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ABSTRACT

From an electromagnetic compatibility perspective, a commercial 19-inch rack-
based cabinet of 40U height is comprised of different functional modules housed in well-
shielded enclosures. Three methodologies are applied to investigate the overall shielding
performance of various cabinet features, including doors, side panels and cable egress, an
important feature that is of primary interest here.

The first methodology discussed is the in situ measurements on a functioning
cabinet using a spectrum analyzer. The second, and most detailed mythology discussed is
the swept frequency three-port mixed-mode S-parameter measurements using a vector
network analyzer. And the last is a HFSS simulation of a simplified cabinet model.

Results from the above approaches show that the rack cabinet, while not
specifically designed to be a high-performance EMI shielded enclosure, does, however,
provide about 5 to 10 dBuV/m of overall shielding performance that is important in
meeting EMI regulatory requirements with the current system. The swept frequency
approach, as proved, may be an effective method in the evaluation of shielding

performance of similar equipment.
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1. DATA FROM NCR’S FUNCTIONING NODE RACK CABINET

1.1. INTRODUCTION

From an electromagnetic compatibility perspective, the NCR node rack is
comprised of different functional modules housed in well-shielded enclosures. The
installation of these modules, including computer nodes, BYNET switch modules,
Ethernet switches, Fiber Channel switches, and UPS power modules etc, is schematically
illustrated in Figure 1.1. Communication between the modules internal to the rack is over
copper cables that must penetrate the module enclosures. The copper cables exit the rack
in order to provide connections to the power mains and communications with
neighboring node and storage racks and an administrative workstation computer. The
inherent imperfections in connector systems that are used in the equipment result in
energy coupling to the cables, which in turn results in electromagnetic interference. The
rack cabinet, while not specifically engineered to be a superior EMI shielding enclosure,
does, however, provide on the order of 10 dB of overall shielding effectiveness that is
essential in meeting EMI regulatory requirements with the current system.

Currently, the cable egress is through a large opening in the bottom of the rack
near the floor of the datacenter. An engineering design change being considered to the
rack equipment is to change the egress of the cables from the rack out the top as opposed
to out the bottom. This change can have significant EMI consequences. Measurements
on the NCR system were conducted at NCR to quantify the shielding effectiveness of the
rack cabinet, and to conduct measurements on the impact of the cable egress from the top
of the rack, as opposed to the bottom. Shielding effectiveness of the rack cabinet on the
order of 5 -10 dB was measured over a broad frequency range for the functioning
equipment. Further, modifications to the equipment that brought the cables out the top of
the rack resulted in exceeding the EMI regulatory limit at the critical BYNET frequency
of 627 MHz.

The major results and conclusions of these measurements were discussed in a

previous report [1]. A more detailed data analysis is presented herein.
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Figure 1.1. Schematic Representation of the NCR Node Rack Equipment

1.2. EMI MEASUREMENTS ON THE RACK EQUIPMENT

The equipment under test (EUT) was staged in the NCR’s 3 m chamber and
including three interconnected equipment racks: (1) the storage rack, (2) the node rack,
(3) a BYNET cabinet, and the AWS controller. (It should be noted that the node rack
was configured in a conventional Rittal rack, whereas the storage rack and the BYNET
systems were configured in the new, cost-reduced rack.) Digital photographs of the
equipment with the cable egress at the bottom of the rack cabinet, which was standard for
all working node racks, are shown in Figures 1.2. The cabinet on the right is filled with
node chasses, and the cabinet on the left is the disk array rack. Since the signals in and
out of the disk array cabinet are on optical fibers, the measurements focused on the node
and BYNET cabinets. EMI measurements were conducted for various node rack test
configurations, combined with the antenna setups, as shown in Table 1.1.

Because of the superior chassis design used in the individual module chasses, the
EMI coupling path out of these enclosures is dominated by the chassis/connector

interface, e.g., the HSSDC2, and results in common-mode currents on the cables within



Figure 1.2. Digital Photographs of the NCR Node Rack Equipment from Two
Different Angles

the larger cabinet rack. Consequently, the measured radiation is always greatest from the
rear of the cabinet, both with the door closed as well as open.

To determine approximately the overall shielding effectiveness of the cabinet
rack, with the current cable egress at the bottom of the node rack cabinet, an A/B
comparison was made with the rear of the cabinets facing the antenna. The measurements
were made with the rear cabinet doors closed, and then the identical measurements were

made with the cabinet doors open.

Table 1.1. Antenna Setups

Horizontal
polarization

Height at 1 m \/ \/
Height at 2 m \/ \/

Vertical polarization




For the test configuration of the cable egress at the top of the node rack cabinet, a
large aperture approximately 9°x12” was cut in the top panel to allow all the cables to
come out the top of the node cabinet rack. The BYNET cables were then routed through
the approximately 2 holes that were standard in the rack. The power (thick cable with
the large yellow connector) and AWS communication cables were draped from the node
rack to the floor. The cable attenuations were included in the spectrum analyzer settings,
and the receiving antenna was positioned in both the vertical and horizontal polarizations
for the measurements, and raised to a height of 2 m, where the radiation was a maximum

(as dictated by the FCC standards).

1.3. RESULTS AND DATA ANALYSIS

Figure 1.3 shows the screen shots of the data of the measurements with the AWS
controller off and BYNET cabinet not connected. It is a baseline measurement as the
interest here is in the effect of the BYNET activity on the EMI of the node rack cabinets.
With the antenna factor known, as shown in Figure 1.4, the results are tabulated in Table
1.2 and plotted in Figure 1.5 with the frequency range of 30 MHz — 6 GHz. The antenna

factor is included.
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Figure 1.3. Measured Data for Baseline EMI Measurement — Cables Exits Bottom and
Back Door Open
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Figure 1.4. Antenna Factor Provided by NCR

Table 1.2. Data for the Baseline Measurement ( Door Open and Cable Egress Bottom)

Frequency, Amplitude, dB HV/m
MHz (Vertically polarized
Antenna)
47 31.174
251 37.695
282 40.016
377 38.31
479 25.24
500 45.56
627 43.84
068 49.464
19 4491
937 46.51
1250 58.55
1380 58.22
2130 64.97
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Figure 1.5. Baseline EMI Measurement of the Node Rack Cabinet with No BYNET
Activity and Cable Exiting Bottom

Figure 1.6 and Figure 1.7 are the screen shots of the EMI measurement data with
the AWS controller on and connected to the node cabinet, and with normal traffic from

the node to BYNET cabinet. The receiving antenna was in the vertical orientation and
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Figure 1.6. EMI Measurement Data — Cable Egress Bottom, Door Closed and
Vertically Polarized Antenna



horizontal orientation respectively with regard to the chamber ground plane. The cable
egress was at the bottom of the node rack cabinet. The data from these screen shots is

tabulated in Table 1.3.
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Figure 1.7. EMI Measurement Data — Cable Egress Bottom, Door Closed and
Horizontally Polarized Antenna

Table 1.3. EMI Measurement Data — Cable Egress Bottom and Back Door Closed

Frequency Amplitude (dB uV/m) - Amplitude (dBuV/m)
(MHz) (Antenna — vertical polarization) | (Antenna — horizontal polarization)

>7 30.75
66 29.88

188 33.47 32.02

200 31.8

251 34.17 34.72

282 40.33

377 38.88

200 40.57

627 46.94 45.97

750 43.885

1250 54.68




Figure 1.8 and Figure 1.9 are the screen shots of the EMI measurement data with

the same measurement setups except that the back door of the node rack cabinet was

open. The data from these screen shots is tabulated in Table 1.4.
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Figure 1.9. EMI Measurement Data — Cable Egress Bottom, Door Open and
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Table 1.4. EMI Measurement Data — Cable Egress Bottom and Back Door Open

Frequency Amplitude (dB pV/m) Amplitude (dBuV/m)
(MHz) (Antenna — vertical polarization) | (Antenna — horizontal polarization)

49 30.935
125 38.56
188 33.47
251 34.17 46.26
282 41.1 50.46
377 44.59 50.04
418 41.02 48.04
500 46.51 51.21
564 42.64 50.32
627 50.41 56.06
668 44.644
750 52.055 57.945
937 47.84
1130 54.7 60.02
1200 52.5
1250 55.12 60.67
1380 59.72 65.61
1500 52.86 20.56
1630 60.49 54.32
1660 56.25
1680 55.95
2130 65.01 58.88

Figure 1.10 is the comparison of the tabulated measured frequencies in the
frequency range of 30 MHz — 6 GHz. For each frequency that has differing measured
amplitudes corresponding to different antenna polarization, the maximum value is picked
and plotted. It is seen that there is a general increase in the EMI of 5-10 dBuV/m in the

low-frequency range when the rack cabinet doors are open. In the high-frequency range,
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there is little detectable radiation above the noise floor at 20 dBuV/m with the cabinet
doors closed. However, when the doors are open, there is an increase of again, 5-10
dBuV/m at eight frequencies. Atthe BYNET frequency of 627 MHz and the second
harmonic at 1254 MHz, the increase is about 11 dBuV/m and 6 dBuV/m respectively.
These frequencies correspond to the common-mode current on the outer shields of the
BYNET cables. Overall, the cabinet rack provides additional shielding effectiveness of
up to 10 dBuV/m, though it is not intentionally designed with shielding effectiveness in

mind. This is consistent with previous measurements and assessments [2].
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Figure 1.10. Comparison of EMI for Cabinet Rack Doors Open and Closed with Cables
Exiting Bottom

Figure 1.11 and Figure 1.12 are the screen shots of the data of the EMI
measurement with the AWS controller on and connected, normal traffic to BYNET

cabinet, BYNET Cables Fed into the top of the BYNET cabinet, back doors
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closed and the antenna was at 2 m height and in the vertical orientation and horizontal
orientation respectively with regard to the chamber ground plane. Figure 1.13 shows the

node rack cabinets’ doors were closed and the cable egress was changed from bottom to
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Figure 1.11. Measured EMI — Cables Egressing from the Top of the Node Cabinet and
Vertical Antenna Polarization
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Horizontal Antenna Polarization
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top. The data from these screen shots is adjusted and tabulated in Table 1.5. The
measurements for the frequency range from 30 MHz — 1 GHz are shown in Figure 1.14.
Of particular note in this case is the 627 MHz fundamental of the BYNET data stream.
The measured radiation of 72 dBuV/m exceeds the FCC 3 m regulatory limit of 47
dBuV/m by nearly 25 dB for this configuration. Testing was done for the cables

egressing from the top with only the cabinet doors closed.

Figure 1.13. Cabinet Rack with the Cable Harness Egressing From the Top



Table 1.5. EMI Measurement Data — Cable Egress Top and Doors Closed

Frequency Amplitude (dBuV/m) Amplitude (dBuV/m)
(MHz) (Antenna — vertical polarization) | (Antenna — horizontal polarization)
45 30.464
142 39.608
161 33.93
239 38.33
251 40.735 46.735
282 46.706
377 45.78 48.28
418 42.97 49.89
500 46.47 48.73
564 45.59 48.35
627 63.75 72.43
668 50.044
750 52.115 55.485
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Figure 1.14. Comparison of the Measured EMI for Vertical and Horizontal Antenna
Polarizations — Cables Egressing From Top of Node Cabinet
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Figure 1.15 shows the comparison of the EMI measurements for cables egressing
from the top of the node rack cabinet and cables egressing from the bottom of the cabinet
in the frequency range of 30 MHz — 1 GHz. The cabinet doors were closed. For the
frequencies that have different value of amplitude corresponding to the different antenna
polarization, only the maximum value is plotted. It is observed that at most frequencies,
when cables exit the top of the node rack cabinet, the measured radiation is much higher
than that when cables egress from the bottom of the cabinet, especially at the clock

frequency of 627 MHz, the difference reaches 25 dBuV/m.
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Figure 1.15. Comparison of Measured EMI for Cables Exiting Top and exiting
Bottom of Node Rack Cabinet

1.4, CONCLUSION
The measurements on the NCR node rack equipment focused on two aspects of

the configuration in particular: 1) the additional shielding effectiveness provided by the
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equipment rack; and, 2) the EMI potential risk associated with the cables egressing from
the top of the equipment, as opposed to through the bottom of the rack and to the
conducting floor of the chamber. The measurements demonstrated an additional
shielding effectiveness of 5-10 dBuV/m for the rack cabinet, even though it was not
specifically for shielding purposes.

The cable egress from the top of the rack equipment resulted in EMI at the 627
MHz BYNET fundamental that was 30 dB higher than that with the cables exiting the
bottom of the node rack cabinet, and exceeded the FCC regulatory limits by more than 20
dB. This is expected to present severe risk to EMI certification compliance if cables are

allowed to egress from the top of the rack.
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2. SWEPT FREQUENCY MEASUREMENTS AND STUDY

2.1. INTRODUCTION

The primary purpose of this study is to use swept frequency method to
experimentally examine the EMI shielding effectiveness of the NCR node rack to
determine the ramifications on electromagnetic interference/compatibility (EMI/EMC)
regulatory compliance if cables egress from the top (roof) of the rack instead of the
bottom, which is standard in today’s products. Another purpose of this study is to apply
various cabinet and cable egress setup combinations to the NCR node rack, measure the
EMI shielding effectiveness, analyze and synthesis the measurement data for the
optimization of the design of the node rack in the future.

As described in Chapter 1, the major source of high frequency EMI of the NCR
node rack comes from the common-mode current on the cables, which is caused by the
inherent imperfections of the connector, printed circuit boards, and cabling systems used
in the equipment. Prior experimental surveys indicated that BYNET clock frequencies in
the 627 MHz range are associated with the dominant radiated emissions due to cable
egress [3].

In this study, an NCR node rack was mocked up using a Rittal 19-inch, 40U rack
with doors and side panels (skins), populated with an empty node chassis and a simulated
node cable. Swept frequency measurements for S-parameters were conducted in three
ways using different measurement setups: spectrum analyzer (SA) setup, two-port vector
network analyzer (VNA) setup and three-port VNA setup. After the convergence of the
first two methods, the SA setup and the two-port VNA setup, was acquired, the S-
parameters measurements of the node rack were done mainly using a method of three-
port VNA.

This study confirms that, the rack cabinet, while not specifically engineered to be
a superior EMI shielding enclosure, does, however, provide on the order of 10 dB of
overall shielding effectiveness that is essential in meeting EMI regulatory requirements
with the current system. From an EMI compliance standpoint, it is also shown that, with
the current architecture of the cabinet’s shielding, having cables exit the top of the node

rack is very risky compared with having the cables exit the bottom of the rack.
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It is worth mentioning that although a node rack was studied, the measurement
setup is applicable to other rack types; thus the conclusions should apply to other types of
racks (storage and BYNET) as well.

2.2. PCB DESIGN
To simulate the EMI problem in the real rack cabinet and measure the E field, A
PCB, as shown in Figure 2.1, was used in the computer node to provide a differential

current path for the signals.

Edge mount SMA
Connector

G
S
S
G
I

Figure 2.1. Schematic Plot of the 2-Layer PCB

By using HyperLynx the geometry of the traces is represented as shown in Figure

2.2. The differential impedance of the two traces on the PCB is designed as:

Z i :zzo(l_k) (1)

Let Z,, = 100 Ohms, and assume the coupling coefficient is kK =10% , then the

impedance of a single trace is Z, = 55.56Q) . The real PCB made is shown in Figure 2.3.
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The actual impedance of each trace on the PCB is measured using a TDR, as indicated in
Figure 2.4. The measurement results along the traces, as in Figure 2.5, clearly show the
impedance of each single trace is around the design value 55.56 Ohms, with a variance of

no more than 1 Ohm.

W=101.40 mil, S=84 mil

1 oz copper

4

H=62 mil

Figure 2.2. Geometry of the Differential Signal Traces

Figure 2.3. 2-Layer PCB with Differential Signal Traces and with Connectors Mounted



Figure 2.4. TDR Test Setup for Single Trace on the PCB
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Figure 2.5. TDR Measurement Results of Impedance of the Differential Traces on PCB
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2.3. MEASUREMENT SETUP

The equipment under test (EUT), the rack cabinet shipped from NCR, was staged
in the UMR EMC Lab’s 3-m semi-anechoic chamber, as seen in Figure 2.6. The EUT is
a passive unit as it contains no power source and only a single computer node chassis.
Polystyrene foam boxes wrapped with aluminum foil are used as the electromagnetic
substitutions for the computer nodes normally in an operational node rack. The PCB with
two differential signal traces, as designed in Section 2.2, was put into the computer node,
shown in Figure 2.7, to provide a differential current path for the signals coming from
the hybrid in the SA setup or coming from the vector network analyzer in the methods of
two-port VNA setup and three-port VNA setup. The excitation sources, shown in Figure
2.8, are the twisted wires that connect to the ends of the differential signal traces and exit

the computer module at the back of the cabinet.

Figure 2.6. Cabinet Setup in the UMR EMC Lab’s 3-m Semi-Anechoic Chamber
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Figure 2.7. The PCB Inserted into a Slot of a Module in the Computer Node

Figure 2.8. Two Twisted Wires as the Radiation Source in the S-parameter Measurements

2.3.1. Spectrum Analyzer (SA) Setup. The schematic measurement setup is
shown in Figure 2.9. The signal generator used is HP 8530 Sweep Oscillator. The swept
signal has the frequency range of 100 MHz to 2 GHz, with the sweep time at 0.01s and
power level at 5 dBm. The spectrum analyzer used is Rhode and Schwarz FSEB (20 Hz
to 7 GHz). Figure 2.10 shows the two devices. The hybrid was set up in the rack cabinet
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as in Figure 2.11 and Figure 2.12 is a close view of the hybrid. It has the outputs of either
common mode voltage or differential mode voltage. When A is the input, C and D ports
form differential outputs. When B is the input, C and D ports form common mode
outputs. The measurement setup combinations are shown in Table 2.1. The power
spectrum was measured by the antenna at the height of Im and at the distance of 1.5 m

from the cabinet’s back door.

Cabinet
\ Signa] S .
\ o] Sweep oscillator
Hybrid
~Radiation sources: twisted Spectrum analyzer
(SA)
I RF input

Antennd__

Figure 2.9. S21 Measurement Setup Using SA with Cables Exiting Bottom

Figure 2.10. Spectrum Analyzer and Sweep Oscillator for S21 Measurements of Cabinet



Figure 2.11. Hybrid Setup in Spectrum Analyzer or 2-port VNA Measurements

Figure 2.12. Close View of Hybrid

Table 2.1. Cabinet Setups and Antenna Polarization Setups

23

ANTENNA
CABINET SETUP

HORIZONTAL

VERTICAL

=  Back door open
» Differential mode currents from hybrid

= Back door closed
» Differential mode currents from hybrid

=  Back door open
*  Common mode currents from hybrid

* Back door closed
*  Common mode currents from hybrid

AN ANAN

NNANANAN
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The measured power should assume the same shape of the Sz curve only with a

difference in amplitude. S21 can be approximately found through its definition,

S.. = V__ — Vmeasured _ \/Pmeasured -50Q _ \/Pmeasured (2)
21 — + - - -
v Vsignal I:)signal -50Q \ I:)sigmal

and the S21 in dB can be calculated as

Sz1 (dB) = Pmeasured (dBm) - I:)signal (dBm) + Cable — IOSS(dB) (3)

where P .q and Py, are power in watts. P, (dBm)is 5 dBm and the Cable_loss is

measured by VNA. With antenna factor AF known, the electric field E is

E(dBV/m) =S, (dB) + AF (dB) (4)

2.3.2. Two-Port VNA Setup. The schematic two-port VNA measurement setup is
shown in Figure 2.13. The VNA used is HP 8753D (30 kHz to 6 GHz). The output power
of the signal is 5 dBm. The hybrid setup is the same as that in Section 2.3.1 and its
outputs are either in common mode or in differential mode. The distance of the antenna
to the cabinet door is 1.5 m. The two-port VNA measurements are done using the same
rack cabinet and antenna setup combinations as in Table 2.1. The electric field E can be

acquired based on the measured S,, using Equation (4).

2.3.3. Three-Port VNA Setup for Mixed-Mode S-parameter Measurement. A
schematic of the three-port VNA measurement setup for mixed-mode S-parameter
measurement is shown in Figure 2.14, which represents the test setup when cables exit
the bottom of the cabinet. Absorbing floor tiles are used to absorb waves reflected by the
ground. Figure 2.14 shows the complete current path in the measurement setup. When
cables egress from the top of the rack, they must make their way back to the floor in

order to connect to power and other connections. This is dictated by test configurations
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possible at an Open Air Test Site (OATS). An OATS has no facility for cables to egress
the test volume other than through the center of the turntable floor. OATS power to the
rack comes from beneath the turntable and most other connections require cables to reach

the floor. Figure 2.15 and 2.16 show the test setup when cables exit the top of the cabinet.

Cabinet

VNA
Port 1 Port 2
\o 0

\ Hybrid

~Radiation sources: twisted wires

Antenna

Figure 2.13. Two-Port VNA Setup for S21 Measurement of NCR’s Rack Cabinet

Back Front

Computer module

\ Connector
4-port VNA \

a
Two-layer PCB

¢

Port1  Port 2|

Port 312 Cables

(Radiation source)

Coaxial cable]
7/
& OO

Figure 2.14. Schematic Representation of the Three-Port Mixed-Mode S-Parameter
Measurement Setup for Cables Exiting the Bottom of Cabinet
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Figure 2.15. Schematic Representation of Three-Port Mixed-Mode S-Parameter
Measurement Setup for Cables Exiting the Top of Cabinet
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Figure 2.16. Two Twisted Wires Exiting the Top of Cabinet
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The antenna was set at a distance of 1.5 m away from the back door of the rack
cabinet. To obtain the maximum electric field, the antenna was oriented to measure
vertical and horizontal polarizations at four different heights. Table 2.32 shows the
antenna setups for each measurement. The antenna height was allowed to vary from 61
cm to 170 cm, except in the case of vertical polarization where the size of the antenna

elements prohibited measurements at 61 cm from the floor.

Table 2.32. Various Antenna Heights and Polarizations for Each Cabinet Setup

Polarization

HORIZONTAL VERTICAL
Height

61 cm

100 cm

135 cm

NANANEN
SIS

170 cm

A vector network analyzer, HP 8720ES (50 MHz to 20 GHz), was used for the
three-port mixed-mode S-parameter measurement. The software used was Agilent
Multiport version 1.38. The actual cabinet setup is shown in Figure 2.17, where ferrite
floor tiles are used and twisted wires are used as the radiation source to intensify the
electric field which would have been very weak if using the BYNET cable. The back
door is not shown in the figure but measurements were performed with the back door on
and closed. The three port mixed-mode S-parameter measurements were done for
various cabinet setups described in Table 2.3. As described in Table 2.32, for each setup
the measurements were done at different antenna heights and polarizations with the

purpose of finding the maximum radiations.



Table 2.3. Cabinet Setups

Figure 2.17. Cabinet Setup for Three-Port Mixed-Mode S-Parameter Measurements

Back door
Side panels

Cable exit

Door closed
Panels on

Door off
Panels on

Panels off
Door closed

Panels off
Door off

Bottom

4

v

v

v/

Bottom
Ferrite floor

Top

Top
Ferrite floor

No twisted cables

No twisted cables
Ferrite floor

SIS SIS S

IS SIS S

IS SN S

SIS S <
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To find the radiation caused by common-mode currents and differential-mode

\" . .
currents, the common mode S-parameter s, (si° = ———— ) and the differential mode

+ +
1 V2

Vv
S-parameter s>’ (i = ——) need to be found from the measured unbalanced S-

1 2
parameters. Using the method described in [4] and [5], the common- and differential-
mode S-parameters are derived.
The three port unbalanced s-parameter matrix is defined in equation (5). The

quantities b, b, and b, are the reflective scattering wave of port 1, port 2 and port 3
respectively; the quantities a,, a, and a, are the incident wave of port 1, port 2 and port 3

respectively, as shown in Figure 2.18.

b, Sii S S5 | q
b, |=| Sy S» Sun 2 5[5]3 a, )
b, S31 Sy Sy 3 Y
<\, \\»

—> Port 1

Vil ba Port3  [UL >

—_— VU Vi Port 2 as b Is V3

Vol by a

Figure 2.18. Nodal Scattering Wave Representation of a Three-Port Measurement

The three port mixed-mode s-parameter (complex) matrix is defined in Equation
(6). Figure 2.18 shows the corresponding mixed-mode scattering wave representation of
the three-port S-parameter measurement setup. Pa is the antenna port. AP: represents the

signal ports, with one as the differential-mode port 1 (represented with upper script d)
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and the other as the common-mode port 1 (represented by upper script €). The quantities
b, by and b’ are the reflective mixed-mode scattering wave of differential port 1,
antenna port 2 and common-mode port 1 respectively; a’, a)' and a° are the incident

mixed-mode scattering wave of differential port 1, antenna port 2 and common-mode

port 1 respectively.

d dd dA de d d
b1 Sii S, Sy q q
A Ad AA Ac Al_ A
bz =Sy Sn o Sy a, [= [ASL a, (6)
c cd cA cc c c
b1 Sii S, Sy a q
<\, \»
e 1
d
vi Ihoal AP Pa VU N\
— % W _ aA bA IA VA
c rc c c 2 2 2 2
V" I} a] b

Figure 2.19. Mixed-Mode Scattering Wave Representation of Three-Port Setup

To find the mixed-mode S-parameters from the unbalanced S-parameters, the

transformation matrix here is defined as

~1
NG (1) (7)

1
[m]=—| 0
1

S = O

and the mixed-mode s-parameter can be found as

1 S11_321_512"*'322 2(513_523) 511_521+312_322

-1

[AS]Sz[m][SL[m] :E S31—S3 2333 S5 1S5, (8)
S1115,,=5,=S5, 2(513+523) S+, 15,15,



31

The differential mode S-parameters and the common-mode S-parameters then are

characterized with Equation (9) and (10) respectively.

1

de SdA _(511_321_S1z+522) S137Sy3

11 2 || 2 (9)
sAd SAA - 1

2! > _(531_532) Sy

2
1

SAA sAc S3; 5(531"'532)

22 21 | _ (10)
cA cc

Si2 S

1
(513+Sz3) 5(311+521+512+522)

To find the radiation at the antenna, the electric field E; caused by the
differential-mode current and the electric field E_ caused by the common-mode current
need to be found. From the differential-mode S-parameter s." and the common-mode S-
parameters,°, with the antenna factor AF (in dB) considered for the unbalanced S-

parameter term S, ands,,, the magnitude of E;and E_(both in dBV/m) are

E, =20log,, +AF (11)

1
_(331_332)
2

E, =20log,, +AF (12)

(52+53)

2.4. RESULTS AND DISCUSSION

There was some concern that the use of the hybrid would alter the fields normally
emitted from the cabinet in the absence of the hybrid. Therefore, the purpose of
performing the S-parameter measurements using the SA setup and two-port VNA setup
was mainly to validate all three setup methods before using the third method, the three-
port VNA for mixed-mode S-parameter measurements, to extensively investigate the

shielding effectiveness of the rack cabinet.
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2.4.1. Measurement Results for SA Setup and Two-Port VNA Setup.
Convergence of the first two methods, discussed in Section 2.3.1 and Section 2.3.2, is as
expected for all cases of the cabinet setups described in Table 2.1 with the cables exiting
the bottom. S;; is a measure of the electric field at the antenna, normalized so that it is
independent of the input voltage to the PCB within the cabinet. A larger value of [S,)|
indicates a higher value of the radiated electric field for the same amount of the input
voltage. With antenna factor known, as in Equation (4) or in Equations (11) and (12), the
electric field E at antenna point is plotted, compared and discussed.

Figure 2.20 through Figure 2.23 show the electric field , over the frequency range
of 100 MHz to 2 GHz at the antenna point (antenna height is 1 m) for various cabinet
setups and with the twisted cables exiting the bottom of the cabinet. It is seen that the
maximum |E| in dBV/m calculated from the measured power spectrum in the SA
measurement setup, matches the result from the two-port VNA measurements very well.
The match indicates that the same radiated emissions were measured by the two methods,
which means that the measurement setups are valid. Figure 2.24 shows the cable loss of
the whole path in the SA setup acquired by “through” (S21) measurement using VNA.
Figure 2.25 is the antenna factor data provided by the manufacturer. Both were needed in

the calculation of the |E|.
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Figure 2.20. Radiated Emission for Differential-Mode Current with Cabinet Door Closed
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Figure 2.25. Antenna Factor (AF) of Sunol Sciences’ JB Series Antennas from Sunol
Sciences’ Website

2.4.2. Measurement Results for Three-Port VNA Setup. To characterize the
EMI Radiation from the cabinet, results of electric field |E| acquired from the
measurements of three-port mixed-mode S-parameter for various cabinet setups are
compared and discussed. The frequency range considered is 100 MHz to 2 GHz. At each
frequency only the maximum values of |E| are considered for all antenna heights and
polarizations. The cable attenuation was eliminated from the results through the three
port calibration of the measurement.

2.4.2.1. Radiation source — common-mode currents. For most devices
common-mode (CM) currents are a significant source of electromagnetic interference [6].

Results for | E, |, the magnitude of the electric field determined from the common-mode

measurement of S,,°, will be discussed based on the measured three-port unbalanced S-

parameters using the three-port VNA setup discussed in Section 2.3.3
2.4.2.1.1. Cabinet on ground plane. Figure 2.26 shows the radiated emissions of
the cabinet at the antenna point with the radiation sources, the twisted cables, exiting the

top of the cabinet. Figure 2.27 shows the radiated emission of the cabinet with the similar
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setting as in Figure 2.26 but with the twisted cables exiting the bottom. Both figures have

plots of the maximum value of | E_ | for all four cabinet setups — door closed and side

panels on, door off and side panels on, side panels off and door closed and side panels
off and door off in the frequency range of 100 MHz to 2 GHz. It is observed that, first,
for all four cabinet setups, with cables exiting either top or bottom, the cabinet provides
little shielding effectiveness (< 4 dBV/m) at lower frequencies and more shielding
effectiveness (> 15 dBV/m) for higher frequencies; second, the antenna detected the
overall strongest radiation only when the back door was taken off and detected the overall
weakest radiation when the two side panels were taken off while the back door was kept
closed. Even with the cabinet turned at 45 degree and 90 degree, as shown in Figure 2.28
and Figure 2.29, the radiation detected by the antenna with only side panels taken off is
still weaker than that in the case of no back door for the cabinet setup. It may be
explained that the side panels reflect waves in the cabinet. When only the back door was
taken off while the side panels were kept on, all the radiation came out from the back
door. But when side panels were also taken off, the radiation came out the cabinet in
three directions, so the total radiation from the cabinet may have increased but the field

detected at the antenna point was decreased.
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Figure 2.26. EMI Radiation by CM Current with Twisted Cables Exiting Top
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Figure 2.28. EMI Radiation by CM Current with Twisted Cables Exiting Top for
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Figure 2.29. EMI Radiation by CM Current with Twisted Cables Exiting Bottom for
Various Cabinet Side Panel Setups

One of the important objectives was to find out how the radiation varies with the

change of the cable egress. A comparison was done for twisted cables exiting the top

versus twisted cables exiting the bottom for each cabinet setup, Figure 2.30 and Figure

2.31show results for the cabinet back door closed, Figure 2.32 and Figure 2.33 for the

cabinet back door taken off, Figure 2.34 and Figure 2.35 for the cabinet side panels taken

off but the back door kept closed and Figure 2.36 and Figure 2.37 for both the cabinet

side panels and the back door taken off. It is observed that there is no apparent trend

existing for radiations of different cabinet setups. But at higher frequencies (> 1 GHz),

for most frequency points the radiation is higher when cables exit the top of the cabinet

than when cables exit the bottom.
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Figure 2.31. Difference of the EMI Radiation of the Two Cases in Figure 2.30
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2.4.2.1.2. Cabinet on ferrite floor. A Ferrite floor absorbs waves otherwise
bounced back by the ground and eliminates the interference introduced by the reflected
waves in the measurement of the electric field radiated by the cabinet. A ferrite floor is
typical in the environment of NCR’s working node racks. Therefore measurements are
performed for cabinet setting on the ferrite floor.

Figure 2.38 shows the radiation for various cabinet setups with the cables exiting
the top of the cabinet; Figure 2.39 shows the radiation for the same cabinet setups as in
Figure 2.38 with the cables exiting the bottom of the cabinet. Both figures have the plots

of | E, | for all four cabinet setups — door closed and panels on, door off and panels on,

Panels off and door closed and panels off and door off in the frequency range of 100
MHz to 2 GHz. Results are similar to those previously discussed for the cabinet setting
on the ground plane. It is found that, for all four cabinet setups, with cables exiting either
top or bottom, the cabinet at some frequencies provides less than 4 dBV/m of shielding
effectiveness at lower frequencies and more than 15 dBV/m shielding effectiveness for

higher frequencies.
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Figure 2.38. EMI Radiation by CM Current with Twisted Cables Exiting the Top for
Cabinet on a Ferrite Floor
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Figure 2.39. EMI Radiation by CM Current with Twisted Cables Exiting the Bottom for
Cabinet on a Ferrite Floor

It is also true that with the cabinet setting up on the ferrite floor, the antenna
detected the overall strongest radiation only when the back door was taken off and
detected the overall weakest radiation when the two side panels were taken off while the
back door was kept closed.

To find out how the radiation changes with the position of the cable egress,
comparisons were made for cases of cables exiting top versus cables exiting bottom for
each cabinet setup. Figure 2.40 and Figure 2.41 show the radiation comparison with a
cabinet’s back door closed. Figure 2.42 and Figure 2.43 are the radiation results and
comparison when the cabinet’s back door is taken off. Figure 2.44 and Figure 2.45 show
the radiation when cabinet’s side panels are taken off while the back door is kept closed.
Figure 2.46 and Figure 2.47 are the plots of the radiated emission of the cabinet when

both the side-panels and the back door are taken off.
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Figure 2.40 merits special attention. It shows that when cables exit the top of the
rack cabinet, the radiations at almost all frequencies are higher than those measured for
the cabinet setup where the twisted cables exit the bottom of the cabinet. Of particular
note here are the frequencies of 627 MHz, 1254 MHz and 1881 MHz, which are the
fundamental, the first harmonic and the second harmonic respectively of the BYNET data
stream in the real working cabinet [1]. For the case of cables exiting the top, the radiation
strength at the above mentioned frequencies are about -20 dBV/m, -17 dBV/m and -25
dBV/m respectively, which are at least 5 dBV/m higher than the corresponding values for
a corresponding case which has the cables exiting the bottom of the cabinet.

Figure 2.41 shows the difference, in terms of A| E_ | in dBV/m, of the radiation as
plotted in Figure 2.40. Positive values of A| E_ | imply that the radiated electric field from

cables exiting the roof of the rack cabinet is larger than the corresponding radiation when
cables exit the bottom of the rack cabinet. Figure 2.41 shows that for most frequencies in
the range investigated, bringing cables out of the roof of the rack increased electric field
radiation. This increase is greater than 15 dBV/m at some frequencies. The substantial
increase in common-mode radiation over a broad frequency range is striking. This result
shows that merely altering the means of cable egress to the top of the rack cabinet
presents substantial technical risk to the ability to meet regulatory requirements on
radiated emissions. To change the means of cable egress in a safe manner probably
requires a substantial re-architecture of rack/cabinet shielding and cabling.

At the frequencies of significant interest, radiated emissions levels from NCR’s
systems often have much less than 10 dBV/m of margin. (Margin is the difference
between the emission level and the regulatory limits). In fact at the frequencies that
produce the highest emission levels, such as the BYNET frequencies, the margin may be
only 2-4 dBV/m. Therefore, an increase in emission levels of 10-15 dBV/m might be a
catastrophic change in terms of compliance with worldwide regulatory limits (CISPR 22).

For the cabinet setup with no back door, Figure 2.42 shows that except the
frequency range 800 to 1200 MHz, when cables exit the top of the rack, at most
frequencies the radiation is higher than that measured for the cabinet setup where cables
exit the bottom. For the particular frequencies of 627 MHz and 1254 MHz, which are the

fundamental and second harmonic of the BYNET data stream in the real working cabinet
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[1], the radiation is still much higher than that measured for the cabinet setup where
cables exit the bottom. For cables exiting the top, the radiation levels at 627 MHz and
1254 MHz are about -13 dBV/m and -5 dBV/m respectively, which are about 5 to 10
dBV/m higher than the radiation when the cables exit the bottom.

Regardless of the presence of the back door, for the cabinet setups with side
panels taken off, as shown in Figure 2.44 and 2.45, the radiation in the cabinet setups
where cables exit the top is lower at some frequencies and higher at other frequencies
than that measured for the cabinet setup where cables exit the bottom. It is noticeable
that, for cables exiting the top, the electric field strength at frequencies of 627 MHz, 1254
MHz and 1881 MHz are lower than that the electric field strength when the cables exit
the bottom.

Figure 2.48 shows the radiations caused by common-mode current without
twisted cables as the radiation source. The signals stop at the end of the traces on the PCB
board in the module (refer to Figure 2.7 and Figure 2.8). It is concluded that the cabinet
has a noise floor of about -60 dBV/m with the back door closed and a noise floor of about

-50 dBV/m when the back door is taken off.

IEl. dBV/m

back door closed -- no cables - - - - -

no back door -- no cables

| |

1 1

1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (MHz)

Figure 2.48. EMI Radiation by CM Current for Cabinet without Twisted Cables
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2.4.2.1.3. Cabinet on ferrite floor and copper tape on side panels. It was found
that the side-panels had poor contact with the brackets adhered to them. Using a LCR
meter, it was detected that the value of the contact resistance between the panels and the
brackets was in the number of thousands of Ohms. Therefore copper tape was used on the
side panels to reduce high contact resistance between the side-panels and the brackets.
The mixed-mode S-parameters were measured for the cabinet with the improved side-

panels. The calculated | E, | is shown in Figure 2.49 with cables exiting top and Figure

2.50 with cables exiting bottom over a frequency range of 100 MHz to 2 GHz. Both

figures have the plots of | E_ | for two cabinet setups, back door closed and side panels on

and back door off and side panels on. It is observed that, for both of the cabinet setups,
with cables exiting either or bottom, the cabinet provides as low as less than 4 dBV/m of
shielding effectiveness at lower frequencies and as high as more than 15 dBV/m
shielding effectiveness for higher frequencies.

To observe how the radiation varies with a change in the position of the cable
egress, a comparison was made for cases of cables exiting the top versus cables exiting
the bottom for two cabinet setups, a closed cabinet with all panels and doors on and a
cabinet without back door, as illustrated in Figure 2.51 and Figure 2.52 respectively. It is
noticeable that overall, when cables exit the top, the radiation is higher than that when
cables exit the bottom. However, exceptions always happen at frequencies between about
800 MHz to 1200 MHz. Specially when cables exit the top, the radiation is always much
lower than that measured in the cabinet setup where the cables exits bottom. The
difference can be as large as 10 dBV/m. This phenomenon was observed in all the
previous measurements (refer to Figure 2.42 and Figure 2.43). The explanation is not
available yet.

2.4.2.2. Radiation source — differential-mode currents. For most electric
devices differential-mode (DM) currents causes much lower radiation than common-
mode currents do. For the NCR’s node rack cabinet with the installation of the PCB
containing the simulated two differential signal traces, the radiation is relatively low
compared with the radiations caused by common-mode current as in the discussions of

Section 2.4.2.1.
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Figure 2.49. EMI Radiation by CM current with Twisted Cables Exiting Top for Various

Cabinet Back Door Settings and with Copper Tape Used for Side Panels
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Figure 2.50. EMI Radiation by CM current with Twisted Cables Exiting Bottom for
Two Cabinet Back Door Settings and with Copper Tape on Side Panels
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Figure 2.51. EMI Radiation by CM current for a Closed Cabinet with Two Cable
Egresses and with Copper Tape Used for Side Panels
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Figure 2.52. EMI Radiation by CM current with Two Cable Egresses for a Cabinet
without Back Door and with Copper Tape on Side Panels
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Figure 2.53 and Figure 2.54 show the electric field strength over the frequency of
100 MHz to 2 GHz for various cabinet setups on the ground plane with twisted cables
exiting the top and the bottom of the cabinet respectively. Overall the electric field

strength | E; | increases with frequency until reaching the maximum value of -14 to -12

dBV/m in the frequency range of 1700 to 2000 MHz. Comparing the two figures with
corresponding plots for common-mode currents (refer to Figure 2.26 and Figure 2.27) in
previous discussions, it is observed that for the rack cabinet, the radiation caused by the
differential-mode currents is about 10 dBV/m lower than that caused by the common-
mode currents. Figure 2.55 and Figure 2.56 are the plots for radiation when the cabinet
side panels were taken off, and with the twisted cables exiting the top and exiting the
bottom of the rack cabinet respectively. It is seen that the effects of side panels on the
radiation caused by differential-mode current are similar to the effects observed for

common-mode current excitation.

m— OOr closed
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Figure 2.53. EMI Radiation by DM Current with Twisted Cables Exiting Top for
Various Cabinet Setups
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Figure 2.55. EMI Radiation by DM Current with Twisted Cables Exiting Top for
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Figure 2.56. EMI Radiation by DM Current with Twisted Cables Exiting Bottom for
Various Cabinet Setups in the Absence of Side Panels

Figure 2.57 through Figure 2.60 show the comparison of the radiation | E; | for

two different cable egresses — cables exiting the top and cables exiting the bottom in
different cabinet setups. Specially these configurations include the cases of back door
closed and side panels on, back door taken off and side panels on, side panels off and
back door closed and both side panels and back door off respectively. It is observed that
for all four cabinet setups, at most frequencies, especially for frequencies higher that
1200 MHz, the radiations are stronger when cables exit the top of the cabinet, regardless
of the configuration of the cabinet back door and side panels. This phenomena is in
contract to the cases for common-mode current (refer to Figure 2.30, Figure 2.32, Figure
2.34 and Figure 2.36), where for most frequencies higher than 1 GHz, often the
radiations are stronger when cables exit the top of the cabinet than that when cables exit

the bottom of the cabinet.
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Figure 2.57. EMI Radiation Caused by DM Current for a Closed Cabinet with Two
Cable Egresses
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Figure 2.58. EMI Radiation by DM Current for a Cabinet without Back Door and with
Two Cable Egresses
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Figure 2.59. EMI Radiation by DM Current for Cabinet without Side Panels for

Two Cable Egresses
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Figure 2.60. EMI Radiation by DM Current for Cabinet without Back Door and Side
Panels for Two Cable Egresses
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Figure 2.61 and Figure 2.62 indicate the radiations over a frequency range of 100
MHz to 2 GHz for cabinets on ferrite floor tiles with cables exiting the top and the

bottom of the cabinet respectively. The | E, | increased with frequency, as incases for a

cabinet setting on the ground. Comparing with corresponding plots for the same cabinet
setup with common-mode currents, it is seen that the radiations caused by differential-
mode currents is about 10 dBV/m lower than that for cabinet with common-mode
currents. Figure 2.63 through Figure 2.66 compare the radiation of the cabinet with two
kinds of cable egresses — cables exiting the top and cables exiting the bottom in four
different cabinet setups, which are back door closed and side-panels on, back door off
and side-panels on, side-panels off and back door closed and both cabinet’s side-panels
and back door off. Comparing with the radiation for the same cases without a ferrite
floor, it is seen that in average the radiation decreased about 5 dBV/m., which is

reasonable as a ferrite floor reduces ground reflections to the wave.
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Figure 2.61. EMI Radiation by DM Current with Twisted Cables Exiting Top for
Various Cabinet Setups on a Ferrite Floor
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Figure 2.64. EMI Radiation by DM Current with Two Cable Egresses for a Cabinet
without a Back Door on a Ferrite Floor

-20

25 Lo

30} -

35} -

40 -

451 -

[E4l. dBV/m

50 -

BS54 - - --

60} -4--

_ | e no side panels & cables exittop | ' |
no side panels & cables exit bottom

|
|
|
|
L1
|
|
|
|
L1
|
|
|
|
L - -4

-65
0

| | |

l l l

L 1 L 1

200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (MHz)

Figure 2.65. EMI Radiation by DM Current with Two Cable Egresses for a Cabinet
without Side Panels on a Ferrite Floor

61



10

40

IE,), dBVim

2R

-0

62

| | | I
b AR R L !
L ' i | F i ; ; f g
| ! _| il Aa o Wil If ! 'ﬂl R 4 .‘( T, } \
l L ¥ ,'l PRI gl b/ f H'-)‘dlf }
o WY R R : i ol b T
Al R TR L :
Ay T
=5 .I .r'”,' ll u - - Ill ______j__ o
| | T . i
e W : !
-7"||.! 1
'-. . Il r| l
i’ ﬁl : : , : : : : ]
!‘ !' s i back door, noside panels & cables exit top
| s 110 back door, nosside panels & cables exit bottom
L L I A
2000 400 @O0 800 1000 1200 1400 1600 1800 2000

Frequency (MHz)

Figure 2.66. EMI Radiation by DM Current with Two Cable Egresses for a Cabinet

Figure

without a Back Door and Side Panels on a Ferrite Floor

2.67 shows the radiations caused by differential-mode current without

twisted cables as the radiation source. It is seen that the cabinet has a noise floor about -
60 dBV/m when the back door of the cabinet which drops to about -70 dBV/m when the
back door is taken off.

Figure 2.68 through Figure 2.71 show the results for radiation over the

frequency range of 100 MHz to 2 GHz for cabinets on ferrite floor tiles. The side panels

of the cabinet were grounded by applying copper tape between the side panels and the

brackets on the side panels for the purpose of reducing the contact resistance. It is

interesting to see that for the case of cables exiting the bottom with copper tape used

(Figure 2.71), the maximum value of the radiation over the frequency range 100 to 2000

MHz is increased by about 5 dBV/m , compared with the maximum radiation in a similar

case without copper tape applied ( Figure 2.64), where the maximum radiation is about -

18 dBV/m in the frequency range of 800 to 1000 MHz.
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Figure 2.68. EMI Radiation by DM Current with Cables Exiting Top for Two Cabinet
Setups on a Ferrite Floor and with Copper Tape on Side Panels
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Figure 2.70. EMI Radiation by DM Current with Two Cable Egresses for a Closed

Cabinet on Ferrite Floor and with Copper Tape on Side Panels
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2.5. SUMMARY AND CONCLUSIONS

The NCR node rack cabinet with the controlled configurations provides an
average of 10 dBV/m shielding effectiveness, which is essential in meeting EMI
regulatory requirements with the current system. The cabinet’s structure, without any
active source included, has a noise floor of about -60 dBV/m.

Regarding the cable egress, a primary conclusion is that mixed-mode S-parameter
measurements on the controlled configurations of the NCR node rack equipment
demonstrate that cables that egress from the top of the rack cause significantly higher
EMI risk than the conventional egress fashion from the bottom of the rack. The increase
in radiation can be as much as 10-15 dBV/m higher at some frequencies than when cables
egress from the bottom of the rack, near the floor. Therefore, cable egress should not be
changed without also changing the overall shielding architecture of the rack cabinet. To
be effective, such a change may necessitate modifying the shielding requirements on

chassis internal to the rack and on cabling.
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The back door and side panels greatly affect the measured radiation. Taking off
the back door alone increases the radiation by an average of 10 dBV/m over the
frequency range of 100 MHz to 2 GHz. Removing both side panels has similar but
weaker effects on the measured radiation than removing the back door does. Grounded
side panels helps slightly decrease the radiation by about 2 to 3 dBV/m on the overall
frequency range.

Regardless whether the cabinet rested on the ground or on ferrite floor tiles, It was
consistently observed that when cables exit the top, the radiation is weaker than the cases
when cables exit the bottom for a frequency range of 800 MHz to1200 MHz. This was
observed almost for all cabinet setups. It should to be investigated and maybe it is related

to the ceiling of the chamber.
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3. NUMERICAL MODELING

3.1. INTRODUCTION

Numerical techniques are commonly used in solving EMC/EMI tasks. An
agreement between measurements and model simulations can validate a design
modification and render possible ways to the improved performance of a device. From
the viewpoint of numerical simulation, the structure of the NCR’s node rack is
complicated and its sizes are huge due to its working frequency of up to 2 GHz. Both
make the numerical modeling of the node rack a tempting but challenging task.

The efforts of the numerical modeling of NCR’s node rack started with the
construction of a complex model in HFSS that contained the true structure of the rack
with an ideal current source. The ultimate restriction of limited computer memories failed
a convergence in the HFSS simulation, resulting in a simplified model that was
successful. The simplified HFSS model was simulated with the back door of the rack
cabinet closed/removed and with the ideal current source exiting the bottom/top of the
cabinet, etc. The simulations do show, however, that the rack cabinet can provide on the
order of 10 dB of overall shielding effectiveness, which is a good agreement with the
measurements taken in NCR for a functioning node rack and with the swept frequency

measurements and study taken in the UMR’s EMC Lab.

3.2. SIMULATION SETUP
3.2.1. Complex HFSS Model. The complex HFSS model containing the true
structure of the rack cabinet is built as in Figure 3.1 (source not shown). Figure 3.2
through 3.5 show different parts of the node cabinet. The related setups of the simulation
are as follows:
1) Boundary: Infinite ground plane and radiation boundary condition for the
remaining boundaries.
2) Excitation: current source (1000mA) of the cable with one end in the module
and the other end just above the ground plane.
3) Analysis: frequency sweep tried is from 100 MHz to 500 MHz. HFSS warned

“extremely long simulation time” for frequencies above 1 GHz.
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Figure 3.1. Complex HFSS Model — the NCR Node Rack Cabinet without Current
Source (3D View)

L 3

Figure 3.2. Complex HFSS Model — Computation Domain and Cable Source (Side View)



Figure 3.3. Complex HFSS Model — Cabinet Frames 3D View (Without Panels)

Figure 3.4. Complex HFSS Model — Frame Cross-Section View
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Figure 3.6. Complex HFSS Model — Two Doors (3D View)
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Figure 3.7. Complex HFSS Model — Side Panels (3D view)

Figure 3.8. Complex HFSS Model — Top Panel (3D View)
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3.2.2. Simplified HFSS Model. The complex HFSS model was simplified from

the original structure to reduce the memory requirement in the simulation. The major

modifications include:

1) The opening of all thin slots is set at one size (1/8 inch).

2) Shape of cross-section of inner frames is simplified to regular rectangles.

3) The angle edges of all doors and panels are removed and the cross-section

shape of outer frames is simplified, see Figure 3.9 and Figure3.10.

4) All additional shapes on doors and top panel are removed.

5) Cable radius is increased to 1 inch.

Three different rack cabinet setups are simulated using the simplified HFSS

models, as in Figures 3.11 through 3.13, which show the 3D view of the different setups

of the cabinet model summarized in Table 3.1. The related simulations are set up as:
1) Boundary: infinite ground plane and radiation boundary condition for the

remaining boundaries.

i1) Excitation: current source (1000mA) of the cable with one end in the module

and the other end just above the ground plane.

ii1) Analysis: frequency range 100MHz to 2GHz.

Table 3.1. Three Different Setups for the Simplified HFSS Model

Simplified Model I

Back door closed, cable (exiting floor)
extended by 1 foot

Simplified Model II

Back door taken off, cable (exiting
floor) extended by 1 foot

Simplified Model III

Back door closed, cable exiting top
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Figure 3.9. Simplified HFSS Model — Cross Section View of the Simplified
Outer Frames

i
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Figure 3.10. Simplified HFSS Model — Cross Section View of the Simplified
Panels and Frames
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Figure 3.11. Simplified HFSS Model I — Back Door Closed and Cables Exiting
the Bottom (3D View).

Figure 3.12. Simplified HFSS Model IT — No Back Door and Cables Exiting
the Bottom (3D View).
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Cable efits top

Figure 3.13. Simplified HFSS Model III — Back Door Closed and Cables Exiting
the Top (3D View).

3.3. RESULTS

3.3.1. Complex HFSS Model Results. The model passed the validation check in
HFSS version 9.2. But HFSS failed to reach a convergence of the adaptive passes and
aborted the simulation, as shown by Figure 3.14. No results are available for this model.

3.3.2. Simplified HFSS Model Results. The far field patterns are plotted at
frequency of 627 MHz, 1254 MHz and 1881 MHz. The three particular frequencies are
the fundamental, the first harmonic and the second harmonic respectively of the BYNET
data stream in the real working cabinet [1]. Figures 3.15 through 3.17 show the far field
pattern for simplified model I, i.e. with the back door closed and the cable exiting the
bottom. Figures 3.18 through 3.20 are plots for the far field pattern for simplified model
IT with the back door taken off and the cable exiting the bottom, and Figures 3.21 through
3.23 indicate the far field pattern for simplified model III with the back door closed and
the cable exiting the top of the node rack.
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It is observed that in Model II, when back door is taken off, the maximum
electric field at 627 MHz is 370 mV/m (51 dBmV/m), which is about 12 dBmV/m higher
than that (93 mV/m or 39 dBmV/m) at the same frequency in model I, when the back
door is closed.

Comparing Figure 3.21 with Figure 3.17, it is found that when cable exits the top
of the rack, the far field radiation is slightly higher than that when cables exit the bottom,
and the field assumes a strong half circle distribution that completely differs with the far

field pattern for Model I, where the cable exiting the bottom.
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Figure | Error information in Solution Data,

Figure 3.14. Error Information in Solution Data when Running the Complex
HFSS Model
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Figure 3.15. Far Field Pattern at f = 627 MHz for Simplified HFSS Model I
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Figure 3.16. Far Field Pattern at f = 1.254 GHz for Simplified HFSS Model 1
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Figure 3.17. Far Field Pattern at f = 1.881 GHz for Simplified HFSS Model I
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Figure 3.18. Far Field Pattern at f = 627 MHz for Simplified HFSS Model II

(Cabinet without Back Door)
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Figure 3.19. Far Field Pattern at f = 1.254 GHz for Simplified HFSS Model 11
(Cabinet without Back Door)
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Figure 3.20. Far Field Pattern at f=1.881 GHz for Simplified HFSS Model 11
(Cabinet without Back Door)
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Figure 3.21. Far Field Pattern at f= 627 MHz for Simplified HFSS Model III
(Cable Exit Top)
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Figure 3.22. Far Field Pattern at f = 1.254 GHz for Simplified HFSS Model III
(Cable Exit Top)
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Figure 3.23. Far Field Pattern at f = 1.881 GHz for Simplified HFSS Model III
(Cable Exits Top)

3.4. SUMMARY AND CONCLUSIONS

The large size and complex structure of the rack cabinet lead to simulation failure
for the complex HFSS model due to its huge demand on the computer memory and space.
The simplified model was able to run and the simulations show a general agreement with
the results from the EMI measurement of the NCR’s working node rack cabinet and of

the swept frequency study of a similar node rack cabinet.
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