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ABSTRACT 

 

Ticks are important worldwide as vectors of bacteria, viruses, and parasites. Pathogenic 

and non-pathogenic spotted fever group (SFG) Rickettsia are maintained and transmitted by ticks 

with specific hard tick-Rickettsia pairings evident in nature. The pathogenic SFG Rickettsia 

rickettsii is transmitted by the hard tick Dermacentor variabilis. In response to infection, 

D. variabilis is known to differentially respond to SFG Rickettsia infection. The mechanisms of 

differential immune induction are currently unknown, and are likely involved in the 

establishment of specific tick-SFG Rickettsia pairings. It was hypothesized that the level of 

response by D. variabilis to SFG Rickettsia occurs in a species-specific manner, and that this 

response drives vector competence. To this end, we report the isolation of an mRNA transcript, 

dvrelish, using RACE-PCR. Conserved domain analysis of dvrelish identified a Rel-homolgy 

domain, allowing for its identification as a putative Relish-type NF-κB. DvRelish was identified 

via Western blot, immunofluorescence assay and MALDI-TOF/TOF mass-spectrometry. Tick 

infection assays were performed using microinjection and capillary feeding technique 

methodologies to identify dvrelish expression in response to SFG Rickettsia infection. 

Microinjection of 107 R. rickettsii induced an increased expression of dvrelish in hemocytes at 1 

hour post injection, and in combined tissues at 6 hours post injected. Injection with similar and 

lower doses of Pseudomonas aeruginosa and Rickettsia parkeri did not significantly change 

dvrelish expression. When capillary fed R. rickettsii, dvrelish expression increased in hemocytes 

after 1 hour exposure and decreased after a 3 hour exposure. Together, the expression of dvrelish 

was dose- and tissue- specific in response to SFG Rickettsia challenge. Understanding the 

molecular regulation of immunological response to rickettsial infection in ticks may better define 

the mechanisms of vector competence and the epidemiology of SFG rickettsioses.  
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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Ticks  

Ticks are members of the phylum Arthropoda, class Arachnida, subclass Acari, and order 

Parisitiformes. Ticks are further divided into three families: Ixodidae (hard ticks), Argasidae 

(soft ticks), and Nuttalliellidae (Nicholson et al. 2009). Ixodidae are categorized as Prostriata 

(genus Ixodes) or Metastriata based on the position of a ventral grove anterior or posterior to the 

anus, respectively (Klompen 2005). Ixodidae consists of over 660 characterized species of hard 

ticks which accounts for 80% of all known tick species. Conversely, Argasidae consists of fewer 

than 200 recognized species (Nicholson et al. 2009). Nuttalliellidae contains only one recognized 

species of no known medical importance (Klompen 2005). Both hard and soft ticks have a great 

impact on human and animal health through direct effects of blood feeding as well as by the 

transmission of disease causing agents including bacteria, protozoa, and viruses (Table 1.1).  

1.1.1 Ixodid ticks (Family Ixodidae) 

Ixodid ticks are characterized by the presence of a rigid scutum on the dorsal body 

surface of both adult males and females. The scutum is greatly reduced in size in females 

allowing for extensive engorgement during blood-feeding (Nicholson et al. 2009). Males, with a 

larger scutum, are relatively restricted on the expansion of the cuticle during blood-feeding. Hard 

(Ixodid) ticks have two body sections: the capitulum and the idiosoma. The capitulum includes 

the mouthparts, palps, and chelicera. The idiosoma includes the legs, and core organs, and is 

further divided into the podosoma (includes the legs and genital pore) and the opithosoma 

(includes the region behind the coxae, spiracles, and anus). Adult and nymphal ticks have 4 pairs 

of legs, while larva only have 3 pairs (Nicholson et al. 2009). Legs are divided into six segments 

and the first leg pair contains Haller’s sensory organ. Haller’s organ has been associated with 
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Table 1.1 Major tick-borne diseases of humans. Disease causing agents, primary tick vectors, 

and vertebrate host.  
Disease  Causative agent  Primary tick vector species  

Human Babesiosis  Babesia microti, B. divergens, B. 

major  

Ixodes scapularis, I. ricinus,  

Rocky Mountain spotted 

fever  

Rickettsia rickettsii  Dermacentor variabilis, D. andersoni, 

Rhipicephalus sanguineus  

Human monocytic 

ehrlichiosis  

Ehrlichia chaffeensis  A. americanum, D. variabils  

Human anaplasmosis  Anaplasma phagocytophilum  I. scapularis, I. pacificus, I. ricinus  

Q fever  Coxiella burnetii  Many tick species  

Lyme disease  Borrelia burgdorferi, B. afzelii, B. 

garinii, B. bissettii  

I. scapularis, I. ricinus, I. pacificus, I. 

persulcatus, others  

Tick-borne relapsing 

fever  

Borrelia spp.  Ornithodoros spp.  

Tularemia  Francisella tularensis  D. variabilis, D. andersoni, D. 

reticulutus, A. americanum, I. 

apronophorus, I. ricinus complex, 

Haemaphysalis leporispalustris  

Powassan encephalitis  Flavivirus; family Reoviridae  Ixodes, Dermacentor, and 

Haemaphysalis spp.  

Colorado tick fever  Coltiivirus; family Reoviridae  D. andersoni  

Crimean-Congo 

hemorrhagic fever  

Nairovirus; family Bunyaviridae  Hyalomma m. marginatum, H. m. 

rufipes 

(Goodman et al. 2005) 

 

thermosensory, gustatory and mechanosensory functions (Nicholson et al. 2009). 

As bloodmeals are an essential component of the tick life cycle, finding a vertebrate host 

is critical. Ixodid ticks have a hemimetabolous life cycle consisting of four life stages including 

the egg, larva, nymph and adult (Figure 1.1) (Sonenshine and Roe 2014). Post eclosion from the 

egg, each life cycle stage of the tick acquires a single bloodmeal to allow molting to the next 

stage. Adult females will feed repletion and oviposit thousands of eggs before dying. 

Dermacentor ticks are known to oviposit upwards of 5,000 eggs per clutch, however the average 

maximum number of eggs is species dependent (Nicholson et al. 2009). After the eggs have 

hatched, the larva must find a host. Once bloodfeeding and molting to the nymphal stage are 
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completed, the host seeking and bloodfeeding process is repeated. After molting and sexual 

differentiation, adult males and females will mate and feed for egg production, continuing the 

life cycle (Sonenshine and Roe 2014).  

Suitable hosts are recognized through cues including body heat, carbon dioxide, 

vibrations and odors from sweat, urine and other wastes; these cues lead to increased questing 

behaviors. Shadows from movement may also be visualized and vibrations in the local 

environment from potential host movement may be perceived. The combination of long-range 

Figure 1.1 Generalized life cycle of three-host, two-host, and one-host ticks (Nicholson et 

al. 2009).  
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cues, such as vibrations, and shorter-range cues like odors initiate questing behaviors and aid in 

the recognition of both suitable hosts and attachment sites (Sonenshine and Roe 2013). There are 

two strategies for host seeking: the hunter strategy where ticks actively move towards hosts when 

host cues are sensed and the ambush method where ticks wait for passing hosts. One example of 

use of the hunter strategy is by the camel tick, Hyalomma dromedarii, which is known to emerge 

from sand or rocks and move quickly towards hosts. The ambush strategy is used by most non-

nidiculous ticks which wait on vegetation for passing hosts (Apanaskevich and Oliver Jr. 2014). 

The duration of feeding for each life cycle stage varies slightly in ixodid ticks. Under 

laboratory conditions between 22-24°C, 90% relative humidity, and with a photoperiod of 16:8 

(light:dark) hours, Troughton and Levin (2007) determined the life cycles of seven species of 

ticks in colony. The entire life cycle of D. variabilis can be completed in as little as 19 weeks in 

the laboratory, but generally takes 25 to 27 weeks to complete. Larval D. variabilis feed for 2 to 

8 days with the majority detaching at day 4 and require between 2 to 3 weeks to molt. Nymphs 

feed for up to 11 days with the majority detaching at day 5. Nymphs require between 3.5 and 5 

weeks to molt. Adult females require 7 to 10 days to feed to repletion. Females will lay an egg 

clutch 1.5 to 3 weeks after engorgement and the eggs will hatch 5 to 8 weeks after oviposition. 

Unfed D. variabilis larva are viable without a blood meal for up to 6 months, nymphs for 2 

months, and adults for up to 8 months (Troughton and Levin 2007).  

Adult ticks attach to their host via the hypostome, a structure containing the food canal 

and rows of recurved barbs which aid in attachment. Some ixodid ticks produce a cement-like 

secretion to reinforce attachment to the host. Surrounding the hypostome are two chelicerae used 

to cut through skin, and two palps which enclose the salivary ducts. Feeding occurs through the 

alternating periods of blood sucking and secretion of saliva (Sonenshine and Anderson 2014). 
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Tick saliva contains many bioactive compounds which facilitate the long-term feeding style of 

ixodid ticks. These molecules include anti-hemostatic factors, anti-inflammatory factors, 

complement inhibitors, and  bioactive compounds which modulate host immunity by inducing a 

Th2 type response (Alarcon-Chaidez 2014).  

There are two phases to feeding by ixodid adult females. During the first few days of 

attachment, ixodid adult females will feed only slightly to allow synthesis of chitin required for 

further engorgement. In order to progress to the second stage of engorgement where the females 

will imbibe blood at a much quicker rate, mating must occur. In contrast, males bloodfeed 

intermittently with spermatogenesis stimulated by bloodfeeding. A male tick can then inseminate 

multiple females, triggering rapid phase engorgement. Without insemination females will not 

rapidly feed. For some Ixodes species mating occurs off host in burrows or nests (Nicholson et 

al. 2009).  

1.2 Tick species of medical importance in the United States 

1.2.1 Dermacentor species  

Dermacentor spp. are three-host, metastriate ticks taking bloodmeals from separate hosts 

which allows molting to the subsequent life stages. These ticks have an ornamented scutum with 

short wide mouthparts. In tropical climates with abundant rainfall, Dermacentor ticks can 

continue to develop year round. However, these ticks are also tolerant to desiccation, and lessen 

host questing behaviors during periods of low humidity. In the northern part of its distribution, 

Dermacentor larva and adults enter diapause during the coldest part of the winter, resulting in a  

prolonged life cycle over a two year period (Nicholson et al. 2009). Several species of 
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Dermacentor ticks are found throughout North and Central America, Europe, Asia, and Africa. 

Species of importance in North America include Dermacentor variabilis, the American dog tick 

(Figure 1.2), and Dermacentor andersoni, the Rocky Mountain wood tick (Figure 1.3) 

(www.cdc.gov). These ticks are the vectors for many pathogens including the etiologic agents of 

Rocky Mountain spotted fever (RMSF) and Colorado tick fever (Nicholson et al. 2009). The 

major route of transmission of disease causing agents is horizontally through bloodfeeding, but 

infected ticks may also transmit vertically to subsequent life stages (transstadial) and their 

progeny (transovarial) (Goodman et al. 2005). In North America, the vectors of Rickettsia 

rickettsii include D. variabilis and D. andersoni. Horizontal transmission of Anaplasma 

marginale and Franciscella tularensis has also been observed in Dermacentor species.  

 

Figure 1.2 Approximate distribution Dermacentor variabilis in the United States 

(Distribution map courtesy of Centers of Disease Control and Prevention). 
 

http://www.cdc.gov/
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In addition to pathogenic bacteria, Dermacentor ticks are also known to harbor nonpathogenic 

bacteria including Rickettsia montanensis and Rickettsia peacockii (Azad and Beard 1998).  

1.2.2 Rhipicephalus species  

Rhipicephalus are found across the Unites States and worldwide (Figure 1.4) and are 

easily recognizable by the hexagonal shape of the basis capituli. A species of importance is 

Rhipicephalus sanguineus, the brown dog tick, which transmits the etiologic agent of 

Mediterranean spotted fever, Rickettsia conorii. These ticks have a cosmopolitan distribution 

with increased activity in the summer. All life stages of this 3-host tick species feed on dogs, and 

also can feed on small wildlife and humans. (Nicholson et al. 2009).  

Interestingly, after an increase in incidence of RMSF in the southern United States, 

R. sanguineus was also implicated as a vector of R. rickettsii. RMSF cases were recognized on   

Figure 1.3 Approximate distribution of Dermacentor andersoni in the United States 

(Distribution map courtesy of the Centers for Disease Control and Prevention. 
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Native American reservations in areas with increased contact with heavily R. sanguineus- 

infested dogs near households (Demma et al. 2005). Other Rhipicephalus ticks of great  

veterinary importance include Rhipicephalus annulatus and Rhipicephalus microplus, which are 

vectors of Babesia begimina and Babesia bovis, respectively. The 1-host tick R. microplus can 

also transmit Anaplasma marginale, the causative agent of anaplasmosis (Nicholson et al. 2009). 

In addition to the transmission of pathogenic agents, R. microplus can infest cattle at very high 

levels causing weight loss (Nicholson et al. 2009).  

1.2.3 Amblyomma species 

Amblyomma species of medical and veterinary importance in the United States include 

the lone star tick, Amblyomma americanum, and the Gulf Coast tick, Amblyomma maculatum. 

Lone star adult females are easily identifiable by the singular white spot on their scutum with 

long mouthparts (Nicholson et al. 2009). On the other hand, the Gulf Coast tick are more 

Figure 1.4 Approximate distribution Rhipicephalus sanguineus in the United States 

(Distribution map courtesy of Centers of Disease Control and Prevention). 
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difficult to identify, with similar ornamentation to D. variabilis. The primary observable 

difference between the two species is the relatively longer mouthparts of Amblyomma. While A. 

americanum are found throughout the Southern United States (Figure 1.5), its distribution has 

been expanding north (Dahlgren et al. 2016). A. americanum are known vectors of Franciscella 

tularensis and Ehrlichia spp (Nicholson et al. 2009). Preferred hosts include wildlife, livestock, 

and humans. Seasonally, nymphs and adults are active during the late spring with larva active 

during the summer.  

The Gulf Coast tick has a more southern distribution (Figure 1.6), and is also found in 

Central America (www.cdc.gov). Adults feed mainly on ruminants but all life stages will readily 

feed on birds and other mammals. The transmission of Ehrlichia ruminatum, the causative agent 

of heartwater, and Rickettsia parkeri, the causative agent of R. parkeri rickettsiosis, is attributed 

to A. maculatum (Nicholson et al. 2009).  

Figure 1.5 Approximate distribution Amblyomma americanum in the United States 

(Distribution map courtesy of Centers of Disease Control and Prevention). 
 

http://www.cdc.gov/
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1.2.4 Ixodes species  

 The blacklegged tick, Ixodes scapularis, is the main vector of Borrelia burgdorferi, the 

etiologic agent of Lyme disease. Distributed throughout the eastern and southern United States 

(Figure 1.7), I. scapularis are highly desiccation intolerant and are usually found in humid, shady 

forested areas (Nicholson et al. 2009).  

As three host ticks, larval and nymphal Ixodes are known to feed on small mammals, 

birds and lizards, whereas adults mostly feed on white-tailed deer. Moreover, nymphs are 

responsible for transmission of B. burgdorferi to humans, which occurs during the spring and 

summer when the nymphs are active (Pal and Fikrig 2003). Ixodes ticks are also vectors of 

Babesia microti and Anaplasma phagocytophilum, the agents of human babesiosis, and human 

granulocytic anaplasmosis, respectively (Beaty and Marquardt 1996).  

Figure 1.6 Approximate distribution Amblyomma maculatum in the United States 

(Distribution map courtesy of Centers of Disease Control and Prevention). 
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1.3 Tick-borne rickettsioses 

Rickettsia are obligate intracellular α-proteobacteria transmitted by hematophagous 

arthropods including fleas, lice, mites, and ticks. (Azad and Beard 1998). These bacteria are 

transmitted horizontally through the bloodfeeding by infected arthropods and vertically by 

transovarial and transstadial transmission. This section will describe relevant rickettsial features, 

including classifications, pathogenicity, and current epidemiology.  

1.3.1 History of tick-borne rickettsioses 

The clinical manifestations of RMSF were first described in 1899 in a publication by 

Edward E. Maxey (Parola et al. 2005). These descriptions were followed by more detailed 

reports by Howard T. Ricketts in 1906. Ricketts moved to Montana for the purpose of studying 

RMSF (Ricketts 1906a, Ricketts 1906b, Ricketts 1907b, Ricketts 1907a). Ricketts publications 

Figure 1.7 Approximate distribution Ixodes scapularis in the United States (Distribution map 

courtesy of Centers of Disease Control and Prevention). 
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from 1906 to 1907 identified the tick as the vector for RMSF. These reports describe an 

organism that was identified through xenodiagnosis. The organism was transmissible through the 

exchange of blood from a patient to an experimental animal, as well as by Dermacentor 

andersoni ticks (Ricketts 1906a, Ricketts 1906b, Ricketts 1907b). Ticks were suspected as a 

mode of transmission of RMSF as persons infected were not contagious and diagnoses peaked 

from May through June in males who worked outside and were exposed to ticks. Ricketts 

described the maintenance of R. rickettsii in D. andersoni, with evidence supporting transovarial 

and transstadial transmission. The organisms could be found in blood and was not culturable 

(Ricketts 1907a). Ricketts’ work in Montana allowed for the development of an animal model of 

infection in male Guinea pigs which results in fever, rash, and scrotal swelling (Ricketts 1907a).  

1.3.2 Rickettsia characteristics and classification 

Rickettsia are Gram-negative, small, polymorphic coccobacilli that are between 0.8 to 0.2 

µm in length and 0.3 to 0.5 µm in width (Hackstadt 1996). Rickettsiae are of the class α-

proteobacteria, order Rickettsiales, family Rickettsiacea, and genus Rickettsia. Electron 

microscopy revealed an organism with a trilaminar cell membrane and macrocapsular slime layer 

(Hayes and Burgdorfer 1982). Rickettsia reside in the cytoplasm of cells, but can also be found 

infecting nuclei (Burgdorfer et al. 1968).  

Rickettsia are classified into groups based on antigenic, biological, and genetic 

characteristics. They have been recently classified into four groups: spotted fever group (SFG), 

typhus group, ancestral group, and transitional group (Figure 1.8) (Gillespie et al. 2007, Walker 

and Ismail 2008). Recent phylogenic analyses consider both housekeeping genes and genes 

which are under evolutionary pressure, allowing for better resolution and classification of the 

relationships between Rickettsia species (Gillespie et al. 2007) (Figure 1.8). While these efforts 
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have improved upon our understanding of Rickettsia classification, there is still much 

controversy about the determination of new species as there is no universal set of characteristics 

outlined. 

1.3.3 Pathogenesis and pathogenicity 

There are varying levels of pathogenicity associated with SFG Rickettsia, ranging from 

pathogenic to mild and non-pathogenic. These classifications have been classically determined 

by the recognition of human disease, or through infection in animal models such as in Guinea 

pigs. R. rickettsii, R. parkeri, R. conorrii and R. africae are considered highly pathogenic as they 

cause disease in humans. Other SFG Rickettsia, including Rickettsia montanensis, Rickettsia 

peacockii, Rickettsia rhipicephali and Rickettsia amblyommii, have not been identified as 

causing disease in humans and are therefore considered non-pathogenic. Additional strain 

variation within species may affect the pathogenicity of the Rickettsia (Walker and Ismail 2008).  

Figure 1.8 Rickettsial species classifications (Sunyakumthorn 2011). 
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RMSF is considered one of the most severe rickettsial diseases. The current case fatality 

rate is less than 1% with antibiotic treatment and has been as high as 20-25% in the pre-antibiotic 

era (Drexler et al. 2016). Clinical symptoms include fever, headache and rash. The characteristic 

rash begins on the extremities and moves to the trunk. More extreme cases may also include 

encephalitis, respiratory syndrome and coagulothapies (Walker and Ismail 2008). The incubation 

period after infection via tick bite is between 2 and 14 days with a rash occurring in most patients 

3 to 5 days after the onset of fever (Lin and Decker 2012). Treatment with doxycycline is 

effective; however, if left untreated death can occur 7 to 15 days after symptoms begin (Lin and 

Decker 2012).  

 Efforts to elucidate definitive virulence factors for SFG Rickettsia have not been 

successful. As such, the molecular basis of rickettsial pathogenicity is undefined. Potential 

virulence determinants have been identified through comparative genomics of pathogenic and 

non-pathogenic rickettsial species. Outermembrane proteins, such as the SFG-specific OmpA, 

were identified as potential virulence factors; however the targeted knock down OmpA did not 

result in attenuated Rickettsia. This result suggests the existence of multiple and redundant 

virulence factors contributing to pathogenicity (Noriea et al. 2015) 

As obligate intracellular pathogens, Rickettsia induce phagocytosis into host cells where 

they evade cellular degradation and live freely in the cytoplasm. In vertebrate hosts, SFG 

Rickettsia are biologically transmitted through the bite of an infected tick. Transmitted Rickettsia 

enter into host cells via interaction between the rickettsial outer membrane protein B (OmpB) 

and a host DNA-dependent protein kinase, Ku70 (Martinez et al. 2005). This interaction induces 

phagocytosis and once engulfed in the phagolysosome, Rickettsia escape to the cytosol of the 

host cell where they grow, divide and subsequently disseminate to neighboring cells. 
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Dissemination is most likely facilitated by direct cell-to-cell spread and actin polymerization 

(Martinez et al. 2005). 

Rickettsial infections are characterized by vascular injury resulting from disseminated 

endothelial infection (Walker and Ismail 2008). The growth and dissemination of Rickettsia in 

endothelial cells induces vascular injury characterized by increased vascular permeability, 

vascular inflammation and the release of pro-inflammatory products, such as cytokines and pro-

coagulation factors (Sahni and Rydkina 2009). Culture of Rickettsia infected endothelial cells 

results in increased cytokine production including IL-1, IL-6, IL-8, increased E-selectin and von 

Willebrand factor (Teysseire et al. 1992, Elghetany and Walker 1999). As a mechanism to 

reduce vascular injury, infected endothelial cells regulate cyclooxygenase expression and activity 

resulting in a decreased prostaglandin expression. Additional anti-inflammatory products are 

expressed, including antioxidant enzymes such as heme oxygenase (Rydkina et al. 2002).  

 SFG Rickettsia transmission relies on the survival and dissemination of rickettsiae within 

competent tick vectors (Beaty and Marquardt 1996). Dissemination within the tick host occurs 

by the escape of SFG Rickettsia from midgut to the hemolymph. Subsequent dissemination to 

distal organs including the salivary glands and the ovaries are required for successful horizontal 

transmission via bloodfeeding and vertical transmission to progeny. The gut is the first site of 

infection, and the first site of interaction with the tick immune system. Rickettsiae must evade 

the tick immune responses at the midgut for dissemination to occur. Furthermore, the 

hemolymph and organs also respond to disseminating rickettsia through production of 

antimicrobial products. Infection of the salivary glands is a key component for horizontal 

transmission through the tick bite and, presumably, Rickettsia which are not able to infect the 

salivary glands will not be transmitted via feeding (Beaty and Marquardt 1996). One such 
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example is R. peacockii which infects D. andersoni ticks. R. peacockii is not transmitted 

horizontally, localizing only in the ovaries, and resulting in transovarial (vertical) transmission, 

but not horizontal transmission (Niebylski et al. 1999). Thus, the mechanisms of rickettsial 

pathogenesis and dissemination in the tick vector are important considerations in the ecology and 

epidemiology of tick-borne rickettsial diseases.  

1.3.4 Epidemiology-current significance 

Rickettsia rickettsii can be found in North America, South America and Central America. 

In the United States, Dermacentor ticks are historically responsible for R. rickettsii transmission, 

specifically D. variabilis in the eastern United States and D. andersoni in the western United 

States (Figure 1.9). Recently, R. sanguineus has been implicated in the transmission of 

R. rickettsii in areas of the southwest United States where no D. variabilis or D. andersoni 

were found, but where cases of RMSF occurred (Demma et al. 2005). Transmission of 

R. rickettsii by Amblyomma cajennenese and Amblyomma aerulatum occurs in countries of 

Figure 1.9 Incidence of RMSF in the United States in from 2008-2012 by county (Drexler et 

al. 2016). 
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Central and South America including Brazil, Argentina, Colombia and Panama (Macaluso and 

Paddock 2014).  

The incidence of RMSF is closely tied with the feeding habits of its tick vectors, as they 

act as both a vector and reservoir of Rickettsia. RMSF incidence increases in the late spring and 

summer when ticks are most active. One field study identified that less than 0.1% of 

Dermacentor ticks surveyed were infected with R. rickettsii. Moreover, less than 4% of ticks 

surveyed were infected with a SFG Rickettsia, including R. montanensis or R. amblyomii 

(Stromdahl et al. 2010). Thus, low incidence of SFG Rickettsia infection in ticks suggests that 

some rickettsial species may require an amplification host.  

 In the United States, RMSF is a reportable disease with surveillance data collected as far 

back as 1920 (Openshaw et al. 2010). From 2000-2014, the yearly incidence of RMSF increased 

dramatically from 1.7 cases per million people per year to a record peak of 14 cases per million 

people per year (Openshaw et al. 2010, Drexler et al. 2016)  Prior to 2000, the incidence 

fluctuated between 1-5 cases per million people per year (Figure 1.10). Infections tend to be 

focal; states with the greatest incidence include Oklahoma, Missouri, Arkansas, Tennessee, 

North Carolina. These states accounted for over 60% of the cases of RMSF in 2010 (Drexler et 

al. 2016).  

The cause of the increase in RMSF cases beginning in 2000 may be multifactorial. One 

such factor included the recognition of R. sanguineus as a vector (Demma et al. 2005). Increases 

in reporting and changes to the case definition also contributed to increased cases of RMSF 

beginning in 2000 (Openshaw et al. 2010). The change in case definition allowed for the
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categorization of probable cases based on increased antibody titers via enzyme-linked 

immunosorbent assays (ELISA). It has since been recognized that antigen cross-reactivity with 

other SFG Rickettsia pathogens which are found in the United States, including R. parkeri, R. 

massilae, and Rickettsia spp. 364D, may affect differential ELISA diagnostics (Openshaw et al. 

2010). Decreasing case fatality rates suggest an increase in recognized infections of other SFG 

Rickettsia pathogens with less severe presentations, such as R. parkeri rickettsioses (Drexler et 

al. 2016). As of 2009, the reportable category case definition changed to “spotted fever group 

rickettsioses” to better reflect the probable spectrum of rickettsial infections reported (Drexler et 

al. 2016). 

1.3.5 Transmission  

SFG Rickettsia are transmitted by ixodid ticks, which can act as both a vector and a 

reservoir (Figure 1.11) (Azad and Beard 1998). There are multiple transmission routes observed 

for tick-borne Rickettsia, including horizontal and vertical transmission. Horizontal 

Figure 1.10 Incidence and case fatality rate of RMSF from 1920 to 2013 (Dahlgren et al. 

2016). 
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transmission describes the transmission from the tick to a vertebrate host through bloodfeeding. 

Bloodfeeding may result in the infection of subsequent ticks if the infected animal becomes 

rickettsiemic. Vertical transmission describes the infection of subsequent life stages (transstadial) 

and the infection of progeny (transovarial). Vertical transmission may not drive the continuation 

of populations of infected ticks in nature. In such cases, vertical transmission is likely 

supplemented by horizontal transmission (Azad and Beard 1998). 

Most SFG Rickettsia infect all tissues of the tick host; however, there is natural 

variability in the number of SFG Rickettsia identified infecting either field-caught or laboratory 

ticks (Zanettii et al. 2008). Field caught R. amblyommii-infected A. americanum were found to 

have a light infection in the ovaries, malphigan tubules, and hemocytes, however, all tissues were 

infected (Burgdorfer et al. 1981). Moreover,  A. americanum ticks infected with R. rickettsii have 

been identified as carrying infection loads of 106-107 via qPCR, with no information regarding 

life stage, or feeding status reported (Eremeeva et al. 2003). In another case, a laboratory strain 

of A. americanum were infected in all organs, with a combined total of 105 R. amblyommii per 

tick (Zanettii et al. 2008). Interestingly, the amount of R. amblyommii did not change in this 

Figure 1.11 Transmission routes of tick-borne bacteria including vertical and horizontal 

transmission (Walker and Ismail 2008). 
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laboratory colony during bloodfeeding, or mating. The mechanisms driving the infection of 

tissues and level of infection are unknown, but may rely on SFG Rickettsia-derived and tick-

derived factors (Zanettii et al. 2008).  

1.3.6 Vector competence 

Vector competence describes the ability of a species of vector to become infected by a 

pathogen that it can then subsequently transmit to new susceptible hosts (Beaty and Marquardt 

1996). In the case of tick-borne Rickettsia, after bloodfeeding on a rickettsemic host the imbibed 

Rickettsia must break through many barriers to infection. Successfully escaping the barriers to 

infection will result in disseminated infection of the salivary glands where the Rickettsia, 

facilitating horizontally through saliva, or dissemination to the ovaries facilitating vertical 

transmission to offspring. These barriers include disseminating from the midgut to the hemocoel, 

from the hemocoel to the salivary glands and ovaries, and then escaping the salivary glands to be 

secreted in saliva or infecting the eggs. The most important barrier to infection is considered to 

be the midgut, as this is the first site of contact for pathogens during bloodfeeding (Nicholson et 

al. 2009). The molecular interactions which facilitate barrier escape, or result in clearance of 

bacteria are undefined; thus, characterization of mechanisms directly or indirectly affecting 

Rickettsia maintenance in ticks may better explain rickettsial epidemiology. 

1.4 Immune response of insects 

As little is known regarding the mechanisms of signaling in non-model arthropods, such 

as D. variabilis, the paradigms described in insects can be used as a model for understanding the 

tick immune response. The response of vectors to pathogens was once overlooked; however, 

studies focused on the interactions of vector hosts with transmitted pathogens revealed 

mechanisms of recognition, signal transduction, and varied pathogen specific effector responses 
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(Beaty and Marquardt 1996). Specific understanding of how the insect immune system is 

controlled and responds to microorganisms has been greatly influenced by seminal work 

describing the immune response of the fruit fly D. melanogaster (Lemaitre and Hoffmann 2007, 

Hetru and Hoffmann 2009). Studies have examined both the response at the arthropod level, as 

well as using Drosophila cell lines to characterize the molecular mechanisms controlling insect 

immune responses. Interestingly, as Drosophila cell lines have been instrumental in the past in 

understanding immunological mechanisms, Drosophila cell lines also have been introduced into 

the study of rickettsial infection (Von Ohlen et al. 2012, Luce-Fedrow et al. 2014). Known 

mechanisms of immune response in Drosophila have served as the basis for identifying immune 

related proteins in other arthropods, especially arthropods for which limited genomic information 

is available. This section outlines the major immune signaling pathways and effector 

mechanisms previously characterized in Drosophila (Figure 1.12), with an emphasis on 

responses to bacteria.  

1.4.1 Microbial recognition by Drosophila and immune response initiation  

The immune response of Drosophila is initiated by the recognition of microbial pathogen 

associated molecular patterns (PAMPS) through pattern recognition receptors. These receptors 

are varied in the molecules they recognize as well as in their spatial distribution in the cell.  

Microbial patterns recognized include peptidoglycan (PGN), lipopolysaccharide (LPS), teichoic  

acids, flagellin, glucans and nucleic acids (Lemaitre and Hoffmann 2007, Hetru and Hoffmann 

2009). The recognition of PAMPs trigger the induction of pathways that respond to the particular 

type of microorganism encountered allowing for the induction of immune responsive genes 

necessary for an effective host defense. These include specific pathways for Gram-negative, 

Gram-positive, fungi, yeast and viruses (Lemaitre and Hoffmann 2007).                                      
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During bacterial infections, the insect cell primarily recognizes the presence of meso-

diaminopimelic-acid type (DAP) PGN and lysine-type PGN, which are characteristic of Gram-

negative and Gram-positive PGN, respectively (Hetru and Hoffmann 2009). PGN is recognized 

by peptidoglycan-recognition proteins (PGRPs) and Gram-negative binding proteins (GNBPs) 

which are localized in both the outer membrane of cells and also in the cytoplasm of cells in 

soluble forms (Valanne et al. 2011, Kleino and Silverman 2014). GNBPs activate the Toll 

pathway and most PGRPs activate the immune deficiency (IMD) pathway (Kurata 2014). 

Additionally, a small proportion of known PGRPs are also capable of activating the Toll 

pathway (Lemaitre and Hoffmann 2007, Hetru and Hoffmann 2009).  

 

Figure 1.12 Drosophila immune response to microbes. Pathogen recognition induces 

the activation of the signaling cascades which results in the production of AMPs and 

other effectors (Vallet-Gely et al. 2008). 
 



   
 

 23   
 

1.4.1a Toll pathway receptors, signaling, and effector functions 

 The Toll pathway (Figure 1.13) is activated through recognition of lysine-type PGN by 

GNBPs in response to Gram-positive bacterium or fungi (Hetru and Hoffmann 2009). These 

proteins subsequently activate a protein cascade that culminates in activating the cytokine 

Spatzle. This protein, in turn, binds to the Toll receptor on the Drosophila cell membrane. 

Specifically, there are three encoded GNBPs in the Drosophila genome and one additional 

protein, PGRP-SA, which recognizes Lys-type PGN (Hetru and Hoffmann 2009). These GNBPs 

activate the proteases Grass and Spirit to bind and activate Spatzle, inducing its dimerization as a 

transmembrane receptor. 

 
Figure 1.13 Toll pathway in Drosophila (Ferrandon et al. 2007). 
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The Toll receptor is a transmembrane protein with external leucine rich repeats and 

internal domain similar to mammalian Toll/IL-1R (TIR) domains found on Toll-like receptors 

(Valanne et al. 2011). Once Toll is activated and dimerized, three proteins which contain death 

domains, Pelle, Tube, and dMyD88, form a complex. Pelle, which has kinase activity, 

phosphorylates the inhibitory IκB protein Cactus that is bound to cytoplasmic Dorsal and Dif. 

Once Cactus is degraded, Dif and Dorsal can then translocate into the nucleus and bind upstream 

of immune responsive genes (Hetru and Hoffmann 2009, Valanne et al. 2011).  

The major function of Toll signaling is to upregulate immune responsive genes whose 

products aid in the immune response to Gram-positive bacterial infection. This signaling leads to 

the expression of many characterized antimicrobial peptides (AMPs) including Cecropin, 

Defensin, and Metchnikowin. These proteins are detectable in the hemolymph of Drosophila 

within 2 hours of infection (Uttenweiler-Joseph et al. 1998) and are produced by both hemocytes 

and the fat body in response to a systemic infection. Interestingly, the transcription of many 

AMP genes is downregulated at 24 hours. It was suggested that transient activation is crucial for 

keeping the response from causing harm to insect tissues (Kim et al. 2006). 

1.4.1b IMD pathway receptor, signaling and effectors  

The IMD pathway (Figure 1.14)  is induced in the presence of DAP-type PGN (Hetru and 

Hoffmann 2009). In contrast to the Toll pathway, the IMD pathway is induced through direct 

contact of extracellular DAP-type PGN with the transmembrane PGRPs of the PGRP-LC 

receptor family (Gottar et al. 2002). The receptors dimerize after PGN recognition and induce 

downstream signaling. In the case of intracellular Gram-negative bacterium, a different receptor, 

PGRP-LE, which is a soluble cytoplasmic receptor, can initiate the signaling cascade  
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(Takehana et al. 2002). Once the PGRP receptors have dimerized, the IMD protein will be 

recruited and bind to the intracellular domain of the receptors via death domains (Lemaitre et al. 

1995).  

Two additional proteins, DREDD and FADD, join the complex and then activate the 

MAP kinase TAK1. TAB2 then interacts with TAK2 and is K36 polyubiquitinated (Hetru and 

Hoffmann 2009). The TAK1/TAB2 complex activates two signaling cascades. One pathway 

results in Relish activation and subsequent nuclear translocation. The second results in JNK 

pathway activation, and is discussed below (Hetru and Hoffmann 2009). The Relish arm of the 

Figure 1.14 IMD pathway in Drosophila (Ferrandon et al. 2007). 
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IMD pathway continues with the TAK1/TAB2 complex activating the IKK complex. The IKK 

complex phosphorylates specific serines in Relish and the inhibitory ankyrin repeat containing 

carboxy-terminal portion of the protein is cleaved, revealing a nuclear localization sequence 

(Stoven et al. 2003). The amino-terminal portion of Relish then moves to the nucleus where it 

binds DNA upstream of immune responsive genes.  

The transcription of IMD controlled genes occurs much earlier than that of the Toll 

pathway, and can be as early as 6 hours post infection (Lemaitre et al. 1997). AMPs such as 

Andropin, Attacin, Diptericin, and Drosocin are induced in response to Gram-negative infection 

(Uvell and Engstrom 2007).  

1.4.1c JNK pathway and effectors 

The JNK pathway begins with the TAK1 activating a kinase Hemipterous, which 

subsequently phosphorylates the kinase Basket and activates Drosophila transcription factor AP-

1. This offshoot of the IMD pathway is known to control transcription of genes regulating 

cytoskeletal proteins and aids in proapoptosis signaling (Delaney et al. 2006). Some AMPs are 

also induced through IMD-derived JNK pathway induction (Boutros et al. 2002). This pathway 

has also been implicated in the induction of the production of opsonins and cytokines, and in 

hemocyte differentiation (Lemaitre and Hoffmann 2007).  

1.4.1d JAK/STAT pathway and effectors  

 The JAK/STAT pathway consists of three proteins: the receptor Domeless, the Janus 

Kinase Hopscotch, and the STAT transcription factor. The accumulation of dimerized STAT in 

the nucleus occurs in response to viral infection and tissue damage. JAK/STAT pathway 

induction induces the expression of AMPs including thioester-containing proteins (TEP) and 
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other stress-response activated genes. A full understanding of this pathway and its importance in 

the immune response of insects has yet to be defined (Lemaitre and Hoffmann 2007) 

1.4.2 Barrier defense 

The barrier defense of Drosophila consists of the basal expression of AMPs in epithelia 

including the reproductive tract, trachea, and gut. The expression of AMPs appears to be tissue 

specific and AMPs that are constitutively expressed in certain tissues may be inducible in others 

(Uvell and Engstrom 2007). The upregulation of inducible AMPs, particularly in the gut, has 

been shown to enhance survival of insects during oral infection. Interestingly, immature stages of 

Drosophila are also capable of a robust induction of AMPs such as Cecropin A in response to 

bacterial infection and abrasion wounding (Onfelt Tingvall et al. 2001). Constitutive AMP 

expression appears to be regulated through the NF-κB factor Dorsal, a transcription factor that 

also controls the development and differentiation of insects. In contrast, inducible expression of 

AMPs is controlled through the NF-κB factors Dorsal-related immunity factor (Dif) and Relish 

(Uvell and Engstrom 2007).  

1.4.3 Cellular defenses 

The cellular defenses of Drosophila are controlled by the three types of fully 

differentiated hemocytes: plasmatocytes, crystal cells, and lamellocytes (Evans et al. 2003). The 

main functions of these cells are phagocytosis, encapsulation and clotting. Phagocytosis of 

pathogens occurs through receptor-mediated recognition, engulfment, and maturation of a 

phagolysosome. Encapsulation is a process reserved for larger organisms of which phagocytosis 

is not possible, and may include both melanization and induction of the phenoloxidase cascade. 

Clotting occurs as response to wounding forming through the deposition of hemocytes in a 

fibrous matrix (Vlisidou and Wood 2015).  
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1.4.3a Phagocytosis  

Phagocytosis of pathogens by insect cells is initiated by the recognition of microbial 

PAMPs by soluble and membrane associated receptors. Receptors, such as the Nimrod family, 

directly recognize molecular patterns including peptidoglycan, and glucans; however, scavenger 

receptors such as the Peste family can also indirectly recognize microbial products through 

opsonization (Vlisidou and Wood 2015). Previously identified and characterized receptors are 

known to have multiple isoforms. Receptor diversity increases the potentially recognized 

proteins inducing phagocytosis of microbial products. Insects are also known to produce proteins 

with homology to human α2-macroglobulins and c3/c4/c5 complement proteins called TEPs. 

These complement-like proteins have been implicated as opsonins leading to increased 

phagocytosis and are constitutively expressed but also inducible in all life stages and tissues 

(Bou Aoun et al. 2011). Specifically, phagocytosis has been shown to be increased in Drosophila 

S2 cells infected with Escherichia coli, Staphylococcus aureus, and Candida albicans by the 

activity of TEPII, TEP III, and TEPIV (Stroschein-Stevenson et al. 2006). 

1.4.3b Encapsulation 

Encapsulation occurs after the recognition of foreign particles and microbes that are too 

large to be phagocytosed by a single hemocyte (Vlisidou and Wood 2015). Lamellocytes and 

plasmatocytes are utilized for encapsulation (Russo et al. 1996) and are effective on large 

organisms such as parasitic wasp larvae, tumors, or dead tissues. This process has been best 

characterized during infection of parasitic wasp eggs in Drosophila. Encapsulation in Drosophila 

requires integrins to bind to specific RGD-containing proteins. Other proteins including 

extracellular matrix proteins, laminin, and β-integrins also contribute to encapsulation. After 
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enough hemocytes have attached to the side of encapsulation, melanization may also occur as an 

effect of degranulation, helping to kill the parasite (Russo et al. 1996, Hillyer 2015).  

1.4.3c Nodulation  

The nodulation of organisms too large to be phagocytosed, such as large aggregates of 

bacteria occurs through the accumulation of hemocytes, including granulocytes, which bind to 

one another to form a barrier (Hillyer 2015). Plasmatocytes then bind to the granulocyte layer, 

further reinforcing the structure and leading to melanization. These processes require the protein 

Noduler, which is a component of the extracellular matrix. Throughout nodulation, granulocytes 

release the contents of their granules in an effort to destroy the object or organism within the 

nodule (Hillyer 2015). 

1.4.3d Melanization 

Melanization is the blackening of hemolymph in response to immune challenge or 

wounding caused by the synthesis of melanin (Hillyer 2015). In Drosophila, crystal cells are 

responsible for most melanization and melanin production which localizes to foreign microbes. 

Melanization triggers the induction of reactive oxygen and nitrogen species as well as inducing 

encapsulation and nodulation where phagocytosis are not possible. Hemocytes, including crystal 

cells, contain prophenoloxidase which when released during the rupturing of hemocytes 

catalyzes the production of melanin (Vlisidou and Wood 2015). The production of melanin, the 

induction of the prophenoloxidase cascade, and the production of reactive species lead also to the 

activation of a systemic immune response through Janus-kinase dependent pathways at tissues 

away from the site of melanization (Nam et al. 2012).  
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1.4.4 Secretion of soluble factors  

In insects, secreted molecules such as AMPs, opsonins, complement-like factors, and 

prophenoloxidases aid in immune defenses (Hillyer 2015). These secreted factors work in 

concert with the cellular mechanism to control microbial infections. Some of these factors, such 

as AMPs, can directly kill pathogens. Other soluble factors may increase the actions of 

hemocytes, opsonizing and increasing recognition and phagocytic activity (Lemaitre and 

Hoffmann 2007, Bou Aoun et al. 2011, Bonnay et al. 2014, Hillyer 2015).  

1.4.4a AMPs 

AMPs are secreted by the hemocytes and fatbody of insects in response to infection. 

These proteins are both constitutively expressed, and expressed in response to the type of 

recognized microbe (Vlisidou and Wood 2015). Hemocytes respond to infections and also 

contribute to the induction of immune responses in other tissues. Recently, hemocytes have been 

implicated in transferring the signal of immune response from the gut to the fat body of 

Drosophila infected with Erwinia carotovora. (Basset et al. 2000, Vlisidou and Wood 2015). In 

this way, hemocytes are an important in the induction of systemic immune responses in insects. 

1.4.4b Opsonins  

Opsonins are proteins which bind to pathogens and foreign objects marking them for 

recognition by phagocytic cells (Vlisidou and Wood 2015). Opsonins have not been widely 

studied in Drosophila, but candidate opsonins include TEPs and Down-syndrome cell adhesion 

molecules (DSCAMs). Members of the TEP family of proteins have been shown to be required 

for efficient phagocytosis of Gram-negative bacteria by Drosophila S2 cells, but is not required 

for the phagocytosis of Candida albicans (Stroschein-Stevenson et al. 2006). DSCAMs are 

members of the Ig-superfamily and have the potential to express many isoforms. The binding of 



   
 

 31   
 

secreted forms of DSCAMs have been suggested as another potential mechanism of opsonization 

in Drosophila, aiding in the efficient phagocytosis of E. coli (Watson et al. 2005).  

1.4.4c Phenoloxidase 

Phenoloxidases are produced in insects as proenzymes. In response to immune challenge 

or wounding, these zymogens are activated leading to the production of quinones and 

subsequently melanin (Nappi and Christensen 2005). The induction of the prophenoloxidase 

cascade and melanization have been observed in both the nodulation and encapsulation responses 

of insects. Prophenoloxides are found in the hemolymph of insects and are most likely 

synthesized primarily in hemocytes (Cerenius and Soderhall 2004). The deposition of melanin as 

a result of prophenoloxidase activation is thought to play a role in immune defense through 

blocking nutrient absorption. Additionally, byproducts of the phenoloxidase cascade produce 

reactive nitrogen and oxygen species which aid in direct killing of invading microorganisms 

(Cerenius and Soderhall 2004).  

1.5 Immune response of ticks 

While Drosophila has provided a model for the study of the immune response of insects 

to pathogens, they are not hematophagous organisms or vectors of disease. As such, an 

understanding how pathogens are controlled by bloodfeeding arthropods is best determined 

through studies of the vector and disease agent together (Beaty and Marquardt 1996). Ticks elicit 

a much stronger immune response to atypical bacterial infection, in comparison to typical 

bacterial infection (Munderloh and Kurtti 1995). The relationship between ticks and their 

pathogens is unique and understanding the immune response of the tick will give insight into the 

mechanisms which facilitate infection of vectors with atypical or typical pathogens and 

endosymbiont as well as the transmission of pathogens to vertebrates. The balance of tick-
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derived immune responses and Rickettsia-derived immune evasion mechanisms results in the 

establishment of infection.  Alternatively, the response of tick to endosymbionts must allow for 

the establishment of infection as a result of immune tolerance mechanism. The effector 

mechanisms of ticks have been previously described (Figure 1.15) (Sonenshine and Hynes 2008, 

Hynes 2014) and recent studies have focused on understanding the signaling required for an 

effective immune response. The following section describes the tick effector response to 

infection and the current effort to describe the signaling pathways which orchestrate these 

responses. Although there are overlapping tick distributions, specific hard tick-SFG Rickettsia 

pairings emerge in nature (Table 1.2). Thus, the identification of mechanisms which control the 

differential response of ticks to pathogens and non-pathogens, including typical and atypical 

infections, is of great interest and will lead to a better understanding of vector competence.   

 

 

Figure 1.15 Tick immune mechanisms in response to pathogen infection (Hajdušek et al. 

2013).  
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Table 1.2 Established SFG Rickettsia-tick pairings, including demonstrated pathogenicity in 

animals.   

Rickettsia species, strain, or 

candidate species  

Pathogenicity Tick species infected with Rickettsia 

species in nature  

R. rickettsii  Pathogenic Dermacentor variabilis 

Dermacentor andersoni  

Rhipicephalus sanguineus 

 

R. montanensis  Non-pathogenic Dermacentor variabilis 

Dermacentor andersoni 

R. peacockii Non-pathogenic Dermacentor andersoni 

R. parkeri  Pathogenic  Amblyomma maculatum  

Amblyomma americanum 

 

Candidatus  R. amblyomii Non-pathogenic Amblyomma maculatum 

Amblyomma americanum 

Candidatus R. andeanae  Non-pathogenic Amblyomma maculatum  

Rickettsial Endosymbiont of 

Ixodes scapularis  

Non-pathogenic Ixodes scapularis 

Modified from (Macaluso and Paddock 2014).  

1.5.1 Barrier Defense 

 

Ticks have multiple forms of barrier defense, both externally and internally. The most 

effective external defense mechanism of the tick is the chitinous cuticle which encases the tick 

and is reinforced with a waxy outer layer. Together, the waxy cuticle keeps many pathogens at 

bay, but the presence of pores and glands exposed to the outside environment does allow for the 

possibility of infection with pathogens. Invasion of airways leading to trachea would be unlikely 

though, as the trachea are also lined with cuticle (Hynes 2014).  

During bloodfeeding, the midgut can be challenged with bacteria or other pathogens.  

The midgut consists of an epithelial cell layer over a muscle layer (Sonenshine and Anderson 

2014). A peritrophic membrane can be formed in some tick species during the initial phases of 

bloodfeeding, acting as a protective layer and interfering with the adherence and penetration of 
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the gut (Munderloh and Kurtti 1995). Interestingly, blood is digested slowly and intracellularly 

by midgut cells in ticks, with a notable absence of digestive enzymes in the midgut. This can be a 

supportive environment for the uptake of intracellular bacteria, as the endosomes of the digestive 

cells of the midgut do not immediately fuse with the lysosome (Hynes 2014). 

 The normal flora of ticks varies by species and life stage and consists mainly on non-

pathogenic, symbiotic, and commensal bacteria with only a small proportion representing 

pathogens (Clay et al. 2008). Non-pathogenic SFG Rickettsia have been shown to play a role in 

transmission of Rickettsia through the colonization of ticks which can interfere with the 

establishment and transmission of subsequent Rickettsia (Burgdorfer and Brinton 1975, 

Macaluso et al. 2002). Infection with R. peacockii is the best known example of the interference 

phenomenon where stable infection of the tick D. andersoni inhibits the vertical transmission of 

pathogenic R. rickettsii. This relationship is the foundation for the spatial distribution of high 

rates of R. rickettsii infection in the west side of the Bitteroot Valley and the recognition of the 

East Side Agent, R. peacockii, in D. andersoni ticks on the east side of the Valley (Burgdorfer 

and Brinton 1975). Interference was additionally described in D. variabilis where nonpathogenic 

Rickettsia blocked the transovarial transmission of other rickettsial species (Macaluso et al. 

2002). The mechanisms of prevention of secondary rickettsial infection and vertical transmission 

are currently unknown but suggest that cellular changes in oocytes of SFG Rickettsia-infected 

ticks renders them refractory to secondary infection (Macaluso et al. 2002). Of note, the 

exclusion of pathogenic R. rickettsii infection in Dermacentor ticks may be of benefit to the ticks 

as R. rickettsii is known to be pathogenic to the tick (Niebylski et al. 1999). This interference 

phenomenon does not affect the potential coinfection of ticks by other tick-transmitted pathogens 

such as B. microti, A. phagocytophilum, and B. burgdorferi (Swanson et al. 2006).  
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1.5.2 Cellular defenses  

The organs of the tick are bathed in hemolymph which consists of plasma and hemocytes. 

The hemocytes are involved in many immune processes including nodulation, encapsulation, 

phagocytosis, and the secretion of soluble factors (Hynes 2014). Hemocytes can be characterized 

into 4 types: plasmatocytes, granulocytes, spherulocytes, and prohemocytes (Grubhoffer et al. 

2014). One of the first responses to injury is the coagulation of hemocytes, which leads to a 

walling-off of the damaged area and decreased spread of introduced microbes (Hynes 2014). 

However, when pathogens are able to escape these barriers to infection, ticks respond by 

increasing hemocyte proliferation. Infected D. variabilis are known to produce up to 6.4 times 

the number of hemocytes after infection with an atypical bacteria such as Bacillus subtilis (Johns 

et al. 1998).  Interestingly, when infected with the tick-transmitted, but atypical B. burgdorferi, 

the hemocyte proliferation in D. variabilis is more rapid but returns to normal within 24 hours of 

infection (Johns et al. 2000, Johns et al. 2001). These experiments highlight the induction of 

differing responses to pathogens. Such a quick induction of hemocyte proliferation following 

infection points to the importance of hemocytes in the immune response of ticks to bacterial 

infection.  

1.5.2a Nodulation 

Nodulation is defined as the aggregation of hemocytes to surround invading microbes. 

While the process of nodulation in insects is better characterized, the events which trigger and 

control nodulation in ticks are less understood. In insects, nodulation is lectin-mediated and 

includes both melanization and induction of the prophenoloxidase cascade. Lectins are present in 

ticks and have been shown in D. variabilis to recruit hemocytes to bacterial pathogens (Ceraul et 

al. 2002). In insects, recognition of pathogen associated molecular patterns such as 
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lipopolysaccharide leads to the induction of the prophenoloxidase cascade triggering production 

of melanin (Hillyer 2015). Ticks do not produce melanin during nodulation (Ceraul et al. 2002) 

and prophenoloxidase activity has not been identified in hard ticks, including D. variabilis 

(Zhioua et al. 1997).  

1.5.2b Encapsulation 

Encapsulation is a response to large organisms such as nematodes or protozoa, occurring 

through the binding of hemocytes. In insects, this process involves melanization, after the 

accumulation of hemocytes in concentric circles (Hynes 2014). In ticks there is no involvement 

of melanization, but the formation of concentric hemocytes was observed (Eggenberger et al. 

1990). Interestingly, D. variabilis are known to encapsulate foreign beads, suggesting that the 

encapsulation process may be a PAMP-independent process triggered by foreign objects of 

sufficient size (Eggenberger et al. 1990). The mechanisms of regulation of encapsulation are still 

unknown, but warrant further study.  

1.5.2c Phagocytosis 

While phagocytosis is less understood in ticks, studies in insects indicate the importance 

of recognition and signal transduction events (Marmaras and Lampropoulou 2009). The surface 

receptors responsible for pathogen recognition in tick cells is still unknown. Downstream 

signaling proteins such as FAK/src and MAP kinase are known to be important in immune 

activation in insects and have recently been shown to function in the invasion and phagocytosis 

of Rickettsia in tick cells in vitro (Petchampai et al. 2015). The hard tick Ixodes ricinus has been 

utilized for studies focused on proteins such as α2-macroglobulin, C3-like proteins, and TEPs 

which may act as opsonins increasing the phagocytosis of foreign microbes (Buresova et al. 

2009, Buresova et al. 2011). α2-macroglobulin has been implicated in the inactivation of proteins 
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and inactivation of such α2-macroglobulin proteins results in decreased phagocytosis of bacterial 

infections by hemocytes (Buresova et al. 2009). Additionally, expression of a C3-like proteins 

has been shown to be specific to hemocytes, suggesting a role in the immune response (Buresova 

et al. 2011). Moreover, TEP protein was determined to be specific to the salivary glands 

suggesting a role outside of the immune response (Buresova et al. 2011)  

1.5.3 Soluble defense  

The secretion of antimicrobial factors has been previously studied in ticks (Grubhoffer et 

al. 2014, Hynes 2014). Proteins which are recognized to have antimicrobial activities include 

defensins, varisins, lysozyme, lectins, protease inhibitors, and oxidative stress products 

(Sonenshine and Hynes 2008). These products have varying effects on microbes and have the 

potential to both inhibit and kill these pathogens in the organs of the tick, including the 

hemolymph. As a barrier to infection, a robust soluble response in the hemolymph, in concert 

with the cellular response, may affect the dissemination of foreign microbes to the ovaries and 

salivary glands, thereby preventing transmission events (Beaty and Marquardt 1996).  

1.5.3a AMPs 

AMPs are small proteins produced by multiple organs in arthropods, including the 

hemocytes, with tissue- and pathogen-specific AMP expression (Sonenshine and Hynes 2008). 

While the fat body of insects is a primary source of AMP production, the hemocytes of ticks 

perform this function, as ticks do not have one collective fat body organ (Sonenshine and Hynes 

2008). One well-described AMP family in ticks are the defensins. Over 20 defensins have been 

identified in both ixodid and argasid ticks (Sonenshine and Hynes 2008, Grubhoffer et al. 2014, 

Hynes 2014). These proteins are less than 6kDa, contain 8 cysteins, and a have characteristic 

defensin folds which are created by the presence of disulfide bridges (Ganz 2003). Defensins 
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disrupt membranes of foreign microorganisms through pore formation leading to cell death. 

Most defensins have conserved active regions, which have been crucial to the identification of 

novel defensins in the past. Multiple isoforms of defensins have also been identified in the soft 

tick Ornithodoros moubata where tissue and pathogen specific expression was identified in 

response to both infection and bloodfeeding alone (Nakajima et al. 2001, Nakajima et al. 2002). 

Different isoforms of defensins, known as varisins, have been identified in D. variabilis (Ceraul 

et al. 2007), yet little is known of their function. Defensins of D. variabilis has been shown to be 

active against B. burgdorferi, and are upregulated and releases during tick infection in under 1 

hour (Johns et al. 2001). This immediate induction suggests the importance of defensins in the 

quick clearing of Borrelia by D. variabilis. An increase in transcription of defensin genes after 

infection has been observed, specifically in the midgut of D. variabilis after bloodfeeding and 

injection with R. montanensis (Ceraul et al. 2007). Of note, while I. scapularis encode defensins, 

no defensin protein could be identified in these ticks after infection with B. burgdorferi. These 

results suggest either an alternative non-immune related function of defensin in these ticks, or 

potentially a reduced immune response to a spirochete in the competent vector.  

1.5.3b Lysozymes   

Lysozymes are proteins which hydrolyze the bonds between the N-acetyl-muramic acid 

and N-acetyl-D-glucosamine found in bacterial PGN. The effects of lysozyme have been studied 

in D. variabilis where upregulation of lysozyme in response to rickettsial infection was observed. 

The highest transcription of lysozyme mRNA was localized to hemocytes, but was not induced 

in the midgut (Simser et al. 2004a, Ceraul et al. 2007). Additionally, a synergistic effect of 

lysozyme when added to hemolymph expressing defensin increased the in vitro killing of 

bacteria (Johns et al. 2001). Interestingly, in D. andersoni cell lines, infection with the 
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endosymbiont R. peacockii was not sufficient to induce the expression of lysozyme, indicating a 

differential immune response of ticks to pathogens and non-pathogens (Mattila et al. 2007).     

1.5.3c Proteases and protease inhibitors  

Proteases, such as factor D-like serine protease has been isolated and are shown to 

increase in response to E. coli infection in D. variabilis (Simser et al. 2004b). These serine 

proteases have a high similarity to those identified in other arthropods such as the horseshoe crab 

and mosquito. The activity of serine proteases is speculated to play a role the inability of some 

malaria parasites to establish disseminated infections in the mosquito (Rodrigues et al. 2007). 

Proteases activity has also been identified in the hemolymph of ticks, specifically in the small 

granules of hemocytes indicating its activity may impact the immune response of the tick to 

pathogen infection (Inoue et al. 2001).  

Ticks encoding genes for many protease inhibitors including all known members of the 

α2-macroglobulin family, including TEPs and C3-like proteins (Kopacek et al. 2010), and 

Kunitz-protease inhibitors (KPIs) (Ceraul et al. 2008). α2-macroglobulins are a family of broad 

protease inhibitors that entrap and inactivate proteases by proteolytic cleavage (Armstrong and 

Quigley 1999). These proteins have been identified in O. moubata and I. scapularis and have 

been shown to inhibit proteases such as trypsin (Valenzuela et al. 2002, Saravanan et al. 2003). 

D. variabilis KPIs present in the hemolymph, salivary glands, and midgut of ticks are known 

inhibitors of blood products including thrombin, and factor X (Ceraul et al. 2008). While not 

fully characterized, mRNA sequence encoding a putative α2-macroglobulin has also been 

isolated for D. variabilis and was upregulated during R. montanensis infection (Mulenga et al. 

2003). However, the functional importance of these proteins in the immune response of the ticks 

to SFG Rickettsia infection is unknown.   
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1.5.3d Oxidative stress products 

While reactive oxygen and nitrogen species are produced to combat pathogens, opposing 

proteins such as antioxidants must additionally be produced by the arthropod to protect its tissues 

from damage due to infection induced oxidative stress (Sonenshine and Hynes 2008). In ticks, 

glutathione S-transferase (GST) transcripts are produced in the midgut of fed D. variabilis but 

are decreased during infection with E. coli (Dreher-Lesnick et al. 2006). In contrast, GST 

isoforms were found to be upregulated in chronically R. montanensis-infected D. variabilis 

(Mulenga et al. 2003). Interestingly, infection with R. montanensis and R. amblyommii in D. 

variabilis resulted in differential expression of DvGST organs over time. This result indicated 

that there is a balance of expression which changes in response to R. montanensis or 

R. amblyommii infection, type of organ infected, and the duration of infection (Sunyakumthorn et 

al. 2013). Taken together, the effects of oxidative stress products are varied during tick infection.  

1.5.4 Identification of immune responsive genes in D. variabilis 

The mechanisms of immune signal transduction in ticks has been less widely studied than 

the effector responses outlined above. A lack of understanding of the molecular events at the 

tick-Rickettsia interface, specifically mechanisms controlling disseminated infection and 

transmission events has fueled research in this area of study. Efforts to elucidate immune 

responsive genes in the ovaries of SFG Rickettsia infected D. variabilis began with 

methodologies including subtractive hybridization and differential display PCR (Macaluso et al. 

2003, Mulenga et al. 2003). Genes including α2-macroglobulins, and IgE-dependent histamine 

release factor were among the immune-related proteins determine to be upregulated by 

R. montanensis infection further reinforcing their potential as tick defense proteins (Mulenga et 

al. 2003). However, the mechanisms controlling their expression are still understudied.  
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Studies in recent past have begun to characterize these immune mechanisms using high-

throughput sequencing methodologies, focusing on the transcriptomes of various ticks and their 

tissues under different conditions (Jaworski et al. 2010a, Bissinger et al. 2011, Sonenshine et al. 

2011, Ribeiro et al. 2012, Galletti et al. 2013, Heekin et al. 2013, Kotsyfakis et al. 2015). 

Genome assemblies have been released and are publicly available for Ixodes scapularis, 

Rhipicephalus microplus, and Ixodes ricinus. Recently, an effort to better annotate the 

I. scapularis genome for immune related genes revealed genes with high similarity to the 

proteins of the Drosophila Toll, IMD, and JAK/STAT pathway (Figure 1.16) (Smith and Pal 

2014). In the absence of a sequenced genome, transcriptomes are a good alternative for 

identifying immune proteins through the annotation of resultant reads. The identification of 

globally transcribed genes has been the focus of recent efforts in ticks under many physiological 

conditions including during bloodfeeding and in specific tick tissues including the salivary 

glands (Bissinger et al. 2011, Sonenshine et al. 2011, Ribeiro et al. 2012, Galletti et al. 2013, 

Heekin et al. 2013, Kotsyfakis et al. 2015), and in ticks infected with agents they transmit 

(Jaworski et al. 2010a, Heekin et al. 2013). For D. variabilis, research efforts in infected ticks 

have focused on transcription characterization to identify immune responsive factors and tissue 

specific transmission by ticks infected with A. marginale, E. coli, B. subtilis, Micrococcus luteus, 

C. albicans, or Sacchromyces cerevisiae. Pooled total RNA yielded a transcriptome which 

included an array of immune responsive transcripts including cytochrome p450, serpins, TEPs, 

α2-macroglobulins, and a novel defensin (Jaworski et al. 2010a). Interestingly, seven immune 

responsive transcripts when assayed by qPCR showed modest upregulation of transcription in 

response to an orally acquired A. marginale infection and a significantly higher upregulation to  
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needle inoculations of the bacteria tested (Jaworski et al. 2010b). Additional targeted 

transcriptomic sequencing from D. variabilis synganglion (Bissinger et al. 2011) and male 

reproductive organs (Sonenshine et al. 2011) has added to the available coding sequence. 

Transcriptomes allow for more rapid discovery of previously unknown proteins in organisms 

without fully sequenced genomes and are invaluable for the discovery and annotation of immune 

responsive genes in ticks.  

Sequencing of transcriptomes presumably sequences the majority of transcripts present at 

the time of RNA isolation, including those encoding proteins which aid in the signaling and 

control of the immune responsive genes, including those of the NF-κB signaling pathways.  

Figure 1.16 Identification of Ixodes genes with sequence homology to members of the NF-κB 

signaling pathway. Listed accession numbers represent entries from the I. scapularis genome.  
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NF-κB proteins have been annotated within the genome of I. scapularis including a Dorsal-type 

NF-κB (accession: DS612897) and a Relish-type NF-κB p105 subunit (accession: DS737890). 

Of these two proteins, the Relish-type NF-κB has been characterized as a transcription factor 

which interacts with another regulatory transcription factor, subolesin (Naranjo et al. 2013). The 

interaction of these two regulatory transcription factors was characterized using RNAi, qPCR, 

flow cytometry, commercially available ELISA, and electromobility shift assay kits with activity 

against human, mouse, and rat NF-κB proteins. These assays described the presence of NF-κB 

proteins in I. scapularis and described their putative role in regulating subolesin (Naranjo et al. 

2013). The role of NF-κB family proteins in vectors, including hard ticks infected with SFG 

Rickettsia warrants further study.  

1.6 Broad hypothesis and objectives 

The experimental focus of this dissertation research is to identify and define the role of 

the Relish-type NF-κB transcription factors in the immune response of D. variabilis. The 

experiments reported in the subsequent chapters aimed to define the response of D. variabilis to 

SFG Rickettsia, beginning with the identification and characterization of a Relish-type NF-κB, 

DvRelish. As Relish-type NF-κB molecules are major immune responsive transcription factor in 

vertebrates, invertebrates, and other vector species in response to Gram-negative bacteria 

infection, the studies focused on this transcription factor. The overarching goal of the 

experiments was to elucidate the uncharacterized immune signaling mechanisms in ticks to 

facilitate a deeper understanding of the tick response to SFG Rickettsia. More specifically, it was 

hypothesized that the level of response by D. variabilis to SFG Rickettsia occurs in a species-

specific manner, and that this response drives vector competence. This study used D. variabilis 

infected with two SFG Rickettsia, R. rickettsii and R. parkeri, to identify differences in the 
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transcription, and expression of a Relish-NF-κB protein, DvRelish. This hypothesis was 

addressed through three aims: 1) identify Relish-type NF-κB transcript through homologue 

cloning; 2) identify basal Relish-type NF-κB protein expression; and 3) assess the expression of 

Relish-type NF-κB in response to rickettsial infection.  

 Towards these aims, a putative Relish-type NF-κB encoding transcript was isolated from 

D. variabilis. Conserved domain searches characterized the presence of four prominent domains 

in dvrelish: a Rel-homology domain, an immunoglobulin/plexin/transcription factor domain, a 

nuclear localization sequence and multiple ankyrin repeats. Subsequent analyses identified 

DvRelish and the activated N-terminal DvRelish in D. variabilis tissues and hemocytes via 

Western blot and mass-spectrometric analysis. SFG Rickettsia infection assays were performed 

to characterize the expression of dvrelish in response to microinjection, identifying a significant 

increase in dvrelish transcription in the hemocytes after 1 hour, and in combined tick tissues after 

6 hours. No increase in DvRelish protein was identified by Western blot. Capillary feeding 

resulted in either the upregulation or downregulation of dvrelish transcription in the tick gut in 

response to 1 or 3 hour R. rickettsii exposures, respectively. Overall, increased dvrelish 

expression occurred after D. variabilis exposure with the associated pathogen R. rickettsii, but 

not with R. parkeri or P. aeruginosa. Together, this dissertation identified a Gram-negative-

responsive Relish-type NF-κB molecule in D. variabilis and characterized of differential dvrelish 

expression in response to SFG Rickettsia infection for the purpose of better understanding the 

immune mechanisms controlling the infection of SFG Rickettsia in ticks.  
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CHAPTER 2 

ISOLATION OF DVRELISH, A TRANSCRIPT ENCODING A PUTATIVE RELISH-

TYPE NF-κB PROTEIN, IN THE AMERICAN DOG TICK,  

DERMACENTOR VARIABILIS  

 

2.1 Introduction 

Ticks are both the reservoirs and vectors of multiple pathogens including bacteria, 

protozoa, and viruses (Nicholson et al. 2009). As such, ticks have a unique relationship with the 

pathogens they transmit. Transmission of SFG Rickettsia in ticks via the establishment of a 

disseminated infection in organs is required for successful transmission, such as in the salivary 

glands and ovaries. Dissemination depends on either the ability of the pathogens to evade the 

immune response of the tick, or for the tick to modulate the immune response to different 

pathogens to serve as competent vector or host. However, SFG Rickettsia are recognized as 

pathogens of ticks capable of inducing deleterious effects, as well as endosymbionts of ticks with 

the potential provision of beneficial effects for the vector. Understanding the tick effector 

responses and signaling events mediating specific tick-SFG Rickettsia pairings are crucial to 

understanding vector competence and rickettsial ecology.  

 The tick immune response to invading pathogens consists of two arms, the cellular and 

the soluble response. The cellular immune response is characterized by the phagocytosis, 

encapsulation, and nodulation of invading microbes by the hemocytes of ticks.  The beginning of 

the cell mediated response is triggered by recognition of pathogen associated molecular patterns 

and the coagulation of hemolymph at the site of infection, followed by an increase in hemocyte 

proliferation (Sonenshine and Hynes 2008). The humoral immune response is controlled by the 

secretion of proteins with antimicrobial properties which are produced by most cell types in the 

tick. As ticks do not have a centralized fat body, the main site of antimicrobial peptide (AMP) 

production is by hemocytes in the hemolymph of the tick (Grubhoffer et al. 2014) and includes 
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proteins such as defensins, enzymes such as lysozymes, proteases, protease inhibitors, and 

oxidative stress products (Sonenshine and Hynes 2008). These soluble factors function during 

ingestion of the bloodmeal in the midgut and during dissemination of bacteria throughout the 

migration to the hemolymph, salivary glands, and ovaries. In other arthropods the expression of 

AMPs in response to infection is primarily controlled by the NF-κB transcription factors Dorsal 

and Relish (Hetru and Hoffmann 2009). However, the mechanisms controlling effector responses 

have not been examined in ticks.  

The regulatory elements of the tick innate immune system are not as well characterized as 

the soluble and cell-mediated response effector proteins and cells (Sonenshine and Hynes 2008). 

Evidence of potential recognition receptors has been realized through the sequencing of the 

Ixodes scapularis genome as well as transcriptomes from other tick species. For example, the 

genome of I. scapularis contains partial sequences comprising portions of the Toll and IMD 

pathways, including a toll like receptor with leucine-rich repeats, a Dorsal-type NF-ĸB and its 

regulating partner Cactus, a Relish-type NF-ĸB, and Caspar a negative regulator of the IMD 

pathway (Smith and Pal 2014).  

As ticks are the only vectors of SFG Rickettsia, the response of ticks to Gram-negative, 

intracellular bacterium is of interest. Dermacentor variabilis is a recognized vector of Rickettsia 

rickettsii, a highly pathogenic SFG Rickettsia in both humans and the tick vector.  Specific tick-

SFG Rickettsia pairings predominate in field studies, but the mechanisms driving such parings 

are unknown. Understanding the signaling and induction of differential effector responses of 

hard ticks to typical or atypical SFG Rickettsia will aid in the understanding of rickettsial 

ecology. Typical SFG Rickettsia comprise of species typically identified by field studies to be 

present in a particular tick species; whereas, atypical SFG Rickettsia describes species rarely or 
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never associated with a particular tick species. Utilizing the characterization of immune signaling 

pathways in model arthropods allows for the identification of immune molecules in organisms, 

including D. variabilis, for which there are no currently annotated or released genes which 

correspond to the immune signaling pathways. A search of the Genbank databases returned no 

previously sequenced and annotated NF-κB gene transcript or protein sequence for D. variabilis. 

Three 454 pyrosequencing unannotated datasets were previously released to NCBI’s Sequence 

Read Archive (SRX018179, SRX001955, and SRX001954) which consisted of transcripts 

isolated from D. variabilis infected with various bacterial pathogens, and from different organs 

of uninfected ticks.  Interestingly, with the release of the I. scapularis genome, a NF-κB protein 

was putatively identified and labeled as a p105-like subunit (accession: XM_002434459.1), but 

the molecule was lacking the canonical inhibitory domain containing ankyrin repeats (Smith and 

Pal 2014). While Ixodes and Dermacentor are both hard ticks, they are each classified into the 

prostriate and metastriate groups, respectively (Klompen 2005). Thus, immune molecules and 

signaling mechanisms may not be conserved between tick species.  

In an effort to better understand the relationship between SFG Rickettsia and their vector 

hard ticks, this study was designed to identify and annotate an NF-κB protein in D. variabilis. As 

Relish-type NF-κB proteins are the major Gram-negative responsive transcription factor in other 

arthropods (Kleino and Silverman 2014), we hypothesized that the D. variabilis genome would 

encode a Relish-type NF-κB gene. Homologue cloning and bioinformatic analyses were used to 

amplify and molecularly characterize a transcript encoding dvrelish, a putative Relish-type     

NF-κB transcription factor in D. variabilis.  

 

 

 

 



57 
 

2.2 Methods and Materials 

 

2.2.1 Identification of a partial dvrelish transcript using previously published high-throughput 

sequencing databases 

 

For the purpose of identifying previously unidentified D. variabilis transcripts with 

homology to Relish-type NF-κB proteins, a homology cloning approach was designed to include 

conserved domain searches of previously sequenced high-throughput sequence datasets and   

rapid amplification of cDNA ends-PCR (RACE-PCR) (Figure 2.1). A thorough Blast search of 

the Genbank databases (6/2013) using the characterized Relish sequences from Drosophila 

melanogaster (accession: Q94527), Aedes aegypti (QMV44), and Carcinoscorpius rotundicauda 

(accession: ABC75034) as the query sequence returned no previously sequenced and annotated 

NF-κB gene transcript or protein sequence for D. variabilis. Three 454 pyrosequencing databases 

from published studies were previously released to NCBI’s Sequence Read Archive (Jaworski et 

al. 2010, Bissinger et al. 2011, Sonenshine et al. 2011) and consisted of unannotated partial 

transcripts isolated and sequenced from uninfected D. variabilis tissues, whole D. variabilis 

Figure 2.1 Homolog cloning strategy utilized for identification of NF-κB encoding transcripts in 

D. variabilis. 
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injected with Gram-negative and Gram-positive bacteria, fungi, and ticks infected with the 

intracellular Anaplasma phagocytophilum via feeding on an infected animal (accessions: 

SRX001954, SRX001955, SRX018179).  The sequencing datasets were combined and served as 

a local database for Blast (v2.2.27). The presence of partial transcripts containing domains 

characteristic of Relish-type NF-κB proteins was identified using the following domain 

alignments from the Conserved Domain Database (NCBI): 1) Rel-homology domains (RHD) 

(cd07++884 RHD-n_Relish); 2) Immunoglobulin/plexin/ transcription factor (IPT) domains 

(cd01177 IPT_NFkappaB); and 3) ankyrin repeats (cd00204 ANK). A reverse position specific-

Blast (RPS-Blast) was performed using conserved domain database alignments for each of the 

canonical domains described above as the query. Identified partial transcripts with were then 

used for primer design, transcript isolation, and cDNA library synthesis using the SMARTer 

RACE 5’/3’ cDNA synthesis kit (Clontech).  

2.2.2 Infection of D. variabilis with R. rickettsii and sample preparation 

 A colony of Rickettsia-free D. variabilis was maintained on rats, guinea pigs, and rabbits, 

as previously described (Macaluso et al. 2001). Rickettsiae were maintained and propagated in 

Vero E6 cells with Dulbecco’s modified medium (DMEM) (Invitrogen) supplemented with 5% 

fetal bovine serum (Hyclone). Cells were maintained in a 34°C incubator with 5% CO2. For 

rickettsial isolation, bacteria was partially purified after the host cells were identified as highly 

infected (80% or greater) via cytospin (Wescor) and Diff-Quik staining (Siemens) 

(Sunyakumthorn et al. 2008). Cells were lifted from a single infected T-75 flask and Vero E6 

cells were lysed with 10 passages through a 27 gauge needle. The resultant lysate was then 

centrifuged for 10 minutes at 275 x g at 4°C. The supernatant, which contained rickettsiae, was 

then passed through a 2 µm filter to remove host cell debris. High-speed centrifugation at 16,000 
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x g was performed to concentrate the Rickettsia. Bacterial viability was determined using the 

Baclight viability staining kit (Invitrogen). Rickettsiae were enumerated with a Petroff-Hausser 

bacterial counting chamber on a Leica fluorescent microscope. Enumerated Rickettsia (2.5 x 108) 

were subsequently resuspended in 10 µl of sterile phosphate buffered saline (PBS). Unfed, virgin 

female adults were injected with R. rickettsii (str. Shelia Smith). Prior to injection with 

rickettsiae, ticks were surface sterilized with 5 minute incubations of 0.1 bleach, 70% ethanol (3 

times), and distilled water. Ticks were immobilized with tape, dorsal side down and injected into 

the hemocoel cavity via the coxae of the third left leg.  Five unfed, adult females were injected 

with 2 µl of Rickettsia-solution with a 27 gauge needle. Ticks were maintained in a humidified 

environmental chamber at 27°C. One hour post exposure, ticks were removed from the incubator 

and dissected with a scalpel blade in sterile PBS. Additionally, 5 uninfected, surface sterilized 

ticks were dissected.  Salivary glands, gut, ovaries and hemolymph from infected ticks, and 

separately tissues from uninfected ticks, were combined and collected into 50 µl of PBS and 

placed in RTL buffer for RNA isolation with the RNeasy kit (Qiagen). Prior to RNA isolation, 

tissues were homogenized using a TissueLyzer and 3-mm borosilicate glass beads (Sigma) in a 

1.7 ml microcentrifuge tube for 4 minutes at 25hz/sec. RNA was isolated as per manufacturer’s 

instructions, and stored at -80°C until used. Total RNA (1 µg) was treated with 2 units of Turbo 

DNase (Ambion) before cleanup and concentration with the Clean and Concentrator-5 kit 

(Zymo). Total RNA was subsequently reverse transcribed using the iScript cDNA synthesis kit, 

including no reverse transcriptase reactions to identify DNA contamination.  

2.2.3 RACE-cDNA library synthesis, RACE-PCR, cloning, and sequencing 

 Total RNA (1 µg) was used for 5’- and 3’-enriched RACE-cDNA library synthesis using 

the SMARTer RACE 5’/3’ kit (Clontech) as per manufacturer’s protocols. Primers were  
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Table 2.1 Primers used for isolation of full length dvrelish transcript.  

 

designed using Primer3 (Koressaar and Remm 2007, Untergasser et al. 2012) from a partial 

D. variabilis transcript identified through RPS-blast with homology to Relish-type RHD, and are 

listed in Table 2.1. Each specific primer was combined with the Universal Primer Mix  

 (Clontech) which amplifies the 5’ or 3’ adaptor in each library for PCR amplification. 

Traditional PCR with an additional round of cycling was performed with each RACE-PCR  

library and the appropriate direction-specific and transcript-specific primer. RACE-PCR was 

performed using the Advantage cDNA PCR kit (Clontech) with 1 µl of each library as template  

in separate PCR reactions. The thermocycling conditions consisted of: 1 cycle at 95°C for 10 

minutes, amplification for 40 cycles with denaturing at 95°C for 30 seconds, annealing at 45°C 

for 1 minute, and extension at 72°C for 3 minutes. A final extension was performed for 10 

minutes at 72°C. For the additional rounds of PCR, 0.5 µl of the previous reaction was used as 

the template for the next reaction. PCR reactions were visualized with a 1.5% agarose gel 

(GenePure) and SybrSafe DNA gel stain (Invitrogen). All bands amplified were cloned using the 

TOPO TA Cloning kit with pCR4-TOPO (Invitrogen) per manufacturer’s instructions. Plasmids 

were isolated using the Fast Plasmid Mini kit (Eppendorf) according to manufacturer’s 

instructions. Plasmid inserts were sequenced in using the dye terminator method on an Applied 

Biosystems 3130 Genetic Analyzer in GeneLab at Louisiana State University. Inserts were 

Primer Name Primer Sequence (5’-3’) Purpose  

IPTDV_43F TGCACATCTGACTCCTGGAA Initial Isolation 

IPTDV_233R ACAAAGGCTGGAAAGCTCAG Initial Isolation 

IPTLeggo211>5’ GACTATGGCCACCTGATGGT 5’ RACE-PCR 

RelishLeggo1925>3’ TGCCTTGTGACCCTTCTGA 3’ RACE-PCR 

RelishLeggo1247>3’ TGCAAGGCGGATACTCTACC Sequencing 

RelishLeggo1797>3’ TGCTGACCTTTCACTTGTGG Sequencing 

RelishLeggo2358>3’ CGGTCAAAAGTGGTGGAAGT Sequencing 
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analyzed with MacVector (v14.5.0) and aligned with the isolated partial transcript sequence 

derived from traditional PCR with Clustal W.  If the RACE-PCR was not successful after 

cloning all amplicons, the annealing temperature was varied between 65°C and 45°C or the 

amount of cDNA was varied, independently. RACE-PCR, cloning, and sequencing was 

performed until a full transcript sequence was isolated.  

2.2.4 Analysis of isolated dvrelish transcript 

 The full-length transcript, dvrelish, was aligned to previously isolated Relish-type    

NF-κB transcript sequences in other model organisms including the fruit fly Drosophila 

melanogaster (accession: Q94527), the mosquito Aedes aegypti (accession: Q8MV44), and the 

horseshoe crab Carcinoscorpius rotundicauda (accession: ABC75034) using MacVector 

(v14.5.0). Nucleotide and translated amino acid alignments were used to determine percent 

identities. A conserved domain search was performed using the Conserved Domain Database 

(NCBI) to identify all domains present on the transcript. The Open Reading Frame Finder 

(NCBI) was used to determine the correct open reading frame of the transcript. The cNLS 

mapper (Kosugi et al. 2009) was used to determine the presence of a nuclear localization 

sequence.  

2.3 Results 

 

2.3.1 Isolation of a partial dvrelish transcript and completion of full length transcript via RACE-

PCR.  

 

The RPS-blast of the D. variabilis 454 pyrosequencing database resulted in one partial 

transcript with a RHD, one partial transcript with an IPT domain, and two partial transcripts with 

ankyrin repeats. The sequences for RHD-containing and IPT-containing transcripts were utilized 

for primer design for traditional PCR.  Both primer sets were used in traditional PCR with cDNA 

from uninfected ticks, and D. variabilis infected with R. rickettsii.  Resultant amplicons were 
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cloned and sequenced. No partial transcripts with homology to previously identified Relish-type 

NF-κB were identified in cDNA libraries from uninfected D. variabilis. Traditional PCR using 

cDNA from R. rickettsii-infected D. variabilis as template resulted in the amplification of two 

partial transcripts with identity to known NF-κB transcripts. However, only the primer set 

specific for IPT-domains was successful in amplifying the intended target, whereas the RHD-

specific primers instead amplified an alternative RHD characteristic of another RHD-containing 

NF-κB protein, Dorsal.  Primers for RACE-PCR with both 5’ and 3’ enriched libraries were then 

designed with at least 100 nucleotides for overlap of RACE-PCR amplicons with traditional PCR 

amplicons. These primers were paired with the universal primer mix (UPM) primers specific to 

the 5’ or 3’ adaptor which was ligated during the RACE-library preparation. Amplicons were not 

immediately visualized with 40 cycles of PCR, so 0.5 µl of first round reactions were used as the 

template for a second 40 cycles of PCR. All amplicons visualized were cloned into pCR4-TOPO 

and sequenced.  Amplification of the 5’-end of the dvrelish transcript occurred with additional 

rounds of RACE-PCR with primer IPTLeggo211>5’. A single band overlapped with the known 

partial transcript after sequencing with M13 Forward and M13 Reverse primers and completed 

the 5’ sequencing of the dvrelish transcript. Amplification of the 3’-end of dvrelish transcript 

occurred with RelishLeggo1925>3’ and the UPM with additional rounds of RACE-PCR and 

sequencing of all amplicons. One large amplicon of approximately 2,500 base pairs (bp) 

overlapped with the previously known sequence. Complete sequencing of the cloned amplicon 

was performed with primer walking.  Primers RelishLeggo1247>3’, RelishLeggo1797>3’, and 

RelishLeggo2358>3’ were used for the sequencing and completing the 3’-end of the transcript. 

The full-length transcript was deposited into Genbank under the accession KJ484815.  
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2.3.2 Analysis of isolated dvrelish transcript  

A schematic representing the domain architecture was determined through searches with 

the Conserved Domain Database, ORF finder, and cNLS mapper for the putative translated 

transcript is presented in Figure 2.2. The full-length dvrelish transcript was 3,138 nucleotides in 

length with an ORF that starts at base 409 through the stop codon beginning at base 3031. The 

putative translated ORF is 873 amino acids long.  The conserved domain search determined the 

presence of a Rel-homology domain (amino acids 20-193), an IPT domain (amino acids 197-

300), a nuclear localization sequence (amino acids 307-317), and 5 ankyrin repeats (amino acids 

520-751).  

 

The percent identities for the nucleotide alignment and translated amino acid alignment 

are listed in Table 2.2. In general, the nucleotides align slightly better than the amino acid 

sequences. The closest nucleotide and amino acid sequence was from the horseshoe crab, 

C. rotundicauda, with nucleotide and amino acid identities of 36.1% and 23.3%, respectively. 

Compared to the I. scapularis p105-like transcript (ISCW018935) which does not contain the 

canonical inhibitory ankyrin repeats, there is 58.4% nucleotide identity and 35.8% translated 

amino acid identity across the conserved regions. The nucleotide sequence and translated amino 

acid sequence of the transcript are aligned to Relish-type NF-κB proteins of other model 

organisms in Figure 2.3 and Figure 2.4, respectively.  The nucleotide sequence is minimally 

conserved with other arthropods, including the vector mosquito A. aegypti. The  

Figure 2.2 Schematic representation of the dvrelish transcript. RHD represents the Rel-

Homology domain, IPT represents the Immunoglobulin, plexin, transcription factor domain, 

NLS represents nuclear localization sequence.  
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Table 2.2 Percent identity of isolated dvrelish transcript and putative translated DvRelish 

protein as compared to the Relish-type NF-κB of other model organisms.  
  

 

transcript sequence encoding the Drosophila NF-κB contains multiple stretches of nucleotides 

within the RHD and IPT-domains that are not encoded in the mosquito or horseshoe crab Relish 

NF-κB transcripts. Additionally, the horseshoe crab Relish-type NF-κB transcript encodes 

numerous additional stretches of nucleotides present in the C-terminal ankyrin repeat domains 

that were previously identified as linker sequence (Fan et al. 2008).  In stark contrast, the 

transcript encoding dvrelish contains only two linker sequences.  

Interestingly, while the putative translated amino acid sequence of dvrelish has minimal 

amino acid identity to other arthropods, the conserved domain search reveals the RHD, IPT and 

ankyrin repeats are highly conserved (Figure 2.4). The recognized domains and their specific 

amino acid sequence correspond to structures which are integral to the function of Relish-type 

NF-κB proteins. DNA binding sites and ankyrin repeat binding sites throughout the RHD and 

IPT were conserved in dvrelish.   

 

 

  

 

Organism Percent nucleotide identity Percent amino acid identity 

Drosophila melanogaster 33.2 18.7 

Aedes aegypti 35.7 18.5 

Carcinoscorpius rotundicauda 36.1 23.3 

Figure 2.3a-d (Following page). Multiple sequence comparison of Relish-type NF-κB mRNA. 

dvrelish transcript nucleotide sequence was aligned to Relish-type NF-κB molecules of 

Drosophila melanogaster (accession: Q94527), Aedes aegypti (accession: Q8MV44), and 

Carcinoscorpus rotundicauda (accession: ABC75034). Shaded nucleotides represent base 

identity across aligned sequences.  
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Figure 2.3a Continued from previous page. 
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Figure 2.2b: Continued from previous page. 
 

Figure 2.3b Continued from previous page.   
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Figure 2.3c Continued from previous page. 
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Figure 2.3d Continued from previous page. 
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2.4 Discussion  

 Dermacentor variabilis is the vector of multiple tick-borne pathogens, including 

R. rickettsii, the etiologic agent of Rocky Mountain spotted fever. The relationship between hard 

ticks and SFG Rickettsia is unique, as hard ticks are hosts and vectors for pathogenic, non-

pathogenic and endosymbiotic SFG Rickettsia (Azad and Beard 1998). From the infection of the 

tick through horizontal transmission to a subsequent vertebrate host or vertical transmission to 

tick progeny, the tick immune system must control the infection. While it is known that 

R. rickettsii has deleterious effects on tick host fecundity, D. variabilis are able to survive a 

disseminated infection required for horizontal and vertical transmission (Niebylski et al. 1999). It 

is understanding the mechanisms that control the balance between establishment of infection and 

clearance that is important for eventual development novel approaches to control. The immune 

system of the tick is characterized by cellular and soluble defenses which include the actions of 

hemocytes such as phagocytosis, and proteins such as AMPs (Sonenshine and Hynes 2008). 

Together, these defenses are expressed in accordance to the type of pathogen recognized after 

challenge (Johns et al. 1998, Johns et al. 2000, Johns et al. 2001). 

Understanding mechanisms of recognition and signaling in hard ticks has been 

challenging without available genomic sequence. The release of the I. scapularis genome 

allowed for the annotation of many components of Toll and IMD pathways (Smith and Pal 2014)

 

Figure 2.4 (Following page). Multiple sequence comparison of Relish-type NF-κB translated 

amino acid sequence. dvrelish was translated and aligned to Relish-type NF-κB molecules of 

Drosophila melanogaster (accession: Q94527), Aedes aegypti (accession: Q8MV44), and 

Carcinoscorpus rotundicauda (accession: ABC75034). Conserved domains are represented 

on the alignment. The blue box represents the Rel-homology domain, the orange box 

represents the IPT domain, the yellow box represents nuclear localization sequence, and the 

green box represents the ankyrin repeat domain. Shading indicates identities across the 

aligned sequences. DBS represents regions corresponding to DNA binding sites. ABS 

represents regions corresponding to ankyrin binding sites.  
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. 

Figure 2.4 Continued from previous page.  

 



71 
 

However, I. scapularis and D. variabilis are genetically divergent; as such, their genes may not 

be conserved.  While there are differences between ticks, previously released and annotated 

genes, combined with the genomic and transcriptomic data of other model organisms and 

hematophagous arthropods, can serve as the basis for the molecular identification of homologous 

immune molecules in organisms without an available genome.  

  In this chapter, a transcript encoding a putative Relish-type NF-κB protein was identified 

in the American dog tick, D. variabilis. The successful isolation of a full-length transcript of 

dvrelish marks the first complete sequence for a Relish-type, NF-κB protein in D. variabilis. The 

dvrelish transcript is of low abundance, as evidenced by the necessity of increasing the 

traditional and RACE-PCR cycling parameters to include additional rounds of PCR. Moreover, 

isolation of dvrelish with cDNA libraries from uninfected D. variabilis was unsuccessful. The 

cDNA from R. rickettsii-infected D. variabilis contained detectable amounts of dvrelish 

transcript, transcribed in response to the infection of the tick. It has been previously recognized 

that infection in arthropods induces the increased transcription of immune related genes, 

including those encoding NF-κB proteins (Stöven et al. 2000, Meister et al. 2005, Tanaka et al. 

2007, Antonova et al. 2009). The detection of the target transcript allowed for visualization of 

partial dvrelish with additional rounds of traditional PCR. The partial isolation of dvrelish 

coupled with RACE-PCR resulted in the isolation of a full dvrelish transcript.  

 While another NF-κB protein has been annotated in the I. scapularis genome, the 

annotated sequence does not contain a critical canonical domain of these type of proteins, the 

ankyrin repeats. Dorsal-type NF-κB proteins are unique in having a separate inhibitory protein 

which sequesters the protein in the cytoplasm; however, Relish proteins have encoded ankyrin 

repeats which act as the inhibitory domain (Hetru and Hoffmann 2009). Once activated, the 
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inhibitory N-terminal portion of the protein is cleaved, the nuclear localization sequence is 

exposed, and the N-terminal portion is translocated into the nucleus of the cell. The presence of 

encoded ankyrin repeats supports the classification of dvrelish as encoding a putative Relish-type 

NF-κB protein.  

Conserved domain searches parse out the RHD of dvrelish as Relish-type, as opposed to 

Dorsal/Dif-type. While the nucleotide and amino acid identities are quite low in comparison to 

other arthropods, the amino acids responsible for the protein function of Relish-type NF-κB 

proteins are highly conserved in the RHD, IPT and ankyrin repeats. The conservation of amino 

acids in these domains characterized in Drosophila NF-κB molecules allows for binding to 

DNA, dimerization, and the binding of the encoded ankyrin repeats for sequestration in the 

cytoplasm of cells. Nucleotide Blast searches alone were not able to identify the partial 

transcripts from D. variabilis transcriptomes as NF-κB encoding molecules. However, conserved 

domain searches take into account the overall domain architecture through the use of multiple 

sequence alignments for identification. Hence, conserved domain searches are better suited for 

the identification low identity transcripts with domains of high structural homology, such as 

dvrelish. This difference is annotation methodology likely explains how dvrelish was not 

recognized in the transcriptional studies from which the starting partial transcripts originated.  

Previous research was focused on the effector responses of the tick (Sonenshine and 

Hynes 2008), without developing molecular tools and assays to study the signaling events 

leading to and controlling differential effector response. The study of how the immune responses 

of the tick vector is differentially expressed after infection with differing bacterial infections will 

aid in the understanding of the mechanisms underlying the vector competence of D. variabilis 

for specific rickettsial pathogens.  
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CHAPTER 3 

EXPRESSION OF DVRELISH, A PUTATIVE RELISH-TYPE NF-κB PROTEIN IN 

DERMACENTOR VARIABILIS 

 

3.1 Introduction  

As vectors of spotted fever group (SFG) Rickettsia, hard ticks are recognized to have a 

unique relationship with this group of intracellular bacteria (Azad and Beard 1998). Specific 

SFG Rickettsia and tick associations have been supported by field studies, even considering that 

many hard tick vectors have overlapping distributions and share vertebrate hosts (Macaluso and 

Paddock 2014). Members of the SFG Rickettsia are varied in their pathogenicity to their 

vertebrate and tick hosts (Walker and Ismail 2008). As an example, SFG Rickettsia are also 

recognized as endosymbionts of hard ticks as there are no detrimental fitness effects associated 

with infection with some species (Niebylski et al. 1997, Baldridge et al. 2007, Gillespie et al. 

2012, Paddock et al. 2015). 

SFG Rickettsia are able to survive within their specific vector hosts, indicating the 

presence of mechanisms favoring bacterial survival within specific tick-Rickettsia pairings. 

However, instances of tick host fitness costs associated with infection have been documented 

(Niebylski et al. 1999). For example, the association of Rickettsia rickettsii with its vector 

Dermacentor variabilis results in both the development disseminated infections required for 

transovarial and horizontal transmission and documented negative fitness effects such as reduced 

fecundity (Ricketts 1907, Burgdorfer and Brinton 1975, Schumacher et al. 2016). Such 

mechanisms favoring bacterial survival likely include Rickettsia-derived factors driving immune 

evasion within the tick host; and, conversely, tick-derived factors facilitating immune tolerance 

required for such pairings to emerge. Both the Rickettsia-derived and tick-derived factors 

enabling specific associations are currently unknown.  
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The immune response of vector ticks may factor greatly in rickettsial ecology, 

specifically the potential to persist or be cleared defines vector competence. If ticks are 

controlling microbial infections (unwanted pathogens) then the immune response is likely the 

mechanism involved. However, the mechanisms of recognition, signal transduction, and 

transcriptional control of the immune response is largely unexplored in ticks without sequenced 

genomes, including D. variabilis. Characterization of the immune response of vector ticks has 

been examined with emphasis on describing effector mechanisms (Sonenshine and Hynes 2008). 

The response to bacterial infection in arthropods is best described in the non-vector model 

organism, Drosophila melanogaster (Lemaitre and Hoffmann 2007). Known effector responses, 

such as antimicrobial peptide (AMP) production, are controlled in a pathogen-specific manner 

via transcription factor-dependent regulation (Hetru and Hoffmann 2009). Dorsal and Relish NF-

κB proteins from D. melanogaster are expressed and activated in response to Gram-positive and 

Gram-negative bacteria, respectively (Valanne et al. 2011, Kleino and Silverman 2014). Relish-

type NF-κB protein encoding genes have been previously identified in Ixodes scapularis 

(Naranjo et al. 2013); however, the divergent gene sequence does not encode inhibitory ankyrin 

repeat domains. Given that NF-κB proteins control the response to Gram-negative bacteria in 

model arthropods, the expression of homologous proteins in D. variabilis was probable. 

The characterization of Relish-type transcription factors in arthropods has been assessed 

subsequent to infection with bacteria, viruses, or protozoa in mosquitoes and typical protozoa in 

tsetse flies (Lemaitre et al. 1995, Hu and Aksoy 2006, Costa et al. 2009, Cirimotich et al. 2011). 

Gram-negative bacterial infections in Drosophila result in an increase in Relish expression with 

a peak at 3 hours (Dushay et al. 1996). This phenotype was additionally noted in a horseshoe 

crab infection model (Wang et al. 2006). The temporal patterns of NF-κB proteins in response to 
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atypical bacteria may not be directly comparable to putative NF-κB proteins during infection of 

hard ticks and their typical SFG Rickettsia.  

With the goal of better characterizing the mechanisms of immune signaling occurring 

during SFG Rickettsia infection of D. variabilis with SFG Rickettsia, the previous chapter of this 

dissertation research identified dvrelish, a transcript encoding a putative Relish-type NF-κB 

protein (Chapter 2). The current chapter of this dissertation was designed to expand upon those 

findings by identifying DvRelish protein in D. variabilis. The experiments described herein were 

designed to test the hypothesis that D. variabilis express DvRelish and its activated N-terminal 

truncated form. This identification occurred through: 1) the expression of recombinant DvRelish 

(rDvRelish) in SF9 cells to confirm the predicted size of DvRelish; 2) the identification of 

proteins specifically recognized by an anti-DvRelish antibody; and, 3) the determination of 

DvRelish expression in D. variabilis hemocytes exposed to Gram-negative bacteria and Gram-

negative bacteria-derived peptidoglycan (PGN).  

3.2 Methods and Materials  

 In order to determine the expression of DvRelish, experiments were designed using 

recombinant protein expression systems, Western blotting, and immunofluorescence assays 

(IFA) in uninfected infected tick tissues (Figure 3.1). First, a recombinant DvRelish (rDvRelish) 

protein was expressed using a baculovirus expression system for the purpose of identifying the 

molecular weight of rDvRelish and confirming anti-DvRelish antibody binding. Next, utilizing 

Western blotting and mass-spectrometry, DvRelish and activated N-terminal DvRelish were 

identified in uninfected D. variabilis tissues. Finally, DvRelish expression in hemocytes was  
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assessed via IFA in Gram-negative PGN and Pseudomonas aeruginosa stimulated D. variabilis 

hemocytes.  

3.2.1 Expression of recombinant DvRelish in SF9 cells 

 Recombinant DvRelish (rDvRelish) was expressed using the Bac-to-Bac baculovirus  

expression system (Invitrogen) in SF9 cells according to manufacturer’s instructions. SF9 cells 

were maintained in SF900 II serum free medium (Invitrogen) in a 28°C incubator without CO2. 

Two constructs were used for expression: 1) the dvrelish transcript ORF without a stop codon; 

and, 2) the N-terminal region of dvrelish which corresponds to the Rel-homology domain IPT 

domain and NLS sequence. Full dvrelish and N-terminal dvrelish were amplified with FastStart 

HiFidelity polymerase mix (Roche), 400nM of primers listed in Table 3.1. DvRelish was 

amplified with primers CACC-FullRelish409F and FullRelish3030Rev-NoStop with the addition 

of a CACC-overhang for directional cloning and no stop codon for His-inclusion. N-terminal 

DvRelish was constructed with CACC-FullRelish409F and FullRelishqPCR1725Rev. The PCR 

 

Figure 3.1 Experimental design outlining the identification of a Relish-type NF-κB protein in       

D. variabilis through recombinant protein expression, Western blotting, and immunofluorescence 

assays.  
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Table 3.1 Primers used for DvRelish and N-terminal DvRelish pENTR-D-TOPO expression 

plasmid construction.  

 

cycling parameters were as follows: denaturing at 95°C for 10 minutes, followed by 

amplification for 40 cycles with denaturing at 95°C for 30 seconds, annealing at 60°C for 1 

minute, and extension at 72°C for 3 minutes. A final extension was performed for 10 minutes at 

 72°C. PCR products were separated by agarose electrophoresis, stained with SybrSafe DNA Gel 

stain (Thermo), isolated via Wizard PCR Clean up Kit (Promega) and cloned into the donor 

pFastBac/HMB-Topo plasmid according to manufacturer’s instructions. After transfection into 

chemically competent Escherichia coli and ampicillin selection, the donor plasmid insert was 

verified via sequencing. The donor plasmid was subsequently isolated and transformed into 

DH10bac E. coli containing the baculovirus shuttle vector. Transposition of the donor vector 

insert into the baculovirus shuttle vector was verified by PCR after selection of baculovirus 

DNA-containing colonies via antibiotic selection. After verification of transposition, 

recombinant baculovirus DNA was isolated and transfected into SF9 cells with Cellfectin II 

reagent (Invitrogen).  To identify expression, cell lysates were analyzed by SDS-PAGE followed 

by Western blotting with either anti-His or anti-DvRelish antibody. Infected SF9 cells were 

passed five times to increase viral titer and protein expression. rDvRelish expression was 

analyzed after each passage via SDS-PAGE and Western blot. SDS-PAGE was performed using 

Mini-Protean Tris/Glycine 4-15% precast protein gels (Bio-Rad). Separated protein was 

Primer Name Primer Sequence (5’-3’) 

FullRelish409F ATGCCTATCTGCACTAACTATGAAG 

CACC-FullRelish409F CACCATGCCTATCTGCACTAACTATGAAG 

FullRelish3030Rev TTAGTTGAGAGGGATTTCCAGGAC 

3030Rev-NoStop GTTGAGAGGGATTTCCAGGAC 

FullRelishqPCR1725Rev CGATTGATTCCAGGGTAGGA 

CACC-Myc-DvRelish409F  CACCATGGAACAAAAACTTATTTCTGAAGAAGATCTGC

CTATCTGCACTAACTATG 
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transferred to 0.45 µM pore nitrocellulose (Bio-Rad) using a Trans-Blot SD semi-dry transfer 

machine (Bio-Rad). Membranes were blocked with 5% bovine serum albumin (BSA) (Sigma-

Aldrich) in TBST and probed with primary 6x anti-His 1:5000 antibody (Clontech) followed by 

secondary donkey anti-mouse Li-Cor 680CW 1:20,000 antibody (Li-Cor). Western blots were 

imaged using a Li-cor Odyssey imager (Li-Cor). 

3.2.2 Transient expression of recombinant DvRelish in S2 cells   

Plasmids were constructed for transfection and transient expression of rDvRelish using 

the pENTR/D-TOPO entry vector and pMT-DEST48 destination vector. The dvrelish ORF was 

cloned into the pENTR/D-TOPO after PCR using primers CACC-Myc-FullRelish409F and 

3030Rev-NoStop (Table 3.1). PCR was performed using 400 nM of each primer, Roche 

FastStart High Fidelity Polymerase, and 150 ng of pCR4-TOPO plasmid containing dvrelish as 

template. Cycling parameters were as follows: denaturing at 95°C for 10 minutes, amplification 

for 40 cycles with 95°C for 30 seconds, 60°C for 1 minute, and 72°C for 3 minutes. A final 

extension was performed for 10 minutes at 72°C. The PCR product was cloned into pENTR/D-

TOPO entry vector and insertion was validated by sequencing. The purpose of the entry vector 

PCR was to add a 5’ CACC for directional cloning, a MYC tag, and to remove the stop codon 

from the ORF prior to cloning into the expression vector. The entry vector insert was recombined 

into the destination vector using LR Clonase II (Invitrogen). Briefly, 150 ng of entry vector, 

150 ng of destination, and 2ul 5x LR Clonase II in TE Buffer (pH 8.0) was incubated at 25°C for 

1 hour and stopped with the additional of proteinase K incubated at 37°C for 10 minutes. The 

recombination reaction was then chemically transformed into One Shot ccdB T1 phage resistant 

E. coli (Invitrogen). Bacteria harboring the recombined destination vector were identified by 

ampicillin resistance and chloramphenicol sensitivity. The destination vector insert was 
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sequenced to confirm recombination. D. melanogaster S2 cells were cultured in a 28°C incubator 

without CO2. Schneider’s Drosophila medium (Invitrogen) containing 10% heat-inactivated FBS 

(HyClone) was used for cell maintenance. Cellfectin II was used per manufacturer’s instructions 

for transfection with 2 µg of purified destination vector. After transfection, 500 µM CuSO4 was 

added to the media to induce expression of Myc-DvRelish-His. To identify expression, cells 

were lifted, washed with PBS, reconstituted with 200 µl RIPA buffer, and sonicated for 15 sec at 

35% amplitude. Lysates were analyzed by Western blotting with anti-Myc and anti-His antibody 

to confirm the expression of tagged protein. Transfection conditions were optimized by day of 

induction of cells (1-4 days) and day of harvest of cells post transfection (1-3).  

3.2.3 anti-DvRelish peptide antibody production 

 The production of an anti-DvRelish peptide antibody was commercially produced by 

Yenzym Antibodies. Briefly, two peptides from the Rel-homology domain of dvrelish were 

chosen and linked to the keyhole limpet hemocyanin (KLH) carrier protein separately. The two 

peptides used for immunization were as follows: CESSTQQRKTYPT KLENYNTQ-amide 

(DvRelish amino acids 47-67) and CYRRKIESLQPSQEEQRQLQ-amide (DvRelish amino acids 

131-149). These peptides were chosen as candidates because they were predicted to be both 

hydrophilic and expressed on the surface of the protein. A rabbit was immunized with the 

combination of the two KLH-conjugated peptides in Freund’s complete adjuvant. After two 

months the rabbit was inoculated with a secondary booster of both peptides. Serum was collected 

and the specificity of the produced antibodies in serum was determined by enzyme-linked 

immunosorbent assay. Antibody was then purified by high performance liquid chromatography. 

Antibodies were delivered from the company at 0.24 mg/ml of purified mono-specific polyclonal 

IgG. 
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3.2.4 Detection of DvRelish in tick tissue lysate 

 Uninfected adult females were dissected, tissues were placed in RIPA buffer with 

Complete Mini EDTA-free protease inhibitor cocktail (Roche), and homogenized using a 

sonicating probe (Sonic Dismembranator, Fisher) with 25% amplitude for 5 seconds, 5 times, 

each on ice. The protein concentration in the tissue lysate was quantified using the Dc Assay 

(Bio-Rad) per manufacturer’s instructions. Tick protein (25 µg per lane) was separated with a 

Mini-ProteanX 4-15% Tris-Glycine mini-gel (Bio-Rad). Separated proteins were transferred onto 

a 0.45 µm pore nitrocellulose membrane using a Trans-Blot semi-dry transfer cell at 25V for 25 

minutes. The membrane was blocked with 5% BSA in tris-buffered saline with 0.5% Tween 20 

(TBST). Primary anti-DvRelish antibody (1:100) in 5% BSA in TBST was followed by 

secondary donkey anti-rabbit Li-cor 800CW antibody (1:15,000). Peptide competition was 

performed with 1:100 anti-DvRelish antibody supplemented with 1 µg of each peptide the 

antibody was raised against. Blots were visualized with a Li-cor Odyssey imager.  

3.2.5 Mass-spectrometry analysis  

 Unfed female D. variabilis whole tick tissue was separated by SDS-PAGE. Bands of 

interest identified concurrently by Western blot at 100 kDa and 70 kDa were excised from a 6% 

Tris-glycine gel with a clean scalpel blade. Samples were digested prior to mass-spectrometry 

analysis with porcine pancreas-derived trypsin (Sigma-Aldrich). Digested samples were 

submitted for MALDI-TOF/TOF mass-spectrometry on a Bruker UltrafleXtreme MALDI-

TOF/TOF MS system (Bruker Daltonics) at the LSU Chemistry Department. For identification 

of submitted samples, reported sample peptide masses were compared to predicted masses for 

the putative amino acid sequence of DvRelish. In silico trypsin digestion analysis of the putative 

DvRelish amino acid sequence was performed with 1 missed cleavage allowed using the 
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PeptideMass predictor program from the Swiss Institute of Bioinformatics ExPAsy website 

(Wilkins et al. 1997, Gasteiger et al. 2005).  

3.2.6 Immunofluorescence assay of D. variabilis hemocytes 

 Unfed, adult D. variabilis females were injected with either 200 ng of Escherichia coli 

0111:B4 peptidoglycan (PGN) (InvivoGen) or 107 Pseudomonas aeruginosa (ATTC 27853); E. 

coli-PGN was resuspended in 1 µl of molecular grade water and P. aeruginosa was resuspended 

in sterile PBS. Prior to injection with P. aeruginosa, ticks were surface sterilized with sequential 

5 minute incubations of 0.1% bleach, 70% ethanol (3 times), and distilled water. Ticks were 

immobilized dorsal side down with tape, and injected with P. aeruginosa or E. coli-PGN into the 

hemocoel cavity via the coxae of the third left leg. Five unfed, adult females were injected with 

either 1 µl of PGN solution or P. aeruginosa with a 33-gauge needle (Hamilton) and 5 µl glass 

syringe (Hamilton). Ticks were maintained in a humidified environmental chamber at 27°C for 1 

or 6 hours. PGN-injected ticks were incubated for up to 6 hours post-injection (hpi), P. 

aeruginosa-injected ticks were incubated for 1 hpi, and PBS sham injected ticks were incubated 

for 6 or 1 hours and dissected in sterile PBS. Hemolymph was collected and allowed to dry on 

glass microscope slides. Hemocytes were fixed with 4% paraformaldehyde for 15 minutes and 

permeabilized with 0.5% Triton X-100 (Sigma) in PBS for 10 minutes. Hemocytes were washed 

with 0.01% Triton X-100 in PBS and blocked with 3% BSA in PBS for 30 minutes. Anti-

DvRelish antibody (1:50) was applied to the hemocytes in 1% BSA in PBS for 2 hours. No 

primary antibody controls were also incubated with PBS to determine non-specific binding. Cells 

were washed 3 times with 0.01% Triton X-100 in PBS for 5 minutes each. Secondary goat anti-

rabbit FITC labeled antibody was applied at 1:100 in 1% BSA in PBS for 1 hour. Cells were 

again washed 3 times with 0.01% Triton-X in PBS for minutes each. Coverslips were mounted 
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with VectaShield mounting medium containing the DNA stain 4',6-diamidino-2-phenylindole 

(DAPI) (Vector Laboratories). Hemocytes were visualized with an Olympus Fluoview confocal 

microscope.  

3.3 Results 

3.3.1 rDvRelish expression in SF9 cells 

 In order to express a His-tagged DvRelish protein, dvrelish-His encoding baculovirus 

DNA was transfected into SF9 cells. Virus production was allowed to occur for 2 passages 

before DvRelish Western blotting. This Western blotting produced a band at 100kDa which 

closely corresponds to the predicted DvRelish-His (Figure 3.2). The expression was visualized 

after two passages of recombinant baculovirus via Western blot with both anti-His and anti-

DvRelish antibodies. Both blots resulted in the recognition of a protein of the same size, 

supporting the idea that both antibodies are recognizing the same protein. The corresponding 

coomassie stained gel did not reveal a 100 kDa protein, indicating the protein was not highly 

expressed. The rDvRelish baculovirus was passed 3 more times for propagation of high titer viral 

Figure 3.2 Expression of rDvRelish by recombinant baculovirus infection in SF9 cells after 2 

viral passages.  Arrow indicates recombinant protein expression as recognized by anti-His 

antibody and anti-DvRelish antibody. SF9 represents an uninfected control, and PeptA+B 

indicates 10 ng of each peptide the anti-DvRelish antibody were raised against. 
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stocks. At passage 4 (Figure 3.3) an additional 75 kDa protein was recognized by anti-His 

antibody Western blot. At passage 5, however, the 100kDa protein is no longer recognized 

(Figure 3.4). Smaller proteins are recognized by both anti-His, and anti-DvRelish antibody, 

indicating degradation of rDvRelish. Passage of baculovirus was discontinued after 5 passages 

due to the loss of rDvRelish expression.  

A second baculovirus was constructed to express the N-terminal region of DvRelish 

containing the Rel-homology domain, immunoglobulin/plexin/transcription factor domain, and a 

nuclear localization sequence. After 5 passages of recombinant virus in SF9 cells, no expression 

of the predicted 65 kDa protein was identified via anti-His or anti-DvRelish Western blot (Figure 

3.4). Passage of baculovirus was discontinued after passage 5.  

 

Figure 3.3 Expression of two constructs of DvRelish after 4 passages. Recombinant protein 

expression was visualized via Western blot with anti-His antibody. SF9 represents control 

(Ctrl) uninfected SF9 cells, lanes 1 through 8 represent individual populations of N-terminal 

DvRelish baculovirus infected SF9 cells, and lane 9 represents rDvRelish expressing SF9 

cells. The arrow indicates the 100 kDa rDvRelish, and the arrow head indicates the 

recognition of a 75 kDa protein.  
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3.3.2 Transient expression of rDvRelish in S2 cells  

In order to express rDvRelish for functional characterization, transient expression of 

rDvRelish in S2 cells via transfection of the pMT-DEST40 destination vector containing dvrelish 

was attempted with varying conditions. After addition of CuSO4 to induce expression of 

rDvRelish, expression of recombinant protein was determined via Western blot. S2 cells were 

collected after induction and analyzed for the expression of rDvRelish via SDS-PAGE and 

Western blot with anti-Myc and anti-His antibodies (Figure 3.5). Cells transfected with 2 µg of 

plasmid DNA, induced 2 hours post transfection with 500uM CuS04, and harvested 24 hours later 

yielded no detectable expressed rDvRelish protein as compared to S2 controls. The conditions of 

transfection were subsequently optimized by varying the time period prior to induction (days 1-

4) and prior to harvest post induction. Under all optimized conditions a 40 kDa anti-Myc reactive 

protein was identified via Western blot (Figure 3.6). Further analysis of cell lysates revealed the  

Figure 3.4 Expression of two constructs of DvRelish after 5 passages. Recombinant protein 

expression was visualized via Western blot with anti-His antibody (left panel) and with anti-

DvRelish antibody. SF9 represents uninfected SF9 cells, lanes 1 through 10 represent 

individual populations of baculovirus infected SF9 cell, and rDvRelish represents the 

rDvRelish expressing SF9 cells after 5 passages. Arrow heads indicate recognition of 

rDvRelish cleavage products. 
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expression of an approximately 70 kDa anti-His reactive protein after 3 days of induction and 

cell harvest. As the dvrelish ORF cloned and sequenced in the transfected pMT-DEST48 

encodes a putative 100 kDa product, S2 cell expression was discontinued.  

3.3.3 Detection of DvRelish in tick tissue lysate 

After identification of specific rDvRelish reactivity via Western blot, DvRelish 

expression was queried in D. variabilis tissues. All tissues of the tick were homogenized and 

centrifuged to remove insoluble tick materials. Tick protein (25 µg) was analyzed by Western 

blot with anti-DvRelish antibody, resulting in the recognition of many protein bands (Figure 3.7). 

A peptide competition assay was performed to determine specificity of anti-DvRelish binding. 

The addition of 1 µg of each peptide to the primary DvRelish incubation resulted in the loss of 

signal at 100 kDa and 70 kDa. The secondary antibody only control was performed     

Figure 3.5 Expression of rDvRelish in S2 cells 1 day post transfection. S2 cells were 

transfected with 2 µg plasmid, induced with 500 µM CuS04 and harvested 24 hours later. 

Both cells, and media supernatant were analyzed for recombinant protein expression. 

Expression was analyzed via Western blot with anti-His and anti-Myc antibodies. Ctrl 

represents control untransfected S2 cells, and Trans represents transfected cells.  
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Figure 3.6 Expression of rDvRelish in S2 cells under various conditions. S2 cells were 

transfected with 2 µg plasmid and induced with 500uM CuSO4.  Transfected S2 cells were 

induced at days 1-4 (labeled with bar) and were harvested at 1-4 days post induction (dpi). 

Transfected cells and untouched control S2 cells (Ctrl) were analyzed for recombinant protein 

expression via SDS-PAGE (top row), Western blot with anti-His (middle row) and anti-Myc 

(bottom row) antibodies. 
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yielding non-specific binding of the donkey anti-rabbit 800CW antibody to tick tissues. 

Considerable non-specific binding to D. variabilis proteins occurs, but in conjunction with the 

peptide competition assay, it was concluded that the anti-DvRelish antibody specifically 

recognized two proteins at 100 kDa and 70 kDa.  

3.3.4 Mass-spectrometry analysis 

To confirm specific recognition by the anti-DvRelish Western blot, mass-spectrometry 

was employed on D. variabilis tissue lysates. For the purpose of better resolving the previously 

recognized 100 kDa and 70 kDa proteins, tick tissue samples were separated via SDS-PAGE 

using a 6% Tris-glycine gel. Protein bands previously visualized by Western blot at 100 kDa and 

70 kDa were excised, trypsin digested, and submitted for mass-spectrometry (Figure 3.7). The 

resultant peptide masses were compared to the masses predicted for DvRelish after in silico 

trypsin analysis. The predicted DvRelish peptide masses corresponded with 18 identified peptide 

masses and with 9 peptide masses identified within the 70 kDa protein. Additionally, the 70 kDa 

Figure 3.7 Expression of DvRelish in D. variabilis tissues. Expression of DvRelish in 25 µg 

of protein from unfed adult female D. variabilis tissue lysate. DvRelish was recognized via 

Western blot with anti-DvRelish antibody. A peptide competition assay (Pept Comp) 

decreased recognition of proteins at 100 kDa and 70 kDa.  
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protein masses identified by mass-spectrometry corresponded with only 3 predicted masses with 

a translated partial putative dvdorsal transcript corresponding to a Dorsal type NF-κB protein 

previously isolated. Together, these data confirm the recognition of DvRelish via anti-DvRelish 

antibody at 100 kDa and the N-terminal DvRelish at 70 kDa.  

3.3.5 Immunofluorescence assay of D. variabilis hemocytes 

 As hemocytes are an important site of AMP production, the hemocytes of unfed 

D. variabilis females were collected and spotted onto slides for IFA to detect DvRelish 

expression and nuclear localization in the presence of E. coli-PGN or P. aeruginosa. Hemocytes 

from E. coli-PGN injected ticks were stained and visualized 3 and 6 hpi (Figure 3.9). DvRelish 

was present within the cytoplasm of the hemocytes of sham-infected ticks. At 3 and 6 hpi with E. 

coli-PGN, DvRelish was also present in the cytoplasm. Additionally, nuclear DvRelish staining 

occurred at 6 hpi. In P. aeruginosa-injected hemocytes as compared to control hemocytes at 1 

hpi 

Figure 3.8 Visualization of 100 kDa and 70 kDa protein bands in D. variabilis tick tissues. 

Arrows indicate protein bands visualized by Western blot, excised from an identical 6% Tris-

glycine SDS-PAGE gel and submitted for mass-spectrometry.  
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there was increased DvRelish staining in both the nucleus and cytoplasm (Figure 3.10).  

Of note, there was also staining of DvRelish within the nucleus and cytoplasm of the control tick 

hemocytes.  

3.4 Discussion 

 The expression of Relish-type NF-κB transcription factors is a key mediator in the 

differential immune effector responses in many arthropods, including D. melanogaster (Hetru 

and Hoffmann 2009). While NF-κB proteins are highly conserved across arthropods, the patterns 

of induction of effector responses has been best characterized in model insects infected with  

 

Figure 3.9 Expression of DvRelish in D. variabilis hemocytes exposed to E.coli-derived 

PGN. Nuclei were stained with DAPI, DvRelish was visualized with anti-Rabbit-FITC 

secondary antibody. In the bottom panel, PGN injection resulted in increased DvRelish 

staining in the cytoplasm of hemocytes after 6 hpi, as compared to both hemocytes at 3 hpi, 

and basal DvRelish staining in control sham injected tick hemocytes. Bar represents 5 µm. 
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atypical bacteria not associated with the specific arthropod (Lemaitre and Hoffmann 2007). Such 

studies identified that NF-κB proteins are sequestered in the cytoplasm of eukaryotic cells until 

activated via removal of inhibitory subunits or domains, allowing nuclear translocation and 

induction of transcription of NF-κB responsive genes (Reichhart et al. 1993, Dushay et al. 1996). 

Previously identified patterns of NF-κB induction are most likely not applicable to bacteria that 

are typically associated with arthropods, such as SFG Rickettsia and hard ticks.  

The immune response to Gram-negative pathogens in many arthropods is controlled 

through Relish-type NF-κB proteins. Homologous NF-κB proteins have been identified in 

arthropod vectors of disease. Relish-type NF-κB proteins have been identified in the mosquitoes 

Aedes aegypti (Shin et al. 2003) and Anopheles gambiae (Meister et al. 2005); the tsetse fly 

Figure 3.10 Expression of DvRelish in D. variabilis hemocytes exposed to P. aeruginosa. 

Nuclei were stained with DAPI, DvRelish was visualized with anti-Rabbit-FITC secondary 

antibody. Increased cytoplasmic and nuclear anti-DvRelish staining was identified in 

hemocytes from P. aeruginosa-injected D. variabilis after 1 hour of exposure (bottom row), 

as compared to sham inoculated control (Ctrl) hemocytes (middle row). Hemocytes without 

primary antibody (top row) were visualized to identify and tick cell autofluorescence. Bar 

represents 5 µm.  
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Glossina morsitans (Hu and Aksoy 2006); and the hard tick I. scapularis (Naranjo et al. 2013). 

Seminal research describing the response of vectors to typical pathogen pairings has focused on 

viral and protozoan infections in mosquitoes, as well as protozoan infections in tsetse flies (Hu 

and Aksoy 2006, Xi et al. 2008, Garver et al. 2012). Infection of I. scapularis cells with 

Anaplasma phagocytophilum, a Gram-negative Rickettsiales, was determined to increase binding 

of Relish proteins to a regulator Subolesin (Naranjo et al. 2013). Studies of NF-κB proteins in 

vectors described mechanisms of immune defense in mosquitoes, tsetse flies, and prostriate ticks, 

the mechanisms of immune signaling in Dermacentor ticks has been largely unexplored. 

Mechanisms identified in the prostriate I. scapularis may not be applicable to gaining insight to 

the ecology of Dermacentor ticks and their typical SFG Rickettsia. This emphasizes the necessity 

for determining the mechanisms of immune signaling in response to typical Gram-negative 

bacteria in D. variabilis. The studies described in this chapter characterized the expression of the 

Relish-type NF-κB protein, DvRelish, in D. variabilis. To this end DvRelish expression was 

characterized through the 1) SF9 baculovirus expression of rDvRelish; 2) mass-spectrometry of 

protein bands identified with an anti-DvRelish antibody; and, 3) visualization of DvRelish 

expression D. variabilis hemocytes. 

Arthropod expression systems are an important tool utilized in non-model arthropods in 

an effort to determine the function of homologous protein expression. Better characterized 

arthropod model culture systems can be used for protein expression and isolation, or the 

determination of putative protein functions in cells. An SF9 baculovirus protein expression 

system was utilized in the present studies for the expression of rDvRelish protein via propagation 

of recombinant baculovirus that contain full-length DvRelish and truncated N-terminal DvRelish 

encoding constructs. After 2 passages of recombinant virus, this system allowed for the 
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identification of the size of the rDvRelish protein and confirmation of anti-DvRelish antibody 

recognition (Figure 3.1). Both anti-His and anti-DvRelish antibodies recognized protein bands at 

100 kDa which were increased in expression as compared to untouched control SF9 cells. In 

addition to rDvRelish expression, the expression of a shortened N-terminal DvRelish was also 

attempted. The N-terminal DvRelish construct did not encode the ankyrin repeats which have 

been identified as inhibiting the translocation of Relish protein into to the nucleus in 

D. melanogaster (Stöven et al. 2000). However, over five passages of virus no recombinant N-

terminal DvRelish protein was identified by Western blot with anti-His or anti-DvRelish 

antibodies. Additionally, after 4 passages of virus, the 100 kDa rDvRelish began to be cleaved, 

resulting in the recognition of a smaller 75 kDa product. With a subsequent passage multiple 

cleaved products were recognized via anti-His and anti-DvRelish Western blot. The lack of 

expression by the N-terminal rDvRelish construct may have been due to unforeseen technical 

issues and requires further optimization of infection regiment for stable expression. As Relish 

proteins are endoproteolytically cleaved during signal transduction (Stoven et al. 2003), the 

cleavage of rDvRelish after 4 passages of may be occurring as the result of cleavage by a 

currently unknown protease. As neither recombinant protein was expressed at a high level, 

alternative methods were explored. The expression of full-length and shorter constructs of 

DvRelish would allow for the determination of binding of the protein to canonical κB promoter 

elements as identification of novel DvRelish binding promoters through chromatin 

immunoprecipitation reactions coupled with sequencing of captured promoter DNA. These 

assays would give a better understanding of the genes induced by DvRelish activation during 

SFG Rickettsia infection.  
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An alternative method of protein expression utilized in this study was the transient 

expression of DvRelish in S2 cells. Neither optimization of time of induction or harvest of 

transfected cell resulted in 100 kDa rDvRelish. Expressed proteins were identified by Western 

blot with primary antibodies specific for N-terminal Myc and C-terminal His. The anti-Myc 

Western blot revealed expression of a 35 kDa protein at all time points of induction and harvest 

days post induction, as well as expression of a His-tagged C-terminal 70 kDa product at later 

time points. While the expression plasmids were sequenced prior to transfections, aberrant 

cleavage of the recombinant protein may be occurring as was demonstrated during SF9 cell 

expression. Interestingly, expression of a recombinant Relish-type NF-κB protein from the 

horseshoe crab, Carcinoscorpius rotundicauda, was determined to be insufficient such that 

mammalian expression systems were substituted (Fan et al. 2008). As the authors suggested, 

while both C. rotundicauda and D. melanogaster are arthropods, this does not assure high levels 

of recombinant protein expression.  

Following anti-DvRelish identification of rDvRelish, DvRelish expression was 

determined in uninfected, unfed adult female D. variabilis. Two protein bands of interest at 100 

kDa and 70 kDa were specifically recognized and both were analyzed by mass-spectrometry. 

The identification of both the full-length DvRelish protein, as well as the cleaved N-terminal 

DvRelish demonstrated basal levels of expression of DvRelish in tick tissues. Relish-type NF-κB 

proteins are known to be expressed at basal levels in model arthropods. After immune activation, 

both mRNA transcription and protein translation are increased (Meister et al. 2005, Fan et al. 

2008, Tanji et al. 2010). Ticks are also known to increase mRNA expression of immune 

responsive genes in response to infection with typical SFG Rickettsia (Macaluso et al. 2003, 

Mulenga et al. 2003, Sunyakumthorn et al. 2012) suggesting the presence of immune responsive 
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transcription factors. The present study identified basal DvRelish expression through the Western 

blot analysis of whole tick protein lysate.  

As the hemocytes of Dermacentor ticks are recognized as an important site of AMP 

production (Johns et al. 1998, Simser et al. 2004, Hynes et al. 2008), the expression of DvRelish 

in hemocytes was investigated in ticks injected with E. coli-PGN or ticks injected with the 

atypical bacterium P. aeruginosa. After 6 hours of E. coli-PGN stimulation, DvRelish staining in 

both the nucleus and cytoplasm of the hemocytes, with increased expression at all time points in 

comparison to controls was observed. The expression of Relish-type NF-κB proteins has been 

previously visualized in cultured Drosophila cells indicating nuclear translocation in as little as 

10 minutes post-stimulation with E. coli-PGN (Stoven et al. 2003). Interestingly, after injection 

with P. aeruginosa, we observed increased DvRelish staining after 1 hour of incubation in both 

the nucleus and cytoplasm of hemocytes as compared to controls. Purified PGN of Gram-

positive and Gram-negative cells has been shown to elicit AMP production via NF-κB signaling 

(Hedengren-Olcott et al. 2004); however, the low level of nuclear translocation of DvRelish in 

D. variabilis hemocytes may be due to differences in the dose of PGN utilized or inoculation 

directly to the arthropod versus in culture conditions. There may be a differential patterns of 

induction of NF-κB proteins in ticks as compared to other arthropods. These difference may 

affect the rate of immune stimulation and account for the identified differences in temporal 

DvRelish nuclear translocation.  

This study reports the first identification of Relish-type NF-κB proteins in D. variabilis 

tissues. This was demonstrated by Western blot and mass-spectrometry. Identification of basal 

DvRelish expression supported the detection of DvRelish expression and activation via 

hemocyte IFA. Together, these assays will allow for a more complete understanding of the role 
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of DvRelish expression in during SFG Rickettsia infection of D. variabilis. Quantitative 

transcriptional assays in conjunction with protein expression will allow for the identification of 

potential mechanisms underlying the differences in immune response. Comparison of expression 

during typical and atypical SFG Rickettsia infection, and expression during constitutive infection 

may give insight into the differential immune signaling mechanisms determining the clearance or 

establishment of infection in hard ticks.  
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CHAPTER 4 

EXPRESSION OF DVRELISH, A PUTATIVE RELISH-TYPE NF-ΚB PROTEIN IN 

DERMACENTOR VARIABILIS IN RESPONSE TO SFG RICKETTSIA INFECTION 

4.1 Introduction 

Hard ticks have been shown to respond differentially to pathogens and endosymbionts 

(Sonenshine and Hynes 2008). As vectors of spotted fever group (SFG) Rickettsia, the 

differential immune response to host-specific bacteria likely plays a role in the establishment and 

dissemination of these bacteria in ticks. Specific Rickettsia-tick pairings predominate in nature; 

however, the underlying mechanisms controlling the immune response of hard ticks to SFG 

Rickettsia, and their potential in dictating the specificity of relationships, have not been fully 

characterized. 

  The tick response to certain bacterial infections has been characterized, describing the 

swift AMP production and hemocyte proliferation. For example, in response to infection with the 

Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, Dermacentor variabilis 

hemocytes populations increased 6.4 times that of uninfected controls, with a peak hemocyte 

proliferation at 48 hours (Johns et al. 1998). Moreover, in response to an infection with 

Borrelia burgdorferi, D. variabilis hemocytes increased the same amount but peaked earlier by 

24 hours. In both infection assays, the ticks are able to effectively clear the bacteria, but with 

differential patterns of immune activation. 

Immune responsive genes have been previously identified in D. variabilis, demonstrating 

differential mRNA expression in response bacterial and rickettsial challenge (Macaluso et al. 

2003, Mulenga et al. 2003, Jaworski et al. 2010). mRNA expression of immune responsive genes 

of D. variabilis when challenged with R. montanensis as compared to R. amblyommii have been 

identified to have tissue-specific expression profiles (Sunyakumthorn et al. 2013). While the 

mechanisms controlling generalized immune responses in arthropods have been determined 
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(Lemaitre and Hoffmann 2007, Hetru and Hoffmann 2009), the immune response elicited to 

atypical bacterial infections are most likely not comparable to those elicited against typical 

bacteria, such as the response of hard ticks to the SFG Rickettsia they predominantly harbor. 

For example, tick cell infection of endosymbiont R. peacockii did not upregulate the expression 

of a lysozyme-like protein, whereas infection with the non-associated bacteria E. coli and 

Micrococcus luteus resulted in increased lysozyme expression (Mattila et al. 2007),  Conversely, 

the pathogen R. rickettsii is known to affect Dermacentor ticks adversely through reduced 

feeding success, fecundity, and molting success (Niebylski et al. 1999, Schumacher et al. 2016). 

While the lack of response to R. peacockii suggests mechanisms of immune avoidance or 

senescence, the response of the tick to R. rickettsii may be more complex.  

Comparing the tick immune response affecting the establishment of SFG Rickettsia 

infection and the response to endosymbiotic Rickettsia is necessary to fully understand the 

ecology of SFG Rickettsia in tick vectors. The mechanisms controlling effector response 

induction are uncharacterized in D. variabilis, and the previous chapters of this dissertation have 

described the identification of a Relish-type NF-κB protein in D. variabilis, DvRelish. With 

similarity to Relish NF-κB transcription factors determined to be crucial to controlling the 

response to Gram-negative bacterial infections to atypical bacterial infections of arthropods, the 

expression and activation of DvRelish during hard tick infection with associated SFG Rickettsia 

may give insight into the mechanisms determining tick-Rickettsia specificity. In an effort to 

identify DvRelish expression and activation in D. variabilis, the temporal expression of dvrelish 

was characterized in three infection bioassays. The hypothesis tested is if NF-κB induction plays 

a role in host-specificity and vector competence, then R. rickettsii would elicit a greater dvrelish 

response as compared to R. parkeri, which is a less pathogenic infection of D. variabilis. These 



 
 

 103 
 

experiments were designed to determine temporal and tissue specific expression of dvrelish 

during SFG Rickettsia infection utilizing direct microinjection and natural oral infection 

(capillary feeding) techniques. Microinjection of SFG Rickettsia into the hemocoel of ticks 

facilitated the direct assessment of expression of dvrelish in the hemocytes, which was identified 

in the previous chapter. Alternately, infection via capillary feeding technique allowed for the 

identification of dvrelish expression in tick tissues in response to a natural route of exposure.  

4.2 Methods and Materials 

4.2.1 D. variabilis colony maintenance and rickettsial exposure 

 The LSU D. variabilis colony was maintained as previously described (Macaluso et al. 

2001). Life stages were regularly maintained on laboratory animals at the Louisiana State 

University School of Veterinary Medicine with all procedures approved by the Institutional 

Animal Care and Use Committee. Tick life stages were maintained on the following animals: 

larvae on mice; nymphs on rats, guinea pigs, or rabbits; and adults on rats or guinea pigs. 

Between feedings, all ticks were surface sterilized with 70% ethanol followed by distilled water 

before storage in the environmental chamber. All ticks were housed in a 27°C environmental 

chamber with greater than 90% relative humidity.  

4.2.2 Bacteria propagation and purification 

 Rickettsia rickettsii (str. Sheila Smith) and Rickettsia parkeri (str. Portsmouth) were 

propagated in Vero E6 African green monkey cells. Cells were grown by tissue culture in 

Dulbecco’s modified medium (DMEM) (Invitrogen) supplemented with 5% FBS (Hyclone) in a 

humidified 34°C incubator with 5% CO2. Rickettsia infection was monitored via cytospin 

(Wescor) followed by Diff-Quik staining (Seimens) and highly infected cultures were used for 
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infection assays. All R. rickettsii propagation, purification, and infection bioassays were 

performed in a BSL-3 high-containment laboratory.  

For capillary feeding, infected cells were scraped from the flask and 1 ml of Rickettsia 

culture was lysed with 10 passes of a 27 gauge needle followed by low speed centrifugation at 

4°C for 10 minutes at 275 x g. The supernatant-containing Rickettsia was then passed through a 

2 µM pore filter (Whatman) to remove host cell debris. High speed centrifugation at 4°C for 10 

minutes at 16,000 x g pelleted the Rickettsia. For enumeration and determination of viability, 

Rickettsia were stained using the Baclight viability staining kit (Invitrogen) and counted using a 

Petroff-Hausser bacterial counting chamber under a Leica fluorescent microscope. For capillary 

feeding, 2.5x108 Rickettsia/ml in whole Rickettsia-infected Vero cells was diluted in 0.1% (W/V) 

Rhodamine B (RhoB) in 0.85% salt solution. In the case of microinjection technique, purified 

Rickettsia was resuspended into PBS at the prescribed dosages. Overnight cultures of 

P. aeruginosa (ATCC 25873) were grown in a 37°C shaking incubator in trypic soy broth 

(Invitrogen) and assessed for viability and enumerated using the Baclight viability staining kit. 

Bacteria were pelleted via centrifugation at 4°C for 10 minutes at 16,000 x g and resuspended in 

sterile PBS as the prescribed dosages.  

4.2.3 Microinjection technique  

For microinjection of ticks, bacteria were isolated and diluted to 105 and 107 bacteria/µl 

of sterile PBS. Ticks were surface sterilized and immobilized as described for capillary feeding. 

Each tick was injected with 1 µl of bacterial suspension using a 33 gauge Hamilton needle and 5 

µl glass syringe into the coxae of the third left leg (Figure 4.5). Ticks were incubated in a 27°C 

humidified environmental chamber until time of dissection. In the microinjection assays, D. 
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variabilis were incubated for 1 hour, or up to 24 hours before collection of hemolymph via 

microdissection using 

 a dissecting microscope. Ticks were dissected in 30 µl of PBS with a scalpel blade without 

rupturing the tick organs and the hemolymph was placed into 300 µl of Trizol for RNA isolation. 

Ticks were incubated in a 27°C humidified environmental chamber until time of dissection. 

Hemolymph, salivary glands, ovaries, and gut were collected and divided for RNA isolation in  

300 µl Trizol or 50 µl RIPA buffer for protein lysis. All samples were stored at -80°C until 

processed.  

4.2.4 Capillary feeding technique 

 Adult D. variabilis were fed on a guinea pig for 4 days before being forcibly removed 

with curved forceps. Ticks were surfaced sterilized with 5 minute incubations of 0.1 bleach, 70% 

ethanol (3 times), and distilled water before immobilization dorsal-side down. Capillary feeding 

was performed as previously described (Macaluso et al. 2001). Briefly, 2.5x108 R. rickettsii/ ml 

A. B. 

Figure 4.1 Bacterial exposure techniques utilized in dvrelish expression assays. (A) Capillary feeding 

technique. (B) Microinjection technique.  
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of RhoB solution was fed to immobilized D. variabilis for 1 or 3 hours by placing a filled 50 µl 

capillary tube (Kimble) over the mouthparts of the tick (Figure 4.1). Post capillary feeding, ticks 

were surface sterilized and feeding was confirmed with the visualization of the feeding 

biomarker RhoB via fluorescent microscopy with a MVX10 research macro zoom system 

microscope (Olympus) (Mascari and Foil 2009). After 1 hour of Rickettsia exposure via capillary 

feeding, ticks were collected at 0, 1, 3, 5, and 10 hours post capillary removal. After 3 hours of 

exposure (hpe), ticks were collected at 1, 3, 6, and 12 hpe. All ticks were surface sterilized with 5 

minute incubations of 0.1% bleach, 70% ethanol (3 times), and distilled water before feeding 

assessment. Ticks were then dissected and salivary glands, ovaries, gut, and hemolymph was 

collected into 200 µl of Trizol (Invitrogen), homogenized and stored at -80°C until processed.  

4.2.5 Tick microdissection  

 Tick were dissected using a depression slide, fine forceps, and scalpel blades. The 

instruments were sterilized with 70% ethanol between tick dissections and separate, sterile 

instruments were used per experimental group. Ticks were dissected in sterile PBS dorsal side 

down with a dissecting microscope. Micro-cuts were made at the outermost cuticle with special 

attention paid to cut without rupturing the gut. After cutting around the entire tick, the ventral 

cuticle was removed and the hemolymph collected. Organs were then transferred to sterile PBS 

for separation and identification of tissues for processing.  

4.2.6 RNA isolation and cDNA synthesis 

 RNA was isolated using Trizol (Invitrogen). Tissue samples were homogenized with a 

TissueLyzer (Qiagen) and 3-mm borosilicate glass beads (Sigma) in a 1.7 ml microcentrifuge 

tube for 4 minutes at 25hz/sec. RNA extractions were performed as per manufacturer’s 

instructions. Briefly, samples were incubated at room temperature for 5 minutes before adding 
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0.2 ml of chloroform (Sigma) per ml of Trizol. After shaking for 30 seconds by hand and 

incubating for 2 minutes at room temperature, samples were centrifuged at 4°C for 15 minutes at 

12,000 x g. The colorless aqueous phase was transferred to a new tube for RNA precipitation, 

paying special attention not to disturb the phenol-chloroform phase. RNA was precipitated with 

0.5 ml of isopropanol per ml of Trizol, followed by gentle inversion and centrifugation at 4°C for 

10 minutes at 12,000 x g. Precipitated RNA was subsequently washed once with 1 ml of 75% 

ethanol per ml of Trizol and centrifuged at 4°C for 10 minutes at 8,000 x g. The RNA pellet was 

air-dried for 5 minutes before resuspending in 20 µl of PCR-grade water. Following 

quantification of RNA via Nanodrop spectrophotometer (Thermo), 2 units of TurboDNase 

(Ambion) was added and incubated in a 37°C water bath for 30 minutes. RNA was purified and 

concentrated using the Clean and Concentrator-5 kit (Zymo) and eluted in 15 µl of molecular 

grade water. RNA was reverse transcribed with the iScript cDNA synthesis kit (Bio-rad). No 

reverse transcriptase reactions were performed for determination of residual DNA by qPCR.  

4.2.7 qPCR analysis 

 A qPCR assay was performed on a LightCycler (Roche) with 10 µl reactions plated in 

triplicate. Specifically, 2 µl of cDNA, 17.5 µl of iTaq Universal Probes master mix (BioRad), 

0.2 µM final concentration of each primer and 0.3 µM final concentration of probe were 

combined in a 96 well plate and aliquoted in triplicate. The PCR cycling parameters were 95°C 

for 5 min, 45 cycles of 95°C for 15 sec, 60°C for 60 sec. Primer and probe sets are listed in Table 

4.1 and were tested and sequenced for specificity prior to use. Universal Probe Library (Roche) 

probes were identified for dvrelish and dvactin using the Universal Probe Library assay design 

center (Roche). To determine PCR efficiency, standard curves consisting of each amplicon in 

pCR4-TOPO were diluted with concentrations ranging from 108 to 1 copy of linearized plasmid  
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Table 4.1 Primers and probes for qPCR.  

 

per 10 µl reaction. Expression of dvrelish was determined using the second derivative max 

calculation methodology and normalized with dvactin expression. Expression was normalized 

using the efficiency modified ΔΔCt method (Roche), which takes into account  

the efficiency of each PCR reaction. Fold changes of expression were determined in relation to 

the normalized dvrelish expression in control ticks at the first time point of each experiment.  

4.2.8 Protein isolation and Western blot analysis 

 Protein samples in RIPA buffer with Complete mini EDTA-free protease inhibitor 

(Roche) were homogenized with a TissueLyzer (Qiagen) and 3-mm borosilicate glass beads 

(Sigma) in a 1.7ml microcentrifuge tube for 4 minutes at 25hz/sec. Lysates were centrifuged at 

4°C for 15 minutes at 12,000 x g to remove any insoluble materials. For Western blotting, 25 µg 

of protein per sample were separating using Mini-Protean Tris/Glycine 4-15% precast protein 

gels (Bio-Rad), as described in Chapter 3 section 3.2.4. Separated protein was transferred to 0.45 

µm pore nitrocellulose (Bio-Rad) using a Trans-Blot SD semi-dry transfer machine (Bio-Rad). 

Membranes were blocked with 5% bovine serum albumin (BSA) (Sigma-Aldrich) in tris-

buffered saline with 0.05% Tween-20 (TBST) (Sigma). Membranes were probed with 1:100 

anti-DvRelish followed by secondary donkey anti-rabbit 800CW 1:20,000 antibody (Li-Cor). 

Primer Sequence 5’-3’ Reference 

DvRelish   

DvRHD332F AATGGCTTTGCCCACAA This study 

DvRHD405Rev GGAACACTTGGAAGCAGAGG This study  

UPL 71  Roche  

DvActin   

DvActin-1424For  CTTTGTTTTCCCGAGCAGAG (Sunyakumthorn et al. 2012) 

DvActin-1572Rev  CCAGGGCAGTAGAAGACGAG (Sunyakumthorn et al. 2012) 

UPL 87  Roche  



 
 

 109 
 

DvRelish expression was normalized to DvActin determined with primary 1:2,000 mouse anti-

Actin followed by secondary 1:20,000 anti-mouse 680CW antibody. Western blots were imaged 

using a Li-cor Odyssey machine (Li-Cor) and protein band intensities were determined with 

Image Studio (v4.0) software (Li-Cor). 

4.2.9 Experimental design  

Three tick infection experiments were designed to determine the effect of SFG Rickettsia 

infection on dvrelish expression during the exposure of D. variabilis to SFG Rickettsia by 

microinjection and capillary feeding. An overall experimental design is outlined in Figure 4.1.  

4.2.9a Microinjection technique assays: hemocyte and combined tissues dvrelish expression 

experimental design 

 

 Two microinjection technique assays were designed to determine the response of 

D. variabilis to infection with SFG Rickettsia: 1) expression of dvrelish in hemocytes after 1 
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Figure 4.2 Experimental design outlining the three infection assays performed.  
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hour post-injection (hpi), and 2) expression of in combined tick tissues after injection of SFG 

Rickettsia for 24 hpi. The experimental design for determining the expression of dvrelish in 

hemocytes after one hour of infection is outlined in Figure 4.3.  

 Briefly, the ticks were surface sterilized, immobilized, and injected with 105 or 107 P. 

aeruginosa R. parkeri or R. rickettsii, or sham inoculated with PBS. Each experimental group 

consisted of 10 D. variabilis unfed females. Ticks were dissected 1 hpi and hemolymph was 

collected separately for each tick into 300 µl of Trizol regent (Invitrogen). RNA was extracted, 

DNase treated, and reverse transcribed. Expression of dvrelish and dvactin, was determined via 

probe-based quantitative real-time reverse transcriptase-PCR (qPCR). Expression of dvrelish was 

normalized with dvactin and expressed as relative to the sham inoculated experimental group. 

Significant changes in dvrelish expression were determined using a one-way ANOVA with 

Tukey’s post hoc test with p-value less than 0.05 considered significant.  

The experimental design comparing expression in combined tick tissues up to 24 hpi is 

outlined in Figure 4.4. Briefly, the ticks were surface sterilized, immobilized, and sham  

 

 

 
Figure 4.3 Bioassay 1: microinjection and hemolymph stimulation assay.  
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inoculated with PBS, with 200 ng E.coli-PGN, 107 R. parkeri or 107 R. rickettsii. Each 

experimental group consisted of 5 D. variabilis unfed females each at 1, 3, 6, 9, 12, and 24 hpi. 

Ticks were dissected and in sterile PBS and hemocytes with salivary glands, ovaries, and gut 

were combined per tick and divided for RNA extraction in 300 µl Trizol, or RIPA buffer for 

protein. RNA was extracted, DNase treated, and reverse transcribed. No reverse transcriptase 

(RT) reactions were also reverse transcribed with DNase treated RNA to determine residual 

DNA contamination. Expression of dvrelish was normalized with dvactin and expressed as the 

relative expression compared to sham inoculated experimental group. Significant dvrelish 

expression was determined using a two-way ANOVA with Tukey’s post hoc test with p-value 

less than 0.05 considered significant. For protein analysis by Western blot as described in 

Chapter 3, DvRelish and N-terminal DvRelish expression was normalized to DvActin 

expression.  

 

 

 

Figure 4.4 Bioassay 2: experimental design of the microinjection whole tick bioassay of       

D. variabilis with SFG Rickettsia with dissection at selected intervals 24 hours post injection 

(hpi). 
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4.2.9b Capillary feeding technique assay: combined tissues dvrelish expression experimental 

design  

 

An experimental design for the determination of dvrelish expression in adult, female 

D. variabilis after challenge with SFG Rickettsia via capillary feeding technique is outlined in 

Figure 4.5. Briefly, D. variabilis were allowed to feed on a Guinea pig for 4 days before being 

forcibly removed with curved forceps. Ticks were surface sterilized, immobilized, and capillary 

fed with R. rickettsii-infected Vero cells or uninfected Vero cells suspended in a solution 

containing the biomarker RhoB for feeding for 1 or 3 hours (Macaluso et al. 2001, Mascari and 

Foil 2009). Each time point consisted of 5 ticks per treatment group. Once the capillary tubes 

were removed, RhoB uptake from feeding was identified via florescent microscope. After 

determining feeding success, ticks were incubated in a 27°C environmental chamber until 

dissected. Ticks exposed for 1 hour were dissected at 0, 1, 3, 5, and 10 hours post capillary 

removal, and ticks exposed for 3 hours were dissected at 1, 3, 6, and 12 hours post capillary 

removal. The combined hemolymph, salivary glands, ovaries and gut were placed into 300 µl of 

Trizol for RNA extraction. Expression of dvrelish was determined with qPCR and  

 

 

Figure 4.5 Bioassay 3: oral infection bioassay experimental design outlining assessment 

of dvrelish transcription subsequent to R. rickettsii infection via capillary feeding 

technique. 
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normalized to dvactin. Normalized dvrelish expression at all time points was compared to Vero 

cell-exposed ticks at the first time point collected. Significant expression was determined with a 

one-way ANOVA and Tukey’s post hoc test with a p-value of less than 0.05 considered 

significant.  

4.3 Results 

4.3.1 Bioassay 1: response of D. variabilis hemocytes to microinjection of bacteria at two doses 

 Adult, unfed D. variabilis females were injected with 105 or 107 R. parkeri, R. rickettsii, 

and P. aeruginosa (Figure 4.6). Following exposure for 1 hour, ticks were dissected and 

hemolymph collected to determine expression of dvrelish immediately after infection in the 

hemocytes. 105 bacterial injection did not significantly increase dvrelish expression as compared 

to sham injection. There was also no significant difference between any bacteria-injected group  

at a dose of 105 injected bacteria. After injection with 107 bacteria, however, expression of 

Figure 4.6 Bioassay 1: transcription of dvrelish in tick hemocytes after injection of                

D. variabilis with varying amounts of bacteria. dvrelish transcription was normalized to 

transcription of dvactin and fold change was determined by comparison to PBS treatment 

group. Significance was determined using a one-way ANOVA with Tukey’s post hoc test 

with a p-value less than 0.05 considered significant. Error bars represent the standard error of 

the mean and asterisks denote significance as compared to 107 R. rickettsii injected group.  
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dvrelish increased significantly in R. rickettsii-injected ticks as compared to P. aeruginosa and 

R. parkeri at the same dose. Interestingly, R. rickettsii infection had a dose-dependent effect on 

dvrelish, with 4-fold increased expression with after injection with 107 bacteria as compared to 

105 bacteria.  

4.3.2 Bioassay 2: response of tissues to infection after microinjection of bacteria 

 Injection of 107 SFG Rickettsia into the hemocoel of unfed, D. variabilis female ticks 

were allowed to progress for up to 24 hours. Individual ticks were dissected and salivary glands, 

ovaries, gut, and hemolymph were divided and pooled for dvrelish expression and DvRelish 

protein expression analysis. Rickettsia infections were compared with two control groups, sham 

PBS injections and inoculations with 200 ng of E. coli-PGN. In R. rickettsii-injected ticks, 

expression of dvrelish increased 12-fold after 6 hours of incubation as compared to sham 

inoculated ticks 1 hpi (Figure 4.7). An 8-fold increase in expression in PGN-injected ticks was 

Figure 4.7 Bioassay 2: transcription of dvrelish over 24 hours in combined tick tissues 

(salivary glands, ovaries, gut, and hemolymph) after injection of D. variabilis with 

varying amounts of SFG Rickettsia. dvrelish transcription was normalized to 

transcription of dvactin. Fold change was determined by comparison to PBS treatment 

group. Significance was determined using a two-way ANOVA with Tukey’s post hoc 

test with a p-value less than 0.05 considered significant. Error bars represent the 

standard error of the mean and asterisks denote significance.                            
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observed, but this change was not statistically different from sham inoculated ticks. By 9 hpi, the 

expression of dvrelish returned to expression levels comparable to the sham inoculated ticks. As 

shown in Figure 4.8, expression of DvRelish protein was determined via Western blot and 

normalized with the expression of DvActin. The level of DvRelish did not increase significantly 

in at any time point in response to SFG Rickettsia infection, PGN, or sham inoculations. N-

terminal DvRelish expression was also analyzed and protein expression did not increase 

significantly in response to Rickettsia infection, PGN or sham inoculation (Figure 4.8). However, 

expression of N-terminal DvRelish was not detectable in all ticks.  

4.3.3 Bioassay 3: response of tick midguts to R. rickettsii challenge via capillary feeding 

 Adult female D. variabilis were pre-fed on Guinea pigs before being forcibly removed 

for capillary feeding with 2.5x108/ml R. rickettsii in Vero cells. Ticks were allowed to feed for 1 

or 3 hours and guts were dissected from 1 to 12 hours post capillary removal for identification of 

 

Figure 4.8 Bioassay 2: expression of DvRelish and N-terminal DvRelish over 24 hours in 

combined tick tissues (salivary glands, ovaries, gut, and hemolymph) after injection of       

D. variabilis with varying amounts of SFG Rickettsia. DvRelish was normalized to 

expression of DvActin. Fold change was determined by comparison to the PBS treatment 

group. Significance was determined using a two-way ANOVA with Tukey’s post hoc test 

with a p-value less than 0.05 considered significant. Error bars represent the standard error 

of the mean and asterisks denote significance.  
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dvrelish expression normalized with dvactin expression (Figure 4.9). After 1 hour of exposure, 

RhoB labeling of ticks could not be visualized. Whereas after 3 hours of exposure RhoB labeling 

could be visualized in all ticks. After exposure with Rickettsia for 1 hour, dvrelish expression 

was significantly increased at 0, 1, 3, and 10 hours post capillary removal as compared to ticks 

capillary fed whole Vero cells. Interestingly, after 3 hour exposure to R. rickettsii, dvrelish 

expression in the gut was significantly decreased at 1, 3, 6, and 12 hours post capillary removal 

as compared to Vero cell only controls.  

4.4 Discussion  

 

Infection assays comparing the temporal and tissue specific induction of D. variabilis 

dvrelish in response to SFG Rickettsia challenge were performed. Microinjections of specific 

doses of both vector-associated and non-associated SFG Rickettsia into the hemocoel of 

Figure 4.9 Expression of dvrelish after exposure to R. rickettsii for 1 or 3 hours via capillary 

feeding technique. dvrelish transcription was normalized to transcription of dvactin. 

Significance was determined with a one-way ANOVA and Tukey’s post hoc test with a p-

value less than 0.05 considered significant. Error bars represent the standard error of the 

mean and asterisks denote significance between groups at single time points. Fold change 

for 1 hour exposure was determined by comparison to Vero cell only at 0 hours post 

capillary removal, and fold change for 3 hour was determined by comparison to Vero cells 

alone at 1 hour post capillary removal. 
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D. variabilis identified an R. rickettsii dose-specific dvrelish response in hemocytes. Over 24 

hours, the microinjection of SFG Rickettsia into D. variabilis elicited an increase in dvrelish 

expression in response to R. rickettsii infection. Transcription of dvrelish peaked at 6 hpi, but 

without a corresponding increase in DvRelish expression or activation. In a capillary feeding 

model, 1 hour exposure of R. rickettsii increased dvrelish expression, whereas a 3 hour exposure 

resulted in decreased expression.  

As no one methodology captures all aspects of tick infection which may affect immune 

response induction, multiple methodologies are necessary to determine the spectrum of induced 

responses. Microinjection and capillary feeding were utilized in this study in order to examine 

dvrelish transcription under many conditions. With microinjection, a dose-dependent increase in 

dvrelish expression was identified. On the other hand, the capillary feeding technique revealed a 

dose-dependent response conversely related to the intensity of infection. The patterns of 

expression of DvRelish and molecular characterization of its activation need to be further 

characterized, as an aspect of vector competence. Therefore, understanding the immune response 

of hard ticks to their specific SFG Rickettsia will allow for a better appreciation of rickettsial 

epidemiology and its overall impact on the ecology of tick-borne rickettsioses.  

A microinjection technique infection of D. variabilis with SFG Rickettsia enabled the 

determination of dose-dependent dvrelish transcription at 1 hpi. Hemocytes exposed to 

R. rickettsii were collected and dvrelish transcription identified. Hemocytes are recognized as 

vital in the tick response to infections, as evidenced by increased hemocyte proliferation, 

increased AMP production, and suggestions that the infection of tick hemocytes may facilitate 

pathogen dissemination in the tick vector (Liu et al. 2011). The characterization of the signaling 

events occurring in hemocytes during early immune response induction may give insight into the 
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establishment of pathogenic and non-pathogenic Rickettsia. Only after injection with 107 

R. rickettsii was there a significant increase in dvrelish transcription in hemocytes. Pathogen 

infectious dose has been shown to affect the immune response of the host, and doses below the 

threshold required for disease development may result in lower than detectable immune 

responses (Ben-Ami et al. 2010, Leggett et al. 2012). However, changes in immune signaling 

may still be quantifiable. Dose-dependent P. falciparum infections in A. gambiae induce clear, 

differential global transcriptional patterns (Mendes et al. 2011). As a transcriptional response 

may not correlate with increases in protein activation and function, determining both NF-κB 

gene transcription, NF-κB transcription factor activation and nuclear localization will help to 

identify the potentially nuanced response of hard ticks to pathogenic, non-pathogenic, and 

endosymbiotic SFG Rickettsia.  

A secondary microinjection infection bioassay was designed to examine temporal 

induction of dvrelish transcription over 24 hours. Infecting D. variabilis with a dose of 107 

R. rickettsii induced a significant increase in dvrelish transcription at 6 hpi as compared to sham, 

PGN and R. parkeri-injected tick tissues. The increased transcription, however, is reduced by 9 

hpi. The response of D. variabilis to Gram-negative bacterium, such as P. aeruginosa, resulted in 

the induction of immune effort responses with a peak expression by 48 hpi (Johns et al. 1998). 

Conversely, infection with B. burgdorferi, a pathogen associated with other species of hard ticks, 

occurred quicker, with a peak at 24 hours (Johns et al. 2001). As differing temporal patterns of 

immune induction do occur, a potential increase in dvrelish transcription may not be identified 

with a single time point and the level of dvrelish transcription may not be required for short term 

effector response. Upregulation of D. variabilis immune genes including AMPs in response to 

rickettsial infection has been previously identified as tissue-specific (Sunyakumthorn et al. 
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2012). Further identification of dvrelish in separate tissues may reveal tissue specific dvrelish 

induction patterns missed in the combined tissue approach taken in the present study.  

 Whereas microinjection allows for quantifiable infection conditions, the capillary 

feeding technique best approximates the normal route of SFG Rickettsia infection through 

feeding (Macaluso et al. 2001). In order to determine the expression of dvrelish during capillary 

feeding, ticks were exposed for 1 and 3 hours to R. rickettsii-RhoB solution. After fluorescent 

microscopy, RhoB could not be identified in ticks feeding for only 1 hour; however, after 1 hour 

exposure a 5 fold increase of dvrelish expression was observed as compared to ticks capillary fed 

Vero cells alone. Thus, the amount of Rickettsia imbibed in 1 hour induced an immune response, 

even while the amount of solution imbibed was below the limit of visualization of the feeding 

biomarker RhoB. After 3 hours of capillary feeding, RhoB was visualized in most ticks, but the 

expression of dvrelish decreased. Differential RhoB visualization suggests the increased length 

of exposure time resulted in an increased R. rickettsii dose. These results demonstrated an 

infection intensity-dependent response in D. variabilis to R. rickettsii infection. Indeed, the 

intensity of infection has been identified as a mechanism influencing the induction of immune 

responses in Plasmodium falciparum infected A. gambiae (Mendes et al. 2011, Garver et al. 

2012). During P. falciparum infection, immune responsive transcription of genes was altered in a 

dose-dependent manner with an increase in transcription during high-intensity infections and 

decreased transcription during-low-intensity infection. This transcriptional pattern differs from 

the described capillary feeding results, however, intensity-dependent transcriptional induction 

may be specific to the pathogen-vector pairing. In order to completely identify the spectrum of 

possible immune responses, infection assays should include different intensities of infection. 
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Experiments utilizing specific tick-SFG Rickettsia pairings are necessary to determine the 

link between immune signaling, and the transcription and translation of immune effectors such as 

AMPs. Interestingly, there was no significant increase in dvrelish transcription in response to 

increasing doses of the atypical bacteria P. aeruginosa or R. parkeri after 1 hour or 24 hours 

post-microinjection. Effector responses in hard ticks including AMP expression and hemocyte 

induction occur within 48 hours of  infection with non-associated bacteria, such as P. aeruginosa 

(Johns et al. 1998). Compared to increased defensin mRNA transcription in response to the non-

pathogen Rickettsia montanensis, D. variabilis defensin induction is variable across bacterial 

infections, B. subtilis, E. coli, and R. montanensis (Johns et al. 1998, Sonenshine et al. 2005, 

Ceraul et al. 2007). Differential immune signaling mechanisms, such as the differential 

expression of dvrelish, may affect the differential effector responses to invading bacteria. As 

such, the response of hard ticks to typical and atypical bacteria should not be extrapolated, and 

must be determined using specific tick-SFG Rickettsia pairings.  

Of note, the PGN-injected ticks displayed a greater increase in dvrelish expression than 

the non-associated R. parkeri, while not statistically different from sham injected ticks. The 

moderate increase in R. parkeri-dependent dvrelish induction as compared to R. rickettsii-

dependent induction may be due to differing pathogenicity to the tick host. A recent report 

demonstrated a link between increased immune induction and decreased arthropod fecundity 

(Nystrand and Dowling 2014). Host fitness costs associated with R. rickettsii infection have been 

identified in Dermacentor ticks, potentially influencing immune signaling induction (Niebylski 

et al. 1999, Schumacher et al. 2016). Furthermore, Amblyomma maculatum infected with 

R. parkeri did not result in host fitness costs or lessened transovarial or transstadial transmission 

in previous studies (Wright et al. 2015). In comparison, R. parkeri-free tick colonies result in 
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lower molt rates, suggesting potential benefits of R. parkeri infection in A. maculatum. Together, 

transcription of dvrelish in response to SFG Rickettsia infection may not be defined in terms of 

pathogenicity alone, requiring other influencing factors such as the intensity and duration of 

infection.  

Coupled with transcriptional analyses, DvRelish protein translation and activation were 

identified via Western blot in the same ticks microinjected with 107 R. rickettsii and R. parkeri. 

During the 24 hours of infection, the expression of DvRelish did not significantly change in 

response to infection. The expression of the activated form of DvRelish, N-terminal DvRelish, 

was either undetectable or when detectable, not significantly different from sham inoculated and 

PGN inoculated ticks. Introduction of Gram-negative environmental pathogens results in an 

increased protein translation and activation of Relish-type transcription factors in model 

arthropods (Boutros et al. 2002, Fan et al. 2008). As the tick tissues were divided for qPCR and 

Western blot analysis, the expression of the N-terminal DvRelish may be below the limit of 

detection because of limited starting protein sample. In order to better describe the relationship 

between translation and activation of DvRelish during periods of increased dvrelish transcription, 

additional technical and experimental design changes may be necessary.  

The induction of immune responses to bacterial infection has been well characterized in 

model arthropods, such as D. melanogaster (Lemaitre and Hoffmann 2007). Ticks possess an 

immune system that responds to environmental bacteria in the hemocoel, clearing infections 

swiftly (Johns et al. 1998, Johns et al. 2001). In non-model arthropods, such as the hard tick 

D. variabilis, the mechanisms controlling immune effector response are largely uncharacterized. 

In this study, expression of dvrelish, a putative Relish-type NF-κB transcription factor was 

identified in response to bacterial microinjection and capillary feeding. Microinjected ticks 
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expressed dvrelish only at high concentrations of SFG Rickettsia in tick tissues, with temporal 

expression in the tick tissues, and without a corresponding increase in DvRelish protein 

expression. In response to capillary feeding, dvrelish expression was increased or decreased after 

1 or 3 hour exposure, respectively. Because specific tick-SFG Rickettsia pairings emerge in 

nature (Macaluso and Paddock 2014), discerning how ticks control differential immune 

responses and potentially clear or carry an infection with pathogens and endosymbionts will be 

necessary to better understand SFG Rickettsia ecology and epidemiology.                                                                                                                                                       
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CHAPTER 5 

DISCUSSION OF RESULTS AND FUTURE DIRECTIONS 

5.1 Discussion of results and future directions 

 Rickettsioses are zoonotic infectious diseases transmitted by arthropods, specifically 

ticks, fleas, lice and mites. Tick-borne rickettsioses are caused by the biological transmission of 

spotted fever group (SFG) Rickettsia. Members of this group are recognized pathogens of 

humans with great variation in infection ranging from self-limiting to severe, including death. 

The incidence of tick-borne rickettsial diseases (TBRD) in the United States has recently 

increased, exemplified by the more than 300% increase in reported Rocky Mountain spotted 

fever (RMSF) cases since 2000 (Openshaw et al. 2010, Drexler et al. 2016).  RMSF is caused by 

an infection with Rickettsia rickettsii and is transmitted by its tick vectors Dermacentor 

variabilis, Dermacentor andersoni, and most recently described Rhipicephalus sanguineus 

(Demma et al. 2005). SFG Rickettsia transmission occurs through transstadial transmission to 

subsequent tick life cycle stages and through feeding on rickettsemic vertebrate hosts. Specific 

SFG Rickettsia-tick pairings are evident in nature, with particular Rickettsia species typically 

infecting specific tick species (Macaluso and Paddock 2014).  Tick-borne rickettsioses have 

limited distributions which are dependent on the range of their tick vector. In spite of 

overlapping vector distributions, atypical infections in hard ticks are not sustained. Thus, the 

identification of the determinants of tick infection and vector competence is important.   

The maintenance of SFG Rickettsia in ticks is not successful if infection results in 

negative fitness costs; rather, infection must be above the threshold sufficient for vertical 

maintenance without exceeding the resources available in the vector host. As observed in other 

vector host-microbe interactions (Mendes et al. 2011, Garver et al. 2012), the SFG Rickettsia-

tick interaction is dependent on the checkpoint distinguishing clearance or microbial survival and 
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is driven by the level of host immune response. Ticks actively respond to infection with SFG 

Rickettsia by modulating transcription of immune-responsive genes (Macaluso et al. 2003, 

Mulenga et al. 2003, Sunyakumthorn et al. 2013), but it is known that transcription does not 

always correspond especially in ticks with protein expression (Thepparit et al. 2010). However, it 

is unknown how the modulation of immune genes factor into the balance of clearance or 

establishment of infection of vectors of TBRDs.   

 Identification of the molecular mechanisms central to rickettsial infection and 

transmission by tick vectors is of paramount importance for the development of novel 

intervention strategies for control. The tick-derived factors which favor successful tick infection 

and SFG Rickettsia transmission are likely critical in vector competence. Immune responses in 

ticks include the cell-mediated, hemocyte-driven response and the soluble response derived from 

the expression of antimicrobial peptides (AMPs) (Sonenshine and Hynes 2008). Tick derived-

lysozyme, defensins, and α2-macroglobulins are induced during infection, and have bactericidal 

effects (Johns et al. 2001b, Buresova et al. 2009). Likewise, SFG Rickettsia infection of 

Dermacentor ticks results in the differential mRNA expression of immune genes (Macaluso et al. 

2003, Mulenga et al. 2003, Sunyakumthorn et al. 2013). Hosts respond to all microorganisms 

encountered, but the level of immune response and bacterial evasion of this response determines 

microbial clearance or persistent infection. The overarching hypothesis of this dissertation work 

is that the level of response by D. variabilis to SFG Rickettsia infection occurs in a species 

specific manner. 

AMP induction is a major component of the tick immune response to rickettsial infection 

(Johns et al. 1998, Johns et al. 2000, Johns et al. 2001a). However, the immune signaling 

mechanisms controlling this response are unknown. The focus of this dissertation was to 
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characterize the role of immune regulators during SFG Rickettsia infection of D. variabilis ticks. 

In an effort to better describe the signaling mechanisms distinguishing differential tick effector 

responses, a Relish-type NF-κB gene was identified in D. variabilis (Chapter 2) followed by 

analysis of protein expression during Gram-negative bacterial infection (Chapter 3). Further 

infection assays were performed utilizing relevant tick-SFG Rickettsia pairings, to elucidate the 

tissue- and dose-specific responses to persistent infection (Chapter 4). Combined, the results of 

these studies advance the field by moving towards the identification of the mechanisms of tick 

immune response regulation as potential determinants of infection that drive the occurrence of 

specific tick-SFG Rickettsia pairings.  

In Chapter 2, a homologue cloning strategy resulted in the identification of a full-length 

dvrelish transcript. It was hypothesized that D. variabilis would encode a Relish-type NF-κB. 

Based upon the presence of a canonical Rel-homology domain and encoded ankyrin repeats, this 

transcript was putatively identified as a Relish-type NF-κB. Homologous Relish-type NF-κB 

proteins have been characterized in the model organism, Drosophila melanogaster, and have 

been demonstrated to act as transcription factors controlling the induction of the response to 

Gram-negative bacterial infection (Lemaitre and Hoffmann 2007, Hetru and Hoffmann 2009). 

This dissertation focused on identifying a transcript putatively encoding a protein in this class, as 

SFG Rickettsia are Gram-negative bacterium (Azad and Beard 1998). To ascertain the 

mechanisms of vector competence, these studies determined the expression of the putative 

Gram-negative NF-κB in response to pathogenic typical and atypical SFG Rickettsia infection in 

D. variabilis during a direct infection of the tick hemocytes and a natural oral infection in tick 

tissues. It is of great interest to describe the discriminatory tick immune processes that allow for 

the establishment of infection by SFG Rickettsia associated with their specific vector, while 
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quickly clearing tick-borne bacterial species not typically associated with a particular vector. The 

identification of immune responsive genes, however, is greatly inhibited by the paucity of 

genomic sequence available for most hard ticks, and specifically for D. variabilis, a vector of  

R. rickettsii.   

Following identification of the dvrelish transcript, in Chapter 3 it was hypothesized that a 

full-length DvRelish protein, as well as an activated N-terminal truncated form, would be 

expressed. Western blotting and mass-spectrometry was employed to identify a 100 kDa protein 

corresponding to DvRelish, and a 70 kDa protein corresponding to the putative activated N-

terminal domain of DvRelish without inhibitory ankyrin repeats. DvRelish, and the N-terminal 

DvRelish were identified in uninfected D. variabilis tissues, demonstrating basal expression of 

NF-κB proteins and mRNA transcription in the tick irrespective of infection status. Similar 

Relish-type NF-κB expression has been demonstrated in D. melanogaster, as these transcription 

factors have defined additional functions required for host fitness (Lee 2008). Evidence suggests 

basal NF-κB induction in response to normal gut flora is regulated via multiple points of 

inhibition, to promote immune tolerance to non-pathogenic infections (Bischoff et al. 2006, 

Lhocine et al. 2008, Ryu et al. 2008). 

Since NF-κB proteins were not described in ticks prior to these studies, the patterns of 

DvRelish expression in D. variabilis were undefined. It was hypothesized that exposure to 

Gram-negative infection would result in increased DvRelish expression.  DvRelish protein 

expression in hemocytes was identified in response to the Gram-negative bacterium 

Pseudomonas aeruginosa and to Escherichia coli-derived PGN exposure by 

immunofluorescence assay (IFA). While both conditions resulted in anti-DvRelish staining, IFA 

demonstrated increased staining in the nuclei of P. aeruginosa exposed hemocytes. The strength 
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of these findings was the ability to identify and track the expression and activation in tick 

hemocytes. As hemocytes are vital in the soluble and cell-mediated responses, characterizing the 

response of hemocytes directly will expand the understanding of the mechanisms determining 

SFG Rickettsia survival and dissemination in hard ticks (Sonenshine and Hynes 2008, 

Sunyakumthorn et al. 2013, Hynes 2014).  

Hemocytes are critical in the response of ticks to bacterial infection. As such, identifying 

the expression of immune signaling mechanisms may provide insight into mechanisms of 

rickettsial persistence. To this end, changes in expression of dvrelish was queried in tick 

hemocytes in response to SFG Rickettsia infection via microinjection. Expression of dvrelish 

was significantly increased in D. variabilis hemocytes 1 hour after injection with 107 

R. rickettsii. Conversely, expression did not increased with equal or lower doses of the atypical 

Rickettsia parkeri or P. aeruginosa. Injections with only 107 R. rickettsii resulted in the 

significantly increased expression of dvrelish in combined tick tissues only occurring at 6 hours 

post injection, suggesting a dose-dependent response. When comparing the results for these 

microinjection bioassays, the increase in dvrelish expression occurs after 1 hour in hemocytes, 

but in combined tissues expression peaks later, at 6 hours. In comparison to expression in the 

hemocytes, initial induction of dvrelish transcription after microinjection with R. rickettsii in the 

hemocytes may have been obscured in the second bioassay with combined tick tissues. Future 

studies to identify immune signaling induction in the hemolymph, gut, ovaries, and salivary 

glands individually are needed to identify the temporal and tissue-specific expression as SFG 

Rickettsia infection progress.   

 Based on other studies in Drosophila, it was not presumed that an increase in dvrelish 

transcription will result in increased protein translation or activation. (Dushay et al. 1996, Fan et 
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al. 2008, Lhocine et al. 2008, Antonova et al. 2009). During microinjection studies, there was no 

corresponding increase in DvRelish expression in D. variabilis tissues over 24 hours of SFG 

Rickettsia infection. While expression of Relish-type NF-κB proteins has been described in 

arthropods infected with atypical bacterial infections, the level of response may not be directly 

comparable to DvRelish expression in the tick Studies utilizing specific tick-SFG Rickettsia 

pairings are necessary to identify the immune response to typical bacterial infections. One 

limitation of the current study was the limited tick tissue available for protein analyses. In 

subsequent studies, if the initial tick protein sample is a limiting factor obscuring the 

identification DvRelish expression or activation, pooling ticks may be necessary.  Additionally, 

DvRelish expression varied greatly between samples; thus, increasing the tick sample size may 

be required for future studies to more accurately quantify DvRelish expression. Also, studies are 

need to examine protein expression in a temporal fashion. Despite these limitations, the direct 

assessment of tick tissues infected with both typical R. rickettsii and the atypical R. parkeri via 

microinjection identified tissue and Rickettsia-specific dvrelish transcription over time, while 

differential DvRelish expression was not observed.  Further studies are needed to compare the 

response of D. variabilis to typical infections with varying pathogenicity, including the non-

pathogenic Rickettsia montanensis. These experiments would more directly assess the immune 

signaling events occurring during SFG Rickettsia dissemination in the vector host. Defining the 

differential immune induction patterns in response to the pathogenic R. rickettsii which induces 

negative fitness effects and the non-pathogen R. montanensis will give insight into putative 

mechanisms driving the establishment of non-pathogenic SFG Rickettsia infection over low 

levels of identified R. rickettsii infected D. variabilis in nature (Stromdahl et al. 2010). 
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Ultimately, understanding the balance may help elucidate the biology behind rickettsial 

distribution in nature.  

Ticks are able to acquire Rickettsia through multiple routes, including feeding on a 

rickettsemic animal. In order for ticks to transmit the infection during subsequent host bloodmeal 

acquisition, disseminated infections must develop in the tick, resulting from the spread of 

Rickettsia from the gut of the tick to distal salivary glands. During feeding, the first point of 

Rickettsia infection is the gut, where the interactions between the infected blood meal and the 

tick immune response occur. Therefore, the interaction of the Rickettsia in the gut is key to 

inducing the appropriate immune response. Nevertheless, Rickettsia are able to disseminate from 

the site of infection.  However, the pathogenic mechanisms governing the dissemination of 

Rickettsia from the gut are unknown. Infection of D. variabilis with SFG Rickettsia via a natural 

oral route complements the microinjection bioassays described in Chapter 4. The expression of 

dvrelish in the gut of D. variabilis after exposure via capillary feeding technique with R. 

rickettsii either significantly increased or decreased depending on the rickettsial dose and 

duration of exposure. Tissue-specific responses of effector genes have been previously identified 

in D. variabilis ticks infected with SFG Rickettsia, but the distinguishing signaling pathways are 

unknown (Macaluso et al. 2003, Mulenga et al. 2003, Sunyakumthorn et al. 2013). Previous 

studies have reported conflicting immune gene transcription in a tissue-specific manner in 

response to hard tick infection with typical and atypical SFG Rickettsia. These results suggest 

that mechanisms of immune response induction are likely tissue and SFG Rickettsia specific 

(Mulenga et al. 2003, Ceraul et al. 2008, Sunyakumthorn et al. 2013, Rosa et al. 2015).  

In addition to the site of infection, the level of infection may also influence the immune 

response. During the capillary feeding bioassay, a shorter exposure time to R. rickettsii resulted 
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in the increase in transcription over 10 hours while a longer exposure with the same 

concentration of R. rickettsii, resulting in an increased number of R. rickettsii, induced the 

downregulation of dvrelish over 12 hours. This suggests that the number of organisms effects the 

expression of immune inducible genes, such as dvrelish. Moreover, the potential of SFG 

Rickettsia to regulate the immune response should also be examined. Further studies are 

necessary to identify the precise mechanisms inducing differential immune signaling, including 

receptors required for the differential recognition. Such receptors may give additional insight 

into the tick molecules driving microbial clearance or infection.  The capillary feeding technique 

bioassay identified expression in the gut alone; however, the immune response in specific tissues 

is likely to vary and should be considered. Future studies should also identify immune signaling 

gene expression, such as dvrelish, in all tissues. This would allow for the characterization of 

immune induction as SFG Rickettsia infection progresses and disseminates in the tick host.  

Assays determining differential immune responses in tick vectors will benefit from the 

use of artificial tick feeding systems. In the present study, keeping the concentration of 

R. rickettsii constant during capillary feeding, while varying the exposure time is a limitation. 

The use of capillary feeding technique in the experimental design in Chapter 4 removes the 

possibility of comparing responses between treatment groups over time, which is defined after 

removal of capillary tubes. The utilization of an artificial feeding system would allow for the 

varying of exposure dose, while keeping the time post exposure constant, allowing for the more 

accurate assessment of the temporal induction of immune responses as a result of dose-

dependent infection models. The temporal induction of immune activation and responses may 

differ between typical and atypical infections, giving insight into the progression of rickettsial 

infection and tick vector competence for SFG Rickettsia.  
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 Despite the work in this dissertation identifying a putative master regulator of the 

immune response to Gram-negative bacterial infection in D. variabilis, further characterization 

of DvRelish function is necessary to fully understand the patterns of gene binding, and its overall 

importance in the tick response to infection. Relish-type NF-κB proteins are known to be 

endoproteolytically cleaved, revealing a nuclear localization sequence (Stöven et al. 2000, 

Stoven et al. 2003). The truncated proteins then move into the nucleus, where they can bind to 

DNA promoter sequences upstream of immune responsive genes (Lemaitre and Hoffmann 

2007).  It is likely that previously described SFG Rickettsia infection responsive gene promoters 

contain NF-κB binding κB sites. Determining the κB promoter sequence will allow for the global 

identification of genes that are DvRelish inducible through promoter sequence analysis, using 

bioinformatic programs such as the motif finder MEME (Bailey et al. 2009). The binding of 

DvRelish to D. variabilis promoter regions could be identified using multiple methodologies, 

including chromatin immunoprecipitation-sequencing (ChIP-seq), which would allow for the 

identification of DvRelish induced genes under differing conditions including pathogenic and 

endosymbiotic SFG Rickettsia infection. Differential patterns of DvRelish binding to effector 

molecule promoter sequences, combined with gene expression, will better define the differential 

immune patterns which govern SFG Rickettsia establishment or clearance.   

 In order to assess the importance of DvRelish in the tick immune system in response to 

SFG Rickettsia infection, RNAi-mediated knockdown of DvRelish should be performed. Relish-

type NF-ĸB transcription factors are known to be responsive to Gram-negative bacteria, but 

owing to the redundant nature of immune systems, it is most likely not acting alone (Lemaitre 

and Hoffmann 2007, Hetru and Hoffmann 2009). Several studies have explored the feasibility of 

RNAi in D. variabilis and RNAi has been a successful technique in the study of immune-
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responsive proteins in hard ticks (Kocan et al. 2009, Zivkovic et al. 2010). The silencing of 

immune proteins resulted in pathogen-specific increases or decreases in infection load, 

depending on the immune protein silenced. This suggests increased tick immune gene expression 

in ticks may confer beneficial effects to some bacteria thereby supporting infection, or 

alternatively induce bactericidal responses decreasing infection load.  RNAi could be a valuable 

tool in understanding the relative importance of DvRelish in the immune response during SFG 

Rickettsia infection.   

 One of the most pressing needs in vector biology is an expansion in the number of fully 

sequenced genomes. While the genome of D. variabilis has been prioritized for sequencing, the 

complexity and size of tick genomes make this a challenging task (Pagel Van Zee et al. 2007). 

As described in Chapter 2, transcriptomes can facilitate the identification of homologous genes 

in tick vectors, including immune signaling genes.  However, the process of homologue cloning 

is time consuming and will limit the rapid progress towards a global understanding of tick 

immune responses. The sequencing of the D. variabilis genome could greatly increase the 

number of immune responsive genes that can be characterized, as was realized after the release 

of the I. scapularis genome (Smith and Pal 2014). With increased genomic sequence, the 

elucidation of the molecular mechanisms influencing the response of D. variabilis to SFG 

Rickettsia will be examined at the systems level. Therefore, the genomic sequencing could 

accelerate the identification of immune signaling mechanisms facilitating the establishment or 

clearing of SFG Rickettsia.  

 The tick-derived and Rickettsia-derived factors contributing to tick vector 

competence are poorly defined. Infection assays, coupled with the identification of the 

mechanisms of immune signaling aim to better define the molecular determinants and processes 
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which govern specific tick-SFG Rickettsia relationships. Any one exposure method may not 

describe the full range of immune responses possible during SFG Rickettsia infection. As such, 

further studies should be cautious to assign biological significance to specific dvrelish expression 

profiles induced in response to SFG Rickettsia infection without taking into account differing 

exposure methods, infection doses, and specific tick-Rickettsia pairings.  The identification of a 

Gram-negative Relish-type NF-κB molecule in D. variabilis is an essential step forward in the 

identification of differential immune signaling and understanding of tick host response to 

infection with SFG Rickettsia (Figure 5.1) Further immune characterization may lead to the 

identification of immune mechanisms required for infection and transmission. Such mechanisms 

may facilitate the development of novel approaches to control, and better explain the 

epidemiology of SFG Rickettsia. The identification of the differential mechanisms of immune 

induction in ticks is critical to developing an understanding of the molecular determinants of 

vector competence.  
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Figure 5.1 SFG Rickettsia infection and the tick host immune response. After infectious 

bloodmeal ingestion, the first site of immune reaction occurs in the tick gut. SFG Rickettsia 

(purple rods) bind to histone H2B and other receptors present on tick cells inducing actin 

polymerization and Rickettsia invasion . Studies in arthropods suggest Gram-negative PGN is 

recognized by PGRPs located in the cell membrane or by intracellular PGRPs . The induction 

of the IMD signaling pathway likely activates NF-kB transcription factors, for example 

DvRelish identified in the present study . Differential transcription of dvrelish in response to 

SFG Rickettsia infection was identified; however, the mechanisms of DvRelish protein 

activation and nuclear localization which induce immune response are not clearly defined . 

SFG Rickettsia infection induces immune effector and AMP upregulation including increased 

levels of defensin, DvGST, and β-thymosin, α2-macroglobulins, TEPs and Factor D, 

suggesting an important role in tick-Rickettsia interactions . SFG Rickettsia that are not 

cleared by the immune response disseminate to the hemolymph where hemocytes phagocytose 

SFG Rickettsia while continuing to produce effector molecules . Disseminated infections in 

the salivary glands and ovaries facilitate transmission and stimulate the production of immune 

effectors . The mechanisms determining the clearance or the establishment of disseminated 

infection may be controlled through differential immune signaling and effector response, 

allowing for specific tick-SFG Rickettsia pairings to predominate.  
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APPENDIX 

COMMONLY USED ABBREVIATIONS 

 

AMP – Antimicrobial peptide 

BSA – Bovine serum albumin 

CDD – Conserved Domain Database 

DAP – Diaminopimelic acid 

DPI – Days post inoculation 

GNBP – Gram-negative binding protein 

GST – Glutathione S-transferase 

HPI – Hours post inoculation  

IMD – Immune deficiency 

IPT - Immunoglobulin/plexin/transcription factor  

LPS - Lipopolysaccharide 

NLS – Nuclear localization sequence 

PCR – Polymerase chain reaction 

PGN - Peptidoglycan 

PGRP – Peptidoglycan recognition protein 

qRT-PCR – Quantitative reverse transcriptase polymerase chain reaction 

RACE-PCR – Rapid amplification of cDNA ends polymerase chain reaction 

RHD – Rel-homology domain  

RHOB – Rhodamine B 

RMSF – Rocky Mountain spotted fever 

RNAi – RNA interference 

SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SFG – Spotted fever group 

SRA – Sequence read archive 
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