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ABSTRACT 

 

The use of mathematical modeling for the purpose of analyzing and optimizing the 

performance of repairable systems is widely studied in the literature. In this dissertation, we 

study two different scenarios on the maintenance modeling and optimization of repairable 

systems. First, we study the long-run availability of a traditional repairable system that is 

subjected to imperfect corrective maintenance. We use Kijima’s second virtual age model to 

describe the imperfect repair process. Because of the complexity of the underlying probability 

models, we use simulation modeling to estimate availability performance and meta-modeling to 

convert the reliability and maintainability parameters of the repairable system into an availability 

estimate without the simulation effort. As a last step, we add age-based, perfect preventive 

maintenance to our analysis. Second, we optimize a preventive maintenance policy for a two-

component repairable system. When either component fails, instantaneous, minimal, and costly 

corrective maintenance is performed on the component. At equally-spaced, discrete points during 

the system’s useful life, the decision-maker has the option to perform instantaneous, imperfect, 

and costly preventive maintenance on one or both of the components, to instantaneously replace 

one or both of the components, or to do nothing. We use a Genetic Algorithm in an attempt to 

find a cost-optimal set of preventive maintenance and replacement decisions. 

  



 

 
This dissertation is approved for recommendation  
to the Graduate Council.  

  

  
Dissertation Director:  

  

  
_______________________________________  
Dr. C. Richard Cassady   

  

  
Dissertation Committee:  

  

  
_______________________________________  
Dr. Darin W. Nutter 

  

  
_______________________________________  
Dr. Edward A. Pohl 

  
 

_______________________________________  
Dr. Chase Rainwater  

 
  
  



 

DISSERTATION DUPLICATION RELEASE 

 
I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when 
needed for research and/or scholarship.  

  

  
Agreed   __________________________________________  

  Suzan M. Alaswad 

  

  
Refused  __________________________________________  

  Suzan M. Alaswad 

  



 

ACKNOWLEDGMENTS 

In the name of Allah, the most gracious, the most merciful 

I would like to thank my husband Sinan. His support, encouragement, patience, tolerance 

of my occasional frustrations, and unconditional love were definitely the bedrock upon which the 

past ten years of my life have been built. I’m also greatly indebted to my children, Lina, Layann, 

and Abdurahman. They are my source of happiness. I owe my every achievement to my husband 

and children.  

Moreover, I would like to give my sincere thanks to my advisor, Dr. C. Richard Cassady, 

for his assistance and guidance through what seemed to be a never-ending process. The 

completion of this dissertation wouldn’t be possible without his support and direction. Special 

thanks are also extended to my committee members, Dr. Darin W. Nutter, Dr. Edward A. Pohl, 

and Dr. Chase Rainwater, for their valuable comments and suggestions.  

  



 

DEDICATION 

  
This dissertation is dedicated to my Mother and Father whom I lost at an early age of my 

life, may their souls rest in peace. I wish they could have lived long enough to see me 

accomplish this long-awaited goal.   



 

TABLE OF CONTENTS 

  
1.! Introduction ................................................................................................................ 1!

1.1! Maintenance Actions ..................................................................................... 1!
1.2! Repairable Systems Modeling ....................................................................... 2!
1.3! Contribution ................................................................................................... 3!

2.! A Model of Limiting Availability under Imperfect Maintenance ......................... 5!

2.1! Additional Studies of Virtual Age ................................................................. 6!
2.2! A Summary of Cassady et al. (2005) ............................................................. 7!
2.3! RS Definition ............................................................................................... 10!
2.4! Initial Experimentation ................................................................................ 11!
2.5! Meta-Modeling of the Availability Function Parameters ............................ 17!
2.6! Preventive Maintenance Analysis ................................................................ 21!
2.7! Conclusion ................................................................................................... 34!

3.! Preventive Maintenance and Replacement Scheduling for a Two–Component 

System .................................................................................................................. 36!

3.1! Model Derivation ......................................................................................... 37!

3.1.1! Modeling System Maintenance and Aging ................................... 38!
3.1.2! Modeling System Maintenance Costs ........................................... 40!

3.2! Numerical Experimentation ......................................................................... 44!

3.2.1! An Enumerative Solution Approach ............................................. 44!
3.2.2! A Heuristic Solution Approach: Genetic Algorithm .................... 46!

3.3! Model Formulation for m–Component System ........................................... 52!
3.4! Conclusion ................................................................................................... 54!

4.! Summary of Contributions and Future Work ...................................................... 56!

4.1! Contributions ............................................................................................... 56!
4.2! Future Research Work ................................................................................. 56!

References ........................................................................................................................ 58!

Appendices ....................................................................................................................... 61!

A.1  Simulation Availability Model ...................................................................... 61!
A.2  Enumeration Model ....................................................................................... 66!
A.3  Genetic Algorithm Model ............................................................................. 71!



 

A.4  Analysis of Variance from Minitab for ! ..................................................... 78!

A.5  Analysis of Variance from Minitab for ! (adding PM parameters) ............. 79!

 



 1 

1. Introduction 

All industrial organizations depend on the effective and efficient operation of systems 

that are subject to and maintained upon failure. If maintenance options other than system 

replacement (e.g., repair) are available, then such a system is referred to as a repairable system 

(RS). The proper maintenance of a RS is a challenge faced by engineers in all industries; 

unfortunately, this challenge often is not met productively. For example, Mobley (1988) 

estimates that a manufacturer’s maintenance costs represent 15-40% of the cost of goods 

produced, but approximately one-third of all maintenance costs are associated with unnecessary 

or incorrect maintenance actions. Among the potential causes of these difficulties are a 

“necessary evil” view of maintenance – maintain only upon system failure – and an unscientific 

approach to maintenance decision-making. 

1.1 Maintenance Actions 

Maintenance actions performed on a RS can be categorized into two groups: corrective 

maintenance (CM) actions and preventive maintenance (PM) actions. CM actions are performed 

in response to system failures, and they could correspond to either repair or replacement 

activities. PM actions are not performed in response to RS failure, but they are intended to delay 

or prevent RS failures. Note that PM actions may or may not be cheaper and/or faster than CM 

actions. As with CM actions, PM actions can correspond to either repair or replacement activities 

PM actions can be divided into two sub-categories. Scheduled maintenance (SM) actions 

are planned based on some measure of elapsed time. Condition-based maintenance (CBM) 

actions are initiated based on data obtained from sensors applied to the RS. Vibration data and 

chemical analysis data are two examples of the type of data used in CBM. CBM provides the 

potential for just-in-time maintenance.  
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1.2 Repairable Systems Modeling 

Repairable systems modeling refers to the application of operations research techniques 

(e.g., probability modeling, optimization, simulation) to problems related to equipment 

maintenance. Repairable system models are typically used to evaluate the performance of one or 

more repairable systems and/or design maintenance policies for one or more repairable systems. 

The literature on the use of mathematical modeling for the purpose of analyzing and optimizing 

the performance of repairable systems is extensive. McCall (1965), Pierskalla and Voelker 

(1976), Sherif and Smith (1981), Cho and Parlar (1981), Dekker (1996), and Wang (2002) all 

provide surveys of this literature. The work summarized in these papers captures a wide variety 

of underlying assumptions and modeling approaches.  

The vast majority of published work in repairable systems modeling treats RS that 

conform to six assumptions. 

1. The RS is comprised of a single component. 

2. The RS has binary status. At any point in time, the RS is either functioning or down 

for maintenance. 

3. The RS has self-announcing failures. Inspection is not required to determine the 

status of the RS. 

4. The RS is intended to function continuously. The RS has no planned downtime. 

5. The RS is “as good as new” at time zero. 

6. The RS is subjected to either no PM or SM. 

Given these assumptions, a traditional model of a RS requires specification of six characteristics. 
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1. A probability distribution that governs the time until the first RS failure must be 

specified. The Weibull and exponential probability distributions are common 

choices. 

2. A mathematical model of the duration of CM must be specified. Common choices 

here include instantaneous CM, a generic probability distribution, the exponential 

probability distribution, and the lognormal probability distribution. 

3. A mathematical model of the impact of CM must be specified. The most common 

choice here is perfect CM. After perfect CM, the RS is in an “as good as new” state. 

The second most common choice is minimal CM. After minimal CM, the RS is in an 

“as bad as old” condition – the RS is functioning but its age is equivalent to its age at 

the instant failure occurred. Imperfect maintenance refers to a class of models that 

describe CM impact that is worse than perfect but better than minimal (Pham and 

Wang, 1996).  

4. If SM is utilized, then the policy that governs SM must be specified. Two common 

policies are age-based PM and block-based PM. Under an age-based PM policy, PM 

is initiated if the RS functions without failure for a specified period of time. Under a 

block-based policy, PM is initiated at equally-spaced points in time. 

5. If SM is utilized, then the duration of CM must be modeled. 

6. If SM is utilized, then the impact of PM must be modeled. 

1.3 Contribution 

In this dissertation, we make two contributions to the repairable systems modeling 

literature. In Chapter 2, we study the long-run availability of a traditional RS that is subjected to 

imperfect CM. Because of the complexity of the underlying probability models, we cannot 
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derive a closed-form expression for the availability of the RS. Therefore, we use simulation 

modeling to estimate availability performance and meta-modeling to convert the reliability and 

maintainability parameters of the RS into an availability estimate without the simulation effort. 

As a final step, we add age-based, perfect PM to our analysis. 

In Chapter 3, we optimize a PM policy for a two-component RS. When either component 

fails, instantaneous, minimal, and costly CM is performed on the component. At equally-spaced, 

discrete points during the system’s useful life, the decision-maker has the option to perform 

instantaneous, imperfect, and costly PM on one or both of the components, to instantaneously 

replace one or both of the components, or to do nothing. We use a heuristic in an attempt to find 

a cost-optimal set of PM and replacement decisions. 
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2. A Model of Limiting Availability under Imperfect Maintenance 

 
Two popular imperfect CM models are based on the concept of “virtual” age as 

introduced by Kijima et al. (1988). Consider a RS that, at any point in time, is in one of two 

states, functioning or failed (under CM); and assume that the unit is initially (at time ! ! 0) 

functioning. Let !!  denote the duration of the period between the ! ! 1 th  CM action 

completion and the !!!!failure; and let !! denote the virtual age of the RS at the time of the CM 

action completion. Kijima’s first model of virtual age is  

        !! ! !!!1 ! !!!                    (2.1)  

where ! is some constant such that 0 ! ! ! 1, and !0 ! 0. The RS accumulates age during each 

period of function, i.e. !1, !2, … . After each failure, CM removes some of the age accumulated 

during the most recent interval of function. Thus, 1! ! captures the degree of RS restoration 

achieved through CM. Note that perfect CM (! ! 0) and minimal CM (! ! 1) are both special 

cases of this virtual age model. 

Let !1 !  denote the cumulative distribution function of !1, i.e. the life distribution of a 

new RS. Let !! ! !  denote the conditional cumulative distribution function of !! given that 

!!!1 ! !. Then     

                                            !! ! ! ! !!
!
1
!!! !!

1
!

1!!
1
!

        (2.2) 

Thus, the length of an interval of RS function depends on the virtual age of the equipment at the 

beginning of the interval. Kijima et al. (1988) use an economic model to evaluate periodic 

replacement policies for such RS assuming that both CM and replacement are instantaneous 

activities. 
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In a second paper, Kijima (1989) expands the study of virtual age in several ways. First, 

he generalizes (2.1) by modeling virtual age as  

!!! ! !!!1 ! !!!!          (2.3)     

where {!1, !2,. …} is a sequence of independent random variables each distributed over the real 

interval 0,1 . Second, he presents a second virtual age model  

!!! ! !! !!!1 ! !!                       (2.4) 

Under this second model, each repair removes a portion of the current virtual age of the RS. For 

both models of virtual age, he analyzes the behavior of the random variable  

                                                          !! ! !!
!

!!1
            (2.5) 

for the purpose of studying the same periodic replacement problem as studied by Kijima et al. 

(1988). Note that we refer to (2.3) the Type I Kijima CM model and (2.4) as the Type II Kijima 

CM model.  

2.1 Additional Studies of Virtual Age 

 Several other studies have added to the body of knowledge on virtual age. Uematsu and 

Nishida (1987) use a non-homogenous Poisson process to determine interval reliability and 

develop cost-optimal replacement models. They use a general repair model (which includes the 

two Kijima models as special cases) where each interval of RS function is subject to the 

influence of all previous failure history.  

 Dagpunar (1997, 1998) suggests an upgraded repair model where minimal repair is 

performed until a unit of equipment exceeds a specified virtual age. Thereafter, repairs restore 

the unit to a specified virtual age. He obtains approximations for steady-state measures of RS 

aging and uptime between maintenance actions.  
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 Scarsini and Shaked (2000) model the total benefit (monetary value) of an item using 

Kijima’s second model. Love et al. (2000) develop a discrete, semi-Markov structure to 

determine optimal maintenance policies under Kijima’s first model. Mettas and Zhao (2005) 

develop a likelihood-based approach for estimating the parameter of Kijima’s second model.  

 Cassady et al. (2005) use simulation to develop an approximate, analytic expression for 

RS availability under a special case of Kijima’s first model. They use this model to develop near-

cost-optimal replacement policies for the RS. Then, they develop and validate meta-models that 

can be used to convert the RS reliability and maintainability parameters into the parameters of 

the approximate availability function without the simulation effort.  

 Doyen and Gaudoin (2006) propose new generalized virtual age models that generalize 

Kijima’s virtual age models to the case in which both CM and PM are used. A generalized 

virtual age model is defined by both a sequence of effective ages which characterizes the effects 

of both types of maintenance according to a classical virtual age model, and a usual competing 

risks model which characterizes the dependency between the two types of maintenance.  

 Bartholomew-Biggs et al. (2009) consider the problem of scheduling imperfect PM for a 

RS. The impact of PM is modeled using the Kijima virtual age models. 

2.2 A Summary of Cassady et al. (2005) 

Consider a RS that is required to operate on a continuous basis for a useful life of ! 

hours. Suppose that at any point in time, the RS is in one of two states, functioning or failed 

(under CM), and that the RS is initially functioning. Let ! !  denote the status of the RS at time 

!; let ! ! ! 1 indicate that the RS is functioning at time !, and let ! ! ! 0 indicate that the RS 

is failed at time !.  
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Suppose that !1 is a Weibull random variable having shape parameter ! ! 1 and scale 

parameter !. Thus,    

                                      !1 ! ! 1! !"# !
!

!

!

                     (2.6) 

is the cumulative distribution function of !1 . Suppose that !!  has a residual (conditional) 

Weibull probability distribution (with the same parameters) given survival to age !!!1 ! ! 

where the accumulation of virtual age is governed by (2.1). Thus, 

      !! ! ! ! 1! !"# !
!!!

!

!

!
!

!

!

                    (2.7) 

is the cumulative distribution function of !!. Finally, suppose that the time required to complete 

CM is a constant value of !!, and PM is not performed on the RS.  

 Let ! !  denote the availability function for the RS where  

 ! ! ! !" ! ! ! 1                                                     (2.8) 

Due to the uncertainty in the number of failures occurring by time !, and the fact that the 

probability distribution of !! is dependent upon {!1, !2, … , !!!1}, the derivation of a closed 

form expression for the availability function is not possible. Therefore, Cassady et al. (2005) use 

a discrete-event simulation model to estimate the availability function. The simulation model 

mimics the function, failure, and CM of the RS using two events: failure, and CM completion. 

The model collects availability data on the RS at equally-spaced discrete observation points 

during the RS useful life.  

Based on the simulation output, Cassady et al. (2005) propose an approximate, closed-

form availability function. Specifically, they use  

                                      ! ! ! !"# !!0!
!1                                                     (2.9) 
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to approximate the availability function. Note that !! and !1are estimated from the simulation 

output. They use a factorial design over !, !, and !!  to demonstrate that (2.9) provides a 

reasonable approximation of RS availability. 

Given the approximate model of equipment availability, Cassady et al. (2005) determine 

a near-cost-optimal replacement interval for the RS. Let ! denote the replacement interval for the 

RS. Note that the replacement action is instantaneous. The average cost per unit time of RS 

operation, !"#$%&' ! , is a function of !, and can be de!ned using two cost parameters: RS 

acquisition cost !!  and the cost per unit time of RS downtime !! .  

                       !"#$%&' ! !
!!

!
! !! 1! !!"# !                                  (2.10) 

Note that !!"# !  is the average availability over the !rst time ! units of equipment operation, 

and note that  

                                !!"# ! !
1

!
! ! !"

!

0
!
1

!
!"# !!0!

!1 !"
!

0
                            (2.11) 

Note that the integral in (2.11) must be evaluated numerically. 

Finally, in order to eliminate the need to perform simulation to obtain the parameters of 

the availability model, Cassady et al. (2005) use additional experiments to develop meta-models 

to convert the RS reliability and maintainability parameters directly into the coef!cients of the 

availability model without requiring the simulation effort. The replacement policy obtained from 

analysis of the meta-model is compared to the policy obtained directly from the simulation 

output. The average increase in cost resulting from the sub-optimal replacement policy is only 

0.10%. Therefore, the meta-models are robust and provide good estimates of the parameters of 

the proposed availability function.  
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The work of Cassady et al. (2005) serves as a starting point for this research. We take a 

similar approach to studying availability and PM planning for a RS subject to the Type II Kijima 

CM model. 

2.3 RS Definition  

We consider the RS studied by Cassady et al. (2005) except that the accumulation of 

virtual age is governed by  

                                       !! ! ! !!!1 ! !!                                                     (2.12) 

where ! is some constant such that 0 ! ! ! 1. In addition, our focus is on the RS limiting 

availability 

         ! ! !"#!!! ! !                             (2.13) 

It is not possible to derive a closed-form expression for limiting availability. Therefore, like 

Cassady et al. (2005), our initial objective is to construct a discrete-event simulation model that 

can be used to estimate limiting availability. 

We constructed a simulation model of the RS cyclical process of function, failure, and 

CM. The model collects data on RS availability at 50,000 equally-spaced observation points 

during the RS useful life. During each replication of the simulation model, RS status (functioning 

or failed) is recorded at each observation point. Since ! !  is the probability that the RS is 

functioning at time !, availability is estimated at each observation point by dividing the number 

of replications during which the RS was functioning at the observation point by the number of 

replications. Since availability is a proportion, we use 153,664 replications to provide 95% 

confidence intervals on each availability estimate with a worst-case half width of 0.0025. 
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2.4 Initial Experimentation 

As a first step in modeling the system limiting availability function, a simple set of 

experiments was used to generate sample plots of the estimated system availability function. 

Eight experiments were formulated with respect to the three parameters: !, !, and !!. The details 

of the experimental design for these experiments are summarized in Table 2.1. The values found 

in Table 2.1 were chosen to provide reasonable coverage of reliability and maintainability 

parameters found in many repairable mechanical systems. Note that all eight experiments utilize 

! ! 1, and ! ! 200. Figures 2.1!2.8 represent the behavior observed across these experiments. 

The availability function achieves a steady-state value greater than zero, rather than degrading 

over time as in the case considered by Cassady et al. (2005). 

 

Table 2.1. Experimental Design 

Experiment ! ! !! 

1 1.5 0.4 0.05 

2 1.5 0.4 0.15 

3 1.5 0.8 0.05 

4 1.5 0.8 0.15 

5 3 0.4 0.05 

6 3 0.4 0.15 

7 3 0.8 0.05 

8 3 0.8 0.15 
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Figure 2.1. Experiment 1 Availability Plot 
 

 

 

Figure 2.2. Experiment 2 Availability Plot 
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Figure 2.3. Experiment 3 Availability Plot 

 

 

Figure 2.4. Experiment 4 Availability Plot 
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Figure 2.5. Experiment 5 Availability Plot 

 

Figure 2.6. Experiment 6 Availability Plot 
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Figure 2.7. Experiment 7 Availability Plot 

 

 

Figure 2.8. Experiment 8 Availability Plot 
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Consider the RS corresponding to Experiment 1 in Table 2.1, such that ! ! 1.5, ! ! 0.4, 

!! ! 0.05, ! ! 1, and ! ! 200. Figure 2.1 captures the availability estimates resulting from 

simulating the RS. The system limiting availability ! is the steady-state value of the system 

availability. The value of ! is estimated from the simulation output by computing the average of 

the availability estimates beyond the initial transient period. The Marginal Standard Error Rule, 

MSER, by White (1997) was used to determine the truncation point (!), i.e. the point before 

which the data suggests steady-state has not been achieved. Truncation  removes  the  first  

! ! !  observations  from  the  average of the availability estimates. The MSER  selects  a  

truncation  point  that  minimizes  the  width  of  the  marginal  confidence  interval  about  the  

truncated  sample  mean.    

For the given experiment, the identified truncation point is ! ! 1.86. The data up to this 

point were removed and the system limiting availability was estimated by finding the truncated 

mean (! ! 0.9322). Figure 2.9 adds the estimate of limiting availability to the truncated data 

from Figure 2.1. The estimated values of ! for the eight experiments are given in Table 2.2. 
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Figure 2.9. Availability vs. Limiting Availability for Experiment 1 
 

 

Table 2.2. Limiting Availability Estimates from Simulation 
 

Experiment ! 

1 0.9322 

2 0.8210 

3 0.9009 

4 0.7518 

5 0.9179 

6 0.7885 

7 0.8309 

8 0.6209 

 
 

 

2.5 Meta-Modeling of the Availability Function Parameters 

The analysis in the previous section provides reasonable approximations to the limiting 

availability behavior of RS possessing the RAM properties defined in section 2.3. However, each 

time the value of !, !, or !!  is changed a new simulation experiment must be conducted. 
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Therefore, a worthwhile next step is to construct an accurate and robust meta-model that 

converts the system RAM parameters (!, !, !!) into the system limiting availability without the 

simulation effort. 

We begin by expanding the initial experimental design into a circumscribed central 

composite (CCC) experimental design to examine the relationship between !, !, and !!; and A . 

The CCC design requires five levels of each factor, which were chosen to capture a wide range 

of system performance under the general system definition. The specific factor levels we used 

are enumerated in Table 2.3. 

 
Table 2.3.  CCC Experimental Design: Factor Settings 

 

  Coded Value Actual Value 

Experiment ! ! !! ! ! !! 

1 !1 !1 !1 1.5 0.4 0.05 

2 !1 !1 1 1.5 0.4 0.15 

3 !1 1 !1 1.5 0.8 0.05 

4 !1 1 1 1.5 0.8 0.15 

5 1 !1 !1 3 0.4 0.05 

6 1 !1 1 3 0.4 0.15 

7 1 1 !1 3 0.8 0.05 

8 1 1 1 3 0.8 0.15 

9 0 0 0 2.25 0.6 0.1 

10 0 0 !3/2 2.25 0.6 0.025 

11 0 0 3/2 2.25 0.6 0.175 

12 0 !3/2 0 2.25 0.3 0.1 

13 0 3/2 0 2.25 0.90 0.1 

14 !3/2 0 0 1.125 0.6 0.1 

15 3/2 0 0 3.375 0.6 0.1 

 

For each experiment, the simulation model was executed using 50,000 observations, and 

153,664 replications. The estimates of ! found from the simulation output can be found in Table 

2.5. Analysis of variance is then used to develop a meta-model of ! in terms of !, !, and !!. This 
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involves applying linear regression to the ! values obtained from simulation (Table 2.5) for 

estimating the parameters in equation (2.14). 

! ! !0 ! !1! ! !2! ! !3!! ! !11!
2
! !12!" ! !13!!! ! 

                                !22!
2
! !23!!! ! !33!!

2        (2.14) 

The resulting parameters estimates are given in Table 2.4 (note that all the coefficients 

are statistically significant at a level of significance of 0.05), and the corresponding estimates of 

! are provided in Table 2.5. The mean absolute error of the 15 estimates is 0.0098. 

 
Table 2.4.  Meta-Model Parameter Estimates 

 

!0 0.8965 

!1 0.0633 

!2 0.7696 

!3 !0.8400 

!11 0.0278 

!12 !0.1284 

!13 !0.2636 

!22 !0.4975 

!23 !1.4812 

!33 4.0742 

 

To test the robustness of our meta-models, we conducted experiments with randomly 

selected values of !, !, and !!within the CCC experimental design. We used a pseudorandom 

number generator to create fifty such experiments. The data from the first 10 of these 

experiments are shown in Table 2.6. We executed the simulation model for each experiment. 

Then, we: (1) used the simulation output to estimate !, (2) used the meta-model to estimate !, 

and (3) compared the meta-model to the simulation output by computing the MAE. The results 

from the first 10 experiments are shown in Table 2.7. The MAE across the 50 experiments is 
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0.004. This provides further evidence that the meta-model provides a reasonable approximation 

of !.  

Table 2.5. Limiting Availability Estimates 
 

 Simulation Meta-Model  

Experiment ! ! Absolute Error 

1 0.9322 0.9360 0.0038 

2 0.8210 0.8347 0.0136 

3 0.9009 0.8983 0.0025 

4 0.7518 0.7378 0.0140 

5 0.9179 0.9378 0.0198 

6 0.7885 0.7969 0.0084 

7 0.8309 0.8231 0.0078 

8 0.6209 0.6229 0.0020 

9 0.8173 0.8170 0.0002 

10 0.9470 0.9530 0.0059 

11 0.7188 0.7269 0.0081 

12 0.8673 0.8516 0.0156 

13 0.6631 0.6929 0.0297 

14 0.8919 0.8957 0.0038 

15 0.7986 0.8109 0.0123 

 
 
 

Table 2.6.  Randomly Selected Parameters Values 
 

Experiment ! ! !! 

1 2.2425 0.6429 0.0991 

2 2.0318 0.4393 0.1445 

3 2.2042 0.4467 0.1418 

4 2.8164 0.6837 0.0972 

5 1.5908 0.5581 0.1052 

6 2.9636 0.6423 0.0579 

7 1.8007 0.5093 0.1435 

8 1.9000 0.5475 0.1418 

9 1.8449 0.5813 0.1371 

10 2.4942 0.5494 0.0861 
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Table 2.7.  Limiting Availability Estimates for the Random Parameters 

 Simulation Meta-Model  

Experiment ! ! Absolute Error 

1 0.8080 0.8065 0.0016 

2 0.7992 0.8059 0.0067 

3 0.7968 0.8008 0.0041 

4 0.7819 0.7780 0.0039 

5 0.8462 0.8544 0.0082 

6 0.8662 0.8699 0.0037 

7 0.7964 0.8075 0.0111 

8 0.7866 0.7951 0.0085 

9 0.7880 0.7954 0.0074 

10 0.8439 0.8447 0.0008 

 

 

2.6 Preventive Maintenance Analysis  

Since the availability of RS under a Kijima’s Type II repair model will quickly approach 

a steady state value, it may be worthwhile to use PM on the system to improve the steady-state 

behavior. Age-based PM is often used to improve the availability for RS that achieve steady-

state. In this section, we study the impact of age-based PM on RS performance under a Kijima’s 

Type II model. Our goal is to identify an optimal age-based PM policy that maximizes the 

system’s steady-state availability. An age-based PM policy ! implies that PM is performed if the 

RS functions without failure for a period of ! time units. 

Suppose that PM restores RS to “as good as new” condition. Note that PM should be 

worthwhile if it is cheaper and/or faster than repair. Therefore, we assume the duration of PM, 

!!", to be constant such that !!" ! !!!!, where ! ! 1. This implies that !!" ! ! !!, which makes 

PM a viable choice in order to avoid the longer repair associated with diagnosing and repairing a 

system failure in the field.  
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As an initial step in PM analysis, we use some of the previously implemented 

experiments and the simulation model to study the effects associated with age-based PM on the 

system limiting availability to demonstrate if age-based PM can, in fact, improve !. To study the 

effects associated with age-based PM, we use the two experiments that yield the lowest and 

highest steady state availability values in Table 2.5. Experiments 8 and 10 yield the lowest and 

highest steady state availability values respectively for the fifteen CCC experiments. We 

construct a set of experiments by varying the values of !. The range of ! for each experiment was 

determined based on the 5th and 95th percentile of the underlying Weibull distribution of each 

experiment. The values of !, then, were determined by dividing the range in equal intervals. 

Tables 2.8 and 2.9 define the experimental design used to study the age-based PM on experiment 

8 and 10. 

 

Table 2.8. PM Experimental Design for Experiment 8 
 

Experiment ! 

1 0.37 

2 0.584 

3 0.798 

4 1.012 

5 1.226 

6 1.44 

 

 

Table 2.9. PM Experimental Design for Experiment 10 
 

Experiment ! 

1 0.27 

2 0.54 

3 0.81 

4 1.08 

5 1.35 

6 1.625 
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Figure 2.10 illustrates the effect ! has on the steady state availability for experiment 8 

with ! !!0.2. We can see that PM improves the steady state availability significantly for small 

values of !. As ! approaches the upper range of the specified interval, we see that the steady state 

value approaches the steady state value assuming no PM. Although small values of ! improve 

the steady state value of availability, it does take longer to achieve steady state for the smaller 

values of !  due to the additional PM actions. For this instance, we see that significant 

improvements in steady state availability can be made when we use PM at the cost of having 

lower initial availability until steady state is achieved.   

 

 

Figure 2.10. Availability Plot for Experiment 8 with ! = 0.2 

 

To examine how the steady state value of the availability changes as a function of !, we 

found the limiting availability values for each ! when ! !!0.75 and compared them to limiting 



 24 

availability found when ! !!0.2 (see Table 2.10). The results show that for smaller values of ! 

we get larger improvements in the steady state value. Figure 2.11 shows how the steady state 

value improves for Experiment 8 when ! ! 0.37 as PM is prescribed and how the improvement 

is larger for the smaller value of !. 

 

Table 2.10. Experiment 8 Limiting Availability as a Function of ! 
 

! ! ! 0.2 ! ! 0.75 

0.37 0.9081 0.7561 

0.584 0.9075 0.8071 

0.798 0.8812 0.8131 

1.012 0.8375 0.7926 

1.226 0.7785 0.7523 

1.44 0.7107 0.6983 

 

 

 

Figure 2.11. Availability Plot for Experiment 8 for ! ! 0.37 
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Figures 2.12 and 2.13 illustrate consistent performance for experiment 10, although the 

magnitude of improvement is significantly lower because of the already high steady state value 

associated with this parameter set. The low magnitude of improvement in the steady state values 

can be also seen in Table 2.11 where the limiting availability with ! !!0.75 and ! !!0.2 were 

found. 

 

 

Figure 2.12. Availability Plot for Experiment 10 with ! ! 0.2  
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Figure 2.13. Availability Plot for Experiment 10 for ! ! 0.54 

 

 

Table 2.11. Experiment 10 Limiting Availability Based on ! 
 

! ! ! 0.2 ! ! 0.75 

0.27 0.9783 0.9316 

0.54 0.9800 0.9578 

0.81 0.9756 0.9624 

1.08 0.9687 0.9609 

1.35 0.9610 0.9568 

1.625 0.9540 0.9522 

 

Thus, our results indicate that when using a Kijima Type II model for a system repair 

process, PM can improve the steady state availability value. However, it takes longer to reach 

steady state when a PM policy is used and the instantaneous availability is significantly lower 

early on when using a PM policy. 

Given the previous results that show that age-based PM, in fact, can improve the steady 

state availability value, it may be worthwhile to identify an optimal age-based PM policy that 
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maximizes the system’s steady-state availability. To find the optimal PM policy, we constructed 

a second meta-model that includes the PM parameter (!) as one of the inputs and used that model 

to optimize PM without the simulation effort. We expanded the previous meta-model by adding 

! and !!" into the circumscribed central composite (CCC) experimental design to examine the 

relationship between !, !, !!, !!", and !; and !. The specific factor levels we used for the five 

levels of each factor required for the CCC design are enumerated in Table 2.12.  
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Table 2.12. CCC Experimental Design: Factor Settings  
 

 
Coded value Actual value 

Experiment ! ! !! !!" ! ! ! !! !!" ! 

1 !1 !1 !1 !1 1 1.5 0.4 0.05 0.01 1.44 

2 1 !1 !1 !1 !1 3 0.4 0.05 0.01 0.37 

3 !1 1 !1 !1 !1 1.5 0.8 0.05 0.01 0.37 

4 1 1 !1 !1 1 3 0.8 0.05 0.01 1.44 

5 !1 !1 1 !1 !1 1.5 0.4 0.15 0.01 0.37 

6 1 !1 1 !1 1 3 0.4 0.15 0.01 1.44 

7 !1 1 1 !1 1 1.5 0.8 0.15 0.01 1.44 

8 1 1 1 !1 !1 3 0.8 0.15 0.01 0.37 

9 !1 !1 !1 1 !1 1.5 0.4 0.05 0.03 0.37 

10 1 !1 !1 1 1 3 0.4 0.05 0.03 1.44 

11 !1 1 !1 1 1 1.5 0.8 0.05 0.03 1.44 

12 1 1 !1 1 !1 3 0.8 0.05 0.03 0.37 

13 !1 !1 1 1 1 1.5 0.4 0.15 0.03 1.44 

14 1 !1 1 1 !1 3 0.4 0.15 0.03 0.37 

15 !1 1 1 1 !1 1.5 0.8 0.15 0.03 0.37 

16 1 1 1 1 1 3 0.8 0.15 0.03 1.44 

17 !1.5 0 0 0 0 1.125 0.6 0.1 0.02 0.905 

18 1.5 0 0 0 0 3.375 0.6 0.1 0.02 0.905 

19 0 !1.5 0 0 0 2.25 0.3 0.1 0.02 0.905 

20 0 1.5 0 0 0 2.25 0.9 0.1 0.02 0.905 

21 0 0 !1.5 0 0 2.25 0.6 0.025 0.02 0.905 

22 0 0 1.5 0 0 2.25 0.6 0.175 0.02 0.905 

23 0 0 0 !1.5 0 2.25 0.6 0.1 0.035 0.905 

24 0 0 0 1.5 0 2.25 0.6 0.1 0.005 0.905 

25 0 0 0 0 !1.5 2.25 0.6 0.1 0.02 0.1025 

26 0 0 0 0 1.5 2.25 0.6 0.1 0.02 1.7075 

27 0 0 0 0 0 2.25 0.6 0.1 0.02 0.905 

 

For each experiment, the simulation model was executed using 50,000 observations, and 

153,664 replications. The values of ! estimated from the simulation output. Then, analysis of 

variance is used to develop a meta-model of ! in terms of !, !, !!, !!", and !. This involves 

applying linear regression to the ! values obtained from simulation (Table 2.14) for estimating 

the parameters in equation 2.15. 
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! ! !0 ! !1! ! !2! ! !3!! ! !4!!" ! !5! ! !11!
2
! !12!" ! !13!!! ! 

!14!!!" ! !15!" ! !22!
2
! !23!!! ! !24!!!" ! !25!" ! !!33!!

2
! 

!!34!!!!" ! !35!!! ! !44!!"
2
! !45!!"!!!55!

2          (2.15) 

The resulting parameters estimates are given in Table 2.13, and the corresponding estimates of ! 

are provided in Table 2.14. Note that all the coefficients are statistically significant at a level of 

significance of 0.05. The mean absolute error of the 27 estimates is 0.0090. 

 
Table 2.13. Meta-Model Parameter Estimates  

 

!!! 0.7058 

!!! 0.0545 

!!! 0.1035 

!!! !0.0087 

!!! 1.6589 

!!! 0.3606 

!!!! 0.0082 

!!"! !0.0493 

!!"! !0.0398 

!!"! !0.4221 

!!"! !0.0595 

!!!! 0.1462 

!!"! !0.1881 

!!"! !5.5899 

!!"! !0.0871 

!!!! 2.4375 

!!"! !14.1596 

!!"! !0.8227 

!!!! 45.9857 

!!"! 1.3461 

!!!! !0.0902 
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Table 2.14. Limiting Availability Estimates 

 Simulation Meta-Model 
 Experiment ! ! Absolute Error 

1 0.9413 0.9423 0.0009 

2 0.9677 0.9595 0.0082 

3 0.9462 0.9367 0.0096 

4 0.8806 0.8886 0.0080 

5 0.8959 0.8834 0.0124 

6 0.8031 0.8083 0.0052 

7 0.8384 0.8422 0.0038 

8 0.9544 0.9491 0.0054 

9 0.9050 0.8960 0.0090 

10 0.9223 0.9310 0.0087 

11 0.9271 0.9343 0.0073 

12 0.9196 0.9177 0.0019 

13 0.8424 0.8468 0.0044 

14 0.9093 0.9046 0.0048 

15 0.8543 0.8482 0.0061 

16 0.7108 0.7222 0.0115 

17 0.8951 0.9079 0.0128 

18 0.9084 0.8987 0.0097 

19 0.9094 0.9184 0.0091 

20 0.8995 0.8935 0.0060 

21 0.9614 0.9629 0.0015 

22 0.8486 0.8501 0.0016 

23 0.8912 0.8836 0.0077 

24 0.9120 0.9228 0.0108 

25 0.8329 0.8702 0.0374 

26 0.8334 0.7991 0.0343 

27 0.9014 0.8928 0.0086 

 

To test the robustness of our meta-models, we conducted experiments with randomly 

selected values of ! , ! , !! , !!" , and !!within the CCC experimental design. We used a 

pseudorandom number generator to create fifty such experiments. The data from the first 10 of 

these experiments are shown in Table 2.15. We executed the simulation model for each 

experiment. Then, we: (1) used the simulation output to estimate !, (2) used the meta-model to 
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estimate !, and (3) compared the meta-model to the simulation output by computing the MAE. 

The results from the first 10 experiments are shown in Table 2.16. The average MAE across the 

50 experiments is 0.013. This provides evidence that the meta-model provides a reasonable 

approximation of !.  

 
Table 2.15. Randomly Selected Parameters Values 

 

Experiment ! ! !! !!" ! 

1 2.816 0.684 0.097 0.019 0.431 

2 2.964 0.642 0.058 0.012 0.914 

3 1.945 0.692 0.111 0.022 1.379 

4 2.766 0.73 0.081 0.016 0.981 

5 2.621 0.748 0.127 0.025 1.080 

6 2.739 0.585 0.104 0.021 0.648 

7 2.852 0.548 0.093 0.019 0.491 

8 2.729 0.558 0.144 0.029 0.610 

9 2.982 0.567 0.052 0.010 0.576 

10 2.706 0.591 0.133 0.027 0.440 

 

 

Table 2.16. Limiting Availability Estimates for The Random Parameters 
 

 Simulation Meta-Model 
 Experiment ! ! Absolute Error 

1 0.9386 0.9124 0.0262 

2 0.9418 0.9409 0.0010 

3 0.8527 0.8426 0.0101 

4 0.9101 0.9051 0.0051 

5 0.8495 0.8356 0.0139 

6 0.9264 0.9024 0.0240 

7 0.9421 0.9182 0.0240 

8 0.9042 0.8732 0.0310 

9 0.9663 0.9603 0.0060 

10 0.9164 0.8819 0.0344 
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The optimal PM time (!!) can be found using the meta-model of ! by taking the first 

derivative of the function in 2.15 with respect to ! and then setting the derivative equal to zero 

and solving it. Note that the second derivative of the function in 2.15 with respect to ! is always 

negative which implies that any maximum found is a global result. Consider the system 

corresponding to experiment 1 in Table 2.15. For this example, the meta-model recommended 

(optimal) PM time is 0.438, and the corresponding limiting availability (based on the simulation 

model) is 0.939. Figure 2.14 shows a plot of the limiting availability (based on the simulation 

model) as a function of ! for the given experiment. We can see that the limiting availability 

based on the meta-model recommended PM time is close to the simulation optimal value of the 

limiting availability. 

 

 

Figure 2.14. Limiting Availability vs ! 
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Suppose we assume that the simulation values of ! are the true values, but the meta-

model values are used to determine the optimal PM time (!!). We can determine the loss in 

availability associated with this approximation by comparing the limiting availability value of 

the optimal PM time based on the meta-model to the limiting availability value of the optimal 

PM time based on the simulation model. Let !!denote the optimal PM time based on the 

simulation model. Simulation-based optimization can be used to find !!. We used Golden section 

search to find !!in this research. let !! denote the optimal PM time based on the meta-model, let 

!1 denote the limiting availability resulted from using a PM policy of !!, and let !2 denote the 

limiting availability resulted from using a PM policy of !!. We can determine the average loss in 

availability associated with this approximation over the random 50 experiments in Table 2.15. 

Note that the simulation model is used to compute !1 and !2. The loss in availability for each 

experiment is given by 

                                  
!1!!2

!1

  !100!                                    (2.16) 

The results from the first 10 experiments are given in Table 2.17. The average availability loss 

associated with all 50 experiments is 0.16%. This indicates that the meta-model presented in 2.15 

is robust, and provides good estimates of the availability to determine the optimal PM times for 

the system.  
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Table 2.17. System Availability Loss 
 

Experiment !
! !1 !

! !2 Loss 

1 0.4489 0.9397 0.4388 0.9396 0.01% 

2 0.4723 0.9633 0.5358 0.9627 0.06% 

3 0.4689 0.9067 0.6805 0.9023 0.48% 

4 0.4689 0.9481 0.4836 0.9479 0.02% 

5 0.4544 0.9179 0.3802 0.9163 0.18% 

6 0.4578 0.9335 0.4949 0.9333 0.02% 

7 0.5212 0.9412 0.5107 0.9411 0.02% 

8 0.4505 0.9085 0.3860 0.9082 0.04% 

9 0.4689 0.9677 0.5802 0.9662 0.15% 

10 0.4578 0.9164 0.4134 0.9158 0.07% 

 

2.7 Conclusion 

This paper studies the long-run availability of a traditional RS that is subjected to 

imperfect CM. Kijima’s second virtual age model is used to describe the imperfect repair 

process. Because of the complexity of the underlying probability models, we cannot derive a 

closed-form expression for the availability of the RS. Therefore, we use simulation modeling to 

estimate availability performance and meta-modeling to convert the reliability and 

maintainability parameters of the RS into an availability estimate without the simulation effort. 

The system limiting availability is estimated from the simulation output by computing the 

average of the availability estimates beyond the initial transient period. Using a circumscribed 

central composite experimental design, we confirm the accuracy of the meta-model using the 15 

experiments and 50 random experiments within the design space. The mean absolute error 

between the simulation output and the meta-model output is 0.0098 for the 15 experiments, and 

0.004 for the 50 random experiments. This indicates that the meta-model provides a reasonable 

approximation of the system limiting availability.  
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As a final step, we add age-based, perfect PM to our analysis. Our goal is to identify an 

optimal age-based PM policy that maximizes the system’s steady-state availability. To find the 

optimal PM policy, we construct a second meta-model that includes the PM interval as one of the 

inputs and use that model to optimize PM without the simulation effort. Using a circumscribed 

central composite experimental design, we confirm the accuracy of the meta-model using the 27 

experiments and 50 random experiments within the design space. For the new 50 experiments, 

we compare the PM policy obtained from analysis of the meta-model to the policy obtained 

directly from the simulation output. The average availability loss associated with all 50 

experiments is 0.16%. Therefore, we conclude that the meta-model is robust, and provide good 

estimate of the limiting availability to determine the optimal PM times for the system.  
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3. Preventive Maintenance and Replacement Scheduling  

for a Two–Component System 

Maintenance and replacement planning for single-component repairable systems has been 

studied extensively in the literature, and such systems can be found in practice. Chaudhuri and 

Sahu (1977) are among the first to consider imperfect maintenance in planning PM activities for 

a deteriorating system. Many extensions have been made to this work including those of Chan 

and Downs (1978), Malik (1979), and Nakagawa (1983). Malik (1979) proposes a model for 

finding successive maintenance points using the concept of an “improvement factor”.  

Jayabalan and Chaudhuri (1992) present a model where a variable improvement factor is 

utilized. They present a two-phase algorithm for cost optimization of maintenance scheduling. 

The first phase yields optimal time intervals between PM events. The second phase involves the 

calculation of the total cost of both maintenance and replacement to determine the optimal time 

of replacement.  

Usher et al. (1998) present an optimal maintenance and replacement model for a single 

component system. They determine an optimal PM schedule for a system subject to deterioration 

by considering the cost of the rate of occurrence of failure over time, and the use of an 

improvement factor for the case of imperfect maintenance. Additionally, they provide a 

comparison of computational results among random search, genetic algorithm, and branch-and-

bound algorithms. 

Tsai et al. (2001) consider two activities, imperfect maintenance and replacement in their 

maintenance optimization model. Imperfect maintenance activities are modeled based on the 

concept of improvement factor. They use a genetic algorithm to determine the cost-optimal PM 

activities.  
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Although, multi-component repairable systems are more common, mathematical models 

for maintenance and replacement planning for multi-component repairable systems are rare due 

to their increased complexity and difficulty to solve. Levitin and Lisnianski (2000) present an 

optimization model to determine PM actions for a multi-state multi-component system. Their 

model aims to minimize cost subject to required level of reliability. They apply a universal 

generating function technique to evaluate multi-state system reliability and use a genetic 

algorithm to solve the model. Shalaby et al. (2004) develop an optimization model for PM 

scheduling of multi-component multi-state system. They define the sequence of PM activities as 

the decision variables and the summation of PM, minimal repair, and downtime costs as the 

objective functions. They use combined genetic algorithm and simulation approach to optimize 

the model. 

The research of Usher et al. (1998) serves as the motivation and starting point for this 

research. Their research focuses on the formulation, solution and analysis of a model for 

planning PM and replacement activities for a single-component repairable system subject to an 

increasing rate of occurrence of failure. We extend their research and present a model for 

planning PM and replacement activities for a two-component repairable system. We present an 

analysis of a two-component repairable system to better understand multi-component systems 

and gain insights into the related complexities. 

3.1 Model Derivation 

Consider a repairable system that is comprised of two components connected in series. 

The system is to be operated over a fixed interval of time that can be subdivided into a discrete 

number of equal-length periods. The system is subject to deterioration with age, and this 

deterioration is modeled by an increasing rate of occurrence of failure (ROCOF). During each 
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period, system failures caused by failure of one of the components may occur and, if they occur, 

are rectified instantaneously with minimal repair. At the end of each period in the future (except 

for the last period), one of the following three options is selected and executed instantaneously 

on each of the components. 

1. Do nothing – No action is planned for the end of the period, i.e., the component 

remains in an “as bad as old” condition at the beginning of the next period. 

2. Replacement – The component is replaced at the end of the period, immediately 

placing in an “as good as new” condition, i.e., its effective age is returned to zero at 

the beginning of the next period. 

3. Preventive maintenance – The component is maintained at the end of the period and 

returned to a condition somewhere between “as good as new” and “as bad as old”. At 

the beginning of the next period, the component’s effective age is reduced by a stated 

percentage of its age at the end of the period. 

Note that replacement and PM can only be performed at these discrete points in time. 

3.1.1 Modeling System Maintenance and Aging 

Let !! !  denote the time interval (i.e., maintenance planning horizon) of interest.  This 

interval is segmented into ! discrete intervals, each of length ! !. The maintenance decisions are 

represented using two sets of binary variables. Let 

            !!" !
1 !!!!!!if !" is performed on component !!at the end of period!!

!

0      otherwise        !!       !!!!!!!!!!!!!!!!!!!!!!!!                                   !

,              

(3.1) 

and let 

!!" !

1    !!if replacement of component !!occurs at the end of period!!

!

0      otherwise        !!                                                               !!!!!!!

,          (3.2) 
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! ! 1, 2 , ! ! 1, 2, … , ! ! 1 . These variables correspond to the decision variables in the 

optimization model. To prevent the initiation of both PM and replacement in the same period, the 

following constraint is defined:  

                                                             !!" ! !!" ! 1,         (3.3) 

! ! 1, 2, ! ! 1, 2, … , ! ! 1. 

To account for the instantaneous changes in effective system age that result from system 

PM or replacement, the following notation is introduced. Let !!!! denote the effective age of 

component ! at the start of period !, and let !!!! denote the age of component ! at the end of 

period !,!!! ! 1, 2, … , !. Since the system is initially new, !!!1 ! 0, ! ! 1, 2, and because repair 

is minimal,  

                                                 !!!! ! !!!! !
!

!
 ,        (3.4) 

! ! 1, 2 , ! ! 1, 2, … , ! . Consider some component ! ! 1, 2  and some period 

! ! 1, 2, … , ! ! 1 . If no action is taken at the end of period !, then !!!!!1 ! !!!!. If the system 

is replaced at the end of period !, then !!!!!1 ! 0. If PM is performed at the end of period !, then  

                                                            !!!!!1 ! !!!!!!                                          (3.5) 

where !! is a constant such that 0 ! !! ! 1. 

The maintenance decisions and their relationship to the effective age of the system can be 

summarized using the following equations that serve as functional constraints in the optimization 

model: 

!!!1 ! 0     ! ! 1, 2,                    (3.6) 

!!!! ! !!!! !
!

!
                        ! ! 1, 2, ! ! 1, 2, … , !,                    (3.7) 

!!!!!1 ! !!!! ! 1! !! !!!!!!!! ! !!!!!!!! ! ! 1, 2, ! ! 1, 2, … , !.                    (3.8) 
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3.1.2 Modeling System Maintenance Costs 

The objective in the optimization model is to minimize !, the expected value of the 

repair, replacement and preventive maintenance costs incurred over the planning horizon. Note 

that  

                                                           ! ! !!
!

!!1                                                           (3.9) 

where !! denotes the expected value of the repair, replacement and preventive maintenance costs 

incurred during period ! (including any actions taken at the end of the period), ! ! 1, 2, … , !. 

Furthermore, note that 

                                                         !! ! !! !!!                                                        (3.10) 

where !! denotes the expected value of the cost of failures occurring during period ! and !! 

denotes the cost of any end-of-period maintenance in period !,  ! ! 1, 2, … , !. Note that 

!! ! 0. 

Let !! denote the cost of failure of component !, ! ! 1, 2. Let !! ! , where ! denotes the 

effective age of the component ! ! ! , denote the mathematical function that captures the 

increasing ROCOF of component !, ! ! 1, 2. The widely-recognized power law process (Weibull 

process) is used to model the ROCOF. Therefore, 

                                                       !! ! !
!!

!!
!!
!
!!!1,                             (3.11) 

! ! 1, 2. Recall that, in this case, both components have an increasing ROCOF, so !! ! !, 

! ! 1, 2. Since repair is minimal, the non-homogeneous Poisson process governs component 

failures during each period, and the number of component ! failures in period ! is a Poisson 

random variable having mean 

                                         !!!! ! !! !
!!!!

!!!!
!" !

!!!!

!!

!!
!

!!!!

!!

!!
,                            (3.12) 
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! ! 1, 2, ! ! 1, 2, … , !, and 

                                                           !! ! !1!1! ! !2!2!,         (3.13) 

! ! 1, 2, … , !.  

The question that comes to mind here is why not to apply Usher et al. (1998)’s one-

component model independently to the two components and find the optimal maintenance 

policy. It is because, when planning PM strategies, considerations of the overall benefit for the 

whole system should supersede the optimum plan for each component separately. Since a RS is 

almost always comprised of many components that have different maintenance needs, optimizing 

maintenance planning at the component level is likely to be suboptimal at the system level. For 

example, sometimes it is less expensive and more convenient to perform PM on a component in 

a system when performing a repair action on another component in the system rather than at the 

optimum time for performing the PM for that component. Therefore, we need system-level 

maintenance strategies for performing component-level maintenance.  

Often, components that comprise a system are not independent. This dependence can be 

either structural or economic. Structural dependence may manifest itself in terms of common-

cause failures or maintenance-induced damage. Economic dependence suggests that it is more 

economical to repair several components together rather than repairing them separately. This is 

also referred to as opportunistic maintenance. When opportunistic maintenance is performed 

only a minimal variable cost is added to repair other components but a lot of other fixed cost is 

saved.  

Opportunism can be explained with a simple example. Consider the two-components 

system described in section 2. Either due to failure or expiration of a PM interval, maintenance is 

about to be performed on component 1. If component 2 is near the expiration of its PM interval, 
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then it may be worthwhile to go ahead and perform PM on component 2. Such an action is an 

opportunistic maintenance action. Since performing any replacement or maintenance on the 

system usually consumes at a fixed cost, performing opportunistic maintenance saves a lot of 

that fixed cost. Let ! denote the fixed cost of performing any replacements or maintenance. Let 

!!  
denote the incremental cost of performing PM on component ! , and let !!  denote the 

incremental cost of replacing component !, ! ! 1, 2. Then, 

         !! ! !1!!1! ! !2!!2! ! !1!!1! ! !2!!2! ! !!!,                           (3.14) 

where 

                                             !! ! !"# 1! !!" ! !!"
2

!!1 ,       (3.15) 

 ! ! 1, 2, … , ! ! 1. 

For a two-component system when ! ! 2, there are 9 feasible options for maintenance at 

the end of the first period corresponding to all combinations of performing maintenance or 

replacement on each of the two components. Table 2.1 shows those options and their 

corresponding maintenance total costs for both cases when considering the two components 

independently and the one two-component system. Note that all the incremental and fixed costs 

of performing any replacement or maintenance in the table are set to be 1. The results show that 

considering a single two-component system costs less than considering two one-component 

systems, which makes the model introduced in this chapter more reasonable. 
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Table 3.1. Maintenance Options and Their Costs for ! ! 2 

Maintenance 

options 
Comp. 1 Comp. 2 

2-Comp. 

System 

Two 1-Comp. 

System 

2-Comp. 

System 

!!! !!! !!" !!" !! !! !! !! !! 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 1 1 1 1 

1 0 0 0 1 0 1 1 1 

0 1 0 0 1 0 1 1 1 

0 0 1 0 0 1 1 1 1 

0 0 0 1 0 1 1 1 1 

0 1 0 1 1 1 1 2 1 

1 0 1 0 1 1 1 2 1 

0 1 1 0 1 1 1 2 1 

 

The optimal maintenance policy can be obtained by solving the following optimization 

model: 

 Min!!!!!!!!! ! !!
!

!!1 ! !1
!

!!1

!1!!

!1

!1
!

!1!!

!1

!1
! !2

!2!!

!2

!2
!

!2!!

!2

!2
! 

                                               !1!!1! ! !2!!2! ! !1!!1! ! !2!!2! ! !!!                  (3.16) 

s.t  

!!!1 ! 0     ! ! 1, 2,                  (3.17) 

!!!! ! !!!! !
!

!
               ! ! 1, 2, ! ! 1, 2, … , !,                (3.18) 

!!!!!1 ! !!!! ! 1! !! !!!!!!!! ! !!!!!!!!    ! ! 1, 2, ! ! 1, 2, … , !,                (3.19) 

  !!" ! 0!or!1                ! ! 1, 2, ! ! 1, 2, … , !,                 (3.20)   

            !!" ! 0!or!1                  ! ! 1, 2, ! ! 1, 2, … , !,                (3.21)   

 !!" ! !!" ! 1                                                   ! ! 1, 2, ! ! 1, 2, … , !,                (3.22)   

where 

            !! ! !"# 1! !!" ! !!"
2

!!1                    ! ! 1, 2, … , !.                            (3.23)        
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The optimization model, denoted as problem P, reveals a binary programming problem 

with a nonlinear objective function and linear constraints. The nonlinearity is introduced by the 

polynomial term in the objective function, and the minimum term in the term !! . The 

minimization of the polynomial function subject to linear constraints was shown to be NP-hard 

by Parrilo and Sturmfels (2003). 

Note that problem P has 3!!1
2

feasible solutions corresponding to all combinations of 

doing nothing, performing PM, or performing replacement on each of the two components at the 

end of each of the first ! ! 1 periods. 

3.2 Numerical Experimentation 

To demonstrate the implementation of the model and reinforce some of the underlying 

concepts, a small example is utilized. Consider a system of two components having repair and 

maintenance (RAM) characteristics such that !! ! 0.4, !! ! 0.25, !! ! 1.5, !! ! 2, !! ! 2, 

!! ! 3, !! ! !10, !! ! !15, !! ! !1.5, !! ! !2.5,!!! ! !3, !! ! !5, and ! ! !1. The system 

is required to operate over a planning horizon of length ! ! 12. 

3.2.1 An Enumerative Solution Approach 

As a first solution approach, a Visual Basic (VB) application that enumerates all feasible 

solutions for problem P was developed. The application evaluates the total expected cost for 

each solution and identifies the optimal sequence of actions for each component.  

When ! ! 4, there are 32 4!1 ! 729 feasible solutions. Using total enumeration, the 

optimal solution (Table 3.1) is identified and results in a total expected cost of $160.48. If ! is 

increased to 8 (same ! ! 12), the optimal solution (Table 3.2) results in a total expected cost of 

$142.46. The enumerative approach was used to solve the defined example for all ! !

!2, 3, 4, 5, 6, 7, 8, where ! ! !8 is the highest number of periods we could go with a reasonable 
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computation time of 280 minutes. The results of enumeration showed that when the number of 

periods is small, replacement is performed more, but as the number of periods increases fewer 

replacements are needed.  

 

Table 3.2. Optimal Solution for ! ! !4 

 Action 

Period Component 1  Component 2  

1 Replacement Replacement 

2 Replacement Replacement 

3 Replacement Replacement 

 
 

Table 3.3. Optimal solution for ! ! !8 
 

 Action 

Period Component 1  Component 2  

1 Replacement Maintenance 

2 Replacement Replacement 

3 Replacement Maintenance 

4 Replacement Replacement 

5 Replacement Maintenance 

6 Replacement Replacement 

7 Replacement Maintenance 

 

Enumeration of all feasible solutions is not practical for large instances of P. For the 

defined example, a reasonable limit on computation time is exceeded for !! ! !8 . The 

relationship between run time and !!is exponential (see Figure 3.1). Note that the run times 

portrayed in Figure 3.1 are based on the use of a personal computer having a 2.0 GHz Intel 

Core2Duo processor and 3GB of RAM. 
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Figure 3.1 Relationship Between Problem Size and Run Time in Enumeration 

 

3.2.2 A Heuristic Solution Approach: Genetic Algorithm 

Compared to enumerative approaches, heuristic approaches to solving combinatorial 

optimization problems usually require shorter run times at the price of reduced solution quality. 

One commonly-used heuristic approach for these types of problems is the use of genetic 

algorithms (GA). GA have the advantage of searching extremely large solution spaces for better 

solutions in a relatively short time and using those found solutions in generating new solutions. 

In this section, a GA for solving problem P is developed and evaluated. 

Genetic algorithms (GA) are motivated by the theory of evolution, i.e., “survival of the 

fittest” (Holland, 1975). GA have been designed as general search strategies and optimization 

methods working on populations of feasible solutions. Working with populations allows for the 

identification and exploration of properties which good solutions have in common (Goldberg, 

1989). 
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In GA, individual solutions to an optimization problem are represented by a chromosome 

of genes. For problem P, each chromosome (maintenance plan) consists of 2! genes. Each gene 

represents a planning period action (0, 1 or 2) for one of the components, where 0 denotes do 

nothing, 1 denotes a PM action and 2 denotes a replacement. For example, if a chromosome for 

! ! !3 is 210000, then the planned actions in period 1 are a replacement on component 1 and PM 

on component 2, and the planned actions in periods 2 and 3 are do nothing on both components. 

Each chromosome is evaluated by computing its fitness value. In P, the solution’s fitness is the 

total expected cost (!).   

The GA begins by randomly creating an initial population of 1000 chromosomes. Each 

gene in each chromosome is randomly selected from the set {0, 1, 2}. The first generation of 

solutions begins with the 1000 randomly-created solutions. The GA uses two simple operators to 

create subsequent populations. These operators are crossover and mutation. In this paper, 95% 

(950) of the remaining solutions are created by the crossover operator. In order to apply this 

operator, two parents are randomly selected from the existing 1000 solutions. Then, the 

crossover operator is applied by randomly choosing a position in the parent solutions and 

exchanging the tail (the genes after the chosen position) of the first solution with the tail of the 

second solution (see Figure 3.2). The remaining 5% (50) of the solutions are generated using 

mutation as shown in Figure 3.3. In mutation, a gene is randomly selected in a randomly-selected 

solution (from the original 1000). Then, that gene is replaced by randomly selecting one of the 

other two feasible values.  
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Figure 3.2 Crossover Process 

 

 

Figure 3.3 Mutation Process 

After applying both crossover and mutation, the fitness values of the 2000 solutions are 

computed. The 1000 (50%) solutions with the lowest fitness (highest cost) are deleted. The 

remaining 1000 solutions serve as 50% of the next generation. This process continues for 1000 

generations, and the best solution in the final generation is the recommended solution. 

In an effort to validate the GA application, which is constructed in VB, the GA results are 

compared to the enumerative approach results for the defined example and all 

! ! 2, 3, 4, 5, 6, 7, 8. In all cases, the GA recommends the optimal solution. The execution time 

for the GA when ! ! !8 was less than a minute, based on the use of a personal computer having 

a 2.0 GHz Intel Core2Duo processor and 3GB of RAM. 
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 Since the GA appears to be effective for small problems, larger problems are considered. 

For the defined example and ! ! 2!, the GA recommends the solution in Table 3.3, which 

results in a total expected cost of $142.84. The time it took the GA to solve this problem was 2 

minutes. For the same example assuming ! ! 52, the GA recommends the solution in Table 3.4 

which results in a total expected cost of $152.90. The GA was able to provide this solution in 5 

minutes. Figure 3.4 illustrates the “path” taken by GA for this example. Note that after only 80 

generations, the GA converges to its recommended plan. The relationship between run time and 

!!in GA is shown in Figure 3.5. 

 
Table 3.4 GA Solution for ! ! 2! 

 

 Action 

Period Component 1  Component 2  

1 - - 

2 Replacement Maintenance 

3 - - 

4 Replacement Maintenance 

5 - - 

6 Replacement Maintenance 

7 - - 

8 Replacement Maintenance 

9 - - 

10 Replacement Maintenance 

11 - - 

12 Replacement Maintenance 

13 - - 

14 Replacement Maintenance 

15 - - 

16 Replacement Maintenance 

17 - - 

18 Replacement Maintenance 

19 - - 
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Table 3.5 GA Solution for ! ! 52 

 Action   Action 

Period Component 1 Component 2  Period Component 1 Component 2 

1 - -  27 Replacement Maintenance 

2 - -  28 - - 

3 - -  29 - - 

4 - -  30 - - 

5 - -  31 - - 

6 Replacement Maintenance  32 - - 

7 - -  33 Replacement Replacement 

8 - -  34 - - 

9 - -  35 - - 

10 - -  36 - - 

11 Replacement Maintenance  37 - - 

12 - -  38 - - 

13 - -  39 Replacement Maintenance 

14 - -  40 - - 

15 - -  41 - - 

16 Replacement Maintenance  42 - - 

17 - -  43 - - 

18 Replacement Maintenance  44 - - 

19 - -  45 Replacement Maintenance 

20 - -  46 - - 

21 - -  47 - - 

22 - -  48 - - 

23 Maintenance Maintenance  49 - - 

24 - -  50 - - 

25 - -  51 - - 

26 - -     
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Figure 3.4 Relationship Between Minimum ! and The Number of Generations 

 

 

 

Figure 3.5 Relationship Between Problem Size and Run Time in GA 
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Since the GA provides no guarantee of optimality, the performance of the GA, using 

some extreme cases that have obvious or intuitive results, is validated. The baseline example 

used is the same defined example. 

Case 1: !! ! !! ! ! ! 0 

In this case the optimal solution should be all replacements for both components in each 

period. If replacement has no cost, then it is always the best action to perform since it places both 

components in an “as good as new” condition. For this case, the GA was able to provide the 

optimal solutions for ! ! 2! and ! ! 52.  

Case 2: !1 ! !1, !2 ! !2  

In this case, the replacement cost is equal to the preventive maintenance cost for each 

component. Since replacement is more effective than maintenance, the optimal solution for this 

case should not contain any maintenance action in any period. After setting !1 ! !1 ! 1.5 and 

!2 ! !2 ! 2.5, and keeping all other parameters the same, the GA recommended the expected 

solution (all replacements) for ! ! 2! and ! ! 52.  

3.3 Model Formulation for m–Component System 

In this section we extend our previous model to consider a repairable system with m 

components. A new optimization model for planning the PM and replacements schedules for m–

component system is presented. 

Similar to the two-component system, suppose there is a RS of m components connected 

in series. The system is to be operated over a fixed interval of time that can be subdivided into a 

discrete number of equal-length periods. And each component in the system is subject to 

deterioration that is modeled by an increasing ROCOF. At the end of each period in the future 

(except for the last period), one of the three options (do nothing, replacement, or PM) is selected. 
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Assume the system maintenance, aging, and maintenance costs are modeled in the same 

manner as for the two-component system. Then, the optimal maintenance policy can be obtained 

by solving the following optimization model: 

 

!"#!!!!!!! ! !!
!

!!1 !!!!      

! !!
!!!!

!!

!!
!

!!!!

!!

!!
! !!"!!" ! !!"!!"

!

!!! ! !!!
!

!!1                  (3.24)                    

s.t  

!!!1 ! 0     ! ! 1, 2, … , !,                (3.25) 

!!!! ! !!!! !
!

!
               ! ! 1, 2, … , !, ! ! 1, 2, … , !,    (3.26) 

!!!!!1 ! !!!! ! 1! !! !!!!!!!! ! !!!!!!!!    ! ! 1, 2, … , !, ! ! 1, 2, … , !,    (3.27) 

  !!" ! 0!or!1                ! ! 1, 2, … , !, ! ! 1, 2, … , !,    (3.28) 

            !!" ! 0!or!1                  ! ! 1, 2, … , !, ! ! 1, 2, … , !,    (3.29) 

 !!" ! !!" ! 1                                                   ! ! 1, 2, … , !, ! ! 1, 2, … , !,    (3.30)   

where 

            !! ! !"# 1! !!" ! !!"
!

!!1                    ! ! 1, 2, … , !.                            (3.31)   

 

The optimization model reveals a NP-hard problem with a nonlinear objective function 

and linear constraints. Also, the problem has 3!!1
!

 feasible solutions corresponding to all 

combinations of doing nothing, performing PM, or performing replacement on each of the m 

components at the end of each of the first ! ! 1 periods. So when ! ! 4 and ! ! 3, there are 

3
3 4!1

! 19683 feasible solutions. Note that the problem difficulty grows considerably as the 
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number of components increases, which makes it impossible to solve the problem in a reasonable 

time using enumeration especially for larger number of periods. 

Now if we consider the GA to solve the problem, each chromosome (maintenance plan) 

will consist of !!! genes. As the number of components increases, it will take GA longer to 

find a solution, especially when the number of periods increases. So even when the formulation 

of the m-component system didn’t change significantly from the two-component system, the 

solution approaches may not work as efficiently due to the increased complexity of the system. 

3.4 Conclusion  

This paper presents an approach for identifying a cost-optimal maintenance policy for a 

system comprised of two components connected in series. The system is to be operated over a 

fixed interval of time that can be subdivided into a discrete number of equal-length periods. The 

system is subject to deterioration with age, and this deterioration is modeled by an increasing 

ROCOF. At the end of each period in the future, one of three actions (maintain, replace, or do 

nothing) is to be executed instantaneously on each of the components such that the total expected 

costs are minimized. 

Two approaches are used to identify a cost-effective preventive maintenance policy: an 

enumerative approach that guarantees an optimal policy, and a heuristic approach that provides 

no such guarantees. The enumerative approach is found not to be practical for large size 

problems because the run time increases exponentially as the number of periods increases. On 

the other hand, results from using the genetic algorithm appear to indicate that it can be 

successfully used to find a good solution very quickly. The GA provides the same solutions for 

small problems as the enumerative approach, and it generates intuitive solutions for the extreme 

cases of larger problems. The genetic algorithm run time was directly influenced by the problem 
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size, such that large problems need more computation time for a fixed number of generations and 

population size. 

Finally, the model formulation for the m-component system is presented. Although, the 

formulation of the m-component system didn’t change notably from the two-component system, 

the solution approaches may not work as efficiently due to the increased complexity of the 

system.  
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4. Summary of Contributions and Future Work 

This dissertation achieves two main contributions. This section summarizes those 

contributions and future work that if done can enhance this research. 

4.1 Contributions 

The contributions of this dissertation can be summarized as follows: 

1. Study the long-run availability of a traditional RS that is subjected to imperfect 

corrective maintenance modeled by Kijima’s second virtual age model.  

• Use simulation modeling to estimate availability performance due to the 

difficulty of deriving a closed-form expression for the availability of the RS. 

• Use meta-modeling to convert the reliability and maintainability parameters of 

the repairable system into an availability estimate without the simulation 

effort.  

• Add age-based, perfect PM to the analysis to improve system steady-state 

availability. 

2. Optimize a PM policy for a multi-component RS.  

• Use Genetic Algorithm in an attempt to find a cost-optimal set of PM and 

replacement decisions for a two-component system. 

• Formulate the optimization model for m-component system. 

4.2 Future Research Work 

Future research could include investigating the transient behavior of the system studied in 

chapter 2. Although, every practical system in the world has a transient state, even if it is very 

short, virtually all studies have emphasized on steady state or equilibrium behavior in preference 

to transient behavior. Our results indicate that using PM on the system improves the steady-state 
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value of availability. However, it takes longer to achieve higher values of the steady state 

availability, with more fluctuating transient behavior. Therefore, future work could study the 

tradeoff between higher steady-state availability with longer fluctuated transient behavior, or a 

faster to stabilize system with lower steady-state availability.  

Additionally, one could investigate availability performance when a RS is subject to 

stochastic values of !, !!, and !!". 

Finally, future work for the multi-component system in chapter 3 could investigate new 

solution approaches to solve the m-component RS. Experiments on using GA with an alternative 

chromosome encoding or other efficient heuristics to solve the problem in reasonable time could 

be investigated.  
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Appendices 

A.1  Simulation Availability Model 

 
Option Explicit 
 
Const nReps As Long = 153667 
Const nObs As Long = 50000 
Const a As Double = 0.4 
Const Beta As Double = 1.5 
Const eta As Double = 1 
Const Theta As Double = 0.2 
Const tr As Double = 0.05 
Const tp As Double = Theta * tr 
Const Taw As Double = 200 
Const t_end As Long = 200 
 
Dim r As Long 
Dim tmr As Double 
Dim i As Long 
Dim Scale_ As Double 
 
Dim DownType As Long 
Dim t_now As Double 
Dim x As Long 
Dim U As Double 
Dim T As Double 
Dim NextDown As Double 
Dim Age As Double 
Dim AgeAtDown As Double 
Dim AgeAtUp As Double 
Dim NextUp As Double 
Dim NextObs As Double 
Dim UStart As Double 
 
Dim Sum_X(nObs) As Double 
Dim Sum_U(nObs) As Double 
 
Private Function Random() As Double 
Dim x As Double 
    x = Rnd() 
    Do While x = 0 
        x = Rnd() 
    Loop 
    Random = x 
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End Function 
 
Public Sub Main() 
    Initialize 
    For r = 1 To nReps 
        Replicate 
        If r Mod 1000 = 0 Then 
            Debug.Print "Rep#" & r & " completed, estimated remaining time is " & Round((Timer - 
tmr) / r * (nReps - r) / 60, 1) & " min" 
            DoEvents 
        End If 
    Next 
    Output 
End Sub 
 
Private Sub Initialize() 
Dim i As Long 
    Randomize 
    tmr = Timer 
    For i = 0 To nObs 
        Sum_X(i) = 0 
        Sum_U(i) = 0 
    Next 
    Scale_ = t_end / nObs 
End Sub 
 
Private Sub Replicate() 
    t_now = 0 
    x = 1 
    Age = 0 
    NextUp = t_end + 1 
    i = 1 
    NextObs = Scale_ 
    UStart = 0 
     
    T = eta * ((Age / eta) ^ Beta - Log(Random())) ^ (1 / Beta) - Age 
     
    If T > Taw Then 
        NextDown = Taw 
        AgeAtDown = Taw 
        DownType = 1 
    Else 
        NextDown = T 
        AgeAtDown = T 
        DownType = 2 
    End If 
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    Do While i <= nObs 
        If NextObs <= NextUp And NextObs <= NextDown Then Observation 
        If NextDown < NextUp And NextDown < NextObs Then Down 
        If NextUp < NextDown And NextUp < NextObs Then Up 
    Loop 
End Sub 
 
Private Sub Down() 
    t_now = NextDown 
    Age = AgeAtDown 
    x = 0 
    U = U + (t_now - UStart) 
    NextDown = t_end + 1 
     
    If DownType = 1 Then 
        NextUp = t_now + tp 
        AgeAtUp = 0 
    Else 
        NextUp = t_now + tr 
        AgeAtUp = a * AgeAtDown 
    End If 
End Sub 
 
Private Sub Up() 
    t_now = NextUp 
    Age = AgeAtUp 
    x = 1 
    NextUp = t_end + 1 
    UStart = t_now 
     
    T = eta * (-Log(Random()) + (Age / eta) ^ Beta) ^ (1 / Beta) - Age 
     
    If Age + T > Taw Then 
        NextDown = t_now + (Taw - Age) 
        AgeAtDown = Taw 
        DownType = 1 
    Else 
        NextDown = t_now + T 
        AgeAtDown = Age + T 
        DownType = 2 
    End If 
End Sub 
 
Private Sub Observation() 
    t_now = NextObs 
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    If x = 1 Then 
        U = U + (t_now - UStart) 
        UStart = t_now 
    End If 
     
    Sum_X(i) = Sum_X(i) + x 
    Sum_U(i) = Sum_U(i) + U 
    i = i + 1 
    NextObs = t_now + Scale_ 
End Sub 
 
Private Sub Output() 
Dim j As Long 
Dim k As Long 
Dim t_time(nObs) As Double 
Dim Avail(nObs) As Double 
 
    For j = 1 To nObs 
        t_time(j) = j * Scale_ 
         Avail(j) = Sum_X(j) / nReps 
    Next 
     
    Worksheets("Results").Range("A:Z").Clear 
    Worksheets("Results").Cells(1, 1).Value = "t_time" 
    Worksheets("Results").Cells(1, 2).Value = "Avail" 
    Worksheets("Results").Cells(2, 1).Value = 0 
    Worksheets("Results").Cells(2, 2).Value = 1 
    For k = 1 To nObs 
        Worksheets("Results").Cells(k + 2, 1).Value = t_time(k) 
        Worksheets("Results").Cells(k + 2, 2).Value = Avail(k) 
    Next 
     
Debug.Print "Estimating truncation time point" 
Dim d As Long 
Dim MSER As Double 
Dim MSER_min As Double 
Dim Y_bar_n_d As Double 
Dim Sum As Double 
     
    MSER_min = 10 ^ 30 
    d = 0 
    For k = 1 To nObs - 2 
         
        Sum = 0 
        For j = k + 1 To nObs 
            Sum = Sum + Avail(j) 
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        Next 
        Y_bar_n_d = 1 / (nObs - k) * Sum 
     
        Sum = 0 
        For j = k + 1 To nObs 
            Sum = Sum + (Avail(j) - Y_bar_n_d) ^ 2 
        Next 
        MSER = 1 / (nObs - k) ^ 2 * Sum 
         
        If MSER < MSER_min Then 
            MSER_min = MSER 
            d = k 
        End If 
         
    Next 
    Worksheets("Results").Cells(1, 3).Value = "MSER*" 
    Worksheets("Results").Cells(1, 4).Value = MSER_min 
    Worksheets("Results").Cells(2, 3).Value = "d*" 
    Worksheets("Results").Cells(2, 4).Value = t_time(d) 
     
    Debug.Print "Done in " & Round((Timer - tmr) / 60, 1) & " Min" 
    MsgBox ("Done in " & Round((Timer - tmr) / 60, 1) & " Min") 
 
End Sub 
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A.2  Enumeration Model 

 
Option Base 1 
Option Explicit 
 
Dim tmr As Single 
 
Dim P1() As Integer 
Dim R1() As Integer 
Dim x1() As Single 
Dim y1() As Single 
Dim P2() As Integer 
Dim R2() As Integer 
Dim x2() As Single 
Dim y2() As Single 
Dim CostofAction() As Single 
Dim ExpNoFailur1() As Single 
Dim ExpNoFailur2() As Single 
Dim q() As Integer 
 
Dim NumberofPeriods As Integer 
Dim TotalTime As Single 
Dim Percentage As Single 
Dim CostofFailure1 As Single 
Dim CostofReplacment1 As Single 
Dim CostofEndPM1 As Single 
Dim Beta1 As Single 
Dim Eta1 As Single 
Dim alpha1 As Single 
Dim CostofFailure2 As Single 
Dim CostofReplacment2 As Single 
Dim CostofEndPM2 As Single 
Dim Beta2 As Single 
Dim Eta2 As Single 
Dim alpha2 As Single 
 
Dim delta As Single 
 
Public Sub GetCost() 
    tmr = Timer 
    NumberofPeriods = 3 
    TotalTime = 12 
    alpha1 = 0.4 
    CostofFailure1 = 10 
    CostofReplacment1 = 3 
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    CostofEndPM1 = 1.5 
    Eta1 = 2 
    Beta1 = 1.5 
    alpha2 = 0.25 
    CostofFailure2 = 15 
    CostofReplacment2 = 5 
    CostofEndPM2 = 2.5 
    Eta2 = 3 
    Beta2 = 2 
    delta = 1 
    Cost (NumberofPeriods) 
End Sub 
 
Public Sub Cost(n As Integer) 
 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer 
Dim Text As String 
Dim MinimumCost As Single 
Dim NPV As Single 
Dim Action() As Integer 
Dim OptAction() As Integer 
 
Dim FinishedAll As Boolean 
     
    ReDim P1(n) As Integer 
    ReDim R1(n) As Integer 
    ReDim x1(n) As Single 
    ReDim y1(n) As Single 
    ReDim CostofAction(n) As Single 
    ReDim ExpNoFailur1(n) As Single 
    ReDim Action(n * 2) As Integer 
    ReDim OptAction(n * 2) As Integer 
    ReDim P2(n) As Integer 
    ReDim R2(n) As Integer 
    ReDim x2(n) As Single 
    ReDim y2(n) As Single 
    ReDim ExpNoFailur2(n) As Single 
    ReDim q(n) As Integer 
     
    MinimumCost = 1e+18 
    FinishedAll = False 
     
    x1(1) = 0 
    x2(1) = 0 
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    j = NumberofPeriods + 1 
             
    For i = 1 To NumberofPeriods 
        Action(i) = 0 
    Next 
     
    Do While Not FinishedAll 
         
         
        FinishedAll = True 
        For i = 1 To NumberofPeriods 
            If Action(i) <> 2 Then 
                FinishedAll = False 
                Exit For 
            End If 
        Next 
 
         
        For i = 1 To NumberofPeriods 
            If Action(i) = 1 Then 
                P1(i) = 1 
            Else 
                P1(i) = 0 
            End If 
             
            If Action(i) = 2 Then 
                R1(i) = 1 
            Else 
                R1(i) = 0 
            End If 
        Next 
                     
        For i = 1 To NumberofPeriods 
            If Action(i + NumberofPeriods) = 1 Then 
                P2(i) = 1 
            Else 
                P2(i) = 0 
            End If 
             
            If Action(i + NumberofPeriods) = 2 Then 
                R2(i) = 1 
            Else 
                R2(i) = 0 
            End If 
        Next 
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        NPV = 0 
        For i = 1 To NumberofPeriods 
            y2(i) = x2(i) + TotalTime / NumberofPeriods 
            If i < n Then 
                x2(i + 1) = y2(i) * (1 - ((1 - alpha2) * P2(i)) - R2(i)) 
            End If 
            ExpNoFailur2(i) = ((y2(i) / Eta2)) ^ Beta2 - ((x2(i) / Eta2)) ^ Beta2 
            CostofAction(i) = CostofFailure2 * ExpNoFailur2(i) + CostofEndPM2 * P2(i) + 
CostofReplacment2 * R2(i) 
             
 
            NPV = NPV + CostofAction(i) 
        Next 
                     
        If NPV < MinimumCost Then 
            MinimumCost = NPV 
            For i = 1 To NumberofPeriods 
                OptAction(i) = Action(i) 
            Next 
        End If 
         
        Text = "" 
        For i = 1 To NumberofPeriods 
            Text = Text & Action(i) & "," 
        Next 
       Debug.Print Text & NPV 
        DoEvents 
 
        If FinishedAll = False Then 
            For i = 1 To NumberofPeriods 
                If Action(i) < 2 Then 
                    Action(i) = Action(i) + 1 
                    For k = 1 To i - 1 
                        Action(k) = 0 
                    Next 
                    Exit For 
                End If 
            Next 
        End If 
    Loop 
     
    Text = "" 
    For i = 1 To NumberofPeriods 
        Text = Text & OptAction(i) & "," 
    Next 



 70 

     
    For i = 1 To NumberofPeriods 
        Worksheets("sheet3").Cells(i + 2, 2).Value = "" 
        Worksheets("sheet3").Cells(i + 2, 3).Value = "" 
    Next 
     
    For i = 1 To NumberofPeriods 
        Worksheets("sheet3").Cells(i + 2, 2).Value = i 
        Worksheets("sheet3").Cells(i + 2, 3).Value = OptAction(i) 
    Next 
     
    Worksheets("sheet3").Cells(2, 4).Value = MinimumCost 
    Worksheets("sheet3").Cells(2, 5).Value = Timer - tmr 
     
    MsgBox "tmr= " & Timer - tmr & ", minimum cost= " & MinimumCost & " at " & Text 
    Debug.Print n, Timer - tmr 
End Sub 
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A.3  Genetic Algorithm Model 

 
Option Base 1 
Option Explicit 
 
Const TotalTime As Integer = 12 
Const alpha1 As Single = 0.4 
Const CostofReplacment1 As Single = 3 
Const CostofReplacment2 As Single = 5 
Const CostofFailure1 As Single = 10 
Const CostofFailure2 As Single = 15 
Const CostofEndPM1 As Single = 1.5 
Const CostofEndPM2 As Single = 2.5 
Const Eta1 As Single = 2 
Const Beta1 As Single = 1.5 
Const alpha2 As Single = 0.25 
Const Eta2 As Single = 3 
Const Beta2 As Single = 2 
Const delta As Single = 1 
 
 
Const PopulationSize As Integer = 1000 
Const NumberofPeriods As Integer = 4 
Const NumberofGenerations As Integer = 1000 
Const CrossPointPercentage As Single = 0.1 
Const ReplicationPercentage As Single = 0.95 
 
Dim NewChildNumber As Integer 
Dim GACost(NumberofGenerations) As Single 
 
Type SolutionObject 
    Coding(NumberofPeriods * 2) As Integer 
    ObjectiveValue As Single 
End Type 
 
Dim tmr As Single 
 
Dim Solution(PopulationSize * 2) As SolutionObject 
 
Private Function UNIF(Lb As Integer, Ub As Integer) As Integer 
    UNIF = Int((Ub - Lb + 1) * Rnd + Lb) 
End Function 
 
Public Sub GAMain() 
Dim i As Integer 
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Dim j As Integer 
     
    tmr = Timer 
    Randomize 
     
    Initilize 
    For i = 1 To NumberofGenerations 
        Replication (Fix(PopulationSize * ReplicationPercentage)) 
        Mutation (PopulationSize - Fix(PopulationSize * ReplicationPercentage)) 
        'get objective value for all new solutions 
        For j = PopulationSize + 1 To PopulationSize * 2 
            Solution(j).ObjectiveValue = EvaluateObjectiveValue(j) 
        Next 
        InsertSort Solution(), 1, PopulationSize * 2 
        KillLowerPopulation 
        GACost(i) = Solution(1).ObjectiveValue 
    Next 
     
    Output 
     
End Sub 
 
Private Sub Initilize() 
 
Dim i As Integer 
Dim j As Integer 
       
    For j = 1 To PopulationSize 
        For i = 1 To NumberofPeriods * 2 - 2 
            Solution(j).Coding(i) = UNIF(0, 2) 
        Next 
        Solution(j).Coding(NumberofPeriods * 2 - 1) = 2 
        Solution(j).Coding(NumberofPeriods * 2) = 2 
        Solution(j).ObjectiveValue = EvaluateObjectiveValue(j) 
    Next 
End Sub 
 
Private Sub Replication(NumberofNewChildren As Integer) 
Dim Parent1 As Integer 
Dim Parent2 As Integer 
Dim CrossPoint As Integer 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer 'debug 
 
   NewChildNumber = PopulationSize + 1 
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   For i = NewChildNumber To PopulationSize + NumberofNewChildren 
        Parent1 = UNIF(1, PopulationSize) 
        Parent2 = UNIF(1, PopulationSize) 
        CrossPoint = (UNIF((1 + CrossPointPercentage * NumberofPeriods), (NumberofPeriods - 
CrossPointPercentage * NumberofPeriods))) * 2 
         
        For j = 1 To NumberofPeriods * 2 
            If j < CrossPoint Then 
               Solution(i).Coding(j) = Solution(Parent1).Coding(j) 
            Else 
                Solution(i).Coding(j) = Solution(Parent2).Coding(j) 
            End If 
        Next 
    Next 
    NewChildNumber = PopulationSize + NumberofNewChildren + 1 
End Sub 
 
Private Sub Mutation(NumberofNewChildren As Integer) 
Dim Parent As Integer 
Dim Position As Integer 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer 
 
   For i = NewChildNumber To NewChildNumber + NumberofNewChildren - 1 
        Parent = UNIF(1, PopulationSize) 
        Position = UNIF(1, NumberofPeriods * 2) 
        For j = 1 To NumberofPeriods * 2 
            If j = Position And j < (NumberofPeriods * 2 - 2) Then 
                'mutate coding 
                k = UNIF(0, 2) 
                Do While k = Solution(Parent).Coding(j) 
                    k = UNIF(0, 2) 
                Loop 
                Solution(i).Coding(j) = k 
            Else 
                'copy coding 
                Solution(i).Coding(j) = Solution(Parent).Coding(j) 
            End If 
        Next 
    Next 
End Sub 
 
Private Function EvaluateObjectiveValue(j As Integer) As Single 
 
Dim i As Integer 
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Dim NPV As Single 
Dim P1(NumberofPeriods * 2) As Integer 
Dim R1(NumberofPeriods * 2) As Integer 
Dim x1(NumberofPeriods * 2) As Single 
Dim y1(NumberofPeriods * 2) As Single 
Dim CostofAction(NumberofPeriods * 2) As Single 
Dim ExpNoFailur1(NumberofPeriods * 2) As Single 
Dim P2(NumberofPeriods * 2) As Integer 
Dim R2(NumberofPeriods * 2) As Integer 
Dim x2(NumberofPeriods * 2) As Single 
Dim y2(NumberofPeriods * 2) As Single 
Dim ExpNoFailur2(NumberofPeriods * 2) As Single 
Dim q(NumberofPeriods * 2) As Integer 
 
    For i = 1 To NumberofPeriods 
        If Solution(j).Coding(1 + ((i - 1) * 2)) = 1 Then 
            P1(i) = 1 
        Else 
            P1(i) = 0 
        End If 
 
        If Solution(j).Coding(1 + ((i - 1) * 2)) = 2 Then 
            R1(i) = 1 
        Else 
            R1(i) = 0 
        End If 
    Next 
 
    For i = 1 To NumberofPeriods 
        If Solution(j).Coding(i * 2) = 1 Then 
            P2(i) = 1 
        Else 
            P2(i) = 0 
        End If 
 
        If Solution(j).Coding(i * 2) = 2 Then 
            R2(i) = 1 
        Else 
            R2(i) = 0 
        End If 
                        
    Next 
     
    For i = 1 To NumberofPeriods 
        If P1(i) + P2(i) + R1(i) + R2(i) < 1 Then 
            q(i) = P1(i) + P2(i) + R1(i) + R2(i) 
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        Else 
            q(i) = 1 
        End If 
         
    Next 
     
    x1(1) = 0 
    x2(1) = 0 
    NPV = 0 
    For i = 1 To NumberofPeriods 
        y1(i) = x1(i) + (TotalTime / (NumberofPeriods)) 
         y2(i) = x2(i) + (TotalTime / (NumberofPeriods)) 
        If i < NumberofPeriods Then 
            x1(i + 1) = y1(i) * (1 - ((1 - alpha1) * P1(i)) - R1(i)) 
                x2(i + 1) = y2(i) * (1 - ((1 - alpha2) * P2(i)) - R2(i)) 
            End If 
            ExpNoFailur1(i) = ((y1(i) / Eta1)) ^ Beta1 - ((x1(i) / Eta1)) ^ Beta1 
            ExpNoFailur2(i) = ((y2(i) / Eta2)) ^ Beta2 - ((x2(i) / Eta2)) ^ Beta2 
            CostofAction(i) = CostofFailure1 * ExpNoFailur1(i) + CostofFailure2 * ExpNoFailur2(i) 
+ CostofEndPM1 * P1(i) + CostofEndPM2 * P2(i) + CostofReplacment1 * R1(i) + 
CostofReplacment2 * R2(i) + delta * q(i) 
            NPV = NPV + CostofAction(i) 
    Next 
     
    EvaluateObjectiveValue = NPV 
     
End Function 
 
Private Sub KillLowerPopulation() 
Dim i As Integer 
Dim j As Integer 
 
    For i = PopulationSize + 1 To PopulationSize * 2 
        Solution(i).ObjectiveValue = 999999999999# 
        For j = 1 To NumberofPeriods * 2 
            Solution(i).Coding(j) = -1 
        Next 
    Next 
End Sub 
 
Private Sub InsertSort(ByRef A() As SolutionObject, ByVal Lb As Long, ByVal Ub As Long) 
    Dim t As SolutionObject 
    Dim i As Long 
    Dim j As Long 
 
    ' sort A[Lb..Ub] 



 76 

    For i = Lb + 1 To Ub 
        t = A(i) 
 
        ' shift elements down until insertion point found 
        For j = i - 1 To Lb Step -1 
            If A(j).ObjectiveValue <= t.ObjectiveValue Then Exit For 
            A(j + 1) = A(j) 
        Next j 
 
        ' insert 
        A(j + 1) = t 
    Next i 
End Sub 
 
Private Sub Output() 
Dim i As Integer 
 
    Worksheets("GA Results").Range("A:H").Clear 
 
    Worksheets("GA Results").Cells(1, 1).Value = "Gen #" 
    Worksheets("GA Results").Cells(1, 2).Value = "Best Sol. Cost" 
    For i = 2 To NumberofGenerations + 1 
        Worksheets("GA Results").Cells(i, 1).Value = i - 1 
        Worksheets("GA Results").Cells(i, 2).Value = GACost(i - 1) 
    Next 
     
    Worksheets("GA Results").Cells(1, 4).Value = "Period" 
    Worksheets("GA Results").Cells(1, 5).Value = "Machine" 
    Worksheets("GA Results").Cells(1, 6).Value = "Action" 
    Worksheets("GA Results").Cells(1, 7).Value = "Final Solution Cost" 
    Worksheets("GA Results").Cells(2, 7).Value = Solution(1).ObjectiveValue 
    Worksheets("GA Results").Cells(1, 8).Value = "Run Time (Sec.)" 
    Worksheets("GA Results").Cells(2, 8).Value = Timer - tmr 
    For i = 2 To NumberofPeriods * 2 + 1 
        Worksheets("GA Results").Cells(i, 4).Value = Fix(i / 2) 
        Worksheets("GA Results").Cells(i, 5).Value = (i Mod 2) + 1 
        Worksheets("GA Results").Cells(i, 6).Value = Solution(1).Coding(i - 1) 
    Next 
     
End Sub 
Public Sub Sinan() 
Dim i As Integer 
Dim k As Integer 
 
    k = 200 
    For i = 1 To NumberofPeriods * 2 
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        Solution(k).Coding(i) = 2 
    Next 
    Solution(k).ObjectiveValue = EvaluateObjectiveValue(k) 
End Sub 
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A.4  Analysis of Variance from Minitab for ! 

 
Response Surface Regression: A versus !, a, tr 
   
Estimated Regression Coefficients for A 
  
Term          Coef   SE Coef       T      P 
Constant   0.89652   0.16080   5.575   0.003 

!         -0.06333   0.07541  -0.840   0.439 

a          0.76960   0.28278   2.722   0.042 

tr         -0.84004   0.90137  -0.932   0.394 

!*!        0.02787   0.01493   1.867   0.121 

a*a       -0.49758   0.20989  -2.371   0.064 

tr*tr        4.07420   3.35820   1.213   0.279 

!*a       -0.12842   0.04641  -2.767   0.040 

!*tr       -0.26367   0.18565  -1.420   0.215 

a*tr       -1.48125   0.69618  -2.128   0.087 
  
  
S = 0.0196909  PRESS = 0.0167642 
R-Sq = 98.54%  R-Sq(pred) = 87.39%  R-Sq(adj) = 95.92% 
  
 

 

Analysis of Variance for A 
  
Source       DF  Seq SS   Adj SS    Adj MS      F      P 
Regression   9   0.1309   0.1309    0.0145    37.53  0.000 
Linear       3   0.1180   0.0064    0.0021     5.53  0.048 
Square       3   0.0074   0.0074    0.0024     6.42  0.036 
Interaction  3   0.0055   0.0055    0.0018     4.73  0.064 
Res. Error   5   0.0019   0.0019    0.0003 
Total       14   0.1329 
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A.5  Analysis of Variance from Minitab for ! (adding PM parameters) 

 

Response Surface Regression: A versus !, a, tr, tPM, " 
   
 

Estimated Regression Coefficients for A 
  
Term          Coef   SE Coef       T      P 
Constant     0.7058   0.1790    3.942  0.008 

!            0.0545   0.0878    0.621  0.558 

a            0.1035   0.3293    0.314  0.764 

tr           -0.0088   1.0720   -0.008  0.994 

tPM           1.6589   5.3602    0.309  0.767 

"            0.3606   0.0942    3.828  0.009 

!*!          0.0083   0.0166    0.499  0.636 

a*a          0.1463   0.2339    0.625  0.555 

tr*tr          2.4375   3.7425    0.651  0.539 

tPM*tPM       45.9857  93.5625   0.491  0.641 

"*"         -0.0903   0.0327   -2.761  0.033 

!*a         -0.0494   0.0505   -0.977  0.366 

!*tr         -0.0399   0.2021   -0.197  0.850 

!*tPM        -0.4221   1.0104   -0.418  0.691 

!*"         -0.0595   0.0189   -3.151  0.020 

a*tr         -0.1881   0.7578   -0.248  0.812 

a*tPM        -5.5899   3.7891   -1.475  0.191 

a*"         -0.0871   0.0708   -1.230  0.265 

tr* tPM       -14.1596  15.1562  -0.934  0.386 

tr*"         -0.8227   0.2833   -2.904   0.027 

tPM*"        1.3461    1.4165   0.950   0.379 
  
  
S = 0.0303124  PRESS = 0.264488 
R-Sq = 93.16%  R-Sq(pred) = 0.00%  R-Sq(adj) = 70.36% 
  
  
Analysis of Variance for A 
  
Source        DF    Seq SS    Adj SS    Adj MS    F      P 
Regression    20   0.0750   0.0750    0.0037    4.09  0.044 
Linear        5    0.0441   0.0136    0.0027    2.97  0.109 
Square        5    0.0079   0.0079    0.0015    1.72  0.262 
Interaction   10   0.0230   0.0230    0.0023    2.51  0.136 
Res. Error    6    0.0055   0.0055    0.0009 
Total         26   0.0805 



 

 

 

 


