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Abstract

This thesis proposes several optimization methods that utilize parallel algorithms

for large-scale machine learning problems. The overall theme is network-based ma-

chine learning algorithms; in particular, we consider two machine learning models:

graphical models and neural networks. Graphical models are methods categorized

under unsupervised machine learning, aiming at recovering conditional dependen-

cies among random variables from observed samples of a multivariable distribution.

Neural networks, on the other hand, are methods that learn an implicit approxima-

tion to underlying true nonlinear functions based on sample data and utilize that

information to generalize to validation data. The goal of finding the best methods

relies on an optimization problem tasked with training such models. Improvements

in current methods of solving the optimization problem for graphical models are

obtained by parallelization and the use of a new update and a new step-size selec-

tion rule in the coordinate descent algorithms designed for large-scale problems. For

training deep neural networks, we consider the second-order optimization algorithms

within trust-region-like optimization frameworks. Deep networks are represented

using large-scale vectors of weights and are trained based on very large datasets.

Hence, obtaining second-order information is very expensive for these networks. In

this thesis, we undertake an extensive exploration of algorithms that use a small

number of curvature evaluations and are hence faster than other existing methods.
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Chapter 1

Introduction

The overwhelming amount of data and its continuous accumulation through online

tools has significantly changed the classical approaches to data processing and raised

a need for scalable and efficient algorithms with an emphasis on high-performance

computing aimed at learning hidden patterns from such data. Topics dealing with

such knowledge extraction involve various domains such as computer science, statis-

tics, optimization and more, where collectively development of such tools are re-

ferred to as Machine Learning (ML). Fitting machine learning models to a data set

by exploiting the hidden patterns involves two major steps: training and validation.

Training involves exploiting sampled observations from some process, and training

a model that best fits the data. In most cases of ML problems, this step involves

mathematical optimization. Once a model is trained, the validation step verifies

the performance of the trained model using a fraction of the data set that has been

hidden from the training phase of the model (validation data).

An impetus for the rise of various developments aside from research is the im-

pact of machine learning on businesses. To devise accurate production and mar-

keting strategies, businesses aim to recover and interpret the meaningful patterns

from data. This continuous inference of meaningful relationships and patterns from

the accumulating data will raise the demand for higher computational power and

faster processing times. Despite technological improvements and availability of bet-

ter technologies for data storage and computing, the need for better algorithms still
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persists. The result is a high demand for faster algorithms in machine learning.

In addition to improvements on computational efficiency, technologies such as dis-

tributed computing and GPUs allow classical algorithms to undertake problems of

much larger size.

In this thesis, we analyze two prominent problems from ML: Sparse Inverse

Covariance Selection and Deep Neural Networks. We consider methods in optimizing

the training step that can undertake large-scale problems. However, first we need

to define general framework of the problems, in order to pose the aforementioned

problems in a unified context.

In the next section, we present the general machine learning problem defini-

tion to get better acquainted with the problems tackled in ML. After defining the

general tasks required to fit a machine learning model, we outline the connections

to optimization and discuss also how ML problems would undertake optimization

methods to find better models. Section 1.2 presents a brief introduction to problems

considered in this thesis, by posing them each in the general framework defined in

the next section. After formalizing the problem introduction, contributions to each

problem is discussed.

1.1 Definitions

Given a dataset of observations, there are different measures or properties for each

observation called features. For example, in a medical study, each observation may

come from different patients and features can be the different measurements obtained

by health monitoring devices.

Under supervised learning of ML applications, it is generally assumed that there

exists an underlying function φ : X → Y mapping the features X = {x | x ∈ Rdx} to

the observed response or target information Y = {y | y ∈ Rdy} for each observation.

In most practical cases, the closed-form representation of function φ may not

exist due to various factors such as noise, stochastic behavior, among others. There-

fore, a modeling function f(x) is chosen from a hypothesis set Hθ = {h | h : X →

3



Y }, that is assumed to closely approximate the underlying function. The family

Hθ, is parameterized by θ, where a model function f(x) is a realization of specific

parameter θ. The task is to find the hypothesis function h ∈ H that best approxi-

mates the function φ(x). This task is fulfilled by finding parameters θ, determining

the best model in family Hθ with respect to certain measure discussed below. For

simplicity we drop θ from H notation as it is encapsulated in the definition of the

family.

As mentioned above, each family of hypothesis functions H has their specific

set of parameters θ to be learned; for example, in a simple linear regression model,

the hypothesis set involves parameters θ = {(w, b) ∈ Rdx ×R} to approximate φ(x)

using an affine function as ŷ := f(x) = wTx+b. Generally the trained function f(x)

with the parameters θ̄ is referred to as the ML model for learning the true behavior.

Based on the true nature of the phenomena involved, a model (from the set of

hypothesis functions) should be chosen that best capture the details of underlying

function. Note that there is a trade-off between the generality/complexity of the

class of hypothesis functions (and hence the difficulty of the problem of choosing

the ”best” model) and the accuracy of the resulting approximation.

Accuracy performance of these models are measured generally by a Loss function

represented by LH(f, x). The loss function measures how the output ŷ of model f(x),

corresponding to specific θ, closely approximates the true observation y. Therefore,

minimizing the loss acts as a proxy for our model to learn mimicking the observed

data (for now we are not concerned with issues regarding over-fitting). In the simple

regression example above, the sum of squared errors can be considered a loss function

in fitting the affine function corresponding to parameters θ = (w, b).

L(f(w, b)) =
∑
i

‖yi − ŷi‖2
2 =

∑
i

‖yi − (wTxi + b)‖2
2.

As hinted above, this procedure summarizes the tasks under supervised learning

problems.

In contrast to supervised learning, the unsupervised learning problems are not

concerned with a target yi for observation xi — their focus is to learn specific

patterns from the observed data X. Examples of the types of pattern identification

4



that might be undertaken is the clustering data points into groups according to some

measure of similarity or the reduction of noise from a signal; such tasks are generally

considered more sophisticated compared to supervised learning tasks. Despite the

lack of target information, the concept of loss function still applies in this setting,

based on the problem and the learning task. For example, in signal denoising, we

may be interested in a model that reduces the noise by projecting a signal x onto

another low-dimensional space P and again lifts the projected signal back to original

space, retrieving the denoised signal (see Hinton and Salakhutdinov [2006] and Ng

[2011]). One measure for the performance of the denoising model is to minimize

the loss function that computes the divergence of retrieved signal from original as

L(f, x) =
∑

i ‖xi − x̂i‖2.

The problem of choosing the ”best” function from a given set of hypothesis func-

tions for a given machine learning problem is fundamentally an optimization problem

in which we want to choose the function minimizing the loss function (LH(f, x)),

which serves as the objective function. From optimization point of view, minimizing

the loss corresponds to finding a function f(x) with least error. However, f(x) is

a realization of the functions in Hθ and therefore is parameterized by θ. There-

fore, θ is the set of desired decision variables and minimizing the objective function

corresponds to finding minimizer solution θ∗. Interpreting this concept in the ML

world, we are learning model f by fitting parameters θ∗ to mimic the real-world

observation more closely.

In this thesis, we therefore approach machine learning problems from an op-

timization point of view, tackling different strategies to better optimize the loss

functions and consequently extract better models.

1.2 Summary of Problems

In this thesis, we develop several efficient algorithms, devised for optimization in

large-scale ML applications, with emphasis on parallel and distributed environments.

The first two chapters are concerned with an unsupervised learning problem known

5



as sparse inverse covariance selection. The sparse inverse covariance selection prob-

lem is a method of finding hidden patterns and dependencies among features. In

particular, assuming that the vector of features is distributed according to a multi-

variate Gaussian distribution, the goal is to identify conditional dependency patterns

among the features. The sparse inverse covariance method is usually applied in the

cases where the number of features by far exceeds the number of observations; for

example in genomic studies, for example, it is often the case is that the number of

features (genes) is much higher than the number of observations (patients). To han-

dle this issue, additional structural conditions are imposed on the problem to be able

to extract meaningful interpretations. In the inverse covariance matrix case, since

conditional dependency patterns are inherently represented using a graph structure,

(unknown) sparsity of the graph is the special structure that is assumed or imposed.

In this setting our machine learning model for finding the conditional dependencies

is fΣ, set of multivariate Gaussian distributions parameterized by inverse covariance

matrix θ := Σ. The loss defined for training these models stems from estimation

theory by optimizing the function of maximum likelihood estimator defined as

max
Σ

L(f) = log det Σ− 〈Σ, S〉 − λ‖Σ‖1.

Finding solution Σ∗ maximizing this loss function is the objective of correspond-

ing optimization problem; We will discuss this loss function in detail in chapter 2.

Specifically, given sample observations, one seeks to find the underlying sparse graph

corresponding to the conditional dependence of random variables. Both chapters

2 and 3 study this problem using different parallel coordinate descent algorithms,

suitable for different settings. This is achieved by recovering a sparse matrix that ap-

proximates the inverse covariance matrix of the Gaussian distribution. This results

in an optimization problem over the space of inverse covariance matrices, with data

coming from the sample covariance matrix obtained from the data. As the number

of features grows large (as it often does), the matrix size grows large as well and the

optimization problem becomes very difficult to solve. In addition, a single compu-

tational node is not able to store the whole matrix. Therefore, in Chapters 2 and 3,

we propose two distributed variants of coordinate descent optimization methods in
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order to be able to solve large-scale cases. Chapter 2 examines an existing greedy

coordinate descent algorithm known as SINCO ( Scheinberg and Rish [2010]). In

this method, one element of the symmetric variable matrix is updated at each step,

in the way that improves the objective function, maintains sparsity, and preserves

positive-definiteness of the matrix. This last condition often results in short steps.

Hence, in Chapter 2, we improve upon this method by introducing a novel greedy

update, called SINCO2D, which can modify three variables at each step, while still

achieving the same goals as the original SINCO. This results in larger steps and

faster convergence in practice. We then introduce the parallel/distributed version

of our algorithm. There are various ways in which a large matrix can be stored on

multiple nodes. In Chapter 2, we discuss two such methods in detail and carefully

compare their advantages. We conclude that block-cyclic distribution is the more

efficient storage method for the SINCO and SINCO2D methods, see Chapter 2 for

detail.

In Chapter 3, we develop a parallel version of a block-coordinate descent algo-

rithm for sparse inverse covariance selection, called Glasso originally developed by

Friedman et al. [2008]. In this approach a whole row (and the corresponding column)

of the variable matrix is updated at each step, while improving the objective func-

tion, encouraging sparsity and maintaining the positive-semidefinite property. Each

such step is obtained by solving a well-known Lasso problem (Tibshirani [1996]),

which is, in turn, solved by a coordinate descent approach. In Chapter 3, we pro-

pose a method of distributing the matrix so that each Lasso subproblem can be

efficiently solved in parallel, to reduce the overall solution time. Due to this new

data distribution, we modify the original coordinate descent for Lasso problem. In

addition, we study various step size strategy proposed by Richtárik and Takáč [2016]

in the specific application to our setting.

The last two chapters focus on efficient optimization methods for two popular

machine learning models, namely deep classifier networks and auto encoders. These

models present very challenging, very large-scaled and often ill-conditioned opti-

mization problems. In this setting our ML model is a function described implicitly

by a network. The loss function will measure the similarity of network’s output
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to real world observation, based on different measure such as euclidean distance or

cross-entropy functions which are explored in chapter 4. Most practical optimization

approaches for these models, are different variants of the gradient descent method.

Hence, they do not exploit curvatures of the objective function and behave poorly

in the presence of ill-conditioning. Study of higher-order algorithms have been lim-

ited, since getting second-order curvature information can be costly and therefore

algorithms would be competitive only if they keep the number of curvature evalu-

ations to a minimum. However, due to the growing use of parallel and distributed

environments, these methods have recently gained popularity. Another difficulty for

using second-order information arises from the inherent nonconvexity of the prob-

lem, which implies that simple approaches such as Newton method do not apply

directly. To handle this, two approaches exist in the literature - convexifying the

objective by modifying its Hessian (Dauphin et al. [2014], Martens [2010]) or ad-

ditional trust-region constraint which restrains computing the Newton direction to

a specific ball in the n−dimensional Euclidean space (Gould et al. [1999], Steihaug

[1983]). In Chapters 4 and 5, we choose to focus on the trust-region strategies but in

a nonstandard way. In particular, due to the excessive scale of the problems, solv-

ing the trust-region subproblem directly is impossible. Hence, approximate methods

that involve only Hessian-vector products become necessary. In both chapters, dif-

ferent variants of the well-known conjugate gradient method (Nocedal and Wright

[2006]) are explored to solve the subproblem. In Chapter 4, we study an existing

algorithm called Modified Conjugate Gradient (MCG) method as explored by Zhou

et al. [2017]. Conjugate gradient method minimizes a quadratic model, by iteratively

generating subspaces called Krylov subspaces, while each step requiring information

in the form of Hessian-vector products.

Since such computations are very expensive for the considered ML applications,

we devise a novel warm-starting strategy for the trust-region subproblem solver in

order to minimize the total number of Hessian-vector evaluations. This enhance-

ment adapts a nonconvex conjugate gradient method to scale to problems arising in

deep learning. We perform a careful comparison of the proposed method with other

existing methods that use curvature information. We show that our strategy of using
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trust-region methodology outperforms convexifying the objective in the quality of

solution it obtains. On the other hand, some less expensive quasi-Newton methods,

such as L-BFGS have cheaper iterations, which may prove useful in the context of

deep learning (as discussed by Ngiam et al. [2011]). Therefore, we then explore hy-

brid algorithms for training deep learning networks that use cheap iterations for the

initial training and then use the MCG method to improve the solution quality. The

resulting hybrid methods decrease the overall number of Hessian-vector products

significantly and present an improvement upon the state-of-the-art results.

The last chapter contains development of another variant of a Krylov subspace

method, called eigCGTR algorithm, devised specifically for nonconvex settings. Al-

gorithms that tackle nonconvex quadratic models often have to store a significant

number of vectors in order to capture the Krylov subspace and solve the minimiza-

tion problem in this reduced subspace. However, in deep learning algorithms the

sizes of these vectors are large so that it may not be feasible to store thousands

of vectors. To resolve this issue, we combine a trust-region type algorithm with

a successive subspace minimization technique (introduced by Hager [2001]), which

only requires book-keeping a handful of vectors but exploits the direction of the

most negative curvature of the objective function for minimization. Obtaining the

negative curvature in exact form is also prohibitive in our setting; hence, we study

usage of the existing eigCG algorithm of Stathopoulos and Orginos [2010] which can

yield approximate highest negative curvature direction relatively cheaply. Following

these approximate directions in the earlier iterations of our trust-region based al-

gorithm, results in significantly better quality solutions compared to other methods

that work with convex models such as modified Hessian or L-BFGS.

This introduction summarizes the brief definition of the different ML problems

addressed in this thesis, as well as, their relationship to traditional optimization

methods by presenting a unifying framework that connects both worlds. Although

we briefly presented each problem and the devised algorithms, each section requires

a detailed overview of the materials as well as their connection to the literature.

Therefore, each following chapter contains its own introduction that goes into more

detail of the existing literature and methods developed in the thesis.
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Chapter 2

Inverse Covariance Selection:

Parallel Coordinate Descent

2.1 Introduction

In this chapter we study a particular setting of unsupervised learning, aimed at

discovering meaningful relationships among features specific to the observed data.

In particular, we focus on Graphical Models (GM) as a subset of these categories,

that model conditional dependencies among multiple random variables that are

governed by a multi-variate Gaussian distribution, and visualize such dependencies

using graphical representations; these models are one of the prominent tools for

pattern discovery among problem features that provide insight into the structure of

dependency in the feature space.

One of the challenging problems in the field of Graphical Models is Sparse Re-

covery as discussed by Sra et al. [2012]. In this area of study, given few samples

(xi ∈ Rp, i = 1, . . . , n), the aim is to find a sparse estimator of parameters corre-

sponding to the underlying random variable. When the number of observations is

less than the number of features (n� p), one needs to identify the most significant

features. Therefore, researchers often try to minimize a convex loss function penal-

ized with a `1 norm penalty in order to induce sparsity to the optimal estimator. In

10



this study, we focus on the problem of Sparse Inverse Covariance Selection (SICS).

For this problem given sample observations from a family of random variables

— that jointly follow a multivariate Gaussian distribution — the task is to infer

marginal conditional dependencies of the variables. This problem corresponds to

finding edges in the graph representation of random variables, described in sec-

tion 2.1. The random variables are observed by the values of the features of the

data vectors.

There has been numerous studies of this problem ( Banerjee et al. [2008], Fried-

man et al. [2008], Hsieh et al. [2012]) and many algorithms have been proposed

( Hsieh et al. [2011, 2013], Kambadur and Lozano [2013], Scheinberg and Rish [2010],

Scheinberg et al. [2010]) from different viewpoints and settings. For a detailed re-

view of this problem and also the discussion of the original method considered in

this thesis we refer to the ”Optimization Methods for Sparse Inverse Covariance

Selection Problem“ chapter by Scheinberg and Ma in the book by Sra et al. [2012].

As the number of features grows, many sophisticated methods involving second-

order information may fail to solve the problem in a reasonable time, moreover, the

data may not fit in a memory of one computer. Therefore, there is a need for fast

parallel/distributed algorithms, that can handle larger amounts of data.

In this study we propose a fast method for solving the SICS problem, taking

into account the potentially huge size of the problems at hand. We achieve this goal

by utilizing distributed parallel structure to handle large matrices with the help of

computing clusters. We also propose a new block-coordinate step, discussed in 2.3.2,

which helps the Coordinate Descent (CD) algorithm converge faster in practice.

This chapter first studies the existing coordinate descent algorithm (SINCO); this

method involves updates of one coordinate at a time while maintaining feasibility of

positive-semidefiniteness of the variable matrix and improving the objective function

in a greedy manner. In practice, the convergence of this method can suffer when

the same coordinates are updated frequently but by taking small steps, which leads

to an increase in the number of iteration. We study the reasons for this slow-down

and develop a novel block-coordinate update (SINCO2D) which aims to reduce such

effects of small step-sizes. We rigorously prove that solutions of the subproblems
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in (SINCO2D) satisfy the positive-definiteness constraint and by remaining in the

interior of the positive-semidefinite cone boundary, through proving the convexity

of the higher dimensional subproblems, along with the number of solutions of the

update system which ensures that iterative solutions will remain feasible with respect

to the cone.

We also study the algorithm’s structure and investigate different methods for

parallelizing the algorithms by considering different ways of distributing the matrix

and analyzing the resulting communication steps. Two different implementation

strategies for the parallelized algorithm are discussed, one based on perfect balancing

of coordinates among computational nodes (see for example Kambadur and Lozano

[2013]), and the other approach is based on block cyclic distribution, which will be

shown to be better suited for the blocked parallel linear algebra operations, which

the algorithm requires. Finally, numerical tests are performed on several practical

and synthetic datasets to show the efficiency of the proposed method and its parallel

version compared to the original algorithm.

In what follows, the algorithms proposed for the SICS problem and its vari-

ants are briefly reviewed. Section 2.2 discusses the sequential coordinate descent

algorithm and the structure of the parallelized counterpart. In Section 2.3 we first

motivate the acceleration scheme by analyzing the iterations in the original CD

algorithm and then we introduce the new update steps. Section 2.3.3 contains a

summary of the proposed algorithm and details of updates as well as analysis of

convergence and pathological cases. We conclude this study by presenting the nu-

merical experiments on real and synthetic datasets and further present heat map

plots, that illustrate the improved performance of CD algorithms for this problem.

Problem Description and related studies

In graphical models, recovering the underlying graph structure corresponding to

conditional dependencies of random variables is of great importance for various

practical problems. Graphical models are the intuitive characterizations of condi-

tional independence structures exhibited by random variables. Define an undirected
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graph G = (V,E) with a set of nodes V = {1, . . . , p} connected by undirected edges.

Each node represents a random variable, and an existing edge {i, j} is an indicator

of conditional dependence of random variables i, j.

Gaussian Graphical Models (GGMs) are models over the multivariate Gaussian

distribution. This distribution is parameterized by the mean vector (µ) and covari-

ance matrix (Σ) of its marginal random variables. SICS problem seeks to find the

matrix variable that is obtained through the maximum likelihood estimator for the

inverse covariance matrix, given (under assumption µ = 0) by:

Σ−1 = arg max
n

2
log detX − 〈S,X〉, (2.1)

where Sp×p =
1

n

∑
i(xi − x̄)(xi − x̄)T is the sample covariance matrix based on the

observations xi ∈ Rp, where (X � 0) is an implicit constraint, a natural artifact of

Gaussian random distribution properties, making the (log detX) a natural barrier

for the positive-semidefinite cone in iterative methods. The reason making the esti-

mation of the inverse matrix (Σ−1) more desirable rather than the covariance matrix

itself, is the main impetus of this problem in ML research. The problem aims to

discover relational patterns between p features given n observations. These relations

in the data visualization step, correspond to edges of the graph of features. To this

end, the zero elements of Σ−1 have specific interpretations, corresponding to the

independency of the corresponding random variables given the rest; further intrinsic

structures of the problem can be easily imposed using constraints of type Xij = 0

whenever the random variables (i,j) are conditionally independent. Therefore, the

nonzero pattern of this matrix corresponds to the edges of graph G described above.

As an example of practical uses of this problem, Figure 2.1 presents the con-

nectivity pattern of a graph associated with different sections of the brain. Given

sample observations of brain activity in different parts, solving the SICS problem

yields a sparse inverse covariance matrix that corresponds to the graph’s edges and

conditional dependencies, which results in the presented connectivity pattern.

As the number of features (p) is more than the number of observations (n) the

true minimizer of the above function (S−1) may not exist, as S is a low rank matrix.

Therefore, by adding (convex) regularizers we can find estimates that are closest to
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Figure 2.1: Connectivity pattern of different sections of the brain

the true parameter. The most interesting regularizer for this problem is `1 norm

which is a convex surrogate for sparsity inducing l0 norm. Using this norm we

extract significant edges of the graph. Therefore, the problem will be written as

max
n

2
log detX − 〈S,X〉 − λ|X|1, (2.2)

where λ is a regularization parameter balancing the sparsity, and S := n
2
S̄. If a

general balancing parameter of sparsity is used for each element, problem can be

slightly modified by

max
X�0

n

2
log detX − 〈S,X〉 −

∑
i,j

Γij|Xij|, (2.3)

where Γij represents the weights for element Xij.

One of earliest methods to solve the above problem, known as the Graphical

Lasso, was proposed by Friedman et al. [2008]. The algorithm starts with an initial

solution Σ̄−1 = S+λI and then updates the rows at each iteration. The updates are

based on taking the dual of the corresponding subproblem which is a Lasso problem

(Banerjee et al. [2008]), that can be solved by a coordinate descent method. This

method is further discussed in the third chapter of this document.

Methods with more sophisticated structures, which use first and second-order

information also have been devised for this problem. Scheinberg et al. [2010] utilize
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first-order information within the Alternating Linearization Method (ALM) with

O(n3) iteration complexity by using the spectral decomposition of the current in-

cumbent solution. An algorithm which uses second-order information, known as

QUIC, was proposed. Hsieh et al. [2011], propose forming a quadratic approxima-

tion model at each iteration and finding the proximal Newton direction by optimiz-

ing the model. Despite having various solution methods for this problem, as the

problem size grows larger, the efficiency of most approaches reduces significantly.

Thus, new ways of tackling these parameter estimation problems and, specifically,

SICS problem are needed. An early approach to solving large-scale SICS problems

was using divide and conquer method Hsieh et al. [2012]. In this study, Hsieh et

al. partition the features into smaller subsets, providing grounds for computing a

good starting point in parallel. However, the problem is then reduced to a single

processor problem and is solved by QUIC which still suffers from dimensions of the

problem.

Distributed parallel techniques can be a practical approach for this situation as

they can handle the big matrices in distributed chunks. The first paper to con-

sider the distributed setting for the sparse inverse covariance problem was proposed

by Kambadur and Lozano [2013], using a coordinate descent method in a distributed

way to achieve results and handle huge matrices. However, the sparsity is handled

through the updates by backward sweeps on the selected coordinates and not consid-

ered by the `1 penalty which corroborates having a global optimum solution. Also

utilizing parallel computing power by shared memory setting, Hsieh et al. [2013]

propose BIGandQUIC which is a parallel counterpart of the QUIC algorithm. How-

ever, due to use of shared memory setting it cannot exploit the power of distributed

computing grids.

Coordinate Descent (CD) methods have proven to be a useful and practical

approach for large-scale machine learning problems (Richtárik and Takáč [2012]).

Many researchers study different applications of CD methods and how to approach

big data. Also specifically designed acceleration method for an application, poten-

tially can surpass general acceleration schemes of CD methods. In this study, we

revisit the idea of greedy coordinate descent (SINCO) by Scheinberg and Rish [2010]
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as a basis of our work. The parallelizable structure of the algorithm alleviates exten-

sion to distributed setting. We also analyze the sequential algorithm and propose

a new step which results in a faster algorithm, along with its parallel counterpart.

Other CD methods such as Ginco (Kambadur and Lozano [2013]) could benefit from

our acceleration method as well.

Next we discuss the original SINCO algorithm along with steps to parallelize it;

further, we shall present the algorithm and discuss convergence.

2.2 Parallel SINCO

In this section, we outline the steps taken to parallelize the algorithm discussed

in Scheinberg and Rish [2010]. A similar structure has been discussed in Kambadur

and Lozano [2013], however here we consider the `1 regularized problem which has a

finite optimal solution in all cases, unlike the problem considered in Kambadur and

Lozano [2013], which only has a finite solution with some probability under specific

assumptions on the distribution of the random variables. The other difference is

using block cyclic distribution of the matrix, incorporated by ScaLAPACK, used

with MPI as the backbone of this parallel algorithm; however, section 2.2.2 outlines

our exploration of OpenMP for the parallelism.

2.2.1 SINCO Algorithm

First we present a brief outline of the original algorithm discussed in Scheinberg and

Rish [2010]. In each step, the algorithm consists of two phases: search phase and

update phase.

In the search phase (steps 3-5 of Algorithm 1), the method computes potential

updates for all coordinates Xij and selects the best coordinate producing the most

increase in the objective function. In the update phase, using theX∗ij information the

method updates the coordinate in the inverse covariance matrix (steps 6-8); which

is a rank two update X + αij(eie
T
j + eje

T
i ). Next step is to update the maintained

estimate of W = X−1 using Sherman-Morrison formula for the rank-two update;
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Algorithm 1 Outline of SINCO algorithm

1: Set k = 0,X(k) = I,W (k) = I
2: while f(Xk+1)− f(Xk) > ε do
3: for ∀ (i, j), 1 ≤ i ≤ j ≤ p do
4: Compute fij corresponding to updated value of the coordinate (i, j)
5: end for
6: Choose the best update αij for updating (i, j)← arg max(i,j) fij

7: Update coordinate X
(k+1)
ij ← X

(k)
ij + αij(eie

T
j + eje

T
i )

8: Get W (k+1) by updating W (k) by Sherman-Morrison-Woodbury formula
9: k ← k + 1

10: end while

this step is necessary as values of W are extensively used in the search phase of the

algorithm. Each subproblem of the search phase will be a one-dimensional problem

as

fij(α) = max
n

2
log det(X+α(eie

T
j +eje

T
i ))−〈S,X+α(eie

T
j +eje

T
i )〉−λ|X+α(eie

T
j +eje

T
i )|.

(2.4)

Updating step will be defined by αij = arg maxi,j,α fij(α). Using the rank-one update

formula for the determinant we have:

det(X + α(eie
T
j + eje

T
i )) = det(X)(1 + 2αWij + α2(W 2

ij −WiiWjj)). (2.5)

We can write the subproblem (2.4) as:

f(θ) = max
n

2
log(1 + 2αWij + α2(W 2

ij −WiiWjj))− 2Sijα− 2λ|Xij + α|. (2.6)

Solving the above problem — as discussed in Scheinberg and Rish [2010] — yields

the optimal solution for the subproblem. The mentioned step is done for every

coordinate and the best matrix coordinate θ̄ := α∗ij is chosen for updating. Modifying

X, corresponding inverse matrix W should also be updated; this step can be done

using Sherman-Morrison formula, resulting in update of W by

W̄ = W − θ̄(κ1WiW
T
j + κ2WiW

2
i + κ3WjW

T
j + κ1WjW

T
i ). (2.7)
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Where the coefficients are defined as

κ1 = (−1 + θ̄Wii)/κ,

κ2 = (θ̄Wjj)/κ,

κ3 = (θ̄Wii)/κ,

κ = θ̄2(WiiWjj −W 2
ij)− 1− 2θ̄Wij,

and Wi is ith column of the matrix W .

The algorithm is a variant of a greedy coordinate descent algorithm for a convex

problem and hence enjoys known convergence guarantees and a sub linear conver-

gence rate. We can see that, since the updates are computed for each coordinate sep-

arately, it lends itself to distributed parallel setting. Next, we discuss how the data

can be distributed among processors, assuming different distributions and methods

for updating the inverse update step.

2.2.2 OpenMP Parallelization

Our initial investigation on the platform for parallelization involved study of how

parallelization on levels of threads can help distribution of work load between pro-

cessors, although the distributed parallelism is inevitable due to the large size of

matrices involved in this problem. Implementation in this environment corresponds

to the division of workload between different threads using the sections or parallel

for directives. The first phase of the algorithm involves a simple search done on

all coordinates, so we can just make the for loop parallel. In order to divide the

compute load in the coordinate search phase, we need only to use #pragma parallel

for for the search loop, however each thread although threads are now searching

in the shared memory space, in order to save the results (maximum coordinates of

each thread) we need to privatize the variables corresponding to coordinates and

function value of sections corresponding to thread’s territory. The important aspect

that needs a specialized treatment is the update of the global best coordinate vari-

ables which will maintain the best coordinate information through all threads. To
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prevent race conditions we need the lines corresponding to this section in a critical

statement so that no two threads execute these instructions simultaneously.

#pragma omp c r i t i c a l

{
i f ( fnew > funmax ) {

funmax=fnew ;

imax=i ;

jmax=j ;

alphamax=Al lSteps ( i , j ) . alpha ;

updatemax=Al lSteps ( i , j ) . update ;}
}

Through this mechanism, since many coordinates may not have the sufficient in-

crease in the objective, we will discard them and just continue the search and there-

fore have smaller number of threads blocked by the critical section bottleneck.

For the second phase which is updating the matrix with two rank one updates,

as all the information is shared, there is no communication involved, however a bar-

rier is needed before the second phase to ensure that all threads have synchronized

information about the coordinates staged for updating and also the magnitudes of

the updates. We also need to modify the update loop so that threads divide the

load on updating the matrix coordinates of the inverse matrix to account for par-

allel environment. The following modification ensures that threads have privatized

indexes j,upIndex which stores the vectorized index of the matrix coordinate for

indices (i, j) and We only need to add the following before the for loop of updating

different coordinates.

#pragma omp p a r a l l e l for private ( j j , upIndex )

For testing this approach we used a problem with 800 features which results in

640, 000 coordinates for the problem to work on. Unfortunately the run-times show

that this approach involves congestion and blocking among CPUs which prevents

full utilization of the processors compared to MPI work-load distribution.

Therefore, since the use of MPI communication is inevitable in the distributed
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Table 2.1: Results for OpenMP with different number of threads

Threads Runtime
2 197.88
4 371.19
8 1064.72

environment we preferred taking the MPI approach.

2.2.3 Data Distribution for Parallel Algorithm

Two different settings for parallelization of the data is considered for the algorithm.

The first setting yields perfect balancing for the partitioned matrix coordinates

among different processors. Second setting is based on block cyclic distribution,

enabling use of efficient libraries such as ScaLAPACK. Both methods are described

below.

Assume that there are τ processors available, p2/2 coordinates need to be distributed

evenly among processors. To reduce communication overhead, first bp2/2τc coordi-

nates are assigned to first processor and so on until last processor gets the remaining

coordinates. This way τ − 1 processors handle the same number of coordinates and

the workload of the last processor may have at most τ − 1 more coordinates, which

is negligible when τ � p.

In order to apply this strategy for each processor k, we need to determine (isk, j
s
k)

and (ifk , j
f
k ), corresponding to the starting and finishing coordinates of every matrix

X,W assigned to that processor. We can have an iterative algorithm determining

these numbers a priory, to facilitate the book keeping of the coordinates.

This also can be done using contiguous vectors, representing the matrices. However,

book-keeping is also needed for the broadcast of columns as well as their updates.

With our proposed algorithm the book-keeping of rows and columns are easily done

for the coordinates. Assuming we have the (is, js) for a processor we wish to assign

C := bp2/2τc coordinates of the symmetric matrix X, by computing (is, js). Letting

q =
⌊
− (2is−1)

2
+
√

(i− 0.5)2 + 2C
⌋

we get an estimate of the number of rows that

20



should be covered by processor k and calculate the q2 as an indicator of finishing

column. Different scenarios like exceeding the diagonal or having negative q2 could

arise for which we can easily adjust the coordinates so that every processor k < τ

have the same number of coordinates and thus balancing the work load.

Algorithm 2 Balanced workload coordinate determination

1: Given p coordinates and n processor. Let (is1, j
s
1) = (1, 1).

2: Let C =
p(p+ 1)

2n
3: for k = 1, . . . , n− 1 do

4: q1 ←
⌊
− (2isk−1)

2
+
√

(isk − 0.5)2 + 2C
⌋

5: e←
(
is+q+1

2

)
−
(
is+1

2

)
6: q2 = C − e+ jsk
7: if q2 > isk then
8: e← e+ q1 + isk, q1 ← q1 + 1
9: q2 = C − e+ jsk

10: end if
11: if q2 < 0 then
12: e← e− q1 + isk, q1 ← q1 − 1
13: q2 = C − e+ jsk
14: end if
15: ifk = iks + q1, jfk = q2

16: isk+1 = ikf + q1, jss = q2 + 1
17: end for
18: ifk = p, ifk = p
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The other approach to data distribution is a block cyclic distribution. In order

to use ScaLAPACK, and also distribute the workload among the processors, block

cyclic distribution has proven useful (Choi et al. [1996]). This setting can be ben-

eficial for communication efficient update of the matrices. Here, the processors are

hypothetically divided into a grid. Matrices are divided based on a specific block size

br, bc for rows and columns, block by block. We can see that this distribution can

lead to nearly balanced workload among processors. Figure 2.2 shows the structure

of a 16 × 16 matrix, distributed among a processor grid consisting of two columns

and two rows of processors by block size 4. Both methods of distribution were de-

veloped and tested. However, the second setting, allows the use of computationally

and communication efficient libraries, hence we chose this setting for our further

experiments. Throughout this chapter we refer to the first distribution as perfect

balancing and to the second type as block cyclic distribution.

Figure 2.2: Block cyclic distribution by block-size b = 4 and τ = 4 processors

2.2.4 Parallelization

We now discuss the key steps in the parallel implementation of the algorithm. As

mentioned above, the sequential algorithm consists of two main phases: (I) Search

Phase and (II) Update Phase.

Through the search phase, the algorithm searches for the best updating coordinate.

As the coordinates of the matrix are divided among the processors, directing each

processor to search among its designated coordinates (mapping) yields the parallel

phase (I), which is demonstrated by figure 2.3.

For the second phase a more detailed procedure should be used. This phase encom-

passes rank two updates to the covariance matrix W . For the first type of the data
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distribution one should broadcast the update values (vectors Wi,Wj) and direct the

processors to update their part of the inverse accordingly. However, a more efficient

implementation could be used for the case of block cyclic distributed matrix using

P?SYR2 procedure of ScaLAPACK corresponding to symmetric rank-2 update.

To summarize, during the search step, each processor is responsible for finding the

Figure 2.3: Structure of the parallel search algorithm

best coordinate in its partition. Then the results are reduced to select the step with

maximum objective value increase. For the update step we utilize P?SYR2 to im-

plement the update formulas in section 2.3.6 in parallel. Next, we give a discussion

on the modified algorithm.

2.2.5 Data Structures

As we expect the matrices to be sparse, in order to decrease memory requirement,

we implemented our matrices using the CSR sparse format matrix using Eigen

(Guennebaud et al. [2010]). However, for the dense matrices, simple <vector>

is sufficient and prevents additional memory problems as it can easily be fed to

ScaLAPACK API’s.
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Figure 2.4: Structure of the parallel update algorithm with completely balanced data

2.3 SINCO2D

In this section we briefly outline the improved version of SINCO (Scheinberg and

Rish [2010]) which is aimed at reducing the number of updates and thus iterations.

2.3.1 Motivating New Updates

In this section, we briefly analyze and improve SINCO, by aiming to reduce the

number of iterations in order to speed up the convergence. To design a faster CD

method, we first analyze the original SINCO algorithm; observing the sequence of

selected coordinates during SINCO iterations can give insights on how the algorithm

works. This analysis reveals that throughout the iterations, special subsequences

appear frequently. These sequences are composed of recurring consecutive iterations

revolving around a specific coordinate Xij and the corresponding diagonal entries

Xii, Xjj. When the algorithm selects the off-diagonal coordinate Xij for update, the

next iteration involves the corresponding diagonals and consequently selecting the
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same coordinate Xij for re-adjustment. These sequences occur frequently through-

out the trajectory of SINCO iterations for distinct coordinates Xij.

To illustrate our point, we present the following trend from the consecutive iterations

of SINCO algorithm applied to Arabidopsis dataset (Li and Toh [2010]).

(1, 1)→ (1,29)→ (29, 29)→ (1,29)→ (1, 1)→ (1,27)→ (27, 27)→ (1,27)

The above sequence shows the coordinates selected by SINCO in eight consecutive

intermediate iterations. Updating X1,1, the bound on coordinate X1,29 changes;

enabling further adjustment for this coordinate. This sequence, in turn, triggers

further possible updates of other diagonal elements. We wish to eliminate such

loops in the algorithm.

Let us identify the issue and modify the algorithm accordingly. Considering element

Xij needs to be updated at the current iteration; as we have the constraint X � 0,

we know that the matrix will be positive-definite iff all principal components are

also positive-definite. Considering the 2× 2 sub-matrix X[i,j],[i,j] � 0 (using Matlab

sub-matrix notation) means that

(Xij + θ)2 < XiiXjj ≤ max(Xii, Xjj)
2, (2.8)

which can be written as |Xij + θ| ≤ M , where M = max(Xii, Xjj). Consider the

case where in the optimal solution X∗ we have |M −Xij| < |X∗ij −Xij|. Then it is

obvious that we need at least three iterations to get to this solution. On the other

hand, a simultaneous update for all three coordinates could result in reaching the

desired solution in one step.

2.3.2 Augmented Subproblems

Removing the undesired iteration loops –analyzed in previous section– potentially

can result in a fewer iterations and therefore faster convergence. As discussed above,

an important factor bounding the eigenvalues, depends on the diagonals. Therefore,

augmenting the updates by including the diagonals, can prevent the need for itera-

tive updating loops.
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The augmented subproblems takes into account the diagonal variables of the cor-

responding element (i, j), in order to potentially block recurring updates of the

element Xij. Namely we modify the old updates (Xk+1 = Xk + θeie
T
j + θeje

T
i ), with

Xk = Xk + E where E accounts for the shift matrix having the form

Xk+1 = Xk+

i j

i

j

 µ θ

θ λ

,

allowing simultaneous update of three desired coordinates. Shown in compact form

Xk+1 = Xk + uvT +wyT where u = αej + µei, v = ei, w = αei + λej y = ej; here ei

is the i’th column of identity matrix of proper size. We can get the determinant of

the updated matrix by twice invoking rank-1 update of the determinant:

det(Xk + uvT + wyT ) = det(Xk)(1 + µWii + 2θWij + λWjj + θ2κ− λµκ), (2.9)

where κ = (W 2
ij−WiiWjj). The subproblem to obtain update is described as follows:

Max
λ,µ,θ

n

2
log(Gλ,µ,θ)− 〈S[i,j], E[i,j]〉 − (Γij + Γji)|Xij + θ| − Γii(Xii + µ)− Γjj(Xjj + λ),

where

Gλ,µ,θ = 1 + µWii + 2θWij + λWjj + θ2κ− λµκ. (2.10)

As the original subproblem has non-smooth term (Γij + Γji)|Xij + θ|, first-order

condition cannot be directly used. However, in the 1-dimensional search phase, a

candidate Xij selected for updating, along with θ∗ij (optimal step-size given from

1-d coordinate descent step, in the original algorithm) may yield a reliable approx-

imation to the sign of the |Xij + θij|. The backbone of this reasoning lies in our

previous observations; arguing that steps θ∗ are small attempts to reach the optimal

quantity of X∗ij. Using this information the objective function can be smoothed

in this direction. For each subproblem the parameter (a) is the regularization pa-

rameter corresponding to the smoothed version of the function. We would define
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a = Sgn(Xij +θ∗ij)(Γij +Γji); resulting in the subproblem having the smoothed form

of

Max
λ,µ,θ

fa :=
n

2
log(Gλ,µ,θ)− 〈S[i,j], E[i,j]〉 − a(Xij + θ)− Γii(Xii + µ)− Γjj(Xjj + λ),

For simplicity of notation, hereafter we use G to denote Gλ,µ,θ and K to denote n
2
.

Since the subproblem is convex in the feasible domain, we exploit first-order con-

ditions in order to solve this problem by a procedure with low computational cost

as original SINCO step-size subproblem (up to constant terms). In order to use

the first-order condition we require finding points that satisfy ∇fa(λ, µ, θ) = 0; the

gradient is defined by

∇fa = (K
Wii − λκ

G
−Sii−b,K

Wjj − µκ
G

−Sjj−c,K
2Wij + 2θκ

G
−2Sij−a), (2.11)

where b = Γii and c = Γjj. By the convexity on the domain, using first-order

condition leads to

K

G


Wii − λκ
Wjj − µκ

2Wij + 2θκ

 =


Sii + b

Sjj + c

2Sij + a

 , (2.12)

we see G is a nonlinear term that complicates the condition; its elimination will help

obtaining a linear system of equations. Notice G can be eliminated if it is not equal

to 0. As long as modifications to the matrix X, namely µ, λ, θ steps, remain feasible

i.e. Xk+1 � 0 we have G > 0. However for this section we only assume G > 0 rather

than Xk+1 � 0, we shall later discuss why the latter holds, in section 2.3.5. Also by

definition we have Sii = 1
n
‖xi‖2 > 0 where xi ∈ Rp is i’th sample observation. From

Γii ≥ 0 we have Sii + Γii > 0, thus elimination of G can safely be done. It should be

noted that for 2Sij +a = 0 the solution for θ can be found easily, therefore assuming

2Sij +a 6= 0. Consequently by dividing the equations in (2.12), we get the following

relations:

(Wii − λκ) = β(2Wij + 2θκ) (2.13)

(Wii − λκ) = α(Wjj − µκ) (2.14)
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where β :=
Sii + b

2Sij + a
, α :=

Sii + b

Sjj + c
. Rewriting the above as

(
µ

λ

)
=

1

κ

(
−2β

α
Wij +Wjj

Wii − 2βWij

)
−

(
2β
α

2β

)
θ := b− Aθ, (2.15)

gives a parameterized (by θ) equivalent of the system of equations described by

(2.13), (2.14). However, satisfying these systems only means that the divided ratios

of gradient elements are equal. Using the first-order condition, gradient elements

should be equal to 0, here we use gradient of smoothed function fa with respect to

θ. Rewriting the corresponding partial derivative equation (∂fa
∂θ

= 0), we have

K(2Wij + 2θκ)

G
= 2Sij + a. (2.16)

By (2.10) and (2.15) we can rewrite Gµ,λ,θ as

Gµ,λ,θ = r1 + r2θ + r3θ
2, (2.17)

where

r1 := 1 +Wiib1 +Wjjb2 − κb1b2,

r2 := −A1Wii + 2Wij − A2Wjj + κb1A2 + κb2A1,

r3 := κ(1− A1A2).

Here Ak, bk for k = 1, 2 correspond to elements of 2d vectors described in (2.15).

The quadratic (2.17) shows the determinant changes are parameterized by θ, on the

line described by (2.15) where ratios of gradient elements are equal to each other.

We can also rewrite G from (2.16) as

G =
K(2Wij + 2θκ)

2sij + a
=

2KWij

2sij + a
+

2κ

2sij + a
θ := t1 + t2θ, (2.18)

where t1 =
2KWij

2Sij + a
, t2 =

2Kκ

2Sij + a
.

To summarize we characterized determinant update (G) for solutions that sat-

isfy (2.15) ratios because of quadratic equation (2.17), and for solutions that satisfy
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∇θf = 0 from (2.18). Intersecting these two solution sets, will result in our desired

subproblem solution, i.e. having

r1 + r2θ + r3θ
2 = t1 + t2, θ, (2.19)

which simplifies to

(r1 − t1) + (r2 − t2)θ + r3θ
2 = 0. (2.20)

Therefore, solving the subproblem reduces to solving the above quadratic equation,

and by finding optimal θ from above we can determine µ, λ from (2.15). We point

out that the computational complexity is constant as in the 1-d coordinate descent.

2.3.3 Outline of the Algorithm

In this section we describe the modified SINCO algorithm (called SINCO2D) which

incorporates our new update procedure. The algorithm — similar to the original

version — is a (block) coordinate ascent algorithm aimed at recovering the non-

zero pattern of the inverse covariance matrix, by updating up to three elements at

each iteration. The algorithm is outlined in Algorithm 3. The algorithm resembles

original SINCO algorithm (Scheinberg and Rish [2010]) however here a matrix C

is introduced to maintain the number of times a coordinate is selected. While the

selection count of the coordinate is smaller than some pre-determined threshold

(δ) the algorithm proceeds the same as SINCO. However, when a coordinate (i, j)

becomes more popular (Cij > δ), it can be beneficial to switch to the 2d updates.

This is done by procedure 2d-Sub, described in Algorithm 4.

2.3.4 Subproblem Feasibility

As mentioned previously, some special cases may occur and need to be handled with

caution. First issue is the solution θ∗ij and how it behaves with regards to the sign(a).

For example, when a = Γij + Γji, it is assumed that Xij + θij will remain positive;
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Algorithm 3 SINCO2D

1: Set k = 0,X(k) = I,W (k) = I, C = 0
2: while f(Xk+1)− f(Xk) > ε do
3: for Each coordinate(i, j) do
4: Find best step-size along coordinate, i.e. αij
5: Compute fij corresponding to function reduction in ij’th coordinate
6: end for
7: Choose best promising coordinate for update
8: (i, j)← arg max(i,j) fij
9: Cij ← Cij + 1

10: if Cij > δ then
11: Call 2d-Sub to compute step-sizes µ, λ, θ and corresponding update
12: else
13: Update X ← X + αij(eie

T
j + eje

T
i )

14: Update W by Sherman-Morrison-Woodbury
15: end if
16: end while

Algorithm 4 2d-Sub

1: Input : ᾱij := θij . θij is the 1d step-size
2: Let a := Sgn(Xij + ᾱij)(Γij + Γji)
3: Solve (2.20) for θ and use(2.15) for µ, λ
4: if Sgn(Xij + θ) 6= Sgn(a)and Gµ,λ,θ > 0 then
5: Reject 2d-update
6: Use 1d-update and ᾱij as step-size
7: Update W using Sherman-Morrison-Woodbury formula
8: else

9:

(
Xii Xij

Xji Xjj

)
←
(
Xii Xij

Xji Xjj

)
+

(
µ θ
θ λ

)
10: Update W by (2.24)
11: Cij ← 0
12: end if

therefore, if Xij + θ∗ is negative, we can see that the smoothing scheme has led to a

non-optimal solution, vice versa for the case of a = −(Γij +Γji). This issue arises as

a result of discrepancies of non-smooth function and the smoothed version, shown in

Figure 2.5. The figure shows the objective function of the subproblem plotted with

regards to one parameter (θ). Here, the subproblem assumption is that Xij + θij
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remains negative; thus we can see that the two functions, after passing to the posi-

tive region, begin to diverge.

Therefore, one way to overcome this issue, is to reject the 2d-step, which would

leave the current iterate unchanged. However, to achieve improvement after reject-

ing 2d-step we would update the coordinate with the 1-d step ᾱij and just update

the off-diagonal element as original algorithm.

Figure 2.5: Comparison of smoothed function vs true function of the augmented sub-
problem

Looking at first-order condition system (2.11), assuming G > 0 we can rewrite

equation (2.12) as

K


Wii − λκ
Wjj − µκ

2Wij + 2θκ

 = Gµ,λ,θ


Sii + b

Sjj + c

2Sij + a

 . (2.21)

The system indicates that as the solution vector


µ

λ

θ

 → 1

κ


Wjj

Wii

−Wij

, results in

G→ 0.

This solution essentially updates the sub-matrix X[i,j],[i,j] by −(W[i,j][i,j])
−1. This
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update satisfies the system described by (2.13),(2.14). Therefore, it is one of the

two (possible) roots of equation (2.20), with G = 0. Therefore, the quadratic

equation always has at least one root. Given this observation next section discuss

the feasibility in further detail.

2.3.5 Problem Feasibility

In this section we analyze the updates using the 2d-step, for the original problem.

Assuming the rank-2 update matrix (E = uvT + wyT ) is determined based on

µ∗, λ∗, θ∗ how can we ensure that the updated matrix is positive-definite. One idea

is to check the positive-definiteness of the the updated 2 × 2 sub-matrix and also

the corresponding p−2×p−2 Schur complement matrix. However, computing this

measure of feasibility may not be practical. Therefore, we present another argument

by extending the determinant property.

To this end, the only measure of determinant change we have discussed so far

is maintaining G > 0. However, one can argue that it cannot be a good measure,

as it is possible to flip the sign of two eigenvalues simultaneously, keeping the non-

negativity of the determinant. For example let Aα as

Aα =


1 + α 0 0 0

0 1 + α 0 0

0 0 1 0

0 0 0 1

 . (2.22)

The determinant of the updated matrix is always non-negative (1 + α)2, even if

Aα 6� 0 (e.g. let α = −2). Therefore, simply having G > 0 will not be a good

measure for our purpose. Looking at the determinant as a function of α, vs the

function log (1 + α)2 − α we see that when α > −1 we are in the semidefinite cone

and also in the domain of log det, however for α < −1 we are still in the domain

of the log det function but not on the positive-definite cone. As long as we have

a measure ensuring cone’s boundary is not crossed (similar to logarithmic barrier

approaches), the matrices will be positive-definite.
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The feasibility argument here is based on our solution scheme for the subprob-

lem. As the main problem is convex and finite, the subproblem will also have a

finite optimal solution. The optimum should satisfy the first-order necessary condi-

tion which is a nonlinear system of equations. Reducing the system to two simpler

conditions, our method aims to satisfy these two conditions. The two conditions

include equality of ratios (2.12), and ∇θf = 0. Satisfying the two conditions we find

candidate θ∗ solutions to satisfy the first-order conditions.

As the procedure is reduced to finding the roots of a quadratic equation, one expects

that at most two candidate θ∗s are obtained, one of which corresponding to the op-

timum solution of the subproblem. In the section 2.3.4 we showed that the other

solution to the nonlinear system of equations is (µ, λ, θ)T =
1

κ
(Wjj,Wii,−Wij)

T .

As this update satisfies the system described by (2.13),(2.14), it is one of the two

(possible) roots of equation (2.20), with G = 0. Therefore, the quadratic equation

always has at least one root; we show that the equation will always have another

root and also we show that for this root G > 0. This concludes that only one unique

point exists that satisfies the necessary condition of the convex problem with G > 0.

Remark 1 For ρ|X|1 regularizer, (ρ > 0) , assuming 2sij + a 6= 0, quadratic

equations (2.17), (2.20) are convex.

Proof. Both quadratics have (r3) as the coefficient of θ2, thus we just need to show

r3 ≥ 0.

r3 := κ(1− A1A2).

As W k � 0, we have κ < 0, and therefore, need to show that A1A2 ≥ 1.

Expanding this term we get

A1A2 = (2
β

α
)(2β) = 4

β2

α
= 4

(sii + ρ)2(sjj + ρ)

(2sij + a)2(sii + ρ)
=

(sii + ρ)(sjj + ρ)

(sij + (−1)qρ)2
,

as q ∈ {0, 1}. Now let T1 and T2 matrices be defined as

T1 =

[
1 1

1 1

]
T2 =

[
1 −1

−1 1

]
,
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where both matrices are positive-semidefinite. As S is sample covariance matrix

we have S � 0 and principal sub-matrix of indices i, j will have the same property,

i.e. S[i,j],[i,j] � 0. Therefore, S[i,j],[i,j] + ρT1 � 0 and S[i,j],[i,j] + ρT2 � 0 leading to

determinant of both matrices being non-negative:

(sii + ρ)(sjj + ρ)− (sij ± ρ)2 ≥ 0

Which leads to A1A2 ≥ 1.

In the above (−1)q is utilized to prove the property for parameter a = Sgn(xij +

θ∗)(2ρ) with both signs as we are uncertain which case may happen.

Remark 2 For ρ|X|1 regularizer, all solutions will have G ≥ 0 corresponding to

line described by (2.15), with exactly one point satisfying G = 0.

Proof. For all solutions (µ, λ, θ) given by (2.15), Gµ,λ,θ is described by (2.17); further,

previous remark shows (2.17) is convex; thus we need to show that critical point of

this quadratic results in G = 0 which is sufficient to have G > 0 elsewhere. Apex of

any quadratic aθ2 + bθ + c is described by θ = −b/2a. Using (2.15) for definitions

of A = (A1, A2)T and b = (b1, b2)T , the critical point of (2.17) is:

θ =
−r2

2r3

= −−A1Wii + 2Wij − A2Wjj + κb1A2 + κb2A1

2κ(1− A1A2)

= −A1(κb2 −Wii) + 2Wij + A2(κb1 −Wjj)

2κ(1− A1A2)

= −
A1(−2βWij) + 2Wij + A2(−2β

α
Wij)

2κ(1− A1A2)

= −
(−2βA1 − 2β

α
A2 + 2)Wij

2κ(1− A1A2)

= −(−A2A1 − A1A2 + 2)Wij

2κ(1− A1A2)
= −Wij

κ
.

By arguments in Section 2.3.4, when (2.15) and (2.17) hold, θ → −Wij

κ
results in

G = 0. Thus the minimum of (2.17) is 0, and by convexity (r3 ≥ 0) this implies

that for any other points in (2.15), G will be strictly positive.
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The conclusion from above is that in step 3 of algorithm 4, which is acquired by

finding the roots of (2.20), will always have two solutions where one will correspond

to G = 0 (critical point of (2.17)) and the other necessarily will have G > 0; unless

equations (2.17),(2.20) are identical, i.e. t1, t2 from (2.18) are both equal to 0, which

is not the case as κ 6= 0. This ensures that the subproblem always have one point

satisfying the necessary condition (2.11) with G > 0.

Lastly, we just point out that the SINCO updates are a subset of the new sub

problems; i.e. constraints µ = λ = 0, in the new subproblem results in achieving

the old update; Therefore, the updates at the worst case have the same function

reduction of SINCO, however our numerical experiments show that in practice the

sub problems are indeed yielding more powerful updates.

2.3.6 Inverse Updates

Since we are using two type of updates for the matrix X, we need to clarify the

arguments for updating the inverse matrix W . For updates of the original SINCO

we would use (2.7), however for 2d-updates we have

W̄ = (X̄)−1 = (X + uvT + wyT )−1, (2.23)

where u = µei + θej, v = ei and w = θei + λej, y = ej. Invoking Sherman-Morrison

formula twice, we would update the inverse matrix W̄ by

W̄ = X−1 − a1

T
WiWj

T + (
a1a3

T
− µ

κ1

)WiWi
T − a2

T
WjWj

T + (
a2a3

T
− θ

κ1

)WjWi
T ,

(2.24)

where

κ1 = 1 + µWii + θWij, a1 = θ − θµWii

κ1

− µλWij

κ1

,

a2 = λ− θλWij

κ1

− θ2Wii

κ1

, a3 =
µWij + θWjj

κ1

,

T = 1 + θWij + λWjj −
µWii + λWjj

κ1

θWij −
µλ

κ1

W 2
ij −

θ2

κ1

WjjWii
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Superscripts k for W k elements (W k
••) and columns (W k

• ) are dropped for better

readability. The above update scheme is used whenever 2d-Sub finds a suitable

update, i.e. Step 10 of Algorithm 4. Appendix 2.3.2 shows our implementation of

this method. For the first type of workload distribution, we would simply broadcast

the vectors Wi•,Wj• and each processor will update their part accordingly. However,

in order to utilize ScaLAPACK, we can use the symmetric Rank-2 update, which

updates the matrix by

W = W + αxyT + αyxT . (2.25)

We can rotate our updating vectors by

r1WiW
T
j + r2WiW

T
i + r3WjW

T
j + r4WjW

T
i = xyT + yxT . (2.26)

Defining x = pWi + qWj and y = mWi + nWj, we can easily find an analytical

solution to the above equation and use the library with the rotated vectors. Also

we need to account for a degenerate case where the update can have Rank-1 form.

2.4 Numerical Experiments

In order to examine the performance of the new algorithm both algorithms were

implemented in C++. Both synthetic data as well as practical datasets were used

to measure the performance of the algorithms. In all of the experimental runs, the

stopping criteria of step 2 of algorithm 3 was utilized with relative tolerance of 10−6.

2.4.1 Synthetic Data

Following the setup of Hsieh et al. [2011], Kambadur and Lozano [2013], we in-

vestigate the performance of the algorithms on two sets of synthetic data. Two

main sparse structures of graphs are examined for the SICS problem: networks

corresponding to chain graphs and random sparse graphs.

• Chain Graph: Random data is drawn from a Gaussian distribution where

inverse of the covariance matrix is formed by Σ−1
ii = 1.25,Σ−1

i,i−1 = −0.5.
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• Random Graphs: The inverse of the covariance matrix is generated first by

defining a sparse matrix X with random elements equal to ±1 and taking

Σ−1= I + XTX. The sparsity of Σ−1 is controlled through non-zeros of X in

order to have 2p elements to define the empirical covariance matrix.

For each case n = p
2

i.i.d observations are taken from the corresponding Gaussian

distribution with covariance matrix Σ. Here, we use ρ notation as the penalty weight,

which was denoted by λ in (2.2) discussed above; we should point out that in our

formulation multiplying (2.2) by 2
n

eliminates n in the log det term as well as implicit

n in S and thus giving: ρ = 2λ
n

.

Table 2.2 shows that although QUIC is slightly faster in picking up true positive

coordinates, however SINCO2D, eventually picks up the correct coordinates with

significantly smaller rate of false-positive error. Moreover, the FP gap intensifies

with the problem size growth.

Table 2.2: Results for the chain graph datasets

Size ρ
SINCO2D QUIC

TP(%) FP(%) TP(%) FP(%)

100

1 36.24% 0.00% 36.24% 0.00%
0.5 72.48% 0.47% 76.51% 0.78%
0.1 100.00% 32.53% 100.00% 37.02%
0.01 99.33% 78.33% 99.33% 74.44%

500

1 33.38% 0.00% 33.38% 0.00%
0.5 91.46% 0.00% 96.93% 0.01%
0.1 100.00% 6.08% 100.00% 14.52%
0.01 100.00% 54.55% 100.00% 66.43%

1000

1 33.36% 0.00% 33.36% 0.00%
0.5 94.33% 0.00% 99.53% 0.00%
0.1 100.00% 0.92% 100.00% 6.63%
0.01 100.00% 30.44% 100.00% 60.96%

2000

1 33.34% 0.00% 33.34% 0.00%
0.5 94.00% 0.00% 99.97% 0.00%
0.1 100.00% 0.01% 100.00% 1.56%
0.01 100.00% 6.90% 100.00% 54.51%
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Table 2.3: Average results for the random synthetic datasets

Size ρ
SINCO2D QUIC

TP(%) FP(%) TP(%) FP(%)

100

1 68.49 0.00 68.49 0.00
0.5 68.49 0.02 68.49 0.02
0.1 91.78 22.39 91.78 25.01
0.01 100.00 73.72 98.63 72.62
0.001 100.00 88.45 98.63 83.05

500

1 66.31 0.00 66.31 0.00
0.5 66.31 0.00 66.31 0.00
0.1 93.63 1.96 94.43 4.39
0.01 100.00 58.92 100.00 61.72
0.001 100.00 70.17 100.00 80.60

1000

1 66.76 0.00 66.76 0.00
0.5 66.76 0.00 66.76 0.00
0.1 93.46 0.10 95.33 0.80
0.01 100.00 37.82 100.00 54.81
0.001 100.00 56.37 * *

2000

1 66.93 0.00 66.93 0.00
0.5 66.93 0.00 66.93 0.00
0.1 91.57 0.00 95.31 0.04
0.01 100.00 12.89 100.00 46.77
0.001 100.00 39.15 * *

Table 2.3 shows that for random graphs, as the solutions are getting more dense

lower (ρ), both algorithms pick up more true-positive coordinates as well as false-

positive coordinates. However, due to the structure of the algorithm as well as its

size scalability, when the size grows SINCO2D has significantly lower rate of picking

FP points, whereas TP rate can grow to pick all the true coordinates. Missing values

in the table correspond to problems not solved in 10 hours.

Therefore, in both cases, although QUIC may find true-positives faster, however the

byproduct is to add excessive false-positives as well; whereas SINCO2D eventually

finds the true-positive coordinates, by maintaining the number of false-positives to

remain as small as possible, by the construction of algorithm to preserve sparsity.
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2.4.2 Practical Datasets

In addition to synthetic data, performances are measured by examining real world

problems. The true underlying inverse covariance matrix is not known for these

problems to provide grounds for measures such as true and false-positives.

Visualizing the performance of the new algorithm vs the old algorithm, we present

heat maps of all elements based on their selection frequency in the iterates of

SINCO and SINCO2D. To illustrate the iteration comparison of original SINCO

and SINCO2D we present the following “heat map” plots. In our experiments from

the real data (Lymphoma, Arabidopsis, Leukemia) described in Li and Toh [2010]

and also pain data by Rish et al. [2010], we solved the problem using both algo-

rithms. The figures 2.6 and 2.7 show sparsity patterns of two matrices obtained by

SINCO and SINCO2D algorithms; each dot represents a non-zero element of the

inverse covariance matrix; the frequencies of each element is color coded to show

the intensity of multiple selection of the same coordinate.
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Figure 2.6: Heat map comparison of SINCO and SINCO2D performance on Lymphoma
Dataset (P = 587): Warmer colors show popularity of coordinates

The left plots in figures 2.6 and 2.7 show the repetition intensity of the selected

coordinates in the original SINCO; the color map indicates that the diagonals are
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among most frequently chosen coordinates (as our discussion in section 2.3.1 sug-

gests). Also there are many single coordinates that engage up to 140 (Arabidopsis)

and 230 (Lymphoma) iterations of SINCO. However, the plots on the right show

runs with the SINCO2D algorithm. In the figure 2.6, we can see that the repetition

is vanished around the diagonals and rarely occurs for the off-diagonal elements as

well.

In figure 2.7 (p = 834) the colors and frequencies indicate that the heat map is
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Figure 2.7: Heat map comparison of SINCO and SINCO2D performance on Arabidopsis
Dataset (P = 834): Warmer colors show popularity of coordinates

“cooled down” around the diagonals and only 1 “hot” coordinate remains, engaging

22 iterations of the algorithm.

Both figures show the intensity reduction of recurrent coordinates is reduced for the

selected patterns, which significantly reduces the number of iterations the algorithm

makes. The heat maps demonstrate the algorithm taking more mature update steps

and preventing unnecessary loops to reach the optimal solution. However, existence

of bigger dependency chains, hinders complete removal of recurring coordinates.

Further, figure 2.8 shows, eliminating the need for repeated update in coordinates
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results in faster convergence of the SINCO2D compared to SINCO. Difference per-

formance gap gets intensified as the problem size grows.
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Figure 2.8: SINCO2D achieves a faster convergence rate compared to the original coun-
terpart

Table 2.4 compares the results obtained by SINCO2D vs SINCO by measuring the

solution times and iteration counts for the mentioned datasets. The results are

optimized over blocksize={8, 16, 32} and Ncores={36, 64}.

Table 2.4: Run-time and iteration count of SINCO2D vs SINCO

ρ Size
SINCO2D SINCO

Iteration Time(s) Iteration Time(s)

0.1
587 18201 39.16 20535 43.776
834 33256 101.923 43275 125.872
1255 53921 362.302 61563 410.388

0.01
587 159291 536.586 201915 483.712
834 116799 461.823 172131 698.677
1255 172274 1476.31 219311 2103.78

The results clearly show that the new algorithm performs better than the old

algorithm iteration number; also in almost every case the solution time is improved

and gaps get larger with problem size and the density of the matrix. However, as

can be seen for a denser solution p = 587 the solution time in one instance is higher

for the new algorithm which can be assigned to extra constant time computation

in smaller sizes, or the rejection of the new steps because of sign discrepancy. The
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above results are optimized over block size and number of processors, however both

quantities have an important role on the solution time.

2.4.3 Sensitivity to Block Size and Parallel Scalability

To illustrate the parallel efficiency of the algorithm we ran the algorithm using 1,

4, 9, and 16 processors. This sequence is chosen as we used a balanced row/column

grid topology. However, the grid topology is not restrictive and could be used with

different shapes.

Figure 2.9 shows that the actual run-times are slightly better than the expected

Figure 2.9: Average run-times with different number of cores p = 1000

run-time. This can be accounted to maximizing cache hits on each processor and

therefore having better speed up factor. The detailed run-time profiles showed that

in the ScaLAPACK implemented version the algorithm spends most of its run-time

on the search phase. However, for the perfect balancing version the run-times of

the search phase and update phase we close to each other. This can be due to

the fact that symmetric rank-two updates are optimized in the PBLAS libraries

and hence more efficient than the search phase. Two measures can be considered

to reduce the time on the search phase. First, one can devise a blocked searching
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method and utilize BLAS library on each block. Alternatively, one can maintain

and reuse information, gathered in the search phase, rather than recomputing it and

discarding it at each iteration.

Block cyclic distribution of matrix heavily depends on the local row and column

block sizes. This fact in addition of helping with distribution the work load among

multiples nodes balanced, it also has an effect on cache utilization locally under

each processor. For random graphs of size 500 smaller block size of 8 gives the best

Figure 2.10: The effects of block size on the run-time with 36 processors

results, block size 128 is not efficient in this setting as two rows of processors will be

eliminated from the grid. However, as the size grows to 1000, increasing the block

size to 16 seems to benefit the speed of the algorithm. Both random tests show that

small block sizes benefit the speed of the algorithm with slight difference of run-time

for small perturbations.

We also used higher dimensional problem of pain with p = 5310. In this problem,

as the matrix size gets larger, bigger block sizes of 16 and 36 will be beneficial for

balancing cache hits vs efficient workload distribution. This figure also demonstrate

the parallel scalability of the algorithm, where from 16 processors to 36, the solution

time reduces on average by 45%; however, the scalability from 36 to 64 is much

smaller as the gap is a function of problem size.
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Figure 2.11: The effects of block size on the run-time with 16 − 36 − 64 processors for
pain data p = 5310

It is worth mentioning the same pattern on parallel scalability shows between

using 16, 36 and 64 processors.

2.5 Conclusion

This study proposes a parallel framework for the SINCO algorithm originally in-

troduced in Scheinberg and Rish [2010]. The main impetus for this algorithm is

simplicity of implementation and potential of being massively parallelizable. The

new approach for data distribution provides a more efficient implementation of the

parallel framework. Further, the algorithm SINCO2D is introduced where the rank-2

updating steps are strengthened by taking into account the structure of semi-definite

programs. Numerical examples verify that the new algorithm improves on the con-

vergence rate of SINCO and from practical standpoint, can achieve more accurate

solutions compared to other powerful packages such as QUIC.
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Chapter 3

Inverse Covariance Selection:

Parallel Graphical Lasso

3.1 Introduction

In this chapter, we derive another parallel algorithm for the SICS problem. For this

optimization problem, we choose a different coordinate descent algorithm. In the

previous chapter, we considered single (SINCO) and augmented version (SINCO2D)

coordinate descent algorithms for this problem. However, both cases only consider

up to a handful number of individual coordinates. In this chapter, we study the

Graphical Lasso (GLasso) – a block coordinate descent algorithm – which updates

one row (and one column) of the variable matrix at a time, and which is originally

proposed by Banerjee et al. [2008]. The algorithm is further developed by Friedman

et al. [2008], where it is proposed to solve the dual of form for the SICS problem

max
X�0

log detX − 〈S,X〉 − λ|X|1. (3.1)

In what follows, first we describe the dual problem derivation and then consider the

block coordinate descent GLasso algorithm, developed by Friedman et al. [2008].

The row subproblems considered in GLasso are actually Lasso (Tibshirani [1996])

problems. We study different methods of distributing the data for developing parallel
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solver based on GLasso. The suitable data distribution that minimizes communica-

tion in the parallel setting is chosen and consequently a reformulation of the Lasso

problem is proposed to minimize the computational effort with respect to this data

distribution.

The reformulated Lasso problem makes it easier to use a parallel method for

solving the Lasso problem addressed by Richtárik and Takáč [2013, 2016]. Therefore,

at each outer iteration of the algorithm, all subproblems are solved using a parallel

Lasso solver. This algorithm becomes essential whenever the size of matrices is too

large to fit inside in memory of a single worker.

3.1.1 Analysis of SICS problem

To introduce Lasso approach to SICS problem, we reiterate the formulation and then

motivate the use of dual model in derivation of GLasso. Recall that the maximum

likelihood estimator, augmented with regularization term, was defined as

max
X�0

log detX − 〈X,S〉 − λ‖X‖1.

As a way to reformulate this problem in a nicer form, we can eliminate the `1 norm

penalty. Since the problem is of maximization form, it can be seen that once an

element xij of matrix X is nonzero, it would contribute −λ|xij| cost to the objective

value. Another way to model such phenomena is through an auxiliary (implicit)

variable U .

Consider the inner product 〈X,U〉; For a given X, we can write another math-

ematical model, with U as the decision variable, that gathers the contributions of

the regularization term.

Min − 〈X,U〉,

s.t

−λ ≤ uij ≤ λ, ∀i, j.

As a result, for given X, if xij < 0, the optimal corresponding element of U would

be u∗ij = −λ, similarly when xij > 0, then u∗ij = λ. Therefore the optimal solution
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of this subproblem will be equal to the regularization term. As a result, the original

problem can theoretically be written in a two level optimization problem as:

max
X�0

min
−λ≤uij≤λ

log detX − 〈X,S〉 − 〈X,U〉. (3.2)

The bound constraint can be succinctly written as ‖U‖∞ ≤ λ. Next section shows

how the concept of dual problem is achieved using this reformulation.

3.1.2 Dual of SICS problem

Banerjee et al. [2008] derived the dual for the SICS problem. By rewriting the

problem as

max
X�0

min
‖U‖∞≤λ

log detX − 〈X,S + U〉, (3.3)

they show that interchanging the inner and outer problems we find the dual of the

SICS problem stated by

min
‖U‖∞≤λ

max
X�0

log detX − 〈X,S + U〉. (3.4)

We derive X = (S + U)−1 for the solution of inner problem by analytically solving

using the first-order condition, resulting in

min
‖U‖∞≤λ

− log det(S + U)− p. (3.5)

Letting W = S + U we have:

Max log detW

s.t

‖W − S‖∞ ≤ λ

Friedman et al. [2008] consider a block coordinate descent framework for this prob-

lem, which results in the subproblems having a special form. Let us decompose the

matrix W by the first row and column: W =

(
w11 W T

1

W1 W\1\1

)
here w11 is a scalar, W1

is a column vector and W\1\1 is a p− 1× p− 1 matrix, excluding the first row and
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column of W ; treating W\1\1 as a constant and also noting the determinant identity

using the Schur complement we have

detW = det(W\1\1)(w11 −W T
1 (W\1\1)−1W1). (3.6)

We can solve the resulting optimization problem over the first row as follows:

Minββ
T (W\1\1)−1β

s.t

‖β − S1‖∞ ≤ λ

Friedman et al. [2008] point out that this problem is similar to the dual of a Lasso

problem and proposed an algorithm known as Graphical Lasso, which solves the

SICS problem by solving Lasso problems at each iteration using coordinate descent.

3.2 Graphical Lasso Algorithm

In order to describe the algorithm first we need to state some properties of the

optimal solution. Writing the optimality conditions for the SICS problem (3.1), we

get

W − S − λΓ = 0. (3.7)

Sub-gradient equation is written as Γij = sgn(Xij) whenever Xij 6= 0, and Γij ∈
[−1, 1] for Xij = 0. We also used the fact that ∇ log detX = X−1 (see Boyd and

Vandenberghe [2004]). Since X � 0, the inequality Xii > 0 is ensured for all indices.

Therefore Γii = 1 for the diagonal elements, which results in having

Wii = Sii + λ,∀i. (3.8)

Therefore, the diagonals of the optimal inverse matrix are known. Based on this

result, Friedman et al. [2008] propose to start with W 0 = S + λI as the initial

solution and proceed by block coordinate descent algorithm updating the columns

in a cyclic manner.
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Consider the constrained quadratic programming subproblem mentioned above,

the dual for this problem is min βTW\1\1β + ST1 β + λ|β|1. We can achieve this

formulation by considering the sub-gradient equation for the first block, which is

written as

W1 − S1 − λγ1 = 0. (3.9)

Noting the inverse identity we have: WX = I therefore considering the first column

we get W1x11 + W\1\1X1 = 0 Which yields: W1 = −W\1\1
X1

x11

, where x11 and X1

are the first diagonal element and the first column of matrix X. For the ease of

notation let α =
X1

x11

. Rewriting (3.9) we have:

−W\1\1α− S1 − λγ1 = 0. (3.10)

The above is the optimality condition for the following closely related optimization

problem,

min
β∈Rn

βTW\1\1β + ST1 β + λ|β|1. (3.11)

Therefore, we propose to solve the above quadratic problem using a parallel block-

coordinate descent algorithm.

3.3 Data Distribution

In order to minimize the communication among the processors we use block column

partition of the data. The reason we choose this partition is that when solving the

Figure 3.1: Block Column distribution with 4 processors
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subproblem (3.11), each processor can only focus on its coordinates locally. In other

words, the general Lasso problem defined on the matrix W\1\1, is decoupled into

smaller subproblems. As we will show in our method no communication is needed

between the subproblems until the gradient synchronization is performed every γ

iterations. Then, in order to update the gradient, each CPU participates in a reduce

step by sending Wkβ̄k which corresponds to the local partition of the data.

3.4 Parallel GLasso Algorithm

Our parallel approach to the Lasso subproblems follows the work introduced by Richtárik

and Takáč [2013, 2016], however, we address the problem in a different form com-

pared to how it’s formed in their definition.

In order to outline the algorithm first we need to define Lλ operator. Consider the

(quadratic form of) Lasso problem

F (β) =
1

2
βT W̄β + s̄Tβ + λ|β|1 (3.12)

In order to solve this problem in parallel with τ processors, we solve the following

problem in each processor, where subscript p denotes the set of indices of variables

assigned to processor p. Each subproblem will be:

F (βp) =
σ

2
βTp W̄pβp + s̄Tp βp + λ|βp|1. (3.13)

Here σ is a parameter which controls the step sizes taken by each processor. If we

set σ = P this corresponds to taking small coordinate steps that guarantee decrease

of the function value and hence convergence of the algorithm. Smaller values of σ

increase the steps and hence improve potential convergence, but may fail to provide

safe steps (see Richtárik and Takáč [2013, 2016] for details).

To solve the above problem by coordinate descent method, and update i’th coordi-

nate by δ we have the following subproblem:

1

2
W̄iiδ

2 + (s+Wβ)iδ + λ|βi + δ|, (3.14)
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where β is the incumbent solution vector. Representing the above more compactly,

for each coordinate we are solving a subproblem of the form: bδ2 + aδ + λ|c + δ|.
Using optimality conditions we derive the solution to be determined by the following

L operator.

Lλ(a, b, c) =

{
−λSgn(c− a

2b
− λ

2b
)−a

2b
|c− a

2b
| > λ

2b

−c |c− a
2b
| ≤ λ

2b

(3.15)

Algorithm 5 Graphical Lasso Algorithm W̄ , β̄

1: Let W = S + λI
2: while convergence not reached do
3: for all coordinates i = 1, . . . , p do
4: β ← Plasso(W̄ = W\i\i, β̄ = Wi\i)
5: Wi ← Wiiβ . As W1 = −W\1\1α
6: end for
7: end while

Algorithm 6 Plasso: Parallel Lasso solver given W̄ , β̄

1: Let G = W̄ β̄
2: while ‖∆G‖ > ε do
3: for all processors j = 1, . . . , τ do
4: ∆G(j) ← 0
5: for γ iterations do
6: Pick coordinate i ∈ I(j) at random
7: ∆β = Lλ(Gi + S̄i + σ∆G, σ

2
Wii, β̄i)

8: ∆G(j) ← ∆G(j) + ∆βW̄(j)

9: end for
10: end for
11: ∆G =

∑
j ∆G(j) (MPI REDUCE)

12: G← G+ ∆G
13: end while
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3.5 Implementation and Experiments

We implemented the above parallel algorithm using ScaLAPACK and C++. Be-

cause of our special data distribution, we can use parallel I/O and form the matrices

locally on each processor. The important quantity is the parameter σ which plays

a crucial role in having a convergent sequence of iterates as well as in the speed

of convergence. As mentioned above σ controls local coordinate step-length; thus

if it is larger the steps become smaller, so that every processor is making safe but

slow progress towards optimum. Richtárik and Takáč [2013] show that, without

considering special structures K the number of processors is an upper bound for σ.

Therefore, we can safely implement the code with σ = K.

In order to see the performance of the algorithm we ran experiments using data sets

with p = 587, 690, 834, 1255, 2846, corresponding to Lymphoma, Pain1, Arabidopsis,

Leukemia, Pain9 data sets. We used γ = 1000, i.e. we make processors synchronize

the gradients every 1000 coordinate updates. We use duality gap tolerance of 10−6

for all experiments. We present the results in Tables 3.1 and 3.2, where we list the

times, in seconds, it takes for a given algorithm to solve a given problem. The first

5 columns show the results for parallel Graphical Lasso for 5 different values of σ.

Table 3.1 shows the results for sparse matrices, controlled by setting λ = 0.5

Table 3.1: Comparison of solution times (s) λ = 0.5, k = 16 cores

σ = 3 σ = 4 σ = 5 σ = 10 σ = 16 Glasso QUIC
587 6.15 8.05 9.96 18.63 29.609 5.34 2.09
690 17.25 23.18 28.45 50.366 84.23 5.57 3.26
834 22.395 30.33 37.87 73.43 126.92 67.76 11.9
1255 52.19 70.10 86.86 189.52 290.28 243.95 42.94
2846 249.865 378.2 334.65 654.82 1053.86 4714.12 235.2

We can see that the parallel algorithm with original the upper-bound for σ can only

achieve better results compared to sequential graphical lasso algorithm (Friedman

et al. [2008]) for the last problem p = 2846. Moreover, when the step-sizes are longer,

i.e. σ < k we can get comparable results to the sequential algorithm. However, the
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second-order algorithm QUIC (Hsieh et al. [2011]) achieves better run-times.

In Table 3.2 we show the results on dense matrices by setting λ = 0.1. For the

Table 3.2: Comparison of solution times (s) λ = 0.1, k = 16 cores

σ = 3 σ = 4 σ = 5 σ = 10 σ = 16 Glasso QUIC
587 34.6 47.02 58.67 114.56 180.53 96.16 53.72
690 - 56.83 71.22 139.05 213.95 91.81 77.13
834 61.26 82.49 103.56 204.07 317.76 415.3 221.83
1255 117.598 158.35 199.45 395.25 614.45 1375.06 668.51
2846 - 761.05 926.61 1710.84 2616.70 7748.79 9623.51

safe σ we can see that when the size grows larger the algorithm can outperform

QUIC. Also when the σ is reduced for smaller size problems also the solution time

is better than Glasso and QUIC. However, for σ = 3, two of the problems diverged

and could not achieve a solution. Therefore, determining σ dynamically for this

problem can be good approach to this issue.

3.6 Conclusion and Future Directions

As our implementation and numerical results indicate for large-scale problems with

8 million coordinates the safest σ parameter also produces a considerable reduction

time compared to the GLasso algorithm when the solution remains sparse, however

the second-order algorithm QUIC is dominant in this case. As the sparsity reduces

and the solutions get more dense our coordinate descent method remains dominant

in solution even with safest σ = 16 settings, compared to sequential algorithm as

well as second-order algorithm QUIC.

As the experiments show the lower σ parameters can converge in most cases (ex-

cept σ = 3) where in some cases the algorithm diverges due to non-safe step lengths

for the update of coordinates; therefore, approaches that can reduce the safety pa-

rameter σ using dynamic information gather during runtime can significantly.
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Chapter 4

Deep Learning: Large-scale

Conjugate Gradient Algorithms

In this chapter, we explore the parallel algorithms developed for one of the prominent

and useful areas of machine learning, namely deep learning networks. First, we

briefly describe the neural networks (NN) and their use. Next, we proceed by

introducing different training (optimization) algorithms devised for this problems.

In particular, this chapter introduces and studies several known second-order

methods and their applications to large-scale deep learning problems. The more

popular of these methods, so far, use convexified second-order approximation (such

as Gauss-Newton method) of the nonconvex objective arising in Deep Learning.

Here, we argue that exact nonconvex approximations can produce better quality

solutions. However, they result in more complex subproblems, which may require a

larger number of Hessian-vector products, which are very expensive in the context

of deep learning problems. Hence, in this chapter, we focus on a particular method

- modified conjugate gradient - aimed specifically at nonconvex problems and we

introduce warm-starting strategies for the subproblem and provide analytical proofs

of convergence under the resulting new update steps. Our numerical results show

that this warm-started variant of modified conjugate gradient algorithm indeed re-

quires much fewer Hessian-vector products compared to cases where warm-start is
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not used in the algorithm and also compared to convexified counterparts.

4.1 Introduction

With the advent of higher computational power in computing grids and the intro-

duction of GPU computing, the costly task of training a neural network has become

more accessible than the early days of its introduction. This computational advan-

tage enables researchers to stack a higher number of layers in order to create wider

and more powerful networks mostly known as Deep Neural Networks (DNN).

DNNs play an important role among various tools used for exploring the huge

amount of data in different learning problems. They have proven useful in both

supervised and unsupervised learning problems. In the supervised learning case,

it is assumed that there exists an unknown underlying function governing the data

points (xi, yi), which maps the inputs/features xi to the response/label variable (yi);

when such functions have complex structures, simple predictors such as linear or

kernel based learners cannot capture the true behavior and may produce inaccurate

models; hence, deep neural networks are preferred. In such cases, the task of the

network is generally finding implicit representations of the underlying function as a

collection of simple mathematical operators, which can serve as classifiers/predictors

with a close approximation to the real function. In the unsupervised learning cases

networks aim to find patterns in the data or generate compressed representations

of the data (Hinton and Salakhutdinov [2006]); such networks are known as auto-

encoders.

The task of learning in both cases is the same from the optimization viewpoint,

however, the functions being optimized might differ based on the network’s task and

also the problem structure. Throughout this chapter, we refer to this quantity as

loss or more specifically training error. To measure the quality of a trained network,

researchers leave a fraction of data to remain unseen by the network; this measure

can quantify how the networks predictions generalize beyond the training dataset;

we will refer to this quantity as the validation error.
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As an example of a complex supervised learning problem, the popular MNIST

dataset (LeCun et al. [1998]) consisting the pixel data of 70,000 handwritten digits

between 0–9 has drawn much attention from researchers. For the classification task,

the aim is to find classifiers for handwriting recognition; this can be done by learning

compact representations of such data in order to teach the machines to distinguish

between the handwritten scripts (Hinton and Salakhutdinov [2006]). The validation

errors of these networks show that they can learn such a sophisticated underlying

function accurately. It is shown that both fully connected neural networks and con-

volutional networks can achieve low misclassification error rate (%0.95) on original

the MNIST dataset (LeCun et al. [1998]), quite easily without manipulation of data.

Figure 4.1: Samples images from the MNIST data composed of 28× 28 pixels

Performance of neural network and ability to dominate other known methods

on the MNIST dataset and also other well-known datasets such as CIFAR and Im-

ageNet, have resulted in the unprecedented popularity of neural networks as an

approach to learning in computer vision tasks. However, the extent of deep learning

research is not limited to this domain and there are various applications of such net-

works in Natural Language Processing (NLP) and text analytics (Sutskever et al.

[2014], Zhang et al. [2015]), speech recognition (Hinton et al. [2012]) and Reinforce-

ment Learning (RL) (Mnih et al. [2015]) among other fields. Deep neural networks

have an advantage by being able to implicitly create complex (classifier) functions

may belong to the family of functions not explored by other methods; for example,

support vector machine based classifiers, are typically limited to linear, quadratic

or other predefined classes of functions belonging to specific function families. This

flexibility enables DNNs to serve as an inter-disciplinary tool in the mentioned fields.

Neural networks usually consist of input, hidden and output layers. The hidden

segment may include one or multiple layers. Each layer is comprised of multiple

neurons; in most cases, the input layer neurons correspond to the input variables (x)
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or namely features, and the corresponding labels (y) would define the structure of the

output layer; therefore, both quantities are determined by the problem’s structure.

The number of layers in the hidden segment and also the number of neurons in each

of these layers are hyper-parameters that are defined by the user. Each layer is

connected to the other layers with a set of weights; therefore, performing a scaling

on the outputs of the previous layer before feeding to the next.

To capture more sophisticated families of underlying functions, each neuron ap-

plies a nonlinear function to its input known as the activation function. For each

neuron, these functions map the input (i.e. the output from neurons of the pre-

vious layer) to a scalar value, which is the output of the corresponding neuron.

Different choices of the nonlinearity function such as identity, sigmoid, tanh, among

others, make this specification a hyper-parameter chosen at the beginning. In order

to present how these networks behave and also the role of neurons, nonlinearity

functions, and different layers, we first present some notations and definitions.

4.1.1 Definition

To follow notation of Martens and Sutskever [2012], we can denote a neural network

as f(x,w), where x is the input to network and w represents the set of weight

matrices Wi and bias vectors bi, ∀i = 1, . . . , L. Assuming that the network only

consists of fully connected layers, for any two neurons in consecutive layers a weight

wij carries the output from the previous layer’s neuron i to the neuron j in the

following layer. Denoting the number of neurons in the i’th layer by ni, the main

equation for propagating information between layers and thus through the network

will be

si = W T
i ai−1 + bi, (4.1)

where si shows the input for the i’th layer, and Wi ∈ Rni−1×ni is the weight matrix

carrying the outputs ai−1 of previous layer to i’th layer. The vector bi ∈ Rn is the

constant bias associated with the layer i. Each layer is associated with a nonlinearity

φ(s) to compute activations

ai = φi(si). (4.2)
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Function φi often is a nonlinear function corresponding to the i’th layer, in most

cases this function aims to mimic certain behaviors of brain’s neurons by firing at a

certain threshold (ReLU function), or can induce stability to numbers by clipping

the si back to (−1, 1) range (Hyperbolic tangent). Here, we assume that the function

φi : Rni → Rni is a vectorized function applying φ to each element of si individually;

therefore, as hinted above function φi is usually defined as the vectorized ReLU

function or the sigmoid and tanh function. However, there are other activation

functions explored in the literature as well showing better results ( Xu et al. [2015]).

Using these nonlinearity functions enables the network to learn a close represen-

tation of the true function mapping the input x to the outputs y. Once the number

of layers L and neurons ni, i = 1, . . . , L and also their nonlinearity functions φi are

determined by the user, the task of training the network amounts to fine-tuning the

weights w = {(Wi, bi), i = 1, . . . , L} in order to minimize the difference of network

output and the desired observation.

Specifically, the performance of the network, given the training/validation ob-

servations, is measured using a loss function as

h(w) =
1

|S|
∑

(x,y)∈S

L(y, f(x,w)). (4.3)

The loss function is defined as the sum of individual losses of each training observa-

tion (x, y) ∈ S. As a result, the gradient of this function is computed by summing

the gradients for individual losses

∇h(w) =
1

|S|
∑

(x,y)∈S

∇L(y, f(x,w)). (4.4)

Similar behavior governs the second-order information. Based on the intrinsic sepa-

rability of the loss function, most studies use data parallelsim vs model paralleliza-

tion which can involve higher communication frequency among worker nodes; as a

result, the data is distributed among nodes and communication will occur on the

end results of each node. This communication in most cases is regarding quantities

such as loss function evaluation, derivatives and higher-order curvature information

with respect to each worker’s share of data. Therefore, individual scoring of the
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data points is done on each processor and gathering of data includes reduce calls

with sum operator.

The training task involves use of derivative information to provide the optimizer

means for reducing the loss with respect to divergence of network output for each

training points. Since the function needs to be computed for every point in order

to get gradient information, this task can be time consuming. Hence, use of second-

order methods may seem computationally prohibitive; however, it is possible that

utilizing computational grids as tools for performing distributed computation along

worker nodes, one obtains necessary information for optimization using higher-order

information such as curvature information.

It is worth mentioning that due to the mentioned considerations, many studies

just use the first-order information for training the network. As the loss function

is separable for data points, online algorithms such as Stochastic Gradient Descent

(SGD) have gained much attention. Also whenever a new observation is made we

can easily update the gradient and update the weights in the network by a cheap

iteration of SGD.

In order to compute the loss associated with the network, first we need to get

ŷ = f(x, θ). This quantity can be calculated by traversing the network from input

layer to output layer for the observation x. However, as the variables are matrices

(Wi, bi) ∀i, and each layer adds nonlinearity φ to its input, computing the closed-

form gradient of f(x, θ) for each observation is not trivial, an algorithm known

as back-propagation of Le Cun et al. [1988] described in Algorithm 7 (as outlined

by Martens and Sutskever [2012]) helps computing this quantity as systematic rou-

tine of applying derivative rules. The algorithm implements simple derivative rules

such as the chain rule and summation rule at each layer in order to propagate the

error through the network.

Having numerous neurons and layers results in the huge number of weights for the

network, making the size of the optimization problem grow significantly. The only

practical way to solve the loss minimization problem is through numerical methods

using first and second-order information such as SGD and Hessian-Free approaches.
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Algorithm 7 Back-Propagation Algorithm

1: Let a0 = x
2: for i = 1, . . . , l do
3: si = W T

i ai + bi
4: ai = φi(si)
5: end for
6: δl = ∇alL� φ′(sl)
7: for i = l, . . . , 1 do

8:
∂L

∂Wi

= δia
T
i−1

9:
∂L

∂bi
= δi

10: δi−1 = (Wiδi)� φ′(si−1)
11: end for

When training the network, the gradients can be efficiently computed using back-

propagation which facilitates the first-order methods. Studies have shown that one

also can use the power of second-order information for this problems. In order to

use the second-order information, explicit representations of the Hessian matrix are

deemed impractical. Also since most numerical algorithms such as Conjugate Gra-

dient (CG), require only Hessian-vector multiplications results, having a method

to compute this product would be sufficient for the optimization goal. Therefore,

Pearlmutter [1994] derived the well known R-operator in order to extend the back-

propagation formulations for computing gradients to compute Hessian-vector mul-

tiplications.

4.1.2 Deriving R-Operator for Second-order Information

In order to derive a second-order algorithm for this problem we can use the method

introduced in Pearlmutter [1994]. Pearlmutter observed that Hessian-vector (Hv)

multiplication can be simply viewed as a directional derivative of gradient with

respect to direction (v)as

Hv = lim
r→0

∇w(w + rv)−∇w(w)

r
=

∂

∂r
∇w(w + rv)

∣∣∣
r=0

. (4.5)
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He defined R-operator to simplify the notation with regards to this quantity as

Rv{f(w)} =
∂

∂r
f(w + rv)|r=0. (4.6)

As this operator is a derivative, one can show that there are certain rules that it

follows:

Rv{af(w) + bg(w)} = aRv{f(w)}+ bRv{g(w)}, (4.7)

Rv{f(w)g(w)} = Rv{f(w)}g(w) +Rv{g(w)}f(w), (4.8)

Rv{f(g(w))} = f ′(g(w))Rv{g(w)}, (4.9)

Rv{w} = v. (4.10)

Noting that (Hv = Rv{∇w}), he showed that Hessian-vector multiplication can

be derived by applying the R-operator to the gradient computation method. In other

words, we can apply this operator to the back-propagation equations to compute

Rv{∇w}.

Algorithm 8 Hessian-vector product algorithm

1: Given v let RWi, Rbi equal to corresponding components of v . (4.10)
2: Ra0 ← 0 . directional derivative with respect to input
3: for i = 1, . . . , l do
4: Rsi = RW T

i ai +W T
i Rai +Rbi

5: Rai = Rsiφ
′
i(si)

6: end for
7: Rδl = (∇2

al
L)Ral � φ′(sl) + ((Wlδl)� φ′′(si)� si)

8: for i = l, . . . , 1 do

9: Hv[Wi] = R{ ∂L
∂Wi

} = Rδia
T
i−1 + δiRa

T
i−1

10: Hv[bi] = R{∂L
∂bi
} = Rδi

11: RDai = RWiδi +WiRδi
12: Rδi−1 = Rdai � φ′(si) + (Wiδi)� φ′′(si)�Rsi
13: end for

Algorithm 8 shows the back-propagation method with R-operator applied to

the equations (as outlined by Martens and Sutskever [2012]). Applying the above

algorithm at each iteration we can get the Hessian-vector multiplication and feed it

to the CG algorithm.
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4.1.3 Algorithms for Training Neural Networks

Previous section discusses how obtaining first and second-order information regard-

ing the training loss function is managed through use of back-propagation algorithm

and its extension to Hessian-vector products. Starting from an initial (advised) ran-

dom guess x0, numerical optimization methods heavily rely on such information to

improve the initial solution through iterates of sequential updates governed by vari-

ants of equation (4.11) and consequently progress towards better solutions which

ideally converges to optimal stationary points.

xk+1 = xk + sk (4.11)

Devising a good initial guess has great importance for converging to a good trained

model; a suitable initial guess will produce a network that can learn by minimizes

effects of vanishing/exploding gradients and dead neurons (Sutskever et al. [2013]);

otherwise, gradient information would be useless by having minimal effects in the

training procedure. Now since the optimization variables (weights/biases of the net-

work) are defined for each layer, and the network output is the result of input data

traversing this network, this will result in having multiple nested multiplications

of these optimization variables among layers; moreover as the back-propagation

algorithm outlines the gradients would also get affected because of their nested de-

pendencies on delta; therefore, if neurons are initialized with non-suitable initial

values, their interaction can result in relatively small gradients or big gradients.

Propagating such quantities through the network by a series of multiplications of

small/big numbers this can easily lead to numerically unstable (vanishing/explod-

ing) gradients towards the last layers of the network. Such methods are subject

of research into design and architecture of different networks/activations combina-

tions. However, utilizing a good initialization strategy, the randomness effects are

minimized in the final trained model compared to different strategies.

The following section discusses different family of optimization algorithms utiliz-

ing the first and second-order information to generate a sequence of solutions leading

to a well trained model.
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Algorithms using first-order information

There are different choices for the optimization algorithms, in this section we sum-

marize some of the methods applied in practice. Same as any other optimization

problem, there are multiple choices for minimizing the objective training function.

Here, we describe the main approaches utilized in the deep learning community

which use first-order information regarding the objective function.

• Steepest-Descent: The motivation for this method is to minimize a first-order

Taylor approximation around the iterate xk to produce the next iterate xk+1.

The direction sk = −∇f(xk) is the steepest descent direction this is the solu-

tion of minimizing the following:

min
‖sk‖≤1

f(xk + sk) ' ∇f(xk)
T sk + f(xk).

In practice, this strategy is best used along with a line-search framework to

determine how long the step size αk would be along the direction sk.

xk+1 = xk + αksk.

• Stochastic Gradient Descent (SGD): Since the loss function (4.3) is sum of

losses for all the training samples, gradient of the total loss is therefore sum of

gradients for all sample training points. This means that obtaining the gradi-

ent depends on running Algorithm 7 for all sample training points. Arguing

against the cost of such computation a family of steepest descent based algo-

rithms were devised that rely on stochastic evaluation of the gradient (4.4) by

choosing a batch sample of size b and computing

∇h(w) ≈ 1

|b|
∑

(x,y)∈b

∇L(y, f(x,w)). (4.12)

Since the direction obtained is an approximation to the descent direction, it

may not actually guarantee descent in the true loss. Most SGD algorithms take
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a safe predetermined step-size αk rather than performing a line-search along

this direction. This step-size is often referred to as ”learning rate” of SGD. As

the algorithm is not processing all the data points and also does not perform

any line-search step, this algorithm inherently involves cheaper computation

per update compared to other methods. However, since the directions sk are

approximations of descent directions, updates are less powerful and therefore

the total number of updates would be considerably higher.

• L-BFGS: This optimization approach also relies on the first-order informa-

tion at each iterate (Nocedal and Wright [2006]). This algorithm minimize a

quadratic model around the iterate xk as:

mk(sk) =
1

2
sTkBksk +∇f(xk)

T sk + f(xk). (4.13)

The curvature matrix Bk is updated at each iteration by the secant equations

involving the consecutive gradients, in order to capture the curvature of the

true optimization function. Again a line-search is performed on the obtained

direction sk.

Next we would discuss algorithms that use second-order information such as Hessian

or Gauss-Newton curvature approximations for Bk instead of L-BFGS approxima-

tion.

Second-order Algorithms

In this section we briefly review the algorithms for training the network using second-

order information. Similar to traditional methods, at each iterate k, using local

information one builds a quadratic model mk around the incumbent solution xk and

minimizes the model

mk(s) =
1

2
sTkBksk +∇f(xk)

T sk + f(xk) (4.14)

to find an update direction. Basic method of Newton minimizes the above model

where the solution is

sk = −B−1
k ∇f(xk) (4.15)
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for nonsingular Bk. However, as matrix B may be indefinite, the nonconvex model

makes the above minimization problem unbounded. Therefore, we need safe guards

the model to generate meaningful solutions; these safeguards are also important in

convex case because in highly nonlinear settings, the quality of the second-order Tay-

lor approximation model would decline as ‖sk‖ grows large. Therefore, the quadratic

model may not be a good representer of the true function for the points that are

further from current iterate xk; to overcome this issue, trust-region algorithms have

been developed to reflect the extent of optimizer’s trust in the current quadratic

model in mimicking the true underlying function.

4.2 Trust-region Minimization

To extract meaningful updates from the second-order method, we need to conform

the solution to a region of trust where the model is more accurate. Methods safe-

guarding the quadratic subproblem by enforcing the region constraint are known as

trust-region methods. In other words the quadratic model will be minimized in a

region where it is trusted to produce a good approximation to the true underlying

nonlinear function. Therefore, the optimization problem in the trust-region frame-

work is generally defined as ball constrained region around the current iterate xk

with radius ∆ as

minsk mk(s) :
1

2
sTkBksk +∇f(xk)

T sk,

s.t. ‖sk‖ ≤ ∆
(4.16)

Starting from an initial guess ∆(0), parameter ∆ will be dynamically updated

throughout the iterates k using the feedback we get from ratio of model reduction

versus the true reduction in the objective function. This ratio will be monitored as

the algorithm progresses; this essentially enables us to expand or shrink the trust-

region radius based on accuracy of the model. Algorithm 9 outlines the general

framework of trust-region methods.
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Algorithm 9 Trust-region Method

1: Given ∆0 ≤ ∆̄ and η ∈ [0, 1
4
)

2: for k = 0, 1, . . . do
3: Solve problem (4.16) to obtain sk

4: let φk =
f(xk)− f(x+ sk)

mk(0)−mk(sk)
5: if φk <

1
4

then
6: ∆k+1 = 1

4
∆k

7: else
8: if φk >

3
4

and ‖sk‖ = ∆k then
9: ∆k+1 = min(2∆k, ∆̄)

10: else
11: ∆k+1 = ∆k

12: end if
13: end if
14: if φk > η then
15: xk+1 = xk + sk
16: else
17: xk+1 = xk
18: end if
19: end for

Algorithm 9 describes the the outer loop of the minimization method with dy-

namic updates to the radius. Step 3 of the algorithm involves solution of the con-

strained quadratic model (4.16) which we refer to as subproblem. Clearly the heavy

computation of this algorithm involves the solution of quadratic subproblem.

For the construction of new algorithms and also providing more background on

the topic of trust-region subproblems, we outline the optimality conditions sub-

problem described in equation (4.16). The following theorem describes optimality

conditions of the model subproblem, using these conditions we can identify solutions

providing optimal model reduction.

Theorem 4.2.1. A vector s∗ is a global solution of the trust-region subproblem (4.16)
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if there exists a nonnegative scalar σ∗ such that

(B + σ∗I)s∗ = −g, σ∗(∆− ‖s∗‖) = 0, (4.17)

(B + σ∗I) � 0, ‖s∗‖ ≤ ∆, σ∗ ≥ 0, (4.18)

are satisfied for the pair (s∗, σ∗) (Nocedal and Wright [2006]).

Here σ∗ denotes the corresponding Lagrange multiplier for the trust-region con-

straint ‖s‖ ≤ ∆. In the following we will use an asterisk to denote the exact solution

of a problem. These results are well known due to Moré and Sorensen [1983] where

they proposed methods to exactly solve the above problem.

There are several methods for solving the trust-region subproblem. First, we

discuss the exact method of Moré and Sorensen [1983] as this method provides a

deeper look into this problem. We will use this method to exactly solve the small

dimensional subproblems in the next chapter. We also provide background on other

methods involving cheaper inexact methods for solving these subproblems.

4.2.1 Finding Exact Model Minimizer

Based on the complementarity constraint σ∗(∆ − ‖s‖) = 0, we can see that either

the Lagrange multiplier σ∗ = 0 and therefore ‖s‖ ≤ ∆ or σ∗ > 0 which implies

that the solution lies on the boundary of the trust-region ‖s‖ = ∆. Hence, if the

multiplier is zero, it is logical to check whether the solution to

Bs = −g,

satisfies the constraint ‖s‖ ≤ ∆. If this is the case and B � 0, then we have found

the global minimizer of the model based on the optimality conditions. Otherwise,

one needs to find σ > 0, satisfying B + σI � 0 so that the boundary solution

(‖s‖ = ∆) satisfies the first-order condition

sσ = −(B + σI)−1g.

The above problem can be deemed as a root finding problem on variable σ. We need

to elaborate a complication that may arise in this root finding problem. Letting the
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B = V ΛV T denote the corresponding spectral decomposition where λ1 ≤ λ2 ≤
. . . ≤ λn, we can rewrite the vector sσ as:

sσ = −V (Λ + σI)−1V Tg = −
n∑
l=1

vTl v

λj + σ
vj,

which enables us to determine the length of this vector as

‖sσ‖2 =
n∑
l=1

(vTj g)2

(λj + σ)2
.

Assuming vTj g 6= 0 we can see that length of vector sσ diverges as σ → −λj,
however as optimality conditions require B + σI � 0, we are interested in the

interval σ ∈ (−λ1,∞). As the above function is monotonically decreasing as σ

grows in σ ∈ (−λ1,∞). If vT1 g 6= 0 then the length would decrease from ∞ to 0,

therefore, we are certain that there exists σ ≥ −λ1 where ‖sσ‖ = ∆, in the case

where vT1 q = 0 this condition may not be satisfied easily, this situation is referred to

as the “hard case”, we later will discuss how solution to this case would be obtained.

If we are not in the hard case, the root finding would simply mean finding the σ

which satisfies ‖sσ‖ = ∆. Moré and Sorensen [1983] reformulated the root finding

problem to a well behaved function as:

1

‖sσ‖
− 1

∆
= 0

This function behaves nicely compared to the previous counterpart, and therefore

is more suitable for applying Newton’s root finding approach.

In summary their exact algorithm tries to find solutions to the above root finding

problem using the Cholesky factorizations to solve the linear system of equations

and ensuring positive-semidefiniteness of the shifted system.

Algorithm 10, with safeguards for σi ≤ −λ1 can achieve the true solution of the

root finding problem and produce the corresponding sσ vector as the solution of the

optimality conditions. The above loop usually takes 2 or 3 iterations to converge

in different cases (Nocedal and Wright [2006]). Note that we assumed vT1 g 6= 0

which ensures that the root finding problem has a solution satisfying σ ∈ (−λ1,∞),
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Algorithm 10 Root finding algorithm

1: Given σ0

2: for i = 0, 1, . . . do
3: Factorize B + σI = RTR
4: Solve RTRsi = −g
5: Solve RT qi = si

6: Update σi+1 = σi + (
‖si‖
‖qi‖

)2(
‖s‖ −∆

∆
)

7: end for

‖sσ‖ = ∆. This is the case if at least one of the eigenvectors corresponding to the

smallest eigenvalue is not perpendicular to the gradient. However, for the hard case

where vT1 g = 0, since the limit limσ→−λ1 ‖sσ‖ =∞ does not hold, it is possible that

for values −λ1 ≥ σ there is no possible solution for ‖sσ‖ = ∆. In this case, the

authors show σ = −λ1 and the solution has the form

sσ =
∑

i:λi 6=λ1

vTj g

λj + σ
vj + τζ,

where ζ is the eigenvector corresponding to eigenvalue λ1. This setting makes it pos-

sible to satisfy the boundary constraint ‖s‖ = ∆ by finding the correct τ . Therefore,

the hard case is much more computationally involved.

4.2.2 Solving Trust-region Subproblem Inexactly

The exact method of solving the trust-region subproblem described above has com-

putational bottlenecks, which renders it impractical for cases with large number of

variables as is the case for deep learning problems. Moreover, this method requires

full representation of the curvature matrix for the factorization procedure, which is

practically infeasible to obtain for the problems we are considering. However the

exact method will be useful for small subproblems, as is the case in the next chapter

where we form small reduced subproblems that are computationally cheap for solved

using the exact method.

There are cheaper methods to solve the trust-region subproblem compared to

exact methods. Different strategies can be used to achieve an approximate solution
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for the subproblem. These methods are computationally cheaper than the exact

method which involves Cholesky factorizations on the iterates.

Cauchy Point Method

First method is the Cauchy point mehtod. This method essentially solves the the

trust-region subproblem by constraining the solution to live on a 1-dimensional

subspace generated by the steepest descent direction −gk.

sk = arg min
τ≥0

mk(−τgk) s.t. ‖τgk‖ ≤ ∆k

Dogleg Method

This method is more general than the Cauchy point method as it considers mini-

mization on a path generated by steepest descent minimizer direction of model (sU)

and Newton’s directions sN of the unconstrained model. This method is appropriate

when model’s curvature matrix is positive-definite. These vectors are defined as

sU = − gTg

gTBg
g, sP = −B−1g

The solution sk(τ) will lie on the path generated by these directions subject to

trust-region bound.

s(τ) =


τ sU , 0 ≤ τ ≤ 1

sU + (τ − 1)(sN − sU), 1 ≤ τ ≤ 2

Two Dimensional Subspace Method

This method is another step in generalizing the dogleg method. The dogleg method

restricts the solution to the path generated by su followed by sB, however we can

widen the search by considering the full space spanned by these directions, that is

p ∈ spang,B−1g for subproblem (4.16)
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This method is more general than previous methods which can potentially lead to

better model minimizers. Building on top of these methods, we can get more sophis-

ticated methods minimizing on subspaces spanned by more than two dimensions.

Methods based on Krylov subspaces can generate solutions that more accurate and

also more practical in large-scale settings.

Iterative Methods for Subspace Minimization

One of the popular iterative methods for solving the trust-region subproblems are

conjugate gradient methods. These methods work on subspaces and at each iteration

minimize the model on the incumbent subspace, while adding additional dimension

to the subspace for the next iterates. These methods have gained much popularity

among deep learning researchers for particular reasons that are inherent to the large

size of these problems. The main aspect that makes these algorithms desirable

is their ability to optimize the function in a matrix-free framework, i.e. the full

representation of the matrix B is not required, and only the multiplication Bv for

an arbitrary vector v is needed. Using the R-operator discussed in 4.1.2 we can

modify the back-propagation algorithm to find the Hessian-vector multiplication as

illustrated in Algorithm 8.

One issue arising in using the traditional CG methods is the assumption ofB � 0.

However, by construction the loss function of the deep learning problems is not

necessarily convex and therefore its Hessian is not necessarily positive-semidefinite.

Fortunately, there are variants of nonconvex CG methods such as Steihaug [1983],

Toint [1981] or GLTR by Gould et al. [1999] for this problem, however there are

some considerations with each of these algorithms which should be discussed.

In order to overcome the nonconvexity issue, Martens [2010] proposed using a

positive-semidefinite approximation to the Hessian. He proposed using the gener-

alized Gauss-Newton (GN) curvature matrix as an approximation of the Hessian

which can be used with a CG solver. Originally, Schraudolph [2002] extended the

Gauss-Newton curvature application from least squares problem to neural networks.

Similar to Hessian-vector multiplication, GN-vector multiplication can be calculated
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by back-propagating through the network. Martens also developed pre-conditioners

for the CG algorithm which can be easily calculated to speed up convergence of the

the CG iterations.

One general issue with this method is that as GN is a positive-semidefinite ap-

proximation to the actual Hessian, there is a possibility of converging to saddle

points rather than at a local minimum. In other words, as it ignores directions of

negative curvature in a nonconvex problem, it is susceptible to yield sub-optimal

solutions. We will present numerical examples, as a supporting evidence of this case

in section 4.4.3. We also provide explanations on what happens in saddle point and

how we can use this information. Mizutani and Dreyfus [2008] note that the nega-

tive curvatures of a NN have important information for global minimization. Hence,

it could be advantageous to use the exact Hessian, if one can handle directions of

negative curvature using a CG solver. It turns out that via use of some classical nu-

merical linear algebra algorithms we can avoid using Gauss-Newton approximation

and utilize the Hessian directly. Lanczos method is a classical approach in linear

algebra which converts a matrix B to a tridiagonal form T (see the next chapter

for further great detail on this method). Dauphin et al. [2014] propose a Lanczos

based variant of conjugate gradient to handle nonconvex Hessian for training the

neural network. Their method also modifies the Hessian for convexification in a

particular way. Basically a reduced Hessian B̄ is produced in the space of Lanczos

vectors, further to get the search direction the reduced Hessian will be replaced by

|B̄| which is the replaces the negative eigenvalues λi of the matrix B̄ with their

modulus |λi|. This algorithm requires a huge storage space and also the reduced

space can drop dimensions that encompass components of the model minimizer; we

will discuss more deficiencies of the Lanczos based methods further.

The method we consider is a modified conjugate gradient method that doesn’t

require explicit vector storage and also does not rely on numerically unstable or-

thogonality of Lanczos vectors. Zhou et al. [2017] developed a modified conjugate

gradient (MCG) method which can be applied to the nonconvex case using a trust-

region framework. In what follows, we give a brief summary of the MCG method

and how we can use it for training the NN.
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4.3 Krylov Subspace methods

This section provides necessary background on methods based on iteratively gen-

erating subspaces known as Krylov subspace. These methods include conjugate

gradient (CG), used in minimizing quadratic forms, Lanczos iterations, and their

relationship in minimization of subproblems. First, we present the vanilla conjugate

gradient method and Lanczos algorithm, we also need to provide how these two

methods are connected and then show a simple unifying algorithm that can be used

as either of them.

At each iteration, these methods add a new vector to the incumbent subspace

to expand the Krylov subspace by one dimension, their difference aside from their

intended usage is their choice of vectors for expanding the subspace.

Most CG based methods rely on extensive use of the Lanczos method within

the CG framework for accurately solving the trust-region subproblems. The main

interesting property of both is that starting with the same starting vector r0, they

both expand on the same Krylov subspaces through the iterations. The only differ-

ence is their basis choice for the same subspace; i.e. the CG algorithm works on a

H−Conjugate basis of

P = {p0, p1, . . . , pk}, (4.19)

whereas the Lanczos maintains orthogonal basis vectors

Qk = {q0, q1, . . . , qk}, (4.20)

for the Krylov subspace of

K(r0, B, k) = {r0, Br0, . . . , B
k−1r0}. (4.21)

Therefore, it is possible to re-utilize the information generated by CG to keep Lanc-

zos informations updated and solve the subproblem past the Steihaug-Toint method.

However, as mentioned in the previous chapter, recovering the subproblem solution

would require the storage of Lanczos vector or regenerating them. In this section,

we review both algorithms as well as their connection and how some solvers utilize

both to achieve maximum accuracy in solving the subproblems.
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4.3.1 Conjugate Gradient Method

The conjugate gradient method is one of the prominent minimization techniques for

unconstrained quadratic functions. Minimizing a function as

min
s

1

2
sTBs+ gT s (4.22)

Starting from s0 this method generates a sequence of directions pi to update iterate

si which satisfy the following relation:

pTi Bpj = 0, ∀i 6= j (4.23)

The method works by computing the current residual rj = Bsj + g and generating

the corresponding conjugate direction pi from this residual along with the optimum

step-size αi and update the iterate as sj = sj−1 + αjpj. Algorithm 11 shows how

given the current residual rj and iterate sj CG method calls subroutine cgUpdate

to generate the conjugate direction and update the iterate. The version of the

algorithm shown depicts a slightly modified version of CG update which includes

Lanczos book keeping including parameter {q, γj, tu, td}. Lanczos method is a closely

related linear algebra method for reducing the matrix B into tridiagonal form, this

method is discussed in section 4.3.3.

Algorithm 11 Conjugate Gradient Iteration

1: function [rj+1, αj, pj, γj, q, tu, td] = cgUpdate(B, rj, αj−1, pj−1, γj−1)
2: γj = rTj rj;
3: if γj−1 = 0 then β = 0 else β = γj/γj−1; end if
4: pj = rj + βjpj−1;
5: αj = γj/p

T
j Bpj;

6: rj+1 = rj − αjBpj;
7: endfunction

It is known that CG converges to the minimizer s∗ in at most n iterations.

Another important property of CG is to obtain minimizer of each subspace spanned

by the current conjugate vectors pj. The following theorem shows an important
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result of CG methods which is known as expanding subspace minimization. We

state this theorem as presented in Nocedal and Wright [2006]

Theorem 4.3.1. For arbitrary s0 ∈ Rn and sequence sk generated by conjugate

direction algorithm, new residuals are orthogonal to previous conjugate directions

that is

rTk pj = 0, ∀j = 0, 1, . . . , k − 1 (4.24)

Furthermore sj is the minimizer of 1
2
sTBs+ gT s over the set

{s|s = s0 + span{p0, p1, . . . , pj−1}} (4.25)

Essentially this theorem states that each sj iterate of CG method, minimizes

the function over all previously derived conjugate directions pj. We will use this

theorem heavily on the next chapter.

4.3.2 Trust-region CG Solver: Steihaug-Toint

As one of the popular inexact Newton methods, Steihaug and Toint individually

gave rise to a trust-region driver with an inner CG method to solve the nonconvex

quadratic model over a trust-region of radius ∆. The method as discussed in Nocedal

and Wright [2006] necessarily starts from origin s0 = 0; As the algorithm progresses

along the conjugate directions pi the norm of the incumbents solution si increases

monotonically, which allows monitoring the feasibility with regards to trust-region

ball constraint.

The crucial property of this algorithm is the increasing norm property i.e.

0 = ‖s0‖ ≤ ‖s1‖ ≤ . . . ≤ sk ≤ sk+1 ≤ ∆.

This property is essential to the algorithm in order to satisfy the region constraint.

Starting from the origin ensures that the increasing norm property holds, this means

that the algorithm cannot be warm-started. Another note on this algorithm is that

the inner iterations terminates as soon as the direction of nonpositive curvature is

encountered (Step 4).
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Algorithm 12 Steihaug-Toint CG subproblem solver

1: function[sk] = STCG(Bk, gk, εk,∆)
2: Set B̂0 = Bk, p0 = −gk, ŝ0 = 0, r0 = p0, isMod = 0, and i = 0
3: While (‖ri‖ > εk) do
4: If (pTi B̂pi ≤ 0) Then
5: Find τ s.t. sk = sk−1 + τpi minimizes mk(sk) and ‖sk‖ = ∆.
6: Return sk = sk−1 + τpi
7: αi = rTi ri/p

T
i B̂pi

8: ŝi+1 = ŝi + αipi; ri+1 = ri + αiB̂si
9: If (‖si+1‖ ≥ ∆) Then

10: Find τ s.t. sk = sk−1 + τpi minimizes mk(sk) and ‖sk‖ = ∆.
11: Return sk = sk−1 + τpi
12: βi+1 = rTi+1ri+1/r

T
i ri; qi+1 = −ri+1 + βi+1qi

13: i = i+ 1
14: End
15: Set sk = ŝi
16: endfunction

4.3.3 Lanczos Iteration Method

As hinted in section 4.3, the Lanczos method produces an orthonormal basis which

spans the corresponding Krylov subspace K(r0, B, k) with respect to initial vector

r0. However, in the background using the basis Q this method reduces the matrix

B of the equation (Bx = b) to a tridiagonal form T as

QT
kBQ

T
k = Tk, (4.26)

where Qk is defined as in (4.20). The outline of the Lanczos algorithm is as follows:

As Algorithm 13 shows the implementation only requires one matrix-vector prod-

uct with matrix B per iteration. Through the iterates the matrix Tk contains

Tk =



α0 β1

β1 α1

. . .
. . . βk−1

βk−1 αk−1 βk

βk αk


(4.27)
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Algorithm 13 Non-Restarted Lanczos Algorithm

1: Require: r0

2: β0 = 0
3: for i = 1, 2, . . . do
4: qi = ri−1/‖ri−1‖
5: αi = qTi Bqi
6: ri = Bqi − αiqi − βi−1qi−1

7: βi = ‖ri‖
8: end for

It can be shown that when the algorithm converges, Tn stores the same eigen-

information as the original matrix B (Golub and Van Loan [2012], Saad [2011]).

However, as matrix Tn is tridiagonal this information can be extracted with a con-

siderably cheaper methods in O(n log(n)) (Coakley and Rokhlin [2013]). This struc-

ture is the key to enable solvers such as GLTR to use exact method of Moré and

Sorensen in a modified subproblem in terms of Tn rather than the original matrix.

4.3.4 Conjugate Gradient and Lanczos Connection

As previously mentioned both CG and Lanczos start from an initial vector and ex-

pand the subspace with regards to Krylov property. The choice of starting vector for

Lanczos method as a general matrix reduction algorithm is arbitrary, however for

the CG method this choice is bound to be parallel to the steepest descent direction

of ∇(f(xk)). Therefore, in algorithm 13 if we set r0 = g the Krylov subspace gen-

erated by Lanczos algorithm will coincide with that of conjugate gradient method

(Gould et al. [1999]), this is the key on linking the two algorithms which drives

the GLTR algorithm on being able to convert the QP model to simpler form (4.28)

by re-using CG information. Algorithm 14 augments the CG method described in

algorithm 11 with an additional book-keeping steps to keep track of the tridiago-

nal matrix generated by corresponding Lanczos method with initial vector set as

normalized g.
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Algorithm 14 Conjugate Gradient Iteration (with Lanczos book-keeping)

1: function [rj+1, αj, pj, γj, q, tu, td] = cgUpdate(B, rj, αj−1, pj−1, γj−1)
2: γj = rTj rj;
3: if γj−1 = 0 then β = 0 else β = γj/γj−1; end if
4: pj = rj + βjpj−1;
5: αj = γj/p

T
j Bpj;

6: rj+1 = rj − αjBpj;
7: Lanczos book-keeping steps:
8: q = rj/

√
γj;

9: if αj−1 = 0 then
10: td = 1/αj and tu = 0;
11: else
12: td = 1/αj + β/αj−1 and tu = −

√
β/αj−1

13: end if
14: endfunction
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4.3.5 GLTR Algorithm: Integrated CG and Lanczos Solver

If the solution of the QP model lies outside of the trust-region boundary, the

Steihaug-Toint algorithm terminates by projecting the solution on the boundary.

Gould et al. [1999] proposed a method which continues on the CG iteration once

Steihaug-Toint algorithm decides stop further improvements. The Generalized Lanc-

zos Trust-Region (GLTR) algorithm, uses the Lanczos transformation to solve wider

prospect of trust-region problems; That is on solving the system

(Bk + σkI)sk = −gk,

where Bk is not necessarily positive-definite.

As the authors demonstrate, starting the Lanczos algorithm with the initial vector

q0 = g, the CG residual information could be used to produce Lanczos vectors as

byproduct of CG; the algorithm stores this information along with the CG iterates;

therefore, as it hits a direction of negative curvature, it can continue with the Lanczos

iterates rather than pursuing CG iterates. Finally the Lanczos vectors stored in the

orthonormal matrix Q of size n × j which spans the Krylov subspace with respect

to matrix B and vector g, can yield a basis to express the solution of the QP in

that subspace. This is favorable as Lanczos iterations convert the matrix B into a

tridiagonal form of T along their progress i.e.

QTBkQ = Tk,

will have the special form, which enables cheap factorization of Tk, in order to solve

the subspace trust-region quickly using an exact solver such as Moré and Sorensen

[1983]. Expressing the solution in the Lanczos basis subspace, sk = Qw problem,

min
‖w‖≤∆

ḡTw +
1

2
wTTkw (4.28)

where ḡ = QT (gk) = ‖gk‖e1, and ei represents the ith column of identity matrix of

proper size. Since now quadratic matrix Tk is tridiagonal, exact method of Moré

and Sorensen [1983] can be used to obtain the solution by efficiently factorizing Tk.

For practical efficiency the algorithm will progresses as the Steihaug-Toint algorithm
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initially (first phase), however when the optimal trust-region solution tends lies out-

side of boundary the algorithm proceeds as Lanczos iterations (second phase) to

obtain a subspace trust-region subproblem. This enables the algorithm to obtain

interior solutions in a computationally efficient way by pursuing normal CG algo-

rithm, however if the solution is not interior then the power of Lanczos method

is utilized. Therefore, either the user needs to save all qi basis vectors to retrieve

the solution from second phase, or needs to save all such vectors in memory, the

algorithm can continue first phase without storing qi for Lanczos basis, however if

the algorithm needs to enter the second phase, re-computation of these vectors are

needed which essentially doubles the Hessian-vector product or has store all Lanczos

vectors; where both are prohibitive in deep learning large-scale problems.

4.3.6 Modified Conjugate Gradient

The algorithm comprises of outer and inner iterations. The outer iteration outlined

in Algorithm 15, obtains the direction sk and performs a line-search sequentially until

convergence criteria is met.Omitting lines [3, 6–8] of Algorithm 15, and an arbitrary

descent direction sk, the algorithm resembles a line-search algorithm. Therefore, it

preserves the outline of a line-search algorithm. However, the descent direction in

this algorithm, is obtained by solving a quadratic subproblem (Step 3).

The inner iteration, described in Algorithm 16, is a modified variant of the

conjugate algorithm applied to system Bksk = −gk that controls the size of s. To

avoid confusion with other modified CG methods, we will refer to this variant as

step-size controlling Modified Conjugate Gradients (MCG).

At each iteration a quadratic model around the iterate is formed (similar to

Newton method), and the quadratic model is solved using CG. So far the algorithm

resembles a variant of line-search Newton-CG method, or better known as truncated

Newton method (Nocedal and Wright [2006]). These methods when reaching a

singular or negative curvature direction, stop and yield steepest descent or the sub-

optimal CG solution.

On the other hand trust-region methods have been known to handle singularities
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in the Hessian matrix well, by imposing a radius constraint on the step size. This

radius, denoted by λ, is updated based on the ratio of model reduction to the

function reduction which is updated by similar idea of trust-region algorithms using

steps [6–9]. The inner problem is an implicit trust-region subproblem using the

conjugate vectors to solve the system Bksk = −gk, defining implicit bounds on

the trust-region radius. Whenever the bound for left-most eigenvalue is not on the

desired level, the Hessian is shifted by a rank-one update composed of residuals;

similar ideas based on use of Lanczos vectors have been explored in Arioli et al.

[1993].

Algorithm 15 Outer iteration of MCG with line-search

1: Initialization: Choose x0, and a sequence {ηk} > 0 satisfying ηk → 0, and set
ε > 0, c ∈ (0, 1), λ0 > 0, and k = 0;

2: While (‖gk‖ > ε) do
3: [sk, isMod] = MCG(Bk, gk, λk, ηk)
4: [αk, ρk] = LineSearch(xk, sk,m(sk), f(xk), gk)
5: set xk+1 = xk + αksk
6: If (α < 1.0), then λk+1 = 2λk
7: Else,
8: if (ρk > 0.75) and isMod = 0, then λk+1 = 0.5λi
9: k=k+1

10: End

At first glance, it may appear that the sequence of {ri} corresponding to nonzero

δ in Hessian modification Step 6:

B̂ = B̂ + δrir
T
i , (4.29)

must be explicitly stored. However, we can leverage the properties of CG, and

continue to carry out implicit multiplies with B̂ while never storing the additional

terms explicitly, this is outlined in section 4.5.1. Instead, the recursive relation

yi = yi + δri(r
T
i pi) is used whenever yi = B̂pi is needed. Proof of why this works is

provided in Theorem 4.5.1 which ensures that the storage overhead of the propose

algorithm is comparable to the original CG algorithm. Additionally, as in CG, only

one multiplication per inner iteration is needed (Bpi). Handling the nonconvexities
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Algorithm 16 Inner algorithm to get search direction

1: function[sk, isMod] = MCG(Bk, gk, λk, ηk)
2: Set B̂0 = Bk, p0 = −gk, ŝ0 = 0, r0 = p0, isMod = 0, and i = 0
3: While (‖ri‖ > ηk‖gk‖) do
4: If (pTi B̂pi ≤ λk‖gk‖‖pi‖2) Then
5: δ = (λk‖gk‖‖pi‖2 − pTi B̂pi)/rTi ri
6: B̂ = B̂ + δrir

T
i

7: isMod = 1
8: End
9: αi = rTi ri/p

T
i B̂pi

10: ŝi+1 = ŝi + αipi; ri+1 = ri + αiB̂pi
11: βi+1 = rTi+1ri+1/r

T
i ri; qi+1 = −ri+1 + βi+1qi

12: i = i+ 1
13: End
14: Set sk = ŝi
15: endfunction

by Hessian modifications, also controling the inertia of Hessian using trust-region

based strategy make this algorithm a good choice for optimization of quadratic

models that are based on the actual Hessian. Moreover, the algorithm, unlike other

nonconvex CG solvers, does not require storage or reproduction of Lanczos vec-

tors; which makes it suitable to the large-scale nonconvex settings of deep learning

problems.

Similar to procedure of Arioli et al. [1993], a lower bound is enforced on the

modified Hessian in terms of the conjugate vectors, which is of the form:

pTi B̂pi
pTi pi

≥ σk. (4.30)

The distinction of MCG from existing strategies is to make σk proportional to

‖gk‖ via the relation σk = λk‖gk‖; which in turn makes σk approach 0 in the limit,

so long as λk is bounded. This can be seen in Steps [5–11] of Algorithm 16. Second,

the scale term λk is used to refine the rate at which σk goes to zero according to

progress made during the previous iteration of the outer algorithm. This helps tailor

the choice of σk to the specific problem being solved. Essentially, σk used here takes

into account the following factors: (i) the resultant effect on the growth of dj, (ii)
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the size of the current gradient, and (iii) the quality of the last search direction.

Because the residuals of CG are parallel to the Lanczos vectors, it is easy to see that

δrir
T
i used in Step 9 in 16 is equivalent to the modification described in following

equation of Arioli et al. [1993]:

Ek =
∑
j

γjqjq
T
j (4.31)

where γj = δ‖ri‖2.

Note that λk is inversely related to an upper bound on an implicitly defined trust-

region. Thus, in Steps 5-11 of Algorithm 15, λk is modified in a similar manner to the

trust-region radius in a trust-region algorithm. If an adequate model of the objective

function is found within the trust-region then the region is expanded; conversely, if

the approximation is poor then the region is contracted. That is, when the predicted

ratio is good, λk is decreased, and conversely, when the predicted ratio is bad, λk is

subsequently increased. The inner iterations of Algorithm 16 solve the B̂ksk = −gk
within a scale term ηk of the current norm of the objective gradient. We later

prove that this new algorithm possesses the theoretical strength of a trust-region

algorithm and that 16 is actually modifying Bk according to an implicit trust-region.

The convergence of the algorithm is at least linear if ηk is bounded away from 0,

and superlinear if ηk converges to 0.

As a result of the following inequality

pTi B̂pi
pTi pi

> λk‖gk‖, (4.32)

we see that the modified Hessian can approach a singular system only in as much

as the current corresponding gradient also approaches zero. This ensures that even

if ‖B̂−1
k ‖ approach infinity, the step sk must still converge to 0 in the limit (which

is necessary for fast convergence). Note that 16 can easily be adapted to use a

preconditioner if available, as in regular PCG (preconditioned conjugate gradient)

methods. To permit the algorithm to be as general as possible, we only require that

the modification term δ satisfy the bound

δ ≥ (λk‖gk‖‖pi‖2 − pTi B̂pi)/(rTi pi)2 (4.33)
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in step 8 of 16 with equality on the very first iteration. That is, pTi B̂pi ≥ λk‖gk‖‖pi‖2

is ensured when B̂ = B̂ + δrir
T
i . The modification matrix δrir

T
i may be as large as

desired. Zhou et al. [2017] provide a theorem demonstrating that if δ =∞ whenever

indefiniteness is detected and i > 0, then MCG will terminate with sk = di and

ri+1 = 0, behaving in a manner very similar to truncated CG. Though we do not

recommend such an extreme variant of MCG in practice, we do emphasize that all

the convergence properties stated will continue to hold.

4.4 MCG for Deep Learning problems

This section briefly motivates the use of the modified conjugate gradient algorithm

by Zhou et al. [2017] for deep learning problems.

4.4.1 Motivation

Martens [2010] explore the use of PSD approximation to the Hessian by using the

Gauss-Newton approximation, however in order to use true Hessian information

a nonconvex CG solver is required to better exploit the Hessian information. As

mentioned in the previous section as we are interested in a matrix-free framework,

variants of CG solvers that can handle nonconvexities in the curvature matrix are de-

sired. Two prominent algorithms in this framework include Steihaug-Toint method

(Steihaug [1983], Toint [1981]), and GLTR (Gould et al. [1999]). In this section, we

give a brief overview of these algorithms and discuss why another variant to handle

nonconvexities can be better suited in the context of deep learning.

4.4.2 Deep Learning Application

This section overviews the application of the mentioned algorithms in the context

of deep learning. In order to capture complex underlying functions governing the

data, it’s suggested that deeper and wider networks (Cheng et al. [2016]) should be

utilized for training. This in turn vastly increases the dimensions of the underlying
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optimization problem.

As mentioned to use actual Hessian information, the inner algorithm needs to be

able to handle nonconvexities. Of the two Steihaug-Toint and GLTR methods men-

tioned above, the former relies heavily on the increasing norm property, which re-

quires dropping the possibility of warm-start solutions as s0 = 0 is necessary. On

the other hand, as also Martens and Sutskever [2012] argues, warm-start availabil-

ity significantly improves the speed of obtaining the solution and reduces number

of Hessian-vector products needed for convergence. Ineffectiveness of the Steihaug-

Toint algorithm in the deep learning context has also been observed empirically

by Wiesler et al. [2013].

In the numerical section we implement the Steihaug-Toint algorithm in oder to com-

pare the results for the second-order algorithms; showing that in fact being able to

warm start CG has great advantages.

The GLTR algorithm outlined previously is the next popular choice for the

nonconvex quadratic problem. In the deep learning context, the problems are very

large-scale compared to traditional optimization problems. This means that the

number of variables n would be massively high; although this will not cause an

issue normally, however this can create issues when dealing with GLTR algorithm.

As mentioned above to be able to solve the quadratic subproblem in the reduced

space of Lanczos vector basis, the algorithm relies on maintaining the matrix Q

which includes columns with huge number of elements. Therefore, to minimize

the quadratic exactly we either need to store all the Lanczos vectors corresponding

to matrix Q, in order to be able to get the inverse image of the solution for the

tridiagonal system and retrieve the true minimizer of the quadratic. Storing the

columns of this matrix, as n is really high, can get infeasible if we are interested in

solving the quadratic model exactly.

There are some variants that try to minimize the quadratic in a Krylov space

which is restricted to K dimensions, for example Vinyals and Povey [2012] store

K = 20 columns for the Q matrix.

Therefore, among the algorithms that can work with low memory requirements,
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we will see that MCG can be more suited in training the network, as it can produce

better solutions when direction of negative curvature is occurred and also with

limited storage requirements.

4.4.3 Incomeplete Training with GN

Implementing GN-vector computation algorithm and using it instead of Hessian-

vector multiplies to feed the CG algorithm, we present cases that can further improve

when GN is discarded as the approximation of curvature; thus motivating the use

of exact Hessian (HF) instead of approximate curvature matrix GN.

Table 4.1: 2500 Observations - 6 layers each with 10 units

Method #Iter
Training

Loss
Validation

Loss
Training
Error(%)

Validation
Error(%)

HF 62 0.012283 0.059523 1.07% 15.84%
GN 19 0.018199 0.052841 2.61% 15.04%

GN+HF 19+5 0.007109 0.052234 0.69% 13.76%

Table 4.1 initially shows three training information corresponding to exact Hes-

sian method, GN method and also hybrid of both. In the first two rows, the algo-

rithm starts from the same initial solution and we can see that exact Hessian yields

a better training error, where as the Gauss-Newton method gives a better validation

error. However, as GN ignores the negative curvature directions, the achieved solu-

tion potentially may not satisfy second-order necessary condition. This patterin is

indeed the case, in our motivating example. We can view this, by using HF method

starting from last iterate of GN’s solution. Thus we can see that by taking into

account the exact curvature information, we can further proceed to optimize the

solution and get better results in terms of both the training and validation errors.

One possible guideline for using the hybrid method can be the number of train-

ing misclassification points. To shed further light on this issue, first, we write the

terms corresponding to Hessian and Gauss-Newton Matrix as stated in Martens and
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Sutskever [2012].

H =
1

|S|
∑

(x,y)∈S

JfHLJf +
m∑
i=1

[∇L]iH[f(x,w)]i , (4.34)

G =
1

|S|
∑

(x,y)∈S

JfHLJf (4.35)

Here∇L andHL are gradient and Hessian of the loss function and Jf is the Jacobian

of the implicit function f(x,w). Therefore, the two curvature information matrices

differ only in the the second term. As we fit more training data ∇L(x,y) → 0. How-

ever, when there are misclassification, these two matrices can differ. Therefore, the

gradient of the loss can be a good measure to a promising hybrid method, in order

to remove the possibility of getting saddle-point solutions.

The above example shows that although GN yields good results, it can also

stop on a saddle point, as it ignores the negative directions. Therefore, the hybrid

method could be useful in which we use the power of MCG and exact Hessian in

order to hedge against having saddle point solutions.

4.4.4 Numerical Experiments

We used MNIST dataset in order to evaluate the performance of each of the above

algorithms. The processed data has 784 input variables corresponding to pixel

information and has 10 outputs that correspond to 0–9 digits. MNIST data has

70,000 observations, where 60,000 are used for training and the remaining 10,000

are used for validating the NN results.

4.4.5 CUTEr Problems

To demonstrate the robustness of the new line-search approach on a wide range of

problem types we compare the implementations of MCG with the Steihaug-Toint

trust-region method on the unconstrained CUTEr test problems Bongartz et al.

[1993], Gould et al. [2003] at SAS. We applied Algorithm 15 to all SAS translations
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of the unconstrained CUTEr test problems maintained by the SAS/OR testing team

resulting in a total of 220 problems. For efficiency, a diagonal pre-conditioner is used

initially and transitioned to an approximate LDL factorization of the Hessian matrix

when suitable near a solution. Warm-starting is used when applicable to improve

performance.

Table 4.2: Results on SAS CUTEr set

Steihaug-Toint
MCG ERROR LIMIT SOLVED Total

ERROR 1 0 0 1
LIMIT 0 0 2 2

SOLVED 0 11 206 217
Total 1 11 208 220

Table 4.2 shows that the MCG algorithm is more stable solving 9 more instances

compared to Steihaug-Toint and reaching the iteration limit on 2 instances. The

failed instance correspond to “s214.mod” from AMPL instances; where the origin

is the optimal solution with values of 0. Both algorithms get close to this amount

however both fail the line-search as the curvature grows towards the optimal solution.
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Figure 4.2: Problem S214.mod
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Because of the large number of problems we use performance profiles recom-

mended by Dolan and Moré [2002]. Figure 4.3 and Figure 4.4 provides performance

profiles comparing iterations and function evaluations used by Steihaug-Toint and

MCG respectively. We emphasize that past articles have struggled to show marginal

improvement over Steihaug-Toint on the unconstrained CUTEr test set Erway and

Gill [2009], Erway et al. [2009], Gould et al. [1999]. Both plots show the advan-

tage of MCG in terms of both iterations and evaluations. The benefits of saving in

terms of function evaluations is highlighted in the next section in the context of deep

learning problems, where both function evaluation and Hessian-vector multiplies are

expensive.
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Figure 4.3: Performance profile comparing iterations on the CUTEr test set.

4.4.6 Hot-starting with Computationally Cheaper Algorithms

Although proving useful, the second-order algorithms tend to have heavy iterations.

We can distinguish the heavy comparison by counting the number of multiplies

against the curvature matrix (Hessian or Gauss-Newton).

In order to see how we can reduce the cost of heavy iterations, we try ideas on

89



fr
ac

tio
n 

of
 in

st
an

ce
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

log2(r)

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MCG vs Steihaug-Toint by Time

MCG
Steihaug-Toint

Figure 4.4: Performance profile comparing number of function evaluations on CUTEr
test set.

how to hot-start the second-order algorithm using a better initial point compared

to random which can save time on training the model.

L-BFGS: As at each iteration we are evaluating the gradient by performing the

back-propagation algorithm, application of algorithms such as L-BFGS comes to

mind. The winning property of L-BFGS is that since computing curvature matrix-

vector product is much more expensive than gradient evaluation, having an ap-

proximate curvature matrix based on innate secant updates of L-BFGS we can

get a good solution in faster runtime. Therefore, in addition to the combination

of HF-MCG/GN-MCG (Hessian-Free Methods), we incorporate L-BFGS solver to

minimize the loss function in our numerical examples. For each of the solvers men-

tioned above we can have regularizers such as `1 and `2 added as penalty to the loss

function.

Although L-BFGS algorithm cannot generalize well to the data, however as it

drops obtaining direct second-order information, the iterations are reliably much

faster than the rest of the algorithms. Therefore, using different strategies we can

try to make matrix-free algorithms work less towards the optimum solution.
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We ran the experiments on two different networks with 300 and also 350-100

hidden neurons. From the Tables 4.3,4.4 we can see that both methods HF and

GN produce comparable validation errors; corresponding regularizers (if any) are

enclosed as subscripts. We can see that exact Hessian (HF) tends to converge

faster than approximation of Gauss-Newton. Also we can see that (`1) regularized

counterparts tend to generate comparable results.

In our experiments we used L-BFGS to train the NN. We can see that it quickly

minimizes the training error although cannot generalize comparable to second-order

algorithms. Starting MCG from the initial point generated by L-BFGS, we can

try to train the network further by extracting information on the curvature of the

function. We used both HF and GN to train the network further, as with early-

stopping criteria the network cannot improve by more than 4 iterations (Table 4.3)

and 6 iterations (Table 4.4). This means that after few number of iterations the

solution is trapped in a local minimum region where further optimization, over-fits

the network, giving rise to higher validation error. Therefore, hot-starting MCG

from a naive L-BFGS without regularization cannot yield results as good as native

MCG run.

One observation is that since L-BFGS is the can rapidly reduce the training error

and thus more prone to over-fitting, we can use different norms in order to regularize

the weights which is a technique used to prevent over-fitting, also used in classifiers

such as SVM and regression. Therefore, we used a variant of smoothed `1 and `2

regularizers for L-BFGS. We can see that accounting for the actual and approximate

curvature using HF and GN respectively, good solutions with lowest validation error

are achieved. Therefore, by using such permutation of solvers we can easily train a

huge network, and use less number of costly second-order evaluations. However, it

seems that to our goals smoothed `1 norm, performs better than `2 norm, yielding

errors comparable or better than the complete second-order algorithm.

Similar results are attained in larger networks. In Table 4.4, we see that the results

with `1 regularized LBFGS are comparable to complete second-order methods with

slightly higher misclassification.
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Table 4.3: MNIST results with one layer and 300 neurons

Neurons Methods Iter Train Valid T-Mis V-Mis
300 HF 38 0.000316 0.00583 0 0.0173
300 GN 58 0.0003 0.005686 0 0.0176
300 HF`1 200 0.00675 0.00632 0.0025 0.017
300 GN`1 200 0.00698 0.00676 0.0032 0.0188
300 L-BFGS 86 0.001777 0.010096 0.0042 0.0286
300 L-BFGS→HF 4 0.0003 0.009657 0.0001 0.0258
300 L-BFGS→GN 4 0.000301 0.00967 0.0001 0.0252
300 L-BFGS`1 216 0.004918 0.005972 0 0.0196
300 L-BFGS`1 →HF 8 0.0002 0.005689 0 0.0183
300 L-BFGS`1 →GN 4 0.000283 0.005681 0 0.0187
300 L-BFGS`2 87 0.00362 0.008152 0.0045 0.0248
300 L-BFGS`2 →HF 5 0.000455 0.007863 0.0001 0.0237
300 L-BFGS`2 →GN 4 0.000505 0.007848 0.0001 0.0235

Table 4.4: MNIST results with two layers and 350-100 neurons

Neurons Methods Iter Train Valid T-Mis V-Mis
350-100 HF 57 0.000559 0.005714 0.0001 0.0178
350-100 GN 65 0.000448 0.00554 0 0.0168
350-100 HF`1 300 0.00641 0.00595 0.0016 0.016
350-100 GN`1 300 0.0063 0.00617 0.0016 0.0173
350-100 L-BFGS 88 0.002688 0.009622 0.0069 0.0284
350-100 L-BFGS→HF 5 0.000571 0.008975 0.0002 0.0256
350-100 L-BFGS→GN 6 0.000421 0.009013 0.0003 0.0256
350-100 L-BFGS`1 111 0.00957 0.006656 0.0054 0.0217
350-100 L-BFGS`1 →HF 8 0.000377 0.005686 0.0001 0.019
350-100 L-BFGS`1 →GN 12 0.000226 0.005713 0 0.0185
350-100 L-BFGS`2 91 0.003905 0.008311 0.0066 0.0233
350-100 L-BFGS`2 →HF 4 0.000555 0.007675 0.0002 0.0226
350-100 L-BFGS`2 →GN 5 0.000446 0.007652 0.0001 0.0217

92



Therefore, we see that our hybrid proposed method can get comparable valida-

tion error compared to pure second-order algorithms, with much less computational

cost. Therefore, it is easier in the context of hyper-parameter optimization to ad-

just the parameters and get better solutions. For example running the LBFGS-`1

algorithm with updated weight of regularizer we get better results summarized in

Table 4.5.

We can see that our method could get validation error and misclassification count

Table 4.5: Hyper-Optimized problem `1 weight=2

Neurons Method Iter Train Valid T-Mis V-Mis
350-100 L-BFGS`1 191 0.009845 0.005783 0.0015 0.0182
350-100 L-BFGS`1 →HF 12 0.000275 0.005427 0 0.0163
350-100 L-BFGS`1 →GN 15 0.000172 0.005393 0 0.0157

that is better than all results achieved in Table 4.4.

4.5 MCG for Deep Learning

The context of deep learning problems, require specific customization of algorithms

to make it suitable for such problems. In this section, we show two major prop-

erties of the proposed method which are desirable in this context. The first part

includes the memory-less property of our Hessian updates, in other words, unlike

other complex algorithms such as GLTR the MCG method does not require to store

the modifications to the Hessian. The second property is the ability of warm-starts.

Due to their design, the nonconvex Steihaug-Toint and therefore GLTR cannot be

warm started as their crucial increasing norm property would not be valid other-

wise. We extend the MCG algorithm and propose new criteria for warm-starting the

algorithm. Numerical results show the benefits of warm-start on the computation

of Hessian-vector products.
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4.5.1 Memory-less property

As mentioned in section 4.3.5, GLTR (Gould et al. [1999]) tackles the nonconvex

problem by incorporating the power of Lanczos Iterations. This method reduces the

original QP to a subproblem with tridiagonal matrix and therefore would be able to

solve the inner trust-region problem using the exact solver by Moré and Sorensen

[1983]. Basically the inner QP is of the form

minmk(s) =
1

2
sTkBksk +∇f(xk)

T sk

‖sk‖ ≤ ∆

Where as if there is a transformation matrix Q that reduces the Bk to a tridiagonal

form Tk as Tk = QT
kBkQk, by change the variables in the form x = Qkdk we get the

equivalent problem as (4.28). Which can be easily solved using the exact algorithm

of Moré and Sorensen [1983], because of special structure of Tk. Lanczos based

methods such as Dauphin et al. [2014], Gould et al. [1999], Vinyals and Povey

[2012], need to store the transformation matrix Q to be able to retrieve the solution

from the reduced space (w∗) and project back to original problem to get s∗, using

the linear system s = Qw.

The power of this method relies on being able to store the matrix of all Lanczos

vectors that led to producing the solution for the tridiagonal subproblem. However,

in the deep learning context, a moderate network induces the optimization problem

to have at least hundred thousands of variables. Storing the Lanczos vectors of this

size can get impractical, especially if the number of inner iterations gets bigger.

Another remedy is being able to regenerate the Lanczos vectors which effectively

duplicates the number of multiplications by the Hessian. In this section, we show

that the MCG algorithm does not require to storing the rank-1 modifications to the

Hessian.

Theorem 4.5.1 provides safe removing the requirement of storing a matrix for

MCG as discussed in Zhou et al. [2017].

Theorem 4.5.1. No residual vectors {rk, k < i} are stored to calculate B̂pi+1 in

Algorithm 16.
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Proof. Because of the recursive relationship pi+1 = −ri+1 + βi+1pi, we note that

calculation of B̂pi+1 only involves B̂ri+1. However, the main CG property as men-

tioned in (Theorem 5.3) Nocedal and Wright [2006] asserts that the residuals remain

orthogonal throughout the iterations i.e.

rTi+1rk = 0,∀k < i+ 1. (4.36)

Now assume that at some iteration j a direction of non-negative curvature is oc-

curred which means that the Hessian estimate was updated by a rank-1 update of

δjrjr
T
j . Therefore, we have the relation

B̂ri+1 = (B + δrkr
T
k )ri+1 = Bri+1. (4.37)

Second equality follows from (4.36), and this thus the theorem follows.

This interesting result removes the requirement of storing a matrix for MCG

in Zhou et al. [2017]. Having stated this, we noticed that the low-rank modification

matrix can be stored to improve the stability. Combining Theorem 4.5.1 with the

observation that the numerical stability can be improved with the stored matrix,

we believe that storing only the last several modifications (for example, say the

last 5 modifications) and continuous updating this matrix with the fixed size as the

iteration continues, can yield better results.

Theorem 4.5.1, leverages the benefit of using MCG compared to Lanczos variant

algorithms, which essentially require to store the normalized residuals qi or regen-

erate them in order to translate back the solution from the subspace to the original

space. Our result therefore indicates that Algorithm 16 is just a simple addition

to original CG which makes it easy to implement and also does not require com-

plex transformation; moreover, the storage requirements can be the same as CG

or Steihaug-Toint, which are feasible in the large-scale problems in deep learning

context.

In the next section we discuss another property suitable for deep learning problems

on being able to warm-start the algorithm.
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4.5.2 Warm-start MCG

The experiments show that inner CG algorithm spends lots of iterations on solving

the QP. Martens [2010] emphasize on having warm starting strategy for the algo-

rithm in order to reduce the time it takes to solve the inner QP. Passing the previous

direction which likely will capture the negative curvature as the trust-region may

have restricted the step size. A similar kind of strategy is used in the first-order

algorithms by incorporating the momentum in the SGD updates. This is especially

important in the context of second-order algorithms, as warm starting can save the

time spent on the CG algorithm. In the context of nonconvex CG methods like

Steihaug-Toint, it’s assumed to start from the origin, however, we need to be able

to feed the previous solution pk−1 as the starting solution of CG.

In this section we provide necessary guaranties to be able to warm-start the

MCG algorithm from an arbitrary given direction, which as discussed in Martens

[2010] can be the previous direction of the CG solve. This in turn will improve the

speed of the algorithm for practical implementation.

As the method presented by Zhou et al. [2017] does not support a nonzero input

vector s−, in Algorithm 17 we present new convergence theory in the following sec-

tion proving identical properties. Algorithm 17 resembles the main MCG algorithm,

however direction d− is used to warm-start MCG; The corresponding residual needs

to updated as step 2 captures this requirement. Step 23 exits the algorithm by

inducing the final step found to incorporate the warm starting vector s−.

To ensure convergence, any initialization strategy for s− may be used as long as

it satisfies

‖s−‖ ≤ 1

λ
(4.38)

mk(s
−) ≤ 0 (4.39)

‖Bs− + gk‖ ≤ ‖gk‖ (4.40)

Trivially this is satisfied by s− = 0, but other initializations choices are readily

formed by finding roots of a one-dimensional quadratic subproblem. It is hoped
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Algorithm 17 Warm-start MCG Algorithm

1: function [dk, isMod] = MCG(B, gk, λk, cgtol, s−)
2: p0 = −(Bs− + gk);
3: y0 = MatrixMult(B, p0); . y0 = Bp0

4: Set d̂0 = 0, r0 = p0, isMod = 0, and i = 0;
5: while(‖ri‖ > cgtol and i ≤ imax) do
6: if (pTi yi ≤ λk‖gk‖‖pi‖2) then . yi = B̂pi
7: Set δlow = (λk‖gk‖‖pi‖2 − pTi yi)/(rTi pi)2;
8: if i = 0 then
9: δ = δlow;

10: else
11: choose δ ≥ δlow;
12: end
13: yi = yi + δri(r

T
i pi);

14: isMod = 1;
15: end
16: αi = rTi ri/p

T
i yi;

17: d̂i+1 = d̂i + αipi; ri+1 = ri + αiyi;
18: βi+1 = rTi+1ri+1/r

T
i ri; pi+1 = −ri+1 + βi+1pi;

19: vi+1 = MatrixMult(B, ri+1); . vi+1 = Bri+1

20: yi+1 = −vi+1 + βi+1yi;
21: i = i+ 1;
22: end
23: Set dk =s− + d̂i
24: endfunction

that this warm-start strategy will reduce the total number of required matrix mul-

tiplications.

It is important to point out that the Algorithm 17 is an MCG algorithm on the

shifted system. That is, for a given s−, it solves

minŝ∈Rn m̂(ŝ) = ŝT (gk + B̂s−) + 1
2
ŝT B̂ŝ

s.t. ŝ ∈ span(p0, . . . , pi−1).
(4.41)

The following lemma is important to ensure monotonic decrease of the quadratic

model; essentially a guarantee that the predicted reduction does not elbow up after

a certain number of matrix multiplies.
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Lemma 4.5.2. Suppose that Algorithm 16 is applied to the system (Bs = −g)

with the parameter λk used to decide δ. Then the following properties hold at each

iteration:

m̂(ŝi + s−) ≤ m̂(ŝi−1 + s−) (4.42)

Further ŝi + s− solves the subspace subproblem

minŝ∈Rn m̂(d̂) = gk
T s+ 1

2
sT B̂s

subject s = ŝ+ s−, ŝ ∈ span(p0, . . . , pi−1).
(4.43)

Proof. The lemma follows because of Lemma 3.2 in Zhou et al. [2017] on prob-

lem (4.41) and the definition of m̂(ŝ).

Lemma 4.5.3 implies Algorithm 15 implicitly defines a controllable trust-region.

Further it show that the size of the radius is proportional to the inverse of λk used

in Algorithm 15 and 16.

Lemma 4.5.3. Let dk denote the search direction obtained by algorithm 16. Then

‖dk‖ ≤
n

λk
(4.44)

m(0)−m(dk) ≥
‖gk‖

2
min

(
1

λk
,
‖gk‖
‖Bk‖

)
(4.45)

dTk gk < 0 (4.46)

Proof. This lemma can be shown in the same manner as in the proof of Theorem 3.3,

Lemma 3.4 and 3.5 in Zhou et al. [2017] because of equations (4.38) to (4.40).

Theorem 4.5.4 shows that Algorithm 16 will naturally reduce to unmodified linear

CG after a finite number of iterations. Thus faster convergence rate can be achieved

as the algorithm automatically reverts to unmodified truncated Newton’s method

satisfying the step-size requirements of Dembo and Steihaug [1983] by design.

Theorem 4.5.4. Suppose that x∗ is an accumulation point of {xk} where xk is

obtained from Algorithm 15. If the second-order sufficient conditions hold at x∗ and

f(x) is twice Lipschitz continuous in an open neighborhood of x∗, then the following

properties hold:
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• λk in Algorithm 15 is bounded, and there exists an integer K such that follow-

ing holds for all k > K,
pTi Bpi
pTi pi

> λk‖gk‖ (4.47)

• The main sequence {xk} converges at least linearly to x∗, and super-linearly if

λk → 0.

• The actual to predicted reduction ratio ρk converges to 1.

Proof. Leverage Lemma 4.5.2 and Lemma 4.5.3, this can be shown as in Zhou et al.

[2017].

4.6 Deep Learning Experiments

4.6.1 Comparison of the Algorithms

To compare the second-order method we implemented Steihaug-Toint and experi-

mented on three networks. The experiments involve early stopping criteria; there-

fore, at each iteration the validation set is scored and the best solution is selected

throughout the trajectory of the algorithm after 20 non-improving iterations. Ta-

ble 4.6 shows the results with regards to number of mis-classifications with the best

trained network on the validation set. Results of Table 4.6 show how Hessian infor-

Table 4.6: MCG (HF-GN) vs Steihaug Algorithm on MNIST

Network MCG(GN) MCG(HF) Steihaug LBFGS
350-100 2.23% 1.68% 1.68% 2.75%
350-350 1.72% 1.67% 1.60% 2.70%
500-150 1.69 % 1.63% 1.70% 2.78%

mation may yield slightly better solutions compared to Gauss-Newton; however the

significant distinction is how LBFGS overfits the data and cannot generalize as well

as the second-order methods.
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4.6.2 Warm-start Effects on Hessian-vector Multiplication

In this section we show how the warm-start strategy helps reducing the computa-

tion time. To We also offer a comparison between the proposed method and the

Steihaug-Toint algorithm using the HF operator. Table 4.7 outlines the results of

our comparison, here #Hv shows the number of matrix multiplies of each algo-

rithm until converging to a well-trained network; however, as discussed in detail

by Martens and Sutskever [2012], the Steihaug-Toint approach is in general not ap-

propriate for the unique needs of deep-learning solvers. We can see that, as was the

case with other second-order algorithms, Steihaug-Toint appears to reliably outper-

form the L-BFGS method. This further confirms Martens [2010] observation on the

benefits of using second-order information in the deep learning context. However,

as suggested by Martens and Sutskever [2012], the cost of applying Steihuag-Toint

is in this case much greater; this can be observed by considering the total number

of matrix multiplies denoted in columns two and five. Note that for Hessian-free

approaches in deep learning, matrix multiplication quickly becomes the underlying

computational bottleneck and it is thus important to keep this quantity as low as

possible.

Table 4.7: Number of Hessian-vector products (#Hv) and misclassification percentage
for MCG (HF) and Steihaug-Toint(HF) algorithms on MNIST

Algorithm MCG Steihaug-Toint
Network # Hv V(%) # Hv V(%)
350-100 3,592 1.68 22,809 1.68
350-350 3,093 1.67 22,472 1.6
500-150 3,254 1.63 15,005 1.7

4.7 Discussion

The proposed MCG approach provides a new flexible Hessian-free solver that is

ideally suited for the unique needs of challenging high-dimensional deep learning

problems. Current deep learning approaches are unable to solve the underlying
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Newton equations (even when positive-definite) to user-defined levels of accuracy;

either because the Hessian is never used, or the system is restricted to a necessarily

small dimensional Lanczos subspace. We have modified and applied a line-search

approach free from these limitations that has trust-region strength convergence the-

ory and is effective for both Hessian and Generalized Gauss-Newton (GN) operators.

This method uses the exact Hessian matrix, and it is therefore hoped that it inher-

its all the nice convergence properties from the Newton method. The warm started

expansion and modification has further removed some restrictions of the original

method. Numerical results demonstrate the effectiveness of this approach.
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Chapter 5

Deep Learning: Successive

Subspace Methods

5.1 Introduction

In this chapter, we recognize another set of closely related algorithms that are

used for solving the trust-region subproblems, namely Successive Subspace Methods

(SSM). SSM, introduced by Hager [2001], relaxes the requirements corresponding

to sequences of incumbent subspaces while showing same convergence results. This

chapter first introduces SSM and its variations, then motivates its application in the

large-scale context of deep learning problems and the need for suitable extensions

of the algorithm. Lastly, the chapter concludes showing the benefits in comparison

to traditional methods in deep learning problems.

The highlight of this chapter is the development of a new algorithm as a hybrid

variant of SSM and conjugate gradient methods. This algorithm generates update

directions that can take into account the eigen directions corresponding to smallest

eigenvalues of the curvature matrix and utilize them in small sized subproblems that

are devised to handle projected vectors in small subspaces. Our numerical results

show benefits of extracting the eigen information, compared to other algorithms that

do not use eigenvector information in the nonconvex setting and also some convex
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counterparts.

5.2 Background

Successive Subspace Methods (SSM) tackle difficulties that are innate to Lanczos

method. Paige [1972] showed that in practice the orthogonality of basis vectors

qi defined from Lanczos iterates (4.20) are lost quickly due to numerical issues in

floating point arithmetic, which also causes loss of tridiagonal structure in the matrix

Tk. One way to tackle this issue is to re-orthogonalize vectors to generate a repaired

basis for the columns of Q; however, as Hager [2001] mentions when the dimension

of the problem or the number of stored Lanczos vectors are large, the overhead of

maintaining the orthogonality becomes significant; moreover, for this solution one

needs to store the Lanczos vectors which may require significant amount of memory

that can be prohibitive in the context of large-scale deep learning problems. This

re-orthogonalization also ensures obtain higher accuracy of the solution to model

minimizer, which in turns can lead to less number of trust-region solves. Hager

[2001] showed that the overhead of storing numerous Lanczos vectors is not needed

when minimizing a quadratic on a trust-region boundary. Hager’s analysis shows

that only storing and minimizing in a subspace composed of 3 vectors is essential

to reach the solution.

5.2.1 SSM Algorithm and SSM-A

The Successive Subspace Methods also aim to solve the constrained quadratic sub-

problem which arises in the trust-region framework. The original method introduced

by Hager [2001] tackles the equality constrained version of the problem i.e.

mins∈Rn mk(s) :
1

2
sTkHksk + gTk sk,

s.t. ‖sk‖ = ∆.
(5.1)

The author considers the equality constrained version of the quadratic program, this

is justified by indicating that interior solutions (with respect to the ball constraint),
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can be obtained easily by a normal CG approach applied to the QP objective func-

tion; the same reasoning and strategy has been applied in the GLTR algorithm. The

SSM algorithm aims to solve a sequence of subproblems in the reduced subspace

Sj in order to generate a sequence of intermediate solutions converging towards the

true optimum solution of the subproblem. The Krylov subspace methods such as

CG, start minimization from small subspace S0, and form subproblem (5.2) for Sj
as

minsj∈Sk mj(d) =
1

2
sTj Hksj + gTk sj

‖sj‖ = ∆.
(5.2)

Krylov subspace methods then expand the solution s∗j to higher dimensional Sk, k >
j subspaces as they progress, while maintaining the nested property of these se-

quence of subspaces

S0 ⊂ S1 ⊂ . . . ⊂ Sk. (5.3)

Also if the iterates progress to completion Sk will converge to spanning the full space

Rn.

Hager’s approach relaxes the nested subspace property and therefore keeps the in-

cumbent subspace dimension much lower than the original problem dimension. The

subspace Sk involves a 4 dimensional sub-space spanned by the following vectors:

• Previous iterate(sj−1): Ensuring that the value of the model objective is only

decreased in the consecutive iterations.

• Updated gradient(Asj−1 + g): This direction ensures existence of a descent

direction in the subspace, when the first-order condition is not satisfied.

• Left most eigenvector (v1) : Will ensure not being trapped in saddle point

solutions.

• SQP direction (sSQP): Acceleration vector.
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The SQP direction is obtained by applying the Newton’s method to the SQP linear

system:

(H + σkI)sSQP + skν = −g − (H + σkI)sk, (5.4)

sTk sSQP = 0, (5.5)

where ν is the update to the current estimate of the Lagrangian of the boundary

constraint. Although later Hager and Park [2005] showed that only the first three

vectors are essential for the SSM to be globally convergent (Theorem 1 of Hager and

Park [2005]), it was stated adding the SQP direction helps providing faster locally

quadratic convergence Hager [2001]. Here we state the important results of global

SSM convergence due to Hager and Park [2005]:

Theorem 5.2.1. If in each step of SSM, the subspace Sk contains vectors {−g −
Hsk, sk}, and v1 a left most eigenvector of matrix H, then SSM algorithm converges

to global solution of (5.1).

In the deep learning context, the first issue to point is that obtaining vector v1

can be a prohibitive computation, especially as there is no explicit representation of

the matrix H available and also the dimension of the problem is really high. The

second issue is that providing the acceleration vector in the actual implementation

involves solving the SQP linear system, therefore each subspace Sk includes a vector

which is generated using solvers such as MINRES (Paige et al. [2014]), to solve the

linear system (5.4). We can immediately see obtaining the SQP direction using a

black-box approach can be wasteful only to obtain one vector and not use informa-

tion involved in solving the system. For these two reasons, we motivate the use of

more efficient approaches to this problem.

One approach to tackle the mentioned drawbacks of SSM is the annulus method

(Gratton [2012]) which hereby we denote by SSM-A; our approach in this chapter

extends the SSM-A algorithm accompanied by numerical results showing gained

speed up. SSM-A algorithm incorporates SSM strategy while maintaining the orig-

inal CG iterations for solving the subproblem. To tackle the expensive eigenvector

computation the algorithms maintains its estimate of v̂k and as it progresses through
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the non-nested subspaces, dynamically updates the estimate.

Algorithm 18 SSM-A: Annulus based SSM

Require: H, g, and δ
Require: ε ∈ (0, 1), τ > 1.
Require: Initial guesses for v∗ and s∗: v0, s0.

1: Initializations: j = 0, σ̂j = 0, ŝ0 = 0.
2: r0 = −(g +Hs0); γ0 = 0; p0 = 0;
3: for k = 1, . . . , 2n do
4: [rk, αk, pk, γj] = cgUpdate(H + σ̂jI, rk−1, pk−1, γk−1);
5: ŝk = ŝk−1 + αkpk;
6: Ak = {ŝk, rk−1, rk};
7: Sk = {sk−1, vk−1} ∪ Ak
8: Set W = basis(Sk);
9: [sk, σk, vk, λk] = ssmUpdate(H, g,W, δ);

10: if pTk (H + σ̂jI)pk ≤ 0 or
∣∣∣‖sk−1‖ − ‖ŝk−1‖

∣∣∣ ≥ εδ then . Restart CG

11: j = j + 1;
12: σ̂j = σk; ŝk = sk;
13: rk+1 = −(H + σ̂jI)ŝk − g, γk+1 = 0,
14: end if
15:

16: if ‖rk‖ ≤ ε‖g‖ then
17: break . Approximate solution found
18: end if
19: end for

SSM-A as outlined in Algorithm 18, maintains two sequences of iterates {sk, ŝk}
which produce approximate solutions for the subproblem (5.1), in addition, it ap-

proximates and updates the Lagrangian multiplier (σ̂) corresponding to the bound-

ary constraint. SSM-A incorporates a modified version of subspace solve which is

outlined in Algorithm 19. This step finds an approximate solution to QP subprob-

lem, by restricting it to subspace Sk. This is easily done by assuming span W of Sk
and the corresponding change of basis sk = Wu in (5.1), which yields problem (5.6).

Since W has few number of columns (5 columns in this case), the subspace QP prob-

lem is a low dimensional problem, that is (W THW ) is a 5× 5 matrix. Solving this
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subproblem due to its small dimensions can be achieved using external solvers. For

our implementation we used the exact method of Moré and Sorensen [1983]; this

method is similar to what GLTR uses to solve the reduced QP using tridiagonal

matrix T as this exact solver needs to factorize this matrix; however, in our case

the matrix is not necessarily in the tridiagonal format but since the dimension is

low we can use this method without significant overhead. Furthermore finding the

exact Eigen information is also possible using the exact solvers, for this purpose we

used eigs subroutine of Matlab in our implementation.

Algorithm 19 SSM Update

1: function[s, σ, v, λ] = ssmUpdate(H, g,W,∆)
2: Determine (z∗, η∗) as the minimum eigenpair of (W THW )z = η(W TW )z.
3: Determine (u∗, ξ∗) by minimizing (5.2) in span of W :

minu uT (W Tg) +
1

2
uT (W THW )u,

subject ‖Wu‖2 ≤ ∆k

(5.6)

4: Set v = Wz∗, and λ = η∗.
5: Set s = Wu∗, and σ = ξ∗

6: endfunction

Initially as σ0 = 0, SSM-A algorithm proceeds to solve the non-shifted system

Hs = −g, meanwhile updating the SSM solution, the SSM at each iterate is con-

strained to the subspace spanned by vectors

W = {rk−1, rk, sk, vk−1, ŝk−1}, (5.7)

which includes the previous and current residuals (rk−1, rk) with respect to CG iter-

ates, the previous CG solution (sk), an approximation of the left-most eigenvector

vk−1, and also the previous SSM iterate. As mentioned above, Theorem 5.2.1 states

that convergence is ensured when current iterate, current residual and left-most

eigenvector are provided, therefore as vk asymptotically converges to v∗ the conver-

gence can be guaranteed. The algorithm starts by maintaining CG and SSM iterates
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simultaneously and updating their corresponding solutions with σ = 0 shift; it also

updates the dual (shift) variable while updating σ, v̂; whenever the CG solution en-

counters the trust-region boundary (for example in presence of negative curvatures),

the algorithm detects that σ = 0 is no longer valid and therefore the shift parameter

should be updated in order for CG to be able to produce the solution that satisfies

the KKT optimality conditions (4.17),(4.18). This in effect requires a restarting

scheme for the infeasible CG solution (sk) to satisfy the trust-region constraint; the

restart will use the updated SSM solution (ŝk) that lies on the boundary and update

σk based on the approximation obtained through SSM as well as updating the CG

residual to reflect the new gradient at the SSM point (Steps 11 − 14 respectively).

On the next iteration as (restarted) CG solution already lies on the boundary it is

likely to proceed outside of the feasible area of trust-region. Using annulus rings, we

allow CG solution to move past the region up to a certain threshold which allows

producing new information for updating the SSM solution. The same logic is uti-

lized in the GLTR implementation (Gould et al. [1999]), allowing Lanczos update

iterates proceeding past the Steihaug-Toint point which effectively can improve the

solution on the trust-region boundary. However, as mentioned we allow the discrep-

ancy of CG and SSM solutions up to a specific threshold (τ∆); here the condition

‖sk− ŝk‖ ≥ τ∆ ensures that the CG solution conforms to the SSM solution as soon

as it leaves the annulus rings.

As mentioned above, providing the left-most eigenvector is one of the important

necessities of the general SSM algorithm, the SSM-A algorithm tries to approx-

imate this quantity as it progresses through iterates, however, this can stall the

convergence. On the other hand, next section shows developments that enabled CG

solvers to obtain more information regarding eigenvalues by adding a small overhead

of book keeping.

5.2.2 EigCG Algorithm

Stathopoulos and Orginos [2010] introduced a useful book keeping strategy that ex-

tends the unconstrained CG algorithm to produce the nev desired eigenvectors along
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with their eigenvalues. The original motivation for extracting this information was

to solve systems of the form Ax = bi for different number of right-hand side vectors

bi. The EigCG algorithm starts by solving the first system using a CG method and

gains eigen information as a byproduct of simple book keeping during iterations.

The eigen information are then exploited in acquiring the solution for multiple sys-

tems (Ax = bi) with different right-hand sides by using deflation techniques ( Saad

et al. [2000]).

However, for our usage, we exploit the generated eigen information for solving

the QP subproblem more efficiently. The EigCG algorithm utilizes a methodology

that benefits from the close relationship of the CG and Lanczos methods. That is

concurrent to updating the CG iterates, information is reused to form the Lanczos

tridiagonal matrix T . Step 6 of Algorithm 20 outlines how Lanczos information are

updated as CG iterations progress (Step 4).

Algorithm 20 EigCG Algorithm (functional form)

Require: s0, H, τ
Require: m, nev with 2nev < m

1: Initializations: r0 = −g −Hs0; γ−1 = 0; p−1 = 0; αj−1 = 1;
2: T0 = [], Q0 = [];
3: for j = 0, . . . ,maxitr do
4: [rj+1, αj, pj, γj, q, tu, td] = cgUpdate(H, rj, αj−1, pj−1, γj−1)
5: sj+1 = sj + αjpj;
6: [Tj+1, Qj+1] = EigCGUpdate(Tj, Qj, q, tu, td,m, nev)
7: if ‖rj+1‖ ≤ τ‖r0‖ then . Desired accuracy achieved
8: break;
9: end if

10: end for

It is well known that eigenvalues of matrix T , can be used as close approxima-

tions to the eigenvalues of A in the space spanned by Lanczos vectors. For stability

of the algorithm and also to keep the overhead of eigenvalue extraction of T , the

authors keep the search space from practical point of view, this means that the

number of active Lanczos vectors kept, would be small. In other words, a buffer

window of size m for storing the Lanczos information, where m is bigger than twice
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the number of desired eigenvalues (m > 2nev). Vectors are added to this buffering

window through the CG iterates and as the window is filled with m columns, the

algorithm restarts the Lanczos book keeping to keep the dimensions small before

going to details we outline the algorithm.

Algorithm 21 EigCG Update

1: function[T,Q, vbest] = EigCGUpdate(T,Q, qnew, tu, td,m, nev)
2: [k, k] = size(T );
3: if k = 0 then
4: T = td
5: else
6: Tk+1,k+1 = td and Tk,k+1 = Tk+1,k = tu
7: end if
8: if k = m then
9: Let T and T̂ denote m and m-1 principal sub-matrices of T respectively;

10: Let Y store eigenvectors of nev smallest eigenvalues of T ;
11: Let Ŷ store eigenvectors of nev smallest eigenvalues of T̂ ;

12: Let W denotes an orthonormal basis for

(
Y,

[
Ŷ
0

])
∈ Rm×2nev

13: Let E denote diagonal matrix of 2nev eigenvalues of W TTW ;
14: Let Z denote corresponding 2nev eigenvectors of W TTW ;
15: Set Q← QWZ; now Q ∈ Rn×2nev

16: Set T =

(
E QTHqnew

qTnewHQ Tk+1,k+1

)
17: end if
18: Let vbest denote vector V with smallest Rayleigh Quotient.
19: Set Q← [Q, qnew]
20: endfunction

Algorithm 21 outlines the book keeping incorporated in EigCG. The algorithm

starts as regular CG applied to the system Ax = b and gradually grows the square

matrix T by augmenting with a diagonal Tk+1,k+1 = td and an off-diagonal element

Tk,k+1, Tk+1,k = tu (steps 3-7); therefore the size of T increases by one at each

iteration. When the size of T reaches m ×m, the restarting procedure shrinks the

size of T to 2nev×2nev by extracting and condensing the necessary information into

a smaller matrix.
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The algorithm essentially incorporates a variation of the thick restart method

for Lanczos basis that is used in the TRLAN package (Wu and Simon [2000]).

TRLAN works similarly by extracting the eigen information of matrix T by solving

TY = YM , and storing nev desired eigenvectors in the matrix Y . At the core of

Lanczos method, the recurrence

AQk = QkTk + βkqk+1e
T
k , (5.8)

is the key that plays crucial role in the Lanczos method definition. Recurrence (5.8),

is the main update rule for the matrix Qk, where it stores the residual (AQk −
QkTk)/βk as the k+1th column of Q. On the mth iterate, restarting scheme replaces

Tm by T̂ := Y TTmY where Y includes the nev desired eigenvectors. The restart,

in turn, makes T̂ to be a diagonal matrix with the corresponding eigenvalues as

its elements. This means that basically the Lanczos vectors Qm are being replaced

by the nev Ritz vectors Q̂m = QmY . Therefore as Lanczos iterates require main-

taining orthogonality of the columns of Q, the new residual vector qm+1 should be

re-orthogonalized against all nev vectors. The re-orthogonalization involves comput-

ing a vector of coefficients for the new Lanczos vector, stored in T , which keeps the

above recurrence valid. Therefore the diagonal T̂ matrix needs augmentation by a

vector of coefficients Q̂mHqm+1; this change makes matrix T̂ loose its diagonal form

to an arrowhead matrix form. As Wu and Simon [2000] demonstrate, with these

changes, the recurrence (5.8) remains valid for the subsequent iterations involving

qm+i. Thus, the algorithm proceeds as a normal unrestarted Lanczos method by

adding one diagonal T̂m+i,m+i and an off-diagonal T̂m+i−1,m+i = T̂m+i,m+i−1 to the

matrix T̂ .

The restarting strategy can be derived with any orthonormal basis of the k

dimensional Krylov subspace. Therefore, Stathopoulos and Orginos [2010] enrich

the search space not only by nev current Ritz vectors, but also nev vectors from the

previous step m − 1. However, since Ym−1 vectors belong to a smaller subspace of

Rm−1, the authors propose lifting the vectors to the Rm subspace by augmenting

them with an additional 0 for the last dimension. The choice of these vectors is

inspired by locally optimal conjugate gradient method of D’yakonov [1983]. Now
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since the new vectors

(
Ym,

[
Ŷm−1

0

])
do not necessarily form an orthonormal basis,

step 12 of Algorithm 21 needs to extract an orthonormal basis W of their span to

proceed with the thick restart.

After restarting, the matrix Q is replaced by the new vectors QWZ that estimate

the desired eigenvectors (step 15). Moreover, the new Tm matrix will have arrow-

head form outlined in equation (5.9)(step 16), this will add some overhead when

computing the Ritz information of matrix T as the desired tridiagonal form is lost.

Throughout the first m-1 iterations, matrix T is identical to the original Lanczos

tridiagonal matrix. This can be seen in steps 3-7, where the matrix T is augmented

by the new Lanczos tridiagonal elements td and tu. Similarly, the matrix Q, which

is updated in step 19, contains the Lanczos vectors computed during the CG update

as the normalized residuals (see step 8 in Algorithm 14).

When T becomes an m×m matrix, an internal restart occurs that reduces the

dimension of T to (2nev + 1)× (2nev + 1), implying Q and T will never be large than

n × m and m × m respectively. To better describe this part of the algorithm, we

denote the first m − 1 columns of the matrix Q by Q̂. At this point, the following

properties remain true

QTHQ = T and Q̂HQ̂ = T̂ ,

where T̂ denotes the m − 1 principal submatrix of T . We next compute the nev

smallest eigenvalues of T and T̂ and store their corresponding eigenvectors in matrix

Y and Ŷ respectively. As hinted before, QY and Q̂Ŷ could be thought of as two

consecutive estimates for approximating the nev smallest eigenvalues of H.

The next computation denotes the fundamental step of the algorithm, proof of its

surprising effectiveness still pending; the algorithm simply forms the new (restarted)

Q matrix using columns that form an orthonormal basis for the

span(QY, Q̂Ŷ ),

with the additional property that QTHQ forming a diagonal matrix. Thus, a mech-

anism is needed for forming an orthonormal basis matrix for (QY, Q̂Ŷ ). Performing

a Gram-Schmidt procedure on (QY, Q̂Ŷ ) is a simple yet less cost-effective method
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for computing the new basis. However, it is desired to work in the reduced O(m)

dimension. Following relation

(QY, Q̂Ŷ ) = QA, where A
∆
def
=

(
Y,

[
Ŷ

0

])

shows that rather than orthogonalzing matrix (QY, Q̂Ŷ ) with the size of n × 2nev,

we can instead orthogonalize the much smaller matrix A with the size ofm × 2nev,

generating the othornormal basis matrix W in Step 12 of Algorithm 21. Matrix W

then satisfies following properties

span(W ) = span

(
Y,

[
Ŷ

0

])
and W TW = I.

At this point the matrix Q could have been replaced by the projection QW ; however,

the product (QW )TH(QW ) results in a dense matrix, whereas a sparse (preferably

diagonal) form is required to for the restarted T matrix. Thus, forming the eigen

decomposition of (QW )TH(QW )

ZEZT = (QW )TH(QW ) = W TTW,

we have E as a diagonal matrix of eigenvalues and Z as the matrix of corresponding

eigenvectors. Therefore a diagonal matrix can be extracted as

E = (QWZ)TH(QWZ).

This ultimately enables the redefinition of Q ← QWZ in Step 15 of Algorithm 21.

The new redefined matrix Q now satisfies

QTHQ = E and QTQ = I.

Finally we augment matrix Q with the current Lanczos vector in Step 19, which

implies that Q satisfies

QTHQ =

(
E QTHqnew

qTnewHQ Tk+1,k+1

)
, (5.9)
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which justifies the corresponding update to T in Step 17 of Algorithm 21 in addition

to the orthogonal property of QTQ = I. On exit T will have the classical arrow-head

nonzero structure reminiscent of other restarted Lanczos algorithms.

This conclude our description of Algorithm 21 based on Stathopoulos and Orginos

[2010]. Remarkably, without modification of the CG residuals rj+1 after such up-

dates, significant numerical results demonstrate that the first nev vectors of Qj+1

converge to the first nev eigenvectors corresponding to the nev smallest eigenvec-

tors of H with convergence rates comparable in accuracy to unrestarted (stabilized

and hence significantly more costly) Lanczos methods (Stathopoulos and Orginos

[2010]).

5.3 EigCG-TR

5.3.1 Motivation

In order to motivate our extension to the SSM-A algorithm, first the importance of

the left-most eigenvector v1 of the Hessian matrix is emphasize. Section 5.2.1 briefly

hinted on the importance of obtaining v1 for ensuring the global convergence of the

SSM method. The importance of this vector is two fold for the model minimizer of

the trust-region as the following theorem depicts:

Theorem 5.3.1. Suppose (s∗, σ∗) denotes a solution to

minmk(s) =
1

2
sTkHksk +∇f(xk)

T sk

‖sk‖ ≤ ∆.

Given any constant C > λ1, we can decompose the solution as

s∗ = v + r, with ‖r‖ ≤ ‖g‖
C − λ1

and ‖s∗‖ = ‖v‖+ ‖r‖,

where v ∈ span{vi : λi < C} and r ∈ span{vi : λi ≥ C}. Further, whenever H is

not positive-definite,

lim
∆→∞

‖s∗ − v‖
‖s∗‖

= 0.
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Proof. From equations (4.17) and (4.18), we know that if σ∗ > −λ1,

s∗ =
n∑
i=1

(
gTvi
σ∗ + λi

)
vi

And if σ∗ = −λ1, then

s∗ = τv1 +
∑
λ1<λi

(
gTvi
σ∗ + λi

)
vi

Thus in either case we can partition the solution as

s∗ = v +

(∑
λi≥C

gTvi
σ∗ + λi

vi

)
.

where v ∈ span{vi : λi < C}. And we may define r = s∗ − v. Then

‖r‖2 =
∑
λi≥C

(
gTvi
σ∗ + λi

)2

≤
∑
λi≥C

(
gTvi
λi − λ1

)2

≤
n∑
i=1

(
gTvi
C − λ1

)2

,

which implies ‖r‖ ≤ ‖g‖/(C − λ1).

For the second part, since H is not positive-definite we have σ∗ > 0 due to

optimality condition of (H + σ∗I) � 0. The complementarity condition σ∗(∆ −
‖s∗‖) = 0 implies ‖s‖ → ∞ as ∆→∞. Substituting ‖r‖ from above we can rewrite

the limit as:

lim
∆→∞

‖s∗ − v‖
‖s∗‖

= lim
‖s∗‖→∞

‖r‖
‖s∗‖

≤ lim
‖s∗‖→∞

‖g‖
‖s∗‖(C − λ1)

= 0.

The above theorem implies that in the nonconvex case as the trust-region radius

grows ‖v‖ component of the ‖s∗‖ plays a more important role in the solution com-

pared to ‖r‖. As shown above, v ∈ span{vi : λi < C} means that v component of

s∗ is comprised of eigenvectors corresponding to the smallest eigenvalue. Therefore

having a more accurate approximation of the eigenvectors can speed up solving the

QP.
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5.3.2 EigCG-TR Algorithm

In this section we introduce the new algorithm EigCG-TR, which is a variant of

SSM-A algorithm; As the previous section motivates the importance of left-most

eigenvectors, we extend SSM-A to allow better utilization of existing information in

order to exploit the problem structure and provide faster convergence. Algorithm 22

outlines the proposed EigCG-TR algorithm.

As mentioned in section 5.2.1, rather than “out-sourcing” the solution of the

linear SQP system to MINRES, SSM-A involves an internal CG solver for producing

the acceleration vector. However, this transition does not exploit the full potential

of the CG solver. Since the CG algorithm readily produces the Lanczos information,

we can easily use the existing information to extract eigen information regarding the

curvature matrix.

On an extreme end, exploiting the existing information to the extent of storing

the full Lanczos information will result in an algorithm similar to GLTR which in

addition dynamically updates the eigenvalue and eigenvector approximations based

on information on the tridiagonal matrix T .

However, on one hand storing entire basis of Lanczos vectors is not practical in

the deep learning context. On the other hand, Stathopoulos and Orginos [2010]

have shown that the eigenvalue information can be extracted using far less num-

ber of Lanczos vectors by gradually solving small m×m eigenvalue decomposition

problems. More precisely, the algorithm integrates the EigCGUpdate step, which

essentially adds a procedure similar to the thick restart Lanczos book keeping (Wu

and Simon [2000]) to SSM-A algorithm.

As the inner SSM algorithm requires an estimate of the eigenvector corresponding

to smallest eigenvalue, we can provide EigCG book keeping updates added to CG to

maintain a running estimate of this quantity. Accommodating the EigCG updates

into SSM-A, the inner SSM algorithm readily gets much better estimates for the

left-most eigenvector which will make the progress faster.

The following demonstrates the progress of estimates through SSM iterations.

While for σj = 0, s = ŝk can be computed directly by applying the CG algorithm
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Algorithm 22 EigCG-TR

Require: H, g, and δ
Require: ε ∈ (0, 1), τ > 1.
Require: m, nev with 2nev < m
Require: Initial guesses for v∗ and s∗: v0, s0.

1: Initializations: j = 0, σ̂j = 0, ŝ0 = 0.
2: r0 = −(g +Hs0); γ0 = 0; p0 = 0;
3: for k = 1, . . . , 2n do
4: [rk, αk, pk, γj, q, tu, td] = cgUpdate(H + σ̂jI, rk−1, αk−1, pk−1, γk−1);
5: ŝk = ŝk−1 + αkpk;
6: [Tk+1, Qk+1, v̂k] = EigCGUpdate(Tk, Qk, q, tu, td,m, nev)
7:

8: Ak = {ŝk, v̂k, rk−1, rk};
9: Sk = {sk−1, vk−1} ∪ Ak

10: Set W = basis(Sk);
11: [sk, σk, vk, λk] = ssmUpdate(H, g,W, δ);

12: if pTk (H + σ̂jI)pk ≤ 0 or
∣∣∣‖sk−1‖ − ‖ŝk−1‖

∣∣∣ ≥ εδ then . Restart CG

13: j = j + 1;
14: W = [Qk+1, sk];
15: [sk, σk, vk, λk] = ssmUpdate(H, g,W, δ);
16: σ̂j = σk; ŝk = sk;
17: rk+1 = −(H + σ̂jI)ŝk − g, γk+1 = 0, αk+1 = 0.
18: end if
19:

20: if ‖rk‖ ≤ ε‖g‖ then
21: break . Approximate solution found
22: end if
23: ∆Q = Q(sk−1)−Q(sk) . Note that ∆Q ≥ 0
24: if Q(sk) ≤ −max(τ∆Q, εδ) then
25: break; . Q-stall termination, asymptotically inactive
26: end if
27: end for

to Hs = −g.

Lemma 5.3.2. Let s∗ be the optimal solution to the trust-region subproblem in

subspace Sk and let λ∗ be the minimum eigenvalue of H. For any subspace sequence

Sk defined in Algorithm 22 we have
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1. mk(s
∗) ≤ mk(sk) ≤ mk(sk−1),

2. λ∗ ≤ λk ≤ λk−1,

3. sTk g ≤ 0,

where mk(s) denotes the objective function of QP. For k ≥ 1, mk(sk) ≤ mk(sc),

where sc denotes the corresponding Cauchy point solution.

Proof. The definition of Algorithm 19 requires that ‖sj‖ ≤ ∆ and ‖vj‖ = 1 for

all iterates j. By construction, Wk in Algorithm 22 satisfies Wke1 = sk−1 and

Wke2 = vk−1. Hence for right-hand inequality of (1) we have

mk(sk) = min
‖Wku‖≤∆

mk(Wku) ≤ mk(Wke1) = mk(sk−1),

similarly for (2)

λk = min
‖Wkz‖=1

zW T
k HWkz ≤ e2W

T
k HWke2 = λk−1.

Moreover, by definition mk(s
∗) and λ∗ are the respective lower bounds on mk(sk)

and λk for all vectors in Rn and thus left-hand inequalities for (1) and (2) hold

true. For part (3) assume sTk g > 0 which results in mk(−sk) < mk(sk); however, as

−sk ∈ Sk, it contradicts optimality of subproblem step 5 in Algorithm 19.

The final assertion (ψ(sk) ≤ ψ(sc) for k ≥ 1) follows by observing that the

Cauchy point is obtained by solving subproblem (5.6) with W = {g}.

The following theorem ensures SSM-A algorithm 22 is globally convergent as

long as vk converges to v∗.

Theorem 5.3.3. If the global trust-region solution is interior, then Algorithm 22

reduces to CG on Hs = −g, so the algorithm is globally convergent. Otherwise,

Algorithm 22 converges to a point satisfying

(1− τ1)∆ ≤ ‖ŝ‖ ≤ (1 + τ1)∆, (5.10)

‖(H + σ̂jI)ŝ+ g‖ ≤ τ2‖g‖, (5.11)

whenever vk converges to v∗.
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Proof. If the solution lies within the interior of trust-region boundary, H will be

positive-definite and stepsize αk > 0 for every iteration k. Furthermore, rk and

rk+1 (which are simply multiples of the Lanczos vectors qk and qk+1, respectively)

are contained in the subspace Sk at each iteration. Now since CG is not being

restarted, we can use expanding subspace property of CG. Theorem 4.3.1, states

that during the unmodified CG solve ŝk is the minimizer of the quadratic function

on the set

{sk = s0 + span{p0, p1, . . . , pk−1}} (5.12)

this essentially means that the SSM solution sk, starting at sk−1 cannot further

improve the CG solution on the subspace spanned by rk, rk−1. Moreover, the ad-

ditional eigenvector estimate (in SSM compared to CG) is restricted to the same

space and thus is not adding any more dimensions to the subspace. Therefore we

can conclude that ŝk = sk at every iteration, thus Step 12 of the algorithm is not

entered, therefore σ̂j = 0 for all j, and ŝk simply denotes the classical CG iterates.

If the solution lies on the boundary, two cases could be identified. The first

considers the case where σj is modified only a finite number of times. This implies

that there exists an iteration K such that for all k > K, ŝk satisfies (5.10). This

means that after iteration K the standard CG method (without restarts) is being

applied to the system (H+ σ̂KI)s = −g. Therefore by global CG properties of finite

convergence, we are assured that ‖(H + σ̂KI)ŝ+ g‖ converges to 0; thus, as a result

condition (5.11) holds for j = K.

The second case arises when σ̂j is modified infinitely often. In this case, Sk
contains the vectors sk and rk = (H + σ̂jI)sk + g infinitely often. By noting that

rk−σjsk = Hsk + g, also observing that by definition the SSM subspaces include sk

and rk; therefore, subspaces implicitly include a corresponding quadratic gradient

at sk, that is ∇m(sk) = Hsk + g. Thus, whenever vk → v∗, as vk is contained

in the subspace Sk, global convergence results of Hager and Park [2005] applies

Theorem 5.2.1 to the subsequence of subspaces Sk and conclude that Algorithm 22

converges.

119



Theorem 5.3.3 ensures convergence as long as the left-most eigenvector is ob-

tained asymptotically. However Hager [2001], initially generates a set of Lanczos

vectors q and finds a good estimate on this subspace and then improves the approx-

imation through the SSM subspaces Sk as SSM algorithm proceeds. The second

strategy can be observed in the SSM-A algorithm (and subsequently in EigCG-TR)

by improving the approximation through the sequence of subspaces. The addition

of the EigCG strategy and adding Lanczos book keeping can be thought as an accel-

erating strategy which exploits eigCG algorithm by maintaining thick restart basis

through the iterates.

5.4 Deep Learning Application

The impetus of introducing the EigCG-TR method is to have better solvers that can

handle nonconvexities arising in the quadratic model of second-order methods. Sec-

tion 4.1.3 of the previous chapter discusses the importance of CG based solvers that

continue improving the solution when a direction of nonpositive curvature occurs

as well as another important feature which is the accuracy of the model minimizers

when nonconvexity arises.

Increased accuracy of these models is obtained by further improvements towards

the true model minimizer of the trust-region QP once the trust-region boundary is

encountered. Algorithm 12 demonstrates an approximate solution strategy used in

the truncated CG setting. The algorithm projects the solution onto the trust-region

boundary in two cases. First, when a singular or negative curvature direction is en-

countered (step 5); second, case when solution lies outside of trust-region boundary

regardless of negative curvature (step 10).

Therefore, due to this truncation, the output of the algorithm may not be accu-

rate approximation to the true model minimizer. The bound mentioned by Martens

[2010] for the difference of the Steihaug-Toint solution vs the global true model min-

imizer upper bounded by 1
2
mk(s

∗), only applies on the convex QP function. The

bound initially introduced by Yuan [2000] shows that when truncated CG method
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is applied to a convex function the solution produces at least half the reduction of

the true global minimizer.

mk(sTR) ≤ 1

2
mk(s

∗) (5.13)

This although may seem like a reasonable compromise, does not hold on the non-

convex case; due to nature of deep learning problems, this case can occur if the true

Hessian is used instead of Gauss-Newton approximation. As a simple example of

bound not holding for the nonconvex case, consider

minm(s)s∈R2 sT

[
−1

1

]
+

1

2
sT

[
−106 0

0 106

]
s

subject ‖s‖2 ≤ 1,

Since s̄ =

[
1

0

]
is a feasible solution, we have that m(s∗) < −106

2
= m(s̄). However,

as gTBg = 0, the Steihaug-Toint algorithm would exit immediately, with

sST =

[
1/
√

2

−1/
√

2

]
⇒ m(sST ) = −2/

√
2 >

1

2
m(s∗).

As Gould et al. [1999] showed in their experiments, for the nonconvex QP model,

progressing past the Steihaug-Toint point shows better improvement on the global

trust-region model solution. Basically, this means that having more accurate model

minimizers, CG can produce better directions for model minimizer by initially pro-

ducing more accurate solutions; this, in turn, can lead to faster convergence towards

the goal of DNN training. Therefore, the number of Hessian-vector products al-

though increased initially can be reduced when considered in overall. The numeri-

cal results show that compared to regular CG solver the new algorithm can achieve

better training loss in significantly less number of Hessian-vector products, due to

the better model minimizers. Moreover, using the eigenvector information can help

further reduce the number of Hessian-vector products.
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5.5 Numerical Results

In order to show the benefits of EigCG-TR algorithm, we implemented both SSM-A

and EigCG-TR in Matlab and used it as the inner model solver for trust-region

subproblem. Also to benchmark the results, the standard Levenberg-Marquardt

method of Martens [2010] was used. In the deep learning context, Hessian-vector

products are computationally heavy bottlenecks for the second-order solvers; there-

fore, comparisons in addition to the loss measure, also consider the number of total

Hessian-vector product, used by each algorithm.

For computational tests, the tolerance of η = 10−3 for the residual stopping

criteria of truncated Newton ‖rk‖ ≤ η‖r0‖ was chosen; moreover, the stalling criteria

was also used in all algorithms for termination. Also, CG-backtracking strategy

of Martens [2010] was applied to improve the quality of the update direction found

through the CG iterations.

5.5.1 MNIST Dataset

For the EigCG-TR, nev = 1 was used as the number of desired eigenvectors to be

generated by EigCGUpdate step 6 of Algorithm 20, also for the memory window

size, m = 3 was chosen. The MNIST dataset was used in two different settings of

shallow and deep networks, containing 60,000 samples for training and 10,000 for

validating the trained model.

Shallow Network

For this network we used two hidden layers of sizes {400, 150} for classification,

giving rise to network architecture of {784, 400, 150, 10}; although this is a shallow

network, it consists of 375,660 variables for the optimization problem. Since classi-

fication task is desired, the softmax/cross-entropy canonical pair was used for the

output layer and loss function respectively. The sigmoid function was chosen for the

nonlinearity of the hidden layers.

122



Four different settings of algorithms were tested for 500 iterations with mon-

itoring measures such as training loss, validation loss, and misclassification rate.

Second-order algorithms heavily rely on multiplications with curvature matrix as

this procedure is the most computationally involving step of the algorithm. There-

fore, as our original motivation was to maximally exploit the available information,

the number of calls to this function was counted for all algorithms and monitored

at each iteration.

Figure 5.1: Training loss on each iteration of EigCG-TR, SSM-A, Levenberg-Marquardt
(Hessian and Gauss-Newton)

Figure 5.1 shows that algorithms involving Hessian are more successful in the

rapid reduction of the training loss compared to LM (Gauss-Newton), as they utilize

a more accurate QP model. Both EigCG-TR and SSM-A algorithms outperform

the LM (Hessian) method by minimizing the training value in a fewer number of

iterations. However, from this plot, their benefits are not clear. We use the same

information, but replace the horizontal axis to reflect the number of curvature matrix

vector products, which will translate to number of multiplications of vectors by
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Hessian or Gauss-Newton in the corresponding cases.

Figure 5.2: Training loss per Matrix-vector product of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)

Figure 5.2 demonstrates that both EigCG-TR and SSM-A use a much smaller

number of curvature information compared to the LM methods. Moreover, utilizing

the eigenvector information in the CG solve procedure has resulted in a faster con-

vergence for the QP model and therefore reducing the total number of CG iterations

which in turn results in the gap between EigCG-TR and SSM-A.

Although, reducing training loss is the goal of the optimization method, our

ultimate desire is to minimize the validation loss function to improve the general-

ization of the trained network on the unforeseen data. Plotting the validation error

information shows the same trend for these algorithms.

The figure 5.3 shows the multiplications counts required for reducing the valida-

tion loss by 0.01 unit for each algorithm. We can see that both SSM based methods

can achieve better results in fewer number of multiplications.
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Figure 5.3: Validation loss on each iteration of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)

To avoid over-fitting the training data often early stopping criteria is utilized

and therefore the algorithms suspend further optimization if the validation error is

not improved after a specific number of iterations. Table 5.1 summarizes the results

by showing the last iteration for which the validation error seized to improve.

Table 5.1: Shallow Network: Performance summary of the training algorithms

Method Multiplication Train Loss Valid Loss Error(%)
EigCG-TR 3961 0.023063 0.06623 1.46

SSM-A 5929 0.022686 0.066459 1.50
LM(Hessian) >20000 0.022438 0.065208 1.56

LM(GN) 13700 0.027412 0.074495 1.68

Table 5.1 shows that by taking small steps and slow convergence, the LM(Hessian)

method can reduce the validation loss further than other algorithms; however, this is
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obtained with a huge cost of having more than 20,000 multiplications with the Hes-

sian matrix, although the obtained misclassification error for SSM based variants is

more interesting. The table shows that both EigCG-TR and SSM-A algorithms are

achieving the same accuracy by respectively consuming far less number of curvature

information than both LM methods.

Deep Network

For the deep setting network, we used the architecture used by Martens [2010],

based on the networks initially introduced by Hinton and Salakhutdinov [2006];

The network has 9 layers which correspond to sizes of

784, 1000, 500, 250, 30, 250, 500, 1000, 10.

The nonlinearity of the hidden layers is setup using the sigmoid function, except

for the middle layer which involves 30 hidden units for which the linear activation

was chosen. The main impetus of this networks comes from autoencoder architecture

to allow for noise reduction in the handwritings.

Figure 5.4 shows the training loss per each iteration of the Hessian-free methods.

The optimization setting for this deep network was a total limit of 500 outer itera-

tions, we also put a budget on the number of multiplications to be 18500 total passes

or Hessian evaluation. The figure 5.4 shows that Hessian based methods again out-

perform the GN method. Where EigCG-TR is slightly reducing the error at a faster

rate compared to SSM-A, however, both SSM based methods are outperforming the

Levenberg-Marquardt method.

We can see that when plotting the error reduction by the number of curvature

information products as figure 5.5 demonstrates, the gap among the performance of

algorithms gets more clear. As figure shows, the SSM based algorithms consume a

fewer number of matrix vector products to get to lower accuracy.

Figure 5.6 shows that the validation loss reduction nearly mimics training loss re-

duction; therefore, SSM based approaches reduce the error at a faster rate compared

to Levenberg-Marquardt methods. Although the EigCG-TR gets the best perfor-

mance, however, we can see that towards the 460th iteration the error drops to a
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Figure 5.4: Training loss on each iteration of EigCG-TR, SSM-A, Levenberg-Marquardt
(Hessian and Gauss-Newton)

Figure 5.5: Training loss per Matrix-vector product of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)
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minimum and afterward, it starts some over-fitting on the training data-points.

Figure 5.6: Validation loss on each iteration of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)

Table 5.2 summarizes the results obtained with the mentioned algorithms. EigCG-

TR produces the lowest training and validation error with using the fewest multi-

plications by curvature matrix for this dataset. The SSM-A algorithm is slightly

worse, however both algorithms train networks with 1.94% misclassification rates.

Table 5.2: Deep Network: Performance summary of the training algorithms

Method Multiplication Train Loss Valid Loss Error (%)
EigCG-TR 11437 0.058705 0.13404 1.94

SSM-A 12971 0.087587 0.16115 1.94
LM(Hessian) 18145 0.30273 0.38756 2.11

LM(GN) 13253 0.48407 0.57031 2.26
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5.5.2 Curves Dataset

Further examining the new algorithm, we used the curves dataset from Hinton

and Salakhutdinov [2006]. This dataset contains synthetic data of curve image

information which were generated randomly by choosing three random points in a

two-dimensional plane. We used the same deep network architecture (as described

in Hinton and Salakhutdinov [2006]) which includes 13 layers with

{784− 400− 200− 100− 50− 25− 6}, {25− 50− 100− 200− 400− 784}

architecture, where the encoder and decoder layers are segregated by braces. All

hidden layers use sigmoid activation except the last encoder layer which consists

of 6 linear neurons. The motivation for using 6 neurons on the encoder layer is

that originally given the 3 random pounts, these curves only relied on 6 quantities;

therefore, the encoder segment of the network aims to implicitly project the image

pixel data into the true intrinsic dimension of the problem. Moreover, the decoder

layer will aim to regenerate the pixel data points from this 6-dimensional projection.

Figure 5.7 shows 25 random data points generated by visualizing the pixel data.

Figure 5.7: Visualized curves image dataset

Since training autoencoders are generally considered as a harder task compared

to classification, using the same solvers as the MNIST classification case, the nev

was increased to monitor 3 vectors, similarly the buffer window m was increased to
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15 vectors for the EigCG-TR solver. The same setting as previous test was chosen

for runs, however, the initial testing showed that utilizing the Gauss-Newton matrix

produces a more suitable quadratic model compared to full Hessian. Figure 5.8

shows how each algorithm performs by measuring the reduction in the training loss

per consumed information from curvature. We can see that the Gauss-Newton fed

to Levenberg-Marquardt (LM) method is converging faster than the methods that

use Hessian (including LM). Furthermore, SSM-A and EigCG-TR closely converge

to error level of LM(GN) where as LM with Hessian struggles to reduce the training

loss as fast as others.

Figure 5.8: Training loss per Matrix-vector product of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)

The same behavior is occurring on the validation error as depicted in figure 5.9.

The minimization trajectory suggests that for the autoencoder task on curves dataset,

Gauss-Newton approximation can form a more suitable model for the optimization.
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Figure 5.9: Validation error on each iteration of EigCG-TR, SSM-A, Levenberg-
Marquardt (Hessian and Gauss-Newton)

Therefore, the curvature information for SSM based solvers was switched from Hes-

sian to Gauss-Newton. Figure 5.10 shows that maintaining Gauss-Newton as the

second-order estimate is beneficial for optimizing the training error. We can see that

in this new setting, both SSM-A and EigCG-TR exploit the information much bet-

ter than Levenber-Marquardt, with EigCG-TR slightly converging faster compared

to SSM-A.

Same as previous runs, Figure 5.11 shows that validation error is also reduced

same as training error and both SSM based methods are performing less number of

matrix multiplications to converge to same error.
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Figure 5.10: Training loss per Matrix-vector product of EigCG-TR, SSM-A, Levenberg-
Marquardt using Gauss-Newton

Figure 5.11: Validation error on each iteration of EigCG-TR, SSM-A, Levenberg-
Marquardt using Gauss-Newton
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5.6 Discussion

One of the computationally involving procedures of second-order methods for train-

ing deep neural networks is the multiplication with the curvature information We

proposed an extended version of SSM-A which improves the convergence compared

to the original algorithm by using the available information to maintain estimates of

the eigen pair information. The algorithm provides a seamless solver to be utilized

in both convex and nonconvex QP models; providing the user with the choice to

use both information as suited to the problem. As numerical results show, there

are cases for which the nonconvex Hessian is more suitable for a faster reduction of

the training and validation loss, whereas on the other hand for some cases Gauss-

Newton matrix provides models that facilitate easier convergence. The proposed

EigCG-TR method supports both modules and moreover utilizing the eigen pair

information it can reduce the number of vector multiplication by curvature matrix.
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Appendix A

Sinco2d Subroutines

A.1 Parallelization of First phase

This phase includes searching through the coordinates and finding the most suitable

coordinate which would greatly improve the loss. Therefore each processor would

search around its portion of coordinates in order to find the desired coordinate. Once

the coordinate is found a the coordinate reduce would be called to propagate the

information globaly.

while ( ! stop && i t e r<i t e r t h r e s h o l d ) {
i t e r ++;

funmax=f ;

alphamax=0;

twoDupd=0;

selprocmax=myrank mpi ;

/∗−−−−−−−search phase−−−−−−−−−∗/
for ( int i =1; i<=mp; i++) {

for ( int j =1; j<=nq ; j++) {
// only search ing h a l f o f the matrix

sa t=IDSat [ ( j −1)∗mp+(i −1) ] ;

sut=IDSut [ ( j −1)∗mp+(i −1) ] ;

i f ( sut==sat ) {
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alpha =0;

KW=2∗K∗W[ ( j −1)∗mp+(i −1) ] ;

double ccp , ccpp ;

ccp =0;

ccpp=Cpp . c o e f f R e f ( ( i −1) , ( j −1)) ;

i f ( ccpp<t o l ) {
ccp=Cp . c o e f f R e f ( ( i −1) , ( j −1)) ;

}
i f ( (2∗Gp[ ( j −1)∗mp+(i −1)]+KW>t o l ) && ( ccpp<=t o l ) ){

upd=1;

alpha=f i n d p o s s t e p (K, W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1)]

, upd ) ;

}
else i f ( (2∗Gpp [ ( j −1)∗mp+(i −1)]−KW>t o l ) && ( ccp<=t o l ) ){

upd=−1;

alpha=f i n d p o s s t e p (K, W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

upd ) ;

}
else i f ( (2∗Gp[ ( j −1)∗mp+(i −1)]+KW<−t o l ) && ( ccp>t o l ) ){

upd=1;

alpha=f indneg s t ep (K, ( sa t==sut ) , W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1)]

, ccp , ccpp , upd ) ;

}
else i f ( (2∗Gpp [ ( j −1)∗mp+(i −1)]−KW<−t o l ) && ( ccpp>t o l ) ){

upd=−1;

alpha=f indneg s t ep (K, ( sa t==sut ) , W[ ( j −1)∗mp+(i −1) ] ,
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DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

ccp , ccpp , upd ) ;

}
i f ( f abs ( alpha)> t o l ) {

fchange=funva lue upddiag (2∗ alpha ,

K, DgW[ sat −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , upd ) ;

}
else {

fchange =0;

}

fnew=f+fchange ;

i f ( fnew>funmax ) {
// s e l e c t t h i s coord ina te

funmax=fnew ;

imax=sat ;

jmax=sut ;

//alphamax=Al l S t ep s ( i , j ) . a lpha ;

alphamax=alpha ;

updmax=upd ;

wijmax=W[ ( j −1)∗mp+(i −1) ] ;

//updmax=Al l S t ep s ( i , j ) . upd ;

}
}

i f ( sut>sa t ) {
alpha =0;

KW=2∗K∗W[ ( j −1)∗mp+(i −1) ] ;

double ccp , ccpp ;

ccp =0;
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ccpp=Cpp . c o e f f R e f ( ( i −1) , ( j −1)) ;

i f ( ccpp<t o l ) {
ccp=Cp . c o e f f R e f ( ( i −1) , ( j −1)) ;

}
i f ( (2∗Gp[ ( j −1)∗mp+(i −1)]+KW>t o l ) && ( ccpp<=t o l ) ) {

upd=1;

alpha=f i n d p o s s t e p (K, W[ ( j −1)∗mp+(i −1) ] , DgW[ sat −1] ,

DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

upd ) ;

}
else i f ( (2∗Gpp [ ( j −1)∗mp+(i −1)]−KW>t o l ) && ( ccp<=t o l ) ) {

upd=−1;

alpha=f i n d p o s s t e p (K, W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] ,DgW[ sut −1] , A[ ( j −1)∗mp+(i −1)]

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1)]

, upd ) ;

}
else i f ( (2∗Gp[ ( j −1)∗mp+(i −1)]+KW<−t o l ) && ( ccp>t o l ) ) {

upd=1;

alpha=f indneg s t ep (K, ( sa t==sut ) , W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] , l

ambda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

ccp , ccpp , upd ) ;

}
else i f ( (2∗Gpp [ ( j −1)∗mp+(i −1)]−KW<−t o l ) && ( ccpp>t o l ) ) {

upd=−1;

alpha=f indneg s t ep (K, ( sa t==sut ) , W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

ccp , ccpp , upd ) ;

}
i f ( f abs ( alpha)> t o l ) {

138



fchange=funvalue upd ( alpha , K, W[ ( j −1)∗mp+(i −1) ] ,

DgW[ sat −1] , DgW[ sut −1] , A[ ( j −1)∗mp+(i −1) ] ,

lmbda∗S [ ( j −1)∗mp+(i −1) ] , lmbda∗S [ ( j −1)∗mp+(i −1) ] ,

upd ) ;

}
else {

fchange =0;

}
fnew=f+fchange ;

i f ( fnew>funmax ) {
// s e l e c t t h i s coord ina te

funmax=fnew ;

imax=sat ;

jmax=sut ;

alphamax=alpha ;

updmax=upd ;

wijmax=W[ ( j −1)∗mp+(i −1) ] ;

}
}

}
}

//REDUCE to the max coord ina te on a l l p roce s so r s

MPI Barrier (MPI COMM WORLD) ;

coo rd ina t e r educe ( nprocs mpi , mpiroot , imax , jmax ,

funmax , alphamax , updmax , wijmax , selprocmax ) ;

A.2 Finding 1d-stepsize

These routines as discussed in Scheinberg and Rish Scheinberg and Rish [2010]

determine the stepsize along one dimensional upds; these procedures are called

frequently during the search phase.

double f i n d p o s s t e p (double K, double Wij , double Wii , double Wjj ,
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double Aij , double S i j , double S j i , int upd) {
/∗ This rou t ine computes the opt imal l e n g t h o f

a s t ep in the d i r e c t i o n e i e j ˆT+e j e i ˆT fo r

the p o s i t i v e component o f C ∗/
double aux1 , aux2 , aux3 , aux4 , aux5 ;

double a , b , c , D, alpha , alpha1 , alpha2 ;

i f ( upd==1) {
aux1=2∗(K∗Wij−Aij )−S j i−S i j ;

aux2=(Wii∗Wjj−Wij∗Wij ) ;

aux3=2∗Wij ;

aux4=−2∗K∗( Wii∗Wjj+Wij∗Wij ) ;

aux5=2∗K∗Wij∗aux2 ;

}
else {

aux1=2∗(−K∗Wij+Aij )−S i j−S j i ;

aux2=(−Wii∗Wjj+Wij∗Wij ) ;

aux3=2∗Wij ;

aux4=2∗K∗( Wii∗Wjj+Wij∗Wij ) ;

aux5=−2∗K∗Wij∗aux2 ;

}
a=aux2∗aux1−aux5 ;

b=−aux3∗aux1−aux4 ;

c=−upd∗aux1 ;

i f ( f abs ( a)> z e r o t o l ) {
D=b∗b−4∗a∗c ;

i f (D<0) {
p r i n t f ( ” Negative d i sc r iminant , \n” ) ;

}
double sqrD=s q r t (D) ;

double inv2a =1/(2∗a ) ;

i f ( a>0) {
alpha1=(−b−sqrD )∗ inv2a ;
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alpha2=(−b+sqrD )∗ inv2a ;

}
else {

alpha1=(−b+sqrD )∗ inv2a ;

alpha2=(−b−sqrD )∗ inv2a ;

}

i f ( alpha1>=0) { alpha=alpha1 ; }
else {

i f ( alpha2>=0) { alpha=alpha2 ; }
else {

p r i n t f ( ”unbound d i r e c t i o n ! ,\ n” ) ;

}
}

}
else i f (−c/b>0)

{
alpha=−c/b ;

}
else {

p r i n t f ( ”unbound d i r e c t i o n ! ,\ n” ) ;

}
return alpha ;

}

double f i ndneg s t ep (double K, bool diag , double Wij ,

double Wii , double Wjj , double Aij , double S i j , double S j i ,

double Cpij , double Cppij , int upd) {
/∗ This rou t ine computes the opt imal l e n g t h

o f a s t ep in the d i r e c t i o n e i e j ˆT+e j e i ˆT

fo r the nega t i v e component o f C ∗/
double aux1 , aux2 , aux3 , aux4 , aux5 ;

double a , b , c , D, maxstep , alpha , alpha1 , alpha2 ;
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i f ( upd==1) {
aux1=2∗(K∗Wij−Aij )−S j i−S i j ;

aux2=(Wii∗Wjj−Wij∗Wij ) ;

aux3=2∗Wij ;

aux4=−2∗K∗( Wii∗Wjj+Wij∗Wij ) ;

aux5=2∗K∗Wij∗aux2 ;

maxstep=Cpij ;

}
else {

aux1=2∗(−K∗Wij+Aij )−S i j−S j i ;

aux2=(−Wii∗Wjj+Wij∗Wij ) ;

aux3=2∗Wij ;

aux4=2∗K∗( Wii∗Wjj+Wij∗Wij ) ;

aux5=−2∗K∗Wij∗aux2 ;

maxstep=Cppij ;

}
i f ( d iag ) {

maxstep=maxstep /2 ;

}
a=aux2∗aux1−aux5 ;

b=−aux3∗aux1−aux4 ;

c=−upd∗aux1 ;

i f ( f abs ( a)> z e r o t o l ) {
D=b∗b−4∗a∗c ;

i f (D<0) {
p r i n t f ( ” negat ive d i sc r iminant ,\n” ) ;

}
double sqrD=s q r t (D) ;

alpha1=fmin (((−b−sqrD )/(2∗ a ) ) , ((−b+sqrD )/(2∗ a ) ) ) ;

alpha2=fmax(((−b−sqrD )/(2∗ a ) ) , ((−b+sqrD )/(2∗ a ) ) ) ;

i f ( alpha2<0) {
alpha=fmax ( alpha2 , −maxstep ) ;

}
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else i f ( alpha1<0) {
alpha=fmax ( alpha1 , −maxstep ) ;

}
else {

alpha=−maxstep ;

}
}
else i f (−c/b<0) {

alpha=fmax(−c/b , −maxstep ) ;

}
else {

alpha=−maxstep ;

}
return alpha ;

}

A.3 2d-sub

The core of our algorithmic contribution was the development of the 2d-sub routine.

Basically as a coordinate (i, j) gains popularity, instead of regular SINCO upds, we

compute a more powerful upd step which encompass the corresponding diagonal

elements. Algorithm 2.3.2 describes a pseudo code of how this can be achieved.

Here we present a commented demonstration of practical implementation of 2d-sub.

// I f the coord ina te i s o f f−d iagona l and popu lar

i f ( ( twoDupd==1) && ( imax !=jmax ) ) {
// broadcas t the o f f−d iagona l e lement

// corresponding to chosen coord ina te

i f ( myrank mpi==selprocmax )

AIJ=A[ ( l o c j )∗mp+( l o c i ) ] ;

MPI Bcast(&AIJ , 1 , MPI DOUBLE, selprocmax , MPI COMM WORLD) ;
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char nu=’ ’ , a l l c h r=’A ’ ;

//Obtain e lements ( i , i ) and ( j , j )

// from the d i s t r i b u t e d matrix

PDELGET(& a l l c h r , &nu , &AJJ , A, &imax , &imax , descA ) ;

PDELGET(& a l l c h r , &nu , &AII , A, &jmax , &jmax , descA ) ;

//compute the quadra t i c equat ion

// to f i nd va l u e s o f 2d upd

wjj=DgW[ imax−1] ;

w i i=DgW[ jmax−1] ;

aa=updmax∗(2∗ SIJ ) ;

alphaa=(AII+SI I )/ (AJJ+SJJ ) ;

beta=(AII+SI I )/(2∗AIJ+aa ) ;

kappa=wijmax∗wijmax−wi i ∗wjj ;

b1=((−2∗wijmax∗beta / alphaa)+wjj )/ ( kappa ) ;

b2=(wii−2∗beta ∗wijmax )/( kappa ) ;

AA1=2∗beta / alphaa ;

AA2=2∗beta ;

r1=1+wi i ∗b1+wjj ∗b2−kappa∗b1∗b2 ;

r2=−AA1∗wi i+2∗wijmax−AA2∗wjj+kappa ∗( b1∗AA2+b2∗AA1) ;

r3=kappa−kappa∗AA1∗AA2;

t1=K∗2∗wijmax /(2∗AIJ+aa ) ;

t2=2∗K∗kappa /(2∗AIJ+aa ) ;

// f i n d i n g degenera te roo t

i f ( abs ( r1−t1 )>1e−7) {
de l =(r2−t2 )∗ ( r2−t2 )−4∗( r1−t1 )∗ r3 ;

theta1=(t2−r2+s q r t ( de l ) ) / ( 2∗ ( r3 ) ) ;

theta2=(t2−r2−s q r t ( de l ) ) / ( 2∗ ( r3 ) ) ;

x3=theta1 ;

x1=b1−AA1∗x3 ;

x2=b2−AA2∗x3 ;

G=1+x1∗wi i+2∗x3∗wijmax+x2∗wjj

+kappa∗x3∗x3−x1∗x2∗kappa ;
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// corresponding to remark 2 proo f

i f ( abs (G)<1e−8)

x3=theta2 ;

}
else {

theta1=(t2−r2 )/ r3 ;

x3=theta1 ;

}
x1=b1−AA1∗x3 ;

x2=b2−AA2∗x3 ;

}
//Corresponding to Step 4 o f a l gor i thm 2d−sub
//Checking whether upd agrees wi th the s i gn

i f ( ( sgn ( ( ccp−ccpp+x3 ) )∗ sgn ( aa)>0) && (twoDupd==1)

&& ( imax !=jmax ) ) {
// here the s t ep i s accepted

// f i n d i n g the indexes corresponding to maxrow and maxcol

int imaxrow=INDXG2P(&imax , &nb , &one , &zero , &nprow ) ;

int imaxcol=INDXG2P(&imax , &nb , &one , &zero , &npcol ) ;

// updat ing element ( i , i )

i f ( ( myrow==imaxrow ) && ( mycol==imaxcol ) ) {
double l l o c i , l l o c j ;

l l o c i=INDXG2L(&imax , &nb , &myrow , &zero , &nprow)−1;

l l o c j=INDXG2L(&imax , &nb , &mycol , &zero , &npcol )−1;

Cp . c o e f f R e f ( l l o c i , l l o c j ) +=x2 ;

}
imaxrow=INDXG2P(&jmax , &nb , &one , &zero , &nprow ) ;

imaxcol=INDXG2P(&jmax , &nb , &one , &zero , &npcol ) ;

// updat ing element ( j , j )

i f ( ( myrow==imaxrow ) && ( mycol==imaxcol ) ) {
double l l o c i , l l o c j ;

l l o c i=INDXG2L(&jmax , &nb , &myrow , &zero , &nprow)−1;
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l l o c j=INDXG2L(&jmax , &nb , &mycol , &zero , &npcol )−1;

Cp . c o e f f R e f ( l l o c i , l l o c j ) +=x1 ;

}
// updat ing the o f f d iagona l and r e s e t t i n g the counter

i f ( myrank mpi==selprocmax ) {
double XX=ccp−ccpp+x3 ;

Cp . c o e f f R e f ( l o c i , l o c j )=XX<0 ? 0 : XX;

Cpp . c o e f f R e f ( l o c i , l o c j )=XX<0 ? −XX : 0 ;

Count . c o e f f R e f ( l o c i , l o c j )=0;

}
// forming formulas f o r updat ing the in v e r s e

G=1+x1∗wi i+2∗x3∗wijmax+x2∗wjj+kappa∗x3∗x3−x1∗x2∗kappa ;

fchange=f ;

f +=K∗ l og (G)−x1∗AII−x2∗AJJ−2∗x3∗AIJ

−SI I ∗( x1)−SJJ ∗( x2)−aa ∗( x3 ) ;

double a , b , c , d , wi j ;

double k1 , a1 , a2 , a3 , T;

wi j=wijmax ;

theta=x3 ;

mu=x1 ;

lmbdaU=x2 ;

k1=1+theta ∗wi j+mu∗wi i ;

a1=theta −((mu∗ theta ∗wi i )/ k1 )−((mu∗lmbdaU∗wi j )/ k1 ) ;

a2=lmbdaU−(( theta ∗lmbdaU∗wi j )/ k1 )−(( w i i ∗ theta ∗ theta )/ k1 ) ;

a3=(mu∗wi j+theta ∗wjj )/ k1 ;

T=1+theta ∗wi j+lmbdaU∗wjj−(mu∗ theta /k1 )∗ wi j ∗wi i

−(mu∗lmbdaU/k1 )∗ wi j ∗wi j

−( theta ∗ theta /k1 )∗ wjj ∗wii−( theta ∗lmbdaU/k1 )∗ wjj ∗wi j ;

a=(−a1/T) ;

b=(a1∗a3/T)−(mu/k1 ) ;

c=(−a2/T) ;
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d=(a2∗a3/T)−( theta /k1 ) ;

double f eab=a∗a−b∗c ;

double n1 , q ;

// computing the c o e e f i c i e n t s f o r

// the symmetric rank two upd

i f ( feab>t o l ) {
n1=(a−s q r t ( feab ) )/ b ;

q=a−b∗n1 ∗ ( 0 . 5 ) ;

pdgeadd (&transN ,&p,&one ,&n1 ,U,&one ,&one ,

descU ,&one ,V,&one ,&one , descV ) ;

c o e f=b /2 ;

q −=c o e f ∗n1 ;

pdgeadd (&transN ,&p,&one ,& coe f ,V,&one ,&one ,

descV ,&q ,U,&one ,&one , descU ) ;

c o e f =1;

pdsyr2 (&uplo ,&p,& coe f ,U,&one ,&one , descU ,&one ,V,

&one ,&one , descV ,&one ,W,&one ,&one , descW ) ;

i f ( nq rhs !=0) {
vdMul (mp,U,V,UU) ;

}
c o e f ∗=2;

p d s c a l (&p,& coef ,UU,&one ,&one , descUU,&one ) ;

PDGEMR2D(&p,&one ,UU,&one ,&one , descUU , Diags ,

&one , &one , descDiags , &i c t x t ) ;

i f ( mpiroot ) {
Cdgebs2d ( i c t x t , ” Al l ” , ” ” ,p , 1 , Diags , 1 ) ;

}
else {

Cdgebr2d ( i c t x t , ” Al l ” , ” ” ,p , 1 , Diags , 1 , 0 , 0 ) ;

}
cb las daxpy (p , 1 , Diags , 1 , DgW, 1 ) ;

MPI Barrier (MPI COMM WORLD) ;

}
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else {
// rank two upd reduces to rank one upd

double m=1;

double a l=−(a∗a−b∗c )/b ;

pdsyr (&uplo ,&p,& al ,U,&one ,&one , descUU ,

&one ,W,&one ,&one , descW ) ;

c o e f=a/b ;

pdgeadd (&transN ,&p,&one ,& coe f ,U,&one ,&one ,

descU ,&one ,V,&one ,&one , descV ) ;

pdsyr (&uplo ,&p,&b ,V,&one ,&one , descV ,&one ,

W,&one ,&one , descW ) ;

i f ( nq rhs !=0) {
vdSqr (mp,U,UU) ;

vdSqr (mp,V,VV) ;

}
c o e f=b ;

pdgeadd (&transN ,&p,&one ,& al ,UU,&one ,&one ,

descUU,&b ,VV,&one ,&one , descVV ) ;

PDGEMR2D(&p,&one ,VV,&one ,&one , descVV ,

Diags ,&one ,&one , descDiags ,& i c t x t ) ;

// updat ing the d iagona l e lements in s epe ra t e array

i f ( mpiroot ) {
Cdgebs2d ( i c t x t , ” Al l ” , ” ” ,p , 1 , Diags , 1 ) ;

}
else {

Cdgebr2d ( i c t x t , ” Al l ” , ” ” ,p , 1 , Diags , 1 , 0 , 0 ) ;

}
cb las daxpy (p , 1 , Diags , 1 , DgW, 1 ) ;

MPI Barrier (MPI COMM WORLD) ;

}
}
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Appendix B

Parallel Graphical Lasso

B.1 Main GLasso driver loop

// This i s a c y c l i c b l o c k coord ina te descent method

//This way the whole matrix W i s used in the

//LASSO sub−problem and the corresponding be ta=0

while ( ( ! stop ) && ( i t e r<Maxiter ) ){
blk idx=( i t e r % p)+1;

bool l a s s t o p=fa l se ;

int t =(( blkidx −1)−((( blk idx−1)% nb ) ) ) / nb ;

bool i have idx=(myrank mpi==(t % nprocs mpi ) ) ;

i t e r ++;

int l o c a l i d x =−1;

//Get i n i t i a l So l u t i on f o r Beta

double nnn=0;

i f ( ihave idx ){
// genera t ing t h e t a

l o c a l i d x=ind xg2 l (&blkidx ,&nb,&mycol

,& zero ,& npcol ) ;

nnn=1/(Q[ ( l o c a l i d x −1)∗p+blkidx −1 ] ) ;

}
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MPI Bcast(&nnn , 1 ,MPI DOUBLE,

int ( t% nprocs mpi ) ,MPI COMM WORLD) ;

nnn=0;

cb las dcopy (nq,&Q[ blkidx −1] ,p,& lo ca lBe ta [ 0 ] , one ) ;

c b l a s d s c a l (nq , nnn , &loca lBe ta [ 0 ] , one ) ;

s td : : vector<double>o ldbeta (nq , 0 ) ;

cb las dcopy (nq,&Q[ blkidx −1] ,p,& o ldbeta [ 0 ] , one ) ;

c b l a s d s c a l (nq , nnn , &oldbeta [ 0 ] , one ) ;

vector<double>G(nq , 0 ) ;

// i n t l o c a l i d x=−1;
i f ( ihave idx ){

l o ca lBe ta [ l o c a l i d x −1]=0;

}
Uplo=’L ’ ;

//This e s s e n t i a l l y g e t s the curren t

// g rad i en t b e f o r e c a l l i n g the l a s s o

pdsymv (&Uplo ,&p,&one ,&W[0 ] ,& one ,&one , descW ,

&loca lBe ta [0 ] ,& one ,&one , descBeta ,&one ,& zero ,

&G[0 ] ,& one ,&one , descG ,&one ) ;

// reduc ing the g rad i en t from pxp to p−1xp−1
// to make s u i t a b l e f o r subproblem

i f ( ihave idx ){
G[ l o c a l i d x −1]=0;

}
//CALL LASSO So l ve r

B.2 Inner Lasso Solver

This procedure solve the inner lasso problem in a distributed setting and then prop-

agates the results by synchronizing the information through processors.

//This i s the l o c a l Lasso s o l v e r

// i hav e i d x shows t ha t whether proces sor

// conta ins the row which corresponds to
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for ( int i t =0; ( ( i t< l a s s o i t )&&(! l a s s t o p ) ) ; i t ++){
// Se t t i n g change in the g rad i en t to zero

d l a s e t (&transN ,&p,&one ,& zero ,& zero ,& deltaG [0 ] ,& p ) ;

i f ( ihave idx ){
for ( int h=0; h<comm it ; h++){

// l o c a l coord ina te descent

int idx=rand ()/(0 .0+RAND MAX)∗nq ;

int indx=idx +1;

indx=i ndx l 2g (&indx ,&nb,&mycol ,& zero ,& npcol ) ;

indx−−;

while ( indx==blkidx −1){
idx=rand ()/(0 .0+RAND MAX)∗nq ;

indx=idx +1;

indx=i ndx l 2g (&indx ,&nb,&mycol ,& zero ,& npcol ) ;

indx−−;

}
double prmA, prmB, prmC, d e l t a S t a r ;

prmA=(G[ idx ]+4∗deltaG [ indx ])+S [ idx ∗p+(blkidx −1) ] ;

prmB=0.5∗ sigma∗W[ idx ∗p+indx ] ;

prmC =loca lBe ta [ idx ] ;

d e l t a S t a r=s o f t t h r e s h o l d (prmA, prmB, prmC, lmbda ) ;

l o ca lBe ta [ idx]+=d e l t a S t a r ;

cb las daxpy (p , de l taStar , &W[ idx ∗p ] , one ,& deltaG [ 0 ] , one ) ;

}
}
else {
for (unsigned int h=0; h<comm it ; h++){
// l o c a l coord ina te descent

int idx=rand ()/(0 .0+RAND MAX)∗nq ;

int indx=idx +1;

indx=i ndx l 2g (&indx ,&nb,&mycol ,& zero ,& npcol ) ;

indx−−;

double prmA, prmB, prmC, d e l t a S t a r ;
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prmA=( G[ idx ]+4∗deltaG [ indx ])+S [ idx ∗p+(blkidx −1) ] ;

prmB=0.5∗ sigma∗W[ idx ∗p+indx ] ;

prmC =loca lBe ta [ idx ] ;

d e l t a S t a r=s o f t t h r e s h o l d (prmA, prmB, prmC, lmbda ) ;

l o ca lBe ta [ idx]+=d e l t a S t a r ;

cb las daxpy (p , de l taStar , &W[ idx ∗p ] , one ,& deltaG [ 0 ] , one ) ;

}
}
char a l i g n=’ ’ ;

MPI Barrier (MPI COMM WORLD) ;

// reduce a l l

Cdgsum2d( i c t x t ,& Al lchr ,& a l i gn , one

,p,& deltaG [ 0 ] , one , zero , ze ro ) ;

//G=G+de l t a g

pdgeadd (&transN ,&one ,&p,&one ,& deltaG [0 ] ,& one ,

&one , de scvec root ,&one ,&G[0 ] ,& one ,&one , descG ) ;

gradientnorm=cblas dnrm2 (p,& deltaG [ 0 ] , one ) ;

MPI Bcast(&gradientnorm , 1 ,MPI DOUBLE,

0 ,MPI COMM WORLD) ;

i f ( gradientnorm<g rad to l )

{
l a s s t o p=true ;

}
}
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