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ABSTRACT 

Methods for bacterial detection and identification has garnered renewed interest in 

recent years due to the infections they may cause and the antimicrobial resistances 

they can develop, the potential for bioterrorism threats and possible contamination of 

food/water supplies. Therefore, the rapid, specific and accurate detection of pathogens 

is crucial for the prevention of pathogen-related disease outbreaks and facilitating 

disease management as well as the containment of suspected contaminated food 

and/or water supplies. In this dissertation an integrated modular-based microfluidic 

system composed of a fluidic cartridge and a control instrument has been developed for 

bacterial pathogen detection. The integrated system can directly carry out the entire 

molecular processing pipeline in a single disposable fluidic cartridge and can detect 

sequence variations in selected genes to allow for the identification of the bacterial 

species and even its strain. The unique aspect of this fluidic cartridge is its modular 

format with a task-specific module interconnected to a fluidic motherboard to permit the 

selection of a material appropriate for the given processing step(s). In addition, to 

minimize the amount of finishing steps for assembling the fluidic cartridge, many of the 

functional components were produced during the polymer molding step used to create 

the fluidic network. The operation of the fluidic cartridge was provided by electronic, 

mechanical, optical and hydraulic controls located off-chip and assembled into a small 

footprint instrument. The fluidic cartridge was capable of performing cell lysis, solid-

phase extraction of genomic DNA from the whole cell lysate, continuous flow PCR 

amplification of specific gene fragments, continuous flow ligase detection reaction to 

discriminate sequence variations and universal DNA array readout, which consisted of 

DNA probes patterned onto a planar polymer waveguide for evanescent excitation. The 
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performance of the fluidic system was demonstrated through its successful application 

to the genetic detection of bacterial pathogens, such as Escherichia coli O157:H7, 

Salmonella, methicillin-resistant Staphylococcus aureus and multi-drug resistant 

Mycobacterium tuberculosis, which are major threats for global heath. The integrated 

system, which could successfully identify several strains of bacteria in <40 min with 

minimal human intervention and also perform strain identification, represents a 

significant contribution to pathogen detection. 
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CHAPTER 1 INTEGRATED MICROFLUIDIC SYSTEMS FOR DNA ANALYSIS* 

1.1 Introduction 

The potential utility of genome-related research in terms of evolving basic 

discoveries in biology has generated widespread use of DNA diagnostics and DNA 

forensics and driven the accelerated development of fully integrated microfluidic 

systems for genome processing. To produce a microsystem with favorable performance 

characteristics for genetic-based analyses, several key operational elements must be 

strategically chosen, including device substrate material, temperature control, fluidic 

control, and reaction product readout. As a matter of definition, a microdevice is a chip 

composed of a single processing step, for example microchip electrophoresis. Several 

microdevices can be integrated to a single wafer or combined on a control board as 

separate devices to form a microsystem. A microsystem is defined as a chip composed 

of at least two microdevices. Among the many documented analytical microdevices, 

those focused on the ability to perform the polymerase chain reaction (PCR) have been 

reported extensively due to the importance of this processing step in most genetic-

based assays. Other microdevices that have been detailed in the literature include 

those for solid-phase extractions, microchip electrophoresis, and devices composed of 

DNA microarrays used for interrogating DNA primary structure. Great progress has also 

been made in the areas of chip fabrication, bonding and sealing to enclose fluidic 

networks, evaluation of different chip substrate materials, surface chemistries, and the 

architecture of reaction conduits for basic processing steps such as mixing. Other 

important elements that have been developed to realize functional systems include 

miniaturized readout formats comprising optical or electrochemical transduction and 

                                                 
* Reproduced with Permission from Springer 
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interconnect technologies. These discoveries have led to the development of fully 

autonomous and functional integrated systems for genome processing that can supply 

“sample in/answer out” capabilities. In this chapter, we focus on microfluidic systems 

that are composed of two or more microdevices directed toward DNA analyses. Our 

discussions will primarily be focused on the integration of various processing steps with 

microarrays. The advantages afforded by fully integrated microfluidic systems to enable 

challenging applications, such as single-copy DNA sequencing, single-cell gene 

expression analysis, pathogen detection, and forensic DNA analysis in formats that 

provide high throughput and point-of-analysis capabilities will be discussed as well. 

1.1.1 The Human Genome Project 

The completion of the human genome sequence in 2003 was one of the most 

important scientific accomplishments in human history1 and marked a significant 

milestone for the Human Genome Project (HGP). This achievement has led to 

compelling genomic and proteomic research discoveries with unprecedented impacts in 

areas such as forensic DNA analysis,2-5 medical diagnostics,6, 7 infectious disease 

management,8-11 and chemical and biological sciences.12, 13 Some of the important tools 

for DNA processing include solid-phase extraction (SPE) and purification of DNA, PCR 

or other thermally induced amplification strategies, electrophoresis, and DNA 

microarrays. Although many conventional bench-top tools currently exist to process 

DNA samples, efforts are being heavily invested into further automating the processing 

strategy, reducing the cost of performing the assay, and increasing the sample 

throughput. In this chapter, we will discuss the use of microfluidics, in particular 

integrated systems, for processing a variety of DNA samples. 
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1.1.2 Molecular Processing Pipeline for DNA Analyses 

Complete nucleic acid analyses (RNA or DNA) for a variety of applications can be 

accomplished using commercial bench-top instruments, and typically consists of several 

molecular processing steps including: (1) lysis of cells to release the nucleic acids of 

interest; (2) purification and isolation of the nucleic acids from other cellular components 

(e.g. cell debris and proteins); (3) amplification of trace amounts of nucleic acids to 

generate sufficient copy numbers for detection; and (4) analysis of unique regions within 

the genetic material using a combination of techniques. To complete an entire assay, a 

well-equipped laboratory and significant technical expertise are commonly required, with 

intervention at several stages of the processing pipeline to manipulate samples and/or 

reagents. In addition, the total time required for sample processing can be several hours 

to several days. 

Derived from the concept of micro-total analysis systems or lab-on-a-chip platforms 

first proposed by Manz et al.14 in the early 1990s, integrated microfluidic systems have 

emerged that incorporate several molecular processing steps into a single platform with 

sample-to-answer capabilities. These systems are particularly compelling for DNA/RNA 

analyses. To create such a system, a series of discrete devices performing specific 

molecular functions such as cell lysis, nucleic acid extraction and purification, nucleic 

acid amplification, and other supporting analysis techniques (e.g. capillary 

electrophoresis, microarrays) must be interconnected with minimal dead volumes due to 

the ultrasmall samples processed (picoliters to nanoliters). Fluids are manipulated using 

on-chip or off-chip components, such as micropumps, microvalves, and micromixers 

(see Figure 1.1). As noted previously, microsystems are composed of 2 or more 

microdevices and, in many cases, microdevices consist of components such as on-chip 
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valves, mixers, and/or pumps. In most cases, DNA/RNA processing requires multiple 

processing steps and therefore devices need to be combined, either in a single wafer 

format or a modular format, to form the system targeted for a given genetic analysis 

(see Figure 1.1). 

 

 
Figure 1.1 Flow diagram showing the molecular processing steps required for analyzing 
nucleic acids. The main steps include cell lysis, nucleic acid extraction and purification, 
PCR amplification, and analysis methods for identifying the resultant products. For each 
of the processing steps shown, a device will have poised on it a component of one of 
these functional steps, and each device may be comprised of various components 
(such as pumps, valves, and micromixers) in order to carry out the desired operation. A 
system comprises of two or more devices, meaning that it will have integrated onto it 
multiple processing steps. The ultimate goal is to incorporate all of the molecular 
processing steps onto a single platform to provide sample in/answer out capabilities 
with no operator intervention. 
 
1.2 Microfluidics and DNA Analysis 

The capability of handling a volume of liquid as small as a few nanoliters and even a 

few picoliters, the common sample size in most microfluidic systems, can be utilized to 

permit DNA extraction following cell lysis and thermal reactions without creating sample 

dilution, minimize reagent usage, provide process automation, allow in-the-field 
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analyses, and minimize possible contamination. Microfluidic systems also offer rapid, 

accurate, and cost-effective analyses. Performing sequencing or genotyping using 

microfluidic platforms can lead to significant increases in throughput. For example, DNA 

sequencing read lengths of 600 – 800 bases can be achieved in 25 min using 

microcapillary electrophoresis (µCE) with a separation channel length of 20 cm (Sanger 

sequencing),15 whereas the same separation would require 1 – 2 h in a capillary array 

electrophoresis (CAE) system.16, 17 In the sections that follow, we will give a brief 

introduction to the various microdevices that have been fabricated to handle steps in the 

processing of nucleic acids, such as cell lysis, extraction and/or purification of the 

nucleic acids, their amplification, determination sequence variations, and readout. 

1.2.1 Cell Lysis 

Cell lysis is the first step in most DNA analyses and involves disassembly of the cell 

membranes and release of the genomic material and other cellular contents. A variety 

of lysis methods, including chemical lysis,18, 19 thermal lysis,20 and lysis by mechanical 

forces,21, 22 or electrical pulse,23-26 have been successfully demonstrated in microfluidic 

devices. 

Transitioning chemical lysis methods commonly used in macro-scale workups to 

microfluidic devices is straightforward. Chemical lysis methods involve mixing the target 

cells with lytic agents, such as sodium dodecyl sulfate or guanidium hydrochloride and 

hydroxide that can solubilize the lipid membranes. One issue associated with the use of 

chemical lysis is that lytic agents can interfere with downstream processing, such as 

PCR, and therefore must be removed from the sample before subsequent reactions, 

increasing the microfluidic design complexity. Carol and co-workers18 reported a 

polydimethylsiloxane (PDMS) microfluidic device for on-chip cell lysis based on local 
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hydroxide electro-generation. In this device, hydroxide ions porated the cell membrane, 

leading to cell lysis. During lysis, hydrogen ions, which were simultaneously generated 

on-chip, reacted with excess hydroxide ions creating a neutral pH lysate and eliminating 

the need for a final washing step. 

Thermal lysis, which involves disrupting the cell membranes by heating cells to near 

boiling temperatures, is another method that can be incorporated into a microfluidic 

device as long as the microfluidic material can withstand the temperature required to 

lyse the cells. The advantage of thermal lysis is that no interfering reagents are required 

that may interfere with downstream reactions.27 The device design can be further 

simplified by lysing cells in the initial denaturation step of downstream PCRs.28 But, 

thermal methods are not applicable for certain cell types, such as Gram-positive 

bacteria. 

Mechanical forces, such as sonication, can be integrated to the microdevice to 

disrupt cells via gaseous cavitation. In this process, air pockets form from dissolved 

gases in the aqueous media and collapse rapidly, creating high pressure and high 

temperature environments sufficient to break cell membranes. This method is suitable 

for hard-to-lyse cells or spores, but can generate considerable amounts of heat and free 

radicals.29 Belgrader et al.21 reported a minisonicator combined with a spore lysis 

cartridge. Bacillus spores were sonicated in the presence of glass beads and were 

successfully lysed to release DNA for PCR amplification in ~30 s. 

Electrical pulse methods represent another method for cell lysis and are based upon 

electroporation of the membrane. In the electroporation process, the application of high 

electric field pulses causes the formation of small pores in cell membranes.30 However, 

the use of high electric fields can lead to heating and gas generation. To overcome this 
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limitation, a microfluidic electroporation device for the lysis of human carcinoma cells 

was demonstrated by Lu et al.23 In their design, a straight microchannel was 

constructed in glass, where the side-walls consisted of gold saw-tooth-shaped 

electrodes supported by the polymer, SU-8. Using pressure-driven flow, cells were 

directed through the channel and electroporated by the saw-tooth electrodes (see 

Figure 1.2). The magnitude of the electric field was in the range of a few kilovolts per 

centimeter, while the AC voltage was >10 V peak-to-peak, minimizing heat generation 

and bubble formation. 

 

 
Figure 1.2 (A) Microelectroporation device for cell lysis. (B) Devices at various steps of 
the fabrication process: after metallization and electrode-mold formation (left) and after 
electroplating (right). (C) Dielectrophoresis (DEP) effect observed in the flow channels 
(top). Saw-tooth microelectrodes acting as a DEP device for focusing intracellular 
materials after electroporation (bottom). Reproduced from [23] with permission. 
 
1.2.2 Nucleic Acid Extraction, Purification and Pre-concentration 

Following cell lysis, DNA extraction, purification, and pre-concentration are usually 

achieved by micro-solid phase extraction (micro-SPE) devices. This step is essential in 
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order to purify and isolate the genomic materials from other cellular components, 

contaminants, and chemicals introduced in the cell lysis step that might potentially 

interfere with downstream enzymatic reactions. In addition, the nucleic acids may be 

enriched in this phase of the processing strategy to pre-concentrate the targets to a 

level that is amenable for further downstream processing. 

A variety of well-established macro-scale SPE methods for nucleic acid extraction 

have been successfully transferred to micro-scale devices.10, 31-57 Although the physical 

principles of these methods may be different (e.g. chaotropic interactions, electrostatic 

interactions, affinity interactions, etc.), micro-SPE protocols typically consist of three 

steps: (1) selective adsorption of nucleic acids onto a solid phase; (2) removal of 

contaminants by a washing step; and (3) elution of the pre-concentrated nucleic acids 

from the solid support using water or a low salt buffer.31 Like their macro-scale 

counterparts, micro-SPE devices possess a loading level of target material that is 

dependent upon the available surface area within the extraction bed and, thus, are 

manufactured either by packing the solid phase (typically consisting of silica beads) into 

the device or by directly fabricating microstructures inside the device to increase the 

available load capacity of the device. 

As noted above, micro-SPE devices can be fabricated by packing silica beads, sol-

gel immobilized silica beads, photo-polymerized monoliths, or modified magnetic 

particles into microfabricated channels.10, 31-43 For example, Landers and his research 

group32 demonstrated the extraction of PCR-amplifiable DNA from lysed white blood 

cells using silica particles packed into a capillary tube; the DNA recovery was found to 

be ~70% in a 10 min processing time. The load of DNA into the device was found to be 

on the order of 10 – 30 ng/mg of DNA. To circumvent the high backpressure introduced 
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by flowing silica beads into a microchannel and to improve reproducibility, a silica 

bead/sol-gel hybrid matrix was packed into a glass microchip (see Figure 1.3A).31, 33 

Other matrices, such as a sol-gel monolith35 or photo-polymerized monoliths36 were 

explored by the same group in effort to overcome the aging and shrinkage problems 

associated with the silica bead/sol-gel hybrid matrix. Klapperich and co-workers37-39 

used a similar photo-polymerized monolith as a solid-support matrix to confine silica 

beads within a cyclic olefin copolymer (COC) microchip to extract a variety of samples, 

such as lambda (λ)-DNA, Gram-positive and Gram-negative bacterial genomic DNA, 

inoculated human blood and urine samples (see Figure 1.3B). 

 

 
Figure 1.3 (A) SEM image of the cross-section of a glass microchip channel packed 
with silica bead/sol-gel hybrid at 500x magnification. Reproduced from [33] with 
permission. (B) SEM image of a porous polymer monolith filled with silica beads at 
10,000x magnification. Reproduced from [39] with permission. (C) Photograph of a 96-
well polycarbonate solid phase extraction microfluidic plate and a commercial 96-well 
titer plate (left). SEM image of the micro-pillars that were fabricated in the purification 
bed (right). Reproduced from [47] with permission. 
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Issues associated with SPE beds comprised of silica beads or polymerized polymer 

monoliths include: (1) residual chaotropic reagents, such as guanidinium or sodium 

iodide salts, present in the initial elution phase and interfering with downstream 

amplification steps; (2) packing the matrix, which requires a post-fabrication process 

that can be tedious and demands experienced engineers to accomplish; and (3) aging 

and shrinkage of the packing material, which can affect the efficiency and reproducibility 

of the extraction process. 

Alternatively, one can produce a SPE surface directly in the device via 

microfabrication techniques. Micro-post or micro-pillar structures can be fabricated 

inside the extraction chamber to increase the available surface area, thus enhancing the 

load of target material as well as enhance the interaction probability between the 

solution borne nucleic acids and the SPE bed. Christel et al.44 fabricated, using deep 

reactive ion etching (DRIE) and anodic bonding, a micro-SPE device in silicon that 

contained high aspect ratio (aspect ratio = structure height divided by structure diameter) 

micro-pillars with a total surface area of 3.5 mm2. The binding capacity of DNA was 

found to be 40 ng/cm2 with a 50% extraction efficiency for short (500 bp) and medium 

sized (48 kbp) DNAs. Cady et al.45 extended this work to Escherichia coli cell lysates. 

To circumvent the tedious DRIE and bonding processes required for fabricating these 

high aspect ratio microstructures in silicon, Soper and co-workers46 developed a micro-

SPE device made from photo-activated polycarbonate (PPC). This micro-SPE device 

contained high aspect ratio (5/1) micro-pillars, hot embossed from a LIGA-fabricated 

nickel molding tool. The SPE bed possessed a total active surface area of 2.3 x 107 µm2. 

Nucleic acids were selectively immobilized onto the PPC surface, which contained 

carboxylic acid groups generated using UV radiation, using an immobilization buffer 
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containing polyethylene glycol, NaCl, and ethanol. After cleanup using ethanol, purified 

and concentrated nucleic acids were eluted from the PPC surface using water or PCR 

buffer. The load capacity and recovery of E. coli genomic DNA were estimated to be 

790 ng/cm2 and 85 ±5%, respectively. This work was followed by a report on the 

fabrication of a high-throughput device consisting of 96 micro-SPE beds, each 

containing an array of 3,800 20-µm diameter micro-pillars (see Figure 1.3C).47, 48 Both 

genomic DNA and total RNA could be extracted and purified from bacterial cells seeded 

into mammalian blood samples. 

Another approach for the SPE of nucleic acids is the use of commercially available 

nano-porous aluminum oxide membranes (AOM). In a high salt concentration buffer, 

genomic DNA or RNA will aggregate and bind to the nano-porous membrane; both 

nano-filtration and electrostatic interactions contribute to the retention and purification of 

the target DNA or RNA. The retained DNA/RNA can be recovered using a PCR buffer. 

Kim et al.49 investigated the extraction of genomic DNA from blood samples with a 

recovery of ~90% using an AOM sandwiched between PDMS microchannels. The AOM 

SPE device was later integrated to a micro-chamber PCR device, demonstrating 

successful amplification of both DNA from a bacterial sample and RNA from virus 

samples.50 The advantages of this method included the ability to use high flow rates to 

shorten processing time and low protein absorption onto the AOM. However, the 

handling of the thin and brittle AOM remains a challenge. 

In addition to genomic DNA or RNA purification and pre-concentration before an 

amplification step, some applications, for example the purification of dye terminator 

Sanger sequencing products, require high quality DNA free of background species such 

as salts, unincorporated primers, dNTPs, and dye-labeled ddNTPs prior to the 
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electrophoresis step. Soper and co-workers51 demonstrated the use of a PPC micro-

SPE device for the purification of Sanger sequencing products to provide high quality 

DNA free from background species. PPC micro-SPEs were successfully coupled to 

capillary gel electrophoresis54 that also contained a continuous flow Sanger extension 

thermal cycler.51, 52 

Mathies and his group53 purified Sanger extension products using a micro-chamber 

containing a sparsely crosslinked polyacrylamide gel co-polymerized with 

complementary oligonucleotide probes appended onto the target DNA products. DNA 

elution was achieved by thermal denaturation of the hybrids. This micro-chamber was 

coupled to a Sanger extension chamber and microchip electrophoresis to form an 

integrated Sanger sequencing bioprocessor. With a 400-fold reduction in sequencing 

reagents and 10- to 100-fold reduction in DNA template required compared to bench-

top approaches, 556 continuous bases were sequenced using this bioprocessor with 99% 

accuracy.54 

1.3 Microfluidic Polymerase Chain Reactors (Micro-PCR) 

Since the discovery of the PCR in 1986 by Mullis et al.,58 PCR has become a crucial 

tool in basic molecular biology discovery, genome sequencing, clinical research, in vitro 

diagnostics, and evolutionary studies.59 PCR is an enzymatic reaction that allows any 

nucleic acid fragment to be generated in vitro and in high abundance. Theoretically, the 

amount of product doubles during each PCR cycle, as shown by the following equation: 

� = ��2
�     (1) 

where N is the number of amplified DNA molecules, N0 is the initial copy number of 

DNA molecules and n is the number of amplification cycles.60, 61 Experimentally, the 
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amplification efficiency (E) can range from 0 to 1, and therefore the true copy number 

produced is given by: 

� = ��(1 + �)�    (2) 

In PCR, denaturation and annealing are nearly instantaneous events that occur as 

soon as the correct temperature is reached (e.g., ~94 °C for denaturation; 50 – 60 °C 

for annealing) and at 72 °C the extension step is l imited only by the kinetics of the 

polymerase enzyme. Implementation of the thermostable Taq polymerase as a 

substitute for the Klenow fragment of E. coli DNA polymerase I62 has made it possible to 

automate the PCR amplification step by using various thermal cycles carried out by a 

block thermal cycler. Investigators have shown that Taq DNA polymerase has an 

extension rate of 60 – 100 nucleotides/s at 72 °C. 63 For efficient amplification, a device 

with low heat capacity that can transfer heat quickly to the sample and quickly draw 

away the heat when cooling is preferable. Most conventional thermal cyclers have large 

thermal masses resulting in high power requirements and slow heating and cooling 

rates with long reaction times, typically exceeding 1.5 h in spite of the fact that 

kinetically, a 500 bp PCR product should be produced in as little as 5 s. 

Due to the intrinsically small PCR chamber volumes and mass, exquisite heat 

transfer capabilities can be realized in micro-PCR devices that can significantly reduce 

the processing time compared to conventional bench-top thermal cyclers. Short thermal 

cycling times can be realized and still provide amplification efficiencies comparable to 

their macro-scale counterparts with designs that are sometimes not conducive to 

macro-scale formats. Micro-PCR devices have adopted design formats such as 

chamber-type PCR devices, in which the PCR cocktail and target are mixed inside a 

micro-chamber and the chamber is then cycled between the various temperatures 
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required for the amplification process. Another design approach uses the continuous-

flow format, in which the PCR device consists of isothermal zones brought to 

equilibrium prior to the amplification process. The PCR cocktail is shuttled between 

these isothermal zones either electrokinetically or hydrodynamically to affect the thermal 

processing. Another format that has been employed for micro-scale PCR devices is a 

thermal convection-driven PCR device in which a temperature gradient is applied to a 

closed reaction chamber and the fluid is shuttled through the temperature gradient using 

a Rayleigh-Bénard convection cell. In the following sections, we will briefly introduce 

these PCR designs. 

1.3.1 Chamber-type Micro-PCR Devices 

In chamber-type micro-PCR devices, a static PCR cocktail containing the target is 

repeatedly cycled between three different temperatures: one for denaturation, a second 

for renaturation, and a third for polymerase extension, which is similar to that used in a 

conventional PCR thermal cycler. Chamber-type micro-PCR devices consist of either a 

single chamber or multiple chambers configured on a single wafer with the appropriate 

heating modalities to allow thermal cycling. The primary advantage of these types of 

micro-thermal cyclers is the low thermal masses that must be heated/cooled, providing 

faster reaction times compared to block thermal cyclers. 

1.3.1.1 Single-chamber Micro-PCR Devices 

In 1993, Northrup et al.64 reported the first PCR microfluidic device, which consisted 

of a 50-µL well structure serving as the reaction chamber and was fabricated in silicon 

using wet chemical etching. Twenty amplification cycles were carried out, with the 

cycling time four times faster than a conventional bench-top PCR device. In 1994, 

Wilding et al.65, 66 developed a silicon/glass hybrid device that held 5 – 10 µL of reaction 
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mixture in a chamber, whose performance was improved by surface passivation through 

salinization of the microchamber surface67 and was heated using an external copper 

block. Single-chamber PCR devices have been widely investigated since these initial 

reports.68-77 However, single-chamber micro-PCR devices possess low throughput. 

 

 
 
Figure 1.4 Photographs of µ-DAAD production steps. (A) Front side of a 4” silicon wafer 
populated with etched microreactors; 16 µ-DAAD are processed in parallel, each 
consisting of four microreactors. (B) Front side view of a single µ-DAAD (16 x 1 mm2) 
after bonding a cover plate and dicing. DNA arrays are printed onto the bottom of the 
microreactor cavities, but cannot be seen in this image because of their small size. 
Holes of 1 mm in diameter are drilled in the cover glass for the filling of the µ-DAAD 
reactors with reagent. (C) Back-side view of the device with platinum heater coil and 
thermoresistors placed at the corresponding area of the micro-reactor. Reproduced 
from [81] with permission. 
 
1.3.1.2 Multi-chamber Micro-PCR Devices 

Multiple PCR chambers have been fabricated on a single microfluidic chip and 

explored for high throughput PCRs.78-83 An example of a multi-chamber micro-PCR 

device, micro-DNA amplification and analysis device (µ-DAAD) consisted of 16 µ-

DAADs in parallel with each µ-DAAD consisting of four microreactors fabricated on a 4” 
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silicon wafer (see Figure 1.4). Multi-chamber micro-PCR devices84 have been 

demonstrated for DNA amplifications of five gene sequences related to E. coli from 

three different DNA templates and detected by TaqMan chemistry with a limit of 

detection (LOD) of 0.4 copies of target DNA. 

 

 
 
Figure 1.5 Chip for CF PCR. Three well-defined isothermal zones are poised at 95 (A), 
77 (B), and 60 °C (C) by means of thermostated copp er blocks. The sample is 
hydrostatically pumped through a single channel etched into a glass wafer. The channel 
passing through the three temperature zones defines the thermal cycling process. 
Reproduced from [87] with permission. 
 
1.3.2 Continuous Flow PCR (CF PCR) Devices 

Another configuration for micro-PCR devices employs a flow-through format with a 

“time–space conversion” concept, in which the sample is continuously transitioned 

through isothermal zones for denaturation, annealing, and extension. This is in contrast 

to chamber-type PCR devices, in which heating and cooling occurs on a static sample 

with the entire device heated and cooled to the desired temperatures.79, 83, 85, 86 The CF 

PCR approach allows for short reaction times because the small-volume fluid elements 

can be heated or cooled to the required temperature within 100 ms.59 In 1998, Kopp et 
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al.87 reported the first CF PCR microdevice (see Figure 1.5). This device consisted of 

20 thermal cycles comprised of a serpentine channel design whose dimensions were 40 

µm in width and 90 µm in depth, with a total length of 2.2 m, producing a pressure drop 

of ~14.5 psi. For DNA amplification, 10 µL of a PCR mixture was hydrostatically 

pumped at volumetric flow rates ranging from 5.8 to 72.9 nL/s with a flow-through time 

of 18.7 to 1.5 min.87 The channel walls were silanized with dichlorodimethylsilane to 

reduce possible adsorption of the polymerase enzyme (Taq polymerase) and DNA onto 

the glass surface. A zwitterionic buffer and nonionic surfactant were used as the PCR 

buffer additives to impart a dynamic coating.88 

 

 
Figure 1.6 High throughput CF PCR multireactor platform consisting of three functional 
units: a fluidic controller for distributing reagents and analyte to the reactors, a CF PCR 
multireactor, and a distributed temperature controller. HD denotes the denaturation 
heaters (90 – 95 °C), H A the annealing heaters (50 – 70 °C), and H E the extension 
heaters (70 – 77 °C). Reproduced from [92] with per mission. 
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Using a 20-cycle spiral microchannel hot embossed into a polycarbonate (PC) 

substrate configured for performing CF PCR,89 the PCR cycle time was reduced to the 

kinetic limit set by the polymerase incorporation rate; 500-bp and 997-bp fragments 

were amplified in a total time of 1.7 min (5.2 s/cycle) and 3.2 min (9.7 s/cycle), 

respectively. The amplification efficiency was further optimized through proper thermal 

management using numerical models and experiments to evaluate the effects of 

different combinations of temperature distribution in a typical CF PCR device fabricated 

by hot embossing PC substrates.90 Chen et al.91-93 reduced the footprint of each spiral 

reactor to 8 mm by 8 mm and arranged 96 reactors in titer-plate format (12 x 8) for high 

throughput processing (Figure 1.6). 

The attractive features of CF PCR devices consist of: (1) very rapid heat transfer 

during the PCR, with run times on the order of minutes; (2) low possibility of 

contamination (closed architecture);4, 10, 94 and (3) facile integration with various liquid 

transport processes, such as magneto-hydrodynamic (MHD) actuation.95 Additional 

advantages include reduced sample consumption and reagents (lower cost) and simple 

integration to other DNA processing devices.11, 96 A limitation of this approach is the 

fixed cycle number that can be employed by the chip, which is dictated by the device 

layout. To overcome this drawback, Chen et al.97 demonstrated the use of a 

microfabricated PC chip for DNA amplification in a CF mode using electrokinetically 

driven synchronized pumping (Figure 1.7). A 500-bp fragment from λ-DNA was 

obtained with a total time of amplification of ~18.1 min for 27 cycles. 

The arrangement of the three temperature zones on most rectangular serpentine 

channel CF PCR devices consists of denaturation, extension, and annealing in that 

order. Although this arrangement can establish a smooth temperature gradient, 
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amplification efficiency may degrade because the melted single-stranded DNA is likely 

to form double strands with the template DNA or their complementary fragments when 

passing through the extension zone. To circumvent this problem, a novel three 

temperature zones arrangement in a “circular” format consisting of denaturation, 

annealing, and extension has been exploited.95, 98-100 

 

 
Figure 1.7 (A) Principle of electrokinetic synchronized cyclic CF PCR process. Sample 
injection (a): DNA was filled into reservoir 5 and a voltage was applied to the electrodes 
in reservoirs 5 (GRND indicates ground) and 6 (+ indicates high voltage input). Sample 
moved across the reactor channel to fill the crossed-T injector. Sample cycling (b): 
Following injection, the sample is shuttled through the various isothermal zones by 
moving the position of the applied electric field in a cyclic fashion as denoted in 
diagrams 1 – 4. (B) Schematic view and photographs of the electrokinetically 
synchronized CF PCR microchip. The actual microchip, fabricated via replication 
technology into PC, is shown in the middle photograph next to the quarter. Poised on 
the PC chip are electrode contacts for applying the voltage in an automated fashion to 
the various reservoirs. Reproduced from [97] with permission. 
 

The PCR channel for these CF PCR devices can also consist of either capillary 

tubes99, 100 or an on-chip annular channel95, 101. The serpentine channel formats on a 

monolithic chip can utilize thermal insulation with the aid of air gaps102, 103 or by utilizing 
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glass chips with a low thermal conductivity.104, 105 Recently, a novel spiral channel 

configuration was also used to perform CF PCR on a single PC wafer with a circular 

arrangement of three temperature zones, allowing for a compact footprint and a minimal 

number of heaters for temperature control.106, 107 CF PCR microfluidics can also use a 

unidirectional PCR or oscillatory flow.108 

1.3.3 Thermal Convection-driven PCR 

Convectively driven PCR is an alternative thermal cycling process, which was first 

reported in 2002 by Krishnan et al.109 The authors used a Rayleigh-Bénard convection 

cell consisting of a 35-µL cylindrical cavity to perform the PCR amplification of the β-

actin gene (295-bp fragment). Rayleigh-Bénard convection is generated by buoyancy-

driven instability in a confined fluid layer heated from below.110. The inherent structure of 

Rayleigh-Bénard convection-steady circulatory flow between surfaces employs two 

fixed temperature zones to facilitate the convection-driven sample flow. In contrast to 

CF PCR, the temperature cycling is achieved as the fluid continuously shuttles vertically 

between the two temperature zones poised for annealing/extension (top, 61 °C) and 

denaturation (below, 97 °C). Therefore, there is no  need of an external force to drive the 

fluid through different temperature zones, simplifying its operation and allowing the 

implementation of the desired number of thermal cycles. 

1.3.4 Microfluidic Thermal Heating Methods 

The choice of a heating method for micro-PCR devices is important in achieving 

efficient temperature ramping rates. The diversity of materials exhibiting differences in 

thermal mass means that different heating methods may be required. At present, 

temperature cycling on microfluidic devices can be performed either with contact or 
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noncontact heating methods. Summarized below are various heating methods that have 

been employed in microfluidic devices. 

1.3.4.1 Contact Heating 

For contact heating, heaters are fabricated directly within the microchip or are in 

contact with the outside of the microchip. Contact heating utilizes an electrothermal 

conversion to heat the PCR solution.111 Contact heating can be achieved through the 

use of thin film heating elements, which are mainly fabricated using deposition 

techniques; through the use of metal heating blocks, which primarily consist of inserting 

a heating cartridge into the metal blocks; or by utilizing Peltier elements. 

1.3.4.1.1 Thin Film Heating 

Heating elements can be fabricated on-chip using thin film deposition. Platinum,78, 79, 

112-116 is the most commonly used material for heating elements due to its ability to 

withstand high temperatures, good chemical stability, and ease of micromanufacturing. 

Some other metals, alloys, or inorganic compounds have also been used as thin film 

heaters in micro-PCR devices, such as Al,70, 81, 82, 117 Ni,104 W,101 Ag/graphite inks,85 

Ag/Pd,102, 118 Ni/Cr,119 Cr/Al,82 Al2N3,
120 and indium-tin oxide (ITO).121-123 Microheaters 

fabricated by Pt thin film deposition often require a thin layer of Ti serving as an 

adhesion layer. The Ti layer exhibits a high diffusion rate at high temperatures, which 

can deteriorate the Pt heater.124 Commercial thin film resistive heaters85, 106, 107 have 

proven to be efficient and robust for achieving fast PCR cycling, in contrast to 

conventional PCR devices. 

1.3.4.1.2 Metal Heating Blocks 

Conventional PCR instruments typically utilize contact heating, which involves a 

metal heating block in contact with the sample container, to cycle the temperature of the 
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PCR solution that is held within a thin-walled polypropylene tube. In spite of their large 

thermal mass and slow temperature ramping rates, metallic heating blocks and Peltier-

based Thermo-Electric (TE) ceramic heating blocks are widely applied in micro-PCR 

devices.69, 84, 87, 125-130 To achieve fast thermal transition, two8, 98, 125, 131 or more TE 

devices can be coupled to thermally cycle the PCR solution, and a total of six TE 

devices have been used in a portable miniaturized thermal cycling system.84 The 

temperature of the peltiers could be independently controlled and programmed to be at 

different temperature levels necessary for effective annealing and denaturation. To 

ensure good thermal contact between the TE element and the cycled region of the 

device, supporting substances with higher thermal conductivity, such as mineral oil8, 131 

or a metallic thin wafer,132 can be added to the interface of the TE element. Normally, 

the TE cell consists of an array of parallel P–N junctions and each parallel P–N junction 

establishes its own temperature differential for a given voltage. The P–N junction is 

formed by joining P-type and N-type semiconductors and when an electric current flow 

through the junction, either heat is absorbed or released depending on the direction of 

the current flow. Consequently, a radial temperature gradient on the hot surface of the 

TE cell is created, which causes non-homogeneity of the surface temperature of the TE 

cell and compromises the efficiency of the PCR.111 To achieve a homogenous 

temperature distribution across the surface of the TE cell, an oxygen-free thin copper 

wafer is necessary to redistribute the surface temperature.128 Other reliable contact 

heaters are resistive heating coils99, 129, 133 and single-sided flexible printed circuits 

(FPCs).134 

It is important to note that the thermal-cycling rate is limited by the thermal mass of 

the heating element itself and of the entire micro-PCR device as well. Moreover, in the 
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case of an external contact element, localized heating is ultimately limited in terms of 

lateral resolution by the thermal conductivity of the substrate material. In the case of on-

chip integrated heaters, these devices still require tedious and complicated 

micromanufacturing processes, which restrict the flexibility to reconfigure the PCR 

design.135 

1.3.4.2 Non-contact Heating 

The inherent problem with contact thermal heaters is their relatively large thermal 

mass. More thermal mass is added to the PCR device when contacting the chamber 

containing the PCR solution, which hinders fast thermal cycling rates. For the 

integration of PCR with µCE, thermal management becomes difficult because contact 

resource is regarded as part of the PCR chip and not part of the electrophoresis chip 

itself. These restrictions have triggered interest in the development of non-contact 

thermal cycling in which the heating is remote from the microfluidic device and not in 

physical contact with the PCR chamber.111 

1.3.4.2.1 Non-contact Heating based on IR Radiation 

Non-contact heating method using IR radiation was first reported by Oda et al.136 in 

1998. In their work, an IR light, which used a single and inexpensive tungsten lamp as 

the non-contact heat source, was used for heating glass microchambers. The authors 

achieved temperature ramping rates of 10 °C/s for h eating and 20 °C/s for cooling. In 

2000, Hühmer and Landers71 reported IR-mediated fused-silica capillary cycling with 

nanoliter volumes (160 nL), with improved heating and cooling rates of 65 and 20 °C/s, 

respectively. Giordano et al.74 developed a novel polyimide (PI) PCR microchip, which 

utilized IR-mediated thermal cycling for the amplification of a 500-bp λ-phage DNA 

fragment in a 1.7-µL chamber with a total reaction time of only 240 s for 15 cycles. In 
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2003, Ferrance et al.72 presented IR-mediated PCR amplification of genomic DNA using 

primers defining a 380-bp fragment of the β-globin gene followed by electrophoretic 

analysis on a single glass chip for the analysis of Duchenne muscular dystrophy (DMD) 

in less than 15 min for 35 cycles. 

1.3.4.2.2 Non-contact Heating based on Hot Air Cycling 

Wittwer et al.137, 138 developed non-contact heating for PCR based on hot air cycling. 

In their work, temperature cycling was performed without physical contact between the 

heating source and the reaction chamber by rapidly switching streams of air set to the 

desired temperature. Due to the low thermal mass of air, a high temperature ramping 

rate could be obtained, which has been further improved by several research groups.68, 

114, 115, 139-141 

1.3.4.2.3 Non-contact Heating based on Laser-mediated Heating 

The tungsten lamp is a non-coherent source with large focus projection, which limits 

the heating efficiency when applied to microchips with a small cross-section. Laser-

mediated non-contact heating utilizes a photothermal effect produced by a diode laser 

coherent light source to heat an absorbing target. Tanaka et al.142 used a diode laser to 

control the temperature of a chemical reaction by heating an absorbing target of a black 

ink point placed on top of a glass microchip cover plate above the reaction channel. The 

integrated glass microchip with non-contact IR laser-mediated heating has been 

demonstrated for fast and localized temperature control under flowing conditions with 

ultrafast heating and cooling rates of 67 and 53 °C /s, which is 30 times faster than a 

conventional device and 3 – 6 times faster than electrothermal miniaturized thermal 

cyclers.135 This heating method may be very attractive and desirable due to its high 

resolution for spatially localized heating, ease of manipulation along the chip, and its 
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property of being a point light source. Unfortunately, this heating method has not been 

applied for temperature control in microfluidics. 

1.3.4.2.4 Non-contact Heating based on Microwave Irradiation 

Non-contact heating utilizing a focused microwave source was demonstrated by 

Fermér et al.143 In their work, a single-mode microwave cavity was used to heat 100 µL 

PCR mixture in a 0.5-mL polypropylene tube for 25 cycles. Most recently, microwave-

induced milliliter-scale PCR (see Figure 1.8) was reported144 for real-time PCR analysis. 

 

 
Figure 1.8 Experimental set up for microwave-heated PCR that is used to perform 
milliliter-scale PCR utilizing highly controlled microwave thermal cycling. Reproduced 
from [144] with permission. 
 
Although the amount of amplified nucleic acid product after 33 cycles indicated 

incomplete amplification, which was attributed to temperature “over-shooting” at the 

denaturation phase and subsequent deactivation of the Taq polymerase,145 microwave 

heating was quite promising due to the following properties:143 (1) the efficiency of the 

optimized microwave conditions nearly reached 70% that of conventional PCR; (2) the 

irradiation energy was used to heat only the PCR solution and not a heating block or the 

sample containment tube; (3) the temperature ramping time was substantially shortened; 

(4) the required temperature was reached almost instantaneously and simultaneously, 
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allowing for shortening of the incubation time; and (5) modern microwave cavities can 

deliver a uniform field density without “hot-spots”. 

1.3.4.2.5 Other Non-contact Heating Methods 

Other non-contact heating methods have also been described, such as non-contact 

heating using a halogen lamp as a low power radiation source for rapid temperature 

ramping in a silicon micro-reaction chamber.146 This method achieved a rate of 4 °C/s 

for heating and 4 °C/s for cooling. Another non-con tact heating method is based on 

induction heating first reported by Pal et al.147 Induction heaters are much simpler to 

fabricate, and heating and cooling rates of 6.5 and 4.2 °C/s can be achieved by 

optimizing the heater dimensions and frequency. The advantage of this method is that 

accurate positioning of the reaction mixture with respect to the heater is not necessary, 

deposition steps to pattern thin-film heaters on the chip are not required, and elaborate 

percentage/integrator/differentiator (PID) control is not needed.146 

1.4 Analysis Methods of Reaction Products 

Following amplification, the identification of amplification products must be 

performed to read the results and/or to confirm that the correct product was generated. 

Analysis techniques that can be used should provide short analysis times, high 

sensitivity and specificity, and favorable LODs. A variety of analysis methods have been 

successfully demonstrated for microdevice examples, including µCE and DNA 

microarrays. While there are a number of alternative techniques for reading successful 

PCRs, we will restrict our discussion to the DNA microarray technique. 

1.4.1 DNA Microarrays 

DNA microarrays were first developed in the early 1990s148-150 and have become an 

important tool for high-throughput DNA analysis. A DNA microarray consists of a 
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collection of oligonucleotide probes attached to a solid support in an orderly manner, 

typically a two-dimensional array. The probes readily hybridize to amplified gene 

fragments (targets) that are complementary to a specific probe. Readout of successful 

hybridization events is accomplished using a fluorescent dye or other such label 

attached covalently to the target. The mRNA expression levels or DNA sequence 

variations from hundreds to thousands of genes can be interrogated simultaneously. A 

few recent reviews of microarray technology are recommended to interested readers.151-

155 

The basic elements required for the DNA microarray are the solid substrate, the 

attachment chemistry of the probe to the solid support, the approach adopted to “spot” 

the probes at particular locations of the 2-dimensional array, the method employed to 

bring the solution target to the appropriate location of the array (passive or active), and 

the readout modality. A brief discussion of some of these important elements will be 

discussed below. 

1.4.2 Substrate Materials for Microarray Construction 

A variety of solid substrates have been explored for microarrays, such as glass,156, 

157 polymers,69, 98, 158-166 gold,167 optical fibers168 and microbeads.169, 170 Several issues 

must be considered in choosing the appropriate substrate, including the level of 

scattering and fluorescence background generated from the substrate, its chemical 

stability and complexity, the amenability to modification or derivatization of the substrate, 

loading capacity, and the degree of non-specific interactions.156 Glass has been widely 

adopted as a substrate material due to its favorable optical properties, which are highly 

desired for signal readout of the microarray using fluorescence. However, the 

microarray fabrication process involved for glass uses siloxane chemistry to tether 
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oligonucleotide probes to the glass. These linkages are susceptible to hydrolytic 

cleavage, especially at extreme pH values. Recently, polymers have been used as 

alternative microarray substrate materials because of their diverse properties that can 

be selected to suite different immobilization strategies of probes to the substrate, and 

the ability to microfabricate structures in a low cost, mass-production mode for single-

use applications. Polymers that have been used for microarray applications include 

PDMS,158, 159 PC,69, 98, 160 PMMA,161-164, 166 and polystyrene.165 

The use of microbeads as substrates for the immobilization of oligonucleotide 

probes has also been reported. Fan and co-workers169 described a dynamic DNA 

hybridization approach using paramagnetic beads as a transportable solid support. DNA 

targets were immobilized onto beads via streptavidin-biotin linkages for interrogation 

with probes that were transported via pneumatic pumping. Their experiment showed 

that beads containing DNA targets could be sequentially interrogated up to 12 times 

with no measurable change in the hybridization signal. Ali et al.170 demonstrated a chip-

based array composed of avidin-coated agarose microbeads for the discrimination of 

single-nucleotide mismatches. In their work, the biotinylated oligonucleotide probes 

containing microbeads were selectively arranged in micromachined cavities localized on 

silicon wafers, and the fluorophore-conjugated DNA target was a complement to the 

probe. The microcavities possessed trans-wafer openings allowing for both fluid flow 

through the bead chambers and optical analyses at numerous bead sites. Hybridization 

times on the order of minutes, with point mutation selectivity factors greater than 10,000 

and an LOD of 10-13 M were achieved using this microbead array. 
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1.4.3 Surface Modification for the Immobilization of Probes 

Various surface modification strategies have been used to attach probes to different 

solid supports. Oligonucleotide probes can be electrostatically attached to polylysine-

derivatized or amino-silanized glass slides, representing a non-covalent approach.171 

Probes can also be covalently linked to the surface of the array by brief exposure to UV 

light.172 Biotinylated DNA probes can be attached to streptavidin-coated magnetic 

beads,169 or thiol-terminated oligonucleotide probes can be immobilized to gold. 

Methods for the end attachment of chemically modified oligonucleotide probes to a 

solid substrate have been reported as well. For example, Joos et al.157 developed the 

covalent attachment of amine-terminated oligonucleotide probes to a glass substrate. 

Glass slides were derivatized with aminophenyl or aminopropyl silanes, and amine-

terminated oligonucleotides were attached to the silanized glass with a crosslinking 

reagent such as glutardialdehyde. Using this approach, up to 90% of the attached 

oligonucleotides were available for hybridization. 

Lenigk and co-workers160 demonstrated the use of bi-functional linkers for the 

immobilization of amine-terminated oligonucleotide probes. In their work, a PC surface 

was coated with a photosensitive polymer (SurModic’s photoreactive reagents) followed 

by 60 s UV irradiation to generate functional groups that allowed amine-terminated 

oligonucleotide probes to be covalently attached onto the surface. Detection of four 

pathogenic bacteria surrogate strains from multiple samples was accomplished using 

this device. 

Wang et al.161 reported the covalent attachment of amine-terminated oligonucleotide 

probes to a chemically modified PMMA substrate. In their protocol, the PMMA surface 

was aminated using a N-lithioethylenediamine solution, where methyl-ester functional 
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groups were replaced by N-lithioethylenediamine. After aminolysis, the surface was 

activated with a homo-bi-functional crosslinker, glutardialdehyde, via a Schiff’s base 

reaction and was converted to an aldehyde-terminated surface, which allowed for the 

covalent attachment of oligonucleotide probes. They found that the oligonucleotide 

coupling chemistry allowed reuse of the array >12 times without significant hybridization 

signal loss. 

 

 
Figure 1.9 UV activation of PMMA forming surface-confined carboxylic acid groups with 
the subsequent attachment of 5’ amine-containing oligonucleotides. Reproduced from 
[164] with permission. 
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McCarely et al.173, 174 described a simplified photo-modification protocol of PMMA 

and PC substrates through direct and controlled UV exposure of the substrates in an 

oxygen-rich environment to yield surface carboxylic acid moieties. Patterns of carboxylic 

acid sites could be formed by exposure of the polymers in air at 254-nm with a power 

density of 15 mW/cm2 for ~60 min without significant physical damage to the polymer 

surface. The so-formed chemical patterns allowed for further functionalization to yield 

arrays or other structured architectures through covalent attachment chemistry. 

Soper et al.164 presented the fabrication of DNA microarrays onto PMMA surfaces 

using a UV modification protocol as shown in Figure 1.9. Briefly, the PMMA surface 

was first activated via exposure to UV irradiation, which produced carboxylic acid 

functional groups onto its surface. EDC treatment was then used to facilitate the 

formation of the O-acylisourea reactive intermediates, which allowed for carbodiimide 

coupling of amine-terminated oligonucleotide probes to the surface via an amide bond. 

Recently, this same group enhanced the density of surface carboxylate groups by 

utilizing oxygen plasma treatment to create low density arrays on the surface of a free-

standing, air-embedded PMMA waveguide.163 

1.4.4 Hybridization Efficiency Improvements 

Merging microarrays to microfluidics is a step toward building integrated microfluidic 

systems for genetic analysis. In addition, it can provide significant reductions in 

target/probe hybridization reaction times resulting from diffusion-limited hybridization 

kinetics. Compared to a conventional two-dimensional hybridization array in a 1 x 1 cm 

format, hybridization occurring within a microfluidic channel significantly reduces the 

diffusional distances between the target molecules and the probes immobilized onto the 
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surface. Shuttling back-and-forth, the hybridization mixture inside a microchannel can 

further facilitate mass transport and, thus, reduce hybridization time. Examples 

demonstrating improvements in hybridization efficiency using microfluidics have been 

reported.158, 159, 161, 175-178 

Liu and Rauch175 investigated DNA hybridization in a microfluidic channel fabricated 

from a variety of plastic materials. By oscillating the hybridization mixture in the 

microfluidic channel, maximum signal was observed within a hybridization time of 15 

min. Wang et al.161 reported a low density array constructed inside a PMMA microfluidic 

device and used flow-through feed of the hybridization mixture, which successfully 

reduced the hybridization time from ~5 h to 1 min and reported an LOD of 10 pM for the 

identification of low abundance point mutations (one mutant in 10,000 wild-type DNA 

molecules) found in a K-ras oncogene. Erickson et al.158 developed a theoretical model 

for electrokinetically controlled DNA hybridization in microfluidic devices, which 

predicted that reducing the height of the microchannel would effectively accelerate the 

diffusion-limited reaction kinetics and reduce the time required for the hybridization 

reaction to reach steady state. Following numerical simulations, the experimental results 

indicated that all processes from sample dispensing to hybridization detection could be 

completed within 5 min inside a glass–PDMS microchannel with a height of 8 µm. Yuen 

and co-workers159 fabricated a microfluidic device consisting of two interconnected 

reaction chambers molded in PDMS on a standard microscope slide for closed-loop 

fluidic circulation and mixing. Fluid samples were circulated and mixed by the rotation of 

a magnetic stirring bar driven by a standard magnetic stirrer. A 2 – 5 fold increase in 

hybridization efficiency was observed with fluid circulation. Wei et al.176 described the 

use of discrete sample plugs in a hybrid glass/PMMA microfluidic device for droplet 
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hybridization (see Figure 1.10). In this case, plugs were shuttled back and forth inside a 

channel sweeping over the probes, which were thoroughly mixed by the natural re-

circulating flows, significantly reducing the hybridization reaction volume to 1 µL. The 

total reaction time was 500 s, and the LOD was 19 amol. 

 

 
Figure 1.10 (A) Droplet shuttle hybridization in a microchannel. P1, P2… Pn refer to the 
probe spots. (B) Illustration showing that scrambled discrete plugs sweep over different 
probes in the channel. 80PM and 80MM denote the perfect match and mismatch probes, 
respectively. (C) Microtrench plate is stacked on a glass microarray slide (right) with a 
photograph of the assembled device (left). (D) Signal-to-noise (S/N) ratios for various 
hybridization formats: (a) shuttle hybridization at 500 s, sample volume 1 µL; (b) static 
microfluidic hybridization at 500 s, sample volume 10 µL; (c) flat glass hybridization at 
500 s, sample volume 30 µL; and (d) flat glass hybridization at 18 h, sample volume 30 
µL. The target concentration is 90 nM. The left column presents the fluorescence 
images with 80 PM probe, and the right column presents the fluorescence images with 
80 MM probe. Reproduced from [176] with permission. 
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1.5 Integrated Microfluidic Systems with Microarray Readout 

The integration of sample pretreatment with analytical processing steps for the 

analysis of biological samples has remained the primary goal of micro-Total Analysis 

Systems (µTAS) as described by Manz and coworkers14 over two decades ago. Many 

of these visions are becoming a reality and some of these systems will be described 

here. As noted previously, genetic analysis systems are defined as a single wafer or a 

collection of wafers seamlessly interconnected that possess two or more processing 

steps for the analysis of a genetic sample. Genetic analysis encompasses a large 

number of different types of applications, for example, DNA forensics where unique 

genetic markers are used for human identification either at crime scenes or in 

battlefields. For in vitro diagnostics, mutations in certain gene fragments can be 

detected and used to discover the presence of a disease in a particular patient, and also 

provide information to the clinician on how to treat that patient. In this section, we will 

discuss systems that include the sample preprocessing functions followed by microarray 

readout of the preprocessing steps. 

Unitizing the advantages of microchip-based DNA microarrays such as the highly 

parallel nature of the readout and the ability to screen DNA sequences with high 

specificity, numerous attempts have been made to incorporate front-end sample 

processing strategies with DNA microarrays used as the terminal readout step onto a 

single microfluidic platform. The front-end processing strategies that are needed prior to 

microarray readout are similar in nature to those required for µCE and are delineated in 

Figure 1. The operational differences, in terms of microsystems using arrays versus 

µCE include: (1) no need for high voltage power supplies; (2) imaging over relatively 

larger areas when fluorescence detection is employed (imaging optics versus point 
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detection of µCE); (3) on-chip heaters to control the temperature of the array depending 

on the level of hybridization stringency required; and (4) reduced processing times 

compared to µCE due to the small diffusional distances associated with microfluidics. 

Several examples of front-end process integration and microarrays to form functional 

microsystems have been reported in literature.69, 78, 98, 116, 162, 166, 179-181 

One of the initial microsystems reported was by Anderson et al.69 over a decade ago. 

A monolithic biochemical processing unit (BPU) was interfaced to a GeneChip 

commercialized by Affymetrix for performing multi-step molecular processing of 

genomic samples and included extracting/concentrating of nucleic acids from a serum 

lysate, amplification (RT-PCR and nested PCR), enzymatic reactions (fragmentation, 

dephosphorylation, and labeling), metering, mixing and hybridization to the GeneChip. 

The system was fabricated in PC using conventional computer-controlled 

micromachining. Temperatures were controlled by pressing thermal elements against 

the thin wall of the PC cartridge, with Peltier junctions used for heating and cooling. 

Fluidic manipulation was achieved through the use of a fluid barrier or hydrophobic 

membrane in conjunction with a pneumatically controlled diaphragm valve and 

hydrophobic vent. The system performance was evaluated using serum samples loaded 

with HIV virus. Analysis of the GeneChip results yielded an average accuracy of 99.7%, 

as determined by independent sequencing. 

Liu et al.98 presented a disposable, monolithic device that integrated PCR and DNA 

microarray. The system was also fabricated in PC using CO2 laser machining (see 

Figure 1.11A). This system was assembled using a two-step process: (1) First, thermal 

fusion bonding of PC was performed at 139 °C and un der 2 tons of pressure for 45 min 

with a square window for the DNA array left open. Second, following surface activation  



36 
 

 

 
Figure 1.11 (A) Monolithic integrated polycarbonate DNA analysis system. The system 
contained a serpentine PCR channel (PCR), a hybridization channel (HC), a syringe 
coupled to a hybridization wash solution channel, a waste channel coupled to a waste 
syringe, Pluronic traps (T), one hydrophobic air-permeable membrane valve (M), four 
Pluronics valves (V1 – V4), two PCR reagent loading holes (SL), and three external 
syringe pumps interfaced to reservoirs–sample driving syringe pump (P1), waste-
withdrawing syringe pump (P2), and wash syringe pump (P3). The dimensions of the 
system were 5.4 cm x 8.6 cm x 0.75 mm. (B) PCR hybridization results from the 
monolithic integrated system. (1) E. coli 221-bp hybridization after amplification. 
Portions of the channel are enlarged for better viewing. (2) Fluorescent image of portion 
of the channel after E. faecalis amplification and hybridization. (3) Fluorescent image of 
portion of the channel after multiplex (E. faecalis and E. coli) amplification and 
hybridization. Reproduced from [98] with permission. 
 
and oligonucleotide probe immobilization using a Motorola proprietary attachment 

chemistry through the access window, the window was closed with another piece of 

properly sized PC using double-sided tape. The bonding was enforced by applying 2 

tons of pressure for 2 min, and then the edges were sealed with epoxy. During PCR 

thermal cycling, the PCR device of the monolithic chip was sandwiched between two 

Peltier elements to allow thermal processing of the sample, with temperatures being 
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monitored using thermocouples. Microfluidic control was accomplished through the use 

of three external syringe pumps docked to the system in combination with four on-chip 

Pluronics polymer valves and one hydrophobic valve. Asymmetrical PCR amplification 

and subsequent hybridization analysis of both E. coli and Enterococcus faecalis was 

demonstrated. However, the use of PC as the microarray platform generated a 

significant amount of autofluorescence, which degraded the detection limits for 

fluorescence readout (see Figure 1.11B). 

To overcome this problem, Hashimoto et al.162 coupled CF PCR and continuous flow 

LDR (CF LDR) devices, both fabricated using a PC substrate, with a universal 

microarray fabricated using a PMMA substrate, which possesses better optical 

properties with low autofluorescence levels compared to PC (see Figure 1.12). The 

chip was generated via micro-replication (hot embossing) from metal molding tools 

fabricated using high-precision micromilling. The CF PCR/CF LDR chip was directly 

attached to thin film heaters for providing the set temperatures for the isothermal zones, 

with thermocouples embedded between the cover plate and the film heaters for 

monitoring the set temperatures required for both PCR and LDR. In this work, low 

density universal microarrays were produced on the bottom floor of a UV-photoactivated 

PMMA microchannel, with the DNA zipcode probes attached to UV-generated 

carboxylic acid groups. PCR amplicons were used as templates for the allele-specific 

CF LDR, which produced single-stranded targets that were uniformly flowed over the 

universal array to reduce incubation times. Using a mixed population of genomic DNA 

as starting materials, one mutant in 80 wild-type sequences could be successfully 

discriminated in a total reaction time of 50 min, including 18.7 min for PCR, 8.1 min for 

LDR, 5 min for hybridization, 10 min for washing, and 2.6 min for fluorescence imaging 
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of the low-density array. The authors also showed the ability to reduce reagent 

consumption by one order of magnitude compared to similar bench-top assays. 

 

 
Figure 1.12 Topographical layout of a CF PCR/CF LDR/universal zipcode array biochip. 
The microchip possessed channels that were 50 µm in width and 100 µm in depth with 
a 400 µm interchannel spacing. The total length of the thermal cycling channel was 2.28 
m and consisted of a 30-cycle PCR (1.57 m long) and a 13-cycle LDR (0.71 m long). 
The top inset represents a microscope image of the turns of the CF thermal cycling 
channel. The bottom inset is an enlarged schematic of the Y-shaped passive 
micromixer for mixing the PCR product with the LDR cocktail. Three different Kapton 
film heaters were attached to the appropriate positions on the CF PCR/CF LDR chip for 
providing the required isothermal zones. Thermocouples were inserted between the 
microchip cover plate and the film heaters for monitoring the temperatures. Reproduced 
from [162] with permission. 
 

A self-contained biochip that integrated cell isolation and lysis with PCR amplification 

and electrochemical microarray-based detection was described by Liu et al.181 The chip  
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Figure 1.13 Integrated, modular microfluidic chip for TB analysis. (A) Overview of the 
integrated system. The system had dimensions 12” (length) x 12” (width) x 12” (height), 
and all fluid handling, thermal management, and optical detection were controlled by off-
chip supporting peripherals and assembled into a small form factor instrument. (B) 
Schematic and photograph of the fluidic cartridge. The fluidic cartridge was composed 
of two modules and a fluidic motherboard. The fluidic motherboard was made from PC 
and consisted of processing steps for cell lysis, PCR, and LDR. One module was made 
from PC and used for SPE of genomic DNA, while the other module was made from 
PMMA and contained an air-embedded planar waveguide and the DNA array. Sample 
inlet (1), PCR mixture inlet (2), LDR mixture inlet (3), ethanol and air inlet (4), array 
wash inlet (5), vacuum connection (6), and waste outlet (7). V1 – V6 are on-chip 
membrane valves. V2 is positioned next to the SPE module on the cell lysis 
microchannel and is not visible in current view. (C) Molecular assay results from drug-
susceptible Mycobacterium tuberculosis (Mtb) strains and drug-resistant Mtb strains. 
516WT, 531WT, and 526WT are probes targeting drug-susceptible Mtb strains. 516MT, 
531MT, and 526MT are probes targeting drug-resistant Mtb strains. Reproduced from 
[166] with permission. 
 
was machined in a PC substrate using a conventional computer-controlled milling 

machine and included a mixing unit for cell capture using immunomagnetic beads, a cell 
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pre-concentration/purification/lysis/PCR unit, and a DNA microarray chamber. In this 

work, fluidic components (e.g. paraffin-based microvalves, cavitation microstreaming 

mixers, and electrochemical or thermopneumatic pumps), embedded resistive heaters, 

and DNA microarray sensors were coupled to the system to perform DNA analysis of 

biological samples. Electrical power, PCR thermal cycling, DNA electrochemical signal 

readout, and magnetic elements for bead arrest were controlled by an off-chip 

instrument. Implementation of cavitation microstreaming has been shown to achieve cell 

capture efficiencies on the order of 73% using immunomagnetic beads and up to a 5-

fold reduction in hybridization time compared to passive incubation of the array with 

solution targets, as well as improved signal uniformity. Detection of pathogenic E. coli 

K12 cells seeded into rabbit blood and single-nucleotide polymorphism analysis from 

diluted blood samples were completed in 3.5 h and 2.7 h, respectively. 

Soper et al.166 designed a polymer-based modular microsystem that could accept a 

crude sample and automatically carry out the entire molecular processing pipeline in an 

enclosed fluidic cartridge (see Figure 1.13). The multi-step assay included bacterial cell 

lysis, SPE of genomic DNA from the lysate, PCR amplification, LDR, and universal DNA 

array readout. The fluidic cartridge was generated via micro-replication from the 

appropriate metal molding tools, which were used to create structures on both sides of 

the polymer substrate (i.e., double-sided hot embossing). The integrated fluidic cartridge 

was comprised of a fluidic motherboard and two modules. One module was made from 

PC and used for SPE, while the other module was made from PMMA and contained 

DNA probes patterned on a planar waveguide for evanescent excitation. These 

modules were interconnected to a fluidic motherboard fabricated in PC and were used 

for processing steps for thermal cell lysis, PCR, and LDR. Fluid handling, thermal 
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management, and optical detection were controlled by off-chip supporting peripherals, 

which could be packaged into a small footprint instrument (1 ft3). Identification of multi-

drug resistant tuberculosis (MDR-TB) resulting from Mycobacterium tuberculosis (Mtb) 

strains in clinical sputum samples were demonstrated with a detection limit of ~50 

bacterial cells from sputum (processing time <40 min). In addition to MDR-TB detection, 

the modular fluidic cartridge could be reconfigured for use with other assay formats, 

such as PCR-µCE. 

1.6 Concluding Remarks 

There have been extensive reports on devices designed toward to perform a single-

step in the analysis of a variety of nucleic acids, such as DNAs and RNAs. These 

devices have been fabricated using a variety of micro-manufacturing techniques in 

different substrate materials. Devices have been developed for the SPE of nucleic acids 

from clinical, environmental, or crime-scene samples employing beads, polymer 

monoliths, or fabricated pillars to produce the desired solid phase. In addition, a 

plethora of devices focused on thermal cycling (such as that required for PCR, cycle 

sequencing, or allele-specific LDR) have been detailed in the literature and typically use 

either a chamber-type approach, in which the chamber and its contents are cycled 

between the desired temperatures, or a continuous flow operation, in which isothermal 

zones are situated on the chip and the reaction fluid is transported through these 

isothermal zones. Devices have also been reported that perform µCE separation of 

DNAs using sieving matrices with various channel lengths to reach the desired 

resolution demanded of the separation. While these represent innovative concepts, the 

complete analysis of different sample types required for genetic analyses typically 

requires a number of processing steps (see Figure 1.1). Therefore, it is clear that 
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integration of many of the aforementioned devices to form functional and autonomously 

operated systems needs to be undertaken. However, process integration to form 

autonomous systems is not simply a matter of “hooking” together the various devices 

outlined previously. For example, many of the upstream processing steps and the 

reagents they require may be detrimental to those poised downstream. Also, some 

steps demand hydrodynamically driven flow, while others require electrokinetically 

driven flow. Another concern is unswept volumes, which can generate sample carryover 

artifacts or sample loss, especially when dealing with ultrasmall sample volumes. Some 

substrate materials do not accommodate particular processing steps, and high optical 

quality materials must be used for assays employing fluorescence as the detection 

mode. Finally, some process steps require thermal control, such as PCR, and these 

thermally actuated units must be isolated from those that are sensitive to temperature, 

such as microarrays. 

Several examples of integrated microfluidic systems have been presented herein, 

most of which are proof-of-concept demonstrations with only a few examples that have 

actually dealt with clinical or “real-world” samples. Unfortunately, many of these 

demonstrators of integrated microfluidic systems, while attractive in terms of their ability 

to reduce sample processing time and reagent consumption, have only been utilized in 

research settings. Some of the more compelling applications for integrated microfluidic 

systems, such as in vitro diagnostics, homeland security, or forensics, will demand 

systems that can accommodate field analysis and/or one-time use operation. For 

example, in the case of in vitro diagnostics, it will be necessary to use the entire 

microfluidic system for a single patient sample, demanding that the cost of the chip be 

low. In addition, field analysis applications will require not only that the chip possesses a 
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small footprint, but also that the support peripherals must have the same characteristic. 

These support peripherals include pumps, valves, reagent reservoirs, electronics, and 

optomechanics if some type of optical readout is used. The chip and support peripherals 

must all be packaged into small form factor instrument and must consume minimal 

amounts of power to enable battery operation for extended periods of time. All this must 

be engineered without sacrificing assay performance in terms of reproducibility, LOD, 

sensitivity, and specificity. 

Another interesting aspect is related to manufacturability of the system. For wide 

spread commercialization, the fluidic system must be produced in high volume and at 

low cost. Chip production not only includes the microfabrication of the channel networks, 

but also chip assembly, integration of various components such as electrodes, optical 

elements, and valves and, finally, the surface attachment of necessary biologics to 

effect the desired process step. Although microfluidics has shifted from the use of 

silicon, glass, and other similar materials that require extensive microfabrication 

procedures to the use of polymer substrates that can use micro-replication processes 

(similar to those used to produce CDs and DVDs) to produce the desired fluidic 

networks in a high production mode with good fidelity, the challenge still remains in chip 

finishing following production of the fluidic network. 

The driving force behind the increasing development of integrated microfluidic 

systems is certainly due to their potential commercialization, but also in their diverse 

applications in such areas as biology, chemistry, and other disciplines that strongly 

demand the emergence of new analysis platforms to achieve higher performance and 

throughput. Because direct integration of PCR with other sample preparation protocols, 

including µCE, fluorescence, and microarrays has been demonstrated for a wide range 
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of applications (pathogen detection, DNA typing, and DNA sequencing), these success 

stories will demand higher functionality at lower cost and with higher throughput. Such 

systems offer compelling advantages such as short assay turnaround times, automated 

operation, improved operator protection, lower cross-contamination, reduced human 

error, and lower overall assay cost. Minimization of potential carryover contamination 

from run-to-run is a key consideration in providing accurate and reliable results and the 

use of disposable fluidic cartridges will effectively minimize this risk. 
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CHAPTER 2 IDENTIFICATION OF METHICILLIN-RESISTANT STAPHYLOCOCCUS 
AUREUS USING AN INTEGRATED AND MODULAR MICROFLUIDIC SYSTEM 

2.1 Introduction 

Molecular testing is of significant importance in diagnostics and prognostics of 

numerous diseases and in recognizing variation that can influence response to 

therapy.1-3 These tests can be accomplished using a number of task-specific 

instruments and typically consists of the following set of processing steps: (1) cell lysis 

and target extraction/purification from other cellular components (e.g. cell debris and 

proteins) that may interfere with downstream processing; (2) amplification of trace 

amounts of nucleic acids to produce sufficient copy numbers to aid in detection; and (3) 

analysis of unique sequence variations within certain genes to provide the proper 

clinical information. To complete an entire assay, a well-equipped laboratory and 

significant technical expertise are commonly required with operator intervention required 

at several stages of the processing pipeline. In addition, the total time required for 

sample processing can be several hours to several days. These operational 

characteristics have hampered the implementation of molecular testing into resource 

limited settings, which has resulted in the limited usage of these valuable techniques.4  

Derived from the concept of micro-total analysis systems or lab-on-a-chip platforms 

first proposed by Manz et al.5 in the early 1990s, the emergence of integrated 

microfluidic systems, which incorporate several molecular processing steps into a single 

microfluidic platform with sample-in-answer-out capabilities, are particularly attractive for 

automated, fast and cost-effective genotyping. These systems can incorporate many of 

the sample processing steps into a single system and negate the need for extensive 

operator expertise and minimize the amount of equipment required to carry out the 
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analysis. In addition, when configured with the support peripherals, the instrument can 

be designed to operate directly at the point-of-care, even in resource limited 

environments.6  

Several demonstrations of integrated microfluidic systems for DNA analyses have 

been described.7-10 Many of these reports utilized microfluidic structures fabricated in 

glass, silicon or glass polymer hybrids and thus, required direct photolithographic 

processing steps to manufacture the desired structures incorporated into the fluidic 

network. This production format leads to rather complicated fabrication processes and 

as such, generates challenges for meeting the demanding of low-cost systems that can 

be produced in a high production mode for realizing one-time use chips, a requirement 

in many clinical applications.  

Thermoplastic materials have been explored as alternatives to glass or silicon for the 

production of microfluidic platforms.11 The development of suitable polymer 

manufacturing techniques, such as hot embossing and injection molding, can generate 

high quantities of chips at low costs. Several groups have reported polymeric 

microfluidic systems for carrying out nucleic acid analysis. For example, a disposable 

monolithic microsystem, which integrated PCR and DNA microarrays, was described by 

Liu et al.12 The chip was fabricated in PC using CO2 laser milling with an asymmetrical 

PCR amplification step employed. The system was demonstrated for the analysis of 

both E. coli and Enterococcus faecalis. Liu and coworkers fabricated a self-contained 

biochip with integrated cell isolation and lysis units, PCR amplification and 

electrochemical microarray detection for sample-to-answer DNA analyses.13 The 

system was machined into a PC substrate and was capable of detecting E. coli in 3.5 h. 

Klapperich’s group developed a low-cost chip system for the analysis of bacterial DNA 
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using a substrate consisting of cyclic olefin copolymer, COC, with the fluidic structures 

directly milled into the COC chip.14 The system contained functional devices for cell lysis, 

DNA isolation and purification, PCR and end-point fluorescence detection. Wang and 

coworkers15 reported a magnetic bead-based system fabricated using a 

polydimethylsiloxane substrate, which combined DNA extraction and isothermal 

amplification of the targets followed by optical analysis utilizing a spectrophotometer. 

The system was used to perform a loop-mediated isothermal amplification and to detect 

Staphylococcus aureus with a limit-of-detection (LOD) of ~10 fg/µL of target DNA.  

While the above examples of polymer-based systems are attractive in demonstrating 

the utility of using thermoplastics for generating low-cost integrated systems for DNA 

processing, however, extensive post-processing steps were required after fabrication of 

the desired fluidic microstructures, which can significantly add to the cost of chip 

production. Examples of post-fabrication processing steps included the lithographic 

patterning of electrodes onto the fluidic chip,12 need of priming the chip with a buffer,14 

integration of wax-based valves,12 or the addition of magnetic beads.13, 15 Another 

challenge is the use of PC as the microarray, which can generate a significant amount 

of autofluorescence16 degrading the detection limits for fluorescence readout. Also, PC 

can also produce large levels of non-specific adsorption.17  

S. aureus is identified as a human normal commensal and can cause a variety of 

diseases ranging from minor skin infection to fatal pneumonia or septicemia.18, 19 Shortly 

after the introduction of methicillin in the 1960s, MRSA strains have become a major 

cause of hospital-acquired infection. In recent years, CA-MRSA infections are on the 

rise and can result in illnesses more severe than HA-MRSA.20-22 It is estimated that 

MRSA-related infections associated with death are approximately 19,000 annually in the 
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U.S alone. Apart from their high mortality rate, MRSA is estimated to cause $3-4 billion 

of additional health care costs per year.23 In 2005, the U.S. press described MRSA as a 

“superbug” that killed more people than did AIDS.24 In addition, MRSA has been 

identified as one of the two most out-of-control antimicrobial-resistant pathogens in U.S. 

hospitals.25 Therefore, the rapid and reliable detection of MRSA strains is crucial not 

only for infection control but also for patient treatment at early stages.  

MRSA detection typically uses culturing techniques, which requires 2-3 days to 

identify an MRSA culture. Methicillin resistance in S. aureus is mediated by the mecA 

gene, which encodes a penicillin binding protein 2a called PBP2a with a low affinity of 

binding to beta-lactam antibiotics.26-28 Nucleic Acid Amplification Tests (NAATs) that can 

identify MRSA by interrogating the drug resistant-related signature gene (mecA) 

presents a promising opportunity for rapid drug resistance screening. Reported 

literatures related to NAATs-based detection of MRSA have predominately used the 

amplification of the mecA gene in conjunction with a S. aureus-specific gene, such as 

nuc, coa, femB, Sa442.29-32 However, these tests are unable to distinguish MRSA from 

nonsterile clinical specimens (e.g. nasal swabs) due to the coexistence of S. aureus and 

coagulase-negative Staphylococci (CNS) (e.g. S. epidermidis); up to 80% of strains 

carry the mecA gene,21, 33 which can lead to false-positive results.  

To address the aforementioned issues, we constructed an integrated modular-based 

microfluidic system for the rapid and efficient identification of MRSA with high specificity. 

The microfluidic system could carry out all of the molecular processing steps in a single 

disposable fluidic cartridge. The unique aspect of this fluidic cartridge was that it used a 

modular approach with task-specific modules interconnected to a fluidic motherboard 

with the material of the modules and motherboard selected to optimize the processing 
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step performance. In addition, to minimize the amount of finishing steps associated with 

the fluidic cartridge, many of the functional elements were produced during the polymer 

molding step used to create the fluidic network. The fluidic cartridge was capable of 

performing a multi-step assay including continuous flow PCR amplification of specific 

gene fragments, continuous flow LDR to generate fluorescent ligation products 

containing zip-code complement sequences that directed the ligation products to a 

specific location of a two-dimensional array, and a universal DNA array, which consisted 

of DNA zip-code probes patterned onto a planar polymer waveguide for evanescent 

excitation.  

The cartridge was comprised of one functional module poised on a fluidic 

motherboard stacked in a 3-dimensional configuration. On the basis of material 

properties selected to optimize the module operation and meeting manufacturing 

requirements, the motherboard was made from PC and used for two thermal cycling 

processes, PCR and LDR, due to its relatively high glass transition temperature to allow 

it to withstand the sustained high operating temperatures required for the thermal 

reactions. The module was made from PMMA and contained an air-embedded planar 

waveguide and the DNA microarray because PMMA has significantly lower amounts of 

autofluorescence compared to PC16 as well as minimal non-specific adsorption 

artifacts.17  

The fluidic cartridge was generated via micro-replication from the appropriate metal 

molding tools, which were used to create structures on both sides of the polymer 

substrate (i.e., double-sided hot embossing). Fluid handling (e.g. pumps, valves, etc.), 

thermal management (e.g. heaters, temperature sensors, etc.) and optical readout 

hardware were located off-chip and packaged into a small footprint instrument. Only the 
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fluidic cartridge was in contact with the sample, which eliminated any potential carryover 

contamination.  

To demonstrate the utility of the modular system, MRSA analysis was carried out 

using a multiplexed PCR/LDR assay coupled to a universal zip-code array with four 

representative strains, methicillin-susceptible S. aureus (MSSA), MRSA, methicillin-

susceptible S. epidermidis (MS-CNS) and methicillin-resistance S. epidermidis (MR-

CNS). The multiplexed PCR described in this work used five sets of specific primers to 

target SG16S, spa, femA, PVL and mecA genes followed by a multiplexed LDR that 

was used to minimize false-positive results. The integrated system was further 

demonstrated to be capable of detecting a mixture of MSSA and MR-CNS strains, 

which are common commensal organisms found in clinical samples, for the presence of 

S. aureus bacteria and determining their drug susceptibility status.  

2.2 Experimental 

2.2.1 Reagents 

PC and PMMA sheets used as the fluidic substrates were purchased from Good 

Fellow (Berwyn, PA). Chemicals used for the PMMA surface modification and 

hybridization assays included 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS) and 20x SSC buffer (3 M sodium 

chloride, 0.3 M sodium citrate, pH 7.0), which were purchased from Sigma-Aldrich (St. 

Louis, MO). A 10% sodium dodecyl sulfate (SDS) stock solution, which was used for 

post-hybridization washing, was received from Ambion (Austin, TX). Disodium hydrogen 

phosphate (Na2HPO4), sodium phosphate (Na3PO4), and 2-propanol were obtained 

from Sigma-Aldrich (St. Louis, MO). Oligonucleotide primers and probes were obtained 

from Integrated DNA Technologies (Coralville, IA). Their sequences and melting 
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temperatures (Tm) are listed in Table 2.1. All solutions were prepared in nuclease free 

water purchased from Invitrogen Corporation (Carlsbad, CA).  

2.2.2 Fabrication of the Fluidic Cartridge 

The modular fluidic cartridge consisted of one module and a motherboard (see 

Figure 2.1A); the motherboard made from PC was used for two thermal reactions, PCR 

and LDR, while the module fabricated in PMMA contained DNA probes spotted on an 

air-embedded waveguide that used evanescent excitation for fluorescence readout. The 

PMMA module was interconnected to the PC motherboard using short pieces of 

TefzelTM tubing (OD = 1/16”, ID = 250 µm, Upchurch) inserted between conically-

shaped holes placed on the backsides of both the motherboard and module to provide a 

leak-free interconnection.  

The PC motherboard was replicated using double-sided hot embossing from two 

brass molding tools mounted opposite to each other on a JENOPTIK HEX02 hot 

embossing machine (Jena, Germany). Brass mold masters were used to create 

microstructures on the PC substrate and contained microchannels for PCR and LDR on 

the frontside of the substrate and thermal isolation grooves34 and conical 

interconnectors on the backside. The mold masters were fabricated using high-precision 

micromilling.35 The layout of the PC motherboard is depicted in Figure 2.1A. The dual-

depth serpentine channel, which consisted of 32 cycles for PCR and 15 cycles for LDR 

was 80 µm in width and 80/240 µm in depth and was designed to prolong the residence 

time in the extension/ligation zone by increasing the channel cross-section causing a 

net decrease in the linear flow rate in these zones. The fluid access channels (DNA 

sample and LDR mixture) were 200 µm in width and 240 µm in depth. The PC 
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motherboard was assembled by thermal fusion bonding the substrate and a PC cover 

plate (250 µm thick) placed in a convection oven at 150 °C for 20 min.  

The PMMA module was assembled from two hot-embossed PMMA parts; one 

consisted of a 100 µm deep microchannel for the universal microarray on the frontside 

and a 1.2 mm x 10 mm air-embedded planar waveguide with an integrated prism on the 

backside (see Figure 2.1B). Located on the backside were also positioned conical ports 

for fluidic connections to the PC motherboard. The air-embedded waveguide was 

double-sided hot embossed into the PMMA substrate via micro-replication from two 

brass molding tools. Twenty-four (4 x 6) waveguide modules could be replicated on one 

PMMA wafer.  

PMMA surface modification for amine modified oligonucleotide zip-code probe 

attachment was carried out using a previously published protocol,36-38 which is 

schematically illustrated in Scheme 2.1. Briefly, surface carboxylic acids were 

generated by placing PMMA substrates in the vacuum chamber of a Technics Series 

8000 micro-reactive ion etcher (Surplus Process Equipment Corp., Santa Clara, CA) for 

1 min using a 200 mTorr oxygen pressure and a 50 W radio frequency. Then, the 

PMMA substrates were incubated in a coupling buffer containing 50 mg/mL EDC and 5 

mg/mL NHS in MES (2-(N-morpholino)ethanesulfonic acid) buffer (pH 6.0) for 10 min to 

form succinimidyl ester intermediates, which can react with amine-terminated 

oligonucleotide probes (3’-end) to form a stable amide bond. The 3’-amino-modified 

oligonucleotide zip-code probes (see Table 2.1 for sequences) were dissolved in 200 

mM Na2HPO4/Na3PO4 buffer (pH 9.0) to a final concentration of 50 µM and were 

dispensed on the activated PMMA surface using a Perkin-Elmer Piezorray® non-contact  
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(A) 

 
(B) 

 
Figure 2.1 Integrated microfluidic system for MRSA Identification. (A) Schematic of the 
fluidic cartridge. The fluidic cartridge was composed of one module and a fluidic 
motherboard. The motherboard was made from PC and consisted of processing steps 
for PCR and LDR, while the module was made from PMMA and contained an air-
embedded planar waveguide in which a DNA microarray was spotted onto. (B) Layout 
of the PMMA module (right picture) consisting of the air-embedded waveguide, a 
coupling prism and the DNA universal array. The waveguide and coupling prism (see 
center picture) were located on the backside of the module and the frontside contained 
the fluidic channel, which had as its floor the waveguide. DNAs could be spotted (see 
picture on the top) onto the waveguide using a conventional spotter prior to thermal 
fusion bonding the cover plate to this module’s substrate. Optical setup (left picture) was 
composed of a laser diode and a CCD imaging sensor. Excitation of the array probes 
was achieved through the evanescent field produced by a waveguide underneath 
microfluidic channel with spotted probes. Fluorescence signal of the array was collected 
in a single exposure and imaged onto a CCD through two 2x objectives. 
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microarraying instrument (Downers Grove, IL). Dispensing volumes per spot were 330 

±30 pL and the size of spots were ~150 µm in diameter. After incubation in a humidified 

chamber at room temperature for 4 h, the spotted PMMA substrates were washed with 

0.1% SDS to remove non-specifically adsorbed oligonucleotides and stored at 4°C until 

used for the measurements. Following spotting of the DNA probes onto the waveguide, 

the waveguide and the interconnection wafer were assembled together using a thermal 

annealing method at 107 °C for 20 min.  

 

 
Scheme 2.1 The procedure of PMMA surface modification and oligonucleotide probe 
immobilization. The plasma-modification process for DNA microarray fabrication 
involved three steps; (1) oxygen plasma exposure of the polymer surface; (2) EDC/NHS 
treatment to facilitate the formation of the succinimidyl ester intermediate; and (3) 
carbodiimide coupling of amine-terminated oligonucleotide probes to the activated 
PMMA surface (via an amide bond). 
 
2.2.3 Contact Angle Measurements 

Water contact angle measurements were used to probe the effect of oxygen plasma 

exposure on the PMMA surface. Substrates (2.54 cm x 1.27 cm x 0.25 cm) were cut 

from a commercial PMMA sheet. After oxygen plasma treatment, contact angle values 

of the PMMA surfaces were measured using a VCA 2000 contact angle system 
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equipped with a CCD camera (VCA, Billerica, MA) based on the sessile drop method. 

Approximately 2 µL of deionized water was placed on the PMMA surface using a 

syringe and the contact angle of the water droplet was measured immediately using the 

software provided by the manufacturer. The measurements were repeated at least three 

times at separate positions on each sample surface. The data points represent the 

mean of three measurements with the error bars showing ±1 standard deviation.  

2.2.4 X-ray Photoelectron Spectroscopy 

PMMA sheets (1 cm x 1 cm x 0.25 cm) treated under the chamber pressure range of 

50 – 300 mTorr were analyzed with an Axis 165 X-ray photoelectron spectrometer 

(Kratos Analytical) using a monochromatized X-ray source (Al Kα 1486.6 eV) with a 

power of 150 W. The binding energy scale was calibrated to Au4f7/2b = 84.0 eV. The 

base pressure was 2 x 10-10 Torr and the operating pressure was 2 x 10-9 Torr. The 

photoelectron takeoff angle was 90° (with respect t o the sample surface). Survey and 

high-resolution spectra were obtained using pass energies of 160 and 20 eV, 

respectively. The neutralizer was turned on during the analysis to compensate for any 

possible charge effects on the insulating polymer surfaces. Core level binding energies 

for C1s and O1s were determined by referencing the methyl carbons to 285.0 eV and 

carbonyl oxygens to 532.2 eV.39 Curve fitting of the high-resolution spectra of the 

pristine and oxygen plasma-modified PMMA was performed using asymmetric 70% 

Gaussian and 30% Lorentzian component profiles after subtraction of the baseline 

using a linear background.  
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Table 2.1 Sequences of oligonucleotides used in the PCR/LDR/universal zip-code hybridization assay for MRSA 

PCR product 
size (bp) 

Oligos Sequence (5’→3’) Tm 
(°C) e 

148 mecA-forward TGGTATGTGGAAGTTAGATTGG 51.2 

 mecA-reverse ATATGCTGTTCCTGTATTGGC 52.8 

 mecA-com apATTCCTGGAATAATGACGCTA–Cy5b 51.2 

 cZip1-mecA cGCTGAGGTCGATGCTGAGGTCGCAATGTATGCTTTGGTCTTTCTGC 69.2 

 Zip-code 1 TGCGACCTCAGCATCGACCTCAGC–sp-NH2
d 64.9 

98 spa-forward CATTACTTATATCTGGTGGCG 50.6 

 spa-reverse GTTAGGCATATTTAAGACTTG 46.5 

 spa-com apTTGCGCAGCATTTGCAG–Cy5b 54.9 

 cZip21-spa cGGTCAGGTTACCGCTGCGATCGCATTTTGTTGAGCTTCATCGTG 69.0 

 Zip-code 21 TGCGATCGCAGCGGTAACCTGACC–sp-NH2
d 65.3 

161 SG16S-forward TGGAGCATGTGGTTTAATTCGA 54.7 

 SG16S-reverse TGCGGGACTTAACCCAACA 56.8 

 SG16S-com apTTGGTAAGGTTCTTCGCG–Cy5b 52.5 

 cZip25-SG16S cGGTCTACCTACCCGCACGATGGTCGAGTTGTCAAAGGATGTCAAGAT 68.8 

 Zip-code 25 GACCATCGTGCGGGTAGGTAGACC–sp-NH2
d 62.7 

172 femA-foward CAACTCGATGCAAATCAGCAA 54.1 

 femA-reverse GAACCGCATAGCTCCCTGC 58.6 

 femA-com apATAATTAATCCGTTTGAAGTAGTTT–Cy5b 49.0 

 cZip15-femA cCGCATACCAGGTCGCATACCGGTCCCATCTCTGCTGGCTTCTTT 71.0 
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Table 2.1 Continued 

 Zip-code 15 GACCGGTATGCGACCTGGTATGCG–sp-NH2
d 63.5 

176 PVL-forward ACACACTATGGCAATAGTTATTT 50.2 

 PVL-reverse AAAGCAATGCAATTGATGTA 48.4 

 PVL-com apGAGTTTTCCAGTTCACTTCATATT–Cy5b 51.3 

 cZip5-PVL cGCTGTACCCGATCGCAAGGTGGTCTTATGTCCTTTCACTTTAATTTCAT 66.5 

 Zip-code 5 GACCACCTTGCGATCGGGTACAGC–sp-NH2
d 63.7 

a p: phosphorylated. 
b Cy5: λex = 649 nm, λem = 670 nm. 
c The bold sequences are complementary to the sequences of zip-code probes. 
d sp-NH2: (CH2CH2O)6PO4-NH2. 
e Conditions: oligo concentration, 1 µM; Na+ concentration, 50 mM. 
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2.2.5 PCR and LDR 

DNA samples including MSSA (ATCC 25923D-5), MRSA (ATCC BAA-1556D-5), 

MS-CNS (ATCC 12228D-5) and MR-CNS (ATCC 35984D-5) were all purchased from 

American Type Culture Collection (Manassas, VA). The sequences of oligonucleotide 

primer pairs used for the PCR and LDR are listed in Table 2.1.40-42 The targets included 

SG16S, spa, femA, PVL and mecA genes. The PCR mixture consisted of 10 mM Tris-

HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 200 µM dNTPs, 0.5 µg/µL ultra-pure bovine 

serum albumin (BSA), 0.5 µM of each primer, and 0.1 U/µL Taq DNA polymerase (New 

England Biolabs, Beverly, MA). The LDR mixture contained 20 mM Tris-HCl (pH 7.6), 

25 mM KCl, 5 mM MgCl2, 10 mM DTT, 1 mM NAD+ (a cofactor for ligase enzyme), 0.1% 

Triton X-100, 0.5 µg/µL ultra-pure BSA, 50 nM of each discriminating primer, 100 nM of 

each Cy5-labeled common primer, and 2 U/µL Taq DNA ligase (New England Biolabs, 

Beverly, MA). Off-chip PCR and LDR were performed using a commercial thermal 

cycler (Techne, Burlington, NJ) with the same assay conditions as a control. PCR 

amplicons were subjected to electrophoresis on a 3% ethidium bromide-prestained 

agarose gel at 5 V/cm for 30 min. The gel image was captured using Gel Logic 200 

Visualizer (Carestream Molecular imaging, New Haven, CT). LDR products were 

separated using a Beckman CEQ8000 capillary genetic analysis system (Beckman 

Coulter, Fullerton, CA). Data acquisition was performed using the Beckman software.  

2.2.6 Operational Protocol of the Fluidic Cartridge 

Prior to analysis, the fluidic cartridge was loaded with the PCR mixture containing 

the DNA sample and the LDR reaction mixture into individual storage reservoirs (see 

Figure 2.1A). It was then aligned using a fluidic distribution board-to-motherboard 

stainless steel interconnects and pressed against Cu heating blocks surface covered 
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with thermal conductive tap to provide good thermal contact. This ensured both tight 

fluidic connections and proper heat transfer. In the next step, the PCR mixture was 

pumped out of the storage reservoir through the PCR thermal reactor. After 15 min, the 

LDR mixture was introduced through the fluidic cartridge at the appropriate volumetric 

flow rate and was mixed with the PCR products. Mixing was achieved using a passive 

Y-shaped micromixer, which consisted of 80 µm wide and 80 µm deep inlet and outlet 

channels, with the mixing ratio of PCR amplicons to the LDR mixture set at 1 to 1. The 

reaction mixture was then processed through the LDR thermal reactor and further 

through the array module and finally to waste. The array was flushed with a wash buffer 

(2x SSC, 0.1% SDS) and DNA hybridization events were imaged using a compact 

optical reader, which consisted of a laser diode (HL6320G, 10 mW, Hitachi) and a CCD 

image sensor (S7030-0907; 512 x 58 pixels; 24 x 24 µm/pixel; Hamamatsu), with a 12 

mm x 3 mm field-of-view using an integration time of 20 s. The reader was composed of 

two 2x microscope objectives (PLAPON 2x, Olympus), a 3RD660LP long pass filter and 

3RD660-680 band pass filter (Omega Optics, Brattleboro, VT).  

Excitation of the array was achieved through the evanescent field produced by the 

waveguide serving as the floor to the microfluidic channel housing the universal array. 

The laser light was coupled into the waveguide via a 64° prism. Both the waveguide and 

coupling prism were incorporated into the array microchip and fabricated using the 

same embossing step that was used for making the fluidic network.  

In this work, we used continuous flow thermal cycling for several reasons including 

its ability to provide ultrafast cycling times ultimately limited by the kinetic rate of dNTP 

incorporation by the polymerase and the lack of valves required to contain the PCR 

mixture during thermal cycling as is required for batch-type thermal cyclers.34, 43, 44 The 
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temperatures for the continuous flow PCR (CF PCR) were set at 95 °C for denaturation, 

55 °C for annealing and 72 °C for extension. As for  the continuous flow LDR (CF LDR), 

the temperatures were set at 95 °C for denaturation  and 60 °C for ligation. Commercial 

polyimide (KAPTON®) heaters were used to deliver heat to the PCR and LDR thermal 

reactors. Heaters were attached to 2 mm thick Cu blocks to achieve uniform heat flux 

and distribution. Temperatures were controlled by type K thermocouples (CHAL-005, 

Omega Engineering, USA) placed in microgrooves milled into the Cu blocks. An integral 

part of the heat management of the fluidic chip were thermal isolation grooves formed 

on the backside of the PC motherboard during the embossing process, which allowed 

for efficient thermal isolation between adjacent reaction zones.34  

2.3 Results and Discussion 

MRSA is a leading cause of infections in U.S. hospitals and healthcare facilities. In 

recent years, community-acquired MRSA (CA-MRSA) infections have caused additional 

concern.45-48 It has been reported that MRSA strains carrying the Panton-Valentine 

leukocidin (PVL) virulence gene have been associated with an increase in severe skin 

infections and a new syndrome of community-associated necrotizing pneumonia in 

children.42, 49 The PVL virulent determinant has been considered an important and 

stable marker for CA-MRSA. Consequently, in addition to methicillin resistance 

screening, the present work described an approach for the simple and rapid 

discrimination between HA-MRSA and CA-MRSA in addition the differentiation between 

MSSA and MRSA.  

The assay employed in this work consisted of a multiplexed PCR followed by a 

multiplexed LDR with readout via a low-density universal array configured on a 

waveguide. The optimization of CF PCR, CF LDR and surface functionalization 
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chemistries were investigated followed by the evaluation of the integrated system for 

analyzing MRSA samples.  

2.3.1 Optimization of Multiplexed CF PCR and CF LDR 

We have demonstrated ultra-fast PCR that could amplify 500 bp fragments from a 

λDNA template in 1.7 min.43 Using a continuous flow (CF) format, the thermal load in 

the device was reduced to the sample itself and the amplification was pushed to the 

enzymatic incorporation rate limit. Compared to single-plex PCR from the λDNA 

template, optimizing the multiplexed PCR from real genomic DNA samples in CF PCR 

devices presents two challenges: (1) different hybridization efficiencies among multiple 

PCR primer sets can introduce biased exponential amplification and alter the initial 

relative abundance of the target sequence. In some extreme cases, some target 

fragments are not amplified due to the competition for Taq polymerase and dNTPs. The 

speed of PCR is limited by the balance of hybridization among multiple primers instead 

of the enzymatic incorporation rate. (2) Compared to the λDNA template, the 2.8 Mbp S. 

aureus genome further complicates PCR reaction by imposing a larger amount of 

background DNA burden.50 We therefore investigated the effects of different 

combinations of multiple PCR primers on hybridization efficiencies in terms of the 

product yields.  

We carefully evaluated primer pairs from the literature40-42 and chose five sets of 

primers, which targeted five markers, including: the SG16S gene, which is specific to 

the Staphylococcus genus; the spa gene, which is specific to S. aureus; the femA gene, 

which is specific to S. epidermidis; the PVL gene, which is associated to community 

acquired MSSA/MRSA and the mecA gene, which is a determinant of methicillin 

resistance. Five sets of PCR primers against these targets were combined in the same 



73 
 

reaction mixture and they can interfere with each other during PCR amplification. Before 

optimizing the five-plex PCR, single-plex PCRs were performed using four 

representative strains including MSSA, MRSA, MS-CNS and MR-CNS. Each individual 

PCR yielded fragments of the expected sizes, 98, 148, 161, 172 and 176 bp for the spa, 

mecA, SG16S, femA and PVL genes, respectively (data not shown). The annealing 

temperature tested for the 5-plex PCR ranged from 50 – 60 °C and was individually 

evaluated using a gradient thermal cycler. An optimal annealing temperature of 55 °C 

was selected for the five targets.  

We next investigated the effects of flow rate on the PCR product yield. Figure 2.2 

shows the PCR products generated from the CF PCR device at volumetric flow rates of 

0.25, 0.5 and 1 µL/min (0.65, 1.30 and 2.60 mm/s). The fluorescence intensities from 

the PCR product gel bands obtained from the CF PCR were analyzed using 

ImageQuant software and were normalized with respect to those from a bench-top PCR 

thermal cycler and the results are shown in Figure 2.2B. The results indicate the 

product yield of the CF PCR became larger as the flow rate was reduced. For the mecA 

gene, the product yield of the CF PCR at a volumetric flow rate of 0.25 µL/min was 44% 

of the reference PCR, higher than 10%  at a volumetric flow rate of 1 µL/min. The lower 

product yield at 1 µL/min, which roughly provided 4 s for denaturation, 4 s for annealing 

and 16.2 s for extension, matched our previous experiments43 and the lower yield was 

most likely due to insufficient residence time in the extension zone because this is the 

rate limiting step with this set by the rate of dNTP incorporation by the polymerase. 

Although the CF PCR produced the lower product yield at 1 µL/min, the cycling rate of 

29.6 s/cycle was much shorter as compared to 118 s/cycle required at 0.25 µL/min. The 

lower overall yield of the CF PCR compared to the commercial thermal cycler even at 
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the optimal linear velocity may come from the fact that the higher surface-to-volume 

ratio of the microchannel as compared to a 200-µL PCR tube that provided more 

probability for the Taq polymerase to adsorb on the microchannel walls.  

As demonstrated in Figure 2.2, the faster the flow rate of sample through the CF 

PCR device, the less amount of product that was generated due to reduced residence 

time in the extension zone. However, faster flow rates can reduce the total analysis time. 

Therefore, it was necessary to balance processing speed with the limit-of-detection 

required. A volumetric flow rate of 0.5 µL/min was chosen because it provided adequate 

PCR and LDR product yields for analysis. CF PCR were performed at a volumetric flow 

rate of 0.5 µL/min provided a cycling rate of 59.2 s/cycle (8 s for denaturation, 8 s for 

annealing, 32.4 s for extension and 10.8 s), completing the 32 cycles for PCR in 31.6 

min.  

 
(A)                                                                   (B) 

  
Figure 2.2 Effects of flow rate on the CF PCR product yield using the representative 
MRSA strain. (A) Agarose gel electrophoresis of CF PCR products. Lane 4: DNA size 
marker. Lanes 5 – 7: CF PCR products at various volumetric flow rates of 0.25, 0.5 and 
1 µL/min (0.66, 1.33 and 2.65 mm/s), respectively. Lanes 1 – 3: bench-top PCR using 
the same conditions as CF PCR. (B) Intensities from CF PCR product gel bands 
normalized to that from the bench-top PCR products. CF PCR yielded amplicons of the 
expected size, i.e., 98, 148, 161 and 176 bp for the spa, mecA, SG16S and PVL genes, 
respectively. 
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The multiplexed LDR is fairly straightforward due to two factors: (1) the large amount 

of templates, i.e. PCR products, are readily available and (2) LDR is a linear 

amplification process, which is less effected by the hybridization efficiency difference 

among multiple LDR primers compared to exponential PCR amplification. A detailed 

investigation of effects of flow rates on the LDR product yields was reported.51 Our 

previous studies have shown that the amount of time required for ligation in a 

microfluidic device can have an impact on the LDR product yield. A significant amount 

of LDR product could be generated at the ligation time of ~5 s. However, as with PCR, 

the shorter ligation time (~5) showed reduced LDR product yield. In this work, the CF 

LDR was operated at a volumetric flow rate of 1 µL/min, which provided a cycling rate of 

30 s/cycle (3 s for denaturation and 27 s for ligation), producing a processing time of 7.5 

min for 15 cycles.  

2.3.2 Characterization of Oxygen Plasma-modified PMMA Surfaces 

In our protocol, PMMA sheets were subjected to an oxygen plasma treatment for the 

generation of surface carboxylic groups that allowed covalent attachment of amine-

terminated oligonucleotide zip-code probes to these surface groups through 

carbodiimide coupling. The modification process is believed to be the creation of free 

radicals on the polymer surface and then subsequent coupling of these free radicals 

with active species from the oxygen plasma environment.52 Oxygen plasma treatment of 

the PMMA sheets resulted in the sample surfaces becoming hydrophilic, which can be 

monitored using sessile water contact angle measurements.53 Changes in the water-

contact angles of the oxygen plasma treated PMMA surfaces under varied chamber 

pressures are summarized in Table 2.2. As can be seen from this data, there was a 

rapid decrease in the contact angle of the samples treated in the pressure range from 
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50 to 200 mTorr. This decrease in the contact angle could be attributed to the 

incorporation of polar functional groups, which caused the plasma-irritated PMMA 

surfaces to become more hydrophilic.52, 54 When the chamber pressure was further 

increased from 200 to 300 mTorr, the contact angle actually increased from 53.7° to 

65.3°. This was most likely due to the decreased ac tivated oxygen species associated 

with high rates of recombination and collisional quenching at high pressure.55 The 

concentration of species is proportional to the pressure. The higher the pressure the 

shorter the mean free path an active species can travel before having a collision 

quenching its activity. From the results, we can conclude as the chamber pressures 

increased, the PMMA surfaces became richer in oxygen-containing functional groups, 

leading to hydrophilic surfaces. In contrast, the plasma-irritated surfaces obtained at 

high pressure containing only a small amount of activated oxygen species was less 

hydrophilic, resulting in a larger contact angle than anticipated.  

Table 2.2 Chemical compositions of the PMMA substrates before and after oxygen 
plasma treatment 

Pressure 
(mTorr) 

C 1s 
(Atomic conc., %) 

O 1s 
(Atomic conc., %) 

O/C 
 

Water contact angle 
(°) 

0 74.03 25.97 0.35 74.9±0.6 
50 65.71 34.29 0.52 57.8±0.9 

100 66.06 33.94 0.51 57.9±1.0 
200 63.39 36.61 0.58 53.7±0.6 
300 63.15 36.85 0.58 65.3±0.7 

 
 

Pressure 
(mTorr) 

C–C 
(%) 

C–O 
(%) 

C=O 
(%) 

O=C–O 
(%) 

0 71.83 14.06 0 14.12 
50 57.91 21.97 2.31 17.81 

100 59.29 16.59 6.61 17.51 
200 49.58 18.71 12.96 18.75 
300 50.85 17.54 14.71 16.90 
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In order to better understand the effects of plasma treatment on the PMMA surfaces, 

the chemical structure of the plasma-modified PMMA surfaces treated in different 

chamber pressures was analyzed by X-ray photoelectron spectroscopy (XPS). The C1s 

spectra were resolved into three or four characteristic peaks, which were identified 

according to the reported chemical shifts.39 The peaks at binding energies (BEs) of 

285.0, 286.7, 287.9 and 289.0 eV corresponded to the functional groups, C–C, C–O, 

C=O and O=C–O, respectively. The ratios of the peak area under various chamber 

pressures are given in Table 2.2. It can be seen that the C=O formed for all of the 

modified surfaces. In addition, the C=O functional group rapidly increased from 2.31% 

at a pressure of 50 mTorr to 12.96% at a pressure of 200 mTorr and then slowly 

increased to 14.71% at 300 mTorr. The C–O increased from 14.06% (pristine PMMA) to 

21.97% at a pressure of 50 mTorr and then deceased to 17.54% at 300 mTorr. For 

pristine PMMA with 14.12% of the O=C–O, its composition increased to 18.75 % in the 

pressure of 200 mTorr, but then decreased to 16.90% at 300 mTorr. Thus, in the 

pressure range from 50 to 200 mTorr the formation of hydroxyl or peroxyl (C–O), 

carbonyl (C=O) and carboxylic (O=C–O) groups could contribute to the decrease in the 

water contact angles. In the case of 300 mTorr, the increase of C=O group and the 

decrease of C–O and O=C–O groups could account for the increase in the contact 

angle because the C=O group is less hydrophilic compared to C–O and O=C–O groups. 

Prediction of the predominant effect resulting in increased contact angle is difficult due 

to the experimental uncertainties and overlap of native PMMA peaks with oxidized 

species in the core-level spectra. Our XPS results are clear evident that the main effect 

of modification is primarily determined by the concentration of oxygen in the reaction 

chamber. The moderate oxygen concentration in the chamber pressure of 200 mTorr 
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increased both the amount of carboxylic groups and the degree of hydrophilicity of the 

PMMA surface.  

 

 
Figure 2.3 Effects of the chamber pressure on the probe density covalently tethered to 
PMMA surfaces. PMMA slides were oxygen plasma-irritated under various pressures 
ranging from 50 to 300 mTorr. The slides were activated with EDC/NHS, spotted with 
fluorescent dye double labeled oligonucleotide probes in 200 mM phosphate solution 
and allowed to incubate for 1 h. The data points represent the mean of three 
measurements with the error bars showing ±1 standard deviation unit. 
 

The optimal chamber pressure of 200 mTorr was further confirmed by the 

immobilization of fluorescent dye (Cy5) labeled oligonucleotide probes to the plasma 

treated surface. Figure 2.3 shows the fluorescence intensities of arrays as a function of 

the chamber pressure. The fluorescence intensity markedly increased when the 

pressure was increased from 50 to 200 mTorr. However, when the pressure was further 

increased to 300 mTorr, the fluorescence intensity decreased. We hypothesize that this 

decrease was attributed to the decrease in the amount of carboxylic groups on the 



79 
 

modified PMMA surfaces, which is supported by the XPS results. The optimum 

chamber pressure of 200 mTorr was hence chosen in this study.  

2.3.3 Detection of MRSA Using the Modular Microfluidic Cartridge 

Following PCR amplification of the appropriate gene fragments, which contained the 

identification loci, the amplicons were mixed with five sets of LDR primers, common 

primers and discriminating primers. The discriminating primers contained a zip-code 

complement sequence (cZip) at their 5’-end and a target-specific sequence at their 3’-

end. The common primers were phosphorylated at their 5’-end and possessed a 

fluorescent dye at their 3’-end. A perfect match between the locus containing the unique 

signature sequences on the target and the sequences at the 3’-end of the discriminating 

primer would initiate a successful ligation event via the ligase enzyme between the 

common primer and the discriminating primer, which was encoded by the specific cZip 

and complementary sequence of the universal array. When the ligated dye-labeled LDR 

products and unligated discriminating primers were pumped into the microchannel 

containing the universal array and were captured by the appropriate zip-code probes, 

the uncaptured products were removed by flushing the array with a wash buffer. The 

fluorescence signal detected at a specific zip-code address indicated the presence of 

the corresponding gene in the sample. The advantages of the PCR/LDR/universal array 

assay employed in this work for detecting sequence variations within the DNA include: 

(1) PCR associated with LDR give two rounds of target amplification, which provides 

better signal-to-noise in the readout phases of the assay. (2) The ligation products are 

fluorescence dye labeled single stranded targets that can be directly used for array 

hybridization. A heat denaturation followed by a snap-cool step is necessary if double 

stranded PCR products are used directly for hybridization. However, that process is 
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very difficult to be integrated in microfluidic devices. (3) LDR and universal arrays can 

be configured to detect a variety of targets by simply appending the correct cZips to the 

discriminating primers used in the LDR step, which allows for a highly multiplexed assay 

in a single reaction.  

Figure 2.4 shows the results of CF LDR products hybridized to zip-code probes 1, 5, 

15, 21 and 25 using the PMMA waveguide module. Zip-code probe 25, which targeted 

the SG16S gene common to the Staphylococcus genus, was chosen as the positive 

control and thus, fluorescence was observed from all assays. Zip-code probes 1, 5, 15 

and 21 were designed to target mecA, PVL, femA, and spa genes, respectively. Each 

strain was probed with all zip-code probes in a single hybridization step. As shown in 

Figure 2.4A and 2.4B, the PVL-positive MSSA strain gave fluorescence signals when 

SG16S, spa and PVL genes were present and the PVL-positive MRSA strain gave 

fluorescence signals for the presence of SG16S, spa, PVL and mecA genes. The MR-

CNS strain was detected with zip-code probes targeting SG16S, femA, and mecA 

genes, and the MS-CNS strain was detected with probes directed for SG16S and femA 

genes (Figure 2.4C and 2.4D). Our results revealed that all strains were correctly 

identified. The PVL-positive strains were successfully identified with the zip-code probes 

for the PVL gene, and the methicillin-resistant strains were positively identified with the 

zip-code probes for mecA. The specificity of each zip-code to probe the appropriate 

target was evident from this data. For example, ligation products generated from MSSA 

or MS-CNS strains did not hybridize to mecA zip-code probes. LDR products generated 

from MS-CNS or MR-CNS strains did not hybridize to the zip-codes probes for the spa 

gene and ligation products generated from MSSA or MRSA strains did not hybridize to 

femA zip-code probes. The results showed that we could differentiate CA-MRSA from 



81 
 

HA-MRSA based on the presence/absence of the PVL gene, S. aureus from other 

Staphylococcal species based on the presence/absence of the femA gene as well as 

MRSA from MSSA based on the presence/absence of the mecA gene using this 

modular system and assay. 

 
(A)                                                         (B) 

 
(C)                                                         (D) 

 
(E) 

 
Figure 2.4 Detection of (A) MSSA, (B) MRSA, (C) MR-CNS, (D) MS-CNS and (E) a 
mixture of MSSA and MR-CNS strains using the integrated microfluidic system. The 
sample solution was flowed through the system using a volumetric flow rate of 0.5 
µL/min for PCR and 1 µL/min for LDR. LDR products were subjected to hybridization to 
surface-tethered zip-code probes, and the arrays were imaged using the evanescent-
field excitation fluorescence reader with a 20 s integration time. Zip-code probe 25 
served as the positive control and was complementary to the SG16S gene. Zip-code 1, 
5, 15 and 21 probed for mecA, PVL, femA and spa genes, respectively. The spot size of 
the universal array was ~150 µm in diameter. 
 

CF LDR products generated from successful ligations using five sets of LDR primers 

in the presence of MSSA, MRSA, MS-CNS or MR-CNS strains were confirmed using 

capillary electrophoresis (Figure 2.5). Each individual LDR yielded ligation products of 

the expected sizes, i.e., 61, 65, 67, 69 and 73 nt for the spa, SG16S, mecA, femA and 
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PVL genes, respectively. Figure 2.5A shows CF LDR products generated from the 

PVL-positive MSSA strain and three product peaks, SG16S, PVL and spa, confirming 

methicillin-susceptible S. aureus. Figure 2.5B shows ligation products generated from 

the PVL-positive MRSA strain. The additional presence of the mecA product peak 

indicated the existence of methicillin resistance in S. aureus. Figure 2.5C shows ligation 

products generated from the MR-CNS strain. The presence of three product peaks, 

SG16S, mecA, and femA demonstrated this sample was S. epidermidis possessing 

methicillin resistance. Furthermore, Figure 2.5D shows LDR products generated from 

the MS-CNS strain and two product peaks, SG16S and femA, revealing the presence of  

 

 
Figure 2.5 LDR products generated from (A) MSSA, (B) MRSA, (C) MR-CNS and (D) 
MS-CNS strains and analyzed by CEQ 8000 capillary genetic analysis system (field 
strength 200 V/cm). LDR was performed at capillary temperature of 60 °C, denaturation 
temperature of 90 °C (3 min), injection at 2.0 kV ( 30 s) and separation at 6.0 kV (30 
min). Peak (a) represents the unligated primers and peak (b) – (f) represent the LDR 
products generated from the spa, SG16S, mecA, PVL and femA genes. Size markers 
labeled in red are 60 nt and 70 nt. LDR yielded ligation products of the expected sizes, 
i.e., 61, 65, 67, 69 and 73 nt for the spa, SG16S, mecA, femA and PVL genes, 
respectively. 
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methicillin-susceptible S. epidermidis. All of the electropherogram results were 

consistent with the array hybridization results from the integrated system.  

2.3.4 Identification of MRSA from Mixed Strains 

As reported by recent studies,56 the mecA gene present in S. aureus is highly 

homologous to that carried by S. epidermidis and potentially other CNS species. CNS is 

a frequent human commensal found in clinical samples from non-sterile sites, so false-

positive results from MSSA and MR-CNS coexisting in the sample cannot be precluded, 

which adds difficulty in differentiating methicillin-resistant strains of S. aureus from those 

of S. epidermidis. We applied our integrated system with PCR/LDR/universal array 

assay to test a sample containing mixed strains of MSSA and MR-CNS. Figure 2.4E 

shows a fluorescence image of the universal array following CF PCR and CF LDR in the 

presence of a mixture of MSSA and MR-CNS strains. The result indicated that each zip-

code probe linked to SG16S, spa, PVL, femA and mecA gave positive fluorescence 

signals. The results confirmed that this modular system and assay enabled us to 

successfully discriminate between MRSA and MR-CNS strains.  

The minimal number of bacterial cells that could be detected using our integrated 

system was evaluated by conducting PCR/LDR/universal zip-code hybridization assays 

with varied concentrations of MRSA as the input. We examined signals generated from 

five zip-code probes for the presence of SG16S, spa, PVL, femA and mecA genes. 

Figure 2.6 shows a linear fit to the fluorescence intensity as a function of different initial 

MRSA concentrations. The result showed that as the concentration of MRSA increased, 

the intensities of the fluorescence signals generated from successful hybridization 

events increased as well. The lowest concentration that produced a positive signal with 

a signal-to-background threshold of 2.5 from the mecA gene was 30 fg/µL of MRSA.  
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Figure 2.6 Standard curves of fluorescence signals from the MRSA strain with different 
concentrations as an input. Fluorescence intensities from the mecA gene were plotted 
against the corresponding MRSA concentration. The error bars represent one standard 
deviation, which was determined from two measurements. The linear regression 
analysis yielded: y = 11.288x + 18.33 (r2 = 0.998) 
 
2.4 Conclusions 

We have fabricated an integrated polymer-based microfluidic system directed 

towards a rapid and specific MRSA identification that can provide information on the 

drug susceptibility status as well. The integrated system was realized by implementing a 

CF PCR/CF LDR/universal array assay into a disposable and modular fluidic cartridge 

made from two polymeric materials, PC and PMMA, selected to optimize material 

characteristics to meet processing step(s) poised on the material. For example, 

sequential CF PCR/CF LDR and universal array readout were distributed on a module 

and a fluidic motherboard, i.e., PMMA module and PC motherboard, due to high glass 

transition temperature for PC and lower fluorescence background and minimal non-
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specific DNA adsorption for PMMA. The PMMA module and the PC motherboard were 

assembled into a 3-dimensional architecture using a simple interconnect to form the 

fluidic cartridge. All of the required structures were made via hot embossing for 

producing the fluidic network and the waveguide for fluorescence readout. This could be 

done in a single embossing step, using double-sided embossing. The main advantages 

of the system included fast and specific detection as well as cost-effective fabrication. 

The use of micro-replication, of the polymeric cartridge and off-chip active components 

enabled the fluidic system to be manufactured at low cost, appropriate for one-time use 

applications, a particularly attractive format for clinical applications where disposable-

type devices are a necessity to eliminate carryover contamination.  

We demonstrated the utility of the integrated system by detecting specifically MRSA 

using four representative strains, MSSA, MRSA, MS-CNS, and MR-CNS, in the total 

processing time of less than 40 min. The system was further demonstrated to be 

capable of detecting mixed strains containing MSSA and MR-CNS, which provided 

critical information for clinical screening that could preclude false-positive results. In 

addition to methicillin resistance screening, the present study described a multiplexed 

assay for the detection of the PVL gene, which can provide the early identification of 

CA-MRSA strains and for the detection of the femA gene, which can serve to distinguish 

S. aureus from other Staphylococcal species.  
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CHAPTER 3 MODULAR MICROFLUIDIC SYSTEM FABRICATED IN 
THERMOPLASTICS FOR THE STRAIN-SPECIFIC DETECTION OF BACTERIAL 
PATHOGENS 

3.1 Introduction 

Bacterial detection and identification plays a significant role in the surveillance of 

food safety, environmental quality, public health and potential patient infections. For 

example, food-borne diseases caused by eating contaminated food or beverages 

account for an estimated 76 million illnesses, 325,000 hospitalizations and 5,000 deaths 

annually in the United States alone.1-3 In addition, the Center for Disease Control has 

estimated that medical expenses and productivity losses resulting from these diseases 

total nearly $5 – $6b.4, 5 Recently, an outbreak of Shiga toxin 2 (stx2)-positive, intimin 

(eae)-negative Shiga toxin-producing E. coli (STEC) O104:H4 in Germany resulted in 

the death of 15 people and thousands were taken ill in a time period of only one month.6, 

7 Therefore, the rapid, specific and accurate detection of pathogens is crucial for the 

prevention of pathogen-related disease outbreaks and facilitating disease management 

as well as containment of suspected contaminated food and/or water supplies.  

Conventionally, culturing and immunological techniques have been utilized for 

bacterial detection.8, 9 These methods, while simple and inexpensive, take extended 

periods of time to secure results and lack the specificity (i.e., strain identification) when 

compared to molecular methods that utilize DNA to effectively identify the bacterial 

species and/or strain.10-14  

Although molecular methods represent a significant improvement over the traditional 

culturing methods, sophisticated laboratory settings and extensively trained personnel 

are required to ensure accurate, reliable and reproducible results, which prohibit the 

widespread implementation of these valuable techniques into a variety of settings, in 
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particular 3rd world countries. The challenge with DNA analyses is that the processing 

pipeline involves many individual steps, such as cell lysis, DNA extraction and 

purification, PCR amplification of selected gene fragments, the specific identification of 

sequence variations and the readout of the results, preferably in a multiplexed fashion.  

Recent advances in microfluidic-based technologies have realized the development 

of molecular analysis systems that incorporate many of the aforementioned processing 

steps for nucleic acid analyses onto a monolithic platform, which can provide full 

process automation eliminating the need for extensive operator expertise, provide fast 

and timely results and reduced assay cost. These types of technologies can provide 

point-of-use operation directly in the field and because they can minimize operation 

involvement in sample processing, can increase the access of molecular analyses to a 

broader user community.  

Several demonstrations of microfluidic systems for DNA analyses have been 

described. For example, Burns et al.15 fabricated a nanoliter DNA analyzer on a 

monolithic silicon wafer possessing not only the fluidic elements, but optical elements as 

well and applied their system for genetic analysis. Lagally and coworkers reported a 

portable microsystem fabricated in a glass wafer to perform pathogen detection and 

genotyping directly from whole E. coli and S. aureus cells.16 The system contained a 

single 200-nL PCR amplification chamber directly connected to a µCE device. Mathies 

and coworkers integrated several fundamental biochemical processing steps including 

DNA amplification, purification, and electrophoretic separation, onto a multilayer glass-

polydimethylsiloxane (PDMS) wafer and utilized it for Sanger sequencing.17 Using a 

similar approach, Landers’ group demonstrated a sample-in-answer-out chip capable of 
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accepting a crude biological sample as an input.18 The commonality associated with 

these systems is that they employed either Si or glass as the substrate material.  

The challenge with glass-based systems is that extensive lithography steps must be 

employed to fabricate each chip. This production format can produce challenges for 

creating low-cost systems that can be produced in a high production mode appropriate 

for one-time use applications. To circumvent the need for employing glass as a 

substrate for the fluidic network, thermoplastic materials can be utilized, which have 

chip fabrication techniques that are conducive to high rates of production and can 

produce low-cost platforms; several of these manufacturing techniques include hot 

embossing and injection molding.19-21  

Building on this premise, several groups have reported polymer-based systems that 

can analyze genetic material. For example, a monolithic system, which integrated PCR 

and DNA microarrays, was described by Liu et al.22 The chip was fabricated in PC using 

CO2 laser micromilling with an asymmetrical PCR amplification step employed. The 

system was demonstrated for the analysis of both E. coli and Enterococcus faecalis. Liu 

and coworkers fabricated a polymer-based biochip with integrated cell isolation and 

lysis units; PCR amplification and electrochemical microarray detection for sample-to-

answer DNA analysis was demonstrated.23 The system was machined into a PC 

substrate and was capable of detecting E. coli in 3.5 h. Koh et al.24 demonstrated a 

microsystem fabricated in a poly(cyclic olefin copolymer), COC, substrate, which 

contained a PCR device directly interfaced to µCE to sort fluorescently-labeled PCR 

products generated from different strains of E. coli. The system was used to identify E. 

coli O157:H7 organisms with a limit-of-detection (LOD) of ~6 copies of target DNA. In 

another report, researchers developed a low-cost biochip system for the analysis of 



93 
 

bacterial DNA using a substrate consisting of COC with the fluidic structures directly 

milled into the COC chip.25 The system contained functional devices for cell lysis, DNA 

isolation and purification, PCR and end-point fluorescence detection.  

While the above examples of polymer microfluidic systems are attractive in 

demonstrating the utility of thermoplastics for generating low-cost integrated systems for 

DNA processing, they do have some limitations including the extensive amount of post-

processing required after fabrication of the desired fluidic structures, which can 

significantly add to the cost of the chip. Examples of post-fabrication processing steps 

include the lithographic patterning of electrodes onto the fluidic chip,22 generation of 

porous polymer monoliths containing silica for DNA extraction,25 integration of wax or 

gel-based valves,23, 24 or the addition of magnetic beads.23  

Finally, the fluidic chips were made from a single material by positioning all of the 

functional devices onto a monolithic platform. The challenge with this approach is that 

certain materials may or may not be optimal for the intended processing step. For 

example, some polymeric material are appropriate for fluorescence detection and some 

are not due to the level of autofluorescence they generate.26 Also, some polymeric 

materials show non-specific adsorption artifacts that can produce problems when 

performing electrophoresis or getting good contrast for microarray measurements.27, 28 

In this work, we focused on addressing the aforementioned issues by constructing 

an integrated polymer-based, modular microfluidic system for the rapid and efficient 

identification of pathogens. The system was based on a modular design approach, in 

which certain steps of the molecular processing pipeline were situated on modules 

made from a material selected to suite the particular application need. In addition, the 

fluidic chip was made via hot embossing to generate a number of functional elements, 
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such as a SPE bed29, 30 and an air-embedded waveguide,31 minimizing the number of 

post-processing steps required to create the system.  

The assay employed in this work for detecting reporter sequences within the DNA 

isolated from bacterial cells consisted of a primary PCR followed by allele-specific 

ligation (ligase detection reaction, LDR) with readout via a low-density universal array.32, 

33 The primary advantages of using this assay format is that it gives two rounds of target 

amplification (PCR and LDR) to provide better signal-to-noise in the measurement, can 

be easily multiplexed at the LDR phase of the assay minimizing false-positive results 

associated with multiplexed PCR, can detect single base sequence variations with high 

specificity even when the target is a minority in a mixed population and finally, can be 

configured to search for sequence variations in any region of the genome by simply 

changing primer sequences.  

The system reported herein was composed of a fluidic cartridge and a control 

instrument. All of the molecular processing, from sample reception to readout, was 

performed on a programmable and modular fluidic cartridge. The sequence of sample 

processing steps performed included cell lysis, SPE of genomic DNA (gDNA) from the 

whole cell lysate, PCR, LDR and universal DNA microarray readout. The fluidic 

cartridge was composed of a functional module stacked in a 3-dimensional 

configuration onto a fluidic motherboard. Based on material properties to optimize each 

molecular processing step and satisfy manufacturing requirements, the motherboard 

was made from PC and consisted of processing steps for cell lysis, SPE, PCR and LDR 

due to its ability to select DNAs from cell lysates and its high glass transition 

temperature (Tg), while the array module was made from PMMA, which contained an 

air-embedded planar waveguide and the DNA array. PMMA was selected for this 
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module because of its low autofluorescence levels and its propensity to demonstrate 

minimal amounts of non-specific adsorption of DNAs compared to PC. The integrated 

fluidic cartridge was generated via double-sided hot embossing from metal molding 

tools fabricated via high precision micromilling. Fluidic handling (e.g. pumps, valves, 

etc.), thermal management (e.g. heaters, temperature sensors, etc.) and optical readout 

hardware were situated off-chip and packaged into a small form factor instrument. Only 

the fluidic cartridge was in contact with the sample, which eliminated any potential 

carryover contamination and due to the ease of manufacture, could be discarded 

following a single measurement. To evaluate the performance of our system, a 

duplexed PCR, multiplexed LDR followed by universal zip-code array readout were 

used to detect E. coli O157:H7 and Salmonella using two genes, uidA and sipB/C. The 

integrated system was further evaluated by detecting E. coli O157:H7 in waste-water 

samples.  

3.2 Materials and Methods 

3.2.1 Materials and Regents 

PC and PMMA sheets were purchased from Good Fellow (Berwyn, PA). Chemicals 

used for the PMMA surface modification and hybridization assays included 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 

and 20x SSC buffer (3 M sodium chloride, 0.3 M sodium citrate, pH 7.0), which were 

purchased from Sigma-Aldrich (St. Louis, MO). A 10% sodium dodecyl sulfate (SDS) 

stock solution, which was used for post-hybridization washing, was received from 

Ambion (Austin, TX). Polyethylene glycol (PEG, Mw=8000), sodium chloride (NaCl), 

ethanol, disodium hydrogen phosphate (Na2HPO4), sodium phosphate (Na3PO4), and 2-

propanol were obtained from Sigma-Aldrich (St. Louis, MO). Oligonucleotide primers 
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and probes were obtained from Integrated DNA Technologies (Coralville, IA). Their 

sequences and melting temperatures (Tm) are listed in Table 3.1. E. coli K12 was 

obtained from American Type Culture Collection (Manassas, VA). Both E. coli O157:H7 

and Salmonella cells were purchased from Kirkegaard & Perry Laboratories 

(Gaithersburg, MD). All solutions were prepared in nuclease free water purchased from 

Invitrogen Corporation (Carlsbad, CA).  

3.2.2 Microfluidic Cartridge Fabrication 

The modular fluidic cartridge was composed of one module and a motherboard (see 

Figure 3.1A); the motherboard was made from PC and consisted of devices for cell 

lysis (Sample Load chamber, see Figure 3.1A), SPE, PCR and LDR, while the module 

attached to the motherboard was fabricated in PMMA and was used for the universal 

array and contained a waveguide. The PMMA module was interconnected to the PC 

motherboard using short pieces of TefzelTM tubing (OD = 1/16”, ID = 250 µm, Upchurch) 

inserted between conically-shaped holes placed on the backsides of both the 

motherboard and module to provide leak-free interconnections (see Figure 3.1B).  

The PC motherboard contained a network of microchannels for cell lysis, SPE, PCR 

and LDR on the frontside of the substrate and thermal isolation grooves34 and fluidic 

interconnects on the backside all of which were replicated in one-step using double-

sided hot embossing from two brass molding tools mounted opposite to each other on a 

JENOPTIK HEX02 hot embossing machine (Jena, Germany). The brass mold masters 

were fabricated by high-precision micromilling as described elsewhere.35 After hot 

embossing, the SPE bed contained 50 µm diameter micropillars spaced by 100 µm 

(center-to-center). The SPE bed on the PC motherboard as well as the corresponding 

area on the PC cover plate were exposed to 254 nm UV radiation (15 mW/cm2) through 
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(A) 

 
(B) 

 
(C) 

 
Figure 3.1 Schematic showing the layout of the modular fluidic cartridge. (A) The fluidic 
cartridge was composed of a module interconnected to a motherboard. The 
motherboard was made from PC and consisted of processing steps for cell lysis 
(sample load compartment), SPE of gDNA, PCR and LDR, while the module was made 
from PMMA and contained an air-embedded planar waveguide in which a universal 
DNA microarray was positioned. The PC motherboard was interconnected to the PMMA 
module through short pieces of tubing and conically-shaped holes laser-drilled into the 
PC. (B) Schematic and optical micrograph of the motherboard-to-module fluidic 
interconnection. c: Connecting tube inside a conically-shaped hole in which channels 
were filled with a black dye that used for visualization. The micrograph to the right 
shows the laser drilled hole. (C) Layout of the PMMA module (right picture) consisting of 
the air-embedded waveguide, a coupling prism and the universal array. The waveguide 
and coupling prism (see center picture) were located on the backside of the module and 
the frontside contained the fluidic channel, which had as its floor the waveguide. DNAs 
could be spotted (see picture on the left) onto the waveguide using a non-contact 
spotter prior to thermal fusion bonding the cover plate to this module’s substrate. 
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a mask for 20 min to photo-oxidize the PC surface to allow for the solid-phase extraction 

of DNA from a whole cell lysate.29 The PC motherboard was assembled to a PC cover 

plate (250 µm thick) using thermal fusion bonding at 150 °C for 20 min. 

The PMMA module (Figure 3.1C) consisted of a microchannel network for the DNA 

microarray on the frontside and the backside was comprised of a planar air-embedded 

waveguide with integrated coupling prism. The PMMA module was replicated by 

double-sided hot embossing from two brass molding tools. Twenty-four (4 x 6) 

waveguide modules could be fabricated on one PMMA wafer in a single replication step. 

The PMMA module was assembled following spotting of the DNA probes onto the 

waveguide by thermal fusion bonding the substrate and PMMA cover plate at 107 °C for 

20 min.  

3.2.3 Surface Modification of PMMA and Array Preparation 

The hot embossed PMMA microchannels were activated using a previously 

published method.31, 36, 37 Briefly, the PMMA substrates were placed in a vacuum 

chamber for 1 min at 200 mtorr of oxygen pressure and 50 W of radio frequency using a 

Technics Series 8000 micro-reactive ion etcher (Surplus Process Equipment Corp., 

Santa Clara, CA). After plasma irradiation, the substrates were soaked in 50 mg/mL 

EDC dissolved in a coupling buffer (pH 6.0) containing 5 mg/mL NHS for 10 min to form 

a succinimidyl ester intermediate. The PMMA substrates were then rinsed with 18 MΩ 

nanopure water to remove excess EDC/NHS solution and dried with air. The freshly 

prepared PMMA substrate was then mounted onto a vacuum holder of a Perkin-Elmer 

Piezorray® noncontact microarraying instrument (Downers Grove, IL) through a custom 

made adapter. With the aid of a camera, 50 µM of 3’-amino-modified oligonucleotide 
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probes (see Table 3.1 for sequences), separately dissolved in 0.2 M Na2HPO4/Na3PO4 

buffer (pH 9.0), were spotted onto the bottom (waveguide backside) of the microfluidic 

channel (Figure 3.1C). Dispensing volumes per spot were 330 ±30 pL and the size of 

the spots were ~150 µm in diameter. Following spotting, the PMMA substrates were 

incubated in a humidified chamber at room temperature for 4 h, washed with 0.1% SDS 

to remove any non-specifically bound oligonucleotides and finally dried with air. The 

PMMA module substrate was thermally fusion bonded to a PMMA cover plate to 

enclose the fluidic network.  

3.2.4 PCR and LDR Conditions 

Two sets of PCR primers (see Table 3.1 for sequences) were used to amplify a 168-

bp uidA gene from E. coli and a 250-bp sipB/C gene fragment from Salmonella.38, 39 The 

PCR mixture consisted of 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 200 µM 

dNTPs, 0.5 µg/µL ultra-pure bovine serum albumin (BSA), 0.5 µM of the uidA primer 

pairs, 0.8 µM of sipB/C primer pairs and 0.1 U/µL Taq DNA polymerase (New England 

Biolabs, Beverly, MA). The LDR mixture contained 20 mM Tris-HCl (pH 7.6), 25 mM KCl, 

5 mM MgCl2, 10 mM DTT, 1 mM NAD+ (a cofactor for ligase enzyme), 0.1% Triton X-

100, 0.5 µg/µL ultra-pure BSA, 50 nM of each discriminating primer, 100 nM of each 

Cy5-labeled common primer and 2 U/µLTaq DNA ligase (New England Biolabs, Beverly, 

MA).  

We used CF thermal cycling for several reasons including its ability to provide 

ultrafast cycling times ultimately limited by the kinetic rate of dNTP incorporation by the 

polymerase and the lack of valves required to contain the PCR mixture during thermal 

cycling as required for batch-type thermal cyclers.34, 40, 41 The temperatures for the CF 
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PCR were set at 95 °C for denaturation, 60 °C for a nnealing and 72 °C for extension. As 

for the LDR, the temperatures were set at 95 °C for  denaturation and 65 °C for ligation.  

CF PCR was performed at a volumetric flow rate of 1 µL/min, which provided a 

cycling rate of 44.6 s/cycle (8.8 s for denaturation, 8.8 s for annealing, 18 s for 

extension and 9 s for flowing the sample through a shallow channel connecting the 

extension to the denaturation zone), completing the 32 cycles for PCR in 24 min. The 

CF LDR was operated at a volumetric flow rate of 2 µL/min producing a processing time 

of 4 min for 13 thermal cycles.  

 
Table 3.1 Sequences of oligonucleotides used in the PCR/LDR/universal zip-code 
hybridization assay for E. coli and Salmonella 
PCR product 

size (bp) 
Oligos Sequence (5’→3’) Tm 

(°C) e 
168 O157-uidA-

forward 
TTACGTCCTGTAGAAACCCCAACC 58.6 

 O157-uidA-
reverse 

ATCGGCGAACTGATCGTTAAAACT 56.8 

 uidA-com apCAGCGTTGGTGGGAAAGCGCG-Cy5b 59.2 
 cZip1-uidA-Wt cGCTGAGGTCGATGCTGAGGTCGCAGATCGC

GAAAACTGTGGAATTGAT 
70.0 

 cZip5-uidA-Mt cGCTGTACCCGATCGCAAGGTGGTCGATCGCG
AAAACTGTGGAATTGAG 

70.1 

250 Sal-sipB/C-
forward 

ACAGCAAAATGCGGATGCTT 56.1 

 Sal-sipB/C-
reverse 

GCGCGCTCAGTGTAGGACTC 60.4 

 Sal-sipB/C-com apCGCTAAAGATATTCTGAATAGTATTGG-Cy5b 51.8 
 cZip11-Sal-

sipB/C 

cCGCAAGGTAGGTGCTGTACCCGCAGACAGCT
TCGCAATCCGTTAG 

70.9 

 Zip-code 1 TGCGACCTCAGCATCGACCTCAGC-sp-NH2
d 64.9 

 Zip-code 3 CAGCACCTGACCATCGATCGCAGC-sp-NH2
d 64.1 

 Zip-code 5 GACCACCTTGCGATCGGGTACAGC-sp-NH2
d 63.7 

 Zip-code 11 TGCGGGTACAGCACCTACCTTGCG-sp-NH2
d 65.2 

a p: phosphorylated. 
b Cy5: λex = 649 nm, λem = 670 nm. 
c The bold sequences are complementary to the sequences of zip-code probes. 
d sp-NH2: (CH2CH2O)6PO4-NH2. 
e Conditions: oligo concentration, 1 µM; Na+ concentration, 50 mM. 
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3.2.5 Peripheral Packaging and Instrument Operation 

The physical dimensions of this instrument were 12” (length) x 12” (width) x 12” 

(height) and included an Instrument Control Unit (ICU), actuators, pumps, solenoid 

valves, heating stage and solution reservoirs. Included in this footprint was also a 

compact optical reader used to secure fluorescence signatures from the universal zip-

code array.  

Operation of all peripherals (pumps, valves, heaters, laser and CCD camera) was 

achieved by the ICU. The ICU had an on-board microprocessor that communicated with 

all electronic subunits (digital-to-analog and analog-to-digital converters, CCD and 

stepper motor drivers, temperature monitors, etc.) and controlled their operation. It also 

communicated with the personal computer via a USB interface and could be 

programmed by the user through control software. The software allowed for control of 

all peripherals and was used for data collection and analysis. The software could 

operate in two distinct modes: (1) service mode that allowed for individual control of all 

of the hardware components; and (2) fully automatic mode, where all processing steps 

were performed according to predefined sequences without any user intervention.  

Two stepper-motor driven piston micro-pumps (LPVX0502600BC, Lee Company, 

USA) with a step resolution of 50 nL were used as positive displacement pumps. A DC 

motor driven mini-pump (W309-011, Hargraves Technology Corp., USA) was used for 

operations requiring vacuum. All inputs to the fluidic cartridge were controlled by 

commercial solenoid microvalves. Pumps and valves were interfaced to the fluidic 

cartridge through a fluid distribution board (FDB). The FDB was fabricated in PMMA 

through direct milling and seats for mounting the solenoid valves (6604A0-140466, 
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Christian Bürkert GmbH & Co. KG, Germany). The connections between the FDB and 

fluidic cartridge consisted of standardized screw-type ferrule-based fluidic connectors 

and stainless steel tubing interconnects (see Figures 3.2A and 3.2B).  

The optical reader included an excitation laser (HL6320G, 10 mW, Hitachi), 

collection optics, and CCD sensor. The reader (see Figure 3.2C) was composed of two 

2x microscope objectives (PLAPON 2x, Olympus), a 3RD660LP long pass filter and 

3RD660-680 band pass filter (Omega Optics, Brattleboro, VT). The image was captured  

 

 
Figure 3.2 Photograph of the control instrument and support peripherals. (A) Fluidic 
cartridge peripherals: 1 – collection optics, 2 – solenoid valves, 3 – FDB and 4 – Cu 
heating blocks. (B) Close-up view of the fluidic elements: 5 – stepper-motor driven 
micro-pumps and 6 – mini vacuum pump. (C) Close-up picture of the FDB and optical 
reader: 7 – imaging objective and 8 – FDB-to-chip interconnects. The instrument 
included an ICU, actuators, pumps, solenoid valves, heating stage, solution reservoirs 
and optical reader. Once the fluidic cartridge was loaded, it was then aligned with 
respect to the FDB using stainless steel interconnects and pressed against them by 
raising them against the heating stage, which consisted for Cu blocks. This ensured 
both tight fluidic connections and proper heat transfer. Operation of all fluidic and 
electronic peripherals was achieved by the ICU. 
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on a rectangular CCD sensor (S7030-0907; 512 x 58 pixels; 24 x 24 µm/pixel; 

Hamamatsu). Excitation of the array was achieved through an evanescent field 

produced by the waveguide serving as the floor of the microfluidic channel housing the  

universal array. The laser light was coupled to the waveguide via an on-board 64° prism. 

Both the waveguide and coupling prism were incorporated into the array microchip and 

fabricated using the same embossing step for making the fluidic network (see Figure 

3.1C).  

Commercial polyimide (KAPTON®) heaters (Minco, USA) were used to deliver heat 

to the PCR and LDR thermal reactors. Heaters were attached to 2 mm thick Cu blocks 

to achieve uniform heat flux and distribution. Temperatures were controlled by type K 

thermocouples (CHAL-005, Omega Engineering, USA) placed in grooves milled into the 

Cu blocks. Integral to the heat management of the fluidic cartridge were thermal 

isolation grooves formed on the backside of the cartridge during the embossing step, 

which allowed for efficient thermal isolation between adjacent reaction zones.34 During 

insertion of the fluidic cartridge into the instrument, it was pressed gently against the Cu 

heating blocks surface covered with conductive tap to provide good thermal contact. 

The Cu heating blocks provided the necessary temperatures for the CF PCR and CF 

LDR. All pumps and valve actuators were aligned with the corresponding valves and 

pumps and all external fluidic connections were made through the FDB to external bulk 

reservoirs. This process occurred simultaneously for all elements so after a single-

loading step, the system was ready for operation. All active fluidic and heating elements 

were under microprocessor control so that once started, the process did not require 

operator intervention.  
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The modular system was designed to perform the following processing steps: (1) cell 

lysis; (2) DNA purification; (3) ethanol wash and air dry of the SPE bed; (4) DNA release 

from the SPE bed with PCR buffer; (5) CF PCR; (6) mixing the PCR products with LDR 

buffer; (7) CF LDR; (8) DNA microarray incubation and wash; and (9) array readout and 

data analysis. The thermally lysed bacterial cells (see Sample Load chamber, Figure 

3.1A) were suspended in an SPE immobilization buffer consisting of 3% PEG, 0.5 M 

NaCl and 63% ethanol. Other regents, including the PCR and LDR reaction mixtures, 

were loaded into individual storage channels. Once the fluidic cartridge was inserted 

into the instrument, on-chip processing was initiated with running the sample suspended 

in the SPE extraction buffer through a thermal zone (95 °C) to lyse the cells and then, 

the SPE bed. The SPE bed was washed with 85% ethanol to remove other cellular 

components and dried with air. Finally, the purified gDNA was released using 30 µL of 

the PCR mixture and pumped through the PCR CF thermal reactor at a volumetric flow 

rate of 1 µL/min.  

Once the PCR was completed, 30 µL of an LDR reaction mixture was pumped 

through the cartridge at the appropriate volumetric flow rate. The resultant PCR 

amplicons were sequentially mixed with the LDR mixture via a passive Y-shaped 

micromixer possessing 40 µm wide and 100 µm deep inlet and outlet channels (aspect 

ratio 3); the mixing ratio of PCR amplicons with the LDR mixture was 1 to 1. The 

resultant LDR products were directly pumped through the array module with the LDR 

products subjected to hybridization to surface-tethered zip-code probes. Following array 

wash with buffer (2x SSC, 0.1% SDS), fluorescence images of the arrays were collected 

using the optical reader consisting of a laser diode and CCD imaging sensor with a 12 

mm x 3 mm field-of-view using an integration time of 20 s.  



105 
 

3.3 Results and Discussion 

3.3.1 Architecture of Modular System 

The fluidic cartridge was fabricated using double-sided hot embossing with many of 

the molecular processing functional components generated during the embossing step, 

which produced not only the fluidic network, but the solid-phase extraction bed 

(micropillars), micromixer, thermal reactors (continuous flow) and waveguide. The only 

post-molding steps required for chip finishing were, UV activation of the appropriate 

areas of the chip, spotting DNA probes onto the waveguide surface and thermal 

assembly of the cover plate to the substrate.  

The modular design approach adopted herein offered some attractive advantages. 

For example, the module and motherboard were made from a particular thermoplastic 

material selected to optimize processing step(s) performance and meet manufacturing 

requirements. The motherboard was made from PC and used for SPE and thermal 

cycling units, cell lysis, PCR and LDR, while the array module was made from PMMA 

and contained an air-embedded planar waveguide. We chose PC as the material for the 

motherboard due to its unique characteristics to allow for the specific condensation of 

nucleic acids to its photo-activated surface.29 PC also has a relatively high Tg to allow it 

to withstand the sustained high operating temperatures required for the thermal 

reactions. On the other hand, the material for construction of the array module was 

PMMA because PMMA has significantly lower amounts of autofluorescence compared 

to PC42 as well as minimal non-specific adsorption artifacts.43  

The modular fluidic cartridge consisted of five micro-devices with different functions 

(see Figure 3.1). (1) A cell lysis unit that lysed cells thermally. The sample was placed 

in the SPE extraction buffer and shuttled through a channel to allow thermal lysis. (2) A 
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solid-phase extraction device for the purification of gDNA from a whole cell lysate using 

an extraction bed composed of UV activated micropillars. SPE purification of gDNA is 

critical because it removes material from the sample that may interfere with downstream 

molecular processing, which in this work involved a duplexed PCR and multiplexed LDR. 

The SPE device was populated with an array of 3,600 50 µm diameter pillars. The SPE 

bed possessed a total surface area of 33.6 mm2, and the DNA load capacity was 

estimated to be ~242 ng. Nucleic acids were selectively immobilized onto the 

photoactivated PC surface, which contained carboxylate groups generated via UV 

irradiation using an immobilization buffer containing PEG, NaCl and ethanol. After 

cleanup using ethanol, purified and concentrated nucleic acids were eluted from the PC 

surface using water or a PCR buffer. The PC-SPE method did not require magnetic 

beads or the loading of microchannels with beads. We have shown that photoactivated 

PC-SPE methods can be used for the purification of gDNA, DNA sequencing fragments 

and total RNA from cell lysates and blood.29, 30, 44  

(3) CF thermal reactors. The format we adopted for two thermal reactors was a 

continuous flow format, which is based on flowing a reaction mixture through a 

microchannel with different isothermal zones. Compared to batch-type thermal reactors, 

the CF format offers some unique advantages: (1) Better thermal management because 

the system is brought to thermal equilibrium prior to the start of the reactions; (2) the 

speed of the thermal cycling reactions (PCR and LDR) are limited only by enzyme 

kinetics not by heating-cooling rates,32, 40 providing extremely short reaction times; (3) 

dynamic transport of the fluid through the thermal reaction zone, which obviates the 

need for containment valves; and (4) the number of cycles or the time of the thermal 

reaction can be controlled by the length of the reaction channel and the linear transport 
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rate through the reaction zone.41 In addition, several thermal management strategies 

were utilized to give a uniform temperature distribution throughout a particular thermal 

zone. For example, insulating grooves between temperature zones on the backside of 

the fluidic motherboard were designed to increase the thermal resistance to lateral heat 

conduction between zones.34 Heating of the thermal reaction domains was carried out 

by placing a high thermal conductivity material, such as Cu blocks, between the heating 

elements and the motherboard for precise temperature control. A thin PC substrate was 

used to minimize the thermal capacitance of the heated area. To prolong residence time 

in the extension or ligation zones and reduce thermal reactor footprint, a dual-depth 

serpentine channel geometry (200 µm and 100 µm) was included in both CF PCR and 

CF LDR devices. The larger channel cross section in the extension/ligation zones 

provided a longer residence time in these zones without the need for changing the 

volumetric flow rate.  

(4) Universal array device. An air-embedded waveguide associated with a laser-

coupling prism for laser-induced fluorescence evanescent excitation of the universal 

array were integrated into a single microfluidic module.31 Optical detection of the array 

elements was achieved with a home-built fluorescence reader consisting of a laser 

diode and a high sensitivity CCD camera. The evanescent excitation offered high spatial 

resolution and a broad field-of-view (12 mm x 3 mm), allowing for imaging of the entire 

array without requiring scanning, which made the data acquisition process simple and 

very fast, as well as simplifying the optomechanical design of the system. Additionally, 

the shallow microfluidic channel (100 µm) was designed inside this PMMA module for 

fast flow-through hybridization. Our group has demonstrated that arrays constructed in 

microfluidic channels have fast hybridization kinetics.28 Other groups have also reported 
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reduced non-specific signal and background in microfluidically addressed arrays.45  

The PC motherboard and the PMMA module were assembled in a 3-dimensional 

architecture using a simple and robust fluidic interconnect, which consisted of two 

conically-shaped holes placed on the backsides of both the motherboard and the 

waveguide module with connecting tubes made of a semi-rigid polymeric material (e.g., 

TefzelTM, see Figure 3.1B). Following compression sealing, the semi-rigid connecting 

tubing conformed to the shape of the conical holes and provided an unswept volume of 

~20 nL. This interconnect was successfully tested for pressures up to 600 psi. As 

compared to our previous studies utilizing a PDMS elastomer as an O-ring gasket 

between two chips, which produced unswept volumes to 200 nL,32 the reported 

interconnect provided several beneficial characteristics; (1) It was a press fit connection, 

which allowed for quick connection and disconnection of the chips; (2) no gaskets were 

needed, which eliminated material-sample compatibility issues; and (3) the interconnect 

was easy to fabricate and self-aligning with minimal unswept volume.  

3.3.2 Characterization of the Waveguide Module 

A protocol that allowed for end-point attachment of amine-terminated 

oligonucleotides to a PMMA surface was utilized herein. Briefly, PMMA microchannels, 

which measured 10.9 mm x 1.2 mm x 100 µm, were irradiated with oxygen plasma and 

activated with EDC/NHS. After activation, the oligonucleotide zip-code probes were 

dispensed onto the PMMA surface using a noncontact spotting instrument, which 

eliminated any potential damage that could incur on the waveguide surface if using 

contact printing.  

In the literature, different methods of bonding plastic microfluidic devices to form an 

enclosed channel network have been reported, including solvent assisted bonding,46, 47 
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thermal bonding,48, 49 adhesive boning,50, 51 laser welding,52 or surface modifications.53-55 

In this study, the PMMA module was assembled using thermal fusion bonding at 107 °C 

for 20 min following spotting of the arrays. When PMMA is heated to near its Tg, it 

approaches a viscoelastic state,56 which could potentially damage the oligonucleotide 

probes. Therefore, the stability of these DNA probes was evaluated to determine 

whether the thermal fusion bonding process would affect the integrity of these probes.  

We carried out experiments in which oligonucleotide probes (zip-code 1 and zip-

code 3, see Table 3.1) were tethered to sheet PMMA using the aforementioned protocol 

and then, one of the PMMA sheets was heated to 107 °C for 20 min while the other was 

not. Complementary DNAs that were fluorescently labeled were dispensed onto both 

PMMA sheets and subjected to hybridization to the surface-tethered probes. The results 

of this evaluation are shown in Figure 3.3, which indicated no discernible decrease in 

fluorescence intensity after heat treatment indicating little if any chemical degradation of 

the spotted probes during thermal processing.  

In our system, the PMMA module was poised on the CF LDR device. The 

hybridization of LDR products bearing zip-code complements to their surface-tethered 

zip-code probes is a thermally sensitive event. Due to the thermal conductivity of both 

plastics, heat from the CF LDR device, which includes zones poised at 95 °C for 

denaturation and 65 °C for ligation, can propagate to the hybridization chamber of the 

PMMA module affecting the number of hybridions formed. To evaluate the effects of 

different temperatures on the fluorescence signals obtained following hybridization, 

different temperatures were tested including 40, 50 and 60 °C. Experiments were 

performed in which complementary targets were pumped at a volumetric flow rate of 0.5  
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µL/min for 5 min through the hybridization chamber. The results indicated no noticeable 

decrease in fluorescence intensity at temperatures ranging from 40 – 60 °C (data not  

 
(A)                                                        (B) 

 
(C) 

 
Figure 3.3 Effects of the thermal fusion bonding process on the stability of the zip-code 
probes. After 3’-amine-modified oligonucleotide probes (zip-code 1 and zip-code 3) 
were spotted onto the activated PMMA surface, PMMA sheets were either (A) heated to 
107 ºC for 20 min or (B) not heated. The LDR was carried out using a conventional 
thermal cycler for a sample containing E. coli K12 only. The LDR products were 
dispensed onto both PMMA sheets followed by array hybridization, buffer wash and 
fluorescence imaging. The fluorescence intensity profiles from a vertical section of the 
middle two spots (see dotted yellow line) in (A) and (B) are shown in (C). Zip-code 
probe 3 served as the negative control and zip-code 1 probed for the target, E. coli K12. 
The spot size of the universal array was ~150 µm in diameter. 
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shown); any temperature leakage from the CF LDR device to the universal array sitting 

atop this thermal processor would not affect hybridization yield. This is a consequence 

of the fact that we are using a universal array in this example. The zip-code probes and 

zip-code complements appended to the LDR primers can be designed to have a 

relatively high Tm; we have decoupled the mutation detection step from the hybridization 

process relaxing the need for strict hybridization stringency.  

3.3.3 Detection of Pathogens Using the Integrated System 

To demonstrate the utility of the modular system and the assay for the detection of 

bacterial pathogens, the analysis of E. coli O157:H7 and Salmonella, which are among 

the most problematic food/water pathogens,2, 4 was used as a model. The highly 

conserved single nucleotide alternation in the uidA gene of the O157:H7 serotype 

(T93G) was used to differentiate E. coli O157:H7 from other E coli strains.57-60 For the 

PCR/LDR/universal array assay, a pair of uidA-specific primers was used to amplify a 

168-bp uidA gene of E. coli O157:H7 and E. coli K12 as well as a pair of sipB/C-specific 

primers to amplify a 250-bp sipB/C gene of Salmonella.  

Following PCR amplification of the appropriate gene fragments, which contained the 

identification loci, the amplicons were mixed with two sets of LDR primers, common 

primers and discriminating primers. The discriminating primer contained a 

complementary zip-code sequence (cZip) at its 5’-end and a target-specific sequence at 

its 3’-end. In this work, the allele-specific discriminating primers for E. coli O157:H7 

contained a G nucleotide at its 3’-terminus (cZip5-uidA-Mt, Table 3.1), while the 

discriminating primer for E. coli K12 had a 3’-terminus with a T nucleotide (cZip1-uidA-

Wt, Table 3.1). The common primer was phosphorylated at its 5’-end and possessed a 

fluorescent dye at its 3’-end. If there was a perfect match between the locus containing 
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the unique signature sequence of the target and the sequence at the 3’-end of the 

discriminating primer, the ligase enzyme would ligate the common and the 

discriminating primers. The LDR product was then directed by the cZip to a specific 

location of the universal array, which used probes serving as zip-codes (24-mer with 

similar Tm values, Table 3.1) that contained sequences not found in the target DNA. 

The fluorescence signal detected at the specific zip-code position of the universal array 

indicated the presence of the corresponding pathogen in the sample. The advantages of 

the PCR/LDR/universal array assay include: (1) LDR and universal array hybridization 

can be configured to detect a variety of targets by simply appending the correct cZips to 

the discriminating primers used in the LDR step, which allows for a highly multiplexed 

assay in a single reaction mixture. (2) LDR combined with the universal array readout 

decouples the mutation discrimination step from the hybridization step, which allows for 

higher specificity to detect the intended sequence variation, even in a high excess of 

DNA not harboring the intended sequence variation. (3) PCR coupled with LDR gives 

two rounds of target amplification, which provides better signal-to-noise in the 

measurement.  

Figure 3.4 shows the results of CF LDR products hybridized to zip-code probes 1, 3, 

5 and 11 using the PMMA waveguide module. Zip-code probe 3 was set as the negative 

control, which was complementary to neither E. coli K12, E. coli O157:H7 or Salmonella 

zip-code complement sequences appended to their LDR primers and thus, no 

fluorescence was seen from the zip-code 3 probes. Zip-code probes 1, 5 and 11 were 

designed to target E. coli K12, E. coli O157:H7 and Salmonella, respectively. Our 

results indicated that when only E. coli O157:H7 was present in the sample, zip-code 

probe 5 produced a positive signal (Figure 3.4A). When both E. coli O157:H7 and 
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Salmonella were present in the sample, both zip-code probes 5 and 11 gave successful 

hybridization events as shown in the fluorescence image of Figure 3.4B. When both E. 

coli O157:H7 and E. coli K12 were added into the sample, zip-code probes 1 and 5 

generated successful hybridization signals as shown in Figure 3.4C. A sample 

containing a mixture of E. coli K12, E. coli O157:H7 and Salmonella was also evaluated  

 
(A)                                                     (B) 

 
(C)                                                     (D) 

 
Figure 3.4 Detection of bacterial pathogens using the integrated and modular system. 
Fluorescence images of the universal array following CF PCR and CF LDR for a sample 
containing (A) E. coli O157:H7, (B) Salmonella and E. coli O157:H7, (C) E. coli K12 and 
E. coli O157:H7 and (D) E. coli K12, Salmonella and E. coli O157:H7. The sample 
flowed through the system using a volumetric flow rate of 1 µL/min for PCR and 2 
µL/min for LDR and then, the arrays were imaged using the fluorescence reader with a 
20 s integration time. Zip-code probe 3 was the negative control and zip-code 1, 5 and 
11 probed for E. coli K12, E. coli O157:H7 and Salmonella, respectively. 
 
and each zip-code probe (1, 5 and 11) produced fluorescence signals as shown in 

Figure 3.4D. The specificity of each zip-code to detect the appropriate target was 

evident from this data. For example, ligation products bearing the appropriate zip code 

complement sequence generated from E. coli O157:H7 or E. coli K12 did not hybridize 

to zip-code probe 11, which was targeted for the detection of Salmonella. Even when a 
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single nucleotide variation was required to be discerned, E. coli O157:H7 versus E. coli 

K12, no cross-hybridization was observed due to the high degree of dissimilarity 

between the zip-code probe sequences.  

 
(A)                                               (B) 

 
(C)                                               (D) 

 
(E) 

 
Figure 3.5 Identification of E. coli O157:H7 in the presence of background E. coli K12 
with various amounts of O157:H7: (A) No DNA templates; (B) K12 only; (C) K12 to 
O157:H7 ratio of 100:1 and (D) K12 to O157:H7 ratio of 10:1. The fluorescence intensity 
profiles from (B), (C) and (D) are shown in (E). The error bars represent one standard 
deviation, which was determined from two measurements. 
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We further tested the ability of our system for detecting the E. coli O157:H7 strain in 

the presence of large amounts of background E. coli K12. This is particularly important 

for screening O157:H7 serotypes in a high background of commensal E. coli because 

this situation is commonly found in E. coli O157:H7 or other pathogenic E. coli 

infections.16 In this study, E. coli O157:H7 was mixed with E. coli K12 at ratios of 0:1, 

1:10, 1:100 and 1:250. The E. coli O157:H7 and E. coli K12 cells containing the uidA 

gene were concurrently PCR amplified and appropriate strains identified using LDR 

consisting of two discriminating primers (cZip1-uidA-Wt and cZip5-uidA-Mt) and one 

common primer (uidA-com). In the presence of E. coli O157:H7 or E. coli K12, matched 

LDR products were generated and hybridized at the appropriate locations of the 

universal array. Figure 3.5 shows LDR products generated from E. coli O157:H7 and E. 

coli K12 with different mixing ratios. When no E. coli cells were present in the sample, 

neither zip-code probe 1 or 5 produced hybridization signals as shown in Figure 3.5A. 

When only E. coli K12 was present in the sample, a ligation product was generated and 

detected at zip-code probe 1 (Figure 3.5B). Universal array signals produced from E. 

coli O157:H7 were distinguished from E. coli K12 at the signal-to-background ratio ≥2 

with an O157:H7 to K12 ratio of 1:100.  

3.3.4 Detection Limit (LOD) of E. coli O157:H7 

We also were interested in evaluating the LOD in terms of the number of pathogenic 

cells we could detect using our assay and integrated system. To determine the LOD, 

the molecular assay was conducted using E. coli O157:H7 as a target. Figure 3.6 

presents a calibration plot of the fluorescence signal as a function of the starting E. coli 

O157:H7 cell number. The lowest cell number that produced a positive signal at a 

signal-to-noise ratio ≥2 was 100 cfu (colony forming units) of E. coli O157:H7. This LOD 
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could be improved through employing any of the following strategies: (1) generation of 

an SPE bed with smaller micropillars and a smaller edge-to-edge spacing that would 

improve DNA recovery and preconcentration factor;61 (2) increasing the number of PCR 

and/or LDR thermal cycles; (3) improve the capture efficiency of the LDR products by 

the zip-code probes by using a shallower (<100 µm) microfluidic channel;28 and/or (4) 

increasing the numerical aperture of the relay microscope objective, which would 

improve the amount of fluorescence collected, but at the expense of reducing the field-

of-view during universal array imaging.  

 

 
Figure 3.6 Standard curves consisting of fluorescence signals from various cell 
numbers of E. coli O157:H7 cells. The data points represent the mean of two 
measurements with the error bars showing ±1 standard deviation unit. The linear 
regression analysis yielded: y = 2.791x + 50.11 (r2 = 0.998) 
 
3.3.5 Analysis of E. coli O157:H7 in a Water Sample 

In many cases, enrichment of the target cell type is required prior to molecular 

analysis due to the extremely low-abundance of the target pathogenic cells.62 The US 

EPA allowable levels of E. coli are 0, 200 and 1,000 cfu per 100 mL of drinking, 
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swimming and recreational waters, respectively, and the minimum infectious dose is 

~10 cells. Therefore, pre-enrichment of the target cells is often required, especially in 

drinking and recreational waters.  

 
(A)                                                 (B) 

 
Figure 3.7 Analysis of E. coli O157:H7 in a water sample. The fluorescence image of 
the array was accomplished using evanescent excitation with an integration time of 20 s 
following microarray hybridization for the waste-water sample containing (A) E. coli 
O157:H7 and (B) no cells. The water sample was filtered and enriched using a PMMA 
microfluidic device consisting of curvilinear channels decorated with polyclonal anti-
O157 antibodies. After cell enrichment, cells were released and analyzed using the 
integrated system targeting the gene which effectively discriminated the O157:H7 
serotype from other types of E. coli. 
 

We evaluated the ability of our modular system coupled with a cell enrichment 

device to analyze the E. coli O157:H7 serotype in a waste-water sample. The microchip 

enrichment procedure has been detailed elsewhere.62 Briefly, sewer water (1 mL) was 

obtained from a purification plant in Baton Rouge and was filtered using a PCTE 

membrane with a 10 µm pore size to remove large particulates (e.g., solid particulates 

and debris) from the sample. The effluent was then processed for E. coli using a PMMA 

microfluidic chip, which was equipped with 16 curvilinear high aspect ratio 

microchannels covalently decorated with polyclonal anti-O157 antibodies. O-157 

serotypes of E. coli were then released from the channel surface using 5 µL of a cell-

stripper solution and transferred into the integrated system for molecular analysis. After 

the waste-water sample was processed using the microfluidic chip, those E. coli 
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serotypes expressing O157 antigens, including O157:H7, O157:H12, O157:H42, 

O157:H29, O157:H19 and O157:H45, were enriched by a factor of 2 x 102 with the 

specific serotype confirmed via PCR/LDR/universal array processing.  

Figure 3.7 presents results showing the analysis of E. coli O157:H7 in a waste-

water sample using our modular system. The results indicated LDR products generated 

and fluorescence signals produced at zip-code probe 5, which specifically interrogated 

for the E. coli O157:H7 strain (see Figure 3.7A). No fluorescence signal was seen for E. 

coli K12. A negative control sample was also performed and no E. coli O157:H7 signal 

was detected as shown in Figure 3.7B. In the waste-water sample analyzed, the level 

of E. coli O157:H7 determined from the calibration plot was 9.5 ±0.3 x103 cfu/10 µL.  

3.4 Conclusions 

We have developed an integrated and modular microfluidic system that consisted of 

a module made from PMMA and a fluidic motherboard made from PC with the material 

selected based on optimizing the processing step(s) poised onto the module or 

motherboard. The motherboard was made from PC and used for cell lysis, SPE, CF 

PCR and CF LDR due to the specific condensation of DNA to UV-activated PC and the 

high Tg of PC. On the other hand, the array module was made from PMMA due to its 

lower fluorescence background and minimal non-specific DNA adsorption demonstrated 

by PMMA. The integrated platform was realized by implementing a CF PCR/CF 

LDR/universal array molecular assay into a disposable fluidic cartridge. The use of off-

chip active components reduced the complexity of fluidic cartridge fabrication and 

simplified operation, making it appropriate for one-time use applications. Specifically, 

the use of double-sided embossing and the passive elements, such as micropillars for 

the SPE, micromixers and air-embedded waveguides, formed during the embossing 
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process allowed for minimizing the number of finishing steps required to produce the 

final cartridge, which can in many cases dominate chip cost.  

We demonstrated the utility of the integrated system by analyzing E. coli O157:H7 

and Salmonella bacterial pathogens in a total processing time <40 min (10 min for 

sample preparation, 24 min for PCR, 4 min for LDR and 20 s for image readout). The 

assay utilized by the system provided the ability to differentiate strains based on single 

nucleotide variations; discrimination between E. coli K12 and E. coli O157:H7 were 

demonstrated even for one O157:H7 sequence in 100 K12 sequences.  

The integrated system was further evaluated by detecting E. coli O157:H7 in a 

waste-water sample. Enrichment was first carried out using another microfluidic device 

consisting of serpentine channels with polyclonal anti-O157 antibodies immobilized onto 

their surfaces.  

While the system was demonstrated for the analysis of E. coli O157:H7 or 

Salmonella, simple reprogramming of the primer sequences used for the PCR and LDR 

would allow the system to be used for the detection of any pathogenic species without 

requiring hardware reconfiguration, especially when used in conjunction with the 

universal array; the same array can be used for any bacterial species when the correct 

zip-code complements are appended to the LDR primers used for detecting specific 

sequence variations. For example, by adding PCR primers and LDR primers targeting 

stx2 and eaeA genes and corresponding zip-code probes, this system can easily 

identify the Shiga toxin 2 (stx2)-positive, intimin (eae)-negative STEC serotype 

O104:H4.6  
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CHAPTER 4 FULLY INTEGRATED AND SELF-CONTAINED THERMOPLASTIC 
GENOSENSOR FOR THE DIAGNOSIS OF MULTI-DRUG RESISTANT 
TUBERCULOSIS (MDR-TB) 

4.1 Introduction 

Infectious diseases are a major global health burden, accounting for approximately 

15 million deaths annually with a significant number occurring in developing countries.1-4 

The recently accelerated evolution and spread of drug resistant pathogenic agents pose 

two daunting challenges for the prevention, diagnosis and treatment of infectious 

diseases:4-7 How to accurately and rapidly diagnose drug-resistant infections and how to 

deliver these diagnostic technologies and tools to resource-limited settings?  

In particular, the resurgence of tuberculosis (TB) is accompanied by rapid spreading 

of multi-drug resistant TB (MDR-TB) resulting from Mycobacterium tuberculosis (Mtb) 

strains that fail to respond to the first-line drugs rifampin and isoniazid. MDR-TB cannot 

be differentiated from drug susceptible TB from clinical symptoms, chest X-ray 

examinations or sputum smears.8 Currently, only less than 5% of approximately 1/2 

million MDR-TB cases estimated globally are appropriately diagnosed and treated due 

to the vastly inadequate laboratory infrastructure for conventional drug susceptibility 

testing (DST) by cell culturing in high burden countries.9 Even if available, it may take 

up to 8 – 12 weeks to complete culturing tests during which time patients are 

ineffectively treated and thus, drug resistant strains continue to spread creating a 

formidable obstacle in formulating global plans to eradicate this disease.  

Several commercialized or home-brewed nucleic acid amplification tests (NAATs), 

such as line probe assays or quantitative PCRs, have recently been demonstrated to 

identify MDR-TB in a timeframe of 1-2 days. Although these tests are a significant 

improvement over DSTs in assay turnaround time, sophisticated laboratory settings and 
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extensively trained personnel must be in place to ensure accuracy, reliability, and 

reproducibility of test results. The cost is prohibitive as well for the widespread 

implementation of these assays to referral laboratories let alone to remote clinical 

facilities, which are in urgent need for fast and reliable assays that are easy to 

implement for MDR-TB testing. In addition, the performance of these assays is usually 

compromised when a mixed subpopulation of drug resistance and susceptible strains 

(hetero-resistance) are simultaneously presented in the clinical sample.10-12  

To address the aforementioned challenges, we have developed a diagnostic tool 

package consisting of a novel multistep molecular assay implemented in a fully-

integrated genosensor system. The molecular assay could interrogate single base 

mutations (codon 516, 526, and 531) in the rifampin-resistance determining region 

(RRDR) of the rpoB gene as surrogate markers for MDR-TB.13, 14 The multi-step 

process included Mtb cell lysis, solid-phase DNA extraction and purification, duplex 

PCR for amplifying a 193 bp fragment containing the RRDR and a positive control 

fragment, multiplexed LDR (ligase detection reaction) for discrimination/identification of 

single base mutations and universal array hybridization. All of the aforementioned 

processing steps were carried out within a disposable fluidic cartridge operated by 

accompanying peripherals packaged into a small footprint instrument. No operator 

intervention was required once the clinical sample (sputum) was loaded into the fluidic 

cartridge. This diagnostic tool package offered advantages including short analysis 

times, automated operation (i.e., sample in – answer out), reduced possibility of cross-

contamination, improved health-worker protection and lower overall cost of the analysis. 

It’s a significant step in translating a highly specific molecular assay strategy and lab-on-

a-chip enabling technologies to a diagnostic tool package tackling a global health crisis.  
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4.2 Methods 

4.2.1 Fabrication of Fluidic Cartridge 

The fluidic cartridge consists of three plastic manufacturing modules (Figure 4.1A-

C) including a solid phase DNA extraction (SPE) module, a thermal reactor module for 

cell lysis, PCR and LDR, and a waveguide module for universal array hybridization and 

fluorescence readout. Short pieces of TefzelTM tubing (OD = 1/16”, ID = 250 µm, 

Upchurch) were inserted into the conical holes on the backsides of fluidic modules to 

provide fluidic transport between them (Figure 4.1D and 4.1E).  

4.2.1.1 Fabrication of UV-activated SPE Module 

The SPE beds were replicated by one-step aligned double-sided hot-embossing 

from a nickel mold insert and a brass mold insert mounted opposite to each other in a 

JENOPTIK HEX-02 hot embossing system (Jena, Germany). The nickel mold insert for 

molding twenty-four (3 x 8) extraction beds was fabricated by UV-LIGA process. The 

brass mold insert for molding backside conical interconnectors was fabricated by high-

precision micro-milling, as described elsewhere.15 After hot-embossing, the extraction 

bed and a 250 µm thick PC coverslip were exposed to 254 nm UV radiation (15 

mW/cm2) for 20 min. The SPE module was assembled by thermal fusion bonding at 147 

°C for 20 min.  

4.2.1.2 Fabrication of Thermal Reactor Module 

The PC substrate (Figure 4.3A) containing microchannels for cell lysis, PCR and 

LDR on the frontside and micro-valve seats, thermal isolation grooves and fluidic 

interconnecting ports on the backside was replicated by double-sided hot-embossing 

using two micro-milled brass mold inserts. The PC module was assembled by thermal 
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fusion bonding of the PC substrate and a 250 µm thick PC coverslip at 150 °C for 20 

min.  

 

 
Figure 4.1 (A) Assembled modular microfluidic stack. (B) SEM of DNA-SPE bed. (C) 
SEM of the universal array module with integrated waveguide (a) and coupling prism (b). 
(D, E) Schematic and optical micrograph of chip-to-chip fluidic interconnects; c – 
connecting tube inside a cone-shaped port; channels were filled with black dye for 
visualization. (F) Cross-section of dual depth thermal reactor. 
 
4.2.1.3 Fabrication, Spotting and Assembly of Fluorescence Readout Module 

The fluorescence readout module was assembled from two hot-embossed PMMA 

parts: a waveguide part and an interconnecting part containing conical ports for fluidic 

connection to PC thermocycling module as described above. The waveguide part has a 

1.2 mm x 10 mm recess (100 µm in depth) for zip-code probe immobilization and 

hybridization on the front side and an air-embedded planar waveguide along with an 

integrated laser-coupling prism on the backside. Twenty-four (4 by 6) of waveguide 

parts were replicated on one piece of PMMA substrate by an aforementioned double-
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sided hot-embossing process. Followed oxygen plasma activation, EDC-NHS chemistry 

was used to functionalize the surface of the PMMA substrate. The freshly prepared 

PMMA substrates were mounted onto the vacuum holder of a Piezorray® non-contact 

microarraying system (PerkinElmer Inc.) through custom made adapters. With the aid of 

visual positioning camera, the zip-code oligonucleotide probes were dispensed onto the 

bottom of the recess. By carefully programming, the universal zip-code arrays were 

spotted onto five pieces of PMMA substrates, each containing twenty-four waveguide 

parts, in a single run. After four hours incubation in a humid box at room temperature, 

the waveguide parts were thoroughly cleaned to remove the excess zip-code probes. 

After drying, the waveguide and interconnection parts were assembled together using 

UV curable optical adhesive (NOA 68, Norland) to form functional fluorescent readout 

module.  

4.2.2 Instrumentation 

The field-deployable instrument has been developed to perform the molecular assay 

in the disposable fluidic cartridge. The physical dimensions of this prototype instrument 

are 12” (length) x 12” (depth) x 12” (height) and include the Instrument Control Unit 

(ICU) board, solenoids, actuators, pumps, solenoid valves, heating stage and on-board 

solution reservoirs. After the sample, PCR and LDR cocktail were manually loaded with 

a pipette; the fluidic cartridge was inserted into the instrument and gently held between 

the heater surface and the self-alignment pins located on a fluid distribution 

motherboard. The cooper heating blocks are covered by thermal conductive tape 

providing good thermal contact. The self-alignment pins made from stainless steel 

tubing also serve as fluidic connection between the disposable fluidic cartridge and the 

external valves, pumps and bulk reservoirs through the fluidic distribution motherboard. 
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Once the fluidic cartridge was loaded, the complete analysis process, including the cell 

lysis, DNA extraction, PCR, LDR and universal array hybridization, was automatically 

controlled by the ICU and no further user intervention was required.  

The fluorescence images were collected by a compact optical system consisting of a 

laser diode and a CCD image sensor. The 635 nm emission from the laser diode 

(HL6320G, 10 mW, Hitachi) was collimated using a laser collimation package (LT220P-

B, ThorLabs) and injected into the waveguide through an integrated prism (Figure 

4.3E). The evanescent wave excited fluorescence image was collected by a CCD image 

sensor (S7030-0907; 512 x 58 pixels; 24 x 24 µm/pixel; Hamamatsu) through a compact 

optics composed of two of 2x objective lens (Olympus) and filter sets (3RD660LP long 

pass filter and 3RD660-680 band pass filter, Omega Optics.).  

4.2.3 Mycobacterium tuberculosis (Mtb) Samples 

Drug susceptible Mtb strain H37Rv (ATCC 27294) and rifampin resistant Mtb strain 

(ATCC) were cultured in BSL-3 laboratory in Hansen’s Disease Center in LSU. 10-fold 

serial dilutions from 107 to 100 of Mtb strain H37Rv were prepared for evaluation of the 

limit of detection. Samples containing mixed drug susceptible and resistant Mtb sub-

population were prepared by mixing drug resistant and drug susceptible strains at the 

ratio of 0%, 1%, 2%, 5%, 10%, 50% and 100%. All cultured Mtb samples were fixed in 

70% ethanol for 24 h prior to removal from the BSL-3 facility.16  

4.2.4 Construction of Positive Control 

A 124 bp fragment of the IS6110 gene was amplified using the following pair of 

primers: CCT GCG AGC GTA GGC GTC GG (forward) and TCT CGT CCA GCG CCG 

CTT CGG (reverse).17 PCR was then performed as follows: 2 min at 94 °C;  20 cycles of 

1 min at 94 °C, 1 min at 56 °C, and 1 min at 72 °C;  and a final extension of 15 min at 
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72 °C. The PCR product was purified using a QIAquic k spin column PCR purification kit 

(QIAGEN, Cat. no. 28104). The purified amplicon was cloned into pCR®4-TOPO® 

plasmid using TOPO TA cloning kit for sequencing (Invitrogen, Cat. no. K4575-J10).  

Two mutations were introduced into the amplified DNA using a GeneTailor site-

directed mutagenesis system (Invitrogen, Cat. no. 12397-014) according to the 

manufacturer’s instructions. Briefly, the aforementioned plasmid was methylated with 

DNA methylase at 37 °C for 1 h. Two mutations, incl uding a 3-base mutation of TCA → 

AGT at the center of the LDR discriminating primer location and a single-base deletion 

of T at the ligation site of the LDR, were introduced by amplifying the methylated 

plasmid using two overlapping primers: TGT GGG TAG CAG ACC AGT CCT ATG 

TG(T)C GAC CTG GGC AG (forward) and GGT CTG CTA CCC ACA GCC GGT TAG 

GTG CTG (reverse), and Platinum®Pfx DNA Polymerase (Invitrogen, Cat. no. 11708-

013). Amplification began with a denaturation step of 2 min at 94 °C, followed by 20 

cycles of 30 s at 94 °C, 30 s at 55 °C, 5 min at 68  °C; and a final extension step of 10 

min at 68 °C. The mutagenic mixture was then transf ormed into One-Shot® MAX 

Efficiency® DH5α™-T1R competent cells (Invitrogen, Cat. no.12297-016). The 

methylated plasmid was digested by MrcBC endonuclease in the host cell while the 

methylated and mutated DNA from the above amplification was circularized by the host 

cell. Finally, the plasmid was purified using a QIAgen plasmid Midi kit (Cat. no. 12143) 

and the mutations were confirmed by DNA sequencing using T3 and T7 primers. The 

plasmid containing the two mutations (designated as PC) was used as a positive control 

for the molecular analysis of clinical samples. The plasmid concentration was quantified 

by measuring the absorption at 260 nm. 
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Table 4.1 Sequences of oligonucleotides used in the PCR/LDR/universal zip-code 
hybridization assay for MDR-TB 
PCR product 

size (bp) 
Oligos Sequence (5’→3’) Tm 

(°C) e 
124 IS6110-forward CCTGCGAGCGTAGGCGTCGG 65.4 

 IS6110-reverse TCTCGTCCAGCGCCGCTTCGG 66.7 

 cZip51-PC GGCTCAAGTTGCGTCCCAGACCGTGTGGG
TAGCAGACCAGTCCTATGTG 

65.4 

 cZip43-IS6110 CCGTCAGACAAGGGCTTTGCGTCCGGGTA
GCAGACCTCACCTATGTGT 

64.3 

 IS6110/PC-com apCGACCTGGGCAGGGTTCGC-Cy5b 64.0 
193 rpoB-forward CGTGGAGGCGATCACACCGCAGACGTT 67.7 

 rpoB-reverse ACCTCCAGCCCGGCACGCTCACGTG 70.8 
 cZip13-

rpoB516wt 
CGCACGATAGGTGGTCTACCGCTGCAGCT
GAGCCAATTCATGGA 

63.1 

 cZip21-
rpoB516mt 

GGTCAGGTTACCGCTGCGATCGCACAGCT
GAGCCAATTCATGGT 

65.3 

 rpoB516-com apCCAGAACAACCCGCTGTC-Cy5b 56.3 
 cZip1-

rpoB531wt 
GCTGAGGTCGATGCTGAGGTCGCACCACA
AGCGCCGACTGTC 

64.9 

 cZip5-
rpoB531mt 

GCTGTACCCGATCGCAAGGTGGTCCCACA
AGCGCCGACTGTT 

63.7 

 rpoB531-com apGGCGCTGGGGCCCGGC-Cy5b 70.2 
 cZip11-

rpoB526wt 
CGCAAGGTAGGTGCTGTACCCGCACGCTG
TCGGGGTTGACCC 

65.2 

 cZip23-
rpoB526mt 

GGTCCGATTACCGGTCCGATGCTGCGCTG
TCGGGGTTGACCT 

63.3 

 rpoB526-com apACAAGCGCCGACTGTCGG-Cy5b 61.0 
 Zip-code 1 TGCGACCTCAGCATCGACCTCAGC-sp-NH2

d 64.9 
 Zip-code 3 CAGCACCTGACCATCGATCGCAGC-sp-NH2

d 64.1 
 Zip-code 5 GACCACCTTGCGATCGGGTACAGC-sp-NH2

d 63.7 
 Zip-code 11 TGCGGGTACAGCACCTACCTTGCG-sp-NH2

d 65.2 
 Zip-code 13 CGCACGATAGGTGGTCTACCGCTG-sp-NH2

d 63.1 
 Zip-code 15 GACCGGTATGCGACCTGGTATGCG-sp-NH2

d 63.5 
 Zip-code 21 TGCGATCGCAGCGGTAACCTGACC-sp-NH2

d 65.3 
 Zip-code 23 CAGCATCGGACCGGTAATCGGACC-sp-NH2

d 63.3 
 Zip-code 25 GACCATCGTGCGGGTAGGTAGACC-sp-NH2

d 62.7 
 Zip-code 43 GGACGCAAAGCCCTTGTCTGACGG-sp-NH2

d 64.3 
 Zip-code 51 ACGGTCTGGGACGCAACTTGAGCC-sp-NH2

d 65.4 
a p: phosphorylated. 
b Cy5: λex = 649 nm, λem = 670 nm. 
c The bold sequences are complementary to the sequences of zip-code probes. 
d sp-NH2: (CH2CH2O)6PO4-NH2. 
e Conditions: oligo concentration, 1 µM; Na+ concentration, 50 mM. 
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4.2.5 Sample and Reagent Loading 

Cell cultures in 70% ethanol and decontaminated clinical samples were briefly 

centrifuged at 12,000g and the supernatants were removed. The sediments were re-

suspended in 20 µL SPE binding buffer and manually loaded to the cell lysis unit in the 

fluidic cartridge (Figure 4.3). The SPE binding buffer contained 1.2 M NaCl and 6% 

polyethylene glycol (PEG, Mw = 8000) and 80 fg (~2000 copies) of PC plasmid.  

1x PCR cocktail consisted of 10 mM Tris-HCl buffer (pH = 8.3), 50 mM KCl, 1.5 mM 

MgCl2, 200 µM dNTPs, 0.5 U/µL Taq polymerase, 0.5 µg/µL ultra-pure BSA, 500 nM 

forward and reverse primers and the DNA extracted from the SPE unit. Duplex PCR 

was performed to amplify 193 bp fragment containing RRDR in rpoB gene and 124 bp 

fragment of IS6110 gene and PC. PCR primers are listed in Table 4.1. The temperature 

zones were set at 95 °C, 62 °C and 72 °C for denatu ration, annealing and extension, 

respectively. 1 x PCR cocktail was loaded in the PCR buffer storage zone (Figure 

4.3A). 

1x LDR cocktail consisted of 20 mM Tris-HCl buffer (pH = 7.6), 25 mM KCl, 5 mM 

MgCl2, 1 mM NAD+, 5 mM DTT, 0.1 % Triton X-100, 2 U/µL Taq ligase, 0.5 µg/µL ultra-

pure BSA, LDR primer sets and the PCR products from PCR unit. 25 nM of the 

discriminating primers and 50 nM of the common primers for codon 516, and 50 nM of 

the discriminating primers and 100 nM of the common primers for codon 526 and 531, 

respectively, were used. The LDR primers sequences are listed in Table 4.1. 2x LDR 

cocktail was loaded in the LDR buffer storage zone (Figure 4.3A). 

4.2.6 Colorimetric Line DNA Probe Assay 

A PDMS stencil containing a microchannel network was cast using a mold master 

made from PMMA and consisted of 250 µm wide and 30 µm deep microchannels 
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spaced by 1 mm. After a brief treatment with the oxygen plasma, the PDMS stencil was 

physically sealed to an EDC-NHS functionalized PMMA sheet by conformal contact.18, 19 

Then, 50 µM of zip-code oligonucleotide probes in pH 9.0 carbonate buffer were flowed 

through the PDMS microchannels. After 1 h of incubation, the PDMS stencil was 

removed. The PMMA sheet was thoroughly cleaned and cut into 5 mm wide strips for 

the line DNA probe assays (see Figure 4.6B).  

Mono-maleimido functionalized Nanogold (Nanoprobes Inc.) particles (1.4 nm) were 

conjugated to LDR common primers functionalized with a sulfhydryl group (-SH) at their 

5’ ends and a phosphate group (PO4) at the 3’ terminus.20 Then, 10 µM common 

primers were reduced by 100 µM Tris(2-Carboxyethyl) phosphine Hydrochloride 

(TCEP·HCl, Pierce) in 1x TE buffer for 30 min at room temperature. Following the 

disulfide cleavage, a 10-fold excess of the mono-maleimido Nanogold particles were 

added and incubated at room temperature for 2 h. The LDR common primer-Au 

conjugates were then purified twice using Bio-Spin 6 chromatography columns (Bio-Rad) 

according to the manufacturer’s instructions. The labeling efficiency and the 

concentration of the common primer-Au conjugate were determined by measuring the 

absorbance of the oligonucleotide at 260 nm and the absorbance of the Nanogold 

particle at its absorbance maximum of 420 nm.  

Twenty µL of the ligation products generated from a fast thermal cycling (15 cycles 

of 95 °C for 5 s and 60 °C for 15 s) protocol was a pplied to the line DNA probe strips 

and incubated for 10 min at 50 °C. Silver enhanceme nt was performed by applying a 

mixture of 20 µL of initiator and enhancer from a Li enhancer kit (Nanoprobes, Inc) to 

the PMMA surface. After 15 min of incubation, the hybridization pattern was visible to 

the naked eye and could be recorded by a digital camera (see Figure 4.6C). 
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4.3 Results 

It is estimated more than 90% of rifampin resistant Mtb strains are also resistant to 

isoniazid, which makes rifampin resistance a reliable surrogate marker for MDR-TB. 

Collectively, more than 95% of resistance to rifampin is associated with mis-sense, 

insertion, and deletion mutations in the rifampin resistance-determining region (RRDR) 

of the rpoB gene, especially single base mutations in codons 516, 526 and 531. Rapid 

identification of these mutations is critical in MDR-TB case management and minimizing 

the spread of drug resistant Mtb strains.13, 14, 21  

 

 
Figure 4.2 Schematic representation of the molecular assay for detection of single base 
variations in codons 516, 526 and 531. The left panel and the right panel demonstrate 
the processes when wild-type Mtb stain H37Rv and rifampin resistant Mtb strain 
(Ser531Leu) are subjected to the molecular assay, respectively. 
 
4.3.1 MDR-TB Molecular Assay 

A multi-step molecular assay, PCR/LDR/universal array hybridization, was 

successfully applied for single base mutation determinations as described elsewhere.22 
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A schematic representation of the molecular assay for detecting single base mutations 

in codons 516, 526 and 531 in the RRDR is shown in Figure 4.2. Briefly, following PCR 

amplification of a 193 bp rpoB gene fragment containing RRDR region, 3 sets of LDR 

primers (mutation specific discriminating primers and common primers) were used for 

interrogating the most frequent single base mutations in codons 516, 526 and 531 of the 

rpoB gene. The discriminating primer was flanked by a complementary zip-code 

sequence (cZip) at its 5’-end and a discriminating base for either wild-type or mutation 

discrimination at its 3’-end. The common primer was phosphorylated at its 5’-end and 

contained a fluorescence dye, Cy5, at its 3’-end. A perfect match at the 3’-end of the 

discriminating primer would initiate a ligation reaction by a thermally stable ligase 

enzyme, which also carried a specific cZip sequence to direct the product to a specific 

location of a two-dimensional array. The genotype at the particular locus can be 

subsequently decoded by zip-code array hybridization and read out by fluorescence or 

colorimetric imaging of a universal array.  

4.3.2 Fluidic Cartridge Design 

The fluidic cartridge shown in Figure 4.1 and Figure 4.3 could carry out five different 

processing steps including cell lysis, solid phase DNA extraction (SPE), PCR, LDR and 

universal array hybridization, which were distributed on two different modules and the 

fluidic motherboard according to the material and manufacturing requirements. For 

example, the SPE module was made from PC that was photoactivated (PPC) due to its 

unique characteristics allowing for the specific condensation of nucleic acids to its UV-

activated surface.23 In addition, to avoid packing the SPE bed with beads to increase 

the available surface area to provide a high DNA load, high aspect ratio micropillars 

were embossed into the bed during fabrication of the fluidic network. PC also has a 
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relatively high glass transition temperature, which makes it a suitable material for the 

substrate used for the thermal reactors and thus was used for the fluidic motherboard. 

In addition, the fluidic control elements, in this case several membrane microvalves, 

also benefitted from the use of PC, because PC has a relatively large elongation at 

break threshold. Thus, it can be used for fabrication of both the valve seat and the valve  

 

 
Figure 4.3 Integrated, modular microfluidic chip for TB analysis. (A) 3D rendering of the 
chip and the detection method. 1-7 – fluidic inlets and outlets: 1 – sample inlet, 2 – PCR 
cocktail inlet, 3 – LDR cocktail inlet, 4 – ethanol and air inlet, 5 – array wash inlet, 6 – 
vacuum connection and 7 – waste. V1-V6 – on-chip membrane valves (note that V2 is 
positioned next to SPE module on the cell lysis microchannel and is not visible in 
current view). (B) Close-up of the SPE bed showing DNA capture bed filled with an 
array of high-aspect ratio pillars. (C) Schematic operation of the on-chip membrane 
valve with direct mechanical actuation – electrically actuated solenoid presses on the 
center of the polymer membrane closing the passage of fluid from the bottom layer 
through the valve and back to bottom layer. (D) Geometry of the continuous flow PCR 
reactor with dual-depth microchannels for extended residence time the extension-zone; 
Den – denaturation, Ext – extension and PA – primer annealing. (E) Schematic 
representation the detection mode. Laser excitation is coupled to the waveguide 
through integrated prism. Light travelling through the waveguide excites the labeled 
LDR products hybridized to zip code array spotted at the bottom of the waveguide. 
Resulting fluorescence signal is imaged with CCD camera. 
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membrane, which allows for monolithic valve construction and simplifies assembly 

processes as the valve membranes can be attached in the same lamination step as the 

fluidic cover plate. Unfortunately, PC is not compatible with ultra-sensitive fluorescence 

detection because of its relatively high background. On the other hand, PMMA 

demonstrates good optical clarity and minimal non-specific adsorption characteristics 

making it an optimal material for construction of the waveguide module of the universal 

array.24 In addition, printing DNA arrays on the surface of the waveguide module can be 

done in a single run making the manufacturing process easier and more efficient with 

the probes tethered to the surface using robust chemistry.  

Figure 4.1B and Figure 4.3B presents schematic drawings and SEM images of the 

SPE module. Each SPE extraction bed had a footprint of 20 mm x 1 mm and a 50 µm 

depth populated with an array of 11,000 of 20 µm x 20 µm micropillars spaced by a 40 

µm center-to-center distance.25 The total surface area of the immobilization bed was 74 

mm2 and the DNA load was estimated to be ~600 ng,26 which is equivalent to genomic 

material extracted from ~108 bacteria cells assuming a typical bacterial genome size of 

5 Mbp. Figure 4.1C shows a schematic and operation of the PC membrane valves with 

direct solenoid actuation. The thermal reactors poised on the fluidic motherboard 

(Figure 4.1A and Figure 4.3A) incorporated a continuous flow format, which provided 

PCR results that are limited by the kinetic constraints of the polymerase and not thermal 

management issues.27 In addition, several thermal management technologies were 

included to improve amplification efficiency, such as backside thermal isolation grooves, 

thin PC substrates and copper plate thermal stages to give a more uniform temperature 

distribution throughout the particular thermal zone.28 To achieve faster continuous flow 
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thermal cycling in a limited footprint, a dual-depth channel (200 µm and 100 µm) was 

designed to extend the resident time in the extension zone (Figure 4.1F and Figure 

4.3D).  

Figures 4.3E shows the PMMA module with an integrated air-embedded waveguide 

and a laser-coupling prism for laser-induced fluorescence (LIF) evanescent wave 

excitation of the universal array. The trapezoid prism had an entrance angle of 64°, 

which exceeded the critical angle of 63.2° between the PMMA (n = 1.49 @ 635 nm) and 

the buffer solution (n = 1.33) and the critical angle of 42° between PMMA and air (n = 

1.0). The total surface area of the planar waveguide was 1.2 mm x 10 mm and could 

accommodate about 100 probe spots (diameter ~100 µm, center-to-center spacing = 

300 µm). The entire array could be imaged in a single exposure using evanescent field 

excitation and a highly sensitive rectangular CCD camera, which alleviated the need for 

additional optical mechanics to permit scanning of the array. The field-of-view of the 

optical setup was 12 mm x 3 mm.  

4.3.3 Operation of the Fluidic Cartridge 

Prior to analysis, PCR and LDR reaction cocktails were dispensed into the 

corresponding on-chip storage channels followed by loading sample suspended in the 

SPE immobilization buffer into the lysis channel. The fluidic cartridge was then 

connected to the control hardware through a fluidic interface bus. This bus allowed for 

all fluidic connections to be made in one step and at the same time, aligned the 

cartridge with the heaters used for thermal processing and solenoid plungers used for 

actuation of the on-chip membrane valves. During operation, the membrane valves 

were opened and closed according to a pre-programmed sequence of events to achieve 

the desired flow path of the sample and reagents through the fluidic network. 
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Processing sequence started with thermal lysis of the Mtb cells at 95 °C for 3 min 

followed by extraction of released gDNA using PPC-SPE module. After washing of the 

SPE bed with 70% ethanol and drying with air, extracted gDNA was released directly 

into a PCR cocktail and pumped through a continuous flow thermal reactor at an 

optimized flow rate, which allowed the sample to be processed through the PCR reactor 

in ~5 min after which time, the LDR cocktail was pumped out from its storage channel 

and mixed with the PCR product. Continuous mixing was achieved with a Y-type 

diffusional mixer consisting of 80 µm wide and 200 µm deep inlet and outlet channels 

(aspect ratio = 2.5). This mixer geometry provided complete mixing between PCR 

product and LDR reagents in 10 s at room temperature with a mixing rate limited by 

diffusion of the ligase enzyme (40 µm2/s). This mixing time corresponds to ~10 mm 

channel length at a combined flow rate of 1 µL/min. In order to accommodate higher 

processing speeds for future applications, we can incorporate an additional length of 

microfluidic channel into the flow path prior to the continuous flow LDR reactor and 

place it within the 95 °C temperature zone, which w ould increase the diffusion 

coefficient of the components by a factor of ~3.5 as compared to room temperature. The 

reaction mixture was then processed through the continuous flow LDR reactor and 

finally, through the universal array chip and to waste. The array was washed (2x SSC 

and 0.1% SDS) in order to elute any nonspecifically adsorbed fluorescent dye-labeled 

products and interrogated using a CCD camera at 635 nm excitation.  

4.3.4 Identification of Drug Susceptible and Resistant Strains 

Figure 4.4 shows results from a series of molecular assays using five different 

positive and negative control samples. The layout of the universal array is shown in 

Figure 4.4A. Spots C were amino and Cy5 double labeled oligonucleotide probes used  
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Figure 4.4 Universal array layout (A) and hybridization results from different input 
samples (B-E). C: Cy5 (5’ end) and amino (3’ end) double labeled oligonucleotide 
probes used as spotting control and markers; HC: zip3 probes used as hybridization 
controls; PC: positive controls targeted spiked positive control plasmid sequence; Mtb: 
Mtb-specific probed for the IS6110 insertion fragment. 516WT, 531WT and 526WT: 
probes targeted rifampin susceptible Mtb strains; 516MT, 531MT and 526MT: probes 
targeted rifampin resistant Mtb strains. Molecular assay results from rifampin 
susceptible Mtb strain (B), rifampin resistant strain (C), E. coli (D) and human genomic 
DNA (E). (F) shows molecular assay results when the thermal stage was turned off to 
simulate the hardware failure. 
 
as spotting quality control and mark spots. Spots HC were zip3 probes used as the 

hybridization control. Spots PC were used as positive control targeting spiked positive 

control plasmids in cell lysis buffer. PC were used to distinguish true negative samples 

(no TB infection) from the failure of DNA extraction, amplification or hybridization, either  
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a result from degraded bio-reagents, enzymatic inhibitors, or failed fluidic/thermal 

control. Spots Mtb were Mtb complex specific probes targeting the IS6110 insertion 

fragment. Wild-type spots, 516, 531 and 526, were used to target rifampin susceptible 

strains while mutation spots, 516, 531 and 526 used to target rifampin resistant strains. 

Figure 4.4B shows results from a cultured drug susceptible Mtb stain (H37Rv), while 

Figure 4.4C shows results from a cultured rifampin resistant strain (S531L) carrying a 

TCG → TTG mutation at codon 531 in the rpoB gene. Successful identification of the 

drug susceptible and resistant samples was demonstrated by the high fluorescence 

intensities from spots 531WT in Figure 4.4B and from spots 531MT in Figure 4.4C. 

The fluorescence intensities from the spots 531MT in Figure 4.4B and from the spots 

531WT in Figure 4.4C, respectively, were close to the background, which demonstrated 

excellent single base discrimination capabilities of the diagnostic tool package. In both 

Figures 4.4B and 4.4C, spots C, HC and PC showed high fluorescence intensities as 

expected. Figures 4.4D and 4.4E present negative control results run with a cultured E. 

coli sample and human genomic DNA, respectively. Figure 4.4F shows results obtained 

from a cultured drug susceptible Mtb strain (H37Rv); however, the heater at the PCR 

denaturation zone (95 °C) was intentionally turned off. The PC spots showed strong 

fluorescence signals in both Figure 4.4D and 4.4E but no fluorescence signal in Figure 

4.4F, demonstrating that the PC spots were successfully used as a positive control 

circumventing the false negative diagnostic results.  

We were also interested in evaluating the minimum number of Mtb cells required to 

provide reasonable signal-to-noise ratios using our system and whether results could 

meet the need for clinical diagnosis. To determine the limit-of-detection, molecular 

assays were conducted using a 10-fold serial dilution of cultured H37Hv cells as inputs. 
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As few as 50 Mtb cells could be successfully detected, representing a 100-fold 

sensitivity improvement compared to current clinical smear tests, which require 5,000 – 

10,000 bacilli in 1 mL of sputum.  

4.3.5 Identification of Hetero-resistance of Mtb Strains 

Hetero-resistance of Mtb is defined as the coexistence of mixed subpopulations of 

drug susceptible and resistant Mtb strains in the same patient, which is considered as a 

preliminary stage to full resistance. It is typically a result of super-infection arising under 

the selection pressure during antibiotic treatment. The occurrence rate of hetero-

resistance could be as high as 20% as reported in recent studies.11, 12 To evaluate the 

ability of our diagnostic tool for the identification of drug resistant Mtb strains in the 

presence of an excessive amount of drug susceptible strains, a series of artificial 

hetero-resistance samples containing a certain percentage of rifampin resistant strains, 

ranging from 0%, 1%, 2%, 5%, 10%, 50% and 100%, in drug susceptible stains of 

H37Rv were prepared and analyzed. The results are shown in Figure 4.5. The 

fluorescence signals from the 531MT spots increased with an increased percentage of 

the rifampin resistant strains present in the sample. The fluorescence signals from the 

spots 531MT were discernible when the rifampin resistant strains only constitute as little 

as 1% of the total population (see Figure 4.5). After background subtraction, the 

fluorescence signals from the spots 531MT run with samples containing 1% of rifampin 

resistant strains were calculated to be ~10-fold higher than fluorescence signals from 

those spots run with samples containing 0% of rifampin resistant strains (100% of drug 

susceptible strains). Therefore, less than 1% of the drug resistant strains can be 

discriminated when 3-times the standard deviation from nonspecific signals are used to 

determine the limit of specificity detection. Very low fluorescence signals from the 531M 
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spots were run with 100% of drug susceptible strains, which could be attributed to mis-

ligation and nonspecific hybridization. It has been noted that a T-G mismatch as used 

herein has the lowest fidelity for the Taq ligase.29 For other types of mismatches or a 

single-plex LDR assay, a lower percentage of drug resistant strains are expected to be 

discriminated.  

 

 
Figure 4.5 Identification of mixed population of drug susceptible and drug resistant Mtb 
strains. (A) Hybridization image; (B) fluorescence intensities.  
 
4.3.6 Colorimetric Module 

A colorimetric line probe assay was developed as detailed in section 4.2.6. Briefly, 

PMMA strips immobilized with zip-code line probes were prepared using a PDMS 

stencil containing a microchannel network (Figure 4.6B). 1.4 nm Nanogold labeled 

common primers replaced fluorescence dye labeled common primers as shown in 

Figure 4.6A. After LDR and hybridization, the nanogold acted as a catalytic site and 

resulted in large amounts of silver deposition, which was visible to the naked eyes and 

could be recorded by a digital camera. A drug susceptible Mtb stain (H37Rv) and a 
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rifampin resistant strain (S531L) were tested and the results are shown in Figure 4.6C. 

The successful development of the colorimetric line probe assay provides a cost-

effective and robust alternative to fluorescence readout.  

 

 
Figure 4.6 Schematic drawing and preliminary results of low cost colorimetric readout. 
(A) Schematic drawing of labeling, LDR and hybridization, silver developing chemistry. 
1.4 nm monomaleimido-functionalized Nanogold particles were covalently linked to a 3’ 
sulfhydryl-labeled LDR common primer. Ligation products were flanked by cZip 
sequences and nanogold particles, which can hybridize to the immobilized zip-code 
probes. The hybridization results were visible to the naked eyes after silver staining 
enhancement. (B) Fabrication of PMMA strips with line DNA probes. A PDMS sheet 
containing microchannel network of 250 µm wide and 1 mm spacing was physically 
sealed with a piece of oxygen plasma activated and EDC-NHS functionalized PMMA 
sheet by conformal contact. 50 µM zip-code oligonucleotide probes in pH 9.0 carbonate 
buffer were filled the microchannel. After one hour incubation, the PMMA sheet was 
cleaned and cut to 5 mm wide strips. (C) Preliminary results of colorimetric readout. A 
fast thermal cycling (15 cycles of 95 °C for 5 s an d 60 °C for 15 s using a bench-top 
thermocycler) in a modified LDR buffer was carried out for minimizing the possible 
degradation of the Nanogold-conjugated common primer. Drug susceptible and 
resistant Mtb strains were successfully identified by bare eyes and the image shown 
was recorded by a digital camera. WT: drug susceptible wild-type Mtb stains; MT: 
rifampin resistant Mtb strains. 
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4.4 Discussion 

Developing and implementing rapid and accurate MDR-TB diagnostic tools to high 

burden developing countries are of paramount importance to the Stop TB Strategy by 

the World Health Organization (WHO). NAATs that can identify MDR-TB by 

interrogating drug resistant related signature genetic mutations present a promising 

opportunity for rapid drug resistance assays. The WHO expert group recently 

recommended two line probe assays, INNO-LiPA Rif.TB from Innogenetics and 

MTBDRplus from Hain Lifescience, both of which employ multiplexed PCR reverse 

hybridization approach, for rapid screening of MDR-TB. However, the performance of 

line probe assays is compromised when a mixed population of drug resistant and 

susceptible bacterial subpopulations exists.10 This is because the conventional 

sequence-specific array hybridization is unable to detect low abundance single base 

mutations due to cross hybridization, especially in high GC content regions where 

secondary structures are prevalent, e.g. RRDR in rpoB gene. Quantitative PCR (qPCR) 

using molecular beacons or Taqman probes is another NAAT approach used by 

Cepheid’s GeneXpert MDR-TB assay and several other home-brew assays. However, 

there are several intrinsic limitations: first, only limited number of mutations can be 

interrogated in a single assay; second, hetero-resistant infection may lead to false-

negative results; third, silent mutations, which do not confer drug resistance, may lead 

to inaccurate interpretations and false-positive results.  

We have developed a NAAT using PCR-LDR-universal array hybridization 

approach, which decouples the mutation discrimination step from the hybridization step 

and employs a high fidelity Taq ligase. It has several attractive advantages for 

developing MDR-TB assays: (1) The closely clustered drug resistance mutations of 
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MDR-TB can be effectively interrogated. (2) Only the specific drug resistance mutations 

will generate positive results. Silent mutations not conferring drug resistance won’t 

generate false positive results using this assay strategy. (3) Hetero-resistance Mtb 

containing low abundance of drug resistant strains (<1%) in a patient with emerging 

drug resistance can be easily detected, which enables timely treatment strategy 

adjustments.  

After developing this highly specific molecular assay, the next challenge was how to 

implement this assay to low resource settings. Similar to line probe assays and qPCRs, 

the NAAT we developed is based on PCR amplification, which could detect the 

pathogen biomarkers from just a few DNA molecules, making it very sensitive 

contamination. Carryover contamination could be a serious problem in a clinical 

laboratory because a large amount of same types are carried out on a daily basis. 

Therefore, sophisticated laboratory infrastructure, such as segregated, controlled 

environment rooms for uni-directional work flow of DNA extraction, pre-PCR, PCR 

amplification, and post-PCR hybridization and extensively trained personnel must be 

enforced to ensure reliable results, which hampers the wide implementation of NAATs 

and creates a gap between advanced diagnostic technology and healthcare needs in 

developing countries. This gap has been acknowledged by a panel of global healthcare 

experts and they ranked “modified molecular technologies for affordable, simple 

diagnostics of infectious diseases” as the highest priority in biotechnologies directed for 

improving health in developing countries in the next 5 to 10 years.30 Fully-integrated 

point-of-care (POC) genosensor systems using the lab-on-a-chip concept that can 

accept crude biological samples and automatically perform multi-step molecular assays 
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in an enclosed, disposable format is one of the most promising enabling technologies to 

bridge the gap.  

Significant progress has recently been made in the development of partially or fully 

integrated systems,31-36 which represent the summit of technologists’ capabilities in 

fabrication and manufacturing. However, the disconnections between these delicate and 

comprehensive proof-of-concept devices and the desired robust end-user diagnostic 

tools are also apparent. Several issues need to be taken into consideration in designing 

real world diagnostic tools.36 For example, the economic conditions in the developing 

countries rule out the use of expensive silicon/glass materials and clean room 

manufacturing procedures. The transportation cost for the fragile silicon/glass material 

may be prohibitive. The regeneration and/or reassembling of the microfluidic chip32 are 

an unachievable task for under trained health workers. After carefully evaluating these 

constrains, we developed a disposable fluidic cartridge and a control instrument for 

delivering the NAAT to resource limited settings. First, the fluidic cartridge used a hybrid 

modular architecture, which combined several task-specific modules interconnected to a 

fluidic motherboard with the material selected to optimize performance. These modules 

included a UV-photoactivated polycarbonate (PPC) module containing micropillars for 

solid phase DNA extraction and purification and another module made from 

poly(methylmethacrylate), PMMA, consisting of a planar waveguide array. The solid 

phase extraction module was made from PC due to its high specificity for the 

condensation of nucleic acids to its surface when photoactivated and PMMA was used 

for the array module because of its excellent optical properties, simple surface 

activation protocols and robust attachment chemistry of oligonucleotides to its surface.  
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The thermal reactions were carried out on a fluidic motherboard also made from PC due 

to its high glass transition temperature to withstand thermal processing without 

experiencing structure deformation. In addition, the fluidic control system was also 

poised on this motherboard and consisted of several on-chip valves made from a PC 

membrane serving as the cover plate for the fluidic network, which has a large 

elongation at break point to allow reversible operation of the valves even when 

employing traditional non-elastomeric materials. The fluidic cartridge can also be easily 

reconfigured, for example, the fluorescence universal array readout module can be 

reconfigured to a colorimetric readout module to further reduce instrument cost. As 

opposed to a monolithic approach31-35 or a LEGO approach37, 38 already reported in the 

literature, the hybrid modular structure balanced the efficiency and flexibility in fluidic 

cartridge design. Second, robust and low-cost manufacturing processes have been 

developed. The disposable fluidic cartridge presented in this paper was fabricated by a 

one-step replication process from a metal mold insert containing multi-scale and 

complex structures (e.g. micropillar bed, waveguide prism, etc.). In addition, the number 

of active components on the disposable fluidic cartridge was minimized and designed to 

be compatible with mass production processes, e.g. on chip membrane valves. Thermal 

management (e.g. heaters, temperature sensors, etc.), optical detection and most of the 

fluidic manipulation (e.g. pumps) are operated by off-chip supporting peripherals 

packaged in a cubic foot sized box. Finally, minimal end-user operation is required. 

Tedious pre- and post- processing steps, such as loading silica beads for DNA 

purification or regeneration/reassembly of the fluidic cartridge,31, 32 are difficult tasks for 

untrained healthcare workers in resource-limited settings. The operator only needs to 

load the patient sample and push a run button to use the diagnostic tool presented in 
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this paper. On chip storage of dried bio-reagents is under investigation, which will 

further reduce the work load of the end-user to sample loading only.  

In summary, the development of the accurate, fast and affordable diagnostic tool 

package presented here demonstrates a unique modular concept consisting of task 

specific modules interfaced to a fluidic motherboard. The performance of the diagnostic 

tool has been validated by cultured drug susceptible and drug resistant Mtb strains. As 

little as 1% of rifampin resistant Mtb strain could be discriminated from artificial hetero-

resistance samples containing a mixed subpopulation of drug susceptible and resistant 

Mtb strains. When challenged with smear positive clinical sputum samples, the results 

from our diagnostic tool were consistent with the clinical records. Compared to the 

turnaround time of 8 – 12 weeks for DST and 1-2 days for line probe assays available in 

centralized laboratories, our system was able to identify MDR-TB in less than 40 min, 

which will contribute significantly to the MDR-TB case treatment and management. The 

total cost of the diagnostic tool package with fluorescence detection is around $15,000, 

with the disposable of <$10 per test. Lower cost systems (<$8,000) using colorimetric 

hybridization readout or conductivity hybridization readout are under development. 

Recently, a variety of mutations closely related to XDR-TB have been reported. By 

incorporating multiplex PCR and additional LDR primers, the diagnostic tool we 

presented here can also be expended to detect gene mutations responsible for second 

line drugs resistant Mtb (XDR-TB). It also holds the potential to be a universal platform 

for identifying genetic signature sequences and mutations in a variety of disseminated 

applications, including clinical diagnosis, forensic test and bioterrorism detection, in both 

developing and developed countries. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

“One could argue that miniaturized chemical analysis systems are just a fashionable 

craze. However, it is difficult to foresee the impact a new technological concept will have, 

when it is in its early stages of development.” (Manz et al. “Miniaturization of chemical-

analysis systems – a look into next century technology or just a fashionable craze?” 

Chimia 1991, 45, 103-105).1  

The last twenty years have witnessed microfluidics evolve from a concept first 

proposed by Manz et al.2 to one of the hottest research frontiers. A variety of single 

functional microfluidic devices and fluidic manipulation components have been 

developed. However, these more and more sophisticated single functional devices are 

more of “fashionable crazes” than impactful technologies. The gap between 

microfluidics and the real world needs is still significant. The ultimate question, what is 

the “killer application” of microfluidics, is yet to answer.  

An integrated and modular microfluidic cartridge and a fully automated 

instrumentation in this dissertation present our efforts to explore the “killer application” 

aiming to bridge the gap between the microfluidic system and the diagnostic needs in 

the resource limited settings. Fully integrated microfluidic systems are designed to 

automatically perform all of the molecular processing steps in a single platform to 

provide sample in/answer out capabilities. A series of discrete microdevices carrying out 

specific molecular functions such as cell lysis, nucleic acid extraction and/or purification, 

PCR amplification, and analysis techniques for reading successful PCRs are 

interconnected to process the sample volume at the picoliter to nanoliter scale. In 

chapter 1, we reviewed the various microdevices that have been fabricated to handle 



154 
 

functional steps in the processing of nucleic acids, followed by several significant 

examples of integrated microfluidic systems with DNA microarrays used as the terminal 

readout. The applications of these systems, as well as future challenges were 

discussed.  

In chapter 2, an integrated modular-based microfluidic system for rapid and specific 

identification of methicillin-resistant Staphylococcus aureus (MRSA) was demonstrated. 

MRSA is a major cause of hospital-acquired (HA-MRSA) infection worldwide. In recent 

years, community acquired-MRSA (CA-MRSA) strains, which cause severe infections, 

are emerging as a serious problem. A multiplexed PCR/LDR coupled with the universal 

array allowed for simultaneous detection of five genes that encode for 16S ribosomal 

RNA (SG16S), the protein A (spa), the femA protein of S. epidermidis (femA), the 

virulence factor of Panton-Valentine leukocidin (PVL) and confer methicillin resistance 

(mecA). The multi-step assay included continuous flow PCR (CF PCR) amplification of 

the mecA gene harboring methicillin resistance loci that can provide information on drug 

susceptibility, continuous flow ligase detection reaction (CF LDR) to generate 

fluorescent ligation products containing a zip-code complement that directed the ligation 

product to a particular address on a universal array containing zip-code probes and 

universal DNA array readout, which consisted of a planar waveguide for evanescent 

excitation. Each of these processing steps was optimized individually before they were 

streamlined. The fluidic cartridge design was based on a modular format, in which 

certain steps of the molecular processing pipeline were poised on modules made from a 

thermoplastic selected for the particular processing step. In addition, to minimize the 

post-processing steps for finishing the fluidic cartridge, many of the functional 

components were produced during the polymer molding process, enabling low-cost 
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manufacture for one-time use applications. The cartridge was comprised of one module 

interconnected to a fluidic motherboard configured in a 3-dimensional network; the 

motherboard was made from polycarbonate, PC, and used for PCR and LDR, while the 

module was made from poly(methylmethacrylate), PMMA, and contained an air-

embedded waveguide and the DNA array. Fluidic handling, thermal management and 

optical readout hardware were located off-chip and configured into a small footprint 

instrument. Results indicated that this modular system could differentiate CA-MRSA 

from HA-MRSA based on the presence/absence of the PVL gene as well as S. aureus 

from other Staphylococcal species using the sequence content in the femA gene. This 

system can identify several strains of bacteria in <40 min and detect MRSA directly from 

a mixture of Staphylococci.  

In chapter 3, the fluidic system for bacterial genotyping was further integrated with a 

micro-solid phase extraction (micro-SPE) device. The sequence of sample processing 

steps performed within the fluidic cartridge including cell lysis, SPE of genomic DNA 

(gDNA) from the whole cell lysate, CF PCR amplification of specific gene fragments, CF 

LDR to detect single-base sequence variations and universal zip-code array readout. 

The fluidic cartridge was composed of a PMMA module situated on a PC motherboard; 

the PC motherboard was used for cell lysis, SPE, PCR and LDR, while the PMMA 

module contained an air-embedded planar waveguide in which a DNA microarray was 

spotted. The utility of the modular system was demonstrated by performing pathogen 

detection directly from whole E. coli O157:H7 and Salmonella cells using a duplexed 

PCR followed by multiplexed LDR with readout via a low-density universal array. The 

presence of two genes, uidA and sipB/C, that discriminate between E. coli and 

Salmonella, was evaluated as a model system. Results showed that the fluidic system 
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could successfully identify several strains of bacteria in <40 min and also perform strain 

identification, even from a mixed population with the target a minority. We further 

demonstrated the ability to analyze the E. coli O157:H7 strain directly from a waste-

water sample with high specificity using the integrated system.  

In chapter 4, a fully integrated and field deployable system for identifying multi-drug 

resistant tuberculosis (MDR-TB) was presented. The worldwide concern of MDR-TB 

resulting from Mycobacterium tuberculosis (Mtb) strains that fail to respond to the first-

line drugs, rifampin and isoniazid, creates a formidable challenge in formulating global 

plans to eradicate this disease. Less than 5% of new MDR-TB cases occurring each 

year are diagnosed and treated in a timely fashion due to the length (8 – 12 weeks) and 

complexity of traditional cell culture in vitro diagnostic methods. In response to WHO’s 

call for fast and accurate MDR-TB diagnostic tools, especially those that can be 

operated by under-trained healthcare workers in resource limited settings, in chapter 4 

the modular system was adapted for interrogating single nucleotide variations in the 

rpoB gene associated with rifampin-resistant Mtb strains. All steps of the multi-step 

molecular assay, including Mtb cell lysis, SPE of gDNA, PCR amplification, ligation-

based discrimination/identification of single nucleotide variations and universal array 

readout were incorporated into a disposable plastic fluidic cartridge. The cartridge was 

comprised of two modules, the SPE module and the waveguide module, which were 

interconnected to a fluidic motherboard that consisted of devices for cell lysis, PCR and 

LDR. The integrated system could identify MDR-TB strains directly from clinical sputum 

samples in <40 min with minimal risk of human errors or cross-contamination. This 

diagnostic tool will revolutionize MDR-TB and other infectious disease diagnostic testing 
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in both developed and developing countries due to its ease of implementation and 

highly automated format.  

5.2 Future Work 

Generally, an integrated microfluidic system that streamlined several critical steps in 

genetic-based analyses, including cell lysis, SPE of nucleic acids, their amplification, 

determination sequence variations and readout has been demonstrated in this 

dissertation. It can be easily reconfigured according to requirements of the specific 

application need. The next challenge is to analysis trace or low-abundance samples that 

are critical in clinical and other applications. In most cases, cells or targets of interest in 

real-world samples, such as tissue, blood, soil, water or food samples are trace or low-

abundant and complex and thus, need to undergo careful sample preparation for 

sensitive detection.3 Also, raw samples are often large in volume for microfluidic 

analysis, and this discrepancy in volumes makes pre-concentration necessary due to 

time constraints and the need for rapid detection. A typical example is the detection of E. 

coli O157:H7 where as few as 10 cells must be detected from a large sample volume 

and complex sample background. Therefore, the next critical step is the integration of 

cell isolation and pre-concentration process through a variety of cell separation and 

capture techniques onto the current microfluidic platform. Several approaches, such as 

affinity-based selection,4, 5 physical properties,6, 7 dielectrophoresis,8-10 immunomagnetic 

interactions11 and fluorescence-activated cell sorting,12, 13 have been reported to sort 

and to collect target cells from raw samples and can be integrated into microfluidic-

based systems. One of the most attractive applications of this system is to analysis 

circulating tumor cells (CTCs). CTCs present an exciting new biomarker for various 

cancers, such as breast, colon, lung, prostate, ovarian, pancreas and bladder cancer. 
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The attractive feature associated with these biomarkers is that they can be secured 

from a simple blood draw, alleviating the need for biopsies. The analytical challenge 

with finding these biomarkers is they appear at only about 1 cell per 109 erythrocytes 

(red blood cells). Such studies have already begun by colleagues within the Soper 

research group for front-end cell capture using target-specific antibodies14, 15 or 

aptamers16 immobilized onto a miniaturized microfluidic device.  

 

 
 
Figure 5.1 Schematic of the modular fluidic cartridge. The fluidic cartridge has 3 
modules: cell selection (2), gDNA SPE isolation/purification (3) and universal array 
readout (4). These modules are interconnected into a fluidic mother board (1) that 
contains thermal domains for performing cell lysis, PCR and LDR. Heating of the 
thermal reaction domains is carried out by placing the fluidic cartridge on Cu heating 
blocks set at the necessary temperatures. Also shown are locations of on-chip valves 
(V), pumps (A, D and E) and high-aspect ratio mixers (M). A – sample input; B – lysing 
and SPE buffer; C – SPE (elution buffer, ethanol and air); D – PCR cocktail; E – LDR 
cocktail; G – vacuum pump; H – waste. 
 

The fluidic cartridge (see Figure 5.1) is composed of 3 modules that are used for 

cell selection (2), gDNA SPE isolation/purification (3) and universal array readout (4). 

These modules are interconnected into a fluidic motherboard that contains processing 

steps for cell lysis, PCR and LDR. In this work, the cell sorting module is fabricated in 

PMMA due to its tendency to display minimal cell non-specific adsorption artifacts.14 
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Crude biological samples are introduced and driven through the cell selection bed. 

Following isolation of the target cells, they are lysed and the gDNAs are purified via 

SPE. The purified DNAs are subjected to PCR amplification and LDR. Finally, the LDR 

products are directed to a specific location of the universal array and hybridization 

events are detected using evanescent excited fluorescence. The system provides a 

cost-effective solution to direct sample-to-answer genetic analysis and thus, has a 

potential impact in the fields of gene expression analysis, pathogen and infectious 

disease detection and low-abundant DNA point mutation diagnostics, environmental 

testing and biological warfare agent detection. In addition to PCR/LDR/universal zip-

code array assay platform, the modular fluidic cartridge could be reconfigured for use 

with other assay formats, such as PCR-µCE.  
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