
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2017

Development of Mouse Models for the Study of
Zika Virus Pathogenesis and Antibody Response
Anna Beatriz Kawiecki
Louisiana State University and Agricultural and Mechanical College, akawie1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Veterinary Pathology and Pathobiology Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Kawiecki, Anna Beatriz, "Development of Mouse Models for the Study of Zika Virus Pathogenesis and Antibody Response" (2017).
LSU Master's Theses. 4538.
https://digitalcommons.lsu.edu/gradschool_theses/4538

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/764?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4538?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


DEVELOPMENT OF MOUSE MODELS FOR THE STUDY OF ZIKA 
VIRUS PATHOGENESIS AND ANTIBODY RESPONSE 

 

 

 

 

 

 

 

A Thesis 
 

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of 
Master of Science 

 
in 
 

The Department of Pathobiological Sciences 
 

 

 

 

 

 

 

by 
Anna Beatriz Kawiecki 

D.V.M., Complutense University of Madrid, 2013 
May 2017  



 ii 

ACKNOWLEDGEMENTS 

I dedicate this thesis to my parents, who are always there for me, for which I am 

extremely grateful.  

I owe a lot to my mentor, Dr. Rebecca Christofferson, for helping me find my feet in the 

world of research; she has been very generous with her help and has given me every 

opportunity for personal and professional growth. I am very grateful for everything she 

has done for me.  

I thank my committee members, Dr. Schieffelin, Dr. Mores, Dr. Martinez, and Dr. Rohli 

for their advice and valuable input that has helped me improve my work and knowledge, 

thanks to whom I have become a better scientist.  

I also thank my colleagues, former and current lab members, Ms. Handly Mayton, Dr. 

Fausta Dututze, Dr. Brad Goupil, and Dr. Michael McCracken for their help and support. 

I’ve learned a lot from them and they have always been there for a laugh when I needed 

it.  

A special thanks to my friend Angelica Hernandez Palma who has been like family to 

me. She is my emergency contact, and the best friend I could have hoped for. 

In addition, I thank my friends from inside and outside of the department that have been 

there for me and helped me in every possible way, from practicing presentations to 

blowing off steam; a special mention to Dr. Isaura Simoes, Dr. Fernando Alda, and the 

PBS graduate students.   



 iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ................................................................................................ ii	

ABSTRACT ..................................................................................................................... vi	

CHAPTER 1: INTRODUCTION AND REVIEW OF ZIKA VIRUS DISEASE AND 
ANTIBODY RESPONSE .................................................................................................. 1	

1.1 INTRODUCTION ..................................................................................................... 1	

1.1.1 Background ....................................................................................................... 1	

1.1.2 Replication ........................................................................................................ 4	

1.1.3 Transmission ..................................................................................................... 6	

1.1.4 ZIKV outbreak in the Americas ......................................................................... 9	

1.2 PATHOGENESIS OF ZIKV ................................................................................... 12	

1.2.1 Animal models of ZIKV pathogenesis ............................................................. 12	

1.2.1.1 Mouse models ........................................................................................... 12	

1.2.1.2 Non-human primate models ...................................................................... 16	

1.2.2 Skin pathogenesis ........................................................................................... 18	

1.2.3 Ocular pathogenesis ....................................................................................... 19	

1.2.4 Neurological pathogenesis .............................................................................. 21	

1.2.5 Placental pathogenesis ................................................................................... 25	

1.2.6 Testicular pathogenesis .................................................................................. 28	

1.2.7 Innate immune response to ZIKV .................................................................... 32	

1.3 ANTIBODY RESPONSE TO ZIKV ........................................................................ 34	

1.3.1 Background of antibody neutralization and enhancement: ............................. 34	

1.3.2 ZIKV cross-neutralization and enhancement with DENV and other arboviruses.
 ................................................................................................................................. 39	

1.3.2.1 Effect of DENV immunity on ZIKV infection .............................................. 39	



 iv 

1.3.2.2 Effect of ZIKV immunity on DENV infection .............................................. 42	

1.3.2.3 Consequences of flaviviral immunity on ZIKV in the Americas ................. 46	

1.4 AIMS ..................................................................................................................... 50	

CHAPTER 2: CHARACTERIZATION OF A MURINE MODEL OF ZIKA VIRUS 
INFECTION: INFECTION KINETICS, TISSUE TROPISMS, AND ANTIBODY 
RESPONSE ................................................................................................................... 52	

2.1 INTRODUCTION ................................................................................................... 52	

2.2 MATERIALS AND METHODS .............................................................................. 54	

2.2.1 Ethics Statement ............................................................................................. 54	

2.2.2 Virus ................................................................................................................ 54	

2.2.3 Mouse experiments ......................................................................................... 54	

2.2.4 Viral RNA detection ......................................................................................... 56	

2.2.5 Plaque Reduction Neutralization Test (PRNT) ................................................ 56	

2.2.6 Statistics .......................................................................................................... 57	

2.3 RESULTS .............................................................................................................. 58	

2.3.1 Infection kinetics of ZIKV in IRF3/7 DKO mice ................................................ 58	

2.3.2 Organ and tissue lesions ................................................................................. 60	

2.3.3 Antibody response to ZIKV ............................................................................. 65	

2.4 DISCUSSION ........................................................................................................ 66	

CHAPTER 3: BOOSTING ALTERS THE CROSS-NEUTRALIZATION AND 
ENHANCEMENT CAPACITY OF THE ANTIBODY-RESPONSE FOLLOWING ZIKV 
EXPOSURE IN C57BL/6 MICE ...................................................................................... 71	

3.1 INTRODUCTION ................................................................................................... 71	

3.2 MATERIALS AND METHODS .............................................................................. 72	

3.2.1 Ethics Statement ............................................................................................. 72	

3.2.2 Virus ................................................................................................................ 73	



 v 

3.2.3 Mouse exposures ............................................................................................ 73	

3.2.4 Viral RNA detection ......................................................................................... 73	

3.2.5 Plaque Assays and Plaque Reduction Neutralization Test (PRNT) ................ 74	

3.2.6. In vitro ADE assay .......................................................................................... 74	

3.2.7 Statistics .......................................................................................................... 76	

3.3 RESULTS .............................................................................................................. 76	

3.3.1 Mouse Exposure to ZIKV ................................................................................ 76	

3.3.2 Neutralization of ZIKV and DENV2 ................................................................. 77	

3.3.3 Antibody-dependent enhancement of DENV2 infection in vitro ...................... 78	

3.4 DISCUSSION ........................................................................................................ 81	

CHAPTER 4: CONCLUSION ......................................................................................... 85	

REFERENCES ............................................................................................................... 97	

VITA ............................................................................................................................. 120	

 

  



 vi 

ABSTRACT  

After the emergence of Zika virus (ZIKV) in the Americas in 2015, ZIKV infection was 

associated for the first time since its discovery with severe symptoms in both adults and 

congenital cases, including neurological, ocular, and developmental manifestations. 

Previous ZIKV circulation in Africa and Southeast Asia has been characterized by mild 

symptoms and small-scale case-counts. It is unclear whether the unprecedented size 

and severity of the ZIKV outbreak in the Americas are the consequence of a change in 

the virus, different background flaviviral immunity in the population, or a reporting issue. 

In addition, ZIKV has been shown to be transmitted through sexual contact, and the 

shedding of ZIKV from various bodily fluids in both humans and in vivo models suggests 

that other potential routes of transmission exist. We present here two mouse models 

that can be used to further investigate ZIKV pathogenesis, transmission, and immune 

response. Mice lacking interferon regulatory factors 3 and 7 (IRF 3/7 DKO) supported 

robust infection with the prototype MR766 strain from Uganda, while maintaining a 72% 

survival rate, and recapitulated symptoms and tissue lesions associated to infection with 

American ZIKV isolates in humans and other in vivo models. The MR766 strain was 

capable of causing retinal lesions and viral RNA shedding from the conjunctival fluid, 

hitherto unreported to be caused by an African strain. Further, ZIKV was visualized in 

the seminal fluid co-localized with infected epithelial epididymal cells, suggesting a 

possible cellular component of sexual transmission. Immunocompetent C57BL/6 mice, 

although not susceptible to ZIKV, were capable of mounting a robust antibody response 

that strongly neutralized ZIKV and was also able to cross-neutralize DENV2. We further 

report that homologous re-exposure with ZIKV in C57BL/6 mice reduced the DENV2 
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cross-neutralizing capability of the antibody population, while at the same time 

increasing enhancement of DENV2 infection. We conclude that ZIKV strains of the 

African and Asian lineages share a similar pathogenesis, suggesting that the increased 

severity of symptoms is unlikely to be due to a change in the virus. We also show that 

re-exposure to ZIKV can alter the antibody response to increase the risk of 

heterologous infection. 
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CHAPTER 1: INTRODUCTION AND REVIEW OF ZIKA VIRUS DISEASE 
AND ANTIBODY RESPONSE 

1.1 INTRODUCTION 

1.1.1 Background 

Zika virus (ZIKV) is an arbovirus and a member of the Flaviviridae family, related to 

other flaviviruses such as West Nile virus (WNV), yellow fever virus (YFV), and dengue 

virus (DENV)[1]. ZIKV was originally isolated from a rhesus macaque (Macaca mulatta) 

in the Zika Forest in Uganda in 1947[2]. It was consecutively isolated from A. africanus 

mosquitoes in the same forest in 1948 [2], and the first isolation in humans was 

confirmed to have occurred in Uganda in 1962-1963[3, 4]. 

Data from serosurveys dating back to the 1950s suggest circulation of ZIKV in Africa, 

the Indian subcontinent, and Southeast Asia[5]. Although these reports should be 

interpreted with caution due to antibody cross-reactivity with other flaviviruses, this 

evidence, together with sporadic isolations of ZIKV from humans, mosquitoes, and non-

human primates, indicates that  ZIKV is endemic in Africa and several countries in 

Asia[1, 5]. ZIKV was not reported to cause any major outbreaks until 2007 on the Island 

of Yap in Micronesia[6]. Up to this point ZIKV had been characterized by largely 

asymptomatic infections or inducing mild symptoms that generally resolved within 1-2 

weeks of onset, some of the most frequent being maculopapular rash, fever, arthritis, 

non-purulent conjunctivitis, myalgia, and headache[5, 6]. This clinical presentation can 

be confounded with that of other diseases that often circulate in the same areas, such 

as chikungunya virus (CHIKV) or DENV. However, in ZIKV infections, limb oedema and  
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conjunctivitis seem to be more frequent, while hepatomegaly, leukopenia, and 

thrombocytopenia are less so[7]. 

The next substantial outbreak of ZIKV occurred in French Polynesia in 2013, where the 

first evidence of ZIKV association with more severe symptoms made its appearance: 

the incidence of Guillain- Barré syndrome was 20 times higher during the ZIKV outbreak 

than in non-outbreak periods[8, 9], and an association between ZIKV infection and 

microcephaly was found retrospectively[10]. After the outbreak in French Polynesia, 

ZIKV disseminated through the South Pacific, with outbreaks in the Cook Islands and 

Easter Island. Finally, in late 2014 it arrived in Brazil, from whence it spread explosively 

throughout the Americas[5, 11], accompanied by a dramatic increase in incidence 

microcephaly and other congenital anomalies in babies born to ZIKV-infected mothers 

that were preliminarily associated to ZIKV infection[10, 12]. These events caused the 

WHO to declare the ZIKV outbreak as a Public Health Emergency of International 

Concern in 2016. Since then, the birth defects caused by ZIKV have been defined as 

the congenital Zika Syndrome (CZS), and the link of causality between CZS and ZIKV 

has been confirmed by the CDC[13, 14], supported by the detection of ZIKV in amniotic 

fluid, fetal brain tissue, placentas, and proof of concept in mouse models[12, 15, 16]. 

CZS is characterized by five features: microcephaly with partially collapsed skull, 

decreased brain tissue with a characteristic pattern of damage (such as brain 

calcifications), damage to the back of the eye, joints with limited range of motion, and an 

elevated muscle tone[14]. In adults, other symptoms, neurological and otherwise, have 

also been associated with ZIKV infection, such as Guillain Barré, 

meningoencephalitis[17], acute myelitis[18], hearing loss[19, 20], and ocular 
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pathology[21, 22]. Although many studies have contributed to strengthening the link of 

causality between ZIKV and these other neurological an congenital symptoms, they 

have yet to be confirmed[5, 8, 12, 23-26]. Deaths due to ZIKV are rare and are usually 

accompanied by co-morbidities or immunosuppression[27, 28].  

Little is known of the infection kinetics of ZIKV. Aedes mosquitos have been shown to 

be competent vectors, and are likely the main form of transmission (see below). After 

the bite of an infected mosquito, ZIKV likely replicates in the skin cells[29] and from 

there enters the bloodstream. ZIKV can be detected in blood from 3.5 to 10 days after 

infection[1], and is usually present at low levels[30]. It appears ZIKV is associated with 

cells in the blood, given that ZIKV RNA levels are found at higher titers and for a longer 

time in whole blood than in serum, in addition to the fact that ZIKV has been shown to 

infect monocyte- derived dendritic cells[31, 32]. ZIKV is shed from various bodily fluids 

for variably prolonged periods of time. For example: in urine, the median time of 

shedding is 8 days; in semen, although the longest persistence of RNA was reported to 

be 188 days after symptom onset[33], a recent report indicates that 95 % of males stop 

shedding the virus after 3 months[34]. ZIKV infection and persistence in different tissues 

is still under study.  

ZIKV infection induces an innate and adaptive immune response. IgM antibodies 

appear around 9 days post infection[5] and can be detected for 2-3 months[35]. IgG 

antibodies appear later and are thought to remain present for life[5, 35]. 

Genetically, ZIKV is has evolved into two lineages: the African lineage, which includes 

strains circulating in Central and Western Africa, and the Asian lineage, which includes 
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strains circulating in Southeast Asia, the Pacific, and the strains participating in the 

current outbreak in the Americas[35-37]. The strains circulating in the Americas have 

more than a 99% nucleotide identity with the French Polynesian strain[1]. 

1.1.2 Replication 

ZIKV has a single strand of positive sense RNA, which is a common feature of 

flaviviruses. It has one open reading frame (ORF) which encodes a single polyprotein 

that is later cleaved into the structural and non- structural proteins, as well as a 5’ 

untranslated region (UTR) with a type I cap structure, and a 3’ UTR that lacks a 

polyadenylate tail[1, 35]. The structural proteins are the capsid (C), that is associated 

with the RNA, the membrane (prM), that must be cleaved into M protein in order to 

produce a mature virus particle, and the envelope protein (E)[35]. Cryoelectron 

microscopy has provided information on how these proteins are organized in a virus 

particle: the C proteins associated to the RNA strand form the nucleocapsid, that is 

surrounded by a lipid bilayer acquired during cell egress, in which the E and M proteins 

are anchored forming an icosahedral surface[38]. The surface of the virus is spiky in 

immature virions where the E and uncleaved prM proteins form heterodimers, but is 

smooth in mature virions where the E proteins form homodimers and the cleaved M 

protein lies flat[39, 40]. The E protein has three domains (DI-III), one of which, DII, 

contains the fusion loop (FL) which is responsible for fusion with the endosome upon 

viral entry. The structure of the ZIKV E protein is similar to the DENV E protein, with 

some differences in the glycosylation sites as well as a positively charged patch 

adjacent to the FL, which could determine the virus’ cellular attachment or 

neurovirulence[40, 41]. The non-structural proteins participate in viral replication, 



 5 

processing of polyproteins and host immune response modulation[35]. There are seven 

non-structural proteins in the ZIKV virus genome: NS1, which in ZIKV has some unique 

electrostatic features in the interface with host factors[35]; NS2A and NS2B; NS3, which 

in ZIKV has a different conformation than in other flaviviruses, with the protease portion 

forming an homodimer and the helicase portion forming a monomer [42, 43], NS4A and 

NS4B, which participate in forming the replication complex, and NS5 which is the RNA 

polymerase[35]. 

The replication of ZIKV virus has not been fully explored, but is thought to be similar to 

that of other flaviviruses[44]. The cellular receptor that allows internalization of the virus 

is still unknown, although several candidates have been proposed, including DC-SIGN, 

TIM-1, and AXL. After endocytosis, changes in the pH of the endosome lead to a 

conformational change in the E protein to a trimeric form, exposing the FL portion of the 

E protein[45]. This allows the FL portion to fuse the endosomal membrane and the viral 

envelope, resulting in the release of the viral genome into the cytoplasm. The viral RNA 

is immediately translated in association with cellular membranes, and the resulting non-

structural proteins commence replication of the genome in membrane vesicles in the 

endoplasmatic reticulum[45]. The new genomes are packaged in the ER, and the 

immature virions are transported through the cellular secretory pathways, where they 

acquire the lipid membrane. The E protein is glycosylated and the prM protein is 

cleaved to produce mature virions, which are then released by exocytosis[35].  
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1.1.3 Transmission 

ZIKV is mainly transmitted by Aedes mosquitoes[7]. Different members of the Aedes 

species have been associated with ZIKV outbreaks, such as A. hensili in Yap state, A. 

aegypti in New Caledonia and A. polynesiensis in French Polynesia[46],  although A. 

aegypti and A. albopictus pose the greatest threat due to their broad distribution and 

anthropophilic behavior[47]. A. aegypti has been confirmed as a competent vector for 

ZIKV, being able to transmit ZIKV after feeding from an infected human volunteer to a 

susceptible mouse[48]. Field-caught specimens of A.albopictus in Mexico[49] and A. 

aegypti in Brazil[50] have been found to be infected with ZIKV, therefore confirming the 

probable role of these two mosquito species in transmission in the Americas. ZIKV has 

also been isolated from other Aedes mosquitos such as A. africanus, A. luteocephalus 

and A. furcifer, which are forest dwelling mosquitos in Africa probably related to the 

sylvatic cycle of ZIKV[51]. In addition, ZIKV has been isolated from non- Aedes genera 

of mosquitos such as Mansonia, Culex and Anopheles[51]. However, isolation of virus 

from a mosquito does not equate to vector competence, and the role of these 

mosquitoes in ZIKV transmission is unclear.  

The ability of a mosquito to get infected will depend in part on the duration and the 

magnitude of the host’s viremia[5]. The incubation period in human patients ranges from 

3.5 to 10 days[1] after which point the virus can be detected in blood.  Viremia peaks 

upon symptom onset[5, 35], and is generally of low titer[30, 52]. ZIKV can induce 

intermittent viremia, as has been shown to occur in 10% of the study subjects in a 

recent report, where the positive samples were separated from each other from 14 to 62 

days[34]. This is supported by reports of secondary episodes of symptomology that 
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occur after initial remission[1, 21, 53], and by experimental infections of rhesus 

macaques, where recurrence of low-level viremia was seen for up to 17 days post 

infection[54]. ZIKV RNA has been found in whole blood for as long as 58 days after 

symptom onset[32], implying that ZIKV may persist in the cellular component of the 

blood. In addition, pregnant women and non-human primates infected with ZIKV have 

been shown to have prolonged viremia, possibly due to viral dissemination from the 

infected fetus, which indicates that pregnant women may play an important role in 

transmission[34, 54, 55]. 

Once a competent mosquito ingests an infected blood-meal, it is able to transmit the 

virus to susceptible humans after an extrinsic incubation period (EIP). The EIP was 

found to be about 10 days in A. aegypti[56]. One study found that A. aegypti infected 

with the Brazilian ZIKV isolate BRPE243/2015 had levels between 4 and 7 log 10 of 

ZIKV in saliva[57], and another study showed that high levels of virus were maintained 

in the mosquito for up to 60 days post infection, although mosquitoes do not live that 

long outside of a laboratory setting[7, 56, 58]. 

Sexual transmission has been reported from male to female, female to male, and male 

to male[59-62]. This is supported by the isolation of virus from the vaginal mucosa[63] 

and semen[64]. In males, ZIKV is able to persist for long periods of time in the 

semen[34] and seems to be able to cause lesions in the reproductive organs evidenced 

by hematospermia and prostatitis[59, 65]. ZIKV has also been visualized in the 

spermatozoa in an infected male[66], supporting the involvement of sperm cells in 

transmission. However, the exact route of male to female transmission during 

intercourse remains unclear and may not be restricted to the sperm cells, as there have 
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been reports of transmission either orally or by pre-ejaculate[67, 68], in addition to 

transmission from a vasectomized male, where the involvement of spermatozoa is 

unlikely[69]. In a mouse model, infection of the vagina of a pregnant female mouse led 

to fetal brain infection, indicating that the sexual transmission route can cause the same 

repercussions to the fetus as transmission by mosquito bite[70]. ZIKV sexual 

transmission could contribute to increasing the size and spread of epidemics as well as 

their duration by sustaining transmission even at times when mosquito populations are 

low[71, 72]. 

Epidemiological evidence and the isolation of virus from various bodily sources indicate 

that other transmission routes are possible. The first perinatal cases of ZIKV reported in 

2013 were suspected to result from contamination occurring during delivery, 

breastfeeding, or close maternal contact rather than from transplacental transmission, 

due to the lag in viremia appearance in the neonates[73]. The perinatal transmission 

route is supported by detection of ZIKV RNA in the milk[74] and the saliva of ZIKV 

infected mothers[75], although neither of these routes have been confirmed. ZIKV has 

also been isolated from saliva in infants[75] and non-human primates[76]. 

Transplacental transmission has later been confirmed in congenital cases in Brazil, 

through detection of either ZIKV RNA, proteins or infectious virus particles in amniotic 

fluid, blood and tissue of fetuses and in the placenta[15, 55, 77-79]. The ability of ZIKV 

to cause congenital disease is reminiscent of other TORCH pathogens (Toxoplasma 

gondii, other, rubella, cytomegalovirus and herpes simplex virus) and could merit the 

inclusion of ZIKV in this group[79]. 
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Transmission by transfusion and organ donors is also a legitimate concern due to the 

high rate of asymptomatic infections of ZIKV. In French Polynesia 2.8% of the blood 

donors tested had ZIKV RNA[80], and in Puerto Rico a total of 0.5% of donors had 

detectable ZIKV in a 5 month period, the incidence increasing over time[81]. Infection 

through platelet transfusion has been reported to occur in Brazil[82].  

Other possible routes of ZIKV infection have been suggested, but more evidence is 

needed to confirm their role in transmission. In the case of a terminal ZIKV patient in 

Utah, transmission to a care-giver occurred where the vector-borne and sexual routes 

were ruled out, and the most likely explanation was infection while the care-giver wiped 

the patient’s eyes without wearing gloves[83]. This case, together with previous ZIKV 

isolation from the conjunctiva in adult patients[84], opens the possibility of transmission 

through eye-exudate. Another possible route that has been suggested is through 

monkey-bite in Indonesia, although in that case mosquito infection could not be ruled 

out[85]. These reports, together with ZIKV isolation at high levels from saliva and urine 

in both humans and non-human primates, and a case where transmission during oral 

intercourse could not be ruled out[67], suggest that transmission from glandular 

secretions and other bodily fluids could be a potential additional transmission route of 

ZIKV, and should be further investigated. 

1.1.4 ZIKV outbreak in the Americas 

The recent explosive outbreak of ZIKV in the Americas has raised several questions, 

mainly: why has the virus spread so efficiently in the region, and more importantly, why 

have severe neurological and congenital symptoms only become evident after the 



 10 

outbreak in French Polynesia, in spite of the ongoing circulation of ZIKV for decades 

before in other regions?[86]. 

Transmission of ZIKV in the Americas could have been facilitated by environmental 

factors such as the warmer temperatures and flooding in 2015-2016, which could have 

increased the efficiency of transmission or the range of distribution of competent 

vectors. The increasing urbanization in the Americas that provides an apt environment 

for mosquito proliferation could also have played a role[5]. Another explanation could be 

regional genetic variations in the mosquito populations that improve their vector 

competence, allowing for increased transmission in certain areas. Large regional 

differences in vector competence inside the same species of mosquito has been 

previously noted for other viruses[87]. However, a more likely explanation for the large 

number of cases is that the virus was introduced into a completely susceptible 

population, and therefore was able to spread explosively as had occurred previously 

with chikungunya virus[88]. 

The cases of neurological symptoms such as Guillain- Barré  and CZS reported to date 

have all been associated with strains of ZIKV circulating in the Americas[89]. These 

strains have been shown to belong to the Asian lineage of ZIKV that had been 

circulating in Southeast Asia for decades previously[1]. However there are no reports 

tying ZIKV to these symptoms in Southeast Asia, or in Africa where serosurveys have 

shown that ZIKV is endemic. This has led some researchers to speculate that ZIKV 

underwent a genetic mutation around the time of the French Polynesian outbreak, 

allowing it to cause neurological lesions and be transmitted through the placenta[86, 

89]. To investigate this possibility, recent studies have contrasted the genetic 
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differences between African and Asian strains, as well as differences between the Asian 

strains belonging to the epidemic and previous strains not associated with severe 

symptoms. The most significant changes have been found in the prM, NS3, NS5, C, 

and E proteins, as well as the 5’ end of the UTR, that can lead to the formation of 

differently shaped RNA loops (the 3’ UTR seems to be more conserved among all ZIKV 

strains)[89, 90]. Although there is variation among the amino acid changes found in the 

different studies, some changes are consistent, namely: the S139N mutation of the prM 

protein that appeared in the French Polynesian strain and is conserved in the strains 

circulating in the American epidemics[89, 91, 92]; the Y2086H mutation in the NS3 

protein, that was found by Faria et al. (2016) to influence the physicochemical 

properties of the protein environment, and was also found, like S139N, to be conserved 

among the epidemic strains from the French Polynesian outbreak onward[89, 91]; 

N25S, L27F, R101K, I110V, and I113V of the capsid protein were also common to the 

epidemic strains[92, 93]; M2634V of the methyl-transferase domain of NS5 is present in 

all American strains, and whether it is present in the French Polynesian strain as well is 

a matter of divergence between two studies[89, 91]. Further studies are needed to 

establish whether these mutations have any effect on the tropisms, pathogenicity, or 

physicochemical and conformational properties of the virus. 

In addition to the amino acid changes in the epidemic strains, the evolutionary rates of 

the two lineages have been compared. While there is no consensus among the studies 

of when certain strains appeared, there is agreement that the evolution rates are higher 

in the isolates from the current outbreak, having higher rates than the African or even 

the French Polynesian strains[90, 93, 94]. 
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However, the sudden appearance of these neurological and congenital symptoms could 

also be due to the fact that the sheer magnitude of the outbreak in the Americas, with a 

large number of people infected, has allowed significant differences to be noticed and 

reported in what are otherwise rare disease outcomes. Before the outbreak on the 

island of Yap, only 14 human cases of ZIKV had been reported in countries where other 

infectious diseases could have confounded the diagnostics[1, 95], and the subsequent 

reported outbreaks occurred on islands with small populations. 

1.2 PATHOGENESIS OF ZIKV 

1.2.1 Animal models of ZIKV pathogenesis 

1.2.1.1 Mouse models 

Several mouse models of ZIKV infection have been developed, allowing further 

exploration of pathogenesis. Wild type (WT) mice have been shown not to be readily 

susceptible to the related flavivirus DENV[96], and similar results have been shown with 

ZIKV. ZIKV infection of C57BL/6 WT mice has been shown to be age dependent: in 

several studies, adult mice do not allow effective replication of ZIKV[97, 98]; however, 

young C57BL/6 WT mice can become infected and even present representative ZIKV 

lesions. Direct intracranial infection with the ZIKV SZ01 isolate of 13.5 day old fetuses in 

10-week old C57BL/6 pregnant mothers resulted in the infection of brain cells and 

neurological developmental anomalies[99], although a similar experiment where 

C57BL/6 pregnant females were injected with a high dose of the Paraiba Brazil 2015 

isolate subcutaneously did not cause major body alterations in the fetuses, possibly 

because the virus was unable to cross the placenta[16]. Postnatal infection of WT 
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C57BL/6 mice that were 8 days old resulted in moribund animals that presented with 

ZIKV RNA in the spleen, brain, and eyes, as well as apoptosis in the CNS, including 

ocular processing regions[100]. Finally, 1 week old C57BL/6 old WT mice infected with 

the H/PF/2013 isolate presented a 70 % mortality[97].  

Another WT mouse with a different background, 129Sv/Ev, survived and did not show 

signs of disease upon infection with African isolate ZIKV MP1751 but presented low 

levels of ZIKV RNA in the blood, ovary, and spleen at 3 days post infection (dpi), with 

persistence of RNA in tissues until 7 dpi, indicating that these mice become subclinically 

infected[101]. In addition, Swiss Jim Lambert (SJL) WT pregnant female mice infected 

with high titers of the Paraiba Brazil 2015 isolate of ZIKV resulted in whole-body growth 

delay or in intrauterine growth restriction (IUGR), mimicking the effects congenital ZIKV 

infection has on human fetuses[16]. Intracraneal injection of ICR WT fetuses with the 

ZIKV SZ01 isolate also resulted in infection of brain cells and neurodevelopmental 

anomalies[102]. Neonatal Swiss Webster mice were highly susceptible to intracranial 

ZIKV infection with both Asian and African isolates[103]. 

In adult mice, knock-out models lacking elements of the interferon (IFN) response have 

been shown to be more susceptible to strais from either lineage of ZIKV, and present 

similarities in the kinetics of infection and lesions induced. Adult mice ranging in age 

from 5 weeks to 6 months old of the Ifnar11 -/- strain, that lack the IFN receptor and are 

therefore unable to respond to either IFN alpha or IFN beta, are highly susceptible to 

ZIKV, presenting a high mortality rate[97]. The interferon regulatory factor (IRF) 3/5/7 

triple knock-out (TKO) strain, that produce almost no type I IFN, present similarly high 

susceptibility and mortality as the Ifnar1 -/- strain[97]. 0% of the IRF 3/5/7 TKO mice 
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survived, independent of the route of infection or the ZIKV strain used. On the other 

hand, the Ifnar11 -/- mice presented 100% lethality upon H/PF/2013 infection, but had 

varying rates of survival depending on the age and infection route upon MR766 

infection[97]. This seems to indicate that in these two strains of mice, ZIKV H/PF/2013 

is more pathogenic than the MR766 strain. In addition, infection with both strains 

caused neurological signs in both mouse models, such as paralysis and hindlimb 

weakness. Ifnar11 -/- mice also presented with high viral loads in the liver, kidney, 

spleen, serum, CNS tissues, and testes after infection with ZIKV H/PF/2013. 

Interestingly, in this mouse model, ZIKV RNA persisted in the brain and testes until 28 

dpi, paralleling findings in humans in whom ZIKV can still be detected in the semen long 

after infection[34]. 

Other knock-out mouse models have shown susceptibility to both lineages of ZIKV. 

AG129 mice, with C57BL/6 background but lacking IFN alpha, beta, and gamma 

receptors, were extremely susceptible to Asian isolates of ZIKV, presenting severe 

signs of disease and weight loss even after infection with 1 plaque forming unit (PFU) of 

ZIKV H/PF/2013[104]. ZIKV infection in these mice was 100% lethal by 6 dpi 

independently of the age or dose administered[98, 104]. Viremia peaked at 2 dpi and 

high levels of ZIKV RNA were also found in brain and testes[98, 104]. Histologically, 

ZIKV infection resulted in inflammatory cell infiltration and neuron necrosis in the brain, 

as well as myofiber degeneration and necrosis of the muscles in the posterior 

limbs[104]. A129 mice, which are background 129 mice lacking IFN alpha and beta 

receptors, presented similar kinetics as the AG129 mice after infection with either an 

African isolate (ZIKV MP1751) or an Asian one (FSS13025)[98, 101]. A129 mice, 
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however, have shown age dependence in disease severity, with full recovery of 11-

week-old mice as opposed to the 100% mortality of 3-and-5-week-old mice. Viremia 

also peaked at 2 dpi, and interestingly, as virus levels decreased in the serum, they 

increased in the testes and brain, reaching high levels at 6 dpi[98, 101]. One important 

difference between the AG129 model and the A129 model is that in the AG129 model 

mice developed neurological signs after infection, while the A129 model did not. It was 

therefore suggested that IFN gamma could play an important role in protection of the 

central nervous system (CNS)[98]. Histologically these mice also developed lesions in 

the brain, presenting perivascular cuffing in the meninges and parenchyma and 

degenerate nuclei in the hippocampus. These mice also developed lesions in the 

spleen, which showed large and poorly-defined germinal centers and a depletion of 

mature lymphocytes, although the ovaries were found to be normal[101]. However, in 

some cases the deletion of individual elements of the antiviral response was not 

sufficient to permit ZIKV infection. IRF 3 -/- mice, in which a single IRF that induces the 

expression of type I IFN is knocked-out, and MAVS-/- mice, that lack an intermediate 

element in the RIG-I pathway, are not susceptible to ZIKV[97]. 

A defective type I IFN response can also be achieved in immunocompetent mice by 

blocking IFN receptors with specific monoclonal antibodies. Five-week-old C57BL/6 

mice pre-treated with several doses of MAb-5A3, a monoclonal antibody that targets the 

Ifnar11 subunit of the IFN alpha and beta receptors, infected with African ZIKV isolate 

DAK AR D 41525 developed severe disease that was dependent on the infection 

route[105]. The advantage of these mice is that the immunosuppression occurs only at 

the time of infection, but the lesions and subsequent immune response develop in an 
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immunocompetent mouse. This model presented acute to subacute 

encephalitis/encephalomyelitis including neuronal death and inflammatory cell 

infiltration, with the hippocampus being the most affected, followed by the thalamus and 

cerebrum. In addition, ZIKV RNA was visualized in these regions by in situ hybridization 

(ISH), confirming the causality of the lesions. The spleen and skeletal muscle of the 

head and skeletal column were also affected, similarly to what had been described 

earlier in AG129 and A129 mice by Dowall et al. and Aliota et al.[101, 104, 105]. Similar 

pre-treatment with anti-IFN antibodies allowed the sequential infection with both African 

and Asian strains of ZIKV to generate a panel of monoclonal antibodies from 

immunocompetent C57BL/6 mice[106]. 

1.2.1.2 Non-human primate models 

Female and male rhesus macaques (Macaca mulatta) and cynomolgous macaques 

(Macaca fascicularis) presented similar infection kinetics after infection with either the 

African isolate MR766 or virus isolates from the Asian lineage. Viremia peaked between 

2- 6 dpi[54, 107-109]. In both rhesus and cynomolgus macaques infected with Asian 

strains, viremia could be detected after initial clearance. In rhesus macaques this 

intermittent detection was in the form of low-level “blips” of RNA detection in plasma 

until 17 dpi[54], while in cynomolgus macaques it was a moderate viremic load that 

rebound at 30 dpi[109]. However, the African strain IBH30656 was unable to mount a 

productive infection in cynomolgus macaques, resulting in very low viral RNA levels in 

blood and other tissues[109].  
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In addition, ZIKV RNA was detected in other bodily fluids for variably prolonged periods 

of time after viremia clearance. In rhesus macaques infected with strains from either 

lineage, ZIKV RNA could be detected in the cerebrospinal fluid (CSF) as late as 14-21 

dpi[54, 107, 108]. In urine and saliva, ZIKV RNA shedding lagged several days behind 

viremia in both rhesus and cynomolgus macaques, with detection in some animals as 

late as between 9-28 dpi[54, 107-109]. In one model, the detection of virus in urine 

coincided with the intermittent “blips” of viremia in plasma[54]. Another study found the 

levels of virus in blood to be correlated with those in urine[107]. ZIKV RNA was also 

detected sporadically in the vagina after peak viremia[54, 107] and could be detected up 

to 28 dpi in the semen[107]. Ocular fluid has also been shown to present ZIKV 

RNA[110]. Further, pregnant rhesus macaques infected with an Asian strain maintained 

plasma viremia between 29 and 57+ days, coinciding with the persistent viremia 

detected in human mothers[34, 55]. 

The intermittent detection of ZIKV RNA in various body fluids and tissues after initial 

viremia clearance has led several of these studies to suggest that certain tissues could 

be acting as reservoirs for viral dissemination, such as the male gonads, the oral 

mucosa, or the infected fetus[54, 107, 109] 

ZIKV infection with either MR766 or Asian strains in rhesus macaques induces the 

activation of an innate and adaptive immune response that peaks between 5 and 10 dpi, 

coinciding with reduction of viremia. This indicates that the immune response could be 

influential in clearing the virus[54, 108]. The immune activation was evidenced in both 

pregnant and non-pregnant subjects by expansion of CD8+ T cells, CD4+ T cells by 6 

dpi, expansion of NK cells after 6 dpi, plasmablast expansion that peaked between 7-10 
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dpi, and high neutralizing antibody titers as early as 14 dpi. This immune response 

protected from homologous and heterologous challenge in the non-pregnant subjects, 

but, interestingly, it was not sufficient to inhibit persistent viremia in pregnant 

subjects[54, 107, 108]. 

1.2.2 Skin pathogenesis 

PF-25013-18 strain, a French Polynesian strain of ZIKV, was able to infect fibroblasts, 

keratinocytes, and immature dendritic cells and produce infectious virions, indicating 

that ZIKV can productively infect the skin[44]. This is an important step in the ZIKV 

cycle, as primary transmission route is by mosquito bite into the skin. Several cell 

receptors have been shown to allow ZIKV entry into the cell, including DC-SIGN, 

TYRO3, and AXL. TIM-1 seems to play a supplementary role by aiding AXL-mediated 

entry[29]. TYRO3 is an immune regulating tyrosine kinase that is expressed mainly in 

the central nervous system, while AXL belongs to the same family but is more widely 

expressed [44]. AXL was shown to be an important entry factor, as neither cutaneous 

fibroblasts nor cutaneous keratinocytes express DC-SIGN but they do express AXL. 

Hamel et al. (2015) explored the localization of ZIKV replication inside the cell by 

electron microscopy[29]. Infected primary skin fibroblasts showed membrane vesicles 

closely associated to the endoplasmic reticulum, hinting at membrane-associated ZIKV 

replication inside cells. Infected fibroblasts also presented with autophagosome-like 

vesicles. Although autophagy can form part of an antiviral mechanism to degrade virus 

particles, it is used by other flaviviruses such as DENV or JEV to promote 

replication[111-113]. This seems to be also the case with ZIKV, as inducing 



 19 

autophagosomes increased viral replication, while blocking them decreased the amount 

of virus. ZIKV also co-localizes with LC3, a cytosolic microtubule-associated protein, 

indicating that autophagosomes are likely another replication site for the virus[29]. In 

addition, infected epidermal keratinocytes developed vacuoles in the cytoplasm, which, 

together with the picnotic nuclei in the stratum granulosum, indicates that ZIKV induced 

cellular apoptosis. It is speculated that this could be a strategy to increase viral 

dissemination[29]. 

1.2.3 Ocular pathogenesis 

During the current ZIKV outbreak in the Americas, there have been increasing reports of 

ocular involvement in both adult and congenital cases of ZIKV. Conjunctivitis is one of 

the signature symptoms of ZIKV infection that distinguish it from other arboviral 

infections and occurs in a high percentage of infected adults[6, 100, 114]. More severe 

cases of ocular lesions have been reported adults as well: a ZIKV-infected 26-year old 

man developed photopsia (light flashes) associated with bilateral posterior uveitis and 

chorioretinal lesions two weeks after symptom onset[21]; another man in his forties 

developed bilateral uveitis 8 days after ZIKV symptom onset and presented ZIKV RNA 

in the anterior chamber of the eye[22]; in other cases in China, infectious ZIKV, 

confirmed to be an Asian strain, was isolated from conjunctival swabs at high viral 

loads[84]. In infants born to ZIKV-infected mothers, ocular anomalies including macular 

alterations (pigment mottling and/or chorioretinal atrophy), optic nerve abnormalities, 

lens subluxation, and bilateral iris coloboma, present themselves both with and without 

concomitant microcephaly[115-118]. In one study, at least one of these lesions was 

found in 34.5% of the congenital ZIKV cases, although lesions were not always 
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bilateral[119]. All these cases either occurred in Brazil or were travel-related cases 

returning from Latin America. 

ZIKV involvement in the eye was confirmed by Miner et. al. (2016) in in vivo 

experiments infecting ZIKV-susceptible mice with ZIKV strains form the recent outbreak 

in the Americas[100]. Adult WT mice pre-treated with anti-Infnar1 antibody and infected 

with both the Brazil Paraiba 2015 and the H/PF/2013 strains of ZIKV resulted in ZIKV 

RNA presence in the eye that incremented from 2 to 6 dpi[100]. Ifnar11 -/- mice infected 

with Brazil Paraiba 2015 ZIKV strain resulted in ZIKV RNA presence in tear fluid and 

lacrimal gland at 7 and 28 dpi[100]. The presence of infectious ZIKV at 7 dpi was 

confirmed by inoculation of another susceptible mouse, AG129, with ocular 

homogenates from these Ifnar11 -/- infected mice, causing the death of the AG129 

mice[100]. However, samples from 28 dpi were not found to be infectious, which 

indicates clearing of infectious virus in spite of RNA persistence. In Ifnar11-/- 

immunodeficient adult mice, ZIKV was shown to infect the cornea, iris, lens, retina, 

choroid complex, and optic nerve, while causing conjunctivitis, panuveitis, and 

neuroretinitis, although these lesions did not cause global photoreceptor 

abnormalities[100]. In addition, ZIKV was able to infect and cause lesions in the optic 

tract, geniculate nucleus, and visual cortex of WT C57BL/6 8-day-old mice with intact 

interferon pathways[100]. ZIKA RNA has also been detected from the ocular fluid of 

rhesus macaques[110]. 

The ocular pathogenesis of ZIKV is currently under investigation. AXL, a cellular 

receptor important in ZIKV entry [29], was found to be highly expressed along the outer 

margin of the neural retina and in the adjacent cells of the ciliar marginal zone[120], 
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which could explain the ocular tropism and lesions caused by ZIKV. However, Miner et 

al. (2016) performed infections with ZIKV Paraiba 2015 strain on AXL-/- and Mertk -/- 

mice and found no difference in either brain or ocular ZIKV FFU levels with infected 

mice sporting intact AXL and Mertk. This suggested that neither AXL nor Mertk 

receptors are essential for either brain or ocular infection[100]. It was speculated that 

the ZIKV-induced ocular lesions could also be a result of inflammation caused by cell 

death or the activation of intra- and/or extracellular PAMPS by ZIKV RNA[100], but 

further studies must be undertaken to elucidate the pathways of ZIKV pathogenesis in 

the eye. In addition, all the cases of severe ocular pathology induced by ZIKV to this 

point have been associated with the Asian strain of ZIKV circulating in Americas. The 

question of whether the African strain of ZIKV is similarly capable of ocular lesions has 

not yet been answered. 

1.2.4 Neurological pathogenesis 

Both the Asian and African strains of ZIKV have been shown to infect human neural 

progenitor cells, neurons, and astrocytes in culture in vitro. These infections are 

productive, resulting in an increase of viable infectious viral particles, in addition to a 

dysregulation of the cell cycle and a modulation of the anti-viral response of the infected 

cells[121-123]. ZIKV infection of neuronal cells resulted in apoptosis, necrosis, or 

decreased proliferation[16, 123]. The same effects were reproduced in neurospheres 

and organoids, which are more complex in vitro models of the human developing brain. 

In neurospheres, both the MR766 strain and the Asian strain were able to reduce the 

size of the neurospheres by inducing apoptosis and reduced proliferation, although this 

effect was more dramatic after infection with the Asian strain[16, 124]. Organoids are 
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3D models that recreate the architecture of a fetal cortex, including the lamination and 

distribution of the progenitor cells[16]. In organoids, infection with strains from both 

lineages of ZIKV resulted in a decrease in overall size, thinner neuronal layers, and 

enlarged lumen of the ventricles[16, 124-126]. Dang et al. (2016) implicated TLR-3 

activated genes involved in cell proliferation, apoptotic pathways, and axongenesis in 

causing these changes[126]. Nowakowski et al. (2016) found that the candidate ZIKV 

receptor AXL is strongly expressed in radial glia neural stem cells, cortical astrocytes, 

blood microcapillaries, and microglia in human-derived organoids, indicating it may 

determine susceptibility of cells to ZIKV[120]. However, experiments in vivo in which 

ZIKV-infected AXL -/-  mice did not have a decreased amount of ZIKV in the brain 

suggest that AXL is not essential for ZIKV infection[100].  

Some difference in the kinetics of infection of neural cells have been observed between 

the African and Asian strains. Simonin et al.(2016) found that an African strain 

modulated the cell cycle progression and anti-viral response of neural progenitor cells 

more strongly than an Asian strain, and another study found differences in the antiviral 

response induced by strains from the two lineages in astrocytes as well[121, 122]. In 

organoids, which permit the study of the specific cortical layers affected by ZIKV 

infection, studies do not have uniform results on the differential infection of cellular 

subtypes by the two lineages. Quian et al. (2016) found that both African and Asian 

strains of ZIKV (MR766 and FSS13025) preferentially infected SOX+ neural progenitor 

cells in the ventricular zone and in the outer subventricular zone, although ZIKV was 

also detected in CTIP2+ neurons and in some GFAP+ astrocytes[125]. On the other 

hand, Cugola et al. (2016) found that infection with the Asian ZIKV reduced the number 
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and cortical plate thickness of a broader spectrum of cortical neuron subtypes, including 

SOX+, TBR1+, CTIP1+, PAX6+, and Ki67, while the MR766 strain affected only CTIP2 

and PAX6+, not including SOX+[16], therefore countering what was found by Qian et al. 

(2016). Cugola et al. (2016) also found an increase in the number of caspase-3+ 

apoptotic cells in the organoids after infection with the Brazilian strain of ZIKV but not 

the MR766 strain, although in other studies using human neural progenitor cells MR766 

was shown to induce caspase-3 mediated apoptosis as well[16, 123].  

Mouse models of congenital infection with the Asian strain of ZIKV parallel many of the 

findings seen in the in vitro models of human neural cells in the brains of the infected 

fetuses, including the induction of apoptosis and the downregulation of genes involved 

in proliferation, differentiation, and organ development[16, 99, 102]. Therefore ZIKV 

infection in mice seemed to suppress neural progenitor cell proliferation and 

differentiation while replicating in these cells at high efficiency, similarly to what occurs 

in human cells[102]. Intracraneal infection of ICR fetal mice in the mother’s womb with 

ZIKV SZ01 resulted in smaller brains with enlarged ventricles, a thinner cortical plate 

and ventricular and subventricular zones, as well as thinner cortical layers although 

without disturbance of the lamination[102]. Neural progenitor cells were established as 

the main target for ZIKV, although post-mitotic cells were also seen to be infected after 

5 days of infection[102]. Intraperitoneal infection of pregnant C57BL/6 mice mothers 

with SZ01 strain of ZIKV caused lesions in the brain of the pups, with infected radial glia 

cells and reduced number of cortical neural progenitors. This model presented some 

differences with the human in vitro models, because although the outer perimeters of 

the cortex were shorter, there was no change in the relative thickness of the individual 
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cortical layers and the cavities of the ventricles were reduced instead of being enlarged 

as seen in the human organoids[99]. In addition, infection with the Paraiba Brazil 2015 

ZIKV isolate in SJL WT mouse pregnant mice induced whole-body growth delay or 

intrauterine growth restriction of the fetuses, although the same experiment in C57BL/6 

mice resulted in normal pups[16].  

In addition to models of congenital infection, ZIKV infection in older mice also has 

resulted in brain lesions. 5-week-old immunocompetent C57BL/6 mice were infected 

with African ZIKV strain DAK AR D 41525 after pre-administration with anti-interferon 

antibody, resulting in acute to subacute encephalitis and encephalomyelitis presented 

by neuronal death, astrogliosis, microgliosis, and mild mononuclear inflammatory cell 

infiltrate. These lesions were most prominent in the hippocampus, especially in the 

pyramidal and granule cell layers but were also present in the thalamus and 

cerebellum[105]. 

There are two ways ZIKV could likely be inducing microcephaly: by decreasing the 

number of neuronal progenitor cells (NPCs) through the induction of apoptosis and 

dysregulation of their replication, or by targeting cells that are important for the correct 

development of the cortex, such as radial glial cells that serve as a scaffold for the 

migration of cortical neurons to other areas during the corticogenesis[127].  

Although in the in vivo experiments, microcephaly was achieved after infection with the 

Asian strain, the in vitro experiments with human organoids and neurospheres indicate 

that the African MR766 strain is able to cause similar defects in humans. 
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1.2.5 Placental pathogenesis 

Strains from both the Asian and African lineages of ZIKV have been shown to infect 

placental cells derived from both humans and mice. The African MR766 and the Asian 

FSS13025 strains of ZIKV were both able to infect trophoblast-derived cell lines BeWo, 

JEG-3, JAR choriocarcinoma cells and the extravillous trophoblast cell line 

HTR8/SVneo, although BeWo cells were the least susceptible to infection[128]. Primary 

human cells isolated from mid to late-gestation placentas and infected with either 

MR766 and or a Nicaraguan isolate, Nic1-16, were able to mount productive infections, 

including amniotic epithelial cells (AmEpCs), cytotrophoblasts (CTBs), trophoblast 

progenitor cells (TBPCs), human placental fibroblasts (HPF), and human umbilical vein 

endothelial cells (HUVECs)[129]. More viral progeny was produced in AmEpCs by the 

low-passage Nicaraguan isolates than by MR766. In explants of chorionic villi from 1st-

trimester placentas, ZIKV infected and replicated in CTBs and invasive CTBs, which 

then ceased to proliferate, as well as Hofbauer cells in the villus core. The receptor 

TIM1 was found to be consistently expressed in many of these systems, particularly in 

the basal decidua, parietal decidua, amniotic membranes, primary AmEpCs, and 

chorionic villi, while the expression of Axl and Tyro3 was variable by cell line and stage 

of differentiation. TIM-1 binds to phosphatidylserine (PS) and phosphatidylethanolamine 

(PE) on the envelope of flaviviruses such as DENV and WNV [130]. Duramycin, which 

binds PE, blocked the infection with either strain of ZIKV in primary placental CTBs, 

AmEpCs, and chorionic villus explants, indicating that TIM-1 might be an important 

cofactor for ZIKV infection in the placenta. On the other hand, an AXL inhibitor only 

modestly reduced infection[129]. 
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A study by Bayer et al. (2016) using primary human trophoblasts isolated from full-term 

placentas found these trophoblasts to be refractory to infection by both the African 

MR766 strain and the French Polynesian strain FSS13025. In addition, 

syncytiotrophoblasts were found to constitutively release type III IFN (IFNlambda1) that 

not only is likely responsible for protecting the trophoblasts from infection, but was also 

shown to protect non-placental cells in a paracrine manner[128]. However, Quicke et al. 

(2016) showed that Hofbauer cells, and to a lesser extent syncytiotrophoblasts, also 

isolated from full-term placentas, resulted in productive infections after infection with the 

PRVABC59 isolate of ZIKV[131]. The infection induced an antiviral response in these 

cells, in this case not accompanied by cell death. The fact that Hofbauer cells were 

efficiently infected by ZIKV but not killed is suggestive that these cells might play an 

important role in viral dissemination[35]. Type I IFN and cytokine production were 

induced by the infection, but there was no evidence of type III IFN release. The 

difference between the two studies may be due to the different ZIKV isolates used or to 

a difference in the time points measured: Bayer et al. (2016) measured only at 24 hours 

post infection, and although Quicke et al. (2016) also did not observe replication in the 

syncytiotrophoblasts during the early stages of infection, by 96 hours post infection a 

low level of replication did occur[131]. Interestingly, Tabata et al. also did not find ZIKV 

infection in syncytiotrophoblasts[129].  

In experiments in vivo, immunodeficent Ifnar11 -/-  mice females crossed with WT males 

and infected with H/PF/2013 strain of ZIKV resulted in severe intrauterine growth 

restriction (IUGR), placental ischemia, and resorption of the fetuses[132]. Presence of 

ZIKV was confirmed in different trophoblast cells, including glycogen trophoblasts, 



 27 

spongiotrophoblasts, syncytiotrophoblasts, and also mononuclear trophoblasts, with 

electron microscopy showing dense bodies consistent with ZIKV virions. ZIKV virions 

were also observed by electron microscopy in the trophoblasts and fetal endothelium 

lining damaged capillaries, and apoptotic trophoblasts were present in the infected 

placentas. In addition, the fetal brains presented apoptotic cells in the mid and hind-

brain, indicating that ZIKV vertically transmitted through the placenta can reach the fetal 

brain[132]. 

These findings point to several possible mechanisms of placental infection that may 

vary at different pregnancy stages. It is possible that ZIKV initially infects numerous cell 

types in the placenta, including trophoblasts and fetal endothelial cells, producing a 

large number of infectious particles which disseminate through the different placental 

membranes and infect Hofbauer cells, which in turn are able to maintain the 

infection[78]. ZIKV infection of these tissues could lead to severe vascular damage of 

the placenta accompanied by reduced blood flow, and the dissemination of ZIKV into 

the fetal circulation and to the fetal brain[129, 131, 133]. Tabata et al. (2016) found that 

AmEpCs from mid-gestation placentas produce higher virus titers than those from late-

gestation placentas, indicating that this mechanism may be more likely in early-term 

infections[129]. On the other hand, in late-gestation infections, in which the innate 

immune responses of the placental trophoblasts seem to block productive 

infections[128, 129], ZIKV may rely on forming complexes with IgG non-neutralizing or 

cross-reactive antibodies to infect Fc-receptor-expressing Hofbauer cells that are 

capable of efficient replication[129, 131].  
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1.2.6 Testicular pathogenesis 

Reports of ZIKV sexual transmission, of lesions in the reproductive masculine organs, 

and of prolonged ZIKV detection in the semen indicate that ZIKV is able to infect, 

replicate, and possibly persist in the male gonads[34, 59-62]. ZIKV antigen has been 

visualized in spermatozoa in the semen of an infected male[66]. However the 

mechanism of ZIKV infection in the male gonads is not fully characterized. 

AXL has been shown to be an important receptor involved in ZIKV cellular entry[120, 

134]. AXL is expressed in human testicular cells such as spermatogonia (SG), tubular-

myoid cells, Leydig cells, and epididymal epithelial cells, but not in the cells of the 

prostate or the seminal vesicle [135]. The same pattern of expression is observed in 

testicular cells derived from WT C57BL/6 mice. In mice, infection with an Asian strain of 

ZIKV induced inflammation and damage in the testis and epididymis but not in the 

prostate or seminal vesicle, indicating that AXL expression may play a role in 

susceptibility to ZIKV[135]. However, in other in vivo experiments, AXL -/- mice pre-

treated with anti-Ifnar11 antibody and infected with either an Asian or African strain of 

ZIKV presented high levels of virus in both the epididymis and testis, indicating that AXL 

is not essential for ZIKV infection in these tissues[136]. 

Both Asian and African strains of ZIKV were able to infect and replicate in specific cells 

in the testis in in vivo mouse models, at the same time altering the inflammatory 

cytokine response and hormone production of these cells[136]. ZIKV RNA was detected 

by ISH in spermatogonia and Sertoli cells, and to a lesser extent in Leydig cells[136]. 

Similarly, another study used an immunofluorescence assay to detect ZIKV in 
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spermatogonia and in Leydig cells, the antigen labeling being weaker in the latter[135]. 

This study visualized ZIKV in other cell types as well, including in testicular peritubular-

myoid cells, that are stem-like progenitors of Leydig cells, and epididymal epithelial 

cells, as well as in cells inside the lumen of the epidydimis. In addition, infectious virus 

has been isolated from mature sperm and fluid collected from the lumen of the 

epididymis in mice[135]. 

Infection with an Asian ZIKV strain induced increased inflammatory cytokine and type I 

IFN mRNA expression and secretion in Sertoli cells, Leydig cells, and epididymal 

epithelial cells. Levels of TNF- alpha, IL-6, IFN b, and CXCL10 were elevated at 24 

hours post infection, although levels of IFNa were decreased. However, no cytokines 

were secreted from peritubular-myoid cells or germ cells. ZIKV infection of progenitor 

Leydig cells could induce a lack of regeneration in these cells, and therefore lead to a 

decrease in testosterone, as well as serving as a potential cellular reservoir for ZIKV 

replication in the testes[135]. Indeed, in Ifnar1 -/- mice, the serum testosterone levels 

were decreased at 8 dpi [135], while in C57BL/6 pre-treated with anti-Ifnar11 antibody, 

the testosterone and inhibin levels in the testes decreased and remained low until 21 

dpi after an initial increase at 7dpi[136]. These findings indicate that ZIKV infection can 

alter hormone secretion of Leydig and Sertoli cells. 

ZIKV involvement in the male reproductive organs has been evaluated in three different 

mouse models: C57BL/6 mice pre-treated with anti-Ifnar1 antibody, Ifnar1 -/- knock-out 

mice, and WT C57Bl/6 mice[135, 136]. Of these, C57Bl/6 mice pre-treated with anti-

Ifnar1 antibody and the Ifnar1 -/- mice present similar persistent lesions in both the 

testis and the epididymis[135, 136]. Both models present degeneration and depletion of 
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testicular and epididymal cells by approximately 14 dpi, with a progressive loss of 

structure of the seminiferous tubules and germinal epithelium accompanied by 

leukocyte infiltration, which is still present at the endpoint of the two studies; that is, 21-

60 dpi[135, 136]. 

In the Ifnar1 -/- mice, the levels of ZIKV detection in the cells of both the testis and 

epididymis by immunohistochemistry, although strong at 8 dpi, decreased over time 

until they were no longer detected at 30 dpi[135]. However, at 60 dpi these mice 

presented testicular atrophy, indicating that the tissue lesions initiated by ZIKV persist in 

these mice despite reduction of ZIKV presence as detected by antibody. Interestingly, in 

the C57BL/6 mice pre-treated with anti-Ifnar1 antibody, the levels of ZIKV RNA detected 

by ISH remained high to 21 dpi in the remaining testicular cells and in the mature sperm 

in the lumen[136]. Therefore, it is possible that, similarly to what has been suggested to 

occur in the eye, the presence of ZIKV RNA and the subsequent activation of PAMPs 

that induces an inflammatory response may be responsible for the lesions in the genital 

organs[100].  

In these two mouse models, ZIKV-induced lesions resulted in a decrease in size and 

weight of the testicles and the seminal vesicle[135, 136]. In addition, in the C57BL/6 

mice pre-treated with anti-Ifnar1 antibody, fertility was demonstrably decreased after 

ZIKV infection: the total and motile sperm counts were diminished from 14 dpi until 

around 42 dpi, and the pregnancy rate and number of viable fetuses in females crossed 

with ZIKV-infected males was also decreased[136].  



 31 

WT C57Bl/6 mice did not present testicular lesions after intraperitoneal injection with 

ZIKV but did develop similar disease progression as the Infar -/-  after intratesticular 

injection[135]. WT mice intratesticullarly injected with DENV and phosphate-buffered 

saline (PBS) served as control, showing that the infection-induced lesions were not due 

exclusively to the injection route. Ten percent of the DENV-infected mice developed 

orchitis and testicular atrophy at 8 dpi with full recovery by 30 dpi, compared to the 

same development in 100 % of the ZIKV-infected mice, that continued progressing after 

30 dpi[135]. Therefore, ZIKV is demonstrably capable of causing lesions in the gonads 

in immunocompetent mice. This indicates that once the infection is established in the 

gonads, an intact immune system is incapable of preventing, and perhaps even plays a 

role in causing, severe lesions in the tissues.  

Intratesticullar infection induced lesions in the testicle, whereas intraperitoneal infection 

in the same mouse model did not. These findings indicate that crossing the blood-

testicle-barrier could be a limiting factor for ZIKV infection. Both lack of type I IFN 

response and direct inoculation seem to allow ZIKV to surmount this barrier. However, 

in the case of C57BL/6 mice pre-treated with anti-Ifnar1 antibody, the blood-testicle-

barrier was shown to be intact at 7 dpi, while ZIKV RNA could already be detected in 

spermatogonias and Sertoli cells. This would imply that destruction of the blood-testicle-

barrier is not required for infection of the testicular tissue. More studies are needed to 

elucidate the mechanisms of infection and pathogenesis of ZIKV in the gonads. In 

addition, fertility was observed to be reduced in mice; whether this could be a problem 

in the human population has yet to be reported. 
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1.2.7 Innate immune response to ZIKV 

In a study by Hamel et al. (2015), infection with the PF-25013-18 isolate of ZIKV in 

human skin fibroblasts induced the expression of several antiviral genes[134]. TLR3 

expression was induced strongly and rapidly, possibly priming the expression of RIG-I 

and MDA-5 that followed at a later stage. siRNA inhibition of TLR3 expression resulted 

in increased ZIKV replication, demonstrating the importance of TLR3. However, the type 

I IFN expression was not modified, indicating that TLR3 does not control ZIKV 

replication through the IFN pathway. Interestingly TLR7 expression was not induced at 

all. Transcription of IRF7 was also increased upon infection, and this corresponded to 

the increase of IFN-alpha and IFN-beta production, although the expression of IRF3 

remained unchanged. IFN-stimulated genes were also upregulated, including OAS2, 

ISG15, and MX1, as were certain chemokines involved in innate immunity, such as 

CXCR3 ligands, CXCL10, CXCL11 and CCL5. The inflammosome pathway also 

seemed induced by ZIKV infection. In addition, ZIKV replication was inhibited by both 

type I and type II IFNs[44].  

Bowen et al. (2016) showed that primary dendritic cells (DCs) derived from human 

serum were productively infected by four different strains of ZIKV, from the currently 

circulating PR-2015 isolate to ancestral Asian (P6-1966) and African (MR-1947 and 

Dak-1984) strains[31]. The viruses from the African lineage replicated faster and 

created more progeny than the Asian viruses and also differed from the Asian lineage in 

that they caused cell death. ZIKV infection of DCs strongly upregulated the production 

of antiviral components like RLR proteins (RIG-1, MDA5, LGP2), STAT proteins (STAT1 

and STAT2) and antiviral effectors (IFIT1, IFIT3, and viperin). Although type I IFN 
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mRNA was upregulated, there was minimal translation of either type I or type III IFN 

proteins, indicating that ZIKV antagonizes downstream type I IFN translation. However, 

an antiviral state was induced similar to that achieved by RIG-I agonist treatment, 

indicating that the antiviral response induced by ZIKV is type I IFN-independent[31]. 

This was confirmed when treatment with RIG-I agonist was able to effectively block 

ZIKV replication in DCs, whereas type I IFN treatment had minimal effects. The weak 

effect of type I IFN can be explained by the downstream blockade of STAT1 and STAT2 

phosphorylation performed by all four isolates of ZIKV. The ZIKV NS5 protein has been 

shown to induce the degradation of human STAT2 (but not mouse STAT2) in the 

proteasome[137, 138]. Although Bowen et al. (2016) found a similar antagonism of type 

I IFN response, STAT2 was not found to be degraded in their study; the differences in 

the reports could possibly be due to the difference in cell types used. In mice, ZIKV NS5 

has been shown not to induce the degradation of mouse STAT2, which may partially 

explain the resistance of WT mice to ZIKV [35]. This may explain why knock-out mice 

with a deficient IFN response are more susceptible to ZIKV than immunocompetent 

mice[139].  

Although ZIKV induces an antiviral state in DCs, it does not induce their activation, 

producing a minimal amount of co-stimulatory and major histocompatibility complex 

(MHC) molecules and of inflammatory cytokines[31]. This indicates that DCs are 

unlikely to be responsible for the increase in cytokines in human serum at the beginning 

of ZIKV infection[140]. The role of monocytes in ZIKV infection is unclear[139]. As 

opposed to DENV infection, no “cytokine storm” effects have been observed in the 

acute phase of ZIKV infection, which lacks a significant increase of TNF-alpha of IFN-
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gamma levels, as well as thrombocytopenia. There seems to be a higher level of 

chemokines than cytokines, and the cytokine profile suggests a Th2 bias compared to 

the immune response induced by DENV infection[140]. After ZIKV infection, Hofbauer 

cells have also been found to be poorly immunogenic[131, 141]; on the other hand 

human embryonic cranial neural crest cells and fibroblasts secrete a high quantity of 

cytokines[142]. Therefore, the capacity to induce pro-inflammatory cytokines secretion 

in response to ZIKV infeciton seems to depend on the cell type[31]. 

1.3 ANTIBODY RESPONSE TO ZIKV 

1.3.1 Background of antibody neutralization and enhancement:  

Members of the Flaviviridae family induce antibodies that have varying degrees of 

cross-reactivity to other flaviviruses, demonstrated by their abilities to either bind, 

neutralize, or enhance a heterologous infection[143]. Therefore, previous flaviviral 

immunity can a have a protective effect, or can increase the severity of disease in the 

case of an infection with a related flavivirus. For instance, immunity to members of the 

Japanese Encephalitis serogroup provide protection against other viruses of this group 

in various animal models[144], and Japanese Encephalitis Virus (JEV) has been shown 

to provide protection against DENV in mice[145]. On the other hand, enhancement of 

heterologous flaviviral infection by immunity to another flavivirus has been observed in 

vitro and even in vivo among different combinations of flaviviruses[146-148]. The 

phenomenon of enhancement has been observed to cause increased disease severity 

in human populations. A well-researched example is the case of infection with 

heterologous DENV serotypes, in which previous immunity to one serotype of DENV 
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has been shown to increase disease severity upon infection with a heterologous DENV 

serotype. The mechanism by which this occurs is hypothesized to be antibody-

dependent enhancement (ADE), whereby sub-neutralizing antibodies against the 

primary infecting serotype aid the entry of a secondary infecting serotype into antigen-

presenting cells through the Fc-receptor[143]. 

There is considerable evidence of ADE among DENV serotypes. Secondary infection 

with a heterologous DENV serotype has been associated with severe forms of DENV 

disease in various cohorts in Thailand. A secondary serologic response was present in 

more than 90% of children with symptomatic DENV in one study[149], while in another 

study it was twice as likely in patients with dengue hemorraghic fever (DHF), and was 

associated with all dengue shock syndrome (DSS) cases[150]. Furthermore, DHF cases 

had 100-1000-fold higher peak viremia titer than classic dengue fever cases[150]. This 

aspect of ADE has been reproduced in various animal models, in which passive transfer 

of antibodies can achieve higher viremia titers in rhesus macaques compared to 

infection in absence of antibodies[151, 152]. In addition, experiments in mouse models 

were also able to replicate the increased disease severity and lethality of heterologous 

DENV infection in the presence of previously administered antibody[153-155]. It was 

also demonstrated that this enhancement is mediated through attachment of antibodies 

to cellular Fc-receptors, as the addition of modified antibodies unable to bind to Fc 

receptors inhibited the effects of enhancement upon passive antibody transfer[152, 

153]. This confirms observations from in vitro studies achieving higher titers of virus in 

enhancement assays using different Fc-receptor-bearing cell types, such as Thp-1, 

K562, and U937 cells[152, 156, 157], although extrapolation of results from in vitro to in 
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vivo must be performed with caution. Passive transfer of either monoclonal or polyclonal 

antibodies are enough to induce enhancement in in vivo models. Therefore, although 

other elements of the immune response, such as complement and antiviral elements 

can also participate in enhancement[143], antibodies play an essential role in the 

increase of disease severity. 

Whether antibodies have an enhancing or protective effect depends on a series of 

characteristics, such as the ability to neutralize the infecting virus, the binding affinity 

and avidity to the virus, and the concentration. For antibodies to neutralize a flavivirus 

effectively, a certain critical number must be attached to the virus surface[143]. 

Therefore, neutralization will depend on the number of epitopes occupied by antibodies 

and the strength of the attachment, or affinity[158, 159]. Enhancement, on the other 

hand, occurs at sub-neutralizing antibody concentrations between an upper limit 

whereby the number of antibodies bound to a virion is sufficient to cause neutralization 

and a lower limit whereby there are not enough antibodies bound to the virion to attach 

it to the Fc-receptors of cells[143]. Strongly neutralizing antibodies can induce 

enhancement at low concentrations when the quantity of antibodies is insufficient to 

block viral entry to the cell, and is therefore sub-neutralizing[143, 157]. On the other 

hand, antibodies that are weakly neutralizing can enhance infection at a wide range of 

concentrations, due to the need of a large number of these antibodies to achieve 

neutralization[143]. Correlation between antibody affinity and enhancement has also 

been shown with monoclonal DENV antibodies isolated from human patients: strongly 

binding antibodies enhanced at lower concentrations than weakly binding 

antibodies[160]. Concentration-dependent differences in enhancement were also shown 
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in the previously discussed in vivo models[152, 153, 161]. The epitope to which 

antibodies bind can also determine enhancement capability. Antibodies binding domain 

III of the DENV E protein (EDIII) are highly serotype-specific and among the most 

strongly neutralizing, while antibodies specific to domains I and II of the E protein (EDI 

and EDII) are cross-reactive and enhancing. After a primary DENV infection, a large 

component of the antibodies target the E protein, while after a secondary DENV 

infection the response is broader and includes prM and NS1- specific antibodies[162]. 

prM-binding antibodies are highly cross-reactive, poorly neutralizing, and strongly 

enhancing, as well as numerous[163]. In conclusion, a combination of the neutralizing 

ability, epitope specificity, binding affinity, and concentration determine if and how much 

an antibody population will enhance heterologous infection. 

These antibody characteristics change over time, indicating that the timing of secondary 

heterologous infection is fundamental in the consequences it will have. In DENV, 

immunity against one serotype seems to confer protection against homologous and 

heterologous serotypes from between 3 months to up to 3 years[164-166], after which 

time risk of severe disease upon infection with a heterologous serotype is increased. A 

similar phenomenon is observed in infants from DENV-immune mothers upon primary 

DENV infection. These infants are under increased risk of DHF between the 4th and the 

9th months of age, presumably due to a waning in the DENV immunity passed on from 

mother to child in the placenta that makes it acquire sub-neutralizing 

characteristics[167-169]. What determines the change from cross-protection to cross-

enhancement in an individual is as yet unconfirmed, but it is thought to be influenced by 

a change in the neutralization properties of the antibodies. Over time, antibodies seem 
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to suffer decay in their overall neutralizing ability and avidity and to become less broadly 

serotype cross- neutralizing and more serotype-specific[170-172]. A clear example of 

monotypic antibodies causing increased severity of diseased was observed in Cuba, 

where a DENV1 epidemic in 1977 was followed 4 years later by a DENV2 epidemic in 

1981, and 20 years later by another DENV2 epidemic in 1997 with no intervening DENV 

transmission. The homologous neutralizing antibodies had increased significantly from 

samples collected 4-8 years after the DENV1 epidemic to those collected 22 years later, 

and this increase was paralleled by a case fatality rate for DENV1-DENV2 secondary 

cases 3-4 times higher in 1997 than in 1981. In addition, the phenomenon of increased 

disease in infants from DENV-immune mothers was accurately reproduced in the 

AG129 mouse model and was associated to a decrease in the neutralization of DENV 

over time. Mice born to DENV-1 immune mothers had enhanced disease severity and 

lethality upon DENV-2 infection in an age-dependent manner, where 2-week-old mice 

with strongly neutralizing antibodies were protected from infection, but 5-and 8-week old 

mice with poorly neutralizing antibodies suffered from enhancement[173]. 

However, a recent study shows that the antibody neutralization of primary infected 

subjects in a cohort in Nicaragua, instead of becoming more serotype-specific and less 

neutralizing, tends to increase in overall mean neutralizing titer and in number of 

serotypes neutralized over time. A possible explanation for this could be re-exposure to 

DENV that would boost the immune response and prevent a decline in 

neutralization[174]. Re-exposure to homologous DENV serotypes has been reported on 

several occasions[149, 175, 176] and is likely to occur in areas with very intense 

transmission. In one of these reports homologous re-exposure was able to induce up to 
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6.44 log10 viremia[177], which is a sufficient amount of virus in blood to be taken up by 

a mosquito and continue the transmission chain[178]. This not only indicates that 

homologous protection is incomplete, but also that re-exposure should be taken into 

account in transmission models. However, the effect re-exposure might have on the 

antibody response and the dynamics of protection or enhancement has not been 

studied.  

1.3.2 ZIKV cross-neutralization and enhancement with DENV and other 
arboviruses.  

Due to the recent emergence of ZIKV in areas in the Americas where DENV is endemic, 

there is concern of possible interactions between pre-existing DENV immunity and a 

subsequent ZIKV infection. ZIKV and DENV are closely related both genetically and 

antigenically [179]. The ZIKV E protein has a 54% total homology with the DENV E 

protein, although the homology varies among the different domains: the fusion loop (FL) 

domain is 100% conserved[180], while the DI, DII, and DIII domains are 35, 51, and 

29% conserved, respectively[181]. In addition, the existence of conserved quaternary 

epitopes providing strong cross-neutralization between DENV and ZIKV suggests that 

these two viruses can be clustered in a super serogroup based on their antigenic 

relatedness[179].  

1.3.2.1 Effect of DENV immunity on ZIKV infection 

Due to these similarities, DENV antibodies specific to these epitopes can cross-react, 

cross-neutralize, or cross-enhance ZIKV to different degrees. The commercial and 

broadly flavivirus cross-reactive DENV-derived monoclonal antibody 4G2, that binds to 

the FL portion of the E protein [182], was able to enhance ZIKV infection in vitro in Thp-
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1 cells[183]. Several studies have explored the properties of monoclonal antibodies 

derived from DENV patients in their reactivity to ZIKV.  Antibodies specific to the FL 

portion of the DENV E protein are highly cross-reactive to ZIKV by ELISA, likely due to 

the high homology of this portion between the two viruses. Most of the monoclonal 

antibodies with FL recognition studied were shown to be unable to neutralize ZIKV, 

although they were able to induce 39-91-fold enhancement of ZIKV in U937 and K562 

cells[179, 184, 185]. In addition, enhancement was shown to be Fc-receptor II-

dependent. However, one broadly neutralizing FL-specific monoclonal murine antibody 

developed by Dai et al. (2016) was able to neutralize ZIKV and even protect from 

infection in vivo in A129 mice[41]. Interestingly, in spite of the 100% homology of FL 

between ZIKV and DENV and the strong binding of DENV FL-specific antibodies to 

ZIKV, these antibodies have a differential ability to neutralize the two viruses. While 

these antibodies are able to neutralize DENV to some extent, although poorly, they do 

not at all neutralize ZIKV. This may be because the FL is exposed on the E protein 

more often in mature DENV than in mature ZIKV. The reduced exposure of FL on 

mature ZIKV could be a result of the lesser variability of the surface epitopes or 

“breathability” of ZIKV, that in turn could be consequence of the higher thermal stability 

of mature ZIKV virions[39, 179]. On the other hand, DENV antibodies specific to other 

domains of the E protein showed different reactivity to ZIKV: DENV monoclonal 

antibodies with EDI/II specificity showed cross-reactivity to ZIKV, however EDIII specific 

antibodies did not cross-react and were specific to DENV[181]. The cross-reactivity to 

ZIKV of highly DENV neutralizing monoclonal antibodies that bind to quaternary 

epitopes and that were isolated from DENV patients was also explored. These 
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antibodies bind the dimer structure of two E proteins, named the “envelope dimer 

epitope” (EDE)[186]. They are subdivided into EDE1 and EDE2 based on their 

dependence on the N-linked glycan Asn153 to bind to the E protein (EDE2 needs this 

glycan to bind). These antibodies are able to broadly neutralize all four serotypes of 

DENV at very low concentrations. The majority of the EDE1 antibodies, but less than 

half of the analyzed EDE2 antibodies, were able to cross-react with ZIKV, and these 

antibodies were also able to induce enhancement of ZIKV in U937 cells, although at a 

lower concentration than FL-specific antibodies. In addition, EDE1 antibodies with high 

avidity to ZIKV were able to inhibit ADE of ZIKV by DENV-immune plasma at high 

concentrations, whereas FL-specific antibodies were unable to inhibit this 

enhancement[184]. Another study analyzed a panel of monoclonal antibodies isolated 

from the serum of DENV patients and found that approximately half of the monoclonal 

antibodies cross-reacted with ZIKV[180]. Of those, highly ZIKV-neutralizing antibodies 

were able to induce ADE at low concentrations[180]. Half of these neutralizing 

antibodies bound to conformational epitopes of ZIKV[180]. Antibodies with intermediate 

levels of neutralization induced ZIKV enhancement at high concentrations, and those 

that didn’t neutralize at all induced low level enhancement at low concentrations[180]. 

Non-cross-reactive antibodies did not neutralize or enhance ZIKV[180]. 

The ZIKV reactivity of DENV-immune serum or plasma with a polyclonal population of 

antibodies has also been analyzed. One study found DENV serum to be highly cross-

reactive and cross-neutralizing to ZIKV[180]. In another study, DENV-immune plasma 

was found to be poorly ZIKV-neutralizing but highly ZIKV-enhancing, although a small 

portion of the samples was indeed able to neutralize ZIKV. In addition, this study found 
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differential enhancement capability depending on the amount of time after recovery from 

DENV infection the serum was collected, with serum collected 1-2 weeks post-DENV 

recovery inducing a median of 12-fold higher ZIKV infection in U937 cells compared to 

the 100 fold increase induced by serum collected over 6 months post-recovery[184]. 

DENV-immune serum, therefore, has varying degrees of ZIKV neutralization and can 

enhance ZIKV infection at different concentrations depending on the cross-

neutralization[185]. The sera used in these studies were from patients from Southeast 

Asia or Jamaica with primary or secondary DENV infections. However, the serum of 

DENV-immune pregnant women from Recife, Brazil, which was the epicenter of the 

ZIKV outbreak in the Americas, has also been shown to enhance ZIKV infection in K562 

cells, indicating the relevance of the previous work to the current outbreak. In this study, 

DENV-immune sera of women with monotypic and multitypic antibody responses were 

evaluated, but no significant difference was found in the subsequent ZIKV enhancement 

between the sera of women that had had only one or multiple previous DENV 

exposures[187]. These results, together with the information learned by studying 

monoclonal antibodies of different epitope specificities, indicate that the mechanisms of 

neutralization and ADE of ZIKV are likely very similar to those of DENV, varying mostly 

in the increased stability of the ZIKV mature virus particle that leads to a different 

exposure of epitopes on the surface. 

1.3.2.2 Effect of ZIKV immunity on DENV infection 

In addition to the effect previous DENV immunity can have on a subsequent ZIKV 

infection, the reverse scenario has been explored by observing the effect of ZIKV 

antibodies on a subsequent DENV infection, although not to the same extent. By using 
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monoclonal antibodies isolated from ZIKV infected donors, the role of antibodies 

specific to different domains of the ZIKV E protein was evaluated[181]. EDI/II-specific 

ZIKV monoclonal antibodies cross-reacted to all 4 DENV serotypes but were either 

poorly neutralizing to ZIKV or not at all. However, the poorly EDI/II-specific ZIKV-

neutralizing antibodies were able to enhance both ZIKV and DENV-1 infection in K562 

cells. On the other hand, EDIII specific ZIKV antibodies did not cross-react to DENV and 

were specific to the ZIKV E protein, mirroring the behavior of DENV EDIII-specific 

antibodies. These antibodies were able to neutralize ZIKV, and interestingly, also able 

to enhance ZIKV infection in K562 cells at a broad range of concentrations, including 

those at which they neutralized infection. A group of antibodies was isolated that was 

able to neutralize ZIKV but did not bind to the E protein, and was therefore named 

neutralizing-non-E-binding (NNE). These antibodies did not cross-react to either the 

ZIKV or DENV E protein by enzyme-linked immunosorbent assay (ELISA), but were 

highly ZIKV-neutralizing, and also enhanced ZIKV at a broad range of concentrations 

including neutralizing concentrations. Plasma from ZIKV-infected patients was able to 

enhance both ZIKV and DENV-1 at a similar level to the DENV-1 enhancement caused 

by DENV-3 reactive serum. To investigate the mechanism of this enhancement, LALA 

mutant antibodies were created of several ZIKV and DENV monoclonal antibodies 

specific to different domains of the E protein. LALA mutant antibodies have been 

modified in such a way that they cannot attach to the Fc-γ-receptor of cells or to 

complement. Enhancement of ZIKV by ZIKV-immune plasma was completely inhibited 

by the addition of ZIKV EDIII-specific LALA mutant monoclonal antibodies, and partially 

inhibited by adding cross-reactive DENV EDI/II specific LALA monoclonal antibodies. 
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This cross-reactive DENV EDI/II specific LALA monoclonal antibody was also able to 

completely block the enhancement of DENV-1 by both ZIKV and DENV-3-immune 

plasma. However, the enhancement of DENV-1 by ZIKV and DENV-3-immune plasma 

was not blocked at all by ZIKV EDIII-specific LALA mutant antibodies. This is probably 

due to the fact that ZIKV EDIII-specific antibodies do not bind to DENV-1. LALA mutants 

may block ADE either by competing for surface epitopes on the virus with the polyclonal 

plasma antibodies, and therefore reducing the virus’ ability to attach to the cellular Fc-

receptors, or by neutralizing the virus in the endosomes once it has been 

internalized[181]. 

In addition to these human-derived antibodies, the ZIKV-induced antibody response has 

also been explored in animal models. ZIKV-infected rabbit antiserum was shown to 

enhance DENV-2 in vitro[188]. In mice, a panel of monoclonal antibodies resulting from 

serial infection of MR766 and H/PF/2013 in the IRF 3-/- mouse model produced both 

EDIII and FL-specific antibodies[106]. The EDIII- specific antibodies only bound to ZIKV 

EDIII by ELISA and did not cross-react to either DENV or JEV and were able to 

neutralize 4 different strains of ZIKV to different degrees. The FL-specific antibody 

cross-reacted to all 4 serotypes of DENV and was weakly ZIKV-neutralizing. Two of the 

EDIII-specific strongly neutralizing monoclonal antibodies were able to protect from 

infection with an African strain of ZIKV in vivo. C57BL/6 WT mice pre-treated with anti-

interferon antibodies are susceptible to ZIKV infection, but addition of EDIII-ZIKV 

antibodies inhibited their susceptibility. In this model there was also a strong correlation 

between the neutralization ability of the antibodies and their affinity and avidity for their 

corresponding epitopes (EDIII and FL). All the antibodies were able to enhance ZIKV 
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infection in K562 cells at different concentrations in relation to their binding affinity, with 

weakly binding antibodies enhancing at high concentrations and strongly binding ones 

at sub-neutralizing concentrations. In contrast, the only antibody capable of enhancing 

DENV was the cross-reactive FL-specific antibody. Interestingly, 3 of the monoclonal 

antibodies were specific to cryptic epitopes that are hidden on the surface of the mature 

ZIKV virion. The most likely explanation for this is that the ZIKV virus particle “breathes”, 

exposing different epitopes during maturity, although exposure to partially immature 

viruses or soluble envelope proteins is also possible. However, as seen above, it is 

likely that ZIKV has a lesser “breathability” than DENV, possibly due to its higher 

thermal stability. 

These in vitro studies are of great value to investigate the interactions between DENV 

or ZIKV immunity and heterologous infection, as well as informing on the characteristics 

of the immune response that drive enhancement. However, in vivo studies are needed 

to demonstrate the relevance of these phenomena in living organisms. To our 

knowledge, only one study, by Stettler et al. (2016), has performed any enhancement 

experiments with ZIKV in vivo[181]. This group was able to demonstrate enhancement 

of DENV-2 infection by the pre-administration of highly cross-reactive monoclonal ZIKV 

EDI/II-specific antibodies to AG129 mice. The enhancement of DENV disease was 

evidenced by an increase in disease severity and 100% lethality at 5 dpi, compared to 

control mice to which no antibodies were administered that maintained 100% survival 

rate for the duration of the experiment[181]. This shows that ZIKV immunity can 

enhance DENV infection in vivo. However, pre-administration of DENV cross-reactive 

monoclonal antibodies to immunocompetent 129v/ev mice failed to enhance disease or 
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lethality upon ZIKV infection. An immunocompetent mouse model was chosen for this 

experiment due to the extreme lethality of ZIKV infection in other immunocompromised 

mouse models, which would make detection of enhanced disease difficult[97, 101, 189]. 

WT 129v/ev appear able to acquire a subclinical ZIKV infection, as after ZIKV infection 

they do have detectable ZIKV RNA in serum and later in tissues but do not evidence 

any signs of disease or histological lesions[101].  However, it is possible that this mouse 

model is not susceptible enough to ZIKV to serve as an adequate model for 

enhancement. Therefore, experiments in a more susceptible yet non-lethal mouse 

model are needed to demonstrate ZIKV enhancement by DENV immunity in vivo. 

1.3.2.3 Consequences of flaviviral immunity on ZIKV in the Americas 

The duration of the neutralizing characteristics of ZIKV-induced antibodies will 

determine the epidemic dynamics in ZIKV-affected territories. A recent study by 

Ferguson et al. (2016) calculated that the current outbreak will likely last 3 years, 

whereupon the development of sufficient herd immunity will avoid another large-scale 

outbreak in the next 10 years, although the possibility remains that a permanent low-

level endemicity or sporadic small outbreaks will occur. However, in their analysis, both 

ADE and cross-immunity increased the likelihood of endemicity and shortened the time 

between epidemics[190]. Previous DENV epidemic modeling efforts have shown how 

cross-neutralization and ADE work together to explain DENV epidemic dynamics in 

Southeast Asia[191-194]. Although it is likely that ZIKV provides life-long immunity[5, 

35] the effect of immunity to other circulating arboviruses in the area must be taken into 

account to predict future ZIKV epidemics and disease outcomes accurately.  
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Due to the common vectors and geographical distributions of ZIKV and other 

flaviviruses, including the four serotypes of DENV, the co-circulation of these closely 

related viruses is and will continue to be a common occurrence in many areas of the 

world. Recent studies show that DENV antibodies are able to cross-neutralize and 

cause ZIKV enhancement in vitro[180, 181, 184]. On the other hand, previous arboviral 

immunity might have a protective effect: one study suggests that women in areas with 

high yellow fever vaccination pose a lower risk of microcephaly due to ZIKV in 

Brazil[195]. Another study found that certain monoclonal DENV antibodies are able to 

protect against ZIKV in vivo[196]. Older studies support these findings of interaction 

between flaviviral immunity and ZIKV infection, although they must be interpreted with 

caution due to the very small sample sizes used. One study showed that immune ascitic 

fluid of mice infected with West Nile Virus (WNV) or YFV was able to enhance ZIKV 

infection in vitro[188]. In another study, a ZIKV-immunized vervet monkey had a 

reduced viremia upon YFV challenge, although this was not reproducible in rhesus 

monkeys[197]. In a different study, a ZIKV-immunized rhesus monkey had reduced liver 

pathology after YFV challenge[198]. Other data seem to indicate that heterologous 

immunity does not confer protection, as ZIKV has been able to infect people with the 

YFV 17D vaccine[59], and neither ZIKV or DENV immunity prevented a YFV outbreak in 

Nigeria in 1970[199] nor has previous DENV immunity prevented the spread of ZIKV 

through DENV endemic areas[139]. 

Although both WNV and YFV circulate in the Americas, the possible consequences of 

previous DENV immunity have been the deepest cause for concern during the ZIKV 

outbreak. To date, there has been no epidemiological evidence of ZIKV enhancement 
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by DENV immunity, but it is speculated that enhancement of ZIKV infection could be at 

least partly responsible for the extreme severity of the outbreak in the Americas, which 

has been characterized by neurological and congenital outcomes previously unrelated 

to ZIKV infection[200].  

DENV antibodies might be inducing more efficient transmission to mosquitoes, 

transplacental transmission, or neuropathogenicity[184, 200]. The circulation of ZIKV in 

other areas of the world where DENV is prevalent, such as Southeast Asia or Africa, 

and where these ZIKV-associated syndromes have not been reported, seems to cast 

doubt on this hypothesis[199, 201], especially in the case of Southeast Asia, where the 

circulating strain is the same as in the Americas. However, it has been suggested that 

the differences in DENV background immunity between Southeast Asia and the 

Americas could be the cause of this divergence in presentation: in Southeast Asia, all 

four serotypes of DENV have co-circulated for decades, and individuals can acquire 

multiple infections and therefore a broadly DENV-neutralizing immunity by an early 

age[200]. Meanwhile, in the Americas DENV has not been hyperendemic as long, and it 

is possible that the DENV immunity in American individuals is less broad than in 

Southeast Asian individuals[200]. Among DENV serotypes, enhancement is induced in 

secondary heterologous infections, after which the DENV immunity becomes broadly 

neutralizing, and post-secondary infections are thought to be milder or 

asymptomatic[202]. It may be the case that the number of previous DENV infections 

can influence ZIKV enhancement, although no difference was found in the ZIKV 

enhancement by DENV monotypic and multitypic sera from pregnant women in 

Brazil[187]. However, antibody characteristics change over time, indicating that the 
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timing of ZIKV infection after DENV infection could be an important factor in 

enhancement. 

The interactions between DENV and ZIKV could determine the progression of 

epidemics in areas where both viruses co-circulate, and many questions remain. 

Enhancement of ZIKV by previous DENV immunity has yet to be studied in vivo. On the 

other hand, enhancement of DENV by ZIKV immunity has been achieved in vivo with 

monoclonal antibodies [203]. This scenario is bound to occur, as the ZIKV outbreak will 

have induced ZIKV-immunity in a portion of the population that was DENV-naïve, 

especially younger children or in children born from ZIKV-infected mothers, but that is at 

risk of acquiring DENV infection due to the continued circulation of the 4 serotypes of 

DENV in the Americas. The consequences, if any, that this could have in the human 

population are unknown. To understand and predict this event, a more complete 

understanding of the polyclonal antibody population induced by ZIKV infection and its 

change over time is necessary. Lanciotti et al. (2008) explored some of these 

characteristics using sera from the Yap island ZIKV outbreak in Micronesia, finding that 

while secondary ZIKV infection was associated with high cross-neutralization to other 

flaviviruses, primary ZIKV infection was highly specific[204]. However, further studies 

into the polyclonal antibody population induced by ZIKV-infection, especially of the 

epitope-specificity of the antibodies after primary or secondary infections, as well as the 

epitope exposure and frequency of this exposure on the virion surface, are needed to 

increase our understanding of ZIKV neutralization. In addition, due to the recent reports 

of DENV homologous re-exposure, the effects of re-exposure to ZIKV on the antibody 

population should be studied. Although ZIKV-immunity provides protection from 
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challenge with heterologous strains of ZIKV[205], how such a re-exposure modifies the 

antibody population and how these changes could affect a subsequent DENV infection 

must be elucidated to predict the possible consequences of DENV enhancement by 

ZIKV immunity. Answers to these questions are especially relevant in the light of the 

likely roll- out of a ZIKV vaccine. Concerns that enhancement in vaccinees after 

subsequent DENV infection will occur, as has been the case with the DENV Sanofi-

Pasteur CYD-TDV vaccine trials[206], must be assuaged before such a roll- out can 

safely go forward. 

1.4 AIMS 

For this project, my aims were to further explore the presence of ZIKV in the Americas, 

from the origin of the severe symptoms characteristic of this outbreak to the 

consequences that ZIKV-immunity in the population could have on subsequent flaviviral 

infections. To determine whether the increase in severity of ZIKV-induced symptoms is 

due to a change in the virus upon its arrival to the Americas, I characterized the 

pathogenesis of the prototypical MR766 strain from the African lineage compared to that 

of the currently-circulating ZIKV strains. For this purpose, I infected IRF 3/7 DKO mice 

with the MR766 strain and evaluated the infection kinetics, tissue lesions, and antibody 

response. To explore the ability of ZIKV-induced antibodies to enhance heterologous 

infection, especially in the context of intense transmission where re-exposure is bound 

to occur, I performed several boosts of ZIKV infection on immunocompetent C57BL/6 

mice and evaluated the neutralizing and enhancing capability of the polyclonal antibody 

population. I hypothesize that homologous re-exposure will increase the specificity of 
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the antibodies to ZIKV and that this change will affect how the antibody population is 

able to enhance heterologous DENV infection.  
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CHAPTER 2: CHARACTERIZATION OF A MURINE MODEL OF ZIKA 
VIRUS INFECTION: INFECTION KINETICS, TISSUE TROPISMS, AND 
ANTIBODY RESPONSE 

2.1 INTRODUCTION 

Zika virus (ZIKV) has recently emerged in the Western Hemisphere where to date 48 

countries have reported intense transmission of the virus since 2015[207, 208]. ZIKV 

was first isolated in Uganda in 1947[2], and since then it has been classified into two 

lineages: African and Asian, according to the areas where it has been found to 

circulate[1, 36]. In the decades after its discovery, ZIKV was thought to cause a mild 

febrile illness[5]. However, during the outbreak in the Americas ZIKV infection was 

associated with an upsurge in incidence of Guillain- Barré  and most importantly 

microcephaly, as well as other congenital malformations and neurological symptoms in 

adults[12, 25]. Neither the African strains circulating in Africa, nor the Asian strains 

circulating in Southeast Asia, have been previously reported to cause any of the severe 

manifestations prevalent in the American outbreak, despite the fact that the strains 

circulating in the Americas belong to the same Asian lineage of ZIKV[200]. Therefore, it 

has been speculated that a mutation in the virus may be responsible for the 

unprecedented severity and size of the current outbreak[86, 89]. 

The main transmission route of ZIKV is by mosquito bite, but it has also been shown to 

be transmitted sexually. ZIKV has been detected in semen for prolonged periods of 

time, the median being 34 days post symptom onset[34]. In addition, ZIKV has been 

detected for variably prolonged periods of time in other bodily fluids such as urine, 

saliva, and conjunctival fluid[32, 34]. These findings, together with reports of ZIKV 
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transmission that cannot be explained by mosquito bite or contact with sperm cells[69, 

83], point at the existence of other potential routes of transmission. In addition, while the 

CDC has confirmed the link between microcephaly and ZIKV[13, 14], the association 

between ZIKV and neurological symptoms in adults has yet to be established. Further 

studies are needed to explain the mechanisms of ZIKV persistence and shedding from 

different organs, as well as the pathogenesis of neurological disease in adults.  

Several recently developed mouse models have provided insight into the dynamics and 

pathogenesis of ZIKV infection[16, 97, 98, 100, 101, 104, 132]. In adult mice, increased 

susceptibility to ZIKV has been observed in knock-out models with a deficient type I 

and/or II interferon (IFN) response. However, in many cases infection in these knock-out 

mice induces a high mortality rate, rendering these models unsuitable for long-term 

studies[97, 98, 101, 104]. 

We present in this study a model of ZIKV infection in mice lacking interferon regulatory 

factors (IRF) 3 and 7, that retain blunted production of type I INF as well as the IFN 

receptors[209]. Infection of these mice with the MR766 African isolate of ZIKV 

presented similar infection outcomes to those observed in other knock-out mouse 

models infected with Asian lineage isolates, while maintaining a 70% survival rate. 

These mice also mounted a strongly neutralizing antibody response to ZIKV. Therefore, 

this is an apt model for long-term studies, and further emphasizes the similarity between 

the infection outcomes induced by the two ZIKV lineages. This would suggest that the 

increase in severe symptoms during the outbreak in the Americas may not be caused 

by a change in the virus, as the African strain is able to induce similar pathogenesis as 

the Asian strain. 
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2.2 MATERIALS AND METHODS 

2.2.1 Ethics Statement 

All experiments involving mice were approved by the Louisiana State University (LSU) 

Institutional Animal Care and Use Committee (IACUC protocol 15-078) in adherence 

with policies of the American Veterinary Medical Association and in compliance with the 

guidelines laid out by the National Institutes of Health’s Guide for Care and Use of 

Laboratory Animals, 2011. 

2.2.2 Virus  

The ZIKV strain MR766 was originally isolated from the serum of a sentinel Rhesus 

monkey. We obtained it from Dr. Robert Tesh at the World Reference Center for 

Emerging Viruses and Arboviruses at the University of Texas Medical Branch as 

lyophilized stock and passaged it once in C6/36 cells and once in Vero cells prior to use 

in these studies. ZIKV was determined to have a titer of ~107 plaque forming units 

(PFU)/mL via plaque assay prior to beginning the experiments.  

2.2.3 Mouse experiments 

The IRF3/7 DKO mice were originally provided by Dr. Michael Diamond. To 

characterize ZIKV infection kinetics, one group of male mice (n=5) and one group of 

female mice (n=6) were challenged with ZIKV MR766. These groups of 6- to 10-week-

old mice were inoculated with 106 PFU in 100 µl of ZIKV MR766 subcutaneously. The 

mice were first anesthetized and bled via cheek bleed as in [210] on days 1, 2, 4, and 6 

post infection. Mice were weighed on days 0, 4, 6, and 8-12 and percent reduction 
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weight was calculated. If an individual lost more than 20% of the initial body weight, it 

was euthanized as per the approved IACUC protocol. Two individuals presented with 

eye pathology in the form of mucous or crusty discharge; in these cases the discharge 

was collected with a sterile swab. 

To characterize the tissue lesions induced by ZIKV, a separate group of 8-10 week old 

female mice (n=5) was infected with 106 PFU in 100 µl of ZIKV MR766 subcutaneously, 

and after confirmation of infection by qPCR, euthanized at 7, 10, and 12 dpi (1, 2 and 2 

mice, respectively) and processed for histology and immunohistochemistry. In addition, 

two mice from the infection kinetics study that died or were euthanized (one male on 7 

dpi and one female on 8 dpi) were included in this group and processed in the same 

way. Following a complete multisystemic gross examination immediately after 

euthanasia at 7, 10, and 12 dpi (1, 2, and 2 mice, respectively), tissues were collected 

and fixed in 10% neutral buffered formalin. Tissues were progressively dehydrated in 

alcoholic solutions and xylene, were embedded in paraffin. Five µm thick tissue sections 

were obtained for slide preparation, were stained with hematoxylin and eosin and 

coverslipped. For IHC, the slides were prepared as in[211], with the specific reagents as 

follows: mouse-on-mouse (MOM) kit for mouse primary antibody detection (Vector Labs 

Cat # PK-2200), control mouse IgG (Biocare, NC494H), and primary antibody 4G2 

(Anti-Flavivirus group antigen antibody, EMD Millipore) at a working dilution of 1:100. 

The slides were examined via light microscopy and pathologic changes recorded by 

ACVP board certified pathologists at the LSU School of Veterinary Medicine.  
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2.2.4 Viral RNA detection 

Blood samples were allowed to clot at room temperature for 30 minutes and were then 

centrifuged for 4 minutes at 4°C and 6000 relative centrifugal force (rcf). Serum was 

separated from the clot and stored in a sterile microcentrifuge tube at -80°C until further 

processing. Eye-swab samples were processed by adding 250 µl of M199E media to 

the swab cotton in a centrifuge tube, vortexing and centrifuging for 2 minutes at 4°C and 

6000 rcf. The supernatant was extracted and stored in a separate microcentrifuge tube 

at -80°C. RNA extraction was performed using the KingfisherTM (Thermo-Fisher) 

automated extraction platform and the Ambion MagMaxTM viral isolation kit (Thermo-

Fisher), as per manufacturer’s instructions. Viral RNA was detected by qRT-PCR using 

the SuperScript™ III One-Step RT-PCR System with Platinum® Taq DNA Polymerase 

(Life Technologies) on a Roche Lightcycler® 480 (Roche). ZIKV-specific primers and 

probe were previously designed by Faye et al.[212]. This assay was shown to be highly 

specific and sensitive. Under our optimization protocol it was able to detect up to 7.55 

strands of RNA/ml (data not shown). 

2.2.5 Plaque Reduction Neutralization Test (PRNT) 

PRNTs were performed following the WHO PRNT protocol for DENV and previously 

shown to work just as well with ZIKV[213] on serum collected from surviving ZIKV-

infected male mice one month post-infection (n=4). Briefly, virus was standardized to 25 

virions in 50 µl per well. Mouse serum was complement inactivated for 30 minutes at 

56°C and then serially diluted 1:2 in M199E media from 1:10 to 1:1280 and mixed with 

50 µl of the standardized virus solution and allowed to incubate at 37°C for 1 hour. The 
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mixture was then inoculated onto ~80% confluent Vero cell monolayers in 12-well 

plates. Also included were a negative control well (media only) and a positive control 

(virus only). The first overlay was added immediately after incubation, and the second 

overlay was added 3 dpi for ZIKV. Plaques were visible and counted on the following 

day (4 dpi). The percent reduction in plaques per dilution was calculated and results are 

expressed as the reciprocal of the dilution in which the desired percentage of plaque 

reduction was achieved; we report both PRNT50 and PRNT80. 

2.2.6 Statistics 

All statistics were performed using SAS 9.4 (Cary, NC). The changes in weight were 

reported as the percent lost compared to initial weight. Viremia was transformed 

logarithmically transformed and reported as log titer. We evaluated the differences in 

weight and viremia between sexes and dpi with a repeated measures ANOVA analysis, 

using a mixed model to evaluate the effect of sex, day post-infection, and their 

interaction on either the percent weight reduction or the log viremia titer (PROC 

MIXED). For this, we specified a spatial power covariance structure to account for the 

uneven sampling intervals. Finally, percent reduction of neutralization resulting from the 

PRNTs is presented as means with binomial 95% confidence intervals. Figures were 

created with R version 3.2.2 or images compiled in Microsoft PowerPoint (Seattle, WA). 
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2.3 RESULTS 

2.3.1 Infection kinetics of ZIKV in IRF3/7 DKO mice 

To test the susceptibility of IRF 3/7 DKO mice to ZIKV, we inoculated 106 PFU/mouse of 

MR766 ZIKV Uganda strain subcutaneously in mice between 6-10 weeks of age, one 

group of males and one group of females. Viral RNA was detected in the serum of all 

mice, peaking at 2 dpi for both groups. The female mice had on average higher serum 

viral titers each day, with a peak average log titer of 6.2 compared to 4.49 in males, 

although this difference was not found to be significant (Figure 2.1A, p>.05). Both 

groups of mice began to lose weight within 2 days of infection. The mice had a 

maximum average weight loss of 7.6% at 9 dpi for the males and 18.4% at 8 dpi for the 

females. Weight loss was not significantly different between sexes (Figure 2.1B, p<.05). 

One male died at 7 dpi and two females had to be euthanized on 8 dpi because they 

lost over 21% of their initial body weight. This translates to an approximate 72% survival 

rate. The male mouse that died had a higher log titer than the average of the surviving 

male mice (log titer of 6.1 versus 4.39 of survivors). The two euthanized females had 

the two highest peak viremias of the group (log titer of 7.24 and 6.58 versus the average 

of 5.84 of the other 4 females), although another female of the group had log titer of 

6.53 but survived infection. This may indicate that higher viremia titers correlate with 

disease severity in IRF 3/7 DKO mice. 
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Figure 2.1: Repeated measures ANOVA analysis of ZIKV infected females (red dots) 
and males (green triangles) showing the average measurements for each group and 
time point, together with the 95% confidence interval: A) log viral titer (RNA copies/ml) 
and B) percent weight loss after infection with ZIKV. No significant difference was found. 

 

Signs of overt disease observed in all infected mice included reduced activity, hunched 

posture, and ruffled fur. These signs began around 5 dpi and increased in severity 

concurrently with weight lost, reaching a maximum at 8-9 dpi, at which point they began 

to regain weight and recover. In addition to the non-specific signs, two mice developed 

ocular disease in the form of crusty discharge in the eye: one male mouse in the right 

eye at 11 dpi, and one female mouse in the left eye at 6 dpi. The male mouse fully 

recovered as of 8 months post infection (at the time of writing this manuscript). The 

female mouse was euthanized at 8 dpi due to excessive weight loss. The ocular 

discharge was collected and tested for presence of ZIKV RNA, and found in the case of 
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the female mouse to contain 2.280x103 genome copies/mL of ZIKV NS5 as per the 

qPCR assay. Attempts to isolate infectious virus from the supernatant were 

unsuccessful. 

2.3.2 Organ and tissue lesions 

To explore the lesions produced by acute infection with ZIKV in IRF 3/7 DKO mice, we 

infected a second group of IRF3/7 DKO females for the purpose of analyzing their 

tissues histologically. The viremia in this second group was not statistically different 

from the other groups (Figure 2.2, p>.05). 

 

Figure 2.2: Repeated measures ANOVA analysis of females from different experimental 
groups 1) infection kinetics group (green triangles) and 2) histological lesions group (red 
dots). Points represent the average daily log PFU/ml for each group and the 95% 
confidence interval. No significant difference was found. 
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 We observed multifocal mild to moderate histologic lesions in the brain, spinal cord, 

and eye of the sacrificed females. The brains and spinal cords of two out of five female 

mice had encephalomyelitis with lymphocyte perivascular cuffing, gliosis, and neuronal 

necrosis (Figure 2.3A). Using IHC, we were able to visualize viral antigen in the 

hippocampus (Figure 2.4A-B) of one of these females. Another female mouse from this 

group had bilateral epiphora and crusting at 7 dpi; at the time of euthanasia at 12 dpi, it 

had retinal ganglion cell necrosis and vitreitis, presenting inflammatory cell invasion of 

the vitreous humor where in normal circumstances there is none (Figure 2.3B).  

 

Figure 2.3: A) Encephalitis, with perivascular cuffing as the result of recruitment of 
leukocytes into the brain (arrows) and neuronal degeneration and necrosis (circled) in a 
female ZIKV-infected mouse (400X magnification). B) Ocular histology of a ZIKV-
infected female mouse with ocular discharge and crusting around the eye that revealed 
retinal ganglionar cell necrosis (circled) and vitreitis with cellular infiltrate into what is 
normally clear vitreous humor (arrow) at (400X magnification). 
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Figure 2.4: IHC labeling positive for ZIKV antigen in the brain: A) hippocampus of a 
ZIKV- infected female mouse and C) cerebral cortex of the ZIKV- infected male mouse 
that died versus negative controls of B) hippocampus and D) cerebral cortex with 
evidence of encephalitis (arrow) (all at 400X magnification). 

 

In addition to these females, we also studied the organs of two mice from the infection 

kinetics groups: the one male mouse that died and the eyes of the female with ocular 

discharge that had to be euthanized. In spite of finding ZIKV RNA in the ocular 

discharge from this female, no histological lesions were found in the eyes.  

The male mouse presented viral antigen visualized by IHC in the cerebral cortex (Figure 

2.4C-D), as well as in the masculine reproductive organs.  
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The reproductive organs of the male mouse presented severe necrosuppurative 

epididymitis associated with abundant viral antigen within the epididymal lining and 

sloughed off epithelial cells in the lumen (Figure 2.5 A and B). 

 

Figure 2.5: A) IHC and hematoxylin of ZIKV- infected male mouse that died wtih 
necrosuppurative epididymitis with ZIKV antigen within the cytoplasm of lining epithelial 
cells (solid arrow) and sloughed intraluminal degenerate and necrotic epithelial cells 
(dashed arrow). B) Negative control of the epididymis with necrosuppurative 
epididymitis (400X). 
 

The affected portion of the epididymis was in stark contrast to other portions of the 

epididymis with normal architecture and no viral antigen (Figure 2.6). We were also able 

to visualize viral antigen in the testicular tissues and seminiferous tubules, including in 

the germ cells and spermatogonias themselves (Figure 2.7). In addition, we observed 

abundant ZIKV antigen staining in the seminal fluid inside the lumen of the ductus 

deferens, mostly concentrated in what were interpreted as sloughed off epithelial cells 

(Figure 2.8). Thus, we present here a potential clarification of the mechanism of sexual 

transmission from males to females of ZIKV through infected epithelial cells and 

spermatozoa in seminal fluid. 
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Figure 2.6: IHC from infected male that died of ZIKV shows extensive degeneration and 
necrosis of the epithelial lining associated with abundant viral antigen in the right-hand 
portion of the image compared to the internal negative control that shows a lack of viral 
antigen and intact normal tissue on the left (100X magnification). 

 

The lesions were examined independently by three ACVP board certified pathologists at 

the LSU School of Veterinary Medicine and confirmed to deviate from the presentation 

of healthy mouse tissues. 
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Figure 2.7: IHC shows labeling for ZIKV antigen in the germ cells of the seminiferous 
tubules in the testes (400X) (A) as opposed to the negative control (400X) (B). 

 

 

Figure 2.8: IHC shows ZIKV antigen within the seminal fluid in the lumen of the ductus 
deferens (400X) (A) versus negative control (400X) (B).  

 

2.3.3 Antibody response to ZIKV 

Since this is a predominantly non-lethal model, we explored the utility of this model for 

studies in which the antibody response would be an important endpoint. We observed 

that serum collected from the male group one-month post-infection with ZIKV mounted 
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a strongly neutralizing antibody response against ZIKV, with an average PRNT80 titer of 

320 and PRNT50 titer of 640 consistent among all mice in the group (Figure 2.9).  

 

Figure 2.9: Average neutralizing titers and 95% confidence intervals of the male mice 
infected with ZIKV show strong neutralization one month post infection. 
 

2.4 DISCUSSION 

Our findings confirm that the IRF3/7 DKO mouse strain is susceptible to ZIKV infection, 

and that the MR766 ZIKV strain is capable of inducing similar tissue lesions and clinical 

presentation in vivo as the Asian strains of ZIKV in other mouse models[97, 98, 104]. 

Weight loss began at 2 dpi, coinciding with peak viremia. However signs of infection 

(hunched posture, inactivity) started 3 days after this peak and were most severe at 8-9 
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dpi. By 6 dpi, the clearance of systemic viremia was well underway, with only 3 mice 

presenting detectable quantities of viral RNA in serum. It is likely that at 8-9 dpi the virus 

was practically absent from the serum[101], and this is supported by observations in 

other mouse models where over the first 6 days of infection the amount of viral RNA 

decreases in serum, but increases in the testes and brain[98]. Upon sacrifice at 7-12 

dpi, mice showed signs of infection-induced lesions in several organs. In a rhesus 

macaque model, ZIKV RNA was detected intermittently in plasma, urine, and saliva for 

up to 17 days, while in humans ZIKV RNA can be persistently or intermittently detected 

in serum, urine or semen for variably prolonged periods of time[34, 54]. This suggests 

that ZIKV may continue to replicate and disseminate from certain select organs, and the 

timing of the ZIKV-induced symptoms implies that this may be the cause of the clinical 

presentation, rather than an inflammatory reaction induced by an increase of viremia 

levels. This is supported by the fact that ZIKV does not induce a “cytokine storm” effect 

in acute infection such as what is seen in DENV infection[140].  

On average mice lost under 20% of their initial body weight, not necessitating humane 

euthanasia in the majority of cases, and therefore presenting only a 72 % mortality rate. 

The mice that either died or had to be euthanized had some of the highest peak viremia 

titers in their respective groups. This may indicate that higher viremia titers correlate 

with disease severity in IRF 3/7 DKO mice. A similar correlation has been observed in 

humans infected by the closely-related flavivirus DENV, though this relationship 

between viremia and disease outcome remains unclear[214-216].  

The fact that type I interferon deficient mice support robust viral replication, while WT 

mice with intact type I interferon responses do not, reinforces the importance of type I 
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IFN in ZIKV protection. Other mouse models lacking type I and/or II IFN receptors, such 

as the AG129, A129 and Ifnar1 1 -/- models have shown high morbidity and mortality 

after ZIKV infection[97, 98, 101, 104]. Interestingly, the IRF3/5/7 triple knock-out (TKO) 

mouse model inoculated with a similar dose of the MR766 ZIKV strain, had 0% 

survival[97], while our IRF 3/7 DKO mice had a high survival rate. The difference 

between these two models is the presence of IRF5, which may be responsible for an 

IRF3/7 independent signaling pathway[209, 217] and has been shown to produce 

enough IFN-beta to establish an anti-WNV response[209]. This suggests that the 

blunted type I IFN response in the IRF 3/7 DKO mice is sufficient to protect from severe 

ZIKV disease. 

During the ZIKV outbreaks in French Polynesia and the Americas there has been an 

increased incidence of neurological symptoms in adults and of congenital 

malformations. It is unclear whether this increase is due to a change in the virus, or if it 

is an issue of the unprecedented size of the outbreak that allows rare manifestations to 

become apparent, or of the heightened reporting due to social concern about 

microcephaly[86]. After infection of the IRF 3/7 DKO mice with the MR766 strain, the 

patterns of infection and tropism mirror what has been observed in other murine models 

utilizing the Brazilian and French Polynesian strains (both of the Asian genotype), in 

which the mice also presented ocular discharge containing viral RNA, as well as 

infection in neurological and male reproductive tissues[97, 98, 100]. While we were 

unable to isolate viable virus from the ocular discharge of our infected mice, we did 

detect viral RNA, which has also been found in the conjunctival fluid of imported cases 

infected with the Asian strain of ZIKV[84]. In another report, a terminal ZIKV patient 
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transmitted ZIKV to a care-giver when neither mosquito nor sexual contact were 

possible, but the care-giver had wiped the patient’s eyes without wearing gloves[83]. 

This, together with the detection of ZIKV RNA from the conjunctival fluid suggest that 

contact with eye-exudate might serve as an additional transmission route. There have 

been increasing reports of ocular lesions during the outbreak in the Americas, both in 

adults and congenitally infected cases, most frequently affecting the retina[17, 22, 116, 

218-220]. Our results show that the African prototype strain of ZIKV can also cause 

ocular lesions in this mouse model, and that IRF3/7 DKO mice are well suited to study 

the transmission route that is possibly associated with these lesions.  

We visualized the localization of ZIKV antigen in the male reproductive organs through 

IHC, observing labeling in the germ cells, in the seminiferous tubules, and in the 

epithelial lining of the epididymis. In the epididymis, labeling was co-localized with 

abundant tissue destruction and inflammation in the form of necrosuppurative 

epididymitis, which could account for reports of hematospermia in some ZIKV-infected 

men, associated with the Asian lineage in French Polynesia[221]. ZIKV antigen labeling 

was detected in the seminal fluid inside the lumen of the ductus deferens, where it was 

predominantly found in what are interpreted to be epithelial cells.  These infected 

epithelial cells are thought to have sloughed off the wall of the epididimys and ductus 

deferens into the seminal fluid. Visualization of ZIKV in seminal spermatozoa has been 

previously reported[222]. The finding of epithelial cells containing ZIKV antigen in the 

seminal fluid of the mouse suggests an alternative transmission mechanism through the 

seminal fluid, that may also serve to explain the case of sexually transmitted ZIKV in a 

vasectomized male in which sperm cells would not have comprised a potential source 
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for viral transfer during intercourse[69]. ZIKV antigen labeling in the seminal fluid of the 

male IRF 3/7 DKO mouse in both epithelial and sperm cells in the seminal fluid presents 

a possible mechanism of sexual transmission from male to female and opens the 

possibility of sexual transmission studies using this mouse model. 

Therefore, we find that the IRF 3/7 DKO mouse model, while infected with the prototype 

MR766 ZIKV strain belonging to the African genotype, presents similar signs and 

lesions as other mouse models and humans infected with strains circulating in the 

Americas that belong to the Asian lineage. This would indicate that, although the two 

genotypes have been shown to have some differences in their pathogenesis[16, 121, 

122], both are capable of similar lesions in vivo. Thus, it is unlikely that the increase in 

severe symptoms is due only to a mutation of the virus. 

The IRF3/7 DKO mouse mounted a strong neutralizing antibody response to ZIKV, 

comparable to the antibody response observed in a rhesus macaque model[76]. These 

mice also allow productive ZIKV replication and acquire characteristic ZIKV-induced 

lesions, while maintaining a high survival rate. Thus, this small animal model offers 

unique opportunities for therapeutic evaluation, as antibody responses are critical for 

quantifying the efficacy of vaccine and other anti-viral candidates, and long-term 

studies, thanks to the low mortality rate, as well as transmission studies.  
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CHAPTER 3: BOOSTING ALTERS THE CROSS-NEUTRALIZATION 
AND ENHANCEMENT CAPACITY OF THE ANTIBODY-RESPONSE 
FOLLOWING ZIKV EXPOSURE IN C57BL/6 MICE 

3.1 INTRODUCTION 

Zika virus (ZIVK) recently emerged as a public health threat in the Americas where 

currently 48 countries have reported local transmission[208]. In the majority of these 

countries, dengue virus (DENV) has circulated or continues to circulate. ZIKV is a 

flavivirus of the Japanese Encephalitis Virus (JEV) group, related to other viruses 

including DENV and Yellow Fever virus (YFV)[204, 223]. ZIKV was first identified from a 

sentinel monkey in the Zika Forest of Uganda and has been associated with sporadic 

outbreaks in Africa and Asia[2, 224-226]. In 2007, ZIKV was implicated and later 

confirmed to be the cause of an outbreak of febrile illness in Micronesia[6, 204]. It was 

then detected in Cambodia in 2010, French Polynesia in 2013, and on Easter Island in 

2014[227-232]. In 2015, ZIKV was first identified in Bahia, Brazil, and has since spread 

throughout South and Central America [11, 233]. Conditions that support DENV 

transmission also support ZIKV transmission, as they have in common their primary 

vectors: Aedes aegypti and Aedes albopictus [234]. In addition, similarities in clinical 

presentation to DENV make symptomatic diagnosis unreliable. Further, serological 

diagnostics are confounded by the high degree of cross-reactive antibodies between 

ZIKV and those pre-existing to DENV[204, 226, 235-237]. 

Pre-existing immunity against one flavivirus can affect not only the diagnosis of disease 

produced by infection with a heterologous flavivirus, but potentially the clinical 

outcomes. The existence of antibodies to a previous flavivirus infection can result in 
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increased severity of disease upon infection with a secondary, heterologous flavivirus 

infection, as has been observed in secondary (and higher order) DENV infections of 

different serotypes[238]. This phenomenon is explained by the hypothesis of antibody 

dependent enhancement (ADE). ADE suggests that antibodies against a primary 

infecting flavivirus assist the subsequent, heterologous flavivirus to enter Fc-receptor- 

presenting cells, leading to increased viremia and enhanced disease. ADE has also 

been observed between different viruses of the flavivirus family in in vivo and in vitro 

assays[147, 188, 239]. Recent studies have shown that, in vitro, DENV monoclonal 

antibodies and DENV-immune serum are capable of enhancing ZIKV infection, and 

ZIKV monoclonal antibodies and ZIKV-immune plasma are capable of enhancing DENV 

infection[179, 180, 184, 185, 203]. In addition, pre-administration of a ZIKV monoclonal 

antibody to AG129 mice was able to enhance disease severity and accelerate mortality 

in vivo[203]. While no specific cases of enhancement of DENV due to pre-existing ZIKV 

antibodies have been reported in humans, it remains an important question when 

considering that DENV will likely not be displaced in areas of intense ZIKV transmission. 

In this study we investigate the capability of antibodies raised to a primary ZIKV 

exposure to neutralize and/or enhance infection of DENV-2 and the effect of repeated 

exposure to ZIKV on this capability.  

3.2 MATERIALS AND METHODS 

3.2.1 Ethics Statement 

All experiments involving mice were approved by the LSU Institutional Animal Care and 

use Committee (protocol 15-078) in adherence with policies of the American Veterinary  
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Medical Association and in compliance with the guidelines laid out by the National 

Institutes of Health’s Guide for Care and Use of Laboratory Animals, 2011. 

3.2.2 Virus 

ZIKV strain MR766 and DENV2 strain 16803 were generously provided by Dr. Robert 

Tesh at the Center for Biodefense and Emerging Infectious Diseases at the University of 

Texas Medical Branch. Virus titers were initially determined via plaque assays on Vero 

cells prior to use in plaque reduction neutralization test; both ZIKV and DENV2 had 

titers of 107 PFU/ml. For the in vitro assay, concentrated DENV2 had an initial titer of 

109 PFU/ml but was subsequently diluted to achieve specific multiplicity of infection (see 

methods below). 

3.2.3 Mouse exposures 

Five female 8-10-weeks-old C57BL/6 mice were injected subcutaneously with 

approximately 106 plaque forming units (PFU) of ZIKV in a volume of 100 µl. Mice were 

first anesthetized and then bled via cheek bleed as in[210] for 7 days. Following this 

primary exposure, mice were then boosted three times with the same volume and titer 

of virus as in[240]. The first boost was approximately 60 days post-exposure and the 

second and third boosts were at one-month intervals. 

3.2.4 Viral RNA detection 

Blood samples were allowed to clot at room temperature for 30 minutes and were then 

centrifuged for 4 minutes at 4°C and 6000 rcf. Serum was separated from the clot and 

stored at -80°C until further processing. RNA was extracted from serum using the 
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QIamp Viral RNA Mini Kit (Qiagen, Valencia, CA). Viral RNA was detected by qRT-PCR 

using the SuperScript™ III One-Step RT-PCR System with Platinum® Taq DNA 

Polymerase (Life Technologies, Carlsbad, CA) on a Roche Lightcycler 480 (Roche). 

ZIKV-specific primers and probe were designed by Faye et al.[212]. 

3.2.5 Plaque Assays and Plaque Reduction Neutralization Test (PRNT) 

PRNTs were performed following the WHO PRNT protocol for DENV[213].  Briefly, the 

number of virus particles was standardized to 50 virions in 100µl per well for both ZIKV 

and DENV2. Mouse serum was complement inactivated for 30 minutes at 56°C and 

then serially diluted 1:2 in M199E media from 1:10 to 1:2560. Equal volumes of 100µl of 

the standardized virus (50 pfu/100µl) was mixed with each dilution of serum for each 

mouse and allowed to incubate at 37°C for 1 hour, before inoculation onto confluent 

Vero cell sheets in 6-well plates and first overlay. Also included were a negative control 

well (media only) and a positive control (virus only). The timing of the second overlay 

was associated with the growth kinetics of the virus and was done at 3 days post 

inoculation (dpi) for ZIKV and 4 dpi for DENV2. Plaques were visible and counted the 

following day (4 dpi for ZIKV and 5 dpi for DENV2). The percent reduction in plaques 

per dilution was calculated and results are expressed as the reciprocal of the dilution in 

which the desired percentage of plaque reduction was achieved; we report both 

PRNT50 and PRNT80. 

3.2.6. In vitro ADE assay 

Previous studies have demonstrated low DENV infectivity of THP-1 cells except in the 

presence of anti-DENV antibody[241]. To determine whether anti-ZIKV antibodies could 
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also cause in vitro enhancement to DENV2, we exposed THP-1 cells to DENV2 both in 

the presence and in the absence of polyclonal serum from the ZIKV-exposed mice, 

where possible. THP-1 cells were generously provided by Dr. Juan Martinez at 

Louisiana State University. For two mice in time point 1, we did not have serum 

available for the enhancement assay. Thus, for the ADE analysis, only three mice were 

used for both time points. The ADE assay was performed largely as in[241], with minor 

modification. Briefly, THP-1 cells were counted to a density of approximately 2.5 x 105 

cells per tube and then exposed to infection at an MOI of 10 with DENV2 16803 either 

1) alone (virus only control) or 2) with ZIKV-exposed, heat inactivated mouse serum at a 

dilution 1:320. This was performed for time point 1 (following initial exposure) and time 

point 2 (following boosts). The final volume of THP-1 cells and treatment suspension 

was 200 µl. Samples were incubated for 2 hours at 37°C and gently shaken every 20 

minutes to prevent premature sedimentation. Cells were centrifuged (900 rcf for 3 

minutes) and the pellet was washed six times followed by the addition of clean media to 

remove residual virus and antibody. After the 6th wash, the mixture was re-suspended in 

clean media and incubated for 3 days at 37°C. Lastly, we used this mixture (as opposed 

to [241] which separated supernatant and used the pellet for additional testing) to detect 

DENV2 infection of THP-1 cells via plaqueing on Vero cells as above. Additional 

negative controls of THP-1 cells only were processed in the same way without virus or 

serum. DENV2 plaque assays were performed at the time of the ADE treatment plaque 

assays to ensure that viable DENV2 was present.  
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3.2.7 Statistics 

Statistical significance of differences in percent reduction by time-point and virus in the 

PRNTs was determined using a two-way analysis of variance (ANOVA), and of the 

average titers by time-point in the ADE assay using a one-way ANOVA. P-values below 

0.05 were considered significant. Analyses were performed in R version 3.2.3 software. 

3.3 RESULTS 

3.3.1 Mouse Exposure to ZIKV 

Of the five mice, only four had detectable viral RNA. In four of them, there was 

detectable RNA on only the first day post inoculation and these were very low levels 

(less than 1000 pfu/ml), indicating that the mice likely did not produce viremia but 

cleared the virus within 24-48 hours (Table 3.1). Thus, C57BL/6 mice are not good 

infection models for ZIKV.  

Table 3.1: Mice exposed to ZIKV did not develop significant viremia with ZIKV being 
detected only 24 hours post exposure. 

 

Mouse ID DPI Viremia (PFU/mL) 

1 1 9.76E2 

2 1 2.17E2 

3 1 0 

4 1 2.75E2 

5 1 1.15E2 
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3.3.2 Neutralization of ZIKV and DENV2 

Even in the absence of robust viremia, all five mice produced highly neutralizing 

antibodies to ZIKV (Table 3.2) and moderately cross-neutralizing antibodies to DENV2 

(Table 3.3). After the primary exposure, highly neutralizing antibody to ZIKV, on 

average, reduced the formation of plaques by 80% with a titer of 40 and by 50% at 

dilution with a titer of 320 (Figure 3.1A). 

Table 3.2: 50% and 80% neutralizing titers for each mouse at both time points to ZIKV 
following ZIKV exposure(s). 

 

Mouse ID Time point PRNT50 titer PRNT80 titer 

1 1 1280 40 

2 1 640 20 

3 1 320 20 

4 1 320 40 

5 1 160 40 

1 2 640 160 

2 2 160 80 

3 2 160 40 

4 2 160 20 

5 2 80 80 

 

In addition, there was considerable cross-neutralization of DENV2, with an average 

PRNT50 titer of 20. Neutralization for DENV2 did not reach 80%. 
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Antibodies also highly neutralized ZIKV at time point 2. This average neutralization was 

not significantly different from time point 1 (Figure 3.1B). However, cross-neutralization 

of DENV2 decreased and, in some mice, was negligible with titers <10 (Table 3.3), 

indicating that homologous boosting drives the specificity of the antibody response 

towards ZIKV-specificity. 

Table 3.3: 50% neutralizing titers for each mouse (ID) at both time points to DENV2 
following ZIKV exposure(s). 

 

Mouse ID Time point PRNT50 titer 

1 1 160 

2 1 20 

3 1 20 

4 1 40 

5 1 10 

1 2 10 

2 2 <10 

3 2 10 

4 2 <10 

5 2 <10 

 

3.3.3 Antibody-dependent enhancement of DENV2 infection in vitro 

Enhancement of DENV2 was induced by polyclonal serum collected at time point 2, as 

indicated by the significantly greater average DENV2 titer in THP-1 cells (p<.05) 
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compared to the DENV2 titer induced by control and the serum collected at time point 1. 

No significant enhancement of the average DENV2 titer was observed at time point 1 

(p>.05), though this may be due to the small sample size. The level of enhancement at 

time point 2 is similar to what has been seen in previous studies[152, 241, 242], 

indicating that this model is appropriate for assessing the cross-enhancement 

capabilities of ZIKV-induced polyclonal antibodies to at least DENV2. 

 

Figure 3.1: For each time point, the mean percent neutralization +/- 95% confidence 
interval for each serum dilution and virus challenge. A) time point 1 B) time point 2. 
(ZIKV green, DENV2 red).  
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Figure 3.2: DENV2 titers as determined by plaque assay following incubation of THP-1 
cells with polyclonal serum from ZIKV exposed mice after 1 initial exposure (time point 
1) and following homologous boosting (time point 2) demonstrate enhancement at time 
point 2 only. Control is the average of 3 replicates of virus-only experiments on THP-1 
cells. *Mouse was not included in calculated of average ADE titers, nor included in the 
statistical analyses. 
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3.4 DISCUSSION 

Due to their common vectors and geographical distributions, ZIKV and DENV continue 

to co-circulate in many areas of the world. In these regions, ZIKV will account for the 

primary flavivirus infection for a portion of the population, meaning that these individuals 

will mount an antibody response to ZIKV in the absence of other flavivirus history. 

Understanding how this primary ZIKV infection will affect susceptibility to secondary 

DENV exposure is critical. Further, due to the intense circulation of ZIKV in these areas 

it is likely that some individuals will be naturally boosted; that is, exposed more than 

once to ZIKV, resulting in altered antibody profiles. A recent report demonstrates the 

occurrence of repeated infection with homologous DENV serotypes[175]. A similar 

occurrence of repeated ZIKV exposure is likely, but the effect of such a re-exposure on 

the antibody population and how it may affect heterologous enhancement is unknown. 

Our results demonstrate that antibody population raised to a primary ZIKV exposure 

cross-neutralizes DENV2 at the PRNT50 level, but that cross-neutralization could be 

reduced with subsequent homologous exposures to ZIKV. This has implications for 

diagnostics and vaccine development, as the cut-off value for most vaccine studies is 

PRNT50, and we have shown that at that level, differentiation of ZIKV or DENV2 

infections would be difficult. Further, our data suggest that while homologous boosting 

with ZIKV decreases the overall cross-neutralizing capacity of the antibody response to 

DENV2, it also may result in risk of enhancement upon subsequent DENV2 infections. 

This suggests a role for natural boosting in ADE risk in DENV and ZIKV endemic 

regions.  
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The characteristics of ZIKV-induced antibodies that are responsible for enhancement 

are not yet fully understood. Stettler et al.(2016)  showed that monoclonal ZIKV 

antibodies specific for domains I and II of the E protein (EDI/II), highly cross-reactive to 

all four serotypes of DENV but weakly ZIKV-neutralizing, were able to neutralize and 

enhance DENV1 in vitro and in vivo in AG129 mice[203]. In contrast, our study indicates 

that a polyclonal antibody population less cross-neutralizing to DENV2 and more ZIKV –

specific has increased DENV2 enhancing capability. Stettler et al. (2016) also evaluated 

ZIKV-immune human plasma, which was able to cross-react with DENV1-4 and to 

enhance DENV1 to a similar level as DENV3-immune plasma. However, the 

neutralization of DENV and ZIKV by this ZIKV-immune plasma was not shown.  

Stettler et. al. (2016) showed that ZIKV-induced EDI/II-specific antibodies were weakly 

ZIKV neutralizing but quite strongly DENV1-neutralizing, capable of blocking DENV1 

infection in approximately 50% of the cells even at low concentrations[203]. 

Interestingly, although ZIKV-induced EDI/II-specific antibodies bound strongly to both 

ZIKV and DENV E protein, these antibodies were shown to neutralize DENV much 

more strongly than ZIKV. A similar phenomenon was observed with DENV-induced 

monoclonal antibodies against the FL portion of the E protein that is 100% conserved 

between DENV and ZIKV, that are able to weakly neutralize DENV, but not ZIKV[179, 

184, 185]. It is possible that because of ZIKV’s increased thermal stability[39], it 

“breathes” less, and therefore has reduced exposure of certain epitopes on its surface 

compared to DENV virions. EDI/II have high percent homology between the two viruses 

but are perhaps more exposed on the surface of DENV, explaining the ability of ZIKV-

induced EDI/II-specific antibodies to neutralize DENV but not ZIKV. 
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Flaviviruses require the number of antibodies that are bound to the virus to exceed a 

certain stoichiometric threshold in order to achieve neutralization[158]. Weakly 

neutralizing antibodies must bind in large numbers to the virus in order for neutralization 

to occur. Therefore, all but the highest concentrations of weakly neutralizing antibodies 

are considered sub-neutralizing, and these antibodies are able to enhance infection at a 

broad range of concentrations[158].  

We hypothesize that the initial ZIKV-induced antibody response may have a larger 

fraction of cross-neutralizing antibodies, possibly targeting ZIKV EDI/II, in high 

concentrations, such that DENV is neutralized rather than enhanced. Homologous ZIKV 

boosting may lead to a shift in the epitope specificity of the larger fraction of antibodies, 

from more cross-neutralizing to more ZIKV-specific epitopes, decreasing the number of 

DENV2 cross-neutralizing antibodies present, which are able to enhance DENV2 at low 

concentrations. However, more detailed study into the epitope specificity of the 

polyclonal antibody population and the variation of its components over time is needed 

to confirm this hypothesis. 

Globalization of trade and travel, continued urbanization, and climate change are just 

some of the factors that have led to increases in arbovirus emergence and 

expansion[243]. While ZIKV will likely continue to co-circulate with DENV, other closely 

related flaviviruses may emerge in the future, and the immunological interaction among 

related viruses needs to be elucidated. Additionally, the effects of natural boosting must 

be further studied, as it affects not only the specificity of the antibody population such as 

cross-neutralization capacity, but also the spectrum of susceptibility due to potential 

infection enhancement or protection. It is critical to understand the dynamics of these 
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antibody interactions in order to improve our ability to accurately diagnose, predict 

clinical outcomes, anticipate follow-up priorities and sequelae, as well as inform vaccine 

development studies.   
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CHAPTER 4: CONCLUSION 

Mouse models are valuable tools used to study the development of disease in vivo in 

controlled conditions, especially in the light of the elevated cost and scarcity of some 

non-human primate models[109]. Mice have the added advantage of a short life-cycle 

that allows researchers to perform longitudinal studies and to evaluate disease 

outcomes at different life-stages in limited amounts of time. Studies in which ZIKV 

infection of pregnant mice resulted in fetal brain malformations were crucial to 

demontrating the causal link between ZIKV and congenital malformations[244], showing 

that ZIKV in the absence of other factors was capable of fetal neurological and placental 

pathogenesis. Similarly, proof of concept of antibody-dependent enhancement (ADE) 

was achieved in vivo when mice pre-treated with DENV antibodies developed increased 

disease severity and mortality upon heterologous DENV infection, demonstrating the 

role of previous immunity and Fc-receptor bearing cells in severe DENV disease[153]. 

In addition, mouse models are often the first step in vaccine and therapeutic 

development, providing a cost-efficient in vivo setting where protection from disease can 

be easily demonstrated. 

In this body of work, we have characterized a type I interferon (IFN) deficient mouse 

model that allows robust ZIKV replication in the serum and in tissues and that develops 

characteristic ZIKV-induced lesions while maintaining a high survival rate.  In addition, 

we found that the immunocompetent C57BL/6 mouse model, while not susceptible to 

ZIKV, is still able to develop a strong antibody response upon ZIKV exposure that 

allows for the exploration of antibody characteristics in an intact immune system.  
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In vitro studies have shown that ZIKV virus strains derived from both the African and the 

Asian lineages are capable of infecting primary human dendritic cells, neural progenitor 

cells, astrocytes, and placental cells. Which of the two lineages is more virulent varies 

by study and cell type: in dendritic cells, African strains can cause apoptosis and 

increased, rapid replication compared to the Asian strains[31]; in neural cells, the results 

vary[16, 121, 122]; in amniotic epithelial cells, Nicaraguan isolates produce more 

progeny than the prototypical African strain[129]. In vivo, the involvement of ZIKV in 

fetal brain damage and placental pathology has only been demonstrated after infection 

with strains from the Asian lineage. However, in older mice, infection with African strains 

causes similar brain lesions as infection with Asian strains, as well as a similar 

development of disease. Infection of 5-6-week-old A129 mice with the African isolate 

ZIKV MP1751 induced similar infection kinetics as infection with FSS13025 belonging to 

the Asian lineage, such as peak viremia at 2 dpi, loss of approximately 20% of initial 

weight around 6 dpi, and signs of disease that include hunched posture and ruffled fur, 

and eventual euthanasia[98, 101]. In addition, infection with the African isolate ZIKV 

MP1751 in A129 mice induced similar brain lesions as infection with the H/PF/2013 

Asian isolate in the AG129 model[104], including neuronal degeneration in the 

hippocampus and inflammatory cell infiltration in the meninges. In 5-week-old 

immunocompetent C57Bl/6 mice pre-treated with anti-IFN antibody, infection with the 

African ZIKV strain DAK AR D 41525 also resulted in neuronal death and inflammatory 

cell infiltrate, most prominently in the hippocampus[105]. These results indicate that in 

adult mice, African isolates can cause similar brain lesions to Asian isolates. Whether 
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the same is true of fetal mouse brains after congenital infection with African strains 

remains to be seen.  

In addition to affecting the brain and placenta, both African and Asian strains of ZIKV 

have been shown to infect and cause lesions in the gonads of male mice that result in a 

reduced size of the testicles, testicular atrophy, depletion of spermatogonia, and 

infertility[136]. Ifnar1 -/- mice infected with an Asian strain evidenced ZIKV infection of 

the epithelial cells of the epididymis[136], and our experiments in Chapter 2 confirm the 

ability of the MR766 African strain to infect the same cells. In addition, in our study we 

visualized a large quantity of these cells inside the seminal fluid. Epididymal epithelial 

cells were shown to degenerate and necrotize in the Ifnar1 -/- after infection; we 

hypothesize that some of these infected cells can lose their attachment to the 

epididymal wall and provide an additional source of ZIKV transmission in the semen.  

ZIKV RNA can be detected in testicular cells and mature sperm in the lumen of the 

epididymis up to 21 days post-infection in immunocompetent C57Bl/6 mice pre-treated 

with anti-Ifnar1 antibody, corresponding to the prolonged detection of ZIKV RNA in the 

in the semen of infected human males[136]. In humans, lesions in the gonads have not 

been reported, and the pathogenesis of ZIKV in these tissues is unknown. However, 

case reports of involvement of both lineages of ZIKV in the male reproductive organs 

exist. ZIKV has been detected in spermatozoa in the semen of an infected patient[66], 

and together with RNA detection in the semen for prolonged periods of time[34], these 

findings suggest that ZIKV replicates in the gonads and can be found in sperm cells in 

the semen. It is also possible that both genotypes of ZIKV can cause lesions in human 

masculine gonads, as evidenced by a reports of hematospermia in a patient during the 
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French Polynesian outbreak[65], and also of hematospermia accompanied by prostatitis 

symptoms in an imported case from Senegal[245]. If epithelial cells of the epididymis 

become infected in humans as they do in mice, infected epithelial cells that have 

sloughed off into the ejaculate could provide an explanation for the reported case of 

ZIKV transmission by a vasectomized male[69]. In vasectomized patients the ductus 

deferens is blocked so that the ejaculate does not contain sperm cells, however, 

infected epithelial cells could still provide a source of ZIKV infection. Further studies in a 

human system of the cellular components of ZIKV sexual transmission, as well as the 

lesions induced by ZIKV infection in the gonads, are needed. In mice, the lesions 

caused by ZIKV lead to infertility[136]; whether the same occurs in humans has yet to 

be determined. 

Conjunctivitis is a common symptom in ZIKV infection, but there are increasing reports 

of more severe ZIKV-associated ocular lesions, both in adults and in congenital cases. 

Adults have been found to develop uveitis and chorioretinal lesions, as well as to shed 

virus from conjunctival exudat[21, 22, 84]. Neonates from ZIKV-infected mothers 

present a wide array of lesions involving the retina, optic nerve, lens, and iris[115-118]. 

Until the present time, all of the reported human cases with severe ocular lesions have 

been either imported from Latin America or have occurred in Brazil, and are therefore 

are associated with the Asian strains currently circulating in the Americas. Mouse 

experiments in vivo have also demonstrated ZIKV involvement in the eye[100]. Both the 

Brazil Paraiba 2015 and the H/PF/2013 strains of ZIKV were able to cause lesions in 

the eyes of Ifnar1 -/- mice similar to those reported in human cases, such as infectious 

shedding of virus in tear fluid and infection of the cornea, iris, lens, retina, choroid 
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complex, and optic nerve, accompanied by lesions in several ocular tissues. Infection 

with these ZIKV strains also caused C57Bl/6 immunocompetent 8-day-old mice to 

develop lesions in optic areas.  

Ocular lesions induced by ZIKV have been associated, to date, with the Asian lineage of 

ZIKV, more specifically the strains circulating in the Americas. However, in Chapter 2, 

we present evidence that the African MR766 strain is also able of causing lesions in the 

eyes in a susceptible ZIKV mouse model. The necrosis of ganglionar cells in the retina, 

the inflammatory infiltrate in the vitreous humor, and the shedding of ZIKV RNA in 

conjunctival exudate correspond not only to almost identical lesions observed in the Irf1 

-/- model infected with Asian strains, but also to lesions observed in humans during the 

American outbreak [118, 132]. This would indicate that the African strains are likely 

capable of ocular involvement. 

In the light of these findings, we suggest that African strains of ZIKV may be capable of 

lesions that have up to now only been reported in association with Asian strains, and 

that the pathogenic capability of both genotypes are similar. In vitro studies indicate that 

African strains infect human primary neural progenitor cells and placenta- derived cells, 

indicating that strains of the African lineage could potentially cause neurological and 

developmental issues in congenital infections. In vivo models show that African strains 

can also infect the brain cells of adult mice, indicating that neurological symptoms such 

as those reported in adults need not be caused only by Asian strains. Further 

experiments in vivo with African strains are needed to explore their ability of causing 

congenital anomalies.  Increased surveillance in Africa in ZIKV-endemic areas would 

also help establish whether the African strains of ZIKV are as dangerous to pregnant 
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women as the Asian strains have been shown to be, and in that case appropriate 

preventative measures should be applied. Such surveillance would provide strong 

evidence that the current increase of ZIKV-associated congenital brain malformations 

observed in the Americas is not mainly the consequence of a particular genotype of 

ZIKV, but of the heightened case-count and reporting of ZIKV disease in the region. 

In addition, the above findings of ZIKV infection in the brain, placenta, eye, and male 

gonads suggest that both the African and Asian lineages of ZIKV have tropism for 

immune-privileged sites. Immune privilege is a combination of anatomical, physiological, 

and immunoregulatory characteristics that together protect certain critical tissues from 

immune-mediated inflammation[246]. These tissues include the brain, eye, pregnant 

uterus, and testes. It is possible that due to the reduced inflammatory response in these 

organs, ZIKV is not cleared and is able to persist and replicate; on the other hand, it is 

possible that ZIKV directly targets these organs to establish reservoirs from which to 

disseminate. Indeed, in in vivo models and some human cases, ZIKV RNA has been 

detected from semen, conjunctival exudate, and brain after having been cleared from 

the serum, suggesting that it can establish infection in certain organs and continue to 

replicate and disseminate form there. However, ZIKV is also detected for prolonged 

periods of time from urine and saliva which are not produced in immune-privileged 

organs, suggesting that ZIKV also has the ability of establishing infection in other 

organs that are not protected from the immune system. A similar mechanism has been 

observed in the filovirus Ebola, that, like ZIKV, presents persistent RNA shedding from 

immune-privileged and other organs, such as the eye, semen, and lungs[247-250]. 
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Further studies are needed to elucidate the mechanism of viral persistence in these 

immune-privileged sites. 

The ability of WT C57BL/6 mice to develop ZIKV infection under certain circumstances 

but not others points at factors that may play a role in entry into immunologically 

protected sites. WT C57BL/6 mice did not acquire ZIKV infection in the male gonads 

after intraperitoneal injection, but presented severe lesions in both the testis and 

epididymis after intratesticullar infection[136]. In addition, congenitally ZIKV-infected WT 

pups did not develop ocular lesions, while postnatally infected 8-day-old pups did, 

suggesting that ZIKV does not easily cross the placenta in late gestation in 

immunocompetent mice[100]. Therefore, crossing the blood-testicular-barrier and the 

placenta may be limiting factors for the establishment of ZIKV infection. Further study is 

needed to elucidate the mechanisms of this entry. The IRF 3/7 DKO model 

characterized in Chapter 2 presents ZIKV infection and lesions in most of these 

immune-privileged sites, as well as a low mortality rate, making it a good candidate to 

study questions regarding ZIKV persistence and pathogenesis in immune-privileged 

organs. 

In DENV, severe disease presentations such as dengue hemorrhagic fever and dengue 

shock syndrome are characterized by severe thrombocytopenia, hemorrhagic 

manifestations, and plasma leakage[251]. The peak of symptom severity and vascular 

leakage coincides temporally with a decrease in viral load but an increased circulation 

of cytokines and chemokines such as TNF alpha, (interleukin) IL-6, IL-8, IL-10, that are 

produced by monocytes, macrophages and T-cells, called a cytokine storm. These 

soluble factors play a role in viral clearance, but are also thought to induce the 
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increased vascular permeability that leads to severe dengue symptoms[252, 253]. 

These severe symptoms have also been associated with increased viremia, which may 

lead to an increase of cellular activation and cytokine production that mediates the 

disease[253]. Antibody dependent enhancement is thought to produce an increase in 

viremia[150], thanks to the more efficient infection of Fc-receptor bearing cells, thereby 

resulting in increased disease severity. 

During our characterization of ZIKV infection in the IRF 3/7 DKO mouse model, we 

observed that symptom onset occurred days after viremia peak, when ZIKV RNA was 

barely detectable in serum, but coincided with ZIKV presence in several tissues. 

However, ZIKV infection has been shown not to induce DC activation or cytokine 

production[31], and acute cases of ZIKV have not shown an increase in pro-

inflammatory cytokines[140]. Therefore, ZIKV pathogenesis is unlikely to be mediated 

by a cytokine storm, as it is in DENV. The fact that ZIKV RNA can be continually 

detected from various bodily fluids for prolonged periods of time in in vivo models and in 

humans suggests that symptoms are induced by replication in certain organs where 

ZIKV establishes infection, rather than by an inflammatory reaction in response to 

increased viremia. This is supported by the fact that severe ZIKV symptoms observed in 

in vivo models and in humans, such as paralysis, uveitis, brain calcifications, or 

hematospermia, are more likely to be caused by lesions in ZIKV-tropic tissues, instead 

of being the consequence of vascular leakage.  

However, sub-neutralizing antibodies may still influence disease severity in ZIKV 

infection. Although dendritic cells have been shown not to activate and produce 

cytokines upon ZIKV infection, an increased infection of these cells could allow for a 
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more efficient spread of ZIKV to various organs through the blood. In addition, several 

cells in the placenta have the potential of developing enhanced infection through their 

Fc-receptors. Syncytiotrophoblasts have been shown to either not allow productive 

infection of ZIKV or to allow it at a low level[128, 129, 131]. However, they express 

neonatal Fc receptors, which would potentially allow for their increased infection and 

therefore the dissemination to other placental cells[129]. Hofbauer cells, that also 

express Fc-gamma receptors[254], are speculated to be responsible for persistent 

infection and productive replication in the placenta. The increased infection of these 

cells could determine the pregnancy outcome in congenital cases of ZIKV infection, 

especially in late-gestation infections when the innate immune response is more likely to 

block infection by other means[128, 129]. Demonstration of the role of sub-neutralizing 

antibodies in placental infection, however, would prove difficult in a mouse model, given 

that mouse trophoblasts do not express neonatal Fc-receptors[106]. 

Enhancement of DENV infection by ZIKV antibodies, and of ZIKV infection by DENV 

antibodies, has been demonstrated in vitro in several Fc-receptor bearing cell 

cultures[106, 179, 180, 184, 185, 203]. Antibody characteristics, such as concentration 

and ability to neutralize and bind to an infecting virus, determine their ability to enhance 

the infection caused by said virus[158]. These characteristics vary over time, and can 

be modified by infections with related viruses. Therefore, it may be that risk of severe 

ZIKV disease is influenced by previous DENV infections. It has been speculated that the 

severe symptoms occurring in the outbreak in the Americas may be consequence of the 

background DENV immunity in the population. The Asian genotype of ZIKV circulates in 

both Southeast Asian and the Americas; however, in Southeast Asia, DENV has been 
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hyperendemic for a longer time than in the Americas, and people are exposed to 

several different serotypes of DENV by an earlier age. It is possible that the broadly 

protective response resulting from numerous DENV exposures is protecting the 

Southeast Asian population from severe ZIKV disease outcomes[200]. Although serum 

from monotypic and heterotypic DENV-immune pregnant women did not show any 

difference in ZIKV enhancement[187], further studies are need to confirm whether 

previous DENV immunity affects the outcome of ZIKV infection. 

In vivo, DENV antibodies failed to induce increased disease severity or lethality of ZIKV 

infection in wild type 120v/ev mice[203]. It is possible that infection was not enhanced 

due to the low susceptibility of this mouse model to ZIKV infection: low levels of ZIKV 

RNA can be detected in serum and later in tissues, but these mice do not display signs 

of disease or tissue lesions evidenced by histology[101]. In a more susceptible, non-

lethal model presenting signs of disease and lesions, it is possible that there would be 

more evidence of enhancement. Measuring the severity of lesions and presence of virus 

in the tissues might be a more accurate measure of enhanced infection in the case of 

ZIKV, in addition to signs of disease and mortality. The IRF3/7 DKO mouse model 

characterized in Chapter 2 would be a good candidate for these experiments, due to the 

low mortality and the development of tissue lesions and signs of disease in mice.  

It may also be possible that the ZIKV immunity now prevalent in the population in the 

Americas will lead to a recrudescence of symptoms upon subsequent DENV infection. 

In vivo, ZIKV antibodies have been shown to enhance the morbidity and mortality of 

DENV1 infection in type I and II receptor knock-out mice AG129[203]. In addition, in 

areas of intense transmission, re-exposure is bound to occur. Further research is 
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needed to establish the characteristics of ZIKV-induced antibodies responsible for 

enhancement. Stettler et al. (2016) showed that DENV enhancement can be mediated 

by ZIKV-induced monoclonal antibodies that target the E protein domains I and II 

(EDI/II), which are highly DENV cross-reactive[203]. They also showed that human 

plasma exposed to a primary ZIKV infection was DENV1-4 cross-reactive and capable 

of DENV1 enhancement. In Chapter 3, we show that repeated exposure to ZIKV in 

C57BL/6 mice increases the ZIKV-neutralizing specificity and DENV2-enhancing ability 

of the polyclonal antibody population. Our results suggest that a less DENV-2 cross-

neutralizing population has an increased capability of DENV enhancement, which 

seems to diverge from the results obtained in the Stettler study. This effect of increased 

enhancement may be due to a change in the fraction of the polyclonal antibody 

population specific to certain epitopes. The number of EDI/II-specific antibodies, which 

are able to neutralize DENV[203], may have decreased to sub-neutralizing 

concentrations, allowing enhancement. A more detailed understanding of the 

components of a ZIKV-induced polyclonal antibody population is needed to predict the 

risk of enhancement. 

Further investigation is needed to elucidate the effects of ”natural boosting” on the 

antibody population, and whether the timing and the number of the boosts change these 

effects. The outcome of a secondary flaviviral infection can depend on the timing of the 

infection, the specificity of antibody population and the number of previous infections. 

Detection of re-exposure to homologous virus in human cohorts is difficult due to the 

limitations of serological diagnosis. Therefore, mouse models, in which all the 

parameters can be controlled, such as the number and timing of re-exposures, are 
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invaluable to explore this phenomenon. We have shown that C57Bl/6 mice are a valid 

model to study the changes in the polyclonal antibody response induced by ZIKV 

infection, with the added advantage that these changes occur in the setting of an intact 

immune system. Understanding how immunity to ZIKV affects subsequent DEVN 

infection and vice-versa will help inform vaccine development and vaccination protocols. 

In addition, it will improve the predictive capability of outbreak models, as both 

protective immunity and ADE effects have been shown to influence the predicted 

duration of the ZIKV outbreak[255]. 

To conclude, I characterized two mouse models: the immunocompetent C67BL/6 

mouse model that is well-suited for studies exploring ZIKV immunity; and the IRF 3/7 

DKO model, that is an adequate model to evaluate ZIKV pathogenesis, persistence, 

and transmission, for the development of therapeutics and for vaccine studies. Using 

the C57BL/6 model, I was able to show that repeated exposure to ZIKV modifies the 

neutralizing characteristics of the polyclonal antibody response and increases the 

DENV2-enhancing ability of the antibodies. In addition, infection with an African strain of 

ZIKV in IRF 3/7 DKO mice demonstrated that this African strain is capable of causing 

similar lesions in the male gonads, eye, and brain as Asian strains, indicating that the 

severe symptoms involving these organs, reported during the American outbreak, are 

unlikely to be caused by a change in the virus. 
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