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Abstract

Material properties of industrial polymer blends are of great importance. X-ray tomog-

raphy has been used to obtain spatial chemical information about various polymer blends. The

spatial images are acquired with synchrotron X-ray tomography because of its rapidity, good spa-

tial resolution, large field-of-view, and elemental sensitivity. The spatial absorption data acquired

from X-ray tomography experiments is converted to spatial chemical information via a linear least

squares fit of multi-spectral X-ray absorption data.

A fiberglass-reinforced polymer blend with a new-generation flame retardant is studied

with multi-energy synchrotron X-ray tomography to assess the blend homogeneity. Relative to

other composite materials, this sample is difficult to image due to low x-ray contrast between the

fiberglass reinforcement and the polymer blend. To investigate chemical composition surrounding

the glass fibers, new procedures were developed to find and mark the fiberglass, then assess the

flame retardant distribution near the fiber.

Another polymer blending experiment using three-dimensional chemical analysis tech-

niques to look at a polymer additive problem called blooming was done. To investigate the chem-

ical process of blooming, new procedures are developed to assess the flame retardant distribution

as a function of annealing time in the sample. With the spatial chemical distribution we fit the

concentrations to a diffusion equation to each time step in the annealing process.

Finally the diffusion properties of a polymer blend composed of hexabromobenzene and

o-terphenyl was studied. The diffusion properties were compared with computer simulations of

the blend.

xii



Chapter 1

Introduction

Recent advances in the field of tomography[1, 2, 3] and image analysis algorithms[4, 5, 6]

have opened up an exciting new area of research. In the past, tomography was regulated to the

medical fields and image analysis algorithms were simple.[7] Imaging the basic shapes of hearts,

lungs, brains, etc.[8] was easily done in a clinical environment and techniques provided medical

doctors with valuable information. As the field progressed it became apparent that the technique

could be used to look at a wide variety of objects.

At first glance the use of tomography in chemistry seems limited, investigating the three

dimensional shape of objects can be useful in many ways but in and of itself it isn’t really chem-

istry. Work pioneered by Butler and others [9, 10, 11, 12] showed that you can take tomography

data and along with some knowledge of your sample’s physical properties you can generate a

concentration map in three dimensions of certain compounds. Not all compounds can be imaged

in this manner but a wide range of them can, this opens up a unique area of chemical research

with many applications.

The primary objective of the research derived herein is to demonstrate that X-ray tomog-

raphy can be applied to chemical problems, particularly issues with polymer blends and their

material properties. During the time of this work, new procedures and algorithms have been

developed for extracting relevant chemical information form X-ray tomography data. This work

sets the foundation of for future X-ray tomography work as it applies to the fields of chemistry,

materials science and polymers.

In Chapter 2, a background and introduction are given for relevant topics pertaining to the

research presented in this dissertation. Topics include tomography both in theory and in experi-

ment, conversion of tomographic data to chemical concentration, diffusion theory, synchrotrons,
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and also an overview of the algorithms used for 3D image analysis.

In Chapter 3, a fiberglass-reinforced polymer blend with a new-generation flame retardant

is studied with multi-energy synchrotron X-ray tomography to assess the blend homogeneity.

Relative to other composite materials, this sample is difficult to image due to low x-ray contrast

between the fiberglass reinforcement and the polymer blend. To investigate chemical composition

surrounding the glass fibers, new procedures were developed to find and mark the fiberglass, then

assess the flame retardant distribution near the fiber.

Figure 1.1: The fiberglass component of this complex polymer blend presented unique and inter-
esting challenges to the X-ray tomography technique.

In Chapter 4, another polymer blending experiment using three-dimensional chemical

analysis techniques was done to look at a polymer additive problem called blooming. To in-

vestigate the chemical process of blooming, new procedures are developed to assess the flame

retardant distribution as a function of annealing time in the sample. With the spatial chemical

distribution, we fit the concentrations to a diffusion equation to each time step in the annealing

process. To calculate diffusion measurements around the pockets of high concentration in the

sample, new methods had to be developed.

In Chapter 5, the diffusion properties of a polymer blend composed of hexabromobenzene

and o-terphenyl was studied. The diffusion properties were compared with computer simula-

tions of of the blend. The computer simulations will help us interpret the images and guide the

improvement of techniques for image analysis of diffusion processes. The glass simulations make
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Figure 1.2: Chapter 3 explores a imperfectly blended polymer and the
effects that temperature has on its spatial structure.

high demands on supercomputer resources, as do some of the 3D analyses.
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Figure 1.3: Fitting a diffusion model to experimental to-
mography data was performed in Chapter 4.

Chapter 6 concludes with an overall summary of my research along with comments on the

current state of tomography research and where it can go.
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Chapter 2

Experimental and Computational
Methods

In this chapter I will provide a background/introduction for topics that are relevant to

this research. Section 2.1 is a short introduction to tomography and its current state in today’s

research. Section 2.2 covers the tomography experiment that shows the basic steps that a typical

tomography experiment will go through. In Section 2.3 concepts behind conversion of absorption

data to chemical concentrations is discussed in the third section. Section 2.5 covers a small intro-

duction to diffusion theory and the model of diffusion chosen for this research. Synchrotrons are

covered in Section 2.4; it has a brief history and a technical description of synchrotrons and its

uses are discussed. In Section 2.6 the theory behind the algorithms that were developed and used

in processing the multi-dimensional chemical data is covered.

2.1 Introduction to Tomography

There was not much work done with the Radon transform until Hounsfield’s invention of

the X-ray computed tomographic scanner. This invention earned Hounsfield (along with Allan

Cormack) a Nobel prize in 1972 [1]. Today, tomography is most widely used in medical fields

with computed tomography (CT), positron emission tomography (PET), and magnetic resonance

imaging (MRI) being the most widely known.[2, 3, 4, 5] Tomography is also being used in archaeol-

ogy, biology, geology, materials science, and many other sciences[1]. Using tomography scientists

are looking at biological specimens[4], polymers[6], geological materials[7], cement[8], foams[9],

medical research into artificial joints[10], and many others. A table of the most common types of

tomography experiments is given in Table 2.1. Tomography research has rapidly increased over

the past decade and it is only expected to increase as new uses and techniques become apparent.
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A survey of the number of publications that list tomography and materials science as keywords is

shown in Figure 2.1.

Figure 2.1: Citations reported every year from
1994 to mid-2008 that include tomography and
materials science in the keywords.[11]

Depending on various factors the tomography experiment can be fast, on the order of 1

hour data collection and 1 hour data processing, to taking longer periods of time to obtain higher

resolutions. Tomography dataset sizes can range from big to huge with resolutions getting down

to 2 nanometers in size (electron tomography). A major advantage that tomography has over

traditional techniques is that the results are readily accessible by the public. Almost everyone can

look at a 3D dataset and take something of value away from it; most other techniques are limited

to specialists.

Table 2.1: Various Tomography Experiments

Physical Probe Technique
x-rays Computed Tomography

neutrons Neutron Tomography
knife/slicer Microtome
Ion Beam Focused Ion Beam Tomography
electron Electron Tomography

nuclear magnetic resonance Magnetic Resonance Imaging
ions Atom Probe Tomography

2.1.1 The Radon Transform

The mathematical basis for tomographic imaging was done by Johann Radon in 1917[12,

13, 1]. Radon stated, from a purely mathematical standpoint, the solution of how to reconstruct

a function from its projections (a projection at a given angle is the line integral of the image in
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the direction specified by that angle). This concept is shown in Figure 2.2 and can be defined

mathematically as:

R(m, b) =
∫ ∞
−∞

f(x,mx+ b) dx (2.1)

x

y

f(x,y)

Line integrals
for this θ.

θp  (x')θ

Figure 2.2: General theory of the Radon
transform with pθ(x’) representing the
projection data generated from the line
integrals for that θ.

A more practical definition using the dirac delta function for the radon transform[14] is

shown as:

R(m, b) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(y − (mx+ b)) dxdy (2.2)

If one considers defining a new Radon function, R(r,θ), where r is the perpendicular dis-

tance of a line to the origin and θ is the angle formed between the line and x-axis, as shown in

Figure 2.3.

Obviously, all points along L can be expressed parametrically by:

r = xcosθ + ysinθ (2.3)

With this coordinate system in mind, the Radon transform can be defined as:
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x

y

r
θ

→r=[x cos(θ),y sin(θ)]

→

f(x,y)

L
Figure 2.3: Representation of the Radon
transform defined parametrically rather
than by the traditional cartesian system.

R(r, θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r − (xcosθ + ysinθ)) dxdy (2.4)

This is an important form of the Radon transform and its significance will be discussed at the end

of the next section.

2.1.2 Tomographic Imaging

Consider the basic experimental layout of a parallel X-ray beam passing through and at-

tenuating with the sample to a detector as shown in Figure 2.4.

Projection 
Data

X-ray
Source

Parallel X-rays Detector

Sample
(rotates about a central axis)

Figure 2.4: The basic experimental setup
using in tomography experiments. This
particular system represents a parallel
beam source that passes through a sample
directly to a detector where the projection
data is generated.

Each parallel X-ray beam that passes through the sample can be considered a line integral

since attenuation is governed by the Beer-Lambert law[15, 13]:
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I = I0e
−µx (2.5)

Which is the general form of the law, where µ is the attenuation coefficient, I0,I is the initial and

final intensities respectively, and x is equal to the path length. Equation 2.5 can rewritten with the

µx being represented by a line integral:

I = I0e
−
R

L µ(x,y) dL (2.6)

ln

(
I

I0

)
= −

∫
L
µ(x, y) dL (2.7)

L represents all the line integrals for that projection at θ (in the case of our experiment in

Figure 2.4 there is only one θ). We can now state that the projection data, defined as p(r, θ), to be

equal to Equation 2.7:

p(r, θ) = ln

(
I

I0

)
(2.8)

= −
∫
L
µ(x, y) dL (2.9)

= −
∫ ∞
−∞

µ(x,mx+ b) dx (2.10)

By using the dirac delta’s sifting property we can rewrite Equation 2.9 to:

p(r, θ) =
∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(y − (mx+ b)) dydx (2.11)

Which is the same form as the Radon Transform of Equation 2.2. Then shifting to the coordinate

system that defines all line integrals parametrically (Equation 2.3) we have:

p(r, θ) =
∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(r − (xcosθ + ysinθ)) dydx (2.12)
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Which is the same form as Equation 2.4, the Radon transform. Let’s assume for the moment that

there exists an inverse Radon transform (R†) that satisfies the conditions:

R†R(r, θ)[f(x, y)] = f(x, y) (2.13)

R†[p(r, θ)] = f(x, y) (2.14)

This means that by taking a infinite series of two dimensional X-ray absorption images of

a sample between a range of angles the inverse Radon transform could reconstruct the full three

dimensional function of the sample. Derivation of the inverse radon transform is well cited in

mathematical literature.[16, 13, 17] Everything concerning the radon transform in this dissertation

is concerned only with the case of parallel beams. This is due the experimental conditions of syn-

chrotron tomography which uses only parallel beam X-rays. Many other experimental setups exist

such as cone and fan beam sources.[18, 19, 20] All of these setups require different formulations of

the radon transform but most are well studied.

The exact inverse Radon transform can be derived but it has limited practical applications.[13,

12] The inverse Radon transform does not produce reliable results when dealing with noisy dis-

crete data and formulation of the inverse Radon transform that would be computationally efficient

would serve much better. [14] The exact inverse Radon transform does not seem to be used any-

where but mathematical literature and textbooks.

The author is not inclined to derive the inverse Radon transform for a parallel beam system

when he has not actually ever used it. Instead I will discuss a discretized inverse Radon transform

that is called the filtered back-projection algorithm, which is widely used and studied.[14, 16, 12,

21] Filtered back-projection is the algorithm used to reconstruct all the tomographic data presented

in this dissertation. The filtered back-projection formula can be described mathematically as:

f(x, y) = F ∗
∫ π

0
p(xcosθ + ysinθ, θ) dθ (2.15)

f(xi, yj) ≈ F ∗∆θ
A−1∑
a=1

p(xicosθa + yjsinθa, θa) (2.16)

Where F is the filter in spatial coordinates. Notice that since the filter is a convolution it is com-

putationaly more efficient to transform to the frequency domain via a Fouler Transfrom where

the filter convolution becomes a multiplication. Equations 2.15 and 2.16 are the general and dis-

crete form of the filtered back-projection algorithm. The derivation of Equations 2.15 and 2.16 are
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related to the Fourier slice theorem [14] or, as it is known in medical fields, the central slice the-

orem [13]. The central slice theorem states that a 1D Fourier transform of our projection data is

the equivalent of a 2D Fourier transform on the slice image.[13, 14] With this knowledge we can

apply the 2D inverse Fourier transform to our 1D Fourier transformed projection data and get a

slice image. Obviously, due to the discrete nature of our projection data, interpolation in Fourier

space is required but the smaller the ∆θ of Equation 2.16 the more accurate the reconstruction will

be. The exact number of required projections and the improvement that each projections adds to

the reconstructed function is well studied [14]. As a general rule the closer you get to an infinite

number of projections between the angles of 0 and π the more accurate your reconstruction will

be. When talking about the accuracy of the reconstruction algorithms, such as the filtered back-

projection, a standard image called Shepp-Logan phantom, shown in Figure 2.5, is used for testing

purposes.

Figure 2.5: The Shepp-Logan phantom depicted here is used as
a standard for tomographic reconstruction algorithms.

Figure 2.6 shows the results of a filtered back-projection algorithm applied to a Shepp-

Logan phantom that has increasing numbers of projections at various θ’s. Figure 2.7 shows the

effect of different filters being applied to the phantom in the frequency domain.

2.2 The Tomography Experiment

The design and operation of a synchrotron tomography beam-line is covered quite well in

the literature[22, 23] with many beam-lines throughout the world. Tomography presented in this

dissertation was mostly done at the Center for Advanced Microstructures and Devices (CAMD) at

the tomography beamline. In this section a typical tomography experiment at CAMD is described

at each step and effort is taken to relate the steps to previously established theory.

Transmitted X-rays come from a source that passes through a monochromator that selects

the energy range of the X-rays that will reach the sample. The X-rays are then converted to light
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: The filtered backprojection algorithm with increasing amounts of projections with a)1
b) 30 c) 60 d) 90 e) 120 and f) 150 projections.

(a) (b) (c)

Figure 2.7: The results of a filtered backprojection algorithm on the Shepp-Logan phantom with
180 projections but with different filters being applied a)no filter b) the standard and widely used
ramp filter c) Shepp-Logan filter
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with a scintillator and then imaged with a CCD camera. Figure 2.8 illustrates this setup:

Figure 2.8: Hardware setup showing CCD, mir-
rors, scintillator, lens, sample and all motors used
to control the tomography experiment. The sam-
ple stage deserves extra attention however due to
its critical importance to the tomography exper-
iment. It is shown in a blown up view. In the ex-
periment the sample must be rotated in a precise
and controlled manner. Issues such as centering,
pitch and yaw must all be controlled to the high-
est degree possible to avoid introducing artifacts
into the reconstruction.

2.2.1 Reconstructing the Data

Every tomography experiment begins with the acquisition of three field images which are

dark, white and raw. Dark images are CCD captures when the hutch has no X-rays or any other

light interfering with the scintillator, it normally sufficient to only acquire five of these images at

the start of the experiment. Figure 2.9 shows a typical dark field image.

Figure 2.9: A typical dark field image with a colorbar underneath.

White field images are CCD captures of just the X-rays interacting with the scintillator with

no sample in the way. Due to the nature of the X-rays being generated at CAMD (frequent beam

dumps and scheduled injections) it is necessary to have at least three white field images taken

for every thirty raw images in order to insure that the absorption image is scaled correctly. The

frequency of white field images acquired differs from beamline to beamline.

Raw images are the CCD captures of the X-rays that have passed through the sample
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Figure 2.10: A typical white field image with a colorbar underneath.

and made it to the scintillator. Raw images will make up the bulk of images acquired during an

experiment. The quality of the final data you reconstruct is directly related to the number of raw

images you take at different θ’s of the sample rotation[14, 13, 16] (as explained in Section 2.1.2).

Figure 2.11: A typical raw field image with triple line plot underneath. The line plots show the
counts of the CCD detector along each line as they pass through the bottom, middle and top
horizontal parts of the sample.

Each raw image is converted to a absorption image with white field and average dark

count correction via equation 2.17.

Abs = ln

[
Iwhite − Idark
Iraw − Idark

]
(2.17)

Equation 2.17 is modified form of the Beer-Lambert Law (Equation 2.5) that correctly scales

the raw data with white and dark field values. Figure 2.12 shows the results of applying Eq. 2.17
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to Figures 2.9,2.10 and 2.11.

Figure 2.12: Absorption field image for one angle of acquired projection data. It is calculated from
Equation 2.17 and raw data that would be similar to Figure 2.11. A a line plot of the column sums
of the absorption image is underneath.

From the absorption data sinograms are constructed, efforts are made to reduce zingers

and ring artifacts, and the transmission values are converted to line integrals of the absorption. [24,

6] Sinograms are constructed by taking each raw data field image and performing a column sum,

this column sum becomes one row in the sinogram. This process is shown visually in Figure 2.13.

Figure 2.13: The conversion of an
absorption image to a sinogram.
Every angle produces a raw pro-
jection image that is converted
to an absorption image. The col-
umn sum of an absorption image
for one angle gets mapped onto
one row of a sinogram. Thus, each
row of a sinogram corresponds
to the unique angle associated
with the raw projection data that
helped generate the absorption
data that was used for the column
sum.

The column sum is the projection data function pθ(x′) shown in Figure 2.2 and the sino-

gram which collects all the θ’s is p(r, θ). If we look back to Equation 2.8, we see the mathematical
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expression relating our absorption image and projection data. We know from Section 2.1.2 that the

filtered back-projection algorithm can take our sinogram and reconstruct one slice image of our

sample.

For the reconstructions at CAMD we use the function iradon from the Matlab Image Pro-

cessing Toolbox. It is a straightforward implementation of the filtered back-projection algorithm

discussed at the end of Section 2.1.2. The function can change the interpolation method method

used in the frequency domain and has access to several of the most commonly used filters such as

ramp, Shepp-Logan, Hamming, Cosine, etc.. With Matlab the ability to define your own interpo-

lation method if desired and the Signal Processing Toolbox can allow the user to create novel new

filters to be used with the iradon function. However, the core part of the iradon function, namely

the part that implements Equation 2.16, can not be modified which, depending on the user, may

be undesirable.

The slices were assembled into a single reconstructed volume of voxel elements, each voxel

contains the value of the voxel linear attenuation coefficient. Voxel linear attenuation coefficients

are slightly different from the normal linear attenuation coefficients, where the linear attenuation

coefficient has units of cm−1 voxel linear attenuation coefficients are unit-less. The next section

will go into the explanation of voxel linear attenuation coefficients in more detail.

2.3 Converting Absorptions to Chemical Concentrations

Determining the 3D absorption data of a sample as shown in previous sections is typically

the end result for most tomographers from the experimental standpoint. For X-ray tomography

to work as chemical analysis tool we need to be able to convert the 3D absorption values that

we generate into chemical concentrations. Details about the chemical concentration of samples in

spatial cartesian coordinates could be used to problems that are unsolvable or difficult to study

with other standard techniques.

Conversion of absorption data to chemical concentrations is done by using the Beer-Lambert

Law and multi-spectral X-ray tomography. This section will describe the overall algorithm and

the theory behind it, that is used to transform absorption data to chemical concentrations.

Simplifying the Beer-Lambert Law (Equation 2.5)[15] we get:
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I = I0e
−µxρ

ln

(
I

I0

)
= −µxρ

Abs = −ln
(
I

I0

)
Abs = µxρ (2.18)

Where Abs is the absorption, µ is the linear attenuation coefficient, ρ is the density of the

sample and x the path length the radiation travels. We now see that absorption is defined the

product of the linear attenuation coefficient with the path length of the sample, which yields η

a unit-less quantity. Most fields of research call this quantity absorption but it is useful in to-

mography to call it the more descriptive name of voxel linear attenuation coefficient. The formal

definition of a voxel linear attenuation coefficient (η) is:

η =
(
µ

ρ

)
× ρ× χ (2.19)

Where µ
ρ is the mass attenuation coefficient

(
cm2

g

)
, ρ
( g
cm3

)
and χ (cm) is the voxel dimen-

sion length. The explicit inclusion of the ρ’s in the equation may seem pointless since it obviously

cancels out of the equation but in practice mass attenuation coefficients are defined in the manner

presented.

For the rest of this section consider that a simple, solid mixture of bromine, antimony, and

nylon has been made. This sample will be used to help illustrate the techniques used that will

produce the chemical concentration data from the absorption data.

For a voxel that is completely filled with the sample, (i.e., no cracks, voids, or sample

surface voxels) the absorption of the sample at that voxel must be equal to:

Abssample =
(
[Br]×AbsBrE

)
+
(

[Sb]×AbsSbE
)

+
(

[nylon]×AbsnylonE

)
(2.20)

Where [X] are volume percent values for that particular sample. We know that the absorp-

tion of a voxel is equal to the voxel linear attenuation coefficient. Voxel linear attention values for

pure elements and compounds can be calculated with Equation 2.19 using mass attenuation coef-
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ficients, sample density’s and voxel dimension lengths. Density and voxel dimension lengths are

easy to acquire and mass attenuation coefficients of elements and compounds are readily avail-

able from internet databases such as XCOM from NIST[25]. Figure 2.14 shows the calculated voxel

linear attenuation coefficients vs photon energy for all three components of our sample.
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Figure 2.14: The traces show the calculated voxel
linear attenuation coefficients for bromine, anti-
mony and nylon. Sharp changes in the absorp-
tion of bromine and antimony are indicated at
13.474 and 30.491 keV respectively. The voxel
linear attenuation coefficients were calculated
by using mass attenuation coefficients from
XCOM[25], their respective density and a voxel
dimension length of 1 cm.

With the newly calculated absorptions for the pure components we will have an equation

with four known and three unknown variables for our 3 component sample. Clearly, this is not

enough solve for the concentration data that we desire. However, heavy elements (typically Z≥
35) produce sharp absorption changes at certain energies. Both bromine and antimony have an

edges that visible in Figure 2.14. By taking advantage of the edges present in heavy elements

we can image a sample with X-rays at energies just above and below the edge for the element in

the sample. This will give us two equations for every component that has a edge in our sample.

This will enable us to calculate the concentration of that component. In our three component

sample nylon does not have an edge and so its concentration can not be directly calculated. We

can indirectly calculate it via a simple subtraction:

Abssample =
(
[Br]×AbsBrE

)
+
(

[Sb]×AbsSbE
)

+
(

(1− [Br] + [Sb])×AbsnylonE

)
(2.21)

By selecting the X-ray energy values above and below the edges we can calculate the vol-

ume percents for each component by expanding Eq. 2.21 across the X-ray energies. This yields a

over-determined set of linear equations. To solve of this system of linear equations a constrained

linear least-squares fit of the data to the concentration variables will be required. This is easily

implemented with functions from the Optimization toolbox for Matlab. The linear least-squares

fit solves the above system of linear equation with a minimization of difference between the ex-

perimental X-ray voxel absorptions and the calculated absorptions.

18



minimization

Bromine,Antimony
∣∣∣∣∣∣Abssamplexyz −Abscalcxyz

∣∣∣∣∣∣2 (2.22)

Expanding Equation 2.22:

minimization

Bromine,Antimony
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(2.23)

In conclusion by using multi-energy imaging and Beer-Lambert Law, absorption values are

converted to volume percents for each voxel. This is done via a constrained linear least square fit;

constraints are initially chosen to limit calculated volume percents to physically allowed values.

2.4 Synchrotrons

In the previous sections I have laid out the some of the theory and experimental concepts

in the field X-ray tomography. What I did not discuss were the requirements of the physical in-

strumentation that will provide the X-rays to the experimental system. Now that the tomography

experiment has been explained the major requirements can be understood fully. Table 2.2 lists the

major requirements and the reasons behind the requirements.

Table 2.2: Requirements for an X-ray Source

Requirement Reason
High X-ray brightness/flux Allows for thicker samples and faster experiments
Highly Collimated X-rays Poor collimation violates the parallel beam model for reconstruction

Wide energy range Wide energy ranges allow us to analyze at more elements
Selectable X-ray energy Can’t calculate chemical concentrations with polychromatic X-rays

These requirements are pretty steep by conventional laboratory X-ray source standards.

However, synchrotron light sources meet all of these requirements and more. All of the tomog-

raphy data presented in this research was generated at a synchrotron facility. In the following

sections I will present an overview of the history behind synchrotrons, the synchrotron device
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itself, how it constructed and works, and the applications of its primary product synchrotron ra-

diation/light. This overview of synchrotrons will show how it uniquely suited to the purposes of

chemical analysis with X-ray tomography.

2.4.1 A Brief History of Synchrotrons

The earliest research into synchrotron radiation dates back to 1898, when Linard derived

an expression from classical electrodynamics for the instantaneous total power radiated by an

relativistically accelerated charged particle in circular orbit the results were first published in En-

glish by Heaviside in 1903 in Nature. [26] Linard’s calculation showed that power generated from

a relativistic electron in circular orbit was proportional to:

P =

(
E

m0c2

)2

r2
(2.24)

where E is particle energy, m0 is the rest mass, and r is the radius of the trajectory. By 1907 the

power of a relativistic electron in circular orbit in a magnetic field had been solved by Schott.[27]

Schott believed that a intense study of the radiation produced would explain the discrete nature of

atomic spectra.[28] He eventually produced a 362 page exhaustive book on the subject in 1912 [29]

but his use of classical physics, in particularly a planetary orbit model1, doomed his attempts to

failure. Despite the research and progress not much research was done with synchrotron radiation

for some thirty years. In 1949 Schwinger had worked out the theoretical framework for a classical

theory of radiation of relativistic electrons in magnetic fields that predicted many of the effects

we see in modern day synchrotron radiation. [30, 31, 32] Sokolov and Tersov later showed that

Schwinger work was indeed confirmed by a quantum mechanical treatment of his theory. [33, 34,

35]

During the hiatus on research involving radiation energy losses from relativistic atoms be-

tatrons received much attention.[28] Betatrons are also an electron particle accelerator that have

two coils, the primary coil produces a AC current and the secondary coil is a torus-shaped vacuum

tube. When the electrons leave the primary coil they are accelerated at the center of the secondary

coil where a a vacuum tube is changing the magnetic field and producing an electrical field. By

1945 three separate betatrons had been built. The first was built by Donald Kerst at the Univeristy

of Illinois2 and was a 20 MeV machine [36]. Figure 2.15 shows Donald Krest with the first con-

1Planetary orbit model is where electrons orbit the nucleus of an atom in circles similar to planets orbiting the sun.
2Krest decided the name of his invention based on a departmental contest. A variety of names was suggested for

it and Krest eventually settled on betatron but names suggested by colleges were: rheotron, inductron, and Ausseror-
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structed betatron. The second and third were both developed by GE with 20 and 100 MeV max

energy levels. [37] The betatron however was ultimately not meant to be, energy loss from the

radiating electrons would put an upper limit on the energy obtainable by betatrons to be ≈ 500

MeV. [38]

Figure 2.15: Donald Krest with his invention the
first ever betatron. The betatron was developed
at the University of Illinois and was a 20 MeV
machine.[39]

Belwett, a researcher at GE, believed that that the radiation losses predicted by Schwinger

would be able to be seen in these new accelerators.[40] Schwinger’s calculations stated that the

radiation spectrum for the 100-MeV betatron should show up in the infared and visible spec-

trum. Blewett ran an exhaustive set of experiments in search of what he called ”Schwinger Radi-

ation”. Unfortunately, Belwett either miscalculated or made a mistake and always looked in the

radio/microwave region of the spectrum. He also used opaque tubes which limited the visibility

of the chamber which would prove hindering. Nevertheless, the experimental data collected by

Belwett was roughly in accordance with expected energy losses predicted by Schwinger but there

was never a confirmation of radiation being produced since he was looking in the wrong spec-

trum range.[40] Ultimately, Belwett believed that Schwinger’s theory was the correct but had no

experimental data to prove it.

During the same time a interesting effect had been observed by experimentalists concern-

ing relativistic particles. The observable mass of particles increase as their speeds approach the rel-

ativistic range, this was well known and explained by relativistic mechanics. The interesting part

was that due to the heavier mass the particles had acquired they were getting to the RF electrodes

at non peak times and thus were not getting the maximum amount of acceleration possible. This

ultimately limits the maximum possible particle energy and is undesirable. The problem was that

the RF frequency was set at constant value, both McMillan and Veksler suggested, independently,

modulating the frequency of the RF voltage to match the changing particles parameters.[41, 42]

dentlichhochgeschwindigkeitelektronenentwickelndenschwerarbeitsbeigollitron (I’m really not making that up! Check
the citation!)[28]
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This would allow the experimentalist to keep his particle stream together and at the same accel-

eration. This is commonly called the phase-stability principle and is still in wide use at all syn-

chrotrons today today. In 1947 a researcher at GE, Pollock, wanted to test McMillian and Vekslers

proposal and GE allowed him to construct a 70 MeV accelerator for this purpose.[43, 44, 45].

Proof of synchrotron radiation was acquired by poor safety standards and dumb luck. At

GE Pollock was using a partially shielded 70 MeV accelerator with a transparent torus electron

tube, the shielding had been removed temporarily to perform a calibration.[28, 46] A lab techni-

cian, Floyd Haber, was looking for sparking in the electron tube, he did not see sparking, instead

Floyd saw a bright arc/beam of synchrotron light that was visible in daylight. [28] This discov-

ery generated a lot of discussion within the lab over the source of this light. Langmuir and Elder

claimed that this was clearly ”Blewett Radiation” [47, 48] but most researchers believed that a gas

discharge or Cerenkov effect was responsible. Over the next few years GE characterized and stud-

ied the properties of the synchrotron radiation.[46] Figure 2.16 shows the original 70 MeV betatron

in which synchrotron light was first discovered. Blewett was ultimately correct but never received

the credit he probably entitled to for his earlier work3.

Figure 2.16: Synchrotron light from the 70-MeV
electron synchrotron at GE. The arrow points to
the actual synchrotron radiation coming of the
machine while it is running.[28]

By 1960 electron synchrotrons were available and experiments on them were being done.[52,

53, 54] Despite the advantages of synchrotron radiation that were detailed by the scientists [55, 56,

3Belwett has since contributed greatly to synchrotron research [49, 50, 51, 50] and written several papers concerning
the history of synchrotron radiation.[37]
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57] little progress towards using the radiation generated in electron synchrotrons for experiments

was achieved. Largely this was still due to a pervasive attitude among the subatomic physics

research community that thought of the energy loss by synchrotrons as a annoyance one had

to put up with to have the advantages that the synchrotrons offered them, namely high energy

electrons.[58] In 1961 the National Institute of Standards and Technology (at the time it was called

the National Bureau of Standards) added beamline to their 180-MeV electron synchrotron and al-

lowed research to be performed on that beamline. [28] This would usher in the synchrotron as a

tool for a wide variety of researchers not just high energy particle physicists. The new instrument

was called the Synchrotron Ultraviolet Radiation Facility (or SURF).

As more synchrotron facilities added beamlines to access the energy loss a new name for

these ”first” generation synchrotron radiation sources was born. The new synchrotron radiation

beamlines were called parasitic facilities, these synchrotrons often ran at low beam energies and

parasitic operations on synchrotrons that ran at low beam energies meant a severely limited out-

put of synchrotron radiation.[28] This lead to a desire for synchrotrons built for the sole purpose

of generating radiation for experiments but the user community was still small and couldn’t jus-

tify the cost of such a venture. Most often older synchrotrons that had outlived their useful-

ness to the physicists that had built them would be eagerly taken over by synchrotron radiation

experimentalists.[52] Shortly after SURF was up and running synchrotrons being used for their

radiation began to appear in America, Europe and Asia.[37]

Storage rings were the first big upgrade that synchrotrons underwent. Storage rings were

vastly superior to the previous parasitic facilities that were often limited by the high energy parti-

cle physicists requirements. The beam when in a storage ring continuously orbits at a fixed energy

for many hours, this leads to much less downtime, higher beam currents, higher flux, better beam

stability and other improvements. The incorporation of storage rings into the synchrotron facil-

ities marks a clear distinction between them and first generation/parsitic sources and are called

second generation light sources to reflect this difference. The Midwest Universities Research As-

sociation (MURA) funded a project that lead to the development of the first storage ring.[59] This

project, ultimately, lead to a template for synchrotron radiation facilities that is still in use today.

MURA was actually dissolved before the storage ring was actually constructed but USAF Office

of Scientific Research and the University of Wisconsin stepped in and completed the storage ring,

the facility was known as Tantalus I.[28] In 1968 the first experiment at Tantalus I was performed

using X-rays acquired from a storage ring in a synchrotron. Eventually Tantalus I had installed

ten beamlines with monochromators and supported multi-users and experiments. [59] Figure 2.17

shows a picture of the original machine.

23



Figure 2.17: Tantalus I which was built as a test
unit for advanced accelerator concepts. Research
on the Tantalus ring was discontinued at the be-
ginning of 1987 and in late 1993, it was accepted
by the Smithsonian National Museum of Amer-
ican History for display in their exhibit on Elec-
tricity and Modern Physics Collections.[28]

With the success of Tantalus I, the following years saw an explosion of synchrotrons being

built for the sole purpose of generating X-rays for users. By 1980 use of synchrotron radiation as a

applied research tool began to grow and publications including synchrotron radiation in the title

rose dramatically, Figure 2.18.

Figure 2.18: Number of published articles each year from
1961 to 1980 that included synchrotron radiation in the
title. Journal’s polled to generate this data were limited
to the applied journals, as to rule out any hits relating to
fundamental theory research.[11]

Today many third generation synchrotron radiation facilities are being/have been con-

structed. The term third generation typically indicates a synchrotron radiation source that pro-

vides significant lower beam emittance and an increase in the brightness of the radiation produced.[60,

61, 62] This is accomplished with the use of insertion devices such as wigglers and undulators.[63]

Undulators and wigglers are discussed in more detail in a later section.

Currently there are too many synchrotrons to list all of them in a readable format; with that

in mind Table 2.3 attempts to list the major synchrotrons currently in operation with their location

and electron beam energy. The data for Table 2.3 is complied from a variety of sources.[64, 65, 66]
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Table 2.3: Notable/Major Synchrotrons

Name Location Energy (GeV)
Australian Synchrotron Melbourne, Australia 3

LNLS Campinas, Brazil 1.35
Soleil Paris, France 3
ESRF Grenoble, France 6

ELETTRA Trieste, Italy 2-2.4
DLS Oxfordshire, England 3

BESSY Desy, Germany 4.5
SPring-8 Riken, Japan 8

CLS Candian Light Source 2.9
Tevatron Fermi National Accelerator Laboratory, USA 1,000

ALS Lawrence Berkeley Lab., USA 1.5-1.9
NSLS I Brookhaven National Lab., USA 0.8
NSLS II Brookhaven National Lab., USA 2.5-2.8

SPEAR (SLAC/SSRL) Stanford Linear Accelerator Center, USA 3
SURF III Gaithersburg, USA 0.386
DFELL Durham, USA 1-1.3
CAMD Baton Rouge, USA 1.2-1.5

APS Argonne National Lab.,USA 7
Aladdin Stoughton, USA 0.8-1.0
CHESS Cornell High Energy Synchrotron Center 5.5
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2.4.2 The Physics of Synchrotron Radiation

This section is meant to give an overall introduction to the physics that govern synchrotron

radiation. It is not meant to be an exhaustive treatment on the subject but enough to give the reader

a understanding of the process. With this basic knowledge a understanding of why this radiation

is so useful to researchers can begin to form and why synchrotrons are built the way they are.

Synchrotron radiation is generated whenever a electron at relativistic speeds is forced to

change direction. Obviously, there is energy loss whenever the electron is forced to change direc-

tion and Equation 2.25[67] gives the power radiating from an electron in the synchrotron acceler-

ator.

P =
2κe2γ2v4

3c3r2
(2.25)

Where γ is the Lorentz factor:

γ =
1√

1− v2

c2

(2.26)

κ is Coulomb’s constant , e is the elementary charge constant, v is the velocity, c the speed of

light constant, and r is the radius of the accelerator ring. It should be noted here that the angular

distribution of synchrotron radiation is distorted due to the doppler effect at the relativistic speeds

of the electrons. The distortion causes the radiation to have a pronounced ”gun” effect: it is

directed ahead in parallel to the motion of an electron and is in the shape of a slender cone.[28]

This means that synchrotron radiation will have a high collimation at creation.

Take for example the Center for Advanced Microstructures and Devices has a energy range

of 1.2-1.5 GeV and a radius of 2.928 meters. Thus at these parameters (we will use the high energy

range of 1.5 GeV) the power for a single electron is:

P ≈ 2κe2γ4c

3r2

≈
2(8.987× 109Nm2

C2 )(1.6× 10−19C)2(2935.43)4(3× 108m
s )

3(2.928m)2

P ≈ 3.99335× 10−7 watts

electron
(2.27)

This value may not seem to be significant but remember this is for one electron, this is a

huge number considering the number of electrons that will be typically injected into a an acceler-

ator. A minor modification of Equation 2.25 can allow us to calculate the energy loss per orbit in a
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synchrotron ring as shown below:

∆E = P

(
2πr
v

)
=

4πκe2γ4β3

3r
(2.28)

Where :

β =
v

c
(2.29)

If it were not for the RF cavities placed along the storage ring the energy loss from just the

electrons orbiting in the synchrotron would be a major problem.[68] Notice that the radiation loss

is inversely proportional to the radius of the synchrotron. Since the radius is set in stone once the

ring is constructed the selection of the size of the ring needs to be carefully considered. If energy

loss will be a large issue then building the ring with the largest radius possible will help minimize

the inherent energy loss found synchrotrons.

Taking the CAMD beamline (1.5 GeV) as our example once again and setting the β variable

to 1 (the assumption that v ≈ c is valid):

P ≈ 4πκe2γ4β3

3r

≈
2(8.987× 109Nm2

C2 )(1.6× 10−19C)2(2935.43)4β3

3(2.928m)

P ≈ 1.529× 10−4 GeV

electron orbit
(2.30)

Thus, beam energy will eventually reach a point where it can no longer maintain the beam

path in a orbit. A simulated decay of one electron in CAMD’s synchrotron is shown in Figure 2.19.

We now know two major things about synchrotron radiation: it’s highly collimated and

the electrons that produce it lose energy rapidly. The high collimation of the X-rays is actually

a benefit but the energy loss per orbit must be addressed. The energy loss is compensated by

placing RF cavities along the storage ring and they will be discussed more in the next section. The

following section discusses the mechanical aspects of what composes synchrotrons.
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Figure 2.19: Simulated power decay for one electron in a storage ring with CAMD’s properties.
This electron never receives a boost from RF cavities as it actually would in real life storage ring.

2.4.3 How a Synchrotron Is Built

A synchrotron is a cyclic particle accelerator, it is a variant of a cyclotron but whereas the

cyclotron keeps a constant magnetic and electric field the synchrotron does not.[68] The magnetic

field and electric field are used in conjunction to produce high intensity light/radiation, the mag-

netic field ensures that the particle stream moves in the correct manner/direction and the electric

field accelerates the particle stream of electrons to relativistic speeds. The first idea for the design

of a electron based synchrotron ever built can is sometimes attributed to Luis Alvarez4 but it was

actually Ed McMillan.[37] For clarity, all discussion in the rest of this chapter is concerned with

electron based synchrotrons.

When synchrotrons are described in theory the electron particle stream occupies a vacuum

container that is shaped like a large thin torus.[69] However, in practice, it is easier to use straight

vacuum containers that are joined with bending magnets on small curved sections. [70] This

ultimately leads to the inner ring having the shape of a polygon that approximates a torus. Modern

third generation synchrotrons can be described as having five major parts:

1. Electron Gun

2. Linear Accelerator

3. Booster Ring
4Alvarez has written that he had been trying to think up of a linear electron accelerator and McMillan came up with

better version.[37] The false attribution of Alvarez as the father of electron based synchrotrons is most likely due to the
fame surrounding Alvarez and his work on the first proton based synchrotron
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4. Storage Ring

5. Beamline

A generalized schematic of a modern synchrotron is shown in Figure 2.20.

Figure 2.20: A general representation of a typical synchrotron device. (1) and (2) Electron gun
and linear accelerator, typically they are quite close together, (3) Booster ring, this ring is found in
newer third generation light sources and retrofitted older generations. It allows the synchrotron to
operate in a ”top up” mode. (4) Storage ring, (5) Various beamlines for different experiments.[71]

The electron gun provides the electrons that are to be accelerated in the ring. There are

many type of electron guns that can be used for synchrotrons thermionic emission, photocathode,

RF sources and plasma sources are just a few of them.[15] Thermionic emission is popular and

widely used, a thermionic emission electron gun works on the same principles as your television’s

cathode ray tubes. The cathode is typically a tungsten-oxide disk that gets electrically heated to the

point of thermionic emission; this occurs at 1000oC. A anode, sometimes called a screen, located

near the focusing point of cathode gives short, very strong positive charge pulses which pull the

electrons away from the disk and into the linear accelerator.

There are three basic types of linear accelerators: electrostatic, induction, and radio fre-

quency (RF) models. The RF uses microwave radio frequency fields to accelerate the electrons to

relativistic speeds and exists in different types.[72] Induction methods use a pulsed voltage around

on magnetic cores to produce a electric field that propels the electrons to relativistic speeds. Fi-

nally, electrostatic methods accelerate the electrons by using a electric field between two separate

potentials.[72] The chamber of all linear accelerators, no matter what type, is under a vacuum of

10−11 torr or lower. This is to prevent the electron particle stream from colliding with anything
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that would slow them down.

The booster ring is the major advancement of third generation light sources over previous

generation light sources. The booster ring provides energy from microwaves generated in a radio

frequency cavity.[70] The booster ring will typically start an injection of electrons and ramp up

their energy to the desired value by using RF cavities. RF cavities are devices placed along the

storage and booster ring that will provide ”replacement” energy for the energy that has been

radiated away due to Equation 2.28. Eventually though due to imperfect vacuums the ring will

require a re-injection in order to bring the electron particle stream back to the desired electron

density.[73] Once the desired beam energy has been attained the electron beam with transfered to

the storage ring. [74, 75, 76] By using the separate smaller booster ring inside the storage ring the

storage ring never has to go down for injections. Figure 2.21 shows a snapshot of beam schedule

for 24 hours at CAMD, it undergoes periodic re-injections. If a booster ring is available then

periodic ”boosting” from the booster ring keeps the storage ring in the so called ”top-up” mode

where the current of the storage remains approximately constant. [69]

Figure 2.21: A typical day at CAMD (a second generation light source). Three injections periods
occur throughout the day with the beam having an average lifetime of 12.3 hours. Current level
at time of snapshot was 114.74 mA. It should be noted that even though this figure appears to be
similar to Figure 2.19 , the decay in this figure is due to a imperfect vacuum leading to electron
collision and loss.

Once the electrons are in the storage ring they will travel in orbit around the ring gener-

ating photons whenever magnets change their direction,[69] this is true for all synchrotrons. It

should noted that second generation light sources do not have a booster ring so their storage rings

must contain the RF cavities to replace the lost energy, although in practice all synchrotrons use

this technique regardless of having a booster ring or not. Eventually the electron particle beam

will be depleted of electrons, no vacuum is perfect and collisions will occur.[70] Third generation
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light sources have the booster ring to continually provide the storage ring with fresh electrons

but second generation light sources have shut down to prepare for re-injection of a new electron

particle stream.

Beamlines are the final part of any synchrotron and arguably the most important. Beam-

lines are where the X-rays that are being generated get used by researchers. The beamlines them-

selves are basically pipes that go to the source of the X-rays in the storage ring and allow the

newly generated X-rays access to the experimentalist’s workstation. Very often a monochromator

will inserted in a beamline before the X-rays can reach the hutch. The monochromator allows the

users to select which wavelength of X-rays make it into the experimentalists station. There is a

wide variety of uses that the light produced by synchrotrons can applied to. In the next section I

will give an overview of many of the most popular uses of synchrotron radiation.

Synchrotrons are similar to cyclotrons but synchrotrons offer significant benefit over cy-

clotrons which require strict disc-shaped containers. [72] When bending magnets placed inside

the accelerator alter the course of the electrons at these high speeds brilliant highly focused radia-

tion is given off. This synchrotron radiation is very useful for scientists5 and is the desired effect

for many synchrotron users.

2.4.4 Making Synchrotron Radiation Brighter

Just about every experimentalist uses X-rays can list a several reason why increased bril-

liance would be good for their experiment. Take spectroscopy, for example, they reach their high-

est spectral resolution when they have the smallest contact size possible but having the maximum

amount of flux possible. Thus having a more brilliant beam means they can reduce the size of

their vertical slits and achieve a better resolution. Crystallography experiments, have high re-

quirements on brightness, the closer they get to matching the incident beam to the crystal size the

better their diffraction patterns are which lead to better structure characterization.[77] In tomog-

raphy experiments greater brilliance can allow the experimentalist to reduce over exposure time

on samples thus reducing the overall time a experiment takes, if the sample is sensitive to X-rays

this is a boon.

There is no optical method for improving brilliance, you cannot focus the beam or cre-

ate a aperture that increase it. A electron particle stream with low emittance will have a high

5Synchrotrons were originally built by physicists for their research in subatomic particles and synchrotron radiation
was originally an annoyance to the physicists because it meant their electron beams lost energy every time they went
through a bending magnet. However, the many uses of this light were soon recognized, and researchers began to come
up with ways to use it.
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brightness.[78] Since emittance is defined as the product of the beam size and its divergence the

best place you can improve brilliance is in the storage ring itself.[60, 76] There are specialized

devices known as insertion devices which are carefully crafted magnets. The two most popular

insertion devices are undulators and wigglers.[63]

Undulators contain a regular array of alternating dipole magnets that creates a static mag-

netic field that forces electrons passing through it to oscillate and radiate which in turn produces

more radiation than a straight path in the synchrotron would have.[68, 73] Undulator’s, on aver-

age, result in a large increase in brilliance of the beam. A wiggler is very similar to a undulator

but its magnets are typically arranged in Halbach Array.[73] The Halbach array is the of mag-

net that you find on your refrigerator, meaning that one side is magnetic but opposite has had

its magnetic cancelled out by careful ordering of the magnetic components[69], as shown in Fig-

ure 2.4.4. The wiggler is basically two Halbach array sheets that force the electrons to oscillate.

Due to its similarity with that of a laser[79] it has more continuous spectrum with a higher flux

and shorter wavelengths than what a undulator produces. Figure 2.23 shows idealized schematics

for a wiggler and undulator.

Figure 2.22: This figure shows the effect on the magnetic flux of compounds when they are super-
imposed into what is called a Halbach array. The magnetic flux due to the alternating magneti-
zation will cancel itself out below the plane and double its strength (for the ideal case) above the
plane.

2.4.5 Materials Science With Synchrotron Radiation

The popularity of using synchrotron radiation for materials research has been well doc-

umented as having a wide variety of uses and applications in the fields of materials science[61],

physics[49, 57], chemistry[6, 8], biology[69] and medicine[55]. Table 2.4 lists the primary advan-
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Figure 2.23: a) Undulator schematic with (1) magnets, (2) electron beam, (3) synchrotron radiation
b)Wiggler schematic showing the Halback array (1), electron beam path (2), synchrotron radiation
(3), parallel mirrors used to create a a resonant cavity to trap the produced photons.

tages of it as a light source and Table 2.4 shows the experiments that are a mainstay at any typical

synchrotron facility.

Table 2.4: The Many Advantages of Synchrotron Radiation

Property Comment
Brightness/Intensity Light produced is billions of times brighter than conventional sources.

Energy Spectrum Can produce light from the infrared to hard X-ray wavelengths.
Beam Collimation No need for collimators as the beam has a naturally high collimation.

Polarization Naturally high polarization of the light.
Pulsed Emission Time resolved studies on the scale of ≤ 1 ns are possible in modern sources

One of the great advantages of working in a synchrotron facility is that your beamline sta-

tion will be right next to other beamlines each with their own specialty. Should you ever have

need of looking at your samples with a new technique or have general experimental setup ques-

tions then answers may be only a short walk away. The collaborative environment that is found

in synchrotron facilities is a great strength. In the following sections I will present a brief de-

scription of the common experiments listed in Table 2.4. These descriptions are not meant to be

an exhaustive introduction to the techniques (with the exception of the section on tomography)

but just a general introduction to them. Since the bulk of the data presented in this dissertation

was produced through synchrotron X-ray tomography experiments, Section 2.2, will cover the

tomography experiment using synchrotron radiation and will be a full description.
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Table 2.5: Experimental Beamlines Found at Most Synchrotrons

Experiment Use
Protein Crystallography Structure characterization of proteins

Powder Diffraction Structural characterization of materials
Small Angle X-ray Scattering Provides shape and size information of macromolecules

X-ray Absorption Spectroscopy Coordination information of atoms in materials
Tomography Non destructive technique for 3D information of materials.
Lithography Microfabrication technique.

X-ray Crystallography

X-ray crystallography is an experiment that determines the arrangements of atoms inside

a crystal. The arrangement of atoms is calculated from the way X-rays are scattered from the

electrons found around the atoms inside the crystal. When the X-rays scatter from the electrons

they scatter in directions predicted by Bragg’s law and a diffraction pattern is formed. This pattern

can then be converted into a three dimensional electron density map. The 3D electron density map

can then be used to derive the atom’s coordinates and their chemical bonds. [77] Figure 2.24 shows

a general workflow of the crystallography experiment.

Figure 2.24: A) A single crystal is need for the experiment. Growth of single crystals can be the
hardest part. [80] B) X-ray diffraction pattern formed due to Bragg’s law. [81] C) Diffraction
pattern is used to calculate 3D electron density maps. D) From the electron density maps a model
of the molecule can be derived. Many times at this step the experimentalist will continually refine
his model by going back to the diffraction data and itierativly improve his/her model.

X-ray crystallography at synchrotrons is overwhelmingly used for protein structure deter-

mination [82]. While conventional sources can provide the necessary resolution to determine the

structure of crystals with a small number of atoms (≤ 100) proteins have typically have over 10,000

atoms in a unit cell. The advantages of the high intensity of synchrotron light over conventional

X-ray sources makes it the perfect source for protein structure characterization. Use protein X-

ray crystallography for has become a wildly popular and looking at overall synchrotron radiation
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usage protein X-ray crystallography is probably the most widely used.

Small Angle X-ray Scattering

Small angle X-ray scattering (SAXS) measures the elastic scattering of X-rays at low range

of angles. The angular scattered data can be used to derive properties of the sample being mea-

sured. Typically, macromolecules are used with this technique to calculate their shape, size, pore

size and a variety of other properties. SAXS has unique advantages of having very little sample

preparation, non-destructive and can accept a wide variety of samples such as soot nanoparticles,

metallic glass, polymeric fibers and .[83, 84, 85] The experiment itself can be described as[69]:

1. Expose sample to X-ray beam.

2. Scattered radiation is measured with a detector placed perpendicular to the primary X-ray

beam.

3. Scattering data is measure at angles very small compared to the incidence of the primary

X-ray beam.

4. Data is converted into 3D model.

Figure 2.25 shows the above list in a simplified graphical representation.

The major obstacle SAXS users have to overcome is being able to differentiate the scattered

X-rays from the X-ray beam itself. An excellent analogy of the problem is one from astronomy, the

sun’s corona is normally not visible due to the brightness of the sun itself. During a lunar eclipse

the main light of sun is blocked and the corona becomes visible.[86] This is roughly the same

problem encountered by SAXS users, who have to block the primary X-ray beam. Conventional

X-ray sources can be used for SAXS experiments and there are many techniques to produce a

highly collimated and focused X-ray beam available.[72, 15, 67] However, the natural brilliance

and high collimation of synchrotron light sources makes SAXS beamlines a common sight at all

synchrotron facilities.
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Figure 2.25: a) Block diagram of the generalized SAXS experiment. b) Simulated two dimensional
image of SAXS scattering experiment of a perfect sphere. c) Simulated spectra of a typical SAXS
experiment, y-axis is in arbitrary units while the x-axis is in reciprocal wavelengths.

X-ray Absorption Spectrometry

When X-rays hit a sample they are either pass through, get absorbed or scattered.[87] For

the X-rays that do not get scattered their intensity passing through the sample is governed by:

ln

(
I0
I

)
= µxρ (2.31)

Where I0 is the original beam intensity, µ is the linear absorption coefficient, x is the thickness of

the sample, ρ is the density of the sample and I is final beam intensity. µ depends on the density of

the material and the atoms that compose it. At certain energies the absorption increases dramat-

ically, these energies of increased absorption are called edges. When an edge occurs the energy

of the X-ray was enough to cause the excitation of a core electron to produce a photoelectron.[87]

Figure 2.26 shows a graph that illustrates the edge concept.

This photoelectron’s energy corresponds to the binding of the shell of the element left

from. This information is useful in characterizing a wide variety of materials and the sample

can be any phase, crystalline or amorphous and the technique is non-destructive. [87] XAS ex-

periments themselves are typically divided into two types X-ray absorption near edge structure

(XANES) and extended X-ray absorption fine structure (EXAFS).[15, 67] There is also a varia-

tion on this technique, called X-ray photoelectron spectrometery (XPS), that has developed into
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Figure 2.26: Absorption vs photon energy
plot for the element Cobalt. Absorption
spectra vary across all the elements el-
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others have none. XAS a prized technique
at probing the local electronic structure of
materials.[88, 89, 90]

popular technique totally separate of XAS. XPS uses a constant energy for its X-rays rather than

scanning through an absorption edge like XAS.[15] The ejected photoelectrons from the sample

have their kinetic energy measured and since their kinetic energy is dependent on their binding

energy different chemical species can be identified.

X-ray Lithography

X-ray lithography, which is closely related to photolithography, is a technique that has been

developed to make integrated circuits[91, 92] and microelectromechanical (MEMS) devices[93]. Of

all the beamlines and instruments found in synchrotron facilities the X-ray lithography facilities

will be the ones most likely to see use by both industry[94] and academics. X-ray lithography

benefitted from synchrotron light much like the previously mentioned techniques in that the high

beam collimation and brilliance are the primary reasons to synchrotron facilities for X-ray lithog-

raphy. With the help of synchrotron light’s greater flux and brightness much deeper structures

can be etched out creating three dimensional microstructures.[95, 96] This is known as Deep X-ray

Lithography (DXRL) and is a core part of the LIGA process, which stands for X-ray Lithography

Galvanoformung (Electroforming) and Abformung (Molding). DXRL makes use of a mask mate-

rial that is transparent to X-rays but have a material that absorbs X-rays deposited on it in a desire

pattern. The mask is then exposed to the synchrotron light at wavelengths of ≈ 0.1 nm, or less de-

pending on the technique, and a pattern is etched out on a resist layer below the mask.[97] A resist

layer is a chemical coating that will under a chemical reaction when it come into contact with the

light.[98, 99] These resist layers specifically designed to have precise reactions that will benefit the

final product produced. Once a pattern has been etched the electrodeposition can begin, this stage

involves chemical deposition by electrolysis filling the voids with the desired atoms/compounds.

This produces the required micro-structure for a one time fabrication but most fab projects have
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the intention of making more than one device. After the electrodeposition a mold can be created

by striping out out the resist layer still present in the new deposition layer.[91] The steps listed

above a gross oversimplification of the process but they do cover the major steps of the technique.

The basic setup of a X-ray lithography instrument is shown in Figure 2.27 and Figure 2.28 presents

the workflow of a basic LIGA experiment.

Substrate

Table/Base

X-rays

Resist
X-ray sensitive

X-ray
Transparent

Mask 

Mask

Figure 2.27: A block diagram of a Deep X-ray Lithography instrument. The table/base is actu-
ally one of the most important components since the mask can not touch the resist layer align-
ment of the two must be highly precise and thus the base that holds the sample must have high
stability.[100] The substrate is typically some for of silicon wafer, silicone wafers as a substrate
is well studied and understood making it an ideal choice. There are many types of resist layers
regardless of the one used its purpose is to ensure that when X-rays come in contact with it there
will be a favorable reaction.[98, 99] The mask is composed of two parts, one part is transparent
to X-rays and surrounds the other component. It’s main function is to maintain the shape of the
mask by preventing deformations.[100] The other component is the material in the mask that is
the X-ray shield for the experiment

Synchrotrons being used for nano-structured and micro-structured devices is very com-

mon and X-ray lithography as a part of LIGA is a popular technique but there a many other

options available to create these devices.[91] While not every synchrotron will have a X-ray lithog-

raphy beamline they typically will have some type of facility for producing microstructures as the

advantages of synchrotron light are too great to be passed up.

All of the techniques presented in this section benefit and take advantage of a synchrotrons

ability to produce intense, energy selectable X-rays. Much of the research achieved with these

techniques could not be achieved with conventional X-ray sources.[69] Synchrotron light facilities

have clearly moved beyond the moniker ”parasitic” facilities and are a staple of modern materials

research.
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(a) (b)

(c) (d) (e)

Figure 2.28: The base is not shown, the substrate is colored black,resist layer yellow, mask shown
slightly above resist layer as blue, the transparent portion, and black, the X-ray blocking material.
a) Exposure stage, X-rays are not shown but in the experiment they would hit perpendicular to
the surface. b) After exposure and mask is removed from view c) Electrodeposition stage voids
created in previous steps filled with desired atoms/compounds. d) Striping stage where the resist
layer still left is removed this can be done chemically or via physical methods. e) The mold is now
ready to be used to mass produce the device.[101]
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2.5 Diffusion Theory

The subject of molecular diffusion is wide and deep, research into molecular diffusion

finds itself in many fields like atmospheric sciences[102], catalyst design[103], nanotechnology[104],

crystal growth[105] and fluid flow[106] are a few examples. A wide range of techniques like

NMR[107], neutron/light scattering[108, 109], raman spectroscopy [110] and synthetic zeolites[111]

have been used to quantify and measure diffusion properties of materials. Molecular diffusion is

a cornerstone of many chemical processes and it is now surprise that bast amounts of research on

the subject has been conducted.

On first glance, the subject of the mathematics of diffusion has far less research available

in comparison6. The field of diffusion research is alive and well with a wide range of topics, solv-

ing complex boundary conditions found actual systems[112, 113] or abstract higher dimensional

diffusion[114] to name just two examples. There lack of research on fundamental diffusion laws is

simply due to the fact that it has already been thoroughly covered by another. John Crank released

the first edition The Mathematics of Diffusion [115] in 1956 and has been called called the authorita-

tive7 source on the mathematics of diffusion. The book offers comprehensive solutions to the most

common diffusion problems and is easily accessible. My pontification on Crank’s mathematical

contribution to diffusion theory is not without reason. The diffusion model used to describe the

polymer blends presented in this research were lifted verbatim from Crank’s book,[115] no other

sources were used. What follows in this section is not meant to be a all encompassing introduction

to the diffusion theory. It is far too large and has already been well covered by Crank. Rather, it

will explain a polymer additive problem called ”blooming” in terms of a diffusion model, taken

from Crank, and justify the selected model and the assumptions used.

Blooming is a process of diffusion and/or nucleation of small molecules on the surface

of a polymer blend. It is known that changes in the blend morphology in polymers, such as

blooming, can lead to the reduction or even elimination of the desired polymer blend functions.

Flame retardant blooming is cause for concern in industry and is also an interesting scientific

problem when viewed as a diffusion process. Synchrotron X-ray tomography has developed into

an excellent method for three-dimensional imaging of polymer blends and could be used to study

the blooming of flame retardants in polymer blends. Before this process can be studied a general

diffusion model for blooming must be chosen, consider Figure 2.29:

6For example a search for ”Mathematics Diffusion” in the internet search engine Web of Science yielded 222 hits
while a corresponding search of ”Molecular Diffusion” yielded 31,231 hits.

7Google Scholar states that Crank’s book on diffusion has been cited over 9,000 times. Crank himself appears to
have been cited over 15,000 times.
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Dt

Figure 2.29: Graphical representation
of the diffusion process in two dimen-
sions. The diffusional process depicted
is called a point source diffusion model
due to uniform distribution of particles
surrounding a central point.

The point source diffusion described in Figure 2.29 can be described as a 2D approximation

of the blooming process. This process can be accurately described by the following model[115]:

C =
M

2
√

πb2

4

e
−
“

x2

b2

”
+ c (2.32)

Where C is concentration, M is the total amount of substance that will be diffused at time t=0 and

x=0, c is the value that the function will converge on as x goes to infinity and can be thought of as

the average concentration. The value of b is known as the diffusion length and represents how far

diffusion has propagated. There is a relationship between the diffusion length b and the diffusion

coefficient[115]:

D =
b2

4t
(2.33)

b =
√

4Dt (2.34)

Using Equation 2.34 we can derive a three dimensional version of Equation 2.32 that con-

tains the diffusion coefficient [115]. This model is also called a point source model and can be

defined as:

C = ae

“
−r2

4Dt

”
+ c (2.35)

Using this model we have the ability to calculate the diffusion constant for a given system.
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The diffusion coefficient8, D, is measured in units of length squared per time (i.e. cm2

s ) and is

proportional to the velocity of the molecules that are diffusing.

Equation 2.35 is the model used to study the blooming of flame retardants in polymer

blends. Many other models have been solved for hollow spheres, cylinders, torus, cuboids, etc.

and with a variety of boundary conditions.[115] With so many other models available choosing the

correct one becomes tricky. Picking a model without knowing what the structure the experimental

data will take is haphazard and will likely result with a poor model. The data for the blooming

experiments presented in this research (which will be discussed in full detail in later chapters)

proved to be strikingly similar to the 3D point source model making the choice of Equation 2.35

easy.

Now that we have general model to fit to our experimental data what can it tell us to expect

when dealing with spherical diffusion of flame retardants in polymers. Figure 2.30 investigates

the behavior of Equation 2.35 as time evolves.

Assuming that we have chosen the correct model, Figure 2.30 gives us a glimpse into how

experimental data should behave as it diffuses over time. It also implies some conditions that are

important for us to achieve a good fit. Our model will work best when the experimental data has

diffusion domains that are spherical, non-overlapping and isolated from any objects that would

perturb the concentration gradients in the domain. If those conditions are met then calculating

diffusion coefficients from tomography data should be possible and accurate.

2.6 3D Image Processing

This section will cover the most common techniques and algorithms that are used in my

research. These are not algorithms to used to reconstruct data from projections or convert absorp-

tion data to chemical concentrations. The algorithms presented in this are concerned with extract-

ing desired data out of a chemical concentration volume. First a note on the way this section is

presented. Since this section is devoted to algorithmic development computer code is needed. It

was decided that instead of presenting actual code pseudocode would be presented instead. Ac-

tual code can be messy and overburdened with unnecessary syntax that hinders its readability.

Whenever pseudocode is presented it will appear in the form:

8While not directly useful to the tasks at hand there is an interesting relationship for D that can be defined mathe-
matically as D = kbT6πηr. Where ν is the viscosity, T temperature, kb is Boltzmann’s constant and r the radius. This
equation is known as the Einstein-Stokes Relation and it shows that D depends on viscosity, temperature and the size
of the molecules diffusing.
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Figure 2.30: Various graphical depictions of the diffusion model for a spherical point source (Equa-
tion 2.35)over time. a) Each line represents a new time step in the model. Important features in-
clude the decreasing amplitude and increasing diffusion length parameters (a and b respectively)
of the model as time evolves. b) 3D plot of the model with axes for r radius,C concentration and
Dt the diffusion length. c) Graphical 3D representation of the model.
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1 x = [1,2,3]

2 y = Sum(x)

3 If y != 6

4 Print("Error")

5 Else

6 Print(y)

The pseudocode tries to be as clear as possible if there is any ambiguity. If there any

difficulty with reading the pseudocode itself every algorithm presented in this section has a fully

functional version written in Mathematica or Matlab in the Appendix.

The concepts discussed in this section are concerned with digital image processing, or to be

more specific 3D image processing. 3D image processing is concerned with taking spatial data and

producing either new desired information or making the spatial data easier to manage.[116] The

field of image processing is large and has many subfields such as computed tomography[117, 118],

computer vision[119], morphological/geometric transformations[120], medical imaging[121, 122],

face recognition[123, 124], and image restoration[125, 126, 127] are a few of the prominent fields.

I won’t try and cover them all, just the ones used in this research. The techniques I use in my

research can be broadly defined as belonging to one of four classifications given in Table 2.6. The

table gives a brief description of the algorithm and whether or not new data is generated in the

process of using it. Please note that this list is not considered a standard, it is simply my own own

views on the types of algorithms that I write and may or may not be similar to other lists.

Table 2.6: 3D Algorithm Classifications

Classification Description New Data?
Object Extraction Separates wanted/unwanted data New 3D data

Pattern Recognition Detects conditions set by user No
Systemization Organizes data in a more efficient way New data typically 2D

Transform Applies a operation that alters the data Either

Before discussion of the main algorithms I employ, a basic definition of terms and concepts

of some simple, though fundamental, algorithms are in order.

2.6.1 Thresholding

Typical two dimensional images are composed of individual elements known as pixels.

Pixels can have a wide range of values from simple binary, 16 bit, 32 bit, grayscale, RGB values,

etc.[116] Grayscale is common image format in it pixels can range in values between 0 and 255
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with 0 representing white and 255 black. Figure 2.31 shows a grayscale image of a CT brain slice

and some of its corresponding pixel values.

Figure 2.31: A digital image and its grey codes.[128]

Thresholding is perhaps the simplest image segmentation technique available. It is a trans-

form algorithm since it used to reduce a regular image into a binary form of that image. An image

that has been through a threshold algorithm has had each of individual pixels set to ”0” or ”1”

if there value is greater or lower than some previously chosen threshold value. The effect of a

thresholding algorithm can produce an entirely new 3D data set or overwrite the old data. This is

left up to the discretion of the user but in practice overwriting data is considered bad form. The

concept of foreground and background voxels becomes important here. A foreground voxel is

typically associated with the value of ”1” while background voxels are ”0”.[129] Most often the

object of interest is given the foreground values and everything else the background. Figure 2.32

shows two graphic representations of background and foreground pixels of a matrix defined as:

Image =


0 1 0 0

0 1 1 0

0 0 1 0

0 0 0 0


Figure 2.31 shows a entire image and a small section of its grey codes. A greyscale image

such as this is easily used with thresholding algorithms to produce binary images. With the proper

selection of a threshold value Figure 2.31 can be transformed into Figure 2.33.

Binary images have a number of advantages in image processing. They have small mem-

ory requirements due to their 8 bit nature, have special storage formats such as octree and raster

encodings [130] that can further reduce the memory requirements and in certain cases speed up

data analysis.
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(a) (b)

Figure 2.32: a) Grey squares represent the foreground pixels and white squares the background
pixels. b) Another representation of foreground/background pixels with black circles being fore-
ground and white circles background pixels. This representation is more abstract than the first but
is useful when discussing pixel connectedness and neighborhoods which is to be discussed later.

Figure 2.33: A binary image constructed by applying a
threshold algorithm on the greyscale image from Fig-
ure 2.31.[128]
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Thresholding itself can be categorized into six different groups such as histogram shape,

spatial, local gray level, space clustering, entropy and object recognition methods.[14] Threshold-

ing is the easiest segmentation available and is widely used as a first step in many other tech-

niques.

2.6.2 Neighborhoods

Neighborhoods is defined as the collection of pixels surrounding a chosen center pixel.

There are two ways to define a define a neighborhood in two dimensions with 4 or 8 of the nearby

by pixels being included.[128] Figure 2.34 shows both definitions in graphically form.

(a) (b)

Figure 2.34: a) 4 nearest neighbor representation with the coordinates of the neighbors being set
along the discrete horizontal and vertical axis.

When the dimensions of an image are increased to three and we have volume image rather

than the traditional flat images the neighborhoods obviously become more complex. Since the

term pixel is a two dimensional term the word voxel comes into play. A voxel is a data value

in a 3D volume, which represents a value with coordinates in three dimensional space, this is

analogous to a pixel in two dimensions. A visual representation of a voxel is shown in Figure 2.35.

Just as there were neighborhoods in 2D, the 3D case is no exception. With the third dimension

there are three types of neighborhoods that can be defined. Figure 2.36 displays all three possible

representations. The selection of which neighborhood to use in a algorithm has a direct impact on

the speed and performance of the algorithm. [129] Picking a 6 neighborhood structure will lead to

less calculations done but you give up the extra information/precisiono of 18 and 26. give.
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Figure 2.35: Visual representation of the central voxel as
the dark sphere in the center of the 3×3×3 grid of light
gray voxels.

2.6.3 Edge Detection

Edge detection is used in two and three dimensional image processing to find borders be-

tween objects.[129] This is a object extraction method and is widely studied technique with many

variations on how to perform it.[116] Simple edge detection aims at labeling the pixels/voxels at

which their values sharply change near their neighbors. Edges can be classified into two differ-

ent types, viewpoint independent and viewpoint dependent.[128] Viewpoint independent edges

are what would be traditionally thought of as images and they represent boundaries between ob-

jects, surfaces and shapes. Viewpoint dependent edges are found in rapidly changes images (i.e.

movies). For the purposes of this research all the edges can be considered viewpoint independent

since our data is static 3D volumes of data.

The Canny filter method is considered one of the oldest and is one of the most cited tech-

niques for edge detection.[116] Other methods for calculating edges in images are many and di-

verse. [126, 5] For the purposes of this research a modern edge detection algorithm is overkill.

Sufficient results can be obtained by thresholding our based on a chemical concentration or ab-

sorption value of our choosing to produce a binary image of the desired components. Once in

a binary image format the edge detection algorithm becomes a nearly trivial loop as shown in

pseudocode below9.

1 for slice = 1 to numSlices

2 for row = 1 to numRows

3 for col = 1 to numCols

4 if Voxelat(vol,slice,row,col) == 1

9This pseudocode is for a 6 nearest neighbor check, 16 and 27 nearest neighbor versions are simply linear extensions
and have more lines of code.
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(a) (b)

(c)

Figure 2.36: a) The 6 nearest neighbors of a central voxel. b) The 18 nearest neighbors. c) The 26
nearest neighbors of a voxels. Selection of which neighborhood to use can be of great importance
in a image segmentation study.
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5 and Pixelat(vol,slice,row,col-1) == 0

6 and Pixelat(vol,slice,row,col+1) == 0

7 or Pixelat(vol,slice,row-1,col) == 0

8 or Pixelat(vol,slice,row+1,col) == 0

9 or Pixelat(vol,slice-1,row,col) == 0

10 or Pixelat(vol,slice+1,row,col) == 0

11

12 SetVoxel(newVol,slice,row,col) = 1

2.6.4 Connected Components

Connected components is an object extraction algorithm. In fact one can argue that it is

the most fundamental and basic type of object extraction available. In 3D, the connected com-

ponent algorithm searches through a binary volume and identifies foreground voxels that are

adjacent/connected to each other.[128] Where a connection/adjacency can be defined in the since

of neighborhoods as discussed previously. All foreground voxels that are determined to be con-

nected are labeled with a unique identifier.

The algorithm iterates through each volume element of the data by column, row and slice.

If the element is not a member of the background voxels then we set the neighboring elements to

the label value. We find the neighbors smallest label attached to one of it’s other neighbors and

assign it to the current element. If there are no neighbors, then this voxel is a unique island and we

should increase the label value and continue. If there are neighbors with labels then the element

is assigned the lowest equivalent label found from its neighbors. Pseudocode for this procedure

is listed below:

1 label = 1

2 labels = zeros(sizeof(src))

3 for slice = 1 to numSlices

4 for row = 1 to numRows

5 for col = 1 to numCols

6 if Voxelat(src,slice,row,col) == 1

7 neighbors = getNeighborsVals(labels,slice,row,col)

8 if All neighbors in labels are empty

9 linked(label) = label

10 SetVoxel(labels,slice,row,col) = label

11 label++

12 else

13 L = neighbors

14 SetVoxel(labels,slice,row,col) = min(L)

Connected components has found itself to be extremely useful in variety of fields.[116]
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Due to its usefulness it has been extensively improved and modified for various tasks such as

taste evaluation of sponge cake [131], automatic detection of neurological diseases [117] and com-

puter aided diagnoses and surgery [121, 122]. Each of previously mentioned subjects requires a

connected components analysis in order to work but each has separate requirements. Evaluating

the size of air bubbles in sponge cake can be far less strict than computer aided surgery requires.

Computer aided surgery on the other would require extremely fast computation but may not care

about the efficiency of algorithm. A variety of modifications of the connected components al-

gorithm can be found, such as a fast 2 pass version [132], a specialized noisy/fuzzy component

labeling[133], competitive labeling that improves the accuracy of the shapes extracted [134] and

a version that can extract components despite a distortion/shearing of the volume[135]. Each

of these algorithms presents pros and cons in using them and the researcher must take care in

choosing which when to apply to his/her data.

2.6.5 Collision Detection

In a collision detection algorithm the code checks for collisions/intersections between two

or more objects. Large amounts of work has been put into algorithms for collision detection.[136]

Chemical physics simulation [137], biomechanics simulations of human movement[138], robot

movement AI[139] and all video games[140] require collision detection. Some systems, such as

billiards or bowling, can be simulated as rigid body of motion with elastic collisions and systems

such as this can have relatively simple algorithms. Systems such as air traffic flight control require

a more complex algorithm.[141]

All collision detection algorithms can be divided into two four approaches: space-time

volume intersection, swept volume, interference detection and trajectory parameterization.[136]

In trajectory parameterization the collision detection algorithm calculates the instants of the colli-

sion before the objects ever actually intersect. This method uses the trajectories and positions of

the objects and make it ideal for things like air traffic control.[141] Space-time and swept volume

algorithms are designed for simulations that will react to a detected collision but the simulation

will not end, examples include video games and multi-particle physics simulations.[142] The in-

terference detection method works by checking for any collisions in a static environment and if

none are found advance to the next step and check for more collisions.

In our case the volume intersection method is by far the best choice. Without discussing

the exact nature of the data to presented in later chapters it is hard to justify the simplifications

that I will use in the rest of the this section. For now just trust that the 3D image analysis required
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by the polymer blend data does not require the prediction of real time collisions, just where the

collision occurs. A simplification used to simplify this calculation is to treat all objects as if they

were spheres. This simplification actually does not contradict the nature of the 3D data and this

will be discussed in later chapters.

The collision detection algorithm used takes static objects labeled by the connected com-

ponents algorithm and checks for collisions, if none our found we increase the radius of the object

and re-check until a collision is found. Once a collision is found assign the save the radius and

move on to the next object. All that this method requires is a list of our objects in the 3D volume,

which is readily provided by the connected components algorithm, along with their volume and

approximate spherical/cylindrical radius. None of the other chemical/volume data is required at

this point to determine the points of collisions. Pseudocode for this collision detection algorithm

is listed below:

1 #labels variable is the result from a connected component algorithm

2 for object = 1 to [Number of Objects]

3 while r <= MaxRadiusThreshold

4 coords = GetSphereCoordinates(object,r)

5 list = VoxelsAt(labels,coords)

6 if list is empty

7 r++

8 else

9 objectRadius(i) = r

10 break

2.6.6 Domain Extraction and Neighbor Finding

Frequently when dealing with experimental 3D data we find that volume shows a ex-

tremely chaotic and messy system. In order to effectively fit our data to a chosen model or to do

just simple calculations of phases of interest a algorithm has to be developed to specifically ad-

dress the issues of that sample. The flame retardants in polymer blends tend to begin as highly

concentrated ”lumps”. These lumps then diffuse over time and the desire to study those lumps

have lead to the creation of the algorithm described in this section. We have to enforce certain

conditions on our algorithm in order to ensure that data we segment out can be used by our dif-

fusional model. The conditions are:

• Domains must be spherical. The closer they are to being perfect spheres the better. Our

model is designed for spherical distribution, no other shapes.
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• The domains can not overlap with other domains. Overlapping domains result in concen-

tration gradients meeting and this is not accounted for in our model.

• Domains should be isolated from air bubbles, cracks and anything that would warp or en-

hance the concentration gradients in the domain.

With our restrictions listed, let’s state the things that would improve our fit or improve our ability

to work with the data.

We will have a lot of data, each of the hundreds (or thousands!) of domains will have

parameters of label, radius, centroid, volume, voxel XYZ points, bounding box and many more.

Let’s assume that on average each volume initially has 1000 different domains (this isn’t a unrea-

sonable number for a first pass). Let’s also assume that the average discrete volume of each of

these domains is 100 voxels. Label, radius and volume are all scalars but the bounding box is a

6 component vector and with the average discrete volume being 100 voxel thats 100 XYZ points

(total of 300 values) we need to store.

1000 domains× 3 scalars× 6 components× 300 XY Z = 5.4× 105 values

So we have on average 5.4×105 objects to keep track of. That number is actually an underestimate

since later on we will define new variables that need to be tracked and saved. Keeping the objects

saved in a logical manner is just half the fight, we also need to be able to quickly process the data

for comparisons and cross references. A efficient, flexible and powerful data format/database is

needed to keep track of all this data, ASCII tables will not do. If our restrictions on our domains

don’t trim down the number of domains to a manageable number we need to consider further

steps to reduce the number of domains but in a way that improves the final result and is not

arbitrarily removing domains.

One such removal criteria can be small domains. Small domains don’t provide as much

benefit as larger ones, there is simply less data to contribute. Computationally keeping track of

small domains is wasteful, why store a domain that has only contributes 10 voxels. If possible,

removing domains whose volume falls below a certain threshold would be desirable.

The domains that we will look at will have a set radius that was calculated at the boundary

defined by the thresholding algorithm. If the domain is sufficiently isolated from other domains

then an extension of this radius to include more voxels would be good. We obviously can’t arbi-

trarily increase random domains radii. We will have to calculate a way to systematically increase

the radii of domains that are isolated but not increase the radii to a point that they would overlap
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other domains.

To calculate diffusion measurements around the pockets of high concentration in the sam-

ple while keeping in mind our restrictions and desires, a new algorithm was developed. This

algorithm has the following features that attempt to address the restrictions and desires discussed

above:

• All data stored in HDF5 format for long term storage and immediate analysis.

• Conditional test to remove domains with small volumes.

• Nearest neighbor algorithm developed to systematically increase radii to their maximum

possible value.

• Conditional test determine if domain is spherical enough.

• Connected component algorithm does not allow for overlap to occur.

• Automatic identification of air bubbles and cracks.

How the Algorithm Works

This section covers the theory and logic behind the algorithm developed to extract do-

mains of interest from the experimental data. The primary goal in the development of this algo-

rithm was achieve excellent domain extraction but as a secondary goal it was the author’s desire

to write it in a versatile and multifaceted fashion. In other words each major part of the algorithm

is completely interchangeable with another algorithm that performs the same function. For in-

stance, this algorithm contains a connected components code section that is essentially the same

one from Section 2.6.4. If the user desires to use his/her own version of the code then in theory

all he/she should have to do is rewrite their code to output their data in the format that this al-

gorithm reads. Effort was taken to make sure that all data input/output was clear, concise and

easy to implement. This was done for future code reusability and code readability. The distinct

separations between each major step makes reading and comprehending the code much easier.

This design has been somewhat tested and seems to perform adequately in this manner. Below is

a list that has the general steps that algorithm goes through in a typical run:

1. Using a basic threshold algorithm on the volume, identify the foreground voxels as having

high bromine concentration and the everything else being background voxels.
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2. Using a connected component algorithm on the binary volume. Count and label each set of

voxels that are connected as one unique object or ”domain”.

3. For every labeled domain calculate the centroid, volume and a 1x3 vector that represents

widths of the smallest enclosing bounding box. Assign these values to the labeled domain.

4. User determines if connected components results are acceptable. If they are not go back and

threshold at a new value.

5. Remove all labeled domains that have volumes less than a selected threshold.

6. Remove all labeled domains whose bounding box widths don’t approximate the lengths of

a cube. This is a conditional meant to gauge how close the domain shape comes to a sphere.

7. For every labeled domain calculate the distances to all other domains.

8. For every labeled domain find its nearest neighbor.

9. For every labeled domain assign a radius value that is equal to half the distance to its nearest

neighbor.

10. User decides if results are good. If they are store all data in a hierarchal format supported by

HDF5.

Mathematica code that employs this method is given in Appendix 6.4. Pseudocode and a

flow diagram for this method is shown in Figure 2.37.

Figure 2.38 shows a mathematica simulation of the nearest neighbor code (corresponds to

steps 7-9) in the algorithm.

Most traditional 3D image processing algorithms are designed to be fully automatic and

with the exception of starting it up for the first time one can leave most it unattended. The desire

for full automation is certainly tempting, however, I have designed this algorithm to have manual

input at 2 stages. The major reason for placing manual input sections into the code is the incredible

range of samples that a typical tomography beamline can produce. I have personally imaged or

analyzed polymer blends, geological rock samples, parrot beaks, cat claws, soil samples and many

objects over the past few years. Each one of the samples was entirely different in terms of reso-

lution, noise, contrast and size, all factors that have major impact on image analysis algorithms.

Just changing X-ray energies in the tomography experiment can lead new phases showing up in

a sample. Thus, the two manual input stages are provided so the user doesn’t accidently waste
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binaryVol = zeros(numSlice,numRows,numCols)
for slice = 1 to numSlices

for row = 1 to numRows
for col = 1 to numCols

if Vol(slice,row,col) >= threshold
binaryVol(slice,row,col) = 1

[numLabels,Labels] = ConnectedComponent(binaryVol)
for i = 1 to numLabels

domains(i,1) = calcCentroid(Labels(i))
domains(i,2) = calcVolume(Labels(i))
domains(i,3 to 5) = calcBoundBox(Labels(i))

for i = 1 to numLabels
[nx,ny,nz] = domains(i, 3 to 5)
[dxy,dxz,dyz] = Abs[(nx - ny),(nx - nz),(ny - nz)]
avg = Mean(dxy,dxz,dyz)
If domains(i,2) <= volThresh OR avg <= sphereThresh

Delete(domains(i))

domains(All,6) = 10000
for i = 1 to numDomains

for j = 1 to numDomains
If i == j

break
dist = EuclideanDistance(domains(i,1),domoins(j,1))
If dist < domains(i,6)

domains(i,6) = dist/2

2-3

1

5-6

7-9

Label
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Radius
BoundBox
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HDF5

Figure 2.37: Flow diagram of the algorithm and the corresponding pseudocode. The numbers
indicate which portions of code are executed in the flow diagram. The numbers are also directly
related to List 10. In the flow diagram portion, rectangles represent code that can only produce
new data, diamonds represent code that has the power to eliminate data, trapezoids do not rep-
resent code but rather the user supplying input to the algorithm about what it’s next step should
be. The HDF5 table simply represents saving the data in that format. There are two other miscel-
laneous objects, start and delete, they do not represent code and are self-explanatory.

computation time on bad data. The two manual steps are 4 and 10. At these stages the algorithm

waits for the user to accept or reject the results that have been produced so far.

The first manual input occurs after the connected components code (step 3), this is the

place that causes the most errors in our image analysis. If the connected component algorithm

produced either too many or too few objects this would be cause for a rejection of the results.

This typically means the threshold value was poorly chosen in step 1 and starting over with a

new threshold value is in order. Step 9 occurs after the nearest neighbor code, there are no typical

reasons for failure at this step. Since it is the last step before writing the results a manual input

was placed here as a catch all, errors at this step are fairly rare. In the case of a error the user can

choose to rerun the nearest neighbor code and hope for the best or he/she can go back to step 4

and double check their connected components results. If the user had bad connected component

results and did not correct them that would certainly lead to failure at step 9. Otherwise, the best

way to determine where the error is to perform a iterative process of running and rerunning the
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(a) (b)

(c) (d)

Figure 2.38: a) Randomly chosen sample domains with various radii, these are meant to represent
the domains of high hexabromobenzene concentration in the sample. b) Lines are generated for
every possible pair of domain connections. This is step 7 of List 10. c) The lines are then culled
until the only connections that remain are the ones that represent the nearest neighbor domain
pairs. Step 8 of List 10. d) The domain’s radii are then set to half the distance to their respective
nearest neighbor. Step 9 of List 10.

algorithm to find the error.

Once a user has become an expert with data analysis of particular samples he/she can of

course automate the algorithm fully with a minimal rewrite of code.
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Chapter 3

3D Chemical Distribution of a Flame
Retardant and Synergist in a Polymer
Blend

3.1 Introduction
The dream of 3D chemical analysis for material science investigations is coming true with

new advances in data acquisition and image processing.[1, 2, 3, 4, 5] Recently, synchrotron X-ray

tomography has developed into a fast, reliable method for three-dimensional imaging of materials

at the micrometer distance scale.[6, 7, 8, 9, 10, 11] While invasive microtome-and-image still has

applications in geology [12], biology [13], and the Visible Human Project [14], full 3D imaging

methods are needed in materials science for reasons of sample throughput and data quality. In

this work, we investigate the 3D concentration distribution of a flame retardant throughout a

polymer blend, especially at the interface with fiberglass reinforcement bundles.

Three-dimensional, and even higher dimensionality, imaging is used to investigate a vari-

ety of polymer structure and processing issues. For the new process of high shear rate thermoplas-

tic powder injection molding, synchrotron X-ray tomography of silica particles within the matrix

shows flow effects beyond those predicted with Newtonian flow models, indicative of wall slip

or surface roughness in the mold.[15] A laboratory micro-focus X-ray source yielding images with

near 4 µm voxel size at 25 keV was used to image voids and cracks in fiber-reinforced compos-

ite laminates.[16] To more easily visualize cracks, an X-ray dye was forced into the sample, thus

enabling observation of cracks with sizes on the order of 20% of the voxel size. X-ray absorption

tomography can yield inadequate contrast for blends with similar elemental composition; in that

case, X-ray refraction differences can sometimes be used to enhance contrast, as shown for a blend

of polystyrene and polymethylmethacrylate, imaged at 17.7 keV with 3.14 µm voxel size.[17] A
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high-strength, thermal-insulating foam, consisting of glass hollow microspheres imbedded in an

epoxy resin was imaged in 3D at 9.7 keV.[18] The microsphere mean diameter was 35 µm, which is

resolved nicely with the 0.7 µm voxel size. The images clearly show the three phase system: glass,

air, and resin. The images were then analyzed to yield the microsphere size distributions, both

sphere diameter and wall thickness. Interestingly, refraction effects, use to advantage by Momose

et al., [17] created minor analysis problems for the microsphere detection. X-ray fluorescence to-

mography was used to study uptake of Pt(II) and Pt(IV) anticancer drugs in growing tissues; con-

centration data was presented as a radial concentration profile through the near-spherical tumor

sample.[19] In a recent work in electron microscopy tomography, multi-energy images were used

to separate two components of interest, multiwalled carbon nanotubes and a nylon matrix; the au-

thors note the 4D character of the work, with three spatial dimensions and one chemical analysis

dimension.[20] TEM and electron microscopy tomography of nickel oxide nanoparticles in an or-

dered mesoporous material showed the unique advantages of 3D imaging.[21] The pore structure

in polyvinyl chloride foams has been studied with tomography and a mean intercept technique

[22]. A laboratory X-ray source was used to image CO2-foamed samples of polymethylmethacry-

late. Eight samples were measured after different exposure times, and the foam thickness growth

rate about the solid PMMA core was shown to be a result of non-Fickian CO2 diffusion.[23] The

structures of star-terpolymers contain interpenetrating columns, with diameters on the order of

20 nm, are imaged by reactive metal staining followed by electron microscopy tomography.[24, 25]

Some flame retardants exhibit interesting dissolution or precipitation properties, depend-

ing upon blend compatibility. We previously used 3D tomography to assess the dissolution and

molecular diffusion of BT-93 into polystyrene, where extremely slow diffusion rates, on the order

of 10−17 m2/s can be detected.[26] Also, we performed a number of simulated tomography exper-

iments to explore instrumentation parameters critical to accurate 3D chemical composition map-

ping with synchrotron X-ray tomography. The experimental parameters included CCD camera

specifications and multi-spectral X-ray imaging, and how these parameters affect the composition

maps.[27]

Fiberglass-reinforced thermoplastics have utility in applications and selecting the proper

blend for a task is important. In some applications, there is the potential for ignition [28], hence

the blending with a flame retardant [29, 30, 31]. One high performance flame retardant is a

short-chain, partially-brominated polystyrene (FR), (Figure 3.1), enhanced with a synergist, an-

timony(III) oxide, Sb2O3.

In a previous investigation of a flame retardant/polystyrene blend [10], we developed

some of the techniques used herein, especially the concept of imaging with X-ray energies that
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Figure 3.1: Chemical structure of brominated polystyrene (x = 3) used
as a flame retardant (FR).

[FR]

Figure 3.2: Small glass fibers will assemble into crude
bundles in the extruded polymer sample. In tomogra-
phy, the concentration of FR is measured in cubic vol-
ume elements (voxels). The volume elements can be par-
tially occupied by SiO2, which should cause FR concen-
tration to decrease within the bundles.

span important features in the Br and Sb absorbances. In that work, the flame retardant Saytex

BT-93, a brominated aromatic, combined with a synergist, antimony(III) oxide, were found to have

a rather heterogeneous distribution in the polystyrene blend. In contrast, in this work, we find the

short-chain, partially-brominated polystyrene to be much more evenly distributed throughout the

polymer matrix. However, the introduction of a fiberglass reinforcement creates an additional step

in the data analysis, and also allows an assessment of the enhanced FR concentration distribution

in the close vicinity of the reinforcement. This sample vividly demonstrates the need for multi-

energy tomography as not all X-ray energies yield high contrast images.

3.2 Experimental Section
3.2.1 Sample Preparation

A short chain, partially brominated polystyrene flame retardant (Figure 3.1 with x = 3),

and its synergist, antimony(III) oxide, were blended in a twin-screw reactor at 285 ◦C with a dry

mixture of nylon, teflon, and fiberglass, and extruded as a rod. The nylon and fiberglass were sup-

plied as the composite material, Zytel-70G43L. From the formulation in the 1000 g batch prepara-
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tion and the Br and Sb analyses, the sample composition (vol%) is: FR,10.86; Sb2O3, 1.42; nylon,

63.84; SiO2, 23.56; and teflon, 0.31. More details are given in Table S6.0 (Appendix C). The vol%

values are calculated from the component densities, assuming additive volumes.

3.2.2 Synchrotron X-ray Tomography
Tomography was done at the Advanced Photon Source (APS), Argonne National Labora-

tory, at bending magnet 13-BM-D in the GeoSoilEnviroCARS (GSECARS) group.[32] The X-ray

beam was defined with a double Si-111 crystal monochromator yielding X-rays in the range of 8

to 65 keV with a beam size up to 50 mm wide and 5 mm high at the sample rotation stage.[33]

Transmitted X-rays are converted to light with a 500 µm thick Ce:YAG scintillator and imaged

with a 10X Mitutoyo microscope objective focused onto a 12-bit CCD camera (Roper Scientific Mi-

croMAX 5 MHz) 1300x1100 pixels (pixel size 7 µm), a combination of optical magnification and

binning yields 3.26 µm× 3.26 µm resolution. The sample was turned into a cylinder with diameter

at Z=300 (see Figure 3.4) of approximately 1.52 mm, and mounted with clay atop the tomography

sample rotation stage. A total of 720 images was collected as the sample was rotated from 0◦ to

179.5◦ by 0.5◦, then 0.25◦ to 179.75◦ by 0.5◦. Over the course of the imaging experiment, the X-ray

flux at the sample was stabilized to within a few percent with two mechanisms: The APS beam

current was held constant by operation in “top-up mode”. The orientation of the second crystal of

the monochromator was fine-tuned based on feedback from an ion-chamber X-ray flux indicator

mounted immediately upstream of the sample. The sample was imaged at 12, 13.4, 17, 25, 30.43,

30.53, and 40 keV with an X-ray bandpass of ∆E/E = 10−4; the Br and Sb K-edges are at 13.47

and 30.49 keV, respectively.

Each CCD image was converted to an absorbance image with white field and average dark

count correction. White field images were collected at intervals of 50 CCD images. The average

dark field intensity was 100 counts. Sinograms were constructed; efforts were made to reduce

zingers and ring artifacts. The slice reconstruction was done with a fast Fourier transform al-

gorithm following a re-gridding from polar to cartesian coordinate systems.[33] The slices were

assembled into a single reconstructed volume of 650x650x515 volume elements, each element con-

taining a value of the voxel absorbance.

The 2D FFT-based reconstruction introduces scale (≤6.5%), offset (≤4×10−4), and voxel

size (≤ 2.7%) errors in the voxel absorbances, and these were corrected by rescaling, Eq. 3.1,

such that projections of representative slices yield absorbances in agreement with the original ab-

sorbance images. Note: when calculating projections from the 3D data sets, only the voxels within

the reconstructed Radon-defined circle were used; the absorbance values for positions lying be-
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tween the inscribed circle and the square defined by data storage were not used as these areas are

not defined by the Radon transform. The correction factors were independently determined for

each sample at each X-ray energy, as listed in Table S6.0.

Aexpt
xyzE =

[
Araw
xyzE voxel size−−−−−−−→AxyzE

]
× scaleE + offsetE (3.1)

3D compositions are calculated from the experimental voxel absorbance and the voxel

linear attenuation coefficients for the pure components. The NIST XCOM database reports mass

attenuation coefficients [34] and these are converted to voxel linear attenuation coefficients for 3.26

µm voxels, as listed in Table 3.1. The voxel linear attenuation coefficients are equal to the mass

attenuation coefficient (cm2/g) × density (g/cm3) × voxel dimension (cm).

Table 3.1: Calculated Voxel Linear Attenuation Coefficients of Pure Components for 3.26 µm Vox-
els.

energy/keV nylon SiO2 FR Sb2O3 teflon
12 0.000645 0.00795 0.0153 0.139 0.00285
13.4 0.000480 0.00578 0.0113 0.104 0.00207
17 0.000270 0.00289 0.0409 0.0545 0.00106
25 0.000135 0.000996 0.0146 0.0194 0.000412
30.43 0.000107 0.000604 0.00853 0.0115 0.000282
30.53 0.000107 0.000600 0.00845 0.0629 0.000280
40 0.0000866 0.000333 0.00403 0.0314 0.000190

From the corrected reconstructed volumes, a cuboid subvolume of 200× 200× 500 voxels

was selected for further analysis at the coordinate listed in Table S6.0. The subvolume was chosen

to exclude air, however a small internal air-filled crack is captured in the subvolume and these

air-filled voxels, 0.0703 % of the subvolume, were excluded by a binary air mask from further

calculation.

3.2.3 3D Composition Calculation
The 3D chemical concentration distributions of FR, Sb2O3 and SiO2 were calculated for all

voxels in the subvolume (excluding the air crack voxels). A least-squares fit to the voxel linear
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attenuation coefficients of Table 3.1 was made based on a Beer’s law absorbance model [35]:

AcalcxyzE = [FR]xyz ×A
FR
E + [Sb2O3]xyz ×A

Sb2O3
E + [SiO2]xyz ×A

SiO2
E

+
(

1− [FR]xyz − [Sb2O3]xyz − [SiO2]xyz
)
×AmatrixE (3.2)

The X-ray absorbance for the nylon/teflon blend, AmatrixE , is defined as a weighted average:

AmatrixE =
[nylon]×AnylonE + [teflon]×AteflonE

[nylon] + [teflon]
(3.3)

The parenthetical term in Eq. 3.2 restricts application of the model to voxels completely

filled with sample, i.e., no cracks, voids, or surface voxels. The concentrations are determined

with a minimization of difference between the experimental X-ray voxel absorbances and the cal-

culated absorbances. The fit parameters, [FR]xyz , [Sb2O3]xyz , and [SiO2]xyz , are constrained to

have physically reasonable values between 0 and 100 vol%, inclusive. These 3D chemical compo-

sitions of [FR]xyz , [Sb2O3]xyz , and [SiO2]xyz of a 200× 200× 500 cuboid were then used to analyze

the radial concentration distribution about the fiberglass bundles.

3.2.4 Scanning Electron Microscopy

The sample was freeze-fractured in liquid N2, and then coated with a 10 nm thick carbon

layer for microscopy with a JEOL-840 SEM. The secondary electron images were acquired at 20

kV.
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Figure 3.3: SEM image of freeze-fractured of the sample showing the embedded fiberglass in a
nylon matrix. Each glass fiber is ≈10µm in diameter [36] and ≈100µm in length.

3.3 Results
3.3.1 X-ray Absorbance and Tomographic Reconstructions

The absorbance images of the sample at two representative X-ray energies below and

above the Br K-edge, 13.4 and 25 keV, respectively, are shown in Figure 3.4. The light-colored

striations observed at 13.4 keV are due to bundles of glass fibers; at this energy, SiO2 has greater

attenuation, 0.00578, than any other component, including the well-mixed FR in nylon. The bun-

dle sizes are much larger than an individual fiber, probably consisting of 10-30 fibers. Interestingly,

the bundles disappear at 25 keV and this will be attributed to accumulation of FR near the SiO2

fibers, giving each bundle the same X-ray attenuation as FR/nylon. As noted in Figures 3.4c and

3.5, the fiberglass bundles are roughly aligned along the tomography Z-axis, which also corre-

sponds to the extrusion axis of the cylindrical sample.

3.3.2 3D Binary Mask of SiO2-Rich Voxels

Based on the sample formulation, some voxels will be completely filled with SiO2 while

other voxels may contain an FR/Sb2O3/nylon blend. To aid the analysis, a 3D binary mask is

defined based on the voxels with high SiO2 concentrations, as calculated in a later section. The 3D

binary fiberglass mask is based on an isosurface, with island removal, using a threshold of [SiO2]

73



(a) (b)

(c) (d)

Figure 3.4: A comparison of 2D absorbance images, (a) 13.4 keV and (b) 25 keV, with XZ-slices
from 3D reconstructions, (c) 13.4 keV and (d) 25 keV, respectively. The colorbars for the 2D images
(a,b) are total absorbance in the sample while the colorbars for the slices (c,d) describe absorbance
in the 3.26 µm voxels. The white rectangle (c,d) outlines the cuboid subvolume chosen for analysis.
The light striations (a,c) are the fiberglass bundles which have, at 13.4 keV, more X-ray absorbance
than the FR/nylon blend.

= 45 vol%. This mask shows fiberglass bundles, Figure 3.5, along with a few exposed ends of line

segments representing the principal axis of some selected fiber bundles. The structure of the mask

agrees with SEM images of a freeze-fractured sample, Figure 3.3. Line probes show most bundles

have a diameter on the order of 20-30 µm. Ten bundles were selected for further analysis; bundle

coordinates are given in Table S6.0.

74



Figure 3.5: A 200 × 200 × 500 cuboid binary mask for fiber-
glass based on the reconstructed volume for SiO2. This mask
is conservative with 12.58% of the cuboid voxels selected,
compared to the 23.56 vol% of fiberglass in the sample based
on formulation.

3.3.3 Voxel Absorbance Values
The motivating question in this 3D chemical analysis is the distribution of the FR and

Sb2O3 synergist within the polymer blend and in the vicinity of the fiberglass bundles. A prelim-

inary blending assessment can be obtained from an analysis of the average voxel absorbance as a

function of X-ray energy, as shown in Figure 3.6. The average values are shown pairwise; polymer-

rich voxels with filled symbols and SiO2-rich with empty symbols, where voxel identification is

based on the binary fiberglass mask, Figure 3.5.

Figure 3.6: The traces show the calculated
voxel linear attenuation coefficients for
the pure components (see Table 3.1). The
average voxel absorbance values for the
two sets of voxels identified by the bi-
nary fiberglass mask: the polymer-rich
voxels are represented by filled (•, � , �)
symbols and the average values for the
SiO2-rich voxels by open (◦, /, .) symbols,
which at some X-ray energies overlap the
filled symbols.
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The average voxel absorbance shows the expected increases at Br and Sb K-edges. An

interesting feature is the contrast change between SiO2-rich and polymer-rich voxels. At X-ray

energies below the Br K-edge, SiO2-rich voxels are more absorbing, as noted in Figures 3.4(a,c)

and 3.6. Above the Br K-edge, both SiO2-rich and polymer-rich voxels have the same average

X-ray absorbance as shown in Figures 3.4(b,d) and 3.6. Later, this feature will be attributed to

enhanced FR and Sb2O3 concentrations near the fiberglass bundles.

To assess the signal-to-noise of the reconstructed volumes, a histogram of the absorbance

values of air-filled voxels is plotted in Figure 3.7. These voxels are defined by a 40 x200x300 cuboid

outside the sample, but contained within the radius of reconstructed data, i.e, the poorly defined

voxels at the corners of the slices were excluded. In the noise-free limit, all histograms of air-filled

voxels would be delta functions centered at zero absorbance. Here, at X-ray energies at which the

sample has the greatest average absorbance, the X-ray flux at the scintillator is smallest, causing a

greater contribution from shot noise.[35]

Figure 3.7: Histogram of air-filled voxels. The
standard deviation is determined by photon
counting statistics and noise introduced by the
back projection reconstruction. Dashed lines
show apparent absorbance prior to scale and off-
set corrections, Eq.3.1

Figure 3.8: Voxel absorbances in the sample-filled
200 × 200 × 500 cuboid for the polymer-rich vox-
els, selected based on the binary fiberglass mask,
Figure 3.5. Overall, the sample becomes more
transparent at higher X-ray energies, but with the
Br and Sb K-edge absorbances evident at 17 and
30.53 keV, respectively.
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The absorbance histograms, Figure 3.8, of the polymer-rich voxels, chosen with the aid

of the binary fiberglass mask, show the expected decrease in absorbance with increasing X-ray

energy. The mean voxel absorbances at each X-ray energy are plotted in Figure 3.6 as filled sym-

bols, and compared with the voxel linear attenuation coefficients for voxels fully occupied by FR,

Sb2O3, or nylon. The widths of each mode are about twice that measured for air-filled voxels,

Figure 3.7. In summary, the single, relatively narrow mode at all X-ray energies, as well as the

mean absorbance values, indicate good blending of both FR and Sb2O3 in nylon.

3.3.4 3D Chemical Composition
The calculated vol% concentrations of FR, Sb2O3, and SiO2 are obtained from the multi-

energy X-ray tomography data and the three-parameter model, Equation 3.2, for almost all of

the cuboid’s 2×107 voxels, excepting the 0.07% of cuboid voxels identified as an internal air-filled

crack. The calculated SiO2 vol% concentration cuboid was converted into a binary fiberglass mask

using a threshold value of [SiO2] = 45 vol%, as shown in Figure 3.5; 12.58% of the cuboid voxels are

thus identified as predominantly SiO2. The binary fiberglass mask is conservative, as the sample

formulation shows a fiberglass concentration of 23.56 vol%; the difference between the formula-

tion and the binary mask is due to the small size of the glass fibers, about 10 × 100 µm, relative

to the voxel size of 3.26 µm, creating many voxels only partially occupied by SiO2. After appli-

cation of the binary fiberglass and air-filled crack masks, 87.35% of the cuboid voxels are left as

polymer-rich voxels, and appropriate for analysis of the FR and Sb2O3 3D chemical distributions.

The calculated vol% concentrations of FR and Sb2O3 are shown as histograms in Figure 3.9.

The mean FR concentration in the polymer-rich voxels is 10.41 vol% (σ = 1.9 vol%) compared with

chemical analysis of 10.86 vol% for the entire sample. Similarly tomography shows [Sb2O3] = 1.72

vol% (σ = 0.56 vol%) while chemical analysis gives 1.42 vol%. Contributions to the standard devi-

ation come from shot noise in the tomography experiment [35], from voxel-to-voxel fluctuations

in the chemical concentration [10], and from the voxels partially or fully occupied by glass fibers,

yet not removed from analysis by the binary fiberglass mask.

A 3D view of a well-blended mixture should look rather bland, as seen for both FR and

Sb2O3 in Figure 3.10. Here, the binary fiberglass mask has not been applied and all calculated

voxel concentrations are shown. The dark structures in FR are due to the fiberglass bundles.

More importantly, the FR is well-blended throughout the sample, with no indication of regions

of excessively high or low FR concentrations, and similarly for Sb2O3. A 3D view of the SiO2

concentration is shown in Figure 3.5 as an isosurface at [SiO2] = 45 vol%.
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(a) (b)

Figure 3.9: Concentrations of (a) FR and (b) Sb2O3 in the 3.26 µm voxels in the cuboid. The mean
values agree with sample formulation and the relatively small standard deviations indicate good
blending with nylon.

(a) (b)

Figure 3.10: 3D renderings of the concentrations for (a) FR and (b) Sb2O3 for the 200 × 200 × 500
cuboid subvolume with 3.26 µm voxels. The colorbars indicate concentrations in vol%.

3.3.5 Radial Concentration about Fiber Bundles
Figure 3.2 shows a simplistic model for FR concentrations near the fiberglass bundles.

More sophisticated models such as the Flory-Huggins theory for polymer blends notes the im-

portance of component interaction enthalpies.[37] In Figure 3.2, we assume no special affinity or

aversion of FR with SiO2, but simply χFR:SiO2 = χFR:nylon, and similarly for Sb2O3, where χ is

the enthalpy term. Yet, the curious change in image structure with increasing X-ray energy—see
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Figure 3.4(c,d) and also note the equivalence in mean voxel absorbance for SiO2-rich and polymer-

rich voxels in Figure 3.6—suggest an enhanced concentration of FR and Sb2O3 within the fiber-

glass bundles which implies an enthalpy-driven concentration gradient. How might we use the

tomography results to assess FR the concentration in the vicinity of the fiberglass bundles?

Starting with the binary fiberglass mask, Figure 3.5, we identified ten well-formed bun-

dles, all relatively isolated. Each bundle is cylindrical, roughly 40 µm in diameter. The line seg-

ments defining the cylinder axis are listed in Table S6.0. All voxels surrounding the cylinder axes

up to a radius of 50 voxels were located and assessed for collision with neighboring glass fibers,

again using the binary fiberglass mask. A collision will remove a voxel from further considera-

tion, as well as other voxels along that same radial vector away from the cylinder axis. The voxels

retained were sorted by Euclidean distance from a cylinder axis, and the corresponding voxel con-

centrations were used to generate the radial concentrations plots shown in Figure 3.11. A simple

histogram of the number of voxels contributing to a radial concentration plot about a cylindrical

axis would normally show an r2 increase in voxel count. However, due to collisions with neigh-

boring fiberglass bundles, the r dependence is closer to linear, as shown in Figure 3.11b. The voxel

selection procedure is described in the supplementary material.

The SiO2 radial concentration, Figure 3.11a, is averaged over the ten fiber bundles and

shows several features: (1) The average fiber bundle radius is about 20 µm, in agreement with

Figure 3.5. (2) The fibers are loosely arranged into bundles, as the maximum SiO2 concentration

is 52.8 vol%, indicating significant polymer flow into the fiber bundles, consistent with the SEM

imaging, Figure 3.3. (3) At r = 50 µm, the SiO2 concentration drops to about 20 vol%, close to

the sample formulation value of 23.31 vol%. The SiO2 radial concentration is fitted to a Gaussian,

[SiO2]r = ae−(r/b)2 + c, and the coefficients are listed in Table S6.0; the value of b is 19.5 µm.

The radial concentrations of FR and Sb2O3 in the vicinity of the ten selected fiber bundles

are plotted in Figures 3.11c and 3.11d, respectively. As expected, the concentrations decrease at

small r, when voxels lying within a fiber bundle are inspected for FR and Sb2O3 concentrations;

many of these voxels are partially occupied with SiO2. However, the decrease in FR and Sb2O3

concentrations is not as dramatic as predicted based upon the volume of SiO2 present. Shown

in both figures are predicted concentrations assuming a simple space-filling model applies, e.g.

Figure 3.2. For both FR and Sb2O3, the concentrations are near doubled within the fiber bundles,

relative to the space-filling model. One possible explanation is the hydrophobic coatings applied

to the glass fibers leads to precipitation of FR and Sb2O3 onto the fibers.
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(a) SiO2 (b) voxels

(c) FR (d) Sb2O3

Figure 3.11: The radial concentration of (a) SiO2 as a function of distance from the fiber bundle
axes, sampled over 10 fiber bundles. Collision detection reduces the number of sampled voxels (b)
at large r. The radial concentrations for (c) FR and (d) Sb2O3, and comparisons with a space-filling
model based on the radial concentration of SiO2.
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3.4 Conclusion
Three-dimensional chemical analysis is shown here as an effective method for studying

a polymer blend, even with a composite material reinforcement. An analysis procedure was de-

veloped to generate radial concentrations measurements about cylindrical composites, measure-

ments which reveal unique information about the polymer blend structure.
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Chapter 4

Synchrotron X-Ray Tomography for 3D
Chemical Diffusion Measurement of a
Flame Retardant in Polystyrene

4.1 Introduction

There is significant interest in the chemical process known as ”blooming”, diffusion and

nucleation of small molecules on the surface of a polymer blend. Even food materials are subject

to bloom, for instance, the appearance of cocoa butter on chocolate is a diffusional process. These

extremely slow processes call into question the models for small molecule motion through glassy

polymers. Recently, synchrotron X-ray tomography has developed into an excellent method for

three-dimensional imaging of polymer blends at the micrometer distance scale.[1] To investigate

the chemical process of blooming, new procedures are developed using X-ray tomography to

assess the flame retardant distribution in the sample. More expensive flame retardants such as BT-

93 TMare known to be stable in polystyrene and polypropylene, and are known as non-bloomers.

In this preliminary work we study the dissolution of BT-93 TMin polystyrene.

4.2 Experimental Section

The blend was made from 1057 g polystyrene and 55.638 g SaytexTM BT-93, a brominated

phthalimide dimer, in a screw extruder at 220 ◦C, 450 psi and 39 rpm, yielding≈2.35 mm diameter

cylinders. Two of the samples were then separately annealed in vacuum at 90 ◦C for 1 and 5

days. All samples were imaged at room temperature using synchrotron X-ray tomography at 9

µm resolution at 12 and 14.5 keV.
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A constrained least-squares fit for the BT-93 and polystyrene concentrations to the voxel

linear attenuation coefficients was made based on a Beer’s law absorption model (Eq 4.1). The

attenuation coefficientsABT93
E andAPolystyreneE , are calculated from molecular formula and density.

AcalcxyzE = [BT93]xyz ×A
BT93
E +

(
1− [BT93]xyz

)
×APolystyreneE (4.1)

To calculate diffusion measurements around the pockets of high concentration in the sam-

ple, new methods had to be developed. First a simple thresholding of the data is needed to

separate the high concentration areas from the low concentration areas. The area’s of high con-

centration are irregularly shaped domains, the domains are identified and then counted/labeled

with a connected components algorithm.[2] For each labeled domain, its center-of-mass and dis-

tance/direction to its nearest neighbor is calculated.

Before we can calculate concentration gradients, the air bubble impurities must be noted.

To identify the air bubbles, a procedure similar to the domain labeling was taken. Another thresh-

olding of the values near zero absorption will identify the air bubbles. Connected components

algorithm was also used to count and label the air bubbles. The center of mass was then calcu-

lated for each air bubble but no distance measurements were needed. Instead the coordinates of

the air bubbles were compared with the coordinates of the labeled domains. If any of them over-

lapped, then those voxels were removed from the diffusion data. Voxels in between the center of

a labeled domain and an air bubble are valid but those voxels that are between the air bubble and

edge of the domain are not. Care was taken to exclude these voxels as well. Finally, concentration

gradients are plotted centered at each labeled domain’s center-of-mass and extending halfway to

the nearest neighbor, but excluding voxels near air bubbles.

4.3 Results and Discussion

The concentration gradients are initially assessed with a simple Gaussian fit. [3] The fitted

data follows expected trends for a diffusion process. As annealing time increases the bulk aver-

age concentration increases (represented by c in the fit). The a value decreases with anneal time

indicating that the concentration domains have a lower average value. These trends are displayed

in Figure 4.2. Three-dimensional chemical diffusion analysis via synchrotron x-ray tomography is

shown here as an effective method for studying the dissolution process. The study of the diffu-

sion of the BT-93 concentrations about high concentration domains shows that anneal time has a

definite effect on the diffusion rates. The major focus for future work will continue to study this
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sample but a longer anneal times to determine the full extent of the ”blooming” process for flame

retardants such as decabromo diphenyl oxide.

Figure 4.1: XY slice of sample composition (Z = 230) of the non-annealed sample in volume per-
cents of BT-93. Bright spots correspond to high concentrations of the BT-93 and indicate an imper-
fect blending process.

Figure 4.2: A plot of the BT-93 concentrations a function of distance about the center of high
concentration domains dispersed throughout the sample and the exponential fits applied to the
data.
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Chapter 5

Measurement of Diffusion Constants
with Synchrotron X-ray Tomography

5.1 Introduction

Flame retardants in high-impact polystyrene have many applications including the man-

ufacture of CRT cases and laser printers; these cases can include to 30 wt% bromine in the form

of brominated aromatics. Phase stabilities, rates of diffusion, and diffusion activation energies are

largely unknown. Situations in which the observer notices changes in surface color and feel, the

result of flame retardant diffusion and nucleation on the surface: ”blooming”. Even food materials

are subject to bloom, for instance, the white powder on chocolate is a diffusional process.

Blooming is a transportation process of mass[1], in this case small molecules of hexabro-

mobenzene, being transported onto the surface of a polymer blend from the interior space of the

polymer. It is known that changes in the blend morphology in polymers, such as blooming, can

lead to the reduction or even elimination of the desired polymer blend functions. Flame retar-

dant blooming is cause for concern in industry and is also an interesting scientific problem when

viewed as a diffusion process. Synchrotron X-ray tomography [2] has developed into an excel-

lent method for three-dimensional imaging of materials [3, 4], and has shown particularly good

results with polymer blends.[5, 6, 7] Herein, we estimate the sensitivity of synchrotron X-ray to-

mography to diffusion coefficients of a hexabromobenzene/o-terphenyl blend. These extremely

slow processes call into question the models for small molecule motion through glassy polymers.

Bloom is one example of small molecule diffusion through rubbery and glassy polymers. Diffu-

sion through rubbers is currently understood as a cooperative process coupled to polymer chain

segmental motion. Computer simulations will help us interpret the images and guide the im-
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provement of techniques for image analysis of diffusion processes.

5.2 Experimental and Computational Section

5.2.1 Sample Preparation

The blend was made from 3.974 g o-terphenyl (density 1.1 g
cm3 ) and 0.20 g hexabromoben-

zene (density 3.543 g
cm3 ), for an end result of 4.8 % by weight mixture. The sample mixture was di-

vided into four approximately equal parts. Then each sample was separately baked at 50◦C, 53◦C,

56◦C and 59 ◦C for 2 hours. All samples were imaged at room temperature using synchrotron

X-ray tomography at 9 µm resolution at 30 keV.

5.2.2 Tomography Reconstruction

Tomography was done at the Center for Advanced Microstructures and Devices (CAMD),

Louisiana State University, at the tomography beamline. The X-ray beam energy was selected

with a double crystal monochromator yielding X-rays with 30 keV energy. A total of 720 images

was collected as the sample was rotated from 0◦ to 179.5◦ by 0.25◦. The procedure followed is the

procedure listed in Section 2.2 and is described in the literature. [5, 8] The order of angle acquisi-

tion was not linear but determined by the golden ratio.[8] This technique provides a safety net, in

case of beam failures a reasonable reconstruction may still be possible without all 720 angles. The

four samples were studied at the single X-ray energy 30 keV but each sample was imaged at two

different heights.

The reconstruction followed the typical reconstruction for computerized tomographic imag-

ing. [9] This method is described in full in Section 2.1 but in short, each CCD image was converted

to an absorption image with white field and average dark count correction. White field images

were collected at intervals of 30 CCD images. Sinograms were constructed, efforts were made to

reduce artifacts, and the transmission values were converted to line integrals of the absorption.

The slice reconstruction was done with a filtered back-projection algorithm [10], iradon, from the

Matlab Image Analysis toolbox. The slices were assembled into a single reconstructed volume of

461×461×161 volume elements with resolutions of 8.798×10−4 cm
voxel , each sample was collected at

two heights effectively doubling the volume size for each. Figure 5.1 shows a slice from one of the

reconstructed volumes and Figure 5.2 shows a 3D image of a segmented reconstruction volume.

For the purpose of calculating chemical concentrations, the sample contains a single im-
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Figure 5.1: A 461×461 XY slice from
the reconstructed volume for the 50
oC sample. Areas that contain voxels
that have high hexabromobenzene
concentration are labeled.

Figure 5.2: Domains of high con-
centration hexabromobenzene seg-
mented out of a 461×461×161 recon-
structed volume for the 50 oC sam-
ple. Segmentation was done with a
simple threshold algorithm as de-
scribed in Chapter 2. Various ranges
of sizes and shapes are shown indi-
cating a need to ”clean up” the data
before fitting.
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portant element: Br, in the hexabromobenzene. The simple nature of this two-component mixture

makes calculating the volume percent of hexabromobenzene at a voxel a trivial matter of algebra:

Abssample =
(

[C6Br6]×AbsC6Br6
E

)
+
(
oT ]×AbsC6Br6

E

)
Abssample =

(
[C6Br6]×AbsC6Br6

E

)
+
(
(1− [C6Br6])×AbsoTE

)
]

[C6Br6] =
Abssample −AbsoTE
AbsC6Br6

E −AbsoTE
(5.1)

where oT stand for o-terphenyl, AbsX is the absorption of X at that energy and voxel and

[X] is the concentration of X at that voxel. For the diffusion studies no effort was taken to con-

vert the absorption data to volume percents as done in previous chapters. This was done partly

because the absorption data can easily be used for tracking the displacement of the bromine in the

o-terphenyl. Equation 5.1 is included for completeness.

5.2.3 3D Image Analysis

Figure 5.2 shows an extremely chaotic and messy system of hexabromobenzene domains.

In order to effectively fit our data to the chosen diffusion model we have to select the data we

want. Creating a three-dimensional image processing algorithm will allow us to extract the voxels

of interest out of our volume in a automatic and reliable fashion.[11] In order to extract the correct

voxels that will work with our chosen diffusion model we will need to enforce the following

conditions on our algorithm:

• Domains of selected voxels must be as spherical as possible.

• The domains can not overlap with other domains.

• Domains should be isolated from air bubbles, cracks etc..

The rational behind these conditions are simple. Since we are employing a diffusion model

based on a spherical function the restriction of spherical domains is logical. Domains that overlap

would have concentration gradients that oppose each other and this is not allowed in our model.

Isolation from cracks and air bubbles is needed since their presence would alter the concentration

gradients within the domains. These conditions are satisfied with the algorithm presented in

Section 2.6.6.
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Table 5.1: Results of Domain Extraction Algorithm

Properties 50 oC 53 oC 56 oC 59 oC
Number of Domains 74 88 68 72

Mean Volume (×10−6 cm3) 0.0512 0.0758 0.0525 0.0767
Mean Vol% 33.45 36.02 32.46 30.89

Vol% σ 3.014 2.96 2.52 3.21

The results of image analysis algorithm are summarized in Table 5.1. The results generated

were of good quality with little need to do repeat analysis. All results were saved down to a HDF5

format and imported into Mathematica for all further analysis.

5.2.4 Diffusion Measurements

For modeling the diffusion of the flame retardant in the polymer we chose a three dimen-

sional point source model as described in Section 2.5. The model used is a three-dimensional point

source model as described by Crank [1]:

C = ae
−r2

4Dt + c (5.2)

Where C is concentration, c is the value that the function will converge on as r goes to infinity

and can be thought of as the average concentration, D is the diffusion coefficient. The fit was

performed in Mathematica using the NonlinearRegress function from the Nonlinear Regression

package. This function also allowed the calculation of error associated with each parameter that

was fit, a,D and c. The t value in Equation 5.2 was the time of the bake intervals, 7200 seconds (2

hours).

5.3 Results and Discussion

Concentration gradients are plotted centered at each labeled domain’s center-of-mass and

extending halfway to the nearest neighbor. The points are then fit to the Equation 5.2. Figure 5.3

shows the four samples hexabromobenzene concentrations as a function of distance about the

center of mass of their domains and the plot of the exponential fits.

Figure 5.4 shows all four exponential fits plotted on the same axis. This shows that the

effect of raising the temperature does cause changes in the samples diffusion process. The expo-
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Figure 5.3: a) Hexabromobenzene concentrations as a function of distance about the center of mass
for the sample baked at 50 oC b) 53 oC . c) 56 oC d) 59 oC

nential fit results are listed in Table 5.2.
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Figure 5.4: All four exponential fits plotted on the same
axis. Decreases in the a fit parameter follow expected
trends with the exception of the 53 oC sample but the
difference is minor. Diffusion coefficients get progres-
sively larger with increasing temperature indicating that
diffusion is occurring.
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Table 5.2: Fit Results with Error Reports

oC Regression a D c
Estimate 32.9392 4.68926×10−9 2.67611

50 Error 0.358835 1.12878×10−10 0.0255998
CI (32.2358, 33.6426) (4.468×10−9, 4.91053×10−9) (2.62593, 2.72629)

Estimate 34.4687 5.35533×10−9 2.45985
53 Error 0.328795 1.10777×10−10 0.0196567

CI (33.8242, 35.1132) (5.13819×10−9, 5.57247×10−9) (2.42132, 2.49838)
Estimate 31.0002 6.40302×10−9 1.66769

56 Error 0.325398 1.4595×10−10 0.0191292
CI (30.3624, 31.638) (6.11693×10−9, 6.6891×10−9) (1.6302, 1.70519)

Estimate 30.385 7.9803×10−9 3.93877
59 Error 0.345672 2.17508×10−9 0.0329525

CI (29.7074, 31.0626) (7.55393×10−9, 8.40668×10−9) (3.87417, 4.00336)

5.4 Conclusions

The concentration gradients are initially assessed with a simple Gaussian fit. The fitted

data follows expected trends for a diffusion process. As annealing time increases the bulk aver-

age concentration increases (represented by c in the fit). The a value decreases with anneal time

indicating that the concentration domains have a lower average value. These trends are displayed

in Figure 5.4. Three-dimensional chemical diffusion analysis via synchrotron x-ray tomography

is shown here as an effective method for studying the dissolution process. The study of the dif-

fusion of the hexabromobenzene concentrations about high concentration domains shows that

temperature has a definite effect on the diffusion rates.
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Chapter 6

Conclusions and Expectations

In this chapter I give my expectations on where tomography research will head in the

future and my summary of research done so far.

6.1 Fourth Generation Light Sources

Third-generation facilities are in their prime, however, intense effort develop fourth gen-

eration light sources has already begun. [1] These next generation sources will offer vastly en-

hanced performance, delivering ultra-bright X-rays whose properties are similar to lasers. Laser-

like properties would include fully coherent beams, and the X-rays could be pulsed on time scales

of 10-100 fs with some techniques further reducing pulse duration.[2] New phenomena in con-

densed matter physics involving atoms and molecules will be able to be explored with this new

source.[3]

The fourth-generation source will have hard X-rays (wavelengths of ≤ 1 nm) generated

from devices such as free-electron laser (FEL) systems. FEL systems are based on the use of very

long undulators in synchrotron particle accelerator rings.[4] The basic concept of undulators used

in third generation sources was covered in Section 2.4.3 and Figure 2.23a shows the basic design

of an undulator. FEL tabletop instruments are already available today[5] and are actively used but

by combining their technology with synchrotron storage rings the fourth generation sources will

result in greatly improved radiation source for materials science research. Fourth generation light

sources are already coming online.[6] This is next logical progression of light source technology

and fourth generation light sources will generate exciting new research in the following years.
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6.2 Tomography

Currently tomography projects in polymers, materials science, and environmental science,

biological science, civil and environmental engineering, geology, and medical physics are all being

done at LSU. From the type of applications reported in the literature, our universities own research

in the field and the rate of publication, one can conclude that tomography imaging is only going

to grow with time.

6.2.1 Nanoscale Tomography

Three-dimensional tomographic imaging of materials on the micron scale has been proven

as a excellent technique. However, micrometer measurements are longer considered special or

unique. Nanotechnology is the new buzz word and for good reason it’s still an evolving field and

the advances it has already made are impressive. Well what about tomography at the nanoscale,

there should be a strong desire to get real 3D spatial information out of nanoscale materials.[7]

Tomography has gown in the past few decades, no longer does it encompasses a few experimen-

tal procedure with minor variations. Traditional computed X-ray tomography systems are now

commercially available as standalone instruments. Lambda tomography [8, 9], thermoacoustic

tomography[10], and neutron tomography[11] are all new exciting tomography experiments that

are tackling specific problems in a variety of fields. Exciting news that atom probe[12], electron[13]

and focused ion beam tomography (FIB)[14, 15] have all already breached the nanometer resolu-

tion is great news for tomographers and the scientific community that uses these methods.

6.2.2 Atom Probe Tomography

Atom probe tomography (APT) was first demonstrated in 1986 when the first prototype

was built by Michael Miller who was working off of a patent by J.A. Panitz.[16]

By combining time-of-flight mass spectroscopy and field ion microscopy, APT can generate

1D compositional streams of the atoms in the sample being analyzed and 3-D reconstructions

are easily generated from this data. The instrument can detect over 1×108 atoms for a typical

sample.[17] The APT experiment starts with sample fabrication into a sharp tip, then placed in

ultra high vacuum at low temperature (normally ≤100 K). The atoms at the apex of the tip are

ionized, either by a positive pulsed voltage or a laser. These ions are repelled from the tip and

detected with a position sensitive detector. By measuring the time between the ionization and the
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impact on the detector a high resolution chemical profile can be calculated via the mass-to-charge

ratio.[18] Figure 6.1 shows a typical APT result in condensed form; the thousands of plot points

are representative of ≈ 108 atom measurements.

Figure 6.1: Three-dimensional atom probe tomography chemical map
of a sample containing vanadium, carbon, phosphorus, magnesium,
silicone, and cooper. [19])

6.2.3 Electron Tomography

Electron tomography is an electron microscopy experiment modified to produce a 3D im-

age. Electron tomography can be used to study just about any sample but has a major limitation

in that the sample must be a thin rod. The technique is destructive and is highly susceptible to

noise degradation. However, resolutions of ≈5-20 nm can be obtained if proper conditions are

meet.[20, 21]

Data collection for electron tomography collects data on thin rods by tilting the around

one axis in ranges of ±70o. Complete data collection required by the transform would require

tilting ranges of ±90o but due to mechanical sample holder limitations the higher angle are not

accessible. Electron tomography has seen extensive use in characterizing multi-protein primary

structures in the fields of molecular biology[22]; Figure 6.2 shows the application of ET to virus

structure.

6.2.4 Focused Ion Beam Tomography

Like atom probe tomography, focused ion beam tomography is slightly different to most

other modern techniques that have tomography in their titles. Most other tomography experi-
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Figure 6.2: Electron tomography of virus a-d) Tomographic data slices of hydrated-virus. Some
proteins have been labeled with arrowheads in image (a). e) Surface of averaged densities cal-
culated from the volume. Certain biologically active sites are labeled and a superimposed X-ray
crystallography structure is also shown. f) Surface colored regions of image (e). [23])

ments yield 3D information about a sample from projection data generated from a source inter-

acting with a sample, while the FIB tomography experiment actually cuts the sample in manner

that resembles the act of physically slicing the sample with a knife. Obviously, this is a nanoscale

knife that cuts in multiple orientations and is destructive to the sample. Figure 6.3a displays the

principles of the experiment.

Focused ion beam tomography has its roots in metallography.[23] Metallography is a tech-

nique in which one prepares a metal surface for analysis by optical microscopy by grinding and

polishing. Over the years, and with the advent of electron microscopy, this technique has im-

proved to reach nanoscale resolution. The biological and materials science communities modified

the technique to produce 3D images via multiple cutting of the materials. Today, researchers using

FIB as the source can reach resolutions of ≤ 50 nm.[24] FIB tomography has been widely used in

the semiconductor industry [25] to look for subsurface deformation. Ceramics research has also

used the technique to image grain shapes in materials.[26] Figure 6.3a shows a cement sample

imaged with FIB tomography to study grain shapes.

The three fields listed above: atom probe tomography, electron tomography, and focused

ion beam tomography all represent excellent examples of current state of the art tomography

techniques that reach nanoscale resolution. However, none of the techniques can be used to study

the polymer blend systems investigated in this dissertation. Atom probe tomography requires

metallic samples to work[17], electron tomography has the strict requirement of thin samples that
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(a) (b)

Figure 6.3: Principles of a FIB tomography experiment. For this figure a Cu-Al metallic mulit-layer
is used for the sample. a) Sample preparation with the platinum protection layer. b) Destructive
milling of sample to generate 3D volume data. This is the setup used with a double beam FIB
experiment c) Titling over a range of angles is required for single beam FIB experiments. b) Visu-
alization of a system of cement particles/grains imaged with FIB tomography. [23])

are optimally ≤500 µm thick[21], and focused ion beam tomography is destructive[24] and that

obviously hinders dynamic measurements of samples. Finally, all three of these techniques require

ultrahigh vacuums to operate, which in and of itself is not deal breaker for dynamic tomography

measurements , but does add another layer of complexity to an already complicated experiment.

The experimental X-ray tomography experiments presented in this dissertation offer the

best method for dynamically studying polymer blends. With that in mind, can we reach nanoscale

resolutions that would enable investigation of dynamic chemical concepts such as diffusion and

nucleation? Recent advances in X-ray microscopy instrumentation[27] has lead to tomographic

resolutions of ≈ 60 nm. [28] This research leads to whole yeast [29] and bacterium [30] cells to be

imaged at this resolution as seen in Figure 6.4.

With the success of these cell experiments, both the Advanced Light Source and Advanced

Photon Source, at Lawrence Berkeley National Laboratory and Argonne National Laboratory re-

spectively, have begun the construction/upgrade of tomography beamlines that will have reso-

lutions on the nanometer scale. [28] Already, workshops on the applications of nanotomography

have been held. While most of the attention is focused on the advances nanotomography will

bring cell and molecular biology, there are no obstacles to using the technique to investigate ma-

terials and dynamic processes.
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(a) (b)

Figure 6.4: a) Whole, hydrated yeast cell (diameter ≈ 5 µm). Notable cellular structures such as
the nucleus, vacuole, and vesicles are labeled. b) Tomographic slice from reconstructed volume
data for two Escherichiacoli bacteria, whose width is ≈ 0.5 µm. Both experiments acquired data
at 517 eV with 45 projected images covering angles up to 180o in 4o intervals with exposure times
of 1-3 seconds. Resolution of both experiments was ≈ 60 nm [28])

6.2.5 High Throughput X-Ray Tomography

High-throughput, optimum equipment usage presents a queuing problem akin to super-

computer queues, but with a more complex parameter space. Advanced imaging resources are

scarce, exceedingly expensive, and in high demand. To maximize experiment throughput, beam-

lines are mostly automated and enhanced with sample changers. Still, for maximum performance,

experienced users and staff scientist will manually adjust optics, slits, monochromator, interfer-

ometers, scintillators, and detectors. For example, one sample may need imaging with exactly 1

micron voxels, while another sample may need imaging over a range of interferometer settings.

For a given sample tray that may have 96-samples ready for imaging, how does the automation

software merge the beamline manual settings with the requirements of each sample? If there is

a ideal solution that would automate a 96 sample sample tray with multiple resolution require-

ments, how much would it cost and would it be justified?

With commercial tools such as National Instruments LabView and Matlab’s Simulink and

Data Acquisition Toolboxes available to us, creating a robust automated experimental system is

certainly feasible. The ultimate question that arises is that does the full automation of a beamline

provide a significant boost to efficiency and productivity? The more dead time a beamline has,

the less useful a fully automated beamline becomes. As previously stated the field of tomography

is only going to grow, so the likelihood of beamlines being less used than they currently are is a

remote one. Significant effort into building beamlines fully automated from the start seems logical
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and prudent.

6.2.6 Neutron Tomography

Neutron tomography is just beginning to receive attention from the scientific community.[31]

Applications for neutron imaging experiments have so far mostly been introductory studies of

neutron radiography with little real world application.[32, 33] Already, researchers are using neu-

tron imaging methods to explore several different types of problems[31, 34]:

• Water distribution in sedimentary formations

• Oil flow in operating internal combustion engines

• Water plugs in hydrogen-oxygen fuel cells

• Swords and helmets in archeological studies

• The structure of explosive devices

The reported applications typically are examples of preliminary evaluations of neutron radiogra-

phy or tomography to a new area of science or engineering. As the field has progresses several

interesting imaging experiments can be envisioned that can investigate dynamic processes, per-

form chemical analysis via energy selectivity of materials being imaged with neutrons, and phase

contrast imaging are all possible.

Engineering problems such as the operation of internal combustion engines can be stud-

ied with dynamic high-speed neutron radiography.[35] A major strength X-ray tomography is

its ability to selectively image certain elements across their K-edges.[36, 37] The idea of using

variable wavelengths of neutrons to extract chemical information from the experiment has been

suggested[38] but little to no work has been done on it. Phase contrast enhancement in neutron

tomography has been demonstrated successfully [39, 40]. Figure 6.5 shows three results of current

neutron imaging experiments. A variety of samples have already been investigated[39, 40, 41, 38,

42], some of the samples include:

• Insects

• Silicon test objects

• Syringe needles
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• Aluminum foams and castings

• Wall material used in nuclear reactors

Ultimately, I see neutron tomography and imaging as a complementary method to X-ray tomog-

raphy. Both techniques are able to provide chemical spatial information. The evolution from

brominated flame retardants to phosphorus-based systems, systems difficult to study with X-ray,

thus neutron tomography will be the preferred technique to do analysis with this next genera-

tion of flame retardants. Both techniques have a bright future both in terms of independent and

complementary use as a tool to do materials analysis, and polymers blend research will certainly

benefit from both.

(a) (b)

(c)

Figure 6.5: a) Series of selected time frames from a dynamic imaging experiment of piston posi-
tions. b) A test sample used to illustrate the wavelength selectivity in neutron imaging. c) Phase
contrast experiment of a spark plug at two different neutron wavelengths with the third image
indicating the success of the phase contrast technique to show unseen new features in the sample.

6.3 New Mathematics and Computational Tools

Future tomography research is going to rely heavily on new mathematics, computational

methods and advanced computer hardware. In the following sections I cover the areas of math

and technology that will be crucial for future topographers to perform their research.
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6.3.1 New Mathematics and Algorithms for Reconstruction and 3D Image Analysis

New mathematics and algorithms are needed for 3-D image acquisition and analysis. 3D

data comes from many disciplines and the mathematics that govern tomography and 3D image

analysis needs to be advanced. The complexities of the mathematics argue for developing collab-

orations between mathematicians and scientists that will produce new math and algorithms. In

order to address this issue workshops have been held. [43] Topics covered were wide ranging and

approximately 120 participants were at the conference. Issues that were discussed relating to the

research presented in this dissertation included:

• The combination of multiple volume into a single volume.

• Automatic 3D image analysis of simple geometric shapes.

Some issues did not get discussed but are still an issue. Raw data rates at synchrotron

X-ray tomography beamlines can exceed 10 MB/s, and this data must be processed rapidly into

normalized projection data, ordered into sinograms, and then converted into image data where

the typical back projection reconstruction algorithm is an O(N3) problem. With projections ap-

proaching 2k×2k, small computer clusters are needed to generated reconstructed slice images at

rates comparable to the data acquisitions. The desire for a much faster reconstruction algorithm

that does not sacrifice much in terms of accuracy and resolution would be highly desired. 3D

image processing algorithms are still a relatively new discipline so scientists, not all of whom are

parallel computing experts, must run high level software such as cluster versions of Mathematica

(GridMathematica) or Matlab rather than MPI-optimized C/Fortran code. New 3D image pro-

cessing algorithms that are more efficient or simply faster would be of great use to everyone. Post

reconstruction image processing also adds a large amount of data overhead that must be orga-

nized and tracked in an efficient manner what is best way to keep track of this data in a way that

will foster open data sharing.

The overall conference was considered a success but a stronger presence of experimen-

talists was desired. In the future more conferences like the previously mentioned is necessary

to help foster connections between mathematicians and scientists so that new mathematics and

algorithms can be developed at a more rapid rate.
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Table 6.1: Visualization Software

Name Commercial? Comments
Amira yes expensive, algorithms are blackbox
VisIt open source excellent support for cluster use, interface not as refined as others
ITK open source no interface just a library, popular among core comp sci researchers

Osirix open source mac only, primarily for radiologists
Maya yes mainly used for animation, not much scientific support

6.3.2 High Level Hierarchal Data Formats

As previously stated there is a lot of data associated with the typical tomography exper-

iment. In a effort to reduce the amount of data many experimentalist throw away absorption

images and sinograms once the reconstruction has completed. Even with this trimming the re-

constructed volume and any post processing data generated can still be quite large. Tomography

beamlines and laboratory systems employ a wide range of data formats in order to manage all

this data. Formats range from the simple block-of bytes to more complex hierarchal data types.

We currently prefer HDF5, however, it is still problematic and is not well supported by a number

of 3D visualization tools. The major issue with picking a data format is that there is no standard

that researchers can all agree on. Currently many groups take one of the formats listed above and

modify it to suit their particular needs. This modification while useful to the original group makes

it very hard to share their data collaboratively. A standard format or set of guidelines could be

adopted by tomography research community but no attempts to do this have been attempted yet.

Alternatively, GUI-based data conversion software for rapid translation of various formats to the

widely used formats such as block-of-bytes, HDF5, and netCDF would find much success.

6.3.3 Visulization Tools

Scientific visualization of data has traditionally be done through a multitude of graphs and

plots. These graphs produced by the scientific community are useful to the community itself but to

anyone outside the field the graphs would rapidly lose meaning. With the advent of 3D graphics

on personal computers it has become possible to render a wide variety of scientific data in manner

that is accessible to experts and non-experts alike. A variety of 3D visualization tools such as

Amira, OsiriX, VisIt, VTK, Maya and many others. Some are commercial and others open source

all have advantages and disadvantages, Table 6.1 lists some of the common viz tools compares

them.
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Until a vastly superior product comes out most people will find themselves using one or

two visualization software packages.

6.3.4 Data Storage

Long term storage of nearly raw tomography data is often done with the normalized pro-

jection data, which is a series of 2D images, often 500 to 2,000 images with each image on the

order of 0.5 to 10 MB. As multiple tomography experiments can be done every day, and instru-

ments often run 24/7, long-term storage requirements on the order of 10 - 100 TB are needed.

LSU has recently acquired funding for Petashare[44] project which aims to provide a innovative

distributed data archival, analysis and visualization cyberinfrastructure for data intensive collab-

orative research. PetaShare will enable transparent handling of underlying data sharing, archival

and retrieval mechanisms, and will make data available to scientists for analysis and visualization

on demand. Petashare is an excellent step towards the data storage demands that tomography

experimentalists will require.

6.4 Remarks

Various X-ray tomography experiments have been performed in this research to study the

blending properties of polymer blends and the diffusion properties. Experiments were done at the

Center for Advanced Microstructures and Devices tomography beamline and the Advanced Pho-

ton Source (APS), Argonne National Laboratory, at bending magnet 13-BM-D in the GeoSoilEn-

viroCARS (GSECARS) group. This research has concentrated on developing new algorithms for

complex data analysis in the three dimensions.

A fiberglass-reinforced polymer blend with a new-generation flame retardant was studied

with multi-energy synchrotron X-ray tomography to assess blend homogeneity. The sample was

difficult to image due to low x-ray contrast between the fiberglass reinforcement and the polymer

blend. New procedures were developed to find and mark the fiberglass, then assess the flame

retardant distribution near the fiber.

By using three-dimensional chemical analysis techniques another polymer blending prob-

lem called blooming was investigated. To investigate the chemical process of blooming, new pro-

cedures are developed to assess the flame retardant distribution as a function of annealing time in

the sample. The chemical distribution was measured and the data was ft to a generalized diffu-
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sion equation. To calculate diffusion measurements around the pockets of high concentration in

the sample, new methods had to be developed.

The diffusion properties of hexabromobenzene and o-terphenyl was studied using X-ray

tomography. The diffusion properties were compared with molecular dynamics computer simu-

lations. The computer simulations helped us interpret the images and guide the improvement of

techniques for image analysis of diffusion processes.

Multi-spectral X-ray tomography is shown as an excellent technique to study polymer

blends. Near micrometer resolution tomography along with spatial concentration distribution

analysis can give new insights into the science of polymer blends. The procedures under devel-

opment here can be applied to a wide variety of materials science problems, ranging from studies

of cornified tissues in biological samples to pollutant flow in environmental samples.
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Appendix B Algorithms

Reconstruction Algorithm

This is a matlab program for taking raw data from a tomography experiment and recon-

structing a volume dataset. Much of this code is automatic corrections such centering, white/dark

field issues, cropping, and data logging. Anything done to the data is recorded and stored in a

structured variable.

1 % FirstReconstruction_v31.m
2 % June 27, 2007
3 % This program is modified from FirstReconstruction_v24_kh_matlab74.m for use of the
4 % data set with larger field of view than the acquision column size
5 % This version can reconstructed tomography data sets that have been
6 % interrupted with beam dumps.
7 % Important data is read from the footer with a revised ReadFITS.m file
8 %
9 % New: Updates to PROC.angle_to_file_seq and PROC.angle

10 % These update recognize that some raw data cannot be used due to a
11 % lack of appropriate white fields (see the "otherwise" option in
12 % PROC.raw_with_white).
13 %Also updated with streak removal
14 %line 86 is for AirRoundObject value
15

16 clear; clc;
17 % Locate the date files: *.fits files of white, dark, and raw images
18 [FILE.filename, FILE.filepath] = uigetfile(’*.fits’, ’Click on any *.fits data file’);
19 % FILE.filename = ’shell25.dark.00001.000.000.fits’;
20 % FILE.filepath = ’/Users/tomog9/Desktop/Cat_Satuday/’;
21

22 %how many whites taken at a given angle
23 PROC.white_average = 3;
24 % how often whites taken, after every 30 images
25 PROC.white_frequency = 30;
26

27

28 % Within that directory, find all the white, dark, and raw *.fits files
29 original_DataPath = pwd; cd(FILE.filepath); FILE.filenames = dir; cd(original_DataPath);
30 [numberOfFiles, lengthOfFilename] = size(FILE.filenames);
31 % Find the mean dark count in a dark field image. Use this mean count Find
32 % any dark file. Calculate the mean counts in the dark field.
33 % Set the count_threshold value at 1.2 * dark field count. Any raw or
34 % white field less than threshold is bad data and ignored.
35 for k = 1:numberOfFiles
36 temp = FILE.filenames(k).name;
37 if findstr(temp, ’.fits’) & findstr(temp, ’fits’),
38 if findstr(temp, ’.dark’)
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39 [data, PARAMETERS] = ReadFITS(FILE.filepath, temp);
40 FILE.count_threshold = 1.2*PARAMETERS.mean_count;
41 break,
42 end;
43 end;
44 end;
45 % Get file names and mean_counts for dark, white, and raw files.
46 FILE.white = {}; FILE.dark = {}; FILE.raw = {};
47 for k = 1:numberOfFiles
48 temp = FILE.filenames(k).name;
49 if findstr(temp, ’.fits’)& findstr(temp, ’fits’),
50 if findstr(temp, ’.dark’),
51 index = length(FILE.dark) + 1;
52 FILE.dark(index) = {temp};
53 elseif findstr(temp, ’.white’),
54 [data, PARAMETERS] = ReadFITS(FILE.filepath, temp);
55 if PARAMETERS.mean_count >= FILE.count_threshold,
56 index = length(FILE.white) + 1;
57 FILE.white(index) = {temp};
58 FILE.white_counts(index) = PARAMETERS.mean_count;
59 ACQ.white_file_number(index) = index;
60 ACQ.white_sequence_number(index) = PARAMETERS.sequence_number;
61 end;
62 elseif findstr(temp, ’.raw’),
63 [data, PARAMETERS] = ReadFITS(FILE.filepath, temp);
64 if PARAMETERS.mean_count >= FILE.count_threshold,
65 index = length(FILE.raw) + 1;
66 FILE.raw(index) = {temp};
67 FILE.raw_counts(index) = PARAMETERS.mean_count;
68 ACQ.raw_file_number(index) = index;
69 ACQ.angle(index) = PARAMETERS.angle;
70 ACQ.raw_sequence_number(index) = PARAMETERS.sequence_number;
71 end;
72 end;
73 end;
74 end;
75 FILE.dark(1) = [];
76 [x, FILE.numberWhiteFiles] = size(FILE.white);
77 [x, FILE.numberDarkFiles] = size(FILE.dark);
78 [x, FILE.numberRawFiles] = size(FILE.raw);
79 ACQ.NumberOfProjections = length(FILE.raw) - 1;
80 ACQ.naxis1 = PARAMETERS.NAXIS1; ACQ.columns = PARAMETERS.columns;
81 ACQ.naxis2 = PARAMETERS.NAXIS2; ACQ.rows = PARAMETERS.rows;
82 ACQ.exptime = PARAMETERS.exptime;
83 ACQ.ccd_xoffset = PARAMETERS.ccd_xoffset; % fix *.fits header/footer and ReadFITS.m
84 ACQ.ccd_yoffset = PARAMETERS.ccd_yoffset; % fix *.fits header/footer and ReadFITS.m
85 ACQ.PixelToMicron = (4.5); % fix *.fits header/footer and ReadFITS.m
86 PROC.AirAroundObject = 15;%5;%1;%15;%0;%15;%5;%15;
87 ACQ.X_axis = ACQ.ccd_xoffset+(1:ACQ.columns); ACQ.Y_axis = ACQ.ccd_yoffset+(1:ACQ.rows);
88

89 % Display the first white image
90 disp(’*** Display a white image (uncropped). Find the useful region of illumination.’);
91 frameIndex = 1; h0 = figure(frameIndex); clf;
92 set(h0, ’Position’,[1,10,560, 420],’Color’, [1,1,1], ’Name’, ’White Field’);
93 [raw_white, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.white(1)));
94 [ACQ.rows, ACQ.columns] = size(raw_white);
95 First_Crop_Rectangle = [ACQ.ccd_xoffset, ACQ.ccd_yoffset, ACQ.columns, ACQ.rows];
96 max_counts = max(max(raw_white)); min_counts = min(min(raw_white));
97 mean_counts = round(mean(reshape(raw_white,ACQ.rows*ACQ.columns,1)));
98 std_counts = round(std(reshape(raw_white,ACQ.rows*ACQ.columns,1)));
99 CLIM = mean_counts + 5*[-std_counts, std_counts];

100 subplot(211); imagesc(ACQ.X_axis,ACQ.Y_axis,raw_white, CLIM); colormap(gray); axis(’ij’); colorbar(’horiz’);
101 line1 = [char(FILE.white(1)),’; Rows, Columns = ’,mat2str([ACQ.rows, ACQ.columns])];
102 line2 = [’Counts (min, max) = ’,mat2str([min_counts,max_counts]),...
103 ’; Counts (mean, std) = ’,mat2str([mean_counts, std_counts])];
104 h2 = title( {line1;line2} );
105 set(h2, ’Interpreter’, ’none’); hold on;
106 [hot_row,hot_column] = find(raw_white> (4*std_counts + mean_counts));
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107 hot_row = hot_row + ACQ.ccd_yoffset; hot_column = hot_column + ACQ.ccd_xoffset;
108 for k = 1:length(hot_row)
109 h5=plot(hot_column(k),hot_row(k),’yo’); set(h5,’MarkerSize’,10);
110 end;
111

112 subplot(223);
113 vp_left = raw_white(1:ACQ.rows, round(ACQ.columns/4)); % vertical profile at left quartile of white
114 vp_mid = raw_white(1:ACQ.rows, 2*round(ACQ.columns/4)); % vertical profile at middle of white
115 vp_right = raw_white(1:ACQ.rows, 3*round(ACQ.columns/4)); % vertical profile at right quartile of white
116 plot( ACQ.Y_axis, vp_left, ’r-’, ACQ.Y_axis, vp_mid, ’k-’, ACQ.Y_axis, vp_right, ’b-’);
117 xlabel(’CCD row’); ylabel(’counts’); drawnow; clear vp_left vp_mid vp_right
118 title(’vertical profiles: left(red), middle(black), right(blue)’);
119

120 subplot(224);
121 [n,x] = hist(reshape(raw_white, ACQ.rows*ACQ.columns, 1), 100);
122 bar(x,log10(n+1));
123 xlabel(’counts’); ylabel([’log_{10}(frequency), bin width = ’,num2str(x(2)-x(1))]); drawnow;
124 title(’histogram of pixel values’); drawnow;
125 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
126

127 % Show the raw images at 0 and 180 degrees
128 disp(’** Display raw 0deg and raw 180deg images’);
129 h0 = figure(frameIndex); clf;
130 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Raw Images: 0, 180 deg, and last raw’);
131 [raw_0deg, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.raw(1)) );
132 subplot(211); imagesc(ACQ.X_axis,ACQ.Y_axis,raw_0deg, [min(min(raw_0deg)), CLIM(2)]);
133 colormap(gray); axis(’ij’); % colorbar(’horiz’);
134 h2 = title([char(FILE.raw(1))]); set(h2, ’Interpreter’, ’none’);
135

136 hp_top = raw_0deg( round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at top quartile of raw
137 hp_mid = raw_0deg(2*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at middle of raw
138 hp_bottom = raw_0deg(3*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at bottom quartile of raw
139 subplot(212); plot( ACQ.X_axis, hp_top, ’r-’, ACQ.X_axis, hp_mid, ’k-’, ACQ.X_axis, hp_bottom, ’b-’)
140 title(’top(red), middle(black), bottom(blue)’); ylabel(’counts’);
141 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
142

143 h0 = figure(frameIndex); clf;
144 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Raw Images: 0, 180 deg, and last raw’);
145 [raw_180deg, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.raw(2)) );
146 subplot(211); imagesc(ACQ.X_axis,ACQ.Y_axis,raw_180deg, [min(min(raw_0deg)), CLIM(2)]);
147 colormap(gray); axis(’ij’); % colorbar(’horiz’);
148 h2 = title([char(FILE.raw(2))]); set(h2, ’Interpreter’, ’none’);
149

150 hp_top = raw_180deg( round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at top quartile of raw
151 hp_mid = raw_180deg(2*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at middle of raw
152 hp_bottom = raw_180deg(3*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at bottom quartile of raw
153 subplot(212); plot( ACQ.X_axis, hp_top, ’r-’, ACQ.X_axis, hp_mid, ’k-’, ACQ.X_axis, hp_bottom, ’b-’);
154 clear hp_top hp_mid hp_bottom
155 title(’top(red), middle(black), bottom(blue)’); xlabel(’CCD column’); ylabel(’counts’);
156 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
157

158 h0 = figure(frameIndex); clf;
159 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Raw Images: 0, 180 deg, and last raw’);
160 [raw_180deg, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.raw(length(ACQ.raw_sequence_number))) );
161 subplot(211); imagesc(ACQ.X_axis,ACQ.Y_axis,raw_180deg, [min(min(raw_0deg)), CLIM(2)]);
162 colormap(gray); axis(’ij’); % colorbar(’horiz’);
163 h2 = title([char(FILE.raw(length(ACQ.raw_sequence_number)))]); set(h2, ’Interpreter’, ’none’);
164

165 hp_top = raw_180deg( round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at top quartile of raw
166 hp_mid = raw_180deg(2*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at middle of raw
167 hp_bottom = raw_180deg(3*round(ACQ.rows/4), 1:ACQ.columns); % horizontal profile at bottom quartile of raw
168 subplot(212); plot( ACQ.X_axis, hp_top, ’r-’, ACQ.X_axis, hp_mid, ’k-’, ACQ.X_axis, hp_bottom, ’b-’);
169 clear hp_top hp_mid hp_bottom
170 title(’top(red), middle(black), bottom(blue)’); xlabel(’CCD column’); ylabel(’counts’);
171 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
172

173 % Calculate dark image
174 % Use multiple dark files to get an average dark image
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175 PROC.dark = zeros(ACQ.rows, ACQ.columns);
176 for k = 1:FILE.numberDarkFiles
177 temp = ReadFITS(FILE.filepath, char(FILE.dark(k)) );
178 PROC.dark = PROC.dark + temp;
179 end;
180 PROC.dark = PROC.dark/FILE.numberDarkFiles;
181 disp(’** Display the averaqe dark image’);
182 h0 = figure(frameIndex); clf;
183 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Average dark image’);
184 subplot(311);
185 max_counts = max(max(temp)); min_counts = min(min(temp));
186 mean_counts = round(mean(reshape(temp,ACQ.rows*ACQ.columns,1)));
187 std_counts = round(std(reshape(temp,ACQ.rows*ACQ.columns,1)));
188 CLIM = mean_counts + 5*[-std_counts, std_counts];
189 imagesc(ACQ.X_axis, ACQ.Y_axis,temp, CLIM ); colormap(gray); axis(’ij’); colorbar(’horiz’);
190 line1 = [char(FILE.dark(1)),’; Rows, Columns = ’,mat2str([ACQ.rows, ACQ.columns])];
191 h2 = title(line1); set(h2, ’Interpreter’, ’none’); hold on;
192 max_counts = max(max(PROC.dark)); min_counts = min(min(PROC.dark));
193 mean_counts = round(mean(reshape(PROC.dark,ACQ.rows*ACQ.columns,1)));
194 std_counts = round(std(reshape(PROC.dark,ACQ.rows*ACQ.columns,1)));
195 CLIM = mean_counts + 5*[-std_counts, std_counts];
196 subplot(312); imagesc(ACQ.X_axis, ACQ.Y_axis,PROC.dark, CLIM); colormap(gray); axis(’ij’); colorbar(’horiz’);
197 line2 = [’Average dark: Counts (min, max) = ’,mat2str([min_counts,max_counts]),...
198 ’; Counts (mean, std) = ’,mat2str([mean_counts, std_counts])];
199 h2 = title( line2 ); set(h2, ’Interpreter’, ’none’); hold on;
200 subplot(313); [n,x] = hist(reshape(PROC.dark, ACQ.rows*ACQ.columns, 1), 100);
201 bar(x,log10(n+1));
202 xlabel(’counts’); ylabel([’log_{10}(frequency), bin width = ’,num2str(x(2)-x(1))]); drawnow;
203 title(’histogram of pixel values’); drawnow;
204 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
205

206 % *************** PROC.raw_with_white *****************
207 % Build pointer between raw images to white image. For example, with
208 % PROC.white_average = 3 and PROC.white_frequency = 30, then the first raw
209 % image is at sequence number = 4. Raw #4 will use white #1,2,3,34,35,36.
210 % Also, it will use 96.67% of #1,2,3 and 3.33% of #34,35,36; this is the
211 % "ratio" between the "white_front" and "white_back" white fields.
212 PROC.raw_with_white = zeros(max([max(ACQ.white_sequence_number),max(ACQ.raw_sequence_number)]), (2*PROC.white_average + 1));
213 for index_raw_seq = ACQ.raw_sequence_number % ([1:50,400:426])
214 white_front = ACQ.white_sequence_number(find(ACQ.white_sequence_number < index_raw_seq));
215 if length(white_front) >= PROC.white_average,
216 white_front = white_front( (length(white_front)-PROC.white_average+1):length(white_front) );
217 end;
218 white_back = ACQ.white_sequence_number(find(ACQ.white_sequence_number > index_raw_seq));
219 if length(white_back) >= PROC.white_average,
220 white_back = white_back( 1:PROC.white_average );
221 end;
222 white_back_sequence_flag = 1;
223 if isempty(white_back) == 0 & length(white_back) >= 2,
224 for k = 2:length(white_back),
225 if white_back(1) + (k-1) == white_back(k),
226 white_back_sequence_flag = white_back_sequence_flag +1;
227 end;
228 end;
229 end;
230 test_conditions = mat2str([˜isempty(white_back),...
231 white_back_sequence_flag == PROC.white_average,...
232 (min(white_back) - max(white_front)) - 1 == PROC.white_frequency,...
233 (min(white_back) - max(white_front)) < (PROC.white_frequency+1)]);
234 % disp([’seq=’,num2str(index_raw_seq),’ white_front = ’,mat2str(white_front),’ white_back = ’,mat2str(white_back)]);
235 % disp([’ test_conditions=’, test_conditions]);
236 switch test_conditions
237 case {’[true true true false]’}
238 % Normal white_front, raw, white_back
239 % Use white_front and white_back and compute ratio
240 % disp([’ test_conditions=’, test_conditions]);
241 ratio = 1 - (index_raw_seq - max(white_front))/(PROC.white_frequency+1);
242 PROC.raw_with_white(index_raw_seq,:) = [white_front, white_back, ratio];
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243 case {’[true true false true]’}
244 % The range of raw images does not match PROC.white_frequency
245 % Use white_front and set ratio = 1
246 % disp([’ test_conditions=’, test_conditions]);
247 PROC.raw_with_white(index_raw_seq,:) = [white_front, white_front, 1];
248 case {’[true true false false]’}
249 % The range of raw images does not match PROC.white_frequency
250 % Use white_back and set ratio = 1
251 % disp([’ test_conditions=’, test_conditions]);
252 if(min(white_back)-index_raw_seq) < PROC.white_frequency
253 PROC.raw_with_white(index_raw_seq,:) = [white_back, white_back, 1];
254 else PROC.raw_with_white(index_raw_seq,:)=[white_front, white_front,1];
255 end
256 case {’[false false]’}
257 % The white_back is missing or incorrect length
258 % Use white_front and set ratio = 1
259 % disp([’ test_conditions=’, test_conditions]);
260 PROC.raw_with_white(index_raw_seq,:) = [white_front, white_front, 1];
261 otherwise
262 % skip this data: set white_front = white_back = ratio = 0
263 disp([’ PROBLEM: test_conditions=’, test_conditions, ’ seq=’,num2str(index_raw_seq)]);
264 PROC.raw_with_white(index_raw_seq,:) = zeros(1,(1+2*PROC.white_average));
265 end;
266 end;
267 clear test_conditions
268 %break
269 % *************** end: PROC.raw_with_white ***************
270

271 % *************** PROC.control ***************
272 % seq, white_file, counts(white), raw_file, counts(raw), angle(raw),...
273 % white_front, white_back, ratio
274 PROC.control = zeros(length(PROC.raw_with_white), (5+size(PROC.raw_with_white,2)));
275 for index_seq = 1:length(PROC.control),
276 PROC.control(index_seq,1) = index_seq;
277 index_white = find(ACQ.white_sequence_number == index_seq);
278 if isempty(index_white),
279 PROC.control(index_seq,2:3)= 0;
280 else,
281 PROC.control(index_seq,2)= index_white;
282 PROC.control(index_seq,3)= FILE.white_counts(index_white);
283 end;
284 index_raw = find(ACQ.raw_sequence_number == index_seq);
285 if isempty(index_raw),
286 PROC.control(index_seq,4:6)= 0;
287 else,
288 PROC.control(index_seq,4)= index_raw(1);
289 PROC.control(index_seq,5)= FILE.raw_counts(index_raw(1));
290 PROC.control(index_seq,6)= ACQ.angle(index_raw(1));
291 end;
292 index_white = 7:(6+size(PROC.raw_with_white,2));
293 PROC.control(index_seq,index_white) = PROC.raw_with_white(index_seq,:);
294 % If "case otherwise" found in generation of PROC.raw_with_white, then
295 % eliminate that raw image from PROC.control
296 if sum(PROC.raw_with_white(index_seq,:)) == 0, PROC.control(index_seq,4)= 0; end;
297 end;
298

299 % *************** end: PROC.control ***************
300

301 % *************** PROC.angle_to_file_seq ***************
302 % Connect angles to raw file index and sequence numbers of the raw images
303 % Recall, PROC.control = [seq, white_file, counts(white), raw_file, counts(raw), angle(raw),...
304 % white_front, white_back, ratio]
305 index = find( PROC.control(:,4) > 0);
306 temp_sequence = PROC.control(index,1);
307 temp_file = PROC.control(index,4);
308 temp_angle = PROC.control(index,6);
309 [temp_angle, index] = sort(temp_angle);
310 temp_file = temp_file(index);

115



311 temp_sequence = temp_sequence(index);
312

313

314

315 %***********need to find duplicated angles and remove********
316 disp(’**** find duplicated angle and remove ***’)
317

318 index_skip = [];
319 for i=2:length(temp_angle)
320 if temp_angle(i-1) == temp_angle(i),
321 index_skip = [index_skip, (i-1)];
322 end;
323 end;
324

325 [temp_angle, index] = sort(temp_angle);
326

327

328 %break
329 PROC.angle_to_file_seq=[]
330 ind=find(index_skip)
331

332 if ind ˜= 0
333

334 index_keep=[];
335 [temp_angle, index] = sort(temp_angle);
336 k=0;
337 for i= 1:length(index)
338 if i ˜= index_skip
339 k=k+1;
340 PROC.angle_to_file_seq(k,:) = [temp_angle(i), temp_file(i), temp_sequence(i)];
341 end;
342

343 end;
344 else
345 for i=1:length(index)
346 PROC.angle_to_file_seq(i,:)=[temp_angle(i), temp_file(i), temp_sequence(i)];
347

348 end;
349 end;
350

351 %PROC.angle_to_file_seq = [temp_angle, temp_file, temp_sequence];
352 clear temp*
353 % *************** end: PROC.angle_to_file_seq ***************
354

355 % *************** Display: PROC.angle_to_file_seq ***************
356 h0 = figure(frameIndex); clf
357 h4 = gca; set(h4,’Visible’, ’off’)
358 set(h0, ’Position’,[50,10,560, 420],’Color’, [1,1,1], ’Name’, ’PROC.angle_to_file_seq’);
359 xtext = -0.1; ytext = 1; yshift = -0.04;
360 h2 = text(xtext, ytext, [’PROC.angle_to_file_seq’]);
361 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,14, ’Interpreter’,’none’);
362 ytext = ytext+yshift;
363 h2 = text(xtext, ytext, [’row deg file # sequence # ’]);
364 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,12);
365 for k=1:25
366 a = num2str(k,’%02i’);
367 b = num2str(PROC.angle_to_file_seq(k,1),’%07.3f\t’);
368 c = num2str(PROC.angle_to_file_seq(k,2),’%05i\t’);
369 d = num2str(PROC.angle_to_file_seq(k,3),’%05i’);
370 h3 = text(xtext, ytext+k*yshift, [a,’ ’, b,’ ’, c,’ ’,d]);
371 set(h3,’FontName’, ’Courier’,’FontSize’,12);
372 end;
373 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
374 % *************** End Display: PROC.angle_to_file_seq ***************
375 % *************** Display: PROC.raw_with_white ***************
376 h0 = figure(frameIndex); clf
377 set(h0, ’Position’,[50,10,560, 420],’Color’, [1,1,1], ’Name’, ’PROC.raw_with_white’);
378 h4 = gca; set(h4,’Visible’, ’off’)
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379 xtext = [-0.1,0.5]; ytext = 1; yshift = -0.04; m = 0;
380 h2 = text(xtext(1), ytext, [’PROC.raw_with_white’]);
381 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,14, ’Interpreter’,’none’);
382 ytext = ytext+yshift;
383

384 for j = 1:2,
385 h2 = text(xtext(j), ytext, [’row low high ratio ’]);
386 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,10);
387 for k=1:25,
388 m = m+1;
389 a = num2str(m,’%02i’); index = 1:PROC.white_average;
390 b = mat2str(PROC.raw_with_white(m,index));%matlab74,’%05i\t’); index = (PROC.white_average+1):(2*PROC.white_average);
391 c = mat2str(PROC.raw_with_white(m,index));%matlab74,’%05i\t’); index = 2*PROC.white_average + 1;
392 d = num2str(PROC.raw_with_white(m,index),’%05.3f’);
393 h3 = text(xtext(j), ytext+k*yshift, [a,’ ’, b,’ ’, c,’ ’,d]);
394 set(h3,’FontName’, ’Courier’,’FontSize’,10);
395 end;
396 end;
397 clear a b c d
398 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
399 % *************** End Display: PROC.raw_with_white ***************
400 % *************** Display: PROC.control ***************
401 h0 = figure(frameIndex); clf
402 set(h0, ’Position’,[50,10,560, 420],’Color’, [1,1,1], ’Name’, ’PROC.control’);
403 h4 = gca; set(h4,’Visible’, ’off’)
404 xtext = -0.1; ytext = 1; yshift = -0.04;
405 h2 = text(xtext(1), ytext, [’PROC.control’]);
406 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,14, ’Interpreter’,’none’);
407 ytext = ytext+yshift;
408 % Recall, PROC.control = [seq, white_file, counts(white), raw_file, counts(raw), angle(raw),...
409 % white_front, white_back, ratio]
410 h2 = text(xtext, ytext, [’seq [white] [raw] [front,back] ratio ’]);
411 set(h2, ’HorizontalAlignment’, ’left’,’FontName’, ’Courier’,’FontSize’,12);
412 for k=1:25
413 a = num2str(PROC.control(k,1),’%02i’);
414 b = num2str(PROC.control(k,2:3),’%5d %7.1f’);
415 c = num2str(PROC.control(k,4:6),’%5d %7.1f %7.3f’);
416 d = mat2str(PROC.control(k,7:(6+2*PROC.white_average)));%matlab74,’%5d ’);
417 e = num2str(PROC.control(k,(7+2*PROC.white_average)),’%7.3f’);
418 h3 = text(xtext, ytext+k*yshift, [a,’ [’, b,’] [’, c,’] ’,d,’ ’,e]);
419 set(h3,’FontName’, ’Courier’,’FontSize’,12);
420 end;
421 clear a b c d e
422 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
423 % *************** End Display: PROC.control ***************
424

425 % Find the left and right edges of the object
426 disp(’*** Find the left and right edges of the object.’);
427 displayAngles = [0:10:180];
428 PROC.ObjectEdgeLeft = []; PROC.ObjectEdgeRight = [];
429 for k = 1:length(displayAngles)
430 % seq, white_file, counts(white), raw_file, counts(raw), angle(raw),...
431 % white_front, white_back, ratio
432 index_row = min(find(PROC.angle_to_file_seq(:,1) >= displayAngles(k)));
433 index_file = PROC.angle_to_file_seq(index_row,2);
434 index_seq = PROC.angle_to_file_seq(index_row,3);
435 [raw_image, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.raw(index_file)));
436 index_white = PROC.control(index_seq,(7:(6+2*PROC.white_average +1)));
437 disp([’*** White file sequence numbers; ratio: ’,mat2str(index_white,3)]);
438 index_white_front = index_white(1:PROC.white_average);
439 index_white_back = index_white(PROC.white_average + (1:PROC.white_average));
440 ratio = index_white(length(index_white));
441 PROC.white_front = zeros(ACQ.rows, ACQ.columns);
442 PROC.white_back = zeros(ACQ.rows, ACQ.columns);
443 for j = index_white_front
444 index_white_file = find(ACQ.white_sequence_number == j);
445 temp = ReadFITS(FILE.filepath, char(FILE.white(index_white_file)));
446 PROC.white_front = PROC.white_front + temp;
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447 end;
448 PROC.white_front = PROC.white_front/PROC.white_average;
449 for j = index_white_back
450 index_white_file = find(ACQ.white_sequence_number == j);
451 temp = ReadFITS(FILE.filepath, char(FILE.white(index_white_file)));
452 PROC.white_back = PROC.white_back + temp;
453 end;
454 PROC.white_back = PROC.white_back/PROC.white_average;
455 PROC.white = PROC.white_front*ratio + PROC.white_back*(1-ratio);
456 abs_image = real(log( (PROC.white - PROC.dark)./(raw_image - PROC.dark) ));
457 h0 = figure(frameIndex); clf;
458 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Absorption Images (and edges)’);
459 subplot(211); imagesc(ACQ.X_axis, ACQ.Y_axis, abs_image); colormap(gray); axis(’ij’); colorbar(’vert’);
460 h2 = title([char(FILE.raw(index_file)), ’ ’,num2str(PARAMETERS.angle),’ deg’]);
461 set(h2, ’Interpreter’, ’none’);
462 abs_sum = sum(abs_image);
463 abs_sum_threshold = 0.1*(max(abs_sum) - min(abs_sum)) + min(abs_sum);
464 CenterOfGravity = round(abs_sum.*ACQ.X_axis/abs_sum);
465 index = find( abs_sum >= abs_sum_threshold);
466 PROC.ObjectEdgeLeft = [PROC.ObjectEdgeLeft; ACQ.X_axis(min(index))];
467 PROC.ObjectEdgeRight = [PROC.ObjectEdgeRight; ACQ.X_axis(max(index))];
468 subplot(212); plot(ACQ.X_axis, abs_sum, ’k-’); xlabel(’CCD column’); ylabel(’column sum (abs)’);
469 title([’Left = ’,num2str(PROC.ObjectEdgeLeft(length(PROC.ObjectEdgeLeft))),...
470 ’; Center = ’,num2str(CenterOfGravity),’; Right = ’,...
471 num2str(PROC.ObjectEdgeRight(length(PROC.ObjectEdgeRight)))]);
472 drawnow;
473 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
474 end;
475 PROC.ObjectEdgeLeft = min(PROC.ObjectEdgeLeft); PROC.ObjectEdgeRight = max(PROC.ObjectEdgeRight);
476 index_col_low = find(ACQ.X_axis <= (PROC.ObjectEdgeLeft - PROC.AirAroundObject));
477 index_col_high = find(ACQ.X_axis >= (PROC.ObjectEdgeRight + PROC.AirAroundObject));
478 index_columns = [index_col_low, index_col_high];
479 PROC.air_columns = [index_col_low, index_col_high];
480 %PROC.ObjectEdgeLeft=20;
481 clear index*
482

483

484

485 % Make absorption images and write to disk
486 disp(’*** Make absorption images and write to disk’);
487 frameIndex_fixed = frameIndex;
488 index_raw_good = PROC.control(find(PROC.control(:,4) > 0),1);
489 index_white_front_old = zeros(1, PROC.white_average); index_white_back_old = zeros(1, PROC.white_average);
490 for index_proc_control_row = index_raw_good’,
491 index_raw_seq = PROC.control(index_proc_control_row, 1);
492 index_raw_file = PROC.control(index_proc_control_row, 4);
493 index_white = PROC.control(index_proc_control_row,(7:(6+2*PROC.white_average +1)));
494 disp([’*** White file sequence numbers; ratio: ’,mat2str(index_white,3)]);
495 index_white_front = index_white(1:PROC.white_average);
496 index_white_back = index_white(PROC.white_average + (1:PROC.white_average));
497 if sum(index_white_front ˜= index_white_front_old) > 0,
498 PROC.white_front = zeros(ACQ.rows, ACQ.columns);
499 for j = index_white_front,
500 index_white_file = find(ACQ.white_sequence_number == j);
501 temp = ReadFITS(FILE.filepath, char(FILE.white(index_white_file)));
502 PROC.white_front = PROC.white_front + temp;
503 end;
504 PROC.white_front = PROC.white_front/PROC.white_average;
505 index_white_front_old = index_white_front;
506 end;
507 if sum(index_white_back ˜= index_white_back_old) > 0,
508 PROC.white_back = zeros(ACQ.rows, ACQ.columns);
509 for j = index_white_back,
510 index_white_file = find(ACQ.white_sequence_number == j);
511 temp = ReadFITS(FILE.filepath, char(FILE.white(index_white_file)));
512 PROC.white_back = PROC.white_back + temp;
513 end;
514 PROC.white_back = PROC.white_back/PROC.white_average;
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515 index_white_back_old = index_white_back;
516 end;
517 PROC.white = PROC.white_front*ratio + PROC.white_back*(1-ratio);
518 [raw_image, PARAMETERS] = ReadFITS(FILE.filepath, char(FILE.raw(index_raw_file)));
519 abs_image = real(log( (PROC.white - PROC.dark)./(raw_image - PROC.dark) ));
520 % FUDGE: adjust abs_image offset
521 abs_image_offset = mean(mean(abs_image(1:ACQ.rows, PROC.air_columns)));
522 abs_image = abs_image - abs_image_offset;
523 temp = char(FILE.raw(index_raw_file));
524 temp = temp( 1:(length(temp)-4));
525 index = findstr(temp, ’.raw.’);
526 temp(index:(index+4)) = ’.abs.’;
527 temp = [temp,’mat’];
528 disp([’*** Absorption filename: ’, temp]);
529 FILE.abs(index_raw_file) = {temp};
530 eval([’save ’, [FILE.filepath,temp], ’ abs_image’]);
531 if mod(index_raw_file,10)==1,
532 h0 = figure(frameIndex_fixed); clf;
533 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Absorption Images and Histograms ’);
534 subplot(211); imagesc(ACQ.X_axis, ACQ.Y_axis, abs_image); colormap(gray); axis(’ij’); colorbar(’vert’);
535 h2 = title([char(FILE.raw(index_raw_file)), ’ ’,num2str(PARAMETERS.angle),’ deg’]);
536 set(h2, ’Interpreter’, ’none’);
537 subplot(212);
538 temp = reshape(abs_image, ACQ.columns*ACQ.rows, 1);
539 hist(temp, 100);
540 xlabel(’abs’); ylabel(’counts’);
541 title([’min abs = ’,num2str(min(temp)),’; max abs = ’,num2str(max(temp))]);
542 drawnow;
543 % movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
544 end;
545

546 end;
547

548 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
549

550 clear index* temp abs* framIndex_fixed
551

552 % save 1_FirstReconstruction
553 % movie2avi(movieData, [FILE.filepath, ’FirstRecon_Tuesday1140AM’, ’.avi’]);
554 %
555 % break;
556

557 disp(’*** Initialize sinograms to zeros: size ACQ.columns by length(ACQ.angles) ’);
558 disp(’*** Create filenames and store in FILE.sino’);
559 disp(’*** Create variable names and store in PROC.sino’);
560 t0 = clock;
561 temp = char(FILE.abs(1));
562 index = findstr(temp,’.’);
563 temp = temp(1:index(1));
564 for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
565 k = index_sino - ACQ.ccd_yoffset + 1;
566 FILE.sino(k) = {[temp, ’sino.’, num2str(index_sino),’.mat’]};
567 eval([’sino_’,num2str(index_sino),’ = zeros(length(ACQ.angle), ACQ.columns);’]);
568 PROC.sino(k) = {[’sino_’,num2str(index_sino)]};
569 end;
570 clear index_sino k
571

572 disp([’*** Time required to initialize all sinograms = ’,num2str(etime(clock,t0))]);
573 disp(’*** Calculate all s (large RAM requirements)’);
574 t0 = clock;
575 for index_angle = 1:length(PROC.angle_to_file_seq(:,1))
576 index_file = PROC.angle_to_file_seq(index_angle, 2);
577 load([FILE.filepath, char(FILE.abs(index_file))]); % loads abs_image
578 for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
579 index_row = index_sino - ACQ.ccd_yoffset + 1;
580 abs_row = abs_image(index_row,:);
581 eval([’sino_’,num2str(index_sino),’(index_angle,:) = abs_row;’]);
582 index_file = index_sino - ACQ.ccd_yoffset + 1;
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583 save([FILE.filepath, char(FILE.sino(index_file))], char(PROC.sino(index_file))) % saves sinogram
584 eval([’temp = ’, char(PROC.sino(index_file)),’;’]);
585 h0 = figure(frameIndex_fixed); clf;
586 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’s’);
587 imagesc(ACQ.X_axis, PROC.angle_to_file_seq(:,1), temp); colormap(gray); axis(’ij’); colorbar(’vert’);
588 xlabel(’column’); ylabel(’theta (deg)’);
589 h2 = title([char(PROC.sino(index_file))]); set(h2, ’Interpreter’, ’none’);
590 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
591 clear sino_*
592 end;
593 end;
594

595 clear index_angle
596

597 disp([’*** Time required to compute all sinograms = ’,num2str(etime(clock,t0))]);
598 disp(’*** Store sinograms to disk’);
599 t0 = clock;
600 %ACQ.rows=20;
601 % for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
602 % index_file = index_sino - ACQ.ccd_yoffset + 1;
603 % save([FILE.filepath, char(FILE.sino(index_file))], char(PROC.sino(index_file))) % saves sinogram
604 % end;
605 clear index_sino index_file
606

607 disp([’*** Time required to store all sinograms = ’,num2str(etime(clock,t0))]);
608 t0 = clock;
609 frameIndex_fixed = frameIndex;
610 % for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
611 % index_file = index_sino - ACQ.ccd_yoffset + 1;
612 % eval([’temp = ’, char(PROC.sino(index_file)),’;’]);
613 % h0 = figure(frameIndex_fixed); clf;
614 % set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’s’);
615 % imagesc(ACQ.X_axis, PROC.angle_to_file_seq(:,1), temp); colormap(gray); axis(’ij’); colorbar(’vert’);
616 % xlabel(’column’); ylabel(’theta (deg)’);
617 % h2 = title([char(PROC.sino(index_file))]); set(h2, ’Interpreter’, ’none’);
618 % movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
619 % end;
620 disp([’*** Time required to display all s = ’,num2str(etime(clock,t0))]);
621 clear sino_* index_sino index_file temp
622

623 save 2_sino
624

625 clear FILE.abs*
626

627 % % Vertical streak removal
628 disp(’*** Vertical streak removal ’);
629 %index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows);
630 X_axis=1:ACQ.columns; %1:ACQ.columns;
631 frameIndex_fixed=frameIndex;
632 for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
633 index_file = index_sino - ACQ.ccd_yoffset + 1;
634

635 load([FILE.filepath, char(FILE.sino(index_file))]); % read sinogram
636 eval([’sinogram = ’,char(PROC.sino(index_file)),’;’]);
637 sinogram_title = char(PROC.sino(index_file));
638 % eval([’clear ’,char(PROC.sino(index_sino(j)))]);
639 h0 = figure(frameIndex_fixed); clf;
640 %eval([’sum_sinogram = sum(sino_’, num2str(index_sino(j)), ’)/ACQ.NumberOfProjections;’]);
641 %sum_sinogram = sum(sinogram);
642 %subplot(411); plot(X_axis, sum_sinogram, ’k-’);
643 subplot(411);imagesc(sinogram);colormap(gray);%drawnow;%plot(X_axis, sinogram, ’k-’);
644 % ts=size(sinogram);
645 % factor=zeros(ts(1), ts(2));
646

647 %med_sinogram=sum(medfilt2(sinogram, [1 3]));
648 med_sinogram=medfilt2(sinogram, [1 3]);
649

650 % subplot(412); plot(X_axis, med_sinogram, ’k-’);
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651 subplot(412);imagesc(med_sinogram);colormap(gray);%drawnow;%plot(X_axis, med_sinogram, ’k-’);
652 %title(’median filtering and column sum’);
653 title(’median filtering’);
654

655 diff=sum(sinogram- med_sinogram);
656 subplot(413);plot(X_axis, diff, ’k-’);%drawnow;
657 title(num2str(index_sino));
658

659 [srow, scolumn]=find(abs(diff) > 4*std2(diff));
660

661 %ind=find(abs(diff) > 5*std2(diff));
662 %factor(ind)=1;
663 %factor2=1 - factor;
664

665 % for k = 1:length(PROC.angle_to_file_seq(:,1))
666 % eval([’new_sinogram(k,:) = sinogram(k,:) - diff./(length(PROC.angle_to_file_seq(:,1)));’]);
667 % end;
668 %new_sinogram=sinogram;
669 %med_sinogram = medfilt2(med_sinogram, [1 3]);
670 sinogram(:,scolumn) = med_sinogram(:,scolumn);
671 %new_sinogram=sinogram .*factor2 + (medfilt2(med_sinogram, [1 3]) .*factor);
672

673 subplot(414);imagesc(sinogram); xlabel(’CCD column’);
674 title([’filtered sinogram’]); %drawnow;
675

676 %set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Streak Removal’);
677 %movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
678 %clear sinogram
679

680 % DC correction after vertical streak removal
681 disp(’*** Repeat DC correction after vertical streak removal ’);
682 %for j = 1:ACQ.rows-1
683

684 % eval([’sinogram = ’,char(PROC.sino(j)),’;’]);
685 for k2=1:length(PROC.angle_to_file_seq(:,1))
686 % for k = 1:ACQ.NumberOfProjections
687 if PROC.AirAroundObject˜=0
688 DC_offset = mean([sinogram(k2, 1:PROC.AirAroundObject), sinogram(k2, (ACQ.columns-PROC.AirAroundObject+1):(ACQ.columns))]);
689 else
690 DC_offset=0;
691 end;
692 sinogram(k2,:) = sinogram(k2,:) - DC_offset;
693 end;
694 %eval([’PROC.sino’,num2str(j),’ = new_sinogram;’]);
695 % index_sino=ACQ.ccd_yoffset-1+j
696 eval([’sino_’,num2str(index_sino),’= sinogram;’]);
697 % eval([’clear ’,char(PROC.sino(j))]);
698

699 save([FILE.filepath, char(FILE.sino(index_file))], char(PROC.sino(index_file)))
700 clear sino_* med_sinogram sinogram diff DC_offset
701 end;
702 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
703

704 clear index_sino index_file k2 k %factor factor2
705

706 % Autocentering based on center of gravity of object
707 disp(’*** Autocentering based on center of gravity of object ’);
708 CenterOfGravity = [];
709 PROC.angle = PROC.angle_to_file_seq(:,1)’;
710 for index_sino = ACQ.ccd_yoffset - 1 + round(linspace(5,ACQ.rows-5,15))
711 % for index_sino = ACQ.ccd_yoffset - 1 + round(linspace(5,ACQ.rows-5,7))
712 index_file = index_sino - ACQ.ccd_yoffset + 1;
713 load([FILE.filepath, char(FILE.sino(index_file))]); % read
714 eval([’sinogram = ’,char(PROC.sino(index_file)),’;’]);
715

716 sinogram_title = char(PROC.sino(index_file));
717 eval([’clear ’,char(PROC.sino(index_file))]);
718 h0 = figure(frameIndex); clf;
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719 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Sinogram’);
720 imagesc(ACQ.X_axis, PROC.angle, sinogram); colorbar(’vert’)
721 h2 = title(sinogram_title); set(h2, ’Interpreter’, ’none’); drawnow;
722 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
723 CenterOfGravityVector = zeros(1,length(PROC.angle));
724

725 if sum(sum(sinogram)) > 0.00001 % to avoid the air only rows.
726

727 for k3 = 1:length(PROC.angle)
728

729 CenterOfGravityVector(k3) = ACQ.ccd_xoffset + sum(sinogram(k3,:).*(1:ACQ.columns))/sum(sinogram(k3,:));
730 end;
731 h0 = figure(frameIndex); clf;
732 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’Autocentering’);
733 subplot(311); plot(PROC.angle, CenterOfGravityVector, ’k.’); hold on;
734 coef = [(ACQ.X_axis(round(length(ACQ.X_axis)/2))) 100 0.01];
735 new_coef = lsqcurvefit(’sinusoidal_function’, coef, PROC.angle, CenterOfGravityVector);
736 y = sinusoidal_function(new_coef, PROC.angle);
737 CenterOfGravity = [CenterOfGravity, new_coef(1)];
738 plot(PROC.angle, y, ’k-’);
739 title([’Expt. center of gravity (.) and sinusoidal fit (-); Center = ’,...
740 num2str(CenterOfGravity(length(CenterOfGravity)))]);
741 subplot(312); plot(PROC.angle, (CenterOfGravityVector - y), ’k-’); % plot residuals
742 title([’Residuals (= expt CG - fit); ACQ.columns = ’,num2str(ACQ.columns)]); drawnow;
743 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
744 end;
745

746 end;
747

748

749

750 clear index_sino index_file k3
751

752

753 %save 2_sino
754

755 %break
756

757 PROC.MeanCenterOfGravity = sort(CenterOfGravity);
758

759

760 if length(CenterOfGravity) > 2
761 %PROC.MeanCenterOfGravity = mean(PROC.MeanCenterOfGravity(3:(length(PROC.MeanCenterOfGravity)-2 )));
762 PROC.MeanCenterOfGravity = mean(PROC.MeanCenterOfGravity(2:(length(PROC.MeanCenterOfGravity)-2 )));
763 else
764 PROC.MeanCenterOfGravity=mean(PROC.MeanCenterOfGravity);
765 end;
766

767 PROC.FieldOfView=2*(max(abs(PROC.MeanCenterOfGravity-(PROC.ObjectEdgeLeft-PROC.AirAroundObject)),...
768 abs(PROC.MeanCenterOfGravity-(PROC.ObjectEdgeRight+PROC.AirAroundObject))));
769

770 PROC.FieldOfView = ceil(PROC.FieldOfView/5)*5 + 1;
771

772

773

774 disp([’*** Best field-of-view: ’, num2str(PROC.FieldOfView)]);
775

776 % if (round(PROC.MeanCenterOfGravity-PROC.FieldOfView/2) > ACQ.ccd_xoffset)
777 % xmin=round(PROC.MeanCenterOfGravity-PROC.FieldOfView/2);
778 % new_ACQ.ccd_xoffset=xmin;
779 % else
780 % xmin = find(ACQ.X_axis == round(PROC.MeanCenterOfGravity - PROC.FieldOfView/2));
781 % new_ACQ.ccd_xoffset= xmin; %ACQ.ccd_xoffset;
782 % end
783 %need to look at the above lines more carefully
784

785 xmin=round(PROC.MeanCenterOfGravity-PROC.FieldOfView/2);
786 new_ACQ.ccd_xoffset = xmin;
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787

788 % index_column = xmin:(xmin + PROC.FieldOfView - 1);
789 % index_row = 1:ACQ.NumberOfProjections;
790

791 extension = xmin+ PROC.FieldOfView -1;
792

793 if extension > max(ACQ.X_axis)
794 sino_extensionR=zeros(length(PROC.angle_to_file_seq(:,1)),extension-max(ACQ.X_axis));
795 else
796 sino_extensionR=[];%zeros(length(PROC.angle_to_file_seq(:,1)),0);
797 end;
798

799

800 if new_ACQ.ccd_xoffset < ACQ.ccd_xoffset
801 sino_extensionL=zeros(length(PROC.angle_to_file_seq(:,1)), ACQ.ccd_xoffset-xmin);
802 else
803 sino_extensionL=[]; % zeros(length(PROC.angle_to_file_seq(:,1)),0);
804 end;
805

806

807 new_ACQ.X_axis = new_ACQ.ccd_xoffset - 1 + (1:PROC.FieldOfView);
808 new_ACQ.X_axis(1)
809 PROC.sino_crop_row = 1:length(PROC.angle_to_file_seq(:,1));
810 PROC.sino_crop_column= new_ACQ.X_axis;%:extension - 1;% - ACQ.ccd_xoffset:(extension-1-ACQ.ccd_xoffset);
811 %PROC.X_axis = new_ACQ.X_axis(PROC.sino_crop_column);
812 PROC.X_axis = new_ACQ.X_axis;%:extension-1;%PROC.sino_crop_column;
813 PROC.angle = PROC.angle(PROC.sino_crop_row);
814 %break
815

816 % Crop all sinograms
817 t0 = clock;
818 for index_sino = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
819 index_file = index_sino - ACQ.ccd_yoffset + 1;
820 load([FILE.filepath, char(FILE.sino(index_file))]); % read
821 eval([’sinogram = ’,char(PROC.sino(index_file)),’;’]);
822

823

824 test_conditions2 = mat2str([isempty(sino_extensionL==0),...
825 isempty(sino_extensionR==0)]);
826

827 switch test_conditions2
828 %Field of View needs to extend to left and right
829 case {’[false false]’}
830 % disp([’ test_conditions=’, test_conditions]);
831 sinogram = horzcat(sino_extensionL, sinogram, sino_extensionR);
832 case {’[false true]’}
833 % The range of raw images does not match PROC.white_frequency
834 % Use white_front and set ratio = 1
835 % disp([’ test_conditions=’, test_conditions]);
836 sinogram=horzcat(sino_extensionL, sinogram);
837 case {’[true false]’}
838 % The range of raw images does not match PROC.white_frequency
839 % Use white_back and set ratio = 1
840 % disp([’ test_conditions=’, test_conditions]);
841 sinogram=horzcat(sinogram, sino_extensionR);
842

843 case {’[true true]’}
844 %
845 sinogram=sinogram(PROC.sino_crop_row, xmin-ACQ.ccd_xoffset-1+(1:length(PROC.sino_crop_column)));
846

847 end;
848

849 % FILE.sino(index_file)=horzcat(FILE.sino(index_file), sino_extension);
850 %eval([char(PROC.sino(index_file)), ’= ’,...
851 % char(PROC.sino(index_file)),’(PROC.sino_crop_row, PROC.sino_crop_column);’]);
852 eval([char(PROC.sino(index_file)), ’= sinogram ;’]);
853 %eval([’sinogram = ’, char(PROC.sino(index_file)),’;’]);
854 save([FILE.filepath, char(FILE.sino(index_file))], char(PROC.sino(index_file))) % saves
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855 h0 = figure(frameIndex_fixed); clf;
856 set(h0, ’Position’,[10,10,560, 420],’Color’, [1,1,1], ’Name’, ’s’);
857 imagesc(PROC.X_axis, PROC.angle, sinogram );
858 colormap(gray); axis(’ij’); colorbar(’vert’);
859 xlabel(’column’); ylabel(’theta (deg)’);
860 h2 = title([char(PROC.sino(index_file))]); set(h2, ’Interpreter’, ’none’);
861 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex + 1;
862 end;
863 disp([’*** Time required to crop all sinograms = ’,num2str(etime(clock,t0))]);
864

865 clear sino_* index_sino index_file sinogram
866

867 % Make variable names for reconstructed slices
868 temp = char(FILE.sino(1)); index = findstr(temp,’.’); temp = temp(1:index(1));
869

870 for index_slice = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
871 k = index_slice - ACQ.ccd_yoffset + 1;
872 FILE.slice(k) = {[temp, ’slice.’, num2str(index_slice),’.mat’]};
873 PROC.slice(k) = {[’slice_’,num2str(index_slice)]};
874 end;
875

876 % Convert s to reconstructed slices
877 t0 = clock; frameIndex_fixed = frameIndex;
878 for index_slice = ACQ.ccd_yoffset - 1 + (1:ACQ.rows)
879 index_file = index_slice - ACQ.ccd_yoffset + 1;
880 load([FILE.filepath, char(FILE.sino(index_file))]); % read
881 eval([’ sinogram= ’, char(PROC.sino(index_file)),’;’]);
882 slice = iradon(sinogram’, PROC.angle, ’linear’, ’Hann’, PROC.FieldOfView)’;
883 eval([char(PROC.slice(index_file)), ’ = slice;’]);
884 save([FILE.filepath, char(FILE.slice(index_file))], char(PROC.slice(index_file))) % saves
885 h0 = figure(frameIndex_fixed); clf;
886 set(h0, ’Position’,[100,10,560, 420],’Color’, [1,1,1], ’Name’, ’Reconstructed Slice’);
887 imagesc(PROC.X_axis, PROC.X_axis, slice); colorbar(’vert’);
888 slice_title = char(FILE.slice(index_file));
889 h2 = title(slice_title);
890 set(h2, ’Interpreter’, ’none’, ’FontSize’, 18); drawnow;
891 movieData(frameIndex) = getframe(h0); frameIndex = frameIndex_fixed + 1;
892 clear sino_* slice_*
893 end;
894

895 clear index_slice index_file
896

897 disp([’*** Time required to reconstruct all slices = ’,num2str(etime(clock,t0))]);
898

899

900 temp = char(FILE.slice(1));
901 index = findstr(temp,’.’);
902 temp = temp(1:index(1));
903 volume = zeros(size(slice,1), size(slice,2), length(FILE.slice));
904 t0 = clock;
905 for index_slice = 1:length(FILE.slice)
906 load([FILE.filepath, char(FILE.slice(index_slice))]); % read slice
907 eval([’slice = ’, char(PROC.slice(index_slice)),’;’]);
908 clear slice_*
909 volume(:,:,index_slice) = slice;
910 end;
911 disp([’*** Time required assemble volume from slices = ’,num2str(etime(clock,t0))]);
912 size(volume)
913 cd(FILE.filepath);
914 save volume.mat volume
915 clear volume
916

917 save 1_FirstReconstruction
918 movie2avi(movieData, [FILE.filepath, ’FirstRecon_Wed_145PM’, ’.avi’]);
919
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Linear Least Squares Fit

This matlab algorithm takes the absorption data that was created in the reconstruction

code and converts it into chemical concentrations by a linear least squares fit. The linear equation

used is based of a form of Beer’s law. This code has less data logging and stored variables as

opposed to the previous code. This is due to the fact that typically this code is run on clusters or

at minimum the slices are divided up on local machines for this reason simplicity in the code is

desired.

1 clear;clc;close(’all’)
2

3 load lbutler_vols
4 load NIST_data
5 tic
6 for i = 1:200
7 display([’On Slice ’, num2str(i)])
8 for j = 1:200
9 for k = 1:500

10 A_expt = [FR_12__cube(i,j,k),FR_13p4__cube(i,j,k),FR_17__cube(i,j,k),FR_25__cube(i,j,k),FR_30p43__cube(i,j,k),FR_30p53__cube(i,j,k),FR_40__cube(i,j,k)];
11 X0 = [0.2,0.02,0.7]; t1 = clock;
12 foptions = optimset(’TolX’, 1e-5, ’Display’, ’off’,’LargeScale’, ’off’);
13 c = [(c_C8H5Br3-c_Other),(c_Sb2O3-c_Other),(c_SiO2-c_Other)];
14 d = A_expt’ - c_Other;
15 [X] = lsqlin(c, d,[],[],[],[],[0,0,0]’,[1,1,1]’,X0,foptions);
16 FR(i,j,k) = X(1);
17 Sb2O3(i,j,k) = X(2);
18 SiO2(i,j,k) = X(3);
19 end
20 end
21 end
22 t = toc;
23 clear FR* mask
24 save(’results.mat’)

Fiber Coordinate Points Generation

A mathematica script used to calculate points surrounding selected fiber bundles. Vast

majority of the code is definition of simple functions that are later used in conjunction to produce

the desired list of points. Point coordinates are exported to .mat files since the next step in done in

Matlab.

1 Define Functions
2

3 px,py,pz: position vector (location of one end of the cylinder axis)
4 ax,ay,az: axis vector (vector running along the cylinder axis)
5 R: radius of the cylinder.
6

7 Needs["Histograms‘"]
8 (* Needs["Geometry‘Rotations‘"]
9 Needs["BarCharts‘"];Needs["Histograms‘"];Needs["PieCharts‘"]

10 Needs["BarCharts‘"];Needs["Histograms‘"]
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11 Needs["Graphics‘Shapes‘"] *)
12

13 funcCylinderStart[data_] := {data[[1]], data[[2]], data[[3]]};
14 funcCylinderEnd[data_] := {data[[4]], data[[5]], data[[6]]};
15 funcCylinderRadius[data_] := data[[7]];
16 funcCylinderVector[data_] := Module[{},
17 funcCylinderEnd[data] - funcCylinderStart[data] ];
18 funcCylinderLength[data_] := Norm[ funcCylinderVector[data] ] // N;
19 funcCylinderVectorNorm[data_] :=
20 Module[{},
21 funcCylinderVector[data]/Norm[ funcCylinderVector[data] ] // N];
22 (* http://mathworld.wolfram.com/VectorNorm.html *)
23

24 funcPlane[center_, norm_] := Module[{ x, y, z, a, b, c, d},
25 eq = Simplify[Dot[norm, ({x, y, z} - center )]];
26 a = Coefficient[eq, x];
27 b = Coefficient[eq, y];
28 c = Coefficient[eq, z];
29 d = Simplify[eq - (a x + b y + c z) ] // N;
30 Chop[{a, b, c, d}] // N ];
31

32 funcDistanceStart[data_, point_] := Module[{x0, distance},
33 x0 = funcCylinderStart[data];
34 distance =
35 Sqrt[(x0[[1]] - point[[1]])ˆ2 + (x0[[2]] - point[[2]])ˆ2 + (x0[[3]] -
36 point[[3]])ˆ2 ] // N];
37 funcDistanceEnd[data_, point_] := Module[{x0, distance},
38 x0 = funcCylinderStart[data] + funcCylinderVector[data][[All, 1]];
39 distance =
40 Sqrt[(x0[[1]] - point[[1]])ˆ2 + (x0[[2]] - point[[2]])ˆ2 + (x0[[3]] -
41 point[[3]])ˆ2 ] // N];
42 funcDistance[data_, point_] := Module[{x1, x2, x0},
43 x1 = funcCylinderStart[data];
44 x2 = funcCylinderEnd[data];
45 x0 = point;
46 Norm[Cross[(x2 - x1), (x1 - x0)]] / Norm[(x2 - x1)] // N];
47 (* The equation for the distance between a point and a line is at
48 http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html *)
49

50 funcFractionalProjection[data_, point_] :=
51 Module[{x0, vectorCylinder, lengthCylinder},
52 x0 = funcCylinderStart[data];
53 vectorCylinder = funcCylinderVector[data];
54 lengthCylinder = funcCylinderLength[data];
55 fractionalProjection =
56 Round[100*Dot[vectorCylinder, point - x0]/lengthCylinderˆ2] // N];
57

58 funcFindPlanePoints[data_, center_, radius_] :=
59 Module[{ norm, a, b, c, d, xPoints, yPoints, zPoints, allPoints, span},
60 span = Ceiling[1.5 * radius];
61 norm = funcCylinderVectorNorm[data];
62 {a, b, c, d} = funcPlane[center, norm] ;
63 (* Print[a,b,c,d]; *)
64 (* Print[ Ordering[Abs[norm ],-1][[1]] ]; *)
65

66 If[Ordering[Abs[norm ], -1][[1]] == 3, (* fiber aligned with Z-axis *)
67

68 xPoints = Table[center[[1]] + i, {i, -span, span}];
69 yPoints = Table[center[[2]] + i, {i, -span, span}];
70 zPoints =
71 Round[Table[ (-d - a xPoints[[i]] - b yPoints[[j]])/
72 c, {i, 1, Length[xPoints]}, {j, 1, Length[yPoints]}]];
73 allPoints = Table[Module[{distance},
74 point = {xPoints[[i]], yPoints[[j]], zPoints[[i, j]]};
75 distance = funcDistance[data, point];
76 {xPoints[[i]], yPoints[[j]], zPoints[[i, j]], distance}],
77 {i, 1, Length[xPoints]}, {j, 1, Length[yPoints]}];
78 allPoints = Flatten[allPoints, 1];
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79 allPoints = Select[allPoints, #[[4]] <= radius & ],
80 (* Print["not Z"] *) ];
81 If[Ordering[Abs[norm ], -1][[1]] == 2, (* fiber aligned with Y-axis *)
82

83 xPoints = Table[center[[1]] + i, {i, -span, span}];
84 zPoints = Table[center[[3]] + i, {i, -span, span}];
85 yPoints =
86 Round[Table[ (-d - a xPoints[[i]] - c zPoints[[j]])/
87 b, {i, 1, Length[xPoints]}, {j, 1, Length[zPoints]}]];
88 allPoints = Table[Module[{distance},
89 point = {xPoints[[i]], yPoints[[i, j]], zPoints[[j]]};
90 distance = funcDistance[data, point];
91 {xPoints[[i]], yPoints[[i, j]], zPoints[[j]], distance}],
92 {i, 1, Length[xPoints]}, {j, 1, Length[zPoints]}];
93 allPoints = Flatten[allPoints, 1];
94 allPoints = Select[allPoints, #[[4]] <= radius & ],
95 (* Print["not Y"]*)];
96 If[Ordering[Abs[norm ], -1][[1]] == 1, (* fiber aligned with X-axis *)
97

98 yPoints = Table[center[[2]] + i, {i, -span, span}];
99 zPoints = Table[center[[3]] + i, {i, -span, span}];

100 xPoints =
101 Round[Table[ (-d - b yPoints[[i]] - c zPoints[[j]])/
102 a, {i, 1, Length[yPoints]}, {j, 1, Length[zPoints]}]];
103 allPoints = Table[Module[{distance},
104 point = {xPoints[[i, j]], yPoints[[i]], zPoints[[j]]};
105 distance = funcDistance[data, point];
106 {xPoints[[i, j]], yPoints[[i]], zPoints[[j]], distance}],
107 {i, 1, Length[yPoints]}, {j, 1, Length[zPoints]}];
108 allPoints = Flatten[allPoints, 1];
109 allPoints = Select[allPoints, #[[4]] <= radius & ],
110 (* Print["not X"]*)];
111 allPoints];
112 (* The equation for the normal vector to a plane is
113 http://mathworld.wolfram.com/NormalVector.html *)
114

115 funcFindAllPoints[data_, radius_] :=
116 Module[{x1, x2, topPlane, bottomPlane, xRange, yRange, zRange,
117 vectorCylinder, lengthCylinder, allPoints, temp},
118 x1 = funcCylinderStart[data];
119 x2 = funcCylinderEnd[data];
120 TableForm[bottomPlane = funcFindPlanePoints[data, x1, radius]];
121 TableForm[topPlane = funcFindPlanePoints[data, x2, radius]];
122 xRange = {Min[ {Min[topPlane[[All, 1]] ], Min[bottomPlane[[All, 1]] ] }],
123 Max[ {Max[topPlane[[All, 1]] ], Max[bottomPlane[[All, 1]] ] }] };
124 yRange = {Min[ {Min[topPlane[[All, 2]] ], Min[bottomPlane[[All, 2]] ] }],
125 Max[ {Max[topPlane[[All, 2]] ], Max[bottomPlane[[All, 2]] ] }] };
126 zRange = {Min[ {Min[topPlane[[All, 3]] ], Min[bottomPlane[[All, 3]] ] }],
127 Max[ {Max[topPlane[[All, 3]] ], Max[bottomPlane[[All, 3]] ] }] };
128 vectorCylinder = funcCylinderVector[data];
129 lengthCylinder = Norm[funcCylinderVector[data]];
130 allPoints = {};
131 For[i = Min[xRange], i <= Max[xRange], i++,
132 For[j = Min[yRange], j <= Max[yRange], j++,
133 For[k = Min[zRange], k <= Max[zRange], k++,
134 x0 = {i, j, k};
135 count = count + 1;
136 distanceToCylinder =
137 Norm[Cross[(x2 - x1), (x1 - x0)]] / Norm[(x2 - x1)] // N;
138 If[distanceToCylinder <= radius,
139 fractionalProjection = funcFractionalProjection[data, x0];
140 allPoints =
141 Append[allPoints, {i, j, k, distanceToCylinder,
142 fractionalProjection, -99}]];
143 ];];];
144 temp = Sort[allPoints, #1[[4]] > #2[[4]] &];
145 temp = Sort[temp, #1[[5]] < #2[[5]] &]];
146
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147 funcFindSpherePoints[dataSphere_] :=
148 Module[{radius, center, span, xPoints, yPoints, zPoints, distances,
149 allPointsInCube, allPointsInSphere},
150 radius = dataSphere[[4]];
151 center = dataSphere[[{1, 2, 3}]];
152 span = Ceiling[ radius];
153 xPoints = Table[center[[1]] + i, {i, -span, span}];
154 yPoints = Table[center[[2]] + i, {i, -span, span}];
155 zPoints = Table[center[[3]] + i, {i, -span, span}];
156 distances = Table[
157 Sqrt[(center[[1]] - xPoints[[i]])ˆ2 + (center[[2]] -
158 yPoints[[j]])ˆ2 + (center[[3]] - zPoints[[k]])ˆ2 ],
159 {i, 1, Length[xPoints]}, {j, 1, Length[yPoints]}, {k, 1,
160 Length[zPoints]}] // N;
161 allPointsInCube = Flatten[ Table[
162 {xPoints[[i]], yPoints[[j]], zPoints[[k]], distances[[i, j, k]] },
163 {i, 1, Length[xPoints]}, {j, 1, Length[yPoints]}, {k, 1,
164 Length[zPoints]}], 2];
165 indexByDistance = Ordering[ allPointsInCube[[All, 4]] ];
166 TableForm[allPointsInCube = allPointsInCube[[indexByDistance, All]] ,
167 TableHeadings -> {None, {"i", "j", "k", "d"}}];
168 TableForm[
169 allPointsInSphere = Select[allPointsInCube, #[[4]] <= radius & ] ,
170 TableHeadings -> {None, {"i", "j", "k", "d"}}] ;
171 allPointsInSphere];
172

173 drawCylinder[data_] := Module[{g1, g2},
174 g1 = Graphics3D[{Opacity[0.5],
175 Cylinder[{ funcCylinderStart[data], funcCylinderEnd[data]},
176 funcCylinderRadius[data]]}];
177 g2 = Graphics3D[{Thickness[Tiny],
178 Line[{ funcCylinderStart[data], funcCylinderEnd[data]}]}];
179 Show[{g1, g2}] ];
180

181 drawSphereSolid[dataSphere_] := Module[{x, y, z, r},
182 {x, y, z} = dataSphere[[{1, 2, 3}]];
183 r = dataSphere[[4]];
184 Graphics3D[{Opacity[0.5], Sphere[{x, y, z}, r] } ]] ;
185

186 cylinderData = {{101, 178, 201, 178, 177, 155}, {179, 62, 318, 62,
187 61, 251}, {164, 159, 148, 159, 161, 60},
188 {161, 190, 201, 190, 190, 136}, {190, 175, 373, 175, 174,
189 274}, {174, 161, 286, 161, 156, 175},
190 {156, 95, 376, 156, 95, 344}, {95, 127, 373, 143, 145, 434}, {66,
191 191, 351, 66, 66, 397}, {161, 66, 24, 161, 161, 66},
192 {11, 161, 154, 11, 11, 243}, {130, 11, 64, 132, 130, 145}, {145,
193 132, 306, 146, 145, 379}};
194 Do[
195 radius = 15;
196 spherePoints =
197 funcFindSpherePoints[dataSphereAll[[indexCylinder, All]] ];
198 allPoints =
199 funcFindAllPoints[ cylinderData[[indexCylinder]], radius] ;
200

201 (* Find the overlapping points of cylinder and sphere *)
202

203 TableForm[
204 overlapPoints =
205 Intersection[spherePoints[[All, {1, 2, 3}]],
206 allPoints[[All, {1, 2, 3}]] ] ];
207

208 (* Find update the allPoints list in column #6. Change #6 from -99 \
209 to Round[fractional projection] *)
210

211 For[index = 1, index <= Dimensions[overlapPoints][[1]], index++,
212 point = overlapPoints[[index]];
213 fractionalProjection =
214 funcFractionalProjection[cylinderData[[indexCylinder]], point];
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215 indexAllPoints =
216 Flatten[Position[allPoints[[All, {1, 2, 3}]], point]];
217 (* Print[indexAllPoints, " ", allPoints[[indexAllPoints,All]]]; *)
218

219 allPoints[[indexAllPoints, 6]] = fractionalProjection; ]
220

221 (* Find update the allPoints list in column #6.
222 Change #6 from -99 to Round[fractional projection] *)
223

224 allPointsRemaining = {};
225 For[index = 0, index <= 100, index++,
226 diskOverlapPoints = Select[allPoints, #[[6]] == index & ] ;
227 diskRadius = Min[ diskOverlapPoints[[All, 4]] ];
228 diskCylinderPoints = Select[allPoints, #[[5]] == index & ] ;
229 diskCylinderPoints =
230 Select[diskCylinderPoints, #[[4]] <= diskRadius & ] ;
231 allPointsRemaining =
232 Join[allPointsRemaining, diskCylinderPoints]; ]
233 TableForm[ allPointsRemaining ];
234 Export[ToFileName[{"/Users/heath/"},
235 "Fiber" <> ToString[indexCylinder] <> "_coords.mat"],
236 allPointsRemaining];
237 , {indexCylinder, Length[cylinderData]}]
238

Collision Detection

This algorithm takes input from the mat files created by the Fiber Coordinate Points math-

ematica script. It then calculates all possible collisions between the fiber bundles and its surround-

ing area. Collisions are defined as other fibers whose volume is larger than than 3×3×3 and are

connected. Voxels that pass the collision detection are saved for use in the RDF plot algorithms

listed after this one.

1 clear; clc;
2 load /Users/heath/RDF/bundle_mask.mat
3 load /Users/heath/RDF/lbutler_fit_results.mat Sb2O3
4 load /Users/heath/RDF/march_12_new_fiber_coords.mat
5 FR = Sb2O3;
6 clear Sb2O3;
7 for i = 1:length(points)
8 points(i).sort_all = points(i).allpoints;
9 end

10

11 for i = 1:length(points);
12 disp([’============Fiber ’,num2str(i),’============’])
13 points(i).sort_all(:,7) = 0; % Will be the volume percent at that [i,j,k]
14 points(i).sort_all(:,8) = 0; % Will be the collision detection number for the 26 neighbor sum at [i,j,k]
15 for n = 1:length(points(i).sort_all(:,7))
16 if points(i).sort_all(n,1) < 0 | points(i).sort_all(n,2) < 0 | ...
17 points(i).sort_all(n,3) < 0 |points(i).sort_all(n,1) > 199 | ...
18 points(i).sort_all(n,2) > 199 | points(i).sort_all(n,3) > 499
19 else %Excludes points outside of bounds
20 points(i).sort_all(n,7) = FR(points(i).sort_all(n,1)+1,points(i).sort_all(n,2)+1,points(i).sort_all(n,3)+1)*100;
21 %Adding one to coords due to Mathematica being base 0
22 tocheck = funcFindNeighbors([points(i).sort_all(n,1:3) 1]); % User function used to create the [i,j,k]’s of %the 26 nearest neighbors
23 clear maskList
24 for m = 1:length(tocheck)
25 maskList(m) = mask(tocheck(m,1),tocheck(m,2),tocheck(m,3));
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26 end
27 points(i).sort_all(n,8) = sum(maskList);
28 end
29

30 end
31

32 bundle_r = 4; % Our "soft" radius for our fiber bundles, we are guessing
33 % that after this radius the SiO2 concentration should drop
34 % off as it is away from the bundles.
35

36

37 for n = 1:100 % Loop through all 100 disks that were defined in column 5
38 safe_r = bundle_r; % Dummy value meant to be overwritten on first pass
39 all_disk_index = find(points(i).sort_all(:,5)==n); % Find all points in a disk n
40 disk_max_r = max(points(i).sort_all(all_disk_index,4)); % Find the max distance from the points to the % center axis of the fiber in the disk n.
41 points(i).sort_all(all_disk_index,6) = disk_max_r; % Column 6 now acquires the value for the point %furtherest away from the fiber in disk n.
42 fiber(i).disk(n) = mean(points(i).sort_all(all_disk_index,6)); % Take the avg of the points in disk n and %assign it to new var.
43 disk_index = find(points(i).sort_all(:,5)==n & points(i).sort_all(:,8) >= 9 & points(i).sort_all(:,4) >= bundle_r);
44

45 % Find all points that match the criteria of being in the correct
46 % disk with few collsions (less than 8) and are outside our "soft"
47 % radius
48 if isempty(disk_index) == 1
49 safe_r = 15;
50 else
51 safe_r = min(points(i).sort_all(disk_index,4));
52 end
53

54 disp([’n = ’, num2str(n),’ safe_r = ’, num2str(safe_r), ’ length(disk_index) = ’, num2str(length(disk_index))]);
55 % Loop over points in disk n and determin the point with the min
56 % distance to the center of the fiber... there might be a problem
57 % with my logic here.
58 points(i).sort_all(all_disk_index,6) = safe_r; % Overwrite max dist if there is a min distance for that disk n.
59 exceed_safe_r = find(points(i).sort_all(all_disk_index,4) > safe_r);
60 points(i).sort_all(exceed_safe_r,:) = []; % Find all points that exceed the safe r value and delete them.
61 end
62

63

64 end
65

66 for i = 1:length(fiber)
67 close all
68 bar(fiber(i).disk)
69 axis([1 100 1 15])
70 title([’Fiber ’,num2str(i)])
71 drawnow;
72 movie_data(i) = getframe(gcf);
73 numpoints(i) = length(points(i).sort_all);
74 end
75 movie2avi(movie_data,’fiber_disks_bar.avi’)
76

77 clear movie_data
78 bar(numpoints)
79 drawnow;
80 save B_results_apr30_Sb2O3.mat points
81

RDF Plots

Simple script to generate RDF plots.
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1 %%
2 clear; clc; close all;
3

4 warning off all
5 pix2micron = 3.26;
6 binwidth = 1;
7 %%
8 for k = 1:3
9 clear points

10 switch k
11 case{1}
12 load /Users/heath/RDF/B_results_apr17_FR.mat
13 case{2}
14 load /Users/heath/RDF/B_results_apr17_Sb2O3.mat
15 case{3}
16 load /Users/heath/RDF/B_results_apr17_SiO2.mat
17 end
18 %%
19 r_and_conc = [];
20 for i = 1:length(points)
21 index = find(points(i).sort_all(:,7) > 0);
22 temp = [points(i).sort_all(index,4), points(i).sort_all(index,7)];
23 r_and_conc = [r_and_conc; temp];
24

25 end
26 r_and_conc(:,1) = r_and_conc(:,1)*pix2micron;
27 r_and_conc = sortrows(r_and_conc,1);
28

29

30 binaxis = 0:binwidth:(binwidth*ceil(max(r_and_conc(:,1)))/binwidth);
31

32

33 mean_conc = zeros(size(binaxis));
34 std_conc = zeros(size(binaxis));
35

36 for j = 1:length(binaxis)-1
37 index = find( r_and_conc(:,1) > binaxis(j) & r_and_conc(:,1) <= binaxis(j+1) );
38 binsize(j) = length(index);
39 mean_conc(j) = mean(r_and_conc(index,2));
40 std_conc(j) = std(r_and_conc(index,2));
41 end
42

43 cutoff = length(binsize);%+min([find(std_conc == 0, 1, ’first’), find(isnan(std_conc) == 1, 1, ’first’)]);
44 conc_bin = mean_conc(1:cutoff-1);
45 switch k
46 case{1}
47 FR_conc_bin = conc_bin;
48 case{2}
49 Sb2O3_conc_bin = conc_bin;
50 case{3}
51 SiO2_conc_bin = conc_bin;
52 end
53 std_bin = std_conc(1:cutoff-1);
54

55 figure(k)
56 h1=errorbar(binaxis(1:length(conc_bin))+binwidth,conc_bin,std_bin,’-ko’);
57 set(h1, ’MarkerSize’, 7, ’MarkerFaceColor’,’White’, ’MarkerEdgeColor’,’Black’);
58 set(gca, ’FontName’, ’Palatino’, ’FontSize’, 18)
59 L1=xlabel([’r/ \mum’]);
60 L2=ylabel([’[FR]/vol% (bin width = ’,num2str(binwidth),’\mum)’]);
61 set(gca, ’FontName’, ’Palatino’, ’FontSize’, 18)
62 set(L1, ’FontName’, ’Palatino’, ’FontSize’, 18)
63 set(L2, ’FontName’, ’Palatino’, ’FontSize’, 18)
64 xt = get(gca,’XTick’);
65 set(gca,’XTickLabel’,ceil(xt))
66

67 end
68
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69 figure
70 scatter(binaxis(1:length(conc_bin))+binwidth,(FR_conc_bin./(100-SiO2_conc_bin)*100),’ko’);
71

72

73 figure
74 scatter(binaxis(1:length(conc_bin))+binwidth,(Sb2O3_conc_bin./(100-SiO2_conc_bin)*100),’ko’);
75

76

Domain Extraction

Mathematica script that takes concentrations and fits the data to an gaussian equation.

1 DomainArea = Import["Domain_TRIM_2_10S.h5", {"Datasets", "/Area"}];
2 DomainCentroids =
3 Import["Domain_TRIM_2_10S.h5", {"Datasets", "/Centroids"}];
4 DomainBox = Import["Domain_TRIM_2_10S.h5", {"Datasets", "/Box"}];
5

6 (*nx, ny, nz = the length of the sides of the bounding box around the \
7 Domain bubble. dxy, dxz, dyz is the difference between sides and would = \
8 0 in a perfect cube, meaning a perfectly spherical bubble*)
9 todel = Reap[For[i = 1, i <= Length[DomainBox], i++,

10 nx = DomainBox[[i, 4]];
11 ny = DomainBox[[i, 5]];
12 nz = DomainBox[[i, 6]];
13 dxy = Abs[nx - ny];
14 dxz = Abs[nx - nz];
15 dyz = Abs[ny - nz];
16 avg = Mean[{dxy, dxz, dyz}];
17 If[avg >= 8, Sow[i], Continue]
18 ]]
19 todel = todel[[2]][[1]];
20 todel = Partition[todel, 1];
21 DomainArea = Delete[DomainArea, todel];
22 DomainCentroids = Delete[DomainCentroids, todel];
23 DomainBox = Delete[DomainBox, todel];
24 {Length[DomainArea], Length[DomainCentroids], Length[DomainBox]}
25

26 (* adding half the distance between centroids as a radius to form \
27 spheres that touch tangentially*)
28

29 toadd = Reap[For[i = 1, i <= Length[DomainBox], i++,
30 px = DomainBox[[i, 1]] + DomainBox[[i, 4]]/2;
31 py = DomainBox[[i, 2]] + DomainBox[[i, 5]]/2;
32 pz = DomainBox[[i, 3]] + DomainBox[[i, 6]]/2;
33

34 d1 = EuclideanDistance[
35 DomainCentroids[[i, All]], {px, py, DomainBox[[i, 3]]}];
36 d2 = EuclideanDistance[
37 DomainCentroids[[i, All]], {px, DomainBox[[i, 2]], pz}];
38 d3 = EuclideanDistance[
39 DomainCentroids[[i, All]], {DomainBox[[i, 1]], py, pz}];
40

41 avg = Mean[{d1, d2, d3}];
42 Sow[avg]
43 (*
44 Print[ToString[i]," ",ToString[avg]," ",ToString[{px,py,
45 pz}]," ",ToString[{d1,d2,d3}]," ", ToString[DomainCentroids[[i,
46 All]]]]
47 *)
48 ]
49 ];
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50 DomainRadius = toadd[[2]][[1]];
51 DomainCentroids =
52 Table[Flatten[{DomainCentroids[[i]], DomainRadius[[i]]}], {i, 1,
53 Length[DomainCentroids]}];
54

55 pDomain = {0, 0}; minDist = 0;
56 Domainalldist = Reap[For[i = 1, i <= Length[DomainCentroids] + 1, i++,
57 Sow[{pDomain, minDist}];
58 minDist = 10000;
59 For[j = 1, j <= Length[DomainCentroids] + 1, j++,
60 If[i != j,
61 dist =
62 EuclideanDistance[DomainCentroids[[i, 1 ;; 3]],
63 DomainCentroids[[j, 1 ;; 3]]];
64 If[dist <= minDist, minDist = dist; pDomain = {i, j}, Continue],
65 Continue
66 ]
67 ]
68 ]
69 ];
70

71 Domainalldist = Domainalldist[[2]][[1]];
72 Domainalldist = Drop[Domainalldist, 1];
73 TableForm[Domainalldist];
74

75 Domainnewdist = Reap[For[i = 1, i <= Length[Domainalldist], i++,
76 Sow[Domainalldist[[i, 2]]/2]
77 ]];
78 Domainnewdist = Drop[Domainnewdist, 1];
79 Domainnewdist = Flatten[Domainnewdist];
80 Length[Domainnewdist];

Diffusion Analysis

Mathematica script that takes concentrations and fits the data to an gaussian equation.

1 P1 = {55, 209};
2 P2 = {396, 209};
3 dist = EuclideanDistance[P1, P2] Voxel;
4 NMR = 3 Milli Meter;
5 reso = NMR/dist;
6 resolution = Convert[reso, Centi Meter/Voxel] // N
7 res = resolution Voxel/(Centi Meter)
8 model = a Exp[-(r/b)ˆ2] + c ;
9

10 t = Convert[2 Hour, Second]/Second;
11 maxR = Round[Max[RC50C[[All, 1]]]];
12 xtick = Range[0, maxR, maxR/7];
13 ntick = SetPrecision[xtick*res*1000, 3];
14 ticks = Table[{xtick[[i]], ntick[[i]]}, {i, 1, Length[ntick]}];
15 model = a Exp[-(rˆ2/(Sqrt[4*d*t]))] + c ;
16

17 answer = NonlinearRegress[RC50C,
18 model, {{a, 30}, {d, 0.0004}, {c, 1}}, r,
19 RegressionReport -> {BestFitParameters, ParameterCITable},
20 MaxIterations -> 1000];
21 regress50C = answer[[2, 2, 1]]\[Transpose];
22 fit50C = BestFitParameters /.answer;
23 G1 = Plot[Evaluate[model /. fit50C], {r, 0, maxR},
24 PlotStyle -> {Yellow}];
25 p1 = ListPlot[RC50C, PlotRange -> {{0, maxR}, {0, 50}},
26 PlotStyle -> {Black}];
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27 Show[p1, G1,
28 LabelStyle ->
29 Directive[FontFamily -> "Helvetica", FontSize -> 12, Bold],
30 Frame -> {{True, False}, {True, False}},
31 FrameLabel -> {"radius/cm (\[Times]\!\(\*SuperscriptBox[\"10\", \
32 \"3\"]\))", "[Hexabromobenzene]/vol%"},
33 FrameTicks -> {ticks, Automatic}]
34 Export["/Users/heath/Dissertation/diss/figures/flame4/50C_RDF_flame4.\
35 pdf", %]
36

37

38 maxR = Round[Max[RC53C[[All, 1]]]];
39 xtick = Range[0, maxR, maxR/7];
40 ntick = SetPrecision[xtick*res*1000, 3];
41 ticks = Table[{xtick[[i]], ntick[[i]]}, {i, 1, Length[ntick]}];
42

43 answer = NonlinearRegress[RC53C,
44 model, {{a, 30}, {d, 0.0004}, {c, 1}}, r,
45 RegressionReport -> {BestFitParameters, ParameterCITable},
46 MaxIterations -> 1000];
47 regress53C = answer[[2, 2, 1]]\[Transpose];
48 fit53C = BestFitParameters /.answer;
49 G2 = Plot[Evaluate[model /. fit53C], {r, 0, maxR},
50 PlotStyle -> {Blue}];
51 p2 = ListPlot[RC53C, PlotRange -> {{0, maxR}, {0, 50}},
52 PlotStyle -> {Black}];
53 Show[p2, G2,
54 LabelStyle ->
55 Directive[FontFamily -> "Helvetica", FontSize -> 12, Bold],
56 Frame -> {{True, False}, {True, False}},
57 FrameLabel -> {"radius/cm (\[Times]\!\(\*SuperscriptBox[\"10\", \
58 \"3\"]\))", "[Hexabromobenzene]/vol%"},
59 FrameTicks -> {ticks, Automatic}]
60 Export["/Users/heath/Dissertation/diss/figures/flame4/53C_RDF_flame4.\
61 pdf", %]
62

63

64 maxR = Round[Max[RC56C[[All, 1]]]];
65 xtick = Range[0, maxR, maxR/7];
66 ntick = SetPrecision[xtick*res*1000, 3];
67 ticks = Table[{xtick[[i]], ntick[[i]]}, {i, 1, Length[ntick]}];
68

69 answer = NonlinearRegress[RC56C,
70 model, {{a, 30}, {d, 0.0004}, {c, 1}}, r,
71 RegressionReport -> {BestFitParameters, ParameterCITable},
72 MaxIterations -> 1000];
73 regress56C = answer[[2, 2, 1]]\[Transpose];
74 fit56C = BestFitParameters /.answer;
75 G3 = Plot[Evaluate[model /. fit56C], {r, 0, maxR},
76 PlotStyle -> {Green}];
77 p3 = ListPlot[RC56C, PlotRange -> {{0, maxR}, {0, 50}},
78 PlotStyle -> {Black}];
79 Show[p3, G3,
80 LabelStyle ->
81 Directive[FontFamily -> "Helvetica", FontSize -> 12, Bold],
82 Frame -> {{True, False}, {True, False}},
83 FrameLabel -> {"radius/cm (\[Times]\!\(\*SuperscriptBox[\"10\", \
84 \"3\"]\))", "[Hexabromobenzene]/vol%"},
85 FrameTicks -> {ticks, Automatic}]
86 Export["/Users/heath/Dissertation/diss/figures/flame4/56C_RDF_flame4.\
87 pdf", %]
88

89

90 maxR = Round[Max[RC59C[[All, 1]]]];
91 xtick = Range[0, maxR, maxR/7];
92 ntick = SetPrecision[xtick*res*1000, 3];
93 ticks = Table[{xtick[[i]], ntick[[i]]}, {i, 1, Length[ntick]}];
94
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95 answer = NonlinearRegress[RC59C,
96 model, {{a, 30}, {d, 0.0004}, {c, 1}}, r,
97 RegressionReport -> {BestFitParameters, ParameterCITable},
98 MaxIterations -> 1000];
99 regress59C = answer[[2, 2, 1]]\[Transpose];

100 fit59C = BestFitParameters /.answer;
101 G4 = Plot[Evaluate[model /. fit59C], {r, 0, maxR},
102 PlotStyle -> {Red}];
103 p4 = ListPlot[RC59C, PlotRange -> {{0, maxR}, {0, 50}},
104 PlotStyle -> {Black}];
105 Show[p4, G4,
106 LabelStyle ->
107 Directive[FontFamily -> "Helvetica", FontSize -> 12, Bold],
108 Frame -> {{True, False}, {True, False}},
109 FrameLabel -> {"radius/cm (\[Times]\!\(\*SuperscriptBox[\"10\", \
110 \"3\"]\))", "[Hexabromobenzene]/vol%"},
111 FrameTicks -> {ticks, Automatic}]
112 Export["/Users/heath/Dissertation/diss/figures/flame4/59C_RDF_flame4.\
113 pdf", %]
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Appendix C Chapter 3 Supplemental

Information

Chapter 3 Supplemental Information

Sample Composition

The sample composition, Table S6.0, is based first on the polymer formulation, but then

update with elemental analysis for Br and Sb to get revised wt% composition. Then, the pure

component densities, Table S6.0 are used to generate vol%.

Table S0: Sample Compositions in wt% and vol%

components density (g/cm3) formulated wt% analysis revised wt% vol%
nylon 1.15 42.62 – 46.46 63.84

flame retardant 2.22 20.71 (10.73 wt% Br) 15.26 10.86
Sb2O3 5.67 6.12 (4.19 wt% Sb) 5.10 1.42

teflon (6C) 2.2 0.400 – 0.44 0.313
SiO2 2.197 30.05 – 32.76 23.56

Table S0: Sources of Component Densities

components density (g/cm3) source
nylon (70G43L) 1.150 http://webbook.nist.gov/
SiO2 2.197 http://webbook.nist.gov/
FR 2.22 http://www.albemarle.com/Products_and_services
Sb2O3 5.67 http://webbook.nist.gov/
teflon (6C) 2.200 http://webbook.nist.gov/
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Correction Factors for Tomography Volumes

The following Matlab code snippet is pulled directly from the actual algorithm that applies

the correction factors to the X-ray absorbance data. There are three factors to be applied a gain,

offset, and voxel expansion factor which are listed in Table S6.0. The order in which the corrections

are applied are non-trivial due to the two dimensional interpolation at the last step. The code that

is omitted from deal with read/write routines for data preservation, no changes other than the

ones presented here occurred.

1 scale_factor = 1e-6; \% to convert from integer 16 to float data type
2 for k = 1:cube_length(3)
3 sliceXY_raw = nc{’VOLUME’}( NZ_vector(k) , : , : );
4 sliceXY = imresize(sliceXY_raw, voxel_size_corr, ’bilinear’);
5 rect = [1, 1, (NX-1), (NX-1) ];
6 sliceXY = imcrop(sliceXY, rect);
7 sliceXY_corr = sliceXY * scale_factor * slope_corr + offset_corr;
8 ...

Table S0: Correction Factors for the Reconstructed Tomography Volumes

energy/keV scaleE offsetE voxel sizeE
12 1.0571 0.0003930 1.0271
13.4 1.0584 0.0002970 1.0275
17 1.0658 0.0003909 1.0272
25 1.0589 0.0001417 1.0271
30.43 1.0624 0.0000838 1.0270
30.53 1.0611 0.0001307 1.0270
40 1.0647 0.0000618 1.0269

Coordinates of Subvolume

Table S6.0 lists the origin coordinates used to extract the 200x200x500 subvolume from the
full 650x650x515 volume.

Table S0: Subvolume Origin Coordinates (within original data volume, base index-0)

i0 j0 k0

225 220 0

Coordinates of Selected Glass Fiber Bundles

Within the binary fiberglass mask, 10 fiber bundles were selected. Line segments were
drawn through these fiber bundles, where the line segments are defined by the start and end
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coordinates listed in Table S6.0

Table S0: Fiber Coordinates (within subvolume, base index-1)

Fiber # Start (i,j,k) End (i,j,k)
1 73, 79, 465 69, 79, 499
2 66, 159, 464 71, 160, 499
3 24, 164, 395 23, 162, 434
4 105, 51, 143 107, 56, 67
5 109, 149, 82 108,154, 129
6 86, 35, 231 82, 30, 196
7 70, 21, 199 71, 19, 233
8 168, 16, 160 163, 2, 212
9 60, 75, 306 58, 72, 282
10 124, 45, 429 125, 43, 451

Radial Concentration Parameters

The SiO2, FR, and Sb2O3 radial concentrations are fitted to a Gaussian, [X]r = ae−(r/b)2 +c.

Table S0: Radial Concentration Parameters

[X]r a/vol% b/µm c/vol%
SiO2 32.6 19.5 20.2
FR -1.70 18.9 9.67

Sb2O3 -0.209 14.5 1.58

Radial Concentration: Voxel Identification and Distance
to Fiber Axis

The strategy for determining the radial concentration distribution of flame retardant about
a glass fiber assumes moderately-isolated, linear fibers. Some glass fibers are well isolated and
these are chosen as representative of the fiber/polymer interface. A fiber axis is defined with
start and end xyz coordinates chosen manually; application of automatic cylinder-identification
algorithm to the binary fiberglass mask was unsuccessful. Shown in Figure S6.0 is a sketch of
the analysis sequence from fiber identification to voxel identification for the radial concentration
analysis.

The following mathematical definitions were obtained from http://www.mathworld.
com and were used in developing the collision detection algorithm which in turn in used exten-
sively generating the radial distribution graphs.
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Figure S0: Simulation of fiber analysis in a 20x20x15 volume: (a) initial fibers; (b) voxels identified
at fiber ends, lying within the search radius from the fiber axis; (c) a cylinder of voxels about each
fiber axis, now showing collision with a sphere; (d) the count of voxels versus distance from the
fiber axes, showing the expected r2 increase in voxel count; (e) elimination of voxels shared with
the sphere; (f) use of a “safe radius” and “stacked disks” to remove other voxels from the close
vicinity of the sphere, so as to prevent analysis of regions between neighboring glass fibers.

vector norm: http://mathworld.wolfram.com/VectorNorm.html Let a line be spec-
ified by two points x1 = (x1, y1, z1) and x2 = (x2, y2, z2), then the L2 norm is

|~x| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (6.1)

normal vector to a plane: http://mathworld.wolfram.com/NormalVector.html
The equation of a plane with a normal vector n = (a, b, c) passing through the point (x0, y0, z0) is
given by  a

b
c

 x− x0

y − y0

z − z0

 = a(x− x0) + b(y − y0) + c(z − z0) = 0 (6.2)

distance from point to a line: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.
html Let a line be specified by two points x1 = (x1, y1, z1) and x2 = (x2, y2, z2) and the point off
the line as x0 = (x0, y0, z0). Then, the distance from the point to the line is

d =
|(x2 − x1)× (x1 − x0)]2

|x2 − x1|2
(6.3)
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The leftmost fiber in Figure S6.0a is parallel to the z-axis; the fiber axis is defined with
points x1 = (5, 5, 0) and x2 = (5, 5, 12), hence the L2 norm is |~x| = (0, 0, 1). Let us assume a search
radius rsearch = 4. Then, the next step is to find voxels surrounding x1 that lie within the search
radius. In a nested loop over |∆x| and |∆y| ≤ rsearch centered about x1 and in the plane z = 0, we
accept all voxels xyz with distances less than rsearch from the fiber axis. In this work, Euclidean
distances are used.

Among the 49 voxels found at d ≤ rsearch are, for example, (1, 5, 0) at d = 4 and (2, 3, 0)
at d = 3.6055. All 49 voxels are plotted as the lower disk on the leftmost fiber in Figure S6.0c. A
similar disk of 49 voxels caps the other end of the fiber, centered at x2 = (5, 5, 12). The minimum
and maximum xyz values in these two disks define a volume of possible voxels, many of which
have d ≤ rsearch. In a nested loop, voxels within this volume are tested and 637 voxels are found
as shown about the leftmost fiber in Figure S6.0c. The other fibers are processed similarly, and a
histogram of the number of identified voxels versus radial distance shows the expected r2 increase
in count, as shown in Figure S6.0d.

We next turn to the issue of collision detection, which has four objectives. First, as a radial
concentration plot is generated, we wish to exclude voxels that are too close to adjacent fibers.
Second, it is important to eliminate from calculation a line of voxels that might penetrate between
two adjacent fibers. Third, in this dense array of glass fibers, we need to retain as many voxels as
possible for radial concentration plots of [FR], [Sb2O3], and [SiO2] along a radial direction perpen-
dicular to the fiber axis. Therefore, the concepts of ”stacked disks”, each having a maximum ”safe
radius”, as shown in Figure S6.0, address the first two issues. Fourth, we require a definition of a
”collision” that can be adjusted so as to reduce sensitivity to speckle noise that would otherwise
lead to false collisions. Figure S6.0e shows collision of some voxels with a neighboring shape, and
the resulting ”safe radius”. Figure S6.0f shows the ”safe radius” has been applied to all voxels in
the uppermost of the ”stacked disks”. The thickness of each stacked disk is arbitrary; here, we
have chosen a thickness of 10% of the fiber axis length.

There are a number of possible definitions of a ”collision”. The simplest possible definition
is a union of two sets, as shown in Figure S6.0E in which the eliminated voxels were contained
in both the cylindrical set of voxels about the fiber and in the sphere representing a collision. A
more sophisticated collision definition addresses the fourth issue mentioned above, the problem
of speckle noise and false collisions. Each voxel to be tested for collision exists in the center of a
3 × 3 × 3 cube yielding 26-neighboring voxels sharing faces, edges, or vertices with the central
voxel. Speckle noise can cause one or more of the 27-voxels be members of both the experimental
binary fiberglass mask and of the cylindrical set of voxels surrounding a fiber. On the basis of
trial-and-error with our data, a true collision is defined as threshold value of one-half or more
voxels shared with the mask. Special care is needed with the threshold value for voxels near the
boundaries of the 200×200×500 subvolume and this is done with a threshold scaled to the number
of valid voxels within the potential 26-neighbors.
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