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ABSTRACT 

A spark ignition (SI) engine can be described by non-strict feedback nonlinear 

discrete-time system with the output dependent upon on the states in a nonlinear manner. 

The controller developed in this thesis utilizes the inherent universal approximation 

property of neural networks (NN) to simplify the design process and solve the non-

causality problem inherent with traditional designs. It also exploits a long-term 

performance index called the strategic utility function to minimize and assist in updating 

of the NN weights; therefore, an optimal controller can be realized. Finally, through 

Lyapunov equations, the controller guarantees stability. 

The controller allows for engine operation under two types of conditions: lean and 

EGR. Lean operation decreases the ratio of fuel over air below the stoichiometric levels 

where modern engines normally operate. In contrast, EGR introduce an inert gas, such as 

nitrogen in the lab or exhaust gas to displace a portion of the stoichiometric fuel air ratio.  

The purpose of these two operation modes are to improve fuel efficiency and more 

importantly, decrease the amount of harmful pollutants such as nitrous oxide (NOx), 

carbon dioxide (CO2), unburned hydrocarbon (HxCx), and sulfur dioxide (SO2). 

Operating under these stressful conditions increase cyclic variability, an erratic 

behavior where partial or no burn occurs at an increasing rate as the engine operates 

further away from normal condition. The controller remedies this situation by predicting 

future heat release and adjusting the amount of fuel for the next cycle while continuously 

adapting to changing conditions. Both cases decreased the unburned hydrocarbon by 8% 

and cyclic dispersion by 20% on average, while suffered negligible increase in average 

fuel input. Other pollutants also decreased with varying success. 
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PAPER 1 
 

Reinforcement Learning Based Output-Feedback 
Controller for Nonlinear Discrete-time Systems 

with Application to Spark Engines 
 

Peter Shih, B. Kaul, J. Vance, Sarangapani Jagannathan, Sr. Member, IEEE,  
and James A. Drallmeier 

 

 

Abstract— A novel reinforcement-learning based output-adaptive neural network 

(NN) controller, also referred to as the adaptive-critic NN controller, is developed to 

deliver a desired tracking performance for a class of complex feedback nonlinear 

discrete-time systems in the presence of bounded and unknown disturbances. The 

adaptive critic NN controller consists of an observer, critic, and two action NNs. The 

observer estimate the states and output and the two action NNs provide virtual and 

actual control inputs to the nonlinear discrete-time system. The critic approximates 

a certain strategic utility function and the action NNs minimize both the strategic 

utility function and control inputs. All NN weights adapt online towards 

minimization of a quadratic performance index, utilizing gradient-descent based 

rule. Lyapunov functions are used to show the uniformly ultimate boundedness 

(UUB) of the closed-loop tracking error, weights, and observer estimates. 

Separation principle and certainty equivalence principle are relaxed, persistency of 

excitation condition is not required and linear in the unknown parameter 

assumption is not needed. 

The performance of this adaptive critic NN controller is evaluated on a spark 

ignition (SI) engine operating lean where the NN controller objective is to reduce 

cyclic dispersion in heat release while facing unknown engine dynamics. The 

secondary objectives are to reduce emissions. Experimental results at the 

equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in 

heat release with control compared to the uncontrolled case. The average fuel input 

changes by less than 1% compared to uncontrolled case. Additionally, oxides of 
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nitrogen (NOx) drop by 30% compared to uncontrolled. The unburned 

hydrocarbons (uHC) drop by 16% with control. Overall, NOx are reduced over 80% 

compared to stoichiometric levels. 

I. INTRODUCTION 

Adaptive neural network NN backstepping control of nonlinear discrete-time systems 

in strict feedback form has been addressed in the literature [1-3]. The strict feedback 

nonlinear system is normally expressed as 

1( 1) ( ( )) ( ( )) ( )i i i i i ix k f x k g x k x k++ = +  (1) 

( 1) ( ( )) ( ( )) ( )n n n n nx k f x k g x k u k+ = +  (2) 

where ( ) ℜ∈kxi   is the state, ( ) ℜ∈ku  is the control input, ( ) ( ) ( )[ ] iT
ii kxkxkx ℜ∈= ,,1 "  

and 1,..., ( 1)i n= − . For strict feedback nonlinear systems [1], the nonlinearities ( )( )kxf ii  

and ( )( )kxg ii  depend only upon states ( ) ( )kxkx i,,1 … , i.e., ( )kxi . However, for non-strict 

feedback nonlinear system, where ( )( )kxf ii  and ( )( )kxg ii  depend on both ( )kxi  

and ( )kxi 1+ , there are no control design schemes currently available.  Available [1-3] 

methods applied to the nonlinear discrete-time systems will result in a non-causal 

controller (current control input depends on the future system states) even when the 

system is of second order and when the adaptive NN backstepping approach is utilized.  

Finally, no optimization is carried out in these control designs whereas simple tracking 

error is utilized. 

In short, available NN controller designs employ either supervised training, where the 

user specifies a desired output, or online NN training based on classical adaptive control 

[1-3], where a short-term system performance measure is defined by using the tracking 

error. By contrast, the reinforcement-learning based adaptive critic NN approach [4] has 

emerged as a promising tool to develop optimal NN controllers due to its potential to find 

approximate solutions to dynamic programming, where a strategic utility function, which 

is considered as the long-term system performance measure, can be optimized.  In 

supervised learning, an explicit signal is provided by the teacher to guide the learning 

process whereas in the case of reinforcement learning, the role of the teacher is more 
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evaluative than instructional in nature. The critic NN monitors the system states and 

approximates the strategic utility function, with a potential for a look-ahead and better 

training of the action NN which generates the control action to the system.  

There are many variants of adaptive critic NN controller architectures [4-9] using state 

feedback even though few results [6-9] address the controller convergence and they are 

limited to affine nonlinear discrete-time systems. However, NN controller results are not 

available for the nonlinear discrete-time systems in non-strict feedback form. 

In this paper, a novel adaptive critic NN-based output feedback controller is developed 

to control a class of nonlinear discrete-time systems in non-strict feedback form with 

bounded and unknown disturbances. Adaptive NN backstepping is utilized for the 

controller design with two action NNs being used to generate the virtual and actual 

control inputs, respectively. The two action NN weights are tuned by the critic NN signal 

to minimize the strategic utility function and their outputs. The critic NN approximates 

certain strategic utility function which is a variant of standard Bellman equation. The NN 

observer generates the estimates of the system states and output, which are subsequently 

used in the controller design. The proposed controller is model–free since the dynamics 

of the nonlinear discrete-time systems are unknown and NN weights are tuned online.  

The main contributions of this paper can be summarized as follows: 1) the adaptive NN 

backstepping scheme is extended to non-strict feedback nonlinear systems. The non-

causal problem is overcome by employing the universal NN approximation property; 2) 

optimization of a long-term performance index is undertaken in contrast with traditional 

adaptive NN back stepping schemes [1, 2] where no optimization is performed; 3) 

demonstration of the UUB of the overall system is shown even in the presence of NN 

approximation errors and bounded unknown disturbances unlike in the existing adaptive 

critic works [7-9] where the convergence is presented under ideal circumstances. 

Stability proof is inferred even with a NN observer by relaxing separation principle via 

novel weight updating rules and by selecting the Lyapunov function consisting of the 

system estimation errors, tracking and the NN weight estimation errors; 4) a well-defined 

controller is presented by overcoming the problem of certain nonlinear function estimate 

becoming zero since a single NN is used to approximate both the nonlinear 
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functions ( )( )kxf ii  and ( )( )i ig x k  compared to [10]; 5) the NN weights are tuned online 

instead of offline [5]; and finally 6) the assumption that ( ) ( )( )kxkxg 211 ,  is bounded away 

from zero and its sign is known a priori is relaxed in contrast with [2].  

The proposed controller is applied to control spark ignition (SI) engine dynamics, a 

practical non-strict feedback nonlinear system. The controller allows the engine to 

operate in a lean regime, where less than stoichiometric ratio of fuel to air is injected 

each cycle. The problem of operating the engine lean is cyclic dispersion in heat release 

which makes the engine unstable.  The controller enables the engine to operate leaner 

compared to the uncontrolled case by reducing heat release dispersion. Consequently, the 

fuel conversion efficiency increases and engine out emissions decrease. Though an SI 

engine with a three-way catalyst cannot be operated lean, the objective is to control an SI 

engine used for other applications such as scooters and lawn mowers, where a three-way 

catalyst is not normally used. Alternatively, the proposed scheme could be used with the 

new generation of lean NOx catalyst systems currently under development. 

II. NON-LINEAR NON-STRICT FEEDBACK DISCRETE-TIME SYSTEMS 

Consider the nonlinear discrete-time system, given in the following form 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkxkxkxgkxkxfkx 122112111 ,,1 ++=+  (3) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkukxkxgkxkxfkx 22122122 ,,1 ++=+  (4) 

( ) ( ) ( )( )3 1 2,y k f x k x k=  (5) 

where ( ) ; 1, 2ix k i∈ℜ =  are the states, ( )u k ∈ℜ  is the system input, and ( )1d k ∈ℜ  and 

( )2d k ∈ℜ  are unknown but bounded disturbances whose bounds are given by 

( )1 1md k d<  and ( )2 2md k d< , where md1  and md2  are unknown positive scalars.  Here the 

nonlinearities are considered unknown. The system output is a nonlinear function of 

states in contrast with available literature [11, 12] where the output is considered as a 

linear function of the states.  Finally, only the output is considered measurable whereas 

the states are not available. An additional constraint that has to be satisfied is that the 

convergence of the output to its target value alone is not sufficient and the states have to 

be close to their respective target values. 
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III. OBSERVER DESIGN 

To overcome the immeasurable states, ( )1x k  and ( )2x k , an observer is utilized where 

the current heat release output, ( )y k , is employed to estimate the future output ( )ˆ 1y k +  

and states ( )1̂ 1x k +  and ( )2ˆ 1x k + .  The design of the observer is discussed next. 

A. Observer Design 
Consider equations (3) and (4). We expand the individual nonlinear functions using 

Taylor series expansion into linear and higher order terms as follows 

( ) ( )⋅Δ+=⋅ 1101 fff  (6) 

( ) ( )2 20 2f f f⋅ = + Δ ⋅  (7) 

( ) ( )⋅Δ+=⋅ 1101 ggg  (8) 

( ) ( )2 20 2g g g⋅ = + Δ ⋅  (9) 

where the first term in (6) through (9) are known nominal values and the second term are 

unknown higher order terms. We use a two-layer feed-forward NN with semi-recurrent 

architecture and novel weight tuning to construct the output as 

( ) ( )( ) ( )( )1 1 1 11 T Ty k w v z k z kφ ε+ = + , (10) 

where ( ) ( ) ( ) ( ) ( ) 4
1 1 2, , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the network input, ( )1y k +  and ( )y k  

are the future and current output values, 1
1

nw ℜ∈  and 12
1

nv ×ℜ∈  denote the ideal output 

and constant hidden layer weights, respectively, ( )u k  is the control input, ( )( )1 1
Tv z kφ  

represents the hidden layer activation function, 1n  is the number of nodes in the hidden 

layer, and ( )( )1z kε ∈ℜ  is the approximation error. For simplicity the two equations can 

be represented as 

( ) ( )( )1 1 1
Tk v z kφ φ=  (11) 

and 

( ) ( )( )1 1k z kε ε=  (12) 

Rewrite (10) using (11) and (12) to obtain 
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( ) ( ) ( )1 1 11 Ty k w k kφ ε+ = +  (13) 

The states ( )kx1  and ( )kx2  are not measurable, therefore, ( )kz1  is not available either. 

Using the estimated states and output ( )kx1ˆ , ( )kx2ˆ , and ( )kŷ , respectively, instead of ( )kx1 , 

( )kx2 , and ( )ky , the proposed observer is given as 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

1 1 1 1

1 1 1

ˆ ˆ ˆ1

ˆˆ

T T

T

y k w k v z k l y k

w k k l y k

φ

φ

+ = +

= +

�

�
 (14) 

where ( ) ( ) ( ) ( ) ( ) 4
1 1 2ˆ ˆ ˆˆ , , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the NN input vector using estimated 

states, ( )ˆ 1y k +  and ( )ŷ k  are the estimated future and current outputs, ( )1ŵ k  is the 

actual weight matrix, ( )u k  is the control input, ( )1̂ kφ  is the hidden layer activation 

function, 1l R∈  is the observer gain, and ( )y k�  is the heat release estimation error 

defined as 

( ) ( ) ( )ˆy k y k y k= −�  (15) 

It is demonstrated in [13] that, if the hidden layer weights, 1v , are chosen initially at 

random and kept constant, and the number of hidden layer nodes is sufficiently large, 

then the approximation error ( )( )1z kε  can be made arbitrarily small so that the bound 

( )( )1 1mz kε ε≤  holds for all ( )1z k S∈  in a compact set, since the activation function 

vector forms a basis to the nonlinear function that the NN approximates. Now we choose, 

at our convenience, the observer structure as a function of output estimation errors and 

known quantities as 

( ) ( ) ( )1 10 2 2ˆ ˆ1x k f x k l y k+ = − + �  (16) 

( )2 20 20 3ˆ 1 ( ) ( )x k f g u k l y k+ = + + �  (17) 

where 2l R∈ and 3l R∈  are design constants. 

B. Observer Error Dynamics 
Define the state estimation and output errors as 

( ) ( ) ( )ˆ1 1 1 , {1, 2}i i ix k x k x k i+ = + − + ∈�  (18) 

( ) ( ) ( )ˆ1 1 1y k y k y k+ = + − +�  (19) 
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Combine (3) through (10) and (16) through (19), to obtain the estimation and output error 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 2 2 1 1 2 1ˆ1x k f x k l y k f g x k d k+ = − + − ⋅ − ⋅ −� �  (20) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 20 3 2 2 21x k f g u k l y k f g u k d k+ = + + − ⋅ − ⋅ −� �  (21) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
ˆˆ1 T Ty k w k k l y k w k kφ φ ε+ = + − −� �  (22) 

Choose the weight tuning of the observer NN as 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 4
ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k l y kα φ φ+ = − + �  (23) 

where 1 Rα ∈ , and 4l R∈  are design constants. It will be shown that by using the above 

weight tuning, the separation principle is relaxed and the closed-loop signals will be 

bounded. Next we present the following theorem, where it is demonstrated that the state 

estimation and output estimation errors along with observer NN weight estimation errors 

are bounded. The following mild assumptions are required. 

Assumption 1: The unknown smooth functions, ( )2f ⋅  and ( )2g ⋅ , and control ( )u k , are 

upper bounded within the compact set S  as ( )2max 2f f k> , and ( )2max 2g g k> . 

Theorem 1:  Consider the system given by (3), (4) and (5), and the disturbance 

bounded by ( )1 1md k d<  and ( )2 2md k d< where md1  and md2 are known positive scalars. 

Let the observer NN weight tuning be given by (23).  Given bounded inputs such that 

( )maxu u k> , the state estimation errors ( )1x k�  and ( )2x k� , output estimation error ( )y k�  

and observer NN weight estimation errors ( )1w k�  are UUB, with the bounds specifically 

given by (B.17) provided the controller design parameters are selected as 

( ) 10 2
11 << kφα  (24) 

2
1

1 <l  (25) 

3
3

2 <l  (26) 

3
3

3
l <  (27) 

4
3

3
l <  (28) 
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where 1α  is NN adaptation gain, 1l , 2l , 3l , and 4l  are observer parameters. 

Proof:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( )
4

2 2 231 2 4
1 1 1 2

1 1 3 2 3
T

i
i

J k J k w k w k x k x k yγγ γ γ
α=

= = + + +∑ � � � � �  (29) 

where 0 , {1,2,3,4}i iγ< ∈  are auxiliary constants. Take the first difference of the first 

term, and substitute (23) to get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( )

1

1

1

1

1 1 1

1 1 1 1 1

1 1 1 1 4 1

1 1 1 1 1 4 1 1

2
2 1 1 1 12

1 1 1 1 1
4 4

1 1

1 1

ˆ ˆˆ[ ]*

ˆ ˆˆ[ ]

ˆ ˆˆ ˆ( ) ˆ2 ( )

ˆˆ

T

T T

T
T T T

T T

T T

T

J k w k w k

J k w k w k w k w k

w k w k k l y k k

w k k w k k l y k w k w k

w k k w k k
k w k k

l y k l y k

w k

γ
α

α
γ

α φ φ

α φ φ

φ φ
α φ α φ

α

=

Δ = + + −

= − +

− + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

� �

� � � �

� �

� � � �

�
� �

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( )

( ) ( )( ) ( )

2 2

1 4 1 1 1 4

22

1 1 1 1 1 4

2
2

1 1 1 1 4 1 1 1

2
22 1 1 2

1 1 1 1 1 1 4 1 1
4

ˆˆ

ˆ ˆˆ1

ˆ

ˆˆˆ ˆ1

T

T

T

T
T

k l y k w k k l y k

k w k k l y k

k w l y k k k

w k k
k w k l y k k

l y k

φ α φ

α α φ φ

α ζ φ ζ α ζ

φ
α α φ α φ α ζ

+ − +

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

+ + − −

⎛ ⎞⎛ ⎞⎜ ⎟= − − + + −⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠

� �

�

�

�
�

 (30) 

Invoke Cauchy-Schwarz inequality defined as 

( ) ( )( )2 2 2 2 2
1 1 1 1... ... ...n n n na b a b a a b b+ + ≤ + + + +  (31) 

and simplify to get 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22

1 1 1 1 1 1 4

2 2 2 2
1 1m 1m 1 4 1 1

ˆ ˆˆ1

ˆ2 2

J k k w k k l y k

w l y k k

γ α φ φ

γ φ γ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ −

�

�
 (32) 

Take the second term and substitute (20) 

( ) ( ) ( ) ( ) ( )222 2 2 2
2 2 2 2 2 2 3m 3m 10 3m 1m 13J k l y k x k w f d x kγγ γ γ φ εΔ ≤ + + + + + −� � �   (33) 

Take the third term and substitute (21) 



 
 9 

 

( ) ( )( ) ( ) ( )3
2 2 2 2

3 3 20 20 2max max 2max 2m 3 3 22J k f g g u f d l y k x kγγ γΔ ≤ + + + + + −� �   (34) 

Take the fourth and final term and substitute (22) 

( ) ( ) ( ) ( ) ( )42 2 2
4 4 1 4 1 4 1m 1m 1m 3J k k l y k w y kγγ ζ γ γ φ εΔ ≤ + + + −�� �  (35) 

Combine equations (32) through (35) and simplify to get the first difference of the 

Lyapunov function. 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2

4

22 2 2
1 1 1 1 1 4 2 2 12 3

2 2 2 2 2 2 2
1 4 2 2 3 3 4 1 1 4 13

ˆ ˆˆ1

2 M

J k k w k k l y k x k x k

l l l l y k k D

γ γ

γ

γ α φ φ γ

γ γ γ γ γ γ ζ

⎛ ⎞Δ ≤ − − + − − −⎜ ⎟
⎝ ⎠

− − − − − − − +

� � �

�
 (36) 

where 2
MD  is defined as 

( ) ( )

( )( ) ( )

2 22
1 1m 1m 2 3m 3m 10 3m 1m

2
3 20 20 2max max 2max 2m 4 1m 1m 1m

ˆ2MD w w f d

f g g u f d w

γ φ γ φ ε

γ γ φ ε

= + + + + +

+ + + + + +�
 (37) 

Select 
2 2 2 2

3 2 4 1 4 2 2 3 3 4 1 1 42 ; 6 3 3 3 ;l l l lγ γ γ γ γ γ γ γ γ> > + + + >  (38) 

This implies ( ) 0<Δ kJ  as long as (24) through (28) hold and the following hold  

( ) ( ) ( )

( )

2 3 4
1 2 2 2 2 2

1 4 2 2 3 3 4 123 32

1
1 4

; ; ;
2

M M M

M

D D Dx k or x k or y k
l l l l

Dor k

γ γ γ γ γ γ γγ

ζ
γ γ

> > >
− − − −−

>
−

� � �

 (39) 

According to a standard Lyapunov extension theorem [14], this demonstrates that the 

estimation errors, the output error, and the NN observer weight estimation errors are 

UUB. Remark: In this above theorem, the control input is considered bounded which is 

an acceptable assumption (also made in all output feedback control literature) which is 

relaxed in the next few sections when combined with the controller design wherein the 

enclosed-loop system is shown to be bounded. On the other hand, the assumption that the 

unknown nonlinearities are bounded is valid since for many practical systems, the upper 

bound on the unknown nonlinearities will be known [14].  Additionally, for NN based 

control it is also necessary for the nonlinear functions to be on a compact set in order for 

the NN to approximate them. 
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Next we discuss the design of the adaptive critic NN controller and demonstrate that if 

the closed-loop system including the NN observer signals will be bounded, then the 

control inputs will be bounded. 

IV. CRITIC DESIGN 

The purpose of the critic NN is to approximate the long-term performance index (or 

strategic utility function) of the nonlinear system through online weight adaptation.  The 

critic signal also tunes the two action NNs. The tuning will ultimately minimize the 

strategic utility function itself and NN outputs so that closed-loop stability is inferred. 

A. The Strategic Utility Function 

The utility function ( ) ℜ∈kp  is given by 

( ) ( )( )0,

1,

if y k c
p k

otherwise

⎧ ≤⎪= ⎨
⎪⎩

�
 (40) 

where ℜ∈c  is a user-defined threshold. The utility function ( )kp  represents the current 

performance index. In other words, ( ) 0=kp  and ( ) 1=kp  refer to good and 

unsatisfactory tracking performance at the kth time step, respectively. The long-term 

strategic utility function ( )Q k ∈ℜ , is defined as  

( ) ( ) ( ) ( )1 11 2 ..N N kQ k p k p k p Nβ β β− += + + + + + +" ,  (41) 

where β ∈ℜ  and 0 1β< <  is the discount factor and N is the horizon index. The 

term ( )Q k  is viewed here as the long system performance measure for the controller since 

it is the sum of all future system performance indices.  Equation (41) can also be 

expressed as ( )
( )

( ) ( ){ }1min 1 N

u k
Q k Q k p kα α += − − , which is similar to the standard Bellman 

equation. 

B. Design of the Critic NN 
We utilize the universal approximation property of NN to estimate the critic NN output 

and rewrite ( )Q̂ k  as 

( ) ( ) ( )( ) ( ) ( )2 2 2 2 2
ˆ ˆˆ ˆˆT T TQ k w k v z k w k kφ φ= =  (42) 
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where ( ) ℜ∈kQ̂  is the critic signal, ( ) 2
2ˆ nw k ∈ℜ  is the tunable weight matrix, 

22
2

nv ×∈ℜ  represent the constant input weight matrix selected initially at random, 

( ) 2
2̂

nkφ ∈ℜ  is the activation function vector in the hidden layer, 2n  is the number of the 

nodes in the hidden layer, and ( ) 2
2 1 2ˆ ˆˆ [ ( ), ( )]Tz k x k x k R= ∈  is the NN input vector. 

C. Critic Weight Update Law 
Define the prediction error as 

( ) ( ) ( ) ( )( )ˆ ˆ 1 N
ce k Q k Q k p kβ β= − − −  (43) 

where the subscript “c” stands for the “critic.” Define a quadratic objective function to 

minimize based on the prediction error 

( ) ( )kekE cc
2

2
1

=  (44) 

The weight update rule for the critic NN is obtained using gradient adaptation, which is 

given by the general formula 

( ) ( ) ( )2 2 2ˆ ˆ ˆ1w k w k w k+ = + Δ  (45) 

( ) ( )
( )2 2

2

ˆ
ˆ

cE k
w k

w k
α

⎡ ⎤∂
Δ = −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (46) 

or 

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2̂

ˆ ˆˆ ˆ1 1
TNw k w k k Q k p k Q kα φ β β++ = − + − −  (47) 

where 2α ∈ℜ  is the NN adaptation gain. 

V. DESIGN OF THE VIRTUAL CONTROL INPUT  

In this section, the design of the virtual control input is discussed.  Before we proceed, 

the following mild assumption is needed. Then the systems of nonlinear equations are  

Assumption 2: The unknown smooth function ( )⋅2g  is bounded away from zero for all 

( )kx1  and ( )kx2  within the compact set S .  In other words, ( )2min 2 2max0 ,g g g< < ⋅ <  

( ) ( )1 2&x k x k S∀ ∈  where +ℜ∈min2g  and +ℜ∈max2g . Without loss of generality, we 

will assume ( )⋅2g  is positive in this paper. 
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A. System Simplification 
First, we simplify by rewriting the state equations with the following 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 2 1 1 2 2 2, ,f x k x k g x k x k x k x kΦ ⋅ = + +  (48) 

The system of equations (3) and (4) can be rewritten as 

( ) ( ) ( ) ( )1 2 11x k x k d k+ = Φ ⋅ − +  (49) 

( ) ( ) ( ) ( ) ( )2 2 2 21x k f g u k d k+ = ⋅ + ⋅ +  (50) 

B. Virtual Control Input Design 

Our goal is to stabilize the system output ( )ky  around a specified target point, dy  by 

controlling the input. The secondary objective is to make ( )kx1  approach the desired 

bounded trajectory ( )kx d1 . At the same time, all signals in systems (3) and (4) must be 

UUB; all the NN weights must be bounded; and a performance index must be minimized. 

Define the tracking error as 

( ) ( ) ( )1 1 1de k x k x k= −  (51) 

where ( )kx d1  is the desired trajectory. Using (49), (51) can be expressed as  

( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 1 1

2 1 1

1 1 1

1
d

d

e k x k x k

x k d k x k

+ = + − +

= Φ ⋅ − + − +
 (52) 

By viewing ( )2x k  as a virtual control input, a desired virtual control signal can be 

designed as 

( ) ( ) ( ) ( )2 1 5 1̂1d dx k x k l e k= Φ ⋅ − + +  (53) 

where 5l  is a gain constant. Since ( )Φ ⋅  is an unknown function, ( )2dx k  in (53) cannot 

be implemented in practice. We invoke the universal approximation property of NN to 

estimate this unknown nonlinear function. 

( ) ( )( ) ( )( )3 3 3 3
T Tw v z k z kφ εΦ ⋅ = +  (54) 

where ( ) ( ) ( ) 2
3 1 2,

T
z k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector, 2

3
nTw ∈ℜ  and 32

3
nTv ×∈ℜ  are the 

ideal and constant input weight matrices, ( )( ) 3
3 3

nTv z kφ ∈ℜ  is the activation function 

vector in the hidden layer, 3n  is the number of the nodes in the hidden layer, and 
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( )( )3z kε  is the functional estimation error.  It is demonstrated in [13] that, if the hidden 

layer weights, 1v , are chosen initially at random and kept constant, and the number of 

hidden layer nodes is sufficiently large, then the approximation error ( )( )3z kε  can be 

made arbitrarily small so that the bound ( )( )3 3mz kε ε≤  holds for all ( )3z k S∈  in a 

compact set since the activation function vector forms a basis to the nonlinear function 

that the NN approximates. 

Rewriting (53) using (54), the virtual control signal can be rewritten as 

( ) ( )( ) ( )( ) ( ) ( )2 3 3 3 3 1 5 1̂1T T
d dx k w v z k z k x k l e kφ ε= + − + +  (55)        

Replacing the actual with estimated states, (55) becomes 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 3 3 1 5 1

3 3 1 5 1

ˆ ˆ ˆˆ 1

ˆˆ ˆ1

T T
d d

T
d

x k w k v z k x k l e k

w k k x k l e k

φ

φ

= − + +

= − + +
 (56) 

where ( ) ( ) ( ) 2
3 1 2ˆ ˆˆ ,

T
z k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the NN input vector using estimated states, and 

( ) ( ) ( )1 1 1ˆ ˆ de k x k x k= − .  

define 

( ) ( ) ( )2 2 2ˆ de k x k x k= −  (57) 

Equation (52) can be rewritten using (57) 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 1

2 2 1 1

2 2 1 1

1 1

ˆ 1

ˆ 1

d

d d

d d

e k x k d k x k

e k x k d k x k

x k e k x k d k

+ = Φ ⋅ − + − +

= Φ ⋅ − + + − +

= Φ ⋅ − − − + +

 (58) 

Replace (56) into (58), then (54) into the combined equation 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 3 3 1 5 1 2 1 1

3 3 3 3 3 5 1 2 1

3 3 3 3 3 3 5 1 2 1

3 3 3 3 3 3 5 1 2 1

3 3 3 3 3 5 1 2

ˆˆ ˆ1 1 1

ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ

T
d d

T T

T T

T T

T T

e k w k k x k l e k e k x k d k

w k k w k k l e k e k d k

w k k w k k k l e k e k d k

w k k w k k k l e k e k d k

w k w k k l e k e k

φ

φ ε φ

φ φ φ ε

φ φ φ ε

φ φ ε

+ = Φ ⋅ − − + + − − + +

= + − − − +

= − − + − − +

= − − + − − +

= − − + − −

�

�

�� ( )
( ) ( ) ( ) ( ) ( ) ( )

1

3 3 3 3 5 1 2 1ˆT

d k

k w k k l e k e k d kζ φ ε

+

= − − + − − +�

  (59) 
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where 

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3
ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −�  (60) 

( ) ( )( ) ( )( )3 3 3 3 3ˆk v z k v z kφ φ φ= −�  (61) 

C. Virtual Control Weight Update 
Let us define 

( ) ( ) ( ) ( ) ( )( )1 3 3̂
ˆˆ T

a de k w k k Q k Q kφ= + −  (62) 

where ( )kQ̂  is defined in (42), and the a1 subscript represents the error for the first action 

NN, ( ) ℜ∈kea1 . The desired strategic utility function ( )kQd  is “0” to indicate perfect 

tracking at all steps whereas the first term in (60) is essentially the action NN output or 

virtual control input. Thus, (62) becomes 

( ) ( ) ( ) ( )1 3 3̂
ˆˆ T

ae k w k k Q kφ= +  (63) 

The objective function to be minimized by the first action NN is given by 

( ) ( )kekE aa
2
11 2

1
=  (64) 

The weight update rule for the action NN is also a gradient-based adaptation, which is 

defined as 

( ) ( ) ( )3 3 3ˆ ˆ ˆ1w k w k w k+ = + Δ  (65) 

where 

( ) ( )
( )

1
3 3

3

ˆ
ˆ
aE k

w k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (66) 

or in other words 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k Q k w k kα φ φ+ = − +  (67) 

with 3α ∈ℜ  is the NN adaptation gain.  

VI. CONTROL INPUT DESIGN 

Choose the following desired control input  

( ) ( ) ( ) ( ) ( )( )2 2 6 2
2

1 ˆ 1d du k f k x k l e k
g k

= − + + + , (68) 



 
 15 

 

Note that ( )kud  is non-causal since it depends upon future value of ( )1ˆ2 +kx d . We 

solve this problem by using a semi-recurrent NN since it can be a one step predictor. The 

term ( )1ˆ2 +kx d  depends on state ( )kx , virtual control input ( )kx d2ˆ , desired trajectory 

( )21 +kx d , and system errors ( )ke1  and ( )ke2 . By taking the independent variables as the 

input to a NN, ( )1ˆ2 +kx d  can be approximated during control input selection. 

Consequently, in this paper, a feed forward NN with a properly chosen weight tuning law 

rendering a semi-recurrent or dynamic NN can be used to predict the future value. 

Alternatively, the value can be obtained by employing a filter (Jagannathan 2006).  The 

first layer of the second NN using the system errors, state estimates and past value 

)(ˆ2 kx d  as inputs generates ( )1ˆ2 +kx d , which in turn is used by the second layer to 

generate a suitable control input.  The results in the simulation section show that the 

overall controller performance is satisfactory.  On the other hand, one can use a single 

layer dynamic NN to generate the future value of )(ˆ2 kx d , which can be utilized as an 

input to a third control NN to generate a suitable control input.  Here, these two single 

layer NN are combined into a single NN. 

Assume the NN input to be ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6
4 1 2 1 6 2 2 1ˆ, , , , , 2

T
d dz k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦ , 

then ( )kud  can be approximated as 

( ) ( )( ) ( )( ) ( ) ( )4 4 4 4 4 4 4
T T T

du k w v z k z k w k kφ ε φ ε= + = +  (69) 

Where 4
4

nw ∈ℜ  and 46
4

nv ×∈ℜ  denote the constant ideal output and hidden layer 

weight matrices, ( ) 4
4

nkφ ∈ℜ  is the activation function vector, 4n  is the number of 

hidden layer nodes, and ( )( )4z kε  is the estimation error so that the bound 

( )( )4 4mz kε ε≤  holds for all ( )4z k S∈  in a compact set. Again, we hold the input 

weights constant and adapt the output weights only. We also replace the actual with 

estimated states to design the control input as 

( ) ( ) ( )( ) ( ) ( )4 4 4 4 4̂ˆ ˆˆT T Tu k w k v z k w k kφ φ= =  (70) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6
4 1 2 1 6 2 2 1ˆ ˆ ˆ ˆ ˆˆ , , , , , 2

T
d dz k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦  is the input 

vector. Rewriting (57) and substituting (68) through (70), to get 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 4 4 2 2

2 2 4 4 4 4 4 4 2 2

2 2 4 4 2 4 4 4 2 2

2 2 4 2 4 4 4 2 2

6 2 2 4 2 4 2

ˆ1 1 1

ˆˆ ˆ 1

ˆ ˆ 1

ˆ 1

ˆ 1

d

T
d

T T T
d

T T
d

T
d d

e k x k x k

f g w k k d k x k

f g w k k w k w k d k x k

f g w k k g k w k d k x k

f g u k k g k w k d k x k

l e k g k g k g

φ

φ φ φ

φ ζ φ

ε ζ φ

ε ζ

+ = + − +

= ⋅ + ⋅ + − +

= ⋅ + ⋅ + + + − +

= ⋅ + ⋅ + ⋅ + + − +

= ⋅ + ⋅ − + ⋅ + + − +

= − ⋅ + ⋅ + ⋅

��

�

�

( ) ( )4 4 2
Tw k d kφ +�

 (71) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4
ˆ ˆ ˆˆT T Tk w k k w k k w k kζ φ φ φ= = −�  (72) 

and 

( ) ( ) ( )4 4 4
ˆk k kφ φ φ= −�  (73) 

Equations (59) and (71) represent the closed-loop error dynamics.  Next we derive the 

weight update law for the second action NN. Define 

( ) ( ) ( ) ( )2 4 4̂
ˆˆ T

ae k w k k Q kφ= +  (74) 

where ( ) ℜ∈kea2  is the error, the subscript a2 stands for the second action NN, and the 

first term in (72) is the NN output or control input to the nonlinear system. Following a 

similar design, choose a quadratic objective function to minimize 

( ) ( )2
2 2

1
2a aE k e k=  (75) 

Define a gradient-based adaptation where the general form is given by 

( ) ( ) ( )4 4 4ˆ ˆ ˆ1w k w k w k+ = + Δ  (76) 

where 

( ) ( )
( )

2
4 4

4

ˆ
ˆ
aE k

w k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (77) 

or 

( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k Q kα φ φ+ = − +  (78) 

The proposed controller structure is shown in Figure 1. Next, in the following theorem, 

the uniformly ultimately boundedness (UUB) of the closed loop system is demonstrated 

through the use of Lyapunov function. 
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Figure 1 Adaptive-critic NN-based controller diagram. 

Assumption 3 (Bounded Ideal Weights): Let 1w , 2w , 3w , and 4w  be the unknown 

output layer target weights for the observer, critic, and two action NNs, and assume that 

they are bounded above so that 

1 1 2 2 3 3,  ,m m mw w w w w w≤ ≤ ≤ , and 4 4mw w≤  (79)     

where +∈Rwom , +∈Rw m1  and +∈Rw m2  represent the bounds on the unknown target 

weights, where the Frobenius norm [14] is used. 

Fact 1: The activation functions are bounded above by known positive values so that  

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4, , ,  andm m m mφ φ φ φ φ φ φ φ⋅ ≤ ⋅ ≤ ⋅ ≤ ⋅ ≤� � � � � � � �  (80) 

where 1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ, , , , , and ,m m m m m m m mR R R Rφ φ φ φ φ φ φ φ+ + + +∈ ∈ ∈ ∈� � � �  are the upper bounds. 

Theorem 2: Consider the system given by (3) and (4), and the disturbance bounds md1  

and md2 be known constants. Let the observer, critic, virtual control, and control input 

NN weight tuning be given by (23), (47), (67), and (78), respectively. Let the virtual 

control input and control input be given by (56) and (70), the tracking errors ( )ke1  and 

( )ke2  and weight estimates ( ) ( )kwkw 21 ˆ,ˆ , ( )kw3ˆ , and ( )4ŵ k  are UUB, with the bounds 

specifically given by (B.17), and with the design parameters selected as 

( ) 10 2
11 << kφα  (81) 

( ) 2
2 20 1kα φ< <  (82) 

( ) 2
3 30 1kα φ< <  (83) 

( ) 2
4 40 1kα φ< <  (84) 
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2
1

1 <l  (85) 

3
3

2 <l  (86) 

3
3

3
l <  (87) 

4
3

3
l <  (88) 

5
1
5

l <  (89) 

6
3

3
l <  (90) 

20
2

β< <  (91) 

where 1α , 2α , 3α  and 4α  are NN adaptation gains, 1l , 2l , 3l , 4l , 5l , and 6l  are gains, and 

β  is employed to define the strategic utility function. 

Proof: See Appendix B. � 

Remark 1: A well-defined controller is developed in this paper since a single NN is 

utilized to approximate two nonlinear functions.   

Remark 2: It is important to note that in this theorem there is no persistency of 

excitation condition (PE) and linearity in the parameters assumption condition for the NN 

observer and controller, in contrast with standard work in the discrete-time adaptive 

control since the first difference does not require the PE condition to prove the 

boundedness of the weights. Even though the input to the hidden-layer weight matrix is 

not updated and only the hidden to the output-layer weight matrix is tuned, the NN 

method relaxes the linear in the unknown parameter assumption.  Additionally, the 

certainty equivalence principle is not used.   

Remark 3: Generally, the separation principle used for linear systems does not hold for 

nonlinear systems, and hence it is relaxed in this paper for the controller design since the 

Lyapunov function is a quadratic function of system errors and weight estimation errors 

of the observer and controller NNs.   
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Remark 4: The NN weight tuning proposed in (23), (47), (67), and (78) renders a semi-

recurrent NN due to the proposed weight tuning law even though a feedforward NN is 

utilized.  Here the NN outputs are not fed as delayed inputs to the network whereas the 

outputs of each layer are fed as delayed inputs to the same layer. This semi-recurrent NN 

architecture renders a dynamic NN which is capable of predicting the state one step 

ahead.  

Remark 5: It is only possible to show boundedness of all the closed–loop signals by 

using an extension of Lyapunov stability [14] due to the presence of approximation errors 

and bounded disturbances consistent with the literature. 

Corollary 1: The proposed adaptive critic NN controller and the weight updating rules 

with parameter selection based on (81) through (91) cause the state ( )kx2  to approach the 

desired virtual control input ( )kx d2 . 

Proof: Combining (55) and (56), the difference between ( )kx d2ˆ  and ( )kx d2  is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 3 3 3 3 3ˆ d dx k x k w k k z k k kφ ε ζ ε− = − = −�  (92) 

where ( ) 3
3

nw k ∈ℜ�  is the first action NN weight estimation error and ( )3 kζ ∈ℜ  is 

defined in (60). Since both ( )3 kζ ∈ℜ  and ( )3 kε  are bounded, ( )kx d2ˆ  is bounded to 

( )kx d2 . In Theorem 1, we show that ( )ke2  is bounded, i.e., the state ( )kx2  is bounded to 

the virtual control signal ( )kx d2ˆ .  Thus the state ( )kx2  is bounded to the desired virtual 

control signal ( )kx d2 . 

VII. RESULTS AND ANALYSIS 

Lean operation of an SI engine allows low emissions and improved fuel efficiency. 

However, lean operation destabilizes the engine due to the cyclic dispersion of heat 

release. The controller is designed to stabilize the SI engine operating at lean conditions. 

A. Daw Engine Model 
Spark ignition (SI) engine dynamics can be expressed according to the Daw model as a 

class of nonlinear systems in non-strict feedback form [15] as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 11x k AF k F k x k R F k CE k x k d k+ = + − ⋅ + , (93) 
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( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 2 21 1x k CE k F k x k MF k u k d k+ = − + + + , (94) 

( ) ( ) ( )2y k x k CE k= , (95) 

( ) ( )
( )

2

1

x k
x kk Rϕ = , (96) 

( ) ( ) ( )
max

( )1 100 m u lk

CECE k ϕ ϕ ϕ ϕ− − −
=

+
, (97) 

2
u l

m
ϕ ϕϕ −

= , (98) 

Where ( )1x k  and ( )2x k are total mass of air and fuel, respectively, in each cylinder 

which is unknown. The variable ( )1y k  is the heat release at thk  instance. The value of 

combustion efficiency ( )CE k  is within the range of ( )min max0 CE CE k CE< < <  which is 

typically unknown whereas the unknown residual gas fraction ( )F k  is bounded by 

( )min max0 F F k F< < < . The terms ( )1d k  and ( )2d k  are unknown but bounded 

disturbances upper bounded by ( )1 1md k d<  and ( )2 2md k d<  with 1md  and 2md  being 

known positive scalars. To implement the observer, replace the following from the Daw 

model into the general case 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )
( )

1 1

1

2 2

2

1

1

f AF k F k x k

g R F k CE k

f CE k F k x k MF k

g

⋅ = +

⋅ = − ⋅

⋅ = − +

⋅ =

 (99) 

and 

( )

( ) ( )

10 0 0 1

10 0 0

10 0 0 2 0

10

ˆ

ˆ1
1

f AF F x k
g R F CE
f CE F x k MF
g

= +

= − ⋅

= − +

=

 (100) 

To implement the controller, replace the following in place of ( )1f ⋅  and ( )1g ⋅  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2AF k F k x k R F k CE k x k x kΦ ⋅ = + − ⋅ +  (101) 
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To calculate the nominal values for equations (6) through (9), we run the engine at the 

desired equivalence ratio.  That will give us the nominal fuel, air, and equivalence ratio - 

0MF , 0AF  and 0ϕ .  From those, combustion efficiency 0CE  is calculated. 

B. Simulation Results 
The controller is simulated in C in conjunction with the Daw model.  The learning rates 

for the observer (81), critic (82), virtual control input (83), and control input (84) 

networks are 0.01, 0.01, 0.01, and 0.01, respectively.  The gains l1, l2, l3, l4, l5, and l6 are 

selected as 0.05, 0.05, 0.04, 0.05, 0.2 and 0.1.  The system constants CEmax, φl, and φu are 

chosen as 1, 0.66 , and 0.73.  The critic constants β  and N are 0.4 and 4. All NNs use 20 

neurons with hyperbolic tangent sigmoid activation functions in the hidden layer.   

The maximum moles a single cylinder holds is set as 0.021 to match the experimental 

engine constraint shown in the next section.  Using this constant along with the following 

equations 

( )AF
MFR=ϕ  (102) 

fuel air

MF AFtm
mw mw

= +  (103) 

Where fuelmw  and airmw  are molecular weights of fuel and air, respectively and tm  is 

the maximum moles each cylinder is capable of holding.  For each equivalence ratio set 

point, ϕ , MF and AF can be calculated. 

The last two system variables: disturbances and stochastic effects are modeled as 

follows. First, we assume a Gaussian distribution governs the two effects. We may inject 

disturbances to the two states in equations (93) and (94) due to ( )1d k  and ( )2d k , but a 

simpler method is to perturb the equivalence ratio equation (96). This simplification is 

sufficient because the states are not measurable; therefore, the disturbances are 

increasingly complex and immeasurable. Stochastic effects alter the output, and through 

the combustion efficiency equation (97) and finally the output equation (95), this single 

perturbation effectively models the last two system variables. The final model uses a 

Gaussian distribution noise injected into equation (96) centered around the target 

equivalence ratio and deviation of 1% of the target equivalence ratio. The resulting 
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simulation output matches the output observed from the Ricardo engine shown in the 

preceding section. All simulations ran for 5000 cycles uncontrolled first, then 5000 

cycles controlled. 

Figure 2 shows two heat release return maps, one controlled and the other uncontrolled, 

for an equivalence ratio of 0.89. Each subfigure shows heat release for the next time step 

versus the current time step. Points centered along the 45 degree line represent heat 

release values that are equal to the next step heat release. Note the clustering of the points 

around the mean heat release of 870J. The square represents the target heat release. The 

relatively high equivalence ratio exhibits little dispersion, indicated by little or no stray 

points away from the central cluster. The left uncontrolled plot is similar to the right 

controlled plot, because the controller is quiescent due to the simulated engine 

performing well. There are no complete misfires, but the heat release variation can be 

clearly seen.  
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Figure 2 Uncontrolled and controlled heat release return map at φ=0.89. 
Heat release at k+1 instance is plotted against heat release at k instance. 

Figure 3 shows the time series of the heat release and control input at the same 

equivalence ratio. The controller activates after several thousand cycles, indicated by the 

fluctuation of the control output. The controller converges quickly and to a stable 

operation point. The presence of spikes in the control output indicates a decline in heat 

release such as a misfire, translating into additional fuel control to counteract.  



 
 23 

 

920

940

960

 H
ea

t R
el

ea
se

(J
)  

Heat Release and Control at φ=0.89. Controller on at k=3999

2500 3000 3500 4000 4500 5000 5500 6000
-0.05

0

0.05

0.1

0.15

Iteration(k)

 C
on

tro
l(m

g)
 

 
Figure 3 Heat release and control input at φ=0.89. Controller turns on at k=4000. 

Note the almost instant learning convergence of the controller. 

Figures 4 and 5 present another set point at 0.79. Similar features appear compared to 

the previous equivalence ratio, except with higher frequency and amplitude of dispersion, 

indicated by a larger cluster of heat release data points on the 45 degree line. 

Improvements shown reflect the assertion of the control action. The cluster is therefore, 

tighter on the right subfigure. 
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Figure 4 Uncontrolled and controlled heat release return map at φ=0.79. 
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Figure 5 Heat release and control input at φ=0.79. 

In order to quantify the performance of the controller, we compare the coefficient of 

variation (COV), which is the standard deviation normalized by dividing by the mean of 

the heat release.  As the COV decreases, the standard deviation decreases, which 

indicates that the engine heat release is more stable compared to higher COV.  The 

controller performs better, and the return map consequently should approach the target 

value.  Table 1 tabulates all of the data from the simulation.  The COV of each set point 

decreased drastically (shown with a negative sign) as the controller operated.  The 

performance exceeded the improvement expected due to the slight increase in the mean 

fuel input.  Next, we show that experimental data supports the simulation data. 

Table 1 Coefficient of variation (COV) and fuel data for each of the six set points. 
                     COV %COV %Fuel 
φ Uncontrolled Controlled Change Change 

0.89 0.0080 0.0077 -4.1 0.29 
0.84 0.0090 0.0087 -3.3 0.11 
0.79 0.0267 0.0221 -17.0 0.66 
0.77 0.0475 0.0435 -8.3 0.48 
0.75 0.1217 0.1071 -12.0 0.56 
0.72 0.2373 0.2128 -10.3 0.48 

 

C. Ricardo Engine 
The experimental results are collected from a Ricardo Hydra engine with a modern four 

valve Ford Zetek head. A single cylinder runs at 1000 rpm with shaft encoders to signal 

each crank angle degree and start of cycle.  There are 720° per engine cycle. 
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In the cylinder, a piezoelectric pressure transducer records pressure every crank angle 

degree. Combustion is considered to take place between 345° to 490°, for a total of 145 

pressure measurements.  The cylinder pressure is integrated along with volume during 

the 17.7 ms calculation window. All communications are completed at this time.  The 

output of our controller controls the fuel input.  This is controlled by a TTL signal to a 

fuel injector driver circuit. 

All signals communicate through a custom interface board using a microcontroller.  

The board interfaces with the PC through a parallel port and with the engine hardware 

through an analog signal. 

D. Experimental Results 
All constants given in the simulation section are used in the experiment. The first 

operation for an engine run is to measure the air flow and nominal fuel.  The desired 

equivalence ratio is given by (102), where MF is nominal mass of fuel, AF is nominal 

mass of air, and R is the stoichiometric ratio. 

These values are loaded into the controller. Ambient pressure is used to reference the 

in-cylinder pressure when the exhaust valve is fully open and subtracted from the 

combustion pressure measurements. Uncontrolled and controlled data were collected at 

equivalence ratios of 0.8, 0.78, 0.75, and 0.72. The uncontrolled engine ran for 5,000 

cycles and then the controller is turned on for another 5,000 cycles.  Steady state was 

ensured prior to data collection by measuring stable exhaust temperature. 

Figure 6 shows two heat release return maps, one controlled and the other uncontrolled, 

for the equivalence ratio of 0.8. The target heat release is at 850J. Figure 7 shows the 

time series of the heat release and control input for the same equivalence ratio. Small 

changes indicate a quiescent controller due to the near stoichiometric set point. Define 

the state and output tracking errors: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

d

d

y

e k x k x k

e k x k x k

e k y k y k

= −

= −

= −

 (104) 

where ( )1̂e k , ( )2ê k , and ( )ˆye k  are state 1, state 2, and output tracking errors, 

respectively.  
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Figure 6 Uncontrolled and controlled heat release return map at φ=0.8. 
Heat release at k+1 instance is plotted against heat release at k instance. 
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Figure 7 Heat release and control input at φ=0.8. Controller turns on at k=5200. 

Note the almost instant learning convergence of the controller. 

Figure 8 shows the controller state tracking errors at equivalence ratio of 0.8. The 

range represents tracking error in percentage over and under the desired state trajectories. 

State one tracking error is considerably better than state two tracking.  The second state 

tracks within 0.3%, therefore, both are performing well. The spikes indicate unsuccessful 

tracking. Consequently, the observer and controller converged together to the desired 

states and estimated states, generating a stable error system.  
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Figure 8 State tracking errors. 

Figure 9 shows the output tracking error in the same form as the state tracking error. 

Immediate observation shows an extremely high error rate. The observer performance is 

abysmal. Nonetheless, this signal fed into the NN controller allows for the critical 

performance factor, state tracking errors, to converge and stabilize. It is not critical for 

one signal to track perfectly, rather the system as a whole. Moreover, theorem 1 proved 

the boundedness of the output estimation. In conjunction with the natural bound of the 

engine output, the tracking error will always be bounded. The extreme fluctuation of the 

observer output may be the key to the responsiveness of the controller as a whole. 
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Figure 9 Output tracking error. 
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Figure 10 shows the return map of heat release for an equivalence ratio of 0.72. Note 

that as the equivalence ratio decreases, the return map spreads out and dispersion 

increases. Figure 11 is the corresponding heat release and time series of the control input. 

Misfires increase in frequency, as shown by the negative heat release spikes due to heat 

transfer from the cylinder to the environment without internal generation of useful work 

by combustion.  
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Figure 10 Uncontrolled and controlled heat release return map at φ=0.72. 
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Figure 11 Heat release and control input at φ=0.72. 

Figure 12 shows increasing difficulty of the observer and controller to generate a low 

state tracking error compared to the previous case. As the engine operates in a leaner 

mode, overall dispersion increases, thus degrading observer performance. Although the 

performance is reduced, the tracking error is well within satisfactory performance. Figure 
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13 shows the output tracking error. At the lower equivalence ratio, it is performing better 

than the previous equivalence ratio. This may be due to the memory effect of past engine 

cycles contributing to the residuals in the current cycle. At a near stoichiometric ratio of 

fuel over air, little dispersion occurs, resulting in similar cylinder chemistry content 

before each power cycle. Stochastic effects dominate and destroy predictability. The high 

observer learning rate decimates the tracking ability. On the other hand, at lower 

equivalence ratios, higher dispersion and misfires create patterns of predictable residuals. 

The observer exploits the pattern recognition power of NN to drastically improve its 

performance. 
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Figure 12 State tracking error with corresponding mean value. 
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Figure 13 Output tracking error. 
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Figure 14 shows a detailed view of 35 controlled cycles at an equivalence ratio of 0.72. 

The controller generates decreasing control during cycles when the heat release is steady, 

indicated by cycles between 4947 to 4954 and between 4963 to 4769.  However, during 

misfires or extreme dispersion in heat release, the controller attempts to compensate for 

the drop in heat release by pushing the control up, indicated by cycles 4943, 4944, 4955, 

etc.  Note the general increase in control during sequential or near sequential misfires 

such as between cycles 4955 to 4962. The controller compensates after a one cycle delay 

in the positive direction and attempts to recover the engine heat release towards the target 

point. It is difficult to determine success on cycles with no misfire, because no heat 

release plots are available for uncontrolled case during the same cycles when the 

controller is operating for comparison.  Overall, the controller performs to general 

expectation. 
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Figure 14 Detailed view of 35 controlled cycles at φ=0.72 

Table 2 shows the improved COV when the controller is in operation compared to 

uncontrolled engine and also the corresponding change in nominal fuel. An improvement 

in the COV may be artificial due to an increase in fuel input.  However, this is not the 

case for this controller.  At all equivalence ratios except 0.75, the increase in fuel input is 

well within the tolerance of the equipment. On average, the COV decreased significantly 

by 16% compared to controlled case. 
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Table 2 Coefficient of variation (COV) and fuel data for each of the four set points. 

                   COV %COV %Fuel 
φ Uncontrolled Controlled Change Change 
0.80 0.1140 0.0913 -19.9 0.76 
0.78 0.1457 0.1318 -9.5 0.65 
0.75 0.3438 0.2522 -26.6 2.48 
0.72 0.6088 0.5712 -6.2 1.07 

 

Due to reduced cyclic dispersion and fewer misfires and low energy cycles, a gain of 

approximately 8% in indicated fuel conversion efficiency was observed for controlled 

engine operation. 

The COV and fuel change data indicates an improved performance compared to 

previous controller without any optimization [16]. The average drop in COV was 30% 

between uncontrolled and controlled compared to 15.7% for the current controller. 

Although this seems to indicate a decrease in performance, we must consider the increase 

in average fuel input. The previous controller increased the average fuel by 2.5%. This is 

within the detection error. This controller, however, average below the detection error of 

1%.  The controller fuel increases negligibly while approaching the performance of the 

previous controller which in turn demonstrates the optimality of the controller. 

VIII. CONCLUSIONS 

The controller presented successfully controlled a SI engine to reduce cyclic dispersion 

under lean operation. The system is modeled under a non-strict feedback nonlinear 

discrete-time system. It converged upon a near optimal solution through the use of a 

long-term strategic utility function even though the exact dynamics are not known 

beforehand.  It was shown experimentally that the COV is reduced when the controller is 

turned on.  At the same time, the average fuel input did not change significantly; 

therefore, the improvements are solely due to the effects of the controller. The output is 

stable, as predicted by the Lyapunov proof. 

We also provided the emissions data for several set points in Appendix A. It is 

important to note that the emissions data uncertainty may be 5% or more. Therefore, the 

data presented is used for indicating general trends, and not as absolute improvement. 
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However, lean operation in general is proven to decrease emissions compared to 

stoichiometric operation regardless of the data inaccuracies presented. Both NOx and 

unburned hydrocarbons reduced significantly compared to the uncontrolled case.  

However, the most significant drop is between lean and stoichiometric equivalence 

ratios. This is due to the controller's ability to successfully decrease dispersion. 

APPENDIX A 

Tables A.1 and A.2 show the improvement in emissions for several equivalence ratios.  

The improvement is better than what we have seen before [16] using another controller. 

NOx is reduced by around 30 to 40% from uncontrolled scenario. However CO2 remains 

unchanged, whereas O2 decreased by about 4 to 10%, as well as unburned hydrocarbons 

(uHC) decreasing with control by 8% due to reduced cyclic dispersion. 

Table A.1 Emissions data for select equivalence ratios. 

           Uncontrolled            Controlled       Change(%) 
φ CO2(%) CO(%) O2(%) CO2(%) CO(%) O2(%) CO2 CO O2 

0.80 7.5 0.1 8.0 7.5 0.1 7.0 -0.5 0.0 -12.4
0.78 7.7 0.1 8.3 7.6 0.1 8.6 -0.5 0.0 3.9
0.75 8.9 0.1 7.7 9.1 0.1 7.5 1.8 0.0 -2.7

Table A.2 Unburned hydrocarbon (uHC) emission data.  

          Uncontrolled             Controlled    Change(%) 
φ uHC (ppm C1) NOX (ppm) uHC (ppm C1) NOX (ppm) uHC NOX 

0.80 8732.00 1284 8919.00 761 2.1 -40.7
0.78 9457.00 400 9354.00 802 -1.1 100.5
0.75 11154.00 215 9347.00 150 -16.2 -30.2

 

APPENDIX B 

Proof of Theorem 1:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

10 6
2 21 2
1 2

1 3 2

2 2 2 28 9 10
7 2 1 2

5 3

1
3 3 3

j T
i j j

i j j

J k J k e k e k w k w k

k x k x k y

γγ γ
α

γ γ γγ ζ

= = −

= = + + +

− + + +

∑ ∑ � �

� � �
  (B.1) 
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where 0 , {1,...,6}i iγ< ∈  are auxiliary constants; the NN weights estimation errors 

( )1 1Tw k +� , ( )2 1Tw k +� , ( )3 1Tw k +� , and ( )4 1Tw k +�  are defined in (23), (47), (67), and (78), 

by subtracting their respective ideal weights , {1,2,3,4}iw i∈  on both sides; the 

observation errors ( )1 1x k +� , ( )2 1x k +� , are defined in (20) and (21), respectively; the 

system errors ( )1 1e k +  and ( )2 1e k +  are defined in  (59) and (71), respectively; and 

, {1,2,3,4}i iα ∈  are NN adaptation gains. The Lyapunov function (B.1) obviates the need 

for the separation principle. Take the first term and the first difference using (59) to get 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

1

1

2
1 15

2 25
1 1 1

2 2
3 3 3 3 5 1 2 1 1

2 2
3 3 3 3 5 1 1 2 1 1

1

ˆT

T

J k e k

J k e k e k

k w k k l e k e k d k e k

k w k k l x k e k e k d k e k

γ

γ

ζ φ ε

ζ φ ε

=

Δ = + −

= − − + − − + −

= − − + − + − + −

�

� �

 (B.2)  

Invoke the Cauchy-Schwarz inequality defined as 

( ) ( )( )2 2 2 2 2
1 1 1 1... ... ...n n n na b a b a a b b+ + ≤ + + + +  (B.3) 

simplify to get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1

22 2 2 2 2 2 21 1
1 3 5 1 5 1 2 3 3 3 1 15

22 2 2 2 2 2 2
1 1 3 1 5 1 1 5 1 1 2 1 3 3 3 1 15

22 2 2 2 2 2 2
1 5 1 1 5 1 1 2 1 3 1 3m 3m 3m 1m 15

J k k l x k l e k e k k w k d k e k

J k k l x k l e k e k k w k d k e k

l x k l e k e k k w d e k

γ

γ

γ

ζ ε φ

γ ζ γ γ γ γ ε φ

γ γ γ γ ζ γ ε φ

Δ ≤ + + + + − + −

Δ ≤ + + + + − + −

≤ + + + + + + −

��

��

��

 (B.4)  

Take the second term, substitute (71), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )
22 2 2 2 2

2 6 2 2max 4 2 2m 2max 4m 2max 4m 4m 23 3J k l e k g k d g g w e kζ γ ε φΔ ≤ + + + + −�  (B.5) 

Take the third term, substitute (23), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22

3 3 1 1 1 1 4

2 2 2 2
3 1m 1m 3 4 3 1

ˆ ˆˆ1

ˆ2 2

J k k w k k l y k

w l y k k

γ α φ φ

γ φ γ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ −

�

�
 (B.6) 

Take the fourth term, substitute (47), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( )

22 1 2
4 4 2 2 4 2

22 2 1
4 2 4 2m 2m

ˆ ˆ ˆ1 1

ˆ2 1 2 1

N

N

J k k Q k p k Q k k

k w

γ α φ β β γ ζ

γ β ζ γ φ β β

+

+

⎛ ⎞Δ ≤ − − + − − − +⎜ ⎟
⎝ ⎠

− + + +

 (B.7) 
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Take the fifth term, substitute (67), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22

5 5 3 3 3 3

22 2
5 2 5 2m 2m 3m 3m 5 3

ˆ ˆ ˆˆ1

ˆ ˆ2 2

TJ k k Q k w k k

k w w k

γ α φ φ

γ ζ γ φ φ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ + −
 (B.8) 

Take the sixth term, substitute (78), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22

6 6 4 4 4 4

2 2 2
6 4m m 2m 2m 6 2 6 4

ˆ ˆ ˆˆ1

ˆ ˆ2 2

TJ k k w k k Q k

w w k k

γ α φ φ

γ φ φ γ ζ γ ζ

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + −
 (B.9) 

Take the seventh term, set 2
7 42γ γ β=  

( ) ( ) ( )2 2 2 2
7 4 2 4 22 2 1J k k kγ β ζ γ β ζΔ = − −  (B.10) 

Take the eighth term, substitute (20), invoke Cauchy-Schwarz inequality, and simplify  

( ) ( ) ( ) ( ) ( )822 2 2 2
8 8 2 8 2 8 3m 3m 10 3m 1m 13J k l y k x k w f d x kγγ γ γ φ εΔ ≤ + + + + + −� � �  (B.11) 

Take the ninth term, substitute (21), invoke the Cauchy-Schwarz inequality, and simplify 

( ) ( )( )
( ) ( ) ( ) ( )9

2

9 9 20 20 2max 4m 4m 2max 2m

2 2 2
9 20 2max 4 9 3 23

ˆJ k f g g w f d

g g k l y k x kγ

γ φ

γ ζ γ

Δ ≤ + + + + +

+ + −� �
 (B.12) 

Take the tenth term, substitute (22), invoke the Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )102 2 2
10 10 1 10 1 10 1m 1m 1m 3J k k l y k w y kγγ ζ γ γ φ εΔ ≤ + + + −�� �  (B.13) 

Combine (B.4) through (B.13) to get the first difference of the Lyapunov function 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

91 2

8

10

2 2 2 2 2 2
1 5 1 1 2 6 2 3 10 1 8 25 3 3

2 2 2 2 2
5 1 3 6 2 2max 9 20 2max 4 1 5 13

2 2 2 2 2 2 2 2
4 5 6 4 2 3 4 8 2 9 3 10 13

2

3 1 1 1 1 4

2 2 2 2

ˆ ˆˆ1

M

J l e k l e k k x k

k g g g k l x k

k l l l l y k D

k w k k l

γγ γ

γ

γ

γ γ γ γ γ ζ γ

γ γ ζ γ γ γ ζ γ

γ γ γ γ β ζ γ γ γ γ

γ α φ φ

Δ ≤ − − − − − − − − −

− − − − − + − −

− − − − − − − − − +

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

�

�

�

� ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

22 1
4 2 2

22

5 3 3 3 3

22

6 4 4 4 4

ˆ ˆ ˆ1 1

ˆ ˆ ˆˆ1

ˆ ˆ ˆˆ1

N

T

T

y k

k Q k p k Q k

k Q k w k k

k w k k Q k

γ α φ β β

γ α φ φ

γ α φ φ

+⎛ ⎞− − + − −⎜ ⎟
⎝ ⎠
⎛ ⎞− − +⎜ ⎟
⎝ ⎠
⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 (B.14) 
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where 

( ) ( )
( ) ( )( ) ( )
( ) ( )

( )( ) ( )

2 22
m 1 3m 3m 3m 1m 2 2m 2max 4m 2max 4m 4m

3 2 21
3 1m 1m 4 2m 2m 5 2m 2m 3m 3m

2 2
6 4m m 2m 2m 8 3m 3m 10 3m 1m

2 2

9 20 20 2max 4m 4m 2max 2m 10 1m 1m 1m

ˆ ˆ ˆ ˆ2 2 1 2

ˆ ˆ2

ˆ

N

D w d d g g w

w w w w

w w w f d

f g g w f d w

γ ε φ γ ε φ

γ φ γ φ β β γ φ φ

γ φ φ γ φ ε

γ φ γ φ ε

+

= + + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

� �

�

 (B.15) 

Select 

( )

2 2 2
1 1 5 2 1 2 6 3 10 4 5 6 4 5 1

2 2 2
6 2 2max 9 20 2max 7 4 8 1 5 9 8

2 2 2 2
10 3 4 8 2 9 3 10 1

5 ; 3 3 ; ; 2 2 2 ; ;

; 2 ; 3 ; 3 ;

6 3 3 3 ;

l l

g g g l

l l l l

γ γ γ γ γ γ γ γ γ γ γ β γ γ

γ γ γ γ γ β γ γ γ γ

γ γ γ γ γ

> > + > > + + >

> + + = > >

> + + +

 (B.16) 

This implies ( ) 0<Δ kJ  as long as (81) through (91) hold and the following hold. 

( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )

( )

1 2

8 9

10

1 2 12 2
3 101 5 1 2 65 3

2 32
5 14 5 6 4

4 2
6 2 2max 9 20 2max

1 22
1 5 83 3

2 2 2 2
3 4 8 2 9 3 10 13

; ; ;

; ;
2 2 2

;

; ;

2

M M M

M M

M

M M

M

D D De k or e k or k
l l

D Dor k or k or

Dor k or
g g g

D Dor x k or x k or
l

Dy k
l l l l

γ γ

γ γ

γ

ζ
γ γγ γ γ

ζ ζ
γ γγ γ γ γ β

ζ
γ γ γ

γ γ

γ γ γ γ

> > >
−− − −

> >
−− − −

>
− − +

> >
− −

>
− − − −

� �

� ;

 (B.17) 

REFERENCES 

[1] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control 

Design: John Wiley & Sons, Inc, 1995. 

[2] S. S. Ge, T. H. Lee, G. Y. Li, and J. Zhang, "Adaptive NN control for a class of 

discrete-time nonlinear systems," Int. J. Contr., vol. 76, pp. 334-354, 2003. 

[3] F. C. Chen and H. K. Khalil, "Adaptive control of a class of nonlinear discrete-

time systems using neural networks," IEEE Trans. Automat. Contr, vol. 40, pp. 

791-801, 1995. 



 
 36 

 

[4] J. Si, in NSF Workshop on Learning and Approximate Dynamic Programming, 

Playacar, Mexico, 2002. 

[5] P. J. Werbos, Neurocontrol and supervised learning: An overview and evaluation. 

New York: Van Nostrand Reinhold, 1992. 

[6] J. J. Murray, C. Cox, G. G. Lendaris, and R. Saeks, "Adaptive dynamic 

programming," IEEE Trans. Syst., Man, Cybern., vol. 32, pp. 140-153, 2002. 

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Balmont, MA: 

Athena Scientific, 1996. 

[8] J. Si and Y. T. Wang, "On-line learning control by association and 

reinforcement," IEEE Trans. on Neural Networks, vol. 12, pp. 264-276, 2001. 

[9] X. Lin and S. N. Balakrishnan, "Convergence analysis of adaptive ciritc based 

optimal control," Proceedings of the American Control Conference, vol. 12, 264-

276 2000. 

[10] F. L. Lewis, S. Jagannathan, and A. Yesilderek, Neural Network control of robot 

manipulators and nonlinear systems. UK: Taylor and Francis, 1999. 

[11] N. Hovakimyan, F. Nardi, A. Calise, and N. Kim, "Adaptive output feedback 

control of uncertain nonlinear systems using single-hidden-layer neural 

networks," IEEE Trans. on Neural Networks, vol. 13, pp. 1420-1431, 2002. 

[12] A. N. Atassi and H. K. Khalil, "A separation principle for the stabilization of a 

class of nonlinear systems," IEEE Trans. Automat. Contr, vol. 76, pp. 334-354, 

2003. 

[13] B. Igelruk and Y. H. Pao, "Stochastic choice of basis functions in adaptive 

function approximation and the functional-link net," IEEE Trans. Neural 

Networks, vol. 6, pp. 1320-1329, 1995. 

[14] S. Jagannathan, Neural Network Control of Nonlinear Discrete-time Systems. 

London, UK: Taylor and Francis, 2006. 

[15] C. S. Daw, C. E. A. Finney, M. B. Kennel, F. T. Connolly, "Observing and 

Modeling Nonlinear Dynamics in an Internal Combustion Engine," Phys. Rev. E, 

vol. 57, pp. 2811-2819, 1998. 



 
 37 

 

[16] J. Vance, P. He, S. Jagannathan, and J. Drallmeier, "Neural Network-based 

Output Feedback Controller for Lean Operation of Spark Ignition Engine," in 

American Control Conference, Portland, OR, 2006. 

 



 
 38 
 

PAPER 2 
 

Reinforcement Learning Based Feedback Controller for 
Complex Nonlinear Discrete-time Systems with Application 

to Spark Engine EGR Operation 
 

Peter Shih, Bryan Kaul, Sarangapani Jagannathan, Sr. Member, IEEE, and James A. 
Drallmeier  

 
 

Abstract— A novel reinforcement-learning based output-adaptive neural network 

(NN) controller, also referred to as the adaptive-critic NN controller, is developed to 

deliver a desired tracking performance for a class of complex feedback nonlinear 

discrete-time systems in the presence of bounded and unknown disturbances. This 

complex nonlinear discrete-time system consists of a second order nonlinear 

discrete-time system in non-strict form and an affine nonlinear discrete-time system 

tightly coupled together.  Two adaptive critic NN controllers are designed—the 

primary one for the non-strict feedback nonlinear discrete-time system and the 

secondary one for the affine nonlinear discrete-time system.  

The primary adaptive critic NN controller includes a NN observer, NN critic, and 

two action NNs for generating virtual control and actual control inputs for the 

nonstrict feedback nonlinear discrete-time system, whereas a critic NN and an 

action NN are included for the affine nonlinear discrete-time system.  The NN 

observer estimates the states and output of the nonlinear discrete-time system in 

non-strict feedback form. The critic approximates a certain strategic utility function 

and the action NNs are used to minimize both the strategic utility function and 

action NN outputs. All NN weights adapt online towards minimization of a certain 

performance index, utilizing gradient-descent based rule. Using Lyapunov 

functions, the uniformly ultimate boundedness (UUB) of the closed-loop tracking 

error, weight estimates and observer estimation are shown. Separation principle 

and certainty equivalence principles are relaxed, persistency of excitation condition 

is not required, and the linear in the unknown parameter assumption is not needed. 
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The performance of this adaptive critic NN controller is evaluated on a spark 

ignition (SI) engine operating with high exhaust gas recirculation (EGR) levels 

where the controller objectives is to reduce cyclic dispersion in heat release. The 

secondary objectives are to reduce emissions.  Experimental results at 20% EGR 

show a 34% reduction in cyclic dispersion in heat release with control while the 

average fuel input changes by less than 1% compared to the uncontrolled case. 

Additionally, the unburned hydrocarbons (uHC) drop nominally with control, and 

by 80% compared to levels at zero EGR. Overall, NOx is reduced by 80% compared 

to levels at zero EGR.  

I. INTRODUCTION 
daptive neural network (NN) backstepping control of nonlinear discrete-time 

systems in strict feedback form has been addressed in the literature [1-3]. The strict 

feedback nonlinear system is normally expressed as 

1( 1) ( ( )) ( ( )) ( )i i i i i ix k f x k g x k x k++ = +  (1) 

( 1) ( ( )) ( ( )) ( )n n n n nx k f x k g x k u k+ = +  (2) 

where ( ) ℜ∈kxi   is the state, ( ) ℜ∈ku  is the control input, ( ) ( ) ( )[ ] iT
ii kxkxkx ℜ∈= ,,1 "  

and 1,..., ( 1)i n= − . For strict feedback nonlinear systems [1], the nonlinearities ( )( )kxf ii  

and ( )( )kxg ii  depend only upon states ( ) ( )kxkx i,,1 … , i.e., ( )kxi . However, for a non-

strict feedback nonlinear system, where ( )( )kxf ii  and ( )( )kxg ii  depend on both ( )kxi  

and ( )kxi 1+ , there are no control design schemes currently available. Available [1-3] 

methods applied to the nonlinear discrete-time systems will result in a non-causal 

controller (current control input depends on the future system states) even for second 

order systems using the adaptive NN backstepping approach.  Finally, no optimization is 

carried out in these control designs, as simple tracking error is utilized. 

In short, available NN controller designs employ either supervised training, where the 

user specifies a desired output, or online NN training based on classical adaptive control 

[1-3], where a short-term system performance measure is defined by using the tracking 

error. By contrast, the reinforcement-learning based adaptive critic NN approach [4] has 

emerged as a promising tool to develop optimal NN controllers due to its potential to find 

A 
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approximate solutions to dynamic programming, where a strategic utility function, which 

is considered as the long-term system performance measure, can be optimized.  In 

supervised learning, an explicit signal is provided by the teacher to guide the learning 

process whereas in the case of reinforcement learning, the role of the teacher is more 

evaluative than instructional in nature. The critic NN monitors the system states and 

approximates the strategic utility function, with a potential for a look-ahead and better 

training of the action NN which generates the near optimal control action to the system.  

There are many variants of adaptive critic NN controller architectures [4-9] using state 

feedback even though few results [6-9] address the controller convergence. However, NN 

controller results are not available for the nonlinear discrete-time systems in non-strict 

feedback form.   Similarly, no known results are available using adaptive critic NN 

control-based affine nonlinear discrete-time systems. 

In this paper, a novel adaptive critic NN-based output feedback controller is developed 

to control a class of nonlinear discrete-time systems in non-strict feedback form with 

bounded and unknown disturbances. Since the complex nonlinear discrete-time system 

under consideration involves both non-strict feedback form and affine nonlinear discrete-

time system, two controllers are designed one for non-strict feedback form and the other 

for the affine nonlinear discrete-time systems so that they can operate simultaneously.   

For the case of nonlinear discrete-time system in non-strict feedback form, an adaptive 

NN backstepping is utilized for the controller design with two action NNs being used to 

generate the virtual and actual control inputs, respectively. The weights of the two action 

NNs are tuned by the critic NN signal to minimize the strategic utility function and their 

outputs. The critic NN approximates certain strategic utility function which is a variant 

of standard Bellman equation. The NN observer generates the estimates of the system 

states and output, which are subsequently used in the controller design. The proposed 

controller is model–free since the dynamics of the nonlinear discrete-time systems are 

unknown and NN weights are tuned online.  On the other hand for the affine nonlinear 

discrete-time system, a separate critic NN and an action NN are utilized.  The critic NN 

approximates the standard Bellmann equation and tunes the action NN so that the action 

NN generates a near optimal signal to control the affine nonlinear discrete-time system. 
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The main contributions of this paper can be summarized as follows: 1) the adaptive NN 

backstepping scheme is extended to non-strict feedback nonlinear systems. The non-

causal problem is overcome by employing the universal NN approximation property; 2) 

optimization of a long-term performance index is undertaken in contrast with traditional 

adaptive NN back stepping schemes [1, 2] where no optimization is performed; 3) 

demonstration of the UUB of the overall system is shown even in the presence of NN 

approximation errors and bounded unknown disturbances unlike in the existing adaptive 

critic works [7-9] where the convergence is presented under ideal circumstances. 

Stability proof is inferred even with a NN observer by relaxing the separation principle 

via novel weight updating rules and by selecting the Lyapunov function consisting of the 

system estimation errors, tracking and the NN weight estimation errors; A single critic 

NN is utilized to tune two action NNs; 4) a well-defined controller is presented by 

overcoming the problem of certain nonlinear function estimates becoming zero since a 

single NN is used to approximate both the nonlinear functions ( )( )kxf ii  and ( )( )i ig x k  

compared to [10]; 5) the NN weights are tuned online instead of offline [5]; and finally 6) 

the assumption that ( ) ( )( )kxkxg 211 ,  is bounded away from zero and its sign is known a 

priori is relaxed in contrast with [2].  

The proposed primary controller is applied to control the spark ignition (SI) engine 

dynamics, a practical non-strict feedback nonlinear system. The controller permits the 

engine to operate in high EGR mode, where an inert gas displaces the stoichiometric ratio 

of fuel to air. The inert gas is simulated by nitrogen in the lab, whereas exhaust gas is 

used after implementation. The inert gas system is modeled as an affine nonlinear 

discrete-time system and therefore a separate secondary controller is designed. Both 

controllers operate simultaneously due to the tight coupling of the systems. The 

controllers enable the engine to operate in higher EGR mode compared to the 

uncontrolled case by reducing heat release bifurcation. Consequently, the engine exhibits 

improved emissions and fuel efficiency compared to the uncontrolled case. Other 

controller designs can run a SI engine in lean mode [11]; however, engine catalysts 

cannot function efficiently with the lean exhaust chemistry.   
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EGR, on the other hand, allows for the efficient operation of standard three-way 

catalysts. Not only does it reduce pre-catalyst emissions, but it can improve fuel 

efficiency by reducing throttling losses. Therefore, the applicability of high EGR usage in 

the automotive engines is greater. In this paper, the secondary controller maintains a set 

inert gas level by allowing an appropriate amount of EGR whereas the objective of the 

primary controller is to minimize cyclic dispersion in heat release while optimizing the 

fuel intake.  Dilution with EGR also has wide practical applicability in diesel engines and 

in spark ignition engines without three-way catalysts. 

II. NON-LINEAR NON-STRICT FEEDBACK SYSTEM 
Consider the nonlinear discrete-time system, given in the following form 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 2 3 1 1 2 3 2 11 , , , ,x k f x k x k x k g x k x k x k x k d k+ = + +  (3) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )2 2 1 2 3 2 1 2 3 21 , , , ,x k f x k x k x k g x k x k x k u k d k+ = + +  (4) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )3 4 1 2 3 4 1 2 3 31 , , , ,x k f x k x k x k g x k x k x k v k d k+ = + +  (5) 

 ( ) ( ) ( ) ( )( )3 1 2 31 , ,y k f x k x k x k+ =  (6) 

where ( ) ; 1, 2,3ix k i∈ℜ =  are states, ( )u k ∈ℜ  and ( )v k ∈ℜ  are system inputs, and 

( )1d k ∈ℜ , ( )2d k ∈ℜ  and ( )3d k ∈ℜ  are unknown but bounded disturbances. Bounds 

on the disturbances are given by ( )1 1md k d< , ( )2 2md k d< , and ( )3 3md k d<  where 

md1 , md2 , and md2  are unknown positive scalars. The output is a nonlinear function of 

states in contrast with available literature [12, 13] where the output is a linear function of 

the states. Finally, the output is measurable whereas the first two states ( )1x k  and ( )2x k  

are considered not available while ( )3x k  is assumed to be available. For the system (3) 

and (4), not only should the system actual output converge to its target value, but the 

states should also converge to their respective desired values.  

The controller development is presented separately for the two systems as the 

objectives are separate even though they are tightly coupled. The first part uses equations 

(3), (4), and (6) to develop the primary controller. The second part uses equation (5) to 

develop the secondary controller.  Stability for both the systems is demonstrated. 
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III. PRIMARY CONTROLLER – OBSERVER DESIGN 
To overcome the immeasurable states ( )1x k  and ( )2x k , an observer is used.  It utilizes 

the current heat release output, ( )y k , to estimate the future output ( )ˆ 1y k + and states 

( )1̂ 1x k +  and ( )2ˆ 1x k + . The design of the observer is discussed next. 

A. Observer Design 
Consider equations (3) and (4). We expand the individual nonlinear functions using 

Taylor series expansion into linear and higher order terms. 

( ) ( )⋅Δ+=⋅ 1101 fff  (7) 

( ) ( )2 20 2f f f⋅ = + Δ ⋅  (8) 

( ) ( )⋅Δ+=⋅ 1101 ggg  (9) 

( ) ( )2 20 2g g g⋅ = + Δ ⋅  (10) 

where the first term in (7) through (10) are known nominal values and the second term 

are unknown higher order terms. We use a two-layer feed-forward NN with semi-

recurrent architecture and novel weight tuning to construct the output as 

( ) ( )( ) ( )( )1 1 1 11 T Ty k w v z k z kφ ε+ = + , (11) 

where ( ) ( ) ( ) ( ) ( ) ( ) 4
1 1 2 3, , , ,

T
z k x k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the network input, ( )1y k +  

and ( )y k  are the future and current outputs, 1
1

nw ℜ∈  and 12
1

nv ×ℜ∈  denote the ideal 

output and constant hidden layer weight matrices, respectively, ( )u k  is the control input, 

( )( )1 1
Tv z kφ  represents the hidden layer activation function, 1n  is the number of nodes in 

the hidden layer, and ( )( )1z kε ∈ℜ  is the approximation error. For simplicity the two 

equations can be represented as 

( ) ( )( )1 1 1
Tk v z kφ φ=  (12) 

( ) ( )( )1 1k z kε ε=  (13) 

Rewrite (11) using (12) and (13) to obtain 

( ) ( ) ( )1 1 11 Ty k w k kφ ε+ = +  (14) 
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The states ( )kx1  and ( )kx2  are not measurable; therefore ( )kz1  is not available either. 

Using the estimated states and the output, ( )kx1ˆ , ( )kx2ˆ , and ( )kŷ , respectively, instead of 

( )kx1 , ( )kx2 , and ( )ky , the proposed observer is given as 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

1 1 1 1

1 1 1

ˆ ˆ ˆ1

ˆˆ

T T

T

y k w k v z k l y k

w k k l y k

φ

φ

+ = +

= +

�

�
 (15) 

where ( ) ( ) ( ) ( ) ( ) ( ) 5
1 1 2 3ˆ ˆ ˆˆ , , , ,

T
z k x k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the input vector using estimated 

states, ( )ˆ 1y k +  and ( )ŷ k  are the estimated future and current output, ( )1ŵ k  is the actual 

weight matrix, ( )u k  is the estimated control input, ( )1̂ kφ  is the hidden layer activation 

function, 1l R∈  is the observer gain, and ( )y k�  is the heat release estimation error 

defined as 

( ) ( ) ( )ˆy k y k y k= −�  (16) 

It is demonstrated in [14] that, if the hidden layer weights, 1v , are chosen initially at 

random and kept constant, and the number of hidden layer nodes is sufficiently large, 

then the approximation error ( )( )1z kε  can be made arbitrarily small so that the bound 

( )( )1 1mz kε ε≤  holds for all ( )1z k S∈  since the activation function forms a basis to the 

nonlinear function that the NN approximates. Now we choose, at our convenience, the 

observer structure as a function of output estimation errors and known quantities as 

( ) ( ) ( )1 10 2 2ˆ ˆ1x k f x k l y k+ = − + �  (17) 

( )2 20 20 3ˆ 1 ( ) ( )x k f g u k l y k+ = + + �  (18) 

where 2l R∈ and 3l R∈  are design constants. 

B. Observer Error Dynamics 
Define the state estimation and output errors as 

( ) ( ) ( )ˆ1 1 1 , {1, 2}i i ix k x k x k i+ = + − + ∈�  (19) 

( ) ( ) ( )ˆ1 1 1y k y k y k+ = + − +�  (20) 

Combine (3) through (11) and, (17) through (20), to obtain the estimation and output 

error dynamics as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 2 2 1 1 2 1ˆ1x k f x k l y k f g x k d k+ = − + − ⋅ − ⋅ −� �  (21) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 20 3 2 2 21x k f g u k l y k f g u k d k+ = + + − ⋅ − ⋅ −� �  (22) 

and 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
ˆˆ1 T Ty k w k k l y k w k kφ φ ε+ = + − −� �  (23) 

Choose the weight tuning of the observer as 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 4
ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k l y kα φ φ+ = − + �  (24) 

where 1 Rα ∈  and 4l R∈  are design constants. It will be shown in the next section that by 

using the above weight tuning, the separation principle is relaxed and the closed-loop 

signals will be bounded. Next, we present the following theorem, where it is 

demonstrated that the state estimation and output estimation errors along with observer 

NN weight estimation errors are bounded. The following mild assumptions are required. 

Assumption 1: The unknown smooth functions, ( )2f ⋅  and ( )2g ⋅ , and control ( )u k , are 

upper bounded within the compact set S  as ( )2max 2f f k> , ( )2max 2g g k> , and 

( )maxu u k> . 

Theorem 1:  Consider the system given by (3), (4) and (6), and the disturbance 

bounded by ( )1 1md k d<  and ( )2 2md k d< where md1  and md2 are known positive scalars. 

Let the observer NN weight tuning be given by (24).  Given bounded inputs, the state 

estimation errors ( )1x k�  and ( )2x k� , output estimation errors ( )y k� , and NN weight 

estimate ( )1ŵ k  are UUB, with the bounds specifically given by (B.17), with the 

controller design parameters selected as 

( ) 10 2
11 << kφα  (25) 

2
1

1 <l  (26) 

3
3

2 <l  (27) 

3
3

3
l <  (28) 
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4
3

3
l <  (29) 

where 1α  is NN adaptation gain, 1l , 2l , 3l , and 4l  are observer parameters. 

Proof:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( )
4

2 2 231 2 4
1 1 1 2

1 1 3 2 3
T

i
i

J k J k w k w k x k x k yγγ γ γ
α=

= = + + +∑ � � � � �  (30) 

where 0 , {1,2,3,4}i iγ< ∈  are auxiliary constants. Take the first term, take the first 

difference, and substitute (24) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

( )

1

1

1

1

1 1 1

1 1 1 1 1

1 1 1 1 4 1

1 1 1 1 1 4 1 1

2
2 1 1 1 12

1 1 1 1 1
4 4

1 1

1 1

ˆ ˆˆ[ ]*

ˆ ˆˆ[ ]

ˆ ˆˆ ˆ( ) ˆ2 ( )

ˆˆ

T

T T

T
T T T

T T

T T

T

J k w k w k

J k w k w k w k w k

w k w k k l y k k

w k k w k k l y k w k w k

w k k w k k
k w k k

l y k l y k

w k

γ
α

α
γ

α φ φ

α φ φ

φ φ
α φ α φ

α

=

Δ = + + −

= − +

− + −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

� �

� � � �

� �

� � � �

�
� �

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( )

( ) ( )( ) ( )

2 2

1 4 1 1 1 4

22

1 1 1 1 1 4

2
2

1 1 1 1 4 1 1 1

2
22 1 1 2

1 1 1 1 1 1 4 1 1
4

ˆˆ

ˆ ˆˆ1

ˆ

ˆˆˆ ˆ1

T

T

T

T
T

k l y k w k k l y k

k w k k l y k

k w l y k k k

w k k
k w k l y k k

l y k

φ α φ

α α φ φ

α ζ φ ζ α ζ

φ
α α φ α φ α ζ

+ − +

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

+ + − −

⎛ ⎞⎛ ⎞⎜ ⎟= − − + + −⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠

� �

�

�

�
�

 (31) 

Invoke the Cauchy-Schwarz inequality, defined as 

( ) ( )( )2 2 2 2 2
1 1 1 1... ... ...n n n na b a b a a b b+ + ≤ + + + +  (32) 

and simplify to get 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

22

1 1 1 1 1 1 4

2 2 2 2
1 1m 1m 1 4 1 1

ˆ ˆˆ1

ˆ2 2

J k k w k k l y k

w l y k k

γ α φ φ

γ φ γ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ −

�

�
 (33) 

Take the second term and substitute (21) 

( ) ( ) ( ) ( ) ( )222 2 2 2
2 2 2 2 2 2 3m 3m 10 3m 1m 13J k l y k x k w f d x kγγ γ γ φ εΔ ≤ + + + + + −� � �   (34) 
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Take the third term and substitute (22) 

( ) ( )( ) ( ) ( )3
2 2 2 2

3 3 20 20 2max max 2max 2m 3 3 22J k f g g u f d l y k x kγγ γΔ ≤ + + + + + −� �   (35) 

Take the fourth and final term and substitute (23) 

( ) ( ) ( ) ( ) ( )42 2 2
4 4 1 4 1 4 1m 1m 1m 3J k k l y k w y kγγ ζ γ γ φ εΔ ≤ + + + −�� �  (36) 

Combine equations (33) through (36) and simplify to get the first difference of the 

Lyapunov function 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 2

4

22 2 2
1 1 1 1 1 4 2 2 12 3

2 2 2 2 2 2 2
1 4 2 2 3 3 4 1 1 4 13

ˆ ˆˆ1

2 M

J k k w k k l y k x k x k

l l l l y k k D

γ γ

γ

γ α φ φ γ

γ γ γ γ γ γ ζ

⎛ ⎞Δ ≤ − − + − − −⎜ ⎟
⎝ ⎠

− − − − − − − +

� � �

�
 (37) 

where 2
MD  is defined as 

( ) ( )

( )( ) ( )

2 22
1 1m 1m 2 3m 3m 10 3m 1m

2
3 20 20 2max max 2max 2m 4 1m 1m 1m

ˆ2MD w w f d

f g g u f d w

γ φ γ φ ε

γ γ φ ε

= + + + + +

+ + + + + +�
 (38) 

Select 
2 2 2 2

3 2 4 1 4 2 2 3 3 4 1 1 42 ; 6 3 3 3 ;l l l lγ γ γ γ γ γ γ γ γ> > + + + >  (39) 

This implies ( ) 0<Δ kJ  as long as (25) through (29) hold and any one the following 

hold  

( )

( )

( )

( )

2

3

4

1

3

2

22

2 2 2 2
1 4 2 2 3 3 4 13

1
1 4

;

;

;
2

M

M

M

M

Dx k

Dx k

Dy k
l l l l

Dk

γ

γ

γ

γ

γ γ γ γ

ζ
γ γ

>

>
−

>
− − − −

>
−

�

�

�
 (40) 

According to a standard Lyapunov extension theorem [15], this demonstrates that the 

estimation errors, output error and the NN observer weight estimation errors are UUB. 

Remark: In this above theorem, the control input is considered bounded, which is an 

acceptable assumption (also made in all output feedback control literature) that is relaxed 

in the next few sections when combined with the controller design, wherein the closed-
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loop system is shown to be bounded. In this above theorem, the control input is 

considered bounded, which is relaxed in the next few sections. On the other hand, the 

assumption that the unknown nonlinearities are bounded is valid, since for many practical 

systems, the upper bound on the unknown nonlinearities will be known [15].  

Additionally, for NN based control it is also necessary that the nonlinear functions be on 

a compact set in order for the NN to approximate them.  

Next, we discuss the design of the adaptive critic NN controller for the primary system 

and demonstrate that the closed-loop system, NN observer signals, and control inputs will 

be bounded. 

IV. PRIMARY CONTROLLER – CRITIC DESIGN 
The purpose of the critic NN is to approximate the long-term performance index (or 

strategic utility function) of the nonlinear system through online weight adaptation.  The 

critic signal estimates the future performance and tunes the two action NNs. The tuning 

will ultimately minimize the strategic utility function itself and the action NN outputs or 

control inputs so that closed-loop stability is inferred. 

A. The Strategic Utility Function 

The utility function ( ) ℜ∈kp  is given by 

( ) ( )( )0,

1,

if y k c
p k

otherwise

⎧ ≤⎪= ⎨
⎪⎩

�
 (41) 

where ℜ∈c  is a user-defined threshold. The utility function ( )kp  represents the current 

performance index. In other words, ( ) 0=kp  and ( ) 1=kp  refer to good and 

unsatisfactory tracking performance at the kth time step, respectively. The long-term 

strategic utility function ( )Q k ∈ℜ , is defined as  

( ) ( ) ( ) ( )1 11 2 ..N N kQ k p k p k p Nβ β β− += + + + + + +" ,  (42) 

where β ∈ℜ  and 0 1β< <  is the discount factor, and N is the horizon index. The term 

( )Q k  is viewed here as the long system performance measure for the controller since it is 

the sum of all future system performance indices.  Equation (42) can also be expressed as 

( )
( )

( ) ( ){ }1min 1 N

u k
Q k Q k p kα α += − − , which is similar to the standard Bellman equation. 
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B. Design of the Critic NN 

We utilize the universal approximation property of NN and rewrite ( )Q̂ k  as   

( ) ( ) ( )( ) ( ) ( )2 2 2 2 2
ˆ ˆˆ ˆˆT T TQ k w k v z k w k kφ φ= =  (43) 

where ( ) ℜ∈kQ̂  is the critic signal, ( ) 2
2ˆ nw k ∈ℜ  is the tunable weight, 23

2
nv ×∈ℜ  

represents the constant input weight matrix selected initially at random, ( ) 2
2̂

nkφ ∈ℜ  is 

the activation function vector in the hidden layer, 2n  is the number of the nodes in the 

hidden layer, and ( ) 3
2 1 2 3ˆ ˆˆ [ ( ), ( ), ( )]Tz k x k x k x k R= ∈  is the input vector. 

C. Critic Weight Update Law 
Define the prediction error as 

( ) ( ) ( ) ( )( )ˆ ˆ 1 N
ce k Q k Q k p kβ β= − − −  (44) 

where the subscript “c” stands for the “critic.” Define a quadratic objective function to 

minimize  

( ) ( )kekE cc
2

2
1

=  (45) 

The weight update rule for the critic NN is based upon gradient adaptation, which is 

given by the general formula 

( ) ( ) ( )2 2 2ˆ ˆ ˆ1w k w k w k+ = + Δ  (46) 

( ) ( )
( )2 2

2

ˆ
ˆ

cE k
w k

w k
α

⎡ ⎤∂
Δ = −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (47) 

or 

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2̂

ˆ ˆˆ ˆ1 1
TNw k w k k Q k p k Q kα φ β β++ = − + − −  (48) 

where 2α ∈ℜ  is the NN adaptation gain. 

V. PRIMARY CONTROLLER – VIRTUAL CONTROL INPUT DESIGN 
In this section, the design of the virtual control input is discussed.  Before we proceed, 

the following mild assumption is needed. Then the systems of nonlinear equations are 

rewritten. 
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Assumption 2: The unknown smooth function ( )⋅2g  is bounded away from zero for all 

( )kx1  and ( )kx2  within the compact set S .  In other words, 

( ) ( ) ( ) Skxkxggg ∈∀<⋅<< 21max22min2 &,0 , where +ℜ∈min2g  and +ℜ∈max2g . 

Without loss of generality, we will assume that ( )⋅2g  is positive in this paper. 

A. System Simplification 
First, we simplify by rewriting the state equations with the following 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 3 1 1 2 3 2 2, , , ,f x k x k x k g x k x k x k x k x kΦ ⋅ = + +  (49) 

The system (3) and (4) can be rewritten as 

( ) ( ) ( ) ( )1 2 11x k x k d k+ = Φ ⋅ − +  (50) 

( ) ( ) ( ) ( ) ( )2 2 2 21x k f g u k d k+ = ⋅ + ⋅ +  (51) 

B. Virtual Control Input Design 

Our goal is to stabilize the system output, ( )ky , around a specified target point, dy , by 

controlling the input.  The secondary objective is to make ( )kx1  approach the desired 

trajectory ( )kx d1 . At the same time, all signals in systems (3) and (4) must be UUB, all 

weights must be bounded, and a performance index must be minimized. Define the 

tracking error as 

( ) ( ) ( )1 1 1de k x k x k= −  (52) 

where ( )kx d1  is the desired trajectory. Using (50), (52) can be expressed as the following  

( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 1 1

2 1 1

1 1 1

1
d

d

e k x k x k

x k d k x k

+ = + − +

= Φ ⋅ − + − +
 (53) 

By viewing ( )2x k  as a virtual control input, a desired virtual control signal can be 

designed as 

( ) ( ) ( ) ( )2 1 5 1̂1d dx k x k l e k= Φ ⋅ − + +  (54) 

where 5l  is a gain constant. Since ( )Φ ⋅  is an unknown function, ( )2dx k  in (54) cannot 

be implemented in practice. We invoke the universal approximation property of NN to 

estimate this unknown function.  
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( ) ( )( ) ( )( )3 3 3 3
T Tw v z k z kφ εΦ ⋅ = +  (55) 

where ( ) ( ) ( ) ( ) 3
3 1 2 3, ,

T
z k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector, 2

3
nTw ∈ℜ  and 33

3
nTv ×∈ℜ  

are the ideal and constant input weight matrices, ( )( ) 3
3 3

nTv z kφ ∈ℜ  is the activation 

function vector in the hidden layer, 3n  is the number of the nodes in the hidden layer, and 

( )( )3z kε  is the functional estimation error.  It is demonstrated in [14] that, if the hidden 

layer weights, 1v , are chosen initially at random and kept constant, and the number of 

hidden layer nodes is sufficiently large, then  the approximation error ( )( )3z kε  can be 

made arbitrarily small so that the bound ( )( )3 3mz kε ε≤  holds for all ( )3z k S∈  in a 

compact set, since the activation function vector forms a basis to the nonlinear function 

that the NN approximates. 

Rewriting (54) using (55), the virtual control signal can be rewritten as 

( ) ( )( ) ( )( ) ( ) ( )2 3 3 3 3 1 5 1̂1T T
d dx k w v z k z k x k l e kφ ε= + − + +  (56)        

Replacing actual with estimated states, (56) becomes 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 3 3 3 1 5 1

3 3 1 5 1

ˆ ˆ ˆˆ 1

ˆˆ ˆ1

T T
d d

T
d

x k w k v z k x k l e k

w k k x k l e k

φ

φ

= − + +

= − + +
 (57) 

where ( ) ( ) ( ) ( ) 3
3 1 2 3ˆ ˆˆ , ,

T
z k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector using estimated states, and 

( ) ( ) ( )1 1 1ˆ ˆ de k x k x k= − .  

Define 

( ) ( ) ( )2 2 2ˆ de k x k x k= −  (58) 

Equation (53) can be rewritten using (58) as  

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 1

2 2 1 1

2 2 1 1

1 1

ˆ 1

ˆ 1

d

d d

d d

e k x k d k x k

e k x k d k x k

x k e k x k d k

+ = Φ ⋅ − + − +

= Φ ⋅ − + + − +

= Φ ⋅ − − − + +

 (59) 

Combine (57) into (59), then (55) into the combined equation 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 3 3 1 5 1 2 1 1

3 3 3 3 3 5 1 2 1

3 3 3 3 3 3 5 1 2 1

3 3 3 3 3 3 5 1 2 1

3 3 3 3 3 5 1 2

ˆˆ ˆ1 1 1

ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆ

T
d d

T T

T T

T T

T T

e k w k k x k l e k e k x k d k

w k k w k k l e k e k d k

w k k w k k k l e k e k d k

w k k w k k k l e k e k d k

w k w k k l e k e k

φ

φ ε φ

φ φ φ ε

φ φ φ ε

φ φ ε

+ = Φ ⋅ − − + + − − + +

= + − − − +

= − − + − − +

= − − + − − +

= − − + − −

�

�

�� ( )
( ) ( ) ( ) ( ) ( ) ( )

1

3 3 3 3 5 1 2 1ˆT

d k

k w k k l e k e k d kζ φ ε

+

= − − + − − +�

  (60) 

where  

( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3
ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −�  (61) 

( ) ( )( ) ( )( )3 3 3 3 3ˆk v z k v z kφ φ φ= −�  (62) 

C. Virtual Control Weight Update 
Let us define 

( ) ( ) ( ) ( ) ( )( )1 3 3̂
ˆˆ T

a de k w k k Q k Q kφ= + −  (63) 

where ( )kQ̂  is defined in (43), and the a1 subscript represents the error for the first action 

NN, ( ) ℜ∈kea1 . The desired strategic utility function ( )kQd  is “0” to indicate perfect 

tracking at all steps. Thus, (63) becomes 

( ) ( ) ( ) ( )1 3 3̂
ˆˆ T

ae k w k k Q kφ= +  (64) 

The objective function to be minimized by the first action NN is given by 

( ) ( )kekE aa
2
11 2

1
=  (65) 

The weight update rule for the action NN is also a gradient-based adaptation defined as 

( ) ( ) ( )3 3 3ˆ ˆ ˆ1w k w k w k+ = + Δ  (66) 

where 

( ) ( )
( )

1
3 3

3

ˆ
ˆ
aE k

w k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (67) 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k Q k w k kα φ φ+ = − +  (68) 

with 3α ∈ℜ  is the NN adaptation gain. 
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VI. PRIMARY CONTROLLER – CONTROL INPUT DESIGN  
Choose the following desired control input  

( ) ( ) ( ) ( ) ( )( )2 2 6 2
2

1 ˆ 1d du k f k x k l e k
g k

= − + + + , (69) 

Note that ( )kud  is non-causal since it depends upon future value of ( )1ˆ2 +kx d . We solve 

this problem by using a semi-recurrent NN since it can be a one step predictor. The term 

( )1ˆ2 +kx d  depends on state ( )kx , virtual control input ( )kx d2ˆ , desired trajectory 

( )21 +kx d  and system errors ( )ke1  and ( )ke2 . By taking the independent variables as the 

input to a NN, ( )1ˆ2 +kx d  can be approximated during control input selection. 

Consequently, in this paper, a feed forward NN with properly chosen weight tuning law 

rendering a semi-recurrent or dynamic NN can be used to predict the future value. 

Alternatively, the value can be obtained by employing a filter [15].  The first layer of the 

second NN using the system errors, state estimates and past value )(ˆ2 kx d  as inputs 

generates ( )1ˆ2 +kx d , which in turn is used by the second layer to generate a suitable 

control input.  The results in the simulation section show that the overall controller 

performance is satisfactory.  On the other hand, one can use a single layer dynamic NN to 

generate the future value of )(ˆ2 kx d , which can be utilized as an input to a third control 

NN to generate a suitable control input.  Here, these two single layer NN are combined 

into a single NN. 

Define input as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7
4 1 2 3 1 6 2 2 1ˆ, , , , , , 2

T
d dz k x k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦ , 

then ( )kud  can be approximated as   

( ) ( )( ) ( )( ) ( ) ( )4 4 4 4 4 4 4
T T T

du k w v z k z k w k kφ ε φ ε= + = + ,  (70) 

where 4
4

nw ∈ℜ  and 47
4

nv ×∈ℜ  denote the constant ideal output and hidden layer weight 

matrices, ( ) 4
4

nkφ ∈ℜ  is the activation function vector, 4n  is the number of hidden layer 

nodes, and ( )( )4z kε  is the estimation error. Again, we hold the input weights constant 

and adapt the output weights only. We also replace actual with estimated states to design 

the control input as 
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( ) ( ) ( )( ) ( ) ( )4 4 4 4 4̂ˆ ˆ ˆˆT T Tu k w k v z k w k kφ φ= =  (71) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7
4 1 2 3 1 6 2 2 1ˆ ˆ ˆ ˆ ˆˆ , , , , , , 2

T
d dz k x k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦  is the input 

vector. Rewriting (58) and substituting (69) through (71), we get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 4 4 2 2

2 2 4 4 4 4 4 4 2 2

2 2 4 4 2 4 4 4 2 2

2 2 4 2 4 4 4 2 2

6 2 2 4 2 4 2

ˆ1 1 1

ˆˆ ˆ 1

ˆ ˆ 1

ˆ 1

ˆ 1

d

T
d

T T T
d

T T
d

T
d d

e k x k x k

f g w k k d k x k

f g w k k w k w k d k x k

f g w k k g k w k d k x k

f g u k k g k w k d k x k

l e k g k g k g

φ

φ φ φ

φ ζ φ

ε ζ φ

ε ζ

+ = + − +

= ⋅ + ⋅ + − +

= ⋅ + ⋅ + + + − +

= ⋅ + ⋅ + ⋅ + + − +

= ⋅ + ⋅ − + ⋅ + + − +

= − ⋅ + ⋅ + ⋅

��

�

�

( ) ( )4 4 2
Tw k d kφ +�

 (72) 

where 

( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4
ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −� , (73) 

and 

( ) ( ) ( )4 4 4
ˆk k kφ φ φ= −�  (74) 

Equations (60) and (72) represent the closed-loop error dynamics.  Next we derive the 

weight update law. Define 

( ) ( ) ( ) ( )2 4 4̂
ˆˆ T

ae k w k k Q kφ= + , (75) 

where ( ) ℜ∈kea2  is the error and the subscript a2 stands for the second action NN. 

Following the similar design, choose a quadratic objective function to minimize 

( ) ( )2
2 2

1
2a aE k e k=  (76) 

Define a gradient-based adaptation where the general form is given by 

( ) ( ) ( )4 4 4ˆ ˆ ˆ1w k w k w k+ = + Δ  (77) 

( ) ( )
( )

2
4 4

4

ˆ
ˆ
aE k

w k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (78) 

or in other words 

( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k Q kα φ φ+ = − + , (79) 
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The proposed controller structure is shown in Figure 1. Next in the following theorem, 

it is demonstrated that the closed-loop system is uniformly ultimately bounded.  Before 

we proceed, the following assumptions are needed. 

 
Figure 1 Adaptive-critic NN-based controller diagram. 

Assumption 3 (Bounded Ideal Weights): Let 1w , 2w , 3w and 4w be the unknown output 

layer target weights for the observer, critic, and two action NNs, and assume that they are 

bounded above so that 

1 1 2 2 3 3,  ,m m mw w w w w w≤ ≤ ≤ , and 4 4mw w≤  (80) 

where +∈Rwom , +∈Rw m1  and +∈Rw m2  represent the bounds on the unknown target 

weights, and where the Frobenius norm [15] is used. 

Fact 1: The activation functions are bounded above by known positive values so that  

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4, , ,  andm m m mφ φ φ φ φ φ φ φ⋅ ≤ ⋅ ≤ ⋅ ≤ ⋅ ≤� � � � � � � �  (81) 

where 1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ, , , , , and ,m m m m m m m mR R R Rφ φ φ φ φ φ φ φ+ + + +∈ ∈ ∈ ∈� � � �  are the upper bounds. 

Theorem 2: Consider the system given by (3) and (4) and the disturbance bounds md1  

and md2  to be known constants. Let the observer, critic, virtual control, and control input 

NN weight tuning be given by (24), (48), (68), and (79), respectively. Let the virtual 

control input and control input be given by (57), and (71), the estimation errors and 

tracking errors ( )ke1  and ( )ke2  and weight estimates ( ) ( )kwkw 21 ˆ,ˆ , ( )kw3ˆ , and ( )4ŵ k  are 

UUB, with the bounds specifically given by (B.17) with the controller design parameters 

selected as 
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( ) 10 2
11 << kφα  (82) 

( ) 2
2 20 1kα φ< <  (83) 

( ) 2
3 30 1kα φ< <  (84) 

( ) 2
4 40 1kα φ< <  (85) 

2
1

1 <l  (86) 

3
3

2 <l  (87) 

3
3

3
l <  (88) 

4
3

3
l <  (89) 

5
1
5

l <  (90) 

6
3

3
l <  (91) 

20
2

β< <  (92) 

where 1α , 2α , 3α  and 4α  are NN adaptation gains, 1l , 2l , 3l , 4l , 5l , and 6l  are controller 

gains, and β  is employed to define the strategic utility function. 

Proof: See Appendix B. � 

Remark 1: A well-defined controller is developed in this paper since a single NN is 

utilized to approximate two nonlinear functions. This avoids undefined areas when the 

denominator approaches zero. 

Remark 2: It is important to note that in this theorem, there is no persistency of 

excitation condition (PE) condition and linearity in the parameters assumption for the NN 

observer and controller, in contrast with standard work in the discrete-time adaptive 

control since the first difference does not require the PE condition to prove the 

boundedness of the weights.  Even though the input to the hidden-layer weight matrix is 
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not updated and only the hidden to the output-layer weight matrix is tuned, the NN 

method relaxes the linear in the unknown parameter assumption.  Additionally, the 

certainty equivalence principle is not used.   

Remark 3: Generally, the separation principle used for linear systems does not hold for 

nonlinear systems, and hence it is relaxed in this paper for the controller design since the 

Lyapunov function is a quadratic function of system errors and weight estimation errors 

of the observer and controller NNs.   

Remark 4: The NN weight tuning proposed in (24), (48), (68), and (79) renders a semi-

recurrent NN due to the proposed weight tuning law even though a feedforward NN is 

utilized.  Here the NN outputs are not fed as delayed inputs to the network whereas the 

outputs of each layer are fed as delayed inputs to the same layer. This semi-recurrent NN 

architecture renders a dynamic NN which is capable of predicting the state one step 

ahead.  

Remark 5: It is only possible to show boundedness of all the closed–loop signals by 

using an extension of Lyapunov stability [15] due to the presence of approximation errors 

and bounded disturbances consistent with the literature. 

Corollary 1: The proposed adaptive critic NN controller and the weight updating rules 

with parameter selection based on (82) through (92) cause the state ( )kx2  to approach the 

desired virtual control input ( )kx d2 . 

Proof: Combining (56) and (57), the difference between ( )kx d2ˆ  and ( )kx d2  is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 3 3 3 3 3ˆ d dx k x k w k k z k k kφ ε ζ ε− = − = −�  (93) 

where ( ) 3
3

nw k ∈ℜ�  is the first action NN weight estimation error and ( )3 kζ ∈ℜ  is 

defined in (61). Since both ( )3 kζ ∈ℜ  and ( )3 kε  are bounded, ( )kx d2ˆ  is bounded near 

( )kx d2 . In Theorem 1, we show that ( )ke2  is bounded, i.e., the state ( )kx2  is bounded to 

the virtual control signal ( )kx d2ˆ .  Thus the state ( )kx2  is bounded to the desired virtual 

control signal ( )kx d2 . 
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VII. SECONDARY CONTROLLER – CRITIC DESIGN 
For maintaining dilution to a desired level, the third equation will be employed with 

EGR(k) as the control input and inert gas as an additional state.  To simplify the 

controller development, and since the residual gas fraction is upper bounded, this third 

equation can be simplified as 

( ) ( )( ) ( )( ) ( ) ( )3 4 4 31x k f x k g x k v k d k+ = + +  (94) 

where 1 2 3( ) [ ( ), ( ), ( )]Tx k x k x k x k= , and the above equation can be represented as a 

standard affine nonlinear discrete-time system.  The design of the controller is different 

than the non-strict feedback nonlinear discrete-time system given by (1) and (2).  The 

design of a novel reinforcement controller is introduced here by assuming that the third 

state is measurable. Define 

1 2 3( ) [ ( ), ( ), ( )]Tx k x k x k x k=  (95) 

A. Design of the Critic 
Let the long-term cost function be defined as 

( ) ( )
0

i

i t

J k r k iγ
∞

=

= +∑  (96) 

where 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )T T
d dr k x k x k Q x k x k v k Rv k= − − +  (97) 

where R and Q are positive definite matrices and γ  is the discount factor within the 

range of 0 1γ≤ ≤ . Invoke the universal approximation property of NN to estimate (96) as 

( ) ( )( ) ( )( )T T
c c c c cJ k w v z k z kφ ε= +  (98) 

where ( )( )cz kε  is the estimation error.  Replace the states with estimated states. 

( ) ( ) ( )( ) ( ) ( )ˆ ˆ ˆˆT T T
c c c c c cJ k w k v z k w k kφ φ= =  (99) 

where ˆ cn
cw ∈ℜ  and 2 cn

cv ×∈ℜ  denote the ideal output and constant hidden layer weights, 

( ) cn
c kφ ∈ℜ  is the activation function vector, and cn  is the number of hidden layer nodes. 

Again, we hold the input weights constant and adapt the output weights only. 

( ) ( ) ( ) ( ) 3
1 2 3ˆ ˆˆ , ,

T
cz k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector. 
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B. Critic Weight Update Law 
Define the prediction error as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ[ 1 ]

1 1 1
c

c c c c

e k J k J k r k

k J k k J k r k k k

γ

γζ γ ζ ε ε

= − − −

= + − − − − + − + −
 (100) 

where 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆT T T
c c c c c c ck w k k w k k w kζ φ φ φ= = −�  (101) 

Use a quadratic minimizing function 

( ) ( )21
2c cE k e k=  (102) 

Use a standard gradient-based adaptation method, the general formula is given by 

( ) ( ) ( )ˆ ˆ ˆ1c c cw k w k w k+ = + Δ  (103) 

where 

( ) ( )
( )

ˆ
ˆ

c
c c

c

E k
w k

w k
α

⎡ ⎤∂
= −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (104) 

therefore 

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

ˆ ˆ1
ˆ

ˆ

ˆ ˆˆ 1

c
c c c

c

c c c c

c c c

E k
w k w k

w k

w k k e k

w k k J k r k J k

α

α γφ

α γφ γ

⎡ ⎤∂
+ = + −⎢ ⎥

∂⎢ ⎥⎣ ⎦
= −

= − + − −

 (105) 

VIII. SECONDARY CONTROLLER – CONTROL INPUT DESIGN 
A. Design of the Control Input 
The tracking error is defined as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 3 3

4 4 4 31 1
d

d

e k x k x k

e k f g v k d k x k

= −

+ = ⋅ + ⋅ + − +
 (106) 

where 3 ( )dx k is the target bounded trajectory.  Define the desired control signal as 

( ) ( ) ( ) ( ) ( )( )1
4 4 3 7 41d dv k g f x k l e k−= ⋅ − ⋅ + + +  (107) 

Using the universal approximation property of NN and the approximate states 
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( ) ( ) ( )( ) ( ) ( )ˆˆ ˆ ˆˆT T T
d a a a a a av k w k v z k w k kφ φ= =  (108) 

where ˆ an
aw ∈ℜ  and 2 an

av ×∈ℜ  denote the ideal output and constant hidden layer weight 

matrices, ( ) an
a kφ ∈ℜ  is the activation function vector, an  is the number of hidden layer 

nodes, and ( ) ( ) ( ) ( ) 3
1 2 3ˆ ˆˆ , ,

T
az k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector. Again, we hold the 

input weights constant and adapt the output weights only. Rewrite (106) as 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

4 7 4 3

7 4 3

7 4

1 d

T
a a a

a a

e k l e k g v k v k d k

l e k g w k k k d k

l e k g k d k

φ ε

ζ

+ = + ⋅ − +

= + ⋅ − +

= + ⋅ +

�  (109) 

where  

( ) ( ) ( ) ( )a a ad k g k d kε= − ⋅ +  (110) 

and 

( ) ( ) ( )ˆT
a a ak w k kζ φ= �  (111) 

B. Control Input Weight Update Law 
Define the control input cost function 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

4 4

1

4 4

a a d

a

e k g k g J k J k

g k g J k

ζ

ζ

−

−

= ⋅ + ⋅ −

= ⋅ + ⋅
 (112) 

where ( )dJ k  is the desired long-term cost function and is equal to zero. Define a 

quadratic error to minimize 

( ) ( )21
2a aE k e k=  (113) 

Utilizing a gradient decent minimization strategy 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

ˆ

4

4 7 4

ˆ ˆ1

ˆ

ˆ 1

a

a

E k
a a a w k

T
a a a a

T
a a a a

w k w k

w k k g k J k

w k k e k l e k d k J k

α

α γφ ζ

α γφ

∂
∂

⎡ ⎤+ = + −⎣ ⎦

= − ⋅ +

= − + − − +

 (114) 

Figure 2 shows the overall controller structure including both controllers. 
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Figure 2 Combined primary and secondary controller structure. 

Theorem 2: Consider the system given by (5), and the disturbance bound 3md  to be 

known constants. Let the observer and control input NN weight tuning be given by (105) 

and (114), respectively. Let the control input be given by (108); the tracking error ( )4e k  

and weight estimates ( )ˆ aw k  and ( )ˆ cw k  are UUB, with the bounds specifically given by 

(C.1) with the controller design parameters selected as:  

( ) 2
0 1a a kα φ< <  (115) 

( ) 2
0 1c c kα φ< <  (116) 

7
1
2

l <  (117) 

where aα  and cα  are NN adaptation gains, and 7l  is the controller gain. 

Proof: See Appendix C. � 

IX. RESULTS AND ANALYSIS 
EGR operation of an SI engine allows lower emissions and improved fuel efficiency. 

However, EGR operation destabilizes the engine due to the cyclic dispersion of heat 

release. The adaptive critic NN controller is designed to stabilize the SI engine operating 

at EGR conditions.  
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A. Daw Engine Model 
Spark ignition (SI) engine dynamics can be expressed according to the Daw model as a 

class of nonlinear systems in non-strict feedback form [16].  At high EGR levels, the 

engine can be expressed as the following [17]. 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

2 2

1 1 2

1

1

O N

x k AF k F k x k R F k CE k x k

F k r k r k d k

+ = + − ⋅ +

+ +
 (118) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 2 21 1x k CE k F k x k MF k u k d k+ = − + + +  (119) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 23 31 CO H O Nx k F k r k r k r k x k EGR k+ = + + + +  (120) 

( ) ( ) ( )2y k x k CE k=  (121) 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )( )

2 3

1 3 1 3

1
x k x k EGR k

k R
x k x k x k x k EGR k

ϕ γ
⎡ ⎤+

= −⎢ ⎥
+ + +⎢ ⎥⎣ ⎦

 (122) 

( ) ( )
( )

max
( )

1 100
m

u l

k

CECE k ϕ ϕ
ϕ ϕ

− −
−

=

+

 (123) 

2
u l

m
ϕ ϕϕ −

=  (124) 

( ) ( ) ( )
2 2 2H O H Or k x k CE kγ=  (125) 

( ) ( ) ( )
2 2 2O Or k x k CE kγ=  (126) 

( ) ( ) ( )
2 2 2N Nr k R x k CE kγ= ⋅  (127) 

( ) ( ) ( )
2 2 2CO COr k x k CE kγ=  (128) 

where ( )1x k , ( )2x k , and ( )3x k  are total mass of air, fuel, and inert gas, respectively. 

( )1y k  is the heat release at thk  instance. The value of ( )CE k  is within the range of 

( )min max0 CE CE k CE< < < . ( )F k  is bounded by ( )min max0 F F k F< < < . ( )1d k  and 

( )2d k  are unknown but bounded disturbances bounded by ( )1 1md k d<  and 

( )2 2md k d<  with 1md  and 2md  being unknown positive scalars. , ,m l uϕ ϕ ϕ  are 

equivalence ratio system parameters. The terms ( )
2H Or k , ( )

2Or k , ( )
2Nr k , and ( )

2COr k  
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are the mass of water, oxygen, nitrogen, and carbon dioxide, respectively whereas γ , 

2H Oγ , 
2Oγ , 

2Nγ , and 
2COγ  are design constants, and constants associated with their 

respective chemicals. 

Equation (5) can be controlled by the secondary controller; however, in this case, for 

convenience, we assume that it provides a bounded input to the primary system.  We set 

it to a constant which will simplify the controller implementation, as the third state is 

considered to be a fixed value. Note that this deterministic model accounts for stochastic 

effects by randomly fluctuating parameters such as injected air-fuel ratio or residual 

fraction. Other complex processes like temperature variation, turbulence, and fuel 

vaporization are not modeled but are assumed to add additional noise to the engine 

output. To implement the observer, replace the following from the Daw model. 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )
( )

2 21 1

1

2 2

2

1

1

O Nf AF k F k x k F r k r k

g R F k CE k

f CE k F k x k MF k

g

⋅ = + + +

⋅ = − ⋅

⋅ = − +

⋅ =

 (129) 

and 

( )

( ) ( )

10 0 0 1

10 0 0

10 0 0 2 0

10

ˆ

ˆ1
1

f AF F x k
g R F CE
f CE F x k MF
g

= +

= − ⋅

= − +

=

 (130) 

Note that we omitted the residuals in 10f , because they are not available.  The error 

introduced by this is accounted for in the air estimation error. To implement the 

controller, replace the following in place of ( )1f ⋅  and ( )1g ⋅  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )2 2

1 2 2

O N

AF k F k x k R F k CE k x k x k

F k r k r k

Φ ⋅ = + − ⋅ + +

+
 (131) 

B. Simulation Data 
The controller is easily simulated in C in conjunction with the Daw model.  The 

learning rates for the observer (82), critic (83), virtual control input (84), and control 

input (85) networks are 0.01, 0.01, 0.01, and 0.01, respectively.  The gains l1, l2, l3, l4, l5, 
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and l6 are selected as 0.05, 0.05, 0.04, 0.05, 0.2 and 0.1.  The system constants CEmax, φl, 

and φu are chosen as 1, 0.54, and 0.58.  The critic constants β  and N are 0.4 and 4 for all 

EGR levels. All NNs use 20 hidden neurons with hyperbolic tangent sigmoid activation 

functions in the hidden layer. 

The maximum moles a single cylinder holds is set as 0.021 to match the experimental 

engine constraint shown in the next section. The last two system variables: disturbances 

and stochastic effects are modeled as follows. First, we assume a Gaussian distribution 

governs the two effects. We may inject disturbances to the two states in equations (118) 

and (119) due to ( )1d k  and ( )2d k , but a simpler method is to perturb the equivalence 

ratio equation (122). This simplification is sufficient because the states are not 

measurable; therefore, the disturbances are increasingly complex and immeasurable. 

Stochastic effects alter the output, and through the combustion efficiency equation (123) 

and finally the output equation (121), this single perturbation effectively models the last 

two system variables. The final model uses a Gaussian distribution noise injected into 

equation (122) centered around the target equivalence ratio and deviation of 0.007. The 

resulting simulation output matches to the output observed from the Ricardo engine. All 

simulations ran for 5000 cycles uncontrolled first, then 5000 cycles controlled. 

Figure 3 shows two heat release return maps, one controlled and the other uncontrolled, 

for the set point at 13% EGR. Each subfigure shows the next time step versus the current 

time step heat release. Points centered along the 45 degree line represent heat release 

values that are equal to the next step heat release. Note the clustering of the points around 

the mean heat release of 850J. The square represents the target heat release. At this set 

point, the heat release dispersion starts to affect the engine performance, indicated by the 

stray points away from the central cluster. There are no complete misfires, but the heat 

release variation can be clearly seen. Figure 4 shows the time series of the heat release 

and control input at the same EGR level. The controller activates after several thousand 

cycles, indicated by the fluctuation of the control output. The controller converges 

quickly, and to a stable operation point. The presence of spikes in the control output 

indicates a decline in heat release such as a misfire, translating into additional fuel 

control to counteract.  
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Figure 3 Uncontrolled and controlled heat release return map at 13% EGR. 

Heat release at k+1 instance is plotted against heat release at k instance. 
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Figure 4 Heat release vs iteration number at 13% EGR. Controller turns on at k=4000. 

Note the almost instant learning convergence of the controller. 

Figures 5 and 6 show another set point at 19% EGR.  Similar features appear compared 

to the previous EGR level, except with higher frequency and amplitude of dispersion. 

Improvements shown reflect the assertion of the control action. 
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Figure 5 Uncontrolled and controlled heat release return map at 19% EGR. 
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Figure 6 Heat release and control input at 19% EGR. 

In order to quantify the performance of the controller, we compare the coefficient of 

variation (COV), which is the standard deviation normalized by dividing by the mean of 

the heat release.  As the COV decreases, the standard deviation decreases, which 

indicates that the engine heat release is more stable compared to higher COV. The 

controller performs better, and the return map consequently should approach the target 

value. Table 1 tabulates all of the data from the simulation.  The COV of each set point 

decreased drastically (shown with a negative sign) as the controller operated.  The 

performance exceeded the improvement due to the slight increase in the mean fuel input.  

Next, we show that experimental data supports the simulation data. 

Table 1 Coefficient of variation (COV) and fuel data for each of the four set points. 
EGR                  COV %COV %Fuel 
Fraction Uncontrolled Controlled Change Change 

0.00 0.0058 0.0057 -0.75 0.00 
0.13 0.0548 0.0384 -29.94 0.40 
0.15 0.1387 0.0773 -44.30 0.71 
0.19 0.3421 0.2383 -30.34 0.42 

 

C. Ricardo Engine 
The experimental results are collected from a Ricardo Hydra engine with a modern four 

valve Ford Zetek head. It contains a single cylinder running at 1000 rpm with shaft 

encoders to signal each crank angle degree and start of cycle.  There are 720° per engine 

cycle. 



 
 67 
 

In the cylinder, a piezoelectric pressure transducer records pressure every crank angle 

degree.  Combustion is considered to take place between 345° to 490°, for a total of 145 

pressure measurements.  The cylinder pressure is integrated along with volume during 

the 17.7 ms calculation window. All communications are completed at this time.  The 

output of our controller controls the fuel input.  This is controlled by a TTL signal to a 

fuel injector driver circuit. 

All signals communicate through a custom interface board using a microcontroller.  

The board interfaces with the PC through a parallel port and with the engine hardware 

through an analog signal. 

D. Experimental Data 
All constants given in the simulation section are used in the experiment. The first 

operation for an engine run is to measure the air flow and nominal fuel. The desired EGR 

set point equation is given by (132). EGRm  is the mass of inert gas introduced at each 

cycle, which is nitrogen in the lab and exhaust gas in production applications. fm  and 

am  are mass of fuel and mass of air, respectively. 

% 100 EGR

f a EGR

mEGR
m m m

⎛ ⎞
= ×⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (132) 

These values are loaded into the controller. Ambient pressure is used to reference the 

in-cylinder pressures when the exhaust valve is fully open and subtracted from the 

combustion pressure measurements. Uncontrolled and controlled data were collected at 

EGR percentages of 18, 20, and 23. The uncontrolled engine ran for 5,000 cycles and 

then the controller is turned on for another 5,000 cycles.  Steady state was ensured prior 

to data collection by measuring stable exhaust temperatures. 

Figure 7 shows two heat release return maps, one controlled and the other uncontrolled, 

for the 18% EGR set point. The target heat release is at 870J. At this EGR level, cyclic 

dispersion can clearly be seen, indicated by deviation of the points away from the main 

cluster on the 45 degree line. Figure 8 shows the time series of the heat release and 

control input for the same set point. 
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Figure 7 Uncontrolled and controlled heat release return map at EGR=18%. 

Heat release at k+1 instance is plotted against heat release at k instance. 
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Figure 8 Heat release and control input at EGR=18%. 

Controller turns on at k=5200. 

Define the state and output tracking errors. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

d

d

y

e k x k x k

e k x k x k

e k y k y k

= −

= −

= −

 (133) 

Where ( )1̂e k , ( )2ê k , and ( )ˆye k  are state 1, state 2, and output tracking errors, 

respectively. Figure 9 shows the controller state tracking errors at a set point of 18% 

EGR. The range represents tracking error in percentage over and under the desired state 

trajectories. State one tracking error is considerably better than state two tracking.  The 

second state tracks within 0.5%; therefore, both are performing well. The spikes indicate 

unsuccessful tracking. Consequently, the observer and controller converged together to 

the desired states and estimated states, generating a stable error system. Figure 10 shows 
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the output tracking error in the same form as the state tracking error. Immediate 

observation shows an extremely high error rate. The observer performance is abysmal. 

Nonetheless, this signal fed into the NN controller allows for the critical performance 

factor, state tracking errors, to converge and stabilize. It is not critical for one signal to 

track perfectly, rather the system as a whole. Moreover, theorem 1 proved the 

boundedness of the output estimation. In conjunction with the natural bound of the 

engine output, the tracking error will always be bounded. The extreme fluctuation of the 

observer output may be the key to the responsiveness of the controller as a whole.  
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Figure 9 State tracking errors. 
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Figure 10 Output tracking error. 
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Figure 11 shows the return map of the heat release for 20% EGR.  Note that as the 

equivalence ratio decreases, the return map spreads out and dispersion increases. Figure 

12 is the corresponding heat release and control time series. Misfires increase in 

frequency, as shown by the negative heat release spikes due to heat transfer from the 

cylinder to the environment without internal generation of useful work by combustion.  

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

1100

Heat Release(k), J

H
ea

t R
el

ea
se

(k
+1

), 
J

Uncontrolled Return Map at EGR=20%

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

1100

Heat Release(k), J

H
ea

t R
el

ea
se

(k
+1

), 
J

Controlled Return Map at EGR=20%

 
Figure 11 Uncontrolled and controlled heat release return map at 20% EGR. 
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Figure 12 Heat release and control input at 20% EGR. 

Figure 13 shows increasing difficulty of the observer and controller to generate a low 

state tracking error compared to the previous case. As the engine operates in higher EGR 

modes, overall dispersion increases, thus degrading observer performance. Although the 

performance is reduced, the tracking error is well within satisfactory performance. Figure 

14 shows the output tracking error. At the higher EGR set point, it is performing better 

than in the previous case. This may be due to the memory effect of past engine cycles 
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contributing to the residuals in the current cycle. At near zero EGR, little dispersion 

occurs, resulting in similar cylinder chemistry content before each power cycle. 

Stochastic effects dominate and destroy predictability. The high observer learning rate 

decimates the tracking ability. On the other hand, at lower EGR levels, higher dispersion 

and misfires create patterns of predictable residuals. The observer exploits the pattern 

recognition power of NN to drastically improve its performance. 
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Figure 13 State tracking errors. 
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Figure 14 Output tracking error. 
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Figure 15 shows a detailed view of 70 controlled cycles at 20% EGR. The controller 

generates decreasing control during cycles when the heat release is steady, indicated by 

cycles between 4805 to 4818 and between 4822 to 4836.  However, during misfires or 

extreme dispersion in heat release, the controller attempts to compensate for the drop in 

heat release by pushing the control up, indicated by cycles 4819, 4847, etc. The controller 

compensates after a one cycle delay in the positive direction and attempts to recover the 

engine heat release towards the target point. It is difficult to determine success on cycles 

with no misfire, because no heat release plots are available for uncontrolled case during 

the same cycles when the controller is operating for comparison.  Overall, the controller 

performs to general expectation. 
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Figure 15 Detailed view of 70 controlled cycles at 20% EGR 

Table 2 shows the improved COV when the controller is in operation compared to an 

uncontrolled engine and also the corresponding change in nominal fuel. An improvement 

in the COV may be artificial due to an increase in fuel input.  However, this is not the 

case for this controller.  At all EGR set points except 23%, the increase in fuel input is 

well within the tolerance of the equipment. On average, the COV decreased significantly 

by 25% compared to the controlled case. 
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Table 2 Coefficient of variation (COV) and fuel data for each of the three set points. 
  COV %COV %Fuel 
EGR Uncontrolled Controlled Change Change 

0.18 0.2112 0.1511 -28.4 1.36 
0.20 0.2139 0.1400 -34.6 0.77 
0.23 0.5777 0.5066 -12.3 2.11 

 

The COV and fuel change data indicates an improved performance compared to the 

previous controller [18]. The average drop in COV was 17% between uncontrolled and 

controlled, compared to 25% for the current controller. Although this seems to indicate 

an increase in performance, we must also consider the increase in average fuel input in 

conjunction. The previous controller increased the average fuel to 2.4%. This is well 

beyond the detection error. This controller, however, averages less than 1%, safely below 

the detection error. The controller fuel increases negligibly while approach the 

performance of the previous controller. Therefore, this controller performs better and at 

the same time exerts less impact on the fuel. 

X. CONCLUSIONS 
The controller presented successfully controlled a SI engine to reduce cyclic dispersion 

under higher EGR conditions. The system is modeled under a non-strict feedback 

nonlinear descrete-time system. It converged upon a near optimal solution through the 

use of a long-term strategic utility function even though the exact dynamics are not 

known beforehand.  It was shown through simulation that the controller is stable under a 

variety of set points. In experimental results, the COV was reduced when the controller 

was turned on.  At the same time, the average fuel input did not change significantly; 

therefore, the improvements are solely due to the effects of the controller. The output is 

stable, as predicted by the Lyapunov proof. There was also a significant reduction in 

unburned hydrocarbon between controlled and uncontrolled. 

APPENDIX A 
Tables A.1 and A.2 show the improvement in emissions for several equivalence ratios.  

The improvement is superior than what we have seen before [18] using another 

controller. NOx is reduced between 2% to 7.4% from uncontrolled scenario. However, 
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CO2 remains unchanged, whereas O2 decreases by about 20%. The unburned 

hydrocarbons (uHC) decreased nominally compared with uncontrolled. This is mainly 

due to reduced cyclic dispersion. 

Table A.1 Emissions data for select EGR set points. 

           Uncontrolled            Controlled       Change(%) 
EGR CO2(%) CO(%) O2(%) CO2(%) CO(%) O2(%) CO2 CO O2 
0.13 7.4 0.1 6.9 7.4 0.1 2.2 -0.4 0.0 -68.1
0.18 7.3 0.1 2.3 7.3 0.1 2.4 0.0 0.0 5.2
0.20 7.3 0.1 3.2 7.3 0.0 3.6 0.5 -20.0 10.8
0.23 7.3 0.1 5.4 7.3 0.1 5.8 -0.8 0.0 8.2

Table A.2 Unburned hydrocarbon emission data. 

          Uncontrolled             Controlled    Change(%) 
EGR NOX (ppm)  uHC (ppm C1) NOX (ppm) uHC (ppm C1) NOX  uHC  
0.13 554.0 10619 478 10677 -13.7 0.5
0.18 82.0 13610 92 12605 12.2 -7.4
0.20 51.0 14450 51 14108 0.0 -2.4
0.23 50.0 23928 55 22345 10.0 -6.6

 

APPENDIX B 
Proof of Theorem 1:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

10 6
2 21 2
1 2

1 3 2

2 2 2 28 9 10
7 2 1 2

5 3

1
3 3 3

j T
i j j

i j j

J k J k e k e k w k w k

k x k x k y

γγ γ
α

γ γ γγ ζ

= = −

= = + + +

− + + +

∑ ∑ � �

� � �
  (B.1) 

where 0 , {1,...,6}i iγ< ∈  are auxiliary constants; the NN weights estimation errors 

( )1 1Tw k +� , ( )2 1Tw k +� , ( )3 1Tw k +� , and ( )4 1Tw k +�  are defined in (24), (48), (68), and (79), 

by subtracting their respective ideal weights , {1,2,3,4}iw i∈  on both sides; the 

observation errors ( )1 1x k +� , ( )2 1x k +� , are defined in (21) and (22), respectively; the 

system errors ( )1 1e k +  and ( )2 1e k +  are defined in (60) and (72), respectively; and 

, {1,2,3,4}i iα ∈  are NN adaptation gains. The Lyapunov function (B.1) obviates the need 

for the CE condition. Taking the first term and the first difference using (60) to get 
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Invoke the Cauchy-Schwarz inequality defined as 

( ) ( )( )2 2 2 2 2
1 1 1 1... ... ...n n n na b a b a a b b+ + ≤ + + + +  (B.3) 

Simplify to get 
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Take the second term, substitute (72), invoke Cauchy-Schwarz inequality, and simplify 

( ) ( ) ( ) ( ) ( )
22 2 2 2 2

2 6 2 2max 4 2 2m 2max 4m 2max 4m 4m 23 3J k l e k g k d g g w e kζ γ ε φΔ ≤ + + + + −�  (B.5) 

Take the third term, substitute (24), invoke Cauchy-Schwarz inequality, and simplify 
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Take the fourth term, substitute (48), invoke Cauchy-Schwarz inequality, and simplify 
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Take the fifth term, substitute (68), invoke Cauchy-Schwarz inequality, and simplify 
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Take the sixth term, substitute  (79), invoke Cauchy-Schwarz inequality, and simplify 
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Take the seventh term, set 2
7 42γ γ β=  

( ) ( ) ( )2 2 2 2
7 4 2 4 22 2 1J k k kγ β ζ γ β ζΔ = − −  (B.10) 

Take the eighth term, substitute (21), invoke Cauchy-Schwarz inequality, and simplify 
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Take the ninth term, substitute (22), invoke Cauchy-Schwarz inequality, and simplify 
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Take the tenth and final term, substitute (23), invoke Cauchy-Schwarz inequality, and 

simplify 
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Combine (B.4) through (B.13) and simplify to get the first difference of the Lyapunov 

function 
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where 
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Select  
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This implies ( ) 0<Δ kJ  as long as (82) through (92) hold and any one of the following 

hold  
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APPENDIX C 
Proof of Theorem 2:  Define the Lyapunov function 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1311 12

4

14 2 2
4 143

11
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c

T T
k a a c c c

k
J k J e k tr w k w k tr w k w k kγγ γ

α α γ ζ
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where 0 , {11,...,14}k kγ< ∈  are auxiliary constants; the NN weights estimation errors 

( )1T
aw k +�  and ( )1T

cw k +�  are defined in (114) and (105), by subtracting their respective 

ideal weights , { , }iw i a c∈  on both sides; the system error ( )4 1e k +  is defined in  (109); 

and , { , }i i a cα ∈  are NN adaptation gains. The Lyapunov function (C.1) obviates the need 

for the CE condition. Take the first term and replace (109). 
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Take the second term and replace (114) 
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Define the following 
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Rewrite (C.3) using (C.4) 
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Take the third term and replace (105) 
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Take the forth and final term and replace  

( ) ( )( )2 2
14 14 1c cJ k kγ ζ ζΔ = − −  (C.7) 

Combine (C.2) through (C.7) 



 
 79 
 

( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )( ) ( )

( )( ) ( )
( ) ( )
( )

( ) ( ) ( )

11
2 2 2 22 2

max 4 11 max 11 12 min3

2
2 2min 2 2

12 132 2
min max

2
2 42

12 min max 2 2
min max

2 2 213
13 13 max

1 3

1
1

1
4

a a a

a a
a c a c

a a

a
a a a

a a

c c

J l e k g k d k g k

k g
J k d k k e k

g k g

I k g
g k g k

g k g

k k Q e k

γ

α

γ ζ γ γ ζ

α φ
γ γ α γ φ

α φ

α φ
γ α φ ζ

α φ

γγ γ ζ ζ γ

Δ = − − + + − +

−
+ − − −

−

⎛ ⎞− ⋅
⎜ ⎟− + −
⎜ ⎟−⎝ ⎠

+ − + ( )

( ) ( )( )

2 213
max

2 2 2
14

8

1

a

c c M

R k

k k D

γ ζ

γ ζ ζ

+ +

− − +

 (C.8) 

where 
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The overall Lyapunov function is negative as long as (115) and (117) holds and one of 

the following is true. 

( )
( )2

11 max 3 max

2 3

4 1 3 3
MDe k

l Qγ γ
≥

− −
 (C.10) 

( )
2

12 min 11 max 13 max

2 2
8 8

M
a

Dk
g g R

ζ
γ γ γ

≤
− −

 (C.11) 

( )
2 '

13 12 14

M
c

Dk
n

ζ
γ γ γ γ

≤
− −

 (C.12) 
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APPENDIX 

DETAILED LYAPUNOV PROOF 

 

Consider the nonlinear discrete-time system given by 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 2 1 1 2 2 1

1 1 2 1

1 , ,x k f x k x k g x k x k x k d k

f g x k d k

+ = + +

= ⋅ + ⋅ +
 (1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 1 2 2 1 2 2

2 2 2

1 , ,x k f x k x k g x k x k u k d k

f g u k d k

+ = + +

= ⋅ + ⋅ +
 (2) 

( ) ( ) ( )( ) ( )3 1 2 31 ,y k f x k x k f+ = = ⋅  (3) 

Define the estimation errors ( )1 1e k +  and ( )2 1e k +  as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 3 3 3 5 1 2 1ˆ1 Te k k w k k l e k e k d kζ φ ε+ = − − + − − +  (4) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 6 2 2 4 2 4 2 4 4 21 Te k l e k g k g k g w k d kε ζ φ+ = − ⋅ + ⋅ + ⋅ +  (5) 

where 

( ) ( ) ( )1 1 1ˆ ˆ de k x k x k= −  (6) 

( ) ( ) ( )2 2 2ˆ ˆ ˆ de k x k x k= −  (7) 

( ) ( ) ( )1 1 1de k x k x k= −  (8) 

( ) ( ) ( )2 2 2ˆ de k x k x k= −  (9) 

( )( )ˆ( ) , {1,2,3,4}i i ik v z k iε ε= ∈  (10) 

( ) ( )ˆ ˆ ( ) , {1,2,3,4}i i ik v z k iφ φ= ∈  (11) 

( ) ( )( ) , {1, 2,3, 4}i i ik v z k iφ φ= ∈  (12) 

( ) ( ) ( )ˆ ( ) ( ) , {1,2,3,4}i i i i ik v z k v z k iφ φ φ= − ∈  (13) 

( ) ( ) ( )( ) ( )( ) ( ) ( )ˆˆ ˆ ˆ , {1,2,3,4}T T T
i i i i i i i i ik w k v z k w v z k w k k iζ φ φ φ= − = ∈  (14) 

0 1, {1,2,3,4,5,6}il i< < ∈  (15) 

( ) ,max , {1,2}i id k d i< ∈  (16) 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( )

1 1 1 1

1 1 1 1 1

1 1

ˆ ˆ

ˆ d d

e k e k e k e k

x k x k x k x k e k

x k e k

= + −

= − − + +

= +

 (17) 

Define the NN weight estimation errors 1( 1)w k + , 2 ( 1)w k + , 3 ( 1)w k + , and 4 ( 1)w k +  as 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 4
ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k l y kα φ φ+ = − +  (18) 

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2̂

ˆ ˆ1 1
TNw k w k k Q k p k Q kα φ β β++ = − + − −  (19) 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
ˆ ˆ ˆˆ1 Tw k w k k Q k w k kα φ φ+ = − +  (20) 

( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k Q kα φ φ+ = − +  (21) 

where 

0 1, {1,2,3,4}i iα< < ∈  (22) 

0 1β< <  (23) 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
ˆ ˆ ˆˆ T TQ k w k k k w kφ ζ φ= = +  (24) 

( ) ( ) ( )ˆy k y k y k= −  (25) 

Define the state estimation errors ( )1 1x k +  and ( )2 1x k +  as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 10 2 2 1 1 2 1ˆ ˆ1 1 1x k x k x k f x k l y k f g x k d k+ = + − + = − + − ⋅ − ⋅ −  (26) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 20 20 3 2 2 2ˆ1 1 1x k x k x k f g u k l y k f g u k d k+ = + − + = + + − ⋅ − ⋅ −  (27) 

where 

( ) ( )⋅Δ+=⋅ 1101 fff  (28) 

( ) ( )2 20 2f f f⋅ = + Δ ⋅  (29) 

( ) ( )⋅Δ+=⋅ 1101 ggg  (30) 

( ) ( )2 20 2g g g⋅ = + Δ ⋅  (31) 

Define the following equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3 3

1 3 3 3 1 2 2

T

T

f g x k x k w k k

f w k k g x k x k

φ ε

φ ε

Φ ⋅ = ⋅ + ⋅ + = +

⋅ = + − ⋅ −
 (32) 
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Define the output error as 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
ˆˆ1 T Ty k w k k l y k w k kφ φ ε+ = + − −  (33) 

Define the Lyapunov function as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

10 6
2 21 2
1 2

1 3 2

2 2 2 28 9 10
7 2 1 2

5 3

1
3 3 3

j T
i j j

i j j

J k J k e k e k w k w k

k x k x k y

γγ γ
α

γ γ γγ ζ

= = −

= = + + +

− + + +

∑ ∑
 (34) 

where 0 , {1,...,10}j jγ< ∈  are auxiliary constants; the system errors ( )1 1e k +  and 

( )2 1e k +  are defined in (4) and (5), respectively; the NN weights estimation errors 

1( 1)w k + , 2 ( 1)w k + , 3 ( 1)w k + , and 3( 1)w k +  are defined in (18), (19), (20), and (21), 

respectively; the observation errors ( )1 1x k + , ( )2 1x k + , are defined in (26), and (27), 

respectively; the output error ( )1y k +  is defined in (56), and , {1,2,3,4}j jα ∈  are NN 

adaptation gains. The Lyapunov function (34) obviates the need for separation principle. 

Define the Cauchy-Schwarz inequality. 

( ) ( )( )2 2 2 2 2
1 1 1 1... ... ...n n n na b a b a a b b+ + ≤ + + + +  (35) 

Take the first Lyapunov term and the first difference then substitute (4) and (17). 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

1

1

2
1 15

2 25
1 1 1

2 2
3 3 3 3 5 1 2 1 1

2 2
3 3 3 3 5 1 1 2 1 1

1

ˆT

T

J k e k

J k e k e k

k w k k l e k e k d k e k

k w k k l x k e k e k d k e k

γ

γ

ζ φ ε

ζ φ ε

=

Δ = + −

= − − + − − + −

= − − + − + − + −

 (36) 

Invoke Cauchy-Schwarz inequality and simplify. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )

1

1

1

22 2 2 2 2 2 21 1
1 3 5 1 5 1 2 3 3 3 1 15

2

3 3 32 2 2 2 2 2 2
1 1 3 1 5 1 1 5 1 1 2 1 15

1

2

2 2 2 2 2 2 23m 3m 3m
1 5 1 1 5 1 1 2 1 3 1 15

1m

J k k l x k l e k e k k w k d k e k

k w k
J k k l x k l e k e k e k

d k

w
l x k l e k e k k e k

d

γ

γ

γ

ζ ε φ

ε φ
γ ζ γ γ γ γ

ε φ
γ γ γ γ ζ γ

Δ ≤ + + + + − + −

⎛ ⎞−
Δ ≤ + + + + −⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞+
≤ + + + + −⎜ ⎟⎜ ⎟+⎝ ⎠

( ) ( ) ( ) ( ) ( )12 2 2 2 2 2 2 2
1 5 1 1 5 1 1 2 1 3 1 1 15l x k l e k e k k D e kγγ γ γ γ ζ γ≤ + + + + −

(37) 



 85 
 
where 

1 3m 3m 3m 1mD w dε φ= + +  (38) 

The subscript m stands for the maximum value. Take the second term and use the same 

procedure as above then substitute (5) to get 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2

2

2
2 23

2 23
2 2 2

2 2
6 2 2 4 2 4 2 4 4 2 2

22 2 2 2 2
6 2 2max 4 2 2max 4 2 4 4 2

22 2 2 2 2
6 2 2max 4 2m 2max 4m 2max 4m 4m 2

2 2 2
2 2 6 2 2 2max

1

3 3 3

3 3 3

T

T

J k e k

J k e k e k

l e k g k g k g w k d k e k

l e k g k d k g k g w k e k

l e k g k d g g w e k

J k l e k g

γ

γ

ε ζ φ

ζ ε φ

ζ ε φ

γ γ

=

Δ = + −

= − ⋅ + ⋅ + ⋅ + −

≤ + + − + ⋅ −

≤ + + + + −

Δ ≤ + ( ) ( )22 2 2
4 2 2 23k D e kγζ γ+ −

 (39) 

where 

2 2m 2max 4m 2max 4m 4mD d g g wε φ= + +  (40) 

Take the third term and substitute (18) to get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

3

1

1

3

3 1 1

3 1 1 1 1

1 1 1 1 1 4

1 1 1 1 1 4 1 1

1 1 1 1 4 1

1 1 1 1 1 4 1 1

1 1

1 1

ˆ ˆˆ[ ] *

ˆ ˆˆ[ ]

ˆ ˆˆ[ ]*

ˆ ˆˆ[ ]

T

T T

T T

T T

TT T T

T T

T

J k w k w k

J k w k w k w k w k

w k k w k k l y k

w k k w k k l y k w k w k

w k w k k l y k k

w k k w k k l y k w k w k

w k w k

γ
α

α
γ

α φ φ

α φ φ

α φ φ

α φ φ

=

Δ = + + −

= − +

− + −

= − +

− + −

= +
( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )
( )

1 1 1 12
1 1 1

4 4

1 1 1 4 1 1

1 1 1 1 1 4 1 1

2
2 1 1 1 12

1 1 1 1 1
4 4

ˆ ˆˆ ˆˆ ˆ

ˆ ˆˆ ( )

ˆ ˆˆ( )

ˆ ˆˆ ˆ( ) ˆ2 ( )

TT T
T

TT T T

T T

T T

w k k w k k
k k

l y k l y k

w k k l y k k w k

w k k w k k l y k w k w k

w k k w k k
k w k k

l y k l y k

φ φ
α φ φ

α φ φ

α φ φ

φ φ
α φ α φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ −
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

+ −

+ −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

( ) ( ) ( )( ) ( ) ( ) ( )( )2 2

1 1 1 4 1 1 1 4
ˆ ˆˆ ˆT Tw k k l y k w k k l y kα φ α φ+ − +
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( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

( ) ( ) ( )
( )

1

3

22

3 1 1 1 1 1 4

2

1 1 1 1 1 4 1 1 1 4

22

1 1 1 1 1 4

2
2

1 1 1 1 4 1 1 1

2
2 1 1

1 1 1 1
4

ˆ ˆˆ1 ( )

ˆ ˆ2

ˆ ˆˆ1

ˆ

ˆˆˆ1

T

T T

T

T

T

J k k w k k l y k

k k w l y k k w k l y k

k w k k l y k

k w l y k k k

w k k
k w

l y k

α
γ α α φ φ

α ζ ζ φ ζ φ

α α φ φ

α ζ φ ζ α ζ

φ
α α φ α

⎛ ⎞Δ = − − + −⎜ ⎟
⎝ ⎠

+ + + + +

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

+ + − −

⎛ ⎞⎛ ⎞⎜ ⎟= − − +⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠
( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

2 2
1 1 4 1 1

22

3 3 1 1 1 1 4

2 2 2 2
3 1 1 3 4 3 1

2
2 1 1 2 2 2 2

3 1 1 3 3 3 4 3 1
4

ˆ

ˆ ˆˆ1

ˆ2 2

ˆˆˆ1 2 2

T

T

T

k l y k k

J k k w k k l y k

w k l y k k

w k k
k D l y k k

l y k

φ α ζ

γ α φ φ

γ φ γ γ ζ

φ
γ α φ γ γ γ ζ

+ −

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ −

⎛ ⎞⎛ ⎞⎜ ⎟≤ − − + + −⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠  (41) 

where 

3 1m 1m
ˆD w φ=  (42) 

Take the fourth term and substitute (19) and (24) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

4

2

2

4

4 2 2

4 2 2 2 2

1
2 2 2

1
2 2 2 2 2

222 1
2 2 2 2

21 1
2 2

1 1

ˆ ˆ ˆ[ 1 ] *

ˆ ˆ ˆ[ 1 ]

ˆ ˆ ˆ 1

ˆ ˆ ˆ ˆ1

T

T T

TN T

TN T

T N

N N

J k w k w k

J k w k w k w k w k

w k k Q k p k Q k

w k k Q k p k Q k w k w k

w k w k k Q k p k Q k

Q k p k Q k Q k p k Q k

γ
α

α
γ

α φ β β

α φ β β

α φ β β

α β β α β β

+

+

+

+ +

=

Δ = + + −

= − + − −

− + − − −

= + + − − +

+ − − − + − ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

2

1
2 2 2 2 2

22 1
2 2 2

1
2 2 2 2 2 2 2 2

21
2 2 2 2 2 2 2

1

ˆ ˆ ˆ2 1

ˆ ˆ ˆ1 1

ˆ ˆ2 1 1

ˆ ˆ1 1

T N T

N

T N T

T N T

w k k Q k p k Q k w k w k

k Q k p k Q k

k k w k p k k w k

k w k p k k w k

α φ β β

α α φ β β

α ζ ζ φ β βζ β φ

α ζ φ β βζ β φ

+

+

+

+

−

− + − − −

⎛ ⎞= − − + − − −⎜ ⎟
⎝ ⎠

+ + − − − − +

+ + − − − −  
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )

4

22 11
4 2 2

21 2
2 2 2 2 2 2

22 1
4 4 2 2

2
2 2 2 1

4 2 4 2 4 2 2 2

2 1
4 2 2

ˆ ˆ ˆ1 1

ˆ ˆ1 1

ˆ ˆ ˆ1 1

ˆ ˆ2 1 2 1

ˆ ˆ ˆ1

N

T N T

N

T N

N

J k k Q k p k Q k

w k p k k w k k

J k k Q k p k Q k

k k w k k p k

k Q k p k

γ α φ β β

φ β βζ β φ ζ

γ α φ β β

γ ζ γ β ζ γ φ βφ β

γ α φ β β

+

+

+

+

+

⎛ ⎞Δ = − − + − − +⎜ ⎟
⎝ ⎠

+ − − − − −

⎛ ⎞Δ ≤ − − + − − −⎜ ⎟
⎝ ⎠

+ − + − − +

⎛ ⎞≤ − − + −⎜ ⎟
⎝ ⎠

( )( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )

2 2
4 2

2
2 2 1

4 2 4 2m 2m 2m

22 1
4 2 2

2 2 2 2
4 2 4 2 4 4

1

ˆ ˆ2 1 2

ˆ ˆ ˆ1 1

2 1 2

N

N

Q k k

k w

k Q k p k Q k

k k D

γ ζ

γ β ζ γ φ βφ β

γ α φ β β

γ ζ γ β ζ γ

+

+

− − +

− + − +

⎛ ⎞≤ − − + − − −⎜ ⎟
⎝ ⎠

+ − +

 (43) 

where 

( ) 1
4 2m 2m

ˆ 1 ND w φ β β += + +  (44) 

Take the fifth term and substitute (20) and (24) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )
( )
( ) ( )

( ) ( )
( )
( ) ( )

( ) ( )

5

3

3

5

5 3 3

5 3 3 3 3

3 3 3 3 3

3 3 3 3 3 3 3

2
22

3 3 3 3 3

3 3 3 3

22
3 3 3

1 1

ˆ ˆ ˆˆ *

ˆ ˆ ˆˆ

ˆ ˆ
ˆ ˆ2

ˆ ˆˆ ˆ

ˆ ˆ ˆ

T

T T

T
T

T T

T T

T

J k w k w k

J k w k w k w k w k

w k k Q k w k k

w k k Q k w k k w k w k

Q k Q k
k w k k

w k k w k k

k Q k w

γ
α

α
γ

α φ φ

α φ φ

α φ α φ
φ φ

α φ

Δ =

Δ = + + −

⎡ ⎤= − +⎣ ⎦
⎡ ⎤− + −⎣ ⎦

⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( )

5

2

3

3 3 2 2 2 3 3 3

2 2

3 3 3 3 3 3

22
1

5 3 3 3 3

2
2

2 2 2 3 3 3 3 3

ˆ

ˆ ˆ2

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆˆ1

ˆ ˆ

T T

T T

T

T T

k k

k k w k k w k

Q k w k k Q k w k k

J k k Q k w k k

k w k k w k k k

γ

φ

α ζ ζ φ ζ φ

α φ α φ

α φ φ

ζ φ ζ φ ζ ζ

−

+ + + +

+ − +

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + + − −
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

5

22
1

5 3 3 3 3

2 2
2 2 2 3 3 3

22

5 5 3 3 3 3

22 2
5 2 5 2 2 3 3 5 3

22

5 3 3 3 3

22
5 2 5 2m 2m 3m 3m 5

ˆ ˆ ˆˆ1

ˆ ˆ

ˆ ˆ ˆˆ1

ˆ ˆ2 2

ˆ ˆ ˆˆ1

ˆ ˆ2 2

T

T T

T

T T

T

J k k Q k w k k

k w k w k k

J k k Q k w k k

k w k w k k

k Q k w k k

k w w

γ α φ φ

ζ φ φ ζ

γ α φ φ

γ ζ γ φ φ γ ζ

γ α φ φ

γ ζ γ φ φ γ

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + −

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ + −

⎛ ⎞≤ − − + +⎜ ⎟
⎝ ⎠

+ + − ( )

( ) ( ) ( ) ( )( )
( ) ( )

2
3

22

5 3 3 3 3

2 2 2
5 2 5 5 5 3

ˆ ˆ ˆˆ1

2 2

T

k

k Q k w k k

k D k

ζ

γ α φ φ

γ ζ γ γ ζ

⎛ ⎞≤ − − + +⎜ ⎟
⎝ ⎠

+ −

 (45) 

where 

5 2m 2m 3m 3m
ˆ ˆD w wφ φ= +  (46) 

Take the sixth term and substitute (21), (5), then (24) 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )

6
'
4

4

6

6 4 4

6 4 4 4 4

4 4 4 4 4

4 4 4 4 4 4 4

222
4 4 4 4 4 4 4 4 4

222
4 4 4 4

4 4 4

1 1

ˆ ˆ ˆˆ *

ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2

ˆ ˆ ˆˆ

2

T

T T

T
T

T T

T T T

T

J k w k w k

J k w k w k w k w k

w k k w k k Q k

w k k w k k Q k w k w k

k w k k Q k w k w k k Q k

k w k k Q k

k k

γ
α

α
γ

α φ φ

α φ φ

α φ φ α φ φ

α φ φ

α ζ ζ

=

Δ = + + −

⎡ ⎤= − +⎣ ⎦
⎡ ⎤− + −⎣ ⎦

= + − +

= + −

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( )

6

4 4 2 2 2

2

4 4 4 4 2 2 2

2

4 4 4 4 2 2 2

22
1

6 4 4 4 4

2
2

4 4 4 2 2 2 4 4

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ1

ˆ ˆ

T T

T T

T T

T

T T

w k k w k

k w k k w k

k w k k w k

J k k w k k Q k

k w k k w k k k

γ

φ ζ φ

α ζ φ ζ φ

α ζ φ ζ φ

α φ φ

ζ φ ζ φ ζ ζ

+ + + +

+ + + −

+ + +

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + + − −
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( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )

22

6 6 4 4 4 4

2 2 2
6 4 4 2 2 6 2 6 4

22

6 4 4 4 4

2 2 2
6 6 6 2 6 4

ˆ ˆ ˆˆ1

ˆ ˆ2 2

ˆ ˆ ˆˆ1

2 2

T

T T

T

J k k w k k Q k

w k w k k k

k w k k Q k

D k k

γ α φ φ

γ φ φ γ ζ γ ζ

γ α φ φ

γ γ ζ γ ζ

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + −

⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠
+ −

 (47)  

where 

6 4m m 2m 2m
ˆ ˆD w wφ φ= +  (48) 

Take the seventh term  

( ) ( )
( ) ( ) ( )

2
7 7 2

2 2
7 7 2 7 2

1

1

J k k

J k k k

γ ζ

γ ζ γ ζ

= −

Δ = − −
 (49) 

define  
2

7 42γ γ β=  (50) 

Replace (50) into (49) 

( ) ( ) ( )2 2 2 2
7 4 2 4 22 2 1J k k kγ β ζ γ β ζΔ = − −  (51) 

Take the eighth term and substitute (26) and (32)  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

8

8

8

2
8 14

2 23
8 1 1

2 2
10 2 2 1 1 2 1 1

2 2
10 2 2 3 3 3 2 1 1

2 2
10 2 3 3 3 2 1 1

22 2 2
8 8 2 8 2 8 3 3 10 3 1 13

1

ˆ

ˆ T

T

T

J k x k

J k x k x k

f x k l y k f g x k d k x k

f x k l y k w k k x k d k x k

f l y k w k k x k d k x k

J k l y k x k w k f k d k x

γ

γ

γ

φ ε

φ ε

γ γ γ φ ε

=

Δ = + −

= − + − ⋅ − ⋅ − −

= − + − − + − −

= + − − − − −

Δ ≤ + + − + − − − ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

8

8

2

22 2 2 2
8 2 8 2 8 3m 3m 10 3m 1m 13

2 2 2 2 2
8 2 8 2 8 7 13

k

l y k x k w f d x k

l y k x k D x k

γ

γ

γ γ γ φ ε

γ γ γ

≤ + + + + + −

≤ + + −

 (52) 

where 

7 3m 3m 10 3m 1mD w f dφ ε= + + +  (53) 

Take the ninth term and substitute (27) 
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( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

9

9

2
9 25

2 23
9 2 2

2 2
20 20 3 2 2 2 2

2 2
20 20 2 3 2 2 2

2
2

20 20 2 4 4 3 2 2 2

2

20 20 2 4 4 4 4

3 2 2

1

ˆˆ

ˆ ˆ

T

T T

J k x k

J k x k x k

f g u k l y k f k g k u k d k x k

f g g k u k l y k f k d k x k

f g g k w k k l y k f k d k x k

f g g k w k k w k

l y k f k d k

γ

γ

φ

φ φ

=

Δ = + −

= + + − − − −

= + − + − − −

= + − + − − −

⎛ ⎞+ − +
⎜ ⎟= −
⎜ ⎟+ − −⎝ ⎠

( )

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )( )
( ) ( )

9

2
2

2

20 20 2max 4 20 2max 4 4 2
2

3 2max 2

2

9 9 20 20 2max 4 4 2max 2

2 2 2
9 20 2max 4 9 3 23

2

9 20 20 2max 4m 4m 2max 2m

2 2
9 20 2max 4 9 3

ˆ

ˆ

ˆ

T

T

x k

f g g k g g w k
x k

l y k f d k

J k f g g w k f d k

g g k l y k x k

f g g w f d

g g k l y

γ

ζ φ

γ φ

γ ζ γ

γ φ

γ ζ γ

⎛ ⎞+ + + +
⎜ ⎟≤ −
⎜ ⎟+ + −⎝ ⎠

Δ ≤ + + + − +

+ + −

≤ + + + + +

+ + ( ) ( )
( ) ( ) ( ) ( )

9

9

2
23

2 2 2 2
9 8 9 20 2max 4 9 3 23

k x k

D g g k l y k x k

γ

γγ γ ζ γ

−

≤ + + + −

 (54) 

where 

( )8 20 20 2max 4m 4m 2max 2m
ˆD f g g w f dφ= + + + +  (55) 

Take the tenth and final term and substitute (33) 

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

10

10

10

10

10

10

2
10 3

2 2
10 3

2 2
1 1 1 1 1 13

2 2
1 1 1 1 13

2 2 2 2
10 1 10 1 10 1 1 1 3

2 2 2 2
10 1 10 1 10 1m 1m 1m 3

10

1

ˆˆ T T

T

T

J k y k

J k y k y k

w k k l y k w k k y k

k w k k l y k y k

k l y k w k k y k

k l y k w y k

γ

γ

γ

γ

γ

γ

φ φ ε

ζ φ ε

γ ζ γ γ φ ε

γ ζ γ γ φ ε

γ ζ

=

Δ = + −

⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠

= + − + −

= + + − −

≤ + + + −

≤ ( ) ( ) ( )102 2 2 2 2
1 10 1 10 9 3k l y k D y kγγ γ+ + −

 (56) 

where 

9 1m 1m 1mD w φ ε= +  (57) 
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Combine (37), (39), (41), (43), (45), (47), (51), (52), (54), and (56) to get the first 

difference of the Lyapunov function 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

( )
( ) ( )

( )

1

2

2 2 2 2 2 2 2 2
1 5 1 1 5 1 1 2 1 3 1 1 15

2 2 2 2 2 2
2 6 2 2 2max 4 2 2 23

2
2 1 1 2 2 2 2

3 1 1 3 3 3 4 3 1
4

21
2

4 2 2

ˆˆˆ1 2 2

ˆ
ˆ1

ˆ 1

N

J l x k l e k e k k D e k

l e k g k D e k

w k k
k D l y k k

l y k

Q k p k
k

Q k

γ

γ

γ γ γ γ ζ γ

γ γ ζ γ

φ
γ α φ γ γ γ ζ

β
γ α φ

β

+

Δ ≤ + + + + − +

+ + − +

⎛ ⎞⎛ ⎞⎜ ⎟− − + + − +⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠

⎛ ⎞+⎛ ⎞⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠ − −⎝ ⎠
( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
( ) ( ) ( )8

2 2 2 2
4 2 4 2 4 4

22 2 2 2
5 3 3 3 3 5 2 5 5 5 3

22 2 2 2
6 4 4 4 4 6 6 6 2 6 4

2 2 2 2
4 2 4 2

2 2 2 2 2
8 2 8 2 8 7 13

2
9 8 9

2 1 2

ˆ ˆ ˆˆ1 2 2

ˆ ˆ ˆˆ1 2 2

2 2 1

T

T

k k D

k Q k w k k k D k

k w k k Q k D k k

k k

l y k x k D x k

D

γ

γ ζ γ β ζ γ

γ α φ φ γ ζ γ γ ζ

γ α φ φ γ γ ζ γ ζ

γ β ζ γ β ζ

γ γ γ

γ γ

− + − + +

⎛ ⎞− − + + + − +⎜ ⎟
⎝ ⎠
⎛ ⎞− − + + + − +⎜ ⎟
⎝ ⎠

− − +

+ + − +

+ ( ) ( ) ( ) ( )
( ) ( ) ( )

9

10

2 2 2
20 2max 4 9 3 23

2 2 2 2 2
10 1 10 1 10 9 3

g g k l y k x k

k l y k D y k

γ

γ

ζ γ

γ ζ γ γ

+ + −

+ + −  (58) 

rearrange 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

9 8

2 2 2 2 2 2 2
1 5 1 1 1 2 2 6 2 25 3

2 2 2 2 2 2 2
10 1 3 1 5 2 6 2 4 2 4 2

2 2 2 2 2
1 3 5 3 2 2max 4 9 20 2max 4 6 4

2 2 2 2 2 2 2 2
8 2 2 4 2 4 2 1 5 13 3

2 2 2

2 1 2 1

J l e k e k e k l e k e k

k k k k k k

k k g k g g k k

x k x k k k l x k x

γ γ

γ γ

γ γ γ

γ ζ γ ζ γ ζ γ ζ γ β ζ γ ζ

γ ζ γ ζ γ ζ γ ζ γ ζ

γ γ β ζ γ β ζ γ

Δ ≤ − + + − +

− + + + − +

− + + + − +

− + − − − + − ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )
( ) ( )

( )

10

2
1

2 2 2 2 2 2 2 2 2
3 4 8 2 9 3 10 1 3

2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6 8 7 9 8 10 9

22 1
2 21 1

3 1 1 4 2 2
4

2

2 2 2 2

ˆˆˆˆ ˆ1 1
ˆ 1

N

k

l y k l y k l y k l y k y k

D D D D D D D D D

Q k p kw k k
k k

l y k Q k

γγ γ γ γ

γ γ γ γ γ γ γ γ γ

βφ
γ α φ γ α φ

β

γ

+

+

+ + + − +

+ + + + + + + +

⎛ ⎞⎛ ⎞ +⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟− − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠+ − −⎝ ⎠ ⎝ ⎠

− ( )
( )
( ) ( )

( )
( ) ( )
( )

2 2
2 2 4 4

5 3 3 6 4 4

3 3

ˆ ˆˆˆ ˆ1 1
ˆ ˆˆ

T

T

Q k w k k
k k

w k k Q k

φ
α φ γ α φ

φ

⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ +⎝ ⎠ ⎝ ⎠

 (59) 
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gather terms and simplify 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 2

8 9

10

2 2 2 2 2
1 5 1 1 2 6 2 3 10 15 3

2 2 2
4 5 6 4 2 5 1 3

2 2
6 2 2max 9 20 2max 4

2 2 2
1 5 1 8 23 3

2 2 2 2 2 2
3 4 8 2 9 3 10 13

2

3 1 1 1 1 4

2 2 2

2

ˆ ˆˆ1

M

J l e k l e k k

k k

g g g k

l x k x k

l l l l y k D

k w k k l

γ γ

γ γ

γ

γ γ γ γ γ ζ

γ γ γ γ β ζ γ γ ζ

γ γ γ ζ

γ γ

γ γ γ γ

γ α φ φ

Δ ≤ − − − − − − −

− − − − − −

− − − +

− − − −

− − − − − +

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

22 1
4 2 2

22

5 3 3 3 3

22

6 4 4 4 4

ˆ ˆ ˆ1 1

ˆ ˆ ˆˆ1

ˆ ˆ ˆˆ1

N

T

T

y k

k Q k p k Q k

k Q k w k k

k w k k Q k

γ α φ β β

γ α φ φ

γ α φ φ

+⎛ ⎞− − + − −⎜ ⎟
⎝ ⎠
⎛ ⎞− − +⎜ ⎟
⎝ ⎠
⎛ ⎞− − +⎜ ⎟
⎝ ⎠  (60) 

where 
2 2 2 2 2 2 2 2 2 2
m 1 1 2 2 3 3 4 4 5 5 6 6 8 7 9 8 10 92 2 2 2D D D D D D D D D Dγ γ γ γ γ γ γ γ γ= + + + + + + + +  (61) 

Solving the following equations 

( )

2 2 2
1 1 5 2 1 2 6 3 10 4 5 6 4 5 1

2 2 2
6 2 2max 9 20 2max 7 4 8 1 5 9 8

2 2 2 2
10 3 4 8 2 9 3 10 1

5 ; 3 3 ; ; 2 2 2 ; ;

; 2 ; 3 ; 3 ;

6 3 3 3 ;

l l

g g g l

l l l l

γ γ γ γ γ γ γ γ γ γ γ β γ γ

γ γ γ γ γ β γ γ γ γ

γ γ γ γ γ

> > + > > + + >

> + + = > >

> + + +

 (62) 

will result in unique values for the gains and the auxiliary variables provided (83) through 

(89) holds.  This implies ( ) 0<Δ kJ  as long as (62) through (89) hold and any one of the 

following hold  

( ) ( ) ( )

( ) ( )

( )
( )

( )

( ) ( )

1 2

8

9 10

1 2 12 2
3 101 5 1 2 65 3

3 2 2
5 1 4 5 6 4

4 12 2
6 2 2max 9 20 2max 1 53

2 2 2 2 2
8 3 4 8 2 9 3 10 13 3

; ; ;

; ;
2 2 2

; ;

; ;
2

M M M

M M

M M

M M

D D De k e k k
l l

D Dk k

D Dk x k
g g g l

D Dx k y k
l l l l

γ γ

γ

γ γ

ζ
γ γγ γ γ

ζ ζ
γ γ γ γ γ γ β

ζ
γ γ γ γ

γ γ γ γ γ

> > >
−− − −

> >
− − − −

> >
− − + −

> >
− − − − −

 (63) 
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