
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Summer 2012 

A comparison of near-infrared and visible imaging for surveillance A comparison of near-infrared and visible imaging for surveillance 

applications applications 

Kathryn Nicole Rodhouse 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Computer Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Rodhouse, Kathryn Nicole, "A comparison of near-infrared and visible imaging for surveillance 
applications" (2012). Masters Theses. 6271. 
https://scholarsmine.mst.edu/masters_theses/6271 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6271?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

 

 

 

 

A COMPARISON OF NEAR-INFRARED AND VISIBLE IMAGING FOR  

 

SURVEILLANCE APPLICATIONS 

 

 

by 

 

 

KATHRYN NICOLE RODHOUSE 

 

 

A THESIS 

 

 

Presented to Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

 

MASTER OF SCIENCE IN COMPUTER ENGINEERING 

 

2012 

 

 

 

 

Approved by 

 

Dr. Steve E. Watkins, Advisor 

 

Dr. R. Joe Stanley 

 

Dr. Donald C. Wunsch 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2012 

 

KATHRYN NICOLE RODHOUSE 

 

ALL RIGHTS RESERVED 



iii 

 

 

ABSTRACT 

 

A computer vision approach is investigated which has low computational 

complexity and which compares near-infrared and visible image systems. The target 

application is a surveillance system for pedestrian and vehicular traffic.  Near-infrared 

light has potential benefits including non-visible illumination requirements.  Image-

processing and intelligent classification algorithms for monitoring pedestrians are 

implemented in outdoor and indoor environments with frequent traffic.   

The image set collected consists of persons walking in the presence of foreground 

as well as background objects at different times during the day.  Image sets with non-

person objects, e.g. bicycles and vehicles, are also considered.  The complex, cluttered 

environments are highly variable, e.g. shadows and moving foliage. The system 

performance for near-infrared images is compared to that of traditional visible images. 

The approach consists of thresholding an image and creating a silhouette of new 

objects in the scene.  Filtering is used to eliminate noise.  Twenty-four features are 

calculated by MATLAB© code for each identified object.  These features are analyzed 

for usefulness in object discrimination.  Minimal combinations of features are proposed 

and explored for effective automated discrimination.  Features were used to train and test 

a variety of classification architectures. 

The results show that the algorithm can effectively manipulate near-infrared 

images and that effective object classification is possible even in the presence of system 

noise and environmental clutter.  The potential for automated surveillance based on near-

infrared imaging and automated feature processing are discussed. 



iv 

ACKNOWLEDGEMENTS 

 

 It is a pleasure to thank those who made this thesis possible.  I would like to 

express my utmost gratitude to Dr. Steve E. Watkins, for his encouragement, guidance 

and support at every step of this research.   Without Dr. Watkins's unfailing confidence, 

this study would not have been successful.  I wish to also thank Dr. R. Joe Stanley and 

Dr. Donald C. Wunsch for their boundless guidance as members of my graduate 

committee.   

 This work was supported by the Department of Electrical and Computer 

Engineering through a teaching assistantship.  I owe my deepest gratitude for this 

support. 

 I am indebted to all of my peers who aided in this research, especially Kevin E. 

Robison.  I also thank Dao Lam of the Missouri S&T Applied Computational Intelligence 

Laboratory and Dr. Randy H. Moss for the technical discussions they offered.  The efforts 

of all of those researchers in the computer vision field, which aided me in this research, 

are also acknowledged.  I would like to specifically thank Rui Xu for providing ssEAM 

architecture MATLAB code developed by Georgious Anagnostopoulous. 

 Lastly, I would like to thank my parents, sister and all my family for their love 

and support throughout this research.  Their reassurance and trust contributed greatly to 

the success of this project. 

  



v 

TABLE OF CONTENTS 

 

Page 

ABSTRACT .................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................. ix 

LIST OF TABLES ............................................................................................................. xi 

SECTION  

     1.  INTRODUCTION .....................................................................................................1 

     2.  REVIEW OF LITERATURE .....................................................................................5 

          2.1.  BACKGROUND ON COMPUTER VISION ...................................................5 

          2.2.  COMPUTER VISION APPLICATIONS ..........................................................6 

               2.2.1.  Small Target Detection in High Clutter.  ....................................................7 

               2.2.2.  Multiple Neural Networks for Target Recognition.  ..................................7 

               2.2.3.  Face Recognition in Dark Environments.  .................................................7 

               2.2.4.  Algorithmic Object Detection.  ..................................................................8 

               2.2.5.  Near-Infrared Face Detection. ...................................................................8 

               2.2.6.  Illumination Invariant Face Recognition.  .................................................8 

               2.2.7.  Pattern Recognition for Detecting Human Heads.  ....................................9 

               2.2.8.  Recognizing Targets Using Artificial Neural Networks.  ..........................9 

          2.3.  INTELLIGENT ANALYSIS APPROACHES  ................................................10 

               2.3.1.  Neural Network Classifier. .......................................................................10 

               2.3.2.  Adaptive Resonance Theory. ...................................................................10 



vi 

               2.3.3.  ARTMAP.  ................................................................................................ 11 

     3.  BACKGROUND AND APPROACH ......................................................................12 

          3.1.  CURRENT SURVEILLANCE APPROACHES  ............................................12 

               3.1.1.  Pedestrian Bridge Surveillance.  ..............................................................12 

               3.1.2.  Multi-class Cancer Classification.  ..........................................................13 

          3.2.  SURVEILLANCE METHODS USED IN THIS RESEARCH  ......................14 

               3.2.1.  Access.  ....................................................................................................14 

               3.2.2.  Transfer.  ..................................................................................................15 

               3.2.3.  Convert.  ...................................................................................................15 

               3.2.4.  Modify.  ....................................................................................................15 

               3.2.5.  Analysis.  ..................................................................................................16 

     4.  IMAGE SET DATA COLLECTION .......................................................................19 

          4.1.  IMAGING TECHNOLOGY ...........................................................................19 

          4.2.  IMAGED ENVIRONMENTS .........................................................................20 

               4.2.1.  Brick Wall Scene.  ....................................................................................21 

               4.2.2.  Campus Building Scene.  .........................................................................21 

               4.2.3.  Campus Library Scene.  ...........................................................................22 

               4.2.4.  Pedestrian Bridge Scene.  ........................................................................22 

               4.2.5.  Indoor Hallway Scene.  ............................................................................23 

               4.2.6.  Urban Sidewalk Scene.  ...........................................................................24 

               4.2.7.  Urban Street Scene.  .................................................................................25 

     5.  IMAGE PROCESSING ALGORITHM DESCRIPTION .......................................27 

          5.1.  IMAGE FRAME CONVERSION ...................................................................28 



vii 

          5.2.  FILTERING .....................................................................................................29 

          5.3.  DIFFERENCE IMAGE ...................................................................................30 

          5.4.  THRESHOLDING ...........................................................................................30 

          5.5.  OBJECT SEGMENTATION  ..........................................................................32 

          5.6.  FEATURE CALCULATIONS  ........................................................................33 

               5.6.1.  Height (H).  ..............................................................................................33 

               5.6.2.  Width (W).  ..............................................................................................34 

               5.6.3.  Aspect Ratio (AR).  ..................................................................................34 

               5.6.4.  Area (A).  .................................................................................................34 

               5.6.5.  Perimeter (PER).  .....................................................................................34 

               5.6.6.  Convex Hull Area (CA).  .........................................................................34 

               5.6.7.  Solidity (S).  .............................................................................................34 

               5.6.8.  Compactness (CMP).  ..............................................................................35 

               5.6.9.  Horizontal Centroid Offset (COX).  ........................................................35 

               5.6.10.  Vertical Centroid Offset (COY).  ...........................................................35 

               5.6.11.  Euler Number (EN).  ..............................................................................35 

               5.6.12.  Skewness (SKW).  .................................................................................36 

               5.6.13.  Kurtosis (KUR).  ....................................................................................36 

               5.6.14.  Order Moments (M2, M3, M4).  ............................................................36 

               5.6.15.  Ellipse Major Axis Length (MJL).  ........................................................37 

               5.6.16.  Ellipse Minor Axis Length (MNL).  ......................................................37 

               5.6.17.  Ellipse Eccentricity (ECC).  ...................................................................37 

               5.6.18.  Ellipse Orientation (OR).  ......................................................................38 



viii 

               5.6.19.  Hu Moments (HU1, HU2, HU3, HU4).  ................................................38 

          5.7.  ALGORITHM EXAMPLE CASE  ..................................................................38 

     6.  INTELLIGENT PROCESSING EXPERIMENTS ..................................................43 

          6.1.  LINEAR DISCRIMINANT ANALYSIS  ........................................................43 

          6.2.  MLP NEURAL NETWORK CLASSIFICATION  .........................................45 

          6.3.  ssEAM ARCHITECTURE CLASSIFICATION  ............................................47 

          6.4.  DATA FUSION  ...............................................................................................49 

     7.  EXPERIMENTAL RESULTS .................................................................................50 

          7.1.  LINEAR DISCRIMINANT ANALYSIS RESULTS  ......................................50 

          7.2.  MLP NEURAL NETWORK RESULTS  ........................................................59 

          7.3.  ssEAM CLASSIFICATION RESULTS ..........................................................67 

          7.4.  PREDICTION ERROR EXAMPLES .............................................................74 

          7.5.  DATA FUSION RESULTS  .............................................................................77 

          7.6.  DISCUSSION  .................................................................................................90 

     8.  CONCLUSIONS AND FUTURE WORK ..............................................................92 

          8.1.  CONCLUSIONS .............................................................................................92 

          8.2.  FUTURE WORK  ............................................................................................94 

APPENDICES 

A.  EXAMPLE OUTPUT IMAGES ..................................................................................96 

B.  ALGORITHMIC AND EXPERIMENTAL CODE ....................................................124 

BIBLIOGRAPHY ............................................................................................................147 

VITA ..............................................................................................................................150 



ix 

 

LIST OF ILLUSTRATIONS 

                                                                                                                                                                        

Figure                                                                                                                                     Page 

 

4.1.  Dual Camera Setup.  ........................................................................................................ 20 

4.2.  Brick Wall Scene.. .......................................................................................................... 21 

4.3.  Campus Building Scene. ................................................................................................ 22 

4.4.  Campus Library Scene. .................................................................................................. 23 

4.5.  Pedestrian Bridge Scene. ............................................................................................... 24 

4.6.  Indoor Hallway Scene. ................................................................................................... 24 

4.7.  Urban Sidewalk Scene. .................................................................................................. 25 

4.8.  Urban Street Scene.. ....................................................................................................... 26 

5.1.  Algorithm Block Diagram. ............................................................................................ 27 

5.2.  Original Near-Infrared Image.. ...................................................................................... 39 

5.3.  Gray-Scale Image. .. ....................................................................................................... 39 

5.4.  Noise-Filtered Image. .. ................................................................................................. 40 

5.5.  Absolute Difference Image. .......................................................................................... 40 

5.6.  Histogram of Absolute Difference Image, Pixel Intensity vs. Pixel Count. .. ........... 41 

5.7.  Threshold Image. ........................................................................................................... 41 

5.8.  Object Segmentation Image. .. ...................................................................................... 42 

5.9.  Algorithm Targeted Objects. .. ...................................................................................... 42 

7.1.  Example of Person Misclassification. .. ........................................................................ 75 

7.2.  Example of Bicycle Misclassification. .. ......................................................................... 75 

 



x 

 

7.3.  Example of Vehicle Misclassification. .. ...................................................................... 76 

7.4.  Example of Clutter Misclassification. .. ....................................................................... 76 

 



xi 

LIST OF TABLES 

                                                                                                                                                                        

Table                                                                                                                                      Page 

 

7.1.  Table of Features and Abbreviations.  .......................................................................51 
 

7.2.  Results Obtained From Single Feature Analysis Using 50 Randomly Generated 

        Data Sets.  ....................................................................................................................... 51 

 

7.3.  Results Obtained From Forward Search Analysis On Visible Images Using 

        50 Randomly Generated Data Sets.  ............................................................................. 52 

 

7.4.  Results Obtained From Forward Search Analysis On Gray-Scale Near-Infrared 

        Images Using 50 Randomly Generated Data Sets. ...................................................... 53 

 

7.5.  Results Obtained From Forward Search Analysis On Red Channel Near-Infrared 

        Images Using 50 Randomly Generated Data Sets. ...................................................... 54 

 

7.6.  Results Obtained From Backward Elimination Analysis On Visible Images 

        Using 50 Randomly Generated Data Sets  ................................................................... 56 

 

7.7.  Results Obtained From Backward Elimination Analysis On Gray-Scale  

        Near-Infrared Images Using 50 Randomly Generated Data Sets. . ............................ 57 

 

7.8. Results Obtained From Backward Elimination Analysis On Red Channel  

         Near-Infrared Images Using 50 Randomly Generated Data Sets. ............................. 58 

 

7.9.  Reduced Feature Vectors Selected.  ...........................................................................59 
 

7.10. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Visible Images.. ............................................................. 61 

 

7.11.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Visible Images.  ....................................... 61 

 

7.12. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Gray-Scale Near-Infrared Images.. .............................. 62 

 

7.13.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Gray-Scale Near-Infrared Images.  .......... 62 

 

7.14. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Red Channel Near-Infrared Images. ............................ 63 



xii 

 

7.15.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Red Channel Near-Infrared Images.  ....... 63 

 

7.16. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Visible Images. ............................................................. 64 

 

7.17.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Visible Images.  ...................................... 64 

 

7.18. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Gray-Scale Near-Infrared Images.. ............................. 65 

 

7.19.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Gray-Scale Near-Infrared Images.  ......... 65 

 

7.20. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Red Channel Near-Infrared Images.. ........................... 66 

 

7.21.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Red Channel Near-Infrared Images.  ...... 66 

 

7.22. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Visible Images. .............................................................. 68 

 

7.23.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Visible Images.  ....................................... 69 

 

7.24. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Gray-Scale Near-Infrared Images.. .............................. 69 

 

7.25.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Gray-Scale Near-Infrared Images.  .......... 70 

 

7.26. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Original Feature Vector For Red Channel Near-Infrared Images ............................. 70 

 

7.27.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Original Feature Vector For Red Channel Near-Infrared Images.  ....... 71 

 

7.28. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Visible Images.. ............................................................ 71 

 

7.29.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Visible Images.  ...................................... 72 

 

7.30. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Gray-Scale Near-Infrared Images. .............................. 72 



xiii 

 

7.31.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Gray-Scale Near-Infrared Images.  ......... 73 

 

7.32. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

         Reduced Feature Vector For Red Channel Near-Infrared Images. ............................ 73 

 

7.33.  Average Precision/Recall Obtained From Highest Five Performing Classifiers 

          Trained Using Reduced Feature Vector For Red Channel Near-Infrared Images.  ...... 74 

 

7.34.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Original Feature Vector From Visible Images.  .................................... 78 

 

7.35.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Original Feature Vector From NIR-Gray Images.  ............................... 79 

 

7.36.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Original Feature Vector From NIR-Red Images.  ................................ 80 

 

7.37.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Reduced Feature Vector From Visible Images.  ................................... 81 

 

7.38.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Reduced Feature Vector From NIR-Gray Images.  .............................. 82 

 

7.39.  Precision/Recall Obtained From Highest Performing MLP Classifier 

          Trained Using Reduced Feature Vector From NIR-Red Images.  ................................ 83 

 

7.40.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Original Feature Vector From Visible Images.  .................................... 84 

 

7.41.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Original Feature Vector From NIR-Gray Images.  ............................... 85 

 

7.42.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Original Feature Vector From NIR-Red Images.  ................................ 86 

 

7.43.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Reduced Feature Vector From Visible Images.  ................................... 87 

 

7.44.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Reduced Feature Vector From NIR-Gray Images.  .............................. 88 

 

7.45.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

          Trained Using Reduced Feature Vector From NIR-Red Images.  ................................ 89 

 



1.  INTRODUCTION 

 

Surveillance systems are used to collect information from an environment in order 

to monitor traffic or detect abnormal or critical situations.  Such systems utilize visible or 

infrared technology to collect images of the observed environment. While thermal 

infrared imaging and visible imaging have both been explored extensively in security 

applications, near-infrared imaging has remained largely uncharted.  In this research, an 

image manipulation algorithm and intelligent processing approach is developed and 

applied to near-infrared surveillance images.   

 Visible and infrared spectra provide different types of information to a 

surveillance system.  While visible light systems can provide information similar to what 

the human eye would process, visible light is incapable of providing useful information in 

certain types of situations.  For example, visible light systems will not provide valuable 

information in a foggy setting or a setting where the illumination is poor.  Visible light 

provides non-optimal data in these extreme situations, so there exists a need for 

alternative imaging systems if those situations have a reasonable chance of occurring 

within the observed environment.  Thermal infrared imaging is one such reliable system, 

because infrared information will be processed from an environment independent of the 

quality of the environmental light source(s).  

 Thermal infrared imaging can be particularly useful for surveillance of people or 

animals in an assortment of environments because living beings produce unique heat 

signatures.  These heat signatures typically fall within the far-wavelength infrared range 

(~ 8 – 12μm) [1].  To characterize thermal infrared imaging usefulness imagine a  



  2 

stationary camera used for surveillance of an environment.  A reference image of the 

environment could be autonomously compared to the current environment to detect 

significant heat differences and therefore changes.  When an animal or a person enters the 

environment, a thermal infrared image would show significant change.  In outdoor 

applications such as game tracking systems or outdoor security systems, a reference 

image may not be necessary to track movement of animals or people because 

environmental heat intensity will likely differ significantly from the intensity of a person 

or animal.  However, thermal infrared imaging may suffer in warm environments and is 

based on expensive camera hardware.  

 Security imaging systems must accommodate non-target activity and background 

variations (e.g. lighting or seasonal changes) and their implementation may be limited by 

hardware and operational expense.  Simple imaging systems obtain useful information in 

a variety of environmental conditions, but a human observer or a computer system may 

have difficulty processing that information real-time [Friedrich, 2002].   Automation of 

image manipulation within surveillance systems allows for more effective surveillance at 

any given time by targeting the desired image.  This filtering simplifies the observable 

image data to only critical data for the security system. 

 Currently, developed algorithms are used to detect abnormal or unsafe situations 

in visible light surveillance systems.   Additionally, algorithms have been created for 

specific thermal infrared security systems, such as forest-fire detections systems [Arrue, 

2000].  However, little has been done with near-infrared security systems.  The high cost 

of thermal infrared cameras makes such surveillance systems unrealistic in many 

situations.  Near-infrared cameras have been found to perform effectively in 



  3 

environments that visible light cameras cannot due to lighting conditions, such as in 

smoky rooms [Sentenac, 2003].  Also, near-infrared (non-visible) illumination can be 

added for nighttime situations without alerting the target.   Therefore, results of visible 

and thermal light algorithms could be applied within near-infrared security systems to 

determine if any benefits exist in the new system.  This research explores the surveillance 

potential of near-infrared imaging. 

 In this work, algorithm methods with low computational requirements are applied 

to near-infrared and visible images of complex scenes.  These methods include noise 

filtering as well as image manipulation operations.  The image sets include outdoor and 

indoor environments.  Pedestrian and vehicular target visibility is compared for near-

infrared and visible images and is examined with system noise.  Twenty-four target 

features are discussed as inputs for automated classification methods.  These features are 

analyzed for classification effectiveness and reduced feature sets are proposed.  Target 

features are used as inputs to two types of classification systems: 1) MLP neural network 

and 2) semi-supervised Ellipsoid ARTMAP.  Classification results are used to compare 

visible and near-infrared system capabilities across a broad spectrum of environments. 

In Section 2, a literature review is presented concerning computer vision research 

using visible, thermal infrared and near-infrared technologies.  Section 3 presents the 

important research that inspired this work.  The image sets collected for training and 

testing of the proposed classification systems are outlined in Section 4.  An image 

processing algorithm for visible and near-infrared systems is presented in Section 5.  

Section 6 explains the feature analysis completed to produce a reduced feature set.  

Additionally, Section 6 describes the architecture developed for object classification.  



  4 

Experimental results for feature analysis and architecture accuracy are explored in 

Section 7.  These results show that effective surveillance is possible with near-infrared 

images even in the presence of environmental clutter and system noise. 

 



5

2. LITERATURE REVIEW

Computer vision techniques aim to enable computers to process visual 

information similar to a brain.  The brain processes information by extracting meaningful 

semantic features such as boundaries and shapes, but similar features can be difficult to 

process efficiently in computer systems [Zhang, 2010].  Historically techniques have 

been researched and refined to improve computer vision capabilities.  According to 

Miller et al. [Miller, 2011], the scope of a computer vision problem for software-

engineering applications includes 1) access, 2) transfer, 3) convert, 4) modify, and 5) 

analyze.  Access is defined by the retrieval of image data.  Transferring is the process of 

communicating retrieved image data.  The conversion process maps data into the required 

format.  Modification includes applying filters, cropping and transforming formatted 

data.  The last scope point, analysis, encompasses using vision techniques to understand 

the image data.  

2.1. BACKGROUND ON COMPUTER VISION

The computer vision field has grown significantly since its founding in the 1970s 

due to the complex nature of computer vision problems [Shah, 2002].  In the last decade, 

improved sensor and memory technologies have further fueled computer vision growth. 

Thermal infrared and near-infrared sensors are being explored as information providing 

alternatives for computer vision systems that operate in the visible spectrum. 

Improvements in computer technology have allowed the computer vision and computer 

graphics fields to become highly interrelated [Rockwood, 1999].  Computer graphics is 



6

defined as the process of building a computer model and then displaying them with 

algorithms to produce an image.  Similarly computer vision is the process of creating a 

computer model from an image.  The increased interrelation of these fields has allowed 

many researchers to draw inspiration from both fields.  

Feature-based techniques have also recently become a trend in the computer 

vision industry for the purpose of object recognition.  These techniques allow particular 

aspects of an object to be analyzed.  Some researches have utilized sensor integration to 

further computer vision systems.  Such integration has been used to develop three 

dimensional environmental model spaces.  Other types of sensor integration have allowed 

new types of sensory information to be incorporated into observed environmental models. 

For instance by using both infrared and visible wavelength sensors, both observational 

and thermal information from the environment can be preserved.  

Various approaches have been demonstrated for the analysis of images.  These 

approaches are highly dependent on application and scene complexity.  They range from 

fixed algorithms for highly constrained situations, e.g. Stanley et al. [Stanley, 2006] to 

more flexible intelligent means to handle complex situations.  Neural network based 

approaches are of much interest for handling highly variable information from multiple 

image features.

2.2. COMPUTER VISION APPLICATIONS

This section discusses recent computer vision research and applications 

completed for the purpose of object detection and surveillance.  Neural network 



7

processing is emphasized. Research herein was completed with a variety of sensors 

including visible, thermal infrared and near-infrared wavelength specific cameras.  

2.2.1.  Small Target Detection in High Clutter.  Shirvaikar et al. [Shirvaikar, 

1995] developed a neural network filter to detect very small targets in thermal infrared 

images.  High-resolution aerial imagery of an environment was investigated.  This 

algorithm eliminated the need for feature extraction, as thermal raw gray level intensities 

were descriptive enough to be inputted to the neural network.  A backpropagation 

training algorithm was chosen to train the network.  It was found that for small target 

tasks, a neural network filter performed very well in thermal infrared imagery.

2.2.2.  Multiple Neural Networks for Target Recognition.  Correia et al.

[Correia, 2001] automatically detected motor vehicles in highly cluttered infrared images 

in this research.  To perform object detection, several small multi-layer-perceptron neural 

networks were modularly combined into a larger neural network.  This research 

demonstrates that tanks, trucks, cars, airplanes and helicopters were capable of being 

classified with thermal infrared images.

2.2.3.  Face Recognition in Dark Environments.  Through this research, 

Friedrich et al. [Friedrich, 2002] explore the capabilities that infrared sensors can provide 

to specific computer vision problems.  This research reported that in certain situations 

thermal infrared imaging can provide more invariant images than a visible imaging 

counterpart, especially in poor lighting conditions.  It is interesting to note that after 

preprocessing the image with a customized algorithm, Fredrich and Yeshurun then note 

the applicability of commonly used face detection methods used in the visible light 



8

domain.  Despite the differing spectral band information, commonly used algorithms 

could be used in both cases.

2.2.4.  Algorithmic Object Detection.  Sentenac et al. [Sentenac, 2004] 

demonstrate that customized algorithms can be used to detect abnormal and critical 

situations in a monitored environment.  By utilizing low-cost cameras operating in the 

near-infrared spectral band along with an illuminating IR source, temperature 

characteristics of the environment can be measured [Sentenac, 2002].  Near-infrared 

sensors were selected because of their ability to measure features of fire appearance, load 

displacements, and smoke.  Through specific feature extraction of the observed 

environment, algorithms could be developed to determine if a fire, smoke, or movement 

of cargo was present within an aircraft.

2.2.5.  Near-Infrared Face Detection.  In this research conducted by Dowdall et 

al [Dowdall, 2003], face detection and skin detection in near-infrared images is explored. 

This research notes that human skin and facial features have specific reflective qualities 

independent of the nationality of the human.  This research also notes that near-infrared 

surveillance systems can remain unobtrusive and covert as the eye does not respond to 

near-infrared light.  Ultimately this research demonstrates that the unique reflective 

qualities of certain objects can be exploited to develop optimal detection systems.

2.2.6.  Illumination Invariant Face Recognition.  Li et al. [Li, 2007] expands 

previous face detection research using near-infrared imaging by developing a face 

recognition system.  Local binary patterns are calculated over the image to describe sub-

windows within the image.  The most indicative sub-windows or features are selected to 

construct a face-matching engine.  Linear Discriminative Analysis, a statistical technique 



9

of finding linear relationships between objects, was used on the features to determine 

which were most indicative of faces.  The results of this research demonstrate the need 

for feature pruning to develop accurate and fast object recognition systems.  

2.2.7.  Pattern Recognition for Detecting Human Heads.  Work completed by 

Bankman et al. [Bankman, 2008], performs segmentation on infrared image to target 

human heads for the purpose of military and civilian applications.  The proposed 

algorithm utilizes thermal infrared imagery to locate the shape of a human head through 

radiance studies.  The algorithm first locates target areas within the image of typical skin 

thermal intensities.  Next a Gaussian filter is applied to the located blobs to smooth edges 

before extracted three features.  The three extracted features include compactness (the 

measure of an object’s circularity), chain code (a one-dimensional array describing the 

border of an object), and radial distances of the object (defined as the distance from each 

perimeter pixel to the centroid of the object).  These features were selected in particular 

to detect round shapes such as human heads that would be detected in thermal imaging. 

The algorithm used two neural network classifiers to train the detection system.

2.2.8.  Recognizing Targets Using Artificial Neural Networks.  In this study 

completed by Aytac et al. [Aytac, 2009], multilayer artificial neural networks are used to 

identify patterns acquired from low-cost infrared sensors in an indoor environment. 

These patterns are described by infrared intensity measurements that help define the 

surface, geometry and location of the observed environment.  Two training algorithms 

were used for the ANN, the back-propagation algorithm and the Levenberg-Marquadt 

algorithm.  This work demonstrates that simple infrared sensors can be effectively trained 

to classify objects in a specific environment.



10

2.3. INTELLIGENT ANALYSIS APPROACHES

This section discusses intelligent analyses theorems that can be applied to 

computer vision problems.

2.3.1.  Neural Network Classifier.  Various target features within an image may 

be determined and feature vectors created as in the research by Watkins et al. [Watkins, 

2009].  The target classification can be accomplished using these vectors as inputs to a 

backpropagation multi-layer perceptron network.  Training from known input vectors, as 

from sample images or image models, provides the classification capability.  Feature 

vectors from unknown images are classified by their similarity to the training set.

2.3.2.  Adaptive Resonance Theory.  Carpenter et al. [Carpenter, 2009] 

developed a set of algorithms called Adaptive Resonance Theory (ART) based on 

principles on cognitive theory of how the brain handles objects and events developed by 

Grossberg [Grossberg, 1980].  ART predicts links between Consciousness, Learning, 

Expectation, Attention, Resonance and Synchrony to describe how brains adapt in real 

time to a rapidly changing world.  ART was developed to better emulate the way in 

which humans learn, quick adaptation to new experiences is emphasized without 

significantly forgetting previous experiences.  ART algorithms can be used in large-scale 

applications such as database prediction, airplane design and autonomous adaptive 

robots.  Neural networks based on ART principles are capable of clustering collections of 

input patterns.  The first neural network ART developed was capable of clustering binary 

input patterns while unsupervised.   



11

2.3.3.  ARTMAP.  ARTMAP networks are a continuation of the work done with 

Adaptive Resonance Theory [Carpenter, 2005].  ARTMAP allows supervised networks to 

be developed.  Supervised learning requires a sample training set that has been pre-

classified into the set of wanted output categories.  ARTMAP systems have been found to 

have a simplicity of design and robust performance in a variety of applications including 

some in the computer vision domain.  Many ARTMAP variations have been proposed 

throughout its history.  Fuzzy ARTMAPs combines fuzzy logic and adaptive resonance 

theory by exploiting a similarity of fuzzy subsethood and ART learning principles 

[Carpenter, 1992].  Ellipsoid ARTMAP was developed based on the same ideas founded 

in Fuzzy ARTMAPS [Anagnostopoulos, 2001].  Fuzzy ARTMAPs aggregate input data 

using hyper-rectangles while Ellipsoid ARTMAPs use hyper-ellipsoids.   Semi-

supervised Ellipsoid ARTMAPs (ssEAM) and semi-supervised Fuzzy ARTMAPs 

(ssFAM) are further variations of ARTMAP architecture that is suitable for classification 

tasks [Anagnostopoulos, 2002].  Semi-supervised learning allows the architectures to 

have zero error after training while preserving restrained learning times as explained by 

Le et al. [Le, 2005].  Systems using ssEAM has been proved to quickly and robustly 

discriminate between classes of input data as demonstrated by Xu et al. [Xu, 2004] for 

cancer classification.  



12 

 

3.  BACKGROUND AND APPROACH 

 

 Automatic surveillance systems can be used to collect information from an 

environment in order to monitor traffic or detect abnormal or critical situations.  Current 

surveillance systems often utilize visible or infrared technology to collect information 

from the observed environment. While thermal infrared imaging and visible imaging 

have both been explored extensively in security applications, near-infrared imaging has 

remained largely uncharted.   

 

3.1. CURRENT SURVEILLANCE APPROACHES 

The research that inspired “A Comparison of Near-Infrared and Visible Imaging 

for Surveillance Applications” is detailed below.   

 3.1.1.  Pedestrian Bridge Surveillance.  In this research completed by Watkins 

et al. [Watkins, 2009], a computer vision surveillance system was created for the purpose 

of automatically detecting people moving across an outdoor pedestrian bridge.  This 

project produced a surveillance system that was capable of real-time automated detection 

and tracking in a variable environment.   

In the developed system, visible images were processed from an unmoving 

camera focusing on the bridge.  After noise filtering was completed, a ‘region-of-interest’ 

was cropped from the images and was arbitrarily segmented into smaller vertical 

sections.  Fourteen features known for working well in person-detection applications 

were extracted from each segmented section.  The calculated features were then used to 

train a standard backpropagation multi-layer perceptrons (MLP) neural network, resulting 



13 

 

in a classifier capable of effectively detecting pedestrian traffic.  Because the system was 

implemented outdoors, the images were highly variable due to weather patterns and 

lighting conditions.  Image sequences with a variety of people at different times in the 

year and day were collected to account for the complex environment.  

The system implementation was found to have high pedestrian detection accuracy 

despite the variable environment and system-introduced noise.  The selected features and 

neural network architecture led to low computational complexity making real-time person 

detection a possibility for this system.  This work was preceded by similar object 

detecting and tracking algorithms [Stanley, 2006] for an outdoor pedestrian bridge 

developed for use in an image-processing curriculum [Stanley, 2004]. 

3.1.2.  Multi-class Cancer Classification.  Through this research, Xu et al. [Xu, 

2004] propose using a semi-supervised Ellipsoid ARTMAP (ssEAM) architecture 

developed by Anagnostopoulos et al. [Anagnostopoulos, 2002] for cancer classification.  

This architecture defines categories of data through embedded hyper-ellipsoids in the 

feature space.  The semi-supervised portion of the architecture allows multiple classes to 

be contained within a training category.  Semi-supervision within the architecture can be 

customized by setting a tolerance parameter.  This parameter defines how often multiple 

classes can be contained within one category.  This type of design allows both on-line 

and off-line learning, has low computational complexity, and can handle large amounts of 

data with many dimensions efficiently.  

The developed ssEAM architecture was applied to a cancer classification 

problem.  The problem encompassed two datasets.  Each dataset had a small number of 

very multi-dimensional features belonging to a variety of classes.  The results indicated 



14 

 

that ssEAM was capable of effectively classifying the data sets.  Results also indicated 

that the number of features introduced to the architecture could affect the classification 

performance.  In the first dataset, the classification rate deteriorated when all features 

were used and when a minimal number of features were used.  In the second dataset, 

reduction of the number of features deteriorated the classification rate.  The research 

stresses the importance of optimizing the feature set and the tolerance parameter of the 

ssEAM architecture in order to create an efficient classifier.  This work was preceded by 

much research in Adaptive Resonance Theory as outlined in Section 2.3. 

 

3.2.  SURVEILLANCE METHODS USED IN THIS RESEARCH 

As shown in the previous sections, significant surveillance research has been 

completed in the infrared and visible light domains.  Detection systems in both domains 

have a variety of advantages and disadvantages.  In order to explore the potential of near-

infrared detection systems, the following algorithm is proposed according to the 

computer vision problem scope proposed by Miller et al. [Miller, 2011].  This algorithm 

is fashioned to intelligently process an image to determine if persons, bicycles or motor 

vehicles are present within the environment. 

 3.2.1.  Access.  In order to obtain image sequence data, a modified visible light 

camera was used to collect short near-infrared wavelength videos of the environment.  A 

visible light camera of the same type also collected short videos of the environment for 

comparative uses. A variety of indoor and outdoor environments featuring a variety of 

subject traffic were imaged by both cameras.  In depth descriptions of the environments 

manipulated for this research can be found in Section 4. 



15 

 

3.2.2.  Transfer.  For the purpose of this research, image sequences were 

manually transferred to the processing computer.  Automated information transfer can be 

explored in future research similar to methods proposed by Watkins et al. [Watkins, 

2009], so low computational complexity is considered in the scope of this project.  

3.2.3.  Convert.  A video segmentation program was used to parse the 

information collected from the modified camera at a specified frame rate into separate 

image sequences.  Visible RGB images were then converted to gray-scale.  Near-infrared 

images were saved in two locations.  In one location the near-infrared images were 

converted to gray scale, in the second the red channel of the near-infrared images was 

conserved.  These three converted types of image sequences (gray-scale visible, gray-

scale near-infrared, and red channel near-infrared) were then fed to an image 

modification algorithm to prepare for intelligent classification.  The image frame 

conversion process is fully explained in Section 5.1. 

3.2.4.  Modify.  The modification algorithm proposed in this research was 

inspired by the work completed by Watkins et al. [Watkins, 2009] for the purpose of 

pedestrian bridge surveillance.  

 Pixel noise is often prevalent in computer vision systems.  Noise can be 

attributed to data transmission errors, image recording errors, poor lighting conditions, a 

variant environment, and many other factors.  In this research, the proposed modification 

algorithm used median filtering to reduce the effects of pixel noise.  The median filtering 

operation is outlined in Section 5.2. 

After noise filtering, image sequences were compared to a reference image.  A 

reference image was defined as the first image in a sequence that contained no abnormal 



16 

 

or critical surveillance situations.  An absolute pixel difference between each image in a 

sequence and its corresponding reference image were found.  The difference image 

process is shown in Section 5.3. 

The prepared difference image was then thresholded to remove insignificant pixel 

differences that occur in the sequence image (Section 5.4). The resultant thresholded 

image was converted to a binary image, representative of important pixel changes.  

Object segmentation was performed on the binary image by first finding blobs 

based on similar neighboring pixels.  Median filtering was then used to preserve blob 

edge boundaries, working similarly as the Gaussian filter used by Bankman et al. 

[Bankman, 2008].  A basic hole-fill operation was applied to the blobs within the images.  

The object segmentation portion of the algorithm, as explained in Section 5.5, fully 

prepares the images for feature extracting and intelligent processing during the analysis 

portion of the computer vision problem scope. 

3.2.5.  Analysis.  The analysis portion of the proposed research includes feature 

extraction of the modified image blobs and intelligent processing of the three different 

types of images (gray-scale visible, gray-scale near-infrared, and red channel near-

infrared).  The computer vision system was tasked to determine if a processed blob was a 

person, a bicycle, a motor vehicle, or insignificant clutter. 

Twenty-four geometric and photometric object features were calculated for each 

blob of significant size located by the modification algorithm.  The twenty-four 

calculated features include: height, width, aspect ratio, area, perimeter, convex hull area, 

solidity, compactness, horizontal centroid offset, vertical centroid offset, Euler number, 

skewness, kurtosis, the second, third and fourth order moments, ellipse major axis length, 



17 

 

ellipse minor axis length, ellipse eccentricity, ellipse orientation and the first, second, 

third and fourth Hu moments.  The calculation process and purpose of each of these 

features is explained in Section 5.6.  Fourteen of these features were calculated by 

Watkins et al. [Watkins, 2009].  The remaining ten features were selected because they 

do not require an excessive amount of computational resources and are commonly used 

in many computer vision problems. 

To determine the most essential features for describing blobs within the image 

sequences feature discrimination was necessary.  Linear Discriminative Analysis (LDA), 

also used by Li et al. [Li, 2007], was used to evaluate the importance of each feature to 

classification.  The resultant feature rankings, shown in Section 7.1, were used to prune 

the twenty-four features to an optimal grouping per class.  The LDA process is further 

explained in Section 6.1. 

The feature vectors provided give intelligent architectures the ability to 

discriminate among clutter, persons, bicycles and motor vehicles.  A basic MLP 

backpropagation neural network (MLP) and a semi-supervised Ellipsoidal ARTMAP 

(ssEAM) were selected for use as intelligent classifiers.  The MLP network was selected 

to mimic previous research by Watkins et al. [Watkins, 2009] and the ssEAM network 

was selected for its proven capabilities of fast multi-class discrimination by Xu et al. [Xu, 

2004].   

In both the MLP and ssEAM architectures, feature vectors and corresponding 

class labels were delivered to the architecture for training purposes.  The two networks 

were trained first with the entire original feature vectors (MLP-all, ssEAM-all) and with 

the LDA reduced feature vector (MLP-reduced, ssEAM-reduced).  Each of the four 



18 

 

network templates (MLP-all, ssEAM-all, MLP-reduced, ssEAM-reduced) were trained 

using the gray-scale visible sequences, the gray-scale near-infrared sequences, and the 

red channel near-infrared sequences.  Input parameters such as learning rate and the 

tolerance parameter that control the architectures were manipulated to find best case 

outputs.  Classification yields of each network as well as train and test time statistics 

allowed for the visible and near-infrared capabilities to be compared as well as the 

performance of the MLP and ssEAM architectures. 

To further compare the three image types, data fusion principles were explored.  

Optimal configurations of each of the four architectures templates (MLP-all, ssEAM-all, 

MLP-reduced, ssEAM-reduced) were trained and tested on all three image types.  For 

instance, the MLP-all network trained for optimal use on visible gray-scale images was 

tested with the visible gray-scale images, the near-infrared gray-scale images and the 

near-infrared red channel images.  The results of these tests give a measure of the 

uniqueness of each of the three types of image data. 

Through analysis of reduced feature sets, neural network architecture, and data 

fusion many comparisons were able to be made between near-infrared and visible image 

surveillance capabilities.  The MLP neural network architecture is described in Section 

7.2.  The ssEAM architecture is described in Section 7.3.  The data fusion completed is 

outlined in Section 7.4. 



  19 

    

4.  IMAGE SET DATA COLLECTION 

 

 In order to develop the “A Comparison of Near-Infrared and Visible Imaging for 

Surveillance Applications” algorithm, a variety of images were collected.  In varying 

environments, different persons, bicycles, and vehicles were observed.  Image sequences 

were taken at different times of the day as well as during varying weather conditions.  

The following sections describe the equipment used for image collection as well as the 

observed environments.   

 

4.1  IMAGING TECHNOLOGY 

  Two Canon Powershot G6 cameras were used for this research.  One camera was 

unmodified to collect images within the visible wavelength spectrum.  The second 

camera was modified to collect images within the near-infrared spectrum. The cameras 

were mounted to a modified standard camera tripod.  The cameras were mounted such 

that the foci of the two lenses were separated by eight inches.  Figure 4.1 shows the dual 

camera setup used for image collection. 

The near-infrared capable camera was modified such that only information above 

the 720 nm wavelength would be collected.  This modification required insertion of a 

low-pass CCD filter to eliminate the visible wavelength spectrum.  Additionally removal 

of the existing hot mirror filter was required to allow near infrared light to pass to the 

CCD.  All camera modification was completed by Ehab Eassa of Rochester, NY. 

The two cameras were used consecutively to collect movie clips of 640x480 

pixels.  These videos were stored as .avi files.  Collected .avi files were then segmented 



  20 

    

into image sequences using VirtualDub-1.9.11 developed by Avery Lee [Lee, 2012].  

Images were segmented at a one image per second frame rate and were stored as .jpeg 

images of 640x480 pixels.  VirtualDub is licensed under the GNU General Public License 

(GPL). 

  

 

Figure 4.1.  Dual Camera Setup.  

 

 

 

 

4.2  IMAGED ENVIRONMENTS 

 Seven different environments were observed within the developed image set to 

provide a variety of complex environments for object detection.  This section describes 

each of the environments and typical objects found within.  All images found in this  



  21 

    

 

section are the three channel (red, green and blue or RGB) images taken directly from the 

cameras. 

 4.2.1.  Brick Wall Scene.  One series of images was taken of subjects passing by 

a brick wall.  The images contained very little environmental clutter movement as no 

foliage was present in the scene.  Sharp shadows and cloud movement were the only 

observed clutter.  Image sequences in the environment included pedestrian, pet and 

bicycle traffic.  An example image of this environment is shown in Figure 4.2.  

 

 

 

Figure 4.2.  Brick Wall Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

 4.2.2.  Campus Building Scene.  A second series of images were taken by the 

side of a brick campus building.  The scene contained reflective windows as well as a 

variety of foliage causing high amounts of environmental clutter movement.  Pedestrian, 

pet and bicycle traffic were observed within the image sequences.  All traffic passed in  

 

  



  22 

    

front of a combination of brick walls and foliage.  An example of a typical Campus 

Building Scene image is shown in Figure 4.3.  

 

 

 

Figure 4.3.  Campus Building Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

 4.2.3.  Campus Library Scene.  An additional series of images, shown in Figure 

4.4, were collected by a campus library building.  This scenery also included highly 

reflective windows and foliage causing much environmental movement.  Traffic in the 

forms of pedestrians, pets and bicycles were imaged passing in front of tall foliage.   

4.2.4.  Pedestrian Bridge Scene.  A fifth series of images were taken of subjects 

on a pedestrian bridge.  This exact bridge was used by Stanley et al. [Stanley, 2004] for 

development of an image processing curriculum.  It was also used by Stanley et al. 

[Stanley, 2006] and Watkins et al. [Watkins, 2009] for traffic monitoring and surveillance.  

The bridge was surrounded by large trees and a variety of other foliage as shown in 

Figure 4.5.  Bridge rails partially cover traffic moving across the bridge.  Sharp shadows,  

 

  



  23 

    

cloud movement, background traffic and foliage movement resulted in a highly variable 

environment.  Bicycle and pedestrian traffic were observed within this image set. 

 

 

Figure 4.4.  Campus Library Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

4.2.5.  Indoor Hallway Scene.  In Figure 4.6, an example image of the Indoor 

Hallway Scene is shown.  Sequences from this scene contain pedestrian and object traffic.  

This scene features painted cinder block walls and a reflective tile floor.  Lighting to the 

room is provided by ceiling fluorescent lights and outdoor windows that are unobservable 

within the scene.  The outdoor windows provide some lighting variations, but the 

environment is typically stagnant.    

 

 

 

  



  24 

    

 

Figure 4.5.  Pedestrian Bridge Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure 4.6.  Indoor Hallway Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

4.2.6.  Urban Sidewalk Scene.  An urban sidewalk scene is observed in the sixth 

image sequence series.  This sequence features a downtown street and sidewalk with very 

little foliage.  Cloud movement and lighting variations were prominent in the image 

sequence series.  A variety of pedestrian, bicycle and manned vehicle traffic were  

observed passing in front of buildings and background foliage.  An example reference 

image of this environment is shown in Figure 4.7. 

  

  



  25 

    

 

Figure 4.7.  Urban Sidewalk Scene. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

 4.2.7.  Urban Street Scene.  The final environment observed features a street 

intersection in an urban area.  The scene contains minimal foliage.  Environmental clutter 

movement largely exists in the form of clouds.  A large variety of vehicle traffic such as 

cars, trucks and motorcycles were imaged within these sequences.  Vehicles were imaged 

passing in front of buildings, the street and other vehicles.  Some environmental objects 

such as street signs and traffic lights partially block traffic traveling through the scene.  

An example image of the Urban Street Scene is shown in Figure 4.8. 

  



  26 

    

 

 

Figure 4.8.  Urban Street Scene. (a) Near-Infrared Image. (b) Visible Image. 

  



27 

5. IMAGE PROCESSING ALGORITHM DESCRIPTION 

 

 This section describes the algorithm used for “A Comparison of Near-Infrared and 

Visible Imaging for Surveillance Applications” as shown in Figure 5.1.  Computational 

complexity is considered in this algorithm and was inspired by the results of the research 

by Watkins et al. [Watkins, 2009].   

 

 

 

 

 

Reference Image

(First Image) 

Import 

Reference Image

Observed 

Images

Original

Image Sequence

Gray-Scale 

or Red Channel 

Image 

Gray-Scale 

or Red Channel 

Image 

Noise-Filtered

Image 

Noise-Filtered

Image 

Difference Image

Threshold Image

Object

Segmentation

Object Feature

Calculation

Reference Image

(First Image) 

Import 

Reference Image

Observed 

Images

Original

Image Sequence

Gray-Scale 

or Red Channel 

Image 

Gray-Scale 

or Red Channel 

Image 

Noise-Filtered

Image 

Noise-Filtered

Image 

Difference Image

Threshold Image

Object

Segmentation

Object Feature

Calculation
 

Figure 5.1.  Algorithm Block Diagram. 

 

 

 

 



28 

Image sequences were acquired from seven different environments.  Image frames 

within these sequences included pedestrian, bicycle and vehicle traffic as well as no 

traffic.  The number of objects within the frame and directions of motion varied within 

the sequences.  Image frames were processed as shown in the block diagram, Figure 5.1, 

to calculate feature vectors of objects within the frame that could later be used to 

determine what type of objects are present in the current frame. Sections 5.1 – 5.6 explain 

the processes behind the blocks from Figure 5.1. Section 5.7 holds a collection of images 

that visualize blocks from Figure 5.1. All algorithmic code can be found in Appendix B. 

 

5.1.  IMAGE FRAME CONVERSION 

 For visible image sequence processing, the sequences images are first converted 

to gray-scale in order to reduce the image complexity for processing purposes (‘Gray-

Scale or Red Channel Image’ block in Figure 5.1). By converting to gray-scale, all pixel 

luminance information is preserved from the original infrared image while hue and 

saturation information is eradicated.  Additionally the image becomes much simpler and 

therefore much faster to process since each pixel in color-scale images have to be 

represented by three values (red, green, and blue or RGB) while pixels in gray-scale 

images are only represented by a single value.  The equation used to retain luminance 

information is shown in Equation 5.1.  A typical gray-scale visible reference and non-

reference image can be found in Figure A.44. 

 

0.2989 x (Red) + 0.5870 x (Green) + 0.1140 x (Blue) (5.1) 

 



29 

   Two separate methods were used to process the near-infrared image sequences.  

The first method matches that of the visible image process by converting the near-

infrared image to gray-scale.  A typical gray-scale near-infrared reference and non-

reference image can be found in Figure A.51.  The second method only retains the red 

channel of the three channel RGB near-infrared image.  Near-infrared light extends in 

wavelength from the red edge of the visible spectrum; therefore much information is 

stored in the red channel of the near-infrared image.  An example of a typical red channel 

near-infrared reference and non-reference image can be found in Figure A.58. 

 

5.2.  FILTERING 

 All visible and near-infrared sequence images were median filtered over a five-

by-five-pixel neighborhood in order to reduce noise (‘Noise-Filtered’ block in Figure 

5.1).  Median filtering is the process of replacing the value of a pixel with the median 

intensity value of the neighboring pixels.  This filtering was selected in order to 

successfully reduce a variety of noise.  Median filters are very successful at reducing salt 

and pepper noise; noise which results from errors in data transmission.  These types of 

errors are common in many security systems where image data must be transferred from 

location to location for processing, which may be appropriate in future security 

applications .  Additionally median filters can successfully reduce Gaussian noise, which 

is common in any imaging or data transmission system [Gonzales, 2008]. 

 

 



30 

5.3.  DIFFERENCE IMAGE 

 The next portion of the algorithm allows a comparison to occur between the 

reference image and the observed image (‘Difference Image’ block in Figure 5.1).  Each 

pixel value of the median filtered reference image is subtracted from the pixel value of 

the median filtered non-reference image and the absolute value is then found.  This 

subtraction method is illustrated by Equation 5.2.    

 

differenceImage(i,j) = absolute value( objectImage(i,j) – referenceImage(i,j) ) (5.2) 

  

The resulting image represents the pixel differences between the reference and 

non-reference image.  The difference image highlights environmental locations that have 

changed significantly in intensity over time.  These environmental locations can be 

examined to locate target objects.  An example of visible, gray-scale near-infrared, and 

red channel near-infrared difference images can be found in Figure A.46, Figure A.53 and 

Figure A.60.  

 

5.4.  THRESHOLDING 

 Thresholding of the difference image in this research is completed adaptively 

(‘Threshold Image’ block in Figure 5.1).  In order to disregard insignificant changes from 

the reference image to the non-reference image, small pixel intensities are set to having 

no intensity.  Then in order to highlight all significant changes, all other pixel intensities 

are transformed to the maximum pixel intensity.   

  



31 

To perform this thresholding, first the histogram of the difference image is plotted 

and analyzed.  From the histogram, the lowest pixel intensity of the difference image was 

found as shown in Equation 5.3.  Using the lowest pixel intensity, an upper limit is 

calculated to include the top ninety-five percent of pixels in terms of intensity.  This 

upper limit is calculated through Equation 5.4.  The lower limit is calculated by 

subtracting a pixel from the upper limit, which is shown in Equation 5.5.  Using the upper 

limit, pixel intensities above and equal to that limit were set to the maximum intensity 

value (255).  Using the lower limit, pixel intensities below and equal to that limit were set 

to the minimum intensity value (0).  The equations to set these intensities are shown in 

Equation 5.6 and Equation 5.7.  The thresholded images will highlight any significant 

changes in the environment including the introduction of target traffic.  An example of 

visible, gray-scale near-infrared and red channel near-infrared thesholded images can be 

found in Figure A.47, Figure A.54 and Figure A.61. 

 

i = i    when  H(i – 1) = 0  and  H(i) ≠ 0 (5.3) 

upperLimit = (255 – i) * 0.05 (5.4) 

lowerLimit = upperLimit - 1 (5.5) 

if  pixel >= upper  then  pixel = 255 (5.6) 

if  pixel <= lower  then  pixel = 0 (5.7) 

 

 

 



32 

5.5.  OBJECT SEGMENTATION 

 Once the binary thresholded image is obtained, object segmentation must be 

completed (‘Object Segmentation’ block in Figure 5.1).  The intent of object 

segmentation is to highlight a particular target type such as pedestrians to facilitate 

identification or classification.  In particular, the binary comparison produces multiple 

“blobs” associated with aspects of the target (such as the silhouette of a face or the entire 

body).  Once target blobs are grouped and highlighted, feature calculations can be 

performed on each located object. 

 In order to reduce small clutter within the image, a second median filtering 

operation with a five-by-five pixel neighborhood is performed on the thresholded image.  

This filtering operation will eliminate pixels that are not neighbored by twelve pixels that 

have the maximum intensity.  Additionally, this filtering operation will help to fill holes 

in the object blobs.  In existing object detection pre-processing algorithms, a flood fill of 

holes in the image is used to prepare the image for feature calculation [Friedrich, 2003].  

In addition to median filtering, a basic hole fill algorithm is used to better define target 

objects moving through the environment.  The hole fill algorithm fills modifies pixels of 

no intensity to have the maximum possible intensity when it is surrounded by pixels of 

the maximum intensity. 

 Once holes in the image have been filled, the different blobs within the image are 

found with a search of pixel connectivity to its eight neighbors.  Different blobs are 

defined by the bounding box that contains them.  Bounding boxes of blobs that overlap 

are merged together into a single bounding box.  Additionally, bounding boxes of blobs 

that are within three pixels of each other are also merged.  Once all close bounding boxes 



33 

are merged together, those boxes of insignificant sizes are eliminated from the target 

object group.  At the completion of the object segmentation part of this algorithm, a list of 

target object bounding boxes are compiled.  An example of visible, gray-scale near-

infrared, and red channel near-infrared images containing target object bounding boxes 

can be found in Figure A.49, Figure A.56 and Figure A.63. 

 

5.6.  FEATURE CALCULATIONS 

   Discrimination of potential targets from non-target activity or clutter may be 

done by assessing or processing a number of features (‘Object Feature Calculation’ block 

in Figure 5.1).  For an automated system, computer-based processing could alert users to 

potential targets of interest.  Key considerations for a real-time automated system are the 

optimal set of features (in this case for near-infrared images) and the computational 

complexity associated with the processing.  In this research, twenty-four feature vectors 

are computed for each target object that will later define the classification system for 

surveillance traffic.  These twenty-four geometric and photometric object features were 

selected to allow further analysis to find the optimal group of features to pass to a 

classification system.  The calculated features include: height, width, aspect ratio, area, 

perimeter, convex hull area, solidity, compactness, horizontal centroid offset, vertical 

centroid offset, Euler number, skewness, kurtosis, the second, third and fourth order 

moments, ellipse major axis length, ellipse minor axis length, ellipse eccentricity, ellipse 

orientation and the first, second, third and fourth Hu moments. 

 5.6.1.  Height (H).  Height is a scalar representing the number of pixels that 

define the height of the bounding boxes of objects. 



34 

 5.6.2.  Width (W).  Width is a scalar representing the number of pixels that define 

the width of the bounding boxes of objects. 

 5.6.3.  Aspect Ratio (AR).  Aspect ratio is described by the proportionality 

between the object bounding boxes width and height.  The equation defining aspect ratio 

can be found in Equation 5.8. 

 

AR = H/W (5.8) 

  

5.6.4.  Area (A).  Area is a scalar that represents the total number of pixels that 

have an intensity value within the bounding boxes of objects. 

 5.6.5.  Perimeter (PER).  The perimeter of the object is a scalar value that 

represents the pixel distance around the boundary of the object.  In the MATLAB 

function used for calculation, perimeter can not be calculated accurately for disconnected 

objects. 

 5.6.6.  Convex Hull Area (CA).  The convex hull area is a scalar that represents 

the total pixel area of the convex hull of the object.  The convex hull is the smallest 

convex set that can contain the examined object.  A convex set is characterized by a 

straight line segment joining any two points in the object while still remaining entirely in 

the object.  

 5.6.7.  Solidity (SLD).  Solidity is a proportional scalar value that takes into 

consideration the convex deficiency of the object.  In particular, this scalar specifies the 

proportion of pixels in the object versus the pixels included in the convex hull.  The 

equation defining solidity is found in Equation 5.9. 



35 

SLD = A/CA (5.9) 

  

5.6.8.  Compactness (CMP).  Compactness is a scalar proportion that indicates 

how dense the object is.  Compactness is calculated by proportioning the area of the 

object and the perimeter of the object as shown in Equation 5.10. 

 

CMP = A/P*P (5.10) 

 

 5.6.9.  Horizontal Centroid Offset (COX).  The horizontal centroid offset is 

specified by a scalar value.  This value represents the horizontal coordinate of the center 

of mass of the object. 

 5.6.10.  Vertical Centroid Offset (COY).  The vertical centroid offset is specified 

by a scalar value.  This value represents the vertical coordinate of the center of mass of 

the object. 

 5.6.11.  Euler Number (EN).  The Euler number of the object is a scalar value 

that takes into considerations object count and object holes.  The equation to calculate the 

Euler number can be found in Equation 5.11.  Since part of the developed algorithm 

included filling in holes, this scalar will typically represent the number of blobs that make 

up the examined object. 

 

EN = totalNumberObjects – totalNumberObjectHoles (5.11) 

 

 



36 

 5.6.12.  Skewness (SKW).  Skewness  represents the way pixels are distributed 

within an object through the measurement of how asymmetric the data is around the 

sample mean.  Data that is directed left of the mean has a negative skewness, while data 

that is directed right of the mean has a positive skewness.  The equation defining 

skewness is shown in Equation 15.2.  The mean of the data is defined as µ, the standard 

deviation is defined as ơ and E(t) is defined as the expected value of the value t. 

 

S = ( E (x-µ) 
3 

) / ( ơ
3 
) (5.12) 

 

 5.6.13.  Kurtosis (KUR).  Kurtosis also represents the way pixels are distributed 

within an object through the measurement of how outlier-prone a distribution is.  

Distributions that are more outlier-proned than the normal distribution have a kurtosis 

scalar value of greater than three.  The normal distribution kurtosis value has a value of 

three.  Distributions that are less outlier-proned have a kurtosis value less than three.  The 

equation defining kurtosis is shown in Equation 5.13.  The mean of the data is defined as 

µ, the standard deviation is defined as ơ and E(t) is defined as the expected value of the 

value t. 

 

K = ( E (x-µ) 
4 

) / ( ơ
4 

) (5.13) 

 

 5.6.14.  Order Moments (M2, M3, M4).  The second, third and fourth order 

moments return a quantitative measure of the shape of a set of points based on the order 

of the moment.  The equation defining how to calculate the central moments is shown in 



37 

Equation 5.14.  The order is defined as the value k and E(t) is defined as the expected 

value of the value t. 

 

MK = E (x-µ)
 k 

(5.14) 

 

 5.6.15.  Ellipse Major Axis Length (MJL).  The major axis length is calculated 

through examination of the ellipse that has the same second central moments as the 

object.  The major axis length is the scalar value represented by the pixel length of the 

major axis of the calculated ellipse.  

 5.6.16.  Ellipse Minor Axis Length (MNL).  The minor axis length is calculated 

through examination of the ellipse that has the same second central moments as the 

object.  The minor axis length is the scalar value represented by the pixel length of the 

minor axis of the calculated ellipse.  

 5.6.17.  Ellipse Eccentricity (ECC).  Eccentricity is calculated through 

examination of the ellipse that has the same second central moments as the object.  

Eccentricity is a scalar value that represents the eccentricity of the calculated ellipse.  

Eccentricity is described by the proportionality of the distance from the center of ellipse 

to the focus of the ellipse and the distance from the center of the ellipse to the vertex.  

This equation is defined by Equation 5.15. 

 

ECC = ellipseFoci / MJL (5.15) 

 

 



38 

 5.6.18.  Ellipse Orientation (OR).  Orientation is calculated through examination 

of the ellipse that has the same second central moments as the object.  Orientation is a 

scalar value that represents the angle between the x-axis and major axis of the calculated 

ellipse.   

 5.6.19.  Hu Moments (HU1, HU2, HU3, HU4).  The first, second, third and 

fourth order Hu invariant moments return a quantitative measure of the shape of a set of 

points based on the order of the moment that are invariant under different adaptations.  

The adaptations that orders of Hu moments are invariant to are rotation, translation, and 

scaling. 

 

5.7.  ALGORITHM EXAMPLE CASE 

 The images in this section demonstrate how the proposed image processing 

algorithm works.  Figure 5.2 shows a reference image and an observed image taken 

directly from the near-infrared enabled camera.  Figure 5.3 shows the image frame 

conversion step of the algorithm.  In the image pictured, gray-scale conversion was 

performed.  Figure 5.4 displays the noise-filtered reference and observed images.  Figure 

5.5 represents the difference image calculated between the observed and reference image.  

The histogram of the absolute difference image is shown in Figure 5.6.  Figure 5.7 shows 

the threshold image obtained from histogram analysis.  The methods used for object 

segmentation output the image as shown in Figure 5.8.  The final important objects 

selected for feature vector calculation are bounded by boxes in Figure 5.9.  In this 

example, two important objects were found, one representing a person object and one  

 



39 

representing a clutter object.  Other image processing algorithm example cases are 

explored in Appendix A. 

  

 

Figure 5.2.  Original Near-Infrared Image. (a) Observed Image. (b) Reference Image. 

 

 

 

Figure 5.3.  Gray-Scale Image. (a) Observed Image. (b) Reference Image. 

  

  



40 

 

 

Figure 5.4.  Noise-Filtered Image. (a) Observed Image. (b) Reference Image. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5.  Absolute Difference Image. 

 

 

  



41 

 

Figure 5.6.  Histogram of Absolute Difference Image, Pixel Intensity vs. Pixel Count. 

 

 

 

 

 

 

 

 

Figure 5.7.  Threshold Image. 

 



42 

 

 

Figure 5.8.  Object Segmentation Image. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9.  Algorithm Targeted Objects. 



43 

6. INTELLIGENT PROCESSING EXPERIMENTS 

 

This section gives a detailed description of the experiments completed for “A 

Comparison of Near-Infrared and Visible Imaging for Surveillance Applications.”  Image 

sequences were collected from a variety of environments, which included pedestrian, 

bicycle and vehicle traffic.  Individual image frames were processed to locate important 

‘blobs’ or sub-images within the larger image frame.  These ‘blobs’ can be classified as 

person, bicycle, vehicle or clutter objects.  Twenty-four features were calculated for each 

‘blob’ to be used for intelligent classification.  The calculated features were then used to 

complete the following experimentations.  Results and discussion of these experiments 

can be found in Section 7.  

 

6.1.  LINEAR DISCRIMINANT ANALYSIS 

In order to correctly categorize ‘blobs’ into their respective classes of person, 

bicycle, vehicle or clutter, features are needed that are similar across an image set for a 

specific class, but are dissimilar to the same features of other classes.  To determine 

which of the twenty-four collected features have the capability to discriminate among the 

four blob classes, Linear Discriminate Analysis (LDA) was performed.  LDA is often 

used to reduce the dimensionality of a computer vision problem and in this research it is 

used to reduce the dimensionality of the applicable feature space.  LDA reduces the 

dimensionality of the feature space by finding linear relationships of features across an 

image set. 



44 

In order to evaluate each feature’s capability to classify, Single Feature Analysis, 

Forward Selection and Backward Elimination were used.  Single Feature Analysis is 

defined as the process of training a classifier using an individual feature.  Forward 

Selection is defined as the process of training a classifier by slowly adding best 

performing features.  First, classifiers are trained with individual features.  The individual 

feature allowing the best classification accuracy is preserved in the classifier and the 

process is repeated by adding the unused features.  Backward Elimination is defined as 

the process of training a classifier by starting with the full set of features and slowly 

eliminating poor performing features.  First, classifiers are trained by eliminating one 

feature from the feature set.  The best performing classifier is preserved and recursively 

all remaining features are individually removed.  Forward Selection and Backward 

Elimination give information as to how features and feature combinations affect 

classification capabilities.   

In this research, fifty trials were completed on each feature combination being 

tested.  Each trail randomly removed 10% of each class type from the train set and 

preserved them in a test set.  Single Feature Analysis, Forward Selection and Backward 

Elimination were completed on the set.  Results from these LDA techniques can be found 

in Section 7.1.  A reduced feature set of six features was selected based on reported 

classifier accuracies.  All LDA experimentation was performed by the computer vision 

researcher, Michael Ryan Bales.  Bales has completed similar research in the visible light 

domain and was a valuable asset in analyzing the feature set. 

 

 



45 

6.2.  MLP NEURAL NETWORK CLASSIFICATION 

Both the original feature vectors described in Section 5.6 and the reduced feature 

vectors described in Section 6.1 were used to train and test a neural network classifier.   

The MLP [Hagan, 1996] architecture used for classification with the original feature 

vectors consisted of twenty-four input nodes, twenty-four nodes in a single hidden layer, 

and four output nodes corresponding to person, bicycle, vehicle and clutter (24x24x4).   

The architecture selected for classification with the reduced feature vectors consisted of 

six input nodes, six nodes in a single hidden layer and four output nodes (6x6x4). 

In both MLP architectures the following settings were applied.  Log sigmoid 

functions were selected for the activation function in both the hidden and output layers 

just as in previous work [Watkins, 2009].  Network weights were randomly initialized 

and were updated using a standard back-propagation algorithm.  Input feature vectors 

were normalized by mapping to a range of [-1,1].   

Feature vectors describing persons, bicycles, vehicles and clutter were read and 

used for training and testing of the aforementioned network architectures.  These 

architectures were simulated using built-in MATLAB functionality.  A total of 1489, 

1448 and 1458 vectors were collected from the visible, gray-scale near-infrared and red 

channel near-infrared images respectively.  A total of 40 videos were processed into 

image sequences.  36 videos contained persons, 18 contained bicycles, 10 contained 

vehicles and 40 contained clutter objects. Vectors were arranged into sets in the 

sequential order they were processed by the algorithm described in Section 5.   

To test the accuracy of the developed architecture, ten-fold cross validation 

methodology was used to generate train and test sets [Kohavi, 1995].  This methodology 



46 

was implemented by taking the original forty videos and breaking them equally into ten 

groups.  To ensure equal numbers of video types, first the vehicle videos were sorted, 

then the bicycle videos and finally the pedestrian videos.  Ten experiments were created 

where one of the ten groups was implemented as the test set and the remaining nine 

groups encompassed the train set.  All ten experiments were run on each of the two MLP 

architectures to better determine classifier accuracy. 

The following learning rates were used to train the architectures: 0.04, 

0.08…0.402.  The following momentum values were used to train the architectures:  

0.60, 0.64…0.96.  The built-in MATLAB functionality broke the training set into a 

training and cross-validation group.  Termination criteria for training included: 1) 

reaching a maximum of 30 epochs, 2) reaching the target accuracy goal of error rate less 

than 0.1%, 3) classification rate of cross validation set has not improved in 5 consecutive 

epochs, or 4) the classification rate is less than what had been found in a previous epoch. 

Architectures were delivered feature vectors as well as class labels of the train 

sets for training purposes.  Once training termination criteria had been reached, the 

trained network was tested on the train set and then the test set.  Each of the two MLP 

architecture used had four output nodes.  In order to determine the output classification, a 

winner-takes-all method was implemented.  The highest ranking output node was 

determined to be the classification of the given input vector.  Classification results were 

collected for both the training and testing sets.  Overall classification results were 

reported in terms of precision and recall as introduced by Bar-Ilan et al. [Bar-Ilan, 1998].  

The methods used to calculate precision and recall are shown in Equations 6.1 and 6.2.  

Experimental results for the MLP architectures can be found in Section 7.2. 



47 

precision = (true positive classifications) / (total classifications made of class) (6.1) 

recall = (true positive classifications) / (count of objects in that class)           (6.2) 

 

6.3.  ssEAM ARCHITECTURE CLASSIFICATION 

Two semi-supervised Ellipsoid ARTMAP (ssEAM) architectures were trained 

and tested similarly to the MLP architectures defined in Section 6.4.  As with the MLP 

architectures, ssEAM was trained first using the original feature set obtained in Section 

5.6 and second with the reduced feature set obtained in Section 6.1.  ssEAM used the 

exact same feature vector sets and ten-fold cross validation groups used in the MLP 

experimentations. 

ssEAM performs differently from the MLP architecture in that it creates 

categories within a search space by creating hyper-ellipsoids.  Each hyper-ellipsoid 

represents a category that could encompass a variety of feature vectors including those 

belonging to different classes. Instead of updating weights that connect nodes like MLP, 

ssEAM encodes learned information about the feature vectors into the locality of its 

hyper-ellipsoids.   

ssEAM is controlled by a larger number of parameters than the MLP architecture.  

The semi-supervised portion of ssEAM is controlled by a category prediction error 

tolerance parameter (tolerance).  This parameter can take values in the range of [0,1] and 

determines how often multiple classes can be contained in one category (hyper-ellipsoid).  

If tolerance is set to 0 only one class can be contained in a category (supervised learning) 

and if tolerance is set to 1 any number of any type of classes can be contained in a 

category (unsupervised learning).  A baseline vigilance parameter (vigilance) lying 



48 

within the range of [0,1] controls the size of the created hyper-ellipsoids.  Small vigilance 

values produce large categories or hyper-ellipsoids and large values produce smaller 

categories.  When vigilance is set to 1, the EAM geometric representation is reduced to 

point categories with one point representing each feature vector.  The shapes of the 

categories are controlled by mu, which defines eccentricity of the hyper-ellipsoids.  

Alpha and omega parameters are used to define activation values within the ssEAM.   

 Vectors were standardized by mapping them into the range of [0,1].  A maximum 

of five epochs was allowed for this architecture.  Using fast learning enabled this small 

number of epochs.  The following mu values were used: 0.2, 0.4…1.  The following 

tolerance values were used:  0.1, 0.3…0.9.  The following vigilance values were used: 

0.1,0.3..0.9 and 0.92, 0.94, 0.95, 0.96, 0.98.  An alpha value of 0.001 and an omega value 

of infinity were used.  

 Architectures were delivered feature vectors as well as class labels of the train 

sets for training purposes.  ssEAM architecture accuracy is dependant on the order that 

feature vectors are read, so fifty different train feature vector orders were used to 

determine architecture potential.  Once training was terminated, the trained ssEAM is 

first tested on the train set and then on the test set.  The output of the ssEAM architecture 

is a label.  Output label types match input label types.  Classification results were 

collected for both the training and testing sets.  Overall classification results were 

reported in terms of precision and recall as introduced by Bar-Ilan et al. [Bar-Ilan, 1998].  

Experimental results for the ssEAM architectures can be found in Section 7.3. 

 

 



49 

6.4.  DATA FUSION 

While ssEAM and MLP classification results could give a good indication of the 

surveillance capabilities of near-infrared and visible systems, it is necessary to further 

explore the uniqueness of each system.  In order to compare whether a visible system is 

significantly different from a near-infrared one, data fusion principles were explored. 

In order to determine if a neural network or ssEAM architecture in one image 

domain was unique from that of another, trained architectures were tested on all three 

types of image sets.  Optimal configurations found in Sections 6.2 and 6.3 for both the 

original feature vectors calculated in Section 5.6 and the reduced feature vectors 

calculated in Section 6.1 were tested on the entire feature vector sets not used for 

training.  For instance, architectures trained with the visible light feature vectors were 

given gray-scale near-infrared feature vectors and then red channel near-infrared feature 

vectors as test sets.  Classification results were once again reported in terms of precision 

and recall as introduced by Bar-Ilan et al. [Bar-Ilan, 1998].  Experimental results for 

these data fusion principles can be found in Section 7.4.   



50 

7.  EXPERIMENTAL RESULTS 

 

Section 6 described the different experimental approaches used to evaluate near-

infrared and visible image filtering for surveillance applications.  These approaches used 

feature vectors collected from an image set as described in Section 5.  In this section, 

experimental results are illustrated and explored. 

 

7.1.  LINEAR DISCRIMINANT ANALYSIS RESULTS 

Three methods of Linear Discriminative Analysis (LDA) were completed on the 

collected feature vectors.  The three methods included were Single Feature Analysis, 

Forward Selection and Backward Elimination as described in Section 6.1. Table 7.1 

illustrates the twenty-four features and corresponding abbreviations calculated for each 

‘blob’ found in the image sets from the algorithm described in Section 5.  The results for 

Single Feature Analysis can be found in Table 7.2.  Results for Forward Selection and 

Backward Elimination can be found in Tables 7.3-7.5 and 7.6-7.8, respectively. 

In Table 7.2, the 25% highest accuracy single features are highlighted.  Five of 

the six highlighted features are similar in each of the three image domains: Width, Aspect 

Ratio, Horizontal Centroid Offset, the 2
nd

 Order Moment and the 3
rd

 Order Moment.  

Both the visible and near-infrared gray-scale image sets have a top performing 2
nd

 Order 

Moment feature while red channel near-infrared image sets have a top performing 

solidity feature.   The ranges in accuracies indicate that feature importance varies 

between the image types.  Standard deviations are also calculated and presented for each 



51 

feature in Table 7.2.  High standard deviation rankings indicate which features were 

significantly different in importance across the image types. 

 

 

Table 7.1.  Table of Features and Abbreviations. 

Symbol Feature Symbol Feature 

H Box Height KUR Kurtosis 

W Box Width M2 2nd Order Moment 

AR Aspect Ratio (H/W) M3 3rd Order Moment 

A Object Area M4 4th Order Moment 

PER Object Perimeter MJL Ellipse Major Axis Length 

CA Convex Hull Area MNL Ellipse Minor Axis Length 

SLD Solidity (A/CA) ECC Ellipse Eccentricity 

CMP Compactness (A/P*P) OR Ellipse Orientation 

COX Horiz. Centroid Offset HU1 1st Hu Moment 

COY Vert. Centroid Offset HU2 2nd Hu Moment 

EN Euler Number HU3 3rd Hu Moment 

SKW Skewness HU4 4th Hu Moment 

 

Table 7.2.  Results Obtained From Single Feature Analysis Using 50 Randomly 

Generated Data Sets. 

 

Feature Visible NIR – Gray NIR – Red Standard Deviation 

H 47.73% 36.54% 34.80% 0.070 

W 56.90% 60.64% 59.64% 0.019 

AR 75.95% 80.46% 79.07% 0.023 

A 39.53% 55.67% 52.03% 0.085 

PER 31.66% 44.58% 30.03% 0.080 

CA 26.81% 30.29% 33.08% 0.031 

SLD 50.12% 57.11% 54.40% 0.035 

CMP 18.74% 16.24% 26.61% 0.054 

COX 56.24% 61.39% 58.76% 0.026 

COY 45.49% 35.82% 36.66% 0.054 



52 

Table 7.2.  Results Obtained From Single Feature Analysis Using 50 Randomly 

Generated Data Sets. (cont.) 

 

Feature Visible NIR – Gray NIR – Red Standard Deviation 

EN 18.16% 23.01% 25.27% 0.036 

SKW 25.51% 33.29% 33.17% 0.045 

KUR 37.16% 28.55% 25.65% 0.060 

M2 61.99% 59.51% 54.89% 0.036 

M3 56.61% 58.58% 53.52% 0.026 

M4 58.15% 59.22% 53.96% 0.028 

MJL 33.66% 35.29% 36.12% 0.012 

MNL 41.82% 49.72% 45.31% 0.040 

ECC 45.88% 38.57% 42.53% 0.037 

OR 45.21% 30.29% 43.95% 0.083 

HU1 41.48% 50.72% 45.30% 0.046 

HU2 27.33% 47.05% 35.01% 0.099 

HU3 21.97% 26.12% 25.84% 0.023 

HU4 19.26% 24.39% 20.70% 0.026 

 

 

Table 7.3. Results Obtained From Forward Search Analysis On Visible Images Using 50 

Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

 AR 75.95% 75.95% 

  H 84.30% 8.35% 

SKW 85.54% 1.24% 

 OR 85.36% -0.17% 

COY 85.09% -0.27% 

 CA 86.34% 1.25% 

HU4 86.42% 0.07% 

HU2 86.25% -0.17% 

HU3 85.83% -0.42% 

PER 85.71% -0.12% 

  W 85.95% 0.25% 

ECC 86.37% 0.41% 

  A 86.96% 0.59% 

 



53 

Table 7.3. Results Obtained From Forward Search Analysis On Visible Images Using 50 

Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

MNL 87.20% 0.24% 

 EN 88.47% 1.26% 

M2 89.99% 1.52% 

COX 91.86% 1.87% 

KUR 91.83% -0.03% 

HU1 91.90% 0.07% 

SLD 92.62% 0.71% 

 M3 92.69% 0.08% 

 M4 92.87% 0.17% 

CMP 92.62% -0.25% 

MJL 92.00% -0.62% 

 

 

Table 7.4. Results Obtained From Forward Search Analysis On Gray-Scale Near-Infrared 

Images Using 50 Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

 AR 80.46% 80.46% 

  H 80.87% 0.41% 

SLD 85.71% 4.84% 

 M4 89.28% 3.56% 

PER 89.25% -0.02% 

  A 89.17% -0.08% 

ECC 89.17% 0.00% 

COX 90.32% 1.15% 

MNL 90.93% 0.61% 

COY 91.47% 0.54% 

MJL 91.91% 0.44% 

  W 92.10% 0.19% 

HU2 92.40% 0.30% 

CMP 92.34% -0.06% 

 M3 92.29% -0.05% 

HU4 92.22% -0.07% 

 EN 92.12% -0.10% 

 



54 

Table 7.4. Results Obtained From Forward Search Analysis On Gray-Scale Near-Infrared 

Images Using 50 Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

 CA 92.10% -0.02% 

KUR 91.97% -0.13% 

SKW 91.83% -0.15% 

HU1 91.72% -0.11% 

 OR 91.72% 0.00% 

HU3 91.43% -0.29% 

 M2 90.66% -0.77% 

 

 

Table 7.5. Results Obtained From Forward Search Analysis On Red Channel Near-

Infrared Images Using 50 Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

 AR 79.07% 79.07% 

  H 80.25% 1.18% 

HU1 80.77% 0.51% 

ECC 83.59% 2.82% 

MJL 86.00% 2.42% 

SLD 86.72% 0.72% 

  W 87.21% 0.49% 

COX 87.62% 0.40% 

MNL 88.02% 0.41% 

COY 88.34% 0.32% 

PER 88.47% 0.13% 

  A 88.79% 0.32% 

 OR 89.13% 0.33% 

CMP 89.13% 0.00% 

HU3 89.10% -0.02% 

HU4 89.28% 0.18% 

KUR 89.44% 0.16% 

 M3 89.60% 0.15% 

SKW 89.51% -0.09% 

 M4 89.48% -0.03% 

 

 



55 

Table 7.5. Results Obtained From Forward Search Analysis On Red Channel Near-

Infrared Images Using 50 Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Addition Change In Accuracy 

 M2 89.50% 0.02% 

HU2 89.25% -0.25% 

 CA 88.89% -0.36% 

 EN 88.80% -0.09% 

 

 

 

 

As described by Tables 7.3 – 7.5, Aspect Ratio and Height were both selected 

first to be included in all three image types with Forward Search Analysis.  85% 

classification accuracy was achieved with the addition of three ranked features for both 

Visible and the Gray-Scale Near-Infrared, but the third ranked feature differs from 

Skewness and Solidity between the two.  85% classification accuracy was not achieved 

until the addition of five ranked features in the Red Channel Near-Infrared case.  The 

highest accuracy achieved for the three cases of visible, gray-scale near-infrared and red 

channel near-infrared images were 92.87%, 92.40% and 89.60% respectively.   

Backward Elimination Analysis as shown in Tables 7.6 – 7.8 also indicated that 

Aspect Ratio was selected to be most important in all three image types.  Height still 

played an important role in both the Visible and the Gray-Scale Near-Infrared as did 

Solidity and the Fourth Order Moment, but not in the Red Channel Near-Infrared.  85% 

classification accuracy was achieved in visible, gray-scale infrared and red channel 

infrared with six, four and six features respectively.  The highest accuracy achieved for 

the three cases of visible, gray-scale near-infrared and red channel near-infrared images 

were 93.38%, 92.35% and 90.03% respectively.  These high accuracies were reached by 

the removal of a third, seventh and eighth feature resulting in set sizes of twenty-one, 



56 

seventeen and sixteen features.  Alternatively in Forward Search the high accuracies were 

reached by the addition of a twenty-second, thirteenth and eighteenth feature.    

The diversity in rankings as well as classification accuracies indicate that 

calculated features differ across the image types.  These findings suggest that 

classification capabilities for the three image sets could differ.  From these findings the 

following criteria for a reduced feature set is proposed.  25% of the original feature set 

results in at least an 85% accuracy for a linear classifier as shown from Tables 7.3 – 7.8.  

A reduced set for visible, gray-scale near-infrared and red channel near infrared is 

proposed based on the higher scoring classifier of six features from the Forward Search 

and Backward Elimination Analysis.  The reduced sets selected can be found in Table 

7.9. 

 

 

 

Table 7.6. Results Obtained From Backward Elimination Analysis On Visible Images 

Using 50 Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

MJL 92.62% 92.62% 

 M2 92.87% 0.25% 

CMP 93.38% 0.51% 

HU3 93.38% 0.00% 

 OR 93.36% -0.02% 

KUR 93.33% -0.02% 

HU2 93.26% -0.07% 

 CA 92.94% -0.32% 

SKW 93.29% 0.35% 

COY 93.07% -0.22% 

HU4 92.74% -0.32% 

HU1 92.47% -0.28% 

 



57 

Table 7.6. Results Obtained From Backward Elimination Analysis On Visible Images 

Using 50 Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

  A 92.20% -0.27% 

ECC 91.51% -0.69% 

MNL 91.14% -0.37% 

PER 90.45% -0.68% 

 EN 89.59% -0.86% 

COX 88.39% -1.20% 

  W 87.23% -1.16% 

 M3 84.82% -2.41% 

 M4 81.27% -3.55% 

SLD 84.30% 3.03% 

  H 75.95% -8.35% 

 AR 75.95% 0.00% 

 

 

 

Table 7.7. Results Obtained From Backward Elimination Analysis On Gray-Scale  

Near-Infrared Images Using 50 Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

 M2 91.43% 91.43% 

HU4 91.81% 0.38% 

PER 92.10% 0.29% 

CMP 92.14% 0.04% 

 OR 92.16% 0.02% 

HU1 92.29% 0.13% 

HU3 92.35% 0.06% 

MJL 92.14% -0.21% 

 M3 92.14% 0.00% 

 CA 92.12% -0.02% 

SKW 92.12% 0.00% 

KUR 92.33% 0.21% 

HU2 92.17% -0.17% 

 EN 91.65% -0.52% 

  W 91.37% -0.28% 

 



58 

Table 7.7. Results Obtained From Backward Elimination Analysis On Gray-Scale  

Near-Infrared Images Using 50 Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

COY 90.83% -0.54% 

MNL 90.24% -0.59% 

  A 90.07% -0.17% 

COX 89.00% -1.06% 

ECC 89.28% 0.27% 

 M4 85.71% -3.56% 

SLD 80.87% -4.84% 

  H 80.46% -0.41% 

 AR 80.46% 0.00% 

 

Table 7.8. Results Obtained From Backward Elimination Analysis On Red Channel 

Near-Infrared Images Using 50 Randomly Generated Data Sets. 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

SKW 89.48% 89.48% 

 M3 89.50% 0.02% 

 OR 89.59% 0.09% 

KUR 89.63% 0.04% 

HU1 89.61% -0.02% 

CMP 89.65% 0.04% 

SLD 89.57% -0.08% 

MJL 90.03% 0.45% 

 M4 89.78% -0.25% 

PER 89.65% -0.14% 

HU3 89.65% 0.00% 

 EN 89.38% -0.27% 

HU2 89.33% -0.05% 

 CA 89.22% -0.11% 

  W 88.75% -0.47% 

COY 87.39% -1.37% 

  H 86.50% -0.88% 

COX 85.39% -1.11% 

 

 



59 

Table 7.8. Results Obtained From Backward Elimination Analysis On Red Channel 

Near-Infrared Images Using 50 Randomly Generated Data Sets. (cont.) 

 
Ranked Feature Accuracy After Elimination Change In Accuracy 

 M2 85.12% -0.27% 

HU4 84.51% -0.61% 

  A 78.87% -5.65% 

ECC 78.28% -0.59% 

MNL 79.07% 0.79% 

 AR 79.07% 0.00% 

 M2 85.12% -0.27% 

HU4 84.51% -0.61% 

  A 78.87% -5.65% 

 

 

Table 7.9. Reduced Feature Vectors Selected. 

Image Type Feature Set Analysis Source 

Visible AR, H, SLD, M4, M3, W Backward Elimination 

NIR-Gray AR, H, SLD, M4, PER, A Forward Search 

NIR-Red AR, H, HU1,ECC, MJL, SLD Forward Search 

 

 

7.2.  MLP NEURAL NETWORK RESULTS 

 Two MLP neural network architectures were explored through this research.  The 

first architecture of size 24x24x4 used the original feature vectors calculated in Section 

5.6.  The second architecture of size 6x6x4 used the reduced feature sets indicated by 

Table 7.9.  Ten-fold cross validation was used to calculate the classification accuracy.  

Classification results were reported in terms of precision and recall as introduced by Bar-

Ilan et al. [Bar-Ilan, 1998].  Architectures were ranked by averaging precision and recall 

over the ten experiments.  Precision and recall scores were then combined to find the best 



60 

scoring architectures.  This section lists the results collected using the trained neural 

network architectures. 

 Tables 7.10, 7.12 and 7.14 show the best architecture accuracy found for visible, 

gray-scale near-infrared and red channel near-infrared image sets respectively using the 

original feature vectors.  Tables 7.16, 7.18 and 7.20 show the best architecture accuracy 

found using the reduced feature vectors. The first column in these tables represents the 

experiment number (ranging from 1 to 10).  The second column represents the precision 

and recall calculated for person objects.  The third, fourth and fifth columns pertain to 

precision and recall calculated for bicycle, vehicle and clutter objects.  The final two rows 

show the class mean and standard deviation values for precision and recall.  These final 

rows summarize the estimated classification capabilities of the architecture described. 

 Tables 7.11, 7.13 and 7.15 show the top five ranked architectures trained for 

visible, gray-scale near-infrared and red channel near-infrared image sets using the 

original feature vectors.  Similarly Tables 7.17, 7.19 and 7.21 show the top five ranked 

architectures trained using the reduced feature vectors.  The first row in these tables 

represents the ranking of the architecture.  The second row designates the learning rate 

used for training the neural network.  The third row designates the momentum parameter 

used for training.  The fourth row indicates the average precision and recall calculated for 

person objects across all ten experiments.  Similarly the fifth, sixth and seventh rows 

indicate the average precision and recall calculated for bicycle, vehicle and clutter 

objects.  The eighth row shows the total time in seconds needed for training.  The ninth 

row indicates the total time in seconds needed to classify the test set.  The final column in 

these tables indicate the average time needed for classification of the test set across the 



61 

top five ranking architectures. These average precision and recall calculations indicate the 

estimated classification capabilities of the architecture for a given class. 

 

 

 

Table 7.10. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Visible Images.  Learning Rate = 0.24, Momentum = 0.72 

 

Case Person Bicycle Vehicle Clutter 

1 71.0 / 89.1 69.2 / 31.0 200 / 92.9 85.7 / 92.3 

2 56.0 / 96.2 35.7 / 19.2 25.0 / 100 94.9 / 54.4 

3 73.2 / 66.1 0 / 0 80.0 / 100 84.4 / 89.0 

4 92.3 / 90.6 78.9 / 60.0 100 / 100 76.2 / 91.4 

5 82.5 / 91.2 90.0 / 50.0 55.6 / 83.3 72.7 / 69.6 

6 70.8 / 91.9 80.0 / 26.7 100 / 100 86.2 / 84.8 

7 82.8 / 82.8 92.9 / 86.7 87.5 / 77.8 82.2 / 84.5 

8 43.6 / 92.3 28.6 / 14.8 43.5 / 100 100 / 58.0 

9 62.2 / 80.7 0 / 0 64.3 / 90.0 68.1 / 56.1 

10 87.1 / 91.0 69.2 / 75.0 100 / 73.3 80.8 / 79.7 

Mean 72.2 / 87.2 60.5 / 36.3 75.6 / 91.7 83.1 / 76.0 

Std Dev 15.0 / 8.7 31.8 / 30.4 27.2 / 10.3 9.6 / 15.2 

 

 

Table 7.11. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Visible Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.24 0.36 0.04 0.28 0.08  

Mom. 0.72 0.8 0.72 0.68 0.96  

Person 72.2 / 87.2 76.9 / 82.6 72.1 / 86.3 73.9 / 83.2 77.2 / 78.7 74.5 / 83.6 

Bicycle 60.5 / 36.3 73.8 / 39.8 58.4 / 33.7 66.3 / 40.3 67.8 / 39.4 65.4 / 37.9 

Vehicle 75.6 / 91.7 71.1 / 72.7 83.0 / 85.5 75.7 / 76.4 75.7 / 64.6 76.2 / 78.2 

Clutter 83.1 / 76.0 78.5 / 86.0 81.6 / 80.4 79.6 / 82.3 78.8 / 88.8 80.2 / 82.7 

Train Time 35.231 35.6392 33.8697 34.4431 36.6028 35.15716 

Test Time 0.025911 0.026556 0.026009 0.026087 0.025342 0.025981 

 

 



62 

Table 7.12. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Gray-Scale Near-Infrared Images.  Learning Rate = 0.28, 

Momentum = 0.68 

 

Case Person Bicycle Vehicle Clutter 

1 64.8 / 93.3 0 / 0 100 / 100 94.6 / 77.8 

2 65.9 / 93.1 87.5 / 28.0 100 / 100 77.8 / 68.9 

3 45.6 / 50.0 0 / 0 8.8 / 100 95.1 / 63.9 

4 55.3 / 71.2 0 / 0 0 / 0 39.0 / 88.9 

5 95.5 / 84.2 0 / 0 10.3 / 100 33.3 / 63.6 

6 69.5 / 66.1 24.4 / 58.8 100 / 38.1 78.7 / 69.6 

7 90.5 / 98.5 53.8 / 58.3 100 / 40.0 76.5 / 72.2 

8 84.4 / 79.4 80.8 / 67.7 66.7 / 100 77.8 / 80.8 

9 95.5 / 62.7 54.5 / 78.3  65.9 / 93.1 61.9 / 63.4 

10 84.0 / 93.7 66.7 / 100 100 / 95.5 95.3 / 68.3 

Mean 75.1 / 79.2 36.8 / 39.1 65.2 / 76.7 73.0 / 71.8 

Std Dev 17.4 / 16.2 35.9 / 38.1 42.8 / 36.6 22.1 / 834 

 

 

 

 

 

 

Table 7.13. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Gray-Scale Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.28 0.24 0.04 0.16 0.28  

Mom. 0.68 0.68 0.84 0.8 0.64  

Person 75.1 / 79.2 70.0 / 77.0 68.3 / 71.8 69.0 / 75.1 72.1 / 73.4 70.9 / 75.3 

Bicycle 46.0 / 39.1 46.4 / 32.3 44.7 / 36.5 51.7 / 35.6 55.1 / 19.6 48.8 / 32.6 

Vehicle 72.4 / 76.7 85.5 / 79.8 85.2 / 73.4 80.0 / 67.8 81.0 / 67.4 80.8 / 73.0 

Clutter 73.0 / 71.7 65.2 / 67.7 67.1 / 70.5 66.4 / 67.3 65.5 / 77.8 67.5 / 71.0 

Train Time 34.4717 36.3863 38.745 40.8434 44.1187 38.91302 

Test Time 0.025463 0.026078 0.026007 0.026708 0.026668 0.026185 

 



63 

Table 7.14. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Red Channel Near-Infrared Images.  Learning Rate = 0.4, 

Momentum = 0.92 

 

Case Person Bicycle Vehicle Clutter 

1 53.3 / 96.6 63.6 / 23.3 62.5 / 83.3 96.7 / 46.0 

2 77.1 / 80.4 75.0 / 60.0 100 / 66.7 71.7 / 75.0 

3 80.0 / 76.7 43.8 / 28.0 100 / 80.0 84.3 / 93.9  

4 62.5 / 54.4 66.7 / 46.7 100 / 100 36.8 / 60.9 

5 94.6 / 73.6 76.1 / 80.0 28.6 / 100 78.0 / 86.5 

6 31.8 / 36.8 8.3 / 7.1 100 / 83.3 52.6 / 50.6 

7 94.3 / 95.7 38.5 / 83.3 100 / 18.2 95.0 / 73.1 

8 65.5 / 65.5 47.6 / 80.0 50.0 / 50.0 81.3 / 60.0 

9 87.7 / 79.4 100 / 25.0 63.6 / 29.2 55.6 / 85.4 

10 86.0 / 67.2 52.2 / 80.0 100 / 83.3 45.2 / 66.7 

Mean 72.4 / 73.5 57.2 / 51.3 80.5 / 69.4 69.7 / 69.8 

Std Dev 19.6 / 18.6 25.1 / 28.9 26.9 / 28.3 21.0 / 15.8 

 

 

 

 

 

 

Table 7.15. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Red Channel Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.4 0.4 0.08 0.4 0.2  

Mom. 0.92 0.84 0.72 0.8 0.96  

Person 72.4 / 73.5 70.6 / 82.2 72.0 / 73.1 72.5 / 71.5 77.7 / 71.7 73.0 / 74.4 

Bicycle 57.2 / 51.3 53.0 / 39.4 40.0 / 42.1 48.5 / 33.5 42.7 / 47.2 48.4 / 42.7 

Vehicle 80.5 / 69.4 80.1 / 76.6 89.2 / 72.5 75.1 / 80.0 82.2 / 58.2 81.4 / 71.3 

Clutter 69.7 / 69.8 69.8 / 66.5 69.5 / 70.3 69.5 / 75.7 67.4 / 76.7 69.2 / 71.8 

Train Time 36.9141 34.4084 36.4739 34.5238 37.0987 35.88378 

Test Time 0.026929 0.026233 0.026544 0.028215 0.025684 0.026721 

 

 



64 

Table 7.16. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Visible Images.  Learning Rate = 0.08, Momentum = 0.8 

 

Case Person Bicycle Vehicle Clutter 

1 60.2 / 85.5 0 / 0 100 / 42.9 66.0 / 79.5 

2 69.0 / 92.5 66.7 / 23.1 50 / 100 91.7 / 85.4 

3 77.0 / 75.8 25 / 29.4 33.3 / 100 88.9 / 79.1 

4 68 / 96.2 42.9 / 12 100 / 100 87.1 / 77.1 

5 75.6 / 59.6 66.7 / 33.3 50 / 66.7 47.6 / 87.0 

6 56.9 / 100 100 / 6.7 100 / 100 100 / 76.3 

7 74.1 / 93.8 26.7 / 26.7 80 / 44.4 96.6 / 78.9 

8 50 / 80.8  63.6 / 25.9 90.9 / 100 80.9 / 79.7 

9 68.6 / 84.2 100 / 26.7 87.0 / 100 67.3 / 61.4 

10 82.4 / 94.4 50 / 91.7  78.9 / 100 97.9 / 62.2 

Mean 68.2 / 86.3 54.1 / 27.5 77.0 / 85.4 82.4 / 76.7 

Std Dev 9.9 / 12.0 32.1 / 25.0 24.2 / 24.3 17.0 / 8.5 

 

 

 

 

 

 

Table 7.17. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Visible Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.08 0.32 0.24 0.2 0.28  

Mom. 0.8 0.72 0.92 0.8 0.84  

Person 68.1 / 86.3 67.2 / 82.9 68.3 / 88.6 68.7 / 91.6 69.1 / 80.0 68.3 / 71.5 

Bicycle 54.1 / 27.5 50.1 / 27.4 51.5 / 24.5 49.9 / 32.0 44.9 / 28.2 50.1 / 27.9 

Vehicle 77.0 / 85.4 84.7 / 83.6 78.0 / 89.0 75.0 / 77.0 82.9 / 86.0 79.5 / 84.2 

Clutter 82.4 / 76.7 81.1 / 78.0 81.6 /  72.5 86.2 / 73.5 81.6 / 80.0 82.6 / 76.1 

Test Time 6.07948 5.93825 5.71151 5.85354 5.91678 5.899910 

Train Time 0.026329 0.024218 0.025243 0.024581 0.024188 0.024910 

 

 



65 

Table 7.18. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Gray-Scale Near-Infrared Images.  Learning Rate = 0.4, 

Momentum = 0.72 

 

Case Person Bicycle Vehicle Clutter 

1 52.3 / 60 0 / 0 60 / 30 40.3 / 55.6 

2 57.5 / 86.2 66.7 / 8 85.7 / 100 81.1 / 70.5 

3 56.1 / 74.2 0 / 0 16.7 / 33.3 63.6 / 57.4 

4 53.5 / 64.4 0 / 0 100 / 75  35.5 / 61.1 

5 78.5 / 67.1 78.6 / 30.6 28.6 / 100 17.6 / 54.5 

6 47.1 / 91.9 6.25 / 5.9 100 / 42.9 78.3 / 26.1 

7 65.5 / 55.9 50 / 8.3 100 / 90 20.5 / 44.4 

8 57.7 / 88.2 0 / 0 62.5 / 100 69.5 / 78.8 

9 91.7 / 65.7 50 / 69.6 77.8 / 48.3 54.8 / 82.9 

10 73.0 / 88.4 50 / 35.7 100 / 81.8 68.8 / 55 

Mean 63.3 / 74.2 30.1 / 15.8 73.1 / 70.1 53.0 / 58.6 

Std Dev 13.9 / 13.4 31.7 / 22.9 30.8 / 28.7 23.2 / 16.5 

 

 

 

 

 

 

Table 7.19. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Gray-Scale Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.4 0.28 0.08 0.08 0.24  

Mom. 0.72 0.92 0.68 0.92 0.92  

Person 63.3 / 74.2 59.6 / 75.1 58.7 / 64.1 58.5 / 78.6 55.3 / 75.0 59.1 / 73.4 

Bicycle 33.5 / 15.8 19.8 / 15.7 34.1 / 14.0 12.3 / 7.1 27.0 / 10.2 25.3 / 12.6 

Vehicle 73.1 / 70.1 89.4 / 69.1 77.1 / 77.7 82.0 / 77.8 79.7 / 74.0 80.3 / 73.8 

Clutter 53.0 / 58.6 60.6 / 52.0 56.5 / 55.8 72.3 / 48.9 69.2 / 43.2 62.3 / 51.7 

Train Time 5.72845 6.25544 5.98835 5.80661 5.93136 5.942042 

Test Time 0.023626 0.0244 0.24405 0.24048 0.023647 0.024025 

 



66 

Table 7.20. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Red Channel Near-Infrared Images.  Learning Rate = 0.28, 

Momentum = 0.88 

 

Case Person Bicycle Vehicle Clutter 

1 40.6 / 72.9 9.5 / 13.3 0 / 0 75.0 / 19.0 

2 58.1 / 78.3 50.0 / 13.3 0 / 0 44.4 / 27.3 

3 62.1 / 24.7 11.8 / 72.0 0 / 0 80.0 / 10.5 

4 49.1 / 60.9 0 / 0 0 / 0 100 / 17.4 

5 50.0 / 1.4 84.2 / 72.7 3.5 / 100 0 / 0 

6 24.7 / 35.1 0 / 0  0 / 0 64 /59.3 

7 68.1 / 46.4 0 / 0  0 / 0  32.8 / 84.6 

8 29.6 / 72.4 25.0 / 4.0 13.6 / 50.0 100 / 18.5 

9 36.2 / 66.7 0 / 0 0 / 0 100 / 9.8 

10 46.7 / 21.9 5.6 / 33.3 0 / 0 80.0 / 19.0 

Mean 46.5 / 48.0 18.6 / 20.9 1.7 / 15.0 67.6 / 26.5 

Std Dev 14.0 / 26.3 27.9 / 29.1 4.3 / 33.7 33.1 / 25.7 

 

 

 

 

 

 

Table 7.21. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Red Channel Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Learn Rate 0.28 0.24 0.04 0.4 0.36  

Mom. 0.88 0.68 0.64 0.96 0.72  

Person 46.5 / 48.0 47.7 / 40.9 43.1 / 52.5 49.1 / 26.8 48.6 / 54.2 47.0 / 44.5 

Bicycle 23.3 / 20.9 11.4 / 24.6 8.4 / 12.5 14.6 / 21.6 7.7 / 9.5 13.1 / 17.8 

Vehicle 2.1 / 15.0 7.1 / 21.7 16.0 / 12.1 12.6 / 22.1 5.2 / 16.2 8.6 / 17.4 

Clutter 67.6 / 26.5 61.8 / 32.1 61.7 / 39.7 51.2 / 47.6 66.7 / 36.0 61.8 / 36.3 

Train Time 6.3246 6.10261 6.18044 6.1102 6.08352 6.160274 

Test Time 0.02559 0.024762 0.036363 0.025142 0.024647 0.027301 

 

 

 



67 

7.3.  ssEAM CLASSIFICATION RESULTS 

 Two ssEAM neural network architectures were explored through this research.  

The first architecture used the original feature vectors calculated in Section 5.6.  The 

second architecture used the reduced feature sets indicated by Table 7.9.  Ten-fold cross 

validation was used to calculate the accuracy of each classification system.  Classification 

results were reported in terms of precision and recall as introduced by Bar-Ilan et al. 

[Bar-Ilan, 1998].  Precision and recall were used to determine the highest scoring feature 

vector order for each architecture variation.  Highest scoring orders were averaged over 

the ten experiments to find the architecture variations with the most classification 

potential.  This section lists the results collected using the trained ssEAM architectures. 

 Tables 7.22, 7.24 and 7.26 show the best architecture accuracy found for visible, 

gray-scale near-infrared and red channel near-infrared image sets respectively using the 

original feature vectors.  Tables 7.28, 7.30 and 7.32 show the best architecture accuracy 

found using the reduced feature vectors. The first column in these tables represents the 

experiment number (ranging from 1 to 10).  The second column represents the precision 

and recall calculated for person objects.  The third, fourth and fifth columns pertain to 

precision and recall calculated for bicycle, vehicle and clutter objects.  The final two rows 

show the class mean and standard deviation values for precision and recall.  These final 

rows summarize the estimated classification capabilities of the architecture described. 

 Tables 7.23, 7.25 and 7.27 show the top five ranked architectures trained for 

visible, gray-scale near-infrared and red channel near-infrared image sets using the 

original feature vectors.  Similarly Tables 7.29, 7.31 and 7.33 show the top five ranked 

architectures trained using the reduced feature vectors.  The first row in these tables 



68 

represents the ranking of the architecture.  The second row designates the eccentricity of 

the hyper-ellipsoids (mu) used for categorizing.  The third and fourth rows designate the 

tolerance and vigilance parameters used for training.  The fifth row indicates the average 

precision and recall calculated of the maximum scoring feature vector order of person 

objects across all ten experiments.  Similarly the sixth, seventh and eighth rows indicate 

the average precision and recall calculated for bicycle, vehicle and clutter objects.  The 

ninth row shows the total time in seconds needed for training.  The tenth row indicates 

the total time in seconds needed to classify the test set.  The final column in these tables 

indicate the average time needed for classification of the test set across the top five 

ranking architectures. These average precision and recall calculations indicate the 

estimated classification capabilities of the architecture for a given class. 

 

 

 

Table 7.22. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Visible Images.  Mu = 0.8, Tolerance = 0.3, Vigilance = 0.5 

 

Case Person Bicycle Vehicle Clutter 

1 44.8 / 54.5 38.9 / 24.1 16.7 / 21.4 41.2 / 35.9 

2 37.3 / 71.7 23.1 / 11.5 27.3 / 50.0 72.6 / 43.7 

3 66.7 / 54.8 17.6 / 17.6 25.0 / 50.0 71.4 / 76.9 

4 53.2 / 47.2 30.8 / 32.0 43.8 / 63.6 37.1 / 37 

5 75.0 / 52.6 42.9 / 50.0 40.0 / 33.3 39.5 / 65.2 

6 46.2 / 48.6 85.7 / 40.0 100 / 33.3 65.8 / 88.1 

7 50.0 / 51.6 18.8 / 20.0 100 / 22.2 60.0 / 63.4 

8 21.6 / 42.3 77.8 / 25.9 100 / 10.0 69.0 / 71.0 

9 51.5 / 61.4 35.0 / 46.7 16.7 / 10.0 59.2 / 50.9 

10 57.1 / 36.0 22.5 / 75.0 50.0 / 13.3 54.4 / 66.2 

Mean 50.3 / 52.1 39.3 / 34.3 51.9 / 20.7 57.0 / 59.8 

Std Dev 14.8 / 9.9 24.0 / 19.1 34.9 / 18.7 13.5 / 17.4 

 

 



69 

Table 7.23. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Visible Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.8 0.4 0.6 0.2 0.2  

Tolerance 0.3 0.5 0.3 0.3 0.1  

Vigilance 0.5 0.5 0.5 0.5 0.5  

Person 50.3 / 52.1 48.5 / 51.9 50.5 / 53.2 49.4 / 49.6 49.6 / 53.8 49.7 / 52.1 

Bicycle 39.3 / 34.3 43.2 / 28.4 33.9 / 34.5 37.1 / 34.2 32.6 / 33.7 37.2 / 33.0 

Vehicle 51.9 / 20.7 58.7 / 19.8 48.8 / 25.4 46.4 / 31.0  49.3 / 29.2 51.0 / 27.2 

Clutter 57.0 / 59.8 58.6 / 65.2 60.7 / 60.7 57.5 / 60.6 58.5 / 57.7 58.5 / 60.8 

Train Time 1.15675 0.514684 1.18358 1.23763 1.79881 1.178291 

Test Time 0.041204 0.022007 0.046751 0.050117 0.065393 0.045094 

 

 

 

 

Table 7.24. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Gray-Scale Near-Infrared Images.  Mu = 0.4,  

Tolerance = 0.5, Vigilance = 0.5 

 

Case Person Bicycle Vehicle Clutter 

1 51.4 / 73.3 45.3 / 9.7 66.7 / 20.0 36.8 / 31.1 

2 45.3 / 58.6 22.2 / 16.0 100 / 16.7 52.9 / 44.3 

3 54.7 / 75.8 50.0 / 18.2 25.0 / 33.3 72.3 / 55.7 

4 59.0 / 78.0 27.3 / 10.7 70.0 / 58.3 46.7 / 38.9 

5 66.7 / 63.2 70.0 / 19.4 20.0 / 25.0 24.0 / 54.5 

6 43.6 / 77.4 30.8 / 33.3 75.0 / 14.3 73.7 / 40.6 

7 78.0 / 67.6 30.8 / 33.3 100 / 10.0 56.3 / 100 

8 29.6 / 70.6 62.5 / 16.1 50.0 / 20.0 75.8 / 48.1 

9 40.4 / 62.7 22.2 / 26.1 100 / 6.9 30.8 / 19.5 

10 67.4 / 63.2 23.8 / 35.7 50.0 / 9.1 66.7 / 76.7 

Mean 53.6 / 69.0 38.0 / 22.1 65.7 / 21.4 53.6 / 50.9 

Std Dev 14.6 / 7.0 17.2 / 9.9 29.6 / 15.2 18.7 / 23.1 

 

 



70 

Table 7.25. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Gray-Scale Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.4 1 0.8 0.2 1  

Tolerance 0.5 0.5 0.5 0.5 0.3  

Vigilance 0.5 0.5 0.5 0.5 0.5  

Person 53.6 / 69.0 52.4 / 74.7 52.4 / 71.9 52.7 / 66.6 54.0 / 64.1 53.0 / 69.3 

Bicycle 38.0 / 22.1 36.7 / 15.8 35.4 / 16.9 29.2 / 23.5 37.2 / 24.1 35.3 / 20.5 

Vehicle 65.7 / 21.4 72.5 / 15.3 62.0 / 23.8 60.1 / 22.4 43.6 / 32.2 60.8 / 23.0 

Clutter 53.6 / 50.9 57.2 / 48.5 54.8 / 46.4 55.2 / 48.3 50.6 / 50.9 54.3 / 49.0 

Train Time 0.514138 0.365545 0.438471 0.530506 1.060988 0.58193 

Test Time 0.02256 0.015557 0.018852 0.023501 0.037306 0.023555 

 

 

 

Table 7.26. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Original Feature Vector For Red Channel Near-Infrared Images. Mu = 0.8,  

Tolerance = 0.5, Vigilance = 0.5 

 

Case Person Bicycle Vehicle Clutter 

1 44.6 / 62.7 33.3 / 16.7 25.0 / 8.3 57.6 / 54.0 

2 49.1 / 56.5 21.4 / 20.0 50.0 / 33.3 54.3 / 43.2 

3 48.9 / 60.3 46.7 / 28.0 14.3 / 20.0 71.0 / 62.3 

4 47.9 / 76.1 62.5 / 16.7 100 / 16.7 50.0 / 52.2 

5 56.1 / 44.4 56.3 / 20.5 25.0 / 25.0 34.7 / 70.3 

6 45.7 / 75.4 57.1 / 28.6 50.0 / 4.2 73.6 / 65.4 

7 71.2 / 60.9 22.2 / 33.3 100 / 9.1 41.7 / 57.7 

8 21.5 / 48.3 45.5 / 20.0 100 / 8.3 66.0 / 53.8 

9 54.5 / 63.2 28.6 / 30.0 50.0 / 12.5 52.5 / 51.2 

10 55.0 / 51.6 6.7 / 13.3 100 / 4.2 25.0 / 33.3 

Mean 49.5 / 59.9 38.0 / 22.7 61.4 / 14.2 52.6 / 54.3 

Std Dev 12.4 / 10.4 18.4 / 6.7 35.3 / 9.6 15.6 / 10.7 

 

 



71 

Table 7.27. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Original Feature Vector For Red Channel Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.8 0.8 0.2 0.6 0.4  

Tolerance 0.5 0.3 0.3 0.5 0.5  

Vigilance 0.5 0.5 0.5 0.5 0.5  

Person 49.5 / 60.0 49.2 / 60.9 53.5 / 56.9 48.2 / 63.9 47.5 / 52.4 49.6 / 58.8 

Bicycle 38.0 / 22.7 37.8 / 32.4 34.8 / 32.7 37.3 / 24.1 33.9 / 24.7 36.4 / 27.3 

Vehicle 61.4 / 14.2 46.6 / 18.3 38.7 / 25.4 53.9 / 19.6 53.6 / 21.2 50.9 / 19.8 

Clutter 52.6 / 54.3 54.3 / 48.4 51.3 / 53.5 52.9 / 45.1 51.6 / 55.9 52.6 / 51.4 

Train Time 0.21865 0.579652 0.604578 0.234865 0.258831 0.379315 

Test Time 0.009828 0.021997 0.02458 0.009942 0.011101 0.01549 

 

 

 

Table 7.28. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Visible Images.  Mu =0.4, Tolerance = 0.3, Vigilance = 0.98 

 

Case Person Bicycle Vehicle Clutter 

1 58.9 / 78.2 53.3 / 27.6 100 / 71.4 69.2 / 69.2 

2 52.2 / 67.9 36.4 / 15.4 45.5 / 83.3 80.4 / 75.7 

3 86.8 / 53.3 14.3 / 11.8 75.0 / 75.0 68.6 / 89.0 

4 72.7 / 75.5 30.8 / 16.0 78.6 / 100 69.0 / 82.9 

5 75.4 / 86.0 50.0 / 536 27.3 / 50.0 69.2 / 78.3 

6 77.8 / 75.7 6.1 / 73.3 94.1 / 76.2 88.5 / 91.5 

7 71.4 / 62.5 27.8 / 33.3 100 / 22.2 71.1 / 83.1 

8 30.2 / 61.5 100 / 7.4 18.8 / 30.0 77.0 / 68.1 

9 51.8 / 77.2 21.1 / 26.7 95.0 / 30.0 61.1 / 38.6 

10 74.6 / 52.8 20.0 / 50.0 86.7 / 86.7 67.1 / 74.3 

Mean 65.2 / 69.0 41.5 / 26.7 72.1 / 62.5 72.1 / 75.1 

Std Dev 16.7 / 11.2 25.8 / 21.1 30.5 / 27.4 7.8 / 15.0 

 

 



72 

Table 7.29. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Visible Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.4 0.8 0.8 0.6 1  

Tolerance 0.3 0.3 0.1 0.3 0.5  

Vigilance 0.98 0.98 0.98 0.98 0.95  

Person 65.2 / 69.0 66.3 / 67.9 64.9 / 68.1 64.2 / 68.9 61.3 / 64.3 64.4 / 67.6 

Bicycle 41.5 / 26.7 40.6 / 27.3 36.4 / 35.5 35.7 / 26.8 36.2 / 33.9 38.1 / 30.1 

Vehicle 72.1 / 62.5 70.6 / 62.7 73.7 / 55.9 74.7 / 60.6 69.0 / 66.3 72.0 / 61.6 

Clutter 72.1 / 75.1 72.1 / 75.6 72.5 / 71.2 71.8 / 74.3 71.2 / 70.5 72.0 / 73.3 

Test Time 0.836135 0.943319 1.1024 0.955412 0.78199 0.923851 

Train Time 0.037501 0.040259 0.046699 0.038834 0.033232 0.039305 

 

 

 

Table 7.30. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Gray-Scale Near-Infrared Images.  Mu = 0.4,  

Tolerance = 0.3, Vigilance =0.98 

 

Case Person Bicycle Vehicle Clutter 

1 58.7 / 85.3 59.1 / 41.9 50.0 / 60.0 77.8 / 31.1 

2 47.0 / 53.4 20.7 / 24.0 83.3 / 83.3 63.3 / 50.8 

3 69.9 / 82.3 20.0 / 4.5 42.9 / 100 76.2 / 78.7 

4 67.1 / 79.7 50.0 / 32.1 100 / 100 76.5 / 72.2 

5 80.0 / 73.7 38.5 / 27.8 18.2 / 100 33.3 / 27.3 

6 73.7 / 67.7 52.9 / 52.9 95.5 / 100 79.5 / 84.1 

7 75.7 / 82.4 20.0 / 25.0 100 / 30.0 81.3 / 72.2 

8 39.3 / 70.6 42.1 / 25.8 71.4 / 50.0 77.5 / 59.6 

9 67.1 / 85.1 55.0 / 47.8 77.8 / 48.3 62.2 / 56.1 

10 79.4 / 85.3 31.3 / 35.7 95.0 / 86.4 83.0 / 73.3 

Mean 65.8 / 76.5 39.0 / 31.8 73.4 / 75.8 71.0 / 60.5 

Std Dev 13.6 / 10.3 15.3 / 13.8 27.9 / 26.4 15.0 / 19.5 

 

 



73 

Table 7.31. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Gray-Scale Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.4 0.6 0.2 0.8 0.4  

Tolerance 0.3 0.3 0.1 0.1 0.1  

Vigilance 0.98 0.98 0.98 0.98 0.98  

Person 65.8 / 76.5 65.4 / 77.8 65.7 / 73.8 64.8 / 77.1 66.3 / 75.5 65.6 / 76.2 

Bicycle 39.0 / 31.8 39.5 / 30.0 38.2 / 35.0 36.2 / 28.4 36.3 / 32.3 37.8 / 31.5 

Vehicle 73.4 / 75.8 71.1 / 78.6 70.2 / 79.6 71.2 / 79.1 67.8 / 75.1 70.7 / 77.7 

Clutter 71.0 / 60.5 71.2 / 59.2 70.0 / 59.4 72.7 / 61.9 72.2 / 62.0 71.4 / 60.6 

Train Time 1.015981 0.968147 1.080609 1.048993 1.053158 1.034474 

Test Time 0.041947 0.044268 0.046168 0.050359 0.046239 0.045796 

 

 

 

Table 7.32. Precision/Recall Obtained From Highest Performing Classifier Trained Using 

Reduced Feature Vector For Red Channel Near-Infrared Images.  Mu = 0.2,  

Tolerance = 0.1, Vigilance = 0.98 

 

Case Person Bicycle Vehicle Clutter 

1 55.6 / 76.3 44.4 / 53.3 60.0 / 50.0 86.5 / 50.8 

2 56.9 / 80.4 37.5 / 40.0 100 / 33.3 61.5 / 36.4 

3 60.0 / 67.1 21.1 / 16.0 50.0 / 60.0 78.2 / 75.4 

4 60.9 / 84.8 50.0 / 26.7 83.3 / 41.7 64.0 / 69.6 

5 75.8 / 69.4 14.8 / 9.1 6.3 / 50.0 65.6 / 56.8 

6 62.5 / 61.4 23.3 / 50.0 94.7 / 75.0 80.3 / 70.4 

7 76.3 / 84.1 18.2 / 16.7 63.6 / 63.6 75.0 / 57.7 

8 38.3 / 79.3 35.7 / 20.0 41.7 / 41.7 82.2 / 56.9 

9 71.9 / 80.7 47.8 / 55.0 64.0 /66.7 66.7 / 48.8 

10 78.7 / 75.0 27.3 / 60.0 90.5 / 79.2 55.6 / 23.8 

Mean 63.7 / 75.9 32.0 / 34.7 65.4 / 56.1 71.6 / 54.6 

Std Dev 12.4 / 7.7 12.8 / 19.1 28.6 / 15.2 10.2 / 15.8 

 

 



74 

Table 7.33. Average Precision/Recall Obtained From Highest Five Performing Classifiers 

Trained Using Reduced Feature Vector For Red Channel Near-Infrared Images. 

 

Rank 1 2 3 4 5 Mean 

Mu 0.2 0.8 0.4 0.6 0.4  

Tolerance 0.1 0.1 0.1 0.1 0.3  

Vigilance 0.98 0.98 0.98 0.98 0.98  

Person 63.7 / 75.9 64.6 / 24.8 64.0 / 74.4 65.2 / 75.2 63.6 / 75.0 64.2 / 75.0 

Bicycle 32.0 / 34.7 30.1 / 27.3 32.3 / 29.1 30.0 / 28.3 37.3 / 32.8 32.4 / 30.4 

Vehicle 65.4 / 56.1 67.0 / 61.4 62.5 / 63.9 65.0 / 56.7 55.7 / 62.3 63.1 / 60.1 

Clutter 71.6 / 54.6 68.5 / 59.3 69.5 / 56.3 71.1 / 59.1 65.9 / 55.1 69.3 / 56.9 

Train Time 1.095165 1.103951 1.125585 1.099705 1.045717 1.094025 

Test Time 0.012449 0.049011 0.046775 0.047445 0.042797 0.046563 

 

 

 

7.4.   PREDICTION ERROR EXAMPLES 

 As indicated in Sections 7.4 and 7.5, the classification architectures developed in 

this research did not achieve 100% accuracy.  An example misclassification of each of 

the four object classes are shown in Figures 7.1, 7.2, 7.3 and 7.4.  These examples show 

some common reasons for misclassification. 

 Figure 7.1 demonstrates that person objects can bend and move in unexpected 

ways that may cause confusion in a classifier.  In this example case, the person imaged is 

pulling on a dog and is leaning abnormally.  The image processing algorithm did not 

segment the dog and the person, which could also cause confusion for the classifier.   

Figure 7.2 reiterates the importance of object orientation for correct classification.  

In this image, a person is riding a bicycle, but is facing the camera head-on.  This bicycle 

object was typically labeled as a person object.   

Figure 7.3 shows another example of the image processing algorithm failing to 

segment images that are very close in proximity.  In this case, a person and a vehicle 



75 

object are separated into one object boundary.  This would cause confusion to the 

classification architecture as it would not match previously found patterns for vehicle or 

person classes.  Oftentimes this object would be described as a clutter object. 

 

 

Figure 7.1.  Example of Person Misclassification. (a) Original Image. (b) Object 

Segmented Image. 

 

 

Figure 7.2.  Example of Bicycle Misclassification. (a) Original Image. (b) Object 

Segmented Image. 

 

  

  



76 

 

Figure 7.3.  Example of Vehicle Misclassification. (a) Original Image. (b) Object 

Segmented Image. 

 

 

Figure 7.4.  Example of Clutter Misclassification. (a) Original Image. (b) Object 

Segmented Image. 

 

 

In the final figure, Figure 7.4, issues with the segmentation algorithm are once 

again observed.  A clutter and a person object are classified in this case as one object.  

This object was most often labeled as a person object.   It is noted that in some cases both 

the near-infrared and visible images are incapable of successfully segmenting objects 

with the developed processing algorithm. 

  

  



77 

While these examples indicate some weaknesses in the classification architectures 

and the image processing algorithm, these weaknesses would not make surveillance 

applications impossible.  Oftentimes surveillance systems run real-time, which would 

make the noted weaknesses in this research less significant as objects will naturally move 

around an environment changing both their orientation to the camera and other 

environmental objects. 

 

7.5.  DATA FUSION RESULTS 

Some principles of data fusion were used in this research to determine the 

uniqueness of the architectures found in Sections 7.2 and 7.4.  Through this 

experimentation the highest classification architectures found were tested on all three 

types of image sets.  Classification results were reported in terms of precision and recall. 

Tables 7.34, 7.35 and 7.36 indicate the classification performance of the highest 

ranking MLP architectures for each image type using the original feature vectors on the 

other two image types.  The first column indicates the image type and references the table 

where it is outlined.  The first column is broken into two sub columns.  The first of the 

two sub-columns indicates the label of the image type.  The second sub-column 

designates whether the information presented is the initial data or a difference taken 

between the initial data collected from the training image type and the initial data 

collected from the new image type.  Other column labels indicate the class of data being 

observed in terms of precision and recall.  Similarly Tables 7.37, 7.38 and 7.39 examine 

the performance of the highest ranking MLP architectures using the reduced feature 

vectors.  Tables 7.40, 7.41 and 7.42 and Tables 7.43, 7.44 and 7.45 illustrate the 



78 

performance of the highest ranking ssEAM architectures using the original and reduced 

feature vectors, respectively. 

 

 

Table 7.34.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Original Feature Vector From Visible Images (Table 7.10). 

 

 Case Person Bicycle Vehicle Clutter 

Visible Mean 72.2 / 87.2 60.5 / 36.3 75.6 / 91.7 83.1 / 76.0 

NIR-Gray 

1 53.3 / 42.7 22.2 / 12.9 80.0 / 80.0 49.3 / 80.0 

2 70.9 / 67.2 34.6 / 67.2 100 / 100 63.5 / 65.6 

3 90.9 / 64.5 25.0 / 9.1 60.0 / 100 56.0 / 83.6 

4 69.1 / 94.9 33.3 / 7.1 0 / 0 46.7 / 77.8 

5 100 / 50.0 0 / 0 0 / 0 11.8 / 90.9 

6 68.6 / 77.4 20.0 / 5.9 100 / 85.7 81.6 / 89.9 

7 87.9 / 42.6 66.7 / 16.7 0 / 0 23.6 / 94.4 

8 70.0 / 61.8 75.0 / 58.1 90.9 / 100 72.6 / 86.5 

9 87.9 / 43.3 75.0 / 39.1 60.0 / 93.1 37.1 / 63.4 

10 93.0 / 84.2 48.3 / 100 100 / 68.2 88.5 / 90.0 

Mean 79.2 / 62.9 40.0 / 28.5 84.4 / 62.7 53.1 / 82.2 

Difference 7.0 / 24.3 20.5 / 7.8 8.8 / 29.0 30.0 / 6.2 

NIR-Red 

1 51.9 / 93.2 0 / 0 37.5 / 25.0 74.5 / 55.6 

2 59.6 / 69.6 41.2 / 46.7 23.1 / 100 56.3 / 40.9 

3 91.7 / 75.3 50.0 / 48.0 22.7 / 100 83.8 / 81.6 

4 59.7 / 87.0 85.7 / 20.0 100 / 83.3 70.4 / 82.6 

5 80.0 / 88.9 0 / 0 23.5 / 100 60.7 / 91.9 

6 70.5 / 75.4 0 / 0 0 / 0 76.5 / 92.6 

7 94.1 / 92.8 100 / 33.3 100 / 45.5 61.0 / 96.2 

8 64.0 / 55.2 46.7 / 56.0 0 / 0 71.1 / 83.1 

9 90.9 / 35.1 0 / 0 70.6 / 100 39.5 / 82.9 

10 84.4 / 59.4 33.3 / 13.3 85.7 / 25.0 21.2 / 66.7 

Mean 75.7 / 73.2 39.7 / 21.7 57.9 / 57.9 61.5 / 77.4 

Difference 3.5 / 14.0 20.0 / 14.6 17.7 / 33.8 21.6 / 1.4 

 



79 

Table 7.35.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Original Feature Vector From NIR-Gray Images (Table 7.12). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Gray Mean 75.1 / 79.2 36.8 / 39.1 65.2 / 76.7 73.0 / 71.8 

Visible 

1 63.6 / 76.4 10.0 / 3.4 92.9 / 92.9 70.2 / 84.6 

2 50.5 / 96.2 0 / 0 85.7 / 100 97.1 / 64.1 

3 75.4 / 74.2 0 / 0 100 / 100 77.9 / 89.0 

4 78.2 / 81.1 61.9 / 52.0 0 / 0 54.2 / 74.3 

5 67.1 / 100 0 / 0 83.3 / 83.3 100 / 56.5 

6 46.4 / 70.3 0 / 0 100 / 61.9 74.6 / 79.7 

7 60.9 / 87.5 5.3 / 6.7 100 / 11.1 97.9 / 64.8 

8 40.0 / 100 81.0 / 63.0 76.9 / 100 97.0 / 46.4 

9 73.4 / 82.5 56.3 / 60.0 58.8 / 50.0 65.4 / 60.0 

10 63.2 / 67.4 100 / 8.3 93.3 / 93.3 62.0 / 66.2 

Mean 61.9 / 83.6 39.3 / 19.3 87.9 / 69.3 79.6 / 68.5 

Difference 13.2 / 4.4 2.5 / 19.8 22.7 / 7.4 6.6 / 3.3 

NIR-Red 

1 40.6 / 72.9 0 / 0 66.7 / 16.7 65.9 / 42.9 

2 66.7 / 82.6 57.1 / 26.7 23.1 / 100 71.0 / 50.0 

3 68.4 / 74.0 20.0 / 8.0 41.7 / 100 90.0 / 91.2 

4 49.5 / 100 0 / 0 0 / 0 83.3 / 65.2 

5 75.0 / 83.3 0 / 0 50.0 / 75.0 42.9 / 81.1 

6 65.9 / 98.2 2.3 / 7.1 100 / 8.3 100 / 56.8 

7 71.0 / 71.0 100 / 16.7 76.9 / 90.9 41.2 / 53.8 

8 52.0 / 89.7 54.1 / 80.0 70.0 / 58.3 94.1 / 49.2 

9 64.0 / 96.5 0 / 0 41.9 / 75.0 84.6 / 26.8 

10 87.9 / 45.3 60.0 / 40.0 100 / 45.8 22.9 / 76.2 

Mean 64.1 / 81.4 36.7 / 17.8 63.4 / 57.0 69.5 / 59.3 

Difference 11.0 / 2.2 0.1 / 21.3 1.8 / 19.7 3.5 / 12.5 

 

 

 

 



80 

Table 7.36.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Original Feature Vector From NIR-Red Images (Table 7.14). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Red Mean 72.4 / 73.5 57.2 / 51.3 80.5 / 69.4 69.7 / 69.8 

Visible 

1 58.1 / 65.5 85.7 / 20.7 71.4 / 71.4 63.0 / 87.2 

2 54.4 / 92.5 88.9 / 30.8 85.7 / 100 91.5 / 72.8 

3 52.1 / 80.6 0 / 0 100 / 100 78.4 / 63.7 

4 56.1 / 69.8 50.0 / 36.0 100 / 100 65.5 / 100 

5 66.7 / 70.2 33.3 / 16.7 80.0 / 66.7 43.3 / 56.5 

6 53.1 / 45.9 50.0 / 33.3 95.5 / 100 73.5 / 84.7 

7 77.6 / 92.2 27.3 / 20.0 80.0 / 89.9 83.9 / 73.2 

8 38.9 / 53.8 45.5 / 18.5 100 / 20.0 65.1 / 78.3 

9 37.0 / 17.5 50.0 / 26.7 100 / 30.0 38.9 / 73.7 

10 71.4 / 39.3 76.9 / 83.3 100 / 93.3 50.0 / 77.0 

Mean 56.5 / 62.7 50.8 / 28.6 91.3 / 77.0 65.3 / 72.1 

Difference 15.9 / 10.8 6.4 / 22.7 10.8 / 7.6 4.4 / 2.3 

NIR-Gray 

1 62.7 / 62.7 11.1 / 3.2 100 / 100 50.7 / 75.6 

2 77.8 / 60.3 30.0 / 60.0 100 / 100 73.5 / 59.0 

3 81.4 / 56.4 66.7 / 9.1 100 / 100 59.6 / 96.7 

4 77.6 / 76.3 33.3 / 7.1 100 / 41.7 27.1 / 72.2 

5 100 / 77.6 0 / 0 25.0 / 50.0 15.8 / 81.8 

6 76.5 / 62.9 25.0 / 17.6 100 / 100 70.6 / 87.0 

7 83.9 / 69.2 50.0 / 50.0 80.0 / 40.0 28.6 / 55.6 

8 74.2 / 67.6 76.2 / 51.6 100 / 50.0 67.1 / 90.4 

9 87.5 / 31.3 91.7 / 47.8 16.7 / 3.4 32.2 / 92.7 

10 84.5 / 63.2 5.0 / 7.1 0 / 0 44.0 / 73.3 

Mean 80.6 / 62.8 38.9 / 25.4 72.2 / 58.5 46.9 / 78.4 

Difference 8.2 / 10.7 18.3 / 25.9 8.3 / 10.9 22.8 / 8.6 

 

 

 



81 

Table 7.37.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Reduced Feature Vector From Visible Images (Table 7.16). 

 

 Case Person Bicycle Vehicle Clutter 

Visible Mean 68.2 / 86.3 54.1 / 27.5 77.0 / 85.4 82.4 / 76.7 

NIR-Gray 

1 64.6 / 97.3 0 / 0 57.1 / 40.0 78.9 / 66.7 

2 70.8 / 58.6 40.5 / 60.0 42.9 / 100 76.5 / 63.9 

3 66.7 / 51.6 56.0 / 63.6 7.9 / 100 100 / 6.7 

4 61.4 / 86.4 0 / 0 100 / 8.3 60.0 / 66.7 

5 92.6 / 82.9 12.5 / 2.8 18.2 / 100 31.0 / 81.8 

6 49.2 / 100 0 / 0 9.1 / 4.8 100 / 20.3 

7 76.7 / 97.1 100 / 25.0 0 / 0 47.4 / 50.0 

8 73.9 / 50.0 25.0 / 6.5 9.2 / 60.0 87.1 / 51.9 

9 91.5 / 64.2 0 / 0 33.0 / 100 31.8 / 17.1 

10 92.9 / 83.2 31.3 / 71.4 91.3 / 95.5 96.1 / 81.7 

Mean 74.0 / 77.1 26.5 / 22.9 36.9 / 60.9 70.9 / 56.1 

Difference 5.8 / 9.2 27.6 / 4.6 40.1 / 24.5 11.5 / 20.6 

NIR-Red 

1 51.5 / 89.8 8.3 / 3.3 71.4 / 83.3 80.0 / 44.4 

2 67.9 / 82.6 91.7 / 73.3 25.0 / 100 75.0 / 47.3 

3 71.7 / 90.4 38.1 / 32.0  0 / 0 84.6 / 77.2 

4 51.7 / 97.8 0 / 0 0 / 0 58.8 / 43.5 

5 87.7 / 69.4 56.5 / 88.6 0 / 0 93.5 / 78.4 

6 51.6 / 56.1 0 / 0 0 / 0 71.0 / 81.5 

7 73.6 / 97.1 8.3 / 8.3 0 / 0 86.7 / 50.0 

8 48.9 / 79.3 63.2 / 48.0 63.6 / 58.3 88.9 / 73.8 

9 59.1 / 22.8 32.6 / 75.0 45.1 / 95.8 91.3 / 51.2 

10 93.8 / 93.8 56.3 / 60.0 0 / 0 35.9 / 66.7 

Mean 65.8 / 77.9 38.9 / 35.5 20.5 / 33.7 76.6 / 61.4 

Difference 2.4 / 8.4 18.6 / 11.4 56.5 / 51.7 5.8 / 15.3 



82 

Table 7.38.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Reduced Feature Vector From NIR-Gray Images (Table 7.18). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Gray Mean 63.3 / 74.2 30.1 / 15.8 73.1 / 70.1 53.0 / 58.6 

Visible 

1 46.3 / 56.4 0 / 0 83.3 / 71.4 57.4 / 79.5 

2 48.6 / 67.9 0 / 0 66.7 / 100 81.0 / 78.6 

3 38.3 / 74.2 0 / 0 100 / 100 68.0 / 37.4 

4 53.0 / 83.0 0 / 0 84.6 / 100 57.1 / 45.7 

5 64.6 / 93.0 0 / 0 0 / 0 63.2 / 52.2 

6 2.5 / 5.4 0 / 0 100 / 81.0 56.8 / 91.5 

7 39.1 / 28.1  0 / 0 50.0 / 33.3 49.0 / 67.6 

8 41.5 / 65.4 44.4 / 29.6 18.8 / 60.0 80.5 / 47.8 

9 64.5 / 70.2 62.5 / 33.3 28.2 / 55.0 65.0 / 45.6 

10 64.8 / 66.3 19.1 / 75.0 58.3 / 93.3 100 / 37.8 

Mean 47.3 / 61.0 12.6 / 13.8 59.0 / 69.4 67.8 / 58.4 

Difference 16.0 / 13.2 17.5 / 2.0 14.1 / 0.7 14.8 / 0.2 

NIR-Red 

1 38.7 / 61.0 0 / 0 75.0 / 50.0 58.6 / 54.0 

2 58.9 / 93.5 0 / 0 100 / 100 81.8 / 40.9 

3 59.0 / 67.1 0 / 0 100 / 80.0 69.3 / 77.2 

4 40.5 / 65.2 0 / 0 75.0 / 25.0 32.0 / 34.8 

5 94.1 / 66.7 27.3 / 13.6 57.1 / 100 37.7 / 78.4 

6 31.8 / 47.4 0 / 0 100 / 70.8 55.2 / 45.7 

7 66.7 / 29.0 23.1 / 25.0 83.3 / 45.5 21.7 / 57.7 

8 50.0 / 96.6 66.7 / 40.0 85.7 / 50.0 88.7 / 72.3 

9 76.4 / 96.5 100 / 40.0 80.0 / 16.7 57.9 / 80.5 

10 88.9 / 100 100 / 33.3 72.4 / 87.5 77.8 / 66.7 

Mean 60.5 / 72.3 31.7 / 15.2 82.9 / 62.5 58.1 / 60.8 

Difference 2.8 / 1.9 1.6 / 0.6 9.8 / 7.6 5.1 / 2.2 

 



83 

Table 7.39.  Precision/Recall Obtained From Highest Performing MLP Classifier Trained 

Using Reduced Feature Vector From NIR-Red Images (Table 7.20). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Red Mean 46.5 / 48.0 18.6 / 20.9 1.7 / 15.0 67.6 / 26.5 

Visible 

1 52.2 / 63.6  0 / 0 87.5 / 50.0 65.2 / 76.9 

2 57. / 83.0 60.0 / 11.5 42.9 / 100 90.3 / 81.6 

3 45.9 / 45.2 0 / 0 50.0 / 75.0 63.0 / 69.2 

4 57.3 / 96.2 28.6 / 8.0 90.0 / 81.8 88.9 / 45.7 

5 67.2 / 68.4 19.0 / 22.2 83.3 / 83.3 57.9 / 47.8 

6 43.8 / 46.8 0 / 0 95.2 / 95.2 72.4 / 71.2 

7 95.6 / 67.2 73.7 / 93.3 75.0 / 66.7 77.0 / 94.4 

8 39.4 / 50.0 33.3 / 29.6 16.9 / 100 93.8 / 21.7 

9 61.8 / 59.6 30.0 / 40.0 48.2 / 70.0 51.1 / 40.3 

10 76.6 / 95.5 28.6 / 33.3 62.5 / 100 100 / 55.4 

Mean 59.8 / 68.6 27.3 / 23.8 65.2 / 82.2 76.0 / 60.4 

Difference 13.3 / 20.5 8.7 / 2.9 63.5 / 67.2 8.4 / 33.9 

NIR-Gray 

1 62.5 / 93.3 0 / 0 90.9 / 100 83.8 / 68.9 

2 63.8 / 87.9 53.6 / 60.0 100 / 100 97.2 / 57.4 

3 40.6 / 66.1 0 / 0 13.6 / 100 52.9 / 14.8 

4 50.0 / 79.7 0 / 0 100 / 33.3 33.3 / 27.8 

5 100 / 81.6 0 / 0 0 / 0 55.0 / 100 

6 63.3 / 100  0 / 0 100 / 66.7 92.6 / 72.5 

7 47.8 / 16.2 87.5 / 58.3 58.8 / 100 5.0 / 16.7 

8 84.6 / 64.7 56.4 / 71.0 27.0 / 100 100 / 48.1 

9 91.4 / 47.8 46.7 / 30.4 59.2 / 100 37.7 / 56.1 

10 71.7 / 69.5 100 / 42.9 0 / 0 43.8 / 65.0 

Mean 67.6 / 70.7 34.4 / 26.3 55.0 / 70.0 60.1 / 52.7 

Difference 21.1 / 22.7 15.8 / 5.3 53.2 / 55.0 7.5 / 26.2 



84 

Table 7.40.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Original Feature Vector From Visible Images (Table 7.22). 

 

 Case Person Bicycle Vehicle Clutter 

Visible Mean 50.3 / 52.1 39.3 / 34.3 51.9 / 20.7 57.0 / 59.8 

NIR-Gray 

1 52.3 / 30.7 27.3 / 9.7 100 / 10.0 33.0 / 68.9 

2 40.0 / 41.4 37.5 / 12.0 50.0 / 16.7 44.8 / 49.2 

3 44.6 / 46.8 14.3 / 4.5 33.3 / 33.3 42.9 / 44.3 

4 53.7 / 37.3 75.0 / 10.7 0 / 0 14.9 / 55.6 

5 62.3 / 43.4 77.8 / 19.4 0 / 0 12.3 / 63.6 

6 41.2 / 45.2 11.1 / 5.9 100 / 4.8 44.0 / 68.1 

7 70.0 / 41.2 50.0 / 16.7 0 / 0 24.1 / 77.8 

8 25.0 / 35.3 40.0 / 12.9 50.0 / 10.0 47.6 / 57.7 

9 44.4 / 47.8 37.5 / 13.0 40.0 / 6.9 29.9 / 48.8 

10 54.9 / 41.1 19.2 / 35.7 50.0 / 4.5 33.3 / 46.7 

Mean 48.8 / 41.0 39.0 / 14.1 42.3 / 8.6 33.7 / 58.1 

Difference 1.5 / 11.1 0.3 / 20.3 9.6 / 12.1 23.3 / 1.7 

NIR-Red 

1 42.0 / 35.6 69.2 / 30.0  0 / 0 41.1 / 61.9 

2 43.5 / 43.5 37.5 / 20.0 33.3 / 33.3 39.6 / 43.2 

3 31.8 / 38.4 30.0 / 12.0 37.5 / 60.0 46.5 / 40.4 

4 39.0 / 34.8 54.5 / 20.0 66.7 / 33.3 17.4 / 34.8 

5 51.1 / 33.3 52.0 / 29.5 0 / 0 28.6 / 54.1 

6 43.1 / 49.1 20.0 / 7.1 10.0 / 4.2 47.3 / 53.1 

7 67.4 / 44.9 50.0 / 16.7 0 / 0 21.7 / 50.0 

8 37.0 / 69.0 50.0 / 12.0 0 / 0 58.9 / 50.8 

9 43.4 / 40.4 0 / 0 100 / 56.1 33.3 / 56.1 

10 53.2 / 39.1 20.0 / 6.7 50.0 / 12.5 36.8 / 71.4 

Mean 45.1 / 42.8 38.3 / 15.4 29.8 / 14.7 36.1 / 51.6 

Difference 5.2 / 9.3 1.0 / 19.0 22.2 / 6.0 20.9 / 8.2 

 



85 

Table 7.41.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Original Feature Vector From NIR-Gray Images (Table 7.24). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Gray Mean 53.6 / 69.0 38.0 / 22.1 65.7 / 21.4 53.6 / 50.9 

Visible 

1 46.1 / 74.5 22.2 / 6.9 50.0 / 21.4 37.9 / 28.2 

2 35.4 / 87.0 19.0 / 15.4 25.0 / 33.3 56.5 / 12.6 

3 50.0 / 64.5 15.4 / 11.8 0 / 0 62.5 / 44.0 

4 47.1 / 62.3 50.0 / 12.0 71.4 / 45.5 41.7 / 42.9 

5 57.9 / 57.9 30.0 / 16.7 50.0 / 33.3 25.0 / 30.4 

6 31.0 / 48.6 17.6 / 20.0 100 / 4.8 58.8 / 50.8 

7 47.6 / 62.5 33.3 / 26.7 25.0 / 22.2 52.4 / 31.0 

8 17.7 / 53.8 100 / 11.1 4.8 / 10.0 50.0 / 20.3 

9 40.4 / 66.7 40.0 / 26.7 22.2 / 10.0 38.7 / 21.1 

10 44.3 / 48.3 8.3 / 16.7 100 / 6.7 42.3 / 29.7 

Mean 41.8 / 62.6 33.6 / 16.4 44.8 / 18.7 46.6 / 31.1 

Difference 11.8 / 6.4 4.4 / 5.7 20.9 / 2.7 4.3 / 19.8 

NIR-Red 

1 42.9 / 61.0 40.0 / 13.3 60.0 / 25.0 43.8 / 33.3 

2 50. 8 / 71.7 0 / 0 33.3 / 33.3 69.0 / 45.5 

3 40.2 / 67.1 9.5 / 8.0 11.1 / 20.0 63.6 / 30.7 

4 41.8 / 60.9 50.0 / 6.7 71.4 / 41.7 22.6 / 30.4 

5 51.2 / 58.3 75.0 / 20.5 0 / 0 34.8 / 43.2 

6 40.0 / 73.7 33.3 / 25.0 100 / 9.1 68.7 / 40.7 

7 57.1 / 52.2 33.3 / 25.0 100 / 9.1 15.2 / 19.2 

8 26.5 / 75.9 40.0 / 16.0 100 / 16.7 64.7 / 33.8 

9 48.8 / 70.2 27.3 / 15.0 50.0 / 8.3 43.2 / 39.0 

10 51.7 / 71.9 15.4 / 13.3 60.0 / 12.5 15.4 / 9.5 

Mean 45.1 / 66.3 31.4 / 14.6 53.6 / 17.1 44.1 / 32.6 

Difference 8.5 / 2.7 7.0 / 7.5 12.1 / 4.3 6.8 / 18.3 

 



86 

Table 7.42.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Original Feature Vector From NIR-Red Images (Table 7.26). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Red Mean 49.5 / 59.9 38.0 / 22.7 61.4 / 14.2 52.6 / 54.3 

Visible 

1 42.2 / 49.1 9.1 / 3.4 57.1 / 28.6 36.5 / 48.7 

2 39.4 / 49.1 15.4 / 7.7 7.7 / 16.7 68.7 / 55.3 

3 47.1 / 51.6 14.3 / 17.6 22.2 / 50.0 57.7 / 45.1 

4 47.6 / 56.6 25.0 / 8.0 71.4 / 45.5 31.8 / 40.0 

5 72.1 / 54.4 22.2 / 11.1 16.7 / 33.3 29.7 / 47.8 

6 30.5 / 48.6 18.2 / 13.3 50.0 / 4.8 58.5 / 52.5 

7 43.5 / 46.9 41.2 / 46.7 12.5 / 11.1 44.6 / 35.2 

8 21.3 / 65.4 37.5 / 11.1 100 / 10.0 52.8 / 27.5 

9 51.7 / 52.6 30.0 / 20.0 31.6 / 30.0 40.0 / 49.1 

10 48.3 / 48.3 5.3 / 8.3 66.7 / 13.3 39.2 / 39.2 

Mean 44.4 / 52.3 21.8 / 14.7 43.6 / 24.3 47.0 / 44.1 

Difference 5.1 / 7.6 16.2 / 8.0 17.8 / 10.1 5.6 / 10.2 

NIR-Gray 

1 51.4 / 50.7 41.2 / 22.6 10.0 / 10.0 26.8 / 33.3 

2 49.3 / 60.3 16.7 / 8.0 18.2 / 33.3 47.9 / 37.7 

3 54.5 / 67.7 42.9 / 13.6 0 / 0 62.0 / 50.8 

4 58.5 / 52.5 41.7 / 17.8 50.0 / 41.7 20.0 / 38.9 

5 64.8 / 46.1 50.0 / 25.0 0 / 0 16.7 / 63.6 

6 40.2 / 60.0 21.4 / 17.6 100 / 4.8 41.8 / 33.3 

7 73.0 / 39.7 15.4 / 16.7 33.3 / 10.0 34.0 / 88.9 

8 31.7 / 58.8 23.5 / 12.9 100 / 10.0 40.0 / 30.8 

9 41.8 / 49.3 27.8 / 21.7 100 / 3.4 21.8 / 29.3 

10 54.7 / 43.2 13.6 / 21.4 33.3 / 9.1 40.5 / 53.3 

Mean 52.0 / 52.8 29.4 / 17.7 44.5 / 12.2 35.2 / 46.0 

Difference 2.5 / 7.1 8.6 / 5.0 16.9 / 2.0 17.4 / 8.3 

 



87 

Table 7.43.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Reduced Feature Vector From Visible Images (Table 7.28). 

 

 Case Person Bicycle Vehicle Clutter 

Visible Mean 65.2 / 69.0 41.5 / 26.7 72.1 / 62.5 72.1 / 75.1 

NIR-Gray 

1 0 / 0  50.0 / 3.2 0 / 0 27.7 / 97.8 

2 100 / 1.7 0 / 0 0 / 0 40.9 / 100 

3 50.0 / 1.6 0 / 0  0 / 0  41.1 / 98.4 

4 0 / 0  0 / 0 0 / 0 15.4 / 100 

5 0 / 0  0 / 0 0 / 0 8.7 / 100 

6 0 / 0 0 / 0 0 / 0 40.8 / 100 

7 100 / 1.5 0 / 0 0 / 0 16.8 / 100 

8 0 / 0 0 / 0 0 / 0 40.9 / 100 

9 0 / 0 0 / 0 0 / 0 25.6 / 100 

10 0 / 0 0 / 0 0 / 0 31.4 / 100 

Mean 25.0 / 0.5 5.0 / 0.3 0 / 0 28.9 / 99.6 

Difference 40.2 / 68.5 36.5 / 26.4 72.1 / 62.5 43.2 / 24.5 

NIR-Red 

1 66.7 / 3.4 0 / 0 0 / 0 38.5 / 98.4 

2 0 / 0 0 / 0 0 / 0 40.7 / 100 

3 20.0 / 1.4 0 / 0 0 / 0 51.9 / 96.5 

4 100 / 2.2 0 / 0 0 / 0 20.9 / 100 

5 100 / 1.4 0 / 0 0 / 0 23.7 / 100 

6 0 / 0 0 / 0 0 / 0 46.0 / 100 

7 0 / 0 0 / 0 0 / 0 22.0 / 100 

8 0 / 0 0 / 0 0 / 0 50.0 / 100 

9 50.0 / 1.8 0 / 0 0 / 0 28.6 / 97.6 

10 0 / 0 0 / 0 0 / 0 16.9 / 100 

Mean 33.7 / 1.0 0 / 0 0 / 0 33.9 / 99.2 

Difference 31.5 / 68.0 41.5 / 26.7 72.1 / 62.5 38.2 / 24.1 

 



88 

Table 7.44.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Reduced Feature Vector From NIR-Gray Images (Table 7.30). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Gray Mean 65.8 / 76.5 39.0 / 31.8 73.4 / 75.8 71.0 / 60.5 

Visible 

1 40.1 / 100 0 / 0 0 / 0 0 / 0 

2 29.0 / 100 0 / 0 0 / 0 100 / 4.9 

3 35.5 / 98.4 0 / 0 0 / 0 50. 0 / 1.1 

4 43.1 / 100 0 / 0 0 / 0 100 / 2.9 

5 55.3 / 100 0 / 0 0 / 0 100 / 4.3 

6 28.0 / 100 0 / 0 0 / 0 0 / 0 

7 41.3 / 100  0 / 0 0 / 0 100 / 5.6 

8 19.4 / 96.2 0 / 0 0 / 0 66.7 / 2.9 

9 38.8 / 100 0 / 0 0 / 0 100 / 3.5 

10 46.8 / 100 0 / 0 0 / 0 0 / 0 

Mean 37.7 / 99.5 0 / 0 0 / 0 61.7 / 2.5 

Difference 28.1 / 23.0 39.0 / 31.8 73.4 / 75.8 9.3 / 58.0 

NIR-Red 

1 35.4 / 96.6 0 / 0 0 / 0 33.3 / 1.6 

2 43.0 / 100 0 / 0 0 / 0 0 / 0 

3 34.0 / 98.6 0 / 0 0 / 0 80.0 / 3.5 

4 41.4 / 100  0 / 0 0 / 0 0 / 0 

5 45.9 / 100  0 / 0 0 / 0 0 / 0 

6 32.9 / 100 0 / 0 0 / 0 100 / 3.7 

7 58.5 / 100 0 / 0 0 / 0 0 / 0 

8 22.1 / 100 0 / 0 0 / 0 0 / 0 

9 40.0 / 98.2 0 / 0 0 / 0 50.0 / 2.4 

10 51.6 / 100 0 / 0 0 / 0 0 / 0 

Mean 40.4 / 99.3 0 / 0 0 / 0 26.3 / 1.1 

Difference 25.4 / 22.8 39.0 / 31.8 73.4 / 75.8 44.7 / 59.4 

 



89 

Table 7.45.  Precision/Recall Obtained From Highest Performing ssEAM Classifier 

Trained Using Reduced Feature Vector From NIR-Red Images (Table 7.32). 

 

 Case Person Bicycle Vehicle Clutter 

NIR-Red Mean 63.7 / 75.9 32.0 / 34.7 65.4 / 56.1 71.6 / 54.6 

Visible 

1 40.7 / 100 0 / 0 0 / 0 100 / 5.1 

2 29.0 / 100 0 / 0 0 / 0 100 / 4.9 

3 35.5 / 98.4 0 / 0 0 / 0 50.0 / 1.1 

4 43.1 / 100 0 / 0 0 / 0 100 / 2.9 

5 55.3 / 100  0 / 0 0 / 0 100 / 4.3 

6 28.0 / 100 0 / 0 0 / 0 0 / 0 

7 41.3 / 100 0 / 0 0 / 0 100 / 5.6 

8 19.4 / 96.2 0 / 0 0 / 0 66.7 / 2.9 

9 38.8 / 100 0 / 0 0 / 0 100 / 3.5 

10 46.8 / 100 0 / 0 0 / 0 0 / 0 

Mean 37.8 / 99.5 0 / 0 0 / 0 71.7 / 3.0 

Difference 25.9 / 23.6 32 / 34.7 65.4 / 56.1 0.1 / 51.6 

NIR-Gray 

1 47.2 / 100 0 / 0 0 / 0 50.0 / 2.2 

2 38.7 / 100 0 / 0 0 / 0 0 / 0 

3 41.8 / 98.4 0 / 0 0 / 0 50.0 / 1.6 

4 50.4 / 100 0 / 0 0 / 0 0 / 0 

5 60.3 / 100 0 / 0 0 / 0 100 / 9.1 

6 36.9 / 100 0 / 0 0 / 0 100 / 1.4 

7 63.0 / 100 0 / 0 0 / 0 0 / 0 

8 27.0 / 100 0 / 0 0 / 0 100 / 1.9 

9 41.9 / 100 0 / 0 0 / 0 0 / 0 

10 50.5 / 100 0 / 0 0 / 0 100 / 5.0 

Mean 45.8 / 99.8 0 / 0 0 / 0 50. 0 / 2.1 

Difference 17. 9 / 23.9 32.0 / 34.7 65.4 / 52.5 21.6 / 52.5 

 



90 

7.6.  DISCUSSION 

 The architectures described in Sections 7.3 and 7.4 did not have 100% accuracy at 

classifying the classes of persons, bicycles, vehicles and clutter.  Accuracy discrepancies 

can be attributed to the variety of environments used and environmental noise and clutter.  

Accuracy discrepancies can also be attributed to imperfect object segmentation by the 

processing algorithm defined in Chapter 5 (as shown in Section 7.4).   The experiments 

performed in this research were intended to explore surveillance capabilities across a 

spectrum of situations rather than optimizing architectures for a specific situation. 

 The ssEAM and MLP neural network architectures tended to perform well on 

both near-infrared and visible images despite the variability of the observed 

environments.  Typically vehicle and bicycle classification performances were lower than 

clutter and person classification.  This could be attributed to the range of views imaged of 

vehicles and bicycles.  Vehicles and bicycles look significantly different at different 

angles while persons tend to look similar despite angle variations.  A wider variety of 

person objects were imaged in the image set than bicycle or vehicles, which could also 

have caused accuracy differences.  The ssEAM architectures appeared to evenly divide 

the sample space defining classification causing the precision and recall values across the 

four classes to be more consistent than those in the MLP neural network architecture.  

Both architectures appear to have the potential to classify well when optimized.  Test 

times in both architectures were insignificant, allowing potential for real-time 

implementation. 

 Differences between red-channel and gray-scale near-infrared images were fairly 

minute.  Reduced feature sets degraded performance in the MLP neural network 



91 

architectures, but improved performance in ssEAM architectures.  As noted in previous 

literature review, feature count effects accuracy in ssEAM architecture, so further feature 

analysis would be needed to optimize this architecture performance. Train time was 

improved with reduced features sets, but test times remained small across the board. 

 Both the LDA feature analysis and data fusion experiments showed that feature 

importance for classification varied across the three image types.  The ssEAM 

architectures trained on one image type did not perform well on the other two image 

types.  The MLP neural network architectures trained performed better on the other 

image types than the ssEAM architectures did.  Data fusion experiments show that visible 

images and gray-scale near-infrared images compare as they performed well at 

classifying the other.  Experiments also show that gray-scale near-infrared images 

compare to red channel near-infrared images.   

 Overall the results show that near-infrared images have the potential to perform 

just as well in classification applications as visible images.  Benefits of near-infrared 

imagery as mentioned before justify future research in near-infrared surveillance 

applications. 



92 

 

8. CONCLUSIONS AND FUTURE WORK 

 

8.1.  CONCLUSIONS 

 In this research, a computer vision approach was investigated for comparison of 

near-infrared and visible light systems.  Near-infrared systems have been found to 

perform better than visible light systems in some situations such as smoky rooms and 

environments with poor illumination.  Surveillance of pedestrian and vehicular traffic 

was the application area and the intended system was designed for low computational 

complexity and hardware economy.  In particular, the approach was constrained to 

standard image processing operations and single-perspective, gray-scale images.   

 A collection of image sequences from seven different environments were 

collected from identical cameras operating in visible and near-infrared wavelengths.  

Both visible and near-infrared images were converted to gray-scale.  The near-infrared 

images were also filtered to only contain red channel information. The image sequences 

were filtered to find variable areas that could contain person, bicycle, vehicle or clutter 

objects.  A variety of features were calculated across the located areas. The three types of 

converted images were compared by using Linear Discriminant Analysis across their 

feature sets and by using the calculated testing accuracies to assess their utility in target 

detection.  Two classification architectures, a MLP backpropagation neural network and a 

semi-supervised Ellipsoid ARTMAP (ssEAM), were trained and tested for accuracy 

using the calculated features.    Data fusion was also performed on the three sets of data 

to further analyze surveillance capabilities. 

  



93 

 

 Image sequences collected showed significant differences between visible and 

near-infrared images.  Human skin was noted to have a unique reflective quality in all 

environments imaged in the near-infrared wavelength, including the indoor environment.  

It was also noted that variable environmental clutter, such as foliage, imaged differently 

in the near-infrared and visible domains due to specific reflective qualities of the 

observed material.  Once converted, gray-scale visible and gray-scale near-infrared 

images were somewhat comparable.  Red channel images looked significantly different 

from the gray-scale images.   

 Experimental results show that all three converted image types were capable of 

classification.  Because the image sets were taken in a large variety of environments that 

were cluttered and highly variable, architecture optimization was not a priority; rather a 

general testing of the potential capabilities of each image set was the research 

concentration.  Linear Discriminant Analysis results showed that critical features differed 

across the image sets.  Features selected for visible and gray-scale near-infrared images 

compared while red channel near-infrared images significantly different.  Aspect ratio 

was commonly selected by all image type analysis.  This analysis along with data fusion 

analysis showed that performance from gray-scale near-infrared images and visible 

images were most comparable.   

 Results show that the MLP backpropagation neural network performed best with 

the original feature set of twenty-four features per object. The ssEAM architecture 

performed better with the reduced feature set of six features per object.  Results from 

both architectures across the board were comparable, but ssEAM tended to collectively 



94 

 

classify better.  Testing time for both architectures were relatively low, hence both have 

the potential to run in real-time.   

 The results show that the three data sets are all capable of reasonably performing 

object detection.  Findings suggest that gray-scale near-infrared light systems can be used 

to classify persons and vehicles for surveillance with similar approaches as those used for 

visible light systems.  Near-infrared imaging has been found in other research to perform 

well in environments that visible imaging cannot such as in poor lighting conditions or in 

smoky or foggy environments.  Significant benefits could exist by applying visible 

imaging technologies to near-infrared surveillance applications. 

 

8.2.  FUTURE WORK 

 This experimental research proves the potential of near-infrared surveillance 

systems.  This potential can and should be further explored to determine the capabilities 

of near-infrared object detection systems.  A first step to exploring this potential is 

optimizing intelligent classification architecture for a specific environment.  In this 

research, a variety of environments were examined, restricting the capabilities of a 

learning system.  It would be interesting to draw comparisons between near-infrared and 

visible imaging systems with an optimized architecture.   

 Real-time processing and detection was not completed in this research.  While the 

algorithmic processes created were intended for low computational complexity, the 

algorithms should be tested to determine real-time capabilities of near-infrared and 

visible light systems.  Real-time testing could present some interesting findings, 



95 

 

especially when testing occurs in outdoor environments, as previous research has asserted 

that near-infrared performs better in certain outdoor environmental conditions.    

 A combined sensor system could also be examined, which may have the potential 

to improve current visible light surveillance applications without degrading existing 

capabilities.  Experiments to determine a combined system’s potential could include 

observing a classification confusion matrix to explore if one imaging sensor is best able 

to discriminate a particular class. 



 

 

 

 

 

 

 

 

 

APPENDIX A 

EXAMPLE OUTPUT IMAGES 



97 

 

 Appendix A further describes the visible and near-infrared images captured for 

use in “A Comparison of Near-Infrared and Visible Image Filtering for Surveillance 

Applications”.  Images were captured in a variety of environments including: 1) Brick 

Wall Scene, 2) Campus Building Scene, 3) Campus Library Scene, 4) Pedestrian Bridge 

Scene, 5) Indoor Hallway Scene, 6) Urban Sidewalk Scene, and 7) Urban Street Scene.  

A total of forty image sequences were collected from theses environments that contained 

a variety of person, bicycle, vehicle and clutter objects.  In order to perform ten-fold 

cross-validation, the forty image sequences were separated into ten experiment groups.  

Table A.1 shows the experiment number and observed objects for each image sequence.   

The figures contained in this Appendix illustrate example visible and near-infrared 

images of the observed sequences.  Figures in “Example Cases From Image Sequences” 

show an example case of a visible and a near-infrared image from each image sequence 

described in Table A.1.  Figures shown in “Sample Image Sequence” show a short 

portion of a near-infrared and visible image sequence.  The final section “Sample Image 

Processing Algorithm” indicates the output at each stage of the processing algorithm 

described in Section 5 for a gray-scale visible, gray-scale near-infrared and a red channel 

near-infrared image. 

 



98 

 

Table A.1.  Description of Image Sequences. 

 

 
Image 

Sequence 

Environment 

Type 

Objects Experiment 

Number Person Bicycle Vehicle Clutter 

1 1 X   X 9 

2 1 X   X 3 

3 1 X X  X 8 

4 1 X   X 4 

5 1 X   X 1 

6 1 X X  X 5 

7 1 X X  X 9 

8 2 X X  X 1 

9 2 X   X 5 

10 2 X X  X 7 

11 2 X   X 7 

12 2 X X  X 3 

13 2 X X  X 1 

14 3 X   X 9 

15 3 X X  X 4 

16 3 X   X 5 

17 3 X   X 7 

18 3 X   X 6 

19 3 X   X 10 

20 3 X X  X 6 

21 3 X X  X 10 

22 4 X   X 8 

23 4 X   X 6 

24 4 X X  X 3 

25 4 X X  X 3 

26 4 X X  X 4 

27 5 X   X 10 

28 5 X   X 2 

29 5 X   X 8 

30 5 X   X 2 

31 6 X  X X 1 

32 6  X X X 2 

33 6 X  X X 3 

34 6 X  X X 4 

35 6  X X X 5 

36 6  X X X 6 

37 6 X  X X 7 

38 6 X  X X 8 

39 7  X X X 9 

40 7  X X X 10 

 

 

 

 



99 

 

EXAMPLE CASES FROM IMAGE SEQUENCES 

 

 

Figure A.1.  Example of Sequence 1. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.2.  Example of Sequence 2. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.3.  Example of Sequence 3. (a) Near-Infrared Image. (b) Visible Image. 

  

  

  



100 

 

 

 

Figure A.4.  Example of Sequence 4. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.5.  Example of Sequence 5. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.6.  Example of Sequence 6. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



101 

 

 

Figure A.7 Example of Sequence 7. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.8.  Example of Sequence 8. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.9.  Example of Sequence 9. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



102 

 

 

Figure A.10.  Example of Sequence 10. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.11.  Example of Sequence 11. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.12.  Example of Sequence 12. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



103 

 

 

Figure A.13.  Example of Sequence 13. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.14.  Example of Sequence 14. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.15.  Example of Sequence 15. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



104 

 

 

Figure A.16.  Example of Sequence 16. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.17.  Example of Sequence 17. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.18.  Example of Sequence 18. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



105 

 

 

Figure A.19.  Example of Sequence 19. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.20.  Example of Sequence 20. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.21.  Example of Sequence 21. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



106 

 

 

Figure A.22.  Example of Sequence 22. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.23.  Example of Sequence 23. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.24.  Example of Sequence 24. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



107 

 

 

Figure A.25.  Example of Sequence 25. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.26.  Example of Sequence 26. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.27.  Example of Sequence 27. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



108 

 

 

Figure A.28.  Example of Sequence 28. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.29.  Example of Sequence 29. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.30.  Example of Sequence 30. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



109 

 

 

Figure A.31.  Example of Sequence 31. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.32.  Example of Sequence 32. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.33.  Example of Sequence 33. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



110 

 

 

Figure A.34.  Example of Sequence 34. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.35.  Example of Sequence 35. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.36.  Example of Sequence 36. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



111 

 

 

Figure A.37.  Example of Sequence 37. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.38.  Example of Sequence 38. (a) Near-Infrared Image. (b) Visible Image. 

 

 

Figure A.39.  Example of Sequence 39. (a) Near-Infrared Image. (b) Visible Image. 

 

  

  

  



112 

 

 

Figure A.40.  Example of Sequence 40. (a) Near-Infrared Image. (b) Visible Image. 

 

 

 

 

  



113 

 

SAMPLE IMAGE SEQUENCE 

 

 

Figure A.41.  Near-Infrared Image Sequence. (a) Reference Image. (b) Image 2. 

 

 

Figure A.41. Near-Infrared Image Sequence. (cont.)  (c) Image 3. (d) Image 4.  

 

 

Figure A.41.  Near-Infrared Image Sequence. (cont.)  (e) Image 5. (f) Image 6.  

  

  

  



114 

 

 

 

Figure A.42.  Visible Image Sequence. (a) Reference Image. (b) Image 2. 

 

 

Figure A.42. Visible Image Sequence. (cont.)  (c) Image 3. (d) Image 4.  

 

 

Figure A.42.  Visible Image Sequence. (cont.)  (e) Image 5. (f) Image 6.  

 

  

  

  



115 

 

SAMPLE IMAGE PROCESSING ALGORITHM 

 

 

Figure A.43.  Original Visible Image. (a) Observed Image. (b) Reference Image.  

 

 

Figure A.44.  Gray-Scale Visible Image. (a) Observed Image. (b) Reference Image.  

 

 

Figure A.45.  Noise-Filtered Visible Image. (a) Observed Image. (b) Reference Image.  

  

  

  



116 

 

 

 

Figure A.46.  Visible Difference Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.47.  Visible Threshold Image. 

 



117 

 

 

Figure A.48.  Visible Object Segmentation Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.49.  Algorithm Targeted Visible Objects. 

 

 



118 

 

 

Figure A.50.  Original Near-Infrared Image. (a) Observed Image. (b) Reference Image.  

 

 

Figure A.51.  Gray-Scale Near-Infrared Image. (a) Observed Image. (b) Reference Image.  

 

 

Figure A.52.  Noise-Filtered Gray-Scale Near-Infrared Image. (a) Observed Image. (b) 

Reference Image.  

 

 

  

  

  



119 

 

 

 

Figure A.53.  Gray-Scale Near-Infrared Difference Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.54.  Gray-Scale Near-Infrared Threshold Image. 



120 

 

 

 

Figure A.55.  Gray-Scale Near-Infrared Object Segmentation Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.56.  Gray-Scale Near-Infrared Final Segmented Image. 

 



121 

 

 

Figure A.57.  Original Near-Infrared Image. (a) Observed Image. (b) Reference Image.  

 

 

Figure A.58.  Red-Channel Near-Infrared Image. (a) Observed Image. (b) Reference 

Image.  

 

 

Figure A.59.  Noise-Filtered Red Channel Near-Infrared Image. (a) Observed Image. (b) 

Reference Image.  

 

  

  

  



122 

 

 

Figure A.60.  Red Channel Near-Infrared Difference Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.61.  Red Channel Near-Infrared Threshold Image. 



123 

 

 

 

Figure A.62.  Red Channel Near-Infrared Object Segmentation Image. 

 

 

 

 

 

 

 

 

 

 

Figure A.63.  Red Channel Near-Infrared Final Segmented Image. 

 



 

 

 

 

 

 

 

 

 

APPENDIX B 

ALGORITHMIC AND EXPERIMENTAL CODE 



125

IMAGE PROCESSING ALGORITHM OUTLINE

The image manipulation algorithm proposed for “A Comparison of Near-Infrared 

and Visible Image Filtering for Surveillance Applications” processes image sequences 

collected with visible and near-infrared light cameras.  This algorithm is intended to 

locate valuable objects in the images and gather feature information from each object. 

These vectors are passed to the MLP neural network and ssEAM architectures for 

intelligent processing.  The image manipulation algorithmic process is Figure B.1.  

Import sequence reference image

For every other sequence image:

Import non-reference image

Obtain gray-scale or targeted matrix from reference and non-reference image 

Perform median filtering to eliminate noise

Calculate absolute difference image between reference and non-reference image

Threshold difference image to eliminate insignificant differences

Perform median filtering to eliminate pixels not by a large patch of similar pixels

Fill holes in image

Find object blobs in image

Merge blobs that are close in proximity

Ignore blobs that are insignificantly small

Compute features for each blob

End For

Figure B.1.  Image Processing Algorithm Outline.



126

IMAGE PROCESSING ALGORITHM CODE

The MATLAB function shown in Figure B.2 encompasses the algorithm outlined 

in Figure B.1.  This code locates stored image sequences based on user variable input. 

The first image accessed in a sequence is stored as the reference image.  Each of the 

remaining images in the sequence is processed according to the developed algorithm. 

The code in Figure B.1 outputs a comma separated value excel file that indicates 

calculated object feature vectors in a row by row basis.

The functions illustrated in Figures B.3, B.4 and B.5 handle locating important 

objects in non-reference-images.  The code as shown in Figure B.2 locates ‘blobs’ by 

finding pixels that are connected to neighboring pixels.  Bounding boxes of these 

neighboring pixels are stored and passed to the function shown in Figure B.3.  The code 

in Figure B.3 merges overlapping and close bounding boxes to create a reduced set of 

bounding boxes indicative of interesting objects found in the image.

The MATLAB function shown in Figure B.6 receives a reduced set of object 

bounding boxes as an input from the code outlined in Figure B.2.  This code calculates 

twenty-four photometric and geometric features for each bounding box, which it returns 

in vector form to the code in Figure B.2.  

%% Function to process images and calculate object feature vectors
function featStats = features() %declare function name

%% Initialize needed variables
areaLimit = 750; %minimum area of blob for feature calculation
percent = 5/100; %threshold percentage
imageCount = 2; %number of images in sequence
seqNum = 2; %designate sequence number
seqLetter = 'G'; %designate sequence type
seqFolder = 'GE_G_I_2'; %designate sequence folder



127

row = 480; %declare size of image
col = 640; %declare size of image
allFeatStats = zeros(250, 27); %declare first row of array to hold all features
allFeatCount = 1; %count to know how many features

%% Operate on entire sequence
for curImage =1:imageCount 
   
    %Open reference image
    bkgImg = imread(sprintf('/%c/%s/%d0000.jpeg',seqLetter, seqFolder, seqNum));

    %Open current image
    if curImage < 10
        inputImg = imread(sprintf(‘/%c/%s/%d000%d.jpeg',seqLetter, seqFolder,…
        seqNum,curImage));
    elseif curImage < 100
        inputImg = imread(sprintf(‘/%c/%s/%d00%d.jpeg',seqLetter, seqFolder,…
              seqNum,curImage));
    end
    
    %Convert inputted images to gray scale
    %Img = rgb2gray(inputImg);
    %BImg = rgb2gray(bkgImg);
    
    %Convert infrared images to only look at red image
    Img = inputImg(:,:,1);
    BImg = bkgImg(:,:,1);
    
    %Perform median filtering operation to reduce noise
    medImg = medfilt2(Img, [5 5]);
    medBImg = medfilt2(BImg, [5 5]);
    %imwrite(medImg,'currentimage1.tiff');
    %imwrite(medBImg,'referenceimage2.tiff');
    
    %Compare image to reference image
    subImg = medImg;
    for i = 1:row
        for j = 1:col
            subImg(i,j) = uint8(abs(double(medImg(i,j)) - double(medBImg(i,j))));
        end
    end
    %imwrite(subImg,'subImg.tiff');
    
    %Calculate histogram of difference image
    [counts, x] = imhist(subImg);
    for i = 1:256
        if x(i) < 1
            limit = i;
            break;
        end
    end



128

    %Threshold difference image
    upper = (1 - (limit/255))*(percent);
    if (upper > (1/255))
        lower = upper - (1/255);
    else
        lower = 0;
    end
    hisImg = double(subImg)/255;
    thsImg = imadjust(hisImg,[lower,upper],[0, 1]);
    thsImg = uint8(thsImg*255);
    %imwrite(thsImg, 'thsImg.tiff');
    
    %Median filter image to reduce noise
    medImg2 = medfilt2(thsImg, [5 5]);
    %imwrite(medImg2, 'medImg2.tiff');
    
    %Fill holes in image
    fillImg = imfill(medImg2,'holes');
    %imwrite(fillImg, 'fillImg.tiff');
    
    %Find bounding boxes of blobs in image
    lblImg = bwconncomp(fillImg);
    stats = regionprops(lblImg, 'BoundingBox');
    
    %Merge bounding boxes that overlap
    newStats = mergeBoundingBox(stats);
    [M N] = size(newStats);
    
    %Eliminate blobs that are too small for feature calculation
    for k = 1:M
        if (newStats(k,2) - newStats(k,1))*(newStats(k,4)-newStats(k,3)) < areaLimit
            newStats(k,:) = 0;
        end
    end
    
    %Plot new bounding boxes on output image for reference
    gg = fillImg;
    for k = 1:M
        for i = newStats(k,1):newStats(k,2)
            for j = newStats(k,3):newStats(k,4)
                if newStats(k,4) ~= 0
                    x1 = newStats(k,1);
                    if j == 0
                        j =1;
                    end
                    y1 = newStats(k,3);
                    x2 = newStats(k,2);
                    y2 = newStats(k,4);
                    if i == 0
                        i = 1;
                    end



129

                    if x1 == 0
                        x1 = 1;
                    end
                    if y1 == 0
                        y1 = 1;
                    end
                    gg(y1,i) = 1;
                    gg(y2,i) = 1;
                    gg(j,x2) = 1;
                    gg(j,x1) = 1;
                end
            end
        end
    end
    file = 'BB%d.tiff';
    file = sprintf(file,curImage);
    imwrite(gg, file);
    
    %Complete feature calculations
    [num, featStats] = featureCalc(newStats, fillImg, curImage);
    
    %Write features to file
    if num ~= 0
        allFeatStats(allFeatCount:(allFeatCount+num-1),:) = featStats;
        allFeatCount = allFeatCount + num;       
    end
end

csvwrite('features.xls',allFeatStats);

Figure B.2.  Code to Manage Object Detection and Feature Calculation.  

%% Function to merge related bounding boxes
function newStats = mergeBoundingBox(stats)

%Initialize variables
restart = 1; %designate when restart is needed
exRate = 3; %extension rate of boxes
[M N] = size(stats); 
number = M; %current blob count
boundingBoxes = zeros(M,4); %holds vounding box locations

%Store bounding box values
for k = 1:M
    boundingBoxes(k,1) = floor(stats(k).BoundingBox(1));
    boundingBoxes(k,2) = floor(stats(k).BoundingBox(1) + stats(k).BoundingBox(3));



130

    boundingBoxes(k,3) = floor(stats(k).BoundingBox(2));
    boundingBoxes(k,4) = floor(stats(k).BoundingBox(2) + stats(k).BoundingBox(4));
end

%Join close bounding boxes
while (restart == 1)
    restart = 0;
    for k = 1:number
        for j = (k+1):number
          [exBox1 exBox2] = exBoundingBox(boundingBoxes(k,:), boundingBoxes(j,:), exRate);
          [restart newBox] = ckBoundingBox(exBox1, exBox2, boundingBoxes(k,:),…
                      boundingBoxes(j,:) );
          if (restart == 1)
              boundingBoxes(k,:) = newBox;
              boundingBoxes(j,:) = boundingBoxes(number,:);
              number = number - 1;
              break;
          end
        end
        if restart == 1  
            break;
        end
    end
end

%Return new bounding boxes
newStats = boundingBoxes(1:number,:);

Figure B.3.  Function to Merge Bounding Boxes.

%% Extend bounding box
function [oldBox1 oldBox2] = exBoundingBox(oldBox1, oldBox2, rate)

%Extend bounding box by rate
oldBox1(1,1) = oldBox1(1,1) - rate;
oldBox2(1,1) = oldBox2(1,1) - rate;
oldBox1(1,3) = oldBox1(1,3) - rate;
oldBox2(1,3) = oldBox2(1,3) - rate;
oldBox1(1,2) = oldBox1(1,2) + rate;
oldBox2(1,2) = oldBox2(1,2) + rate;
oldBox1(1,4) = oldBox1(1,4) + rate;
oldBox2(1,4) = oldBox2(1,4) + rate;

Figure B.4.  Function to Extend Boundaries of Object Boxes.



131

%% Function to determine if bounding boxes overlap
function [restart newBox] = ckBoundingBox(exBox1, exBox2, oldBox1, oldBox2)

%Initialize variable
temp1 = oldBox1; %store old box information
extemp1 = exBox1; %store old box information
newBox = zeros(1,4); %hold new box informaton
restart = 0; %indicate if new box was found

%Determine overlap and merge boxes
for k = 1:2
    if k == 2
        oldBox1 = oldBox2;
        oldBox2 = temp1;
        exBox1 = exBox2;
        exBox2 = extemp1;
    end
    if((((exBox1(1,1) > exBox2(1,1)) && (exBox1(1,1) < exBox2(1,2))) || ((exBox1(1,2)…
                       > exBox2(1,1)) && (exBox1(1,2) < exBox2(1,2))))...
            && (((exBox1(1,3) > exBox2(1,3)) && (exBox1(1,3) < exBox2(1,4))) || ((exBox1(1,4…
                       > exBox2(1,3)) && (exBox1(1,4) < exBox2(1,4)))))
            restart = 1;
            if(oldBox1(1,1) < oldBox2(1,1))
                newBox(1,1) = oldBox1(1,1);
            else
                newBox(1,1) = oldBox2(1,1);
            end
            if(oldBox1(1,2) > oldBox2(1,2))
                newBox(1,2) = oldBox1(1,2);
            else
                newBox(1,2) = oldBox2(1,2);
            end
            if(oldBox1(1,3) < oldBox2(1,3))
                newBox(1,3) = oldBox1(1,3);
            else
                newBox(1,3) = oldBox2(1,3);
            end
            if(oldBox1(1,4) > oldBox2(1,4))
                newBox(1,4) = oldBox1(1,4);
            else
                newBox(1,4) = oldBox2(1,4);
            end
            k = 2;
        end
    end
end

Figure B.5.  Function to Check for Bounding Box Overlap.



132

%% Function to calculate 24 features on object bounding boxes
function [num, featStats] = featureCalc(stats, image, frame)

%Initialize variables
[M,N] = size(stats);
count = 0;

%Calculate features for all bounding boxes
for k = 1:M
    if stats(k,4) ~= 0
        count = count + 1;
        iLim = stats(k,2) - stats(k,1);
        jLim = stats(k,4) - stats(k,3);
        for  j= 1:(jLim);
            for i = 1:(iLim);
                h(j,i) = image((stats(k,3)+ (j)),(stats(k,1)+ (i)));
            end
        end
        imwrite(h,'tempImg.tiff');
        
        %Feature calculations
        stat = regionprops(h,'All');
        dh = im2double(h*255);
        
        %Frame number
        f1 = frame;
        
        %X start location
        f2 = stats(k,1);
        
        %Y start location 
        f3 = stats(k,3);
        
        %Height
        f4 = jLim;
        
        %Width
        f5 = iLim;
        
        %Aspect ratio
        f6 = f4/f5;
        
        %Area
        f7 = stat.Area;
        
        %Perimeter
        f8 = stat.Perimeter;
        
        %Convex hull area
        f9 = stat.ConvexArea;
        



133

        %Solidity
        f10 = f7/f9;
        
        %Compactness
        f11 = f7/(f8*f8);
        
        %Horizontal Centroid Offset
        f12 = stat.Centroid(1,1);
        
        %Vertical Centroid Offset
        f13  = stat.Centroid(1,2);
        
        %Euler Number
        f14 = bweuler(h);
        
        %Skewness
        tempf15 = skewness(dh);
        i = ~isnan(tempf15);
        tempf15 = tempf15(i);
        f15 = svd(tempf15);
        
        %Kurtosis
        tempf16 = kurtosis(dh);
        i = ~isnan(tempf16);
        tempf16 = tempf16(i);
        f16 = svd(tempf16);
        
        %2nd Order Moment
        tempf17 = moment(dh,2);
        f17 = svd(tempf17);
        
        %3rd Order Moment
        tempf18 = moment(dh,3);
        f18 = svd(tempf18);
        
        %4th Order Moment
        tempf19 = moment(dh,4);
        f19 = svd(tempf19);
        
        %Ellipse Major Axis Length
        f20 = stat.MajorAxisLength;
        
        %Ellipse Minor Axis Length
        f21 = stat.MinorAxisLength;
        
        %Ellipse Eccentricity
        f22 = stat.Eccentricity;
        
        %Ellipse Orientation
        f23 = stat.Orientation;
        



134

        %Calculate Hu Moments
        huMom = calcHuMoment(h);
        
        %1st Hu Moment
        f24 = huMom(1);
        
        %2nd Hu Moment
        f25 =huMom(2);
        
        %3rd Hu Moment
        f26 =huMom(3);
        
        %4th Hu Moment
        f27 =huMom(4);
        
        %Store feature calculations
        featStats(count,:) = [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16,...
           f17 , f18, f19, f20, f21, f22, f23, f24, f25, f26, f27];
        delete('tempImg.tiff');        
    end
end

num = count;
if num == 0
    featStats = 0;
end

Figure B.6.  Function to Calculate Object Features.

INTELLIGENT PROCESSING ALGORITHM OUTLINE

Two intelligent processing architectures were proposed in this research to classify 

persons, bicycles, vehicles and clutter.  Calculated features from an image processing 

algorithm are inputted to these architectures.  The intelligent architectures use the vectors 

to train themselves in supervised and semi-supervised methods in order to develop a 

classification system.  Accuracies of developed systems are characterized by precision 

and recall percentages.  The basic intelligent processing algorithmic process is shown 

Figure B.7.  



135

Import feature vectors

Divide feature vector into train set and test set

For all architecture variations to be tested:

Set architecture parameters

Train architecture with train set 

Test architecture on train set

Test architecture on test set

Calculate recall percentage of train set test

Calculate recall percentage of test set test

Calculate precision percentage of test set test

End For

Figure B.7.  Intelligent Processing Algorithm Outline.

MLP NEURAL NETWORK EXPERIMENTAL CODE

The two MATLAB functions featured in this section train and test a MLP neural 

network with the feature vectors previously calculated.  Prior to using this code, the 

feature vectors were divided into ten equal sized groups to enable ten-fold cross-

validation. 

 The code shown in Figure B.7 accesses the stored feature vector groups and sorts 

them into a train and test set.  This code then passes a variety of learning rate and 

momentum parameters as well as the train and test sets to the function shown in Figure 

B.8.  The function in Figure B.8 trains a backpropagation neural network and returns the 

classified labels to the function in Figure B.8.  At the end of the code in Figure B.8, 



136

precision and recall of the test group are calculated.   At code completion, the following 

outputs are stored in a comma separated value file:  1) input parameters (learning rate and 

momentum), 2) recall percentage of testing the train set, 3) recall percentage of testing 

the test set, 4) precision percentage of testing the test set, 5) total train time, 6) total test 

time of test set.

%% Function to organize and initiate variations of training neural network
function [results] = main(imageType, testNumber)

%% Initialize needed variables
if imageType == 1
    dataFolder = 'Visible'; %folder holding feature data  
    totNumber = 1489; %total number of features in the sequence set
    expNumbers = [137,188,174,124,104,132,159,132,149,190]; %feature count per experiment
elseif imageType == 2
    dataFolder = 'Gray'; %folder holding feature data
    totNumber = 1458; %total number of features in the sequence set
    expNumbers = [161,150,148,117,127,169,108,127,160,191]; %feature count per experiment

elseif imageType == 3
    dataFolder = 'Red'; %folder holding feature data
    totNumber = 1448; %total number of features in the sequence set
    expNumbers = [164,108,217,111,157,176,118,131,142,124]; %feature count per experiment
else
    return;
end

trainNumber = totNumber - expNumbers(testNumber); %number of features in training set

trainClassNum = zeros(trainNumber,1);  %designate array to hold training class information
trainFeatures = zeros(trainNumber,24); %designate array to hold training feature information
trainIndex = 1;

index = 0; %index designating neural network experiment
varCount = 10*9; %designating the number of variations of trained neural networks
results = zeros(varCount,27); %create arary to hold results

%% Read in feature vectors
for i = 1:10
    i
    if i == testNumber
        testClassNum = dlmread(sprintf('/%s/%d.csv',dataFolder,testNumber),',',…
                  sprintf('B1..B%d',expNumbers(i)));



137

        testFeatures = dlmread(sprintf(/%s/%d.csv',dataFolder, testNumber),',',…
                  sprintf('F1..AC%d',expNumbers(i)));
    else
        trainClassNum(trainIndex:trainIndex+expNumbers(i)-1,:) = dlmread(sprintf…
                   ('/%s/%d.csv',…dataFolder, i),',',…sprintf('B1..B%d',expNumbers(i)));
        trainFeatures(trainIndex:trainIndex+expNumbers(i)-1,:) = dlmread(sprintf…
                   (‘/%s/%d.csv',dataFolder, i),',',sprintf('F1..AC%d',expNumbers(i)));
        trainIndex = trainIndex + expNumbers(i);
    end
end

%% Define array for class vectors
trainClass = zeros(4,trainNumber);
testClass = zeros(4,expNumbers(testNumber));
for i = 1:trainNumber
    temp = trainClassNum(i,1);
    trainClass(temp,i) = 1;
end
for i = 1:expNumbers(testNumber)
    temp = testClassNum(i,1);
    testClass(temp,i) = 1;
end

%% Train and Test Neural Network
%for cc = 1:5  %vary the epochs from 10 to 30 in steps of 5
    for cc2 = 1:10 %vary the learning rate from 0.04 to 0.16 in steps of 0.04
        for cc3 = 1:9 %vary the momentum from 0.76 to 0.88 in steps of 0.04
            
            index = index + 1 %specify the index of the experiment
            learnRate = 0.04 * cc2; %calculate learning rate
            momRate = 0.60 + (0.04 * cc3); %calculate momentum
            %epoch = cc * 5 + 5; %calculate epochs
             epoch = 30;
            [netOutput, trainTime, testTime1, testTime2] = netTrain(epoch, learnRate, momRate,…
                        trainClass, trainFeatures, testClass, testFeatures);  %train and test neural nets
            
            %calculate training accuracy
            trainCorrect = zeros(4,2);
            for k = 1:trainNumber
                [x,temp] = max(netOutput(:,k));
                [x,temp2] = max(trainClass(:,k));
                if temp == temp2
                    if temp == 1
                        trainCorrect(1,1) = trainCorrect(1,1) + 1;
                    elseif temp == 2
                        trainCorrect(2,1) = trainCorrect(2,1) + 1;
                    elseif temp == 3
                        trainCorrect(3,1) = trainCorrect(3,1) + 1;
                    elseif temp == 4
                        trainCorrect(4,1) = trainCorrect(4,1) + 1;
                    end



138

                else
                    if temp2 == 1
                        trainCorrect(1,2) = trainCorrect(1,2) + 1;
                    elseif temp2 == 2
                        trainCorrect(2,2) = trainCorrect(2,2) + 1;
                    elseif temp2 == 3
                        trainCorrect(3,2) = trainCorrect(3,2) + 1;
                    elseif temp2 == 4
                        trainCorrect(4,2) = trainCorrect(4,2) + 1;
                    end
                end
            end
            ptrainPercent = (trainCorrect(1,1)/(trainCorrect(1,1) + trainCorrect(1,2)))*100;
            btrainPercent = (trainCorrect(2,1)/(trainCorrect(2,1) + trainCorrect(2,2)))*100;
            vtrainPercent = (trainCorrect(3,1)/(trainCorrect(3,1) + trainCorrect(3,2)))*100;
            ctrainPercent = (trainCorrect(4,1)/(trainCorrect(4,1) + trainCorrect(4,2)))*100;
            
            %calculate testing accuracy
            testCorrect = zeros(4,3);
            for k = 1:expNumbers(testNumber)
                [x, temp] = max(netOutput(:,k+trainNumber));
                [x, temp2] = max(testClass(:,k));
                if temp == temp2
                    if temp == 1
                        testCorrect(1,1) = testCorrect(1,1) + 1;
                    elseif temp == 2
                        testCorrect(2,1) = testCorrect(2,1) + 1;
                    elseif temp == 3
                        testCorrect(3,1) = testCorrect(3,1) + 1;
                    elseif temp == 4
                        testCorrect(4,1) = testCorrect(4,1) + 1;
                    end
                else
                    if temp2 == 1 %calculate false negative classifications
                        testCorrect(1,2) = testCorrect(1,2) + 1;
                    elseif temp2 == 2
                        testCorrect(2,2) = testCorrect(2,2) + 1;
                    elseif temp2 == 3
                        testCorrect(3,2) = testCorrect(3,2) + 1;
                    elseif temp2 == 4
                        testCorrect(4,2) = testCorrect(4,2) + 1;
                    end
                    if temp == 1 %calculate false positive classifications
                        testCorrect(1,3) = testCorrect(1,3) + 1;
                    elseif temp == 2
                        testCorrect(2,3) = testCorrect(2,3) + 1;
                    elseif temp == 3
                        testCorrect(3,3) = testCorrect(3,3) + 1;
                    elseif temp == 4
                        testCorrect(4,3) = testCorrect(4,3) + 1;
                    end



139

                end
            end

            ptestRecall = (testCorrect(1,1)/(testCorrect(1,1) + testCorrect(1,2)))*100;
            btestRecall = (testCorrect(2,1)/(testCorrect(2,1) + testCorrect(2,2)))*100;
            vtestRecall = (testCorrect(3,1)/(testCorrect(3,1) + testCorrect(3,2)))*100;
            ctestRecall = (testCorrect(4,1)/(testCorrect(4,1) + testCorrect(4,2)))*100;
            ptestPrecision = (testCorrect(1,1)/(testCorrect(1,1) + testCorrect(1,3)))*100;
            btestPrecision = (testCorrect(2,1)/(testCorrect(2,1) + testCorrect(2,3)))*100;
            vtestPrecision = (testCorrect(3,1)/(testCorrect(3,1) + testCorrect(3,3)))*100;
            ctestPrecision = (testCorrect(4,1)/(testCorrect(4,1) + testCorrect(4,3)))*100;
            
            trainAvg = (ptrainPercent + btrainPercent + vtrainPercent + ctrainPercent)/4;
            testAvg = (ptestRecall + btestRecall + vtestRecall + ctestRecall)/4;
            allAvg = (trainAvg + testAvg)/2;
            results(index,:) = [0, epoch, learnRate, momRate, 1, ptrainPercent, btrainPercent,…
                       vtrainPercent, ctrainPercent,2, ptestRecall, btestRecall, vtestRecall, ctestRecall,…
                      3, ptestPrecision, btestPrecision, vtestPrecision, ctestPrecision, 4, trainTime,…
                      testTime1, testTime2, 5, trainAvg, testAvg, allAvg ];
        end
    end
%end

csvwrite(sprintf('%s/NN/All/%d.csv',dataFolder,testNumber),results);

Figure B.8.  Code to Manage Testing MLP Neural Networks.

%% Function to train and test neural networks
function [netOutput, trainTime, testTime1, testTime2] = netTrain(epoch, learnRate, momRate,…
         trainClass, trainFeatures, testClass, testFeatures)

%% Initialize needed variables
outputCount = 4;  %number of output targets
[rowTrain,colTrain] = size(trainClass);
[rowTest, colTest] = size(testClass);
totalNum = colTrain + colTest; %calculate total number of features
featureCount = 24;  %number of features fed into network
netOutput = zeros(4,totalNum); %initialize variable to hold results

%% Normalize and format training data
trainFeatures = trainFeatures';  %transpose train feature set
trainFeatures = mapminmax(trainFeatures,-1,1);
  



140

%% Train Neural Network
net = newff(trainFeatures,trainClass,[featureCount,outputCount],{'logsig', 'logsig'}, 'trainlm'); 
net.trainParam.epochs = epoch;  %set max number of epochs
net.trainParam.lr = learnRate; %set learning rate
net.trainParam.mc = momRate;%set momentum
net.trainParam.goal = 0.001; %set error goal
tStart=tic;
net = train(net,trainFeatures,trainClass);  %train network
trainTime=toc(tStart); %calculate train time

%% Get and record training data results
tStart=tic;
trainResult = sim(net,trainFeatures); %test train set
testTime1=toc(tStart); %calculate test train set time
netOutput(:,1:colTrain) = trainResult; 

%% Normalize and format testing data
testFeatures = testFeatures';  %transpose test feature set
testFeatures = mapminmax(testFeatures,-1,1);

%% Get and record testing data results
tStart=tic;
testResult = sim(net,testFeatures); %test test set
testTime2=toc(tStart); %calculate test test set time
netOutput(:,colTrain+1:colTrain+colTest) = testResult;

Figure B.9.  Function to Train and Test MLP Neural Network.

ssEAM ARCHITECTURE EXPERIMENTAL CODE   

The two MATLAB functions featured in this section train and test a semi-

supervised Ellipsoid ARTMAP (ssEAM) architecture with the feature vectors collected 

previously.  Prior to using this code, the feature vectors were divided into ten equal sized 

groups to enable ten-fold cross-validation. 

 The code shown in Figure B.10 accesses the stored feature vector groups and 

sorts them into a train and test set.  This code then passes the function shown in Figure 

B.11 a variety of input parameters such as eccentricity limits of hyper-ellipsoids (mu), 

prediction error tolerance parameter (tolerance) and a baseline vigilance parameter 



141

(vigilance).  Because ssEAM architectures performance is dependent on the order in 

which it reads input vectors, a variety of input vector orders are also used as an input 

parameter to the function in Figure B.11.

The function in Figure B.11 uses the input parameters and feature vectors 

contained in the train set to train the ssEAM architecture.  Both the train and test sets are 

tested on the developed architecture and classified labels are returned to the main 

function featured in Figure B.10.   At code completion (Figure B.10), the following 

outputs are stored in a comma separated value file:  1) input parameters (mu, tolerance 

and vigilance), 2) recall percentage of testing the train set, 3) recall percentage of testing 

the test set, 4) precision percentage of testing the test set, 5) total train time, 6) total test 

time of test set.

%% Function to organize and initiate variations of training ArtMAP
function [results] = main2(imageType, testNumber)

%% Initialize needed variables
if imageType == 1
    dataFolder = 'Visible'; %folder holding feature data
    totNumber = 1489; %total number of features in the sequence set
    expNumbers = [137,188,174,124,104,132,159,132,149,190]; %feature count per experiment
elseif imageType == 2
    dataFolder = 'Gray'; %folder holding feature data
    totNumber = 1448; %total number of features in the sequence set
    expNumbers = [164,108,217,111,157,176,118,131,142,124]; %feature count per experiment
elseif imageType == 3
    dataFolder = 'Red'; %folder holding feature data
    totNumber = 1458; %total number of features in the sequence set
    expNumbers = [161,150,148,117,127,169,108,127,160,191]; %feature count per experiment
else
    return;
end

trainNumber = totNumber - expNumbers(testNumber); %number of features in training set

orders = zeros(100,trainNumber); %variable to hold variety of feature orders



142

for j = 1:100
orders(j,:) = randperm(trainNumber);

end

trainClass = zeros(trainNumber,1);  %designate array to hold training class information
trainFeatures = zeros(trainNumber,24); %designate array to hold training feature information
ordTrainClass = zeros(trainNumber,1); %designate array to hold ordered training classes
ordTrainFeatures = zeros(trainNumber,24); %designate array to hold ordered training features
trainIndex = 1;

index = 0; %index designating neural network experiment
varCount = 100*5*5*6; %designating the number of variations of trained ssEAMs
results = zeros(varCount,27); %create arary to hold results

%% Read in feature vectors
for i = 1:10
    if i == testNumber
        testClass = dlmread(sprintf(‘/%s/%d.csv',dataFolder,testNumber),',',…
                   sprintf('B1..B%d',expNumbers(i)));
        testFeatures = dlmread(sprintf(‘/%s/%d.csv',dataFolder,testNumber),',',…
                   sprintf('F1..AC%d',expNumbers(i)));
    else
        trainClass(trainIndex:trainIndex+expNumbers(i)-1,:) = dlmread(sprintf…
                   (‘/%s/%d.csv',dataFolder, i),',',sprintf('B1..B%d',expNumbers(i)));
        trainFeatures(trainIndex:trainIndex+expNumbers(i)-1,:) = dlmread(sprintf…
                   ('/%s/%d.csv',dataFolder, i),',',sprintf('F1..AC%d',expNumbers(i)));
        trainIndex = trainIndex + expNumbers(i);
    end
end

%% Train and Test ArtMAP
for cc = 1:50 %vary the order
    for cc2 = 1:5 %vary the ellipsoid axis length from 0.2 to 1 in steps of 0.2
        for cc3 = 1:5 %vary the tolerance from 0.1 to 0.9 in steps of 0.2
            for cc4 = 1:6 %vary vigilance size
            
                vigilance = (cc4-1)*.2; %calculate vigilance
                index = index + 1 %specify the index of the experiment
                learnRate = 1; %calculate learning rate
                tol = (cc3 - 1) * 0.2 + 0.1; %calculate tolerance
                mu = 0.2*cc2; %calculate mu
                alpha = .001;
            
                for i = 1:trainNumber
                    ordTrainFeatures(i,:) = trainFeatures(orders(cc,i),:);
                    ordTrainClass(i,:) = trainClass(orders(cc,i),:);
                end

   %normalize and format testing data             
                trainFeatures = mapminmax(trainFeatures,0,1000);
                testFeatures = mapminmax(testFeatures,0,1000);



143

                epoch = 5;
                [netOutput, trainTime, testTime1, testTime2] = eamTrain(vigilance, epoch,…
                       learnRate,mu, tol, alpha, ordTrainClass, ordTrainFeatures, testClass, testFeatures); 
                       %train and test neural nets

                %calculate training accuracy
                trainCorrect = zeros(4,2);
                for k = 1:trainNumber
                    temp = netOutput(k,1);
                    temp2 = trainClass(k,1);
                    if temp == temp2
                        if temp == 1
                            trainCorrect(1,1) = trainCorrect(1,1) + 1;
                        elseif temp == 2
                            trainCorrect(2,1) = trainCorrect(2,1) + 1;
                        elseif temp == 3
                            trainCorrect(3,1) = trainCorrect(3,1) + 1;
                        elseif temp == 4
                            trainCorrect(4,1) = trainCorrect(4,1) + 1;
                        end
                    else
                        if temp2 == 1
                            trainCorrect(1,2) = trainCorrect(1,2) + 1;
                        elseif temp2 == 2
                           trainCorrect(2,2) = trainCorrect(2,2) + 1;
                        elseif temp2 == 3
                            trainCorrect(3,2) = trainCorrect(3,2) + 1;
                        elseif temp2 == 4
                            trainCorrect(4,2) = trainCorrect(4,2) + 1;
                        end
                    end
                end
                ptrainPercent = (trainCorrect(1,1)/(trainCorrect(1,1) + trainCorrect(1,2)))*100;
                btrainPercent = (trainCorrect(2,1)/(trainCorrect(2,1) + trainCorrect(2,2)))*100;
                vtrainPercent = (trainCorrect(3,1)/(trainCorrect(3,1) + trainCorrect(3,2)))*100;
                ctrainPercent = (trainCorrect(4,1)/(trainCorrect(4,1) + trainCorrect(4,2)))*100;
            
                %calculate testing accuracy
                testCorrect = zeros(4,3);
                for k = 1:expNumbers(testNumber)
                    temp = netOutput(k+trainNumber,1);
                    temp2 = testClass(k,1);
                    if temp == temp2 %calculate true positive classifications
                        if temp == 1
                            testCorrect(1,1) = testCorrect(1,1) + 1;
                        elseif temp == 2
                            testCorrect(2,1) = testCorrect(2,1) + 1;
                        elseif temp == 3
                            testCorrect(3,1) = testCorrect(3,1) + 1;
                        elseif temp == 4
                            testCorrect(4,1) = testCorrect(4,1) + 1;



144

                        end
                    else

                        if temp2 == 1 %calculate false negative classifications
                            testCorrect(1,2) = testCorrect(1,2) + 1;
                        elseif temp2 == 2
                            testCorrect(2,2) = testCorrect(2,2) + 1;
                        elseif temp2 == 3
                            testCorrect(3,2) = testCorrect(3,2) + 1;
                        elseif temp2 == 4
                            testCorrect(4,2) = testCorrect(4,2) + 1;
                    end

                    if temp == 1 %calculate false positive classifications
                        testCorrect(1,3) = testCorrect(1,3) + 1;
                    elseif temp == 2
                        testCorrect(2,3) = testCorrect(2,3) + 1;
                    elseif temp == 3
                        testCorrect(3,3) = testCorrect(3,3) + 1;
                    elseif temp == 4
                        testCorrect(4,3) = testCorrect(4,3) + 1;
                    end
                end
            end

            ptestRecall = (testCorrect(1,1)/(testCorrect(1,1) + testCorrect(1,2)))*100;
            btestRecall = (testCorrect(2,1)/(testCorrect(2,1) + testCorrect(2,2)))*100;
            vtestRecall = (testCorrect(3,1)/(testCorrect(3,1) + testCorrect(3,2)))*100;
            ctestRecall = (testCorrect(4,1)/(testCorrect(4,1) + testCorrect(4,2)))*100;

            ptestPrecision = (testCorrect(1,1)/(testCorrect(1,1) + testCorrect(1,3)))*100;
            btestPrecision = (testCorrect(2,1)/(testCorrect(2,1) + testCorrect(2,3)))*100;
            vtestPrecision = (testCorrect(3,1)/(testCorrect(3,1) + testCorrect(3,3)))*100;
            ctestPrecision = (testCorrect(4,1)/(testCorrect(4,1) + testCorrect(4,3)))*100;
            
            trainAvg = (ptrainPercent + btrainPercent + vtrainPercent + ctrainPercent)/4;
            testAvg = (ptestRecall + btestRecall + vtestRecall + ctestRecall)/4;
            allAvg = (trainAvg + testAvg)/2;
            
            results(index,:) = [0, mu, tol, vigilance, 1, ptrainPercent, btrainPercent, vtrainPercent,…
                     ctrainPercent,2,ptestRecall, btestRecall, vtestRecall, ctestRecall, 3, ptestPrecision,…
                      btestPrecision, vtestPrecision, ctestPrecision, 4, trainTime, testTime1, testTime2,…

        5,trainAvg, testAvg, allAvg];
            end
        end
    end
end



145

csvwrite(sprintf('%s/EAM/All/%d.xls',dataFolder,testNumber),results);

Figure B.10.  Code to Manage Testing ssEAM Architecture.

%% Function to train and test elliptical ArtMAP
function [netOutput, trainTime, testTime1, testTime2] = eamTrain(vigilance, epoch, learnRate,…
          mu, tol, alpha, trainClass, trainFeatures, testClass, testFeatures)

%% Initialize needed variables
trim_option = 1; %1 to trim unneeded nodes, 0 to not trim
unknown_label = 0; %integer to fill no known label
omega = inf;
oflag = 0; %output control
ignore_option = 0; %does nothing
[rowTrain,colTrain] = size(trainClass); %calculate size of train set
[rowTest, colTest] = size(testClass); %calculate size of test set
totalNum = rowTrain + rowTest; %calculate total number of features
netOutput = zeros(totalNum,1); %initialize variable to hold results
D = sqrt(colTest)/mu;  %calculate D input

%% Normalize and format training data
trainFeatures = mapminmax(trainFeatures,0,1);  

%% Train ArtMAP
tStart=tic;
[Templates,NLabels,list_presentations] = sseam_train(trainFeatures,trainClass',mu,D,…
           vigilance,alpha,omega,tol,learnRate, epoch,trim_option,unknown_label,oflag);
trainTime = toc(tStart);  %calculate train set train time

%% Get and record training data results
oflag = 0; %output control
vigilance = 0; %set variable for mandatory classification
omega = inf; %set variable for mandatory classification
tStart=tic;
[PLabels, CCFvalues, CMFvalues] = sseam_perf(Templates,NLabels,mu,D,vigilance,…
           alpha,omega,trainFeatures,unknown_label,ignore_option,oflag); %test train set
testTime1=toc(tStart); %calculate train set test time
netOutput(1:rowTrain,1) = PLabels;

%% Normalize and format testing data
testFeatures = mapminmax(testFeatures,0,1);

%% Get and record testing data results
tStart=tic;
vigilance = 0; %set variable for mandatory classification
omega = inf; %set variable for mandatory classification



146

[PLabels, CCFvalues, CMFvalues] = sseam_perf(Templates,NLabels,mu,D,vigilance,…
            alpha,omega,testFeatures,unknown_label,ignore_option,oflag); %test test set
testTime2=toc(tStart); %calculate test set test time
netOutput(rowTrain+1:totalNum,1) = PLabels;

Figure B.11.  Function to Train and Test ssEAM Architectures.



147 

BIBILOGRAPHY 

 

 

Anagnostopoulos, G. C., Georgiopoulos, M.  “Ellipsoid ART and ARTMAP for 

incremental clustering and classification,” Proceedings of the International Joint 

Conference on Neural Networks, IEEE, 2, pp. 1221-1226, 2001. 

 

Anagnostopoulos, G. C., Georgiopoulos, M., Verzi, S., Heileman, G.  “Reducing 

generalization error and category proliferation in Ellipsoid ARTMAP via tunable 

misclassification error tolerance: Boosted Ellipsoid ARTMAP,” Proceedings of the 

International Joint Conference on Neural Networks, IEEE, 3, pp. 2650-2655, 2002. 

 

Arrue B. C., Ollero A., Matinez de Dios J. R. “An intelligent system for false alarm 

reduction in infrared forest-fire detection,” Intelligent Systems and their Applications, 

IEEE, 15(3), pp 64-73, 2000. 

 

Aytac, T., Barsham, B.  “Recognizing targets from infrared intensity scan patterns using 

artificial neural networks,” Journal of Optical Engineering, SPIE, 48(1), pp. 017203-1 - 

017203-13, 2009. 

 

Bankman, D. J., Neighoff, T. M. “Pattern recognition for detection of human heads in 

infrared images,” Journal of Optical Engineering, SPIE, 47(4), pp. 046404-1 - 046404-7, 

2008. 

 

Bar-Ilan, J. “On the overlap, the precision and estimated recall of search engines: A case 

study of the query 'Erdos',” Scientometrics, 42(2), pp. 207-208, 1998. 

 

Carpenter, G. A. “Unifying multiple knowledge domains using the ARTMAP information 

fusion system,” Proceedings of the 11
th

 International Conference on Information Fusion, 

IEEE, 11, 2008. 

 

Carpenter, G. A., Grossberg, S.  “Adaptive Resonance Theory,”  Technical Report, 

Department of Cognitive and Neural Systems Center for Adaptive Systems and Center of 

Excellence for Learning in Education, Science, and Technology, Boston University, 2009. 

 

Carpenter, G. A., Grossberg, S., Markuzon, N.m Reynolds, J.H., Rosen, D.B. “Fuzzy 

ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of 

Analog Multidimensional Maps,” IEEE Transactions on Neural Networks, IEEE, 3(5), 

pp. 698-713, 1992. 

 

Carpenter, G. A., Martens, S. “Self-Organizing Hierarchical Knowledge Discovery by an 

ARTMAP Information Fusion System,”   Technical Report, Department of Cognitive and 

Neural Systems Center for Adaptive Systems and Center of Excellence for Learning in 

Education, Science, and Technology, Boston University, 2005. 

 



148 

Correia. B., Nunes R. C.  “Grouping multiple neural networks for automatic target 

recognition in infrared imagery,” Proceedings of SPIE Automatic Target Recognition, 

SPIE, 4379, pp. 124-135, 2001. 

 

Dowdall, J. B., Pavlidis, I., Bebis, G. “Face Detection in the Near-IR Spectrum,” Infrared 

Technology and Applications XXIX, SPIE, 5074, pp. 745-756, 2003.  

 

Friedrich G., Yeshurun Y. “Seeing People in the Dark : Face Recognition in Infrared 

Images,” Proceedings of the Second International Workshop on Biologically Motivated 

Computer Vision, ACM, 2002. 

 

Gonzalez, R. C., Woods, R. E. Digital Image Processing, 3
rd

 Edition, Upper Saddle 

River, Prentice Hall, 2008.   

 

Grossberg, S. “How does a brain build a cognitive code,” Psychological Review, 

American Psychological Association, 87(1), pp. 1-51, 1980. 

 

Hagan, M. T., Demuth, H. B., Beale M. H. Neural Network Design, PWS Publishing, 

Boston, MA, USA, 1996. 

 

Kanzawa Y., Kimura Y., Naito T. “Human Skin Detection by Visible and Near-Infrared 

Imaging,” Conference on Machine Vision Applications, IAPR, pp. 503-507, 2011. 

 
Kohavi, R., “A study of cross-validation and bootstrap for accuracy estimation and model 

selection,”, Proceedings of the Fourteenth International Joint Conference on Artificial 

Intelligence, 2,  pp. 1137-1143, 1995. 

 

Le, Q., Anagnostopoulos, G. C., Georgiopoulous, M., Ports, K.  “An Experimental 

Comparison of Semi-Supervised ARTMAP Architectures, GCS and GNG Classifiers,” 

Proceedings of International Joint Conference on Neural Networks, IEEE, 5, pp. 3121-

3126, 2005. 

 

Lee, Avery. “VirtualDub,” Version 1.9.11, 2012. 

 

Li, S. Z., Chu R., Liao S., Zhang L. “Illumination Invariant Face Recognition Using Near-

Infrared Images,” Transactions on Pattern Analysis and Machine Intelligence, IEEE, 

29(4), pp. 627-639, 2007. 

 

MATLAB, “Matlab Help,” Version R2012a, 2012. 

 

Miller, G., Fels, S., Oldridge, S. "A Conceptual Structure for Computer Vision," 2011 

Canadian Conference on Computer and Robot Vision (CRV), IEEE, pp.168-174, May 

2011. 

 

 



149 

Rockwood, A., McAndless, J. "Through the looking glass: the synthesis of computer 

graphics and computer vision," Multimedia, IEEE, 6(3), pp.8-11, Jul-Sep 1999. 

 

Sentenac T., Maoult Y. L., Orteu J., Boucourt G. “Evaluation of a charge-coupled-device-

based video sensor for aircraft cargo surveillance,” Journal of Optical Engineering, SPIE, 

41(4), pp 796-810, 2002. 

 

Sentenac T., Maoult Y. L., Orteu J., Boucourt G. “Overheating, flame, smoke and freight 

movement detection algorithms based on charge-coupled device camera for aircraft cargo 

hold surveillance,” Journal of Optical Engineering, SPIE, 43(12), pp. 2935-2953, 2004.  

 

Shah, M. “Guest Introduction: The Changing Shape of Computer Vision in the Twenty-

First Century,” International Journal of Computer Vision, 50(2), pp.103-110, 2002.  

 

Shirvaikar, M. V., Trivedi, M. M. “A Neural Network Filter to Detect Small Targets in 

High Clutter Backgrounds,”IEEE Transactions on Neural Networks, IEEE, 6(1), pp. 252-

257, Jan 1995. 

 

Stanley, R. J., Watkins, S. E., Gopal, A. Moss, R. H., “A web-shareable real-world 

imaging problem for enhancing an image-processing curriculum,” IEEE Transactions on 

Education, IEEE, 47(2) , pp. 211- 219, May 2004. 

 

Stanley, R. J., Watkins, S. E., Moss, R. H., Gopal, A. “Traffic monitoring using a three-

dimensional object tracking approach,” International Journal of Engineering Education, 

22(4), pp. 886-895, 2006. 

 

Watkins S. E., Stanley R. J., Gopal A., Moss R. “Surveillance of Pedestrian Bridge Traffic 

using Neural Networks,” Sensors and Smart Structures Technologies for Civil, 

Mechanical, and Aerospace Systems 2009, SPIE, 7292, 2009. 

 

Xu, R., Anagnostopouslos, G., Wunsch, D. C. “Multi-class Cancer Classification by 

Semi-supervised Ellipsoid ARTMAP with Gene Expression Data,” IEEE Proceedings of 

the 26
th

 Annual International Conference of the Engineering in Medicine and Biology 

Society, IEEE, pp. 188-191, 2004. 

 

Yang H., Xie S., Hu X., Chen L., Lu Z. “Infrared Spectrum Visualizing Human Acupoints 

and Meridian-like Structure,” International Symposium on Biophotonic, Nanophotonics 

and Metamaterials 2006, Metamaterials, 2006. 

 

Zhang, B. "Computer vision vs. human vision," 2010 9th IEEE International Conference 

on Cognitive Informatics (ICCI), pp.3, July 2010. 

 



150 

 

VITA 

 

 Kathryn N Rodhouse was born in Danville, Illinois.  She attended the Missouri 

University of Science and Technology and obtained a bachelor's degree in Computer 

Engineering with minors in Mathematics and Computer Science in May of 2011.  She 

was the first Honors Scholar in Computer Engineering for her research in the Applied 

Optics Laboratory.  She started her master's degree studies in August, 2011 and worked as 

a graduate teaching assistant.  Kathryn received a Master of Science degree in Computer 

Engineering from the Missouri University of Science and Technology in August, 2012.  

She accepted a fulltime position with Sandia National Laboratories. 

 Kathryn is a member of the Institute of Electrical and Electronics Engineers 

(IEEE), the Society of Women Engineers, and the Zeta Tau Alpha Fraternity.  She was 

inducted into Eta Kappa Nu (HKN) and Phi Kappa Phi.  She was selected as the 2011 

national winner of the Alton B. Zerby and Carl T. Koerner Outstanding Electrical and 

Computer Engineering Student Award for HKN, was selected as the 2011 Region 5 

winner of the IEEE Larry K. Wilson Regional Student Award, was first place winner in 

the IEEE Region 5 Student Papers Competition and was recognized as the 2011 Greek 

Woman of the Year and the 2009 2
nd

 Place Woman Student of the Year by the Missouri 

University of Science and Technology. 


