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ABSTRACT 

 The theonellamides (TNMs) A-F are bicyclic dodecapeptides isolated from marine sponges of the 

genus Theonella and were shown to display potent antifungal activity.  Despite considerable synthetic 

effort to produce TNM F by the Shioiri group in the early 1990s, a total synthesis of a TNM has yet to be 

reported.  This dissertation describes our efforts toward some of the required amino acid residues of TNM 

C and the eastern hemisphere.   

The production of erythro-β-hydroxyasparagine (eHyAsn) followed the synthesis of threo-β-

HyAsn by Boger and co-workers, utilizing a key Sharpless aminohydroxylation reaction.  The eHyAsn 

building block, Boc-eHyAsn(OTBS)-OH, was coupled with HCl.Phe.OMe using EDC/HOBt/NEt3/THF 

to afford Boc-eHyAsn(OTBS)-Phe-OMe in 68% yield.  

Our two early approaches toward the (3S,4S,5E,7E)-3-amino-8-(4-bromophenyl)-4-hydroxy-6-

methylocta-5,7-dienoic acid (Aboa) residue are presented.  The first relied on a challenging regioreversed 

Sharpless aminohydroxylation reaction and the second on a nitroaldol condensation.  Results from 

individual model systems indicated that the levels of diastereo- and enantioselectivity for each approach 

were not acceptable.   

The most recent approach to Apoa and Aboa utilized a key Horner-Wadsworth Emmons reaction 

followed by two conceptual sets of protecting group manipulations.  The optimized conditions for the 

HWE reaction of (4S,5R)-tert-butyl 5-formyl-4-(2-(4-methoxyphenoxy)ethyl)-2,2-dimethyloxazolidine-3-

carboxylate with (E)-diethyl (4-phenylbut-3-en-2-ylphosphonate led to a 40% yield with a 4.5:1 E/Z ratio 

of olefin products.  Currently, an advanced primary alcohol intermediate (three steps from Apoa) has been 

verified by HRMS.  We also briefly explored an approach whereby the conjugated system could 

potentially be introduced after the oxidative removal of the PMP group. 

The preparation of the Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn tripeptide resulted from 

coupling commercially available amino acid residues in an N→C stepwise fashion followed by exchange 



 

xxi 

 

of both O
t
Bu protecting groups with their TBS counterparts.  Since the Apoa and Aboa residues were not 

yet available, we sought to synthesize an analog of the eastern hemisphere of TNM C containing β-Phe as 

this would generate a macrocycle with the same ring size.  Synthetic efforts toward this analog have 

produced the cyclization precursor as verified by HRMS.  Once Apoa/Aboa is complete, the deprotection 

and coupling conditions outlined for the β-Phe analog can be applied towards the assembly of both Apoa- 

and Aboa-containing eastern hemispheres. 
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CHAPTER 1: THE THEONELLAMIDES (TNMs) AND RELATED COMPOUNDS 

1.1  Isolation and Biological Activity  

Lithistid sponges have been an important source of many different classes of compounds with 

potent biological activities.
1,2

  These sponges occur in both shallow and deep water environments and 

have produced over 300 natural products to-date.  These structurally complex compounds include cyclic 

and linear peptides, polyketides, alkaloids, sterols, and lipids (Figure 1.1).  

 

Figure 1.1 – Some Representative Natural Products from the Lithistid Sponges 
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The Order Lithistida (Figure 1.2) is an assemblage of sponges grouped together based on fused or 

interlocking spicules called desmas that make up their skeleton.
3
  The skeleton of desmas provides the 

sponges with a firm or rock-hard consistency and also separates the sponge into internal (endosome) and 

external (ectosome) tissues.   

Phylum Porifera 

 Class Demospongiae 

  Order Lithistida 

   Family Theonellidae 

    Genera Discodermia, Racodiscula, Siliquaruaspongia, Theonella 

 

Figure 1.2 – Current Classification of Lithistid Sponges 

Early work by Bewley and co-workers
4
 reported that a number of symbiotic bacteria live in 

association with the sponge Theonella swinhoei.
5
  The sponge T. swinhoei contains four cell populations: 

unicellular cyanobacteria, unicellular heterotrophic bacteria (eubacteria), sponge cells, and filamentous 

heterotrophic bacteria (filaments).  The unicellular cyanobacteria occur only in the ectosome while the 

filamentous bacteria reside only in the endosome.  Heterotrophic eubacteria and sponge cells occur in 

both endosome and ectosome.  The separation of external and internal tissues was followed by 

dissociation (passage through a juicer) and differential centrifugation of the cell suspension.  This led to 

cell types of >90% purity.  Chemical analysis (HPLC and 
1
H NMR spectroscopy) of the four cell 

fractions showed that the unicellular cyanobacteria and sponge cells lacked any bioactive metabolites.  

The polyketide swinholide A 8 (and demonstrated an in vitro IC50 value against KB and L1210 tumor 

cells 0.04 and 0.03 μg mL
-1

, respectively) was present in the fraction of eubacteria and theopalauamide 9 

was localized in the filamentous bacteria (Figure 1.3).
4 
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Figure 1.3 – Swinholide A and Theopalauamide Derived from Purified Cell Types of T. Swinhoei.  

Copyright 1998, John Wiley and Sons, reprinted with permission (p. 240). 

 

 

The theonellamides (TNMs) A-F are bicyclic dodecapeptides isolated from marine sponges of the 

genus Theonella.
6,7

  These compounds closely resemble theonegramide 11 (Figure 1.4) and 

theopalauamide 9, two glycopeptides isolated by Faulkner and coworkers.
8,9
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Figure 1.4 – Chemical Structures of TNM F and Theonegramide 

From Table 1.1, it can be seen that there are some features common to all family members: allo-

threonine, serine and phenylalanine in positions AA1-AA3 respectively; serine, asparagine and erythro-β-

hydroxyasparagine in positions AA5-AA7 respectively.  All compounds contain (5E,7E)-3-amino-4-

hydroxy-6-methyl-8-phenyl-5,7-octadienoic acid (Apoa) or its 4’-brominated derivative (Aboa) in 

position AA4 (Figure 1.5).  Other structural variations include β-methylation and 4’-bromination of AA8, 

hydroxylation of AA9, and deoxygenation at AA10 relative to TNM F.  All members are characterized by 

a bridging τ-histidinoalanine (τ-HAL) residue.  The major structural variation is that some congeners 

contain a sugar, covalently linked to the π-nitrogen of the τ-HAL residue.  Specifically, β-D-galactose is 

present in TNMs A, E and theopalauamide whereas β-arabinose is present in TNM D and theonegramide. 

Table 1.1 – Amino Acid Composition of TNMs A-F (10 and 12-16), Theonegramide (11) and  

                     Theopalauamide (9). Copyright 2007, Elsevier, reprinted with permission (p. 241). 
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     (Table 1.1 continued) 

Amino acid     Theonellamide congener   

 A B C D E F Theonegramide Theopalauamide 

 12 13 14 15 16 10 11 9 

AA1     allo-Threonine   

AA2     Serine    

AA3     Phenylalanine   

AA4 Apoa Apoa Aboa Aboa Aboa Aboa Apoa Apoa 

AA5     Serine    

AA6     Asparagine    

AA7                       (2S,3R)-3-Hydroxyasparagine  

AA8 BMPA BMPA Phe BPA BPA BPA BMPA BMPA 

AA9 Iser β-Ala β-Ala β-Ala β-Ala β-Ala Iser Iser 

AA10 Ahad Ahad Ahad Ahad Ahad Ahad AAA AAA 

S (sugar) β-D-Gal   β-L-Ara β-D-Gal  β-D-Ara β-D-Gal 

Abbreviations:  AAA = α-aminoadipic acid; Aboa = (5E, 7E)-3-amino-4-hydroxy-6-methyl-8-p-bromophenyl-5,7-octadienoic 

acid; Ahad = α-amino-γ-hydroxyadipic acid; Apoa = (5E, 7E)-3-amino-4-hydroxy-6-methyl-8-phenyl-5,7-octadienoic acid; Ara 

= arabinose; BMPA = β-methyl-p-bromophenylalanine; BPA = p-bromophenylalanine; Gal = galactose; Iser = isoserine. 
 

 

 

Figure 1.5 – Structures of Varying Amino Acids for the Theonellamides and Related Compounds 

The stereochemistry of the β-arabinose residue deserves further comment.  Notice that the 

configuration of the β-galactose unit was determined to be D using chiral GC analysis by both the 

Fusetani and Faulkner groups for their respective natural products.  For the β-arabinose residue, Faulkner 

hydrolyzed theonegramide using 4 N HCl (70 °C for 12 hours) and the hydrolysate was derivatized with 

pentafluoropropionic anhydride to produce a compound identical to that obtained from D-arabinose as 

detected by chiral GC-MS.
8
  For the monosaccharide derived from theonegramide, Fusetani used 



6 
 

methanolysis (10% HCl:MeOH, 100 °C, 1 hour) and treated the intermediate with trifluoroacetic 

anhydride (100 °C, 10 minutes) to form a derivative of L-arabinose that was detected by chiral GC 

analysis.
7
  The authors commented on the very acid labile nature of this sugar residue.  We believe β-L-

arabinose is more likely because the -OH topology in its pyranose form is the same as that in D-galactose 

(Figure 1.6). 

 

 

Figure 1.6 - β-L-Arabinose and β-D-Arabinose in their Pyranose Forms Compared to D-Galactose 

Theonellamide F was the first congener isolated and was shown to be an antifungal and cytotoxic 

agent.  Theonellamides A-F showed moderate toxicities against P388 leukemia cells with IC50 values of 

5.0, 1.7, 2.5, 1.7, 0.9, and 2.7 µg/ml respectively.
6,7

  Glycosylation seems to have little effect on the 

cytotoxicity of the theonellamides.  In addition, congener F was toxic to L1210 leukemia cells with an 

IC50 value of 3.2 µg/mL.
6
  Theonellamide F inhibited fungal growth of Candida, Trichophyton, and 

Aspergillus species.   

1.2  Structure Determination of Selected Amino Acids of TNM F
6 

Theonellamide F showed a multiplet in the FAB mass spectrum with an intensity ratio of 1:2:1.6 

for peaks at m/z 1649, 1651, 1653.  When bromine is present in a compound, the M + 2 ion peak becomes 

very significant.  The fact that bromine is comprised of two isotopes (
79

Br and 
81

Br) in a nearly 1:1 ratio 

for singularly brominated compounds suggests that TNM F contains two bromine atoms.  The compound 

displayed UV maxima at 283 nm, 294 nm, and 315 nm.  Treatment of TNM F with acid generated a 

number of ninhydrin active spots on TLC.   
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Each ninhydrin-active spot represents a discrete amino acid and the structure elucidation of each 

AA will be presented in the order shown in Table 1.1 with some exceptions: the elucidation of Aboa 

(AA4), which will be covered towards the end of the section and the elucidation of Ahad (AA10) and τ-

HAL, which will be the subject of other dissertations in the Taylor Group.  Some of the individual amino 

acids were readily identified from the acid hydrolysate and assigned the L-configuration by chiral GC-

MS: allo-Thr, Ser, Phe, Ser, and Asp (Scheme 1.1).   

 

Scheme 1.1 – Amino Acids of TNM F Assigned the L-Configuration by Chiral GC-MS 

For the nonstandard amino acids, identification first required separation of the hydrolysis 

products by ion-exchange chromatography.  
1
H NMR, 

13
C NMR, ninhydrin stain color (greenish-gray), 

and FAB-MS (MH
+
 ion peak at m/z 150) data provided evidence that AA7 gave rise to β-hydroxyaspartic 

acid on degradation.  Literature optical rotation values for all four stereoisomers led to assignment of the 

(2S, 3R) stereochemistry for 3-hydroxyaspartic acid.  GC-MS analysis helped establish the presence of an 

isomer of bromophenylalanine.  Para-disubstitution of a benzene ring was deduced from the 
1
H NMR 

spectrum.  At this point, comparison with authentic material revealed L-p-bromophenylalanine.  

Furthermore, when TNM F was reacted with H2/Pd-C and hydrolyzed, two residues of L-Phe were 

obtained, supporting the assignment of AA8 as bromo-Phe. 

The acid-labile nature of the chromophoric AA4 (321/323 molecular ion indicative of one 

bromine atom) of TNM F was stabilized by hydrogenation.  The hydrogenated product was subjected to 
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acid hydrolysis and then modified to its trifluoroacetamide (TFA) methyl ester derivative 29 (Scheme 

1.2).  Two additional ester derivatives, 30 and 31, were generated to give products with M
+
 peaks at m/z 

474 and 513.  This suggested that the amino acid has one carboxylic acid functional group.  The 

fragmentation pattern in the EI-MS of [471 – CF3CO2], [471 – CF3CONH], and [471 – CF3CONH – 

CF3CO2] indicated that the hydrogenated amino acid 32 has a molecular weight of 265. 

 

Scheme 1.2 - Aboa Structure Elucidation: Functional Group Determination   

A UV-active lactone (M
+
 at m/z 247) was isolated from the organic layer after acid hydrolysis of 

the hydrogenated TNM F (Scheme 1.3).  The authors were able to assign a crude structure for lactone 33, 

however, preparation of the 2,4-DNP derivative 34 was key to solving stereochemical issues.  
1
H–

1
H 

NOE correlations between H-3 and H-4 of 34 proved 3,4-syn stereochemistry.  Nagai and coworkers 

developed a reliable method for resolving the absolute configuration of α– and β–amino acids.
10,11

  CD 

spectroscopy of carboxylic acid 35 (obtained from base hydrolysis of 34) was used to determine the 
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absolute configuration of C-3.  The sign of the Cotton effect near 400 nm correlated to the absolute 

configuration at the β-carbon atom.  The CD spectrum for carboxylic acid 35 showed negative values at 

340 and 285 nm and a positive value at 410 nm.  Thus, C-3 was assigned with (S) stereochemistry and 35 

had (3S,4S) absolute configuration.   

 

 

Scheme 1.3 - Aboa Structure Elucidation: Absolute Stereochemistry Assignment 

Acid hydrolysis of TNM F led to degradation products of the chromophore, which were assigned 

using NMR spectroscopy (ROESY, TOCSY, HMBC, and HMQC).  ROESY correlations showed protons 

of a para-disubstituted benzene ring linked to protons of an (E)-alkene.  The (E)-olefin protons were 

connected to an olefinic methyl group and an olefinic proton.  Strong COSY cross peaks between the 

protons shown in Figure 1.7 indicated (E, E) geometry.  The TOCSY spectrum provided the remaining 

structural unit [-CH(OH)CH(NH)CH2CO-] while HMQC and HMBC spectra supported the (3S, 4S, 5E, 

7E)-3-amino-8-(4-bromophenyl)-4-hydroxy-6-methyl-5,7-octadienoic acid (Aboa) assignment.  The 

identity of the remaining amino acid was β-Ala, as determined in conjunction with the standard amino 

acids. 
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Figure 1.7 - Aboa Structure Elucidation: NMR Data Correlations for Bond Connectivity 

1.3  The Relationship between Isotheopalauamide and Theopalauamide
9
 

One of the more puzzling features concerning the isolation of theopalauamide was the presence of 

a minor peptide, isotheopalauamide.  Theopalauamide, as mentioned previously, is found only in the 

interior of the sponge (eubacteria).  The isolation protocol included extracting a lyophilized sample of T. 

swinhoei with a variety of organic and aqueous solvents.  The acetonitrile/water extract provided the 

peptides which were purified using reversed-phase HPLC to secure both isotheopalauamide and 

theopalauamide.  It was during the purification step that theopalauamide was being partially converted to 

isotheopalauamide via acid-catalyzed isomerization. 

Both isomers have identical IR and UV spectra in addition to the same molecular formula and 

primary structures.  The 
1
H and 

13
C NMR data, however, are different.  Analysis of the ROESY spectrum 

of theopalauamide showed a correlation between the NH proton of Apoa and the α-proton of Phe 

(Scheme 1.4).  A correlation between the two NH protons of the Phe and Apoa residues was observed in 

the isomeric isotheopalauamide.  The α-protons of the Phe and Apoa amino acids showed no correlations 

in isotheopalauamide which implies that the amide bond geometry is trans. 

1
H NMR chemical shift differences in exchangeable proton signals with temperature indicate the 

degree of intramolecular hydrogen bonding.  The spectra, acquired from 25 to 40 °C in 5 °C increments, 

showed that the NH protons on both the Apoa and Phe residues were more strongly hydrogen bonded in 
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isotheopalauamide than in theopalauamide, consistent with the ROESY data.  Other differences (NH-CHα 

coupling constants for Phe and Apoa) are not large enough to indicate a change in the geometry about 

these bonds.  Therefore, isotheopalauamide and theopalauamide were proposed to be conformational 

isomers differing in the dihedral angle about the C-1-C-2 bond in Phe.  

 

Scheme 1.4 – Important ROESY Correlations for Both Conformational Isomers 

1.4  Early Biological Studies 

TNM F was isolated by Matsunaga and co-workers and identified as a cytotoxic and antifungal 

peptide.  The reported biological activities of TNM F and other related compounds were similar and can 

be deemed modest.  The earliest studies were all conducted by Wada, Matsunaga, Fusetani, and 

Watabe.
12-14

  One study explored the effects of TNM F on 3Y1 rat embryonic fibroblasts while a second 

investigation screened for theonellamide-binding proteins present in rabbit liver. 

The researchers reported that TNM F was capable of inducing very large (>30 µm in diameter) 

vacuole formation in 3Y1 rat embryonic fibroblasts (Figure 1.8).
13,14

  At concentrations of 6 µM of TNM 

F for 24 hours, many cells generated large vacuoles but cell morphology was not affected.  At higher 

concentrations of TNM F (18 µM for 120 hours), formation of many more vacuoles that were even larger 

occurred in addition to morphologic changes (retraction of lamellipodia).  Monensin, a Na
+
 ionophore 

traditionally used to disturb Golgi apparatus, induced vacuoles that were smaller (<15 µm in diameter) 

and fewer in number than those generated by TNM F.  It was also noted that, compared to TNM F, 

monensin displayed a stronger toxicity.  Although not the subject of this study, a cell’s change in 
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morphology can give insight about the mode of action of a drug.  The ability of TNM F to induce large 

vacuoles with low fatality in fibroblasts suggests potential as a molecular probe for studies on 

intracellular membrane structures.    

 

Figure 1.8 – Theonellamides Induced Vacuole Formation in Rat Embryonic 3Y1 Fibroblasts.     

Treatment with no TNM (A), 2 µM TNM F for 24 hours (B), 4 µM TNM A for 24 hours (C), 10 µM 

TNM A for 72 hours (D). Copyright 2002, Springer, reprinted with permission (p. 243).  

 

 

The same researchers also immobilized TNM A on affinity gel beads and screened for 

theonellamide-binding proteins present in rabbit liver (Scheme 1.5).
12

  Sodium periodate oxidation of 

TNM A formed two aldehyde units from the β-D-galactose residue.  The compound I was then reacted 

with hydrazine-containing Affi-Gel beads to give TNM A-conjugated gel beads II.  Rabbit liver tissue 

extracts were reacted with the TNM A-conjugated gel beads for two hours and two major proteins were 

found to bind to the beads.  These proteins were identified as glutamate dehydrogenase (55-kDa) and 17β-

hydroxysteroid dehydrogenase IV (80-kDa).  

 
Scheme 1.5 – Preparation of TNM A-Conjugated Gel Beads and the Two Proteins Bound on 

                       Subsequent Reaction with Rabbit Liver Tissue Extracts 
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17β-Hydroxysteroid dehydrogenase IV oxidizes estradiol to inactivate its physiological functions 

(Scheme 1.6).  Glutamate dehydrogenase reversibly catalyzes glutamate to α-ketoglutarate.  Amination of 

α-ketoglutarate with glutamate dehydrogenase was triggered by TNM F.  Theonellamide F did not, 

however, have any effect on the deamination of glutamate with the enzyme. 

 
 
 
 

 

 

Scheme 1.6 – Biological Functions of 17β-Hydroxysteroid Dehydrogenase IV and Glutamate 

                       Dehydrogenase 

1.5  Synthetic Studies of TNM F by Shioiri and co-workers  

It has been nearly 20 years since the last reported efforts towards the chemical synthesis of TNM 

F by Tohdo, Hamada and Shioiri.
15,16

  It is difficult to infer the rationale for their synthetic endeavors 

because their work was consistently reported in communication format.  Their publications were 

characterized by a lack of discussion of strategy and experimental detail.  Although both macrocyclic 

rings were formed individually, the ultimate goal of bicycle construction was never realized.  Other 

congeners of TNM F have not been the subject of any synthetic studies. 
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1.5.1  Synthesis of the Southern Hemisphere* of TNM F 

In 1994, Shioiri and coworkers reported the synthesis of the southern hemisphere of TNM F 

(Scheme 1.8).
15

  A linear heptapeptide was prepared to perform the cyclization between the β-Alanine and 

Ahad (γ-lactone form) units.  The linear heptapeptide was generated from condensation of tripeptide and 

tetrapeptide fragments with diphenyl phosphorazidate (DPPA, 40) or diethyl phosphorocyanidate (DEPC, 

41) being the coupling reagents of choice.  The use of DPPA and DEPC is not surprising since it was 

Shioiri who introduced the reagents 40 years ago.
17-19

  As a reagent for amide bond formation, DEPC is 

similar to DPPA.  For the assembly of linear peptides, DEPC is preferred for its slightly greater reactivity 

and lower rate of epimerization.
18

  The reaction mechanism of peptide ligation using DPPA is shown in 

Scheme 1.7. 

 

Scheme 1.7 – DPPA (DEPC) Reaction Mechanism 

The C-terminal Asn-eHyAsn-BPA-β-Ala tetrapeptide was assembled in a stepwise fashion in the 

C→N direction with coupling yields in the range of 74-97%.  The N-terminal tripeptide fragment was 

prepared in high yield by DEPC coupling of the τ–HAL dipeptide with a Nα-Troc-lactone acid.  The [4 + 

3] peptide condensation proceeded in good yield (56%) of the linear heptapeptide while cyclization with 

DPPA produced the macrolactam in only 21% yield.  Details of the synthetic work are shown in Scheme 

1.8. 

 

 

*They drew the molecule rotated 90° relative to representations in this dissertation.  Thus, their 

references to northern and southern hemispheres correlate with our western and eastern hemispheres 

respectively.                                      
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Scheme 1.8  Synthesis of the Southern Hemisphere of TNM F.  Reagents: a. DPPA, Et3N, DMF; b. 4N-

HCl-dioxane; c. DEPC, 
i
Pr2NEt, DMF; d. TBDPSCl, imidazole, DMF; e. TMSOTf, CH2Cl2, 0 °C; f. 

LiOH, DMI-H2O, 0 °C. [DMI = 1,3-dimethyl-2-imidazolidinone] 

 

 

1.5.2  Synthesis of the Northern Hemisphere of TNM F 

A subsequent communication in 1994 outlined Shioiri and coworkers’ synthesis of the northern 

hemisphere of TNM F.
16

  This was accomplished by cyclizing the linear heptapeptide H-Aboa-Ser-τ-

HAL-aThr-Ser-Phe-OH using DPPA.  In fact, all coupling reactions associated with this ring used DPPA 

exclusively.  Furthermore, the synthesis was completed without protection of the hydroxyl groups of the 

Ser and aThr residues.  The completely linear, stepwise approach started from the C-terminal H-Phe-OMe 

residue and afforded the linear heptapeptide with typical coupling yields of 54-83% (Scheme 1.9).  The 

cyclization produced the northern hemisphere of TNM F in 24% yield.  
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Scheme 1.9  Synthesis of the Northern Hemisphere of TNM F.  Reagents: a. DPPA, Et3N, DMF; b. 

H2/Pd-C; c. HCl-MeOH; d. LiOH, dioxane-H2O. 

 

 

1.6  Recent Biological Studies 

Linking natural products and small bioactive molecules to their molecular targets is a major goal 

of chemical biology.
20-27

  There is a need to identify the cellular targets and mode of action (MOA) of new 

compounds quickly and accurately.
20-22

  The combination of chemical biology and functional genomics 

methodologies and reagents provides a dynamic way of achieving this goal.
23,24

  Chemical-genomics 

looks to recognize functional relationships between chemical compounds and specific genes through 

complete analysis of all genes in a genome.  To this end, a common approach is to genetically alter each 

gene and assess the resulting mutants for a phenotypic response in the presence of a bioactive molecule (a 

in Figure 1.9).   

In yeast, Saccharomyces cerevisiae, ~6000 potential genes have been characterized by the 

genome sequencing project.  As each gene has been deleted, ~1000 essential genes and ~5000 viable 
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deletion mutants were identified.  Budding yeast has long been favored as a model organism given its 

homology to other eukaryotes.  Boone et al. generated a library of “chemical-genetic interaction” profiles 

from scoring viable yeast deletion mutant strains (~5000) for hypersensitivity to a set of small 

molecules.
20

  Cells with gene deletions that are deemed hypersensitive to a specific compound can give 

clues about its mechanism of action (b in Figure 1.9).  The often limited supply of isolated natural 

products demands the efficient screening of yeast deletion mutants.  This is made possible through unique 

molecular barcodes that tag and identify each deletion mutant after it undergoes a parallel fitness test of 

the yeast deletion collection in a small amount of chemical media.     

 

Figure 1.9 – Chemical-Genetic Profiling. Genes are inactivated by deletion and the resulting mutant 

checked for viability (a). Gene deletion inactivates one gene product while the other is inactivated by 

chemical inhibition. A method of chemical-genetic profiling presented in (b). The X and Y axes represent 

bioactive compounds and single gene deletion mutants respectively. Red signals a significant drug-gene 

interaction and can be used to predict the targets of unknown compounds. Known compounds on the X-

axis are bunched based on known mode of action and the Y-axis shows clustering of other unknown 

compounds or genes with similar profiles. Copyright 2012, Elsevier, reprinted with permission (p. 244). 

 

 

Boone et al. also produced chemical-genetic profiles for 82 different conditions by testing the 

yeast deletion collection for hypersensitivity to 82 small molecules.
20

  The set of chemical-genetic 

profiles, visualized by two-dimensional hierarchical clustering, revealed that compounds with similar 

cellular effects showed similar chemical-genetic profiles.  Examples include (i) actin binding agents 

cytochalasin A and latrunculin B; (ii) cell wall synthesis inhibitors caspofungin and staurosporine; (iii) 

benomyl and nocodazole, two microtubule poisons.   
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In addition, two natural product extracts (prior to purification of the bioactive compound) 

acquired from different organisms and various locations showed very similar chemical-genetic profiles 

(correlation coefficient = 0.892).  Upon purification, the bioactive components were identified as the 

highly dissimilar structures stichloroside and theopalauamide (a in Figure 1.10).  These results suggest 

that the two compounds have a common mode of action.  To lend additional support to this theory, 

stichloroside-resistant mutants were isolated and then tested for theopalauamide resistance.  Four strains 

were isolated as resistant to extract 00-192, which was confirmed to be resistant to its active compound 

(stichloroside).  For each of the four strains, the mutants fell into two complementation groups (00-192-

RA and 00-192-RB).  As predicted by chemical-genetic profiling, all four strains displayed resistance to 

theopalauamide (b in Figure 1.10).  It seems that chemical-genetic profiling can be applied to compounds 

that impair yeast growth as well as to natural product extracts.   

 

 

Figure 1.10 – Recent TNM Biological Studies, Part 1. (a) Theopalauamide and stichloroside chemical-

genetic profiles correlation plot (correlation coefficient = 0.892). (b) Cross-resistance of extract 00-192 

resistant strains 00-192-RA and 00-192-RB to 4 µg/mL stichloroside and 1 µg/mL theopalauamide.  

Copyright 2009, Nature Publishing Group, reprinted with permission (p. 248). Copyright 2006, Elsevier, 

reprinted with permission (p. 246). 

 



19 
 

Ho and co-workers developed a yeast chemical-genomic approach for identifying drug-resistant 

mutations in yeast.
21

  A molecular barcoded yeast open reading frame (MoBY-ORF) library was 

constructed to clone wild-type versions of mutant drug-resistant genes by complementation using a 

minimal amount of bioactive compound.  Cloning by complementation with the MoBY-ORF library is a 

portable assay that can be carried out with any S. cerevisiae strain.   

The MoBY-ORF complementation assay identified an enzyme involved in ergosterol 

biosynthesis, mevalonate pyrophosphate decarboxylase (MVD1) (Figure 1.11).  To test whether 

theopalauamide targets a product of the MVD1 pathway, the theopalauamide-resistant (theo
R
) mutant was 

found to be partially resistant to amphotericin B (a compound that bind sterols).  Additional experiments 

proved that other deletion mutants, erg3Δ and erg2Δ, involved in ergosterol biosynthesis were resistant to 

theopalauamide as well. 

 

Figure 1.11 - Recent TNM Biological Studies, Part 2. Theo
R
 mutant barcode depletion plot (grown in a 

medium containing 2 µg/mL theopalauamide). The most depleted ORF was MVD1. Copyright 2009, 

Nature Publishing Group, reprinted with permission (p. 248). 

 

 

To indirectly determine whether stichloroside and theopalauamide bind to ergosterol, ergosterol 

was added to environments containing toxic amounts of these compounds (a in Figure 1.12).  The effects 

of exogenous ergosterol on the toxicity of amphotericin B and ketoconazole provided controls for this 

experiment.  Cells could be rescued by treatment with exogenous ergosterol indicating that 

theopalauamide, stichloroside, and amphotericin B interact physically with ergosterol (no effect on 

ketoconazole’s toxicity).  This interaction was further showcased by assessing fluorescent marker 

(calcein) release from phosphatidylcholine liposomes containing different amounts of ergosterol (b in 



20 
 

Figure 1.12).  Theopalauamide (10 µg/mL) had no effect on liposomes containing no ergosterol but had 

maximum leakage (~30%) of liposomes containing 20% ergosterol.  Theonellamide A was also found to 

bind to ergosterol in S. cerevisiae using fluorescently labeled TNM A in an in vitro lipid-binding assay (c 

in Figure 1.12).  In addition, the theo
R
 strain was resistant to TNM A.  The saponin and polyene classes 

are the most common group of sterol-binding compounds.  All the evidence presented suggests that the 

TNMs and theopalauamide represent a novel class of sterol-binding compound.  

 

Figure 1.12 - Recent TNM Biological Studies, Part 3. (a) The toxicity of theopalauamide, stichloroside, 

and amphotericin B is rescued by ergosterol. Wild type cells (growth after 16 h at 30 °C) in the presence 

of ergosterol and other compounds. (b) Theopalauamide permeabilizes liposomes containing ergosterol. 

Leakage of calcein from liposomes containing ergosterol after exposure to theopalauamide. (c) In vitro 

binding of fluorescently labeled TNM A (theonellamide-AMCA) to ergosterol. [YEPD = yeast extract 

peptone dextrose; PC = phosphatidylcholine; PE = phosphatidylethanol; PS = phosphatidylserine; SM = 

sphingomyelin]. Copyright 2009, Nature Publishing Group, reprinted with permission (p. 248). 

 

 

Yoshida et al. used a yeast chemical biology method to identify the target and MOA of the 

TNMs.
22

  Using fission yeast Schizosaccharomyces pombe as a model, a chemical-genomic profile of 

TNM F was generated.  S. pombe is a eukaryotic model that differs from S. cerevisiae in cell cycle 

organization and centromere complexity.  The overexpression strains were exposed individually to TNM 

F and a compendium of 10 reference compounds with known targets at various concentrations.  Strains 

showing a significantly altered sensitivity compared to the control strain were selected.  Two-dimensional 

clustering analysis of Gene Ontology (GO) terms associated with the genes that alter drug sensitivity 

found a link between TNM and 1,3-β-D-glucan synthesis (a in Figure 1.13).  Of 32 TNM F hit genes, 12 

genes were in common with FK463 (a clinical drug that inhibits 1,3-β-D-glucan synthesis), suggesting 



21 
 

that both compounds are functionally related.  Cell morphology was compared after exposure to TNM F 

and FK463.  FK463 compromised cell wall integrity in fungi and induced cell lysis (b in Figure 1.13) 

whereas TNM F treated cells showed no signs of cell lysis.  In fact, TNM F seemed to reverse the effects 

of FK463 by promoting 1,3-β-D-glucan synthesis (c in Figure 1.13).  The pathway to 1,3-β-D-glucan 

synthesis with TNM F treatment is the activation of Bgs1 by Rho1 (regulatory subunit, GTPase).  

 

Figure 1.13 – Recent TNM Biological Studies, Part 4. (a) 2-D hierarchical clustering analysis of 20 

compound profiles. Y-axis shows compounds with similar chemical-genomic profiles. X-axis plots 575 

ORFs based on the degree of resistance (yellow) and hypersensitivity (blue). (b) FK463 induced cell lysis. 

WT cells treated with (bottom) or without (top) FK463. (c) Counteraction of FK463 induced cell lysis by 

TNM F. Copyright 2010, Nature Publishing Group, reprinted with permission (p. 249). 

 

 

A fluorescently labeled TNM A derivative was used to perform subcellular localization studies.  

Using plasma membrane lipid components, a binding assay showed that the TNM A derivative recognizes 

ergosterol, cholesterol, cholestanol, and 5α-cholest-7-en-3β-ol (a in Figure 1.14).  More specifically, 

TNMs bind to 3β-hydroxysterols (a class of lipid molecules, rather than a protein).  The binding of TNM 

F to exert its effects on a cell wall requires both proper membrane organization and an environment rich 

in ergosterol.  Mutations in the ergosterol biosynthetic pathway can attenuate sensitivity to antibiotics in 

yeast.  Ergosterol mutants caused by deletion or lack of certain enzymes (erg31 and erg32, erg2) 

displayed high tolerance to TNM F and a decreased ability of the cells to bind TNM F (b in Figure 1.14).  

Drug sensitivity was well correlated with in vivo TNM binding of the membrane.  Deletion of other 

enzymes (erg5, Δsts1/erg4), however, conferred slight resistance to TNM F.   
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A consequence of TNM binding the sterol-rich membrane was the loss of membrane integrity 

(reducing cell viability).  Calcein (fluorescent dye) was added to S. pombe cells that had been treated with 

TNM F for 9 hours.  Entry of calcein over the plasma membrane was observed with TNM F treatment, 

suggesting that the membrane integrity of cells cannot be retained in the presence of TNM F (c in Figure 

1.14).  Additionally, the dye exclusion assay showed that TNM F disrupted the integrity of the plasma 

membrane in a concentration and time dependent manner.  The MOA of TNM F is different from that of 

polyene antibiotics because the phenotypic changes induced by these two families of antifungals are 

different.  A typical change of yeast cells after polyene antibiotics treatment is the expansion of vacuoles.  

The vacuoles of TNM F-treated cells became marginally fragmented.  In agreement with Ho and co-

workers, Yoshida et al. found that the TNMs represent a new class of sterol-binding agents. 

 

Figure 1.14 – Recent TNM Biological Studies, Part 5. (a) In-vitro binding of TNM-BF to various sterols. 

(b) Different erg mutants were treated with TNM F and the amount of abnormal cell wall synthesis 

revealed using calcofluor white staining (fluorescence intensity shown). (c) Testing plasma membrane 

integrity using calcein in a dye exclusion assay. Entry of calcein over the plasma membrane was induced 

by TNM F. No calcein diffusion occurred in the absence of TNM F. Copyright 2010, Nature Publishing 

Group, reprinted with permission (p. 249). 

                             

 Through the efforts of the Boone and Yoshida groups, yeast chemical-genomics approaches have 

been shown to be effective for elucidating cellular targets and MOAs.
20-22

  Boone’s studies made use of 

the budding yeast S. cerevisiae whereas Yoshida’s investigations utilized the fission yeast S. pombe.  The 

key result from Boone’s work revealed that a mutation in MVD1, encoding an enzyme involved in 
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ergosterol biosynthesis was shown to be resistant to theopalauamide in S. cerevisiae, suggesting a link 

between the drug target and ergosterol biosynthesis.  The Yoshida investigations took advantage of a 

chemical-genomic screen for the genes that alter TNM sensitivity when overexpressed and demonstrated 

that TNM specifically binds to a class of lipid molecules (3β-hydroxysterols) in the fission yeast.  The 

idea that ergosterol, the major sterol in fungi, is the target of TNM in fission yeast is supported by the 

compound’s physical interaction with 3β-hydroxysterols and several lines of genetic and biochemical 

evidence (mutants defective in ergosterol biosynthesis).  While both groups answered some fundamental 

questions and came to the same conclusion (TNMs define a new class of sterol-binding compound), many 

questions remain.  There is a need to perform structure-activity relationship studies to find the minimum 

chemical structure essential for TNM’s biological activity.  Also, upon TNM binding of the sterol-rich 

membrane, the processes leading to subsequent membrane damage are of interest. 

1.7  Goals of the Current Work 

Theonella swinhoei produces a limited quantity of the TNMs that have restricted investigations 

into their biology.  From 15 kilograms of sponge, Fusetani and co-workers isolated: TNM A (200 mg), B 

(19 mg), C (32 mg), D (14 mg), E (30 mg), and F (500 mg).  It stands to reason that biological studies 

have focused primarily on TNMs A and F.  Despite considerable synthetic effort to produce TNM F by 

the Shioiri group in the early 1990s, a total synthesis of a TNM has yet to be reported.  An efficient 

chemical synthesis of these compounds offers benefits such as an alternative to cultivation from natural 

sources and new ideas about their biological role. 

The main goal is to synthesize TNM C and our approach is depicted in Scheme 1.10.  The major 

disconnections are between residues 4 and 5 (Aboa/Ser), residues 9 and 10 (β-Ala/Ahad), and τ-HAL with 

their remaining amino acid partners allo-Thr and Asn.  This would lead to the H-Asn-eHyAsn-Phe-β-Ala-

OH tetrapeptide and the H-allo-Thr-Ser-Phe-Aboa-OH tetrapeptide associated with the “western” and 

“eastern” hemispheres respectively of TNM C.  The western ring should be constructed first to allow late 
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stage incorporation of the sensitive diene of Aboa.  Of the eleven amino acids required to generate TNM 

C, four are not commercially available; Aboa (4), eHyAsn (7), Ahad (10), and τ-HAL.  The work in this 

dissertation focused on the synthesis of the eHyAsn-Phe dipeptide, the Aboa residue and our efforts 

toward the eastern hemisphere of TNM C.   

 

Scheme 1.10 – Major Disconnections for TNM C 
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CHAPTER 2: ASYMMETRIC SYNTHESIS OF ERYTHRO-β-HYDROXYASPARAGINE 

(EHYASN) 

 

 

2.1  Proteinogenic vs Nonproteinogenic Amino Acids 

The 20 amino acids that are coded for by the standard genetic code and that are found in proteins 

are referred to as proteinogenic amino acids (Figure 2.1).  These amino acids can only be incorporated 

into proteins through translation.  Human beings must acquire 9 of the 20 amino acids from their diet 

(essential), the other 11 are readily synthesized.
1
 

 

 

Figure 2.1 – The Standard Amino Acids 
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 Nonproteinogenic amino acids are those not coded for by the standard genetic code.  Enzymatic 

modifications (post-translational modification, PTM) of amino acid residues in proteins or peptides give 

rise to a variety of nonproteinogenic amino acids.
2
  These reactions involve polar amino acid residues and 

Scheme 2.1 illustrates a subset of PTMs, covalent modifications of individual amino acid residues at one 

site.  Asparagine and serine residues can be glycosylated while tyrosine, threonine and serine side chains 

are often phosphorylated.  Disulfide bonds arise from oxidative crosslinking of the thiol groups of two 

cysteine residues.   

 

Scheme 2.1 – Some Examples of PTM: Specific Covalent Modifications 

2.2  Nonribosomal Peptide Synthesis 

There is an abundance of nonproteinogenic amino acids used in nature for the production of 

nonribosomal peptides.  Nonribosomal peptides are constructed by nonribosomal peptide synthetases 

(NRPSs), multi-enzyme complexes with modular organization.
3,4

  A module is a portion of the NRPS 

peptide chain that ultimately incorporates individual amino acids into the final structure.  Domains, 
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subsets of the module, are units that catalyze each step of nonribosomal peptide synthesis.  Every NRPS 

module contains at least three domains for peptide backbone synthesis.  These include the adenylation-

(A)-domain for substrate recognition and activation, the peptidyl carrier protein (PCP) for transport to 

catalytic centers, and the condensation-(C)-domain for formation of the peptide bond (Scheme 2.2).
4
  The 

selection of amino acids for nonribosomal peptide synthesis and their activation as aminoacyl adenylates 

is determined by A-domains.  The amino acid is then moved to the cofactor of the transport unit, which 

allows amino acids and intermediates to move from one catalytic center to another.  Peptide bond 

formation in nonribosomal biosynthesis, by action of the C-domain, is the result of reaction between a 

nucleophilic aminoacyl-S-4’PP-PCPs and an electrophilic peptidyl-S-4’PP-PCP component.  The 

importance of this reaction is highlighted by the presence of C-domains in nearly all NRPS elongation 

module.  

 

Scheme 2.2 – Roles of 3 Primary Domains in a NRPS Module 

The intriguing biological profiles of nonribosomal peptides such as the TNMs make them 

appealing targets for total synthesis.  As mentioned previously, they were isolated from the marine sponge 

Theonella swinhoei, produced specifically by the filamentous bacteria (symbiotic microorganism).  Also, 
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the structure of TNM C was discussed in §1.1 and we alluded to the fact that four of the 11 amino acid 

residues are nonproteinogenic.  Two of them, β-hydroxyasparagine and Aboa, warrant further discussion 

as they are the focus of this dissertation. 

2.3  Identification and Occurrence of HyAsn in Nature 

The nonproteinogenic amino acid β-hydroxy-L-asparagine was first identified as a normal 

component in human urine by Tominaga et al. in 1963.
5
  The isolation of the amino acid made use of 

classical techniques such as desalting and fractionation followed by recrystallization of the concentrate 

from 80% ethanol.  Two hundred liters of urine provided 116 milligrams of crystalline β-

hydroxyasparagine.  

Okai and Izumiya synthesized the erythro (2S,3R) 70 and threo (2S,3S) 71 diastereomers, both of 

which will be highlighted in the next section.
6
  In an attempt to assign the configuration of the urine- 

derived hydroxyasparagine, synthetic diastereomers were compared to an authentic sample using 

chromatography and optical rotation data.  The data collectively suggested that the natural product was 

the erythro diastereomer.  Both isomers, in addition to β-hydroxyaspartic acid 69 (Figure 2.2), have been 

the subject of several enantioselective syntheses. 

 

Figure 2.2 – Structures of β-Hydroxyaspartic Acid, eHyAsn and tHyAsn 

Epidermal growth factor (EGF) precursor is present in human secretions and fluids.  This integral 

membrane protein (160-170 kDa) was purified using monoclonal antibodies to target EGF module 7 and 

verified to have an N-terminal sequence, SAPNHWSXPE.
7-9

  Epidermal growth factor precursor modules 

2, 7 and 8 contain the sequence for post-translational modification (hydroxylation at C-β) of asparagine 
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residues.  eHyAsn was discovered in the acid hydrolysates of the precursor.  For every unit of EGF 

precursor, there is 2.4 units of eHyAsn.   

2.4  Previous Syntheses of 3-Hydroxyaspartic Acid 

Cho and Ko introduced cyclic iminocarbonates as intermediates en route to syn-amino alcohols.
10 

 

The starting syn-diol 72 was activated as a tin acetal and then an isothiocyanate was added immediately 

(Scheme 2.3).  Without isolation of the intermediate, tetra-n-butylammonium bromide was added to the 

reaction mixture to give N-benzoyloxazdidin-2-one 73 in good yield.  The product, obtained from a one 

pot reaction, can be manipulated to give amino alcohol 74.  Specifically, acid or base treatment in 

alcoholic media cleaves the benzoyl group followed by removal of the cyclic carbamate group in 3 steps.  

This includes N-Boc protection, basic removal of the carbamate ring and Boc deprotection. 

 

 

Scheme 2.3 – Cho and Ko’s
10 

Cyclic Iminocarbonate Intermediate for a Projected 3-Hydroxyaspartic                

                       Acid Synthesis 

 Shioiri and co-workers generated L-threo-β-hydroxyaspartic acid in protected form en route to 

alterobactin A.
11

  The synthesis started with the SAD reaction of α,β-unsaturated methyl ester 75 using 

AD-mix-β to produce a syn-diol 76 which upon the reaction with HBr-HOAc underwent inversion at C-β 

and protection at α-OH (Scheme 2.4).  Azide inversion at C-β accompanied by reduction and protection 

of the resulting amino group as its Boc carbamate formed 78.  Oxidative cleavage of the phenyl group in 

78 followed by protection of the carboxyl group as its tert-butyl ester afforded 79.  A series of 

deprotections and reprotections according to Scheme 2.4 secured target compound 80. 
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Scheme 2.4 – Shioiri and Co-workers’

11
 L-threo-β-Hydroxyaspartic Acid Synthesis En Route 

                       to Alterobactin A 

 Lectka et al. reported the use of a chiral nucleophilic catalyst, benzoylquinine (BQ, 88) to make 

β-substituted aspartic acid precursors in four operations, one pot.
12

  The initial acid chloride 81 goes 

through catalytic dehydrohalogenation to form a ketene 82 which reacts with an N-acyl imine 84 that was 

generated by dehydrohalogenation of an α-chloroamine 83 to trigger a catalyzed [2 + 2] cycloaddition to 

form an intermediate β-lactam 85 (Scheme 2.5).  Nucleophilic ring opening using alcohols provides a 

substrate that was transformed to β-hydroxyaspartic acid 87 in two additional steps. 

 
Scheme 2.5 – Lectka et al.

12
 BQ Catalyzed Synthesis of β-Substituted Aspartic Acid Precursors  
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2.5  Previous Syntheses of β-Hydroxy-L-asparagine 

2.5.1  Previous Syntheses of Erythro-β-Hydroxyasparagine 

Okai and Izumiya started with olefin 89 and the addition of sodium hypobromite formed 90 

(Scheme 2.6).
6,13

  This in turn reacted with NaOH to produce trans-epoxy diacid 91 which was 

ammonolyzed to give (2S,3R)-2-amino-3-hydroxysuccinic acid (±)-92 after separation.  The authors 

further elaborated (±)-92 by first protecting the amino group as its Cbz derivative.  Tosic acid in ethanol 

converted both carboxylic acid groups to their ethyl ester counterparts that were subsequently 

ammonolyzed to give diamide (±)-93.  Hydrogenolysis of the Cbz group from compound (±)-93 

generated the free amine.  The stage was now set for regioselective hydrolysis of eHyAsp diamide using 

leucine aminopeptidase (LAPase).   

 

Scheme 2.6 - Okai and Izumiya’s
6,13 

Synthesis of eHyAsn Using an Enzyme-Catalyzed Reaction 

Sendai and co-workers started with (-)-trans-epoxysuccinic acid, a product of glucose 

fermentation by Aspergillus fumigates (Scheme 2.7).
14

  The oxirane 91 was ammonolysed to give erythro-

β-hydroxy-L-aspartic acid (+)-92 and then converted regioselectively to its methyl ester at the β-CO2H.  

The selectivity observed is probably due to preferential hydrogen bonding of the protonated amine group 

to the β–CO2H.  Ammonium hydroxide introduced the primary amide (+)-70 by ammonolysis of the 

aforementioned methyl ester.  This approach was adopted by Tohdo et al. to produce a building block for 

their attempted synthesis of TNM F.
15,16
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Scheme 2.7 - Sendai and Co-workers’
14

 Synthesis of eHyAsn Using an Enzyme-Catalyzed Reaction 

2.5.2  Previous Syntheses of Threo-β-Hydroxyasparagine 

Threo-β-hydroxy-L-asparagine (tHyAsn) features in lysobactin 96 and ramoplanin A1 97, 

lipoglycodepsipeptides that show promise against vancomycin-resistant bacteria (Figure 2.3).  Due to the 

importance of these antibiotics, the synthesis of tHyAsn has drawn the attention of the Lectka,
17

 

VanNieuwenhze,
18 

and Boger
19,20 

groups.  

 

 

Figure 2.3 – Lysobactin and Ramoplanin A1 
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Lectka and co-workers applied the same benzoylquinine (BQ) catalyst methodology described in 

§2.4 to synthesize tHyAsn for the cyclic peptide, lysobactin.
17

  As shown in Scheme 2.8, benzyl ester 98 

reacted with acyl chloride 81 under BQ catalyzed conditions to produce β-lactam 99 with good 

stereoselectivity.  Ring opening of 99 using ammonia followed by hydrogenolysis led to carboxylic acid 

100.  Removal of the biphenyl protecting group followed by CAN-mediated deprotection of the 

remaining aromatic protecting group generated final product 71 in short order. 

 

 

Scheme 2.8 – Lectka and Co-workers’
17

 BQ Catalyzed Synthesis of tHyAsn 

VanNieuwenhze et al.
18

 began with the stereoselective synthesis of L-threo-β-hydroxyaspartic 

acid from L-aspartic acid 27 as prescribed by Cardillo et al.
21

  Regioselective protection of the C-β 

carboxyl group as its methyl ester followed by Boc-protection of the amino group and aminolysis of the 

aforementioned methyl ester provided 102 (Scheme 2.9).  The remaining carboxyl group was protected as 

its benzyl ester and at this point, additional protecting group manipulations would give a building block 

suitable for incorporation into lysobactin.  Deprotection of the Boc group using HCl/dioxane followed by 

reprotection of the amino group as its Fmoc carbamate generated 103.  Lastly, protection of amide in 

compound 103 with a trityl group and hydrogenolysis of the benzyl ester afforded the target compound 

104. 
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Scheme 2.9 – VanNieuwenhze et al.
18

 Synthesis of tHyAsn 

Boger and co-worker’s approach to tHyAsn is different from the majority of the syntheses 

presented previously in that it begins from a nonchiral building block.
19,20

  Instead of enzyme-catalyzed 

reactions, or relying on the chiral pool, the stereochemistry is introduced by a stereoselective reaction.  

Initially reported in 2000,
19

 and with improvements in 2003,
20

 the researchers described an elegant route 

to the tHyAsn diastereomer.  Their approach capitalized on the use of cinnamate esters as excellent 

substrates for the Sharpless aminohydroxylation (SAH) reaction and the use of an aromatic group as a 

surrogate for a carboxylic acid.  

 The SAH of α,β-unsaturated methyl ester 105 using the (DHQD)2PHAL ligand generated β-

amino alcohol 106 in good yield and excellent enantioselectivity (Scheme 2.10).  Protection of the 

secondary alcohol as its TBS ether followed by N-Cbz/Boc exchange led to an intermediate that was 

ammonolysized to provide the side chain primary amide 107.  Oxidative cleavage of the p-

methoxyphenyl group revealed carboxylic acid 108.  To ensure orthogonality of protecting groups in the 

target compound, 108 was protected as its benzyl ester followed by single step TBS and Boc protecting 

group removal.  The free amino group was subsequently protected as its Fmoc carbamate while the side 

chain primary amide was protected with a trityl group. 
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Scheme 2.10 – Boger and Co-workers’
19,20 

Synthesis of tHyAsn Using a Stereoselective Reaction 

2.6  Retrosynthetic Analysis 

Our approach to eHyAsn (+)-44
22

 (Scheme 2.11) made use of several important reactions from 

Boger’s synthesis of tHyAsn.  The first key step, the SAH reaction would establish threo stereochemistry 

from a trans olefin geometry.  Mitsunobu inversion at the β-OH would lead to the desired erythro 

configuration and eventual unmasking of the carboxylic acid would rapidly produce a useful building 

block for TNM synthesis. 

 

 

Scheme 2.11 - Retrosynthetic Analysis of eHyAsn  
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2.7  The Sharpless Asymmetric Aminohydroxylation 

The first key step to our synthesis of eHyAsn required the SAH reaction.  A recurring theme of 

this and future chapters is that key steps are prefaced with relevant literature examples and details about 

mechanism.  The SAH, first reported in 1996, is a powerful method for the rapid construction of vicinal 

amino alcohols from alkenes (a in Scheme 2.12).
23

  

 

 

Scheme 2.12 – Sharpless Chemistry. (a) Comparing Sharpless’s vicinal functionalization reactions:  

             aminohydroxylation vs dihydroxylation. (b) The Sharpless mnemonic device. (c) The  

             Sharpless chiral ligands. 
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The first nitrogen source used was the chloramine salt of tosylsulfonamide, but numerous other 

sources of nitrogen have been developed to provide more useful amine derivatives.
24

  Unlike the 

Sharpless asymmetric dihydroxylation (SAD) reaction and its commercially available reagents (AD-mix-

α and AD-mix-β), the presence of a variable nitrogen source requires that the reagents for the SAH 

reaction must be mixed fresh.  Like the SAD reaction, however, the mnemonic (b in Scheme 2.12) used to 

predict the enantiofacial selectivity that results in addition to one face of the alkene can be utilized for the 

SAH reaction (since it employs the same alkaloid-derived ligands 111-114, c in Scheme 2.12). 

The reaction occurs via two simultaneous catalytic cycles, each competing to form products with 

different selectivities (Scheme 2.13).
24,25

  The primary cycle starts with the oxidation of the Os
VI

 species I 

by the alkali metal salt of the nitrogen source II to give the osmium
VIII

 trioxoimido species III.  This 

intermediate adds with syn-stereoselectivity to the alkene IV to generate the Os
VI

 azaglycolate complex 

V.  The chiral ligand influences several aspects of this reaction including acceleration of the rate of 

reaction, regioselectivity during the addition, and induction of enantioselectivity.  

 

Scheme 2.13 - Reaction Mechanism for the Sharpless Aminohydroxylation Reaction. Copyright 2010, 

John Wiley and Sons, reprinted with permission (p. 250). 
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The exact mode of addition for the crucial bond forming step (III + IV → V) has been an area of 

considerable debate.  An early computational study and a more recent one by Munz and Strassner lends 

weight to the [3 + 2] cycloaddition for this process.
26-29

  The authors report that Sharpless’ proposed [2 + 

2] cycloadditions are kinetically and thermodynamically disfavored by more than 25 kcal mol
-1

.  Also, a 

ligand-induced reaction-rate acceleration of 2.7 kcal mol
-1 

s
-1

 was calculated for the cycloaddition step of 

the [3 + 2] addition.   

Oxidation of V by the nitrogen oxidizing agent gives Os
VIII

 azaglycolate VI.  Hydrolysis of VI 

provides amino alcohol VII and the osmium species III is ready for another catalytic cycle.  Conversely, 

VI may enter the second cycle and add to another olefin molecule to give the bis(azaglycolate) complex 

VIII.  Fokin and co-workers proposed that the five-coordinate disposition of VI generates enough 

electron density at the metal center to allow the reaction to proceed without an external ligand.
30,31

  As a 

consequence, addition products from this second catalytic cycle are obtained with low regio- and 

enantioselectivity.  Hydrolysis of VIII regenerates V, which completes the secondary cycle.  Both 

hydrolysis steps are the turnover-determining steps in either catalytic cycle.  Suppression of the secondary 

cycle relies on the effective hydrolysis of VI, which in turn can be accomplished by conducting the 

reaction in alcohol-H2O mixtures. 

 It was noted early on that cinnamates are among the best substrates for the SAH reaction (Scheme 

2.14).
32

  The mnemonic correctly predicts that use of (DHQ)2PHAL produces regioisomer 115a-e as the 

major product. 

 

Scheme 2.14 - Aminohydroxylation of Cinnamates Using (DHQ)2PHAL 
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Early work by Janda and co-workers utilized a substrate-based approach for control of 

regioselectivity.
33

  They proposed a catalytically active complex IX (Figure 2.4) analogous to that 

proposed by Corey for the SAD reaction.  The OsO3NX species is coordinated to the nitrogen of the 

quinuclidine ring in a distorted trigonal bipyramid geometry.  With the two nitrogen ligands occupying 

axial positions, the regioselectivity is determined by how an alkene binds to the catalyst.   

 

IX 

 

Figure 2.4 - Janda and Co-Workers
33

 Proposed a Catalytically Active Complex for the SAH Reaction.  

Copyright 2009, Elsevier, reprinted with permission (p. 251).                                  

 

 

The α,β-unsaturated compounds (similar to the cinnamates) used by the researchers examined the 

influence of steric and ligand-substrate interactions.  Experimental results showed the preferential 

addition of nitrogen to the β-carbon atom and the oxygen to the α-carbon atom (Table 2.1) relative to the 

ester functional group.  Also, entries 3 and 4 displayed excellent regioselectivity and enantioselectivity 

while entries 5 and 6 exhibited lowered regioselectivity.  It seems that ligand-substrate interactions 

influence both regioselectivity and enantioselectivity. 

Table 2.1 - A Substrate Based Approach for Control of Regioselectivity by Janda and Co-Workers 
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(Table 2.1 continued) 

Entry R 

 

Regioselectivity 

(117a-f:118a-f) 

ee [%] Yield [%] 

 

1 

 

H 

 

15.2:1 

 

NR 

 

NR 

 

2 

 

CH3 

 

1.4:1 

 

NR 

 

NR 

 

3 

 

 

>20.0:1 

 

>95 

 

79 

 

4  

 

>20.0:1 

 

>95 

 

65 

 

5  

 

2.4:1 

 

NR 

 

51 

 

6 
 

 

4.3:1 

 

NR 

 

53 

NR = Not Reported 

                          

A report by Sharpless et al. noted that the regioselectivity observed with the PHAL ligands can be 

reversed by changing to the AQN ligands.
34

  Inspired by Sharpless’s work, McLeod and co-workers 

carried out theoretical studies of ligand-osmium binding geometry and also conducted experimental 

investigations of the SAH reaction on several ester substrates to better understand ligand-substrate control 

of regioselectivity.
35

  The B3LYP/6-31G* calculations support the proposition of Janda et al. that the 

mechanism involves a complex with apical nitrogen ligands in a distorted trigonal bipyramidal geometry 

(Scheme 2.15).  This lowest energy configuration has implications on regioselectivity in the SAH 

reaction.  Specifically, changes in regioselectivity result from changes in substrate-catalyst orientation.   
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Scheme 2.15 – The Catalytically Active Complexes as Supported by B3LYP/6-31G* Calculations.  

Copyright 2009, Elsevier, reprinted with permission (p. 251). 

               

                  

To test this hypothesis, a range of similarly substituted esters 119a-c were synthesized and the 

outcomes of the SAH reactions are presented in Table 2.2.
35

  Chemical yields for the PHAL-catalyzed 

reactions were consistently higher than the AQN-catalyzed reactions.  An increase in the bulk of the ester 

substituent (R
3
) has little effect on the selectivity of the PHAL reaction.  For the PHAL ligands, 

stabilizing aromatic-aromatic interactions of the aryl ether with the methoxyquinoline rings of the catalyst 

led to regioselective formation of the β-amino product.  The increasing size of the ester (Me → 
t
Bu) 

should have little influence on stereoselectivity of the reaction since it resides on an open region of the 

catalyst over the phthalazine spacer.  The AQN reaction on the same series of ester substituents led to a 

reversal in regioselectivity.  However, increasing the size of the ester led to deterioration of selectivity.  

To see why this is so, Scheme 2.15 shows the subtle differences.  The AQN catalyst features an aromatic 

spacer region that is elongated compared to its PHAL counterpart.  This leads directly to an increase in 

steric crowding.  The α-amino product, as favored by the AQN ligand, relies on interaction of the aryl 

ether with the AQN aromatic spacer.  This mode of binding is evident with the loss of stereoselectivity for 

the favored product as the ester substituent increases in size. 
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Table 2.2 - McLeod and Co-Workers’ Investigation on Factors Affecting Regioselectivity Using 

                   Similarly Substituted Esters 

 

Entry Substrate R
3
 Alkaloid PHAL 

α:β(120:121) 

PHAL 

%ee(121) 

AQN 

α:β(120:121) 

AQN 

%ee(120) 

1 119a CH3 DHQD 1:20 96 5:1 89 

2 119a CH3 DHQ 1:20 97 5:1 68 

3 119b 
n
Bu DHQD ND ND 2:1 87 

4 119b 
n
Bu DHQ 1:9 99 ND ND 

5 119c 
t
Bu DHQ 1:6 96 1.2:1 51 

ND = Not Determined 

2.8  Synthesis of eHyAsn 

On this background, we began as previously reported, the SAH reaction of cinnamate 105 gave a 

good yield of Cbz-protected amino alcohol 106 (Scheme 2.16).
19,20,22

  The authors reported an 

enantiomeric excess of 99% and an optical rotation value, [α]
23.0

D -5.3 (c 0.94, CHCl3), for 106.  The 106 

produced in our hands was characterized and proved identical in both respects.  We then conducted a 

Mitsunobu reaction with p-nitrobenzoate as the nucleophile, resulting in inversion of configuration at the 

center undergoing substitution.  The p-nitrobenzoate ester was cleaved by azidolysis
36

 to give 122.  The 

secondary alcohol was protected as its TBS ether and the methyl ester converted to the side chain primary 

amide, giving compound 123.   
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Scheme 2.16 – Part 1 of eHyAsn Synthesis 

Reports by Jung and co-workers have shown that oxidative cleavage of a p-methoxyphenyl 

aromatic ring can occur selectively in the presence of a benzyl carbamate (Scheme 2.17).
37,38

   

 

Scheme 2.17 – Precedents for Oxidative Cleavage of the PMP Group in the Presence of Cbz  

We tried to unmask the α-COOH from compound 123 but were unsuccessful.  To avoid 

competitive degradation between the PMP and Cbz aromatic rings, we resorted to switching carbamate 

protecting groups.  Specifically, single step N-Cbz/Boc exchange was accomplished in 98% yield 

(Scheme 2.18).  The oxidative degradation of compound 110 was initially conducted on a small scale but 

the yield was not synthetically useful.  When the reaction was conducted on a reasonable scale (600 mg or 

more) with a mechanical stirrer, however, the yield improved dramatically.  Also, careful control of pH 

during workup and exhaustive extraction of the aqueous layer are critical.  The isolated yield of crude 
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acid (+)-44 ranged from 73%-80%.  We were able to compare the optical rotation of (+)-44 with that 

previously reported by Tohdo et al.  In summary, we have prepared eHyAsn building block (+)-44 in 

seven steps and 23% overall yield from methyl p-methoxycinnamate.     

 

Scheme 2.18 - Part 2 of eHyAsn Synthesis 

2.9  The eHyAsn-Phe Dipeptide 

We next sought to form a dipeptide, relevant to the western hemisphere of TNM C, and test 

whether or not the side chain amide would require protection during this amide bond formation.  The 

synthesis of eHyAsn was discussed previously, as well as the amide protection (trityl) of its diastereomer 

(tHyAsn) by the VanNieuwenhze and Boger groups.
18,19

  The use of acid-labile protecting groups in this 

situation, however, is not recommended since Ahad and Aboa (γ-hydroxyacids) can form γ-lactones 

under acidic conditions (Matsunaga’s observation, general example in Scheme 2.19).  Thus, permanent 

side chain protecting groups cannot be acid-labile. 

 

Scheme 2.19 - γ-Hydroxyacids Can Form γ-Lactones Under Acidic Conditions 
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The main concern with Asn residues is that upon carboxyl activation, unprotected side chain 

carboxamido groups XI are known to undergo isoaspartimide formation XIII followed by dehydration to 

give β-cyanoalanine derivatives XIV (Scheme 2.20).
39-41

  This was, in fact, a major side product isolated 

on coupling Phe to eHyAsn with BOP/DIPEA (Table 2.3, Entry 1).  Konig and Geiger
42

 demonstrated in 

1970 that the most effective conditions to suppress this side reaction, involve a carbodiimide-mediated 

coupling with addition of one equivalent of hydroxybenzotriazole (HOBt) in the reaction mixture.
43,44

  

The role of this additive is to serve as a superior proton donor relative to the NH of the isoaspartimide.  

Thus, formation of the BtO
-
 (benzotriazoloxy) anion occurs in preference to dehydration to generate a 

nitrile.  The 1-hydroxybenzotriazole ester is the active species in solution and it undergoes aminolysis at a 

rate of about 10
3
-fold faster than the ester formed from NHS.   

 

Scheme 2.20 – Side Reaction of Unprotected Asn Residues: β-Cyanoalanine Derivative Formation.  

Copyright 2009, Elsevier, reprinted with permission (p. 253). 

 

 

The crude acid (+)-44 was subjected directly to the peptide coupling reaction.  The addition of 

HOBt was beneficial to the reaction as the ratio of desired dipeptide to undesired nitrile increased (Entry 

2).  Switching coupling reagent (BOP → EDC) and base (diisopropylethylamine → triethylamine) led to 

formation of 129, albeit in modest yield (Entry 4).  N-[3-(dimethylamino)propyl]-N’-ethylcarbodiimide 

can be used in place of DCC as this reagent and its corresponding urea by-product is soluble in aqueous 

solvents and can be removed in the workup.  Under optimized conditions (EDC/HOBt/THF), the isolated 

yield of dipeptide 129 is 68%.  We have found conditions to form a dipeptide, and demonstrated that this 

can be done without protection of the side-chain amide functionality. 
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Table 2.3 - eHyAsn-Phe Dipeptide Formation: Optimization Study 

                                                                

                                                            

                                                                  

 

 
 
 

Entry Additive Base Coupling Reagent Solvent 
Yield 129 

(%) 

Yield 130 

(%) 

1 -  
i
Pr2NEt BOP  CH3CN 27 17 

2 HOBt 
i
Pr2NEt BOP  CH3CN 36 12 

3  - 
i
Pr2NEt DPPA CH3CN 24 0 

4 HOBt NEt3 EDC CH2Cl2 43 0 

5 HOBt NEt3 EDC CH3CN 60 0 

6 HOBt NEt3 EDC THF 68 0 

 

 

2.10  Experimental Section 

General methods: all reactions were performed under a dry nitrogen atmosphere unless otherwise 

noted.  Reagents were obtained from commercial sources and used directly; exceptions are noted.  

Diisopropylethylamine and triethylamine were dried and distilled from CaH2 and stored over KOH 

pellets.  Ethanol and methanol were distilled from Mg turnings and stored over 4Å molecular sieves.  

Flash chromatography was performed using flash silica gel (32-63 µ) from Dynamic Adsorbents Inc.  

Reactions were followed by TLC on precoated silica plates (200 µm, F-254 from Dynamic Adsorbents 

Inc.).  The compounds were visualized by UV fluorescence or by staining with phosphomolybic acid, 

ninhydrin or KMnO4 stains.  NMR spectra were recorded on Bruker DPX-250 or AV-400-liquid 

spectrometers.  Proton NMR data is reported in ppm downfield from TMS as an internal standard.  High 

resolution mass spectra were recorded using either time-of-flight or electrospray ionization.  
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2.10.1  Experimental Procedures                               

 

(E)-Methyl 3-(4-methoxyphenyl)acrylate (105).  Boron trifluoride diethyl etherate (14.10 mL, 

15.93 g, 112.2 mmol, 1.0 equiv.) was added dropwise to a solution of (E)-3-(4-methoxyphenyl)acrylic 

acid (20.00 g, 112.2 mmol, 1.0 equiv.) in anhydrous methanol (50 mL) under N2.  The resulting solution 

was heated under reflux for 13 h and cooled to room temperature.  Aqueous Na2CO3 (5%, 300 mL) was 

added and the mixture stirred for 30 min.  The crystalline precipitate was collected by filtration, washed 

with H2O, and dried to afford a colorless solid (20.62 g, 96%).  mp 86-88 ˚C (lit. mp 85-87 ˚C); Rf 0.26 

(5:1 Hex-EtOAc); 
1
H NMR (CDCl3, 400 MHz) δ 3.79 (s, 3H), 3.83 (s, 3H), 6.31 (d, J = 16.0 Hz, 1H), 

6.90 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 16.0 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz) 

δ 51.5, 55.3, 114.3 [2C], 115.3, 127.1, 129.7 [2C], 144.5, 161.4, 167.7; HRMS (ESI) calcd for C11H13O3 

(M+H)
+
 193.0859, obsd 193.0856.                         

 

(2S,3R)-Methyl 3-(benzyloxycarbonylamino)-2-hydroxy-3-(4-methoxyphenyl)propanoate (106).  

Benzyl carbamate (9.05 g, 60.0 mmol, 2.30 equiv.) was dissolved in n-PrOH (70 mL).  A solution of 

NaOH (2.44 g, 61.0 mmol, 2.35 equiv.) in H2O (110 mL) was added and the resulting solution stirred for 

10 min.  Freshly prepared tert-butyl hypochlorite (6.90 mL, 6.62 g, 61.0 mmol, 2.35 equiv.) was added 

dropwise and the resulting solution stirred for an additional 10 min.  (DHQD)2PHAL (0.83 g, 1.3 mmol, 5 

mol %) in n-PrOH (40 mL) was added and the reaction vessel immersed in a water bath at ambient 

temperature and stirred for 5 min.  (E)-Methyl 3-(4-methoxyphenyl)acrylate 105 (5.0 g, 26.0 mmol, 1.0 

equiv.) was added, followed immediately by K2OsO2(OH)4 (0.38 g, 1.0 mmol, 4 mol %).  The reaction 
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mixture was stirred for 2 h at 0 ˚C.  The pale yellow slurry was filtered, and the solid washed with ice 

cold EtOH-H2O (1:1, 15 mL), and dried to afford 106 as a colorless solid (5.44 g, 58%).  Rf 0.32 (1:1 

Hex-EtOAc); [α]
26.5

D -5.2 (c 1.0, CHCl3) Lit, [α]
23

D -5.3 (c 0.94, CHCl3); 
1
H NMR (CDCl3, 400 MHz) δ 

3.24 (s, 1H), 3.78 (s, 6H), 4.43 (s, 1H), 5.02-5.09 (m, 2H), 5.20 (d, J = 9.4 Hz, 1H), 5.67 (d, J = 9.4 Hz, 

1H), 6.86 (d, J = 8.6 Hz, 2H), 7.25-7.32 (m, 7H); 
13

C NMR (CDCl3, 100 MHz) δ 53.0, 55.2, 56.0, 66.9, 

73.5, 114.0, 127.9, 128.0, 128.1, 128.4, 131.0, 136.2, 155.6, 159.2, 173.2; HRMS (ESI) calcd for 

C19H20NO6 (M-H)
+
 358.1296, obsd 358.1299.           

                                                       

(2R,3R)-Methyl-3-(benzyloxycarbonylamino)-2-hydroxy-3-(4-methoxyphenyl)propanoate (122).            

p-Nitrobenzoic acid (3.94 g, 23.6 mmol, 2.2 equiv.) was added to a solution of (2S,3R)-methyl 3-

(benzyloxycarbonylamino)-2-hydroxy-3-(4-methoxyphenyl)propanoate 106 (3.86 g, 10.7 mmol, 1.0 

equiv.) in dry THF (130 mL).  Triphenylphosphine (6.19 g, 23.6 mmol, 2.2 equiv.) was added, then the 

mixture cooled to 0 ˚C under N2.  Diisopropyl azodicarboxylate (4.65 mL, 4.77 g, 23.6 mmol, 2.2 equiv.) 

was slowly added via syringe.  Upon completion of the addition, the ice bath was removed and the 

contents stirred at room temperature for 2 d.  The reaction mixture was concentrated and the residue 

dissolved in anhydrous MeOH (130 mL).  Sodium azide (3.49 g, 53.6 mmol, 5.0 equiv.) was added and 

the mixture heated at 45 ˚C for 3.5 d.  The solvent was removed under reduced pressure and the product 

isolated from the residue by flash chromatography (Hex-EtOAc, 3:1) to give a pale yellow solid (2.56 g, 

66%).  Rf 0.32 (1:1 Hex-EtOAc); [α]
25.0

D -20.8 (c 0.8, CHCl3); 
1
H NMR (CDCl3, 400 MHz) δ 2.92 (d, J = 

6.5 Hz, 1H), 3.69 (s, 3H), 3.77 (s, 3H), 4.59 (dd, J = 6.5, 3.3 Hz, 1H), 5.05 (d, J = 12.2 Hz, 1H), 5.11 (d, J 

= 12.2 Hz, 1H), 5.10-5.13 (m, 1H), 5.83 (d, J = 8.6 Hz, 1H), 6.82 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 

2H), 7.34 (m, 5H); 
13

C NMR (CDCl3, 100 MHz) δ 52.4, 55.1, 56.4, 66.8, 73.1, 113.8, 128.1, 128.3, 128.4, 

128.6, 136.2, 155.5, 159.3, 172.1; HRMS (ESI) calcd for C19H20NO6 (M-H)
+
 358.1296, obsd 358.1295. 
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(2R,3R)-Methyl-3-(benzyloxycarbonylamino)-2-(tert-butyldimethylsilyloxy)-3-4-methoxyphenyl 

propanoate (123 Precursor).  2,6-Lutidine (190 µL, 180 mg, 1.67 mmol, 3.0 equiv.) was added dropwise 

to a solution of (2R,3R)-methyl 3-(benzyloxycarbonylamino)-2-hydroxy-3-(4-methoxyphenyl)propanoate 

122 (200 mg, 0.56 mmol, 1.0 equiv.) in dry CH2Cl2 (2.23 mL).  The mixture was stirred for 10 min before 

dropwise addition of TBDMSOTf (150 µL, 180 mg, 0.67 mmol, 1.2 equiv.).  The resulting solution was 

stirred for 3 h at room temperature, at which point another portion of TBDMSOTf (150 µL, 180 mg, 0.67 

mmol, 1.2 equiv.) was added and the mixture stirred for 17 h at room temperature.  The mixture was 

diluted with ethyl acetate (25 mL) and concentrated in vacuo.  Flash chromatography on silica gel (Hex-

EtOAc, 2:1) afforded the TBS ether as a clear oil (255 mg, 97%).  Rf 0.24 (4:1 Hex-EtOAc); 
1
H NMR 

(CDCl3, 400 MHz) δ 0.02 (s, 3H), 0.05 (s, 3H), 0.91 (s, 9H), 3.55 (s, 3H), 3.76 (s, 3H), 4.60 (d, J = 4.0 

Hz, 1H), 5.05-5.13 (m, 3H), 5.52 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.7 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 

7.33 (m, 5H); 
13

C NMR (CDCl3, 100 MHz) δ -5.5, -5.2, 18.2, 25.7, 51.7, 55.2, 57.0, 66.8, 74.3, 113.7, 

128.1, 128.5, 128.9, 129.6, 136.4, 155.5, 159.3, 171.3; HRMS (ESI, m/z) calcd for C25H36NO6Si (MH)
+
 

474.2306, obsd 474.2298. 

 

Benzyl-(1R,2R)-3-amino-2-(tert-butyldimethylsilyloxy)-1-(4-methoxyphenyl)-3-oxopropyl- 

carbamate (123).  Ammonia gas was bubbled through a solution of (2R,3R)-methyl 3-

(benzyloxycarbonylamino)-2-(tert-butyldimethylsilyloxy)-3-(4-methoxyphenyl)propanoate (2.20 g, 4.65 

mmol) in dry MeOH (23 mL) at 0 ˚C.  The reaction vessel was stoppered and the mixture stirred for 7 d at 

room temperature.  The solution was cooled to 0 ˚C and resaturated with ammonia gas.  The reaction 
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vessel was stoppered and the mixture stirred for 7 d at room temperature.  The solvent was removed under 

reduced pressure.  Flash chromatography (Hex-EtOAc, 3:1) led to recovery of the methyl ester (440 mg, 

20%) and isolation of the primary amide 123 as a colorless foam (1.40 g, 66%). Rf 0.29 (1:1 Hex-EtOAc); 

[α]
26.5

D +2.2 (c 1.0, CHCl3); 
1
H NMR (CDCl3, 400 MHz) δ -0.01 (s, 3H), 0.02 (s, 3H), 0.92 (s, 9H), 3.78 

(s, 3H), 4.44 (d, J = 3.7 Hz, 1H), 4.97 (m, 1H), 5.05-5.11 (m, 2H), 5.37 (s, 1H), 5.45 (d, J = 6.5 Hz, 1H), 

5.99 (s, 1H), 6.83 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 7.33 (m, 5H); 
13

C NMR (CDCl3, 100 

MHz) δ -5.5, -5.4, 18.0, 25.7, 55.2, 57.6, 66.8, 75.9, 113.6, 128.0, 128.1, 128.4, 129.1, 129.7, 136.4, 

155.2, 159.3, 173.8; HRMS (ESI, m/z) calcd for C24H35N2O5Si (MH)
+
 459.2309, obsd 459.2313. 

 

Tert-butyl-(1R,2R)-3-amino-2-(tert-butyldimethylsilyloxy)-1-(4-methoxyphenyl)-3-oxopropyl- 

carbamate (110).  A solution of benzyl (1R,2R)-3-amino-2-(tert-butyldimethylsilyloxy)-1-(4-

methoxyphenyl)-3-oxopropylcarbamate 123 (117 mg, 0.25 mmol) and Boc2O (61 mg, 0.28 mmol) in 

CH3OH (5 mL) was treated with 10% Pd-C (5 mg).  The resulting black suspension was stirred under H2 

(1 atm) at 25 °C overnight.  The catalyst was removed by filtration through Celite, and the filtrate was 

concentrated.  Flash chromatography (Hex-EtOAc, 2:1) provided 110 as a colorless foam (107 mg, 99%): 

1
H NMR (CDCl3, 400 MHz) δ 0.05 (s, 6H), 0.94 (s, 9H), 1.41 (s, 9H), 3.78 (s, 3H), 4.43 (s, 1H), 4.92 

(app s, 1H), 5.18 (app s, 1H), 5.71 (s, 1H), 5.97 (s, 1H), 6.82 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H); 

13
C NMR (CDCl3, 100 MHz) δ -5.5, -5.3, 18.0, 25.7, 28.3, 55.1, 57.1, 76.0, 79.6, 113.5, 129.1, 129.8, 

154.6, 159.1, 174.0.                                               
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(2S,3R)-4-Amino-2-(tert-butoxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-4-oxobutanoic 

acid    ((+)-44).  Sodium periodate (5.504 g, 26 mmol, 18.1 equiv.) in H2O (128 mL) was added to a 

solution of tert-butyl (1R,2R)-3-amino-2-(tert-butyldimethylsilyloxy)-1-(4-methoxyphenyl)-3-

oxopropylcarbamate 110 (0.604 g, 1.4 mmol. 1.0 equiv.) in EtOAc-CH3CN (1:1, 32 mL).  The resulting 

solution was mechanically stirred at room temperature for 30 minutes.  RuCl3.3H2O (60 mg, 0.3 mmol, 20 

mol %) was added, followed by NaHCO3 (0.464 g, 5.5 mmol, 3.9 equiv.).  The reaction mixture was 

stirred mechanically at room temperature overnight.  The yellow solution was diluted with sat’d aqueous 

NaHCO3 (240 mL) and extracted with CH2Cl2 (160 mL).  The organic layer was washed with sat’d 

aqueous NaHCO3 (240 mL) again.  The combined aqueous layers were acidified with 10% aqueous HCl 

to pH 2.5 at 0 °C and extracted with EtOAc (6 x 300 mL).  The combined organic layers were dried over 

MgSO4, filtered and concentrated to give (+)-44 as a brown foam (0.414 g, 80%).  Rf 0.64 (6:4:1 CHCl3-

MeOH-H2O); [α]
24.0

D +51.1 (c 1.0, MeOH) Lit
15

, [α]
24.0

D +40.9 (c 1.0, MeOH); 
1
H NMR (CD3OD, 400 

MHz) δ 0.15 (s, 3H), 0.16 (s, 3H), 0.94 (s, 9H), 1.45 (s, 9H), 3.83 (s, 1H), 4.57 (d, J = 9.7 Hz, 1H), 
13

C 

NMR (CD3OD, 100 MHz) δ -5.1, -4.9, 19.0, 26.2, 28.7, 58.7, 75.3, 81.0, 157.1, 171.7, 175.9; HRMS 

(ESI) calcd for C15H31N2O6Si (M+H)
+
 363.1945, obsd 363.1955. 

 

(S)-Methyl 2-((2S,3R)-4-amino-2-(tert-butoxycarbonylamino)-3-(tert-butyldimethylsilyloxy)-4-

oxobutanamido)-3-phenylpropanoate (129).  (2S,3R)-4-Amino-2-(tert-butoxycarbonylamino)-3-(tert-

butyldimethylsilyloxy)-4-oxobutanoic acid (+)-44 (266 mg, 0.7 mmol, 1.0 equiv.) was dissolved in 

anhydrous THF (15 mL) and the resulting solution cooled to 0 °C.  L-Phenylalanine methyl ester 

hydrochloride (158 mg, 0.7 mmol, 1.0 equiv.) was added and the solution stirred at 0 °C for 15 min.  

Triethylamine (204 µL, 149 mg, 1.5 mmol, 2.0 equiv.) was added and the solution stirred at 0 °C for 10 

min.  1-(3-Dimethylamino-propyl)-3-ethyl-carbodiimide hydrochloride (148 mg, 0.8 mmol, 1.05 equiv.) 
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was added, followed by HOBt (149 mg, 1.1 mmol, 1.5 equiv.) at 0 °C.  The reaction mixture was allowed 

to stir for 20 min at 0 °C and then warmed to room temperature and stirred overnight.  The solvent was 

removed and the product isolated 129 from the residue by flash chromatography (Hex-EtOAc 4:1 → Hex-

EtOAc 1:1) to give a colorless foam (262 mg, 68%).  Rf 0.33 (1:1 Hex-EtOAc); [α]
25.0

D +48.6 (c 1.0, 

CHCl3); 
1
H NMR (CDCl3, 400 MHz) δ 0.10 (s, 3H), 0.13 (s, 3H), 0.90 (s, 9H), 1.44 (s, 9H), 3.08 (d, J = 

5.4 Hz, 2H), 3.65 (s, 3H), 4.60-4.70 (m, 2H), 4.80 (d, J = 6.5 Hz, 1H), 5.44 (s, 1H), 5.98 (s, 1H), 6.54 (s, 

1H), 6.60 (d, J = 7.4 Hz, 1H), 7.12-7.30 (m, 5H); 
13

C NMR (CDCl3, 100 MHz) δ -5.3, -5.1, 18.0, 25.6, 

28.3, 37.8, 52.2, 53.5, 57.4, 74.0, 80.1, 127.1, 128.6, 129.3, 135.7, 154.9, 167.5, 171.4, 174.3; HRMS 

(ESI) calcd for C25H40N3O7Si (M-H)
+
 522.2641, obsd 522.2654. 
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2.10.2  Spectra 

Compound 105 - 
1
H NMR in CDCl3 at 400 MHz 
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Compound 105 – 
13

C NMR in CDCl3 at 100 MHz 
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Compound 106 - 
1
H NMR in CDCl3 at 400 MHz 
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Compound 106 – 
13

C NMR in CDCl3 at 100 MHz 

 



59 
 

Compound 122 - 
1
H NMR in CDCl3 at 400 MHz 
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Compound 122 – 
13

C NMR in CDCl3 at 100 MHz 
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Compound 123 Precursor - 
1
H NMR in CDCl3 at 400 MHz 
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Compound 123 Precursor – 
13

C NMR in CDCl3 at 100 MHz 
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Compound 123 – 
1
H NMR in CDCl3 at 400 MHz 

 



64 
 

Compound 123 – 
13

C NMR in CDCl3 at 100 MHz 
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Compound 110 – 
1
H NMR in CDCl3 at 400 MHz 
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Compound 110 – 
13

C NMR in CDCl3 at 100 MHz 
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Compound (+)-44 – 
1
H NMR in CD3OD at 400 MHz 
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Compound (+)-44 – 
13

C NMR in CD3OD at 100 MHz 
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Compound 129 - 
1
H NMR in CDCl3 at 400 MHz 
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Compound 129 – 
13

C NMR in CDCl3 at 100 MHz 
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CHAPTER 3: EARLY APPROACHES TO THE SYNTHESIS OF ABOA 

3.1  Previous Synthesis of Aboa by Tohdo et al
1
 

Tohdo et al. reported a regio- and stereoselective synthesis of Aboa in protected form in 1992.
  

The key step in this synthesis, as highlighted in Scheme 3.1, involved stereoselective addition of the ate 

complex 133 to the complexed aldehyde 134. 

 

 

Scheme 3.1 - Tohdo et al.
1
 Retrosynthesis of Aboa 

The synthesis started with the activation of propargyl bromide 137 and its addition to p-

bromobenzaldehyde 136 to give a benzylic alcohol intermediate 139 (Scheme 3.2).  The hydroxyl group 

was converted to a bromide via the Appel reaction and subsequent dehydrohalogenation with 1,5-

diazabicyclo[4.3.0]non-5-ene (DBN) generated a 92:8 mixture of (E)- and (Z)-enynes (E-135 and Z-135 

respectively).  Two nucleophiles were formed in situ from E-135 (Approaches 1 and 2).  The first 

nucleophile was generated by carbometalation of E-135 with AlMe3/Cp2ZrCl2.  The resulting aluminum 

species reacted with iodine to produce 142, which was subsequently converted to Grignard reagent 143 
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using n-BuLi/MgBr2.  The key step, reaction between Grignard reagent 143 and aluminum complex 134 

(from homoserine derivative 138) formed the (E)- and (Z)-dienes 132 in 46% and 33% yields, 

respectively.  Nuclear Overhauser effect (nOe) experiments on each isomer clearly established E and Z 

geometry respectively.   

 
 

Scheme 3.2 – Synthesis of Aboa by Tohdo et al.
1
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An improvement in the selectivity of the coupling reaction came from the use of a different 

nucleophile (Approach 2).  Addition of AlMe3/Cp2ZrCl2/n-BuLi to E-135 led to formation of ate complex 

133, which was reacted in turn, with 134 to produce the (E-132)-diene exclusively.  With the framework 

of Aboa secured, additional functional group modifications led to a protected form of the fragment.  The 

secondary alcohol of E-132 was protected using MOMCl/DIPEA and the primary alcohol 144 was 

revealed using TBAF.  The full oxidation of 144 required two steps: Swern conditions to give the 

aldehyde and Pinnick oxidation to afford the carboxylic acid 145.  TMSCHN2/MeOH effectively 

generated the methyl ester derivative 131. 

3.2  A Challenging Application of the Sharpless Aminohydroxylation Reaction 

Our original approach to the synthesis of Aboa relied again on Sharpless’ aminohydroxylation 

(SAH) chemistry (Scheme 3.3).  Retrosynthetically, the target compound can be accessed via a 

regioselective and stereoselective SAH reaction of triene 147.  Compound 147 can be generated from a 

Wittig reaction between phosphonium ylide 149a and aldehyde 148.  The synthesis of aldehyde 148 starts 

with double Grignard addition of MeMgI to α,β-unsaturated ester 151 followed by a Vilsmeier-type 

reaction (POCl3/DMF) of the resulting allylic alcohol 150. 

 

 

Scheme 3.3 – The Original Retrosynthetic Analysis 
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There are three nontrivial issues (Scheme 3.4) that make this application of the SAH reaction more 

challenging than that utilized in the eHyAsn substrate (Chapter 2).   

1. The ester is homoallylic rather than allylic.  Homoallylic esters have been dihydroxylated in high 

yield and high ee (blue in Scheme 3.4).
2 
 

2. The oxidation needs to be regioselective for the β,γ-olefin of the substrate.  Scheme 3.4 (red) 

illustrates that where multiple double bonds are present in a substrate, the Sharpless asymmetric 

dihydroxylation (SAD) occurs in a sense that minimizes disruption to conjugation.
3,4

  If this trend 

holds for the SAH reaction, it should work in our favor leading to functionalization of the β,γ-

olefin of ester 147.   

 

Scheme 3.4 – Challenges in the Aminohydroxylation Reaction of 147 (Left) with Selected 

                         Dihydroxylation Reaction Precedents (Right) 
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3. A reversal in regioselectivity is required in the sense that the amino group is closer to the 

electron-withdrawing group than the hydroxyl group is (green in Scheme 3.4).  Recall, Sharpless 

and co-workers determined that use of the AQN ligand core in the SAH reaction of cinnamates 

reverses the regiochemical outcome of the previously known PHAL ligand system.
5
  

3.3  The Regioreversed Sharpless Aminohydroxylation Reaction 

The greatest limitation to the widespread application of the SAH reaction continues to be 

regioselectivity.  The factors responsible for regioselectivity using cinnamate-type reaction substrates 

have been investigated by McLeod and co-workers.
6
  Recall that the opposite regioselectivity provided 

using the AQN and PHAL ligands is a consequence of a change in substrate orientation with respect to 

the catalyst (§2.7).  The catalyst contains two ligand-binding domains that undergo attractive interactions 

with the substrates.  Other substrate classes have not been subjected to such detailed investigations. 

Publications citing the seminal work of Sharpless and co-workers
5
 have reported mixed results.

7-

20
  Some of the examples that have worked reasonably well are highlighted in Figure 3.1 and generally 

fall into three categories: cinnamates 160-166,
7-14 

β-(3-indolyl)acrylates 167-170,
15-18

 and aliphatic 

substrates 171-172.
19,20

  Some common features to all categories include the α,β-unsaturated ester 

containing a 1,2-trans-disubstituted olefin.  While both cinnamate and β-(3-indolyl)acrylate reactions 

employ methyl/ethyl ester derivatives, they differ in the identity of the other substituent.  Cinnamate 

reactions, by definition, consist of a phenyl group while β-(3-indolyl)acrylate reactions comprise of a 

indole group (cyclomarin analogs).  The latter have been popular targets since the cyclic antibiotic 

heptapeptides, cyclomarins A-D, were recently found to target a protein in Mycobacterium tuberculosis 

(Mtb).
21  

The natural product binds the regulatory subunit ClpC of the Clp complex in Mtb resulting in 

enhanced proteolysis and cell death.  Much of the initial work regarding the regioreversed SAH reaction 

falls into the aliphatic category.   
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Figure 3.1 – Representative Products of the Regioreversed SAH 
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According to Figure 3.1, all three reaction classes provided the desired products in moderate 

yields with high regio- and enantioselectivities.  Although a wide range of nitrogen protecting groups
22

 is 

available for this reaction (sulfonamides, carbamates, amides, etc), the examples presented all utilize 

popular carbamates.  A variety of aromatic substituents are well tolerated by the regioreversed SAH 

reaction.
6
  Substrates containing electron-rich (160, 163, 164 and 165) and electron-deficient (161 and 

162) substituents gave comparable results.  When utilized in target-oriented synthesis, the SAH reaction is 

typically employed in the early stages (160, 161, 164, 166, 168 and 169).  The advanced intermediate 163 

en route to ustiloxin D by Joullié and co-workers
11

 represents the most complex example.  The near 

exclusive use of the (DHQD)2AQN ligand system in recent years is also noteworthy.  In spite of the 

results of the regioreversed SAH in Figure 3.1, many challenges remain before the SAH reaction gains the 

popularity of its predecessors (SAD and SAE) and can be reliably implemented in synthesis. 

3.4  Attempted Synthesis of Triene 175, an Aboa Precursor 

Our synthesis of aldehyde 148 (Scheme 3.5) relied upon the work of Reddy and Rao, who 

reported the formation of the analogous 4’-chlorinated aldehyde 174 in 86% yield, over two steps.
23

  As 

reported, double addition of methyl magnesium iodide to (E)-ethyl 3-(4-bromophenyl)acrylate afforded 

tertiary alcohol 150 in high yield.   

 

 

 

Scheme 3.5 – Attempted Synthesis of 175 
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The second step, conducted under Vilsmeier conditions, was problematic in our hands.  We 

isolated intermediate diene 173, signaling that the first step in this reaction involves dehydration of the 

tertiary alcohol.  We believe that two equivalents of the Vilsmeier reagent are required:  one to effect the 

dehydration and the second to formylate.  Integration of the –CHO peaks (
1
H NMR) of the crude reaction 

mixture indicated a 3:1 mixture of E/Z isomers.  These diastereomers are separable by careful flash 

chromatography.   

The spectral data (
1
H NMR and 

13
C NMR) for the E-isomer was in excellent agreement with the 

phenyl analog of aldehyde 148 as put forth by the Helquist and Wojtkielewicz research groups.
24,25

  This 

included the -CHO peak in the 
1
H NMR at 10.17 ppm with a coupling constant of 8.0 Hz and the 

corresponding peak in the 
13

C NMR at 191.1 ppm.  Time spent optimizing this reaction was prolonged 

due to two contributing factors.  First, there was confusion about reaction stoichiometry as Reddy and 

Rao recommended 1.3 equivalents of Vilsmeier reagent with respect to the starting alcohol.
23

  We proved 

that the first equivalent of Vilsmeier reagent only completes the dehydration sequence (formation of 173) 

while a second equivalent is required to introduce the aldehyde.  Compounding this confusion, we 

became aware that the purity of POCl3 from Sigma-Aldrich had been questionable during this time.  

Retroactively, it was impossible to estimate the content of active POCl3 participating in the early reactions 

and obtain a reproducible, moderate yield.  With 2.5 equivalents of good POCl3, we were able to isolate 

E-aldehyde 148 in 40% yield.   

Next, we required triene 175 via a Wittig reaction between aldehyde 148 and phosphonium salt 

149a (commercially available).  (2-Carboxyethyl)triphenylphosphonium bromide and related carboxy 

ylides, varying only in methylene chain length, were reacted with benzaldehyde in the presence of a series 

of HMDS bases (Li
+
, K

+
 and Na

+
) by Maryanoff et al. to examine trends in E/Z stereoselectivity (Table 

3.1).
26 

 Carboxy ylides of short chain length (up to four methylene units 149a-c) used in conjunction with 

benzaldehyde and LiN(SiMe3)2 (2.1 equivalents) generated products with 9:1 E/Z selectivity.  The same 

reaction conditions applied to carboxy ylides with longer methylene chain lengths (149e-f) resulted in 
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reduced E-stereoselectivity to the point where the Z-isomer was favored.  Also, at longer chain lengths, 

reactions with the K
+
 cation led to the most dramatic decrease in E-stereoselectivity whereas the lithium 

counterion gave the best results in terms of E-stereoselectivity.  Curiously, no yield was reported for the 

reaction utilizing 149a specifically.  Our attempts to conduct the Wittig reaction between 176 and 149a 

under the Maryanoff conditions resulted in decomposition and no isolable products.    

Table 3.1 – Wittig Reaction Between Benzaldehyde and Carboxy Ylides Varying in Methylene  

                      Chain Length to Examine Trends in E/Z Stereoselectivity as Performed by Maryanoff    

                    et al.
26

 

 

 

 

                                                             

 

 
 
 
 

Entry n Base E/Z Ratio Isolated Yield, % 

1 2 LiHMDS 90:10 - 

2 3 LiHMDS 93:7 61 

3 4 LiHMDS 87:13 74 

4 4 NaHMDS 79:21 65 

5 4 KHMDS 69:31 44 

6 6 LiHMDS 69:31 48 

7 7 LiHMDS 37:63 28 

8 10 LiHMDS 40:60 - 
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3.5  A Model System for the Regioreversed SAH 

Model studies for the SAH reaction were conducted on β,γ-unsaturated methyl ester 153 (Scheme 

3.6).  This model system removed the substrate-based regioselectivity issue while maintaining the 

homoallylic ester functionality.  Compound 153 was readily synthesized in two steps from commercially 

available phenylacetaldehyde.  Malonic acid and phenylacetaldehyde (179) underwent the Linstead 

modification of the Knoevenagel condensation
27,28 

to produce β,γ-unsaturated acid 180.  Formation of the 

methyl ester was accomplished using boron trifluoride diethyl etherate in methanol.
29

  Experiments for the 

key reaction were carried out under standard carbamate conditions (3 equivalents of benzyl 

carbamate/NaOH/
t
BuOCl) using the (DHQ)2AQN ligand.

5
  We isolated two compounds from the product 

mixture by normal phase silica HPLC.  They were identified as desired product 181 and regioisomer 182 

in a 2:1 ratio with a combined yield of 12%.  Enantiomeric purities were not determined.  

 

 

Scheme 3.6 - Application of the Regioreversed SAH on a Model Compound  

We decided to abandon the regioreversed SAH route to Aboa for several reasons.  Firstly, there 

was our inability to synthesize 175 from a seemingly trivial Wittig reaction between 148 and 149a.  The 

model system SAH reaction did not produce synthetically useful amounts of desired amino alcohol and its 

lactone counterpart.  It was not clear how much this reaction could be optimized.  Typical chemical yields 
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for much simpler regioreversed SAH reactions are between 45%-55% with varying levels of 

enantioselectivity.   

3.6  The Nitroaldol Reaction 

While attending a presentation on recent advances in the nitroaldol reaction by Shibasaki,
30

 it 

dawned on us that aldehyde 148 could possibly be used in an nitroaldol reaction to access a precursor to 

Aboa.  The nitroaldol reaction, which enables the formation of β-nitroalcohols I has been known for over 

a century.
31-33

  Additional transformations involving the newly generated β-nitro derivatives such as 

reduction, oxidation and dehydration leads to β-aminoalcohols II, α-nitrocarbonyls III and nitroalkenes 

IV, useful moieties in organic synthesis (Scheme 3.7). 

 

Scheme 3.7 – Nitroaldol Reaction Products are Precursors to Useful Moieties in Organic Synthesis 

Nitroaldol reactions are promoted/catalyzed by a wide range of conditions.  Some of these 

conditions include quaternary ammonium salts, organic bases and inorganic bases in solvent and 
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solventless protocols.
34-36

  The conditions utilized depend on the existing functionality and substrate 

solubility.      

The first asymmetric nitroaldol reaction, reported by Shibasaki et al. in 1992, employed a chiral 

catalyst generated from (S)-(-)-binaphthol 183 and La(O
t
Bu)3 184.

37
  The use of aliphatic aldehydes in 

conjunction with the asymmetric catalyst/nitromethane/THF generated (R)-nitroalcohols with good 

enantioselectivity (73-90% ee).  The mechanistic details are not fully understood but an aryloxide oxygen 

of the chiral catalyst 185 deprotonates nitromethane 186 to form the lithium nitronate 187 (Scheme 3.8).
38

  

Aldehyde V coordination to the lanthanide center activates it toward attack by the nitronate.  The alkoxide 

intermediate is then protonated to produce the alcohol product VIII and regenerate the catalyst 185.  

 

Scheme 3.8 – Walsh and Kowzlowski’s Proposed Mechanism
38

 for Shibasaki’s  

                          Li3(THF)n(BINOLate)3La(OH)2 Catalyzed Nitroaldol Reaction. Copyright 2008,  

                       University Science Books, reprinted with permission (p. 255). 
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3.7  Wolf’s Asymmetric Nitroaldol Reaction 

Shibasaki’s chiral catalyst is based on BINOL, a C2-symmetric ligand.  The development of 

asymmetric catalysts derived from C2-symmetric bisoxazolidines is still in its infancy.  Wolf and co-

workers reported the first chiral bisoxazolidine catalyst 190 from acid-promoted reaction of (1R,2S)-cis-1-

amino-2-indanol with 1,2-cyclohexanedione in 2006 (Scheme 3.9).
39

  The bisoxazolidine 190, acquired in 

90% yield and excellent diastereoselectivity (99% ds), was reported to catalyze the asymmetric nitroaldol 

reaction of aliphatic and aromatic aldehydes in 2008 (vide infra).
40 

 The (S,S)-N,O-“diketal” has an 

average separation of 2.35 Å between the oxygen and nitrogen atoms as determined by crystallographic 

analysis.  This rigid ligand structure facilitates bidentate coordination to metal ions and organometallic 

compounds.  Currently, this chiral catalyst is available from Strem Chemicals Inc. (catalog number 07-

0488, $80 for 250 mg).  In addition to asymmetric nitroaldol reactions, application of 190 has been 

demonstrated in dimethylzinc-mediated enantioselective alkynylation of aldehydes,
39

 alkylation of 

aldehydes with ZnMe2/ZnEt2
41 

and asymmetric Friedel-Crafts and Reformatsky
42

 reactions. 

 

Scheme 3.9 – Synthesis and Physical Characteristics of Wolf’s Bisoxazolidine Catalyst 

Bisoxazolidine 190, used in concert with ZnMe2 or CuOAc generates β-hydroxy-nitroalkanes in 

high yields and ee’s from a wide range of aldehydes in asymmetric nitroaldol reactions (Scheme 

3.10).
40,43,44

  The complex formed between catalyst 190 and ZnMe2 facilitates deprotonation of 

nitromethane which then reacts with aromatic/aliphatic aldehydes to produce (R)-nitro alcohols 192a-h in 

up to 99% yield and 95% ee.
40

  The same ligand used with catalytic CuOAc in ethanol led to nitro alcohol 
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products, again in high yields and ee’s but with opposite asymmetric induction, viz. the (S)-enantiomer 

193a-h.
43

  Reversing the enantioselectivity of a catalytic reaction while employing the same source of 

chirality has been previously achieved.
45

  Mechanistically, Wolf et al. ascribed this observation to a 

difference in coordination number of the catalytically active zinc (II) and copper (I) complexes (Scheme 

3.10).
40,43

  The combination of 190 and ZnMe2 in the nitroaldol reaction generates a 5-coordinate 

transition state 194a-h that bears the nitronate anion, the aldehyde substrate and the bisoxazolidine ligand.  

With CuOAc, however, attachment of the aldehyde substrate produces a 4-coordinate transition state 

195a-h favoring Re-face attack.  The enantioselective C-C bond formation via the respective transition 

states leads to release of the aldol product and regeneration of the bisoxazolidine-derived ZnMe2 or 

CuOAc complex. 

 

Scheme 3.10 - Wolf’s Nitroaldol Reaction Generates: (R)-Nitro Alcohols with 190/ZnMe2
40

 

                                                                                          (S)-Nitro Alcohols with 190/CuOAc
43

 

The even more interesting and pertinent result, however, was the reaction between benzaldehyde 

and nitroethane favoring formation of the syn diastereomer 197 in 88% yield (92% ee and 74% de, 

Scheme 3.11).  Remarkably, both diastereomers were generated with high enantiopurity.   
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Scheme 3.11 - Wolf’s Nitroaldol Reaction Between Benzaldehyde and Nitroethane: Preferential    

                             Formation of the Syn Diastereomer
40

  

3.8  The Second Approach for the Synthesis of Aboa: Application of Wolf’s Nitroaldol Reaction 

The second approach to the synthesis of Aboa featured Wolf’s version of the asymmetric 

nitroaldol reaction.  As can be seen in Scheme 3.12, utilizing aldehyde 148 from the SAH route would 

make this approach similarly concise.  Commercially available 3-nitropropionic acid could be readily 

esterified, generating both components required to explore this approach.  The asymmetric nitroaldol 

reaction, conducted under Wolf conditions, potentially provides direct access to the carbon framework 

and stereochemical requirements of Aboa.  Reduction of the nitro group in 199 followed by TBS 

protection of the hydroxyl functionality and Boc-protection would complete the synthesis of Aboa. 

 

Scheme 3.12 – The Second Retrosynthetic Analysis 

3.9  A Model System for Wolf’s Nitroaldol Reaction  

Wolf’s bisoxazolidine catalyst 190 was a prerequisite to our foray into Wolf’s nitroaldol 

chemistry.  To this end and according to Wolf et al., (1R,2S)-cis-1-amino-2-indanol/1,2-
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cyclohexanedione/catalytic formic acid was refluxed in toluene using a Dean-Stark trap (Scheme 3.9).
39 

 

Toluene removal provided a crude residue that was purified by recrystallization (three times from 

CH2Cl2/MeCN) to form the chiral catalyst as a colorless powder.  The catalyst 190, synthesized in our 

hands at LSU, was identical in all respects to data put forth by Wolf and co-workers (
1
H NMR, 

13
C NMR 

and [α]
26.5

D). 

Recall that the vicinal amino alcohol moiety in Aboa has an (S,S) configuration.  This 

stereochemistry dictated the use of Wolf’s copper-catalyzed nitroaldol reaction.  Our first goal was to 

replicate the literature reaction between trans-cinnamaldehyde and nitromethane under Wolf conditions 

(190/CuOAc) that generated the (S)-nitro alcohol in 90% yield.
43

  In our hands, the reaction gave the same 

product in 57% yield.  Our chemical yield was noticeably lower for reasons that did not become known to 

us until much later.                     

We next set out to look at generation of the nitro component for the key nitroaldol reaction and its 

reaction with trans-cinnamaldehyde (model system).  This was logically the next step, keeping the 

aldehyde component constant while increasing the nitro component complexity.  The model system 

closely resembles an important feature of Aboa, an aldehyde group conjugated to an aromatic ring. 

Methyl 3-nitropropanoate 200 was synthesized in 86% yield from 3-nitropropionic acid, TMSCl 

and 2,2-dimethoxypropane.
46

  The model system reaction proceeded in poor chemical yield (15%) with 

3:1 diastereoselectivity (Scheme 3.13).  The separation of the diasteromeric products and their 

purification was complicated by the presence of excess methyl 3-nitropropanoate.  Each diastereomer was 

obtained pure by normal phase silica HPLC but it was never determined whether the major diastereomer 

was the syn or anti diastereomer.  The enantiopurity of each diastereomer was determined on a Chiracel 

OD-H column.  The major (less polar) diastereomer had an e.e. of 2.5% and the minor (more polar) 

diastereomer had an e.e. of 5.2%.  The same reaction was also performed by Hanhui Xu (Professor 

Wolf’s graduate student) at Georgetown University.  The chemical yield of 201 was good (88%) but the 
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diastereoselectivity was poor (2.2:1).  The product mixture was sent to us at LSU and each diastereomer 

was obtained pure by normal phase silica HPLC.  Again, it was never determined whether the major 

diastereomer was the syn or anti diastereomer.  The major (less polar) diastereomer had an e.e. of 71% 

and the minor (more polar) diastereomer had an e.e. of 60%.   

 

 
 
 

Scheme 3.13 – Nitroaldol Reaction Between Trans-Cinnamaldehyde and Methyl 3-Nitropropanoate 

                         Under Wolf Conditions  

At the conclusion of these nitroaldol reactions and Carol Taylor’s visit to Georgetown University, 

we became aware that our handling of the chiral catalyst just prior to performing the nitroaldol reaction 

was a point of difference.  Wolf’s group lyophilized the catalyst three times and upon addition of 

CuOAc/EtOH produced a blue/black solution.  In our hands, no such precautions were taken and addition 

of CuOAc/EtOH generated a blue/green mixture.  The residual moisture resulted in a lower 

bisoxazolidine catalyst content and therefore, a reduced chemical yield for both of our reactions.    

The strict exclusion of moisture is critical for ensuring reproducible yields and 

enantioselectivities, a point not gleaned from publications.
40,43

  We adhered to the reported procedure 

prescribed by Wolf et al. and in doing so, bypassed the catalyst lyophilization and incorporation of 4 Å 

molecular sieves steps.
43  

On the basis of the results described in §3.8, we decided not to pursue the 

nitroaldol route further.  For the purposes of chemical synthesis, the levels of diastereo- and 

enantioselectivity were not acceptable. 
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3.10  Experimental Section 

General methods: as detailed in Chapter 2 

3.10.1  Experimental Procedures                              

 

(E)-4-(4-bromophenyl)-2-methylbut-3-en-2-ol (150).  A solution of methylmagnesium iodide in 

dry diethyl ether (3.0 M, 7.82 mL, 23.5 mmol, 1.4 equiv.) was added dropwise to a solution of ethyl 

trans-4-bromocinnamate (4.2 g, 16.5 mmol, 1.0 equiv.) in dry diethyl ether (30 mL) at 0 ˚C.  The 

resulting solution was stirred under N2 at 0 ˚C for 45 min, warmed to rt and stirred for an additional 18 h.  

The reaction mixture was heated under reflux for 2 h and cooled to 0 ˚C.  Slow addition of ice-cold H2O 

(15 mL), was followed by addition of ice-cold saturated aqueous ammonium chloride (35 mL).  The 

mixture was extracted with ether (3 x 30 mL); the combined extracts were washed with H2O (30 mL), 

dried (MgSO4), filtered, and concentrated.  The residue (3.48 g, 88 %) was used without further 

purification. Rf 0.18 (5:1 hexanes-EtOAc). 
1
H NMR (400 MHz, CDCl3) δ 1.41 (s, 3H), 1.42 (s, 3H), 1.61 

(s, 1H), 6.34 (dd, J = 16.1, 0.7 Hz, 1H), 6.53 (d, J = 16.1 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 

8.2 Hz, 2H); 
13

C NMR (100 MHz, CDCl3) δ 29.8, 71.0, 121.1, 125.3, 127.9, 131.6, 135.9, 138.2. HRMS 

(ESI-TOF) calcd for C11H12Br (M-H2O)
+
 223.0122, obsd 223.0126. 

 

(2E,4E)-5-(4-Bromophenyl)-3-methylpenta-2,4-dienal (148).  The Vilsmeier reagent was 

prepared according to the following procedure: POCl3 (190 μL, 318 mg, 2.1 mmol, 2.5 equiv.) was added 

dropwise over 45 min to a cooled solution of dry DMF (175 μL).  A solution of (E)-4-(4-bromophenyl)-2-
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methylbut-3-en-2-ol (200 mg, 0.83 mmol, 1.0 equiv.) in dry DMF (395 μL) was cooled to 0 °C.  The 

Vilsmeier reagent was added dropwise over 1 h at 0 °C to the solution of tertiary alcohol.  The reaction 

mixture was gradually heated to 80 °C over 45 min and kept at that temperature for 3 h.  A solution of 

sodium acetate (2 g) in H2O (5 mL) was added dropwise over 1 h at 0 °C.  The solution was heated to 80 

°C and stirred for 30 min.  The solution was extracted with EtOAc (4 x 20 mL).  The combined organic 

layers were washed with brine (100 mL), dried over MgSO4, filtered, and concentrated.  Flash 

chromatography (Hex-EtOAc, 7:1) provided 148 as a yellow solid (83 mg, 40%). Rf 0.43 (7:1 hexanes-

EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.38 (s, 3H), 6.09 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 16.1 Hz, 1H), 

7.00 (d, J = 16.1 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 10.17 (d, J = 8.0 Hz, 1H); 

13
C NMR (CDCl3, 100 MHz) δ 13.1, 123.2, 128.7, 130.4, 132.0, 132.1, 134.2, 134.9, 153.6, 191.0. HRMS 

(ESI-TOF) calcd for C12H12BrO (M+H)
+
 251.0066, obsd 251.0062. 

 

(E)-4-phenyl-but-3-enoic acid (180).  Dry triethylamine (10.0 mL, 0.07 mol, 1.7 equiv.) was 

added dropwise to a solution of malonic acid (10.82 g, 0.10 mol, 2.5 equiv.) in phenylacetaldehyde (4.65 

mL, 5.0 g, 0.04 mol, 1.0 equiv.).  The reaction mixture was heated under reflux until the evolution of CO2 

ceased (4 h) and cooled to room temperature.  The resulting solution was partitioned between ether (100 

mL) and ice-cold 2 M HCl (50 mL).  The organic layer was washed with 5 % NaOH (50 mL) and the 

aqueous layer extracted with ether (100 mL).  The aqueous layer was acidified with 2 M HCl (50 mL) and 

extracted with ether (160 mL).  The organic layer was washed with brine (100 mL), dried (MgSO4), 

filtered, and concentrated.  The residue (3.63 g, 71 %) was used without further purification. 
1
H NMR 

(400 MHz, CDCl3) δ 3.29 (dd, J = 7.1, 1.2 Hz, 2H), 6.28 (dt, J = 15.9, 7.1 Hz, 1H), 6.51 (d, J = 15.9 Hz, 

1H), 7.22-7.39 (m, 5H);
 13

C NMR (100 MHz, CDCl3) δ 38.0, 120.8, 126.3, 127.7, 128.5, 134.0, 136.6, 

177.9.                                                                                
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(E)-methyl 4-phenylbut-3-enoate (153).  Boron trifluoride diethyl etherate (1.51 mL, 1.71 g, 12.0 

mmol, 1.0 equiv.) was added dropwise to a solution of (E)-4-phenyl-but-3-enoic acid (1.95 g, 12.0 mmol, 

1.0 equiv.) in anhydrous methanol (16.0 mL).  The resulting solution was heated under reflux for 18.5 h 

and cooled to room temperature.  Aqueous Na2CO3 (5%, 50 mL) was added and the mixture stirred for 30 

min.  The mixture was partitioned between H2O (50 mL) and ether (250 mL).  The organic layer was 

dried (MgSO4), filtered, and concentrated.  The residue was purified by flash column chromatography, 

eluting with 8:1 hexanes-EtOAc, to afford a yellow oil (1.35 g, 65 %). Rf 0.31 (8:1 hexanes-EtOAc). 
1
H 

NMR (400 MHz, CDCl3) δ 3.25 (dd, J = 7.1, 1.4 Hz, 2H), 3.71 (s, 3H), 6.30 (dt, J = 15.9, 7.1 Hz, 1H), 

6.49 (d, J = 15.9 Hz, 1H), 7.20-7.39 (m, 5H);
 13

C NMR (100 MHz, CDCl3) δ 38.2, 51.9, 121.6, 126.2, 

127.5, 128.5, 133.4, 136.7, 172.0. HRMS (ESI-TOF) calcd for C11H13O2 (M+H)
+
 177.0910, obsd 

177.0917.                                         

 

Regioreversed SAH Reaction Using (E)-methyl 4-phenylbut-3-enoate.  A solution of NaOH (170 

mg, 4.25 mmol, 3.0 equiv.) in H2O (5.4 mL) was added to a solution of benzyl carbamate (643 mg, 4.25 

mmol, 3.0 equiv.) dissolved in n-PrOH (3.4 mL) and the resulting solution stirred for 10 min.  Freshly 

prepared tert-butyl hypochlorite
47

 (481 µL, 462 mg, 4.25 mmol, 3.0 equiv.) was added dropwise and the 

resulting solution stirred for an additional 10 min.  (DHQ)2AQN (61 mg, 0.07 mmol, 5 mol %) in n-PrOH 

(2.0 mL) was added and the reaction vessel immersed in a water bath at ambient temperature and stirred 

for 5 min.  (E)-methyl 4-phenylbut-3-enoate (250 mg, 1.42 mmol, 1.0 equiv.) was added, followed 

immediately by K2OsO2(OH)4 (26 mg, 0.07 mmol, 5 mol %).  The reaction mixture was stirred for 2 h at 
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rt and quenched with NaHSO3 (710 mg, 6.82 mmol, 4.8 equiv.).  Ethyl acetate (10 mL) was added and the 

layers were separated.  The aqueous layer was extracted with EtOAc (3 x 10 mL).  The combined organic 

layers were washed with H2O (10 mL) and brine (10 mL), dried with MgSO4, filtered and concentrated.  

The residue was subjected to flash chromatography (5:1 Hex-EtOAc → 1:1 Hex-EtOAc) to provide a 

mixture of two compounds that were separated via normal phase HPLC (Figure 3.2). 

The following chromatogram is from a typical preparative run. 

 

Figure 3.2:  HPLC Chromatogram of Sharpless Aminohydroxylation Reaction After Flash  

                    Chromatography.  Econosil Silica (250 mm X 10 mm), Hex/EtOAc = 2:1, flow rate 3.0 

                    mL/min, 300 mg  crude product mixture, 20 mg per injection, retention times of importance:  

                    16.37 min and 23.28 min, detection 250 nm 

THE REGIOISOMERS ARE PRESENTED IN ORDER OF ELUTION 

Peak A: (3S,4S)-methyl 4-(((benzyloxy)carbonyl)amino)-3-hydroxy-4-phenylbutanoate (182),                   

              undesired regioisomer, total of 11 mg collected, retention time: 16.37 min 

 

Rf 0.33 (2:1 hexanes-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.79 (dd, J = 13.7, 9.0 Hz, 1H), 2.89 

(dd, J = 13.7, 3.8 Hz, 1H), 3.75 (s, 3H), 4.34-4.42 (m, 1H), 4.45 (d, J = 9.4 Hz, 1H), 5.13-5.22 (m, 2H), 

5.63 (d, J = 9.4 Hz, 1H), 7.20-7.40 (m, 10H); 
13

C NMR (CDCl3, 100 MHz) δ 40.3, 52.6, 57.4, 67.3, 72.7, 
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127.0, 128.1, 128.2, 128.6, 128.8, 129.4, 136.9, 156.7, 171.5. HRMS (ESI-TOF) calcd for C19H21NNaO5 

(M+Na)
+
 366.1312, obsd 366.1314. 

Peak B: (3S,4S)-methyl 3-(((benzyloxy)carbonyl)amino)-4-hydroxy-4-phenylbutanoate (181),               

              desired regioisomer with spectra contaminated by benzyl carbamate, total of 22 mg collected, 

              retention time: 23.28 min 

 

Rf 0.27 (2:1 hexanes-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.53 (dd, J = 16.6, 3.4 Hz, 1H), 2.62 

(dd, J = 16.6, 9.0 Hz, 1H), 3.20 (br s, 1H), 3.68 (s, 3H), 4.23-4.37 (m, 1H), 4.62-4.74 (m, 1H), 5.01-5.15 

(m, 2H), 5.82 (d, J = 8.4 Hz, 1H) 7.25-7.36 (m, 10H); 
13

C NMR (CDCl3, 100 MHz) δ 38.5, 51.9, 58.6, 

66.9, 70.9, 126.7, 127.7, 128.1, 128.2, 128.5, 128.7, 136.2, 156.3, 172.8. HRMS (ESI-TOF) calcd for 

C19H22NO5 (M+H)
+
 344.1492, obsd 344.1505. 

 

Wolf’s Catalyst (190).  To a stirred solution of (1R,2S)-cis-1-aminoindan-2-ol (2.0 g, 13.4 mmol, 

2.06 equiv.) and 1,2-cyclohexanedione (0.73 g, 6.52 mmol, 1.0 equiv.) in toluene (20 mL) was added 

formic acid (2 drops from a Pasteur pipet).  The reaction mixture was refluxed for 2 h using a Dean-Stark 

trap.  After cooling to room temperature, toluene was removed in vacuo.  Recrystallization of the crude 

residue using acetonitrile and dichloromethane (3 times) produced the title compound as a colorless 

powder (0.45 g, 18%) that was collected via vacuum filtration (washing well with acetonitrile). Rf 0.27 

and 0.55 (5:1 hexanes-EtOAc). [α]
26.5

D +65.6 (c 1.0, CHCl3) Lit, [α]
26.5

D +65.2 (c 1.0, CHCl3);  
1
H NMR 

(400 MHz, CDCl3) δ 0.86 (d, J = 12.2 Hz, 2H), 1.25-1.45 (m, 6H), 2.83 (br s, 2H), 3.12 (s, 4H), 4.69-4.74 
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(m, 2H), 5.00 (d, J = 5.3 Hz, 2H), 7.18-7.25 (m, 6H), 7.39-7.43 (m, 2H); 
13

C NMR (100 MHz, CDCl3) δ 

23.2, 36.4, 38.9, 69.2, 81.1, 101.3, 125.2, 125.3, 127.0, 127.9, 141.0, 143.9. HRMS (ESI-TOF) calcd for 

C24H27N2O2 (M+H)
+
 375.2067, obsd 375.2078. 

Enantioselective Nitroaldol 

Wolf et al. report 90% yield under apparently similar reaction conditions.
43

 

 

Our highest yielding trial for the reaction between trans-cinnamaldehyde and nitromethane: 

To a flame-dried flask, the bisoxazolidine ligand (37.0 mg, 0.10 mmol, 10 mol %) and CuOAc 

(11.0 mg, 0.09 mmol, 9 mol %) were dissolved in dry EtOH (2.4 mL) under N2 at room temperature.  

After stirring for 1.5 h, nitromethane (537 μL, 610 mg, 10 mmol, 10 equiv.) was added, and the mixture 

stirred for an additional 1.5 h.  Upon the addition of flame-dried molecular sieves (powder, 4 Å), the 

solution was cooled to -15 °C and trans-cinnamaldehyde (126 μL, 132 mg, 1 mmol, 1 equiv.) was added.  

The contents were stirred at -15 °C (FTS Multi-Cool Bath with Syltherm XLT cooling fluid) overnight 

under N2.  The reaction mixture was gradually warmed to room temperature.  The contents were filtered 

through Celite, washing the filter pad with EtOH.  The filtrate was concentrated and the residue subjected 

to flash chromatography (5:1 Hex/EtOAc) to provide 110 mg (57% yield) of the desired compound. Rf 

0.31 (5:1 hexanes-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.99 (br, 1H), 4.49 (d, J = 6.1 Hz, 2H), 5.02 

(qd, J = 6.1, 1.0 Hz, 1H), 6.12 (dd, J = 15.7, 6.3 Hz, 1H), 6.76 (d, J = 15.7 Hz, 1H), 7.27-7.39 (m, 5H); 

13
C NMR (CDCl3, 100 MHz) δ 69.5, 79.8, 125.0, 126.7, 128.4, 128.7, 133.5, 135.5. 
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Methyl 3-nitropropanoate (200).  2,2-Dimethoxypropane (6.72 mL, excess) was added to a stirred 

solution of 3-nitropropanoic acid (500 mg, 4.20 mmol, 10.0 equiv.) in dry MeOH (1.68 mL).  After 

stirring for 10 min, TMSCl (53 µL, 45 mg, 0.42 mmol, 1.0 equiv.) was added dropwise.  The reaction 

mixture was stirred at rt for 21 h, concentrated, and applied directly to flash column.  Elution with 4:1 

Hex/EtOAc → 1:1 Hex/EtOAc afforded the title compound as a colorless oil (457 mg, 82%). 
1
H NMR 

(CDCl3, 400 MHz) δ 3.00 (t, J = 6.2 Hz, 2H), 3.75 (s, 3H), 4.66 (t, J = 6.2 Hz, 2H); 
13

C NMR (CDCl3, 

100 MHz) δ 30.5, 52.1, 69.5, 169.9. 

Diastereoselective Nitroaldol 

 

The following reaction was performed at room temperature, 0 °C, and -10 °C.  The following 

procedure represents the reaction run at 0 °C.  Only trace amounts of the two products were obtained and 

they were difficult to separate from each other and the excess of methyl 3-nitropropionate. 

To a flame-dried flask, the bisoxazolidine ligand (19.0 mg, 0.05 mmol, 25 mol %) and CuOAc 

(6.0 mg, 0.05 mmol, 24 mol %) were dissolved in dry EtOH (1.2 mL) under N2 at room temperature.  

After stirring for 1.5 h, methyl 3-nitropropionate (276 mg, 2.07 mmol, 10 equiv.) was added, and the 

mixture stirred for an additional 1.5 h.  Upon the addition of flame-dried molecular sieves (powder, 4 Å), 

the solution was cooled to 0 °C and trans-cinnamaldehyde (26 μL, 27 mg, 0.21 mmol, 1 equiv.) was 

added.  The mixture was stirred at 0 °C (FTS Multi-Cool Bath with Syltherm XLT cooling fluid) 

overnight under N2.  The reaction mixture was gradually warmed to room temperature.  The contents 

were filtered through Celite, washing the filter pad with EtOH.  The filtrate was concentrated and the 

residue subjected to flash chromatography (8:1 Hex/EtOAc → 1:1 Hex/EtOAc) to provide a mixture of 

three compounds that were separated via normal phase HPLC (Figure 3.3). 
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The following chromatogram is from a typical preparative run. 

 

Figure 3.3:  HPLC Chromatogram of Nitroaldol Reaction After Flash Chromatography.  Econosil Silica  

                    (250 mm X 10 mm), Hex/EtOAc = 4:1, flow rate 3.0 mL/min, 2.5 mg injection, retention  

                    times of importance: 19.64 min, 23.27 min, 31.01 min, detection 254 nm 

THE COMPOUNDS ARE PRESENTED IN ORDER OF ELUTION 

The nitro compound absorbs much less at 254 nm than the two products.  Thus, despite large amounts, it 

only gives rise to a small peak. 

 

 

Peak A: Diastereomer 1 as a mixture of enantiomers, retention time: 19.64 min (Figure 3.4 and 3.5) 

 

Rf 0.38 (2:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.45 (br, 1H), 2.85 (dd, J = 17.8, 3.3 Hz, 

1H), 3.29 (dd, J = 17.8, 9.6 Hz, 1H), 3.69 (s, 3H), 5.00-5.07 (m, 2H), 6.12 (dd, J = 15.9, 5.4 Hz, 1H), 6.79 
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(d, J = 15.9 Hz, 1H), 7.26-7.39 (m, 5H); 
13

C NMR (CDCl3, 100 MHz) δ 31.4, 52.4, 72.6, 86.3, 124.8, 

126.7, 128.6, 128.7, 133.7, 135.4, 170.4. HRMS (ESI-TOF) calcd for C13H15NNaO5 (M+Na)
+
 288.0842, 

obsd 288.0844. 

 

Figure 3.4:  HPLC Chromatogram of 201 Diastereomer 1.  Econosil Silica (10 mm X 25 cm),  

                    Hex/EtOAc = 4:1, flow rate 3.0 mL/min, 200 μg injection, retention time: 19.64 min,  

                    detection 254 nm                   

 

Figure 3.5:  Chiral HPLC Chromatogram of 201 Diastereomer 1.  Chiralcel OD-H (0.46 cm X 25 cm),  

                    Hex/Isopropanol = 9:1, flow rate 1.0 mL/min, retention time: 30.10, 33.83 min, detection 254  

                    nm 
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Peak B: recovered methyl 3-nitropropionate, retention time: 23.27 min (Figure 3.6) 

 

 

Figure 3.6:  HPLC Chromatogram of 200.  Econosil Silica (10 mm X 25 cm), Hex/EtOAc = 4:1, flow rate  

                    3.0 mL/min, 2 mg injection, retention time: 23.27 min, detection 254 nm                

1
H and 

13
C NMR spectra shown above 

Peak C: Diastereomer 2 as a mixture of enantiomers, retention time: 31.01 min (Figure 3.7 and 3.8) 

 

Rf 0.29 (2:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.41 (br, 1H), 2.92 (dd, J = 17.5, 4.6 Hz, 

1H), 3.17 (dd, J = 17.5, 9.0 Hz, 1H), 3.68 (s, 3H), 4.76 (t, J = 6.7, 1H), 5.06 (ddd, J = 9.0, 6.7, 4.6 Hz, 
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1H), 6.11 (dd, J = 15.9, 7.2 Hz, 1H), 6.73 (d, J = 15.9 Hz, 1H), 7.29-7.39 (m, 5H); 
13

C NMR (CDCl3, 100 

MHz) δ 34.0, 52.4, 73.3, 86.6, 124.4, 126.8, 128.8, 135.1, 135.2, 169.5. HRMS (ESI-TOF) calcd for 

C13H15NNaO5 (M+Na)
+
 288.0842, obsd 288.0838. 

 

Figure 3.7:  HPLC Chromatogram of 201 Diastereomer 2.  Econosil Silica (10 mm X 25 cm),  

                    Hex/EtOAc = 4:1, flow rate 3.0 mL/min, 200 μg injection,  retention time: 31.01 min,  

                    detection 254 nm   

 

Figure 3.8:  HPLC Chromatogram of 201 Diastereomer 2.  Chiralcel OD-H (0.46 cm X 25 cm),  

                    Hex/Isopropanol = 9:1, flow rate 1.0 mL/min, retention time: 25.96, 38.53 min, detection 254  

                    nm
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3.10.2  Spectra 

Compound 150 - 
1
H NMR spectrum 
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Compound 150 - 
13

C NMR spectrum 
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Compound 148 - 
1
H NMR spectrum 
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Compound 148 - 
13

C NMR spectrum 
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Compound 180 - 
1
H NMR spectrum 
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Compound 180 - 
13

C NMR spectrum 
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Compound 153 - 
1
H NMR spectrum 
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Compound 153 - 
13

C NMR spectrum 
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Compound 182 - 
1
H NMR spectrum 
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Compound 182 - 
13

C NMR spectrum 
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Compound 181 - 
1
H NMR spectrum 
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Compound 181 - 
13

C NMR spectrum 
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Compound 190 - 
1
H NMR spectrum 
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Compound 190 - 
13

C NMR spectrum 
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Compound 193h - 
1
H NMR spectrum 
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Compound 193h - 
13

C NMR spectrum 
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Compound 200 - 
1
H NMR spectrum 
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Compound 200 - 
13

C NMR spectrum 
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Compound 201 Diastereomer 1 - 
1
H NMR spectrum 
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Compound 201 Diastereomer 1 - 
13

C NMR spectrum 
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Compound 201 Diastereomer 2 - 
1
H NMR spectrum 
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Compound 201 Diastereomer 2 - 
13

C NMR spectrum 
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CHAPTER 4: RECENT APPROACHES TO THE SYNTHESIS OF APOA AND ABOA 

4.1  The Third Approach to the Synthesis of Aboa and Apoa 

In chapter 3, we described two approaches to Aboa in which the key reactions were an 

asymmetric aminohydroxylation and a nitroaldol condensation.  Our third approach to produce 

appropriately protected Apoa/Aboa 202/203 included late stage installation of the aromatic conjugated 

diene fragment via a Horner-Wadsworth Emmons (HWE) reaction (Scheme 4.1).  In a forward sense, an 

HWE reaction followed by two conceptual sets of protecting group manipulations (designated FGI I and 

II in Scheme 4.1) should provide target compound 202/203.  Specifically, liberation of the vicinal amino-

alcohol moiety via oxazolidine deprotection followed by protection of the newly formed secondary 

alcohol as its TBS ether.  The other set of transformations include removal of the para-methoxyphenyl 

ether which reveals a primary alcohol that can be fully oxidized and protected as its β-cyano ethyl ester.  

The key HWE step was scheduled to maximize convergency, adaptable to the synthesis of the two 

congeners, Apoa and Aboa. 

 

Scheme 4.1 – The Third Retrosynthesis of Aboa and Apoa 
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The HWE reaction partners are aldehyde 208 and phosphonate ester 213 (Apoa) or 214 (Aboa).  

Retrosynthetically, aldehyde 208 can be acquired from β-amino alcohol 209, which in turn can be further 

simplified to commercially available p-methoxyphenol and but-3-en-1-ol as reported previously by 

Bodkin and McLeod
1
.  Oxazolidine protection of 209 followed by a methyl ester reduction/oxidation 

sequence generates 208.  Phosphonate esters 213 and 214 can be derived from their corresponding allylic 

alcohols leading directly to different starting material for Aboa and Apoa.  In a forward sense, Apoa’s 

allylic alcohol intermediate 215 results from Grignard reaction of trans-cinnamaldehyde with MeMgBr, 

whereas Aboa’s allylic alcohol intermediate 216 requires Wittig reaction of p-bromobenzaldehyde with 

diethyl (2-oxopropyl)phosphonate followed by carbonyl reduction.  The allylic alcohols 215/216 can be 

converted to their halogenated derivatives followed by an Arbuzov reaction to produce the respective 

phosphonate esters 213 and 214. 

4.2  Preparation of the Phosphonate Ester Fragments for Aboa and Apoa Synthesis 

The assembly of phosphonate 213 for Apoa synthesis was initially carried out by Alex Nguyen.  

The formation of bromide 223 should occur through SN1 addition of bromide to the oxonium ion 

generated from 219.  White and Fife prepared m- and p-substituted cinnamyl bromides by combining 

benzyl alcohols with HBr in ether to give the rearranged allylic bromide in a SN1 reaction (Scheme 4.2).
2
  

Hirabe et al. synthesized the unsubstituted cinnamyl bromide in an analogous fashion.
3
  The allylic 

chloride 221, a highly relevant derivative, prepared via SN1 reaction has also been reported.
4,5

 

 
Scheme 4.2 – Precedents for the Proposed SN1 Reaction 



131 
 

Phosphonate 213 synthesis commenced with Grignard addition of phenylmagnesium bromide to 

crotonaldehyde which gave benzylic alcohol 219 in 89% yield (Scheme 4.3).  The reaction of 219 in 

diethyl ether, saturated with anhydrous HBr, gave an inseparable mixture of regioisomeric bromides 223 

and 226.  The desired allylic bromide 223 was accompanied by a second allylic bromide 226 obtained via 

SN1 displacement.  The 223/226 product distribution was 2.3/1.0 as indicated by 
1
H NMR.  Specifically, 

comparing integrals for the methyl protons in 223 and 226 led to this conclusion. 

 

 

Scheme 4.3 – Competing Mechanistic Pathways for the Bromination Reaction 

The revised synthesis of phosphonate 213 started with Grignard addition of methylmagnesium 

bromide to trans-cinnamaldehyde to form allylic alcohol 215 in quantitative yield (Scheme 4.4).  

Conversion of 215 to allylic bromide 223 with the use of AcBr/EtOH provided a similar mixture of 

bromides as observed in Scheme 4.3.  Alternative bromination protocols including the use of CBr4/PPh3,
6
 

CBr4/PPh3/imidazole,
7
 and (CH3)3SiCl/LiBr

8
 did not give the desired product.  We resorted to the 

generation of allylic chloride 221 as reported by Yadav and Babu
9
 in near quantitative yield.  The 

instability of the allylic chloride to silica precluded the use of chromatography to monitor the reaction or 

purify the product.   

The poor regioselectivity in the bromination of 215 is in contrast to that observed from the 

corresponding chlorination.  The bromide intermediate would likely benefit the subsequent Arbuzov 
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reaction due to the greater leaving group ability of Br
-
 relative to Cl

-
.  The modest yield for phosphonate 

ester 213 (41%) derived from the chlorination approach left a lot to be desired.  However, 213 could be 

obtained in two steps (both conducted on gram scale) from commercially available starting material. 

 

 

Scheme 4.4 – Synthesis of the Phosphonate Ester Fragment for Apoa  

The synthesis of the phosphonate ester for Aboa is shown in Scheme 4.5.  Wittig olefination 

between p-bromobenzaldehyde and diethyl (2-oxopropyl)phosphonate produced α,β-unsaturated ketone 

229 which was reduced to the corresponding allylic alcohol 216 using NaBH4.  Chlorination of 216 

followed by the use of P(OEt)3 in the Arbuzov reaction as prescribed above formed the desired 

phosphonate ester 214, albeit in significantly lower yield than for the non-brominated analog. 

 

 

Scheme 4.5 – Synthesis of the Phosphonate Ester Fragment for Aboa  
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4.3  Preparation of the Aldehyde Fragment for Aboa and Apoa Synthesis 

N-Boc protected amino alcohol 209 (Scheme 4.6) had been prepared previously by Bodkin and 

McLeod for their synthesis of 3- and 4-aminosugar derivatives.
1
  Mitsunobu etherification of p-

methoxyphenol and but-3-en-1-ol generated 210 which underwent cross metathesis with methyl acrylate 

to yield α,β-unsaturated methyl ester 119a.  In our hands, the SAH using the (DHQ)2PHAL ligand 

afforded β-amino alcohol 209 in 76% yield.  As mentioned previously, Bodkin and McLeod proposed that 

selectivity for the β-amino regioisomer originates from a mode of binding in which the p-methoxyphenyl 

group undergoes “stabilizing interactions with the methoxyquinoline rings of the catalyst.” 

 

Scheme 4.6 – Synthesis of β-amino alcohol 209 

The purification of 209 proved to be very difficult for a number of reasons.  In practice, two 

chromatographic steps were required for purification.  The first chromatographic separation eliminated 

everything less polar than tert-buyl carbamate and more polar than the two regioisomeric products.  A 

second chromatographic separation was necessary to remove tert-butyl carbamate from the mixture of 

regioisomers.  Flash chromatography to completely separate the two regioisomers proved to be 

impossible using hexane/ethyl acetate mixtures.  We resorted to preparative HPLC to achieve separation 

of the regioisomers.  Chiral HPLC of regioisomerically pure 209 on a Daicel Chiralcel OD-H was used to 

determine levels of enantioselectivity.  Peaks were assigned based on comparison of retention times put 

forth by McLeod and co-workers.
1
  At this point, chiral HPLC showed the purified β–amino alcohol and 
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its enantiomer (Figure 4.1).  Gratifyingly, the purified material was obtained with excellent 

enantioselectivity (98.50 %). 

 

 

Figure 4.1 – Chiral HPLC Chromatogram for SAH Reaction Products after Preparative HPLC to 

                     Separate Regioisomers.  Chiralcel OD-H (0.46 cm X 25 cm), Hex/Isopropanol = 9:1, flow  

                      rate 0.5 mL/min.  Retention Time: 23.33, 33.68 min, Detection 270 nm 

 

 

With information from Bodkin and McLeod, we were able to confirm the identity of the major 

regioisomer by 
1
H NMR.

1
  The α– and β–amino isomers show distinct chemical shifts for the N-H proton: 

when NH is immediately adjacent to CO2Me, the NH resonates at δ 5.44 ppm while when in the β–

position, the NH is at δ 4.80 ppm (Figure 4.2).  The N-H proton of our amino alcohol resonates at 4.82 

ppm, confirming that it is the “β-regioisomer.” 

 

 

Figure 4.2 - 
1
H NMR Chemical Shifts for the N-H Proton of 209 and its Regioisomer 
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Protection of amino alcohol 209 as its TBS ether was expected to proceed smoothly using 

TBSOTf/2,6-lutidine.  A similar protection was accomplished en route to the synthesis of eHyAsn 

(Scheme 2.16, chapter 2).
10

  The current reaction, unfortunately, produced compound 234 in 80-96% yield 

(Scheme 4.7).  The 
1
H NMR data of 234 showed the disappearance of a singlet (9H) around δ 1.5 ppm 

corresponding to the tert-butyl group of the Boc carbamate and the appearance of two singlets (9H each) 

around δ 1.0 ppm and four singlets (3H each) around δ 0.0 ppm that is suggestive of two tert-

butyldimethylsilyl groups.  This evidence, in conjunction with a peak corresponding to (M+H)
+
 at 

542.2967 (C26H48NO7Si2) confirms the formation of compound 234.  Sakaitani and Ohfune first reported 

that TBSOTf/2,6-lutidine can be used to convert the N-Boc group into the N-tert-

butyldimethylsilyloxycarbonyl group.
11

  The strong Lewis acidity of TBSOTf is responsible for the 

transcarbamylation of the Boc protecting group.  We resorted to using the milder TBSCl/imidazole 

system and found that treatment of 209 with two equivalents of TBSCl and two equivalents of imidazole 

gave the desired silyl ether 235 in 18% yield.  Increasing the number of equivalents of TBSCl and 

imidazole to five and eventually seven gave 235 in 85% and 97% yield respectively.  On reflection, 

conducting the reaction under a high reagent concentration (viz. reduced quantities of DMF) would likely 

also lead to high yields. 

 

 

Scheme 4.7 - TBS Protection of 209 Using TBSOTf and TBSCl 

The reduction of methyl ester 235 was carried out using diisobutylaluminum hydride (DIBALH) 

in dichloromethane.  While the reaction resulted in the isolation of the desired primary alcohol 236 in 

45%-55% yield, an undesired diol 237 was also obtained, sometimes in as much as 25% yield (Scheme 
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4.8).  To confirm the identity of diol 237, compound 209 was reduced with NaBH4/MeOH to generate the 

same offending diol.  Indeed, 
1
H NMR of the DIBALH side product matched that of the NaBH4 reduction 

product.                                               

 

 

Scheme 4.8 – Results for the DIBALH Reduction of 235 

This outcome was disappointing because Kandula and Kumar reported reduction of a related α-

silyloxy β-amino methyl ester in 93% yield (Scheme 4.9).
12 

 

 

Scheme 4.9 - Kandula and Kumar En Route to (+)-L-733,060 

Corey and Jones first reported the cleavage of TBS ethers under reductive and near-neutral 

conditions using DIBALH.
13

  Efforts to optimize the conditions to keep this side reaction to a minimum 

proved futile.  Increasing the stoichiometry of the reducing agent (two or five equivalents) or varying the 

reaction temperature (-78 °C, -20 °C, 0 °C) did not significantly improve conversion.  The low yields 

provided by the DIBALH reaction coupled with concerns about whether the acidic carbamate proton 

might interfere with the HWE reaction (Scheme 4.10)
14,15

 prompted us to reevaluate our protecting 

groups.  We opted for full protection of the amino group, in order to remove the carbamate proton.   
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Scheme 4.10 – Precedents for Deprotonation of Acidic Carbamate Protons Followed by Addition 

                         Reactions 

Ma and co-workers found that the use of an aldehyde containing a di-Boc-protected primary 

amine was critical for formation of the desired isomer 246 in the Wittig reaction (Scheme 4.11).
16

  The 

authors also note that the second Boc group “might increase the steric bulk of the substrate and prevent 

isomerization of the intermediate oxaphosphetane, thereby giving better stereoselectivity.”  Thus, di-Boc 

protection provides significant advantages during Wittig-type reactions of amino aldehydes. 

 

 

Scheme 4.11 - Example of an Aldehyde Containing a Di-Boc-Protected Primary Amine Used for an 

                        Olefination Reaction 

Thus, we tried to introduce a second Boc group to 235.  The reaction of 235 with 2.3 equiv of 

Boc2O and 0.3 equiv of DMAP in CH3CN at 50 °C failed to produce desired product 247 (Scheme 4.12).  

We were, however, able to recover the large remaining portion as unreacted starting material.  Prolonged 

heating at an elevated temperature with additional Boc2O did not improve conversion.  We thought that 
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steric hindrance by the neighboring OTBS group might be contributing to the sluggish reaction.  

Unfortunately, treatment of aminoalcohol 209 with Boc2O/DMAP or Boc2O/NEt3 led to carbonate 

formation exclusively.  At this point, we were forced to conclude that 247 was inaccessible.  

 

 

Scheme 4.12 – Attempted Synthesis of 247 

In surveying the literature, we came across the 2,2-dimethyloxazolidine protecting group.
17 

 

Generally formed under acid-catalyzed conditions, an oxazolidine group simultaneously protects the 

amine and the hydroxyl functionality.  The benefits of using this protecting group are two-fold.  First, the 

absence of the silyl ether should improve the subsequent DIBALH reaction.  Also, the lack of an acidic 

carbamate proton should help the key HWE olefination.   

Hutton and co-workers optimized the protection of a related β-amino alcohol as its oxazolidine 

derivative (Table 4.1).
17

  The authors found that use of 2,2-dimethoxypropane and TsOH gave the product 

in poor yield (36%) and a significant amount of starting alcohol (40%).  A different three carbon reagent, 

2-methoxypropene (2-MP), along with TsOH provided better conversion (60%) and reduced starting 

material (22%).  The reaction was further improved by using an alternative activating acid, PPTS, in 

conjunction with 2-MP to afford the product in 84% yield. 
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Table 4.1 – Hutton and Co-workers’
17

 Optimization Study for Generation of Oxazolidine 250 

 

 

Reagent Activating Acid Solvent Yield of 250 (%) Recovered SM (%) 

2,2-DMP TsOH Benzene 36 40 

2-MP TsOH Benzene 60 22 

2-MP PPTS Toluene 84 15 

                                                    

 

We decided to adopt the 2,2-dimethyloxazolidine protecting group for the reasons described 

above.  Treatment of β-amino alcohol 209 with 2-MP/PPTS in toluene gave oxazolidine 253 (Scheme 

4.13).  This ester was then reduced to primary alcohol 254 using DIBALH in CH2Cl2.  The high yield for 

the reduction step further confirmed that the TBS protecting group was the problem in the previous 

conversion of 235 to 236.  Dess-Martin oxidation provided aldehyde 208 in good yield, setting the stage 

for the HWE olefination.   

 

Scheme 4.13 - Completion of the Aldehyde Fragment for Apoa and Aboa Synthesis 
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4.4  Probing Anion Formation and the HWE Reaction 

Before investing significant amounts of aldehyde 208 in the key step, it was prudent to probe the 

reactivity of phosphonate ester 213 and its commercially available desmethyl analog 256 (Figure 4.3). 

 

Figure 4.3 – Phosphonate Ester Fragment for Apoa and a Desmethyl Analog   

The initial choice of LiHMDS in THF was inspired by Helquist and co-workers’ report that 

optimized HWE reactions with 4-methyl-substituted phosphonate 257 to access 4-methyldienoate 

derivatives (Table 4.2).
18

  In general, the double bond stereoselectivities are better in HWE reactions of 

aromatic aldehydes than aliphatic aldehydes.  Increasing alkyl branching at the α-carbon of the aldehyde 

reduces E-selectivity.  Employing the optimized conditions for the key step in a synthesis of trichostatic 

acid, phosphonate 257 reacted with an aldehyde to give dienoate 258e in 71% yield as a 2:1 mixture of 

E,E- and E,Z-isomers.   

Table 4.2 – Helquist and Co-workers’
18

 Access to 4-Methyldienoate Derivatives Using LiHMDS in   

                      HWE Reactions 

 

Aldehyde E,E/E,Z
a
 Yield (%)

b
 

 

 

92:8 

 

82 

 

 

74:26 

 

97 
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(Table 4.2 continued) 

Aldehyde E,E/E,Z
a
 Yield (%)

b
 

 

 

76:24 

 

78 

 

 

40:60 

 

80 

 

 

2:1 

 

71 

a
Ratios were measured by intergration of relevant peaks in the 

1
H NMR of the crude product mixture.  

b
Yield of the purified product. 

                                

With phosphonate esters 213 and 256 in hand, we began investigations into formation of their 

anions and reaction with CD3OD, p-bromobenzaldehyde (136) and Garner’s aldehyde (268).  The 

aldehydes used in the HWE reactions represent gradual steps upward in complexity leading ultimately to 

reaction between 213 and 208.  To test our technique for anion formation, CD3OD was used as the first 

electrophile.  The deprotonation of 213 (1.0 equiv. of LiHMDS in THF) and reaction with CD3OD 

afforded an unexpected dideuterated product 259 (Scheme 4.14).  A similar experiment, substituting n-

BuLi (1.0 equiv.) as the base generated the same product in lower yield.   

 

 
Scheme 4.14 - Formation of an Unexpected Dideuterated Product 

The 
1
H NMR spectrum and mass spectrometry [(M+H)

+
 at 271.1427, C14H20D2O3P] data is 

consistent with 259.  The 
1
H NMR spectrum of 259 (red in Figure 4.4) showed the appearance of a 

doublet instead of a doublet of doublets around δ 1.40 ppm (effect on methyl group due to α-deuteration), 

disappearance of the multiplet around δ 2.8 ppm (α-deuteration), appearance of a doublet instead of a 
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multiplet around δ 6.2 ppm (effect on β–hydrogen due to α- and γ-deuteration), and disappearance of the 

multiplet around δ 6.5 ppm (γ-deuteration). 

 

Figure 4.4 - 
1
H NMR Spectra of Starting Apoa Phosphonate Ester (Blue) and Dideuterated Apoa  

                     Phosphonate Ester (Red)  

The mechanism of formation for 259 is proposed to occur as illustrated in Scheme 4.15.  The use 

of one equivalent of base (LiHMDS or n-BuLi) led to deprotonation at the α–carbon of phosphonate ester 

213.  Deuteration apparently occurred at the γ position.  The hexamethyldisilazane or deuterated 

methoxide anion is then able to abstract the γ hydrogen leading to deuteration at the α position.   

 

Scheme 4.15 – Proposed Mechanism for the Deuteration Product 
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The results were surprising, since Collignon and co-workers reported that products resulting from 

γ–reactivity of a related phosphonate ester were not observed.
19 

 They prepared several 2-

diethylphosphonyl homoallylic alcohols from addition of a lithiated allylic phosphonate to various 

aromatic and aliphatic aldehydes (Table 4.3).  The deprotonation of phosphonate 256 (1.1 equiv. of LDA 

in THF), reaction with an aldehyde, and acid hydrolysis, all performed at -70 °C, afforded the 

corresponding diastereomeric alcohol in high yield.  Comparing 213 to 256, however, the inductive effect 

of the methyl group makes Hα slightly less acidic.  There was also the long stir time after anion trapping 

with CD3OD but before work-up.  We suspect that these two factors increase the likelihood for the 

formation of 259.  In addition, differences in electrophile (CD3OD as opposed to RCHO) provide another 

likely explanation. 

Table 4.3 – Collignon et al.
19

 Generation of 2-Diethylphosphonyl Homoallylic Alcohols Using LDA  

                    in HWE Reactions 

 

Entry R1 Erythro:Threo Ratio
a
 Yield (%)

b
 

1 Ph 33:67 85 

2 4-ClC6H4 30:70 84 

3 n-Pr 36:64 88 

4 i-Pr 15:85 93 

                                                           a
Determined by integration of 

31
P NMR signals of product mixture. 

                                                           b
Yield of purified product mixture. 

p-Bromobenzaldehyde represents a more relevant electrophile.  The reaction between 213 and p-

bromobenzaldehyde, however, afforded conjugated product 265 in only 19% yield (Table 4.4).  Lithium 
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hexamethyldisilazide is a more hindered and considerably weaker base than LDA (pKa of 30 as opposed 

to 36).  It was at this point we decided to switch bases to LDA. 

Commercially available LDA was used to generate the anion from phosphonate ester 256.  This 

was reacted with p-bromobenzaldehyde to give conjugated diene 266 in 79% yield.  Unfortunately, 

reacting 213 and p-bromobenzaldehyde with the use of LDA, only netted a 24% yield of product 265.  

Even when stored cold, the shelf life of commercially available LDA does not justify the cost.  At this 

point, we were committed to preparing LDA fresh for each HWE reaction.  

Table 4.4 - HWE Reaction of Commercially Available Bases with p-Bromobenzaldehyde 

 

 

 

R Base (Commercial) Yield (%) 

CH3 LiHMDS 19 

H LDA 79 

CH3 LDA 24 

 

                                                                             

Nicolaou and co-workers utilized (E)-diethyl cinnamylphosphonate in several instances en route 

to endiandric acids A-G (Table 4.5).
20

  The deprotonation of phosphonate 256 with LDA and 

condensation with each aldehyde afforded the corresponding di-substituted olefin in good yield (75%-

80%) and with excellent stereoselectivity (E:Z ≥ 20:1).  The steric environment of the aldehyde demanded 

the use of an increasing amount of the lithio derivative of 256. 
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Table 4.5 – Nicolaou and Co-worker’s
20

 Use of (E)-Diethyl Cinnamylphosphonate En Route to  

                      Endiandric Acids A-G 

 

Aldehyde 

Equivalents of [trans-

PhCH=CHCHP(O)(OEt)2]
-

Li
+
 

E:Z Yield (%) 

 

 

1.1 

 

≥ 20:1 

 

78 

 

 

2.0 

 

≥ 20:1 

 

75 

 

 

3.0 

 

≥ 20:1 

 

80 

 

 

3.0 

 

≥ 20:1 

 

75 

                                                

 

We next shifted our focus from aromatic to aliphatic aldehydes.  We selected Garner’s aldehyde 

to fill this role and prepared it via reduction/oxidation of the parent methyl ester.
21 

 Garner’s aldehyde has 

found considerable use as a chiral α–amino carbonyl compound for stereochemical studies and a 

precursor to biologically active compounds such as amino sugars and sphingosines.
21-23

  Our interest in 

using this aldehyde as a model system is threefold.  First, the oxazolidine protecting group and chiral α–

substitution are in common with our real aldehyde.  This should lead to a comparable HWE reactivity 

profile for both aldehydes involved.  Lastly, the olefination products might serve as a model system to 

probe some of the subsequent FGIs.  The reaction of 256 with Garner’s aldehyde for 17 hours gave 

product 269 in 77% yield (Scheme 4.16).  More importantly, reaction between 213 with Garner’s 
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aldehyde for 18 hours gave product 270 in 77% yield as well.  With the production of 270 in good yield, 

we were ready to perform the key HWE reaction between phosphonate ester 213 and aldehyde 208. 

 

Scheme 4.16 - HWE Reaction of the Model and Apoa Phosphonate Ester with Garner’s Aldehyde 

4.5  The Key HWE Reaction  

  The mechanism of the HWE reaction is shown in Scheme 4.17.  First, the phosphonate ester is 

deprotonated with a base to generate a phosphonate anion.  The anion then attacks the carbonyl carbon of 

the aldehyde generating two possible betaine intermediates each of which can form a P-O bond to give 

their respective oxaphosphetanes.  These compounds then go through a [2+2] cycloreversion to form an 

E/Z mixture of olefin products.  Corey and co-workers noted that an electron-withdrawing group at the 

phosphonate-substituted carbon is necessary for elimination to occur.
24

  Otherwise, the reaction halts after 

the initial nucleophilic addition step.  E-olefins are formed preferentially in the HWE reaction, albeit to a 

lesser extent in the case of trisubstituted olefins.  

The mechanism of this reaction contains several subtle features.  Each step is reversible with the 

exception of the syn-elimination step.  Phosphonate anion addition to the carbonyl is the rate-determining 

step.  With the initial nucleophilic attack being reversible, the reaction should form the 

thermodynamically favored E-isomer predominantly.  The oxaphosphetane that leads to the E-product 

will form faster due to decreased steric interactions.  Ultimately, the E/Z ratio of the olefin isomers is 
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dependent upon the stereochemical outcome of the initial addition and upon the ability of the 

intermediates to equilibrate (reversibility of each step). 

 

Scheme 4.17 – Mechanism of the HWE Reaction 

The goal of any HWE reaction is to maximize yield and stereoselectivity through the screening of 

experimental variables.  With suitable conditions for anion formation identified, the HWE reaction 

between 213 and 208 was initially run to check for proper oxaphosphetane/β-hydroxyphosphonate 

generation.  Anion formation with LDA for 30 minutes, reaction with aldehyde 208 for 30 minutes and 

acid hydrolysis (H2O) all performed at -78 °C generated an oxaphosphetane/β-hydroxyphosphonate 

species which was unstable to silica but verified by ESI-MS.  The next step was to determine the 

temperature at which the oxaphosphetane/β-hydroxyphosphonate irreversibly eliminates to give a E/Z 

mixture of olefin products.  To accomplish this, the reaction mixture was allowed to warm to 0 °C (from -

78 °C) and after 30 minutes, TLC analysis showed elimination adducts.  Changing the concentration of 

various species did not improve the yield, however, the temperature of aldehyde addition (-78 °C) boosted 

both yield and stereoselectivity indicating decomposition of the phosphonate at higher temperatures in the 
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absence of aldehyde.  Comparing entries 1 and 3 in Table 4.6, two reactions run with the only difference 

being noted above led to a 30% yield (from 18%) and 3.9:1 E/Z ratio (from 3.1:1) of alkene products.  

The reaction was further refined when we opted for strict temperature control as opposed to our original 

temperature conditions (compare entries 1 and 4 in Table 4.6).  These conditions led to an optimized 40% 

yield with a 4.5:1 E/Z ratio of olefin products.  Holding the reaction temperature at -30 °C or -20 °C for 2 

hours (instead of -40 °C) gave decreased yields and stereoselectivities.   

Table 4.6 - Optimization Study for the HWE Reaction 

 

Trial RCHO Addition 

Temperature 
Reaction 

Temperature Yield (%) E/Z ratio 

1 23 °C -78 °C (2 h) →   

0 °C (0.5 h) 18% 3.1:1 

2 23 °C 
-78 °C (2 h) →           

-40 °C (2 h) →   

0 °C (0.5 h) 
21% 3:1 

3 -78 °C -78 °C (2 h) →   

0 °C (0.5 h) 30% 3.9:1 

4 -78 °C 
-78 °C (2 h) →        

-40 °C (2 h) →   

0 °C (0.5 h) 
40% 4.5:1 

                                                           

The 
1
H NMR of the product indicated a mixture of E and Z isomers.  It was not possible to 

separate the nonpolar E/Z isomers of 206, even by HPLC.  We hypothesized that division of the two 

isomers might best be achieved after deprotection of the oxazolidine group provided a more polar 

compound. 
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4.6  A Model System for Protecting Group Manipulations and Functional Group Interconversions 

Since PMP ether E/Z-206 is a valuable resource (longest linear sequence of 7 steps; 12% yield), 

we felt that 270 might serve as a useful model system to investigate the remaining steps in the synthesis 

(Scheme 4.18).  Specifically, both compounds contain a conjugated diene and oxazolidine unit but 270 

lacks a PMP ether group which is present in E/Z-206.  Nonetheless, 270 can be subjected to further 

modifications that include oxazolidine removal to reveal a primary alcohol followed by full oxidation and 

protection of the carboxylic acid as its β-cyano ester derivative.  Although not in exactly the same 

sequence, each reaction will be applied to advanced intermediate E/Z-206.   

 

 

Scheme 4.18 – Comparison of the Model System to Apoa for Further Modifications 
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Both p-toluenesulfonic acid (p-TsOH) and camphorsulfonic acid (CSA) were equally effective in 

removing the oxazolidine group in 270 (Scheme 4.19).  The resulting primary alcohol 271 was oxidized 

in two steps, first to an aldehyde using the Dess-Martin periodinane (DMP) and secondly to a carboxylic 

acid under Pinnick conditions.  Under these mild oxidation conditions, the Boc protecting group and 

diene functionality remain intact providing good precedent for the real system.  Protection of 273 using 3-

hydroxypropane-nitrile/DMAP/DCC afforded the β–cyano ester 272 in 21% yield (three steps from 271). 

 

 

Scheme 4.19 – Initial and Improved Conditions for Reactions of Interest   

Improvements were made to each of the last three steps.  For the Dess-Martin oxidation, we took 

advantage of the report by Meyers and Schreiber that water increases the rate of the oxidation.
25

  The 

reaction of water with DMP results in formation of an acetoxyiodinane oxide (Scheme 4.20) that is more 

efficient than DMP as a alcohol oxidant.  A generally accepted explanation for this effect correlates 

increased electron-donating ability of a hydroxy substituent (instead of an acetoxy group) with rate of 

dissociation of an acetate ligand.  To compare both methods, monitoring the reaction by TLC indicated 

significant amounts of starting material after six hours when dry CH2Cl2 was used.  TLC analysis of the 

same oxidation performed with water-saturated CH2Cl2 suggested complete consumption of starting 

material after six hours.  
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Scheme 4.20 – An Explanation for the Accelerating Effect of H2O in Dess-Martin Oxidations 

For the Pinnick oxidation, attention was turned to the manner in which the reagents were added.  

Specifically, 2-methyl-2-butene was added as a 2M solution in THF instead of a 90% technical grade 

reagent.  Also, the solution of oxidant (NaClO2/NaH2PO4 in water) was added via glass pipette rather than 

addition using a metal needle.  These modifications led to an isolated yield of 100% for carboxylic acid 

273 (two steps from 271).  For the protection of 273, the change involved the use of peptide coupling 

reagent EDC in preference to DCC, which led to faster product formation.  Following these optimized 

procedures, β-cyano ester derivative 272 was isolated in 42% yield (three steps from 271). 

4.7  Attempted Elaboration to Apoa, Synthesis of an Advanced Primary Alcohol Intermediate 279  

Using what we learned from the model system in §4.6, we deprotected the oxazolidine group of 

an E/Z mixture 206 under the same conditions (1 equiv. CSA in dry MeOH, Scheme 4.21).  We were able 

to obtain an E/Z mixture of secondary alcohols 277 in 34% yield after 1.5 hours.  The yield, however, 

dropped to 14% after the same reaction was run for two hours.  TLC analysis indicated that once formed, 

277 was undergoing a side reaction to give 278 in a time dependent manner.  Satisfactory HRMS data 

was obtained that was consistent with an (M + Na)
+
 ion derived from 278. 
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Scheme 4.21 – Formation of a Side Product Following Oxazolidine Group Deprotection  

To suppress the side reaction, we screened other acid sources (PPTS, pTsOH∙H2O, TFA) in 

combination with different solvents (EtOH, 
i
PrOH).  These reactions can be characterized as either too 

sluggish (lots of starting material present) or too fast (exclusive formation of the side product).  We 

decided to refine the original conditions in an attempt to slow down the reaction.  Reducing CSA to 

catalytic levels (10 mol %) in MeOH led to no reaction after 19 hours.  The same reaction using a 

MeOH/THF solvent mixture led to a 44% yield of 277 as a E/Z mixture after 41 hours.  Switching to a 

different solvent combination (1:1 ethylene glycol:THF) gave the same products in 39% yield after 19 

hours.  The reaction run in MeOH generates 2,2-dimethoxypropane as a by-product, however, the use of 

ethylene glycol produces 2,2-dimethyl-1,3-dioxolane as a by-product instead.  Perhaps the intramolecular 

nature of the dioxolane formation led to faster reaction times.  We recognized that this reaction would not 

achieve full conversion, however, losing product to the side reaction would be the worse alternative.  The 

nonpolar starting material could be easily recovered via flash chromatography.  Increasing the equivalents 

of CSA (20 mol %) or reaction temperature led to a major decrease in yield.  Using 10 mole % CSA in 

1:2 ethylene glycol:THF, we wanted to see how the yield varied with reaction time.  The optimized 

reaction time is seven hours.  As noted previously, separation of the E/Z isomers 206 was not possible 

after the olefination step.  Separation of the E and Z isomers for the newly formed secondary alcohol, 

however, could be accomplished via flash chromatography resulting in the isolation of desired E-product 

277 in 65% yield (95% BORSM, based on recovered starting material).  
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Once the oxazolidine protecting group was removed, two spots were discernible by TLC.  Our 

intentions were to prove the E-stereochemistry of the C5-C6 olefin in E-277, but purity issues made 

assigning the minor Z-isomer a more prudent decision (Figure 4.5).  To prove the Z-stereochemistry of 

the C5-C6 olefin in Z-277, we relied on 
1
H, 

13
C, and 2-D (ROESY, HSQC and HMBC) NMR 

spectroscopy.                                        

 

Figure 4.5 – Chemical Structures of E-277 and Z-277 

The isolation of TNM F by Fusetani and co-workers was accompanied by the structure 

determination of the component amino acids.  Their structure elucidation of Aboa was discussed at length 

in §1.2 and includes the use of ROESY, COSY and HMBC NMR to establish the (E,E) stereochemistry 

of the Aboa diene.  Tohdo’s synthesis of Aboa included the use of nOe measurements to assign olefin 

configurations to key precursors.  Tohdo reported that (Z)-diene Z-132 showed an nOe correlation 

between the C5-H and the C6-CH3 (Figure 4.6).  The (E)-diene E-132, on the other hand, showed an nOe 

correlation between the C4-H and the C6-CH3.   

 

Figure 4.6 – Tohdo’s Olefin Assignments Based on nOe Measurements of Precursors 
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 Helquist and co-workers made diene configuration assignments on an assortment of HWE 

products (Figure 4.7) using ROESY NMR. 

 

Figure 4.7 – Helquist’s Double Bond Assignments Based on ROESY NMR Results 

With these results in mind, establishing Z-stereochemistry of the C5-C6 olefin in Z-277 depends 

on assigning the 
1
H NMR spectrum of the region in red for the molecule in Figure 4.8.  The singlet at 2.00 

ppm can be readily assigned to the proton labeled H6’.  The 
13

C-
1
H correlation spectrum (Figure 4.8, 

HSQC) revealed that H6’ was attached to C6’ that gives rise to a 
13

C resonance at 21.0 ppm.  A long 

range 
13

C-
1
H correlation spectrum (Figure 4.9, HMBC) shows a correlation of C6’ to a doublet at 7.15 

ppm and a doublet at 5.51 ppm which we label H7 and H5 respectively.  The HSQC spectrum reveals that 

these proton signals show correlations to 
13

C resonances at 125.3 ppm (C7) and 129.7 ppm (C5) 

respectively.  The remaining doublet in the olefinic region of the spectrum (H8, δ 6.65) is linked to a 

carbon that resonates at 131.2 ppm (C8) as seen in the HSQC spectrum.  The J coupling constant between 

H7 and H8 was 16.0 Hz, further evidence that they are part of the same olefin and in the trans 

configuration.  The HMBC spectrum revealed that the 
13

C resonance at 136.5 ppm showed correlation to 

H8 and H6’ and as a result, is assigned to C6. 
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Figure 4.8 – HSQC spectrum of Z-277 

 

Figure 4.9 – HMBC spectrum of Z-277 
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With the assignment of the protons and carbons for the key diene region in place, we used the 

ROESY spectrum to resolve the stereochemistry of the C5-C6 olefin in Z-277.  Examination of the 

ROESY spectrum (Figure 4.10) shows that H6’ (methyl group) is correlated to H5 and H8.  In addition, 

the H7 resonance showed a correlation to H4.  Thus, the C5-C6 olefin in Z-277 was assigned with Z 

stereochemistry.  If we were dealing with the E version of the C5-C6 double bond, correlations of H5 to 

H7 and H6’ to H8 would have been expected.  The C7-C8 double bond geometry in Z-277 can be 

confirmed using the same correlations in Figure 4.10 and the H7/H8 coupling constant (J = 16.0 Hz).  

Taken all together, the C7-C8 olefin was designated with E stereochemistry and Z-277 had a (5Z, 7E) 

configuration.   

For the sake of fully characterizing the deprotected product, purity was of utmost importance.  In 

this light, we utilized Z-277 to prove the Z-stereochemistry of the C5-C6 double bond.  We were also able 

to validate the C7-C8 E-olefin geometry.  Table 4.7 contains 
1
H and 

13
C NMR data for Z-277.   

 

 
Figure 4.10 – ROESY spectrum of Z-277   
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Table 4.7 – 
1
H and 

13
C NMR Data for Z-277 in CDCl3                                                       

 

Carbon Number 
13

C (δ) 
1
H (δ) m J (Hz) 

1 66.3 4.03 t 5.7 

2 31.1 1.89-1.98 

2.10-2.16 

m 

m 

- 

- 

3 53.9 3.80-3.87 m - 

4 69.4 4.77-4.84 m - 

5 129.7 5.51 d 8.6 

6 136.5 - - - 

7 125.3 7.15 d 16.0 

8 131.2 6.65 d 16.0 

1’ 55.9 3.76 s - 

6’ 21.0 2.00 s - 

Aryl 114.9, 115.9 6.78-6.87 m - 

Phenyl 126.9, 128.0, 128.8 7.20-7.41 m - 

-OH - 2.59 br s - 

 

- 5.00 d 6.9 

Boc 28.5 

79.9 

1.42 s - 

    *The carbonyl carbon from the Boc group and the quaternary carbons from the aryl group and phenyl 

      group were not assigned 
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The protection of 277 as its TBS ether proceeded uneventfully.  The ratio of secondary 

alcohol:TBSOTf:2,6-lutidine used was 1.0:1.5:3.0.  This ratio was important because the use of only two 

equivalents of 2,6-lutidine resulted in a dramatic drop in yield.  Next, oxidative cleavage of the para-

methoxyphenyl protecting group to reveal primary alcohol 279 was investigated.  Cerium ammonium 

nitrate (CAN) represents a popular reagent to effect the transformation.
1
  The deprotection reactions were 

run using three milligrams of starting material, monitored by TLC, quenched, extracted and submitted for 

mass spectrometry analysis.  These reactions, conducted at 0 °C, led to complete consumption of starting 

material after 25 minutes (TLC), however, no desired product was detected by mass spectrometry.  

Variations in experimental conditions including the manner in which the CAN reagent was added (as a 

solid or a solution) and/or buffering the reaction using NaHCO3
26

 or pyridine
27

 did not change the 

outcome.  Changing the reaction scale and solvent composition, however, produced the desired primary 

alcohol 279, as verified by HRMS (C26H43NNaO4Si, (M+Na)
+
 484.2836, Scheme 4.22).  This is not the 

first instance where performing a deprotection reaction via oxidation on a larger scale led to a completely 

different result (§2.8).  The use of CH3CN:pH 7 phosphate buffer instead of CH3CN:H2O as the reaction 

solvent is not surprising considering the acid-labile and oxidizable moieties present.  Limited access to 

stocks of 204 has precluded optimization studies for the current reaction.                   

 

Scheme 4.22 - Formation of Primary Alcohol 279 

4.8  An Alternate Approach for the Synthesis of Apoa 

We also briefly explored an approach whereby the conjugated system could potentially be 

introduced after the oxidative removal of the PMP group.  Conceptually, the same reactions would be 
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utilized as Scheme 4.1 although not in exactly the same sequence.  The key HWE step, as shown in 

Scheme 4.23, is now between aldehyde 281 and the same phosphonate ester 213.  Retrosynthetically, 

aldehyde 281 can potentially be accessed from an TBS/Alloc protected alcohol 282/283 which in turn can 

be further simplified to a primary alcohol 254 obtained from the previous route.  Our efforts to synthesize 

aldehyde 281 from primary alcohol 254 are detailed in the following two sections.  HWE reaction 

between 281 and 213 should provide a mixture of 280 favoring the E-isomer.  Deprotection of the 

oxazolidine group followed by protection of the newly formed secondary alcohol as its TBS ether should 

generate our target compound 202. 

 

Scheme 4.23 - An Alternate Retrosynthesis of Apoa 

4.9  Efforts to Synthesize Aldehyde 281 from 254 Through a TBS or Alloc Protected Intermediate 

The revised synthesis is presented in Scheme 4.24.  Reduction of the methyl ester in 253 using 

LiAlH4 generated primary alcohol 254 in high yield.  We used DIBALH for the same transformation 

earlier (Scheme 4.13), however, LiAlH4 afforded comparable yields and faster reaction times.  Protection 

of the primary alcohol as its TBS ether followed by deprotection of the PMP group produced a different 
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primary alcohol 285 in low yield.  The low yield can be attributed to simultaneous removal of the TBS 

group as reported by Dattagupta and co-workers.
28

  Nevertheless, oxidation first to an aldehyde using 

Dess-Martin periodinane and then to a carboxylic acid under Pinnick conditions provided a handle for β-

cyano ethyl ester formation in 62% yield over three steps.  We attempted to unmask the primary alcohol 

286 via TBS ether cleavage using TBAF/THF, but, this resulted in decomposition products.  It seems that 

the deprotection of the TBS group was not possible without affecting the βCE group, i.e., they were not 

truly orthogonal.  The use of acidic conditions to deprotect the TBS group was ill-advised since the Boc 

and oxazolidine groups are acid labile.  We resorted to switching protecting groups from TBS to Alloc 

since Alloc’s palladium-based deprotection method was orthogonal to the PMP and βCE groups. 

 

Scheme 4.24 – Attempted Synthesis of Primary Alcohol 286 Using a TBS Protecting Group 

             The most recent approach is presented in Scheme 4.25.  These reactions are analogous to the ones 

presented in Scheme 4.24, yet, the Alloc group resulted in better yields for the reactions leading up to 

aldehyde 281.  Protection of the primary alcohol as its allyl carbonate followed by oxidative removal of 

the PMP group generating 289 in 83% yield.  Two oxidations in succession followed by β-cyano ethyl 

ester formation under the conditions optimized earlier produced 283 in 64% yield over three steps.  The 

Alloc group was rapidly removed (30 minutes) and the newly formed primary alcohol 286 was oxidized 

under Dess-Martin conditions to give aldehyde 281, ready for HWE reaction.   
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Scheme 4.25 - Synthesis of Aldehyde 281 Using a Alloc Protecting Group 

4.10  Future Work for the Completion of Apoa and Aboa 

The production of target compounds 202 and 203 are now within reach via both approaches.  

According to Scheme 4.26, the third route would produce Apoa building block 202 pending primary 

alcohol 279 oxidation in two steps, first to an aldehyde using Dess-Martin periodinane and secondly to a 

carboxylic acid under Pinnick conditions followed by protection of the newly formed carboxylic acid as 

its β-cyano ester.                                   

 
Scheme 4.26 – Plans to Complete Apoa and Aboa 
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Preliminary HWE reactions between 281 and 214 for the alternate approach led to a complex 

mixture of products.  The desired product would be carried on to the next step.  Once in hand, the 

oxazolidine group in E/Z-209 can be removed and the resulting secondary alcohol can be protected as its 

TBS ether generating Aboa 203. 

4.11  Experimental Section 

General methods: as detailed in Chapter 2 

4.11.1  Experimental Procedures                               

 

(E)-4-phenylbut-3-en-2-ol (215).  A solution of methylmagnesium bromide (27.2 mL, 1.4 M in 

toluene/THF (3:1), 38.1 mmol, 1.7 equiv.) was added to a solution of trans-cinnamaldehyde (2.86 mL, 

22.7 mmol, 1.0 equiv.) in THF (25 mL) at 0 °C under N2.  The mixture was stirred for 30 min at 0 °C then 

warmed to rt and stirred for 23 h.  The reaction was quenched by the addition of sat’d aq. NH4Cl (60 mL).  

The mixture was extracted with diethyl ether (3 x 60 mL).  The organic layers were combined and washed 

twice with H2O (30 mL), dried with MgSO4, filtered, and concentrated to give alcohol 215. Rf 0.16 (5:1 

Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.37 (d, J = 6.3 Hz, 3H), 1.68 (br s, 1H), 4.49 (app. p, J = 6.3 

Hz, 1H), 6.26 (dd, J = 15.9, 6.3 Hz, 1H), 6.56 (d, J = 15.9 Hz, 1H), 7.24 (t, J = 7.3 Hz, 1H), 7.32 (t, J = 

7.3 Hz, 2H), 7.38 (d, J = 7.3 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz) δ 23.3, 68.8, 126.4, 127.5, 128.5, 

129.3, 133.5, 136.7.                                                    
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(E)-diethyl (4-phenylbut-3-en-2-ylphosphonate (213).
9
  Acetyl chloride (3.26 mL, 3.60 g, 45.9 

mmol, 8.0 equiv.) was added dropwise to a stirred solution of (E)-4-phenylbut-3-en-2-ol (0.85 g, 5.7 

mmol, 1.0 equiv.) in dry EtOH (2.68 mL, 2.11 g, 45.9 mmol, 8.0 equiv.).  The reaction mixture was 

stirred at rt for 1.5 h.  The black solution was concentrated under reduced pressure to give the allylic 

chloride as a black oil (0.923 g, 97%) which was used without further purification.  Triethyl phosphite 

(0.867 mL, 0.828 g, 5.0 mmol, 0.9 equiv.) was added to the residue and the resulting mixture stirred at 

140 °C for 19 h.  The reaction mixture was cooled to rt and applied directly to a flash column.  Elution 

with 2:1 EtOAc/Hex afforded the title compound as a yellow oil (0.632 g, 41% over 2 steps). Rf 0.16 (1:1 

Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.29 (app. q, J = 6.8 Hz, 6H), 1.40 (dd, J = 18.3, 7.1 Hz, 

3H), 2.79 (dq, J = 23.1, 7.4 Hz, 1H), 4.10 (app. p, J = 7.2 Hz, 4H), 6.16-6.28 (m, 1H), 6.50 (dd, J = 15.9, 

4.9 Hz, 1H), 7.20 (t, J = 7.1 Hz, 1H), 7.28 (t, J = 7.4 Hz, 2H), 7.36 (d, J = 7.4 Hz, 2H); 
13

C NMR (CDCl3, 

100 MHz) δ 14.0 (d, 
2
JC-P = 6.1 Hz), 16.5 (d, 

3
J = 5.7 Hz), 36.1 (d, 

1
JC-P = 139.6 Hz), 62.0 (d, 

2
J = 7.0 Hz), 

62.2 (d, 
2
J = 7.1 Hz), 126.1 (d, 

2
JC-P = 10.3 Hz), 126.3 (d, 

5
JC-P = 1.6 Hz), 127.5, 128.5, 132.1 (d, 

3
JC-P = 

13.9 Hz), 136.9 (d, 
4
JC-P = 3.2 Hz). HRMS (ESI-TOF) calcd for C14H22O3P (M+H)

+
 269.1301, obsd 

269.1296.                                                           

 

(E)-4-(4-bromophenyl)but-3-en-2-one (229).*  Sodium hydride (60% dispersion in mineral oil, 

0.272 g, 6.8 mmol, 1.3 equiv.) was suspended in THF (10 mL) at 0 °C under N2.  After 10 min, a solution 

of diethyl (2-oxopropyl)phosphonate (1.14 mL, 5.9 mmol, 1.1 equiv.) was added and the mixture stirred 

at 0 °C for 30 min.  A solution of 4-bromobenzaldehyde (1.00 g, 5.4 mmol, 1.0 equiv.) was added to the 

mixture and stirred for 2 h at 0 °C. The mixture was diluted with H2O (40 mL) and extracted with Et2O (3 

x 100 mL). The organic layers were combined and washed with 5% HCl (2 x 40 mL), sat’d aq. NaHCO3 

(2 x 40 mL), brine (2 x 40 mL), dried over MgSO4, filtered, and concentrated. The mixture was applied 

directly to a flash column, eluting with 10:1 Hex/EtOAc, to give ketone 229 as colorless crystals (1.12 g, 
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92%). Rf 0.30 (4:1 Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.28 (s, 3H), 6.59 (d, J = 16.3 Hz, 1H), 

7.28 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 16.3 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz) 

δ 27.6, 124.7, 127.5, 129.6, 132.1, 133.3, 141.8, 197.9.  

 

(E)-4-(4-bromophenyl)but-3-en-2-ol (216).*  A solution of (E)-4-(4-bromophenyl)but-3-en-2-one 

(100 mg, 0.44 mmol, 1.0 equiv.) was dissolved in dry methanol (1 mL) at 0 °C under N2. After 10 min, 

sodium borohydride (25 mg, 0.67 mmol, 1.5 equiv.) was added. The resulting mixture was stirred for 1.5 

h at 0 °C, then neutralized by the dropwise addition of 5% HCl until pH of 7, as observed with UIP, 

mixture was diluted with H2O (10 mL) and extracted with EtOAc (3 x 30 mL). The combined organic 

layers were filtered through MgSO4, and concentrated. The residue was applied to a flash column and 

eluting with (5:1 Hex/EtOAc) to afford the title compound as a colorless solid (96 mg, 95%). Rf 0.30 (3:1 

Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.37 (d, J = 6.4 Hz, 3H), 1.74 (s, 1H), 4.48 (app. p, J = 6.2 

Hz, 1H), 6.25 (dd, J = 15.9, 6.2 Hz, 1H), 6.50 (d, J = 15.9 Hz, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 

8.2 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz) δ 23.4, 68.7, 121.3, 128.0, 128.1, 131.7, 134.7, 135.7. 

*Procedure and spectra courtesy of Alex Long Nguyen, LSU undergraduate, Summer 2010 

 

(E)-diethyl (4-(4-bromophenyl)but-3-en-2-yl)phosphonate (214).  Acetyl chloride (903 μL, 998 

mg, 12.7 mmol, 8.0 equiv.) was added dropwise to a stirred solution of (E)-4-(4-bromophenyl)but-3-en-2-

ol (361 mg, 1.59 mmol, 1.0 equiv.) in dry EtOH (743 μL, 586 mg, 12.7 mmol, 8.0 equiv.).  The reaction 

mixture was stirred at rt for 2 h.  The black solution was concentrated under reduced pressure to give the 
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allylic chloride as a black oil (390 mg, quant.) that was used without further purification.  Triethyl 

phosphite (249 μL, 238 mg, 1.43 mmol, 0.9 equiv.) was added to (E)-1-bromo-4-(3-chlorobut-1-

enylbenzene (390 mg, 1.59 mmol, 1.0 equiv.) and the resulting mixture stirred at 140 °C for 19 h.  The 

reaction mixture was cooled to rt and applied directly to flash column.  Elution with 2:1 EtOAc/Hex 

afforded the title compound as a yellow oil (127 mg, 23% over 2 steps). Rf 0.27 (2:1 EtOAc-Hex). 
1
H 

NMR* (CDCl3, 250 MHz) δ 1.26-1.47 (m, 9H), 2.81 (dq, J = 23.3, 7.2 Hz, 1H), 4.14 (app. p, J = 7.3 Hz, 

4H), 6.22 (ddd, J = 15.9, 7.9, 6.3 Hz, 1H), 6.45 (dd, J = 15.9, 4.8 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.42 

(d, J = 8.4 Hz, 2H). HRMS (ESI-TOF) calcd for C14H21BrO3P (M+H)
+
 347.0406, obsd 347.0406. 

*
1
H NMR spectra of the title compound contaminated with P(OEt)3 in a ratio of 2:1 favoring 214  

 

1-(But-3-en-1-yloxy)-4-methoxybenzene (210).  p-Methoxyphenol (860 mg, 6.9 mmol, 1.0 

equiv.) was added to a stirred solution of 3-buten-1-ol (600 μL, 506 mg, 7.0 mmol, 1.0 equiv.) in dry THF 

(25 mL).  Triphenylphosphine (2.36 g, 9.0 mmol, 1.3 equiv.) was added as a solid, in a single portion, 

followed by the dropwise addition of DIAD (1.91 mL, 1.96 g, 9.7 mmol, 1.4 equiv.).  The reaction 

mixture was heated at reflux overnight, cooled to rt, concentrated, and applied directly to a flash column.  

Elution with 95:5 Hex/Et2O afforded the title compound as a colorless oil (825 mg, 67%). Rf 0.33 (95:5 

Hex-Et2O). 
1
H NMR (CDCl3, 400 MHz) δ 2.52 (app. q, J = 6.7 Hz, 2H), 3.76 (s, 3H), 3.96 (t, J = 6.7 Hz, 

2H), 5.07-5.20 (m, 2H), 5.90 (ddt, J = 17.2, 10.3, 6.7 Hz, 1H), 6.79-6.87 (m, 4H); 
13

C NMR (CDCl3, 100 

MHz) δ 33.7, 55.7, 67.9, 114.6, 115.6, 116.9, 134.6, 153.0, 153.8. HRMS (ESI-TOF) calcd for C11H15O2 

(M+H)
+
 179.1067, obsd 179.1062.                                                   
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(E)-Methyl 5-(4-methoxyphenoxy)pent-2-enoate (119a).  Methyl acrylate (1.25 mL, 1.18 g, 13.7 

mmol, 1.9 equiv.) was added dropwise to a stirred solution of Grubbs’ second generation catalyst (305 

mg, 0.36 mmol, 5 mol %) in dry CH2Cl2 (40 mL).  After stirring for 15 min, a solution of 1-(but-3-en-1-

yloxy)-4-methoxybenzene (1.29 g, 7.2 mmol, 1.0 equiv.) in dry CH2Cl2 (20 mL) was added dropwise.  

The reaction mixture was heated at reflux for 4 h, cooled to rt, concentrated, and applied directly to a 

flash column.  Elution with 92:8 Hex/EtOAc → 4:1 Hex/EtOAc afforded the title compound as a black 

oil (1.587 g, 93%). Rf 0.34 (4:1 Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 2.63 (app. q, J = 6.4 Hz, 2H), 

3.72 (s, 3H), 3.74 (s, 3H), 4.00 (t, J = 6.3 Hz, 2H), 5.95 (d, J = 15.7 Hz, 1H), 6.81 (app. s, 4H), 7.03 (dt, J 

= 15.7, 6.4 Hz, 1H); 
13

C NMR (CDCl3, 100 MHz) δ 32.0, 51.3, 55.5, 66.4, 114.5, 115.4, 122.7, 145.0, 

152.5, 153.8, 166.5. HRMS (ESI-TOF) calcd for C13H16NaO4 (M+Na)
+
 259.0941, obsd 259.0941.  

 

(2R,3S)-Methyl-3-((tert-butoxycarbonyl)amino)-2-hydroxy-5-(4-methoxyphenoxy)pentanoate 

(209).  Sodium hydroxide (212 mg, 5.3 mmol, 3.0 equiv.) in H2O (12.45 mL) was added to a stirred 

solution of tert-butyl carbamate (620 mg, 5.3 mmol, 3.0 equiv.) in n-PrOH (4.15 mL).  The addition of 

1,3-dichloro-5,5-dimethylhydantoin (695 mg, 3.5 mmol, 2.0 equiv.) was followed by the dropwise 

addition of a solution of (DHQ)2PHAL (69 mg, 0.088 mmol, 5 mol %) in n-PrOH (4.15 mL).  After 

stirring for 15 min, a solution of (E)-methyl 5-(4-methoxyphenoxy)pent-2-enoate (417 mg, 1.8 mmol, 1.0 

equiv.) in n-PrOH (4.15 mL) was added, followed immediately by potassium osmate dihydrate (33 mg, 

0.088 mmol, 5 mol %).  The reaction mixture was stirred at rt for 21 h.  Sodium sulfite (1.83 g, 8.2 

equiv.) was added and the mixture stirred for 1 h.  The resulting mixture was diluted with H2O (16.6 mL) 

and extracted with EtOAc (4 x 40 mL).  The combined organic layers were dried with MgSO4, filtered, 

and concentrated to afford a 11:1 mixture of regioisomers.  Purification by flash chromatography (column 

1: 95:5 CH2Cl2/MeOH to isolate Rf 0.48, column 2: 3:1 Hex/EtOAc to isolate Rf 0.10) afforded the title 



167 
 

compound as a white solid (493 mg, 76%). Rf 0.10 (3:1 Hex-EtOAc). [α]D
25

 -64.4 (c 1.8, CH2Cl2) Lit,
1
 

[α]D -67 (c 1.8, CH2Cl2). 
1
H NMR (CDCl3, 400 MHz) δ 1.32 (br s, 1H), 1.39 (s, 9H), 1.94-2.15 (m, 2H), 

3.74 (s, 3H), 3.77 (s, 3H), 3.99 (t, J = 6.0 Hz, 2H), 4.27 (s, 1H), 4.31 (app. t, J = 7.1 Hz, 1H), 5.11 (d, J = 

9.6 Hz, 1H), 6.77-6.87 (m, 4H); 
13

C NMR (CDCl3, 100 MHz) δ 28.0, 31.7, 50.5, 52.5, 55.5, 65.5, 72.2, 

79.4, 114.4, 115.5, 152.7, 153.7, 155.3, 173.7. HRMS (ESI-TOF) calcd for C18H27NNaO7 (M+Na)
+
 

392.1680, obsd 392.1677.                                          

 

(2R,3S)-Methyl-3-((tert-butoxycarbonyl)amino)-2-((tert-butyldimethylsilyl)oxy)-5-(4-methoxy-

phenoxy)pentanoate (235).  Imidazole (252 mg, 3.7 mmol, 7.0 equiv.) was added to a stirred solution of 

(2R,3S)-methyl 3-((tert-butoxycarbonyl)amino)-2-hydroxy-5-(4-methoxyphenoxy)pentanoate (195 mg, 

0.53 mmol, 1.0 equiv.) in dry CH2Cl2 (5.0 mL) at rt under N2.  After stirring for 30 min, TBSCl (557 mg, 

3.7 mmol, 7.0 equiv.) was added in a single portion.  The reaction mixture was stirred overnight at rt, 

concentrated, and purified via flash chromatography (6:1 Hex/EtOAc) to provide the title compound as a 

colorless oil (248 mg, 97%). Rf 0.26 (5:1 Hex-EtOAc). [α]D
25

 -47.6 (c 1.0, CHCl3). 
1
H NMR (CDCl3, 400 

MHz) δ 0.08 (s, 3H), 0.12 (s, 3H), 0.94 (s, 9H), 1.40 (s, 9H), 1.86-2.09 (m, 2H), 3.71 (s, 3H), 3.76 (s, 3H), 

3.93-4.04 (m, 2H), 4.19-4.29 (m, 1H), 4.33 (app. d, J = 2.0 Hz, 1H), 4.89 (d, J = 9.9 Hz, 1H), 6.78-6.87 

(m, 4H); 
13

C NMR (CDCl3, 100 MHz) δ -5.5, -4.9, 18.3, 25.7, 28.2, 32.3, 51.4, 51.9, 55.6, 66.0, 73.6, 

79.3, 114.5, 115.6, 153.0, 153.8, 155.3, 172.2. HRMS (ESI-TOF) calcd for C24H42NO7Si (M+H)
+
 

484.2725, obsd 484.2712.                                            
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(4S,5R)-tert-butyl-5-(hydroxymethyl)-4-(2-(4-methoxyphenoxy)ethyl)-2,2-dimethyloxazolidine-

3-carboxylate (254).  Diisobutylaluminum hydride (2.53 mL, 1 M in CH2Cl2, 2.53 mmol, 5.0 equiv.) was 

added to a stirred solution of (4S,5R)-3-tert-butyl 5-methyl 4-(2-(4-methoxyphenoxy)ethyl)-2,2-

dimethyloxazolidine-3,5-dicarboxylate (0.207 g, 0.51 mmol, 1.0 equiv.) in dry CH2Cl2 (5 mL) at -78 °C.  

The mixture was stirred at -78 °C for 30 min and then warmed to rt for 4.5 h.  The colorless solution was 

cooled to 0 °C and quenched by the dropwise addition of MeOH (5 mL).  A solution of sat’d aq. 

potassium sodium tartrate (5 mL) was added to the reaction mixture at rt and stirred vigorously overnight.  

The aqueous layer was extracted with EtOAc (5 x 50 mL).  The combined organic layers were dried with 

MgSO4, filtered, concentrated, and purified via flash chromatography (2:1 Hex/EtOAc) to provide the 

title compound as a yellow oil (166 mg, 86%). Rf 0.22 (2:1 Hex-EtOAc). [α]D
25

 +5.2 (c 0.75, CHCl3). 
1
H 

NMR (CDCl3, 400 MHz, 330 K) δ 1.48 (s, 9H), 1.51 (s, 3H), 1.61 (s, 3H), 1.97 (t, J = 6.0 Hz, 1H), 2.05-

2.16 (m, 1H), 2.25-2.38 (m, 1H), 3.61-3.68 (m, 1H), 3.69-3.74 (m, 1H), 3.76 (s, 3H), 3.88 (ddd, J = 8.1, 

5.0, 2.8 Hz, 1H), 3.95-4.05 (m, 2H), 4.2 (q, J = 5.0 Hz, 1H), 6.81 (app. s, 4H); 
13

C NMR (CDCl3, 100 

MHz, 323 K) δ 27.2, 28.1, 28.5, 33.0, 55.8, 57.4, 63.7, 66.2, 80.2, 80.8, 94.4, 115.0, 115.6, 152.0, 153.0, 

154.3. HRMS (ESI-TOF) calcd for C20H32NO6 (M+H)
+
 382.2224, obsd 382.2232.                                                                                

 

(4S,5R)-tert-butyl-5-formyl-4-(2-(4-methoxyphenoxy)ethyl)-2,2-dimethyloxazolidine-3-

carboxylate (208).  Dess-Martin periodinane (91 mg, 0.21 mmol, 1.3 equiv.) was added to a stirred 

solution of (4S,5R)-tert-butyl 5-(hydroxymethyl)-4-(2-(4-methoxyphenoxy)ethyl)-2,2-

dimethyloxazolidine-3-carboxylate (63 mg, 0.17 mmol, 1.0 equiv.) in dry CH2Cl2 (1 mL) at rt.  The 

colorless suspension was stirred at rt for 4.5 h.  The reaction mixture was quenched with a mixture of 

sat’d aq. solutions of NaHCO3 and Na2S2O3 (4:1, 5 mL) and stirred vigorously for 1 h.  The aqueous layer 

was extracted with CH2Cl2 (3 x 35 mL).  The combined organic layers were washed with a mixture of 
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sat’d aq. solutions of NaHCO3 and Na2S2O3 (4:1, 5 mL), dried with MgSO4, filtered, concentrated, and 

purified via flash chromatography (2:1 Hex/EtOAc) to provide the title compound as a yellow oil (46 mg, 

74%). Rf Streaking. [α]D
25

 +11.7 (c 0.35, CHCl3). 
1
H NMR (CDCl3, 400 MHz, 330 K) δ 1.47 (s, 9H), 1.57 

(s, 3H), 1.61 (s, 3H), 2.08-2.19 (m, 1H), 2.26-2.37 (m, 1H), 3.75 (s, 3H), 3.96-4.07 (m, 2H), 4.34 (dt, J = 

8.8, 2.4 Hz, 1H), 4.46 (d, J = 2.4 Hz, 1H), 6.80 (app. s, 4H), 9.78 (s, 1H). HRMS (ESI-TOF) calcd for 

C20H29NNaO6 (M+Na)
+
 402.1887, obsd 402.1875. 

 

α,γ Deuteration of (E)-diethyl (4-phenylbut-3-en-2-ylphosphonate (259).  Lithium 

hexamethyldisilazide (332 µL, 1 M in THF, 0.33 mmol, 1.0 equiv.) was added dropwise to a stirred 

solution of (E)-diethyl (4-phenylbut-3-en-2-yl)phosphonate (89 mg, 0.33 mmol, 1.0 equiv.) in dry THF 

(1.5 mL) at -78 °C.  After stirring for 1 h, CD3OD (500 µL, excess) was added dropwise.  The cold bath (-

78 °C) was removed and the reaction mixture stirred for 21 h at rt.  The contents were quenched with 

sat’d aq. NH4Cl (1.0 mL) and extracted with EtOAc (2 x 10 mL).  The combined organic layers were 

washed with H2O (8.0 mL) and brine (8.0 mL), dried with MgSO4, filtered, and concentrated.  

Purification by flash chromatography (2:1 EtOAc/Hex) afforded the title compound as a colorless oil (58 

mg, 65%). Rf 0.16 (1:1 Hex-EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.26-1.35 (m, 6H), 1.39 (d, J = 18.3 

Hz, 3H), 4.12 (app. p, J = 7.0 Hz, 4H), 6.22 (d, J = 5.0 Hz, 1H), 7.14-7.41 (m, 5H); 
13

C NMR (CDCl3, 

100 MHz) δ 13.9 (d, 
2
JC-P = 6.3 Hz), 16.5 (d, 

3
J = 5.6 Hz), 36.1 (d, 

1
JC-P = 139.5 Hz), 62.0 (d, 

2
J = 7.0 Hz), 

62.2 (d, 
2
J = 7.1 Hz), 125.9 (d, 

2
JC-P = 10.3 Hz), 126.2, 127.5, 128.5, 132.1 (d, 

3
JC-P = 14.1 Hz), 136.8 (d, 

4
JC-P = 3.3 Hz). HRMS (ESI-TOF) calcd for C14H20D2O3P (M+H)

+
 271.1427, obsd 271.1427. 
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Lithium diisopropylamide was prepared according to the following procedure: Diisopropylamine 

(128 µL, 92.4 µg, 0.9 mmol, 2.5 equiv.) was dissolved in dry THF (1.0 mL) and cooled to -78 °C.  After 

stirring for 10 min, 
n
BuLi (418 µL, 2.16 M in Hexanes,

†,29
 0.9 mmol, 2.5 equiv.) was added dropwise and 

the mixture stirred for 15 min at -78 °C.   

E/Z mixture of (4S,5S)-tert-butyl 4-(2-(4-methoxyphenoxy)ethyl)-2,2-dimethyl-5-((3E)-2-methyl-

4-phenylbuta-1,3-dien-1-yl)oxazolidine-3-carboxylate (E/Z-206).  A solution of phosphonate ester 213 

(242 mg, 0.9 mmol, 2.5 equiv.) in dry THF (2.0 mL) was transferred by cannula to the solution of LDA 

and stirred for 30 min at -78 °C.  A solution of aldehyde 208 (137 mg, 0.36 mmol, 1.0 equiv.) in dry THF 

(2.5 mL) at -78 °C was transferred by cannula to the reaction mixture and stirring continued for 2 h at -78 

°C.  The reaction mixture was warmed to -40 °C, stirred for 2 h, warmed to 0 °C and stirred for 45 min.  

The reaction was quenched with H2O (5.0 mL) at 0 °C and extracted with EtOAc (3 x 40 mL).  The 

combined organic layers were dried with MgSO4, filtered and concentrated.  Purification by flash 

chromatography (8:1 Hex/EtOAc) gave the title compound as an inseparable 4.5:1 E/Z mixture (70 mg, 

40%). Rf 0.16 (12:1 Hex/EtOAc). 
1
H NMR* (CDCl3, 400 MHz, 328 K) δ 1.49 (1.48)* (s, 9H), 1.53 (s, 

3H), 1.63 (s, 3H), 1.98 (1.99)* (d, J = 0.8 Hz, 3H), 2.19-2.27 (m, 2H), 3.72 (3.73)* (s, 3H), 3.75-3.81 (m, 

1H), 3.99 (t, J = 6.2 Hz, 2H), 5.18 (4.96)* (dd, J = 8.6, 6.0 Hz, 1H), 5.49 (5.67)* (d, J = 8.7 Hz, 1H), 

6.55-6.83 (m, 6H), 7.17-7.44 (m, 5H); 
13

C NMR (CDCl3, 100 MHz, 328 K) δ 13.1, 20.6, 26.8, 28.5, 55.8, 

61.4, 65.5 (65.6)*, 75.0 (76.1)*, 80.0, 94.1, 114.8 (114.8)*, 115.6 (115.5)*, 125.5, 126.5, 126.8, 127.8, 

128.4, 128.6, 131.2, 132.9, 137.5, 137.9, 152.3, 153.1, 154.0. HRMS (ESI-TOF) calcd for C30H40NO5 

(M+H)
+
 494.2901, obsd 494.2899.  

*where discernible peaks were attributable to the Z-isomer, these are reported in parentheses with an      

  asterisk 

†
1,3-diphenylacetone p-tosylhydrazone (291 mg, 0.77 mmol) was dissolved in anhydrous THF (8 mL)   

  and cooled to 0 °C under N2.  
n
Butyllithium (2.5 M in Hex) was added slowly until a deep yellow color  

  persisted (titer = 0.77/0.36 = 2.16 M)                            
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(4S,5R)-tert-butyl-5-[(allyloxycarbonyl)oxy]methyl-4-(2-(4-methoxyphenoxy)ethyl)-2,2-

dimethyloxazolidine-3-carboxylate (288).  Tetramethylethylenediamine (33 µL, 25.6 µg, 0.22 mmol, 0.6 

equiv.) was added dropwise to a stirred solution of (4S,5R)-tert-butyl 5-(hydroxymethyl)-4-(2-(4-

methoxyphenoxy)ethyl)-2,2-dimethyloxazolidine-3-carboxylate (141 mg, 0.37 mmol, 1.0 equiv.) in dry 

CH2Cl2 (3.7 mL) at 0 °C.  After stirring for 10 min, allyl chloroformate (43 µL, 0.41 mmol, 1.1 equiv.) 

was added dropwise.  The reaction mixture was stirred for 1 h at 0 °C, diluted with CH2Cl2 (100 mL) and 

washed with H2O (50 mL).  The organic layer was dried with MgSO4, filtered, and concentrated.  

Purification by flash chromatography (3:1 Hex/EtOAc) afforded the title compound as a colorless oil (149 

mg, 87%). Rf 0.43 (3:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.48 (s, 9H), 1.51 (s, 3H), 1.56-1.65 

(m, 3H), 2.03-2.16 (m, 1H), 2.17-2.42 (m, 1H), 3.76 (s, 3H), 3.87-3.95 (m, 1H), 3.96-4.04 (m, 2H), 4.21 

(dd, J = 11.1, 6.4 Hz, 1H), 4.24-4.30 (m, 1H), 4.37 (br s, 1H), 4.58 (d, J = 5.7 Hz, 2H), 5.22-5.28 (m, 1H), 

5.29-5.37 (m, 1H), 5.89 (ddt, J = 17.2, 10.8, 5.8 Hz, 1H), 6.82 (app. s, 4H). HRMS (ESI-TOF) calcd for 

C24H36NO8 (M+H)
+
 466.2435, obsd 466.2436.           

 

(4S,5R)-tert-butyl-5-[(allyloxycarbonyl)oxy]methyl-4-(2-hydroxyethyl)-2,2-dimethyloxazolidine-

3-carboxylate (289).  Cerium (IV) ammonium nitrate (1.17 g, 2.1 mmol, 2.0 equiv.) was added to a stirred 

solution of (4S,5R)-tert-butyl 5-[(allyloxycarbonyl)oxy]methyl-4-(2-(4-methoxyphenoxy)ethyl)-2,2-

dimethyloxazolidine-3-carboxylate (497 mg, 1.1 mmol, 1.0 equiv.) in CH3CN/H2O (4:1, 22 mL) at 0 °C.  

The reaction mixture was stirred for 10 min at 0 °C, quenched with sat’d aq. NaHCO3 (10 mL) and 

extracted with EtOAc (3 x 120 mL).  The combined organic layers were dried with MgSO4, filtered and 
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concentrated.  Purification by flash chromatography (3:1 Hex/EtOAc → 2:1 Hex/EtOAc) afforded the 

title compound as a yellow oil (318 mg, 83%). Rf 0.17 (2:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 

1.50 (s, 9H), 1.59 (s, 3H), 1.61 (s, 3H), 1.79-1.97 (m, 2H), 3.50-3.76 (m, 2H), 4.06-4.16 (m, 2H), 4.19 

(app. s, 1H), 4.20 (app. s, 1H), 4.64 (dt, J = 5.8, 1.2 Hz, 2H), 5.24-5.31 (m, 1H), 5.32-5.41 (m, 1H), 5.87-

5.99 (m, 1H). HRMS (ESI-TOF) calcd for C17H30NO7 (M+H)
+
 360.2017, obsd 360.2018.  

 

(4S,5R)-tert-butyl-5-[(allyloxycarbonyl)oxy]methyl-4-(2-(2-cyanoethoxy)-2-oxoethyl)-2,2-

dimethyloxazolidine-3-carboxylate (283).  Dess-Martin periodinane (468 mg, 1.1 mmol, 1.3 equiv.) was 

added to a stirred solution of (4S,5R)-tert-butyl 5-[(allyloxycarbonyl)oxy]methyl-4-(2-hydroxyethyl)-2,2-

dimethyloxazolidine-3-carboxylate (305 mg, 0.85 mmol, 1.0 equiv.) in dry CH2Cl2 (23 mL) at rt.  The 

colorless suspension was stirred at rt for 1 h, quenched with sat’d aq. NaHCO3 (5 mL) and stirred for 1 h.  

The mixture was extracted with CH2Cl2 (3 x 100 mL).  The combined organic layers were dried with 

MgSO4, filtered, concentrated to 5 mL, and filtered through a silica plug (washing well with 2:1 

Hex/EtOAc) to give an intermediate aldehyde (312 mg) which was used without further purification. 

2-Methyl-2-butene (4.62 mL, 90% technical grade, 0.044 mol, 50.0 equiv.) was dissolved in THF 

(20 mL) and added dropwise to a stirred solution of crude aldehyde (312 mg, 0.87 mmol, 1.0 equiv.) in 

t
BuOH (45 mL).  After stirring for 10 min, a solution containing NaClO2 (790 mg, 8.7 mmol, 10.0 equiv.) 

and NaH2PO4 (786 mg, 6.6 mmol, 7.5 equiv.) in H2O (20 mL) was added dropwise to the reaction mixture 

via glass pipette.  The contents were stirred at rt for 16 h, diluted with H2O (50 mL) and extracted with 

EtOAc (4 x 50 mL).  The combined organic layers were dried with MgSO4, filtered and concentrated to 

give an intermediate carboxylic acid (317 mg theoretical) which was used without further purification. 
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3-Hydroxypropionitrile (115 µL, 120 µg, 1.7 mmol, 2.0 equiv.) was added to a stirred solution of 

crude carboxylic acid (317 mg theoretical, 0.85 mmol, 1.0 equiv.) in dry CH2Cl2 (12 mL) at rt.  4-

Dimethylaminopyridine (10 mg, 0.082 mmol, 10 mol %) was added as a CH2Cl2 solution followed by 

DCC (193 mg, 0.94 mmol, 1.1 equiv.).  The reaction mixture was stirred for 21 h at rt, filtered through a 

Celite® plug in a Pasteur pipette (washing well with CH2Cl2) and concentrated.  Purification by flash 

chromatography (3:1 Hex/EtOAc) afforded the title compound as a colorless oil (233 mg, 64% over 3 

steps). Rf 0.16 (3:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.48 (s, 9H), 1.51 (s, 3H), 1.58 (s, 3H), 

2.52-2.66 (m, 1H), 2.73 (t, J = 6.4 Hz, 2H), 2.89-3.13 (m, 1H), 4.04-4.37 (m, 6H), 4.64 (d, J = 5.8 Hz, 

2H), 5.29 (dd, J = 10.4, 1.2 Hz, 1H), 5.37 (dd, J = 17.2, 1.2 Hz, 1H), 5.87-6.00 (m, 1H). HRMS (ESI-

TOF) calcd for C20H31N2O8 (M+H)
+
 427.2075, obsd 427.2071.  

 

(4S,5R)-tert-butyl-4-(2-(2-cyanoethoxy)-2-oxoethyl-5-(hydroxymethyl)-2,2-dimethyloxazolidine-

3-carboxylate (286).  Dimedone (730 mg, 5.2 mmol, 10.0 equiv.) was added to a stirred solution of 

(4S,5R)-tert-butyl-5-[(allyloxycarbonyl)oxy]methyl-4-(2-(2-cyanoethoxy)-2-oxoethyl)-2,2-

dimethyloxazolidine-3-carboxylate (222 mg, 0.52 mmol, 1.0 equiv.) in dry THF (7.5 mL) at rt.  After 

stirring for 10 min, Pd(PPh3)4 (60 mg, 0.052 mmol, 10 mol %) was added in a single portion.  The 

reaction mixture was stirred for 30 min at rt, diluted with CH2Cl2 (120 mL) and washed with sat’d aq. 

NaHCO3 (3 x 100 mL).  The organic layer was dried with MgSO4, filtered, and concentrated.  Purification 

by flash chromatography (3:2 Hex/EtOAc → 1:1 Hex/EtOAc) afforded the title compound as a colorless 

oil (154 mg, 87%). Rf 0.17 (1:1 Hex/EtOAc). 
1
H NMR (CDCl3, 400 MHz) δ 1.48 (s, 9H), 1.51 (s, 3H), 

1.59 (br s, 3H), 2.01 (t, J = 6.2 Hz, 1H), 2.52-2.66 (m, 1H), 2.72 (t, J = 6.2 Hz, 2H), 2.89-3.16 (m, 1H), 
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3.68 (app. p, J = 5.8 Hz, 1H), 3.73-3.82 (m, 1H), 3.98-4.19 (m, 2H), 4.31 (t, J = 6.2 Hz, 2H). HRMS 

(ESI-TOF) calcd for C16H26N2NaO6 (M+Na)
+
 365.1683, obsd 365.1683. 

 

Tert-butyl-((3S,4S,5E,7E)-4-hydroxy-1-(4-methoxyphenoxy)-6-methyl-8-phenylocta-5,7-dien-3-

yl)carbamate (277).  Camphorsulfonic acid (940 µg, 4.0 µmol, 10 mol %) was dissolved in dry THF (125 

µL) and added dropwise to a stirred solution of E/Z-206 (20 mg, 0.04 mmol, 1.0 equiv.) in ethylene 

glycol:THF (1:1, 250 µL).  The reaction mixture was stirred at rt for 7 h, quenched with sat’d aq. 

NaHCO3 (250 µL) and extracted with EtOAc (3 x 15 mL).  The combined organic layers were dried with 

MgSO4, filtered and concentrated.  Purification by flash chromatography (3:1 Hex/EtOAc) afforded the 

title compound as a colorless oil (12 mg, 65%) (also recovered 6 mg of E/Z-206, 95% BORSM). Rf 0.26 

(2:1 Hex/EtOAc). HRMS (ESI-TOF) calcd for C27H35NNaO5 (M+Na)
+
 476.2407, obsd 476.2405. 

 

Tert-butyl-((3S,4S,5E,7E)-4-((tert-butyldimethylsilyl)oxy)-1-(4-methoxyphenoxy)-6-methyl-8-

phenylocta-5,7-dien-3-yl)carbamate (204).  2,6-Lutidine (14 µL, 13.0 µg, 0.12 mmol, 3.0 equiv.) was 

added dropwise to a stirred solution of tert-butyl ((3S,4S,5E,7E)-4-hydroxy-1-(4-methoxyphenoxy)-6-

methyl-8-phenylocta-5,7-dien-3-yl)carbamate (18 mg, 0.04 mmol, 1.0 equiv.) in dry CH2Cl2 (1.0 mL) at 

rt under N2.  After stirring for 10 min, TBSOTf (14 µL, 17.2 µg, 0.06 mmol, 1.5 equiv.) was added 
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dropwise.  The reaction mixture was stirred overnight at rt, concentrated, and applied directly to flash 

column.  Elution with 3:1 Hex/EtOAc afforded the title compound as a colorless oil (18 mg, 82%). Rf 

0.43 (5:1 Hex/EtOAc). HRMS (ESI-TOF) calcd for C33H49NNaO5Si (M+Na)
+
 590.3272, obsd 590.3257. 
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CHAPTER 5: PEPTIDE FRAGMENT ASSEMBLY FOR THEONELLAMIDE C 

5.1  Introduction 

             The efforts described in the previous chapters have resulted in the production of eHyAsn through 

a key Sharpless aminohydroxylation reaction (Chapter 2, red fragment in Figure 5.1) and an advanced 

intermediate 204 of Apoa via a crucial HWE reaction (Chapter 4, blue fragment in Figure 5.1).  Recall 

from Chapter 1 that these non-natural amino acids are constituents of the bicyclic peptide TNM C.  

Originally demonstrated to be cytotoxic against mouse leukemia cells (P388 and L1210), the 

theonellamides have emerged as a new class of ergosterol-binding anti-fungal agent.
1-4

   

 

Figure 5.1 – Summary of Synthetic Work Presented 

5.2  Peptide and Peptide-Based Drugs 

Peptides play a crucial role in the fundamental functions of life, and as such they have attracted 

considerable attention for their potential therapeutic use.  Historically, peptides were not popular drug 
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candidates.  For a number of years, peptide-based therapies were reserved for treatment of hormone 

disease states.
5
  Also, many peptides lack oral availability and the pharmaceutical industry, in the past, 

heavily favored oral therapies (the exception being the treatment of Type I diabetes with insulin).  The 

introduction of drugs based on genetic engineering and recombinant technology in the late 1980s caused a 

resurgence of interest in peptides.
5
  The technologies provided insight to previously untreatable medical 

conditions and in doing so, catalyzed the industry’s acceptance of developing drugs that could not be 

orally administered.  Genome sequencing efforts at the dawn of the 21
st
 century brought with them the 

potential to identify a range of new targets.
6
  As genomic and proteomic technologies continue to mature, 

a more complete picture of protein-protein interactions as targets in drug design will eventually lead to 

more widespread application of these as therapeutic targets.  As a result, peptides should benefit greatly 

and command even more attention as therapeutic agents. 

The use of peptides as drugs comes with a number of potential benefits as well as some 

drawbacks.
7
  A primary advantage stems from peptides’ binding to their targets with high specificity 

leading to high potencies and few toxicology issues.  However, potential disadvantages of peptides 

include proteolytic instability, low oral bioavailability, poor membrane permeability and rapid clearance 

from the body.  The molecular weight gap between small molecules and protein-based drugs can 

potentially be filled by peptides because their specificity and potency mimic protein-based drugs but are 

smaller and more cost effective to manufacture using chemical synthesis.  The synthesis of small linear 

peptides is now routinely accomplished and large peptides containing < 50 common amino acid residues 

has never been more synthetically feasible.  Many challenges remain, however, such as the synthesis of 

peptides containing α,α-dialkyl amino acids I-III and N-alkyl amino acids 298-300 (Figure 5.2).  Also, 

peptide macrocyclization of small-to-medium sized rings 301-302 can be extremely difficult due to an 

entropically disfavored pre-cyclization conformation.
8 

 Fortunately, modern strategies to facilitate 

macrocyclization of peptide-containing molecules such as ring contractions,
9
 azide-alkyne 

cycloadditions
10

 and ring-closing metathesis
11

 are in constant development.  Cyclization of larger peptides 
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(greater than seven amino acids) are less challenging.  Peptide research for developing synthetic analogs 

of natural peptides with desirable pharmacokinetic and pharmacological properties is maturing.  The 

demand for more stringent safety standards has modified the field of drug development, bringing into 

favor more peptide-based drugs. 

 

 

Figure 5.2 – Challenging Motifs in Peptide Chemistry 

Natural peptides such as oxytocin 303, cyclosporine 304 and vancomycin 305 are approved 

peptide drugs (Figure 5.3).  The mammalian neurohypophysial hormone oxytocin 303, a peptide of nine 

amino acids, plays roles during and after childbirth.  The nonapeptide is also implicated in behaviors such 

as pair bonding and social recognition.  Synthetic oxytocin, Pitocin™, is commercially produced 

according to a chemical synthesis originally developed by Boissonnas.
12

  The cyclic nonribosomal 

peptide, cyclosporine 304, is used as an immunosuppressant for organ transplant therapy.  Interestingly, 

this drug is suitable for oral consumption largely due to three structural features: (1) a cyclic backbone 

that guards against proteolytic cleavage, (2) decrease in the number of amide hydrogen bond donors via 

seven N-methyl groups, (3) four amide NH protons restrained by four intramolecular hydrogen bonds to 
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diminish their hydrogen bonding potential for water solvation.
13,14

  The filamentous fungus 

Tolypocladium inflatum, through the submerged fermentation process, produces cyclosporine on a 

commercial scale.
15

  Vancomycin 305, a glycopeptide antibiotic traditionally viewed as a drug of last 

resort, is used to treat infections caused by Gram-positive bacteria.  The antibiotic’s mode of action, to 

inhibit cell wall biosynthesis, is to bind to terminal D-alanyl-D-alanine moieties, thus preventing the 

incorporation of N-acetylmuramic acid/N-acetylglucosamine peptide subunits into a peptidoglycan 

matrix.
16

  Commercial production of vancomycin relies on Amycolatopsis orientalis cultures, an organism 

from the soil of Borneo.
17

  The multitude of oxytocin,
18

 cyclosporine
19,20 

and vancomycin
21,22 

total 

syntheses attests to the importance of these peptide drugs. 

 

 

Figure 5.3 – Natural Peptides as Approved Peptide Drugs 
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             Peptides produced by chemical synthesis have also been brought to market.  Aliskiren 306, for 

example, is in the renin inhibitor drug class and was approved for the treatment of hypertension in 2007 

(Scheme 5.1).
23

  By understanding the renin-angiotensin system (RAS), the enzyme renin was designated 

as the most logical drug target in the cascade.  The difficulty in targeting renin, primarily due to a 

previously unrecognized subpocket (S3
sp

) distinct for renin,
24

 led to the earlier development of 

angiotensin-converting-enzyme inhibitors (ACE, prevents conversion of angiotensin I into angiotensin II) 

and angiotensin II receptor blockers (ARBs, specific for the angiotensin II type 1 receptor).   

 

Scheme 5.1 – Inhibition of RAS can Occur at Three Different Stages 

             Chemical development of renin inhibitors over the course of two decades paved the way for 

aliskiren 306.  According to Figure 5.4, the compound interacts with several binding pockets (S1, S1’, 

S2’, S3 and S3
sp

) around the active site of renin, but binding to the S3
sp

 subpocket which stretches from 

the S3 binding site is critical for effective renin inhibition.
24

  A synthon approach led to an innovative 

synthetic route for commercial production of aliskiren at an acceptable cost level (Scheme 5.2).
23

  Three 

building blocks 307-309 were synthesized, two of which were generated using enzyme- or metal-

catalyzed reactions.  The fragments were coupled in a stepwise fashion with the latent vicinal amino 

alcohol moiety installed via a diastereoselective halolactonization.  Coincidentally, aliskiren shares some 
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structural features with TNM C.  These include an amide bond and the aforementioned vicinal amino 

alcohol moiety.                                          

 

Figure 5.4 – Graphic Depiction of Aliskiren Binding to the Active Site of Renin.  Copyright 2008, Nature            

                     Publishing Group, reprinted with permission (p. 256). 

 

Scheme 5.2 – The Retrosynthetic Analysis for Commercial Production of Aliskiren.  Copyright 2008,  

                       Nature Publishing Group, reprinted with permission (p. 256).         

5.3  How to Make an Amide Bond 

             Amide bond formation between an amine and a carboxylic acid is a condensation reaction.  The 

union of these two functional groups does not occur readily at room temperature.  The expulsion of water 

only takes place at high temperatures, conditions generally incompatible with the presence of other 

functionalities.  Therefore, activation of a carboxylic acid, a process that converts the -OH of the acid into 

a good leaving group, before treatment with the amine is necessary (Scheme 5.3).   
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Scheme 5.3 – Amide Bond Formation Via Activation 

            Carboxy components can be activated as shelf-stable reagents (some esters), an isolable 

compound of intermediate stability (acyl halides and azides), or as transient intermediates.
25,26

  All of the 

aforementioned species can undergo direct aminolysis to give an amide or react with a second nucleophile 

to give a more stable anhydride or ester whose aminolysis, in-turn, affords the peptide. 

The acid chloride method for peptide synthesis was presented by Emil Fischer in 1903.
27 

 In the 

intervening years, carbodiimides,
28

 active esters, anhydrides
29,30

 and phosphonium or iminium salts
31

 have 

emerged as useful coupling reagents.  The plethora of coupling reagents available for amide bond 

formation, however, makes an optimal reagent selection for a given application difficult (Figure 5.5). 

 

Figure 5.5 – Common Peptide Coupling Reagents and Additives Used in This and Previous Chapters 
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Unfortunately, the large number of potential substrates and their assorted challenges renders the 

idea of a universal coupling reagent naive.  Some reagents do perform well in general and differences are 

typically small.  HATU 313 and EDC 311/HOBt 314 reagents offer generally excellent reactivity and 

rapid coupling times for many substrates.  Many other reagents, however, could be superior for 

specialized situations, since they might be more efficient or do a better job preserving stereochemical 

purity.  While some of the reagents in Figure 5.5 were discussed in the synthesis of the eHyAsn-Phe 

dipeptide (§2.9), the remaining reagents will be discussed here in chapter 5 in the context of TNM C 

peptide fragment assembly.  

5.4  Retrosynthesis for the Eastern Hemisphere of TNM C  

             At this point, we were ready to assemble the peptide fragments associated with TNM C’s eastern 

hemisphere.  The partial synthesis of TNM F by Shioiri et al. offered a cautionary tale which influenced 

some of our decisions regarding our TNM C eastern hemisphere assembly strategy.
32,33

  Some elements of 

their TNM F eastern hemisphere 317 strategy that stood out included a highly linear fragment approach 

leading to their choice of cyclization site and the high number of hydroxyl groups left unprotected during 

peptide ligation which both contributed to a poor chemical yield for the cyclization step (Figure 5.6).   

 
Figure 5.6 – Synthesis of the Eastern Hemisphere of TNM F by Shioiri et al.

32,33
 

                    11 Steps (5 Deprotections and 6 Couplings) → 3.6% Overall Yield 
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             Our TNM C eastern hemisphere 51 strategy (Scheme 5.4) included protection of all four hydroxyl 

groups as their TBS ethers leading to a global fluoride deprotection scenario.  The site chosen for 

cyclization is ideal, since the C-terminal Aboa residue (a β-amino acid) does not contain a Cα stereocenter 

and therefore is not susceptible to epimerization during peptide bond formation (vide infra, §5.5).  Also, 

the linear heptapeptide contains τ-HAL, a potential turn-inducing component to help promote cyclization.  

The other major disconnection, according to Scheme 5.4, is between the τ-HAL/allo-Thr residues, leading 

to the Fmoc-Ser(OTBS)-τ-HAL-OBn acid fragment 319 and Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-

Aboa(OTBS)-OβCE tetrapeptide amine 50. 

 
Scheme 5.4 - Eastern Hemisphere of TNM C: Retrosynthesis and Protecting Group Strategy 

             The structural complexity of TNM C demanded a fragment condensation approach.  Our 

proposed synthesis is highly convergent, driven by the relative value of synthetic amino acid residues.  

The synthesis of tetrapeptide 50 required the preparation and ligation of the Fmoc-allo-Thr(OTBS)-
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Ser(OTBS)-Phe-OBn tripeptide and the Aboa residue.  Tripeptide 293, in-turn, can be generated from 

coupling of commercially available amino acids Fmoc-allo-Thr(O
t
Bu)-OH, H-Ser(O

t
Bu)-OH and 

HCl∙Phe-OBn in a stepwise fashion followed by hydroxyl protecting group exchange (O
t
Bu → OTBS).  

The Fmoc-Ser(OTBS)-τ-HAL-OBn fragment called for base-mediated deprotection of the D-Ala-NH2 

(green, Scheme 5.4) of orthogonally protected τ-HAL (supplied by Chyree Batton) and coupling the 

resulting free amino group to Fmoc-Ser(OTBS)-OH 321.   

5.5  The Risk of Epimerization During Fragment Condensation   

             For coupling of peptide fragments, the advantages of carboxylic acid activation are tempered 

somewhat by the possibility of epimerization of the C-terminal amino acid at Cα (with few exceptions).  

Although other pathways have been noted, the most important mechanism of “racemization” involves 

oxazolone formation (Scheme 5.5).
34-37

  This intermediate results from competing intramolecular attack of 

the carbonyl function of the preceding amide group at the activated carboxyl group.  After deprotonation, 

the oxazolone generates an aromatic species resulting in epimerization of the C-terminal residue.  The 

oxazolone ring can also be opened by amines to produce peptide bonds. 

 

Scheme 5.5 – Mechanism of Racemization: Oxazolone Formation 
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             The rate of peptide coupling relative to the rate of epimerization is enhanced by using amino 

acids protected with carbamate groups (R1 = alkoxy).  Should oxazolone formation occur, no enolization 

takes place since this configurationally robust intermediate then undergoes aminolysis to generate the 

desired peptide.  When R1 = alkyl or peptidyl, enolization of the chirally unstable oxazolone intermediate 

ensues to produce diastereomeric products. 

5.6  Synthesis of the Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn Tripeptide 

             A number of years ago, Taylor et al. described the use of a carbodiimide method to prepare Nα-

Fmoc protected dipeptide acids which did not require purification.
38

  Therefore, we decided to start the 

preparation of the Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn tripeptide 293 for the eastern hemisphere 

of TNM C using the same carbodiimide method.  Amino acids 1 (Fmoc-allo-Thr(O
t
Bu)-OH), 2 (H-

Ser(O
t
Bu)-OH), and 3 (HCl∙Phe-OBn) were commercially available and readily coupled in a stepwise 

fashion (Scheme 5.6).   

 

 

Scheme 5.6 - Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn Tripeptide Construction 

             Sheehan and Hess reported the use of carbodiimides for peptide synthesis in 1955.
28 

 The 

mechanism begins with protonation of the carbodiimide moiety of dicyclohexylcarbodiimide (DCC, 312) 

by the carboxylic acid.  The carboxylate anion then attacks the activated reagent to generate an O-

acylisourea IV.  At this point, the highly reactive intermediate IV can go through at least four possible 

pathways (Scheme 5.7).
35,39-41

  Formation of the peptide can occur from three of these pathways.  These 
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include direct aminolysis of the O-acylisourea with an amine (Path A) or aminolysis of a symmetrical 

anhydride or oxazolone intermediate generated from IV (Paths B and C respectively).  The least desirable 

side reaction, N-acylurea formation, arises from intramolecular nucleophilic attack of the imino moiety in 

IV leading to O→N-acyl migration.  This side reaction competes with aminolysis and diminishes the 

coupling yields.  The proportion of this side product is heavily influenced by experimental conditions.  N-

acylurea generation is suppressed at lower temperatures
42

 and when low polarity solvents are used
43

 (e.g., 

dichloromethane and benzene). 

 

 

Scheme 5.7 – Reaction Mechanism for Carbodiimide-Mediated Peptide Ligation 

             N-Hydroxysuccinimide (NHS) or 1,2,3-benzotriazol-1-ol (HOBt) boosts the efficiency of 

carbodiimide-governed reactions by suppressing both N-acylurea formation and epimerization during 

peptide coupling.
44,45

  N-Hydroxysuccinimide exerts its positive effects via protic properties (pKa 6.09).  

It reduces the nucleophilicity of O-acylisourea by partial protonation thereby inhibiting the intramolecular 

reaction (Scheme 5.8).  It also mitigates oxazolone generation by protonation of O-acylisourea which 
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produces a better electrophile which in turn expedites its consumption.  Fmoc-allo-Thr(O
t
Bu)-OH 322 

was activated as its NHS ester 326 that reacted readily with H-Ser(O
t
Bu)-OH to form the Fmoc-allo-

Thr(O
t
Bu)-Ser-OH dipeptide 323.  The by-product formed, N,N’-dicyclohexylurea (DCU), can be 

eliminated by filtration, although traces of it are difficult to remove.   

 

 

Scheme 5.8 - Fmoc-allo-Thr(O
t
Bu)-Ser(O

t
Bu)-OH Dipeptide Formation Via DCC/NHS Activation 

Continuing with TNM C fragment assembly, the coupling reagent HATU was used to link the 

free acid dipeptide to HCl∙Phe-OBn to produce the Fmoc-allo-Thr(O
t
Bu)-Ser(O

t
Bu)-Phe-OBn tripeptide 

324 in 65% yield over two steps (Scheme 5.6).  HATU 313, when used with a judicious choice of amine 

base is a superior reagent combination for sterically demanding couplings that gives very low levels of 

racemization.
46,47

  Carpino and co-workers established this through loss of chirality studies using a variety 

of coupling reagents/bases in DMF to form the sensitive Cbz-Phe-Val-Pro-NH2 tripeptide via [2+1] 

coupling.  In the case of onium-derived reagents, epimerization levels decreased in the order of BOP > 

HBTU > HDTU > HATU > HAPyU.   
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The mechanism of HATU coupling starts with the use of a tertiary amine to form the carboxylate 

ion from a carboxylic acid (Scheme 5.9).  Attack on the uronium/guandinium reagent leads to the 

carboxyl uronium salt (detected by NMR at -20 °C
46

), which is converted into an active ester that is 

thought to be the prevailing species undergoing aminolysis. 

 

Scheme 5.9 – HATU Activation and Coupling  

Not surprisingly, side reactions can occur when an aminum/uronium salt is used as a coupling 

reagent.  Excess uronium reagent or slow preactivation of the amino acid may provide an opportunity for 

nucleophilic attack of the amino group on the positively charged carbon atom of the uronium salt to 

produce a guanidino derivative (Scheme 5.10).
48

 

 

Scheme 5.10 – Side Reaction Associated with the Use of HATU 
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Carpino et al. showed that the additive, HOAt 315, used in combination with a carbodiimide, 

consistently gave excellent results
49

 and it is no coincidence that the coupling reagent HATU was based 

on this additive.  Hydroxyazabenzotriazole esters lead to faster, more efficient coupling than activated 

esters made from NHS or HOBt.  This observation stems from the ring nitrogen atom at position 7 which 

provides two effects to increase reactivity.  The nitrogen atom provides an electron-withdrawing effect 

which improves the quality of the leaving group.  Moreover, neighboring group participation is now 

possible (Scheme 5.11).  HATU is a powerful reagent, however, care must be incurred because it is 

considerably more expensive than other routinely used coupling reagents. 

 

Scheme 5.11 – Neighboring Group Participation: H-Bonding Accelerates Rate of Coupling of OAt 

                                                                                Esters 

In keeping with our global fluoride deprotection strategy, we replaced both O
t
Bu protecting 

groups with their TBS counterparts (Scheme 5.6).  The decision to introduce the more robust TBS ethers 

at the tripeptide stage, as opposed to after tetrapeptide formation was revealed in §2.9.  Recall that γ-

hydroxyacids (Ahad and Aboa) can form γ-lactones under acidic conditions (refer to Scheme 2.19 for a 

general example).
1
  According to Scheme 5.4, we also needed to protect the hydroxyl group in Fmoc-Ser-

OH 327 (commercially available) as its TBS ether.  As prescribed by Palumbo et al., this was 

accomplished in high yield (Scheme 5.12).
50 

 

Scheme 5.12 - TBS Protection of the Hydroxyl Group in Fmoc-Ser-OH 
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5.7  Synthetic Efforts Towards the Eastern Hemisphere of TNM C: a β-Phe Analog 

Ultimately, we want to produce three monocycles related to the eastern hemisphere of TNM C for 

analog development and structure activity relationship studies.  Since the Aboa and Apoa residues (blue 

in Figure 5.7) were not yet available, we therefore sought to synthesize a β-Phe (green in Figure 5.7) 

containing analog 328 as this would generate a macrocycle with the same ring size. 

 

Figure 5.7 – Three Macrocycles Related to the Eastern Hemisphere of TNM C 

Synthetic efforts toward the β-Phe containing analog 328 were conducted by Carol Taylor 

(Scheme 5.13).  Boc-β-Phe-OH 332 was protected as its βCE ester followed by Boc removal to give TFA 

salt 331.  Tripeptide 293 underwent hydrogenolysis to expose the free carboxylic acid 330 in quantitative 

yield.  Coupling of 330 and 331 using HATU/collidine generated the Fmoc-allo-Thr(OTBS)-Ser(OTBS)-

Phe-β-Phe-OβCE tetrapeptide 333 in high yield.  The τ-HAL-Ser fragment, was acquired after Fmoc 

deprotection of 335 (supplied by Chyree Batton) using diethylamine and ligation of the resulting free 

amine to Fmoc-Ser(OTBS)-OH 321 using HATU/
i
Pr2NEt.  Formation of the cyclization precursor 

required coupling partners derived from Fmoc deprotection of 333 (NHEt2) and deprotection of the 

methyl ester in 294 (trimethyltin hydroxide).  While the methyl ester in 294 could be removed cleanly, the 
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“tripeptide” substrate reacted sluggishly and for future purposes, the methyl ester in 294 will be 

supplanted with a benzyl ester group (supplied by Chyree Batton).  The deprotected crude products were 

coupled using HATU/collidine to produce the linear “heptapeptide” 338 (verified by HRMS).   

 

 

 

 

Scheme 5.13 – Progress Toward the Eastern Hemisphere of TNM C: a β-Phe Analog 
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The fact that both the Fmoc and βCE ester groups are base labile led us to screen various bases in 

the hope of finding a reagent to effect simultaneous removal.  The deprotections were performed using 

Fmoc-Phe-OβCE and while diethylamine and potassium carbonate individually removed Fmoc and the 

βCE ester respectively, DBU or piperidine worked well in rapid fashion to afford the desired product.  

Using this knowledge, exposing the linear “heptapeptide” 338 to DBU or piperidine should reveal the N- 

and C-terminus of the β-Phe containing monocycle.  Whether the deprotected crude product can undergo 

HATU-mediated cyclization in tandem remains to be seen, however, macrocycle formation should be 

conducted under high dilution conditions.  Global desilylation with tetrabutylammonium fluoride (TBAF) 

followed by purification via reversed phase HPLC should provide the β-Phe containing analog 328. 

5.8  Future Work and Perspectives  

5.8.1  Future Work:  Construction of Both Naturally Occurring Theonellamide Eastern Hemispheres,  

                                  The Apoa and Aboa Containing Congeners    

Efforts to produce the Apoa- or Aboa-containing eastern hemisphere of a naturally occurring 

theonellamide are on hold until either residue is available.  According to Scheme 5.14, once 339 or 340 is 

complete, the deprotection and coupling conditions outlined above for the β-Phe analog can be readily 

applied towards the assembly of both congeners.  Cyclization investigations performed on the β-Phe 

analog should provide us with the knowledge to carry out cyclization reactions using the Apoa- and 

Aboa-containing compounds. 
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Scheme 5.14 – Plans to Complete Both Theonellamide Eastern Hemispheres                                                    
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5.8.2  Future TNM C Perspectives:  Utilizing the Amphotericin B Blueprint 

Recent work by Burke and co-workers has elucidated amphotericin B’s (AmB, 346) mode of 

action in killing yeast.
51,52

  For decades, it was believed that channel formation was essential for the 

fungicidal effect of AmB.  The mechanism of action (MOA) is much simpler, however, AmB just needs 

to bind to the cell’s ergosterol.  To test this theory, an AmB derivative 347 was generated that could bind 

ergosterol but could not form ion channels.  All of the available evidence suggests that the C35-OH (red 

in Scheme 5.15) is critical for channel formation.  The ergosterol binding, non-channel forming derivative 

347 was similarly potent to AmB against S. cerevisiae and C. albicans cells. 

 

Scheme 5.15 - Linking AmB’s Past to TNM C’s Future 

The TNMs represent a mechanistically distinct class of ergosterol binders.
3,4

  What has been 

established is that the TNMs recognize 3β-hydroxysterols (ergosterol, cholesterol, etc.) to induce 

overproduction of 1,3-β-D-glucan by Rho1 activation leading to cytotoxic membrane damage.
4
  What is 

less clear though, is the portion of the peptide that binds to ergosterol in lipid bilayers, the resulting TNM-

ergosterol complex and the associated membrane morphological changes leading to membrane damage.  

The current understanding of the TNMs mode of action is still in its infancy while knowledge regarding 
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AmB’s MOA continues to mature.  Comparisons between the two, however, are inevitable.  The synthesis 

of the three macrocycles proposed in §5.7 and §5.8.1 may provide an opportunity to identify the minimal 

chemical structure required for the TNMs biological activity.  Specifically, all three macrocycles will be 

tested against the same species of yeast cells as AmB (S. cerevisiae and C. albicans).  Ultimately, the 

discovery that simple AmB binding to an essential lipid (ergosterol) is an antimicrobial MOA could have 

drug discovery implications for the TNMs. 

5.9  Experimental Section 

General methods: as detailed in Chapter 2 

5.9.1  Experimental Procedures                       

 

Fmoc-allo-Thr(O
t
Bu)-Ser(O

t
Bu)-Phe-OBn (324).  N-Hydroxysuccinimide (29 mg, 0.25 mmol, 

1.0 equiv.), followed immediately by DCC (52 mg, 0.25 mmol, 1.0 equiv.), were added to a solution of 

Fmoc-allo-Thr(O
t
Bu)-OH (100 mg, 0.25 mmol, 1.0 equiv.) in anhydrous CH2Cl2 (4.0 mL) at 0 °C under 

N2.  The mixture was warmed to RT and stirred for 4 h, filtered to remove the dicyclohexylurea (washing 

well with CH2Cl2) and concentrated to ½ of the original reaction volume.  After standing in the freezer for 

4 h, the reaction was filtered again (washing twice with CH2Cl2).The filtrate was concentrated and the 

intermediate NHS ester dissolved in dry DMF (1.0 mL) and cooled to 0 °C under N2.  After 10 min, H-

Ser(O
t
Bu)-OH (41 mg, 0.25 mmol, 1.0 equiv.) was added to the reaction mixture, followed by the 

dropwise addition of DIPEA (50 μL, 39 mg, 0.30 mmol, 1.2 equiv.).  The mixture was warmed to RT and 

stirred overnight under N2.  The mixture was diluted with EtOAc (25 mL) and washed with 2 M HCl (25 

mL).  The aqueous layer was washed with EtOAc (25 mL) again and the combined organic layers washed 

with H2O (40 mL), dried over MgSO4, filtered and concentrated to give Fmoc-allo-Thr(O
t
Bu)-Ser(O

t
Bu)-
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OH (108 mg, 80% yield) that was used directly in the next step without further purification.  Fmoc-allo-

Thr(O
t
Bu)-Ser(O

t
Bu)-OH (108 mg, 0.2 mmol, 1.1 equiv.) was dissolved in anhydrous CH2Cl2 (3.0 mL) 

and cooled to 0 °C under N2.  After 10 min, HCl.Phe.OBn (53 mg, 0.2 mmol, 1.0 equiv.) was added to the 

reaction mixture, followed by the dropwise addition of 2,4,6-collidine (53 μL, 48 mg, 0.40 mmol, 2.0 

equiv.).  After the addition of HATU (76 mg, 0.2 mmol, 1.1 equiv.), the contents were warmed to RT and 

stirred overnight under N2.  The reaction mixture was concentrated and the residue purified via column 

chromatography (2:1 Hex/EtOAc → 1:1 Hex/EtOAc) to produce Fmoc-allo-Thr(O
t
Bu)-Ser(O

t
Bu)-Phe-

OBn as a colorless foam (124 mg; 64% over 2 steps).  Rf 0.18 (2:1 Hex-EtOAc); [α]
25.0

D +18.2 (c 1.0, 

CHCl3). 
1
H NMR (CDCl3, 400 MHz) δ 1.11 (s, 9H), 1.16 (s, 9H), 1.12-1.19 (m, 3H), 3.06 (dd, J = 13.9, 

6.2 Hz, 1H), 3.12 (dd, J = 13.9, 5.8 Hz, 1H), 3.29 (app. t, J = 8.3 Hz, 1H), 3.79 (dd, J = 8.3, 3.7 Hz, 1H), 

3.97 (br, 1H), 4.15 (br, 1H), 4.22 (t, J = 6.8 Hz, 1H), 4.28 (br, 1H), 4.41 (br, 1H), 4.45 (dd, J = 10.4, 6.8 

Hz, 1H), 4.90 (app. q, J = 6.5 Hz, 1H), 5.08 (d, J = 12.2 Hz, 1H), 5.13 (d, J = 12.2 Hz, 1H), 5.51 (br, 1H), 

7.00-7.04 (m, 2H), 7.11 (d, J = 6.4 Hz, 1H), 7.13-7.19 (m, 3H), 7.25-7.41 (m, 8H), 7.58 (d, J = 5.7 Hz, 

2H), 7.75 (d, J = 7.5 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz) δ 19.2, 27.3, 28.3, 37.9, 47.1, 52.8, 53.5, 

60.8, 61.0, 67.1, 67.2, 67.5, 74.2, 74.7, 120.0, 125.0, 125.1, 126.9, 127.0, 127.7, 128.4 [2C], 128.5, 129.2, 

135.2, 135.9, 141.3, 143.8, 156.5, 169.7, 170.0, 170.9. HRMS (ESI) calcd for C46H56N3O8 (M+H)
+
 

778.4061, obsd 778.4071.                     

 

Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn (293).  Trifluoroacetic acid (0.70 mL) was added to 

anhydrous CH2Cl2 (0.70 mL) and cooled to 0 °C under N2.  After 10 min, Fmoc-allo-Thr(O
t
Bu)-

Ser(O
t
Bu)-Phe-OBn (100 mg, 0.13 mmol, 1.0 equiv.) was added as a solid in a single portion and the 

reaction mixture stirred at rt for 2.25 h.  The reaction mixture was concentrated and the diol (111 mg) 

isolated by column chromatography (95:5 CH2Cl2 /MeOH).  The intermediate diol (111 mg, 0.17 mmol, 
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1.0 equiv.) was dissolved in anhydrous CH2Cl2 (2.0 mL) and cooled to 0 °C under N2.  After 10 min, 2,6-

lutidine (267 μL, 247 mg, 2.3 mmol, 13.8 equiv.) was added dropwise to the reaction mixture, followed 

by TBDMSOTf (264 μL, 304 mg, 1.2 mmol, 6.9 equiv.).  The mixture was stirred overnight at RT under 

N2.  The reaction mixture was concentrated and the residue purified via column chromatography (5:1 

Hex/EtOAc) to produce Fmoc-allo-Thr(OTBS)-Ser(OTBS)-Phe-OBn as a colorless foam (94 mg, 82% 

over 2 steps).  [α]
25.0

D +24.6 (c 1.0, CHCl3). 
1
H NMR (CDCl3, 400 MHz) δ -0.04 (2 X s, 12H), 0.76 (s, 

9H), 0.79 (s, 9H), 1.09 (d, J = 4.6 Hz, 3H), 2.97 (dd, J = 13.9, 6.5 Hz, 1H), 3.05 (dd, J = 13.9, 6.5 Hz, 

1H), 3.47 (app. t, J = 8.4 Hz, 1H), 3.97 (d, J = 7.0 Hz, 1H), 4.02-4.22 (m, 3H), 4.13 (t, J = 6.7 Hz, 1H), 

4.28 (br, 1H), 4.40 (dd, J = 10.2, 6.7 Hz, 1H), 4.80 (dd, J = 14.1, 6.7 Hz, 1H), 5.00 (d, J = 12.2 Hz, 1H), 

5.05 (d, J = 12.2 Hz, 1H), 5.36 (br, 1H), 6.89-6.97 (m, 3H), 7.08-7.26 (m, 9H), 7.31 (t, J = 7.5 Hz, 2H), 

7.48 (t, J = 7.0 Hz, 2H) 7.69 (d, J = 7.6 Hz, 2H); 
13

C NMR (CDCl3, 100 MHz) δ -5.6 [2C], -5.0, -4.7, 

17.9, 18.1, 19.5, 25.7, 25.8, 38.0, 47.1, 53.7, 54.1, 61.4, 62.4, 67.0, 67.4, 68.5, 120.0, 125.0, 126.9, 127.1, 

127.7, 128.3, 128.4, 128.5, 129.1, 135.2, 135.9, 141.3, 143.6, 143.7, 156.7, 169.3, 169.6, 170.8. HRMS 

(ESI) calcd for C50H68N3O8Si2 (M+H)
+
 894.4539, obsd 894.4540. 

 

Fmoc-Ser(OTBS)-OH (321).  Imidazole (459 mg, 6.7 mmol, 6.0 equiv.) was added to a stirred 

solution of Fmoc-Ser-OH (368 mg, 1.1 mmol, 1.0 equiv.) in dry DMF (3.7 mL) at 0 °C under N2.  After 

stirring for 30 min at 0 °C, TBSCl (779 mg, 5.2 mmol, 4.6 equiv.) was added in a single portion.  The 

reaction mixture was stirred for 1 h at 0 °C, warmed to rt and stirred overnight.  The reaction mixture was 

cooled to 0 °C, quenched by the dropwise addition of 1 M HCl (7.4 mL) and warmed to rt.  The contents 

were extracted with Et2O (2 x 30 mL) and the combined organic layers were concentrated.  The residue 

was diluted with 10 % LiCl (7.4 mL) and extracted with Et2O (2 x 30 mL).  The combined organic layers 

were dried with MgSO4, filtered and concentrated.  Purification by flash chromatography (4:1 Hex/EtOAc 
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→ 9:1 CH2Cl2/MeOH) afforded the title compound as a colorless oil (398 mg, 80%). Rf 0.40 (9:1 

CH2Cl2/MeOH). 
1
H NMR and 

13
C NMR spectra are in good agreement with Palumbo and co-workers.

50
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5.9.2  Spectra 

Compound 324 - 
1
H NMR spectrum 
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Compound 324 - 
13

C NMR spectrum 
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Compound 293 - 
1
H NMR spectrum 
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Compound 293 - 
13

C NMR spectrum 
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