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ABSTRACT 

                  This dissertation describes the first total synthesis of alloviroidin in trace amounts, along with 

that of three analogs containing L-proline (Pro), trans-3-hydroxyproline (3-Hyp) or cis-4-

hydroxyproline (4-hyp) residue substituting for 2,3-trans-3,4-trans-dihydroxyproline in the natural 

product.  

                 We report herein an efficient strategy that provides a dipeptide containing a (2S,4S)-4,5-

dihydroxyleucine (dihyLeu) residue, including a diastereoselective dihydroxylation. Nα-

Carbobenzyloxy-(2S)-4,5-dehydroleucine was coupled with valine ethyl ester to give a dipeptide that 

was subjected to a Sharpless asymmetric dihydroxylation to introduce the diol. The relative 

configuration at C4 was assigned as S by X-ray crystallography after derivatization as an α-amino-γ-

lactone hydrochloride salt. 

                  The preparation of the 2-(methylsulfonyl)tryptophan residue is described followed by 

incorporation into a tetrapeptide, Fmoc-Ala-[2-MeSO2]-Trp-diHyLeu(OTBS)-Val-OEt. An efficient 

synthesis of four tripeptide fragments is also described: Fmoc-D-Thr(OTBS)-D-Ser(OTBS)-Pro*-OBn, 

where Pro* represents Pro, 3-Hyp, 4-hyp and DHP. These tripeptides were assembled via a [2+1] 

coupling between Fmoc-D-Thr(O
t
Bu)-D-Ser(O

t
Bu)-OH and the appropriate proline benzyl ester. The 

acid labile side-chain protecting groups were swapped out for fluoride-labile silyl ethers.   

                  Linear heptapeptides were prepared via [3+4] fragment condensations between the series of 

four tripeptide acids Fmoc-D-Thr(OTBS)-D-Ser(OTBS)-Pro*-OH and the tetrapeptide amine H-Ala-[2-

MeSO2-Trp]-diHyLeu(OTBS)-Val-OEt. Deprotection of the N- and C-terminii, followed by cyclization 

and global side chain deprotection generated our target cyclopeptides. Removal of excess TBAF reagent 

and salts formed as byproducts during ethyl ester and silyl ether deprotections was achieved by 

treatment with DOWEX 50WX8-400 H
+
 resin and calcium carbonate. This procedure led to reasonable 



xvi 

 

yields of the three analogs but afforded only trace amounts of the natural product after HPLC 

purification. 

                 We examined the conformational preferences of dipeptide fragments Ac-D-Ser-Pro*-NHMe 

(in both free and TBS protected side chains of D-Ser and Pro* residues) using computational studies. 

The computational analyses confirm that the ratio of trans:cis conformers varies with the degree, regio- 

and stereochemistry of proline hydroxylation. These equilibrium constant about the prolyl amide bond 

calculated for these dipeptides are in qualitative agreement with those determined by NMR for 

tripeptides Fmoc-D-Thr-D-Ser-Pro*-OBn (in both free and TBS protected side chains).  
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

 

1.1  STRUCTURE AND OCCURRENCE OF AMANITA TOXINS 

The virotoxins are cyclic heptapeptides derived from species of mushrooms known as  

Amanita virosa
1
 and Amanita suballiacea,

2
 also commonly referred to as the “destroying angels.”

 
The 

name “destroying angel” refers to the fact that even though Amanita is pure, like an angel‟s veil, and 

strikingly beautiful, it turns out to be deadly.
3
 These species share several toxic peptides with those 

isolated from Amanita phalloides, the “death cap.” 

Virotoxins closely resemble phallotoxins morphologically and pathogenetically.
4, 5

 The major 

structural difference is that the virotoxins are monocyclic in nature, while the phallotoxins are bicyclic. 

Furthermore, three of the seven amino acids of the virotoxins differ from the corresponding residues in 

phallotoxins (Fig. 1.1). These are the 2,3-trans-3,4-cis-3,4-dihydroxyproline vs. cis-4-

(allo)hydroxyproline in position 4 (hyp), D-serine vs. L-cysteine in position 3, and finally, the thioether 

bridge between tryptophan and cysteine in the phallotoxins is replaced by a non-bridging 2‟-

(methylsulfonyl)tryptophan in the virotoxins. The variation in side chains, leading to the six different 

virotoxins, and their proportions, as isolated from Amanita virosa, are given in Table 1.1.
1
  

 

Amanita 

phalloides 

“death cap” 
 

Phalloidin (1) 
 

     Amanita virosa 

   “destroying angel” 

Virotoxin  

Figure 1.1. Amanita mushrooms and prototypical members of the phallotoxins and virotoxins. 
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Table 1.1: Natural virotoxins isolated from Amanita sp. R
1
-R

3
 and X are as defined in Figure 1.1. 

Compound 

Number 
Name X R

1
 R

2
 R

3 Percent of 

total* 

2 Viroidin SO2 CH(CH3)2     OH  CH3 18 

3 Alloviroidin SO2 CH(CH3)2 CH3 OH ** 

4 Desoxoviroidin SO CH(CH3)2 CH3 OH 4 

5 Ala
1
-viroidin SO2 CH3 CH3 OH 

} 10 
6 Ala

1
-desoxoviroidin SO CH3 CH3 OH 

7 Viroisin SO2 CH(CH3)2 CH2OH OH 49 

8 Desoxoviroisin SO CH(CH3)2 CH2OH OH 19 
 

* Of extract from Amanita virosa.
1
 

** Isolated from Amanita suballiacea.
2
 

In the nomenclature of the virotoxins and phallotoxins, the suffix “-din” denotes a two-fold 

hydroxylated side chain of residue seven and “-sin”, a three-fold hydroxylated one.
6  

From Figure 1.1 

and Table 1.1, it can be seen that the features common to both phallotoxins and virotoxins are the D-

threonine in position two, L-alanine in position five, and L-leucine, with a varying degree of 

hydroxylation in position seven.  

Although virotoxins were initially isolated from, and presumed unique to, Amanita virosa,
1
 

Little et al. demonstrated that these compounds exist in Amanita suballiacea too.
2
 They found that, of 

the virotoxins (1.3 mg/g of dry weight tissue) in Amanita suballiacea, viroisin represented 75% of the 

total; alloviroidin and viroidin represented 15 and 9-10% respectively, while Ala
1
-viroidin was detected 

in levels of less than 1% (Table 1.2).
2 

 

Table 1.2: Natural virotoxins isolated from Amanita suballiacea.
2
 R

1
-R

3
 and X are as defined in Fig. 

1.1. 

    Compound  

       Number 
        Name    X          R

1
       R

2
      R

3 
  Percent of total 

            2        Viroidin   SO2     CH(CH3)2      CH3     OH           9-10 

            3     Alloviroidin   SO2     CH(CH3)2      OH     CH3            15 

            5     Ala
1
-viroidin   SO2          CH3      CH3     OH            <1 

            7        Viroisin   SO2     CH(CH3)2   CH2OH      OH            75 



3 

 

It was established that alloviroidin and viroidin have identical molecular weights and affinity for actin. 

The only difference between alloviroidin and viroidin lies in the configuration at C4 in the 4,5-

dihydroxyleucine residue. This was found to be 2S,4S in alloviroidin, in contrast to 2S,4R in viroidin and 

phalloidin.
2
 

 

1.2 BIOLOGICAL ACTIVITY AND POTENTIAL APPLICATIONS 

Mushrooms of the genus Amanita account for most of the fatal intoxications by mushrooms 

following ingestion. In his book on peptides of poisonous Amanita mushrooms, Theodor Wieland states 

that, “the actual number of victims due to poisonous Amanita mushrooms throughout history is 

unknown.”
6
 The term fungus is derived from the Latin word funus (= funeral). High concentrations of 

toxins are found in the carpophores (fruiting body). Biological studies have shown that one mature 

destroying angel or death cap can contain a fatal dose of 10-12 mg of toxin.
1, 7, 8

 According to Wieland,
1
 

both phallotoxins and virotoxins cause the death of experimental white mice within two to five hours of 

administration. The toxins target the liver, causing it to swell due to hemorrhage.
9
 It is speculated that 

the mechanism of intoxication of these peptides involves binding to the liver cell actin.
1
 The 

physiological role of these peptides in mushrooms is not well understood, however, it is presumed that 

phallotoxins and virotoxins could be playing a role in cellular functions involving contractile apparatus.
1
 

The phallotoxins bind and stabilize filamentous F-actin, lowering the critical concentration of 

actin monomers in solution. This is fascinating, since derived monocyclic compounds, such as 

desthiophalloidin do not show affinity for actin. Monocyclic derivatives of phallotoxins can be 

generated by either cleavage of a peptide bond or removal of the sulfur atom forming the thioether 

bridge (Scheme 1.1). According to Wieland,
10

 the peptide bond between γ-hydroxylated side chain 7 and 

the amino acid in position 1 was readily cleaved upon treatment with mild acid to generate 
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secophalloidin (10) that was found to be non-toxic. Also, hydrogenolysis with Raney nickel assisted in 

removal of the sulfur atom forming part of the thioether bridge and delivered monocyclic 

desthiophalloidin (9) that was also biologically inactive (Scheme 1.1). 

Scheme 1.1. Simplified rendition of key degradation reactions. 

 

Phalloidin is widely used to study actin dynamics in vitro and its fluorescent analogs
11-14

 have been used 

for microscopic visualization of the actin cytoskeleton. Structure-activity studies have shown that the 

γ,δ-dihydroxyleucine residue is not essential for actin binding
15, 16

 and therefore the hydroxyl side chain 

of this amino acid has been derivatized to generate fluorescent analogs of phalloidin.
11, 13, 17, 18

 Wieland 

and co-workers oxidized phalloidin to ketophalloidin (11), and subsequently derivatized with 2,3-

dimercaptopropylamine introducing an amino nucleophile that served as a link to a fluorescein (Scheme 

1.2).
19

  

Scheme 1.2 Derivatization of phalloidin and attachment to a fluorophore. 
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Some of the examples of commercial dyes that have been used to synthesize fluorescent phallotoxin 

derivatives are shown below (Fig. 1.2). 

 

 

 

 

 

Figure 1.2. Fluorescent dyes that have been conjugated to phalloidin. 

Visualization of actin fibers in mammalian cells revealed that phallotoxins bind to filamentous actin 

forming a 1:1 complex with each protomer in the filament.
1
 However, the molecular mechanism of 

virotoxin interaction with actin was presumed to be different given the monocyclic nature of these 

natural products. 

Actin is a dynamic network of filaments made up of a monomeric 43 kDa protein, known as 

G-actin that self assembles into polymeric F-actin (Fig. 1.3).
20

 Actin plays a major role in the process of 

cell division, migration and transmission of signals by tethering protein complexes to specific domains 

of the plasma membrane.
21

  

 

Figure 1.3. Conceptual representation of actin polymerization. 

In 2003, Giganti and Friederich noted that structural and functional perturbations of the actin 

cytoskeleton in cancer cells correlate with higher proliferation rates and uncontrolled movement.
21

 



6 

 

These authors pointed out that small molecules targeting the actin cytoskeleton are possible candidates 

for cancer chemotherapy. Also, compounds that act on actin may be used in designing anti-parasitic 

drugs since unicellular and multicellular parasites rely on the actin cytoskeleton for invasion and 

reproduction in the host.
21

 In addition to their potential as therapeutic compounds, inhibitors of cell 

motility are invaluable research probes for understanding the process of cell movement and its roles in 

the biology of the organism.
22

     

 

1.3  BIOSYNTHESIS 

A biosynthetic route to virotoxin from phallotoxin was proposed by Faulstich et al. (Scheme 

1.3).
1
  Methylation of the thioether bridge, followed by a β-elimination, hydration of the dehydroalanine, 

oxidation of the sulfur atom and hydroxylation of the hyp residue would generate viroidin.
1
 It is worth 

mentioning that the order of events toward the end of the pathway could vary. 

Scheme 1.3. Sequence of reactions that would convert a phallotoxin-type precursor into a virotoxin.
1
 

 

A recent genomic study by Hallen et al. to identify genes involved in the biosynthesis of the 

amatoxins and phallotoxins demonstrated that these compounds, produced by Amanita bisporigera – 
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another destroying angel – are the first known example of cyclic peptides to be produced by ribosomal 

peptide synthesis in a fungus.
23

 The genome of Amanita bisporigera was shotgun-sequenced to 

approximately two times the coverage of the genome by a combination of automated Sanger sequencing 

and pyrosequencing. The sequences were then compared to known bacterial and fungal nonribosomal 

peptide synthetases, in addition to searching the genome for DNA encoding amanitins‟ amino acid 

sequence. It was established that the genome of Amanita bisporigera contains related sequences that are 

characterized by a conserved “toxin” region of seven to ten amino acids (Fig. 1.4). The presence of 

proline residues immediately upstream of the toxin region and as the last amino acid in the toxin region 

suggested the involvement of a proline peptidase in the initial post-translational processing of these 

proproteins.
24

 The toxins are therefore conceived to be synthesized as proproteins from which they are 

predicted to be cleaved by a prolyl oligopeptidase (Fig. 1.4). The report concludes that the fungi have 

evolved a unique mechanism of combinatorial biosynthesis that gives them the ability to biosynthesize 

cyclic peptides.  

 

 

 

Figure 1.4. Ribosomal cyclic peptide synthesis in a fungus. 
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1.4  PREVIOUS SYNTHETIC STUDIES AND ANALOGS 

Earlier attempts at the generation of Amanita toxins involved partial synthesis from the 

natural product. The peptide bond between residues 1 and 7 was readily cleaved upon treatment with 

acids, accompanied by lactonization of the dihydroxyleucine residue (vide supra, Scheme 1.1). 

Hydrolysis of the lactone, followed by recyclization using the mixed anhydride method regenerated the 

natural product (Scheme 1.4).
25 

Scheme 1.4. Partial synthesis of phalloidin from the natural product. 

 

 

Typically, formation of peptide bonds via a mixed anhydride involves separate activation of the acid by 

adding isobutyl chloroformate to a solution of the peptide acid and N-methylmorpholine (Scheme 

1.5).
26-28

 The amine nucleophile is then added in the second step to form the peptide bond. 

Scheme 1.5. Formation of peptide bonds via a mixed anhydride method. 
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1.4.1  Kahl and Coworkers
29

 

In 1983, Kahl and co-workers reported the synthesis of four virotoxin-like, F-actin-binding 

heptapeptides with cis-4-hydroxy-L-proline substituting for dihydroxyproline. The dihydroxyleucine 

residue of the natural toxins was replaced with either L-leucine or hydroxyleucine, after being found not 

to be vital for biological activity.
1
 Two of these analogs, 22 and 23, were found to have an affinity for F-

actin ca. five times lower than that of viroisin. None of the analogs was toxic up to 10 mg/kg body 

weight of the white mouse. 

 

Table 1.3: The virotoxin analogs and their constituent amino acid residues.  

         Residue 

                    

 Analog                    

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

20 Ala D-Thr D-Ser hyp Ala 2-MeS-Trp Leu 

21 Ala D-Thr D-Ser hyp Ala 2-MeSO2-Trp Leu 

22 Val D-Thr D-Ser hyp Ala 2-MeS-Trp hyLeu 

23 Val D-Thr D-Ser hyp Ala 2-MeSO2-Trp hyLeu 

 

 

Synthesis of analogs 20 and 21 was conducted according to Scheme 1.6. The linear 

precursor, with allo-hydroxyproline at the C-terminus, was chosen, since this residue would not 

racemize during peptide bond formation. Generation of the required linear heptapeptide 24 was achieved 

through stepwise C→N elongation using DCC/HOBt as coupling reagents. The linear heptapeptides 

were then cyclized using the mixed anhydride method (i.e., 25→26, Scheme 1.6). Cyclization was 

followed by modification of the Trp residue to give analogs 20 and 21 that differ in the oxidation state of 

sulfur. 
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Scheme 1.6. Synthesis of virotoxin analogs 20 and 21. Reagents for advanced steps: a. TFA; b. 1. 
i
BuOCOCl, DMF, THF, 2. NMM; c. MeSCl, HOAc; d. 30 % H2O2, HOAc. 

 

 
 

 

 

 Analogs 22 and 23 were prepared via fragment condensation, substituting Val for Ala at 

position 1 (Table 1.3). Their fragment condensation synthesis is summarized in Scheme 1.7. For the 

synthesis of these γ-hydroxyleucine containing analogs, ring closure between the hydroxyleucine as the 

C-terminal site and valine was said to be “inevitable to avoid cleavage of peptide bonds via lactonization 

under acidic conditions (vide supra).”
29

 Lower yields were obtained for the cyclization step, than in 

Scheme 1.6, since both valine and the hydroxyleucine residues are sterically demanding. 



11 

 

Scheme 1.7. Synthesis of virotoxin analogs 22 (9 % cyclization yield) and 23 (2.6 % cyclization yield). 

Reagents: a. TFA/CH2Cl2; b. Sephadex LH-20, 0.004M NH3; c. 1. 
i
BuOCOCl, DMF, THF, 2. NMM. 

Compound 23  was prepared in analogous fashion. 

 
 
 

 
 

During the synthesis of analogs 20 and 21, the methylsulfonyl group was introduced onto the 

indole ring after cyclization of the tryptophan-containing heptapeptide, while for analogs 22 and 23, the 

2-methyl-thio-L-Trp was incorporated at the level of the building block. 

 

1.4.2  Zanotti and Coworkers
30

 

In 1999, Zanotti and coworkers concluded that the configuration of the amino acid preceding 

the prolyl residue is vital for the biological activity of virotoxins (vide supra). Four viroisin analogs (21, 

and 30-32), were synthesized by cyclizing the linear heptapeptides H-Ala-D-Thr-X-hyp-Ala-2-

MeSO2Trp-Leu-OH and these cyclic heptapeptides were subjected to conformational analysis by NMR 

as well as to an actin binding assay (Table 1.4). 
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Table 1.4: Cyclization yields and actin affinities of viroisin analogs relative to viroisin. 

 
 

   

    Entry 

 

Compound 

 

X 

 

Cyclization Yield 

(%) 

Relative affinity for actin 

analog 

Viroisin=1.0 

1 7  (viroisin) - - 1.0 

2 21 D-Ser 19 0.2 

3 30 D-Ala 32 0.076 

4 31 L-Ser 13 0.005 

5 32 L-Ala 16 <0.001 

 

In their study, L-valine was replaced by L-alanine for ease of coupling, while commercially 

available L-allo-hydroxyproline and leucine served as surrogates for dihydroxyproline and 

dihydroxyleucine respectively. Their best analog 21 loses half an order of magnitude binding affinity for 

actin relative to viroisin (Table 1.4, entry 2). Synthesis of 21, and 30-32 was performed in the solution 

phase, although with a different strategy to that of Kahl and coworkers.
29

 Of particular note, was that the 

2-methylthio-substituent was introduced into the Trp building block prior to incorporation into the 

peptide. In addition, the heptapeptide was generated through condensation of tripeptide and tetrapeptide 

fragments. The tri- and tetrapeptide fragments were assembled using the mixed anhydride method with 

typical coupling yields of 46-100 %.  A [3+4] fragment condensation between Ala/D-Thr residues was 

carried out using HBTU to generate linear heptapeptides with yields of 60-75 %. The cyclization was 

conducted using HBTU and the yields for compounds 21, and 30-32 are shown in Table 1.4. Details of 

the synthetic work are shown in Scheme 1.8. 
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Scheme 1.8. Synthesis of viroisin analog 21. Reagents: a. 0.4 mmol K2CO3, DMF;  b. 10 eq. TFA, 

CH2Cl2; c. HBTU, DMF, DIEA; d = neat TFA. Compounds 30-32 were prepared in analogous fashion. 

 

 

 

 

 

1.4.3         Ongoing Synthetic Studies 

1.4.3.1  Guy and Coworkers
31

 

  In 2005, Guy and co-workers used a solid-phase synthesis approach to prepare Ala
7
 

phalloidin (Scheme 1.9).
31

 These authors were interested in developing a rapid and efficient approach to 

phallotoxins that would allow the synthesis of a diverse library of compounds. According to their 

retrosynthetic analysis (Scheme 1.9), the initial plan involved disconnecting ring A between the Trp
6
 

amino group and Ala
5
 carboxyl group to reveal orthogonally protected intermediate 34. The second 
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disconnection between the Trp
6
 and Ala

7 
residues led to intermediate 35, which was disconnected further 

according to Scheme 1.9. 

Scheme 1.9. Guy and co-workers‟ retrosynthetic analysis of Ala
7
 phalloidin

31
 

 

 

In their synthesis, the hydroxyl side chain of hyp
4
 was utilized as the point of attachment to the resin via 

the acid labile tetrahydropyranyl polystyrene linker (THPP). The amino acid building blocks with 

orthogonal protecting groups were prepared in solution, followed by a sequence of solid-phase peptide 

couplings involving two key macrocyclization reactions. The order of cyclizing the two rings was based 

on literature work on the solution-phase synthesis of phallotoxin.
12, 15, 32

 The final cyclization step 

generated two compounds that were conceived to be atropisomers based on spectroscopic data, 

computational studies and circular dichroism analysis. One of the atropisomers, designated as “natural,” 

had positive Cotton effects similar to phalloidin, while the “non-natural” bicyclopeptide had negative 

Cotton effects. The yields for the “natural” and “non-natural” atropisomers were quantified as 1.3% and 
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3.2 % respectively. These low yields were accounted for by the two challenging cyclization reactions, 

specifically the second cyclization step (ring A, Scheme 1.9) and losses during separation of the two 

atropisomers. 

 

1.4.3.2  Schuresko and Lokey
33

 

A recent report by Schuresko and Lokey described an efficient solid-phase synthesis of Glu
7
-

phalloidin (Fig. 1.5) with an overall yield of 50 %.
33

 This report provides the highest yield reported to-

date for the syntheses of phalloidin/viroidin analogs either in solution or the solid phase. The side chain 

of the glutamic acid in position 7 was used as a handle for linkage to the solid phase, and then later 

derivatized to generate a fluorescent, bioactive analog that stained F-actin in fixed cells at a 

concentration comparable to that of commercial phalloidin based probes.  

 

 

Figure 1.5. Glu
7
 phalloidin and a fluorescent conjugate. 

 

1.5  GOALS OF THE CURRENT WORK 

The natural source of virotoxins is selected species of mushrooms that are considered 

uncultivatable due to slow growth and failure to produce carpophores in culture,
6
 and therefore, an 

efficient chemical  synthesis of these compounds offers an alternative. Despite the production of many 
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phalloidin and viroidin analogs, and biological and structural studies, a total synthesis of a naturally 

occurring virotoxin has yet to be reported, due to inaccessibility of the 3,4-dihydroxyproline and 4,5-

dihydroxy-L-leucine residues. Moreover, there are issues and uncertainties in handling these highly 

functionalized residues in peptide synthesis without protecting the hydroxyl groups.  

Conjugated to fluorophores,
19

 phalloidin is widely used to study the dynamics of actin 

filaments. As seen in section 1.4.3, in the twenty-first century, efforts are ongoing to produce synthetic 

phallotoxins, in useful amounts, to make these experiments more affordable and accessible. A synthetic, 

fluorescent virotoxin would serve as a new probe for the visualization of actin. A solution phase 

synthesis would have the additional potential to provide analogs and other conjugates with desirable 

biological properties. Solution phase peptide synthesis permits the incorporation of the uncoded amino 

acids in a controlled manner.  

In addition to the synthesis of a natural product, we sought to prepare three analogs, to 

specifically investigate the role of proline hydroxylation in the conformation and related biological 

activity of these compounds. At the outset, we selected viroidin (2) as our target but our stereoselective 

synthesis of the 4,5-dihydroxyleucine residue dictated that we synthesize the equally potent alloviroidin 

(see Chapter 2). To facilitate these studies, we prepared three tripeptide fragments with either a proline 

(Pro), trans-3-hydroxyproline (3-Hyp), cis-4-hydroxyproline (hyp) or 2,3-trans-3,4-trans-dihydroxy-

proline (DHP) residue (vide infra). All building blocks were commercially available, with the exception 

of the 2-methylsulfonyl-tryptophan, 2,3-trans-3,4-trans-dihydroxy-proline
34

 and dihydroxyleucine 

residues.
35

 The previous virotoxin analog syntheses did not incorporate the 2,3-trans-3,4-trans-

dihydroxy-proline,
34

 valine and dihydroxyleucine residues.
29, 30

 These analogs that were more easily 

synthesized demonstrated that a replacement of the DHP residue for hyp, dihydroxyleucine for leucine 

and alanine for valine led to compounds that were five times less active (vide supra).
29

 We are therefore 
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in a unique position to produce the natural product and analogs via synthesis as presented in Scheme 

1.10.  

Scheme 1.10. Retrosynthetic analysis of alloviroidin and analogs. 

 

 

Nuclear magnetic resonance studies will enable us to investigate the conformational 

preference of the prolyl peptide bond in linear peptides and how this influences the structure and ease of 

cyclization of the heptapeptides. X-ray studies by Zanotti
32

 and coworkers (vide supra) revealed that the 

cis-4-hydroxyproline adopts a C
γ
-endo type conformation. Our work will predict conformations adopted 

by pyrrolidine rings of proline, 2,3-trans-3,4-trans-dihydroxy-proline, cis-4-hydroxyproline and trans-3-

hydroxyproline residues when incorporated into linear and cyclic peptides, and the impact this would 

have on the conformation of the Ser
3
-Pro*-Ala

5
-Trp

6
 peptide region and its propensity to facilitate 

cyclization. Similar work on factors influencing conformation in proline-containing peptides was 

conducted by Taylor et al.
36

  

Computational studies together with the experimental data will allow us to predict the low energy 

conformations of the cyclic peptides and thereby relate the contribution of each hydroxyl group to the 

bioactive conformation of the cyclic heptapeptide. 
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Scheme 1.11. The conformation of the prolyl peptide bond and cyclization. 
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CHAPTER 2: SYNTHESIS OF A DIHYDROXYLEUCINE-VALINE DIPEPTIDE
i
 

 

Our retrosynthetic analysis of alloviroidin is presented in Scheme 2.1. Disconnections 

between the proline/alanine and valine/D-threonine residues leads to the tetrapeptide 46 and tripeptide 

fragments 47-50. In a forward direction, the first peptide bond to be formed will constitute a [3+4] 

fragment condensation  at the position labeled „1,‟ between carboxyl component derived from 47-50 and 

the amino component derived from 46, followed by a cyclization of the linear heptapeptide at the 

disconnection labeled „2‟ (Scheme 2.1). Formation of linkage 1 is appealing, since the C-terminal 

proline is not susceptible to racemization during peptide bond formation. Furthermore, ease of 

cyclization (formation of linkage 2) is expected to be enhanced by the presence of a turn inducing
37

 

proline residue, and the opposite configuration of the D-Thr/L-Val residues. 

 

Scheme 2.1. Retrosynthetic analysis of alloviroidin and analogs. 

 

Fragments 46 and 47 are of approximately equal complexity, each containing one 

synthetically valuable amino acid. We employed an orthogonal protecting group strategy, utilizing 

                                                 
i
 Parts of this Chapter are reprinted with permission from the American Chemical Society. 
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fluoride-labile side chain protection (viz., tert-butyl-dimethylsilyl ethers), the base labile Fmoc group, 

and benzyl or ethyl esters for the protection of the amino and carboxy termini respectively.    

 

2.1  PREVIOUS SYNTHESIS OF THE 4,5-DIHYDROXYLEUCINE RESIDUE 

A single synthesis of the 4,5-dihydroxyleucine residue appeared in the literature in 1957.
38

 

Wieland and Weiberg reported the preparation of a mixture of all four stereoisomers of this amino acid 

via bromination of compound 51 to give 52 (Scheme 2.2). Subsequent hydrolysis and decarboxylation 

delivered 53 that was reacted with acid in the presence of silver ions to give 54 as a mixture of 

stereoisomers. The two racemates (2S,4S; 2R,4R) and (2S,4R; 2R,4S) were separated by crystallization 

and then resolved into enantiomers, through crystallization of salts formed with ditoluoyl tartaric acid.
39

  

 

Scheme 2.2. Wieland and Weiberg dihydroxyleucine synthesis.
38

    

 

 

 

 

2.2  THE SHARPLESS ASYMMETRIC DIHYDROXYLATION 

We hoped to prepare a single stereoisomer of this key amino acid via a diastereoselective 

dihydroxylation of an (S)-dehydroleucine derivative (Scheme 2.3).  
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Scheme 2.3. Retrosynthetic analysis of dihydroxylation of an (S)-dehydroleucine derivative. 

 

 

The Sharpless asymmetric dihydroxylation reaction has emerged as one of the most efficient 

methods for forming optically active 1,2-diols from olefins in a predictable and controlled manner.
40-47

 

The reaction proceeds via a syn addition, whereby the hydroxyl groups are delivered to the same face of 

the double bond (Fig. 2.1). This dihydroxylation reaction is easy to perform since a premix of all 

reactants is commercially available in two antipodal forms: AD-mix-α and AD-mix-β.  

 

 

 

Figure 2.1. The Sharpless dihydroxylation mnemonic. 

The mnemonic proposed by Sharpless and co-workers to explain the outcome of the 

dihydroxylation (Fig. 2.1) has proven to be reliable at predicting the enantiofacial selectivity for a wide 

range of olefinic substrates.
48

 The olefin substrate is positioned to allow for an aromatic or sterically 

demanding aliphatic substituent (RL) to occupy the southwest quadrant of the empirical mnemonic, 

whereas the northeast quadrant is occupied by aliphatic substituents of moderate size (RM). The 

diastereofacial selectivity can be rationalized on the basis of the type of ligand used (Fig. 2.2), e.g., AD-

mix-β, with the chiral dihydroquinidine (DHQD) ligand, brings about dihydroxylation from the top face. 
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AD-mix-α, on the other hand contains the pseudoenantiomeric dihydroquinine (DHQ) derived ligand 

and dihydroxylates the olefin from the bottom face. Sharpless and co-workers
49

 have shown that the 

dihydroxylation of prochiral olefins proceeds with high levels of enantioselectivity. When chiral olefins 

are dihydroxylated, the situation is more complicated. 

 

 

 

Figure 2.2. Phthalazine and pyrimidine ligands. 

 

There have been cases reported of matched and mismatched double diastereoselectivity 

during the asymmetric dihydroxylation of chiral olefins.
50-52

 The concept of matched and mismatched 

pairs can be explained by first comparing the reaction in the absence of any chiral ligand. As illustrated 

in Scheme 2.4 (Entry 1), dihydroxylation of 59 under ligand free conditions generated 76% of 60a and 

24% of 60b. This selectivity arises from the intrinsic bias of 59 i.e. K2OsO4 approaches the double bond 

of the substrate from the less hindered face furnishing 60a as the major product.  
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Scheme 2.4. Matched and mismatched double diastereoselectivity. 

 

 

 

  Entry   Reaction conditions                 Ligand    Product ratio of 60a:60b 

      1 
 

    t
BuOH/H2O (1:1), 

 

   MeSO2NH2, 20 ºC    

               No ligand           76             24 

      2       0.4 equiv. (DHQD)2PHAL           98              2 

      3       0.4 equiv. (DHQ)2PHAL            5             95 

 

A matched pair is a reaction using a chiral ligand that leads to the same facial selectivity as the 

substrate‟s intrinsic bias. For example, dihydroxylation of 59 in the presence of (DHQD)2PHAL 

(Scheme 2.4, Entry 2) enhances selectivity of 60a/60b from 76/24 to 98/2 (Entries 1 and 2 respectively). 

Therefore, the diastereofacial selectivity of 59 and (DHQD)2PHAL represents a matched pair. However, 

facial selectivity of the chiral ligand in a mismatched case is opposite to that of intrinsic bias of the 

substrate (Scheme 2.4, Entry 3). In this case, the diastereofacial selectivities of substrate 59 and the 

chiral ligand (DHQ)2PHAL are counteracting each other. Weak substrate intrinsic bias, as in Scheme 

2.4, can be overridden by a chiral ligand, while moderate to strong substrate bias could result in poor 

selectivity. The outcome of the reaction is thereby influenced by the chirality of both the reagents and 

the substrates. 

Reetz and co-workers have examined the dihydroxylation of chiral γ-amino α,β-unsaturated 

esters and shown that tuning of the amine protecting group can be used to transform the mismatched into 

a matched case (Table 2.1). A comparison between the N-Boc- and N,N-dibenzyl-protected substrates 

revealed different levels of stereoselectivity of the products formed.
53
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Table 2.1: Turning the mismatched into the matched case via protecting group tuning.
53

 AD-mix-α 

always favors 62-65a; AD-mix-β always favors 62-65b. 

 

 

 

 

 

 

 

 

            R1            R2            R3         AD-mix       62-65a: b 

 

     62 

 

 

     63 

 

 

     64 

 

 

     65 

 

 

 

          Boc 

 

 

          Boc 

 

 

          Bn2 

 

 

            Bn2 

          

         CH3 

 

 

         PhCH2 

 

 

          CH3 

 

 

         PhCH2 

 

        

       CH3CH2 

 

 

          CH3 

 

 

        CH3CH2 

 

 

          CH3 

 

             

            α 

            β 

 

            α 

            β 

 

             α 

             β 

 

             α 

             β 

           

          97:3 

          9:91 

 

         94:6 

         11:89 

 

         92:8 

         6:94 

 

         88:12 

         14:86 

 

 

 

 

 

Facial selectivity of the dihydroxylation is affected by the substitution of the double bond. 

Unexpected results have been observed during the dihydroxylation of 1,1-disubstituted allylic alcohol 

derivatives
54

 and chiral 1,1-disubstituted olefins.
55

 Karl Hale and co-workers conducted studies on 1,1-

disubstituted allylic alcohols and recorded the unexpected trend summarized in Table 2.2.
54

 From these 

results, it can be concluded that the Sharpless facial selectivity rule is unpredictable for allylic ethers and 

strongly affected by the protecting group. 
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Table 2.2: Asymmetric dihydroxylation of 1,1-disubstituted allyl alcohol derivatives.
54

  

 

            Substrate            R      AD-mix       % ee       Product 

  

              

 

     66 

     67 

     68 

 

     69 

     70 

     71 

 

     72 

     

      t
BuPh2Si 

         Bn 

         Pv 

 
      t

BuPh2Si 
      t

BuMe2Si 

         Pv 

 

         Bn 

          

          β 

          β 

          β 

 

          α 

          α 

          α 

 

          α 

 

       

        91 

        31 

        11 

 

        47 

        43 

        15 

 

        45 

    

     
 

 

During their investigation of 4,5-dehydroisoxazoles as intermediates for amino sugar 

synthesis, Wade and co-workers noted that optically active alkene substrates constitute a double 

asymmetric synthesis during dihydroxylation using chiral ligands.
56

 The authors were able to overcome 

the intrinsic bias of the substrate in their reactions by employing the standard phthalazine class of 

ligands (Scheme 2.5). 

Scheme 2.5. Wade and co-workers‟ dihydroxylation of 4,5-dehydroisoxazoles.
56

 

 

     Reaction conditions                 Ligand            Product ratio of 74a:74b 

 

    t
BuOH/H2O (1:1), 

 

   MeSO2NH2, 20 ºC    

               No ligand           77             23 

      0.4 equiv. (DHQD)2PHAL           96              4 

      0.4 equiv. (DHQ)2PHAL           11             89 

 

Similarly, Morikawa and Sharpless assessed the extent of matching and mismatching in the 

asymmetric dihydroxylation of a carbohydrate-derived olefin ester using phthalazine and pyrimidine 
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ligands.
57

 According to the findings recorded in Scheme 2.6, phthalazine ligands performed better for 

the matched reaction (Entry 1), while pyrimidine derivatives gave improved results in the mismatched 

case (Entry 4). 

Scheme 2.6. Morikawa and Sharpless dihydroxylation of a carbohydrate-derived olefin ester.
57

 

 

      Entry                 Ligand (mol %)      Product ratio of 76a:76b 

         1              (DHQD)2PHAL (1)         39             1 

         2               (DHQ)2PHAL   (1)          1            1.3 

         3               (DHQD)2PYR   (5)         6.9             1 

         4               (DHQ)2PYR      (5)          1           4.1 

 

Enantioselectivity studies by Sharpless and co-workers recommended phthalazine based 

ligands for the dihydroxylation of 1,1-disubstituted, 1,2-trans-disubstituted and trisubstituted classes of 

olefins.
40

 The examples represent reagent-controlled dihydroxylations (Table 2.3). 

Table 2.3. Examples reagent-controlled dihydroxylations 
40

  

      Olefin             Product    (DHQD)2-PHAL 

            % ee 

       (DHQ)2-PHAL 

               % ee 

 

77 

 

        
 

 

78 

    

                  

 

           94 (R) 

   

            93 (S) 

79     
 

80 

        

         99 (2S,3R)            96 (2R,3S) 

81 
     

82 

          

           98 (R)             95 (S) 

 

Gardiner and co-workers demonstrated that the asymmetric dihydroxylation of an L-proline-

derived 1,1-disubstituted alkene proceeds with the same sense of diastereoselectivity using both 

phthalazine based ligands (Scheme 2.7).
55

 It was hypothesized that the orientation of the substrate in the 
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mnemonic device was altered by the sterically hindered pyrrolidine group and that a ligand switch in this 

case does not influence the facial selectivity but instead leads to a matching enhancement. 

Scheme 2.7: Diastereoselectivity in the asymmetric dihydroxylation of an L-proline derived 1,1-

disubstituted  alkene.
55

 

 

 

       Chiral ligand                       84a:84b* 

               None 

         (DHQ)2PHAL 

         (DHQD)2PHAL 

         (DHQ)2PYR 

         (DHQD)2PYR 

                      1.1:1 

                      1.9:1 

                      3.5:1 

                      1.8:1 

                      1:2.5 

 

* Ratios determined by gas chromatography after diol derivatization. 

With this background, we set about our synthesis of 4,5-dihydroxyleucine employing a 

Sharpless asymmetric dihydroxylation. 

 

2.3  PREPARATION OF (2S)-4,5-DIHYDROLEUCINE RESIDUE 

The preparation of our dehydroleucine began with condensation of the anion of ethyl 

acetamidomalonate (85) with methallyl chloride to give 51 (Scheme 2.8).
58

 

Hydrolysis of the esters, acidification and decarboxylation resulted in racemic N-acetyldehydroleucine 

(86). According to the work of Schmidt and Schmidt, who utilized (S)-dehydroleucine in their synthesis 

of eponemycin,
59

 we conducted an enzymatic resolution of this amino acid at room temperature, with 

strict control of pH between 7 and 8 for no more than 24 hours. We then acidified the reaction mixture 

and extracted the unreacted (R)-N-acetyl-dehydroleucine with ethyl acetate and an optical rotation 

measurement demonstrated this compound to be enantiopure (Scheme 2.9). 
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Scheme 2.8. Preparation of the dehydroleucine residue. 

 

 Schmidt and Schmidt made note that “the temperature should not exceed 40 ºC” during 

concentration of the acidic, aqueous layer.
59

 We noticed that (S)-dehydroleucine was invariably 

contaminated with another, less polar compound that stained with ninhydrin. The amount of this 

byproduct was reduced, but not completely eliminated, by freezedrying instead of evaporation at < 40 ºC 

on a rotary evaporator. We reacted the product mixture with thionyl chloride in methanol, followed by 

carbobenzyloxychloride, according to Scheme 2.9. Following this derivatization, we were able to 

separate two compounds and identify the undesired compound as a γ-lactone that was later used in 

model studies (vide infra). The lactone presumably arises via protonation of the double bond to form the 

tertiary carbocation and intramolecular attack by the carboxylate to form the lactone 89.  

Scheme 2.9. Undesired lactone formation. 
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Neutralization of the reaction mixture, with Amberlite IRA-67 (HO
−
) ion exchange resin, 

before freezedrying prevented this side reaction but was still not optimal. We were subsequently able to 

isolate (S)-dehydroleucine (87) in high optical purity according to the recommended protocol of Chenault 

et al.
60

 Specifically, the acidic layer, without neutralization, was applied directly to a column of Dowex-50 

(H
+
), the column was washed with water, followed by elution of the amino acid with aqueous ammonium 

hydroxide solution.  

The free amino acid (-)-87 was converted to its methyl ester, followed by Mosher amide 

formation (Scheme 2.8).
61

 The stereochemical make-up of 88 was determined by 
19

F NMR analysis to be 

98 % de in favor of the S-configuration at Cα (Fig. 2.3). We also prepared and analyzed the Mosher amide 

of the racemic material (±)-88 in an analogous manner after deacetylation of (±)-86 with aqueous 2.5N 

NaOH solution (Scheme 2.10). 

Scheme 2.10. Mosher amide formation. 

 

          

Figure 2.3. 
19

F NMR spectra (CDCl3, 236 MHz) for Mosher amide 88 derived from enzymatically 

resolved dehydroleucine and racemic dehydroleucine. 

88a, b 

88a 
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2.4  THE DIHYDROXYLATION REACTION 

The methyl ester of 87 was protected as its Cbz derivative 90 (Scheme 2.11). With useful 

quantities of enantiopure dehydroamino ester 90 in hand, we were in a position to investigate the 

dihydroxylation reaction. We hoped that the aromatic ring would be attracted to bind in the hydrophobic 

southwest binding pocket of the ligand during the asymmetric dihydroxylation (see Fig. 2.1). Given the 

examples presented in section 2.2,
54, 55

 we were reluctant to predict which of the AD-mixes would give 

the desired diastereomer. We were uncertain what impact the existing Cα stereocenter would have on 

the stereochemical course of the reaction. In general, dihydroxylation of γ,δ -unsaturated esters results in 

the isolation of γ-lactones
62, 63

 and we hoped that lactone 92a would be a useful building block for 

peptide synthesis.  

Dihydroxylation of 90 with AD-mix-β, under the standard conditions of the Sharpless 

asymmetric dihydroxylation,
49

 gave 92 in a 1:1 diastereomeric ratio. However, treatment of alkene 90 

with AD-mix-α yielded an inseparable mixture of diastereomers of 92 in a ratio of 6.5:1.0 (Scheme 

2.11). Considerable effort was directed toward determining the configuration of Cγ in the major 

diastereomer. Also, attempts to separate and characterize the diastereomers were unsuccessful, although 

the configuration at Cγ was later determined to be 4R (vide infra).  

Scheme 2.11. Dihydroxylation of the dehydroleucine residue. 

 

Analysis of the proton NMR of the product mixture derived from the AD-mix-α reaction 

revealed a single signal for the two Hδ protons of the major diastereomer. Two distinct doublets were 

observed for the minor diastereomer. The single signal of the major diastereomer indicated that the two 

Hδ protons were equivalent and implied that the CbzNH and CH2OH were on opposite faces of the 
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lactone ring, i.e. diastereomer 92a (2S, 4R) as occurs in viroidin. If the NHCbz and CH2OH substituents 

were on the same face of the lactone ring, hydrogen bonding between them could lead to restricted 

rotation about Cγ-Cδ bond giving rise to two distinct Hδ signals, as observed for the minor diastereomer. 

Wieland
64

 used the same reasoning to distinguish between diastereomers of the free aminolactone (Fig. 

2.4).  

 

Figure 2.4. Hydrogen bonding in the latone ring. 

To prove this hypothesis, standard NMR experiments (NOESY and ROESY) were recorded 

at a variety of mixing times and temperatures to establish the relative stereochemistry of the substituents 

on the five-membered ring. Unfortunately, only weak signals were observed, implying that the 

interconversion of conformations of the γ-lactone occurs at rates faster than mixing times.  

 

 

Figure 2.5. Interconversion of conformations of the γ-lactone 92a. 

 

Attempts to prepare crystalline derivatives from 92a, b by derivatizing the primary alcohol 

with 4-bromobenzoic acid or hydrogenolysis of the Cbz group in the presence of ditoluoyl tartaric acid 

were both unsuccessful. Deprotection of the Cbz group under standard hydrogenolysis conditions 

resulted in the isolation of crystalline diketopiperazine 93 (Scheme 2.12).
65

 Unfortunately, the structure 

of 93 could not be properly refined due to the poor quality of the crystals. However, the data hinted that 

Cα was of the S-configuration and Cγ of the R-configuration. 
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Scheme 2.12. Diketopiperizine formation. 

 

While trying to clarify this issue of stereochemistry, we simultaneously sought to investigate 

methods for formation of the dihyLeu-Val peptide bond, as occurs in the toxin, without prior opening of 

the lactone ring. There are scattered reports of the reaction of γ-lactones being opened by N-nucleophiles 

(examples are illustrated in Scheme 2.13): under neutral conditions,
66, 67

 in the presence of bases,
68, 69

 

Lewis acid catalysis,
70, 71

 catalysis by 2-hydroxypyridine,
72, 73

 a modification of the Weinreb method,
74, 

75
 and catalysis by p-toluenesulfonic acid.

76
  

Scheme 2.13. Examples of γ-lactone opening by N-nucleophiles. 

(a)
70

 

 

(b)
74

 

 

(c)
72
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We decided to explore this strategy, to minimize the number of steps and protecting group 

manipulations associated with the dihydroxyleucine residue. Prior to investing our synthetically valuable 

lactone 92a, we screened a number of methods using (±)-valerolactone (103) and valine ethyl ester (104) 

and found that the conditions of Hansen et. al. (Scheme 2.13, a)
70

 gave the best results for our substrates 

(Table 2.4, entry 2). 

 

Table 2.4. Conditions for the aminolysis of lactone 103 with L-valine ethyl ester (104). All reactions 

were conducted at 80 ºC. 

 

 

 
 

 

 

 

We also explored compound (-)-91 as a model system. Acid hydrolysis of the acetamide in 

compound (+)-86 (stockpiled from the enzymatic resolution, Schemes 2.8 and 2.9) resulted in 

lactonization yielding α-amino-γ,γ-dimethyl-γ-valerolactone that was protected as its Cbz derivative (-)-

91  (Scheme 2.14). Attempts to open (+)-91 using the optimized conditions from Table 3 were 

unsuccessful. Indeed, none of the examples cited in Scheme 2.13 involve a γ-lactone bearing a 

carbamate protected amine at Cα; substituents at Cα were invariably small (e.g., H, Me, OMe, CN) and 

Entry Reaction Conditions Solvent Yield (%) 

1 2-hydroxypyridine, 
i
Pr2NEt DMF 10 

2 Sn(OAc)2, 
 i
Pr2NEt DMF 65 

3 Sn(OAc)2 , 
 i
Pr2NEt ClCH2CH2Cl 53 

4 Cs2CO3, Et3N Toluene 4 

5 Cs2CO3 DMF - 

6 MeAlCl2, 
 i
Pr2NEt ClCH2CH2Cl 24 
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there were no examples with γ-disubstitution. This suggested to us that lactone (+)-91 was stable
77

 to 

ring opening reactions due to steric hindrance at the Cα and Cγ positions. 

 

Scheme 2.14. Formation of the γ,γ-dimethyl-γ-valerolactone and reaction with the valine ethyl ester.
70

 

 

 

 

We decided to open the lactone ring in compound (+)-91 by hydrolysis to give 107
78

 (Scheme 2.15) and 

then couple to valine ethyl ester via a conventional peptide bond formation. Unfortunately, ring opening 

was likely to be accompanied by racemization.  

 

Scheme 2.15. Lactone ring opening by hydrolysis. 

 

 

 

Michl demonstrated that N-acyl α-amino-γ-lactones epimerize at Cα, even under weakly 

basic conditions.
79

 Further studies by Michl revealed a similar trend with N-alkoxycarbonyl derivatives 

of the lactones under basic conditions; however, γ-lactones with an unprotected amine at Cα resisted 

racemization. The mechanism proposed by Michl involves the formation of an oxazolone intermediate, 
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with a readily exchangeable Hα (Scheme 2.16). In light of these unfortunate results, we concluded that 

the γ-lactone generated via the dihydroxylation of β,γ-unsaturated ester 90 was unlikely to be a useful 

synthetic intermediate for peptide synthesis.  

 

Scheme 2.16. Proposed rcemization mechanism.
79 

 

 

 

During dihydroxylation of β,γ-unsaturated esters, concomitant lactonization is prevented by 

sterically hindered esters (Scheme 2.17).
80

  

 

Scheme 2.17. Dihydroxylation of hindered esters. 

 

 

 

We reasoned that an amide bond would also be resistant to spontaneous lactonization. We decided to 

change our approach by forming the dehyLeu-Val peptide bond prior to dihydroxylation (Scheme 2.18). 

The dipeptide olefin 111 was prepared and subjected to dihydroxylation reactions using both AD-mixes 

and OsO4 to probe the extent of substrate control. Dihydroxylation with AD-mix-β gave us a single 
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peptide 112a while AD-mix-α and OsO4 formed mixtures of diastereomers that were not synthetically 

useful. While phthalazine ligands perform better for 1,1- and 1,2-trans-disubstituted class of olefins, it 

might have been worthwhile to investigate diastereoselectivities of PYR ligands.  

 

Scheme 2.18. Dihydroxylation of the dehyLeu-Val dipeptide. 

 

 

 

 

 

We were again unsuccessful at establishing the configuration of the dipeptide diol 112a by 

crystallization of derivatives (4-bromobenzoate) of the primary alcohol or following hydrogenolysis of 

the Cbz group in the presence of ditoluoyl tartaric acid. Treatment of 112a with TFA promoted 

lactonization and concomitant cleavage of the peptide bond forming valine ethyl ester 104 and lactone 

92b as a single diastereomer (Scheme 2.18). Gratifyingly, hydrogenolysis of 92b in the presence of 

hydrochloric acid gave the hydrochloride salt of 54a, a compound that Wieland had previously 

described as crystalline.
39

 The crystal structure of 54a revealed that the α–NH3
+
 and γ–CH2OH 

substituents were on the same face of the ring (Fig. 2.7). Thus the configuration of 54a is (2S,4S) as 
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occurs in alloviroidin (3). The proton NMR spectrum (Figure 2.8) indicated that 92b is the minor 

diastereomer obtained from the dihydroxylation of the dehydroleucine residue 90 (Scheme 2.11). 

 

 
Figure 2.7. ORTEP diagram of compound 54a (2S,4S).  

 

 

Figure 2.8. Selected region of the 
1
H NMR spectrum of the γ-lactones obtained via different routes.  

A careful choice of the side chain diol protecting group was necessary since peptides 

containing γ-hydroxyamino acids are prone to cleavage under mild acid conditions to give the γ-lactone 

and amine (Scheme 2.19).
81

 Thus, tert-butyl ethers, typically used in combination with Fmoc peptide 

synthesis are inappropriate. 
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Scheme 2.19. Cleavage of peptides containing γ-hydroxyamino acids under mild acid conditions. 

 

Protection of the diol as a silyl acetal delivered 113 (Scheme 2.20). Unfortunately, the di-

tert-butylsilyl acetal protecting group was partially cleaved during purification by silica gel 

chromatography, regenerating the starting material, 112a. Corey and Hopkins had observed that the di-

tert-butylsilylene derivatives of 1,3- and 1,4-diols are more stable than those of 1,2-diols.
82

 Given the 

problem associated with protecting both primary and tertiary alcohols as a silyl acetal, we decided to 

selectively protect the primary alcohol of 112a as the fluoride-labile TBS ether derivative 114 (Scheme 

2.20) to improve solubility. Protecting the primary alcohol was possible since it is less hindered and 

therefore easily transformed into the corresponding TBS ether in high yields as compared to the tertiary 

alcohol. It should also be noted that primary TBS ethers are readily cleaved under mild conditions as 

opposed to hindered tertiary TBS ethers. We hoped that the hindered nature of the remaining free 

alcohol would make it unlikely to participate as a nucleophile in side reactions associated with the larger 

peptide synthesis. 

Scheme 2.20. Protection of the dipeptide diol. 

 

2.4.1  Stereochemical Analysis of the Dihydroxylation Reaction 

In our synthesis of the dihydroxyleucine residue (vide supra), the dihydroxylation of the 

dehydroamino ester 90 using AD-mix-β gave a diastereomeric ratio of 1:1, whereas the AD-mix-α 

reagent resulted into an enhanced diastereomeric ratio of 6.5:1 (Scheme 2.21).  
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Scheme 2.21. Dihydroxylation of the dehydroamino ester. 

 

The poor diastereoselectivity observed using the AD-mix-β reagent represents a mismatched pair, i.e, 

the chiral reagent (DHQD) was unable to overcome the intrinsic diastereofacial bias of the substrate. 

AD-mix-α-mediated dihydroxylation of 90 comprised a matched pair with the chiral reagent (DHQ), 

surmounting the intrinsic preference of the substrate, leading to the formation of the diol with fairly 

good diastereoselectivity.  

Sharpless and co-workers have recommended the use of the aforementioned AD-mixes 

containing phthalazine based ligands for the dihydroxylation of 1,1-disubstituted olefins,
49

 however, it 

was noted that predicting the stereochemical outcome for these class of olefins using the empirical 

mnemonic was less reliable since the two substituents compete for the ligand‟s hydrophobic, southwest 

quadrant, resulting in low enantioselectivities. The observed stereochemical outcome led us to speculate 

that the stereocenter in our dehydroleucine substrate has a significant influence on the ligand-substrate 

interaction and thus the stereochemical course of the reaction.  

Upon changing our dihydroxylation substrate from dehydroleucine to the dehyLeu-Val 

dipeptide, the mismatched case turned into a matched pair (Scheme 2.22).  

Scheme 2.22. Dihydroxylation of the dehyLeu-Val dipeptide. 

 

It was astonishing to note that the dihydroxylation of the dehyLeu-Val dipeptide 111 using AD-mix-β 

afforded a single diastereomer, while the reaction of the same substrate 111 with AD-mix-α led to a 1:1 
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diastereomeric ratio, in contrast to the observation made for the dehydroleucine residue. These outcomes 

demonstrated that the nature of the substituents on our 1,1-disubstituted olefin substrates had a great 

impact on the stereochemical course of the reaction. We also investigated the dihydroxylation of 111 

using OsO4 in the absence of the chiral ligands, and again observed an almost equal mixture of 

diastereomers slightly favoring the diastereomer obtained using the AD-mix-β reagent. This is in 

agreement with the observed diastereomeric ratios using the chiral reagents, with AD-mix-β giving 

enhanced diastereofacial selectivity, suggesting that both steric effects and the two chiral centers present 

in our dipeptide substrate have a significant role in governing the facial selectivity of the reaction. It 

should be noted that the dihydroxylation of the dehyLeu-Val dipeptide substrate under all the 

investigated conditions produced high chemical yields in comparison to the single residue, 

dehydroleucine substrate 90. A possible explanation for the low yield recorded during the 

dihydroxylation of the dehydroleucine 90 could be as a result of partial decomposition of the olefin 

substrate and losses during the aqueous work-up since the starting material was never recovered. 

 

 

2.4.2         Summary 

  In summary, an efficient strategy that provides a dipeptide containing (2S,4S)-4,5-

dihydroxyleucine residue via a diastereoselective dihydroxylation has been described. The 

dihydroxyleucine residue in its γ-lactone form was found not to be a useful building block for peptide 

synthesis, since it was unreactive toward amines. Also, hydrolytic opening of the γ-lactone posed the 

risk of epimerization at the Cα position. We incorporated dehydroleucine into a dipeptide and performed 

a Sharpless asymmetric dihydroxylation to introduce the diol. The (2S,4R) diastereomer could not be 

generated through the same protocol. 
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2.5  EXPERIMENTAL SECTION 

2.5.1 General Methods: All reactions were performed under a dry nitrogen atmosphere unless 

otherwise noted. Reagents were obtained from commercial sources and used directly; exceptions are 

noted. Diisopropylethylamine and triethylamine were dried and distilled from CaH2 and stored over 

KOH pellets. Ethanol and Methanol were distilled from Mg turnings and stored over 4 Ǻ molecular 

sieves. Flash chromatography was performed using flash silica gel (32-63 μ) from Dynamic Adsorbents 

Inc. Reactions were followed by TLC on precoated silica plates (200 μm, F-254 from Dynamic 

Adsorbents Inc.). The compounds were visualized by UV fluorescence or by staining with 

phosphomolybic acid, ninhydrin or KMnO4 stains. NMR spectra were recorded on Bruker DPX-250 or 

AV-400-liquid spectrometers. Proton NMR data is reported in ppm downfield from TMS as an internal 

standard. Disodium 3-trimethylsilyl-1-propane-sulfonate (DSS) was used to reference 
1
H NMR spectra 

run in D2O. High resolution mass spectra were recorded using either time-of-flight or electrospray 

ionization.   

L-Dehydroleucine, (-)-87, was prepared according to previously published procedures.
58, 59, 83

  

 

 Ethyl 2-Acetamido-2-ethoxycarbonyl-4-methyl-4-pentenoic acid (51). To a solution of 

diethylacetamido malonate (85) (10.00 g, 46.0 mmol, 1 equiv.) in EtOH (60 mL) at rt under N2 was 

cautiously added Na (1.165 g, 50.64 mmol, 1.1 equiv.). The mixture was heated at refux at which point 

followed the addition of 2-methyl-2-propenyl chloride (6 mL, 60 mmol, 1.3 equiv.) over 30 min. 

Heating at reflux was continued further for 2 h, concentrated, partitioned between EtOAc (60 mL) and 

H2O (20 mL). The aqueous layer was extracted further with ethyl acetate (2 × 25 mL). The organic 

layers were combined, filtered through MgSO4 and concentrated to a volume of 10 mL. Hexane (60 mL) 

was then added, with vigorous stirring, to give 51 as colorless crystals (9.384 g, 75 %); mp 88-88.5 ºC, 
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Lit.
58

 92-93°, Lit.
59

 90-91 °C.  
1
H NMR (250 MHz, CDCl3) δ 1.27 (t, J = 7.1 Hz, 6H), 1.66 (s, 3H), 2.03 

(s, 3H), 3.10 (s, 2H), 4.25 (qd, J = 7.1, 1.1 Hz, 4H), 4.69 (d, J = 0.9 Hz, 1H), 4.86 (t, J = 1.78 Hz, 1H), 

6.81 (br. s, 1H); 
13

C NMR (62.5 MHz, CDCl3) δ 13.9, 22.9, 23.2, 39.6, 62.4, 66.1, 115.9, 139.9, 167.9, 

168.8. 

 

 (±)-2-Acetamido-4-methyl-4-pentenoic acid (±)-(86).  Aqueous NaOH (2M, 20 mL) was added to 

a solution of 51 (4.00 g, 15 mmol) in dioxane (20 mL) and the mixture heated at 50 ºC for 3 d. The 

solution was concentrated, acidified to pH 1 with 6M HCl and partitioned between EtOAc (40 mL) and 

H2O (30 mL). The aqueous layer was extracted further with EtOAc (3 × 30 mL). The organic layers 

were combined, dried over MgSO4 and concentrated. The colorless residue was decarboxylated by 

heating at reflux in H2O (15 mL) at 100 ºC for 4 h. The solution was cooled and extracted with EtOAc 

(40 mL). The aqueous layer was extracted further with EtOAc (3 x 20 mL). The organic layers were 

combined, dried over MgSO4 and concentrated to a volume of 10 mL. Hexane (~30 mL) was then 

added with vigorous stirring to give (±)-86 (1.409 g, 56 %) as colorless shiny crystals upon standing at 

rt.; mp 154-154.8 ºC, Lit.
59

 155-156 °C.  
1
H NMR (250 MHz, CD3OD): δ 1.75 (s, 3H), 1.96 (s, 3H), 

2.37 (dd, J = 14.2, 9.9 Hz, 1H), 2.57 (dd, J = 14.2, 4.9 Hz, 1H), 4.57 (dd, J = 9.9, 4.9 Hz, 1H), 4.77 (d, 

J = 0.62 Hz, 1H), 4.82 (br, 1H); 
13

C NMR (62.5 MHz, CD3OD) δ 20.9, 21.2, 39.8, 51.0, 113.1, 141.3, 

172.2, 174.2. 

 

 (S)-γ,δ-Dehydroleucine (-)-87 and (R)-2-Acetamido-4-methyl-4-pentenoic acid (+)-(86).
 
 

Compound (±)-86 (400 mg, 2.34 mmol) and phenol red (1 drop from a Pasteur pipette) were suspended 

in H2O (13 mL) at rt. Aqueous NH4OH solution (~ 2 mL) was added dropwise to attain a pH of 7 

(monitored by UIP) at which point the compound went into solution. Acylase enzyme (6.9 mg, activity 
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720 μmol/mg protein from pork kidney
, 
Sigma A8376) was added and the mixture stirred at rt for 24 h. 

The solution was acidified to pH 1 (monitored by UIP) with 6M HCl, concentrated to ~ 40 mL and 

extracted with EtOAc (3 × 15 mL). The organic layers were combined, filtered through MgSO4 and 

concentrated to give (R)-2-acetamido-4-methyl-4-pentenoic acid (+)-86 as a colorless amorphous solid 

(184 mg, 46 %). [α]D
25

 +12.7 º (c 1.0, CH3OH) [S-2-acetamido-4-methyl-4-pentenoic acid (-)-86, 

purchased from Bachem gave [α]D
25

 -12.7 º (c 1.0, CH3OH)]. 
1
H and 

13
C NMR spectra were as described 

above for the racemic material. 

The aqueous layer was applied to a column (25 mm diameter, 30 mm high) of Dowex-50 (H
+
), rinsed 

with water (~ 250 mL), eluted with 1N aqueous NH4OH solution and fractions monitored by TLC, 

staining with ninhydrin. Relevant fractions were concentrated on a freezedrier to deliver (-)-87 as a 

colorless amorphous powder (104 mg, 35 %). Rf 0.53 (3:3:3:1 
n
BuOH/EtOH/NH3/H2O); [α]D

25
 -48.3 º (c 

1.0, H2O), Lit.
59

  [α]D
20

 -30.9 º (c 1.04, H2O). 
1
H NMR (400 MHz, D2O): δ 1.77 (s, 3H), 2.50 (dd, J = 

14.5, 9.5 Hz, 1H), 2.68 (dd, 14.5, 9.5 Hz, 1H), 3.85 (dd, J = 9.5, 4.5 Hz, 1H), 4.90 (s, 1H), 5.00 (t, J = 

1.4 Hz, 1H); 
13

C NMR (100 MHz, D2O) δ 20.8, 39.1, 52.7, 115.5, 140.1, 174.6.  

 

 (±)-γ,δ-Dehydroleucine (87): Compound (±)-86 (100 mg, 0.58 mmol) was suspended in aqueous 

NaOH (2.5 N) and refluxed for 4 h. The solution was neutralized to pH 7 (monitored by UIP) with 6 M 

HCl, applied to a column (25 mm diameter, 30 mm high) of Dowex-50 (H
+
), rinsed with water (~ 150 

mL), eluted with 1N aqueous NH4OH solution and fractions monitored by TLC, staining with 

ninhydrin. Relevant fractions were concentrated on a freezedrier to deliver (±)-87 as a colorless 

amorphous powder in quantitative yield. Rf  0.53 (3:3:3:1 
n
BuOH/EtOH/NH3/H2O). 

1
H and 

13
C NMR 

spectra were as described above for compound (-)-87. 
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 Lactone (+)-91: (+)-86 (500 mg, 2.9 mmol) was suspended in 2 M HCl (7.5 mL). The mixture was 

refluxed for 2 h and concentrated to dryness. The residue was dissolved in a mixture of CH2Cl2 (7 mL) 

and H2O (3.5 mL) and cooled at 0 ºC at which point NaHCO3 (1.6 g, 19.3 mmol, 6.6 equiv.) and N-

(benzyloxycarbonyloxy)succinimide (874 mg, 3.5 mmol, 1.2 equiv.) were added in that order. The 

reaction mixture was gradually warmed to rt overnight and partitioned between CH2Cl2/H2O (30 mL 

each). The aqueous layer was back extracted with CH2Cl2 (2 × 30 mL). The organic extracts were 

combined, filtered through MgSO4 and concentrated. The residue was purified by flash chromatography 

eluting with 1:1 Hex/EtOAc to give (+)-91 as a colorless solid (641 mg, 83 %). Rf 0.47 (1:1 

Hexanes/EtOAc); [α]D
24

 +26.6º (c 1.0, CH3OH), Lit.
58

  [α]D
20

 -33.1º (c 1.0, CH3OH). 
1
H NMR (400 

MHz, CDCl3): δ 1.45 (d, J = 28.7 Hz, 6H), 1.99 (t, J = 12.1 Hz, 1H), 2.65 (t, J = 10.5 Hz, 1H), 4.60 (dd, 

J = 16.2, 9.6 Hz, 1H), 5.12 (s, 2H), 5.36 (s, 1H), 7.31-7.36 (m, 5 H); 
13

C NMR (100 MHz, CDCl3) δ 

26.9, 28.9, 42.3, 51.6, 67.3, 82.4, 128.1, 128.3, 128.5, 135.9, 156.0, 174.0 

 

 Mosher amide (-)-88a. Thionyl chloride (112 µL, 184 mg, 1.5 mmol, 2.0 equiv.) was added 

dropwise to a solution of dehydroleucine  (-)-87 (100 mg, 0.77 mmol, 1.0 equiv.) in anhydrous methanol 

(3 mL) at -10 ºC under N2. The solution was warmed to rt and left to stir overnight. The mixture was 

concentrated to give dehydroleucine methyl ester hydrochloride as a colorless oil (136 mg, 98 %).  

N-Methyl morpholine (67 µL, 62 mg, 0.61 mmol, 1.1 equiv.) was added to a solution of dehydroleucine 

methyl ester hydrochloride (100 mg, 0.56 mmol, 1 equiv.) in THF (2 mL) at 0 ºC under N2. (S)-(-)-

Methoxy(trifluoromethyl)phenyl acetic acid (MTPA) (143 mg, 0.61 mmol, 1.1 equiv.) and N,N′-

dicyclohexyl carbodiimide (DCC) (138 mg, 0.67 mmol, 1.2 equiv.) were added. The mixture was stirred 

at 0 ºC for 3 h and then at rt overnight. The resulting N,N′-dicyclohexyl urea was removed by filtration 

and the filtrate concentrated. The residue was dissolved in ethyl acetate (15 mL) and washed 
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successively with 10 % citric acid (10 mL), 5% NaHCO3 (10 mL) and brine (10 mL). The organic layer 

was filtered through MgSO4 and concentrated. The residue was purified by flash chromatography, 

eluting with 5:1 Hex/EtOAc to give 88a as an oil (123 mg, 62%). Rf  0.53 (2:1 Hexanes/EtOAc); [α] D
28

 

+16.5º (c 0.85, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ 1.67 (s, 3H), 2.39 (dq, J = 8.8, 5.2 Hz, 1H), 2.56 

(dd, J = 14.0, 5.1 Hz, 1H), 3.51 (dd, J = 3.3, 1.6 Hz, 3H), 3.80 (s, 3H), 4.60 (d, J = 0.8 Hz, 1H), 4.70 

(app. t, J = 1.5 Hz, 1H), 4.80 (dt, J = 8.6, 4.4 Hz, 1H), 7.35-7.58 (m, 5H); 
19

F NMR (236 MHz, CDCl3) δ 

-69.34 (br, 3F), -69.49 (br, 3F); 
13

C NMR (100 MHz, CDCl3) δ 21.6, 40.4, 50.1, 55.2, 83.7, 84.0, 114.8, 

122.1, 125.0, 127.5, 128.4, 129.4, 132.7, 140.0, 166.2, 172.0. HRMS (+TOF) calcd for C17H21NO4F3 (M 

+ H)
+
: 391.2227; obsd: 391.2240. 

 

 Mosher amides  88a,b. Compound (±)-86 (100 mg, 0.58 mmol) was suspended in aqueous NaOH 

(2.5 N, 3 mL) and heated at reflux for 4h. The solution was neutralized to pH 7 (monitored with UIP) by 

the addition of 6M HCl. The solution was then loaded onto a column (25 mm diameter, 30 mm high) of 

Dowex-50 (H
+
), rinsed with water (150 mL), eluted with 1N aqueous NH4OH. Fractions were monitored 

by TLC, staining with ninhydrin. Relevant fractions were freezedried to give (±)-87 as a colorless, 

amorphous powder in quantitative yield. A portion of this material (50 mg) was derivatized with MTPA, 

as described above, to give a 1:1 mixture of diastereomers (75 mg, 54 %). 
19

F NMR (236 MHz, CDCl3) 

δ -69.35, -69.49. 

 

 Cbz-dehydroleucine-OMe (90). Thionyl chloride (229 µL, 376 mg, 3.2 mmol, 2 equiv.) was 

gradually added to a suspension of the amino acid (-)-87 (204 mg, 1.6 mmol, 1 equiv.) in MeOH (4 mL) 

at -10 ºC under N2. The solution was gradually warmed to rt, stirred for 2 d, and concentrated. The 

residue was dissolved in a mixture of CH2Cl2 (3 mL) and H2O (1.5 mL) and cooled to 0 ºC at which 
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point NaHCO3 (728 mg, 8.7 mmol, 6.6 equiv.) and N-(benzyloxycarbonyloxy)succinimide (393 mg, 1.6 

mmol, 1.2 equiv.) were added sequentially. The reaction mixture was gradually warmed to rt overnight 

and diluted with CH2Cl2/H2O (20 mL each). The aqueous layer was back extracted with EtOAc (2 × 15 

mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The residue was 

purified by flash chromatography eluting with 2:1 Hex/EtOAc to give 90 as a colorless oil (266 mg, 73 

%). Rf  0.50 (3:1 Hexanes/EtOAc); [α] D
27 

+7.3º (c 1.2, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ 1.73 (s, 

3H), 2.38 (dd, J = 14.0, 8.4 Hz, 1H), 2.54 (dd, J = 14.0, 5.4 Hz, 1H), 3.73 (s, 3H), 4.49 (td, J = 8.1, 5.6 

Hz, 1H), 4.75 (br, 1H), 4.84 (app. t, J = 1.5 Hz, 1H), 5.10 (s, 2H), 5.27 (d, J = 7.8 Hz, 1H), 7.27-7.38 (m, 

5 H); 
13

C NMR (100 MHz, CDCl3) δ 21.7, 40.6, 52.1, 52.2, 66.9, 114.6, 127.9, 128.0, 128.4, 136.2, 

140.2, 155.7, 172.6. HRMS (+TOF) calcd for C15H20NO4 (M + H)
+
: 278.1386; obsd: 278.1387. 

 

 Lactones 92a,b. AD-mix-α (1.833 g) was added to a mixture of 
t
BuOH (6.5 mL) and H2O (6.5 mL) 

at rt. The clear orange solution was cooled to 0 ºC and Cbz-dehydroleucine-OMe (90) (363 mg, 1.31 

mmol) was added. The reaction mixture was stirred at 0 ºC for 24 h, quenched with Na2SO3 (1.964 g), 

stirred for an additional 1 h at rt, and extracted with CH2Cl2 (6 × 30 mL). The organic layers were 

combined, filtered through MgSO4 and concentrated. The residue was purified by flash chromatography, 

eluting with 95:5 CH2Cl2/MeOH, to give 92a,b (215 mg, 59 %) as a mixture of diastereomers. Rf  0.55 

(9:1 CH2Cl2/CH3OH);
 1

H NMR (400 MHz, CDCl3): δ 1.41 (s, 3H), 2.08 (t, J = 11.7 Hz, 1H), 2.35 (br, 

1H), 2.77 (t, J = 11.2 Hz, 1H), 3.54 (d, J = 12.0 Hz, 1H), 3.70 (d, J = 12.0 Hz, 1H), 4.69 (dd, J = 17.1, 

9.6 Hz, 1H), 5.10 (s, 2H), 5.49 (d, J = 6.3 Hz, 1H), 7.29-7.38 (m, 5H);  
13

C NMR (100 MHz, CDCl3) δ 

23.4, 35.8, 38.0, 52.3, 67.2, 68.6, 84.9, 128.1, 128.2, 128.5, 136.0, 156.1, 174.9. HRMS (+TOF) calcd 

for C15H14N5O (M + H)
+
: 280.1179; obsd: 280.1183. 
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 Amide 105.  Diisopropylethylamine (182 µL, 142 mg, 1.10 mmol, 1.1 equiv.), γ-valerolactone (103) 

(95 μL, 100 mg, 1.00 mmol, 1 equiv.) and Sn(OAc)2 (47 mg, 0.20 mmol, 0.2 equiv.) were added 

sequentially to a solution of L-valine ethyl ester hydrochloride (104) (272 mg, 1.50 mmol, 1.5 equiv.) in 

DMF (3 mL) at 0 ºC under N2. The mixture was warmed to 80 ºC and stirred for 44 h, concentrated, and 

the product isolated by flash chromatography eluting with 95:5 CH2Cl2/MeOH to give 105 as a 1:1 

mixture of diastereomers (159 mg, 65%).
 
Rf  0.37 (95:5 CH2Cl2/MeOH); 

1
H NMR (400 MHz, CDCl3): δ 

0.91 (dd, J = 6.9, 0.6 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), 1.98 (d, J = 1.2 Hz, 1.5H), 1.21 (d, J = 1.2, Hz, 

1.5H), 1.29 (t, J = 7.1 Hz, 3H), 1.66-1.75 (m, 1H), 1.80-1.89 (m, 1H), 2.12-2.20 (m, 1H), 2.37-2.48 (m, 

1H), 2.42 (t, J = 6.8 Hz, 1H), 2.43 (t, J = 7.3 Hz, 1H), 3.27 (br, 1H), 3.81-3.87 (m, 1H), 4.14-4.26 (m, 

2H), 4.53 (dd, J = 8.7, 5.0 Hz, 1H), 6.48 (br, 1H); 
13

C NMR (100 MHz, CDCl3) δ 14.1, 17.7, 18.8, 23.5, 

31.1, 33.0, 34.2, 57.0, 61.2, 67.1 & 67.2, 172.1 & 172.2, 173.6. HRMS (+TOF) calcd for C12H24NO4 (M 

+ H)
+
: 244.1554; obsd: 244.1549. 

 

 Cbz-dehydroleucine-OH (110).  Aqueous NaOH (2M, 10 mL) was added dropwise to a suspension 

of dehydroleucine (-)-87 (380 mg, 2.94 mmol, 1 equiv.) in THF (5 mL) at 0 ºC. Benzyl chloroformate 

(497 µL, 602 mg, 3.53 mmol, 1.2 equiv.) was added dropwise over 30 min, with vigorous stirring. The 

cloudy reaction mixture was left to stir overnight at rt and concentrated to remove THF. The residue was 

diluted with H2O (20 mL), extracted with ether (2 × 10 mL), acidified with 6M HCl to pH 1 and 

extracted with EtOAc (3 × 25 mL). The organic layers were combined, washed with brine (25 mL) and 

concentrated to give 110 as a colorless oil (630 mg, 81%). Rf  0.35 (9:1 CH2Cl2/MeOH); [α]D
27

 +4.4º (c 

1.2, CH3OH). 
1
H NMR (400 MHz, CD3OD): δ 1.75 (s, 3H), 2.38 (dd, J = 14.1, 10.0 Hz, 1H), 2.56 (dd, J 

= 14.1, 4.7 Hz, 1H), 4.36 (dd, J = 10.0, 4.8 Hz, 1H), 4.78 (br, 1H), 4.81 (br, 1H), 4.95 (br, 1H), 5.07 (s, 

2H), 7.26-7.35 (m, 5 H); 
13

C NMR (100 MHz, CD3OD) δ 20.0, 38.9, 51.7, 65.5, 112.3, 126.7, 126.9, 



48 

 

127.4, 136.2, 140.3, 156.5, 173.7. HRMS (+TOF) calcd for C14H18NO4 (M + H)
+
: 264.1230; obsd: 

264.1224. 

 

 Cbz-dehydroleucine-Val-OEt (111).  Diisopropylethylamine (1.2 mL, 910 mg, 7.04 mmol, 2.0 

equiv.) was added to a solution of Cbz-protected dehydroleucine (110) (618 mg, 2.3 mmol, 3.0 equiv.), 

valine ethyl ester hydrochloride (426 mg, 2.3 mmol, 1.0 equiv.) and BOP reagent (1.1 g, 2.6 mmol, 1.1 

equiv.) in acetonitrile (15 mL). The mixture was stirred at 0 ºC for 1 h and then at rt overnight. The 

mixture was concentrated and the product isolated by flash chromatography eluting with 2:1 

Hex/EtOAc, to give 111 as a colorless solid (851 mg, 93 %). Rf  0.53 (2:1 Hexanes/EtOAc); [α] D
30

 -2.4º 

(c 1.05, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ 0.88 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H), 1.27 

(t, J = 7.1 Hz, 3H), 1.75 (s, 3H), 2.16 (app. pd, J = 6.9, 4.8 Hz, 1H), 2.39 (dd, J = 14.2, 8.8 Hz, 1H), 2.56 

(dd, J = 14.2, 5.8 Hz, 1H), 4.14-4.24 (m, 2H), 4.31 (br, 1H), 4.50 (dd, J = 8.7, 4.8 Hz, 1H), 4.80 (br, 1H), 

4.87 (t, J = 1.4 Hz, 1H), 5.11 (s, 2H), 5.26 (br, 1H), 6.63 (d, J = 7.8 Hz, 1H), 7.29-7.37 (m, 5 H); 
13

C 

NMR (100 MHz, CDCl3) δ 14.1, 17.7, 18.8, 21.9, 31.3, 40.4, 53.2, 57.2, 61.2, 67.1, 114.5, 127.9, 128.1, 

128.5, 136.2, 140.8, 156.1, 171.3, 171.5. HRMS (+TOF) calcd for C21H31N2O5 (M + H)
+
: 391.2227; 

obsd: 391.2240. 

 

 Compound 112a.  AD-mix-β (563 mg) was dissolved in 
t
BuOH (2 mL) and H2O (2 mL) at rt. The 

clear orange solution was cooled to 0 ºC and dipeptide olefin 111 (157 mg, 0.4 mmol) was added. The 

mixture was stirred for 48 h at 0 ºC, quenched with Na2SO3 (604 mg), stirred for 1 h at rt, diluted with 

H2O (10 mL) and extracted with EtOAc (6 × 15 mL). The organic layers were combined, dried over 

MgSO4 and concentrated. The crude product was purified by flash chromatography eluting with 20:1 

EtOAc/MeOH, to give 112a as a colorless solid (154 mg, 90 %). Rf  0.32 (9:1 CH2Cl2/MeOH); [α] D
29

 -
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25.8º (c 0.95, CH3OH). 
1
H NMR (400 MHz, CD3OD): δ 0.93 (d, J = 2.3 Hz, 3H), 0.95 (d, J = 2.3 Hz, 

3H), 1.19 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.77 (dd, J = 14.8, 8.7 Hz, 1H), 2.03 (dd, J = 14.6, 3.3 Hz, 

1H), 2.15 (app. qd, J = 13.1, 6.5 Hz, 1H), 3.38 (dd, J = 15.9, 11.1 Hz, 2H), 4.10-4.21 (m, 2H), 4.30 (d, J 

= 5.5 Hz, 1H), 4.39 (dd, J = 8.4, 3.8 Hz, 1H), 5.09 (s, 2H), 7.25-7.36 (m, 5 H); 
13

C NMR (100 MHz, 

CD3OD) δ 12.5, 16.3, 17.4, 22.3, 29.8, 39.0, 50.8, 57.2, 60.2, 65.7, 68.6, 71.1, 126.8, 127.0, 127.5, 

136.2, 156.2, 170.9, 173.5. HRMS (+TOF) calcd for C21H33N2O7 (M + H)
+
: 425.2282; obsd: 425.2280. 

 

 Lactone 92b. A mixture of trifluoroacetic acid (100 µL) and CH2Cl2 (2 mL) was added to 

compound 112a (43 mg, 0.10 mmol) at 0 ºC under N2. The mixture was gradually warmed to rt 

overnight, concentrated, and the product isolated by flash chromatography eluting with 95:5 

CH2Cl2/MeOH to give 92b (23 mg, 82 %). Rf  0.53 (9:1 CH2Cl2/CH3OH); [α] D
25

 -5.7º (c 1.0, CHCl3). 
1
H 

NMR (400 MHz, CDCl3): δ 1.35 (s, 3H), 2.34 (d, J = 9.5 Hz, 1H), 2.54 (br, 1H), 3.44 (d, J = 8.0 Hz, 

1H), 3.73 (d, J = 12.2 Hz, 1H), 4.70 (dd, J = 17.1, 8.8 Hz, 1H), 5.11 (dd, J = 18.5, 12.2 Hz, 2H), 5.79 (d, 

J = 7.3 Hz, 1H), 7.30-7.36 (m, 5H); 
13

C NMR (100 MHz, CDCl3) δ 22.5, 29.7, 35.8, 51.1, 67.3, 67.4, 

84.6, 128.1, 128.2, 128.5, 136.0, 156.1, 174.9. HRMS (+TOF) calcd for C15H14N5O (M + H)
+
: 280.1179; 

obsd: 280.1183. 

 

 Hydrochloride salt of Lactone (2S,4S)-54a. Concentrated HCl (48 µL) and 10 % Pd/C (22 mg, 

0.206 mmol) were added to a solution of 92b (70 mg, 0.25 mmol) in EtOH (2.4 mL) at rt under N2. The 

mixture was hydrogenated for 4h, then filtered through Celite, and concentrated to give the 

hydrochloride salt as a colorless solid.  Recrystallization from ethanol/ether yielded colorless crystals 

(46 mg, 100 %); Rf  0.46 (3:3:3:1 
n
BuOH/EtOH/NH3/H2O); mp 210-213 ºC, Lit.

39
 205-207 ºC. [α] D

23
 -

7.4º (c 0.75, 6N HCl), Lit.
39

 [α] D
20

 -12º (c 2, 6N HCl). 
1
H NMR (400 MHz, D2O): δ 1.45 (s, 3H), 2.43 
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(dd, J = 13.0, 10.4 Hz, 1H), 2.60 (dd, J = 13.2, 9.6 Hz, 1H), 3.61 (d, J = 12.7 Hz, 1H), 3.77 (d, J = 12.7 

Hz, 1H), 4.64 (t, J = 9.9 Hz, 1H); 
13

C NMR (100 MHz, D2O) δ 20.9, 32.8, 49.4, 65.9, 87.5, 173.2. 

HRMS (+TOF) calcd for C6H12NO3 (M - HCl)
+
: 146.0811; obsd: 146.0813. 

 

 Hydrochloride salt of Lactone 54a,b. Lactone 92a,b (32 mg) was treated, as for the diastereomer, 

to cleave the Cbz group to give the hydrochloride salt of aminolactone 54a,b (18 mg, 86 %) as a 6.5:1.0 

mixture of diastereomers. mp 197-200 ºC, Lit.
39

 199-200 ºC. [α] D
23

 -22º (c 0.45, 6N HCl), Lit.
39

 [α] D
20

 -

35.5º (c 2, 6N HCl). NMR spectra are reported for the major (2S,4R) diastereomer. 
1
H NMR (400 MHz, 

D2O): δ 1.46 (s, 3H), 2.24 (dd, J = 13.4, 11.0 Hz, 1H), 2.88 (dd, J = 13.4, 9.8 Hz, 1H), 3.65 (d, J = 12.6 

Hz, 1H), 3.71 (d, J = 12.7 Hz, 1H), 4.64 (t, J = 10.3 Hz, 1H); 
13

C NMR (100 MHz, D2O) δ 22.1, 35.3, 

50.0, 66.9, 87.9, 173.7.  

 

 Silyl ether protection 114. Triethylamine (273 µL, 199 mg, 1.96 mmol, 2.4 equiv.), DMAP (20 mg, 

0.16 mmol, 0.2 equiv.) and TBDMSOTf (206 µL, 238 mg, 0.90 mmol, 1.1 equiv.) were added to a 

solution of 112a (347 mg, 0.82 mmol, 1 equiv.) in CH2Cl2 (4 mL) at 0 ºC under N2. The mixture was 

warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 2:1 

Hex/EtOAc to give 114 (368 mg, 84 %). Rf 0.42 (2:1 Hex/EtOAc); 
1
H NMR (400 MHz, CDCl3): δ 0.07 

(d, J = 4.4 Hz, 6H), 0.88 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.93 (d, J = 6.8 Hz, 3H), 1.26 (t, J = 8.8 Hz, 

3H), 1.29 (s, 3H), 1.76 (dd, J = 14.8, 4.2 Hz, 1H), 1.84 (br, 1H), 2.13 (d, J = 6.6 Hz, 1H), 2.14-2.23 (m, 

1H), 3.29 (br, 1H), 3.43 (app.t, J = 10.6 Hz, 2H), 4.08-4.24 (m, 3H), 4.42 (br, 1H), 4.48 (q, J = 8.8 Hz, 

1H), 5.12 (dd, J = 10.9, 6.1 Hz, 2H), 6.12 (d, J = 10.9, 5.4 Hz, 1H), 7.28-7.36 (m, 5 H); 
13

C NMR (100 

MHz, CDCl3) δ -5.5, 14.2, 17.5, 18.3, 19.0, 23.6, 25.8, 30.9, 41.1, 51.1, 57.3, 61.1, 66.8, 70.6, 72.2, 
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128.0, 128.1, 128.4, 136.3, 156.0, 171.8,172.4. HRMS (+TOF) calcd for C27H46N2O7Si (M + H)
+
: 

538.3074; obsd: 538.3065. 
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Compound 51 – 
1
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Compound (±)-86 – 
1
H NMR in CD3OD at 250 MHz 
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Mosher amide 88a – 
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H NMR in CDCl3 at 400 MHz 
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Compound 110 – 
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Compound 110 – 
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Compound 90 – 
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Compound 90 – 
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Compound 105 – 
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H NMR in CDCl3 at 400 MHz 

 
 

 

 



65 

 

Compound 105 – 
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Compound (+)-91 – 
1
H NMR in CDCl3 at 400 MHz 
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Compound (+)-91 – 
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C NMR in CDCl3 at 100 MHz 
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Dipeptide 111 – 
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Dipeptide 111 – 
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Compound 112a – 
1
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Dipeptide 112a – 
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Compound 92b – 
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Compound 92b – 
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Compound 114 – 
1
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CHAPTER 3:      THE PEPTIDE FRAGMENTS 

 

3.1  OVERVIEW 

  Revisiting our retrosynthetic analysis from (Scheme 3.1) Chapter 2, we recall that our 

approach to alloviroidin and the three analogs involves coupling of the tripeptide acids derived from 47-

50 and the amino component derived from tetrapeptide 46. According to this strategy, the tetrapeptide 

fragment 46 is common to the natural product and the analogs. However, examination of the tripeptide 

fragments 47-50 reveals that the natural product and the three analogs are distinguished by the degree 

and regiochemistry of proline hydroxylation.  

 

Scheme 3.1. Retrosynthetic analysis of alloviroidin and analogs. 

 

 

Prerequisites to the synthesis of the tetrapeptide fragment 46 were the efficient  preparation 

of the (2S,4R)-4,5-dihydroxyleucine
35

 (Chapter 2) and 2-methylsulfonyl-tryptophan (vide infra) 

residues. We designed a strategy that incorporated each of these residues into a dipeptide, followed by a 

[2 + 2] fragment condensation to deliver the tetrapeptide (Scheme 3.2). 
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Scheme 3.2. Retrosynthetic analysis of the tetrapeptide. 

 

The next section describes the preparation of the 2-methylsulfonyl-tryptophan residue and formation of 

the Fmoc-Ala-[2-MeSO2-Trp]-OH dipeptide fragment. We shall also describe the assembly of the 

tetrapeptide fragment. 

 

3.2  2-METHYLSULFONYL-TRYPTOPHAN AND THE TETRAPEPTIDE FRAGMENT 

During their total synthesis of amauromine, Takase et al. described the synthesis of the 2-

thiomethyl derivative of Cbz-L-Trp-OMe in four steps with an overall yield of 17 % (Scheme 3.3).
84, 85

 

The 2-thiomethyl functional group was introduced by heating compound 118 with phosphorus 

pentasulfide in pyridine at reflux to generate the corresponding 2-thione, which was then treated with 

methyl iodide to give the desired building block (Scheme 3.3).  

Scheme 3.3. Takase and co-workers synthesis of the 2-thiomethyl derivative of Cbz-L-Trp-OMe. 
85

 

 

In 1996, Dillard and coworkers described the synthesis and structure-activity relationships of 

indole-3-acetamides and derivatives as potential therapeutic inhibitors of human nonpancreatic secretory 

phospholipase A2, an enzyme that is involved in the biosynthesis of eicosanoid products. In one of the 
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lead compounds, the methylsulfenyl group was introduced onto the indole ring according to Scheme 

3.4.
86

 

Scheme 3.4. Dillard and co-workers‟ synthesis of indole-3-acetamides. 

 

Our approach to 2-methylsulfonyl-tryptophan involved four steps from commercially 

available L-tryptophan tert-butyl ester 123 (Scheme 3.5) utilizing the same approach as Dillard. The 

amino group was protected as its Boc (tert-butoxycarbonyl) derivative to give compound 124,
87

 

anticipating simultaneous acid cleavage of the two protecting groups at a later stage. We followed the 

above protocol of Dillard et al. to introduce the thiomethyl group; this involved in situ generation of 

methylsulfenyl chloride from sulfuryl chloride and dimethyl disulfide. Compound 125 was found to be 

unstable, hence all the data reported was collected on the same day it was prepared. The methylthioether 

group of 125 was oxidized to afford the corresponding sulfone 126 with two equivalents of m-

chloroperbenzoic acid in dichloromethane.
86

 Analysis of the oxidation reaction by thin layer 

chromatography indicated the conversion of the starting material into a sulfoxide intermediate prior to 

sulfone formation. Mass spectrometry and NMR analysis provided evidence that the desired product had 

been formed. Specifically, an examination of the 
1
H NMR spectra of compounds 125 and 126 revealed a 

singlet at δ 2.34 (for 125) and 3.24 (for 126), integrating for three protons, of the thiomethyl and 

methanesulfonyl groups respectively. The observed shift, downfield, for the methanesulfonate derivative 

is influenced by the two electron withdrawing oxygen atoms introduced on sulfur.  

Removal of the protecting groups was accomplished in good yield by treatment with 

TFA/CH2Cl2, in the presence of thioanisole as a carbocation scavenger, to give 127. This free Trp 
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derivative was then coupled with the preformed N-hydroxysuccinimide ester 128 (from commercially 

available Fmoc-Ala-OH via the traditional NHS/DCC protocol) to give dipeptide acid 115, which was 

routinely used in the next step without further purification. A portion of 115 was converted into the 

corresponding methyl ester 129 to allow for purification by column chromatography and 

characterization. 

 

Scheme 3.5. Preparation of the 2-methylsulfonyl-tryptophan. 

 

 

Having secured the two dipeptide fragments 115 (Scheme 3.5) and 116 (Chapter 2), we next 

turned to the preparation of the tetrapeptide fragment 46 according to Scheme 3.6.  

Scheme 3.6. Preparation of the tetrapeptide fragment. 
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This effort began with the hydrogenolysis of the Cbz group from compound 114 to furnish the free 

dipeptide amine 116 that was coupled to dipeptide acid 115 (from Scheme 3.5) to generate tetrapeptide 

46. This [2 + 2] coupling was effected by HATU
88

 in the presence of the weak base 2,4,6-collidine, 

chosen to limit the potential problem of racemization
89

 of the Trp residue. The HATU reagent is the 

most reactive guanidium peptide coupling reagent and has proven effective for difficult reactions. With 

this reagent, acid activation proceeds according to Scheme 3.7. The azabenzotriazole ester intermediate 

can facilitate coupling via intramolecular base catalysis, and is considered responsible for the high 

reactivity and chemical yields associated with HATU couplings.
88

 

 

Scheme 3.7. Acid activation by HATU.
88

 

 

 

The fluorenylmethoxycarbonyl (Fmoc) group is widely used for temporary amino protection 

in peptide synthesis.
90

 This protecting group is stable to acids but readily cleaved with mild bases via β-

elimination of dibenzofulvene (Scheme 3.8).
91-95

 For the removal of the Fmoc group from the N-

terminus of 46 (Scheme 3.6), we explored the use of diethylamine (DEA), piperidine and tris(2-

aminoethyl)amine (TAEA). 
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Scheme 3.8. Cleavage of the Fmoc group via β-elimination.  

 

 The major drawback associated with the Fmoc protecting group during solution phase synthesis is the 

removal of the byproduct arising from addition of the secondary amine to dibenzofulvene (Fig. 3.1). 

Removal of this byproduct requires either purification of the free amino peptide by column 

chromatography or aqueous workup, sometimes characterized by emulsions or large volumes of solvents 

during extraction. In the case of TAEA, the excess reagent and dibenzofulvene adduct are removed by 

extraction into a phosphate buffer solution of pH 5.5.
96

 The low boiling point of diethylamine makes it a 

reagent of choice since it can be used in excess and removed by evaporation upon completion of the 

deprotection. Although this does not remove the adduct, this is often found not to adversely affect the 

subsequent coupling reaction. Piperidine is also an effective base for Fmoc cleavage, however, this 

reagent cannot be completely eliminated on a rotavap and therefore the excess amine and the 

dibenzofulvene adduct (133) can be removed by column chromatography. Failure to remove excess 

reagents used for Fmoc cleavage could lead to side reactions during coupling since they could serve as 

competing nucleophiles. In some cases, effective peptide couplings could be conducted in the presence 

of the dibenzofulvene adduct. In our studies, TAEA generated the free amine 130, in excellent yields 

setting the stage for fragment condensation.  

 

Figure 3.1. Byproducts arising from Fmoc cleavage. 
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3.3  THE PROLINE BUILDING BLOCKS AND THE TRIPEPTIDE FRAGMENTS 

  Proline plays an important role in protein folding by inducing a reversal in backbone 

conformation.
97

 Our initial goal, when we started this work, was to synthesize a virotoxin. But in the 

course of these studies, the concept of accessing three analogs containing proline, cis-4-hydroxyproline 

and trans-3-hydroxyproline evolved (vide infra). Prior to investing our synthetically valuable 2,3-trans-

3,4-trans-3,4-dihydroxyproline residue, we sought to investigate an efficient way of incorporating this 

building block into peptides. We decided to utilize L-proline and cis-4-hydroxyproline residues as model 

systems but later realized that these compounds could also serve as the basis for understanding the effect 

of proline hydroxylation on the conformation of the cyclic peptides. For complete comparison, we 

decided to incorporate a trans-3-hydroxyproline residue in our peptides, as this would explain the 

influence of the trans hydroxyl group at Cβ of the dihydroxyproline residue. A noteworthy feature of the 

syntheses is the use of the same protecting group strategy utilized during the preparation of 2,3-trans-

3,4-trans-3,4-dihydroxyproline residue to the proline building blocks incorporated into the virotoxin 

analogs. 

According to our retrosynthetic analysis given in Scheme 3.1, a series of four tripeptide 

fragments (Fig. 3.2), incorporating different proline residues was synthesized prior to heptapeptide 

formation (vide infra). 

 

 

 

Figure 3.2. The series of four tripeptide fragments. 
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3.3.1   L-Proline Benzyl Ester Hydrochloride  

Although the hydrochloride salt of L-proline benzyl ester residue is inexpensive and 

commercially available, we sought to prepare proline residues that mimicked the protecting group 

strategy of 2,3-trans-3,4-trans-3,4-dihydroxyproline in order to provide experience of peptide couplings 

and associated manipulations  involving this building block (vide supra). The preparation of L-proline 

benzyl ester hydrochloride residue is presented in Scheme 3.9. The nitrogen of commercially available 

proline (134) was protected with the 9-fluorenylmethyloxycarbonyl group (Fmoc) under standard 

conditions,
90

 followed by benzylation of the crude carboxylic acid to deliver 135 in good yield. We 

encountered challenges handling the prolyl amine after Fmoc cleavage using standard conditions. 

Deprotection of the Fmoc group was best achieved using diethylamine, followed by chromatography 

and formation of the hydrochloride salt 136. The salt formation eliminated a side reaction experienced in 

our initial attempts to utilize the free amine directly to form tripeptides. The side reaction involved 

dimerization of the proline benzyl ester, leading to poor yields of the desired tripeptide. Handling the 

proline residue as the hydrochloride salt greatly improved our overall coupling yield (vide infra). 

Scheme 3.9. Preparation of the proline building block. 

 

 

3.3.2  L-4-cis-Hydroxyproline Building Block  

While L-cis-4-hydroxyproline is commercially available, this building block is expensive 

($561.00/g, from Sigma). We therefore followed previously developed procedures for the generation of 

cis-4-hydroxyproline derivatives.
98

 After introducing the 9-fluorenylmethyloxycarbonyl and the benzyl 

ester protecting groups (Scheme 3.10) to the trans-4-hydroxyproline residue (138a), we conducted the 
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Mitsunobu reaction with p-nitrobenzoic acid to invert the stereochemistry at the hydroxyl-bearing 

center. The use of p-nitrobenzoic acid is well known to increase the efficiency of inversion in sterically 

hindered secondary alcohols,
99, 100

 and the development of a mild and selective method of cleaving the 

p-nitrobenzoate ester intermediates using sodium azide in methanol
101

 has increased the utility of p-

nitrobenzoates in Mitsunobu reactions. However, in our hands, we recorded poor yields for this reaction 

under the same conditions as Gomez-Vidal and co-workers.
101

 The low yield of product from the 

Mitsunobu reaction of Fmoc protected substrate 138b (Scheme 3.10) was used in the subsequent steps as 

an alternative source of the 4-cis-hydroxyproline building block. The hydroxyl group was protected as 

its MEM ether derivative, followed by Fmoc cleavage and hydrochloride salt formation as described 

above. 

Scheme 3.10. Preparation of the hydrochloride salt of 4-hyp building block. 

 

Switching from the Fmoc to the Boc protecting group and formation of the formate ester 

instead of the previously used p-nitrobenzoate ester, tremendously improved our yield for the Mitsunobu 

reaction as indicated in Scheme 3.11. A possible explanation for the poor yield with the Fmoc protected 

derivative could be due to instability of the protecting group under these conditions. This change in 

strategy was further justified by the ease of hydrolysis of the less hindered formate ester of the N-Boc 

derivative to give the inverted alcohol in high yields. Protection of the hydroxyl group as its MEM ether 
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derivative, followed by removal of the Boc protecting group under mild acidic conditions set the stage 

for tripeptide formation. 

Scheme 3.11. Preparation of the trifluoroacetate salt of 4-hyp building block. 

 

 

3.3.3 L-3-trans-Hydroxyproline Building Block  

The preparation of this residue from commercially available 144 proceeded as outlined in 

Scheme 3.12. Protection of the two functionalities, as previously described for the cis-4-hydroxyproline 

building block (Scheme 3.11), generated 145. Having demonstrated that the MEM ether could be 

cleaved under the same conditions as the side chain protected tert-butyl ethers using the 4-cis-

hydroxyproline residue (vide supra), we decided to handle the β-hydroxyl group of 3-trans-

hydroxyproline in its unprotected form at the initial tripeptide coupling level. Trifluoroacetic acid 

mediated Boc-deprotection of 145 gave the corresponding trifluoroacetate salt 146 that was routinely 

used in the next step without further purification. 

 

Scheme 3.12. Preparation of the trifluoroacetate salt of 3-Hyp building block. 
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3.3.4 L-2,3-trans-3,4-trans-3,4-Dihydroxyproline
34

  

  All naturally occurring virotoxins contain this amino acid (Fig. 3.3). One of the major 

obstacles to the synthesis of these natural products has been the availability of the 2,3-trans-3,4-trans-

3,4-dihydroxyproline residue, which was not commercially available and considered inaccessible via 

synthesis. A report by Kahl and coworkers demonstrated that substituting cis-4-hydroxyproline for the 

dihydroxyproline residue generates a synthetic analog that is five times less active (vide supra).
29

  

 

Figure 3.3. Naturally occurring virotoxins. 

A notable amount of synthetic work on dihydroxyprolines can be found in literature.
102-104

 

Most of these approaches are not capable of delivering the eight stereoisomers of 3,4-dihydroxyproline. 

In 1981, Kahl and Wieland synthesized two naturally occurring dihydroxyproline diastereomers 150a 

and 150b. Their aim was to correlate structural data of the synthetic and natural compounds. 

Epoxidation of N-tosyl-3,4-dehydro-L-proline methyl ester (147) with trifluoroperacetic acid generated 

the 3,4-epoxy esters 148a and 148b, which were ring-opened and hydrolyzed without separation to give 

149a and 149b. Removal of the tosyl protecting group with sodium in liquid ammonia afforded the free 

dihydroxyprolines 150a and 150b (Scheme 3.13).
105

 This strategy was laborious and not efficient at 

generating sufficient quantities of the dihydroxyproline building block required for a virotoxin synthesis. 
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Scheme 3.13. Kahl and Wieland synthesis of two naturally occurring dihydroxyproline diastereomers.
105

  

 

 

Significant efforts in the Taylor laboratory developed an efficient way to produce 

orthogonally protected dihydroxyproline building blocks in gram quantities.
34, 106, 107

 We utilized this 

approach to produce more of the 2,3-trans-3,4-trans-3,4-dihydroxyproline residue as described below 

(Scheme 3.14).
34

 

Scheme 3.14. Synthesis of 2,3-trans-3,4-trans-3,4-dihydroxyproline residue.
ii
 

 

Commercially available L-xylose (151) was oxidized to give a γ-lactone. Selective protection 

of the primary alcohol as its triphenylmethyl ether, followed by protection of the secondary alcohols as 

MEM
108

 ethers, using conditions optimized by Chantelle Jones, involved heating at reflux in chloroform 

                                                 
ii
 Procedures for the preparation of compound 155 followed the literature and are not reiterated in this dissertation. 
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with 5 equivalents of the alkylating reagent
34

 to give compound 152. Initial studies in our group utilized 

tert-butyldimethylsilyl (TBS) ethers for protection of the secondary alcohols, however, silyl ether 

migration upon reductive opening of the lactone ring in 158 (Scheme 3.15) and partial cleavage of this 

protecting group under the acidic conditions used for triphenylmethyl ether cleavage adversely affected 

the chemical yield of the desired product.
107

.  

Scheme 3.15. Silyl ether migration upon reductive opening of the lactone ring. 

 

Reductive opening of lactone 152 with lithium borohydride gave the open chain diol that was 

converted to bis-mesylate 153 by adding a solution of the diol in pyridine to a precooled mixture of 

methanesulfonyl chloride and DMAP. Treatment with benzylamine displaced the primary mesylate, 

followed by an SN2 attack at the secondary mesylate to produce the pyrrolidine (Scheme 3.16).  

Scheme 3.16. Pyrrolidine ring formation. 

 

 

 

At this point, the replacement of the N-benzyl group for Fmoc was necessary for stability and 

compatibility in the subsequent oxidation and peptide synthesis steps.
106

 Hydrogenolysis of the benzyl 

group from 162, followed by treatment of the crude secondary amine with fluorenylmethyl 

chloroformate in toluene using triethylamine as a base, gave 154 in good yields (Scheme 3.14). The 

trityl ether was then cleaved with formic acid followed by oxidation of the resulting alcohol to give the 
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corresponding carboxylic acid 155 that was protected as its benzyl ester derivative 156, the building 

block required for virotoxin synthesis.  

 

3.3.5 Completion of the Tripeptide Fragments  

With the four proline building blocks in-hand, our next goal was the synthesis of the Fmoc-

D-Thr-D-Ser-OH dipeptide. The preparation of the dipeptide acid 165 proceeded from the tert-butyl 

ether derivatives of the two D-amino acids (Scheme 3.17) that were obtained from commercial sources. 

Formation of the activated N-hydroxysuccinimide ester of the threonine residue was accomplished using 

NHS and DCC.
109

 This intermediate was subsequently coupled with the amino acid 164 to provide the 

corresponding dipeptide acid 165 that was routinely used in the next step without further purification. 

For the purposes of characterization, we again converted a portion of the acid to the corresponding 

methyl ester using trimethylsilyldiazomethane.  

Scheme 3.17. The synthesis of the Fmoc-D-Thr-D-Ser dipeptide. 

 

Having generated the Fmoc-D-Thr-D-Ser-OH dipeptide (165), the stage was now set for the 

amalgamation with each of the four proline building blocks and a final elaboration to deliver the series 

of four tripeptides. The assembly of the tripeptides began with coupling the dipeptide acid 165 with the 

salts of proline (136), 3-trans-hydroxyproline (146), 4-cis-hydroxyproline (140/143), and 2,3-trans-3,4-

trans-3,4-dihydroxyproline (157) building blocks using HATU/collidine to furnish the corresponding 

tripeptide fragments 167-170 (Scheme 3.18) in high yields. We relied on this remarkable coupling 
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reagent since earlier studies by Carpino and co-workers had demonstrated that acid activation by HATU 

in the presence of collidine as a base gave little or no epimerization even in difficult cases.
89

  

Scheme 3.18. Preparation of the tripeptides. 

 

At this point, an exchange of the acid labile tert-butyl and MEM ether protecting groups for 

silyl ethers was considered vital. Acid labile protecting groups are not compatible with the tendency of 

the γ-hydroxylated dihyLeu to lactonize under acidic conditions causing cleavage of the peptide bond 

(vide supra, Scheme 2.18).
81

 Attempts to employ either neat trifluoroacetic acid, or this reagent in 

combination with CH2Cl2 or 2M HCl, to cleave both MEM and tert-butyl ethers in a one-pot process 

were plagued by incomplete deprotection of the MEM group, even after prolonged reaction times that 

resulted in partial cleavage of the benzyl ester. Gratifyingly, the use of titanium tetrachloride
110

 afforded 

a smooth deprotection of both protecting groups, within a short time, in high yields. We then protected 

the alcohols as the fluoride-labile silyl ethers using the highly reactive silylating reagent; t-

butyldimethylsilyl trifluoromethanesulfonate and 2,6-lutidine in dichloromethane (Scheme 3.18). 

Analysis of the proline, 3-trans-hydroxyproline, 4-cis-hydroxyproline and 2,3-trans-3,4-trans-3,4-

dihydroxyproline containing tripeptides by 
1
H and 

13
C NMR spectra revealed the existence of two 
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conformers. This could be explained in terms of the cis→trans isomerization about the serine-prolyl 

peptide bond. The position of this equilibrium depends on the degree and stereochemistry of proline 

hydroxylation.
36

 This phenomenon is also associated with carbamate protecting groups that gives rise to 

the cis and trans rotamers in solution. The purity of the four tripeptides was found to be greater than 

96% by HPLC analysis (see experimental section for the HPLC traces), an indication that our couplings 

and deprotections proceeded smoothly.   

 Having synthesized the tripeptide fragments, we next set about cleaving the benzyl ester in 

preparation for the [3+4] fragment condensation to give heptapeptides. Attempts to employ standard 

catalytic hydrogenolysis conditions led to considerable cleavage of the Fmoc group and incomplete 

debenzylation of the 2,3-trans-3,4-trans-3,4-dihydroxyproline containing tripeptide, presumably due to 

steric effects introduced by the additional O-TBS group at the Cβ-position of the pyrrolidine ring. A 

similar Fmoc cleavage in peptide synthesis had been reported earlier by Bodanszky and co-workers 

during hydrogenolysis of Fmoc protected amino acids.
111

 Bodanszky et al. identified the side product as 

9-methyl-fluorene and hypothesized that the quality of the palladium catalyst dictated the stability of the 

Fmoc group to hydrogenolysis, i.e, a partially poisoned catalyst could be active enough to reduce a 

benzyl group leaving the Fmoc group intact.
111

 Gratifyingly, cleavage of the benzyl esters by transfer 

hydrogenolysis with triethylsilane
112

 liberated the tripeptide acids in high yields without affecting the N-

terminal Fmoc (Scheme 3.19).  

Scheme 3.19. Hydrogenolysis of the benzyl ester.  

 

Addition of triethylsilane to the palladium/carbon catalyst generates molecular hydrogen in 

situ, avoiding the use of an external source of hydrogen gas (Fig. 3.4) during the reduction process.
113
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An extensive study by McMurray and Mandal has revealed that a wide range of substrates, including 

both acid- and base-sensitive substrates tolerated these conditions.
112

 

 

  

 

Figure 3.4.
113

 Generation of molecular hydrogen from triethylsilane/Pd-C and methanol mixture. 

 

3.3.6  Summary 

  In this Chapter, we have described the preparation of the 2-methylsulfonyl-tryptophan 

residue 127 in four steps with an overall yield of 51% starting from commercially available L-

tryptophan tert–butyl ester. We then performed coupling to generate Fmoc-Ala-[2-SO2Me-Trp]-OH 

dipeptide 115, that was condensed with (2S,4S)-4,5-dihyLeu-Val-OEt from Chapter 2 to give the 

tetrapeptide fragment. 

We have also described an efficient synthesis of the four tripeptide fragments required for the 

assembly of alloviroidin and analogs utilizing the same strategy by substituting the appropriate proline 

residue into each fragment. The coupling conditions permitted the synthesis of the tripeptides in 

acceptable yields. Also, the overall yield per tripeptide fragment compares favorably with couplings 

involving regular amino acids. Orthogonal protection of the final tripeptide fragments was accomplished 

with the base labile Fmoc group for temporary amino protection, the fluoride-labile silyl ether for 

permanent side chain protection, and the benzyl ester for temporary protection of the C-terminus. 
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3.4  EXPERIMENTAL SECTION 

 

3.4.1 General Methods: As for Chapter 2 with the following additions and modifications: 2,4,6-

collidine and 2,6-lutidine were dried and distilled from CaH2 and stored over KOH pellets. The 

compounds were visualized by UV fluorescence or by staining with Ehrlich reagent, phosphomolybdic 

acid, ninhydrin or KMnO4 stains.  

 

 

 Boc-L-Trp-O
t
Bu (124). L-tryptophan tert-butyl ester hydrochloride (3.00 g, 10.1 mmol, 1.0 equiv.) 

was added gradually to a solution of triethylamine (15 mL, 10.92 g, 107.92 mmol, 10.7 equiv.) in 

methanol (120 mL) at rt under N2. The mixture was stirred for a further 30 min after the addition was 

complete. Di-tert-butyl-dicarbonate (2.646 g, 12.1 mmol, 1.2 equiv.) was then added in a single portion, 

with vigorous stirring. The temperature was raised to 40 
º
C for 1 h, and then cooled to rt for another 1 h. 

The reaction mixture was concentrated and partitioned between ethyl acetate (150 mL) and 2M HCl (75 

mL, diluted to 190 mL with ice cold water). The aqueous layer was extracted further with ethyl acetate 

(4 × 50 mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The 

residue was purified by flash chromatography, eluting with 2:1 Hexanes/EtOAc to give 124 as a 

colorless solid (3.476 g, 95 %). Rf  0.45 (2:1 Hexanes/EtOAc). [α]D
25

 +16.5º (c 1.0, CHCl3). 
1
H NMR 

(250 MHz, CDCl3) δ 1.37 (s, 9H), 1.41 (s, 9H), 3.24 (br, 2H), 4.54 (q, J = 13.2 Hz, 1H), 5.08 (d, J = 7.5 

Hz, 1H), 6.99 (s, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 7.61 (d, 

J = 7.5 Hz, 1H), 8.26 (br, 1H); 
13

C NMR (62.5 MHz, CDCl3) δ 27.9, 28.3, 54.7, 79.5, 81.7, 110.4, 111.0, 

119.0, 119.3, 122.0, 122.7, 127.9, 136.0, 155.3, 171.4. HRMS (+TOF) calcd for C20H29N2O4 (M + H)
+
: 

361.2121; obsd: 361.2116.  
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 Boc-L-Trp(SMe)-O
t
Bu (125). Sulfuryl chloride (368 µL, 612 mg, 4.5 mmol, 1 equiv.) was added 

dropwise to a solution of Me2S2 (443 µL, 470 mg, 5.0 mmol, 1.1 equiv.) in CH2Cl2 (10 mL) at -25 
º
C 

(ethylene glycol-dry ice) under N2. The mixture was stirred for 30 min, then warmed to rt.  This solution 

of methylsulfenyl chloride was then added gradually to a solution of 124 (3.27 g, 9.1 mmol, 2 equiv.) in 

CH2Cl2 (150 mL) under N2 at rt. After stirring for 2.5 h, the solution was washed with 10% aq. Na2CO3 

(150 mL), and brine (150 mL). The organic layer was filtered through MgSO4 and concentrated. The 

residue was purified by flash chromatography eluting with 3:1 Hex/EtOAc to give 125 as light green 

foam (2.50 g, 68%). Rf  0.48 (3:1 Hexanes/EtOAc). [α]D
25

 +3.6º (c 1.0, CHCl3). 
1
H NMR (400 MHz, 

CDCl3) δ 1.32 (s, 9H), 1.38 (s, 9H), 2.34 (s, 3H), 3.26 (dq, J = 6.2, 7.8 Hz, 1H), 4.53 (q, J = 15.5 Hz, 

1H), 5.19 (d, J = 8.2 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 

8.38 (br, 1H); 
13

C NMR (100 MHz, CDCl3) δ 19.8, 27.8, 28.1, 28.2, 54.8, 79.4, 81.6, 110.5, 119.2, 

119.7, 122.8, 127.9, 128.0, 136.5, 155.1, 171.6. HRMS (+TOF) calcd for C21H31N2O4S (M + H)
+
: 

407.1999; obsd: 407.2009.  

 

 

 Boc-L-Trp(SO2Me)-O
t
Bu (126).  meta-Chloroperbenzoic acid (405 mg, 1.8 mmol, 2 equiv., 77 %) 

was added in one portion to a solution of the thioether 125 (367 mg, 0.9 mmol, 1 equiv.) in CH2Cl2 (100 

mL) at 0 
°
C under N2. The mixture was stirred further at this temperature for 1.5 h, and then washed 

with 10% aq. Na2CO3 (100 mL). The aqueous layer was extracted further with CH2Cl2 (3 × 50 mL). The 

organic extracts were combined, filtered through MgSO4 and concentrated. The residue was purified by 

flash chromatography eluting with 1:1 Hex/EtOAc to give 126 (302 mg, 76%). Rf  0.59 (1:1 

Hexanes/EtOAc). [α]D
25

 -10.6º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 1.29 (s, 9H), 1.39 (s, 9H), 

3.24 (s, 3H), 3.39 (t, J = 10.2 Hz, 1H), 3.54 (dd, J = 4.5, 4.6 Hz, 1H), 4.50 (t, J = 4.0 Hz, 1H), 5.44 (d, J 
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= 8.1 Hz, 1H), 7.19 (d, J = 1.04 Hz, 1H), 7.21 (t, J = 1.1 Hz, 1H), 7.23 (d, J = 1.0 Hz, 1H), 7.35 (d, J = 

1.0 Hz, 1H), 7.37 (t, J = 1.1 Hz, 1H), 7.39 (d, J = 1.0 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.0 

Hz, 1H), 9.25 (br, 1H); 
13

C NMR (100 MHz, CDCl3) δ 25.5, 26.6, 44.6, 55.2, 112.8, 115.3, 120.6, 121.3, 

126.4, 126.5, 129.4, 136.3, 173.7. HRMS (+TOF) calcd for C21H31N2O6S (M + H)
+
: 439.1902; obsd: 

439.1902. 

 

 

 

 

 

 

NMR Assignments 

          

Position 
1
H (ppm)  J (Hz) 

13
C (ppm) 

C=O  COO
t
Bu 

C=O   Boc 

  171.2 

155.3 

H α 4.50 q (8.6, 4.6) 54.9 

H β 3.39  

3.54 

dd (10.6, 2.8) 

dd (13.2, 3.8) 

27.2 

C2    118.1 

C3    129.4 

C4 7.41 d (8.3) 112.3 

C5 7.37 ddd (8.2, 7.0, 1.1) 121.4 

C6 7.21 ddd (8.1, 7.0, 1.1) 126.5 

C7 7.77 d (8.0) 121.2 

C9   127.5 

C8   135.9 

SOOCH3 3.24 s 45.7 

C(CH3) 3 x 2   79.5, 82.0 

C(CH3) 3 x 2   27.9, 28.1 
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 H-L-Trp(SO2Me)-OH (127). Trifluoroacetic acid (3 mL) was added gradually to a stirred solution 

of 126 (400 mg, 0.91 mmol, 1 equiv.) in CH2Cl2 (3 mL) at 0 ºC under N2. Thioanisole (107 μL, 113 mg, 

0.91 mmol, 1 equiv.) was then added and the resultant solution stirred and gradually warmed to rt 

overnight. The mixture was concentrated and the residue dissolved in a minimum volume of H2O (~ 3 

mL), loaded onto a Dowex-50 (H
+
) column, rinsed with water (~ 250 mL), and the product eluted with 

1N aqueous NH4OH solution. The relevant fractions were combined and concentrated on a freezedrier to 

deliver 127 (249 mg, 76 %). Rf  0.31 (6:4:1 CHCl3/CH3OH/H2O). [α]D
31

 +12.3º (c 1.0, H2O). 
1
H NMR 

(400 MHz, D2O) δ 3.36 (s, 3H), 3.53 (dd, J = 14.8, 8.2 Hz, 1H), 3.72 (dd, J = 14.9, 5.9 Hz, 1H), 4.08 

(dd, J = 7.8, 6.2 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.57 (app. d, J = 8.4 Hz, 1H), 

7.71 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H; 
13

C NMR (100 MHz, D2O) δ 27.1, 27.9, 28.1, 45.7, 

54.9, 79.5, 81.9, 112.3, 118.1, 121.2, 121.4, 126.4, 127.4, 129.4, 135.9, 155.3, 171.2; HRMS (+TOF) 

calcd for C12H15N2O4S (M + H)
+
: 283.07470; obsd: 283.07495.  

 

 

 Fmoc-Ala-Trp(SO2Me)-OH (115). N,N′-Dicyclohexyl carbodiimide (DCC) (235 mg, 1.14 mmol, 

1.0 equiv.) and NHS (132 mg, 1.14 mmol, 1.0 equiv.) were added to a solution of Fmoc-L-Ala-OH (355 

mg, 1.14 mmol, 1.0 equiv.) in CH2Cl2 (15 mL) at 0 º under N2. The reaction mixture was stirred and 

gradually warmed to rt for 4 h. The resulting N,N′-dicyclohexyl urea was removed by filtration and the 

filtrate concentrated, dissolved in a mixture of MeCN (4 mL) and H2O (2 mL) and cooled to 0 ºC. To 

this solution was added H-L-Trp-(SO2Me)-OH (323 mg, 1.14 mmol, 1.0 equiv.), then 

diisopropylethylamine (377 μL, 295 mg, 2.28 mmol, 2.0 equiv.). The mixture was stirred and gradually 

warmed to rt overnight, and then partitioned between EtOAc (40 mL) and 2M HCl (40 mL). The 

aqueous layer was extracted further with ethyl acetate (3 × 30 mL). The organic extracts were combined, 
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washed with H2O (40 mL), filtered through MgSO4 and concentrated to give compound 115 (642 mg, 98 

%), which was used directly in the next reaction. For the purposes of characterization, a sample was 

converted to corresponding methyl ester. 

 

 

 Fmoc-Ala-Trp(SO2Me)-OMe (129). Cesium carbonate (17 mg, 0.05 mmol, 0.5 equiv.) was added 

to a solution of Fmoc-Ala-Trp(SO2Me)-OH (115) (60 mg, 0.10 mmol, 1.0 equiv.) in MeOH (2 mL). The 

mixture was stirred for 2 h and concentrated. The residue was suspended in DMF (2 mL) and cooled to 0 

ºC. Methyl iodide (8 μL, 18 mg, 0.13 mmol, 1.2 equiv.) was added and the reaction mixture was stirred 

and gradually warmed to rt overnight, diluted with EtOAc (15 mL) and washed successively with H2O 

and brine (15 mL each). The organic layer was dried over MgSO4, filtered and concentrated. The 

product was isolated by flash chromatography eluting with 1:1 Hex/EtOAc to give 129 (36 mg, 59 %). 

Rf  0.47 (4:1 EtOAc/Hex). [α] D
27

 -15.6º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 1.32 (d, J = 6.7 

Hz, 3H), 3.17 (s, 3H), 3.41 (dd, J = 10.0, 4.2 Hz, 1H), 3.58 (dd, J = 14.2, 4.3 Hz, 1H), 3.72 (s, 3H), 4.12-

4.40 (m, 4H), 4.77-4.84 (m, J = 10.2 Hz, 1H), 5.44 (d, J = 7.5 Hz, 2H), 7.16-7.33 (m, 7H), 7.38 (t, J = 

7.5 Hz, 2H), 7.58 (t, J = 7.1 Hz, 1H), 7.74 (d, J = 7.5 Hz, 2H), 9.27 (s, 1H); 
13

C NMR (100 MHz, 

CDCl3) δ 18.9, 26.3, 45.6, 47.1, 50.3, 52.6, 53.0, 67.0, 112.6, 116.7, 119.9, 120.6, 121.7, 125.2, 126.8, 

127.0, 127.6, 129.9, 136.0, 141.2, 143.8, 144.0, 155.7, 171.6, 172.5. HRMS (+TOF) calcd for 

C31H32N3O7 (M + H)
+
: 590.1955; obsd: 590.1943. 

 

 

 Dipeptide amine 116. To a solution of Cbz-deHyleu (δ-OTBS)-Val-OEt (114) (180 mg, 0.33 mmol) 

in EtOH (3 mL) was added 10 % Pd/C (29 mg). The reaction vessel was evacuated and then opened to 
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an atmosphere of hydrogen gas. The suspension was stirred at rt overnight, filtered through Celite
TM

, 

washed with methanol and then concentrated to give 116 (134 mg, 99 %), that was used in the next step 

without further purification. 

 

 

 Tetrapeptide 46. Collidine (52 μL, 48 mg, 0.40 mmol, 1.2 equiv.), and HATU (151 mg, 0.40 mmol, 

1.2 equiv.) were added to a solution of the dipeptide amine 116 (134 mg, 0.33 mmol, 1.0 equiv.) and 

acid 115 (229 mg, 0.40 mmol, 1.2 equiv.) in DMF (3 mL) at 0 ºC under N2. The mixture was stirred and 

warmed to rt overnight, concentrated, and the product isolated by flash chromatography eluting with 4:1 

EtOAc/Hex to give 46 (291 mg, 91 %). Rf  0.40 (4:1 EtOAc/Hex). [α] D
25

 -17.0º (c 1.0, CHCl3). 
1
H NMR 

(400 MHz, CDCl3) δ 0.00 (s, 3H), 0.01 (s, 3H), 0.85 (s, 9H), 0.93 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 

Hz, 3H), 1.15 (s, 3H), 1.23 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.70 (dd, J = 14.7, 4.7 Hz, 1H), 

1.76 (s, 3H), 1.90 (dd, J = 14.7, 6.2 Hz, 1H), 2.19 (app. sept. J = 6.5 Hz, 1H), 3.16 (s, 3H), 3.26 (d, J = 

9.7 Hz, 1H), 3.30 (d, J = 9.7 Hz, 1H), 3.39 (dd, J = 14.4, 10.4 Hz, 1H), 3.65 (dd, J = 14.4, 2.8 Hz, 1H), 

4.10-4.19 (m, 1H), 4.12 (q, J = 7.1 Hz, 2H), 4.21 (t, J = 6.8 Hz, 1H), 4.32-4.36 (m, 2H), 4.42 (dd, J = 

8.6, 5.4 Hz, 1H), 4.56-4.62 (m, 2H), 5.42 (d, J = 6.1 Hz, 1H), 7.20 (t, J =  6.5 Hz, 2H), 7.31 (t, J =  7.4 

Hz, 2H), 7.39 (dd, J = 15.1, 7.2 Hz, 3H), 7.63 (d, J = 7.3 Hz, 2H), 7.70-7.86 (m, 3H), 9.16 (s, 1H); 
13

C 

NMR (100 MHz, CDCl3) δ -6.5, 13.2, 17.0, 17.2, 17.4, 18.0, 22.6, 24.7, 24.9, 29.7, 38.0, 44.6, 46.0, 

49.2, 50.2, 53.6, 56.8, 60.0, 66.3, 69.6, 71.3, 111.4, 119.0, 120.2, 120.8, 124.2, 126.0, 126.7, 128.7, 

135.0, 140.2, 142.9, 155.2, 169.2, 170.5, 171.2,172.4. HRMS (+TOF) calcd for C49H67N5O11SSi (M + 

H)
+
: 962.4399; obsd: 962.4396. 
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NMR Assignments 

 

Position 
1
H (ppm)  Multiplicity (J, Hz) 

13
C (ppm) 

Residue 1 –Fmoc-Ala- 

Ala C=O   173.4 

Ala α 4.10-4.19  51.2 

Ala β 1.23 d (7.1) 18.2 

Ala NH 5.42 d (6.1)  

Fmoc C=O   156.2 

Fmoc CH2 4.32-4.36  67.3 

Fmoc CH 4.21 t (6.8) 47.0 

Fmoc CH 7.63 d (7.3)  

Fmoc CH 7.76 d (7.5)  

Fmoc CH 7.31 t (7.4)  

Fmoc CH 7.36-7.44   

Fmoc C 4°   141.2 

Fmoc C 4°   141.3 

Fmoc C 4°   143.8 

Fmoc C 4°   143.9 

Residue 2 –(2 MeSO2-Trp)- 

Trp C=O    172.2 

Trp α 4.56-4.62  54.6 

Trp β 3.39 

3.65 

dd (14.4, 10.4) 

dd (14.4, 2.8) 

25.7 

Trp NH 7.72-7.86   

NH1 9.16 s  

C2    121.2 

C3    129.7 

C4 7.36-7.44  112.4 

C5 7.36-7.44  121.8 

C6 7.21 t (6.7)  

C7 7.81 d (8.2) 120.0 
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C9    

C8   136.0 

TrpSO2CH3 3.16 s 45.6 

Residue 3 –HyLeu- 

HyLeu C=O   171.5 

HyLeu α 4.56-4.62  50.2 

HyLeu β 1.70 

1.90 

dd (14.7, 4.7) 

dd (14.7, 6.2) 

39.1 

HyLeu γ   72.3 

HyLeu γ- CH3 1.15  23.6 

HyLeu δ 3.26  

3.30 

d (9.7) 

d (9.7) 

70.6 

HyLeu NH 7.72-7.86   

Si(CH3)2 0.00  

0.01 

s 

s 

-5.5 

SiCCH3    18.4 

SiC(CH3)3 0.85 s 25.8 

Residue 4 –Val-OEt 

OCH2CH3 1.25 t (7.1) 14.2 

OCH2CH3 4.12 q (7.1) 61.0 

Val C=O    171.2 

Val α 4.42  dd (8.6, 5.4) 57.8 

Val β 2.19 app sept. (6.5) 30.7 

Val γ 0.93,  

0.94 

d (6.5) 

d (6.5) 

18.0 

Val NH  7.36-7.44   

 

 

 Boc-4-Hyp-OBn (141a). Di-tert-butyl dicarbonate (3.329 g, 15.252 mmol, 2 equiv.) was added to a 

solution of trans-4-hydroxyproline (1 g, 7.626 mmol, 1 equiv.) and triethylamine (1.648, 1.2 mL, 16.286 

mmol, 2.1 equiv.) in methanol (12 mL) at room temperature under N2. The reaction mixture was stirred 

and heated at reflux for 1 h, cooled and concentrated. The residue was cooled to 0 ºC at which point 

NaH2PO4 (100 mg) and 1 M HCl were added to adjust the pH to 2. The mixture was extracted with 

EtOAc (4 x 35 mL). The organic extracts extracts were combined, filtered through MgSO4 and 

concentrated. Cesium carbonate (1.243 g, 3.810 mmol, 0.5 equiv.) was added to the residue in dry 

methanol (15 mL). The solution was stirred at rt under N2 for 2 h and concentrated. The residue was 
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dissolved in DMF (10 mL), treated with benzyl bromide (1.1 mL, 1.566 g, 9.150 mmol, 1.2 equiv.) and 

stirred at rt under N2 for 16 h. The suspension was diluted with EtOAc (35 mL) and washed successively 

with H2O and brine (35 mL each). The organic layer was dried over MgSO4, filtered and concentrated. 

The product was isolated by flash chromatography, eluting with 1:1 Hex/EtOAc, then 2:1 EtOAc/Hex to 

give Boc-4-Hyp-OBn (141a) as a colorless foam (1.833 g, 75 % over two steps). Rf  0.42 (1:1 Hex/ 

EtOAc). [α]D
25

 -48.2º (c 1.0, CHCl3).  NMR spectra are recorded for the major conformer. 
1
H NMR (400 

MHz, CDCl3) δ 1.34 (s, 9H), 2.02-2.12 (m, 1H), 2.20-2.34 (m, 1H), 3.45 (d, J = 11.6 Hz, 1H), 4.40-4.54 

(m, 2H), 5.14 (d, J = 12.2 Hz, 1H), 5.18 (d, J = 12.2 Hz, 1H), 7.30-7.40 (m, 5H); 
13

C NMR (100 MHz, 

CDCl3) δ 28.1, 38.2, 53.3, 57.6, 66.6, 69.0, 80.1, 127.9, 128.1, 128.4, 135.3, 154.0, 172.6. HRMS 

(+TOF) calcd for C17H24NO5 (M + H)
+
: 322.1642; obsd: 322.1649. 

 

 Boc-4-hyp-OBn (141b). A solution of Boc-4-Hyp-OBn (141a) (1.220 g, 3.796 mmol, 1 equiv.) and 

formic acid (293 μL, 351 mg, 2.01 equiv.) in dry THF (5 mL) was added dropwise to a mixture of 

diisopropyl azodicarboxylate (1.5 mL, 1.543 g, 7.630 mmol, 2.01 equiv.) and triphenylphosphine (2.000 

g, 7.630 mmol, 2.01 equiv.) in dry THF (15 mL) under N2 at 0 ºC. The reaction mixture was warmed to 

rt for 2 h, concentrated and the residue was partially purified by flash chromatography eluting with 2:1 

Hex/EtOAc to generate the corresponding formate ester that was directly hydrolyzed.  

Aqueous NaOH (1 N, 3.4 mL) was added dropwise to a solution of the formate ester in MeOH (15 mL) 

at 0 ºC. The reaction mixture was stirred for 30 min, acidified with 10 % aqueous KHSO4 (30 mL), 

concentrated to remove methanol and extracted with EtOAc (3 × 40 mL). The organic extracts were 

combined, washed successively with H2O (2 × 30 mL) and brine (30 mL ), dried over MgSO4, 

concentrated and purified by flash chromatography, eluting with 1:1 Hex/EtOAc to give Boc-4-hyp-

OBn (141b) as a colorless solid (860 mg, 70 % over two steps). Rf  0.42 (1:1 Hex/ EtOAc). [α]D
25

 -10.3º 
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(c 1.0, CHCl3). NMR spectra are recorded for the major conformer. 
1
H NMR (400 MHz, CDCl3) δ 1.33 

(s, 9H), 2.02-2.13 (m, 1H), 2.23-2.37 (m, 1H), 3.26 (d, J = 9.4 Hz, 1H), 3.49-3.68 (m, 1H), 4.29-4.44 (m, 

2H), 5.12 (d, J = 12.3 Hz, 1H), 5.29 (d, J = 12.3 Hz, 1H), 7.31-7.39 (m, 5H); 
13

C NMR (100 MHz, 

CDCl3) δ 28.3, 38.0, 55.6, 58.0, 67.6, 70.4, 80.5, 128.3, 128.4, 128.8, 135.3, 153.9, 174.8. HRMS 

(+TOF) calcd for C17H24NO5 (M + H)
+
: 322.1643; obsd: 322.1649. 

 

 

 Boc-4-hyp-(OMEM)-OBn (142). MEMCl (719 μL, 785 mg, 6.30 mmol, 2.5 equiv.) was added 

dropwise to a solution of Boc-4-hyp-OBn (141b) (810 mg, 2.52 mmol, 1.0 equiv.) and 

diisopropylethylamine (1.1 mL, 814 mg, 6.30 mmol, 2.5 equiv.) in chloroform (10 mL) at rt under N2. 

The mixture was then heated at reflux for 16 h, cooled, diluted with chloroform (50 mL), washed 

successively with 10 % aqueous citric acid, saturated aqueous NaHCO3 and brine (50 mL each).
34

 The 

organic layer was dried over MgSO4, concentrated and purified by flash chromatography, eluting with 

2:1 EtOAc/Hex to give 142 as a colorless oil (862 mg, 84 %). Rf  0.35 (2:1 EtOAc/Hex). [α]D
25

 -38.3º (c 

1.0, CHCl3). NMR spectra are recorded for the major conformer. 
1
H NMR (400 MHz, CDCl3) δ 1.36 (s, 

9H), 2.18-2.43 (m, 2H), 3.37 (s, 3H), 3.46-3.74 (m, 6H), 4.25-4.31 (m, 1H), 4.35 (dd, J = 3.7, 9.0 Hz, 

1H), 4.57-4.62 (m, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.27 (d, J = 12.4 Hz, 1H), 7.29-7.39 (m, 5H); 
13

C 

NMR (100 MHz, CDCl3) δ 28.3, 35.8, 51.9, 57.6, 66.8, 71.8, 73.9, 80.2, 94.1, 128.2, 128.3, 128.5, 

135.9, 153.9, 171.9. HRMS (+TOF) calcd for C21H31NNaO7 (M + Na)
+
: 432.1993; obsd: 432.1996. 

 

 

 CF3COOH.4-hyp-(OMEM)-OBn (143). Trifluoroacetic acid (2 mL) was added dropwise to a 

stirred solution of Boc-4-hyp-(OMEM)-OBn (142) (300 mg, 0.73 mmol) in CH2Cl2 (10 mL) at -25 
º
C 
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(ethylene glycol-dry ice) under N2 for 2 h. The reaction was quenched with aqueous saturated NaHCO3 

(~ 3 mL), diluted with H2O (20 mL) and extracted with CH2Cl2 (4 × 25 mL). The organic extracts were 

combined, dried over MgSO4 and concentrated to give the trifluoroacetate salt of 4-hyp-(OMEM)-OBn 

(143) that was used in the next step without further purification. 

 

 

 Boc-3-Hyp-OBn (145). Di-tert-butyl dicarbonate (666 mg, 3.05 mmol, 2 equiv.) was added to a 

solution of trans-3-hydroxyproline (200 mg, 1.53 mmol, 1 equiv.) and triethylamine (300 μL, 218 mg, 

2.15 mmol, 1.4 equiv.) in methanol (3 mL) at room temperature under N2. The reaction mixture was 

stirred and heated at reflux for 1 h, cooled and concentrated. The residue was cooled to 0 ºC at which 

point NaH2PO4 (20 mg) and 1 M HCl (˜1 mL) were added to adjust the pH to 2. The mixture was 

extracted with EtOAc (4 x 20 mL). The organic extracts extracts were combined, filtered through 

MgSO4 and concentrated to give Boc-3-Hyp-OH that was used in the next step without further 

purification. 

Cesium carbonate (248 mg, 0.76 mmol, 0.5 equiv.) was added to a suspension of Boc-3-Hyp-OH (352 

mg, 1.52 mmol, 1.0 equiv.) in dry methanol (4 mL). The solution was stirred at rt under N2 for 2 h and 

concentrated. The residue was dissolved in DMF (3 mL), treated with benzyl bromide (312 mg, 219 μL, 

1.83 mmol, 1.2 equiv.) and stirred at rt under N2 for 16 h. The suspension was diluted with EtOAc (30 

mL) and washed successively with H2O and brine (30 mL each). The organic layer was dried over 

MgSO4, filtered and concentrated. The product was isolated by flash chromatography eluting with 1:1 

Hex/EtOAc to give Boc-3-Hyp-OBn (145) as a mixture of two conformers (366 mg, 75 %). Rf  0.38 (1:1 

Hex/ EtOAc). [α]D
25

 -23.6º (c 1.0, CHCl3). NMR spectra are reported for the major conformer. 
1
H NMR 

(400 MHz, CDCl3) δ 1.32 (s, 9H), 1.86-1.94 (m, 1H), 2.20-2.12 (m, 1H), 2.73 (d, J = 4.4 Hz, 1H), 3.58-
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3.68 (m, 2H), 4.22 (app. b, 1H), 4.38-4.46 (m, 1H), 5.13 (d, J = 12.2 Hz, 1H), 5.19 (d, J = 12.2 Hz, 1H), 

7.30-7.38 (m, 5H); 
13

C NMR (100 MHz, CDCl3) δ 28.2, 32.2, 44.4, 67.0, 68.0, 74.0, 80.3, 128.1, 128.5, 

128.7, 135.5, 154.2, 170.9. HRMS (+TOF) calcd for C17H24NO5 (M + H)
+
: 322.1640; obsd: 322.1649. 

 

 

 Fmoc-DHP-(OMEM)2-OBn (156). Cesium carbonate (97 mg, 0.30 mmol, 0.50 equiv.) was added 

to a suspension of Fmoc-DHP(OMEM)2-OH (155) (326 mg, 0.598 mmol, 1 equiv.) residue in dry 

methanol (4 mL). The solution was stirred at rt under N2 for 2 h and concentrated. The residue was 

dissolved in DMF (3 mL), treated with benzyl bromide (86 μL, 123 mg, 0.718 mmol, 1.2 equiv.) and 

stirred at rt under N2 for 17 h. The suspension was diluted with EtOAc (50 mL) and washed successively 

with H2O and brine (50 mL each). The organic layer was dried over MgSO4, filtered and concentrated. 

The product was isolated by flash chromatography, eluting with 2:1 Hex/EtOAc, then 2:1 EtOAc/Hex to 

give Fmoc-DHP(OMEM)2-OBn (156) as a colorless foam (305 mg, 80 %). Rf  0.50 (2:1 EtOAc/Hex). 

[α]D
25

 -19.2º (c 0.9, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 3.37 (s, 6H), 3.47-3.86 (m, 10H), 4.13-4.62 

(m, 10H), 5.16 (d, J = 12.3 Hz, 1H), 5.25 (d, J = 12.3 Hz, 1H), 7.26-7.44 (m, 2H), 7.54 (d, J = 7.4 Hz, 

2H), 7.61 (t, J = 7.4 Hz, 2H), 7.77 (t, J = 8.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 47.3, 51.0, 59.2, 

64.5, 67.2, 67.4, 67.7, 71.8, 78.6, 81.5, 83.0, 94.5, 94.8, 120.1, 125.3, 127.2, 127.9, 128.4, 128.5, 128.6, 

135.9, 141.5, 144.0, 144.3, 155.3, 169.0. HRMS (+TOF) calcd for C35H41NNaO10 (M + Na)
+
: 658.2623; 

obsd: 658.2614. 

 

 HCl.DHP-(OMEM)2-OBn (157). Diethylamine (1.6 mL) was added to a solution of Fmoc-DHP-

(OMEM)2-OBn (156) (135 mg, 0.21 mmol) in CH2Cl2 (8 mL) and the mixture stirred at rt under N2 for 

30 min. The mixture was concentrated, and the product isolated by flash chromatography eluting with 
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2:1 EtOAc/Hex, then 9:1 CH2Cl2/MeOH. The relevant fractions were combined, treated with methanolic 

HCl (0.21 mmol) solution (prepared by dropwise addition of acetyl chloride (15 μL, 17 mg, 0.21 mmol) 

to MeOH (1 mL) at 0 ºC under N2) and concentrated to give HCl.DHP-(OMEM)2-OBn (157) that was 

used in the next step without further purification. 

 

 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-OH (165). N,N′-Dicyclohexyl carbodiimide (DCC) (311 mg, 

1.51 mmol, 1.0 equiv.) and NHS (174 mg, 1.51 mmol, 1.0 equiv.) were added to a solution of Fmoc-D-

Thr-(O
t
Bu)-OH (600 mg, 1.51 mmol, 1.0 equiv.) in CH2Cl2 (15 mL) at 0 ºC under N2. The reaction 

mixture was stirred and gradually warmed to rt for 4 h. The resulting N,N′-dicyclohexyl urea was 

removed by filtration and the filtrate concentrated, dissolved in a mixture of MeCN (4 mL) and H2O (2 

mL) and cooled to 0 ºC. To this solution was added H-D-Ser(O
t
Bu)-OH (243 mg, 1.51 mmol, 1.0 

equiv.), then diisopropylethylamine (249 μL, 195 mg, 1.51 mmol, 1.0 equiv.). The mixture was stirred 

and gradually warmed to rt overnight, then partitioned between EtOAc (40 mL) and 2M HCl (40 mL). 

The aqueous layer was extracted further with ethyl acetate (3 × 35 mL). The organic extracts were 

combined, washed with H2O (40 mL), filtered through MgSO4 and concentrated to give compound 165 

(684 mg, 84 %), which was used directly in the next reaction. For the purposes of characterization, a 

sample was converted to corresponding methyl ester.  

 

 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-OMe (166). Trimethylsilyldiazomethane (359 mg, 0.5 mL, 1.04 

mmol, 4.8 equiv., 2.0 M solution in hexanes) was added gradually to a solution of Fmoc-D-Thr-(O
t
Bu)-

D-Ser(O
t
Bu)-OH (165) (136 mg, 0.22 mmol, 1.0 equiv.) in a mixture of MeCN (2.7 mL) and MeOH 

(0.3 mL) at 0 ºC under N2. The reaction mixture was stirred and gradually warmed to rt over 1 h, and 

then concentrated. The product was isolated by flash chromatography eluting with 3:1 Hex/EtOAc to 
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afford 166 (85 mg, 61 %). Rf  0.26 (3:1 Hex/EtOAc). [α]D
25

 -23.3º (c 0.75, CHCl3). 
1
H NMR (400 MHz, 

CDCl3) δ 1.14 (s, 9H), 1.17 (d, J = 6.4 Hz, 3H), 1.32 (s, 9H), 3.56 (dd, J = 9.1, 3.1 Hz, 1H), 3.75 (s, 3H), 

3.86 (dd, J = 9.1, 3.1 Hz, 1H), 4.12-4.28 (m, 3H), 4.38 (d, J = 7.3 Hz, 2H), 4.67-4.74 (dt, J = 8.4, 3.1 Hz, 

1H), 6.04 (d, J = 5.2 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 

7.76 (d, J = 7.6 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) 16.3, 27.3, 28.2, 47.2, 

52.1, 53.2, 58.5, 61.9, 66.8, 66.9, 73.4, 75.3, 119.9, 125.1, 127.0, 127.6, 141.3, 143.8, 143.9, 156.0, 

169.5, 170.5. HRMS (+TOF) calcd for C31H43N2O7 (M + H)
+
: 555.3065; obsd: 555.3074.   

 

 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-Pro-OBn (168). The dipeptide acid 165 (680 mg, 1.26 mmol, 

1.2 equiv.) and HCl.Pro-OBn (136) (253 mg, 1.05 mmol, 1.0 equiv.) were dissolved in CH2Cl2 (3 mL), 

and the solution cooled to 0 ºC. Collidine (332 μL, 305 mg, 2.52 mmol, 2.4 equiv.) and HATU (478 mg, 

1.26 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant solution was 

stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated and the product isolated by 

flash chromatography eluting with 1:1 Hex/EtOAc, to give 168 (671 mg, 88 %). Rf  0.37 (1:1 

Hex/EtOAc). [α] D
25

 -36.6º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3, signals are reported for the 

major rotamer only) δ 1.03 (d, J = 6.3 Hz, 3H), 1.14 (s, 9H), 1.27 (s, 9H), 1.80-2.10 (m, 3H), 2.12-2.25 

(m, 1H), 3.45 (t, J = 8.6 Hz, 1H), 3.62 (dd, J = 8.4, 5.3 Hz, 2H), 3.71-3.79 (m, 1H), 3.88-3.98 (m, 1H), 

4.06-4.26 (m, 3H), 4.38 (dd, J = 7.2, 2.2 Hz, 1H), 4.52 (dd, J = 8.3, 4.3 Hz, 1H), 4.91 (dq, J = 7.6, 5.3 

Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.16 (d, J = 12.4 Hz, 1H), 5.95 (d, J = 5.8 Hz, 2H), 7.26-7.43 (m, 

9H), 7.61 (d, J =  7.1 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 17.1, 24.7, 27.3, 

28.2, 29.3, 47.2, 51.4, 58.8, 59.1, 63.0, 66.5, 66.6, 67.0, 73.5, 75.1, 119.9, 125.2, 127.0, 127.7, 127.9, 

128.1, 128.5, 128.7, 135.8, 141.3, 141.4, 143.7, 144.0, 156.0, 169.1, 169.3, 171.6. HRMS (+TOF) calcd 

for C42H54N3O8 (M + H)
+
: 728.3905; obsd: 728.3909.  
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 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-trans-3-Hyp-OBn (169). The dipeptide acid 165 (504 mg, 0.93 

mmol, 1.2 equiv.) and CF3COOH.3Hyp-OBn (146) (172 mg, 0.78 mmol, 1.0 equiv.) were dissolved in 

CH2Cl2 (3 mL), and the solution cooled to 0 ºC. Collidine (247 μL, 226 mg, 1.87 mmol, 2.4 equiv.) and 

HATU (354 mg, 0.93 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The resultant 

solution was stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated and the 

product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 169 (538 mg, 93 %). Rf  

0.51 (2:1 EtOAc/Hex). [α] D
25

 -23.8º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3): δ 1.03 (d, J = 6.3 Hz, 

3H), 1.15 (s, 9H), 1.27 (s, 9H), 1.91-2.03 (m, 1H), 2.10-2.20 (m, 1H), 3.48 (t, J = 8.5 Hz, 1H), 3.53-3.67 

(m, 4H), 3.87 (app. t, J = 9.2 Hz, 1H), 4.02-4.62 (m, 6H), 4.94 (app. dd, J = 8.0, 13.3 Hz, 1H), 5.07 (d, J 

= 12.4 Hz, 1H), 5.17-5.20 (m, 1H), 5.96 (d, J = 5.8 Hz, 1H), 7.25-7.43 (m, 9H), 7.61 (app. d, J =  7.2 Hz, 

2H), 7.76 (app. d, J = 7.2 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 17.3, 27.5, 28.4, 33.0, 45.3, 47.4, 

51.6, 59.0, 60.6, 63.0, 66.9, 67.1, 68.2, 73.5, 75.3, 120.2, 125.4, 127.3, 127.9, 128.2, 128.5, 128.8, 141.4, 

143.9, 156.3, 169.4, 169.7, 170.1. HRMS (+TOF) calcd for C42H53N3NaO9(M + Na)
+
: 766.3680; obsd: 

766.3688.  

 

 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-cis-4-hyp(OMEM)-OBn (170). The dipeptide acid 165 (375 

mg, 0.69 mmol, 1.2 equiv.) and HCl.hyp(OMEM)-OBn (140) (200 mg, 0.58 mmol, 1.0 equiv.) were 

dissolved in CH2Cl2 (4 mL), and the solution cooled to 0 ºC. Collidine (183 μL, 168 mg, 1.39 mmol, 2.4 

equiv.) and HATU (264 mg, 0.69 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. 

The resultant solution was stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated 

and the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 170 (163 mg, 87 

%). Rf  0.40 (2:1 EtOAc/Hex). [α] D
25

 -33.9º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 1.00 (d, J = 

6.3 Hz, 3H), 1.13 (s, 9H), 1.27 (s, 9H), 2.10-2.45 (m, 2H), 3.30-3.66 (m, 11H), 3.71 (dd, J = 11.0, 3.2 
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Hz, 1H), 4.05-4.45 (m, 5H), 4.54 (d, J = 7.2 Hz, 1H), 4.60 (d, J = 7.0 Hz, 1H), 4.67 (dd, J = 8.6, 4.5 Hz, 

1H), 4.90 (dt, J = 8.4, 4.2 Hz, 1H), 5.06 (d, J = 12.4 Hz, 1H), 5.16 (d, J = 12.4 Hz, 1H), 5.93 (d, J = 5.8 

Hz, 1H), 7.24-7.44 (m, 9H), 7.61 (app.t, J =  7.4 Hz, 2H), 7.76 (d, J = 7.4 Hz, 2H); 
13

C NMR (100 MHz, 

CDCl3) δ 17.0, 27.3, 28.2, 35.2, 47.2, 52.6, 57.2, 58.5, 59.0, 63.2, 66.6, 67.0, 67.1, 71.6, 72.4, 73.5, 74.6, 

75.1, 94.2, 119.9, 125.2, 127.0, 127.7, 128.0, 128.4, 128.6, 135.9, 141.3, 156.0, 169.0, 169.6, 170.7. 

HRMS (+TOF) calcd for C46H62N3O11(M + H)
+
: 832.4378; obsd: 832.4378.  

 

 

 Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-DHP(OMEM)2-OBn (167). The dipeptide acid 165 (138 mg, 

0.26 mmol, 1.2 equiv.) and HCl.DHP(OMEM)2-OBn (157) (96 mg, 0.21 mmol, 1.0 equiv.) were 

dissolved in CH2Cl2 (3 mL), and the solution cooled to 0 ºC. Collidine (68 μL, 62 mg, 0.51 mmol, 2.4 

equiv.) and HATU (97 mg, 0.26 mmol, 1.2 equiv.) were added sequentially to the reaction mixture. The 

resultant solution was stirred at 0 ºC for 1 h and then at rt overnight. The mixture was concentrated and 

the product isolated by flash chromatography eluting with 2:1 EtOAc/Hex, to give 167 (183 mg, 92 %). 

Rf  0.44 (2:1 EtOAc/Hex). [α]D
25

 -22.7º (c 1.0, CHCl3). 
1
H NMR (400 MHz, CDCl3) δ 0.98 (d, J = 7.3 

Hz, 3H), 1.13 (s, 9H), 1.27 (s, 9H), 3.37 (s, 6H), 3.42-3.83 (m, 11H), 4.03-4.22 (m, 2H), 4.24 (t,  J = 7.0 

Hz, 1H), 4.31 (dd, J = 11.0, 5.4 Hz, 1H), 4.34-4.43 (m, 4H), 4.50 (d, J = 7.2 Hz, 1H), 4.73-4.84 (m, 4H), 

4.92 (ddd, J = 8.1, 7.6, 4.7 Hz, 1H), 5.05 (d, J = 12.4 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 5.92 (d, J = 5.8 

Hz, 1H), 7.26-7.44 (m, 9H), 7.61 (app.t, J =  7.2 Hz, 2H), 7.76 (d, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, 

CDCl3) δ 
13

C NMR (100 MHz, CDCl3) δ 17.2, 27.4, 28.4, 47.4, 51.3, 59.2, 63.9, 67.0, 67.2, 67.6, 71.8, 

73.8, 75.4, 78.7, 80.9, 94.7, 120.2, 125.4, 127.3, 127.9, 128.3, 128.6, 128.7, 136.0, 141.5, 143.9, 156.2, 

168.5, 169.3, 170.3. MALDI-TOF (+TOF) calcd for C46H62N3O11(M + Na)
+
: 958.467; obsd: 958.526.  

 



109 

 

 Fmoc-D-Thr-D-Ser-Pro-OBn (172). Titanium tetrachloride (1.0 M solution in CH2Cl2, 1.8 mL, 1.8 

mmol, 6.0 equiv.) and thioanisole (35 μL, 37 mg, 0.30 mmol, 1.0 equiv.) were added sequentially to a 

solution of 168 (217 mg, 0.30 mmol, 1.0 equiv.) in CH2Cl2 (5 mL) at 0 ºC under N2. The reaction 

mixture was stirred and gradually warmed to rt over 30 min, then quenched with saturated NH4Cl 

solution (~ 4 mL) and extracted with EtOAc (3 × 20 mL). The organic extracts were combined, filtered 

through MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 2:1 

EtOAc/Hex, then 9:1 CH2Cl2/MeOH to give the product as a colorless foam (143 mg, 80 %). Rf 0.39 

(9:1 CH2Cl2/CH3OH). [α] D
25

 -20.0º (c 1.0, CH3OH). 
1
H NMR (400 MHz, CD3OD) δ 1.16 (d, J = 6.2 Hz, 

3H, Thr CH3), 1.82-2.08 (m, 3H, Pro 2Hβ, Hγ), 2.14-2.32 (m, 1H, Pro Hγ), 3.63-3.87 (m, 4H, Ser 2Hβ, 

Pro 2Hδ), 4.09-4.17 (m, 1H, Thr Hα), 4.23 (t, J = 6.8 Hz, 1H, Fmoc CH), 4.38 (d, J = 6.8 Hz, 2H, Fmoc 

CH2), 4.47 (dd, J = 8.7, 3.8 Hz, 1H, Thr Hβ), 4.82-4.92 (m, 2H, Pro Hα, Ser Hα), 5.02 (d, J = 12.4 Hz, 

1H, COOCH2Ph), 5.06 (d, J = 12.4 Hz, 1H, COOCH2Ph), 7.25-7.34 (m, 7H), 7.38 (t, J = 7.5 Hz, 2H), 

7.67 (dd, J = 12.8, 7.4 Hz, 2H), 7.78 (d, J = 7.6 Hz, 2H); 
13

C NMR (100 MHz, CD3OD) δ 18.1, 23.6, 

28.1, 46.4, 52.2, 58.7, 60.0, 60.5, 60.8, 65.8, 66.2, 66.5, 118.9, 124.2, 126.2, 126.8, 127.0, 127.4, 127.7, 

135.3, 140.6, 143.1, 156.7, 168.8, 170.8, 171.3. HRMS (+TOF) calcd for C34H38N3O8 (M + H)
+
: 

616.2653; obsd: 616.2664. 

 

 Fmoc-D-Thr-D-Ser-trans-3-Hyp-OBn (173). Titanium tetrachloride (1.0 M solution in CH2Cl2, 3.8 

mL, 3.87 mmol, 6.0 equiv.) was added gradually to a solution of 169 (480 mg, 0.65 mmol, 1.0 equiv.) in 

CH2Cl2 (10 mL) at 0 ºC under N2. The reaction mixture was stirred and gradually warmed to rt over 1 h, 

quenched with saturated NH4Cl solution (~ 6 mL), diluted with H2O (20 mL) and extracted with EtOAc 

(3 × 50 mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The 

residue was purified by flash chromatography eluting with 9:1 CH2Cl2/MeOH to give the product as a 
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colorless foam (344 mg, 85 %). Rf  0.37 (9:1 CH2Cl2/CH3OH). [α]D
25

 +11.2º (c 1.0, CH3OH). 
1
H NMR 

(400 MHz, CD3OD) δ 1.17 (d, J = 6.1 Hz, 3H, Thr CH3), 1.90-2.04 (m, 1H, 3-Hyp Hγ), 2.08-2.18 (m, 

1H, 3-Hyp Hγ), 3.75 (dd, J = 11.3, 5.3 Hz, 1H, Ser Hβ), 3.82 (dd, J = 11.3, 5.0 Hz, 1H, Ser Hβ), 3.82-

3.92 (m, 1H, 3-Hyp Hδ), 3.92-4.10 (m, 1H, 3-Hyp Hδ), 4.11-4.20 (m, 1H, Thr Hα), 4.26 (t, J = 6.8 Hz, 

1H, Fmoc CH), 4.34-4.46 (m, 3H, 3-Hyp Hβ, 3-Hyp Hα, Thr Hβ), 4.41 (d, J = 6.8 Hz, 2H, Fmoc CH2), 

4.94 (app. pentet, J = 11.7, 5.6, Hz, 1H, Ser Hα), 5.06 (d, J = 12.5 Hz, 1H, COOCH2Ph), 5.10 (d, J = 

12.5 Hz, 1H, COOCH2Ph), 5.24 (d, J = 3.2 Hz, 1H, NH Thr), 7.28-7.43 (m, 10H, NH Ser, 4 × Fmoc CH, 

5 × COOCH2Ph), 7.70 (dd, J =  11.5, 7.4 Hz, 2H, Fmoc CH), 7.81 (d, J = 7.4 Hz, 2H, Fmoc CH); 
13

C 

NMR (100 MHz, CDCl3) δ 18.0, 31.8, 44.4, 52.2, 59.9, 66.0, 66.5, 67.4, 72.0, 118.9, 124.2, 126.2, 

127.1, 127.5, 135.1, 140.6, 143.1, 156.6, 169.1, 169.2, 170.9. HRMS (+TOF) calcd for C34H38N3O9 

(M)
+
: 632.2603; obsd: 632.2594.  

 

 Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174). Titanium tetrachloride (1.0 M solution in CH2Cl2, 3.6 

mL, 3.76 mmol, 9.0 equiv.) was added gradually to a solution of 170 (348 mg, 0.42 mmol, 1.0 equiv.) in 

CH2Cl2 (18 mL) at 0 ºC under N2. The reaction mixture was stirred and gradually warmed to rt over 1 h, 

quenched with saturated NH4Cl solution (~ 5 mL), diluted with H2O (15 mL) and extracted with EtOAc 

(3 × 30 mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The 

residue was purified by flash chromatography eluting with 9:1 CH2Cl2/MeOH to give the product as a 

colorless foam (223 mg, 84 %). Rf  0.29 (9:1 CH2Cl2/CH3OH). [α]D
25

 +20.6º (c 1.0, CH3OH). 
1
H NMR 

(400 MHz, CD3OD) δ 1.16 (d, J = 6.3 Hz, 3H, Thr CH3), 2.06 (dt, J = 13.3, 3.5 Hz, 1H, hyp Hβ), 2.38 

(ddd, J = 13.5, 9.0, 4.7 Hz, 1H, hyp Hβ), 3.66-3.81 (m, 3H, Ser 2 Hβ, hyp Hδ), 3.93 (dd, J = 10.9, 5.1 

Hz, 1H, hyp Hδ), 4.07-4.17 (m, 1H, Thr Hα), 4.23 (t, J = 6.8 Hz, 1H, Fmoc CH), 4.33-4.45 (m, 4H, 

Fmoc CH2, Thr Hβ, hyp Hγ), 4.54 (dt, J = 7.6, 3.9 Hz, 1H, Ser Hα), 4.59 (dd, J = 9.2, 3.8 Hz, 1H, hyp 
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Hα), 5.05 (d, J = 8.5 Hz, 1H, COOCH2Ph) , 5.20 (d, J = 8.5 Hz, 1H, COOCH2Ph), 7.20-7.45 (m, 7H), 

7.60-7.73 (m, 2H), 7.78 (d, J = 7.4 Hz, 2H), 8.15 (d, J = 8.4 Hz, 2H); 
13

C NMR (100 MHz, CD3OD) δ 

18.1, 36.1, 51.9, 53.9, 57.3, 59.9, 60.8, 65.9, 66.2, 66.5, 67.2, 68.8, 118.9, 124.2, 126.2, 126.7, 127.1, 

127.3, 127.5, 135.2, 140.6, 143.1, 156.7, 169.1, 170.9, 171.5. HRMS (+TOF) calcd for C34H38N3O9(M + 

H)
+
: 632.2603; obsd: 632.2614.  

 

 Fmoc-D-Thr-D-Ser-DHP-OBn (171). Titanium tetrachloride (1.0 M solution in CH2Cl2, 1.3 mL, 

1.28 mmol, 9.0 equiv.) was added gradually to a solution of 167 (133 mg, 0.14 mmol, 1.0 equiv.) in 

CH2Cl2 (6 mL) at 0 ºC under N2. The reaction mixture was stirred and gradually warmed to rt over 1 h, 

quenched with saturated NH4Cl solution (~ 3 mL), diluted with H2O (15 mL) and extracted with EtOAc 

(3 × 30 mL). The organic extracts were combined, filtered through MgSO4 and concentrated. The 

residue was purified by flash chromatography eluting with 9:1 CH2Cl2/MeOH to give the product as a 

colorless foam (93 mg, 98 %). Rf  0.24 (9:1 CH2Cl2/CH3OH). [α]D
25

 +0.8º (c 1.0, CH3OH). 
1
H NMR (400 

MHz, CD3OD, signals are reported for the major conformer only) 1.15 (d, J = 6.2 Hz, 3H, Thr CH3), 

3.62 (dd, J = 7.2, 3.0 Hz, 1H, DHP Hδ), 3.71 (d, J = 5.8 Hz, Ser Hβ), 3.76 (d, J = 5.9 Hz, Ser Hβ), 4.02 

(dd, J = 10.9, 5.0 Hz, 1H, DHP Hγ), 4.04-4.26 (m, 4H, Thr Hα, Thr Hβ, Fmoc CH), 4.06 (ap. d J = 4.4 

Hz, 1H, DHP Hα), 4.31-4.49 (m, DHP Hδ, Fmoc CH2), 4.58 (dd, J = 7.8, 4.4 Hz, 1H, DHP Hβ), 4.90 

(app. t, J = 6.3 Hz, 1H, Ser Hα), 5.04 (s, 2H, COOCH2Ph), 7.22-7.42 (m, 7H), 7.64 (d, J = 7.4 Hz, 2H), 

7.77 (d, J = 7.4 Hz, 2H); δ 
13

C NMR (100 MHz, CD3OD) δ 18.1, 51.9, 60.0, 65.2, 66.0, 66.2, 66.6, 71.9, 

74.0, 77.3, 78.8, 118.9, 124.2, 126.2, 126.8, 127.1, 127.3, 127.5, 135.2, 140.6, 143.1, 156.7, 168.4, 

169.5, 170.2, 171.0. HRMS (+TOF) calcd for C46H62N3O11(M + H)
+
: 832.4378; obsd: 832.4378.  
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 Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48). 2,6-Lutidine (104 μL, 96 mg, 0.89 mmol, 9.2 

equiv.), followed by TBDMSOTf (102 μL, 118 mg, 0.45 mmol, 4.6 equiv.) were added to a solution of 

the tripeptide (60 mg, 0.10 mmol, 1 equiv.) in CH2Cl2 (2 mL) at 0 ºC under N2. The mixture was stirred 

and warmed to rt overnight, diluted with CH2Cl2 (15 mL), washed with brine (15 mL). The brine layer 

was extracted further with CH2Cl2 (3 × 10 mL). The organic extracts were combined, filtered through 

MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 2:1 

Hex/EtOAc to give 48 (67 mg, 82 %). Rf  0.38 (2:1 Hex/EtOAc). [α] D
25

 -32.5º (c 1.0, CHCl3). 
1
H NMR 

(400 MHz, CDCl3) δ 0.01 (s, 6H, Si-CH3 × 2), 0.03 (s, 6H, Si-CH3 × 2), 0.85 (s, 9H, SiC(CH3)3), 0.94 (s, 

9H, SiC(CH3)3), 1.05 (d, J = 6.2 Hz, 3H, Thr CH3), 1.85-2.25 (m, 4H, Pro 2Hβ, 2Hγ), 3.67 (t, J = 9.1 Hz, 

1H, Ser Hβ), 3.76-3.88 (m, 3H, Ser Hβ, Pro 2Hδ), 4.17 (dd, J = 6.7, 2.8 Hz, 1H, Thr Hα), 4.24 (t, J = 7.1 

Hz, 1H, Fmoc CH), 4.34 (dd, J = 6.4, 3.1 Hz, 1H, Thr Hβ), 4.35-4.44 (m, 2H, Fmoc CH2), 4.52 (dd, J = 

8.3, 3.6 Hz, 1H, Pro Hα), 4.97 (qd, 9.1, 6.8 Hz, 1H, Ser Hα), 5.09 (s, 2H, COOCH2Ph), 5.76 (d, J = 6.8 

Hz, 1H, Thr NH), 7.27-7.43 (m, 9H), 7.61 (t, J =  6.7 Hz, 2H), 7.76 (d, J = 7.5 Hz, 2H); 
13

C NMR (100 

MHz, CDCl3) δ -5.6, -5.1, -4.7, 17.9, 18.1, 18.2, 24.5, 25.7, 25.8, 29.3, 47.1, 47.2, 52.1, 59.0, 59.4, 64.2, 

66.6, 67.0, 68.2, 119.9, 125.2, 127.1, 127.7, 128.0, 128.1, 128.5, 135.8, 141.3, 143.7, 144.0, 156.2, 

169.2, 171.4. HRMS (+TOF) calcd for C46H66N3O8Si2 (M + H)
+
: 844.4383; obsd: 844.4385. 

 

 

 

NMR Assignment 

Position 
1
H (ppm)  Multiplicity (J, Hz) 

13
C (ppm) 

 Si(CH3)2 x 2 0.01, 0.03 s -5.6, -5.1, -4.7 

SiC(CH3)3 x 2 0.85, 0.94 s 17.9, 18.2, 25.7, 25.8 

Residue 1 –Fmoc-Thr- 

Thr C=O  - - 169.2 

Thr α (1H) 4.17 dd (6.7, 2.8)      59.4 

Thr β (1H) 4.34 dd (6.4, 3.1)      68.2 
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Thr γ (3H) 1.05 d (6.2)               18.1 

Thr NH 5.76 d (6.8) - 

Fmoc C=O - - 156.2 

Fmoc CH2 4.35-4.44 m 67.0 

Fmoc CH 4.24 t (7.1) 47.1 

Fmoc CH (4H) 

Fmoc CH (2H) 

Fmoc CH (2H) 

7.27-7.43 

7.61  

7.76  

m 

t ( 6.7) 

d (7.5) 

119.9, 125.1, 125.2,  

127.1 

Fmoc C 4° - - 141.2, 141.3, 143.7,  

144.0 

Residue 2 –Ser- 

Ser C=O - - 169.2 

Ser α (1H) 4.97 qd (9.1, 6.8)      52.1 

Ser β (2H) 3.67 

3.76-3.88 

t (9.1)                

m                      

64.2 

Ser NH (1H)   - 

Residue 3 –Pro-OBn 

Pro C=O  - - 171.4 

Pro α (1H) 4.52 dd (8.3, 3.6)     59.0 

Pro β (2H) 1.85-2.25 m                      24.5 

Pro γ (2H) 1.85-2.25 m                      29.3 

Pro δ (2H) 3.76-3.88 m                     47.2 

Bn CH2 5.09 s                      66.6 

Bn C 4°  - - 135.8 

Bn CH (5) 7.27-7.43 m 127.7, 128.0, 128.1, 

128.5 

 

 

 Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49). To a solution of the 

tripeptide (173 mg, 0.27 mmol, 1 equiv.) in CH2Cl2 (3 mL) at 0 ºC under N2, were added 2,6-lutidine 

(439 μL, 405 mg, 3.78 mmol, 13.8 equiv.), then TBDMSOTf (434 μL, 500 mg, 1.89 mmol, 6.9 equiv.). 

The mixture was stirred and warmed to rt overnight, diluted with CH2Cl2 (20 mL), washed with brine 

(20 mL), and then extracted with CH2Cl2 (3 × 15 mL). The organic extracts were combined, filtered 

through MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 2:1 

Hex/EtOAc to give 49 (242 mg, 91 %). Rf  0.42 (2:1 Hex/EtOAc). [α] D
25

 -17.4º (c 1.0, CHCl3). 
1
H NMR 

(400 MHz, CDCl3) δ 0.02 (s, 6H), 0.03 (s, 6H), 0.12 (s, 3H), 0.14 (s, 3H), 0.84 (s, 9H), 0.86 (s, 9H), 
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0.93 (s, 9H), 1.05 (d, J = 6.3 Hz, 3H, Thr CH3), 1.82-1.92 (m, 1H, 3-Hyp Hγ), 2.06-2.18 (m, 1H, 3-Hyp 

Hγ), 3.74 (app. t, J = 8.8 Hz, 1H, Ser Hβ), 3.81 (dd, J = 9.4, 5.2 Hz, 1H, Ser Hβ), 3.84-3.98 (m, 2H, 3-

Hyp Hδ), 4.18 (dd, J = 6.4, 2.9 Hz, 1H, Thr Hα), 4.24 (t, J = 7.2 Hz, 1H, Fmoc CH), 4.26-4.39 (m, 2H, 

Thr Hβ, 3-Hyp Hα), 4.28-4.36 (m, 2H, 3-Hyp Hβ and Thr Hβ), 4.39 (d, J = 7.0 Hz, 2H, Fmoc CH2), 4.97 

(td, J = 8.0, 5.3 Hz, 1H, Ser Hα), 5.06 (d, J = 12.3 Hz, 1H, COOCH2Ph), 5.13 (d, J = 12.3 Hz, 1H, 

COOCH2Ph), 5.80 (d, J = 6.6 Hz, 1H, NH Thr), 7.27-7.46 (m, 10H, NH Ser, 4 × Fmoc CH, 5 × 

COOCH2Ph), 7.61 (t, J =  6.1 Hz, 2H, Fmoc CH), 7.75 (d, J = 7.5 Hz, 2H, Fmoc CH); 
13

C NMR (100 

MHz, CDCl3) δ -5.6, -5.4, -5.1, -5.0, -4.9, -4.7, 17.9, 18.2, 25.7, 25.8, 25.9, 34.0, 45.6, 52.2, 59.3, 64.4, 

66.6, 67.0, 68.2, 70.4, 119.9, 125.1, 127.1, 127.7, 127.8, 128.0, 128.3, 128.4, 128.6, 135.8, 141.3, 143.7, 

144.0, 169.1, 169.3, 170.4. HRMS (+TOF) calcd for C52H79N3O9Si3 (M)
+
: 974.5196; obsd: 974.5187.  

 

 

 

 

NMR Assignment 

Position 
1
H (ppm)  Multiplicity (J, Hz) 

13
C (ppm) 

 Si(CH3)2 x 3 0.02, 0.03, 0.12, 0.14 s -5.6, -5.4, -5.1, -5.0, -4.9, 

-4.7 

SiC(CH3)3 x 3 0.84, 0.86, 0.93 s 17.9, 18.1, 25.7, 25.8, 

25.9 

Residue 1 –Fmoc-Thr- 

Thr C=O    170.4 

Thr α (1H) 4.18 dd (6.4, 2.9)      59.3 

Thr β (1H) 4.28-4.36 m     68.2 

Thr γ (3H) 1.05 d (6.3)               18.3 

Thr NH 5.80 d (6.6)  

Fmoc C=O - - 156.2 

Fmoc CH2 4.39 d (7.0) 67.0 

Fmoc CH 4.24 t (7.2) 47.1 

Fmoc CH (x 4) 

Fmoc CH (x 2) 

Fmoc CH (x 2) 

7.28-7.47 

7.61  

7.75  

m 

t ( 6.2) 

d (7.6) 

119.9, 125.2, 127.1 

127.7, 128.0, 128.2 
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Fmoc C 4°(x 4) - - 141.3, 143.7, 144.0 

Residue 2 –Ser- 

Ser C=O - - 169.1 

Ser α (1H) 4.97 td (8.0, 5.3)      52.3 

Ser β (2H) 3.74 

3.81 

app. t (8.8) 

dd (9.4, 5.2)                      

64.0 

Ser NH (1H) 7.27-7.46 m - 

Residue 3 –Pro-OBn 

Pro C=O  - - 169.3 

Pro α (1H) 4.26-4.39 m     45.6 

Pro β (1H) 4.28-4.36 m                      74.2 

Pro γ (2H) 1.82-1.92 

2.06-2.18 

m  

m                     

34.0 

Pro δ (2H) 3.84-3.98 

4.30-4.34 

m 

m                   

68.4 

Bn CH2 5.06 

5.13 

d (12.3)     

d (12.3)                  

66.7 

Bn C 4°  - - 135.6 

Bn CH (5) 7.27-7.46 m 127.7, 128.0, 128.2 

128.5 

 

 

 Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50). To a solution of the tripeptide 

(300 mg, 0.48 mmol, 1 equiv.) in CH2Cl2 (5 mL) at 0 ºC under N2, were added 2,6-lutidine (761 μL, 

702 mg, 6.56 mmol, 13.8 equiv.), then TBDMSOTf (753 μL, 867 mg, 3.28 mmol, 6.9 equiv.). The 

mixture was stirred and warmed to rt overnight, diluted with CH2Cl2 (30 mL), washed with brine (30 

mL), and then extracted with CH2Cl2 (3 × 25 mL). The organic extracts were combined, filtered 

through MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 2:1 

Hex/EtOAc to give 50 (460 mg, 99 %). Rf  0.40 (3:1 Hex/EtOAc).[α] D
25

 -17.4º (c 1.0, CHCl3). 
1
H NMR 

(400 MHz, CDCl3) δ 0.01-0.14 (Singlets, Si-CH3 × 6, 18H), 0.84-0.94 (Singlets, SiC(CH3)3 × 3, 27H), 

1.01 (d, J = 6.2 Hz, 3H, Thr CH3), 2.11 (dt, J = 12.9, 4.8 Hz, 1H, hyp Hβ), 2.28 (ddd, J = 12.9, 8.3, 5.0 

Hz, 1H, hyp Hβ), 3.60 (dd, J = 7.2, 4.1 Hz, 1H, hyp Hδ), 3.63 (app.t, J = 9.2 Hz, 1H, Ser Hβ), 3.82 (dd, 

J = 9.2, 5.3 Hz, 1H, Ser Hβ), 4.11 (dd, J = 10.2, 5.7 Hz, 1H, hyp Hδ), 4.16 (dd, J = 7.0, 2.9 Hz, 1H, Thr 
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Hα), 4.24 (t, J = 7.0 Hz, 1H, Fmoc CH), 4.33 (dd, J = 6.4, 2.9 Hz, 1H, Thr Hβ), 4.34-4.43 (m, 3H, 

Fmoc CH2, hyp Hγ), 4.62 (dd, J = 8.6, 5.0 Hz, 1H, hyp Hα), 4.96 (ddd, J = 9.4, 8.0, 5.3 Hz, 1H, Ser 

Hα), 5.05 (d, J = 12.2 Hz, 1H, COOCH2Ph), 5.10 (d, J = 12.2 Hz, 1H, COOCH2Ph), 5.70 (d, J = 7.0 Hz, 

1H, NH Thr), 7.27-7.43 (m, 10H, NH Ser, 4 × Fmoc CH, 5 × COOCH2Ph), 7.61 (t, J =  7.0 Hz, 2H, 

Fmoc CH), 7.75 (d, J = 7.4 Hz, 2H, Fmoc CH); 
13

C NMR (100 MHz, CDCl3) δ -5.6, -5.4, -5.1, -5.0, -

4.9, -4.7, 17.9, 18.2, 25.6, 25.7, 25.8, 38.2, 47.1, 51.8, 55.0, 57.5, 59.4, 64.4, 66.6, 67.0, 68.2, 70.4, 

119.9, 125.1, 127.0, 127.7, 127.8, 128.0, 128.3, 128.4, 128.6, 135.8, 141.3, 143.7, 144.0, 156.2, 169.1, 

169.3, 170.4. HRMS (+TOF) calcd for C52H79N3O9Si3 (M + H)
+
: 974.5196; obsd: 974.5191. 

 

 

 

 

NMR Assignment 

Position 
1
H (ppm)  Multiplicity (J, Hz) 

13
C (ppm) 

 Si(CH3)2 x 3 0.00, 0.02, 0.03, 0.05 

0.11, 0.13 

s -5.6, -5.4, -5.1, -5.0, -4.9, 

-4.7 

SiC(CH3)3 x 3 0.85, 0.93 s 17.9, 25.6, 25.7, 25.8 

Residue 1 –Fmoc-Thr- 

Thr C=O    169.1 

Thr α (1H) 4.16 dd (7.0, 2.9)      59.4 

Thr β (1H) 4.33 dd (6.4, 2.9)      68.2 

Thr γ (3H) 1.01 d (6.2)               18.2 

Thr NH 5.70 d (7.0)  

Fmoc C=O - - 156.2 

Fmoc CH2 4.34-4.43 m 67.0 

Fmoc CH 4.24 t (7.0) 47.1 

Fmoc CH (x 4) 

Fmoc CH (x 2) 

Fmoc CH (x 2) 

7.27-7.43 

7.61  

7.75  

m 

t ( 7.0) 

d (7.4) 

119.9, 125.1, 127.0 

127.7, 127.8 

Fmoc C 4°(x 4) - - 141.3, 143.7, 144.0 

Residue 2 –Ser- 

Ser C=O - - 169.3 

Ser α (1H) 4.96 ddd (9.4, 8.0, 5.3)      51.8 
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Ser β (2H) 3.54-3.68 

3.82 

m 

dd (9.0, 5.3)                      

64.4 

Ser NH (1H) 7.27-7.43 m - 

Residue 3 –Pro-OBn 

Pro C=O  - - 170.4 

Pro α (1H) 4.62 dd (8.6, 5.0)     57.5 

Pro β (2H) 2.11 

2.29 

dt (12.9, 4.8) 

ddd (12.9, 8.3, 5.0)                      

38.2 

Pro γ (1H) 4.34-4.43 m                      55.0 

Pro δ (2H) 3.82 

4.11 

dd ( 9.0, 5.3) 

dd (10.2, 5.7)                   

70.4 

Bn CH2 5.05 

5.10 

d (12.2)     

d (12.2)                  

66.6 

Bn C 4°  - - 135.8 

Bn CH (5) 7.27-7.43 m 127.7, 127.8, 128.0, 

128.3, 128.4, 128.6 

 

 

 Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-DHP(OTBS)2-OBn (47). To a solution of the tripeptide (76 

mg, 0.12 mmol, 1 equiv.) in CH2Cl2 (3 mL) at 0 ºC under N2, was added 2,6-lutidine (251 μL, 231 mg, 

2.16 mmol, 18.4 equiv.), followed by TBDMSOTf (248 μL, 285 mg, 1.08 mmol, 9.2 equiv.). The 

mixture was stirred and warmed to rt overnight, diluted with CH2Cl2 (25 mL), washed with brine (25 

mL). The brine was further extracted with CH2Cl2 (3 × 20 mL). The organic extracts were combined, 

filtered through MgSO4 and concentrated. The residue was purified by flash chromatography eluting 

with 3:1 Hex/EtOAc to give 47 (95 mg, 74 %). Rf  0.50 (3:1 Hex/EtOAc). [α]D
25

 +6.1º (c 0.90, CHCl3). 

1
H NMR (400 MHz, CDCl3) (M = major rotamer, m = minor rotamer) δ -0.01, 0.02, 0.03, 0.04, 0.05, 

0.07, 0.09, 0.13, 0.16, 0.19, 0.20 (singlets, 24H, Si(CH3)2×4, M, m), 0.83, 0.84, 0.85, 0.87, 0.88, 0.93, 

0.95, 0.98 (singlets, 36H, SiC(CH3)3×4, M, m), 1.05 (d, J = 6.3 Hz, 3H, Thr CH3γ), 3.51 & 3.74 (d, J = 

12.6 Hz, 1H, DHP Hδ, m), 3.72  & 3.84 (d, J = 10.6 Hz, 1H, DHP Hδ, M), 3.79 (d, 6.7 Hz, 1H, Ser Hβ, 

M), 4.00 (dd, J = 7.7, 3.8 Hz, 1H, DHP Hγ, m), 4.04 (d, J = 4.3 Hz, 1H, Ser Hβ, m), 4.10-4.18 (m, 1H, 

DHP Hα, M), 4.17-4.22 (m, 1H, Thr Hα, M, m), 4.25 (t, J = 7.5 Hz, 1H, Fmoc CH), 4.31 (s, 1H, DHP 
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Hβ, M), 4.33 (app. dd, J = 7.3, 4.1 Hz, 1H, Thr Hβ, M), 4.36-4.50 (m, 1H, Ser Hα, m), 4.38 (d, J = 6.8 

Hz, 2H, Fmoc CH2), 4.49 (app. s, 1H, DHP Hγ, M), 4.58 (app. s, DHP Hβ, m), 4.97 (app. q, J = 7.4 Hz, 

1H, Ser Hα, M), 5.09 (s, 1H, COOCH2Ph, M), 5.10 (d, J = 12.7 Hz, 1H, COOCH2Ph, M), 5.17 (s, 1H, 

COOCH2Ph, m), 5.24 (d, J = 12.7 Hz, 1H, COOCH2Ph, m), 5.78 (d, J = 6.6 Hz, 1H, NH Thr, M), 5.88 

(d, J = 5.3 Hz, 1H, NH Thr, m), 7.26-7.40 (m, 7H, 2 × Fmoc CH, 5 × COOCH2Ph), 7.40 (t, J = 7.5 Hz, 

2H, Fmoc CH), 7.49 (d, J = 8.1 Hz, IH, NH Ser, M), 7.52 (d, J = 8.5 Hz, IH, NH Ser, m), 7.60 (d, J = 6.5 

Hz, 1H, Fmoc CH), 7.63 (d, J = 6.5 Hz, 1H, Fmoc CH), 7.77 (d, J = 7.5 Hz, 2H, Fmoc CH); 
13

C NMR 

(100 MHz, CDCl3) (major/minor rotamer) δ -5.3, -5.2, -5.1, -4.8, -4.7, -4.6, -4.5, 17.1, 18.0, 18.1, 18.2, 

18.3, 18.5, 25.7, 25.8 25.9, 26.0, 26.1, 47.4, 52.4, 53.8, 54.0, 54.1, 58.5, 59.5, 63.0, 64.2, 66.5, 66.8, 

67.2, 68.2, 68.5, 74.9, 76.8, 80.3, 81.2, 120.1, 125.4, 127.2, 127.3, 127.9, 128.0, 128.1, 128.5, 128.6, 

128.8, 135.5, 136.0, 141.5, 143.9, 144.3, 156.4, 169.2, 169.6, 170.2. HRMS (+TOF) calcd for 

C58H94N3O10Si4 (M + H)
+
: 1104.6011; obsd: 1104.6010. 

 

 

 

 

NMR Assignment 

Position 
   1

H (ppm) 

  M = major 

  m = minor 

 Multiplicity (J, Hz) 
13

C (ppm) 

Silyl Ether Protecting Groups 

 Si(CH3)2 x 4  

 

 

 

-0.01, 0.03, 0.04,  

0.05, 0.07, 0.09,  

0.13, 0.20, 0.02, 

0.07, 0.16, 0.19 

s -5.3, -5.2, -5.1, -4.8, -4.7, 

-4.6, -4.5 

 

 

 

SiC(CH3)3 x 4 0.83, 0.84, 0.85, 

0.87, 0.88, 0.93, 

0.95, 0.98 

s 18.0, 18.1, 18.2, 18.3, 18.5 

25.7, 25.8, 25.9, 26.0, 26.1 

Residue 1 –Fmoc-Thr- 
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Thr C=O  - - 169.2 

Thr α  4.17-4.22 (M, m) m      59.5 M, 58.5 m  

Thr β  4.33 app. dd (7.3, 4.1)     68.5 M, 68.2 m 

Thr γ  1.05 d (6.3)               17.1  

Thr NH  

 

5.78 M 

5.88 m 

d (6.6) 

d (5.3) 

- 

- 

Fmoc C=O - - 156.4 

Fmoc CH2 4.38 d (6.8) 67.2 

Fmoc CH 4.25 t (7.5) 47.4 

Fmoc CH        2H            

Fmoc CH        2H             

Fmoc CH        1H             

Fmoc CH        1H             

Fmoc CH        2H             

7.26-7.40 

7.40 

7.60 

7.63 

7.77 

m 

t ( 7.5) 

d (6.5) 

d (6.5) 

d (7.5) 

120.1, 125.4, 127.2, 127.3,  

127.9, 128.0, 128.1 

Fmoc C 4°(x 4) - - 141.5, 143.9, 144.3 

Residue 2 –Ser- 

Ser C=O - - 169.6 

Ser α  

           

4.97 M 

4.36-4.50 m 

app. q (7.4)  

m     

52.4 M 

Ser β  3.79 M 

4.04 m 

d (6.7) 

d (4.3) 

64.2 M 

63.0 m 

Ser NH  

              

7.49 M 

7.52 m 

d (8.1) 

d (8.5) 

- 

- 

Residue 3 -DHP-OBn 

DHP C=O  - - 170.2 

DHP α  

           

4.10-4.18 M 

 

m  

 

54.0 

 

DHP β  

          

4.31 M 

4.58 m 

s 

s                      

80.3 

81.2 

 

DHP γ  

          

4.49 M 

4.00 m 

app. s  

dd (7.7, 3.8)             

76.8 

74.9 

DHP δ  

  

3.72 M, 3.84 M 

3.51 m, 3.74 m 

 

d (10.6) 

d (12.6)   

 

54.1 M 

53.8 m 

Bn CH2  5.09 M 

5.10 M 

5.17 m 

5.24 m 

s 

d (12.7)     

s    

d (12.7)           

66.8 

 

66.5 

Bn C 4°  - - 135.5, 136.0 

Bn CH (5) 7.26-7.37 m 128.1, 128.5, 128.6, 128.8 

 

 

 



120 
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Boc-L-Trp-O
t
Bu (124) – 

1
H NMR in CDCl3 at 250 MHz 

 

N
H

COOtBu

Boc-NH
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Boc-L-Trp-O
t
Bu (124) – 

13
C NMR in CDCl3 at 62.5 MHz 

 

N
H

COOtBu

Boc-NH
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Boc-L-Trp(SMe)-O
t
Bu (125) – 

1
H NMR in CDCl3 at 400 MHz 

 

 
N
H

COOtBu

Boc-NH

SMe
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Boc-L-Trp(SMe)-O
t
Bu (125)– 

13
C NMR in CDCl3 at 100 MHz 

 

 
N
H
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SMe
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Boc-L-Trp(SO2Me)-O
t
Bu (126) – 

1
H NMR in CDCl3 at 400 MHz 
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Boc-L-Trp(SO2Me)-O
t
Bu (126) – 

13
C NMR in CDCl3 at 100 MHz 
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H-L-Trp(SO2Me)-OH (127)
 
-
1
H NMR in D2O at 400 MHz 
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H-L-Trp(SO2Me)-OH (127)
 
-
13

C NMR in D2O at 100 MHz 
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Fmoc-Ala-Trp(SO2Me)-OMe (129)-
 1

H NMR in CDCl3 at 400 MHz 
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Fmoc-Ala-Trp(SO2Me)-OMe (129)-
 13

C NMR in CDCl3 at 100 MHz 
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Tetrapeptide 46– 
1
H NMR in CDCl3 at 400 MHz 
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Tetrapeptide 46– 
13

C NMR in CDCl3 at 100 MHz 
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Tetrapeptide (46)– HPLC chromatogram at 254 nm, 75% EtOAc in Hexanes, 10 mm Econosil, 3 

mL min
-1

 (96% pure)  
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Boc-4-Hyp-OBn (141a) – 
1
H NMR in CDCl3 at 400 MHz 
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Boc-4-Hyp-OBn (141a) – 
13

C NMR in CDCl3 at 100 MHz 
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Boc-4-hyp-(OMEM)-OBn (142) – 
1
H NMR in CDCl3 at 400 MHz 
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Boc-4-hyp-(OMEM)-OBn (142) – 
13

C NMR in CDCl3 at 100 MHz 
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Boc-3-Hyp-OBn (145) – 
1
H NMR in CDCl3 at 400 MHz 
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Boc-3-Hyp-OBn (145) – 
13

C NMR in CDCl3 at 100 MHz 
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Fmoc-DHP-(OMEM)2-OBn (156) – 
1
H NMR in CDCl3 at 400 MHz 
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Fmoc-DHP-(OMEM)2-OBn (156) – 
13

C NMR in CDCl3 at 100 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-OMe (166) – 

1
H NMR in CDCl3 at 400 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-OMe (166) – 

13
C NMR in CDCl3 at 100 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-Pro-OBn (168) – 

1
H NMR in CDCl3 at 400 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-Pro-OBn (168) – 

13
C NMR in CDCl3 at 100 MHz 

 

 

 



147 

 

Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-trans-3-Hyp-OBn (169) – 

1
H NMR in CDCl3 at 400 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-trans-3-Hyp-OBn (169) – 

13
C NMR in CDCl3 at 100 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-cis-4-hyp(OMEM)-OBn (170)-

 1
H NMR in CDCl3 at 400 

MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-cis-4-hyp(OMEM)-OBn (170)-

 13
C NMR in CDCl3 at 100 

MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-DHP(OMEM)2-OBn (167) )-

 1
H NMR in CDCl3 at 400 MHz 
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Fmoc-D-Thr-(O
t
Bu)-D-Ser(O

t
Bu)-DHP(OMEM)2-OBn (167) -

 13
C NMR in CDCl3 at 100 MHz 
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Fmoc-D-Thr-D-Ser-Pro-OBn (172) – 
1
H NMR in CD3OD at 400 MHz 
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Fmoc-D-Thr-D-Ser-Pro-OBn (172) – 
13

C NMR in CD3OD at 100 MHz 
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Fmoc-D-Thr-D-Ser-trans-3-Hyp-OBn (173) – 
13

C NMR in CD3OD at 400 MHz 
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Fmoc-D-Thr-D-Ser-trans-3-Hyp-OBn (173) – 
13

C NMR in CD3OD at 100 MHz 
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Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174)
 
– 

1
H NMR in CD3OD at 400 MHz 
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Fmoc-D-Thr-D-Ser-cis-4-hyp-OBn (174)
 
– 

13
C NMR in CD3OD at 100 MHz 
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Fmoc-D-Thr-D-Ser-DHP-OBn (171)-
 1

H NMR in CD3OD at 400 MHz 
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Fmoc-D-Thr-D-Ser-DHP-OBn (171)-
 13

C NMR in CD3OD at 100 MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48) – 
1
H NMR in CDCl3 at 400 MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48) – 
13

C NMR in CDCl3 at 100 MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-Pro-OBn (48)  – HPLC chromatogram at 254 nm, 30% 

EtOAc in Hexanes, 10 mm Econosil, 3 mL min
-1

 (98% pure) 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49) – 
1
H NMR in CDCl3 at 400 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-trans-3-Hyp(OTBS)-OBn (49) – 
13

C NMR in CDCl3 at 100 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-3-hyp(OTBS)-OBn (49) – HPLC chromatogram at 254 nm, 

20% EtOAc in Hexanes, 10 mm Econosil, 3 mL min
-1

 (97% pure). 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50) -
 1
H NMR in CDCl3 at 400 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-cis-4-hyp(OTBS)-OBn (50) -
 13

C NMR in CDCl3 at 100 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-4-hyp(OTBS)-OBn (50) – HPLC chromatogram at 254 nm, 

20% EtOAc in Hexanes, 10 mm Econosil, 3 mL min
-1

 (97% pure). 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-DHP(OTBS)2-OBn (47) –
 1
H NMR in CDCl3 at 400 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-DHP(OTBS)2-OBn (47) -
 13

C NMR in CDCl3 at 100 

MHz 
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Fmoc-D-Thr-(OTBS)-D-Ser(OTBS)-DHP(OTBS)2-OBn (47) – HPLC chromatogram at 254 nm, 

14% EtOAc in Hexanes, 10 mm Econosil, 3 mL min
-1

 (100 % pure). 
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CHAPTER 4:      FRAGMENT CONDENSATION AND CYCLIZATIONS 

 

4.1 THE LINEAR HEPTAPEPTIDES 

4.1.1  Overview 

According to the retrosynthetic analysis presented in Chapter 2 (reiterated as Scheme 4.1), 

assembly of the linear heptapeptides involves [3 + 4] fragment condensations. In general, the synthesis 

of such oligopeptides could be achieved either through stepwise assembly or fragment condensation 

approaches. In a stepwise approach, the linear precursor is synthesized from one end to the other by 

adding one amino acid residue at a time to the growing sequence. Fragment condensation involves 

synthesizing the peptide fragments separately, followed by coupling them in a convergent fashion. 

   

Scheme 4.1. Retrosynthetic analysis of allovroidin and analogs. 
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4.1.2          The Risk of Epimerization in Fragment Condensation 

 Having prepared our fragments, we were now ready to assemble the cyclization precursors 

through segment coupling. In general, segment couplings involving hindered peptides are prone to 

epimerization via oxazolone formation following acid activation (Scheme 4.2) i.e., when R2 = alkyl or 

peptidyl, base promoted enolization of the oxazolone intermediate occurs generating the undesired 

diastereomer. However, when R2 = alkoxy (viz-a-viz, carbamate protected amino acid), then chances of 

oxazolone formation are low, and if generated, no epimerization occurs since the oxazolone intermediate 

is chirally stable and undergoes rapid aminolysis to give the desired product.   

 

Scheme 4.2. Racemization through oxazolone.
114

  

 

 

 

In addition to epimerization, the low coupling rates
115

 experienced in the coupling of 

hindered peptide fragments have often led to premature cleavage of base sensitive protecting groups 

such as Fmoc.
116

 However, our approach involves activation of non-epimerizable carboxyl components, 

bearing proline residues at their C-terminus. Furthermore, the emergence of new coupling reagents 
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(Figure 4.1), racemization suppressants and improved reaction conditions has had a great impact in the 

coupling of difficult segments.
114, 117

  

 

 

 

Examples of phosphorous based coupling reagents 

 

 

 

Examples of uranium/guanidinium-based coupling reagents 

 

Figure 4.1. Selected phosphorous and uronium based coupling reagents 

 

Studies by Carpino and co-workers have demonstrated the effect of various coupling reagents 

and base on the optical integrity of amino acid residues during peptide bond formation. The model 

peptide, Cbz-Phe-Val-Pro-NH2, utilized by Carpino and co-workers involves coupling between 

sterically demanding residues thus rendering the Val residue susceptible to epimerization. According to 

Table 4.1, it can be seen that a combination of an appropriate coupling reagent, base and racemization 
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suppressant not only improves the yield but also minimizes the undesired racemization. In their 

investigation, a comparison between HOAt and HOBt as additives during carbodiimide-mediated 

couplings indicated that HOAt was better than HOBt at minimizing racemization when the reaction was 

conducted in DMF. For onium-based reagents, epimerization levels were noted to increase in the order 

of HAPyU < HATU < HBTU < BOP. The best result was obtained when collidine was used as a base. 

 

Table 4.1. Effect of coupling reagent and base during peptide bond formation.
118

 

 

 

 

Coupling reagent Base (equiv.) Yield, % LDL, % 

EDC/HOAt 

EDC/HOBt 

HATU 

HATU 

HATU/HOAt 

HATU/HOAt 

HBTU 

HBTU 

BOP 

BOP 

HAPyU 

HAPyU 

HAPyU/HOAt 

HAPyU/HOAt 

No base 

No base 

DIEA (2) 

Collidine (2) 

DIEA (2) 

Collidine (2) 

DIEA (2) 

Collidine (2) 

DIEA (2) 

Collidine (2) 

DIEA (2) 

Collidine (2) 

DIEA (2) 

Collidine (2) 

85 

87 

86 

83 

76 

72 

88 

81 

84 

81 

89 

87 

77 

76 

4.7 

18.9 

13.9 

5.3 

10.9 

2.4 

27.4 

14.2 

30.4 

13.9 

10.8 

3.5 

3.2 

1.6 
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4.1.3          Execution of the Condensations 

We conducted the [3 + 4] fragment condensations between the tetrapeptide amine and the 

series of four tripeptide acids, using Carpino‟s HATU/collidine conditions, affording the corresponding 

linear heptapeptides in excellent yields (Scheme 4.3). Initial attempts at fragment condensation using 

PyBroP
119

 generated the linear heptapeptides in poor yields. 

 

Scheme 4.3. The [3 + 4] fragment condensations. 

 

 

It should be noted that the four linear heptapeptides were purified by flash column 

chromatography and analyzed by HPLC. The HPLC chromatograms indicated that the purity of each 

linear heptapeptides was greater than 90% (see experimental section for the HPLC traces). High 

resolution mass spectrometry confirmed the identity of each species. The 
1
H NMR spectra of the linear 

heptapeptides were complicated by overlapping of signals, due to interconversion between the numerous 

conformations that are common to extended peptides in solution and therefore no individual assignments 

were made at this level.   
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4.2  THE CYCLIZATIONS 

4.2.1         The Importance of Cyclic Peptides 

Peptide cyclization is of great importance since it restricts the number of conformations in 

solution and thereby often enhances receptor binding affinities.
120-122

 Also, the absence of ionizable C- 

and N-termini facilitates the crossing of lipid membranes resulting in better bioavailability necessary for 

therapeutic applications.
123, 124

 Furthermore, cyclic peptides have significant therapeutic potential due to 

their resistance to proteolytic degradation.
125

  

 

 

Figure 4.2. Examples of cyclic peptide drugs. Somatostatin
126

 (186) along with hexapeptide analogs 

(187-194), synthesized by Hirschmann and co-workers.
124
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4.2.2         Types of Peptide Cyclization 

During the synthesis of cyclic peptides, the most challenging step is the cyclization reaction. 

Although numerous methods for peptide cyclizations have been developed,
127-133

 the intramolecular 

peptide bond formation remains a greater challenge than the preparation of the linear precursors. Among 

the various ways described for solution phase synthesis of cyclic peptides include the head to tail and 

side-chain to side-chain cyclizations (Fig. 4.3). The latter approach may involve formation of disulfide 

(Cys) or amide bonds (Lys in combination with Asp or Glu) between residue side-chains. The success of 

the two approaches is dependent on the availability of orthogonally protected linear precursors.
127

 Other 

ways of peptide cyclization are head to side chain and side chain to tail. Some specific examples are 

given in Schemes 4.4-4.7 for illustration. In general, the choice of a cyclization approach is defined by 

the target molecule. For instance, during the synthesis of alloviroidin and analogs, we utilized a head to 

tail cyclization approach as directed by the structure of the cyclopeptides. 

 

 

 

 

Figure 4.3. Examples of peptide cyclization approaches. 
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Scheme 4.4. Crich and Sasaki‟s head to tail cyclization of a pentapeptide.
134

 

 

 

Scheme 4.5. Anseth and co-workers‟ side chain to tail cyclization on a solid phase.
135

 

 

 

Scheme 4.6. Smith and co-workers‟ side chain to side chain cyclization on a solid phase.
136
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Scheme 4.7. Zhang and Tam‟s head to side chain cyclization.
137

 

 

 

 

 

 

 

 

4.2.3         Suppressing Epimerization of the C-Terminal Residue 

Since peptide cyclizations are intramolecular reactions, a high dilution of 10
-3

 M or greater is 

required to suppress the formation of byproducts arising from dimerization and polymerization. 

Unfortunately, such dilute conditions also imply low concentration of reagents, resulting in sluggish 

reactions, with competitive peptide decomposition and epimerization compromising the yield and 

quality of the cyclomonomer.
138, 139

 During the cyclization of all L-penta- and hexapeptides using 1-

hydroxy-7-azabenzotriazole-derived uronium and phosphonium reagents, Ehrlich and co-workers 

demonstrated that epimerization and cyclodimer formation could be minimized under highly dilute 

conditions. As demonstrated in Table 4.2, cyclodimer formation was reduced to 2 % when the 

concentration of 204 was 0.1 mM (Entry 3).
133
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Table 4.2: Ehrlich and co-workers‟ cyclization of all L-pentapeptide.
133

 

 

 

 

 

 

 

Entry 

Concentration 

of linear 

peptide  (mM) 

Cyclomonomer 

205 (%) 

D-Tyr-isomer 

(%) 

Cyclodimer 

(%) 

1 10 25 8.0 40 

2 1 55 8.8 25 

3 0.1 82 - 2 

 

 

Traditionally, the extent of epimerization has been minimized by using azide or DPPA-

mediated couplings;
140

 however, these methods of activation are extremely slow.
138, 141, 142

 

Carbodiimides used in combination with additives such as HOBt, HOAt, and N-hydroxysuccinimide 

(NHS) that form activated esters have also been utilized to effect peptide cyclizations. These reagents 

intercept and prevent the formation of an N-acylurea by reacting with the O-acylurea as shown in 

Scheme 4.8. Carbodiimides have the disadvantage of generating urea precipitates that often slow down 

peptide couplings.  
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Scheme 4.8. EDC activation. 

 

 

 

Several examples of peptide cyclizations have been reported using EDC/HOBt reagents, as compared to 

other carbodiimides.
143, 144

 The urea formed from an EDC mediated coupling is removed by aqueous 

extraction. In contrast, the dicyclohexylurea generated during N,N‟-dicyclohexylcarbodiimide (DCC) 

mediated coupling reaction is difficult to remove using the standard aqueous work-up. Other reagents 

like TBTU
145

 and BOP
146

 are known to give improved yields for peptide cyclization,
147

 but their use is 

limited due to unacceptable levels of epimerization.
148

 The relatively new 1-hydroxy-7-azabenzotriazole 

HOAt-based reagents
88, 149

 have attracted considerable attention as serious alternatives to HOBt-based 

reagents and the traditional azide methods, which are too slow to be employed in conjunction with  

N-methyl peptides.
131

 The former improve cyclization rates relative to azide couplings in some cases but 

proceed with high levels of racemization.    
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4.2.4         Conformational Control to Facilitate Cyclization 

Other key factors that dictate the success of a cyclization reaction are the linear precursor 

sequence and the choice of coupling reagent. This is illustrated by the attempts of Schmidt and Langner 

to synthesize the all L-isomer of tyrosinase inhibitor cyclo-[Pro-Val-Pro-Tyr].
150

 According to Scheme 

4.9, the carboxy terminus was activated as a pentafluorophenyl ester. Hydrogenolysis of the N-terminal 

Cbz group was expected to result in spontaneous cyclization. Unfortunately, epimerization of Tyr Cα 

generated the L, L, L, D tetrapeptide that cyclized more readily than its all L-counterpart, resulting in the 

isolation of 207 in 31 % yield.  

 

Scheme 4.9. Schmidt and Langner‟s C-terminal epimerization of all L residues.
150

  

 

 

 

Schmidt and Langner also demonstrated sequence dependence during cyclization after 

investigating ring closures at the various possible sites of the pentapeptide cyclo-[Pro-Ala-Ala-Phe-Leu]. 

According to Fig. 4.4, Schmidt and Langner were able to prepare the cyclopentapeptide in 21% yield 

after performing ring closure between alanine and phenylalanine residues. Cylization at other possible 

sites gave rise to mixtures of monomers and dimers or no isolable product. It has also been shown that a 

linear sequence with D and L amino acids in alternate positions favors cyclization.
133, 151-153
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Figure 4.4. Schmidt and Langner sequence dependence cyclization.
150

 

The size of the ring to be closed also influences the ease with which an open chain precursor 

cyclizes. The cyclization of peptides with five residues is often difficult since dimerization occurs 

easily.
154, 155

 However, the cyclization of peptides containing seven to nine amino acids is considered 

much less residue-dependent and favored by the flexibility of the ring systems.
127

 Small to medium-

sized rings have difficulty accommodating the Z geometry necessary for cyclization.
156

 Furthermore, the 

ease of cyclization is often enhanced by turn-inducing residues such as glycine, proline or D-amino 

acids.
157-159

 In order for a cyclization to occur, the activated linear peptide should adopt a circular 

conformation to bring the N- and C-termini in close proximity (Scheme 4.10).  

Scheme 4.10. Extended and circular conformations of the peptide. 

 

 

A planar transoid conformation of the peptide bond induces a rigid and extended 

conformation in the linear precursor making it difficult for cyclomonomer formation.
132

 Cyclizations 

involving all D or L peptides is challenging since these precursors prefer to adopt extended 
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conformations to minimize allylic strain.
160

 Various strategies such as modification of the peptide bond 

or the use of external templates to influence conformational preorganization have been developed to 

overcome this problem.
161

 Ring closure kinetic studies by Daidone and Smith revealed that cyclization 

of longer peptides is enhanced by intramolecular hydrogen bonding and by the formation of β-sheet 

structures which bring the two termini close enough to cyclize.
162

 Rigid, extended conformations of 

shorter peptides were attributed to lack of intramolecular hydrogen bonds making cyclization of these 

peptides almost impossible.
162

  

Reverse turns in protein secondary structures have inspired chemists to develop ways of 

inducing turns in linear peptides to facilitate cyclic peptide synthesis.
163

 This can be achieved by 

introduction of cis peptide bonds in the middle of the linear precursor to mimic β-turns.
156

 The presence 

of N-methylated amino acids in peptides have the same turn inducing effect on the peptide backbone to 

that of proline.
164-168

 

 The use of pseudoprolines derived from serine and threonine as turn-inducers during 

synthesis of cyclic peptides has been documented by several groups.
169, 170

 When incorporated into 

peptides, pseudoprolines introduce cisoid conformations generating type-VI β-turn structures that favor 

cyclization.
170

  

Scheme 4.11. Jolliffe and co-workers‟ synthesis utilizing pseudoprolines as turn inducers.
169
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Studies have revealed that positioning the turn-inducing residue midway along the cyclization precursor 

could give better results than when it is at the terminal, although it is not possible to capitalize on this 

phenomenon for all peptide sequences.
129, 132

  

If possible, the cyclization site should not occur between sterically hindered amino acids such 

as N-methylated, α,α-disubstituted or β-branched residues. If the opportunity exists, cyclization should 

be engineered to occur between D- and L-residues since this facilitates the reaction.
117

 Brady and co-

workers concluded in their study on the practical synthesis of cyclic peptides that the orientation of the 

N-terminal side chain along with the orientation of the amino group greatly influence the success of the 

cyclization.
171

  

Another strategy for directing peptide cyclization involves the use of external templates as 

reaction cavities to accommodate and cyclize one linear peptide molecule at a time (Scheme 4.12).
172

 

This isolates the peptide from the bulk solution, thereby minimizing chances of polymerization. 

 

Scheme 4.12. van Maarseveen and co-workers‟ site isolation mechanism using carbosilane dendrimeric 

carbodiimide.
172
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4.2.5         Cyclizations and Deprotections 

With the linear heptapeptide fragments in-hand, a prerequisite to the final cyclization is the 

liberation of the acid and amine functionality of the terminal residues. The Fmoc group in each linear 

precursor was cleaved by treatment with tris(2-aminoethyl)amine (TAEA) according to Scheme 4.15.
96

 

The presence of the side chain TBS ethers and the carboxyl ethyl ester enabled the purification of the 

heptapeptide amines by flash chromatography after a careful aqueous workup involving extraction from 

phosphate buffer (pH 5.5). We then hydrolyzed the ethyl ester with tetrabutylammonium hydroxide 

(TBAH) and subjected the deprotected heptapeptide amino acids to a phosphate buffer workup again 

before attempting cyclizations.
173

 Our early attempts to hydrolyze the ethyl ester using potassium 

trimethylsilanolate
174

 at low temperatures were plagued by silyl ether cleavage and incomplete ethyl 

ester removal. Extensive studies by Abdel-Magid and co-workers found the use of tetrabutylammonium 

hydroxide suitable for hydrolysis of polypeptide esters with minimum racemization risks as compared to 

alkali metal hydroxides (Scheme 4.13).
173

  

Scheme 4.13. Abdel-Magid and co-workers hydrolysis of polypeptide esters. 

 

 

 

The progress of the hydrolysis reaction involving the proline analog was initially followed by HPLC 

analysis. Our choice of these conditions was guided by the final stages of Uto and Wipf‟s trunkamide A 

synthesis, in which a single TBS-protected serine residue was employed (Scheme 4.14). 
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Scheme 4.14. Wipf and Uto‟s synthesis of trunkamide A.
175

 

 

 

 

 

We then conducted our cyclizations under the HATU/DIEA-mediated coupling conditions. 

In each case, a solution of the linear precursor and the base were slowly added to a mixture of the 

coupling reagent and the base over a period of two hours via a syringe pump, to ensure high dilution. 

Indeed, slower addition afforded much cleaner reactions than when the addition was performed rapidly. 

We also compared DMF and dichloromethane as solvents for the cyclizations using a single syringe 

pump. Dichloromethane gave superior chemical yield, and also shortened the cyclization time from 48 h 

to 24 h. A similar solvent influence on cyclization was observed during the synthesis of aureobasidin A 

by Kurome and co-workers.
176

 This phenomenon has been explained in terms of the solvation effect of 

the linear precursor whereby peptide interaction with the solvent through hydrogen bonding leads to 

either a circular or extended conformation.
128

  

It should be noted that cyclization of the 3-Hyp linear heptapeptide was more difficult 

compared to the other three and therefore the best yield was obtained upon conducting the reaction 

under high dilution using a dual syringe pump. With the dual syringe pump, the coupling reagent and the 

linear heptapeptide were independently added slowly to a solution of the base over a period of 2 h.
177
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This parallel addition ensured that the concentration of the peptide remained constant and that the 

coupling reagent was active during peptide bond formation.  

We concluded our syntheses by performing a global desilylation with tetrabutylammonium 

fluoride (TBAF), buffered with ammonium fluoride, affording the desired cycloheptapeptides with the 

recorded yields after reversed phase HPLC purification. 

 

Scheme 4.15. Cyclizations and global desilylation. 

 

 

 

The major problem encountered following the TBAF-mediated cleavage of the silyl ethers 

was the removal of the excess reagent and materials derived from TBAF that often require tedious 

aqueous workups to be eliminated. Neither an aqueous workup, nor reversed phase HPLC purification, 

were effective at removal of tetrabutylammonium ion salts from the silyl ether cleavage reaction and the 

“hangover” from ethyl ester hydrolysis with TBAH. The other challenge was posed by the polarity of 

our cyclic compounds since we would lose considerable amounts of the desired compounds during an 

aqueous workup, compromising our yields.  
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We were able to overcome this problem in the analogs by applying a workup procedure 

developed by Kishi and Kaburagi
178

 who removed tetrabutylammonium salts at the conclusion of their 

synthesis of halichondrin. Their  protocol involves the simultaneous addition of a commercially 

available sulfonic acid resin and calcium carbonate, followed by filtration (Fig. 4.5).
178

 The 

resin/tetrabutylammonium salts, calcium fluoride and calcium carbonate are insoluble in THF and 

therefore can be removed by filtration, whereas water and TBSF are removed by evaporation leaving 

behind the desired alcohol (R-OH). However, the application of this protocol to the DHP containing 

cyclopeptide led to considerable loss of the product since we only recovered trace amounts of the natural 

product. We presume that the natural product could be either sticking to the resin or undergoing 

decomposition. Attempts to substitute CsF for tetrabutylammonium fluoride to deprotect the silyl ethers 

met with failure, i.e., the reaction was sluggish and only generated decomposed products. Our hope was 

that this reagent would effect the deprotection without purification issues encountered with the 
n
Bu4N

+
 

cation. 

 

Scheme 4.16. Kaburagi and Kishi‟s synthesis of halichondrin.
178
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Figure 4.5. TBS deprotection and purification protocol.
178

 

 

 

A crude 
1
H NMR analysis of our deprotected cycloheptapeptides, after applying Kishi‟s 

workup procedure, revealed less contamination by the TBAF derived materials, allowing for further 

purification by reversed phase HPLC. 

From our results, we observed a significant variation in the cyclization yields for the four 

linear heptapeptides (Scheme 4.15). Cyclization involving the hyp-containing precursor gives the best 

yield. In contrast, the DHP heptapeptide provided the lowest yield. This trend suggests that the regio-, 

stereochemistry and degree of proline hydroxylation influence the backbone conformation which has a 

direct influence on cyclization. It appears that the cis-trans prolyl peptide bond isomerization favors 

trans for the DHP heptapeptide with hyp favoring the circular cis conformation required for cyclization. 

Also, the presence of hydroxyl groups on the pyrrolidine ring influence the structure of proline residues 

which is directly linked to the relative stability of the cis-trans ratios across the prolyl peptide bond.  
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4.2.6          Summary/Conclusions 

In summary, the first total synthesis of alloviroidin (3) in trace amounts, along with that of 

three analogs with L-proline, trans-3-hydroxyproline or cis-4-hydroxyproline residue substituting for 

2,3-trans-3,4-trans-dihydroxyproline in the natural product have been achieved via solution-phase head-

to-tail cyclization. The linear heptapeptides were prepared via [3+4] fragment condensations between 

the series of four tripeptide acids 171-174 and the tetrapeptide amine 130. Fragment condensations 

involving the tripeptide acids containing either cis-4-hydroxyproline or 2,3-trans-3,4-trans-

dihydroxyproline residues were not as high yielding as for the proline or trans-3-hydroxyproline 

containing tripeptides due to the sterically hindered nature of the activated carboxyl termini residues.  

We generated our target cyclopeptides by initiating the cyclizations using HATU. A dual 

syringe pump was used for slower addition of the linear precursors and the coupling reagent during the 

cyclization step. Cyclizations to produce the analogs containing L-proline or hyp residues proceeded in 

higher yields as compared to the 3-Hyp analog and the natural product. This trend is presumed to be 

influenced by the backbone conformation in the linear heptapeptide precursors with 3-Hyp analog 

having the least favorable conformation vis-à-vis. 

Although the tert-butyldimethylsilyl group is one of the most utilized protecting group for 

alcohols, its application in peptide chemistry remains uncommon. In most cases, side chains of residues 

such as serine and threonine have been protected as tert-butyl ethers, especially in solid-phase peptide 

synthesis where the acid labile linker and side-chain protecting groups are cleaved in a single step. The 

successful utilization of TBS ethers in our synthesis demonstrates their application to peptide sequences 

with acid sensitive residues. The buffered conditions used for their global deprotection were compatible 

with the γ-hydroxylated dihydroxyleucine residue that would easily lactonize under standard acidic 

deprotection conditions. 
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4.3  EXPERIMENTAL SECTION 

4.3.1  General Methods: As for Chapters 2 and 3 with the following additions and modifications: 

NMR spectra were recorded on a Bruker AV-400-liquid or a Varian Inova-500 or a Varian system 700 

spectrometer. Disodium 3-trimethylsilyl-1-propane-sulfonate (DSS) was used to reference 
1
H NMR 

spectra run in 90% H2O/10% D2O.  

Preparation of the phosphate buffer solution (pH 5.5, 50 mM): Monosodium phosphate (0.66 g) and 

disodium phosphate (0.06 g) were added to 100 mL of deionized water. 

 

 Pro heptapeptide 180. Diisopropylethylamine (8 mg, 11 μL, 0.06 mmol, 1.2 equiv.) and HATU (21 

mg, 0.05 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (40 mg, 0.05 mmol, 1.0 

equiv.) and tripeptide acid (38 mg, 0.05 mmol, 1.0 equiv.) in CH2Cl2 (2 mL) at 0 ºC under N2. The 

mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash 

chromatography eluting with 4:1 EtOAc/Hex to give 180 (69 mg, 87 %). Rf  0.45 (4:1 EtOAc/Hex); [α]D
25

 

-33.7º (c 1.0, CHCl3). HRMS (+TOF) calcd for C73H115N8O16SSi3 (M + H)
+
: 1475.7454; obsd: 

1475.7467. The purity of the heptapeptide was checked by HPLC on an Econosil silica column (10 mm 

diameter, 250 mm long) and a flow rate of 3 mL min
-1

. The isocratic method used was 75% EtOAc in 

Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, RT 21 min. 

 

 3-Hyp heptapeptide 181. Diisopropylethylamine (13 mg, 17 μL, 0.10 mmol, 1.2 equiv.) and HATU 

(32 mg, 0.09 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (63 mg, 0.09 mmol, 

1.0 equiv.) and tripeptide acid (75 mg, 0.09 mmol, 1.0 equiv.) in CH2Cl2 (3 mL) at 0 ºC under N2. The 

mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash 

chromatography eluting with 2:1 EtOAc/Hex to give 181 (99 mg, 73 %). Rf  0.40 (2:1 EtOAc/Hex); 
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[α]D
25

 -13.7º (c 1.0, CHCl3). HRMS (+TOF) calcd for C79H129N8O17SSi4 (M + H)
+
: 1605.8268; obsd: 

1605.8259.  

 

 4-hyp-heptapeptide 182. Diisopropylethylamine (16 mg, 20 μL, 0.12 mmol, 1.2 equiv.) and HATU 

(46 mg, 0.12 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (90 mg, 0.12 mmol, 

1.0 equiv.) and tripeptide acid (108 mg, 0.12 mmol, 1.0 equiv.) in CH2Cl2 (4 mL) at 0 ºC under N2. The 

mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash 

chromatography eluting with 2:1 EtOAc/Hex to give 182 (125 mg, 64 %). Rf  0.40 (2:1 EtOAc/Hex); 

[α]D
25

 -12.3º (c 1.0, CHCl3). HRMS (+TOF) calcd for C79H129N8O17SSi4 (M + H)
+
: 1605.8268; obsd: 

1605.8259. The purity of the heptapeptide was checked by HPLC on an Econosil silica column (10 mm 

diameter, 250 mm long) and a flow rate of 3 mL min
-1

. The isocratic method used was 66% EtOAc in 

Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, RT 15 min. 

 

 DHP heptapeptide 179. Diisopropylethylamine (8 mg, 10 μL, 0.06 mmol, 1.5 equiv.) and HATU 

(16 mg, 0.04 mmol, 1.0 equiv.) were added to a solution of the tetrapeptide amine (30 mg, 0.04 mmol, 

1.0 equiv.) and tripeptide acid (42 mg, 0.04 mmol, 1.0 equiv.) in CH2Cl2 (2 mL) at 0 ºC under N2. The 

mixture was stirred and warmed to rt overnight, concentrated, and the product isolated by flash 

chromatography eluting with 1:1 EtOAc/Hex, then 2:1 EtOAc/Hex to give 179 (46 mg, 65 %). Rf 0.37 

(1:1 EtOAc/Hex); [α]D
25

 -18.5º (c 0.85, CHCl3). HRMS (+TOF) calcd for C73H115N8O16SSi3 (M + H)
+
: 

1735.9042; obsd: 1735.9079. The purity of the heptapeptide was checked by HPLC on an Econosil silica 

column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min
-1

. The isocratic method used was 

50% EtOAc in Hexanes. The heptapeptide was detected by UV absorption at 218 and 254 nm, RT 14 

min. 
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 cyclo[-D-Thr-D-Ser-Pro-Ala-Trp(SO2Me)-dihyLeu-Val] (43). Tris-(2-aminoethyl)amine (48 mg, 

49 μL, 0.329 mmol, 16.2 equiv.) was added to a solution of 180 (30 mg, 0.020 mmol, 1.0 equiv.) in 

CH2Cl2 (2 mL) at rt under N2. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and 

washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with 

EtOAc (4 × 15 mL). The organic extracts were combined, washed with brine (10 mL), filtered through 

MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 4:1 

EtOAc/Hex, then 9:1 CH2Cl2/CH3OH to give the amine (25 mg, 100 %) as a colorless foam. 

This amine (25 mg, 0.020 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H2O (0.5 

mL) and treated with tetrabutylammonium hydroxide (72 μL, 40 % wt in H2O, 71 mg, 0.111 mmol, 5.5 

equiv.) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl3 (40 mL) and washed 

with a phosphate buffer solution (pH 5.5, 15 mL). The aqueous layer was extracted further with EtOAc 

(4 × 15 mL). The organic extracts were combined, concentrated and used in the cyclization reaction 

without further purification (recovered 35 mg, theoretical yield 24 mg).     

Diisopropylethylamine (5 μL, 3.8 mg, 0.029 mmol, 1.5 equiv.) was added to a solution of the crude 

linear amino acid heptapeptide (max., 0.020 mmol, 1.0 equiv.) in CH2Cl2 (8 mL). This solution was 

added over 2 h via a syringe pump to a stirring mixture of HATU (37 mg, 0.098 mmol, 5.0 equiv.) and 

DIEA (5 μL, 3.8 mg, 0.029 mmol, 1.5 equiv.) in CH2Cl2 (12 mL) at 0 ºC under N2. The mixture was 

stirred for 1 h at 0 ºC, warmed to rt, and stirred for 2 d. This mixture was concentrated. The residue was 

diluted with EtOAc (30 mL), washed successively with 10 % citric acid, sat‟d NaHCO3 and brine (15 

mL each). The aqueous layers were extracted further with EtOAc (3 × 15 mL). The organic extracts 

were combined, filtered through MgSO4 and concentrated. The residue was purified by flash 

chromatography eluting with 15:1 CHCl3/CH3OH to give the cyclopeptide (15 mg, 65 %) as a colorless 

solid. 
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The TBS protected cyclopeptide (15 mg, 0.012 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and 

cooled to 0 ºC. This solution was treated with NH4F (4.6 mg, 0.124 mmol, 10 equiv.) and TBAF (62 μL, 

1M solution in THF, 0.062 mmol, 5.0 equiv.). The mixture was stirred at 0 ºC for 16 h, diluted with 

MeOH (3 mL), followed by the addition of CaCO3 (66 mg) and DOWEX 50WX8-400 H
+
 resin (200 

mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of 

Celite
TM

, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue 

purified using RP-HPLC, eluting with MeCN and H2O. The gradient method used was as follows (% 

acetonitrile in H2O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. 

The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were 

combined and lyophilized to give 43 as a colorless solid (4 mg, 40 %). MALDI-TOF (+TOF) calcd for 

C38H56N8O13S(M + Na)
+
: 887.359; obsd: 887.397. 

 

 cyclo[-D-Thr-D-Ser-3-Hyp-Ala-Trp(SO2Me)-dihyLeu-Val] (44). Tris-(2-aminoethyl)amine (28 

mg, 29 μL, 0.192 mmol, 16.2 equiv.) was added to a solution of 181 (19 mg, 0.012 mmol, 1.0 equiv.) in 

CH2Cl2 (2 mL) at rt under N2. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and 

washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with 

EtOAc (4 × 15 mL). The organic extracts were combined, washed with brine (10 mL), filtered through 

MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 4:1 

EtOAc/Hex, then 9:1 CH2Cl2/CH3OH to give the amine (15 mg, 94%) as a colorless foam. 

The amine (14 mg, 0.010 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H2O (0.5 

mL) and treated with tetrabutylammonium hydroxide (36 μL, 40 % wt in H2O, 36 mg, 0.056 mmol, 5.5 

equiv.) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl3 (30 mL) and washed 

with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc 
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(4 × 10 mL). The organic extracts were combined, concentrated and used in the cyclization reaction 

without further purification (recovered 22 mg, theoretical yield 13 mg).     

A solution of the linear amino acid heptapeptide (13 mg, 0.010 mmol, 1.0 equiv.) in DMF (3 mL) and 

transferred into a syringe. A solution of HATU (14 mg, 0.038 mmol, 4.0 equiv.) in DMF (3 mL) was 

transferred into a second syringe. These two solutions were added over 2 h via a dual syringe pump to a 

stirring mixture of HATU (4 mg, 0.010 mmol, 1.0 equiv.) and DIEA (5 μL, 3.7 mg, 0.029 mmol, 3.0 

equiv.) in DMF (3 mL) at 0 ºC under N2. The mixture was stirred for 1 h at 0 ºC, warmed to rt, and 

stirred for 3 d. This mixture was diluted with EtOAc (25 mL), washed with 10 % citric acid (12 mL).  

The aqueous layer was extracted further with EtOAc (3 × 10 mL). The organic extracts were combined, 

washed with sat‟d NaHCO3 and brine (12 mL each), filtered through MgSO4 and concentrated. The 

residue was semipurified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 

CH2Cl2/CH3OH to give the cycloheptapeptide (12 mg, contaminated with tetrabutylammonium salts) as 

a colorless solid.  

The TBS protected cyclopeptide (12 mg, 0.009 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and 

cooled to 0 ºC. This solution was treated with NH4F (4 mg, 0.125 mmol, 14 equiv.) and TBAF (63 μL, 

1M solution in THF, 0.063 mmol, 7.0 equiv.). The mixture was stirred at 0 ºC for 16 h, diluted with 

MeOH (3 mL), followed by the addition of CaCO3 (66 mg) and DOWEX 50WX8-400 H
+
 resin (200 

mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of 

Celite
TM

, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue 

purified using RP-HPLC, eluting with MeCN and H2O. The gradient method used was as follows (% 

acetonitrile in H2O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. 

The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were 
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combined and lyophilized to give 44 as a colorless solid (1.6 mg, 20 %). MALDI-TOF (+TOF) calcd for 

C38H56N8O14S(M + Na)
+
: 903.353; obsd: 903.389. 

 

 cyclo[-D-Thr-D-Ser-4-hyp-Ala-Trp(SO2Me)-dihyLeu-Val] (45). Tris-(2-aminoethyl)amine (22 

mg, 23 μL, 0.151 mmol, 16.2 equiv.) was added to a solution of 182 (15 mg, 0.009 mmol, 1.0 equiv.) in 

CH2Cl2 (2 mL) at rt under N2. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and 

washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with 

EtOAc (4 × 10 mL). The organic extracts were combined, washed with brine (10 mL), filtered through 

MgSO4 and concentrated. The residue was purified by flash chromatography eluting with 4:1 

EtOAc/Hex, then 9:1 CH2Cl2/CH3OH to give the amine (12 mg, 100 %) as a colorless foam. 

The amine (12 mg, 0.009 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and H2O (0.5 

mL) and treated with tetrabutylammonium hydroxide (31 μL, 40 % wt in H2O, 31 mg, 0.048 mmol, 5.5 

equiv.) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl3 (40 mL) and washed 

with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc 

(3 × 10 mL). The organic extracts were combined, concentrated and used in the cyclization reaction 

without further purification (recovered 20 mg, theoretical yield 11 mg).     

Diisopropylethylamine (2.2 μL, 1.5 mg, 0.024 mmol, 1.5 equiv.) was added to a solution of the crude 

linear amino acid heptapeptide (11 mg, 0.008 mmol, 1.0 equiv.) in CH2Cl2 (4 mL). This solution was 

added over 2 h via a syringe pump to a stirring mixture of HATU (15 mg, 0.041 mmol, 5.0 equiv.) and 

DIEA (2.2 μL, 1.5 mg, 0.024 mmol, 1.5 equiv.) in CH2Cl2 (4 mL) at 0 ºC under N2. The mixture was 

stirred for 1 h at 0 ºC, warmed to rt, and stirred for 2 d.  This mixture was concentrated, diluted with 

EtOAc (20 mL) and washed with 10 % citric acid. The aqueous layer was extracted further with EtOAc 

(3 × 10 mL). The organic extracts were combined, washed with sat‟d NaHCO3 and brine (10 mL each), 
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filtered through MgSO4 and concentrated. The residue was purified by flash chromatography eluting 

with 15:1 CHCl3/CH3OH to give the cyclopeptide (15 mg, the theoretical yield is 10 mg, contaminated 

with tetrabutylammonium salts) as a colorless solid. 

The TBS protected cyclopeptide (10 mg, 0.007 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and 

cooled to 0 ºC. This solution was treated with NH4F (3.9 mg, 0.105 mmol, 14 equiv.) and TBAF (52 μL, 

1M solution in THF, 0.053 mmol, 7.0 equiv.). The mixture was stirred at 0 ºC for 16 h, diluted with 

MeOH (3 mL), followed by the addition of CaCO3 (66 mg) and DOWEX 50WX8-400 H
+
 resin(200 

mg). Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of 

Celite
TM

, rinsing thoroughly with methanol (30 mL). The filtrate was concentrated and the residue 

purified using RP-HPLC, eluting with MeCN and H2O. The gradient method used was as follows (% 

acetonitrile in H2O): 10-25% over 20 min; 25-35% over 10 min; 35% for 2 min; 35-10% over 3 min. 

The cyclopeptide was detected by UV absorption at 218 and 254 nm. The relevant fractions were 

combined and lyophilized to give 44 as a colorless solid (2.2 mg, 31%). MALDI-TOF (+TOF) calcd for 

C38H56N8O14S(M + Na)
+
: 903.353; obsd: 903.400. 

 

 

 cyclo[-D-Thr-D-Ser-DHP-Ala-Trp(SO2Me)-dihyLeu-Val] (3). Tris-(2-aminoethyl)amine (21 μL, 

20 mg, 0.140 mmol, 16.2 equiv.) was added to a solution of 179 (15 mg, 0.009 mmol, 1.0 equiv.) in 

CH2Cl2 (2 mL) at rt under N2. The mixture was stirred for 30 min, diluted with EtOAc (15 mL) and 

washed with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with 

EtOAc (4 × 10 mL). The mixture was stirred for 30 min, diluted with EtOAc (15 mL), washed with 

brine and a phosphate buffer solution (pH 5.5) (10 mL each). The aqueous layers were extracted further 

with EtOAc (4 × 10 mL). The organic extracts were combined, filtered through MgSO4 and 
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concentrated. The residue was purified by flash chromatography eluting with 2:1 EtOAc/Hex, then 9:1 

CH2Cl2/CH3OH to give the amine (11 mg, 84 %) as a colorless foam. 

The above amine (11 mg, 0.0073 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (1 mL) and 

H2O (0.5 mL) and treated with tetrabutylammonium hydroxide (25 μL, 0.040 mmol, 5.5 equiv. 40 % wt 

in H2O) at 0 ºC. The reaction mixture was stirred for 14 h, then diluted with CHCl3 (25 mL) and washed 

with a phosphate buffer solution (pH 5.5, 10 mL). The aqueous layer was extracted further with EtOAc 

(4 × 10 mL). The organic extracts were combined, concentrated and used in the cyclization reaction 

without further purification (theoretical yield is 10 mg, recovered 20 mg contaminated with 

tetrabutylammonium salts).     

A solution of the linear amino acid heptapeptide (10 mg, 0.0067 mmol, 1.0 equiv.) in DMF (2.3 mL) and 

transferred into a syringe. A solution of HATU (10 mg, 0.0263 mmol, 3.9 equiv.) in DMF (2.3 mL) was 

transferred into a second syringe. These two solutions were added over 2 h via a dual syringe pump to a 

stirring mixture of HATU (3 mg, 0.0079 mmol, 1.1 equiv.) and DIEA (3.3 μL, 2.6 mg,  0.0202 mmol, 

3.0 equiv.) in DMF (2.3 mL) at 0 ºC under N2. The mixture was stirred and warmed to rt over 3 d and 

diluted with EtOAc (30 mL), washed successively with 10 % citric acid, satd NaHCO3 and brine (15 mL 

each). The aqueous layers were extracted further with EtOAc (3 × 15 mL). The organic extracts were 

combined, filtered through MgSO4 and concentrated. The residue was semipurified by flash 

chromatography eluting with 2:1 EtOAc/Hex, then 9:1 CH2Cl2/CH3OH to give the cycloheptapeptide (5 

mg, 55 %, contaminated with tetrabutylammonium salts) as a colorless solid. Rf 0.33 (9:1 

CH2Cl2/CH3OH). 

The TBS protected cyclopeptide (4 mg, 0.0027 mmol, 1.0 equiv.) was dissolved in THF (1 mL) and 

cooled to 0 ºC. This solution was treated with NH4F (3.4 mg, 0.1020 mmol, 38 equiv.) and TBAF (51 

μL, 0.051 mmol, 19 equiv. 1M solution in THF). The mixture was stirred at 0 ºC for 16 h, diluted with 
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THF (3 mL), followed by the addition of CaCO3 (138 mg) and H
+
 DOWEX 50WX8-400 (414 mg). 

Stirring at this temperature was continued for 1 h and the mixture filtered through a pad of Celite
TM

, 

rinsing thoroughly with methanol (8 mL). The filtrate was concentrated and the residue purified using 

RP-HPLC, eluting with MeCN and H2O Purification of the final cyclopeptides utilized RP-HPLC on an 

Econosil C-18 column (10 mm diameter, 250 mm long) and a flow rate of 3 mL min
-1

. The gradient 

method used was as follows (% acetonitrile in H2O): 10-25% over 20 min; 25-35% over 10 min; 35% 

for 2 min; 35-10% over 3 min. The cyclopeptide was detected by UV absorption at 218 and 254 nm. The 

relevant fractions were combined and lyophilized to give trace amounts of 3 as a colorless solid. 

MALDI-TOF (+TOF) calcd for C38H56N8O15S(M + Na)
+
: 919.348; obsd: 919.399. 

 

4.3.2 Spectra and HPLC Chromatograms  
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Pro heptapeptide (180)- 
1
H NMR in CDCl3 at 400 MHz 
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Proheptapeptide (180)- HPLC chromatogram at 254 nm, 75% EtOAc in Hexanes, 10 mm Econosil 

silica column, 3 mL min
-1

 (99 % pure). 
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3-Hyp heptapeptide (181)- 
1
H NMR in CDCl3 at 400 MHz 
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3-Hyp heptapeptide (181)- HPLC chromatogram at 254 nm, 66% EtOAc in Hexanes, 10 mm 

Econosil silica column, 3 mL min
-1

 (94 % pure). 
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hyp-heptapeptide (182)- 
1
H NMR in CDCl3 at 400 MHz 
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hyp heptapeptide (182)- HPLC chromatogram at 254 nm, 66% EtOAc in Hexanes, 10 mm Econosil 

silica column, 3 mL min
-1

 (93 % pure). 
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DHP heptapeptide (179)- 
1
H NMR in CDCl3 at 400 MHz 
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DHP heptapeptide (179)– HPLC chromatogram at 254 nm, 50 % EtOAc in Hexanes, 10 mm 

Econosil silica column, 3 mL min
-1

 (90 % pure). 
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Monitoring the Hydrolysis of Ethyl Ester using Tetrabutylammonium hydroxide 

 

HPLC chromatogram of starting material at 218 nm, MeCN/H2O, 4.6 mm Econosil C-18 column, 0.6 

mL min
-1

 

 
HPLC chromatogram of the reaction mixture after 6 h at 218 nm, MeCN/H2O, 4.6 mm Econosil C-18 

column, 0.6 mL min
-1
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HPLC chromatogram of the reaction mixture after 9 h at 218 nm, MeCN/H2O, 4.6 mm Econosil C-18 

column, 0.6 mL min
-1

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



213 

 

Proline analog (43) - 
1
H NMR in 90% H2O/10% D2O at 700 MHz (pH 3.0) 
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HPLC chromatogram of proline analog (43) at 254 nm, (% acetonitrile in H2O): 10-25% over 20 min; 

25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



215 

 

3-Hyp analog (44) - 
1
H NMR in 90% H2O/10% D2O at 700 MHz (pH 3.0) 
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HPLC chromatogram of 3-Hyp analog (44) at 254 nm, (% acetonitrile in H2O): 10-25% over 20 min; 

25-35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min
-1
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4-hyp analog (45) - 
1
H NMR in 90% H2O/10% D2O at 700 MHz (pH 3.0) 

 

 



218 

 

HPLC chromatogram of 4-hyp analog (45) at 254 nm, (% acetonitrile in H2O): 10-25% over 20 min; 25-

35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL min
-1 

 

 

 

 

HPLC chromatogram of alloviroidin (3) at 254 nm, (% acetonitrile in H2O): 10-25% over 20 min; 25-

35% over 10 min; 35% for 2 min; 35-10% over 3 min, 4.6 mm Econosil C-18 column, 1 mL  

min
-1 
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CHAPTER 5:      CONFORMATION 

 

5.1  NMR, CD AND X-RAY STUDIES. 

Circular dichroism
1
 and NMR studies, as well as actin binding assays, have been used to 

study the conformation of phallotoxin and virotoxin analogs.
179, 180

 The Trp
6
 indole in phalloidin and 

virotoxins constitutes the chromophoric system responsible for the Cotton effects in the 250-320 nm 

range. Faulstich and coworkers
1
 observed that the circular dichroism spectrum of phalloidin had two 

positive maxima at 217 and 235 nm. In contrast, the CD spectrum of viroisin has negative minima at 217 

and 235 nm, an indication that the conformation of the indolyl thioether and sulfonyl angles is opposite 

(Fig. 5.1). 

 

Figure 5.1. The CD spectra of viroidin (A), viroisin (B), and phalloidin.
1
 Reprinted with permission 

from the American Chemical Society.  
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It has also been revealed that the conformation of monocyclic viroisin (Fig. 6) is similar to 

that of bicyclic phalloidin.
30, 179 

Through NMR studies, Kobayashi et al. demonstrated that both 

phallotoxins and virotoxins exist as a single conformer that is important for biological activity. 

Dethiophalloidin (Fig. 5.2) has several interconverting conformers, lacking almost all biological 

activity.
179 

 

Figure 5.2. Viroisin (7) 

 

Dethiophalloidin (221) 

 

In general, geometric information can be derived from 
1
H NMR spectra on the basis of the 

relationship between dihedral angles and vicinal coupling constants.
181

 Specifically, the coupling 

constant 
3
JHNα between NH and Hα is dependent on the torsion angle Φ and therefore gives information 

about the backbone conformation, while the Hα and Hβ coupling constants describe the conformation of 

the side chain.
182-186

 Structures proposed for phalloidin and virotoxins were based on NMR data 

including 
3
JHNα coupling constants, the temperature dependence of the NH proton signals, and rotating 

Overhauser effects (ROEs). Proton resonances were assigned on the basis of TOCSY and DQF-COSY 

spectra, and then HMQC and HMBC experiments were used to assign the aliphatic and aromatic carbon 

resonances. Interproton distances and the backbone dihedral angles were derived from the ROESY and 

coupling constant data respectively. Studies on the temperature dependence of amide proton chemical 

shifts provide information about hydrogen bonding. In general, temperature dependence of the NH 

resonance from a residue of a peptide is closely related to the rate of exchange (NH proton) with solvent 
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molecules. Specifically, a temperature gradient exceeding 4.0 ppb/K indicates an external NH 

orientation wherein the NH is exposed to solvent, and when the value is in the range of < 2 ppb/K, then 

either an intramolecular hydrogen bond is present or the NH may be buried within the peptide molecule 

(for peptides greater than 1 kDa).
187 

 

5.1.2  Bhaskaran and Yu.
180 

In 1994, Bhaskaran and Yu analyzed the conformation of viroisin (7) (Fig. 5.2) using two 

dimensional NMR and restrained molecular dynamics simulations. The values of the temperature 

gradients computed for the amide proton signals of viroisin were: 1.80 (Leu
7
), 2.21 (Val

1
), 2.27 (Ala

5
), 

4.14 (D-Ser
3
), 4.80 (D-Thr

2
), and 6.56 (Trp

6
) ppb/K. This indicated that the amide protons of Val

1
, Ala

5
 

and Leu
7
 residues participated in intramolecular hydrogen bonding. According to structures generated 

through computational studies, a hydrogen bond exists between either the Leu
7
 or Val

1
 amide proton and 

the C=O group of Pro
4
. However, the dihedral angle values of the turn-forming residues did not match 

those observed for regular β turns, even though the hydrogen bond occurs between the C=O and NH of 

residues at ith and (i+3)th positions. These observations left no doubt that the closed loop of the 

structure obeys no typical structural pattern.  

Probable conformations of viroisin in solution were derived from distance geometry and 

restrained molecular dynamics based on a set of distance constraints obtained from experimental data. 

The root-mean-square deviation values (0.065 nm for backbone atoms and 0.135 nm for all atoms) 

confirmed that viroisin has a highly ordered conformation in solution. Six structures generated from 

distance geometry and root mean square deviation methods revealed that the backbone of the molecule 

is folded into a dumbbell forming a convex surface at the central portion. This orients the Ala
5
 methyl 

group and the hydroxyl groups of the Pro
4
 residue to the convex side of the molecule, causing the Trp

6
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residue to protrude. The side chains of the Val
1
 and Leu

7
 residues orient in the same direction, forming a 

hydrophobic domain for actin binding (Fig. 5.3). The hydroxyl group of Ser
3
 was oriented in a way that 

allowed a circular arrangement of other functional groups for binding to actin. These computational 

results are in agreement with the observed cross peaks between Ala
5
 methyl and Leu

7
 Hβ protons in the 

NOESY spectrum.  

 

Figure 5.3. Stereo views of viroisin solution conformations showing side chain orientations.
180

 

Reprinted with permission from John Wiley and Sons. 

 

5.1.3  Kobayashi and coworkers
179

 

In 1995, Kobayashi and coworkers studied the conformation of phalloidin and viroisin in 

solution using NMR and molecular modeling. The acyclic phalloidin derivatives, dethiophalloidin and 

secophalloidin (Fig. 5.4) were also studied, for comparison. In the ROESY spectra of both 

secophalloidin and dethiophalloidin, several sets of proton resonances exhibited positive cross peaks that 

were not due to scalar magnetization transfer, suggesting that major and minor conformers were 
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interconverting slowly on the NMR time scale. The spin systems of the minor conformers were assigned 

as 10 % for secophalloidin and 40 % for dethiophalloidin when these experiments were performed at 30 

ºC. In contrast, both phalloidin and viroisin existed as single conformers in solution.  

 

 

Figure 5.4. ROE correlations determined from 2D ROESY spectra.
179

 

The β-methyl resonances of Ala
5
/Ala

1
 in phalloidin and Ala

5
/Val

1
 in viroisin were 

temperature dependent, an observation not made for dethiophalloidin and secophalloidin. Kobayashi and 

co-workers attributed this temperature dependence of the toxic peptides‟ proton resonances of the 

methyl groups to the fluctuation of the Trp
6
 indole group at a rate faster than the NMR time scale, rather 

than by an overall change in their conformation.
179

 Inter-proton distances confirmed that the motion of 

the Trp
6
 indole was rather negligible between 25 - 30 ºC. It was therefore hypothesized that the shielding 

effect of the ring current would be sensitive to the distance between the Trp
6
 indole and Ala

5
 β-methyl 
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protons. The major difference between the proton resonances of the toxic and non toxic peptides was 

observed in the aliphatic region, i.e, the Ala
5
 β-methyl proton resonances from phalloidin and viroisin 

exhibited a distinct up-field shift influenced by the ring current effect of the Trp-indole group. In 

contrast, the aliphatic proton resonances of secophalloidin and dethiophalloidin were relatively down-

field. Secophalloidin displayed a 0.22 ppm up-field shift in the γ-methyl resonance of Thr
2
, implying 

that the indole group has a different orientation to that of phalloidin. 

The temperature-dependence of chemical shifts for the NH resonances of the Cys
3
 (-1.77 

ppb/ºC) and Trp
6
 (-0.37 ppb/ºC) residues in phalloidin; Trp

6
 (-2.20 ppb/ºC) in viroisin and Ala

5 
(-1.22 

ppb/ºC) in the major conformer of dethiophalloidin and Trp
6 

(-1.40 ppb/ºC) in its minor conformer were 

not affected from 25 ºC to 60 ºC since they participate in intramolecular hydrogen bonding. The 

deuterium exchange rates of NH were also used to generate information related to hydrogen bonding. 

From the deuterium exchange kinetics experiment, the NH resonances of Cys
3
 and Trp

6
 in phalloidin 

were the only ones that were found to participate in hydrogen bonding. These findings indicated that 

phalloidin had the most rigid conformation, stabilized by a hydrogen bond involving Trp
6
 NH. Based on 

these results, viroisin‟s conformation was therefore believed to be slightly flexible, while the non-toxic 

peptides exhibited highly flexible conformations. Also, differences in chemical shifts of phalloidin and 

those of the major and minor conformers of dethiophalloidin were greater than 0.5 ppm for the α proton 

resonances of residues 3 and 6 and for the NH resonances of residues 2 and 6, implying that lack of the 

thioether bridge induces a large conformational change in the dethiophalloidin molecule. However, the 

difference in the chemical shifts of the major and minor conformers of dethiophalloidin was found to be 

small for the α proton resonances but relatively large for the NH resonances, supporting the argument 

that the two conformers were interconverting among different hydrogen bonding patterns. There was 

also a cross peak in the ROESY spectrum between Cys
3
/Ser

3
 Hα and both Pro

4
 Hδ, for both phalloidin 
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and viroisin, supporting the trans conformation of the peptide bonds between Cys
3
/Ser

3
 and Pro

4
 

residues. The distinct cross peak between Ser
3
 Hα and Pro

4
 Hα in the ROESY spectrum of the minor 

conformer of dethiophalloidin confirmed that the Ser
3
/Pro

4
 peptide bond had a cis conformation.  

 

 

 

Figure 5.5. The trans and cis conformations of a D-serine-prolyl amide bond. 

The dihedral angles of the lowest energy conformers for phalloidin and viroisin, as estimated using the 

protein health tool equipped in the QUANTA program were in agreement with the parameters 

determined by NMR. Phalloidin‟s final structure was found to possess a type–II-β-turn-like structure 

formed by the residues Cys
3
-Pro

4
-Ala

5
-Trp

6
, stabilized by a (i, i+3) hydrogen bond between the Cys

3
 

C=O and Trp
6
 NH.  This was further supported by a ROE cross peak between Pro

4 
CαH and Ala

5
 NH. 

Viroisin, on the other hand, adopts a conformation containing a distorted type–II-β-turn in the D-Ser
3
-

Pro
4
-Ala

5
-Trp

6
 region, with a weak hydrogen bond between the D-Ser

3
 C=O and the Trp

6
 NH (Fig. 5.6). 

In general, β-turns,
188

 also known as β-twist,
189

 have a hydrogen bond between the main chain C=O of 

the first residue i and NH of the fourth amino acid (i+3). The difference between β-turns of type I and II 

is based on the backbone conformations of the residues at (i+1) and (i+2), represented by dihedral angles 

(Φ i+1, ψ i+1 and Φ i+2, ψ i+2) respectively. The occurrence of L-proline at position i+2 leads to special β-

turns due to higher preference of cis peptide bonds formed between proline and other residues.
190
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             a β-turn turn 

Figure 5.6. β-turn regions in viroisin and phalloidin.  

 

 Molecular modeling studies confirmed further that the Trp
6
 indole group in phalloidin‟s lowest-energy 

conformer is located above the β-methyl group of Ala
5
, being tightly fixed due to the rigidity of the 

bicyclic molecule. It was deduced that, since viroisin lacks a thioether bridge, the bulky methylsulfonyl 

group attached to the Trp
6
 indole residue is held into a hollow formed by the Val

1
-D-Thr

2
-D-Ser

3
 

segment, where the D- configuration of the Ser residue plays a major role in preventing interaction with 

its side chain. 

  

5.1.4  Zanotti and coworkers
30

 

In 1999, Zanotti and coworkers demonstrated that the D-configuration of Ser played an 

important role in maintaining the phalloidin-like conformation of virotoxins. A viroidin analog with a D-

serine in position 3, along with three other analogs, in which the D-serine residue was replaced by either 

a D-alanine, L-serine or L-alanine (Fig. 5.7), were synthesized and compared by NMR as well as in actin 

affinity assay. Other modifications to the natural product were the substitution of the dihydroxyproline 

and dihydroxyleucine residues with cis-4-hydroxy-L-proline (hyp
4
) and Leu

7
 respectively.   
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Analog       R1      R2      R3       R4 

30 CH3SO2  CH3 (D-)    CH3 CH(CH3)2 

31 CH3SO2  CH2OH (L-)    CH3 CH(CH3)2 

32 CH3SO2  CH3 (L-)    CH3 CH(CH3)2 

Figure 5.7. Viroisin analogs.
30

 

The NMR spectra of the analogs with L-configured amino acids at position-3 gave rise to 2-3 sets of 

signals, representing interconverting conformers. The analogs containing L-serine and L-alanine 

consisted of conformers in a ratio of 10:1 and 6:4:3, respectively. These conformers exhibited significant 

chemical shift differences of the backbone proton signals as compared to the D-serine containing analog. 

Those cyclic peptides containing D-configured amino acids at position-3 gave rise to a single set of 

signals.  

Zanotti and coworkers demonstrated that changing the configuration of residue 3 from D to L caused a 

change in the backbone conformation of the molecule, resulting in low biological activity. It was 

speculated that the slow conformational transitions could be accounted for by the cis/trans-

interconversions at the prolyl amide bond. This hypothesis was not proven since the ROE cross peaks in 

the region of CαH-CαH for the biologically inactive analogs could not be assigned due to overlapping 

and weak intensities of the signals.  

The affinity for actin was based on the capacity of the analogs to displace demethylphalloidin 

from its binding site on filamentous actin. Omission of the dihydroxyleucine residue and the extra 

hydroxyl group on the dihydroxyproline residue resulted in the loss of activity by a factor five.
30

 A 

further reduction in the affinity for actin, by a factor of three, was observed for analogs lacking a β-
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hydroxyl group in residue 3. Changing the configuration of D-serine to L-serine or substituting L-alanine 

for D-alanine sharply reduced the affinity for actin by a factor of 40 or >200 respectively.   

 

5.1.5  Zanotti and coworkers
32

   

In 2001, Zanotti and coworkers investigated the solid state and solution conformation of a 

synthetic phallotoxin analog using X-ray diffraction, two-dimensional NMR and molecular dynamics 

calculations. The circular dichroism spectrum of the analog resembled that of phalloidin, with positive 

Cotton effects around 240 and 300 nm. The molecular model derived from the solid-state analysis 

indicated that all the peptide bonds were in the trans-conformation, with dihedral angles ranging from 

168-180º. The macrocyclic heptapeptide was described as “bent” at the bridging points with the planes 

of the two rings forming dihedral angles of about 90.0(5)º. The indole ring was found to lie 

approximately in the plane of ring 1, containing the cis-4-hydroxyproline (hyp
4
)-Ala

5
 residues, resulting 

into an overall distorted “T” shape of the molecule. 

 

Figure 5.8. Stereodrawing of the molecular model of (Ala
7
)-phalloidin. Reprinted with permission from 

John Wiley and Sons. 

 

The backbone conformation in the solid state was stabilized by a 4→1 hydrogen bond involving the Trp
6
 

NH and the Cys
3
 CO, consistent with a type I β-turn, a 5→1 hydrogen bond between Ala

7
 NH and Cys

3
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CO, representing an α-turn of type Ia, a 3→1 hydrogen bond between Ala
1
 NH and Trp

6
 CO, consistent 

with an equatorial γ-turn, a 3→1 hydrogen bond between D-Thr
3
 NH and Ala

7
 CO, described by an 

axial γ-turn, and an intramolecular hydrogen bond involving the Ala
5
 NH and hyp

4
-O

γ
 residues (Figure 

5.10). The α-turn and the two consecutive γ-turns observed in the solid-state were not present in solution 

due to high flexibility of ring 2. Relatively low temperature coefficient values for Cys
3 

NH and Trp
6
 NH 

residues further supported the involvement of these protons in hydrogen bonding. The χ
1,1 

and χ
1,2

 values 

(60º and -60º) of the D-Thr
2
 side chain were in agreement with the g

-
 and g

+
 conformations respectively. 

Torsion angles as obtained from X-ray analysis revealed that the hyp
4
 residue adopts an endo-type 

conformation, characterized by positive values for χ
1 

and χ
3 

and negative values for χ
2 

and χ
4
. 

 

Figure 5.9. Conformations of hyp
4
 residue. 

The observed χ
1
,  χ

2,1 
and χ

2,2
 values of Trp

6
 indole were slightly different from those commonly found 

in proteins and small molecules, a deviation that was accounted for by the bridging effect, forcing the 

Cys
3
 side chain into uncommon conformational χ

1
 angle of 28.6º. 

The backbone dihedral angles from the molecular dynamics calculations were in agreement 

with the experimental Φ values of the Bystrovs‟ Karplus-type equation.
191

 Molecular dynamic studies in 

vacuo and water environments revealed a type I β-turn formed by Cys
3
-hyp

4
-Ala

5
-Trp

6 
and stabilized by 

a hydrogen bond between the Cys
3
 C=O and Trp

6
 NH residues. This region of the molecule was found 

to be very rigid during the molecular dynamics simulation. In contrast, the remaining part of the 

molecule (Ala
7
 to D-Thr

2
) was more flexible. The orientation of the Trp

6
 indole ring in the thioether 
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bridge was found to be pointing towards the hyp
4
-Ala

5
 segment, in both solid state and solution 

structures. 

 

Figure 5.10. Intramolecular hydrogen bonds (dotted lines) observed by X-ray analysis.
32

 

 

5.1.6  Falcigno and Coworkers
15

 

Falcigno and coworkers performed comparative conformational studies on synthetic 

derivatives of phalloidin, (Figure 5.11) in solution, using circular dichroism and restrained molecular 

dynamics based on NMR spectroscopy.
 

 

226a and 226b are atropisomers 

    Analog       Residue 7     Residue 2     Residue 3 

222       Ser (Bol) D-Abu         L-Cys 

223           Ala D-Abu         L-Cys 

224           Abu D-Abu         L-Cys 

225           Leu D-Abu         L-Cys 

33           Ala          D-Thr         L-Cys 

226a           Ala          L-Thr         L-Cys 

226b           Ala          L-Thr         L-Cys 

227           Leu          D-Thr         L-Cys 

228           Ala          D-Thr         D-Cys 

229           Ser D-Abu         L-Cys 

230 Ser (caprylyl- 

ester) 

D-Abu         L-Cys 

Figure 5.11.  Phalloidin analogs analyzed by Falcigno and co-workers.
15

 

The synthetic analogs were designed to explore the importance of the chirality of D-Thr
2 

and L-Cys
3
 

residues, and the role of dihyLeu
7
 and Thr

2
 side chains. Affinity for actin was measured on the basis of 
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the ability of the analog to displace [
3
H]demethylphalloidin from its bound complex with F-actin. 

Analogs that had a significant difference in their affinities for actin with respect to phalloidin were 

selected for further conformational analysis in solution. From the circular dichroism spectra, a positive 

Cotton effect indicates that the value of the indolyl thioether angle is positive (P helical), while a 

negative Cotton effect describes M helical.  

 

Figure 5.12. P- and M- helical configurations of a 2-indolylthioether
6
 

Comparison of the circular dichroism sprectra of the analogs revealed that both 228 and 226b had 

positive Cotton effects, with 228 having two more maxima at around 292 and 300 nm. In contrast, 

analog 226a was the mirror image of phalloidin with negative minima at around 250, 292 and 300 nm. 

Temperature dependence of the amide proton signals was obtained from one dimensional spectra 

recorded between 298 and 310 K. Small temperature coefficient values were recorded for Ala
1
 NH and 

D-Thr
2
 NH of analog 228, Ala

5
 NH of analog 226a, Trp

6
 NH, Ala

1
 NH, and Ala

5
 NH of analog 226b, 

indicating the participation of these amide protons in intramolecular hydrogen bonding.  

Energy minimization and restrained molecular dynamics simulations were performed based 

on inter-proton distances computed from cross-relaxation rate values evaluated from the ROESY 

spectra. Data from restrained molecular dynamics simulation indicates that bicyclic analogs show 

atropisomerism according to whether the thioether bridge is up (U) or down (D) when the peptide chain 

is followed in a clockwise manner. The calculated conformational parameters of analogs 228 and 226b 

were in good agreement with the NMR data, with both thioether bridges having a U-type structure. On 

the other hand, only a D-type model for analog 226a matched the experimental data. The dihedral angles 
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of analog 228 were consistent with a backbone structure containing a type I β-turn formed by residues 

Trp
6
-Ala

7
-Ala

1
-D-Thr

2
 and stabilized by a hydrogen bond between Trp

6
 CO and D-Thr

2
 NH. Also, this 

model had all the peptide bonds other than the Cys
3
-hyp

4
 bond in a trans conformation. The Ala

5
 methyl 

group of analog 228 was located in the anisotropy region of Trp
6
, an observation supported by the high 

field shift of the Ala
5
 methyl resonance.  

The dihedral angles of analog 226a were consistent with a type VIa β-turn in the Thr
2
-Cys

3
-

hyp
4
-Ala

5
 region, stabilized by a hydrogen bond between Thr

2
 CO and Ala

5
 NH residues. This model 

had all peptide bonds other than Cys
3
-hyp

4
 in a trans conformation. The Trp

6
 indole was oriented 

towards the hyp
4
 and Ala

5
 residues. Analog 226b, on the other hand, had all peptide bonds in a trans 

conformation, with a type I β-turn formed by the residues Cys
3
-hyp

4
-Ala

5
-Trp

6
 and stabilized by a 

hydrogen bond between Cys
3
 CO and Trp

6
 NH. Again, the Trp

6
 indole ring was oriented towards hyp

4
-

Ala
5
 residues.  

 

 

 

Figure 5.13. A stereodrawing of analog 226 illustrating a U-type structure. Intramolecular hydrogen 

bondings are shown by dotted lines.
15

 Reprinted with permission from John Wiley and Sons. 
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These studies demonstrated that neither the hydroxyl nor the carboxyl functional groups at the side chain 

of residue 2 had an impact on toxicity. The D-Thr
2
 containing analogs were found to be more 

biologically active than their D-Abu
2
 counterparts, supporting the requirement of a D-configured residue 

2 with at least two carbon atoms for actin binding. Inversion of the configuration of residue 3 led to 

significant structural backbone changes characterized by the loss of activity.  

 

5.2  CONFORMATION OF THE PROLINE CONTAINING TRIPEPTIDES 

5.2.1          Overview 

  The conformation adopted by peptides depends on the sequence of amino acid residues along 

the chain. Prolyl residues, constrained by their pyrrolidine rings, have been known to influence the 

conformation of peptides and proteins.
192

 In general, most peptide bonds prefer to be in a trans 

orientation, however, the presence of either a proline or other secondary amino acid residue increases 

the population of the cis conformer (Fig. 5.14).  

 

 

 

Figure 5.14. The cis and trans conformations of a D-serine-prolyl amide bond. 

 

The cis to trans isomerization about the prolyl peptide bond plays an important role in protein folding 

and receptor binding. In solution, the pyrrolidine ring of the proline residue can either adopt the Cγ-endo 

or Cγ-exo or both interconverting ring pucker conformations (Figure 5.15). The ring pucker preference 
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influences the peptide main chain torsion angles and thereby the cis-trans isomerization of the amide 

bond. 

 

 

Figure 5.15. Conformations of hyp
4
 residue. 

  To investigate the conformational preference of the prolyl peptide bond in our linear peptides 

and how this influences the structure and ease of cyclization of the heptapeptides and the impact this 

would have on the conformation of the Ser
3
-Pro*-Ala

5
-Trp

6
 (where Pro* represents Pro, 3-Hyp, 4-hyp 

and DHP) peptide region, we determined the trans-cis ratios of the tripeptides with either unprotected 

side chains or with alcohols protected as TBS ethers. We reasoned that the TBS protected tripeptides 

(prepared in Chapter 3) would provide an insight into the conformation of the D-Ser
3
-Pro* peptide bond 

in the cyclization precursors, while the fragments bearing free alcohols would help in the prediction of 

the conformation of the same region in alloviroidin and the analogs. We assigned the 
1
H and 

13
C NMR 

resonances for the TBS protected compounds on the basis of COSY, HSQC, HMBC, and DEPT-135 

experiments. The trans to cis ratios were determined by integration of well resolved signals in the 
1
H 

NMR spectra of each isomer, followed by averaging of the integrals for each conformation (Tables 5.1 

and 5.2. The cis and trans conformations have been assigned before based on the chemical shifts of δ-

carbons of the proline residues according to the findings of Lubell and co-workers who observed that the 

signal of the δ-carbon for the cis isomer is downfield of the trans isomer.
193

 Our attempts to assign the 

two conformers using one dimensional GOESY
194

 experiments at different temperatures were 

unsuccessful due to rapid interconversion between the conformers. 
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  From Table 5.1, it can be seen that the trans:cis ratio for the prolyl peptide bonds vary with 

the degree, regio- and stereochemistry of proline hydroxylation.  

 

Table 5.1. The cis-to-trans isomerization a cross the prolyl-serine peptide bond in CD3OD (0.01M) at 

25 ºC and 400 MHz (m = multiplet).  

 

 

Compound   trans:cis ratio 

      171          8.7:1 

      172          4.4:1 

      173          1.8:1 

      174          2.1:1 

 

 

 

 

We established the conformation of the prolyl ring puckers of the major isomers by comparing the 

observed 
3
Jαβ1 and 

3
Jαβ2 coupling constants with literature values.

195-201
 According to Cai and coworkers, 

both coupling constants for the Cγ-exo conformer range between 7-11 Hz, giving rise to an apparent 

triplet, while in a derivative with a Cγ-endo pyrrolidine, Hα appears as a dd with coupling constants in 

the 6-10 Hz and 2-3 Hz ranges.
202

 Tripeptide 171, incorporating 2,3-trans-3,4-trans-3,4-

dihydroxyproline has a stronger preference for the trans conformation and the pyrrolidine ring adopts 

the Cγ-endo conformation on the basis of 
3
Jαβ values of 7.8 and 4.4 Hz. The pyrrolidine ring in this 

conformation is stabilized by gauche interaction and hyperconjugation (Fig. 5.16). Raines and 

coworkers observed a similar trans conformation in N-acetyl-trans-4-hydroxyproline which has the Cγ-

exo pyrrolidine conformation.
195

 Also, previous work in our group demonstrated that the trans 

conformation is favored in dipeptides containing 2,3-trans-3,4-cis-3,4-dihydroxyproline residue with the 

pyrrolidine ring preferring the Cγ-exo conformation.
36
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Figure 5.16. Pyrrolidine conformation in compound 171. 

 In the case of tripeptide 172, the the equilibrium lies in favor of the trans isomer suggesting preference 

for the exo ring pucker conformation by the proline residue. However, this could not be established due 

to overlapping signals in the 
1
H NMR spectrum.  

The prolyl peptide bond in tripeptides 173 and 174 display increased cis character relative to compounds 

171 and 172. The pyrrolidine ring of compound 174 was assigned as Cγ-endo pucker on the basis of 
3
Jαβ 

values of 9.2 and 3.8 Hz. Inductive effects of the proline hydroxyl group in compounds 173 and 174 

could be responsible for the increased cis ratio relative to that of 172. The use of CD3OD as a solvent 

interacts with the tripeptide‟s polar functional groups via intermolecular hydrogen bonding and thereby 

influencing the cis-to-trans isomerization across the prolyl-serine peptide bond. 

 

Figure 5.17. Pyrrolidine conformation in compounds 173 and 174. 

Interestingly, protecting the alcohols in the tripeptides as silyl ethers led to a drastic change in the cis-to-

trans isomerization across the prolyl peptide bond for compounds 47-49. According to Table 5.2, the 

observed increased levels of the cis isomer upon introduction of the bulky silyl groups can be explained 
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in terms of steric interactions. The pyrrolidine rings adopt conformations that minimize steric 

interactions between the bulky groups. The prolyl puckers of compounds 48 and 50 were assigned as 

Cγ-endo pucker on the basis of 
3
Jαβ values of 8.3, 3.6 Hz and 8.6, 5.0 Hz respectively.  

 

 

Figure 5.18. Pyrrolidine conformation in compounds 47, 49 and 50. 

Increased levels of the cis isomer in the linear peptides facilitates cyclization and this explains the high 

chemical yield recorded during cyclization of the hyp containing heptapeptide. 

 

Table 5.2. The cis-to-trans isomerization across the prolyl peptide bond (between D-Ser and Pro*) in 

CDCl3 (0.01M) at 25 ºC and 400 MHz. (ND = not determined, only a trace amount). 

 

 

 

Compound cis:trans ratio 
 3

Jαβ values 

      (Hz) 

  Cyclization yield  

 (% over four steps) 

       47       1:1.7        m              ND 

       48       1:5.5    8.3, 3.6               26 

       49       1:8.5         m               20 

       50       1:3    8.6, 5.0               31 
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5.2.2  Computational Studies 

In order to corroborate the trans/cis isomer ratios determined from NMR studies, we 

conducted computational studies of two conformations each of four acetylated dipeptides (Tables 5.3 

and 5.4). Also, we hoped to find agreement on which of the two conformers is more stable and therefore 

the major conformer. We reasoned that these dipeptides would serve as a model for the Ser-Pro* (where 

Pro* is either DHP, Pro, 3-Hyp, or hyp) peptide bonds present in the tripeptides. We assumed that only 

the amide bond between the Ser and Pro* would exhibit conformational isomers. These dipeptides, by 

virtue of being smaller, possess less degree of freedom in comparison to the tripeptide fragments.  

The ab initio and density functional calculations were performed using the Gaussian 09 

package. Geometry optimizations for the trans and cis conformers of the dipeptides were carried out at 

the AM1, HF/3-21G and B3LYP/6-31g* levels. Frequency analyses were performed at the B3LYP/6-

31g* level to verify the nature of the stationary points obtained and to calculate the zero point 

vibrational energies that were used to calculate Gibbs free energies in the gas phase at 298 K.  

The energies of the two conformers per dipeptide are as shown in Table 5.3. According to Table 5.3, the 

predicted energies of the two conformers are in qualitative agreement with the experimental findings for 

the tripeptides (Table 5.1) with the exception of the DHP containing dipeptide, i.e., the trans conformers 

are of lower energy and therefore favored over the cis. However, the calculated trans/cis ratios are 

poorly predicted by the B3LYP/6-31g* level. The discrepancy between experimental and calculated 

trans/cis ratios could be due to the difference in hydrogen bonding pattern involving either an amide or 

ester  at the C-terminal of the Pro* residue in dipeptides and tripeptides respectively. This could also be 

due to the limitation of the method and basis set. The ratios could be improved by addition of diffuse 

and polarization functions to the basis set, i.e., B3LYP/6-31+g*. The computed ratios should also be 

investigated in CH3OH as this would incorporate the influence of hydrogen bonding. 
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Table 5.3. The energies and equilibrium constants (Ktrans/cis) of the optimized dipeptide geometries. 

 

 

 

Compound 

 

trans 

(kcal/mol) 

 

cis  

(kcal/mol) 

 

 (kcal/mol) 

 

          K (at 298K) 

231 -656297.39 -656301.50 4.11 1.04 × 10
3
 

232 -561912.94 -561910.45 2.48 6.71 × 10 

233 -609103.49 -609101.16 2.33 5.14 × 10 

234 -609105.46 -609095.68 9.77 1.51 × 10
7
 

 

 

 

  

 

 

 

 

 

 

 

 231 

DHP dipeptide trans conformer DHP dipeptide cis conformer  

 

Figure 5.19 A. Optimized geometries of dipeptide 231. 
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 232 

Pro dipeptide trans conformer Pro dipeptide cis conformer  

 

Figure 5.19 A continued. Optimized geometries of dipeptide 232. 

 

 

 

  

 

 

 

 

 

 

 

 233 

 

3Hyp dipeptide trans conformer 3Hyp dipeptide cis conformer  

 

Figure 5.19 B. Optimized geometries of dipeptide 233. 
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 234 

hyp dipeptide trans conformer hyp dipeptide cis conformer  

 

 

Figure 5.19 B continued. Optimized geometries of dipeptide 234. 

 

From Figure 5.19, the lowest energy conformations at B3LYP/6-31g* level are stabilized by 

varying degrees of hydrogen bonding. In the gas phase, the cis conformation in the DHP dipeptide is 

stabilized by three hydrogen bonds between DHP OH
β
 and Ser OH, DHP CO and DHP OH

γ
, acetyl CO 

and acetyl amide NH. The trans conformer of the DHP dipeptide is stabilized by one hydrogen bond 

involving DHP CO and Ser OH. The trans conformer in the proline dipeptide is stabilized by a hydrogen 

bond between Pro CO and Ser OH. The 3-Hyp trans dipeptide conformer is stabilized by a hydrogen 

bond between 3-Hyp CO and Ser OH. However, a different hydrogen bonding pattern involving 3-Hyp 

OH and Ser OH is observed in the cis conformer. The trans conformer in the hyp dipeptide is stabilized 

by hydrogen bonding between hyp CO and Ser OH. 

The calculated energies of the TBS protected dipeptides at the B3LYP/6-31g* level in the 

gas phase are as shown in Table 5.4. Even though the predicted energies of the two conformers are not 

in quantitative agreement with experimental findings, both theoretical and experimental results show 
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increased cis character but not in the same order. The increased cis character in both cases could be 

ascribed to the silyl ether protecting groups that break the hydrogen bonding pattern. 

Table 5.4. The energies and equilibrium constants (Ktrans/cis) of the optimized geometries. 

 

 

Compound 

 

trans 

(kcal/mol) 

 

cis  

(kcal/mol) 

 

 (kcal/mol) 

 

          K (at 298K) 

235 -1647365.07 -1647345.88 19.19 1.22 × 10
14

 

236 -892270.86 -892267.42 3.43 3.34 × 10
2
 

237 -1269814.35 -1269811.64 2.70 9.65 × 10 

238 -1269817.0 -1269813.98 3.01 1.65 × 10
2
 

 

The representative conformations of the TBS protected dipeptides optimized in the gas phase are 

presented in Figure 5.20. 

  

 

 

 

 

 

 

 

 235 

TBS DHP dipeptide trans conformer TBS DHP dipeptide cis conformer  

 

Figure 5.20 A. Optimized geometries of dipeptide 235. 
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 236 

TBS Pro dipeptide trans conformer TBS Pro dipeptide cis conformer  

 

 

  Figure 5.20 A continued. Optimized geometries of dipeptide 236. 

 

 

  

 

 

 

 

 

 

 

 237 

TBS 3Hyp dipeptide trans conformer TBS 3Hyp dipeptide cis conformer  

 

Figure 5.20 B. Optimized geometries of dipeptide 237. 
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 238 

TBS hyp dipeptide trans conformer TBS hyp dipeptide cis conformer  

 

Figure 5.20 B continued. Optimized geometries of dipeptide 238. 

 

5.2.3  NMR Assignments and CD of Alloviroidin Analogs 

  To assign the spectra of the cycloheptapeptides, we conducted NMR studies in 90% 

1
H2O/10% 

2
H2O, with 

2
H2O used for locking the sample. To further minimize the exchange of amide 

protons with the NMR solvent, we adjusted the pH of the medium to 3.0 according to Kobayashi and co-

workers.
179

 The proton resonances for compounds 43-45 presented in Table 5.5 were obtained from 

DQF-COSY and TOCSY spectra. The characteristically downfield chemical shift value of Ser
3
 Hα 

facilitated the assignment of Ser
3 

Hβ. While the Ala
5
 Hα was easily identified due to direct coupling to 

its methyl group. The Thr
2
 methyl group was assigned based on coupling to its downfield Hβ. Similarly, 

the Val
1
 and Trp

6
(SO2Me) methyl groups were distinguished by the characteristic downfield chemical 

shift of Trp
6
(SO2Me) methyl group that is not coupled to other protons.  

Amide protons were assigned based on coupling to Hα. The chemical shifts of the amide 

protons in the hyp analog and those of Trp
6
(SO2Me) and HyLeu residues in the 3-Hyp analog were not 

observed in the spectra at 700 MHz spectrometer. We believe that this is due to the high rate of 
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deuterium exchange at high field. The proton signal of the Trp
6
 indole was observed further downfield 

in the 
1
H NMR spectrum. The crosspeaks of the Trp

6
 ring were easily assigned in the TOCSY spectrum.  

The β methyl resonances of Ala
5
 in alloviroidin analogs exhibit a distinct downfield shift in comparison 

to those of toxic peptides reported in literature by Kobayashi and co-workers.
179

 This implies that the 

Trp
6
 indole has a different orientation in the synthetic analogs and is not in close proximity with the Ala

5 

β methyl protons. Figures 5.21 and 5.22 represent the Hα-NH cross peak regions in the TOCSY spectra 

of compounds 43 and 44 recorded at 25 °C. 

 

 

 
 

 

 

Figure 5.21. The Hα-NH cross peaks in the TOCSY spectrum of compound 43 (proline-containing 

analog) in 90% H2O/10% D2O (pH 3.0) at 25 °C and 700 MHz. 
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Figure 5.22. The NH-Hα cross peaks in the TOCSY spectrum of compound 44 (3-Hyp-containing 

analog) in 90% H2O/10% D2O (pH 3.0) at 25 °C and 700 MHz (the unassigned cross peaks belong to 

the minor conformers). 

 

 

Table 5.5. 
1
H NMR chemical shifts of alloviroidin analogs (NH signals for compound 45 were not 

observed). 

 

Cyclic Peptide Residue Chemical  Shift (ppm) of: 

  NH CαH CβH CγH Others 

Proline Analog 

(43) 

Val 7.91 4.11 2.15 0.98, 1.54 - 

D-Thr 8.50 4.78 4.34 1.22 - 

 D-Ser 8.37 4.94 3.88, 

3.85 

- - 

 Pro - 4.40 2.29, 

2.31 

1.99, 2.02 CδH  3.81, 3.79 

 Ala 8.01 4.26 2.07 - - 

 Trp 

(SO2Me) 

7.59 4.77 3.60, 

3.40 

- SO2Me 3.16 

 HyLeu 8.53 4.52 1.62, 

1.92 

1.16 CδH  3.83, 3.71 
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Table 5.5 continued. 
1
H NMR chemical shifts of alloviroidin analogs (NH signals for compound 45 

were not observed). 

 

3Hyp Analog 

(44) 

Val 8.36 4.37 2.06 0.99, 0.96 - 

D-Thr 8.53 4.79 4.36 1.24 - 

 D-Ser 8.47 4.89 3.78, 

3.87 

- - 

 3Hyp - 4.24 4.38 2.07, 2.13 CδH  3.76, 3.86 

 Ala 8.49 4.40 1.21 - - 

 Trp 

(SO2Me) 

 4.76 3.86, 

3.50 

- SO2Me 3.18 

 HyLeu 8.18 4.34 1.57, 

1.93 

1.29 CδH  3.57, 3.70 

 

 

 

hyp Analog 

(45) 

Val  4.19 1.96 0.85, 1.83 - 

D-Thr  4.78 4.41 2.08 - 

 D-Ser  5.00 3.86, 

3.84 

- - 

 hyp - 4.60 2.46, 

2.03 

4.46 CδH  3.81, 3.87 

 Ala  4.42 1.19 - - 

 Trp 

(SO2Me) 

 4.74 3.38, 

3.68 

- SO2Me  

 HyLeu     CδH   

 

 

The upfield chemical shifts of Val
1
 NH and Trp

6
(SO2Me) NH at 7.91 and 7.59 ppm in the proline analog 

suggest their participation in intramolecular hydrogen bonding.  

In the ROESY and NOESY spectra of the analogs, very weak resonances were observed 

making the assignment of the cross peaks unsuccessful. This could be due to rapidly inter-converting 

conformers on an NMR time scale. It is not clear why the flexibility of these cyclic peptides vary with 

the NMR field strength. We found out that the degree of conformation flexibility was greater on the high 

field 700 MHz spectrometer in comparison to the 250 MHz spectrometer. 
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  To further examine the conformation of the cycloheptapeptides, circular dichroism of 

alloviroidin analogs 43 and 45 were measured in water. According to Figure 5.23 the hyp analog (45) 

exhibits a CD spectrum similar to that of other virotoxins,
1
 specifically, two negative minima at 218 and 

233 nm. In contrast, the proline analog (43) has negative minima at 196 and 214 nm. This observation 

indicates that virotoxins and the hyp analog (45) are likely to have similar conformations. It is important 

to note that the similarity in the CD spectra of virotoxins and the hyp analog (45) does not correspond to 

affinity for actin. The Cotton effect of the proline analog, however, exhibits marked backbone changes 

when compared to the natural virotoxins. These structural differences are presumed to be mainly due to 

isomerism about the Ser
3
-Pro

4
 peptide bond. These results suggest a relationship between CD and 

conformation interconversion, i.e., there is the possibility that the Pro analog exists as a mixture of 

conformers.    

 

 

hyp analog (45) 

 

Pro analog (43) 

Figure 5.23. Circular dichroism spectra of hyp (45) and Pro (43) analogs in water (1.4 x 10
-4

 M). 

 

5.2.4  Summary 

  In conclusion, we have examined the conformational preferences of the dipeptide fragments 

231-238 using computational studies. These computational analyses indicate that the most stable 
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conformation of the dipeptides in the gas phase is trans. These findings on dipeptides are in qualitative 

agreement with our NMR findings on tripeptides 172-174 and 47-50. However, the calculated cis/trans 

ratio values of the dipeptides are not in accord with the NMR results of the tripeptides. This could be 

explained in terms of the influence of the solvent on the cis-trans isomerization rotational barrier in 

solution through hydrogen bonding, the greater flexibility of longer tripeptide fragments and the two 

additional stereocenters introduced by the D-threonine residue.  

These conformational studies on tripeptide fragments illustrate the influence of the degree and 

regiochemistry of proline hydroxylation on cyclization and the conformation of the cyclic heptapeptides. 

In particular, the TBS protected hyp residue was found to favor the cis conformation facilitating peptide 

cyclization. From these tripeptide conformational studies, there is a possibility that the conformational 

interconversions observed for the cyclic peptides could be explained in terms of the cis/trans 

isomerization across the prolyl peptide bond. 

  NMR experiments carried out on alloviroidin analogs have allowed proton assignment but 

have been unsuccessful at determining the solution structures. While ROESY and NOESY have been 

used by others for conformational analysis of similar analogs, only weak signals were observed in our 

spectra suggesting high conformational flexibility at high magnetic field. Further NMR studies at 

different field strengths and temperatures in combination with simulated calculations should be 

conducted to determine the conformation of the cyclic peptides. 

  Analysis of two cyclic peptides by CD spectroscopy in water revealed that the CD spectrum 

of the hyp analog is consistent with that of the natural virotoxins. This contrasts with the CD spectrum 

of the proline analog. The similarity in CD of the hyp analog with that of viroidin suggests that their 

conformation could be similar. 
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5.2.5 Future Work 

  Given the weak signals in the NOESY and ROESY spectra of the cyclopeptides following 

NMR experiments at 700 MHz, we believe that performing these experiments at lower field strengths 

would slow down conformation interconversion and generate correlations that will be used to estimate 

interproton distances. Restrained energy minimizations should be performed to gain an insight into the 

structures of alloviroidin and analogs. Dihedral angles and distance restraints will be derived from DQF-

COSY J values, ROESY and NOESY NMR data. Computational studies using SYBYL program will be 

used to generate structures that satisfy the NMR restraints. Energy minimization of each of the generated 

structures will allow them to relax to a local minimum energy. This will be achieved by heating the 

molecules followed by gradual cooling to enable the various conformations to relax to a minimum 

energy. Root mean square deviation will then be calculated for the superimposed structures. 

  Deuterium exchange NMR experiments will be conducted to ascertain which amide protons 

participate in hydrogen bonding. The cyclic peptides will be dissolved in D2O and the rate of deuterium 

exchange will be measured by recording 
1
H NMR and TOCSY experiments at different temperatures 

and time intervals. The amide protons of residues that are not involved in hydrogen bonding ought to be 

exchanged for 
2
H and this will be evident by the disappearance of HN-Hα crosspeaks in the spectrum.  

The rate of exchange of the amide protons will be plotted against time to generate the rate constants that 

will be compared to values reported in literature. 

The γ,δ-dihydroxyleucine residue, which has been shown not to be essential for actin binding 

, could serve as a handle for the attachment of a fluorophore to produce a new probe for visualizing actin 

dymamics. Derivatization of alloviroidin with a fluorophore (e.g., 239) will be achieved via ester bond 

formation with the primary alcohol of the dihydroxyleucine residue to deliver 240 (Scheme 5.1). The 

affinity of this conjugate for actin will be measured and compared to that of the commercially available 
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phalloidin fluorescein conjugate. In the event that this approach fails, the fluorescein could be 

incorporated into tetrapeptide 46 prior to fragment condensation and cyclization. 

 

Scheme 5.1. Derivatization of alloviroidin with a fluorophore. 

 

 

 

 

 

5.3  EXPERIMENTAL SECTION 

 

5.3.1  General Methods: As for Chapter 4 with the following additions and modifications: For 

NMR studies, 2 mg of each cyclic peptide was dissolved in 200 μL of 90% H2O/10% D2O, pH 3.0 (the 

NMR solvent was prepared by mixing D2O (10 mL) and HPLC grade H2O (90 mL). The pH of the 

solvent mixture was adjusted to 3.0 using 0.1 M HCl and 1M NaOH solutions). Solvent suppression was 

done using WATERGATE sequence. The ROESY and NOESY experiments were perfomed at 150, 200, 

300, 400, and 500 ms mixing times. Spectra assignment was achieved using Sparky and NMRViewJ 

software packages. 



252 

 

The ab initio and density functional calculation studies were performed using the Gaussian 09 package. 

Geometry optimizations for the trans and cis conformers of the dipeptides were carried out at the AM1, 

HF/3-21G and B3LYP/6-31g* methods and basis sets. Frequency analyses were performed at B3LYP/6-

31g* level to verify the nature of the stationary points obtained and to calculate the zero point 

vibrational energies that were used to calculate Gibbs free energies in the gas phase at 298 K.   

Circular Dichroism spectra (with sample concentrations of 1.4 × 10
-4

 M in water) were measured on a 

Jasco J-815 spectropolarimeter using a rectangular cell with a path length of 1 mm. Each measurement 

was the average result of three scans. Baseline spectrum of H2O was subtracted. 
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