 

O r-:-::::n::~::::--:::::m:--:r~~rrrr==~ 

I I< I I I 

I I < I I I I 10 I I I I <I I II I I I < I I I - ------ -----;--TTr-r-rTr---------,---TTTrrr 
I I I I I I I I I I I I I I 

I I I I I I I I I I I I I 0 
1 I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I 
1 I I I I I I I I I I I I I I 
1 I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I 
I I I< I I I I I I I I I I 20 I I I I I I 01 I I I I I I I I - ----- --~----T-n- : : -:Tr --------r--TTTT~ : F--
• I I < I I I I I I I I I I I 
I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I 
I I I I I 1 I I I I I I I I I I I 
I I I I I I I I I I I I I I I I 
I I I I I I II I 0 I I I I I I 
I 0 I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I 

1 I I I I I I I I I I I I I I I I I --------.-----·--- .. -- ... -- .. -....... ,_,. _____ --.------.----.-- ... -.. -.. ... -·--------- -----.---
1 I I I I I I I I I I I I I I I 
I I I I I 1 I I I I I I I I I I 
I I I I I I I I I I I I I I 
I I I I I I I I l I I I I I 
I I I I I I I I I I I I I 
I I I I I I II I I I I I 
1 1 1 1 1 o I 1 I I I I I 
I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I 
1 1 I I I I I I I I I I I I 
I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I 

-------1-----!---~--L- ~ -~-~-:- ~ ---------~--- -~ ~--~-~-~~-~--------- _____ :_ __ - -~-L~~---------~--- -· 

' l i i iii li ' ' ; i i l iii ' ' i : : 
I I I I I I I I I I I I I I I I I I I I I 1 I 1 I o -50 ----- --~-- ---:---:-- ~--~ - ~ - ~ -:-~-- ---- ---~----~- ~ --~--~-~-:~- :--------- ---- -~-- ~- :-- -~-~-~ ~--- ------ ~----
1 1 1 I I 1 I I I I I I I I I I I I I I I I 
I I I I I I j I I I I I I I I I I I 

-60 6 

10 

1 1 1 1 1 I 1 I I I I I I I I I o I 
1 1 1 I 1 I I I I I I I I I I I I I 
1 1 1 I I II I I I I I I I I I I I 
1 I I I I I I I I I I I I I I I I 
1 1 1 1 1 II I I I I I I I I I I 
1 I I I I I I I I I I I I I I I I 
1 1 I I I I I I I I I I I I I I I 
1 I I I I I I I I I I I I I I I I 
1 1 1 1 1 I I I I I I I I I I I I 
I I I I I I I I I I I I I I 

7 8 

10 10 10 
Frequency (Hz) 

9 

Figure 2.19. Simulation vs Measurements of Transfer Impedance 

The measurements and simulations are between the near point and far point. The 

board here again does not contain any capacitors. The board is powered down and does 

not have any type of DC connection to it. The simulated model is also with board 

powered down. The capacitance of FPGA is 238.3 nF with a series inductance of 10 pH. 

Figure 2.20 show that the simulation, in which considering the FPGA is modeled as a 

capacitor, matched the measurements. 
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Figure 2.20. Simulated vs. Measured Transfer Impedance with Board Powered On 

The measurements and simulations were between the near point and far point. 

Again board did not contain any capacitors. The board is powered up with a power 

supply of 1.3 V to VCC. The simulated model was also done with board powered up. The 

capacitance of FPGA is 440 nF with a series inductance of 10 pH. 

The next step was to correctly estimate the transfer impedance with capacitors on 

board. Measurements were again made between far point and near points, but this time 

the board contained 15 capacitors in one case and 3 7 capacitors in the other case [ 4] . 

Their respective simulations were compared as shown in Figure 2.21 and Figure 2.22. 

Capacitors were carefully mounted on the board, so that no extra inductance is added due 

to solder. The effective inductance contributed by the via depth and solder was added as 

ESL in the simulations. 
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Figure 2.21. Simulated vs. Measured Transfer Impedance with 15 Decoupling Capacitors 

[Z21 [ with 37 capacitors 
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Figure 2.22. Simulated vs. Measured Transfer Impedance with 37 Decoupling Capacitors 
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The difference in low frequency capacitive slope and a slight shift in resonances 

could be a result of actual capacitor value on board and capacitor value taken for 

simulation. There may be a slight difference between each capacitor value specified in 

the data sheet and the actual value on board. 

2.3.3. Modeling Transfer Impedance from Core to Measurement Points. In 

order to estimate the noise produced by switching current in the core and then make a 

comparison at a known measurement point, it is important to estimate transfer impedance 

from the switching core to the measurement point. Both EZPP and HSPICE were used to 

simulate the model. First, the board alone with out any capacitors was simulated with 

EZPP and with three ports. EZPP produces a HSPICE model for the complete board, 

which is then imported into HSPICE. For the port at core point the inductance, 

capacitance and resistance are added as shown in the Figure 2.23. Then the complete 

HSPICE model is simulated to get fullS-Parameters between all three ports. Then the S

Parameters are converted into Z-Parameters to get the transfer and self impedances ofthe 

model as shown in Figure 2.24. 

PCB PDN 

PCB 
via 

Ball 

Package & Die 

PTH Pkg C4 
Plane 

FPGA 

Figure 2.23. Spice Model of Package and PCB 

Figure 2.24 show the transfer from the die side of the core to the far point and 

input impedance observed at far point. 
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Figure 2.24. Transfer and Self Impedance from Die (Port 2) to Far Point (Port 1) 
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There is no practical way to validate these results, but they are assumed to be 

correct based on the validation done between far and near point as previously explained. 

The transfer impedance thus obtained from the SPICE model was used to estimate the 

noise voltage at any given measurement port. In this case, it is either at the far point or at 

the near point. 

Another important parameter in estimating the noise power at the measurement 

point is to estimate the input impedance looking into the board at the measurement point. 

The EZPP model does not take the inductance associated with ports into account as seen 

in Figure 2.25. Input impedance of the near point can not be simulated accurately because 

of a poor SMA connection which causes extra capacitance and inductance. 
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Figure 2.25. Simulated vs. Measured Input Impedance at Far Point 
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Once again HSPICE is used to include the port inductance and to obtain the input 

impedance of the measurement points. An inductance of 5nH was added at the far port 

measurement point. In the Figure 2.26 comparison is made between the measured and 

simulated self impedance. 
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Figure 2.26. Simulated vs. Measured Input Impedance at Far Point with Series 
Inductance 
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2.4. CURRENT SOURCE MODELING 

Apart from impedance modeling, another most important parameter required to 

estimate noise is to model the current drawn. Current drawn can be estimated using two 

methods: TCO distribution method and PPP A analysis method which are described as 

follows. 

24 

2.4.1. Modeling Using TCO Distribution. The core noise is due the internal 

activity of the FPGA. To model the noise current, a triangular current source based on 

one register's activity can be constructed as shown in Figure 2.27. The pulse width of the 

triangular wave is determined by the speed of the transistor or how fast could the Flip

flop toggles. The other parameter, per unit pulse width, is determined by the correlation 

between the transistors and power plane. This parameter is shared to measure. 

Time [ns] 

Figure 2.27. Current Source Model 

c:: 
::1 

From the per unit noise current can derive the total current based on the 

Quartus™ statistics. Quartus provides electrical path statistics (clock to output delay) in 

its timing analysis functionality. As shown in Figure 2.28, the actual clock to output 

delay is provided in the timing analysis report. 
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... 

Figure 2.28. Clock to Output Delay Report Shown in Quartus Timing Analysis Report 

The information is then extracted from the Quartus and processed by Matlab to 

create an electrical length distribution. Despite the phase information, Figure 2.29 shows 

the electrical length distribution had an approximate width of 10 ns using 30% of the 

toggling flip-flops utilization or 16,300 TFFs. The distribution had a standard deviation 

of 1.32 ns. 
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Figure 2.29. TFF Switching Delays 
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Using the integral equation below, the total current by the overall utilization of the 

FPGA could be derived, 

hFF = F(t- !teo), 

1 T 

!total=- I fTFF .dt 

T t=O ' 

(2.1) 

(2.2) 

where !teo is the time delay obtained from Quartus. F ( t - itco) gives the total 

current associated with all the TFF switching at a particular instance of time. Integrating 

over the time period sums up all the current. 

Figure 2.30 shows the shape of the total current pulse. 
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0.06 -----:------:------:------ -- ----:-- - --: ------:------:-------:-------:------:---
1 I I I I I I 
I I I I 
I I I I 
I I I I 

' ' ' 

' ' 

~ 0.04 ----r··--j------1-- ---1-------~-----+ ---(·--1------r·--·-r·-----:---
~ 0.03 -----f------1------' -- --- ~-------~------f--- -1-----+-----~-----+-----1---
{/) I I I I I I I I I I ·o : : , : : : : : 
~ i i ' ' ' ' ' ' i i 

0.02 -----: ------r -r----:· ----T-----r·-----. -----r----r-----r------:---
• I I I 
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Figure 2.30. Total Current Estimated (One Pulse) 

For the pattern used in the experiment, the electrical paths were split into two 

parts. One is the path from the input pin spell out a number of buffers to the clock input 

of the TFF, the other part is from the TFF to the output pin. As shown in Figure 2.31, the 

logic is a frequency splitter. The input path has a frequency of 2f and output path has a 

freuency off 
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~=-~PAD 

Figure 2.31. FPGA Logic of a Single Electrical Path 

by clock transition, with a frequency the same as the clock frequency. The other was 

caused by the TFF toggling, the frequency is toggling frequency, half of the clock 

frequency. When both of noise current path were considered, the current amplitude at 0 

ns, 200 ns, 400 ns was higher than 100 ns, 300 ns, and on 500 ns. 
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To more accurately model the noise current, an the following equation to include 

both electrical paths was developed : 

1 T 1 2T 

!total = - f fTFF .dt +- f fclock.dt 

T t=O 2T t=O . 
(2.3) 

!cLock and lrFF is the total current drawn by clock tree and TFF, respectively. A 

sum of the total current is shown in Figure 2.32. 
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Figure 2.32. Total Current Using Two Frequencies Model 
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Frequency patterns of the estimated current are shown in Figure 2.33. The 

frequency between two harmonics is a half of the input frequency. Based on the 

parameters chosen, the odd and even harmonics showed different amplitude. 
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Figure 2.33. Total Current Spectrum Using Two Frequencies Model 
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2.4.2. Modeling Using Power Play Power Analyzer Tool. Another way of 

predicting the current consumption in the core is by using the PowerPlay Power Analyzer 

Tool built by Quartus shown in Figure 2.34. 

' l'tiWI"rl'l.tyl'owtt An. tl 'l/11 lt 1ul - -~ 

Deldt<We•atesfOt\.Npeclied Signll•--
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[ 

DeleuiiQ!Xje '"" Uled Ia ,.,.,.;,.;ng Ognalo 
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0001:15 

Figure 2.34. PowerPlay Power Analyzer Tool 

28



This tool basically estimates the power consumed by the FPGA for a particular 

pattern and a particular clock signal simulated. 
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The Quartus II software includes the Power Play power analyzer feature [ 5]. This 

feature improves the accuracy of power consumption estimations given by the early 

power estimator spreadsheets by: 

• accounting for device resource usage and place-and-route results; 

• accounting for functional and timing simulation input/output stimuli; 

• performing statistical analysis of expected design-node activity rates 

when simulation vector inputs are not available; 

• Producing detailed reports that can pinpoint which device structures, and even 

which design hierarchy blocks, are dissipating the most thermal power; 

Figure 2.35 shows the available PowerPlay power analyzer reports. 

8 ~ PowerPiay Power Analyzer 
r ~m summary 
· ~- Operating Conditions Used 

H ~- Thermal Power Dissipation by Block Type 
~-Thermal Power Dissipation by Hierarchy 

~ --~ Power Drawn from Voltage Supplies 
L ... ~- Confidence Metric Details 

····~lm Signal Activities 
• ~!i Messages 

Figure 2.35. PPPA Reporting Details 

In order to use the PowerPlay tool as a current predicting tool, the pattern should 

be first simulated with a frequency of interest using the Simulator tool in Quartus. A 

successful simulation will produce a Value Change Dump file VCD file. A Value Change 

Dump file is an ASCII file which contains header information, variable definitions, and 

the value changes for specified variables, or all variables, of a given design. The value 

changes for a variable are given in scalar or vector format, based on the nature of the 

variable. The PowerPlay tool can be used to import this VCD file. The resulting power 
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analysis uses all the signal activities information from the generated VCD file to estimate 

the dynamic current drawn by any given pattern as shown in Figure 2.36. Since the 

pattern uses only core logic elements and does not include 110, all the current is drawn 

from vee. 

. . . . .. .. . 

~= Toto17nr;·nt Dynamic Current Static Current Minimum Power Supply 
Drown ) Drown[1) Or<!Wn[1) Current [2) 

~ VCCINT 796.96 mA 0.00 mil 796.96~-~~mA --- I 
2 VCCIO 4.00 mil 0.00 mil 4.00 mil 4.00 mil 

3 VCCPD 4.32 mA 0.00 mil 4.32 mil 4.32 mA 
4 VCCT 14.67 mA 0.00 mil 14.67 mil 14.67 mA 
5 VCCH [1.2V) O.OOmA 0.00 mil OOOmA O.OOmA 
6 VCCH [1.5V) O.OOmA 0.00 mil 0.00 mil 0.00 mil 

7 VCCR 45.45 mA 0.00 mil 45.45 mA 45.45 mil - -
8 VCCA 8.79mA 0.00 mil 8.79 mil 8.79 mil 

9 VCCP 44.26mA 0.00 mil 44.26 mA 44.26 mil -· 
10 VCCL 18.66 mA 0.00 mil 18.66 mA 18.66 mil 

Figure 2.36. PPP A Current Estimation 

One way of efficiently and correctly predicting the switching current is by 

conducting restricted time analysis of the VCD file [5]. The PowerPlay Tool provides the 

option to simulate the current or power estimation for a limited period of time, as shown 

in Figure 2.37. This option provides an opportunity to obtain the current value over a 

small period of time steps. Then by taking all the readings over at least one period oftime 

it is possible to construct a current waveform in time domain. 

Edrt Power Input Ftle 

Edit existing power input fie and properties. 

File name: lij&W••AWaiiiiiiiiiir-----_j 
Entity: lmult_freq _j 

Input File Type------------, 

r Siglal Activly Fie 

c;" VCD file 

P Linit VCD period 

Start tine: r:-j24:':'9 -- ~ ns ::J 
End time: pso Ins ::J 

OK Cancel I 

Figure 2.37. PPPA Restricted Time Analysis 
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A unique current signature is obtained for any given pattern simulated. Hence, 

this method can also be generalized to more complex patterns such as counters. A current 

waveform obtained from restricted time analysis is shown in Figure 2.38 in time domain 

and Figure 2.39 in frequency domain. 
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Figure 2.38. Current Estimated Using PPPA 
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Figure 2.39. Current Spectrum Estimated Using PPPA 
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2.5. MEASUREMENTS 

In order to validate simulations, good and accurate measurements are very 

important. One part of the measurement consists of measuring full two port S-parameters 

using a network analyzer at any given two ports on the board. Another part consists of 

spectrum measurements using a spectrum analyzer at any given observation point. These 

measurements, an actual test board, three power supplies, a signal generator, a computer, 

a network analyzer and a spectrum analyzer are needed. 

The setup with all the required components is shown in the Figure 2.40. The 

power supply used for vee was a special power supply with a sense line. This special 

line senses the voltage variations on the power plane and adjusts the voltage accordingly 

to maintain a constant voltage level. The board was setup as shown in the Figure 2.40 

with all the three voltage supplies turned on. In order to measure S-parameter 

measurements, the board was turned on with all the three power supplies. The network 

analyzer is then connected to any two given observation ports to make full two-port 

measurements. For spectrum analyzer measurements, the board was first turned on with 

all three power supplies, and the clock signal was then applied using Stanford Research 

eG635 signal generator. Then the FPGA was programmed using Quartus. Once the 

program was loaded and running, spectrum analyzer was connected to the observation 

point to take spectrum readings. 

Stanford Research 
CG635 

USB Blaster 

Agilent E3648 

~~~ 
~~~ 

Figure 2.40. Measurement Setup 
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There were two main observation points, one which was close to FPGA and the 

other of which was far from the FPGA. They are named near point and far point 

respectively. The far point is a well connected SMA, while the near port was constructed 

by a coaxial cable probe mounted on the pads of decoupling capacitor pads as shown in 

the Figure 2.41. These two points were the main observation points for all the 

measurements concerned. S-parameter measurements were made between the far points 

and the near point with the board turned on, with and with out decoupling capacitors. 

Spectrum analyzer measurements are made either at the near point or at the far point with 

different clock frequencies, different percentage ofTFFs, and with and without 

decoupling capacitors. 

Figure 2.41. Near Point SMA Connection 

All the spectrum analyzer measurements were made in a completely closed 

chamber in order to ensure that the noise measured was not affected by outside world 

noise. Figure 2.42 shows that the noise spectrum measured at the far point with clock 

frequency was 25 MHz, 10% of TFFs used. Because the toggling frequency is half of the 
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clock frequency, the frequency interval between peaks was 12.5 MHz. The resolution 

bandwidth was 5KHz, to make the noise floor low (about -105 dBm). 
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RBWSKHz; VBW:5KHz; SWT:10000mS, Att:OdB 
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Figure 2.42. Spectrum Measurement at Far Point 
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Noise spectrum at 0%, 10%, 20%, and 30% ofTFFs is compared. The value of 

each spectral component was then studied according to the percentage of TFF used. As 

shown in Figure 2.43, noise power was proportional to the amount ofTFFs used. Noise 

spectrum at 0% is nothing but buffers toggling in the clock tree. Clock is routed 

significantly to all places of inside the FPGA. The routing requires buffers which consist 

of registers toggling at the frequency of the clock. This toggling of clock tree alone will 

contribute to noise generated. Figure 2.43 is a graphical representation of individual 

spectral component. 
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Figure 2.43. Spectral Component Comparison at Far Point 
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Similarly, the spectrum analyzer measurements were made at the near point with 25 MHz 

clock and 10% TFF used, as shown in Figure 2.44. 

RBW5KHz; VBW:5KHz; SWT:10000mS, Att:OdB 
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Figure 2.44. Spectrum Measurement at Near Point 
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Noise spectrum at 0%, 10%, 20%, 30% of TFFs is compared. Value of each 

spectral component is then studied according to the percentage of TFF used. As shown in 

Figure 2.45 noise power is proportional to the amount ofTFFs used even for the near 

point. 

·50 

' ' ------------.,------------ ~ -----------

' ' ' ' ' ' 

----------+-----------

5 10 15 20 25 30 
Percentage of Parallel TFFs [%] 

Figure 2.45. Spectral Component Comparison at Near Point 

All the measurements with 0%, 10%, 20%, and 30% TFF used are taken along 

with different clock input of 1 OMHz, 25MHz, 50MHz , 70MHz, and 1 OOMHz are taken 

both with and without decoupling capacitors at both far point and near points. 

2.6. NOISE SPECTRUM ESTIMATION AND RESULTS 

Once the current waveform is obtained and the estimated, either by using a TCO 

distribution or by using Power Play Analyzer, it is possible to obtain noise power at any 

given observation point. As shown in Figure 2.46 by using the transfer and self 

impedance associated for that point, noise is estimated as given by the following 

equations: 
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{Z Simulated) 
0 

Zo =50 o 

Figure 2.46. Noise Power Estimation Circuit 

(2.4) 

Where v; =II X son (2.5) 

(2.6) 

(2.7) 

(2.8) 

While estimating the noise power spectrum using a TCO distribution, the initial 

value of per unit current pulse width and amplitude were curve fitted. The initial value of 

per unit pulse width and amplitude were determined using one measured result at 

25MHz, 1 0% of TFF implementation in the FPGA. The estimated power spectrum was 

then calculated using the equation above. To determine whether the fitted parameters can 

be applied to the measurements for the other frequencies, the same parameters were 

applied to calculate the estimated spectrum at different frequencies and different 

locations. The measurements were done on the bare board and do not include any 

capacitors. 
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Figure 2.47. Noise Spectrum Calculated at 25 MHz, 10% TFF Using TCO Current 
Distribution 

The fitted parameters are the following: 

• single TFF current pulse amplitude = 5.5e-6 A; 

• single TFF current pulse width = 1 e-9 s; 

• clock pulse amplitude = 45e-6 A; 

• clock pulse width = 1 e-9 s; 
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Once these parameters were detennined by curve fitting any one of the spectral 

component, then the same parameters were used to calculate for other frequencies and 

other percentage oflogic used, as shown in Figure 2.48, Figure 2.49, Figure 2.50 and 

2.51. In Figure 2.48, 25 MHz clock and 30% TFF logic was used. In Figure 2.49 15 MHz 

clock and 10% TFF logic was used. In Figure 2.50 15 MHz clock and 30% TFF logic 

was used. Same parameters were used for simulations and measurements. Curve fitting 

was used only on one of the measurement data. Use of curve fitting will be very difficult 

when using complex patterns. Low frequency components are curve fitted, however high 

frequency components do not match with the measurements. 
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Spectrum of noise [F = 25 MHz, p = 30p) 
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Figure 2.48. Noise Spectrum Calculated at 25 MHz, 30% TFF Using TCO Current 
Distribution 

Spectrum of noise [F = 10 MHz, p = 10p) 
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Figure 2.49. Noise Spectrum Calculated at 10 MHz, 10% TFF Using TCO Current 
Distribution 
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Figure 2.50. Noise Spectrum Calculated at 10 MHz, 30% TFF Using TCO Current 
Distribution 

40 

The above figures show that the high frequency components do not match with 

the measurements. This mismatch is mainly caused by way the current waveform is 

estimated. The TCO estimation does not take into account any fast switching current 

transitions, so all the high frequency components are lost. Curve fitting is very particular 

to a given pattern and may not work for more complex patterns. 

On the other hand, estimating the current using the PP A, determines the exact 

amount of current at a particular switching instant. Calculating the noise spectrum using 

the current estimated from the PP A from the equations given above, it is possible to 

estimate the spectrum very accurately and easily with-out any curve fitting. Figure 2.51 

compares the measured spectrum of 30% TFF used at 1 OMHz at the far point, which is 

relatively far from FPGA. The board here does not contain any capacitors. The 

comparison is also made at the point near to FPGA. The board does not contain any 

capacitors here. Figure 2.52 compares the measured spectrum of 30% TFF used at 

1 OMHz at the far point. 
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Spectrum of noise [F = 10 MHz, p = 30p) 
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Figure 2.51. Noise Spectrum Calculated at 10 MHz, 30% TFF Using PPPA Current 
Distribution 

Spectrum of noise [F = 10 MHz, p = 30p) 
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Figure 2.52. Noise Spectrum Calculated at 10 MHz, 30% TFF Using PPPA Current 
Distribution at Far Point 
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This method can be used for any complex pattern apart from parallel switching 

TFF. The noise power is mainly modulated by transfer function from the source to 

observation point. Based on the noise predicted on the bare board, the decoupling 

strategy can be developed accordingly. 
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The noise measured at the observation points can also be analyzed in time 

domain. Measurements are made with an oscilloscope and the estimated current spectrum 

noise is converted back to time domain. 
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Figure 2.53. Time Domain Noise Voltage at Far Point 

The measurement shown in Figure 2.53 was taken at the far point with no 

capacitors on board and with 30% ofTFF logic used at lOMHz clock input. The DC 

offset was removed and then compared with the estimated noise voltage in time domain. 

This comparison was exactly the same as in Figure 2.51 , but in time domain. 
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2.7. FUTURE WORK AND CONCLUSION 

The method of predicting noise, using a PPA restricted time analysis, should be 

extended to complex patterns. A wide range of frequency and logic can be studied in 

order to quantify the associated noise and error associated. Time domain analysis of noise 

voltage on the power plane is also possible to obtain. It is possible to develop a 

decoupling strategy, based on the noise estimated for a bare board. Capacitors can be 

chosen selectively and accurately based on the estimated noise spectrum. More 

measurements and simulations have to be performed in order to validate the theory and 

characterize the error associated with the estimations. 

The methodology of predicting noise has been developed and proven. This 

methodology provides a new way of predicting noise on the PDN just by using 

simulations, even before the board is actually manufactured. Designers can more 

carefully design and decouple the board with an anticipated calculation in hand. 
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3. ELECTROMAGNETIC SHIELDING 

3.1. MATERIALS FOR SHIELDING 

Two types of materials are studied for their shielding effectiveness and 

simulations are done to support the theory. 

3.1.1. Composite Materials. Previous work done by the student (8], shows 

44 

that composite materials can provide effective shielding [9] when manufactured 

accordingly. The program developed in [8] , can estimate the shielding effectiveness of a 

composite material with any given properties. An example of the screen view for this 

program is shown in Figure 3 .1. 

1 ( ompos1tc s labs u1 sttu:k llr>rt rom.w,nPiu: ( ompclflblhty I olho r.1101 y. UmvNsliY nt Mw:.oun Holl.1 G._ rQ_.l8._1 
mero-nono 

Thickness [mml 

Layers number ~~ ~ 
Layer1 10 

Layer1ype 

0 absort>lng 

0 renec11ng 

o ...... -
Enter the properties of the inclusions Base material properties 

~ rMio VOUne traction(%) Perca.tion 
1hr0$1loid(~) 

Layer 1 
- 70000 __ ] BOO 0.07 

·--_j '------' 

0.00125 2.2 l 00001 

Figure 3.1. Composite Stack Shielding Estimator 

Using the composite material properties from Table 3.1 , shielding effectiveness is 

estimated is as shown in Figure 3.2. 
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Table 3.1. Composite Material Properties 

Carbon fiber composite material properties 

Fiber conductivity 70000 S/m 

Fiber shape cylindrical 

Concentration 0.0007 vol. fraction 

Aspect ratio (length/diameter) 800 

Percolation threshold (equation 3.32) 0.00125 vol. fraction 

40 

20 

0 -1 

10 

Diameter of the fiber < 10 J.1l12 

Base material Teflon ( & = 2.2) 

The Shielding Effectiveness 
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Figure 3.2. Analytical Shielding Effectiveness of Composite Slab of 10 mm thick 
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A 10 mm thick composite slab made ofthe materials in Table 3.1 has a promising 

shielding effectiveness, when the parameters of the material are controlled and uniform. 

Maxwell Garnett formalism has been successfully applied for engineering microwave 

absorbing materials containing carbon particles [ 1 0], 

1 n 3 & 
- Lh(&; -&b)I b 
3 i=l j =i &b +Nu(&; -&b) 

& = & + -------------=-----
ef b 1 n 3 N .. 

1- - Lh(&; -&b)I lJ 

3 i=l j = i &b +Nu(&; -&b) 

(3.1) 

where, /; is the volume fraction occupied by the inclusions, N iJ are the 

depolarization factors of the i -th kind of inclusions , & b is the relative permittivity of a 

base dielectric, &; is the relative permittivity of i -th kind of inclusions. Index j=1, 2, 3 

corresponds to x, y and z coordinates. Two depolarization factors are close to 

N;, ,z ~ 1 I 2 for cylindrical inclusions. The third depolarization factor is calculated 

as N;3 ~ (1 I a Y ln(a ), where a =l I d , or a ratio (length/diameter), is an aspect ratio of an 

inclusion. 

The analytical formulation assumes that the inclusion aspect ratio is constant, and 

the length of each inclusion is much longer than its diameter, i.e. 1 I d >> 1. However, 

practically manufacturing such a material with a constant and high aspect ratio is difficult 

given today's technology. As shown in Figure 3.3, the particles look broken and do not 

maintain uniform aspect ratio. 

Figure 3.3. Microscopic View of Composite Materials 
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Aside from the non-uniform aspect ratios [13] in practically manufactured 

materials, it is also very difficult to control the volume fraction of inclusions. The 

inclusions tend to orient in one single direction as opposed to random orientation in 

analytical formulation. All these variations cause significant degradation of shielding 

effectiveness from analytical formulation. Several samples of the composite materials 

shown in Table 3.2 were manufactured. They were tested for shielding effectiveness 

using a TEM cell. 

Table 3.2. Composite Materials Manufactured 

Material N arne Type Volume Fraction of Thickness 

Inclusions 
-

R1 Reflecting 1.3% 3mm 

R2 Reflecting 2.3% 3mm 

47 

--
A4 Absorbing 0.07% 3mm 

A5 Absorbing 0.5% 3mm 

A6 Absorbing 0.15% 3mm 

The composite material was cut into rectangular sheets. Each rectangular sheet 

was then inserted into the TEM cell perpendicular to septum and touching all the sides of 

the TEM. Two sheets were inserted: one above the septum, and the other below the 

septum, so a plane wave propagating through the TEM cell must pass through the 

composite sheet. Such a setup is shown in Figure 3.4. After setting up the composite 

material in the manner described, the TEM cell was connected to a Agilent network 

analyzer. Port 1 of the network analyzer is connected to one end ofTEM cell and Port 2 

of the network analyzer was connected to another end of the TEM cell. S-parameters are 

then measured to obtain IS12I which gives the materials shielding effectiveness. The 

measured shielding effectiveness of these materials, as shown in Figure 3.5, was not so 

promising as their analytically calculated values. In order to investigate this discrepancy, 

I 

l 
I 

I 

I 
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shielding effectiveness was analyzed for the sensitivity of volume fraction. Figure 3.6 

shows the variations of shielding effectiveness as the volume fraction of inclusions vary. 

Figure 3.4. Composite Material Setup in TEM Cell 

Shielding Effectiveness of Different Materials 
s ~----~----~----~~==~====~ 

- A6 
- R2 

4 - R2&A6 

3 

1 

0.2 0.4 0.6 0.8 1 
Frequency (GHz) 

Figure 3.5. Composite Materials Measured Shielding Effectiveness 
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The Shielding Effectiveness 
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Figure 3.6. Sensitivity of Shielding Effectiveness to Volume Fraction of Inclusions 
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The volume fraction of A6 material is varied from 0.15% to 0.02%. It is seen 

from Figure 3.6 that the shielding effectiveness is highly sensitive to the volume fraction 

of inclusions. A small change in the volume fraction causes considerable variation of 

shielding effectiveness. Because the technology is not so advanced to control the volume 

fraction, the volume fractions in Table 3.2 cannot be trusted. So, a comparatively low 

shielding effectiveness is obtained, as shown in Figure 3.5. Composite materials are 

promising in terms of shielding, but not until technology can control the manufacturing 

variables. 

3.1.2. Carbon-filled Foam Materials. On the other hand, carbon filled foam 

materials offer promising shielding effectiveness. These materials absorb and reflect 

electromagnetic radiation that passes through them. The foam is very light and soft. It can 

be easily manipulated and moved around. A stack up of these foam materials can be used 

to provide better shielding performance. The amount of carbon percentage inside these 
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materials determines the shielding effectiveness. Many samples of these materials were 

obtained for testing purposes. Table 3.3 shows the materials manufactured for testing. 

Table 3.3. Carbon Filled Foam Materials 

Material N arne Properties Specified 

Material 1 (80 ohm) 80 Qm 

Material 2 (200 ohm) 200 Qm 

Material 3 (300 ohm) 300 Qm 

Material 4(800 ohm) 800 Qm 

Material 5 (soft kind) NIA 

Material6 (medium hard kind) N/A 

Material 7 (hard kind) NIA 
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The materials "80 ohm", "200 ohm", and so on are the names given to the 

materials (these are not the properties of the materials). These materials are all 2.5cm 

thick with different textures. In order to measure the shielding effectiveness of each, they 

must be cut into rectangular blocks to fit into a TEM cell. Each block of foam was placed 

on the top and the bottom ofthe septum as shown in Figure 3.7. After setting up the 

material in the manner described, the TEM cell was connected to an Agilent 8753ES 

network analyzer. Port 1 of network analyzer was connected to the first end ofTEM cell 

and Port 2 of the network analyzer was connected to the other end ofTEM cell. S

parameters were then measured to obtain !S12I, which gives the shielding effectiveness of 

the material. Figure 3.8 shows the measured shielding effectiveness of each material. It 

can be seen that the "80 ohm" material gave the highest shielding in the tested materials. 

In order to determine how complex structures made out of these foam materials behave, 

full wave 3D simulation tools were used. The properties of these materials should first be 

known when performing simulations. The dielectric Debye-curve parameter extraction 

tool developed in [8] is used herein to get Debye values from the measured S-parameters. 

The tool assumes that the data is obtained from the plane wave excitation. An 

! 

I 
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optimization technique based on specifically written genetic algorithm is used to curve fit 

the S-parameter data in such a way, that it yields the Debye curve parameters. 

Figure 3.7. TEM Cell Measurement Setup 

Shielding Effectiveness of Different Materials 

25 --- 80-ohm 

--- 800-ohm 

---------------~--------------------- ~ --------------------- ~ ---------------------:-------: : : ...... ~ 
' ·------- ' ·- . ..,. : : 

--·--~ : : : ' : 

10 

: ' : _ ... ..-.----5 ------------------i---------------------.t -.: -;;~;.;.;;-.j,_-~-------;--------------------·----- : : : - ... --'! : :- ---.. --. .. -- _.,. 
,, -------~---~ i p~--- . ' ' ' 
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Figure 3.8. Shielding Effectiveness of Carbon Filled Foam Material 
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Figure 3.9 illustrates the graphical user interface of the Debye parameter extractor tool. 

Measured and Calculated absolute(S21) Vs Frequency 
0 • . 
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-6 ~: . ...... •i• .. -... -... ~ ...... -... i··-- ...... ·l·-....... . 
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·16 .......... ; ........... ; ........ + ......... , . ...... . 

Figure 3.9. Debye Parameter Extraction Tool 

The tool accepts the S-parameter data in magnitude alone or with both magnitude 

and phase as input. The user has to select how many layers are to be used, and how many 

of them are of the Debye type. Then an initial range of the Debye parameters is entered. 

Range of thickness, or even the exact thickness of the material, should be entered as well. 

Finally, the genetic algorithm variables of population size and generations number should 

be specified. Once all the parameters are entered into the tool, the tool can be run for 

curve fitting of the S-parameter data to obtain the De bye parameters. The results can be 

analyzed to see which set of parameter ranges must be changed to obtain a good curve 

fitting. The genetic algorithm varies and optimizes all the given variables simultaneously 

until the error with measured data is minimized. The solution given is one of many 

similar solutions. An example of such curve-fitted comparison between the measured 

data and the data obtained from the GA optimization is shown in Figure 3.1 0. Once the 

data has been curve-fitted, De bye parameters can be extracted. 

52



53 
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Figure 3.10. GA Curve Fitted Data vs. Measurements 

All the materials were measured in the TEM cell as described earlier, and then the 

properties of each material were extracted using the GA tool. Table 3.4 and Table 3.5 

show the values of the Debye parameters extracted using this tool for material set 1 and 

material set 2, respectively. The curve fitting column shows how good the approximation 

is, and, hence, gives an idea how accurate the extracted parameters can be. 

Table 3.4. Material Set 1 - Extracted Debye Parameters 

Material 

80ohm 

(0.025m thick) 

200 ohm 

(0.025m thick) 

300 ohm 

(0.025m thick) 

800 ohm 

(0.025m thick) 

Curve fitting using GA 

(up to 1GHz) 

o:--h:J_, __ -:::-··:.:- · 
I . 

I . 

: 

Estimated Debye parameters 

Epsilon Static: 192.3 
Epsilon Infinite : 39.2 
Relaxation constant: 5.1e-10 s 
Conductivity : 0.012 S/m 

Epsilon Static : 99.47 

Epsilon Infinite : 1.0565 
Relaxation constant : 2.1 e-9s 
Conductivity : 0.005011 S/m 

Epsilon Static: 61.38 
Epsilon Infinite : 9.65 
Relaxation constant : 5.5e-9 

Conductivity : 0.00331 S/m 

Epsilon Static : 57.61 
Epsilon Infinite : 5.38 

Relaxation constant : 8.1 e-9 s 
Conductivity : 0.0011075 S/m 
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Table 3.5. Material Set 2- Extracted Debye Parameters 

Material Curve fitting using GA Estimated Debye parameters 
(up to 1GHz) 

Mat - 1 hard kind 

[_:] 
Epsilon Static : 199.56 

(0.025m thick) . . . Epsilon Infinite : 1.55 .. . 
! • ' . . .. . ,. . Relaxation constant : 2.2e-9s 
::: --~---·~-- ---- Conductivity : 0.000535 S/m .. -

- 0 0 . ----
Mat- 2 medium hard kind 

ill:] 
Epsilon Static : 249.67 

(0.025m thick) .. ·- . . - Epsilon Infinite : 1.3326 \, .... Relaxation constant: 2.1e-9s ! .: ·. : : .. : . 
.: ·;--~~ ---t-----

Conductivity : 0.0077 S/m 
... ' ' ' ~ 

Mat -3 soft kind 
__ , .... -~, ..... ,_ 

Epsilon Static : 199.825 
-- ( .......... -.... 

(0.025m thick) . Epsilon Infinite: 1.17 
I: I Relaxation constant : 2.05e-9 ... ~~-. 

" . Conductivity : 0.00092 S/m ... ~"-'" --- . 
·• -~"-.. 

3.2. MODELING 

After extracting the Debye parameters from the materials, it is possible to use 

them for further analytical modeling or 3-D full wave numerical modeling of structures 

containing such materials. Full wave modeling helps in predicting the behavior of 

materials in complex geometry and at higher frequencies. Analytical modeling can be 

used to validate the full-wave model in the known environment. 

3.2.1. Analytical Modeling. Analytical modeling using a plane-wave 
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formulation is basically calculating the transmission and reflection coefficients for the 

material of the given thickness. Plane wave propagation is assumed through the air and 

through the material. The effective complex permittivity of the material is calculated, 

which is then used to calculate the complex propagation constant across the material. 

ABCD parameters are obtained using this propagation constant. The ABCD are 

converted to S-parameters to obtain the shielding effectiveness of an infinitely long sheet 

for a plane wave excitation. Once the ABCD parameters are known, they can be cascaded 

for any number of layers, giving an opportunity to calculate the total parameters of 

interest for any stack of layers. The ABCD parameters are then converted into S

parameters to get the shielding effectiveness of interest [ 11]. 
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The complex effective permittivity for the Debye dielectric is calculated as 

( 
8s-&oJ (J'e 

8 a = 8 o8 r = 8 o EPo + --
1 + jmr jm ' (3.2) 

r=Jm~, (3.3) 

Where, &s is the static permittivity, &oo is the optic limit permittivity, a eis the effective 

conductivity, r is the relaxation constant and r is the propagation constant. Then, the 

ABCD parameters are calculated using propagation constant as follows, 

A = cosh(y x d) ; (3.4) 

B = Zo X sinh(y X d) ; (3.5) 

C = _!_x sinh(yx d); 
Zo 

(3.6) 

D = cosh(yx d), (3.7) 

where dis the thickness of the material. Using the data from Table 3.4, the 

shielding effectiveness of each material is analytically calculated and compared with the 

measurements. Figure 3.11 shows the comparison ofthe calculated S.E. to the 

measurements. 

Shielding Effectiveness 
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15 ---- - ---+-------------i-------------~ ----- -:m<r<>$n -:meas-ur d 

! , - ;- 800 oJ1m-measur 
: : - :-All bllick -from bye 

----~-------- ---- --'--------- - ----'--- - --- - ---- - -1...- --
' ' 

2 4 6 
frequency [HZ] 

8 10 
8 

X JO 

Figure 3 .11. Analytical Calculation of Shielding Effectiveness 
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Similarly, a stack of different materials is measured and then compared to the 

analytically calculated shielding effectiveness, as shown in Figure 3.12. Measurements 

here are done using the TEM cell, as described earlier. Each material is cut into a 1.25 em 

thick block and stacked together inside the TEM cell. 

shielding effectiveness 
30 -------------------------------------------------------------------------------------------

25 -- -------- ------1---------- --- --- --[---------------- -+---
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' ' ' ' 
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' 
' ' I I I I 

----,------------------ r------------------:------ ----- ---- ---1------------------l 
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- Measured -80 ohm(l.25cm) : 200ohm(1.25cm) : 80 ohm(1.25cm) 
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Frequency (GHz) 

Figure 3.12. Analytical S.E. of Stack ofMaterials 

3.2.2. Full Wave 3-D Modeling. Analytical modeling has the ability to model 

infinitely long sheets with only plane wave excitation. It is not possible to analyze how 

the fields inside complex structures behave in different conditions. Thus, for analyzing 

complex structures a model that employs a full wave 3D Maxwell equation solver is 

needed. EZ-FDTD is used in this case to model complex box structures made of the 

material with the given Debye characteristics. 

Before analyzing complex structures, it is important to validate 3-D modeling 

with the known analytical solution. The Debye dielectric material is placed in between 

the PEC plates, and these PEC plates are extended into the boundaries to make it infinite. 

The setup is shown in the Figure 3.13, where FD1 is the Debye dielectric material, P1 
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and P2 are the PEC plates, S 1 is the pseudo wire source and MP 1 is the monitor point for 

E and H fields. The figure depicts a top view of the geometry. Table 3.6 shows the 

simulation parameters used. 

P2 P1 

I c..., 
I 
l----------- ------------ --- --- --------------- ----·- ··-··- ··- ··---- -- ----··-·· 

Figure 3.13. Modeling Debye Dielectric Slab for Estimating Shielding Effectiveness 

Table 3.6. FDTD Model Details Debye Dielectric Slab Simulation 

Computational Domain Size 78, 60, 160 cells in x, y and z 

directions respectively 

Cell size 0.005, 0 . 001, 0.00 1 meters in x, 

and z directions respectiv ely 

Source Pseudo Wire 

Boundary Scheme PML 

Debye Material Dimensions 10, 3, 160 cells in x, y and z directions 

respectively 

Frequency Range 1 OOMHz - 1 OGHz 

The source is placed at the center of the (ZX) plane. The field monitor point is 

also placed at the center of (ZX) plane, and three cells away from the material. The 

y 
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material simulated was the "80-ohm" material with the properties detailed in Table 3.4. 

In order to obtain shielding effectiveness, it also important to simulate an empty 

computational domain with out the Debye material. The model has the exact properties 

shown in Figure 3.13 and Table 3.6, but with out the Debye material. Once theE and H 

fields are obtained from both of simulations, the ratio of E or H field with empty space to 

E or H field with the material gives the shielding effectiveness of the simulated material. 

Figure 3.14 shows the comparison of the simulation result to the analytically calculated 

result. 

Shielding Effectiveness 

' ' -- -- -!- -- -------;----------:----------;--

o L_~ __ _L __ _L __ ~--~--~--~--~--~~ 

1 2 3 4 5 6 7 8 9 10 
Frequency [ GHz] 

Figure 3.14. FDTD Infinite Debye Sheet Shielding Effectiveness 

The difference between the analytical and simulated result is mainly because due 

to the observation point. The analytical solution, as in equations (3 .1) - (3. 7), assumes far 

field, while the full-wave simulation includes the near-field region. Once it has been 

ensured that the 3-D simulation works as expected, more complex geometries made of 

this material can be simulated. 
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A useful simulation to conduct is to simulate a box made of these materials. This 

box is that it intended to provide the maximum possible shielding effectiveness, even if 

there are some presence of some gaps along the walls and vent holes for air circulation. 

In order to estimate how the box made of these materials can perform with the given set 

of materials, it is necessary to simulate the entire box. 

The structure of the box is chosen in such a way that it can provide the maximum 

shielding for the given thickness of walls. Figure 3.8 illustrates that the "80-ohm" 

material has the highest shielding for the given thickness (2.5 em). The material was cut 

into two equal1.25-cm thick blocks, and a PEC plate was placed in between them to 

increase the shielding. However, the PEC plates were placed 1 em away from the edges in 

order to avoid any edge currents that can effectively radiate and reduce the shielding 

effectiveness. The box was simulated with a plane wave propagating across the box. The 

field monitor points were placed inside the box to measure E and H fields. First, a box 

with no gap between the materials was simulated to observe the overall shielding in the 

best case. Figure 3.15 shows the geometry simulated. Figure 3.15 shows that the PEC 

plates (blue thin blocks) were not close to each other; they were sandwiched between the 

Debye dielectric materials (thick orange blocks). 

-------------------------------------------------------
i 

Figure 3.15. Debye Material Box- No Gap 
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Table 3.7 shows the parameters ofused in FDTD simulation. 

Table 3.7. Simulation Parameters ofBox -No Gap 

Computational Domain 200 x 225 x 200 cells 

Cell Size 0.001m x 0.001m x 0.001 m 

Source Type Plane Wave, perpendicular polarization 

Source Range 1 OOMhz - SGHz, Modulated Gaussian 

Box Dimensions 10cm x 15cm x 10cm 
··----

Debye Block Thickness 1.25cm each 

PEC Plate Thickness 3mm 

In order to obtain the actual shielding effectiveness of this setup, it was necessary 

to simulate the source without any material in the same computational domain. All the 

Debye material and PEC plates were removed, while all the geometry remained the same. 

Once the E and H fields for both simulations were obtained, shielding effectiveness was 

calculated by taking their ratio, as shown in Figure 3 .16. 

0 -1 

10 

E field S.E vs frequency 

0 
10 

Frequency [GHz] 

H field S.E vs frequency 

10,, 

Frequency [GHz] 

Figure 3.16. E and H Field Shielding Effectiveness of Box -No Gap 
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Figure 3.16 shows that the S .E for both E and H fields was on the order of 40 dB 

average. With a combined effect of the PEC added to the Debye material, it was possible 

to achieve 40 dB of shielding in the best case. 

However, it is not always possible to build a box with completely closed edges. 

The walls of the box can have a gap between them, through which fields can penetrate. In 

order to study a more practical case, gaps of 2-mm wide were left all around the walls of 

the box, as shown in Figure 3.17. The (XZ) plane plot also looks the same, since the box 

is almost a square. Table 3.8 shows the simulation parameters used in this simulation . 

.------------·---·------------------------------------------------------------------------------

PI 

Figure 3.17. Debye Material Box- With Gap 
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Table 3.8. Simulation Parameters ofBox -With Gap 

Computational Domain 200 x 225 x 200 cells 

Cell Size 0.001m x 0.001m x 0.001 m 

Source Type Plane Wave 

Source Range 1 OOMhz - 5GHz, Modulated Gaussian 

Box Dimensions lOcm x 15cm x lOcm 

Debye Block Thickness 1.25cm each 

PEC Plate Thickness 3mm 

Gap Between Walls 2mm 

Presence of gaps between the walls greatly reduced the shielding effectiveness, as 

predicted. Figure 3.18 illustrates that there is a 25-dB average shielding effectiveness for 

a box with gaps in the frequency range of 100 MHz to 5 GHz. 
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Figure 3.18. E and H Field Shielding Effectiveness of Box- With Gap 

3.3. CONCLUSION AND FUTURE WORK 

Simulations reveal that the boxes made of carbon-filled composite materials can 

provide reasonable shielding effectiveness even if gaps between the walls are present. 
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Increasing the thickness of the material will further increase the shielding effectiveness. 

With a PEC plate, sandwiched between the Debye dielectric materials, it is allowed to 

have small holes in the PEC for air ventilation, but not fields. Given these promising 

results, it is possible to build an actual box made of these materials. 

It is important to validate these simulations with actual measurements. Also, the 

materials have to be tested for shielding effectiveness at higher frequencies. A 

measurement setup has to be designed to measure and validate the shielding effectiveness 

above 1 GHz. Experimental results conclude that carbon-filled foam materials are 

perspective for effective and cheap shielding purposes. 
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4. MODELING AND VALIDATION 

4.1. PROBLEM DESCRIPTION 

The effects of imperfect ground planes were found for a frequency of 600 MHz as 

the height of the receiving antenna was varied from one to four meters above the ground 

reference. The electric field variation over different ground planes for different heights of 

receiving antenna was studied. 

The geometry is shown in Figure 4.1. The dipole antennas were aligned parallel to 

they -axis. Their length was one-half the wavelength at 600 MHz. The wire radius for 

the dipole was set to wavelength! I 000. The distance between two antennas is 6 m. The 

transmitting antenna is at the height of 1 meter, and the receiving antenna height was 

varied from one to four meters. 
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Figure 4.1. Geometry Description 
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The ground (image) plane conditions are varied as follows: 

• Ground 1: Perfectly conducting infinite ground plane at z=O. 

• Ground 2: Perfectly conducting ground plane at z=O with finite dimensions of 2m 

x 4m. The ground is located from x =+/-2m andy=+/- lm. 

• Ground 3: Wet soil modeled by a homogeneous dielectric media for z<O with a 

relative permittivity of 12 and conductivity of0.04 S/m. The relative permeability 

of the soil =I. 

• Ground 4: Dry soil modeled by a homogeneous dielectric media for z<O with a 

relative permittivity of 8 and conductivity of 0.04 S/m. The relative permeability 

of the soil =1. 

The task required that electric field (in dBuv/m) for each type of ground be 

plotted for receive antenna heights of 1.0, 1.5, 2.0, 2.5, 3.0 3.5 and 4 meters. 

4.2. MODLEING 

The problem requires modeling an extremely thin and long wire with a large 

computational domain. Commercially available software like Microwave studio and 

HFSS cannot model this geometry because of its extremely thin radius 

(wavelength/ I 000= 0.0005m). Hence, they cannot be used to solve this problem. 

However, EZ-FDTD, which is developed EMC laboratory, can model these using special 

sub-cellular algorithms. One of these algorithms is "Thin Wire" algorithm. A thin wire 

can be defined as a percent of the actual cell. It is possible to define a wire with a very 

thin radius. The second software used for validation is WireMom, which is an open

source software downloadable from the web. This software basically uses the Method of 

Moment approach to solve the problem. 

4.2.1. Without Ground Plane. The geometry was modeled in both EZ-FDTD 

and WireMoM without any ground plane. The model is shown in Figure 4.2 and 

simulation details are given in Table 4.1. The WireMoM model is similar to the FDTD 

model, but there is no need to define cell size and computational domain. Only a wire 

with a voltage source is defined, as shown in Figure 4.3. The models were both simulated 

over a frequency range of 400 - 800 MHz and compared for different heights of an 

observation point. The FDTD model was designed in such way that the speed and results 
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were not compromised. Computational domain can be bigger than the one used in this 

simulation, it will yield more accurate results, but will take longer time to compute. 

z 
' .._...: 
' 

10 cells 

_I ______ ---------

20cel s 

. --------------

20~~~ ------- - -·""-.------------' 
--- ' ' x: 

120 cells 

Figure 4.2. FDTD Model - No Ground 

Table 4.1. FDTD Model Details - No Ground 

Computational Domain 20 x 120 x 20 cells 

Cell Size 0.0025 m 

Wire Radius 20% of cell size 

y 

Source Voltage resist - 1 v, 50 ohm 

Monitor Points Far field monitor points 

Point source 

••-- 0.25m _ __.~ 

Figure 4.3. WireMoM Model - No Ground 
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6 

Observation points here were far field points. Neglecting the higher order terms c 

11 rn for the far filed, E field has only B and tjJ components [12]: 

Ee =- j(J)Ae; 

E¢ =- j(J)A¢; 

and Etoral = ~( ( £8)2 + ( E¢)2
), 

(4.1 

(4.2 

(4.3 

where AB and A¢ are the B and tjJ components of the vector magnetic potential and ar 

obtained from the simulations. 

Figure 4.4 shows theE-field observed at the observation point which is 0.5 m 

above the transmitting antenna reference. Figure 4.5 shows theE-field observed at the 

observation point which is 1m above the transmitting antenna reference. Figure 4.6 

shows E-field observed at the observation point which is 1.5m above the transmitting 

antenna reference. Figure 4.7 shows E-field observed at the observation point which is 

2.0m above the transmitting antenna reference. Figure 4.8 shows E-field observed at the 

observation point which is 2.5m above the transmitting antenna reference. Figure 4.9 

shows E-field observed at the observation point which is 3m above the transmitting 

antenna reference. Figure 4.10 shows E-field observed at the observation point which is 

3.5m above the transmitting antenna reference. 
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Figure 4.4. E-Field -0.5m Above Antenna Reference - No Ground 
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Figure 4.5. E-Field -1m Above Antenna Reference - No Ground 
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E field- 2m above antenna reference 
o.o9 r--~---=---=---:--~---=---=---=----:--~---=---=---~---:--=---=---=----~--:---;:::::---=---=---:::J--=---=---=---=---::::::r---:;=j--

- FDTD . ' 

o.o8 ------------r----------T----- -- -j----- ------------ --~ireMo~ 

0.07 ____________ 1 ______________ 1 ___ ---------:- -----------:--------------1------- - ------~---

,-..._ 

_§ 0.05 
G 
~ 0.04 

0.03 

0.02 

0.01 

' ' ' ' ' ________ ___ _ .. ______ ______ .. ______________ .. ____________ _ ____________ .. __ ____________ .. __ _ 
I I I I I 
I I I I 

. ' ' 

:_:-1-_ . __ :· '_ L , 
I I I I I ----- ------ -------- ------,--------------,-- ------------,--------------,----------- ---,---

' I I I I I . ' ' . ' ' . ' ' . ' ' . ' ' 
I I I I I 

__________ .. ______________ .. __ _______ _____ .. ______________ .. ______________ .., ______________ .., __ _ 
I I I I I I 
I 0 I I I 
I 0 0 I I 
I I I I I 

400 500 600 700 800 900 
Frequency (MHz) 

Figure 4.7. E-Field -2m Above Antenna Reference - No Ground 
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Figure 4.8. E-Field -2.5m Above Antenna Reference - No Ground 
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Figure 4.10. E-Field -3.5m Above Antenna Reference - No Ground 
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The above figures show that the agreement between FDTD and WireMoM is 

agreeable over a frequency range. However, as the height of the observation point 

increases, the error also increases. The reason for this disagreement is unknown and 

requires further investigation. 

4.2.2. With Infinite Ground Plane. The geometry was modeled in the EZ-FDT 

with a PEC plane touching the computational domain. The transmitting antenna was 

placed at the center of the ground plane, so that the plane was touching the boundary to 

simulate the effect of an infinite ground plane. Far-field monitor points were used to 

calculate the fields at 6 m away from the transmitting antenna. 

Figure 4.11 and Figure 4.12 describe this geometry. Table 4.2 shows the FDTD model 

specifications. The WireMoM model was similar to that specified in Figure 4.3 but with 

an infinite ground plane. Simulations with both software tools were compared for 

different observation point heights. 
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Figure 4.11. FDTD Model - Infinite Ground 
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Figure 4.12. FDTD Model Side View - Infinite Ground 

Table 4.2. FDTD Model Specifications - Infinite Ground 

Computational Domain 20 x 120 x 20 cells 

Cell Size 0.0025 m 

Wire Radius 20% of cell size 

Source Voltage resist - 1 v, 50 ohm 

Monitor Points Far field monitor points 

PEC Plate At x= 0 cell, y = 0 cell and z = 10 cells 

Figure 4.13 show theE-field observed at the observation point which is 1m abm 

the ground plane. Figure 4.14 shows E-field observed at the observation point which is 

1.5m above the ground plane. Figure 4.15 shows E-field observed at the observation 

point which is 2m above the ground plane. Figure 4.16 shows E-field observed at the 

observation point which is 2.5m above the ground plane. Figure 4.17 shows E-field 

observed at the observation point which is 3m above the ground plane. Figure 4.18sho~ 

E-field observed at the observation point which is 3.5m above the ground plane. Figure 

4.19 shows E-field observed at the observation point which is 4m above the ground 

plane. 
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Figure 4.13. E-Field -1m Above Antenna Reference - Infinite Ground 
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Figure 4.14. E-Field -1.5m Above Antenna Reference - Infinite Ground 
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Figure 4.15. E-Field -2m Above Antenna Reference - Infinite Ground 
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Figure 4.16. E-Field -2.5m Above Antenna Reference - Infinite Ground 
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E field - 3m above ground 
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Figure 4.17. E-Field -3m Above Antenna Reference - Infinite Ground 
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Figure 4.18. E-Field -3.5m Above Antenna Reference - Infinite Ground 
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Figure 4.19. E-Field -4m Above Antenna Reference - Infinite Ground 
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The above figures illustrate that there is no match between theE Field simulated 

by FDTD and WireMoM. The reason for this mismatch has not been known yet. It could 

be due to the way this software considers the infinite ground settings. Moreover, there is 

a shift on transmitting antenna, between the current on the wire simulated with FDTD 

and the one simulated with WireMoM, which can also be the reason for the difference in 

E-field at the distant points. This shift increases with the increase of the transmitting 

antenna height with respect to the ground plane. This problem needs more investigation. 

4.2.3. Finite Ground - Perfectly Conducting. The geometry was modeled in 

the EZ - FDTD and WireMoM by placing a finite PEC plane at z=O. The transmitting 

antenna was placed at x= Om, and fields were measured using a far-field monitor placed 

at x=6m. Figure 4.20 and Table 4.3 describe the model and specifications, used to model 

inFDTD. 
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Figure 4.20. FDTD Model - Finite Ground 
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Table 4.3. FDTD Model Specifications - Finite Ground 

Computational Domain 20 x 820 x 40 cells 

Cell Size 0.05m x 0.0025 m x 0.05m 

Wire Radius 20% of cell size 

Source Voltage resist - 1 v, 50 ohm 

Monitor Points Far field monitor points 

7 

X 

Simulations with both types of software were run and then compared for different 

observation point heights. Figure 4.21 to Figure 4.26 show that theE-field for both 

programs followed the shape, but did not quite agree. The reason for this mismatch is 

unknown, and requires further investigation. 

The other ground cases are not simulated because it is impossible to simulate 

them using the WireMoM tool, although they can be simulated using the EZ-FDTD. 
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Figure 4.21. E-Field -1.5m Above Antenna Reference - Finite Ground 

E field - 2m above ground 

--FDTD 

0.1 

' ' ' ' ' ___ ., ______________ ,. ______________ ,. __ 
' ' ' ' ' ' ' ' ' ' ' ' ' ' 

I I I 0 ---- ----r··------------:-- -------- --:--------------: ----
. ' ' 
' ' ' ' ' 

0.08 

,-.... 

~ 0.06 
"'-' 

0.04 

0.02 

o b=k====d====dU==-=-=--=---~-=---=---=--=---=--~--=--=---=--=---=---~-=---=--=---=--d=~ 

500 600 700 800 300 900 400 
Frequency (MHz) 

Figure 4.22. E-Field -2m Above Antenna Reference - Finite Ground 
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Figure 4.23. E-Field -2.5m Above Antenna Reference - Finite Ground 
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Figure 4.24. E-Field -3m Above Antenna Reference - Finite Ground 
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Figure 4.25. E-Field -3.5m Above Antenna Reference - Finite Ground 
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Figure 4.26. E-Field -4m Above Antenna Reference - Finite Ground 

80 
80



8: 

4.3. CONCLUSION 

The importance of validation can be seen in these cases. Even though a tool is 

able to simulate geometry, it is not always correct. It is impossible to tell whether the tool 

is correct or not unless tools validate each other with the same answers. For this particulru 

case, one of the tools might be giving the correct answer, or all of them might give the 

wrong results. It is necessary to investigate the problem by using the third tool, by setting 

up the problem for a real measurement, or by analytically calculating the fields. There is 

a very good reason to investigate the problem more, but with limited time available, the 

problem has not been investigated. At this point, there is no proper tool available at the 

moment to simulate this kind of geometry. Hence, validation using these tools has not 

been investigated thoroughly. 
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