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ABSTRACT 

Chapter 1 of this Dissertation presents a brief introduction to the basic properties of porphyrins 

and their derivatives (hydroporphyrins), their abundance and functions in the nature, and their 

applications in photodynamic therapy.  

Chapter 2 reports the synthesis, characterization, conformational analysis and cellular studies of 

novel mono conjugated regioisomers of chlorin e6 derivatives that are promising photosensitizers for 

photodynamic therapy. All three regioisomers were synthesized from pheophytin a, which was 

extracted from the alga Spirulina pacifica. In vitro investigations using human carcinoma HEp2 cells show 

that the 152-lysyl regioisomers accumulate the most within cells, and the most phototoxic are the 131 

regioisomers. Cellular studies revealed that the 131-aspartylchlorin e6 conjugate could be a more 

efficient photosensitizer for PDT than the currently used commercial 152 derivative. 

Chapter 3 describes the synthesis, characterization and cellular investigation of water soluble 

regioisomers of di-conjugated chlorin e6 derivatives for photodynamic therapy. New synthetic routes 

were developed to synthesize all three regioisomes. Both the 152,173-diamino and 131,173-diamino 

derivatives were synthesized starting from chlorin e6 and the 131,152-diamino derivatives were 

synthesized from pheophytin a. The effects of position and number of amino acid substituents on their 

In vitro photodynamic properties are described.  

Chapter 4 discussed the design, synthesis and characterization of electron deficient symmetric 

porphyrin for incorporation into a synthetic cytochrome to mimic the activity of native cytochrome. It 

also presents a brief introduction of basic synthetic routes to obtain porphyrin macrocycles. The 

importance of the construction of artificial hemoproteins to understand the cytochromes activity is also 

discussed. Various synthetic routes and strategies to obtain the symmetric porphyrin are reported in 

detail.  
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CHAPTER 1: INTRODUCTION 

1.1 Porphyrins 

Porphyrin is a macrocycle which consists of four pyrrole units, and each of these pyrrole units is 

connected with each other by methine (=CH-) bridges. The macrocycle is fully conjugated and has 22π 

electrons but only 18π electrons participate in the delocalized aromatic system according to Hückel’s 

4n+2 rule.1-3 As a result of the extended conjugation, porphyrins absorb light in the visible region and are 

highly colored. Porphyrins obeys Hückel’s rule of aromaticity (n=4) and they are usually planar according 

to their crystal structures. Their aromaticity has been confirmed using heat of combustion 

measurements, bond distances (X-ray crystal structures),4,5 and chemical shifts in 1H NMR 

spectroscopy.1,6 

The classical nomenclature for porphyrin was first introduced by H. Fischer.7 The four methine 

positions between the pyrrole units were assigned as α, β, ϒ and δ: in general, they are named the meso 

positions. The peripheral β pyrrolic positions were numbered from 1 to 8. Later the four pyrrole rings in 

the pophyrin were labeled as A, B, C and D and all the carbons and nitrogens in the macrocycle were 

numbered from 1 to 24 (Figure 1.1). This nomenclature was accepted by IUPAC and is currently also 

used to designate porphyrinoid derivatives such as isoporphyrin, chlorin, etc.8 

 

 

 

 

Figure 1.1: Porphyrin nomenclature 

Unsubstituted porphyrin (porphin) can exist in two different tautermeric forms (Figure 1.2). 

Spectroscopic and computational calculations proved tautomer 1 which holds two hydrogens on two 
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opposite pyrrole rings; this is more stable than the tautomer 2 with two hydrogens at adjacent pyrrole 

rings.9  

 

 

Figure 1.2: Tautermerization of porphyrin 

Porphyrin acts as a tetradentate ligand while binding with metal ions. The macrocyclic cavity of 

the porphyrin can coordinate with metal ions having a maximum radius of 2 Å.10 The geometry of these 

complexes and number of additional ligands is a property of the metal ion.11 Depending on the metal, 

they can form square planar (Cu2+, Ni2+), square-pyramidal (Mg2+, Zn2+) or octahedral (Fe2+, Mn2+) 

complexes. Almost all metal ions form a 1:1 complex with porphyrin. Upon coordination of metal, two 

protons on the inner nitrogens will leave and form neutral complexes with divalent metals. Central 

metal ions can coordinate with porphyrins through σ-coordination with nitrogen lone pairs and π-

interaction of metal pπ or dπ orbitals with other nitrogens π orbitals. σ-Coordination of the inner 

nitrogens always acts as an electron donor to the metal ion but π-coordination can act as either a π-

donor or acceptor depending on the metal and the substituents on the porphyrin. These 

metalloporphyrins play vital roles in biological systems associating with globular proteins.  Hemoglobin, 

myoglobin, chlorophyll, cytochromes, catalases and peroxidases are well known examples. They play a 

very important role not only in biological systems but also in chemical, industrial and technological fields 

as biosensors, semiconductors and catalysts.12 

1.2 Spectroscopic Character of Porphyrins 

Due to their highly conjugated π system, porphyrins show very characteristic absorption spectra. 

They show intense absorption around 380 to 420 nm, called the Soret band or B-band, and a few weaker 

absorption bands in the longer wavelength region (500 to 750 nm) of visible light, called Q bands or β – 
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α bands.13 According to Gouterman’s four orbital model (Figure 1.3), the Soret band corresponds to 

excitation of the porphyrin from its ground state to its second excited state (S0 to S2) and Q bands 

correspond to excitation from the ground state to the first excited state (S0 to S1). Because of x and y 

polarization of free base porphyrin the HOMO (egx) and HOMO-1 energy levels are not degenerate; 

hence the Q band is further split in to four bands.14,15 Upon formation of a metalloporphyrin, the 

symmetry of the porphyrin changes from D2V to D4h (4-fold symmetry) as it removes the protons on the 

inner nitrogens. As a result of higher symmetry the HOMO and HOMO-1 energy levels are degenerate 

and the absorption spectrum of metalloporphyrins shows only two Q bands in the visible region. 

Protonation of the macrocycle also results in an effective 4-fold symmetry and gives rise to spectra 

displaying only two Q-bands (Figure1.4). 

 

Figure 1.3: Simplified Gouterman four-orbital model for D2h symmetry free-base porphyrins (top) and 
transition-metal D4h symmetry porphyrins (bottom).14 

 

The characteristic changes in the absorption spectrum during chemical reactions provide 

evidence about the possible alteration of the structure. While variations of the peripheral substituents 
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on the porphyrin ring often cause minor changes to the intensity and wavelength of the absorption 

features, protonation of two of the inner nitrogen atoms or the insertion/change of metal atoms into 

the macrocycle usually strongly changes the visible absorption spectrum.16 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Typical UV–Vis spectra for a free-base porphyrin (top) and a porphyrin-metal complex 
(bottom). [Adapted with permission from reference 12. Copyright (2010) American Chemical Society.] 
 

As in benzene, the chemical shifts of the proton signals of porphyrins are strongly affected by 

the aromatic ring current. 1H NMR signals for meso protons (5, 10, 15, 20) appear far down field (around 

10 ppm) in the 1H NMR spectrum compared with normal sp2 hybridized CH protons. Protons at beta 

positions are also shifted further downfield than normal sp2 hybridized CH protons and are slightly 

shifted upfield compared to the meso protons. All these peripheral protons are positioned in the 
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deshielded region of the porphyrin spectrum. As a consequence of the induced diamagnetic ring 

current, the inner NH protons are shifted to the negative region of the 1H NMR spectrum as they are in 

the shielded region. Also, substituents on the porphyrin show the same behavior. The closer the 

substituent to the ring, the more downfield the protons appear relative to its normal position.  

1.3 Hydroporphyrins 

Hydroporphyrins are partially reduced derivatives of porphyrins (Figure 1.5). Saturation of one 

or more of the porphyrin double bonds by hydrogen atoms or alkyl groups will form the various 

hydroporphyrins. Generally, oxidation of the hydroporphyrin macrocycle back to porphyrin is easier 

than further reduction. The most common hydroporphyrins in nature are chlorins (dihydroporphyrins), 

bacteriochlorins and isobacteriochlorins (tetrahydroporphyrins) which all retain their macrocyclic 

conjugation. Reduction of one pyrrole double bond in the porphyrin ring leads to a dihydroporphyrin 

(chlorin). Further reduction of the dihydroporphyrin will result in the tetrahydroporphyrin in which the 

reduced pyrrole double bonds occur either in opposite pyrrole units (called bacteriochlorins) or in 

adjacent pyrroles (called isobacteriochlorins). As reported in the recent literature, all these porphyrins, 

chlorins and bacteriochlorins show aromatic character17 as they have conjugated 18π electron systems 

and further reduction of pyrrole double bonds in bacteriochlorins is energetically unfavored.18 

Saturation of the bridging methine positions of porphyrin will lead to loss of their macrocyclic 

conjugation and results in non-aromatic meso-hydrogenated systems like porphodimethene and 

porphyrinogen.  

The class of dihydroporphyrins or chlorins includes chlorophyll, pheophytin and 

bacteriochlorophylls c, d, e and f which regulate the photosynthesis of green plants and phototrophic 

bacteria. Bacteriochlorophylls a, b, and g belong to the class of bacteriochlorins. Due to their 

photophysical properties, some members of the chlorin and bacteriochlorin families are of great interest 
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in the medicinal field for photodynamic therapy (PDT). Siroheme is a heme-like prosthetic group found 

in sulfite and nitrite reductase enzymes; it belongs to the class of isobacteriochlorins.  

 

 

 

 

 

 

 

Figure 1.5: Structures of hydroporphyrins 

1.4 Naturally Occurring Porphyrins 

Porphyrin derivatives, especially metal complexes, play a vital role in several life processes. Their 

functions vary and depend on the protein environment and the central metal ion. For example 

hemeproteins, which contain a porphyrin prosthetic group, are responsible for oxygen transport in 

hemoglobin, oxygen storage in myoglobin, electron transport in cytochromes and oxygen reduction in 

cytochrome oxidase. The variations in the function of hemeproteins mainly come from the interaction 

between the protein and heme prosthetic group. Chlorophyll is another very important porphyrin-based 

natural system, which is a catalyst in the process of converting light energy to chemical energy in plants, 

photosynthesis.  
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1.4.1 Hemoglobin and Myoglobin 

Hemoglobin and myoglobin are two of the most important proteins in the body. They are high 

molecular weight protein systems containing an iron(II) protoporphyrin IX prosthetic group (heme 

group, Figure 1.6a). Their function is to facilitate transport and storage of molecular oxygen in higher 

animals. Hemoglobin binds with O2 and transports it from the lungs to the muscle cells. Then it transfer 

O2 to myoglobin which has higher affinity for O2 than does hemoglobin.  By itself, heme is not a good 

oxygen carrier. It must be part of a larger protein to prevent oxidation of the Fe2+ to Fe3+ in the 

porphyrin core. 

a)                                                         b)                                                             c)          

 

 

 

 

Figure 1.6: a) Heme prosthetic group, the iron(II) protoporphyrin-IX complex; b) Structure of human 
hemoglobin.19 The protein α and β subunits are in red and blue, and the iron-containing heme groups in 
green; c) Structure of oxymyoglobin.20 Modified from references 19 and 20. 
 

Hemoglobin consists of four subunits (two α and two β) and each holds one heme group (Figure 

1.6b).  In the lungs the partial pressure of O2 is high and the pH is low due to low CO2 concentration. 

These factors favor the formation of a hemoglobin-O2 complex. Once the first O2 molecule binds with 

the heme group, that changes the shape of the protein in a way favorable for binding (relaxed state) of 

the second O2 molecule. This special property, called the cooperative effect, is mainly caused by the 

decrease in the size of Fe2+ after binding with O2. It is due to a change in the spin state of Fe2+ 

(Figure1.7). 
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Figure 1.7: Iron(II) slight orientation changes from deoxyhemoglobin to oxyhemoglobin.21 

As shown in Figure 1.6, four of the six coordination sites of Fe2+ are occupied by nitrogen atoms 

from a planar porphyrin ring. The fifth coordination site is occupied by a nitrogen atom of an imidazole 

ring of the histidine amino acid. In deoxyhemoglobin (Hb) the sixth coordination site is available for 

coordination with dioxygen. Because of lower crystal field splitting, the iron(II) in deoxyheamoglobin is 

in a high spin state and has a radius of 92 pm. Therefore the ferrous ion is positioned slightly out of the 

porphyrin plane. When dioxygen, which is a weak ligand, binds to the ferrous of the hemoglobin (HbO2) 

it increases the crystal field slightly, increasing the splitting just enough tip the iron into a low spin state - 

its radius contracts to 75 pm and the ion moves into the plane of the porphyrin along with the histidine 

residue.22 That changes the conformation of the protein and increases the binding affinity for dioxygen 

(cooperative effect) to the other units, probably by breaking some salt bridges in the protein. Inside the 

cells, the partial pressure of O2 is low and the pH is high due to higher concentration of CO2. These 

conditions favor the tense state which has low affinity for O2 and leads to release of dioxygen.  

Myoglobin is a single-chain globular protein containing an iron(II) protoporphyrin IX prosthetic 

group in the center (Figure 1.6c). Myoglobin has a higher affinity for O2 than hemoglobin, even at lower 

O2 concentration. The active site of myoglobin is very similar to that of hemoglobin. A proximal histidine 

group is attached directly to the iron center and there is a histidine group on the opposite face, not 
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bonded to the iron. This is called the distal histidine, and influences the affinity for O2 by increasing the 

O2 binding constant by hydrogen bonding to dioxygen (Figure 1.8). This histidine residue serves two very 

important functions in the polypeptide; 1) It prevents oxidation of the Fe2+ to Fe3+ by any number of 

possible oxidizing agents. If it is oxidized to ferric, the O2 affinity will be lost; 2) the position of this 

histidine side chain makes it difficult to bind carbon monoxide (CO) to the iron in a linear fashion, while 

allowing oxygen to bind easily as it binds to iron in a bent fashion. Formally, free heme has a much 

higher (23,000 times) affinity for CO than O2, but in hemoglobin and myoglobin, CO has a lower binding 

constant compared to free heme.  

 

 

 

 

 

Figure 1.8: The distal histidine amino acid from the hemoglobin protein molecule further stabilizes the 
O2 molecule by hydrogen-bonding interactions.23 

 

1.4.2 Chlorophyll 

Chlorophyll is vital for photosynthesis, which allows plants and cyanobacteria to absorb energy 

from light and convert it into chemical energy. Chlorophylls are mainly found in chloroplasts of plants 

and cyanobacteria. Most of the chlorophylls (a, b, d, and f) are chlorin pigments containing a magnesium 

as a central metal ion, but few of them (chlorophyll c1 and c2) remain as unreduced porphyrin 

derivatives. Slight changes in peripheral substituents in chlorin and porphyrin macrocycles result in 

different classes of chlorophylls as shown in Figure 1.9. 
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Figure 1.9: Structures of different chlorophylls 

As shown in Figure 1.9, chlorophyll derivatives consist of a porphyrinoid macrocycle with a 

central magnesium ion. All chlorophylls contain the isocyclic β-keto ester ring that is biosynthetically 

derived from the C13 propionic acid side chain of protoporphyrin IX. Peripheral substituents in 

chlorophylls vary widely. There are more than 50 derivatives that have been isolated and identified from 

photosynthetic organisms. The chlorophyll c structure deviates from other chlorophylls; it has an 

unreduced porphyrin macrocycle compared to the dihydroporphyrin in other chlorophylls and a free 

unsaturated propionic acid chain at C17 compared to the phytol esterified propionic acid.  

 Chlorophyll a Chlorophyll b Chlorophyll d Chlorophyll f 

R1 -CH3 -CH3 -CH3 -CHO 

R2 -CH=CH2 -CH=CH2 -CHO -CH=CH2 

R3 -CH2CH3 -CHO -CH2CH3 -CH2CH3 
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Chlorophylls absorb strongly in the blue (mostly at 430 nm) and red (mostly at 660 nm) regions 

of the electromagnetic spectrum (Figure 1.10). Thus, their absorption bands significantly overlap with 

the emission spectrum of the solar radiation reaching the biosphere, resulting in efficient tools for 

conversion of radiation into chemical energy. 

 

Figure 1.10: Absorption spectrum of chlorophyll a.24 

Bacteriochlorophylls which are related to chlorophylls, are photosynthetic pigments that are 

found in various phototropic bacteria. Bacteriochlorophylls c, d, and e are dihydroporphyrin (chlorin) 

structures like chlorophylls, being reduced in ring D only. Bacteriochlorophylls a (Figure 1.11), b, and g 

are tetrahydroporphyrin (bacteriochlorins), which have two reduced pyrrole rings (ring B and D). In 

general, bacteriochlorophylls absorb light of a longer wavelength than do the chlorophylls. The position 

of the absorption maximum is observed in the red or infra-red region and depends on the conjugation of 

the macrocycle and its protein environment.  
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Figure 1.11: Structure of bacteriochlorophyll a 

All of these chlorophyll derivatives (chlorophylls and bacterochlorophylls) share a number of 

modifications in the macrocycle to achieve their main function; light harvesting. These common 

structural modifications include 1) usage of Mg2+ as the central metal ion; 2) addition of an extra ring 

(five membered isocyclic ring) to the tetrapyrrole structure; 3) loss of one or more double bonds from 

the conjugated system, but while still maintaining their aromaticity; and 4) with an elongated nonpolar 

phytol group. These modifications impart unique properties to chlorophylls, such as longer wavelength 

light absorption compared with heme groups, and increased lipophilicity and electron transfer ability.  

1.4.2.1 Chemical Degradation of Chlorophylls 

Chlorophyll a and b are the most common and predominant pigments in all oxygen-evolving 

photosynthetic organisms such as higher plants, red and green algae. The ratio of chlorophyll a to b in 

the chloroplast is normally 3:1. It is known that the ratio of chlorophyll a to b varies with the amount of 

light received by the plant, for example, the ratio is higher in high-light growth conditions than in low-

light growth conditions. These pigments can be extracted from plant leaves and from alga in large 

quantities. Chlorophyll a and b can be separated by classical and high performance liquid 

chromatography. Also more convenient large scale separation methods by solvent partition have been 

reported.4 The reagent Girard ‘T’ (carboxymethyltrimethylammonium chloride hydrazide) readily reacts 



13 
 

with the 3-formyl group of chlorophyll b to form the water soluble derivative and makes the separation 

easier. 

Pheophytin a (5) and b (a chlorophyll molecule lacking a central Mg2+ ion) can be obtained from 

chlorophyll a (4) and b respectively by treating with a mild acid. Effective hydrolysis of the phytol ester 

group of pheophytin 5 to achieve pheoporbide 6 has been reported under acidic, alkaline and enzymatic 

conditions. In addition both the phytyl residue and the magnesium atom of chlorophyll 4 (in ether) can 

be removed under acidic conditions (30% HCl) to form pheophorbide 6 (Scheme 1.1). 

 

Scheme 1.1: Pathways for hydrolysis and transesterification of phytol ester group of pheophytin a 

As reported, hydrolysis of the phytyl propionate group of chlorophyll b requires a higher 

concentration of HCl than does the hydrolysis of the phytyl propionate group of chlorophyll a (4) and 

this fact has been used successfully to separate chlorophyll a (4) from b.9 But with HCl-ether conditions, 

the hydrolysis of both phytol residue and 132-CO2Me group of chlorophyll 4 to its acid and subsequent 



14 
 

decarboxylation of the 132-COOH group with formation of the corresponding pyropheophorbide 7 was 

reported.9 Then the regioselective hydrolysis of the phytyl propionate residue of chlorophyll 4 was 

performed using 80% aqueous trifluoroacetic acid at 0 0C by Wasielewski and Svec.25 Transesterification 

of pheophytin 5 by the action of methanol in the presence of sulfuric acid produced methyl 

pheophorbide 8 in quantitative yield.8 Also esterification of pheophorbide 6 with diazomethane 

produced methyl pheophorbide 8 in high yield. Oxidation of any chlorin with 

dichlorodicyanobenzoquinone (DDQ) gives the corresponding porphyrin. For example, methyl 

pheophorbide a (8) gives 2-vinylpheoporphyrin a5 dimethyl ester (9) where in the subscript number 

indicates the number of oxygen atoms in the molecule. If methyl pheophorbide 8 is refluxed in collidine 

it gives the corresponding ‘pyro’ derivative 7. 

Air oxidation of pheophorbide a (6) under alkaline conditions initially forms the hydroperoxide 

intermediate 10 and subsequent fragmentation of the hydroperoxide and loss of the phytol  residue 

results in Fisher’s so-called “unstable chlorin” 11 (Scheme 1.2).8 

 

 

 

 

 

 

 

Scheme 1.2: Pathways for modification of the isocyclic ring of pheophorbide a (6) 
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On evaporation of the solvent this chlorin 11 is converted into purpurin-18 (12) and subsequent 

esterification with diazomethane gives the purpurin 7 trimethyl ester (13). Further refluxing of purpurin 

7 trimethyl ester (13) in collidine produces rhodoporphyrin-XV dimethyl ester (14) in 81% yield. Base 

catalyzed nucleophilic addition to the β-keto ester group of pheophorbide-a (6) under an inert 

atmosphere (without involvement of oxygen) leads to the isocyclic ring-opened chlorin derivative 15 

through intermediate formation of a 152 enol. 

Under alkaline conditions pheophorbide a (6) is converted into chlorin e6 (16) by cleaving the 

isocyclic ring. Chlorin e6 features prominently in this Dissertation. Opening of the isocyclic ring of 

pheophorbide a (6) by methoxide followed by esterification with diazomethane affords the chlorin e6 

trimethyl ester (17, Scheme 1.3). 

 

 

 

 

 

 

 

 Scheme 1.3: Modifications of chlorin e6 

Methanolysis of methyl pheophorbide a (8) affords chlorin e6 trimethyl ester (17) in quantitative 

yield. Decarboxylation of the free acid groups of chlorin e6 (16) sequentially forms chlorin 18 and 19. 

Upon further heating of chlorin 19 the stable phylloporphyrin XV (20) is formed.  
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Treatment of chlorin e6 (16) with potassium permanganate and subsequent esterification of the 

resulting diacid 21 leads to formation of the formyl derivative 22. When heated with hydroxylamine 

hydrochloride in aqueous pyridine, the formyl derivative 22 leads to deformylation to afford 

rhodochlorin 23. Intramolecular aldol condensation of the formyl derivative 22 results in introduction an 

extra six membered ring to the chlorin core. The formyl derivative 22 can be treated with hydrogen 

cyanide to afford cyanolactone 25 and subsequent reduction with a zinc/acetic acid system followed by 

esterification gives the nitrile derivative 26. Hydrolysis of the nitrile derivative 26 followed by 

esterification can afford chlorine e6 trimethyl ester (17).  

 

Scheme 1.4: Further modifications of the carboxyl groups on the chlorin e6 (16) 

1.4.3 Cytochromes 

Cytochromes are proteins with heme prosthetic groups that take part in oxidation/reduction 

reactions by carrying electrons. They can be found in the inner mitochondrial membrane or in the 

endoplasmic reticulum in cells.  
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In the past these pigments were classified into groups based on the position of the lowest 

energy absorption band in the reduced state. For example cytochrome-a (605 nm), cytochrome-b (565 

nm) and cytochrome-c (550 nm). But nowadays cytochromes are subdivided into four classes depending 

on the nature and the mode of binding of the heme prosthetic groups to protein. At least 30 different 

cytochromes have been identified. 

There are four major established subclasses (Figure 1.12): 

(1) Cytochromes-a contain heme-a as the prosthetic group.  

(2) Cytochromes-b contain heme-b (protoheme) as the prosthetic group, not covalently bound to the 

protein.  

(3) Cytochromes-c contain a prosthetic group very similar to heme-b but there are covalent thioether 

linkages between the heme side-chains and the protein. 

(4) Cytochromes-d contain a tetrapyrrolic chelate of iron as the prosthetic group, in which the degree of 

conjugation of double bonds is less than is found in porphyrin.26
  

Both heme-a and heme-c are biosynthetically derived from heme-b. Conversion of the vinyl 

group at position 2 in heme-b to a hydroxylethylfarnesyl side chain followed by oxidation of the methyl 

group at position 8 to a formyl group will result in heme-a. The porphyrin macrocycle of cytochrome c, 

which is very similar to the porphyrin macrocycle of cytochrome-b, linked to the protein via two cysteine 

residues of the protein with the two vinyl groups of the porphyrin. All other cytochrome heme groups 

are covalently bound to the protein. Unlike in hemoglobin and myoglobin, in cytochromes all six 

coordination sites of iron are occupied by specific amino acid residues of the protein and the nitrogens 

in the porphyrin. Therefore cytochromes cannot bind to ligands such as O2 and CO. Their function 

involves transfer of a single-electron, in a reversible equilibrium between the Fe2+ and Fe3+ states of the 
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central iron atom.  Even though they have very similar prosthetic groups, their reduction midpoint 

potentials span an 800 mV range, from cytochrome-c3 (-400 mV) to cytochrome-b559 (+400 mV); this 

gives the electron chain its “directionality” so that electrons move from one carrier to another in the 

chain. These changes in redox potentials are mainly influenced by the protein environment. Other 

factors such as nature of axial ligation with iron, peripheral substituents of the porphyrin, solvent 

accessibility to the metal site, electrostatic interactions with amino acid side chains of proteins and 

protonation state of neighboring amino acids also influence the redox potential of the cytochrome.  

 

 

 

 

 

 

 

Figure 1.12: Structures of commonly occurring natural hemes -a, -b, -c, and -d. 

1.5 Photodynamic Therapy (PDT) 

PDT is a binary cancer therapy, which relies on selective uptake of a photosensitizer into the 

cancer cells which upon irradiation with light of an appropriate wavelength produce highly toxic singlet 

oxygen and other cytotoxic species.27,28 Singlet oxygen can readily react with electron rich biomolecules 

such as unsaturated lipids, amino acids and DNA.29 Its limited diffusion prevents damage to the normal 

cells next to the tumor. The selectivity of the PDT treatment depends upon both the tumor-targeting 
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ability of the photosensitizer and the light used to activate it. The most coherent light sources are lasers 

and since the maximum of skin permeability occurs in the range of approximately 620-850 nm called the 

“therapeutic window”, light of this spectral range is predominantly used in PDT.30 Hence, 

photosensitizers with a strong absorption band in this region can be activated to gather light that 

penetrates deeper into the tissues.   

The photophysical processes of PDT are illustrated in the simplified Jablonski diagram shown in 

Figure 1.13. In the presence of laser radiation, a photosensitizer (P0) which is in the ground state, is 

excited to a singlet excited state. Relaxation of the singlet exited state yields the short-lived lowest 

excited singlet state (1P*). There is little opportunity for it to react with another molecule via either 

electron or energy transfers because the excited singlet state has a very short life-time. Most of the 

singlets will return to the ground state by emitting energy in the form of fluorescence, which helps to 

visualize the tumor. A few of the singlet excited photosensitizers will undergo intersystem crossing to 

the triplet state (3P*) which has a longer life time (10-3 s) than the singlet state (10-8 s).31 Normally these 

triplet state molecules will return to the ground state by emitting their energy via phosphorescence. But 

in the cell the excited triplet state can undergo two types of reactions; defined as types I and II 

mechanisms. 1) It can transfer electrons to a biological substrate to form radicals. Ultimately these 

electrons can interact with molecular oxygen to form superoxide (type I mechanism).  2) In the presence 

of ground state oxygen, which is in the triplet state, the energy will transfer from the excited triplet 

state of photosensitizer to ground state triplet oxygen (3O2). This will produce a short lived and highly 

reactive excited singlet oxygen (1O2) which can readily react destructively with any nearby biomolecules 

(type II mechanism). Each photosensitizer molecule can typically generate 103-105 molecules of singlet 

state oxygens before being degraded through photobleaching by excited singlet oxygen or by some 

other process.31  In water, lifetimes of singlet oxygen are much shorter than in organic solvents and their 

lifetime gets even shorter in the cells due to rapid reactions with subcellular substrates. Therefore the 
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diffusion of singlet state oxygen from the site of generation is very limited (0.01-0.02 μm).32 Such limited 

diffusion of singlet state oxygen provides a huge advantage in PDT.33 Ultimately, these destructive 

reactions lead to cell death through apoptosis or necrosis.  

 

P0 + hν                    1P* 

1P*                            3P* 

              3P* + 3O2                              
1O2 + P0 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13: Production of singlet oxygen by PDT 

In the first step of PDT (Figure 1.14), the photosensitizer or the drug is administered into the 

blood stream through a vein or else placed directly on the skin. Then the photosensitizer will be 

absorbed by the cells all over the body. But it will accumulate in cancer cells more than normal cells and 
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also the photosensitizer stays longer in cancer cells than normal cells. Within 72 – 96 hours after 

injection much of the photosensitizers accumulate in the cancer cells. Then the tumor is exposed to light 

of an appropriate wavelength to activate the photosensitizer. After absorbing light the photosensitizer 

will excite and generate singlet oxygen and eventually shrink or destroy the tumor. The major 

mechanism of tumor destruction is damaging the blood vessels in the tumor that prevent the tumor 

from receiving its essential oxygen and nutrients.  

 

 

 

 

 

 

 

Figure 1.14: The stages of photodynamic therapy 

Studies are now being performed to test the use of PDT for several types of cancer and pre-

cancerous conditions, including cancers of the: skin, cervix, bladder, prostate, bile duct, pancreas, 

stomach, brain, mouth, and larynx (voice box). The main advantages of PDT are: 

1) It is less invasive than surgery. 

2) It has few long-term side effects. 

3) It is a tumor targeted therapy that causes less damage to normal cells. 

4) It is cost-effective compared to other cancer treatment methods. 

5) It can be combined with other cancer treatments. 

The usage of an external light source makes PDT limited to areas where light can reach. Therefore 

PDT is limited to treat cancers on or just under the skin, or in the lining of organs that can be reached 

Injection of  
photosensitizing agent 

Photosensitizing agent 
concentrate at the tumor site 
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with the light source as the light can be directed through fiber optic cables to internal organs. PDT is less 

effective in treating larger and widely spread cancers. The poor selectivity of current photosensitizers for 

tumor tissue remains another main drawback in photodynamic therapy. 

The selectivity toward cancer cells over normal cells in the PDT treatment depends upon both the 

tumor-targeting ability of the photosensitizer and the light used to activate it. Extensive research is 

underway to develop modern photosensitizers that meet the following criteria for an ideal 

photosensitizer.34,35 It should have; 

1) Minimal dark toxicity and only be cytotoxic in the presence of light 

2) High quantum yield of singlet oxygen production in vivo  

3) High selectivity for tumor cells over normal cells 

4) Fast elimination from the skin and epithelium 

5)  Strong absorption peaks in the therapeutic window (the far-red and near-infrared regions) 

6) Available manufacturing and synthesis 

7) Homogeneous composition 

8) Storage and application light stability. 

The effective destruction of tumor cells requires a high concentration of singlet state oxygen in the 

tumor. To achieve this, the photosensitizer should have a high quantum yield of singlet oxygen 

production and also should have high accumulation of the photosensitizer in the tumor site.  

It is well known that the 650-800 nm region is the optimal wavelength absorption for an efficient 

photosensitizer. Lower and upper limits are set by the absorption and scattering of tissue and the 

minimum energy required to excite the ground state oxygen. Lower wavelengths will increase the 

absorption by tissue and reduce the penetration of light. Heme proteins in the tissue absorb more light 

at the lower region and are maximal around 400 nm. Therefore light penetration through tissue 
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increases with longer wavelengths, but above 1000 nm water in the biological tissue starts to absorb 

light heavily (Figure 1.15).  

 

Figure 1.15: The absorption spectrum for arteries (SaO2 ≈ 98%)36 

As shown in Figure 1.16, molecular oxygen has two low-lying singlet excited states, 1Δg and 1Σg
+. 

Where, transition from excited state 1Δg to ground state (1Σg
-) is spin forbidden, therefore excited state 

1Δg Oxygen has relatively longer lifetime. Energy difference between ground state (1Σg
-) and excited 

states, 1Δg and 1Σg
+ are 95 kJ mol-1 (22.5 kcal mol-1) and 158 kJ mol-1 (31.5 kcal mol-1), respectively. 

However, porphyrins which absorb light in the longer wavelength region emit low energy when it comes 

to the ground state. The energy level often mentioned for photosensitizer is that for the excitation of it 

to singlet state. Therefore the energy of the triplet state is even lower than that of the singlet state. If 

the triplet state energy is lower than the energy required to excite ground state oxygen to the singlet 

state (95 kJ mol-1), it is not possible for it to act as an effective photosensitizer.  
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Figure 1.16: Potential energy curves for the three low-lying electronic states of molecular oxygen. 
[Adapted with permission from reference 31. Copyright (2002) Elsevier.] 
 

Tumor-selectivity of photosensitizers can be increased by targeting the distinctive features of tumor 

tissue over normal tissue, such as increased low-density lipoprotein receptors, macrophages, acidic 

environment and tumor stroma with large interstitial space, leaky vasculature, increased lipids and 

newly-synthesized collagen. The mechanism for selectivity of porphyrin towards cancer cells is still 

unclear. According to our research (see later) amphiphilic character, overall charge, and spatial 

conformation of the molecule play a vital role in tumor selectivity.  

Maintaining the proper balance between hydrophilicity and hydrophobicity is the most 

important factor when designing an optimal-porphyrin based photosensitizer. Previous studies revealed 

that hydrophobic photosensitizers readily accumulate in tumors more than hydrophilic photosensitizers, 

as they bind with LDL, enter into the cytoplasm via endocytosis, or binding with lipoprotein receptors, 

and subsequently redistribute in the membrane domain, mitochondria, Golgi apparatus, and lysosomes. 

However, poor solubility of these compounds in aqueous media prevents their circulation in the blood 
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stream and also hydrophobic drugs are retained in the body for a longer time and result in adverse skin 

photosensitivity reactions in the body. Conversely hydrophilic photosensitizers excrete easily from the 

body after the therapy. They can bind with serum albumin and accumulate in the stroma of the tumor 

cells.4  

The following attributes of the porphyrin derivatives make them powerful and versatile 

chromophores for PDT studies: 

1) The presence of main absorption bands in the therapeutic window, the Q bands, around 600-

700 nm. It is advantageous to use red-shifted chromophores in order to get better penetration of 

exciting laser source;  

2) Intense extinction coefficients. Singlet oxygen production depends on the extinction 

coefficient of the chromophore; and  

3) Ease of modification of substituent groups. Porphyrins have several distinct functionalization 

sites, i.e., the meso position, β-position. The solubility of porphyrin derivatives in nonpolar or polar 

solvents can be modified by varying the porphyrin substituents. 

1.5.1 Clinical Photosensitizers 

Photofrin (porfimer sodium, hematoporphyrin, HpD, Figure 1.17) has been commercially 

developed and approved in a number of countries as a first generation photosensitizer. But it is far from 

an ideal photosensitizer. It is not a single compound; it consists of a mixture of monomers and oligomers 

of porphyrins linked by ether and ester linkages.7 Its long wavelength absorption (Q band) is not situated 

within the therapeutic window. The longest wavelength absorption maximum is at 630 nm, typical for 

porphyrin. Therefore it has limited use due to poor light penetration. It also has longer retention times 

in the body and causes skin photosensitivity.  
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Figure 1.17: Structure of Photofrin 

Levulan (5-aminolevulinic acid or ALA, Figure 1.18), which is the first unique compound in the 

porphyrin biosynthesis pathway, is a naturally occurring prodrug which converts enzymatically in to 

protoporphyrin (active photosensitizer) after administration37,38 and it has received approval for the 

treatment of cancerous lesions in 1999. The active drug belongs to the porphyrin category like Photofrin 

and therefore suffers from weak absorption in the therapeutic window. The drug is applied superficially 

on the tumor because of lack of selectivity when it is administered systemically.39 The use of ALA in PDT 

has several advantages over Photofrin: there is a more rapid clearance (limiting skin photosensitivity to 

1–2 days), it can be applied topically for the treatment of skin cancer and orally for cancer in the oral 

cavity or digestive tract. 

 

 

 

 

 

 

Figure 1.18: Conversion of 5-aminolevulinic acid to protoporphyrin IX 
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Verteporfin (Visudyne, BPD, 1.19) is a benzoporphyrin derivative. It absorbs at 690 nm; this 

longer wavelength allows deeper penetration due to extended conjugation of the macrocycle. The free 

carboxylic acid groups and ester groups provide the necessary amphiphilicity, allowing rapid 

accumulation and excretion from tumors. Difficulty of its synthesis is one of the major drawbacks. 

 

 

 

 

 

Figure 1.19: Structure of one isomer Verteporfin 

To overcome the major drawbacks in porphyrin based photosensitizers, low excitation 

coefficient in the therapeutic window and persistence in skin, so called second generation chlorin based 

photosensitizers (Figure 1.20), such as Foscan (Temoporfin) NPe6 (LS11, mono-aspartylchlorin e6) and 

HPPH [Photochlor, 2-(1-hexyloxyethyl)-2-devinyl-pyropheophorbide a] have been developed.35 Chlorins 

are particularly promising photosensitizers for PDT because of their distinctive ability to accumulate in 

tumorous tissues,40 intense absorptions at 664 nm, high stability, low dark toxicity and ability to 

generate singlet oxygen in the light.41-43  Amphiphilicity, another favorable trait, has been shown to 

improve the effectiveness of photosentizers. Chlorophyll a derivatives of the chlorin e6 series possess 

three carboxylic side chains, making them an ideal substrate for synthesis of novel amphiphilic 

photosensitizers.  

As mentioned earlier, chlorins are reduced porphyrins; hydrogenation of one of the pyrrole 

double bonds provides its characteristic absorption spectrum. Their strong absorption in the long 

wavelength region (around 650 nm, inside the therapeutic window) and high molar extinction 

coefficient make them more promising photosensitizers than Photofrin.44,45 For an example Talaporfin 
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shows absorption peaks at 400 and 654 nm with molar absorption coefficients of 180 000 and 40 000 

M−1 cm−1 respectively.45 These properties of chlorins allow for deeper photodamage of tissue and a 

better therapeutic effect compared with porphyrins.46 As reported in the literature, chlorin derivatives 

have higher quantum yields for singlet oxygen production and long triplet lifetimes, which may help to 

increase singlet oxygen production.47 The measured lifetime of the triplet state in buffer solution is 760 

μS for chlorin e6
44  and 300 μS for Talaporfin.45 But the quantum yield of singlet oxygen production of 

Talaporfin (0.77) is  similar to the reported value of chlorin e6 (0.7).45 

 

 

 

 

  

Figure 1.20: Second generation chlorin photosensitizers 

Aizawa and coworkers reported that Talaporfin has 10 times greater uptake in malignant tissue 

cells than in normal organs.48 It transports through the body by binding to the plasma proteins and 

lipoproteins. The previous studies revealed that Talaporfin bound more strongly to plasma proteins than 

to lipoproteins.49 They are also rapidly cleared from the body; this would be of great advantage in 

clinical studies. Because of that, the therapeutic dosage of Talaporfin causes very little skin sensitization 

compared to most porphyrin-based photosensitizers, and it clears quickly from tissue.11,21,50 However 

the future of photodynamic therapy highly depends on the development of more tumor selective and 

more efficient photosensitizers. Development of improved derivatives of Talaporfin is a major objective 

of the research work reported in this Dissertation.  
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CHAPTER 2: SYNTHESIS AND CHARACTERIZATION OF CHLORIN e6 DERIVATIVES FOR 
 PHOTODYNAMIC THERAPY1 

2.1 Introduction 

Mono-L-aspartyl chlorin e6 (1, Talaporfin, also known as, NPe6, or LS11) is a photosensitizer used 

in photodynamic therapy (PDT). It was approved in Japan (in 2004) but not yet in the USA, for PDT of 

lung cancer and marketed as Laserphyrin.1 It is trademarked as Aptocine by Light Sciences Oncology and 

is a second generation photosensitizer in advanced-stage clinical trials. Light Sciences Oncology (LSO) 

has completed treatment of patients in a phase III trial of NPe6 in hepatocellular carcinoma (HCC), a 

phase III trial for metastatic colorectal cancer (MCRC) and in phase I and Phase II clinical trials in benign 

prostatic hyperplasia (BPH), or enlargement of the prostate.2 

As shown in Scheme 2.1, NPe6 (1) is synthesized starting from pheophytin a (4) which is 

extracted from alga. Transesterification of the phytyl group of the pheophytin a (4) with methanol in 

acidic conditions afforded methyl pheophorbide a (3). Subsequent isocyclic ring opening of methyl 

pheophorbide a (3) with methoxide produced chlorine e6 trimethyl ester. Hydrolysis of all three methyl 

esters then yielded chlorin e6 (2). The final product NPe6 (1) can be obtained after carboxylic acid 

activation of chlorin e6 (2) and then coupling with aspartic acid.3 

 

 

 

 

Scheme 2.1: Synthesis of NPe6 from Spirulina pacifica 

                                                           
1 This chapter reprinted with permission from Jinadasa, R. G. W.; Hu, X.; Vicente, M. G. H.; Smith, K. M. J. 
Med. Chem. 2011, 54, 7464. Copyright (2011) American Chemical Society. 
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Chlorin e6 (2) possesses three carboxylic acid side chains. Of the three carboxylic acids, the 

propionic acid chain seems more accessible for activation and for nucleophilic attack than the acetic or 

formic acid chains under classical coupling reaction conditions. Therefore academic papers published 

since 1997 assumed NPe6 (1) was the propionic acid regioisomer of chlorin e6 (5). But in 1998, Gomi and 

coworkers claimed NPe6 (1) is actually the acetic acid regioisomer not the propionic acid regioisomer, 

according to 2D NMR studies.4 But this discovery was not accepted by the porphyrin community 

because it was against chemical logic, and the NMR work was done in D2O which is known to cause 

aggregation. In this synthesis, protecting groups or any other strategies were not used to do a selective 

coupling reaction. All three carbocyclic acid side chains in chlorin e6 (2) are susceptible to activation 

followed by conjugation with amino acid. The classical coupling reagent, DCC and DMAP were used to 

activate the carboxylic acid and then nucleophilic addition of the free amine group of aspartic acid 

followed by elimination of activator as urea produced the final product (Scheme 2.2).  

 

Scheme 2.2: Mechanism of DCC/ DMAP coupling reaction 

According to the mechanism in Scheme 2.2, it is reasonable to assume that the propionic side 

chain, which is located far away from the macrocycle and is more accessible than the other acidic side 

chains, will activate first to give the conjugated product. Additionally, the propionic side chain is located 
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perpendicular to the macrocycle and this makes it less stericaly hindered. The acetic acid and formic acid 

chains are more sterically hindered by both substituents and by the macrocycle compared to the 

propionic side chain. Apart from that, the formic acid is deactivated during esterification under acidic 

conditions because it is directly attached to the macrocycle and conjugated with it. Under acidic 

conditions, the inner nitrogens of the macrocycle are protonated and this makes it electron deficient. 

That prevents the activation of the conjugated carboxylic acid to undergo nucleophilic attack. It seems 

that neither the formic nor the acetic side chains were considered serious competition to the propionic 

carboxyl chain.  

With the intention to establish the true isomeric identity of NPe6, all three regioisomers 5, 6 and 

7 were prepared by total synthesis from chlorin e6 (2) or  methyl pheophorbide a (3), and the acetic 

regioisomer 6 was shown to be identical with NPe6.
5

 In 2007, our group was also able to obtain the X-ray 

structure of this ambiguous compound 6 which was prepared using the same method with DCC as a 

coupling agent.5 Surprisingly, the crystal structure confirmed that the aspartyl group is attached to the 

acetic acid position in chlorin e6. It was really a surprise to see highly regioselective coupling at the acetic 

acid position without any carboxylic protecting groups.  It seems this coupling follows a different path 

than classical coupling reactions. This highly regioselective coupling provides an easy, short and high 

yielding route to synthesize acetic acid derivative without any protecting groups. It was possible to 

synthesis all three regio-isomers (Figure 2.1) of chlorin e6 starting from pheophytin a (4) in reasonable 

yield.   

Our particular interest is to synthesize various regioisomers (Figure 2.1) of chlorin e6, since such 

molecules could selectively accumulate in specific organelles within cancer cells and cause effective 

photodamage. Their biological efficacy could be modulated based on the position and the type of amino 

acids (nature of the side chain). Furthermore, introducing spacer groups such as ethylene diamine, to 
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the formic acid chain should significantly influence the chemical and biological properties of the 

photosensitizer,6 as they alter the aggregation behavior and hydrophilic character of the conjugates.7,8  

 

 

 

 

 

 

 

 

 

Figure 2.1: Synthesis of NPe6 regioisomers 

It was recently reported that the photosensitizing properties of the conjugate can be improved 

by introduction of metal ions into the coordination sphere of chlorins.9,10 Heavy metal atoms in 

tetrapyrroles will enhance the intersystem crossing rates and consequently the singlet oxygen quantum 

yields.10 Unfortunately, metal coordination with chlorophylls also results in a blue shift of the Q band in 

the absorption spectrum.11   

2.2 Mechanistic Studies 

The synthetic, X-ray5 and spectroscopic4 work mentioned above confirmed the formation of the 

acetic acid derivative from reaction between DCC activated chlorin e6 and carboxyl protected aspartic 
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acid. To discover the path of this coupling reaction, several reactions were designed and 1H NMR and 

mass spectroscopy were used to characterize the intermediates.  

In this reaction one equivalent of chlorin e6, one equivalent of DCC and one equivalent of DMAP 

were suspended in DCM under argon for two hours at room temperature. After 30 minutes TLC with 

10% acetone/CH2Cl2 showed two newly formed spots.  Chlorin e6 does not move on TLC with less polar 

solvent systems such as 10% acetone/CH2Cl2. These observations confirmed the formation of a less polar 

highly reactive intermediate of chorin e6 in the reaction with DCC. Isolation of these fractions failed due 

to the high reactivity of the product. The colors of the fractions changed from purple to green during 

column chromatography. Once the color had changed to green, the material refused to elute from the 

column, even with high polar solvent systems.  Mass spectroscopy of the reaction mixture showed two 

main peaks at m/z 785 and 578. 

Based on the mass spectrum and TLC, it was hypothesized12 that the intermediate could be a 

seven-membered anhydride intermediate 8 which has high reactivity and can easily undergo a ring-

opening reaction with nucleophiles to produce acetic acid derivatives 10. The other possible 

intermediate is the nine-membered anhydride intermediate 8’ which has the same mass as the seven-

membered intermediate, but was not seriously considered because of lower stability compared to the 

seven membered ring and the color change to purple during formation of anhydride (Scheme 2.3). 

Formation of the seven membered anhydride ring can clearly change a part of the conjugation of the 

compound and that can result in the color change. The ring opening of the isocyclic ring of methyl 

pheophorbide a also had resulted in a blue shift in CH2Cl2. Contrasting to ring-opening of pheophorbide 

a, the red shift in this case is attributable to the formation of an anhydride ring between the formic and 

acetic acid chains. 
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Scheme 2.3: Proposed intermediate during DCC/DMAP coupling with chlorin e6 

Due to the high reactivity and polarity associated with the presence of the free acid chain in 

anhydride 8, isolation was very challenging. In order to reduce its polarity, esterification was performed 

using diazomethane under argon, to obtain methyl protected anhydride 9. Esterification was done 

without any purification directly following the coupling reaction due to the high sensitivity of the 

anhydride towards moisture. Excess amounts of diazomethane gas were bubbled through the reaction 

mixture for 3-5 minutes. TLC indicated the formation of the methyl protected anhydride 9. After the 

reaction, column chromatography was performed in order to purify the intermediate. But during the 

column chromatography the color of the mixture changed to green and the material became stuck to 

the column. Upon applying to a silica gel chromatography, the anhydride ring could be opened easily 

and this changed the color from purple to green, forming the very polar molecule 11 bearing two free 

acids. Although attempts were made using different column supports such as Sephadex or alumina, still 

no practical way was found to isolate the pure compound 9.  
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Then it was decided to prove the regioselectivity of the coupling reaction using NMR 

spectroscopy. A small nucleophile like ethoxide was selected to open the anhydride to minimize the 

complications in the 1H NMR spectrum (Scheme 2.4). So once we obtained the intermediate seven 

membered anhydride 8 using DCC and DMAP as was discussed before, it was reacted with one 

equivalent of freshly prepared sodium ethoxide to obtain chlorin e6 ethyl ester (12). Then the remaining 

free acids were protected with diazomethane gas and purified via column chromatography. Mass 

spectroscopy confirmed the the product chlorin e6 dimethyl ethyl ester (13). Then the 1H NMR spectrum 

of chlorin e6 dimethyl ethyl ester (13) was compared with 1H NMR spectrum of chlorine e6 trimethyl 

ester to confirm the regioisomer.  

 

 

 

 

 

 

 

Scheme 2.4: Synthesis of 152 ethyl ester chlorin e6 dimethyl ester 

 As shown in Figure 2.2, the 1H NMR spectrum of chlorin e6 trimethyl ester shows six singlets 

between 3 to 4.5 ppm for six methyl groups. Of these six singlets, three belong to the methyl ester 

groups and the other three peaks belong to the methyl groups directly connected to the macrocycle. All 

of these methyl groups are found in the deshielded region of the macrocycle due to its ring current. 
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Hence all the peaks are downfield from their normal position in the NMR spectrum. The first three peaks 

(a,b,c) belong to three methyl esters and the one most downfield is the that closest to the macrocycle, 

the 131 ester. Likewise, the 152 ester is more downfield compared to the 173 ester. These peaks had 

been assigned in previous studies using 2D NMR. Upon comparison of the two NMR spectra of chlorin e6 

trimethyl ester and chlorin e6 dimethyl ethyl ester (13), it was possible to verify the ethyl ester had been 

definitely added at the 152 (acetic acid) position, because of disappearance of the 152 methyl ester peak 

(b) and the appearance of two new peaks (d & e) for the ethyl group in the chlorin e6 dimethyl ethyl 

ester. This also provides evidence that the ring opening reaction of the anhydride 8 was occurring at the 

152 position instead of 131 position, regardless of the size or nucleophilicity of the molecule. 

 

 

 

 

 

 

 

 

 

Figure 2.2: 1H NMR spectral Comparison of 152 ethyl ester chlorin e6 (13) and chlorin e6 trimethyl ester 

It is worth noticing that the amount of DCC plays an important role in the mechanism of the 

reaction. When we increase the amount of DCC in the coupling reaction, the appearance of new spot in 
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the TLC was apparent. This new spot is less polar compared to the anhydride 8. The reaction with one 

equvelent of aspartic acid tert-butyl ester hydrochloride followed by esterification with diazomethane 

formed the expected mono aspartyl chorin e6 dimethyl ester (14).  Hence it was decided to add 2.5 

equivalents of aspartic acid tert-butyl ester hydrochloride with DIEA to the activated chlorin e6. After 

three hours diazomethane gas was bubbled through the mixture to esterify any remaining free acid 

groups. TLC indicated the formation of two new spots. Both fractions were isolated and characterized by 

1H NMR spectroscopy. Based on NMR and mass spectra, the major fraction is the expected 

monoaspartylchorin e6 dimethyl ester (14) and the second fraction is the diaspartylchlorine e6 methyl 

ester (16). Existence of a peak for the 131 methyl group (peak c, Figure 2.2) confirmed that the two 

aspartyl groups were inserted at the 173 and 152 positions. Increasing the amount of DCC helped to 

increase the yield of diaspartyl derivative 16 but the monoaspartyl derivative 14 was always the major 

product. This observation also supports the conclution that the two free acids 131 and 152 had been 

fused to form the anhydride seven membered ring, keeping the 173 free for DCC activation (Scheme 

2.5). The activation with DCC forms a seven-membered anhydride intermediate 8 between the formic 

and acetic acid chains, and if there is excess DCC, it will activate the remaining propionic acid to form 

intermediate 15. This structure corresponds with the mass spectrum peak at m/z 785.  Then, the free 

amine group of the aspartic acid can attack both of the activated positions of intermediate 15 to form 

diaspartylchlorin e6 methyl ester (16). Formation of monoaspartylchorin e6 dimethyl ester (14) as the 

major product even with excess aspartic acid provides the evidence that the acetic acid activation 

follows a different path and forms a more active functional group than does the propionic acid 

activation with DCC. This supports the suggested intermediate 8; the somewhat strained seven-

membered ring anhydride is more reactive towards nucleophilic attack than the activated propionic side 

chain.  
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Scheme 2.5: Formation of mono and diaspartic acid chlorin e6 derivatives with DCC/DMAP 

 

 

Figure 2.3: UV-Vis spectra of chlorin e6 (2, black) and anhydride intermediate 8 (red) in CH2Cl2 
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After confirming the mechanism for the unique regioselective coupling reaction, the yield of the 

reaction was improved. In this synthetic route, formation of the seven-membered anhydride 

intermediate can be monitored through TLC and UV-Visible spectroscopy (Figure 2.3). Once it formed, 

an amino acid or other nucleophile was added and the reaction was monitored by TLC, following the 

disappearance of the intermediate or by the visible color change from purple to green.   

2.3 Structural Elucidation and Synthesis of Chlorin e6 Derivatives 

2.3.1 Synthesis of 173 Chlorin e6 Conjugates 

The synthetic route to 173 monolysinechlorin e6 trimethyl ester (20) is shown in Scheme 2.6. It 

was possible to obtain monolysinechlorin e6 trimethyl ester (20) in 33% overall yield from pheophorbide 

a (17). Pheophytin a (4) was obtained by extraction from S. pacifica alga, an ideal source for chlorophyll 

a that greatly simplifies the purification of the algal extract because of the absence of chlorophyll b in 

the alga.13 Pheophorbide a (17) was obtained by selective hydrolysis of the phytyl ester group of 

pheophytin a (4) using the Wasielewski and Svec procedure, without affecting the β-keto-ester of the 

isocyclic ring.14 This ring serves as a natural protecting group during the coupling reactions. In the 

literature an effective hydrolysis of the phytyl ester group under acidic,15 basic,16 and under the 

influence of enzymes can be found.17 There are some drawbacks to the reaction done under alkaline 

hydrolysis. It tends to eliminate the phytyl group with retention of the magnesium ion in the macrocycle, 

to hydrolyze the 132 methyl ester to carboxyl with formation of chlorophyllins, and also tends to open 

the isocyclic ring to give chlorin derivatives.18 But under acidic hydrolysis both the phytyl group and the 

magnesium ion can be removed in a single step without affecting the isocyclic ring. After acid hydrolysis, 

the structure of compound 17 was confirmed by 1H NMR and mass spectroscopy. The presence of peaks 

for the central NH protons of macrocycle in the 1H NMR confirmed the elimination of central magnesium 

atom. These central NH protons resonate around δ -2 to -3 ppm due to significant shielding from the 

induced ring current of the large π system of the macrocycle. Likewise the meso protons appear 
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considerably downfield because they are situated outside the ring in the deshielded region. In addition 

to the characteristic chlorin peaks, the most significant peak in the structure elucidation of 

pheophorbides are the peak that confirms the presence of isocyclic ring. The only proton in the isocyclic 

ring appears as a sharp singlet at δ 6.26. It is much more deshielded than is a normal β-keto-ester 

proton, due to the induced macrocycle ring current.  

 

Scheme 2.6: Synthesis of propionic acid derivative of chlorin e6 

 Selective hydrolysis of the phytyl ester produced the free 173 carboxylic acid group which was 

used to couple pheophorbide a (17) with H-lysine(boc) methyl ester. Numerous coupling conditions 

were tested to form the amide bond between lysine and 173 carboxyl group of pheophorbide 17 and it 

was found that the DCC/DMAP combination provided the best yield. Coupling with modern coupling 

reagents like HOBt and TBTU did not change the yield and formed unwanted side products from opening 

of the isocyclic ring.  In the literature an alternate path has been reported for the production of the 172 
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amide derivative 23 (Scheme 2.7). Treatment of natural chorin derivative 21 with 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone (DDQ) leads to the formation of the lactone 22 by oxidizing the chlorin ring.19 

Then, opening of the lactone with nucleophiles formed the desired ester 23 in good yield.20 But it seems 

to be challenging to get rid of extra hydroxyl formed after ring opening of the lactone group while 

keeping the dihydrochlorin ring; dehydration may lead to the more stable porphyrin system. The 

optimum strategy for the coupling of pheophobide 17 with lysine is activation of the free acid with DCC 

and DMAP in dichloromethane. DIEA was used to neutralize the H-Lysine(Boc).HCl salt.  

 

 

 

 

Scheme 2.7: Alternate method to obtain propionic acid derivative of chlorin e6 

Coupling of H-Lysine(Boc)-OH with pheophorbide 17 provided lysine(boc) methyl ester 

pheophorbide a (18) in 52% yield. 1H NMR spectroscopy demonstrated the existence of the isocyclic ring 

and new peaks are apparent for the lysine moiety. 

 Next it was necessary to open the isocyclic ring to obtain the desired chlorin e6 derivative 19 

(Scheme 2.8). The isocyclic ring in phephorbide 17 is easily opened with cleavage of the β-keto-ester by 

the action of various nucleophiles. The ease of opening of the isocyclic ring is due to the release of ring 

strain and the formation of a resonance stabilized carbanion as an intermediate. In the literature, both 

O- and N-nucleophiles have been use to open the ring successfully. Methanolysis of the isocyclic ring of 

pheophorbide has been reported under several sets of reaction conditions. Chlorin e6 trimethyl ester 

(24) was formed when the pheophorbide is treated with methanol and diazomethane in the presence of 
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pyridine under nitrogen for 24 hours.21 Treatment with 0.5% KOH in methanol in the presence of 

pyridine also leads to the expected product 24.22 Methanolysis with sodium methoxide in THF provided 

an excellent yield compared to the other two conditions.  

 

 

 

Scheme 2.8: Opening of the isocyclic ring 

Apart from nucleophilic attack, this ring is susceptible to various reactions like allomerization 

and decarboxymethylation (Figure 2.3). In the presence of a base, the acidification of the 132 proton by 

the two neighboring carbonyl groups initiates easy enolization. This leads to a rapid irreversible 

oxidation of the isocyclic ring by atmospheric oxygen, this is called allomerization, or autoxidation.23 At 

higher temperatures, the ester group (COOMe) of the β-keto-ester can undergo decarboxymethylation 

and form the corresponding stable pyro derivative.24 

 

 

 

 

 

 

Figure 2.3: Reactions of isocyclic ring 
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Due to the high yield and short reaction times, it was decided to use sodium methoxide to open 

up the isocyclic ring to obtain the chorin e6 derivative 19. This reaction was carried out under argon to 

prevent allomerization and in an ice bath to prevent the racemization of the lysine. Previous literature 

has reported that under strong basic conditions amino acids can undergo racemization.25 A dilute 

solution of sodium methoxide (0.5 M) was freshly prepared each time, by reacting dry methanol with 

sodium metal. The ring opening step was easy to follow by using its UV-Vis spectrum. Chorin e6 

compounds have a much sharper Soret band compared to the pheophorbides. Once the ring opens, the 

Soret band is blue shifted from 413 to 404 nm and reaction mixture quickly turns from brown to green 

upon addition of the sodium methoxide mixture. Subsequent isocyclic ring opening with sodium 

methoxide26 in THF produced 173-monolysine(boc)chlorin e6 trimethyl ester (19) in high yield (89%). The 

identity of the molecule 19 was confirmed using 1H NMR, mass spectrometry and UV-Vis spectrometry. 

Disappearance of characteristic sharp singlet at δ 6.33 for the single proton in the isocyclic ring and the 

appearance of a multiplet for two protons a δ 5.38 confirmed the formation of chlorine e6 derivative.  

Deprotection of the amine27 of the lysine side chain with TFA: CH2Cl2 yielded the desired 

molecule 173-monolysinechlorin e6 trimethyl ester (21) in 33% overall yield from pheophorbide a (17) 

(Scheme 1). 

2.3.2 Synthesis of Chlorin e6 

Previously discussed mechanistic studies revealed that selective coupling at the acetic acid side 

chain of chlorin e6 (2) yielded the 152 chlorin e6 derivatives. The target is to synthesize all three isomers 

starting from a natural inexpensive source: S. pacifica alga. To achieve the target it is nesassary to 

synthesize chlorin e6 (2) from pheophytin a (4). The synthetic route to chlorin e6 (2) from pheophytin a 

(4) is shown in Scheme 2.8. Transesterification of the phytyl ester group of pheophytin a (4) was 

accomplished with 5% sulfuric acid in methanol at room temperature. In spite of the convenient 
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hydrolysis of the phytyl ester to carboxylic acid, it was decided to do a transesterification to simplify the 

purification process. Methyl pheophorbide a (3) was obtained in quantitative yield and its identity was 

confirmed using NMR and mass spectroscopy.  

 

Scheme 2.8: Synthesis of chlorin e6 (2) from pheophytin a (4) 

The ring opening of the isocyclic ring of methyl pheophorbide a (3) with methoxide produced 

chlorin e6 trimethyl ester (24). The first few attempts of the Isocyclic ring opening reaction failed with 

sodium methoxide in CH2Cl2. An optimized yield of 98% of chlorin e6 trimethyl ester (24) was obtained 

with 1.1 equivalents of freshly prepared sodium methoxide in THF. The 1H NMR spectrum and mass 

spectrum confirmed the existence of the extra methyl group for the methylated formic group. 

Chlorin e6 (2) can be obtained by hydrolysis of all three methyl esters of chlorin e6 trimethyl 

ester (24). Methyl ester hydrolysis has been attempted with numerous reagents and conditions. 

Hydrolysis with stronger bases such as NaOH, LiOH and KOH under different conditions yields an 

inseparable mixture of compounds. Esters can be hydrolyzed with various protic or Lewis acids, e.g., 
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CH3SO3H, p-TSA, BCl3,
28 or BBr3.

29 Hydrolysis with BBr3 in CH2Cl2 formed a mixture of partially hydrolyzed 

products and various by products. These reagents are highly reactive and are not tolerated by many 

functional groups, which seriously limits their utility. Apart from numerous methods based on 

saponification/hydrolysis reaction pathways, this conversion can be carried out with various strong 

nucleophilic reagents capable of cleaveing the esters by dealkylation (SN2 -type) reactions.30 Among 

them, LiCl, LiBr and LiI have been described as effective reagents for conversion of esters derived from 

primary and secondary alcohols. Little success was achieved using a large excess of LiI in ethyl acetate 

under reflux conditions for 24 hours.15 The main problem is partial hydrolysis of these which results in a 

mixture of mono, di and tri acids which is hard to purify using normal column chromatography. Only 

21% maximum yield of chlorin e6 (2) was obtained after purification via Sephadex LH 20 column 

chromatography (100% MeOH) on a small scale. 

2.3.3 Synthesis of 152-Chlorin e6 Conjugates 

The final steps in the synthesis of 152-amino acid derivatives 27c and 27d of chlorin e6 require 

the coupling of chlorin e6 with a protected amino acid followed by deprotection. According to previous 

studies5 with three free carboxylic acids, the 152-carboxylic acid is activated regardless of the coupling 

reagent employed. A detailed mechanism was discussed at the beginning of this Chapter. As was 

proposed, the reaction goes through a seven-membered anhydride intermediate 8 which forms 

between the acetic and formic acid chains. The free amine of the amino acid selectively attacked the 

more accessible carbonyl group of the anhydride 8. DIEA was used to activate the amino acid by 

neutralizing the salt. To minimize the loss of the product during the chromatography and to simplify the 

characterization of the product, both the 173- and 131- acids were converted into methyl esters with 

diazomethane. Classical esterification with methanol under acidic conditions only reacts with the 

propionic side chain and leaves the formic side chain unchanged.  Not only that, all these acid labile 

protecting groups can be cleaved during esterification under acidic conditions. Freshly prepared 
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diazomethane was bubbled through the reaction mixture and the reaction was monitored by TLC. Both 

products 26a and 26b were characterized by 1H NMR and mass spectroscopy.  An optimum yield of 45% 

of the 152-monoaspartylchlorin e6 di(tert)butyl dimethyl ester (26a) and 77% of of 152-monolysine(boc) 

chlorin e6 trimethyl ester (26b) were obtained with 1.2 equivalents of DCC and DMAP in CH2Cl2 at room 

temperature for 12 hours (Scheme 2.9). 

 

 

 

 

 

 

 

 

 

 

Scheme 2.9: Synthesis of acetic acid derivatives of chlorin e6 (2) 

 Yields are extremely variable for the aspartyl derivative compared to the lysine derivative, 

possiblly due to steric bulkiness of the tert-butyl protecting group of the aspartic acid. Excess DCC and 

aspartic acid reduced the yield significantly by forming the diaspartic acid conjugate as a side product. 

Deprotection of the amine of the lysine conjugate 26b and both acids of the aspartyl conjugate 26a have 
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been achieved under acidic conditions. Deprotection using TFA in CH2Cl2 afforded 152-

monoaspartylchlorin e6 dimethyl ester (27c) and 152-monolysinechlorin e6 trimethyl ester (28b) in 79% 

and 73% yields, respectively. 

Insertion of palladium into the chlorin ring was done before the deprotection step to simplify 

the purification, but a good 1H NMR spectrum of deprotected palladium chlorin derivative could not be 

obtained. Several deprotection methods were tested. tert-Butyl deprotection with TFA/CH2Cl2,
31  ZnBr/ 

CH2Cl2
32 and with HCl gas in CH2Cl2, but all were unsuccessful. Product was difficult to identify using 1H 

NMR due to peak broadening. This may be due to a paramagnetic species which is produced during the 

deprotection step. To solve this problem, palladium insertion was done after deprotection. Both 

palladium acetate and palladium chloride worked well in the insertion reaction. An optimized yield of 

98% of palladium inserted chlorin derivatives 28a and 28b was consistently obtained with 1.2 

equivalents of palladium acetate in THF at 40 oC (Scheme 2.10). A significant blue shift in the UV-Vis 

spectrum was observed (Figure 2.4). 1H NMR and mass spectroscopy also confirmed the insertion of 

palladium.  

 

Scheme 2.10: Palladium insertion reaction 
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Figure 2.4: UV-Vis spectroscopic progression of the palladium insertion reaction in THF. 152-
Monoaspartylchlorin e6 dimethyl ester (27a, green) and palladium inserted 152-Monoaspartylchlorin e6 
dimethyl ester (28a, blue) 

 

2.3.4 Synthesis of 131 Chlorin e6 Conjugates 

There are two possible ways to synthesize 131 conjugates. These are: (1) selective esterification 

of 173 and 152 carboxylic acids of chlorin e6 (2) followed by coupling,33 and (2) isocyclic ring-opening of 

methyl pheophorbide a (3) with a nucleophile. By using the second method we will be able to avoid the 

low yielding chlorin e6 (2) synthesis and enhance the yield of the overall reaction. Unfortunately, the ring 

opening-reaction was only successful with ethylene diamine. Coupling with any other linker or direct 

coupling of amino acids has to follow the first route. 

Under acidic conditions, the inner nitrogen atoms of the chlorin ring are fully protonated and 

the 131-carboxylic acid becomes severely deactivated. The protonated chlorin core is inductively 

electron-withdrawing from the 131-carbonyl, making the carbonyl double bond stronger. This prevents 

the formation of protonated 131-carbonyl intermediate during the esterification. This permits selective 

esterification of the 152- and 173- carboxylic acids. These carboxylic acids were selectively methylated 

with 5% H2SO4/MeOH to give chlorin e6 dimethyl ester (29) in quantitative yield. The remaining 131-
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carboxylic acid was activated using HOBt/TBTU under basic conditions and coupled directly with L-

aspartic di(tert)butyl ester to give (30) in 66% yield. With DCC/DMAP a lower yield was obtained 

compared to HOBt/TBTU. Product 30 was isolated using silica gel column chromatography and 

characterized by 1H NMR and mass spectroscopy. Subsequent deprotection of both carboxylic acid 

groups in the aspartic chain provided compound 7 in 57% overall yield from chlorin e6 (Scheme 2.11).  

 

Scheme 2.11: Synthesis of 131 aspartic acid derivative of chlorin e6 7 

Nucleophilic opening of the isocyclic ring in pheophorbide a (17) with ethylenediamine and 

ethanolamine has been reported.34 The same reaction was carried out with β-alanine(tert)butyl ester to 

produce a link to couple aspartic acid to the chlorin e6 dimethyl ester 29. Isocyclic ring-opening with β-

alanine(tert)butyl ester was unsuccessful, presumably because of its lower nucleophilcity and its 

bulkiness compared to ethylenediamine.  oupling β-alanine(tert)butyl ester with the remaining 131-

carboxylic acid  of the chlorin e6 dimethyl ester (29) followed by deprotection of the tert-butyl group 

provided 131-mono-β-alanylchlorin e6 dimethyl ester (32) in 64% yield over two steps. Aspartic 
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di(tert)butyl ester was coupled through the linker to the chlorin e6 to produced 131-mono-β-

alanylaspartylchlorin e6 dimethyl ester 33; subsequent deprotection of the tert-bytyl group provided 34 

in 54% overall yield (Scheme 2.12). 

 

Scheme 2.12: Synthesis of 131-β-alanylaspartylchlorin e6 34 

The high yielding isocyclic ring-opening reaction with ethylenediamine was used to develop a 

potentially high yielding way to synthesize novel chlorin e6 photosensitizers directly from pheophytin a 

(2) in four steps. Nucleophilic opening of the isocyclic ring of methyl pheoporbide 3 with 

ethylenediamine led to molecule 35 which was isolated in 91% yield. The reaction was monitored using 

TLC and UV-Vis spectroscopy. Due to the change in conjugation of the molecule, the color changed from 

dark green to bright green during ring-opening. Recently it was found possible to reduce the reaction 

time by half at 40 oC using toluene as a solvent.  1H NMR, UV-Vis and mass spectroscopy confirmed the 
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presence of the product 35. Subsequent coupling of protected lysine followed by deprotection provided 

the desired product 37 in four steps and in 55% yield from pheophytin a (2) (Scheme 2.13).  

 

Scheme 2.13: Synthesis of 131-ethylenediaminylchlorin e6 37 

2.4 Molecular Modeling 

Conformation analysis calculations for all three regioisomers (173, 152 and 131) of lysine 

derivatives of chlorin e6 20, 27b and 37 was achieved in the gas phase at the HF/6-31G level and the 

minimum energy conformations were obtained (Figure 2.5). In addition, the minimum energy 

conformation of a mono-cationic 131-lysinyl chlorin e6 derivative without a linker (Figure 2.5d) was also 

examined for direct comparison with the propionic acid derivative 20 and the acetic acid derivative 27b. 

These calculations were done using atom coordinates from the X-ray structure of 152-aspartylchlorin e6 

tetramethyl ester.12 As shown in Figure 2.5, the lysine attached propionic side chain in the 173-lysinyl 

derivative 20 is nearly perpendicular to the macrocyclic plane (Figure 2.5a). The lysine residue in the 152-
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lysinyl derivative 27b forms approximately a 120o angle (Figure 2.5b). On the other hand, as shown in 

Figure 2.5c and 2.5d, the lysine-attached formic acid side chain extends away from the macrocycle in the 

131-lysinyl derivatives, with and without the short spacer. Subsequently, in the L-shape conformation of 

the 173-lysinylchlorin e6 derivative 20 the amino acid covers one face of the chlorin ring, while in the 

case of the 152- and 131-lysinyl derivatives, it extends away from the macrocycle resulting in nearly a 

linear conformation for the 131 derivatives.  According to the minimum energy conformations in the gas 

phase, the use of a short linker and the presence of two (rather than one) positive charges, as a result of 

conjugation to the C-terminus rather than the N-terminus of the amino acid, do not appear to have a 

substantial effect on the preferred conformation; the main factor affecting the molecule conformation is 

the site of substitution. Water effects were also evaluated for the 131-lysinylchlorin e6 derivative 37. 

There was no significant difference in the minimum energy conformation for the aquous phase 

compared with the conformation in the gaseous phase. 

 

Figure 2.5: Energy minimized conformations in gas phase for chlorin e6 derivatives (a) 20, (b) 27b, (c) 37 
and (d) [131 LysCe6TME]+. Optimization by energy was carried out at HF/6-31G level. 
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2.5 Cell Culture Studies 

2.5.1 Time-dependent Cellular Uptake  

The results obtained for the time-dependent uptake of chlorin e6 and its derivatives at a 

concentration of 10 μM in human HEp2 cells are shown in Figure 2.6. All amino acid conjugates of 

chlorin e6 were readily taken up by cells and showed similar uptake kinetics to unconjugated chlorin e6. 

Interestingly, the 152-lysinylchlorin e6 derivatives 27b and its palladium complex 28b accumulated to a 

much higher extent than all other compounds, at all time points studied. In comparison with chlorin e6 

(2), the lysinyl derivatives 27b and 28b showed 18-fold and 4-fold higher cellular uptake, respectively, 

after 24 hours. The observed high uptake for derivatives 27b and 28b is probably due to the lysine 

residue in position 152 since the corresponding aspartyl derivatives 27a and 28a accumulated to a 

significantly lower extent within cells. Presumably, the stronger interactions between the positively 

charged lysine derivatives, (compared with the corresponding aspartyl derivatives), with the negatively 

charged plasma membrane leads to enhanced cellular uptake. On the other hand a lysine residue in 

position 173, as in derivative 20, showed a dramatic decrease in cellular uptake compared with the same 

residue in position 152, suggesting that the molecular conformation plays an important role on the 

mechanism of cellular uptake. Indeed the extended conformation of the 152-lysinylchlorin e6 derivative 

27b (Figure 2.5b) might be the most favored for penetration across the plasma membrane, compared 

with the L-shape and linear conformations of the 173- and 131-lysinyl derivatives (Figures 2.5a,c), 

respectively. The presence of a chelated palladium ion, as well as the more linear structure of the 131-

lysinyl side chain might lead to enhanced π-π stacking of the macrocycles, decreasing cellular uptake. 
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Figure 2.6: Time-dependent uptake of chlorin e6 (2, black line) and its derivatives 173-LysCe6TME (20, 
brown line), 152-AspCe6DME (27a, light blue line), 152-LysCe6TME (27b, red line), 152-AspPdCe6DME 
(28a, green line), 152-LysPdCe6TME (28b, blue line), 131-AspCe6DME (7, maroon line), 131-β-

AlaAspCe6DME (34, purple line) and 131-EDLysCe6DME (37, pink line) at 10 M by HEp2 cells. 
 
 

2.5.2 Cytotoxicity 

The dark cytotoxicity and phototoxicity of chlorin e6 and its derivatives was evaluated in HEp2 

cells exposed to increasing concentrations of each compound up to 400 μM; the results are shown in 

Figures 2.8 and 2.7, respectively, and summarized in Table 2.1. Chlorin e6 and its lysinyl derivatives 20, 

27b and 28b were found to be non-toxic in the dark up to the highest concentration of 400 μM 

investigated. All other amino acid derivatives showed very low dark cytotoxicities (Figure 2.7), with IC50 > 

320 μM except for the 131-chlorin e6 derivatives 7 and 37, which showed IC50 of 285 and 268 μM, 

respectively. However, upon exposure to low light dose (1 J/cm), all chlorin e6 derivatives were found to 

be highly toxic to HEp2 cells (Figure 2.8). The most phototoxic were the 131-chlorin e6 derivatives 7, 34 

and 37, with estimated IC50 values of 0.61, 0.82 and 1.34 μM, respectively. Among these, the most 

promising aspartyl derivatives for PDT applications are compounds 7 and 34, because they have the 
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highest dark cytotoxicity/phototoxicity ratio, > 466:1. The presence of the β-alanine spacer between the 

131 carbonyl group and the aspartic acid residue seems to have only a small effect, slightly decreasing 

compound cytotoxicity. On the other hand the 152-aspartylchlorin e6 derivative 27a was less phototoxic 

than its 131 regioisomer 7 by approximately 7-fold, and the introduction of palladium further reduced its 

phototoxicity. The positively charged 173- and 152-lysinylchlorin e6 derivatives 20 and 27b were the least 

phototoxic, and the introduction of palladium increased the phototoxicity of the 152 derivative by about 

10-fold. These results show for the first time that the phototoxicity of amphiphilic conjugates of chlorin 

e6 depends mainly on the site of conjugation, probably as a result of molecule conformation; the nature 

of the amino acid, the molecule overall charge, and the presence of palladium(II) also affect 

phototoxicity, but apparently to a smaller extent. Our results suggest that the most extended, nearly 

linear conformation of the 131 regioisomers facilitates binding to biological substrates, enhancing their 

toxic effect. 

Table 2.1: Cytotoxicity (HEp2 cells) for chlorin e6 and its derivatives using the MTT assay 

Compound Dark toxicity (IC50, μM) Phototoxicity (IC50, μM) Ratio 

Chlorin e6 (2) >400 20.8 >19.2 

173-LysCe6TME (20) >400 26.2 >15.3 

152-AspCe6DME (27a) 373.1 4.0 93.4 

152-LysCe6TME (27b) >400 28.8 >13.9 

152-AspPdCe6DME (28a) 324.8 16.7 19.4 

152-LysPdCe6TME (28b) >400 3.3 >121.2 

131-AspCe6DME (7) 284.6 0.61 466.6 

131-βAlaAspCe6DME (34) 383.9 0.82 468.2 

131-EDLysCe6DME (37) 268.4 1.34 200.3 
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Figure 2.7: Dark toxicity of chlorin e6 (2, black line) and its derivatives 173-LysChlorin e6TME (20, brown 
line), 152-AspChlorin e6DME (27a, light blue line), 152-LysChlorin e6TME (27b, red line), 152-AspPdChlorin 
e6DME (28a, green line), 152-LysPdChlorin e6TME (28b, blue line), 131-AspChlorin e6DME (7, maroon 
line), 131-βAlaAsp hlorin e6DME (34, purple line), and 131-EDLysChlorin e6DME (37, pink line) toward 
HEp2 cells using 1 J/cm2 light dose and the Cell Titer Blue assay. 

 

 

Figure 2.8: Phototoxicity of chlorin e6 (2, black line) and its derivatives 173-LysChlorin e6TME (20, brown 
line), 152-AspChlorin e6DME (27a, light-blue line), 152-LysChlorin e6TME (27b, red line), 152-AspPdChlorin 
e6DME (28a, green line), 152-LysPdChlorin e6TME (28b, blue line), 131-AspChlorin e6DME (7, maroon 
line), 131-βAlaAsp hlorin e6DME (34, purple line), and 131-EDLysChlorin e6DME (37, pink line) toward 
HEp2 cells using 1 J/cm2 light dose and the Cell Titer Blue assay. 
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2.5.3 Intracellular Localization 

The preferential sites of subcellular localization of this series of chlorin e6 derivatives were 

evaluated by fluorescence microscopy, upon exposure of HEp2 cells to 10 μM compound concentrations 

for six hours. Figure 2.9 to 2.17 in supporting information shows the fluorescence pattern observed for 

all compounds and Table 2.2 summarizes their main sites of subcellular localization.  

Table 2.2: Main subcellular sites of localization for chlorin e6 and its derivatives in HEp2 cells 

Compound Lysosomes ER Golgi Mitochondria 

Chlorin e6 (2) + ++ - - 

173-LysCe6TME (20) + ++ + - 

152-AspCe6DME (27a) ++ ++ - + 

152-LysCe6TME (27b) ++ ++ + - 

152-AspPdCe6DME (28a) ++ + ++ - 

152-LysPdCe6TME (28b) + ++ - - 

131-AspCe6DME (7) + ++ ++ ++ 

131-βAlaAspCe6DME (34) ++ ++ ++ - 

131-EDLysCe6DME (37) ++ ++ ++ - 

 
 

Overlay experiments using the organelle specific fluorescence probes BoDIPY Ceramide (Golgi), 

LysoSensor Green (Lysosomes), MitoTracker Green (mitochondria), and ER tracker Blue/White 

fluorescence (ER) were conducted to evaluate the preferential sites of compound localization.  All the 

chlorin e6 derivatives were found to localize in the lysosomes and the ER. This is not surprising, since the 

structurally-related LS-11 (1, 152-aspartyl chlorin e6) is a known lysosomal localizer, and HPPH (2-[1-

hexyloxyethyl]-2-devinyl-pyropheophorbide a) localizes preferentially in the ER.35 Photodamage to ER 

and/or lysosomes has been shown to lead to activation of apoptotic pathways.35,36 In addition, the most 

phototoxic 131 chlorin e6 regioisomers were also found in Golgi and mitochondria; presumably, the 
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photodamage effect to multiple organelles caused by the 131 derivatives can trigger various apoptotic 

pathways, leading to effective cell destruction. The multiple sites of intracellular localization observed 

for the 131 chlorin e6 derivatives might again be due to their linear conformations that may facilitate 

their binding to various intracellular sites. 

2.6 Conclusion 

A series of chlorin e6 derivatives, conjugated directly or with a spacer group with either an 

aspartic or a lysine residue at the propionic (173), acetic (152) or formic (131) side chains of the chlorin 

macrocycle, have been synthesized in good yields from pheophytin a (4) extracted from S. pacifica. In 

comparison with chlorin e6 (2), all amino acid derivatives readily accumulated in human HEp2 cells. 

Cytotoxicity results revealed that none of these compounds is toxic in the absence of light in the range 

of therapeutic dose. However after exposure to light all of these derivatives showed high phototoxicity. 

According to the phototoxicity results, the most phototoxic compounds were found to be the formic 

acid regioisomers, bearing either an aspartic acid or a lysine residue directly conjugated to position-13 of 

the chlorin macrocycle, or connected via a short spacer group. 131-Aspartylchlorin e6 (7) showed the 

lowest IC50 value of 0.61 μM. Computational conformational analysis revealed that the 131 regioisomer 

has an extended, nearly linear, conformation in comparison with the 152 and 173 regioisomers. This 

linear conformation might facilitate the binding to multiple intracellular and internal components and 

subsequent photodamage to multiple cellular sites. These results show that the site of amino acid 

conjugation in the chlorin e6 macrocycle is the major determinant of its phototoxicity. Therefore, we 

conclude that the 131 regioisomer of mono-L-aspartylchlorin e6 (7) is a more efficient photosensitizer for 

PDT than is the commercially available 152 regioisomer (LS-11, 1)  
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2.7 Experimental 

Isolation of pheophytin a (4) from Spirulina pacifica:  

 

Approximately 300 g of dried Spirulina pacifica algae was wetted with acetone and subsequently slurried 

with 2 L of liquid nitrogen in a resistant 2 gallon bucket to form a frozen slush. The algae were then 

transferred to a 3 L reaction vessel and 2 L of acetone was added. The vessel was fitted with a Fisher 

jumbo mechanical stirrer with a 46 cm impeller shaft and a 3-neck lid was clamped to the vessel. The 

reaction mixture was heated at reflux under argon with mechanical stirring for 3 h. The supernatant was 

then filtered through Whatman 1 paper on a Buchner funnel and more acetone was added to the solid. 

This slurry was allowed to sit overnight protected from light. Then the extraction and filtration processes 

were repeated twice. The green filtrates were combined and evaporated and then purified by flash 

column chromatography on silica gel. Elution first with CH2Cl2 removed the fast-running yellow 

carotenoid band. Then elution with 95:5 CH2Cl2/acetone eluted the major blue-grey pheophytin a band 

(4, C55H74N4O5, 1.5g); UV-Vis (CH2Cl2): λmax (ε/M
-1cm-1) 668 nm (44,600) , 611 (8,600 ), 538 (9,700), 507 

(10,800), 414 (106,000); 1H NMR (chloroform-d, 400 MHz): δ 9.50 (s, 1H), 9.35 (s, 1H), 8.57 (s, 1H), 8.0 

(m, 1H), 6.28 (m, 1H), 6.26 (s, 1H), 6.18 (s, 1H), 4.48 (m, 1H), 4.21 (m, 1H), 3.88 (s, 3H), 3.64 (s, 3H), 3.60 

(q, J = 7.5 Hz, 2H), 3.40 (s, 3H), 3.20 (s, 3H), 2.63 (m, 2H), 2.34 (m, 2H), 1.74(d, J = 7.5 Hz, 3H), 1.61 (t, J = 

7.5 Hz, 3H) Phytyl: 5.13 (m, 1H), 4.50 (m, 1H), 1.90 (m, 2H), 1.56 (m, 3H), 1.0-1.3 (m, 2H), 0.85 (m, 6H) 

0.71 (m, 6H). MS (MALDI-TOF) m/z 872 [M+H]+, calcd. for C55H75N4O5 872.256. 

 



63 
 

Pheophorbide a (17): 

 
 
 

Pheophytin a (4, 250 mg, 0.29 mmol) was selectively hydrolyzed to give the 173-carboxylic acid without 

affecting the 131-carbomethoxy group via the Wasielewski and Svec procedure which requires stirring 

pheophytin a in 25 ml of degassed TFA/H2O 80:20 at 0 °C overnight. The reaction mixture was poured 

into 150 ml of H2O and extracted with CHCl3. The extract was washed three times with H2O and once 

with 10% NaHCO3 to remove TFA. This formed a precipitate in the organic layer. Then it was washed 

with 10% citric acid until the precipitate was dissolved.  The organic layer was dried over anhydrous 

Na2SO4. Evaporation of solvent provided a brown residue that was purified via silica gel column 

chromatography with 50% ethyl acetate in CH2Cl2. After evaporation of solvent pheophorbide a (17, 

C35H36N4O5, 155 mg, 0.26 mmol, 90%) was obtained. UV-Vis (D M): λmax (ε/M
-1cm-1) 667 nm (55,200), 

609 (7,900), 535 (9,500), 505(12, 100), 413 (119, 200); 1H NMR (acetone-d6, 400 MHz): δ 9.53 (s, 1H), 

9.20 (s, 1H), 8.85 (s, 1H), 7.99 (dd, J = 17.86, 11.61 Hz, 1H), 6.34 (s, 1H), 6.26 (d, J = 16.82 Hz, 1H), 6.26 

(dd, J = 11.61, 1.13 Hz, 1H), 4.66 (m, 1H), 4.23 (m, 1H), 3.88 (s, 3H), 3.59 (s, 3H), 3.47 (q, J = 7.5 Hz, 2H), 

3.38 (s, 3H), 3.01 (s, 3H), 2.59 (m, 2H), 2.35 (m, 2H), 1.85 (d, J = 7.5 Hz, 3H), 1.55 (t, J = 7.5 Hz, 3H), -1.3 

(s, 1H), -1.5 (s, 1H). MS (MALDI-TOF) m/z 593 [M+H]+, calcd. for C35H37N4O5 593.276. 
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Lysine(boc) methyl ester pheophorbide a (18): 

 
 
 

Pheophorbide a (17, 100 mg; 0.169 mmol) was dissolved in 10 ml of CH2Cl2. Then DCC (42 mg) and 

DMAP (10 mg) were added and the mixture was left for 15 min. H-Lysine (boc) methyl ester.HCl (60 mg, 

0.20 mmol) and DIEA (0.07 ml, 0.40 mmol) were dissolved in 5 ml of CH2Cl2, added to the reaction 

mixture and it was stirred for 4 h. [Note: this reaction is favored by dilute conditions. Concentrated 

conditions favor the formation of the anhydride (bispheophorbide), and will slow the reaction.] The 

reaction mixture was washed with 10% citric acid, water and brine, dried over anhydrous Na2SO4 and 

purified on a silica gel column (eluted with 10% acetone in CH2Cl2). After the major brown band was 

eluted from the column, the solvent was evaporated and the solid was dissolved in ethyl acetate and 

filtered. (DCC precipitates in ethyl acetate.) Evaporation of the ethyl acetate gave lysine (boc) methyl 

ester pheophorbide a (18, C47H58N6O8, 74 mg, 0.085 mmol, 51%); UV-Vis (D M): λmax (rel. inten.) 667 nm 

(0.463), 609 (0.066), 535 (0.080), 505(0.100), 413 (1.000); 1H NMR (acetone-d6, 400 MHz ): δ 9.12 (s, 1H), 

8.71 (s, 1H), 8.70 (s, 1H), 7.64 (dd, J = 17.8, 11.63 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 6.33 (s, 1H), 6.02 (d, J = 

17.85 Hz, 1H), 5.93 (d, J = 11.61 Hz, 1H), 5.77 (s, 1H), 4.65 (m, 1H), 4.41 (m, 1H), 4.21 (m, 1H), 3.91 (s, 

3H), 3.59 (s, 3H), 3.47 (s, 3H), 3.19 (s, 3H) 3.09 (q, J = 7.5 Hz, 2H), 2.92 (3H, s), 2.83 (m, 2H), 2.66 (m, 1H), 

2.48 (m, 1H), 2.25 (m, 1H), 1.85-1.62 (br , 4H), 1.86 (d, J = 7.24, 3H), 1.37 (t, J = 7.58, 3H), 1.43 (m, 2H), 

1.26 (s, 9H), - 1.95 (s, 1H),  -2.23 (s, 1H) MS (MALDI-TOF) m/z 835 [M+H]+, calcd. for C47H59N6O8 835.439. 
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173-Monolysine(boc)chlorin e6 trimethyl ester (19): 

 

 

Lysine(boc) methyl ester pheophorbide a (18, 74 mg, 0.085 mmol) was dissolved in a dry 2:1 THF/MeOH 

solvent system and stirred under argon for 10 min. Sodium methoxide (0.17 mL of a 0.5 M solution, 

0.085 mmol) was added and the reaction mixture was allowed to stir at 0 °C for 1 h. The reaction was 

followed by UV-Vis spectroscopy. The solution turns from brown to green as the isocyclic ring opens. 

The reaction mixture was then poured into water. The mixture was extracted with CH2Cl2 and the 

organic layer was washed with water and 5% citric acid, dried over anhydrous Na2SO4 and then 

evaporated. The residue was dissolved in 2% methanol/CH2Cl2 and purified on a silica gel plug with the 

same mobile phase. The solvent was evaporated and 173-monolysine(boc)chlorin e6 trimethyl ester (19, 

C48H62N6O9, 68 mg, 0.078 mmol, 89%) was obtained. 1H NMR (acetone-d6, 400 MHz ): δ 9.80 (s, 1H), 9.65 

(s, 1H), 9.03 (s, 1H), 8.19 (dd, J = 17.87, 11.58 Hz, 1H), 7.44 ( d, J = 7.6 Hz, 1H), 6.40 (d, J = 17.87, 1.33 Hz, 

1H), 6.13 (d, J = 11.61, 1.36 Hz, 1H), 5.89 (s, 1H), 5.38 (m, 2H), 4.63 (q, J = 7.22 Hz, 1H), 4.55 (dd, J = 

10.34, 1.95 Hz, 1H), 4.44 (m, 1H), 4.25 (s, 3H), 3.78 (q, J =7.67, 2H) 3.75 (s, 3H), 3.69 (s, 3H), 3.56 (s, 3H) 

3.49 (s, 3H), 3.27 (3H, s), 3.00 (m, 2H), 2.66 (m, 1H), 2.33 (m, 1H), 2.20 (m, 1H), 1.85-1.62 (br , 4H), 1.78 

(d, J = 7.24, 3H), 1.69 (t, J = 7.58, 3H), 1.43 (m, 2H), 1.32 (s, 9H), - 1.32 (s, 1H),  -1.52 (s, 1H). MS (MALDI-

TOF) m/z 867 [M+H]+, calcd. for C48H63N6O9 867.466. 
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173-Monolysinechlorin e6 trimethyl ester (20): 

 

 

Monolysine(boc) chlorin e6 trimethyl ester (19, 68mg, 0.078 mmol) was dissolved in 2 ml of dry CH2Cl2 in 

an ice bath under argon. Thioanisole (0.057 mmol) and 1 ml of TFA were added and the reaction mixture 

was allowed to stir overnight. The reaction mixture was rotavaped several times with diethyl ether to 

remove TFA. The resulting precipitate was washed several times with diethyl ether to remove 

thioanisole. Then the precipitate was dissolved in CH2Cl2 which was washed three times with H2O and 

once with 10% NaHCO3 to remove TFA.  The organic layer was dried over anhydrous Na2SO4. Solvent was 

evaporated to give 173-monolysinechlorin e6 trimethyl ester (20, C43H54N6O7, 43 mg, 0.056 mmol; 72%) 

was obtained. UV-Vis (acetone): λmax (ε/M
-1cm-1) 664 (65,000), 608 (4,900), 528 (4,500), 500 (16,100), 

400 (213,000);  1H NMR (acetone-d6, 400 MHz ): δ 9.79 (s, 1H), 9.63 (s, 1H), 9.03 (s, 1H), 8.17 (dd, J = 

17.87, 11.58 Hz, 1H), 7.59 ( d, J = 7.6 Hz, 1H), 6.38 (d, J = 17.87, 1.33 Hz, 1H), 6.12 (d, J = 11.61, 1.36 Hz, 

1H), 5.37 (m, 2H), 4.63 (q, J = 7.22 Hz, 1H), 4.55 (dd, J = 10.34, 1.95 Hz, 1H), 4.44 (m, 1H), 4.25 (s, 3H), 

3.76 (m, 2H) 3.75 (s, 3H), 3.69 (s, 3H), 3.55 (s, 3H) 3.48 (s, 3H), 3.25 (3H, s), 3.09 (m, 2H), 2.67 (m, 1H), 

2.30 (m, 1H), 2.20 (m, 1H), 1.85-1.62 (br , 3H), 1.78 (d, J = 7.24, 3H), 1.68 (t, J = 7.58, 3H), 1.51 (m, 2H), 

1.39 (m, 2H), - 1.33 (s, 1H),  -1.53 (s, 1H). 13C NMR (dichloromethane-d2, 400 MHz) δ 173.8, 173.3, 172.6, 

170.9, 169.9, 167.9, 155.3, 149.4, 145.6, 140.0, 136.8, 136.6, 135.9, 135.7, 135.2, 131.4, 129.7, 129.6, 

124.1, 122.1, 103.1, 102.6, 99.0, 94.2, 53.5, 53.4, 52.5, 50.0, 41.7, 38.9, 34.4, 32.8, 32.2, 31.1, 30.8, 23.4, 

22.9, 20.0, 18.0, 12.6, 12.4, 11.5.  MS (MALDI-TOF) m/z 767 [M+H]+, calcd. for C43H55N6O7 767.414. 
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Methyl pheophorbide a (3): 

 

Pheophytin a (4, 250 mg, 0.29 mmol) was treated with 5% sulfuric acid in methanol (degassed by 

bubbling with argon) overnight at room temperature under argon and protected from light. It was 

diluted with CH2Cl2, washed with water and then with 10% saturated aqueous sodium bicarbonate. The 

organic layer was dried over anhydrous Na2SO4, filtered and then evaporated. Purification was achieved 

via silica gel chromatography with 5% acetone in CH2Cl2 to obtain methyl pheophorbide a (3, C36H38N4O5, 

170 mg, 0.28 mmol, 96%) was obtained. UV-Vis (CH2Cl2): λmax (ε/M
-1cm-1) 668 nm (40,700), 610 (8,100), 

560 (3,200), 538 (9400), 506 (10,400), 412 (93,400); 1H NMR (acetone-d6, 400 MHz): δ 9.33 (s, 1H), 9.11 

(s, 1H), 8.61 (s, 1H), 7.83 (dd, J = 17.86, 11.61 Hz, 1H), 6.21 (s, 1H), 6.19 (dd, J = 17.85, 1.26 Hz, 1H), 6.09 

(dd, J = 11.57, 1.37 Hz, 1H), 4.50 (q, J = 7.32 Hz, 1H), 4.19 (m, 1H), 3.90 (s, 3H), 3.62 (s, 3H), 3.58 (s, 3H), 

3.44 (q, J = 7.5 Hz, 2H), 3.61 (s, 3H), 3.59 (s, 3H), 2.66 (m, 1H), 2.56 (m, 1H), 2.32 (m, 2H), 1.85 (d, J = 7.5 

Hz, 3H), 1.59 (t, J = 7.5 Hz, 3H), -1.8 (br, 2H). MS (MALDI-TOF) m/z 607 [M+H]+, calcd. for C36H39N4O5 

607.292. 

Chlorin e6 trimethyl ester (24): 

 
 

Methyl pheophorbide a (3, 921 mg, 1.52 mmol) was dissolved in dry THF and stirred under argon for 10 

min. Then 1.65 ml of a 1 M sodium methoxide solution (1.65 mmol) was added to the solution which 
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was allowed to stir for 2 h at 0 °C (the reaction was monitored using UV-Vis spectroscopy). The solution 

was diluted with H2O and extracted with CH2Cl2. The organic layer was dried over anhydrous Na2SO4, 

filtered and then evaporated. The solid obtained was dissolved in CH2Cl2 and chromatographed on a 

short silica gel column eluted with the 5% acetone/CH2Cl2. After evaporation of solvent, chlorin e6 

trimethyl ester (24, C37H42N4O6, 948 mg, 1.48 mmol, 98% of) was obtained. UV-Vis (CH2Cl2): λmax (ε/M
-

1cm-1) 666 nm (43,700), 608 (4,500), 558 (1,800), 530 (4,700), 500 (11,200), 404 (123,400); 1H NMR 

(acetone-d6, 400 MHz): δ 9.72 (s, 1H), 9.53 (s, 1H), 9.03(s, 1H), 7.08 (dd, J = 17.86, 11.61 Hz, 1H), 6.31 

(dd, J = 17.85, 1.26 Hz, 1H), 6.06 (dd, J = 11.57, 1.37 Hz, 1H), 5.36 (s, 2H), 4.63 (q, J = 7.32 Hz, 1H), 4.52 

(dd, J = 10.50, 2.21 Hz, 1H), 4.25 (s, 3H), 3.77 (s, 3H), 3.67 (q, J = 7.5 Hz, 2H), 3.61 (s, 3H), 3.54 (s, 3H), 

3.44 (s, 3H), 3.17 (s, 3H), 2.72 (m, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 2.06 (m, 1H), 1.75 (d, J = 7.5 Hz, 3H), 

1.64 (t, J = 7.5 Hz, 3H), -1.34 (s, 1H), -1.52 (s, 1H); MS (MALDI-TOF) m/z 639 [M+H]+, calcd. for C37H43N4O6 

639.318. 

Chlorin e6 (2): 

 

Chlorin e6 trimethyl ester (24, 50 mg, 0.078 mmol) was dissolved in anhydrous ethyl acetate under 

argon. Lithium iodide (124 mg, 0.94 mmol) was added. The reaction mixture was refluxed for 48 h under 

argon.  The reaction mixture was diluted with water and adjusted to pH 3 with aqueous citric acid and 

then washed with CH2Cl2. The solution was evaporated and redissolved in acetone and evaporated 

several times. The solid was washed with water and then dried under vacuum. The residue was 

dissolved in methanol and purified on a Sephadex LH20 column to yield chlorin e6 (2, C34H36N4O6, 10 mg, 

0.017 mmol, 21%); UV-Vis (MeOH): λmax (ε/M
-1cm-1) 666 nm (45,300), 610 (8,700), 558 (7,800), 530 
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(9,700), 502 (15,500), 402 (145,100); 1H NMR (acetone-d6, 400 MHz): δ 9.73 (s, 1H), 9.51 (s, 1H), 9.04(s, 

1H), 8.05 (dd, J = 17.86, 11.61 Hz, 1H), 6.28 (dd, J = 17.85, 1.26 Hz, 1H), 6.02 (dd, J = 11.57, 1.37 Hz, 1H), 

5.60 (d, J = 18.94 Hz, 1H), 5.40 (d, J = 18.94 Hz, 1H), 4.65 (m, 1H), 4.55 (m, 1H), 3.64 (m, 2H), 3.63 (s, 3H), 

3.42 (s, 3H), 3.15 (s, 3H), 2.72 (m, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 2.06 (m, 1H), 1.75 (d, J = 7.5 Hz, 3H), 

1.64 (t, J = 7.5 Hz, 3H), -1.6 (s, 2H); MS (MALDI-TOF) m/z 597 [M+H]+, calcd. for C34H37N4O6 597.271. 

152-Monoaspartylchlorin e6 di(tert)butyl dimethyl ester (26a): 

 

Chlorin e6 (2, 100 mg, 0.168 mmol) was dissolved in dry CH2Cl2. DCC (35 mg, 0.168 mmol) and DMAP (9 

mg, 0.074) were added and the mixture was allowed to stir until reagents were completely dissolved. 

After 3 h, aspartic acid di(tert)butyl ester hydrochloride (47.2 mg, 0.168 mmol) and DIEA (0.03 ml, 0.18 

mmol) were mixed in CH2Cl2 and added to the reaction mixture which was allowed to stir overnight. The 

mixture was diluted with CH2Cl2 and then washed with 5% aqueous citric acid, followed by a wash with 

brine and water. It was dried over anhydrous Na2SO4 and then evaporated. Then it was dissolved in 

CH2Cl2 and treated with excess ethereal diazomethane. The residue was dissolved in 2% methanol/ 

CH2Cl2 and purified via silica gel column chromatography with the same mobile phase to afford 152-

monoaspartylchlorin e6 di(tert)butyl dimethyl ester(26a, C48H61N5O9, 65 mg, 0.076 mmol, 45%); 1H NMR 

(aceton-d6, 400 MHz ) δ 9.64 (s, 1H), 9.32 (s, 1H), 9.02 (s, 1H), 7.81 (dd, J = 11.58, 17.85 Hz, 1H), 7.00 (s, 

1H), 6.09 (dd, J = 17.87, 1.26 Hz, 1H), 5.85 (dd, J = 11.60, 1.29 Hz, 1H), 5.38 (s, 2H), 4.6 (br, 3H), 4.32 (s, 

3H), 3.62 (s, 3H), 3.54 (s, 3H), 3.52 (q, J = 7.3 Hz, 2H), 3.30 (s, 3H), 3.02 (s, 3H), 2.78 (m, 3H), 2.44 (m, 2H), 
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1.87 (m, 1H), 1.65 (d, J = 7.3 Hz, 3H), 1.58 (t, J = 7.7 Hz, 3H), 1.26 (s, 9H), 1.16 (s, 9H), -1.42 (s, 1H), -1.53 

(s, 1H); MS (MALDI-TOF) m/z 852 [M+H]+, calcd. for C48H62N5O9 852.454. 

152-Monoaspartylchlorin e6 dimethyl ester (27a): 

 

152-Monoaspartylchlorin e6 di(tert)butyl dimethyl ester (26a, 65 mg, 0.076 mmol) was dissolved in 2 ml 

of dry CH2Cl2 in a ice bath under argon. Thioanisole (0.006 ml) and 2 ml of TFA were added and the 

reaction mixture was allowed to stir overnight. The reaction mixture was rotavaporated several times 

with diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether 

to remove thioanisole. Then the precipitate was dissolved in CH2Cl2 which was washed three times with 

H2O and once with 10% NaHCO3 to remove TFA. (This may form a precipitate. If so, the organic layer is 

washed with citric acid until the precipitate dissolves in the organic layer). The organic layer was dried 

over anhydrous Na2SO4. The solvent was evaporated to obtain 152-monoaspartylchlorin e6 dimethyl 

ester (27a, C40H45N5O9, 44 mg, 0.06 mmol, 79%); UV-Vis (acetone) λmax (ε/M
-1cm-1) 664 (48,400), 609 

(6,000), 560 (2,000), 529 (6,300), 500 (14,200), 402 (151,800); 1H NMR (acetone-d6, 400 MHz ) δ 9.76 (s, 

1H), 9.58 (s, 1H), 9.04 (s, 1H), 8.10 (dd, J = 17.85, 11.59 Hz, 1H), 6.33 (dd, J = 17.87, 0.98 Hz, 1H), 6.07 

(dd, J = 11.61, 1.09 Hz, 1H), 5.32 (m, 2H), 4.84 (m, 1H), 4.60 (m, 2H), 4.26 (s, 3H), 3.72 (q, J = 7.3 Hz, 2H), 

3.57 (s, 3H), 3.54 (s, 3H), 3.45 (s, 3H), 3.21 (m, 3H), 2.95 (dd, J = 16.85, 5.53 Hz, 1H), 2.88 (dd, J = 16.85, 

5.09 Hz, 1H) 2.68 (m, 1H) 2.32 (m, 2H), 1.78 (m, 1H), 1.74 (d, J = 7.3 Hz, 3H), 1.66 (t, J = 7.7 Hz, 3H),  -1.39 

(s, 1H), -1.58 (s, 1H); 13C NMR (acetone-d6, 100 MHz) δ 174.5, 173.5, 173.2, 172.6, 171.7, 170.4, 169.4, 

155.8, 150.3, 146.3, 140.4, 137.4, 136.6, 136.3, 135.8, 132.0, 130.6, 126.0, 122.6, 104.2, 103.1, 99.7, 
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95.4, 54.2, 54.0, 52.2, 50.4, 41.2, 37.8, 32.1, 31.0, 26.1, 23.8, 20.3, 18.4, 12.6, 11.6; MS (MALDI-TOF) m/z 

740 [M+H]+, calcd. for C40H46N5O9 740.3296. 

Palladium 152-monoaspartylchlorin e6 dimethyl ester (28a): 

 

 

 

152-Monoaspartylchlorin e6 dimethyl ester (27a, 44 mg, 0.06 mmol) was dissolved in 2 ml of dry THF. 

Palladium acetate (14.2 mg, 0.063 mmol) was dissolved in THF and added to the reaction vessel and it 

was allowed to stir at 40 °C for 3 h. The reaction was followed by UV-Vis spectroscopy. The solution 

turned from green to bluish green as the complex formed. After evaporation of solvent, the residue was 

dissolved in methanol and purified via sephedex LH-20 chromatography with the same mobile phase to 

afford palladium 152-monolysine chlorin e6 trimethyl ester (28a, C40H43N5O9Pd, 50 mg, 0.059 mmol, 

98%); UV-Vis (acetone-d6): λmax (ε/M-1cm-1) 619 (31,200), 579  (6,200), 489 (4,000), 393 (44,200);  1H 

NMR (acetone-d6, 400 MHz ) δ 9.53 (s, 1H), 9.54 (s, 1H), 8.93 (s, 1H), 8.03 (dd, J = 17.82, 11.54 Hz, 1H), 

6.17 (d, J = 17.79 Hz, 1H), 6.00 (dd, J = 11.61, 1H), 5.19 (d, J = 18.77 Hz, 1H), 5.04 (d, J = 18.59 Hz, 1H), 

4.92 (m, 1H), 4.63 (m, 2H), 4.20 (s, 3H), 3.62 (s, 3H), 3.57 (m, 2H), 3.57 (s, 3H), 3.37 (s, 3H), 3.07 (m, 3H), 

2.68 (m, 2H) 2.38 (m, 1H) 2.12 (m, 1H), 1.78 (m, 2H), 1.74 (d, J = 7.3 Hz, 3H), 1.50 (t, J = 7.7 Hz, 3H). MS 

(MALDI-TOF) m/z 845 [M+H]+, calcd. for C40H44N5O9Pd 845.217. 
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152-Monolysine(boc)chlorin e6 trimethyl ester (26b): 

 

 

Chlorin e6 (2, 75 mg, 0.12 mmol) was dissolved in dry CH2Cl2 (10 ml). DCC (31.3 mg, 0.15 mmol) and 

DMAP (11 mg, 0.09 mmol) were added and the mixture was allowed to stir until completely dissolved. 

After 3 h, H-lysine(boc)-OMe hydrochloride (45 mg, 0.15 mmol) and DIEA (0.03 ml, 0.17 mmol) were 

mixed in CH2Cl2 (2 ml) and added to the reaction mixture. The reaction was allowed to stir overnight. 

The mixture was diluted with CH2Cl2 and then washed with 5% aqueous citric acid, followed by a wash 

with brine and water. It was dried over anhydrous Na2SO4 and then evaporated. Then it was dissolved in 

CH2Cl2 and treated with excess ethereal diazomethane. The residue was dissolved in 12% 

acetone/CH2Cl2 and purified via silica gel column chromatography with the same mobile phase to afford 

152-monolysine(boc)chlorin e6 trimethyl ester (26b, C48H62N6O9, 84 mg, 0.097 mmol, 77%); 1H NMR 

(acetone-d6, 400 MHz ) δ 9.77 (s, 1H), 9.55 (s, 1H), 9.04 (s, 1H), 8.08 (dd, J = 17.87, 11.58 Hz, 1H), 7.07 

(m, 1H), 6.31 (dd, J = 17.87, 1.33 Hz, 1H), 6.06 (dd, J = 11.61, 1.36 Hz, 1H), 5.87 (s, 1H), 5.32 (s, 2H), 4.65 

(q, J = 7.22 Hz, 1H), 4.60 (dd, J = 10.34, 1.95 Hz, 1H), 4.49 (m, 1H), 4.26 (s, 3H), 3.71 (q, J =7.67, 2H) 3.57 

(s, 3H), 3.54 (s, 3H), 3.47 (s, 3H) 3.44 (s, 3H), 3.19 (3H, s), 2.97 (m, 2H), 2.71 (m, 1H), 2.37 (m, 2H), 1.80 

(m, 3H), 1.77 (d, J = 7.24, 3H), 1.66 (t, J = 7.58, 3H), 1.39 (s, 9H), 1.27 (m, 2H), - 1.35 (s, 1H),  -1.56 (s, 1H); 

MS (MALDI-TOF) m/z 867 [M+H]+, calcd. for C48H63N6O9 867.450. 
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152-Monolysinechlorin e6 trimethyl ester (27b): 

 

 

152-Monolysine(boc)chlorin e6 trimethyl ester (26b, 84 mg 0.097 mmol) was dissolved in dry CH2Cl2 (3 

ml) in an ice bath under argon. Thioanisole (0.01 ml) and TFA (1 ml) were added and the reaction 

mixture was allowed to stir overnight. The reaction mixture was rotavaporated several times with 

diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether to 

remove thioanisole. Then the precipitate was dissolved in CH2Cl2 and washed three times with H2O and 

once with 10% NaHCO3 to remove TFA. The organic layer was dried over anhydrous Na2SO4. Solvent was 

evaporated to obtain 152-monolysinechlorin e6 trimethyl ester (27b, C43H54N6O7, 56 mg, 0.071 mmol, 

73%); UV-Vis (acetone) λmax (ε/M
-1cm-1) 664 (57,800), 608 (4,600), 529 (4,900), 500 (14,800), 400 

(187,200); 1H NMR (acetone d6, 400 MHz ) δ 9.68 (s, 1H), 9.42 (s, 1H), 9.02 (s, 1H), 7.95 (dd, J = 17.87, 

11.58 Hz, 1H), 7.12 (d, J = 6.8 Hz, 1H), 6.20 (dd, J = 17.87, 1.33 Hz, 1H), 5.95 (dd, J = 11.61, 1.36 Hz, 1H), 

5.35 (s, 2H), 4.65 (q, J = 7.22 Hz, 1H), 4.61 (dd, J = 10.34, 1.95 Hz, 1H), 4.53 (m, 1H), 4.27 (s, 3H), 3.59 (m, 

2H) 3.55 (s, 6H), 3.48 (s, 3H) 3.37 (s, 3H), 3.09 (3H, s), 2.99 (m, 3H), 2.73 (m, 1H), 2.38 (m, 2H), 1.80 (m, 

3H), 1.78 (d, J = 7.24, 3H), 1.61 (t, J = 7.58, 3H), 1.43 (m, 2H), - 1.40 (s, 1H),  -1.57 (s, 1H); 13C NMR 

(dichloromethane-d2, 100 MHz) δ 173.0, 172.7, 170.7, 170.0, 168.2, 167.8, 155.5, 149.5, 145.7, 140.2, 

136.9, 136.8, 136.0, 135.5, 135.4, 131.5, 129.7, 129.6, 124.3, 122.2, 102.8, 102.5, 99.2, 94.4, 53.3, 52.4, 

52.3, 52.0, 49.7, 40.8, 40.2, 34.4, 32.5, 31.4, 29.8, 28.2, 23.3, 22.5, 20.0, 18.0, 12.5, 12.4, 11.5; MS 

(MALDI-TOF) m/z 767 [M+H]+, calcd. for C43H55N6O7 767.413. 
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Palladium 152-monolysinechlorin e6 trimethyl ester (28b): 

 

152-Monoysinechlorin e6 trimethyl ester (27b, 56 mg, 0.071 mmol) was dissolved in 5 ml of dry THF. 

Palladium acetate (16.13 mg, 0.072 mmol) was dissolved in THF and added to the reaction vessel and 

allowed to stir at 60 °C for 3 h. The reaction was followed by UV-Vis spectroscopy. The solution turned 

from green to bluish green as the complex formed. After evaporation of solvent, the residue was 

dissolved in methanol and purified via Sephadex LH-20 chromatography with the same mobile phase to 

afford palladium 152-monolysinechlorin e6 trimethyl ester (28b, C43H52N6O7Pd, 61 mg, 0.07 mmol, 99%); 

UV-Vis (acetone): λmax (ε/M
-1cm-1) 620 (97,520), 581 (14,500), 490 (7,600), 394 (140,900); 1H NMR 

(acetone d6, 400 MHz) all the peaks were broad due to the paramagnetic nature of the compound. MS 

(MALDI-TOF) m/z 871 [M+H]+, calcd. for C43H53N6O7Pd 871.301. 

131-Aspartylchlorin e6 di(tert)butyl dimethyl ester (30): 

 

Chlorin e6 dimethyl ester (29, 55 mg, 0.088 mmol) was dissolved in dry CH2Cl2. A mixture of HOBt (12 

mg, 0.089 mmol), TBTU (29 mg, 0.089 mmol) and DIEA (0.017 ml, 0.1 mmol) in DMF (3 ml) was added 

and the mixture was allowed to stir for 30 min. H-Asp(tBu)2.HCl (60 mg, 0.21 mmol) and DIEA (0.037 ml, 
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0.21 mmol) were mixed in CH2Cl2 and added to this reaction mixture. The mixture was stirred overnight. 

It was diluted with CH2Cl2 and then washed with 5% aqueous citric acid, followed by a wash with brine 

and water. It was dried over anhydrous Na2SO4 and then evaporated. The residue was dissolved in 5% 

acetone/CH2Cl2 and purified via silica gel column chromatography using the same mobile phase to afford 

131-aspartylchlorin e6 di(tert)butyl dimethyl ester (30, C48H61N5O9, 50 mg, 0.058 mmol, 66%); UV-Vis 

(acetone): λmax (ε/M-1cm-1) 663 nm (0.330), 607 (0.025), 528 (0.020), 500 (0.081), 399 (1.000);  1H NMR 

(acetone-d6, 400 MHz) δ 9.79 (s, 1H), 9.70 (s, 1H), 9.10 (s, 1H), 8.39 (d, J = 7.93 Hz, 1H), 8.19 (dd, J = 

11.58, 17.85 Hz, 1H), 6.37 (dd, J = 17.85, 1.23 Hz, 1H), 6.10 (dd, J = 11.87, 1.26 Hz, 1H),  5.71 (d, J = 18.95 

Hz, 1H), 5.30 (m, 2H), 4.67 (q, J = 7.22 Hz, 1H), 4.49 (dd, J = 10.34, 1.95 Hz, 1H), 3.76 (q, J = 7.3 Hz, 2H), 

3.74 (s, 3H), 3.64 (s, 3H), 3.61 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H), 3.16 (dd, J = 5.8, 0.78 Hz, 2H), 2.73 (m, 

1H), 2.32 (m, 2H), 1.79 (m, 1H), 1.69 (m, 6H), 1.64 (s, 9H), 1.53 (s, 9H), -1.57 (s, 1H), -1.85 (s, 1H); MS 

(MALDI-TOF) m/z 852 [M+H]+, calcd. for C48H62N5O9 852.454. 

131-Aspartylchlorin e6 dimethyl ester (7): 

 

The 131-aspartylchlorin e6 di(tert)butyl dimethyl ester (30, 50 mg, 0.058 mmol) was dissolved in 2 ml of 

dry CH2Cl2 in an ice bath under argon. Thioanisole (0.005 ml) and 2 ml of TFA were added and the 

reaction mixture was stirred overnight. The reaction mixture was evaporated several times with diethyl 

ether to remove residual TFA. The resulting precipitate was washed several times with diethyl ether to 

remove thioanisole. Then the precipitate was dissolved in CH2Cl2 and washed three times with H2O and 

once with 10% NaHCO3 to remove TFA. The organic layer was dried over anhydrous Na2SO4 and then 
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evaporated to afford 131-aspartylchlorin e6 dimethyl ester (7, C40H45N5O9, 38 mg, 0.051 mmol, 88%); UV-

Vis (acetone): λmax (ε/M-1cm-1) 663 nm (126,800), 607 (9,000), 528 (7,450), 500 (31,500), 399 (385,800); 

1H NMR (acetone-d6, 400 MHz) δ 9.79 (s, 1H), 9.70 (s, 1H), 9.12 (s, 1H), 8.50 (d, J = 7.93 Hz, 1H), 8.19 (dd, 

J = 11.58, 17.85 Hz, 1H), 6.37 (d, J = 18.85 Hz, 1H), 6.10 (d, J = 11.87 Hz, 1H),  5.71 (d, J = 18.95 Hz, 1H), 

5.45 (dd, J = 13.76, 5.80 Hz, 1H), 5.30 (d, J = 18.93 Hz, 1H), 4.67 (q, J = 7.22 Hz, 1H), 4.50 (dd, J = 10.34, 

1.95 Hz, 1H), 3.76 (q, J = 7.3 Hz, 2H), 3.71 (s, 3H), 3.63 (s, 3H), 3.60 (s, 3H), 3.51 (s, 3H), 3.31 (dd, J = 5.76, 

3.47 Hz, 2H),  3.26 (s, 3H), 2.70 (m, 2H), 2.31 (m, 2H), 1.79 (m, 1H), 1.71 (d, J = 7.24, 3H), 1.67 (t, J = 7.58, 

3H), -1.57 (br s, 1H), -1.87 (s, 1H). 13C NMR (acetone-d6, 100 MHz) δ 174.0, 173.8, 172.6, 170.3, 169.1, 

168.9, 154.5, 149.9, 145.4, 139.2, 137.0, 136.6, 136.4, 135.1, 131.0, 130.7, 130.3, 129.7, 122.0, 104.2, 

101.8, 99.4, 95.0, 54.1, 52.3, 51.8, 50.4, 49.7, 43.2, 38.4, 36.6, 31.7, 30.7, 23.5, 20.0, 18.1, 12.3, 12.0, 

11.3; HRMS (MALDI-TOF) m/z 740.344 [M+H]+, Calcd. for C40H46N5O9 740.330. 

Chlorin e6 dimethyl ester (29): 

 

Chlorin e6 (2, 50 mg, 0.083 mmol) was dissolved in 5% sulfuric acid and methanol (10 ml) and allowed to 

stir overnight protected from light, under argon. The reaction mixture was dilute with CH2Cl2 and poured 

into cold 5% aqueous NaHCO3 (This may form a precipitate. If so, the organic layer is washed with citric 

acid until the precipitate dissolves in the organic layer). The organic layer was washed with water and 

brine, dried over anhydrous Na2SO4 and filtered. Solvent was removed to afford chlorin e6 dimethyl 

ester (C36H40N4O6, 51 mg, 0.082 mmol, 99%); UV-Vis (chloroform): λmax (ε/M
-1cm-1) 666 nm (49,700), 610 

(5,900), 562 (2,700), 523 (5,900), 502 (13,200) 402 (143,400); 1H NMR (acetone-d6, 400 MHz): δ 9.56 (s, 

1H), 9.23 (s, 1H), 8.96(s, 1H), 7.75 (dd, J = 17.86, 11.61 Hz, 1H), 6.03 (dd, J = 17.85, 1.26 Hz, 1H), 5.80 (dd, 
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J = 11.57, 1.37 Hz, 1H), 5.64 (d, J = 18.91 Hz, 1H), 5.45 (d, J = 18.91 Hz, 1H), 4.62 (q, J = 7.32 Hz, 1H), 4.52 

(dd, J = 10.50, 2.21 Hz, 1H), 3.81 (s, 3H), 3.61 (s, 6H), 3.40 (q, J = 7.5 Hz, 2H), 3.26 (s, 3H), 2.93 (s, 3H), 

2.72 (m, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 2.06 (m, 1H), 1.75 (d, J = 7.5 Hz, 3H), 1.53 (t, J = 7.5 Hz, 3H), -1.6 

(s, 2H); MS (MALDI-TOF) m/z 625 [M+H]+, calcd. for C36H41N4O6 625.302. 

131- β-Alanylchlorin e6 (tert)butyl dimethyl ester (31): 

 

Chlorin e6 dimethyl ester (29, 55 mg, 0.088 mmol) was dissolved in dry CH2Cl2. A mixture of HOBt (12 

mg, 0.088 mmol), TBTU (29 mg, 0.089 mmol) and DIEA (0.017 ml, 0.10 mmol) in DMF (2 ml) was added 

and the mixture was stirred for 30 min. β-Alanine(tBu).HCl (18 mg, 0.1 mmol) and DIEA (0.017 ml, 0.1 

mmol) were mixed in CH2Cl2 and added to the reaction mixture. The mixture was then allowed to stir 

overnight before being diluted with CH2Cl2 and then washed with 5% aqueous citric acid, followed by a 

wash with brine and water. It was dried over anhydrous Na2SO4 and then evaporated to dryness. The 

residue was dissolved in 5% acetone/CH2Cl2 and purified via silica gel column chromatography using the 

same mobile phase to afford 131-β-alanylchlorin e6 (tert)butyl dimethyl ester (31, C43H53N5O7, 45 mg, 

0.06 mmol, 68%); 1H NMR (acetone-d6, 400 MHz) δ 9.70 (s, 1H), 9.63 (s, 1H), 9.01 (s, 1H), 8.17 (t, J = 5.71 

Hz, 1H), 8.11 (dd, J = 11.58, 17.85 Hz, 1H), 6.31 (d, J = 18.85 Hz, 1H), 6.04 (d, J = 11.87 Hz, 1H),  5.65 (d, J 

= 18.95 Hz, 1H), 5.38 (d, J = 19.06 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.02 

(m, 1H), 3.09 (m, 1H), 3.77 (s, 3H), 3.68 (q, J = 7.3 Hz, 2H), 3.61 (s, 3H), 3.51 (s, 3H), 3.46 (s, 3H), 3.21 (s, 

3H), 2.71 (m, 2H), 2.31 (m, 2H), 1.79 (m, 1H), 1.72 (d, J = 7.24, 3H), 1.65 (t, J = 7.58, 3H), 1.54 (s, 9H),  -

1.62 (s, 1H), -1.91 (s, 1H); MS (MALDI-TOF) m/z 752 [M+H]+, calcd. for C43H54N5O7 752.402. 
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131-β-Alanylchlorin e6 dimethyl ester (32): 

 

The 131- β-alanylchlorin e6 (tert)butyl dimethyl ester (31, 45 mg, 0.059 mmol) was dissolved in 1.5 ml of 

dry CH2Cl2 in a ice bath under argon. Thioanisole (0.005 ml) and 1.5 ml of TFA were added and the 

reaction mixture was stirred overnight before being diluted with CH2Cl2 and washed three times with 

H2O and once with 10% NaHCO3. The organic layer was dried over anhydrous Na2SO4 and the solvent 

was evaporated to obtain 131-β-alanylchlorin e6 dimethyl ester (32, C39H45N5O7, 39 mg, 0.056 mmol, 

95%); 1H NMR (acetone-d6, 400 MHz) δ 9.74 (s, 1H), 9.72 (s, 1H), 9.10 (s, 1H), 8.22 (dd, J = 11.58, 17.85 

Hz, 1H), 8.15 (t, J = 5.71 Hz, 1H), 6.39 (d, J = 18.85 Hz, 1H), 6.12 (d, J = 11.87 Hz, 1H),  5.65 (d, J = 18.95 

Hz, 1H), 5.37 (d, J = 19.06 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 

3.95 (m, 1H), 3.77 (s, 3H), 3.68 (q, J = 7.3 Hz, 2H), 3.61 (s, 3H), 3.53 (s, 3H), 3.52 (s, 3H), 3.28 (s, 3H), 2.69 

(m, 2H), 2.31 (m, 2H), 1.79 (m, 1H), 1.72 (d, J = 7.24, 3H), 1.65 (t, J = 7.58, 3H), -1.62 (s, 1H), -1.91 (s, 1H); 

MS (MALDI-TOF) m/z 696 [M+H]+, calcd. for C39H46N5O7 696.811. 

131- β-Alanyl-aspartylchlorin e6 di(tert)butyl dimethyl ester (33):  

 
131-β-Alanylchlorin e6 dimethyl ester (32, 39 mg, 0.056 mmol) was dissolved in dry CH2Cl2. A mixture of 

HOBt (8 mg, 0.06 mmol), TBTU (18 mg, 0.06 mmol) and DIEA (0.017 ml, 0.1 mmol) in DMF (2 ml) was 
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added and the mixture was stirred for 30 min. H-Asp(tBu)2.HCl (40 mg, 0.14 mmol) and DIEA (0.025 ml, 

0.14 mmol) were mixed in CH2Cl2 and added to the reaction mixture. The mixture was stirred overnight 

before being diluted with CH2Cl2 (10 ml) and then washed with 5% aqueous citric acid, followed by a 

wash with brine and water. It was dried over anhydrous Na2SO4 and then evaporated. The residue was 

dissolved in 10% acetone/CH2Cl2 and purified via silica gel column chromatography using the same 

mobile phase to afford 131- β-alanyl-aspartylchlorin e6 di(tert)butyl dimethyl ester(33, C51H66N6O10, 45 

mg, 0.048 mmol, 87%); 1H NMR (acetone-d6, 400 MHz) δ 9.74 (s, 1H), 9.70 (s, 1H), 9.10 (s, 1H), 8.19 (dd, J 

= 11.58, 17.85 Hz, 1H), 8.11 (t, J = 5.66 Hz, 1H), 7.64 (d, J = 8.11 Hz, 1H), 6.37 (d, J = 19.18 Hz, 1H), 6.10 

(d, J = 12.94 Hz, 1H),  5.66 (d, J = 19.03 Hz, 1H), 5.38 (d, J = 19.09 Hz, 1H), 4.77 (dt, J = 8.14, 5.74 Hz, 1H), 

4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 3.95 (m, 1H), 3.75 (s, 3H), 3.76 (q, 

J = 7.3 Hz, 2H), 3.60 (s, 3H), 3.53 (s, 3H), 3.50 (s, 3H), 3.27 (s, 3H), 2.80 (d, J = 2.57 Hz, 1H), 2.79 (d, J = 

3.06 Hz, 1H), 2.31 (m, 2H), 1.79 (m, 1H), 1.71 (d, J = 7.24, 3H), 1.68 (t, J = 7.58, 3H), 1.43 (s, 9H), 1.42 (s, 

9H), -1.61 (s, 1H), -1.91 (s, 1H). MS (MALDI-TOF) m/z 923 [M+H]+, calcd. for C51H67N6O10 923.491. 

131- β-Alanyl-aspartylchlorin e6 dimethyl ester (34): 

 

The 131- β-alanyl-aspartylchlorin e6 di(tert)butyl dimethyl ester (33, 45 mg, 0.048 mmol) was dissolved in 

2 ml of dry CH2Cl2 in an ice bath under argon. Thioanisole (0.004 ml) and 2 ml of TFA were added and the 

reaction mixture was stirred overnight before being evaporated several times with diethyl ether to 

remove residual TFA. The resulting precipitate was washed several times with diethyl ether to remove 
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more residual thioanisole. The precipitate was dissolved in CH2Cl2 and washed three times with H2O and 

once with 10% NaHCO3 to remove TFA. The organic layer was dried over anhydrous Na2SO4 and the 

solvent was evaporated to obtain 131- β-alanyl-aspartylchlorin e6 dimethyl ester (34, C43H50N6O10, 38 mg, 

0.046 mmol, 97%); UV-Vis (acetone): λmax (ε/M-1cm-1) 663 (77,100), 607 (3,600), 528 (1,800), 500 

(17,200), 399 (237,100); 1H NMR (acetone-d6, 400 MHz) δ 9.72 (s, 1H), 9.70 (s, 1H), 9.10 (s, 1H), 8.20 (dd, 

J = 11.58, 17.85 Hz, 1H), 8.11 (br t, J = 5.66 Hz, 1H), 7.64 (br d, J = 8.11 Hz, 1H), 6.32 (d, J = 19.18 Hz, 1H), 

6.10 (d, J = 12.94 Hz, 1H),  5.63 (d, J = 19.03 Hz, 1H), 5.37 (d, J = 19.09 Hz, 1H), 4.92 (dt, J = 8.14, 5.74 Hz, 

1H), 4.66 (q, J = 7.22 Hz, 1H), 4.51 (dd, J = 10.34, 1.95 Hz, 1H), 4.07 (m, 1H), 3.95 (m, 1H), 3.74 (s, 3H), 

3.75 (q, J = 7.3 Hz, 2H), 3.60 (s, 3H), 3.51 (s, 3H), 3.50 (s, 3H), 3.25 (s, 3H), 2.96 (d, J = 5.27 Hz, 1H), 2.69 

(d, J = 3.06 Hz, 1H), 2.31 (m, 2H), 1.79 (m, 1H), 1.71 (d, J = 7.24, 3H), 1.66 (t, J = 7.58, 3H), -1.61 (s, 1H), -

1.91 (s, 1H). 13 C NMR (acetone-d6, 100 MHz) δ 174.1, 173.9, 173.7, 173.4, 171.6, 170.5, 169.0, 168.4, 

143.5, 139.8, 135.3, 134.8, 134.2, 130.7, 130.4, 129.5, 129.0, 128.7, 126.8, 125.2, 123.6, 122.3, 103.5, 

100.5, 98.0, 95.0, 53.4, 52.5, 51.9, 49.4, 49.0, 38.8, 37.5, 36.6, 34.7, 31.2, 29.7, 23.3, 19.0, 17.0, 12.1, 

11.5, 10.8; HRMS (MALDI-TOF) m/z 811.381 [M+H]+, calcd. for C43H51N6O10 811.367.  

131-Ethylenediaminylchlorin e6 dimethyl ester (35): 

 

Methyl pheophorbide a (3, 100 mg, 0.164 mmol) was dissolved in dry CHCl3 (5 ml) and stirred under 

argon for 10 min. Then ethylenediamine (0.2 ml, 3.0 mmol) was added to the solution and the mixture 

was stirred for 24 h. The reaction was monitored by spectrophotometry. The reaction mixture was 

evaporated and the residue was dissolved in 2.5% MeOH/CH2Cl2 and then chromatographed on a short 
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silica gel column using the same mobile phase to remove by-products, and then the product was eluted 

using 50% MeOH/CH2Cl2 to afford 131-ethylenediaminylchlorin e6 dimethyl ester (35, C38H46N6O5, 100 

mg, 0.150 mmol, 91%); 1H NMR (acetone d6, 400 MHz) δ 9.69 (s, 1H), 9.63 (s, 1H), 9.09 (s, 1H), 8.09 (dd, J 

= 17.78, 11.58 Hz, 1H), 8.07 (br s, 1H), 6.29 (d, J = 18.85 Hz, 1H), 6.02 (d, J = 11.87 Hz, 1H),  5.67 (d, J = 

19.08 Hz, 1H), 5.39 (d, J = 19.11 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.51 (dd, J = 10.34, 1.95 Hz, 1H), 4.01 

(m, 1H), 3.87 (m, 1H), 3.75 (s, 3H), 3.66 (q, J = 7.3 Hz, 2H), 3.61 (s, 3H), 3.50 (s, 3H), 3.45 (s, 3H), 3.20 (s, 

3H), 2.71 (m, 1H), 2.31 (m, 2H), 1.95 (br m, 1H),  1.80 (m, 1H), 1.72 (d, J = 7.24, 3H), 1.64 (t, J = 7.58, 3H), 

-1.64 (s, 1H), -1.93 (s, 1H).   13C NMR (acetone d6, 100 MHz) δ 173.1, 173.0, 169.2, 168.3, 167.7, 153.6, 

149.1, 144.4, 138.1, 136.0, 135.3, 134.7, 133.9, 130.1, 129.8, 129.3, 120.9, 103.2, 100.7, 98.4, 93.9, 53.1, 

51.4, 50.8, 50.2, 48.8, 41.2, 37.2, 30.7, 29.6, 22.6, 19.0, 17.2, 11.3, 11.0, 10.3. HRMS (MALDI-TOF) m/z 

667.395 [M+H]+, calcd. for C38H47N6O5 667.361. 

131-Ethylenediaminyl(boc)lysyl(boc)chlorin e6 dimethyl ester (36): 

 

 (boc)Lysine(boc)OH (55 mg, 0.082 mmol) was dissolved in dry CH2Cl2 (10 ml). A mixture of HOBt (15 mg, 

0.11 mmol), TBTU (33 mg, 0.11 mmol) and DIEA (0.017 ml, 0.1 mmol) in DMF (3 ml) was added and then 

the mixture was stirred for 1 h. 131-Ethylenediaminylchlorin e6 dimethyl ester (35, 50 mg, 0.075 mmol) 

was added to the reaction mixture, which was stirred overnight. The mixture was diluted with CH2Cl2 

and then washed with 5% aqueous citric acid, followed by a wash with brine and water. It was dried 

over anhydrous Na2SO4 and then evaporated. The residue was dissolved in 2.5% MeOH/CH2Cl2 and 
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purified via silica gel column chromatography using the same mobile phase to afford 131-

ethylenediaminyl(boc)lysyl(boc)chlorin e6 dimethyl ester (36, C54H74N8O10, 65 mg, 0.065 mmol; 78%); 1H 

NMR (acetone d6, 400 MHz) δ 9.54 (s, 1H), 9.53 (s, 1H), 9.07 (s, 1H), 8.14 (br s, 1H) 7.94 (dd, J = 17.78, 

11.58 Hz, 1H), 7.78 (br s, 1H), 6.18 (d, J = 18.85 Hz, 1H), 6.16 (br s, 1H), 5.93 (d, J = 11.87 Hz, 1H), 5.89 (br 

s, 1H), 5.63 (d, J = 19.08 Hz, 1H), 5.39 (d, J = 19.11 Hz, 1H), 4.67 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 

1.95 Hz, 1H), 4.17 (m, 1H), 3.85 (m, 1H), 3.75 (s, 3H), 3.66 (m, 3H), 3.61 (s, 3H), 3.52 (br q, J = 7.14 Hz, 

2H), 3.41 (s, 3H), 3.39 (s, 3H), 3.11 (s, 3H), 3.00 (m, 2H), 2.71 (m, 1H), 2.32 (m, 2H), 1.95 (br m, 1H),  1.84 

(m, 2H), 1.72 (d, J = 7.24, 3H), 1.67 (m, 1H), 1.59 (t, J = 7.58, 3H), 1.41 (m, 3H), 1.37 (s, 9H), 1.34 (s, 9H), -

1.66 (s, 1H), -1.94 (s, 1H). MS (MALDI-TOF) m/z 995 [M+H]+, calcd. for C54H75N8O10 995.560. 

131-Ethylenediaminyl-lysylchlorin e6 dimethyl ester (37): 

 

The 131-ethylenediaminyl(boc)lysyl(boc)chlorin e6 dimethyl ester (36, 65 mg, 0.065 mmol) was dissolved 

in of dry CH2Cl2 (3 ml) in a ice bath under argon. Thioanisole (0.003 ml) and of TFA (2 ml) were added 

and the reaction mixture was stirred overnight. The reaction mixture was evaporated several times with 

diethyl ether to remove TFA. The resulting precipitate was washed several times with diethyl ether to 

remove thioanisole. Then the precipitate was dissolved in CH2Cl2 and washed three times with H2O and 

once with 10% NaHCO3 to remove TFA. The organic layer was dried over anhydrous Na2SO4 and the 

solvent was evaporated to afford 131-ethylenediaminyl-lysylchlorin e6 dimethyl ester (37, C44H58N8O6, 42 

mg, 0.052 mmol, 81%); UV-Vis (acetone): λmax (ε/M-1cm-1) 663 nm (76,400), 607 (1,800), 527 (700), 500 
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(14,600), 399 (242,100); 1H NMR (acetone d6, 400 MHz) δ 9.76 (s, 1H), 9.69 (s, 1H), 9.10 (s, 1H), 8.29 (br 

s, 1H) 8.17 (dd, J = 17.78, 11.58 Hz, 1H), 7.86 (br s, 1H), 6.35 (d, J = 18.85 Hz, 1H), 6.07 (d, J = 11.87 Hz, 

1H), 5.64 (d, J = 19.08 Hz, 1H), 5.40 (d, J = 19.11 Hz, 1H), 4.66 (q, J = 7.22 Hz, 1H), 4.52 (dd, J = 10.34, 1.95 

Hz, 1H), 3.92 (m, 2H), 3.75 (br m, 5H), 3.74 (s, 3H), 3.60 (s, 3H), 3.53 (s, 3H), 3.49 (s, 3H), 3.26 (s, 3H), 

2.96 (br t, 2H), 2.70 (m, 1H), 2.29 (m, 2H), 1.95 (br m, 1H),  1.84 (m, 2H), 1.72 (d, J = 7.24, 3H), 1.68 (t, J = 

7.58, 3H), 1.45 (m, 2H), 1.31 (m, 2H) -1.60 (s, 1H), -1.89 (s, 1H). 13C NMR (dichloromethane d2, 100 MHz) 

δ 176.6, 174.2, 174.0, 169.9, 169.7, 167.7, 154.5, 149.5, 145.3, 139.3, 136.8, 135.4, 135.2, 134.9, 130.9, 

130.2, 129.8, 129.7, 129.0, 122.2, 102.9, 101.8, 99.2, 94.4, 55.4, 52.6, 52.0, 49.7, 41.4, 41.1, 39.6, 38.2, 

35.0, 31.5, 31.1, 30.2, 23.3, 23.0, 20.0, 18.0, 12.4, 12.2, 11.6, 11.5. HRMS (MALDI-TOF) m/z 795.492 

[M+H]+, calcd. for C44H59N8O6 795.456.  
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2.8 Supporting information 
1H NMR spectrum of pheophorbide a (17) in acetone-d6 at 400 MHz 
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1H NMR spectrum of Lys(Boc)OMe pheophorbide a 18 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 173-Lys(Boc)Ce6 TME 19  in acetone-d6 at 400 MHz 
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1H NMR spectrum of 173-LysCe6 TME 20 in acetone-d6 at 400 MHz 
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1H NMR spectrum of methyl pheophorbide a (3) in acetone-d6 at 400 Mhz 
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1H NMR spectrum of Ce6 TME (24) in acetone-d6 at 400 MHz 
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1H NMR spectrum of Ce6 (2) in dimethyl sulfoxide-d6 at 400 MHz 
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1H NMR spectrum of 152-Aspdi(tBu)Ce6 DME 26a in acetone-d6 at 400 MHz 
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1H NMR spectrum of 152-AspCe6 DME 27a in acetone-d6 at 400 MHz 
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1H NMR spectrum of 152-Lys(Boc)Ce6 TME 26b in acetone-d6 at 400MHz 
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1H NMR spectrum of 152-LysCe6TME 27b in acetone-d6 at 400 MHz 
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1H NMR spectrum of Ce6 DME (29) in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-Aspdi(tBu)Ce6 DME 30 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131 AspCe6 DME 7 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-β-Ala(tBu)Ce6 DME 31 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131 β-AlaCe6 DME 32 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-β-Ala-Aspdi(tBu)Ce6 DME 33 in acetone-d6 at 400 MHz 

 



101 
 

1H NMR spectrum of 131-b-Ala-AspCe6 DME 34 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-ED-Ce6 DME 35 in acetone-d6 at 400 Mhz 
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1H NMR spectrum of 131-ED-(Boc)Lys(Boc)Ce6 DME 36 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-ED-LysCe6 DME 37 in acetone-d6 at 400 MHz 
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13C NMR spectrum of 173-LysCe6 TME 20 in dichloromethane-d2 at 100 MHz 
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13C NMR spectrum of Ce6 TME 24 in dichloromethane-d2 at 100 MHz 
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13C NMR spectrum of Ce6 2 in dimethyl sulfoxide-d6 at 100 MHz 
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13C NMR spectrum of 152-AspCe6 DME 27a in acetone-d6 at 100 MHz 
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13C NMR spectrum of 152-LysCe6 TME 27b in dichloromethane-d2 at 100 MHz 
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13C NMR spectrum of 131 AspCe6 DME 7 in acetone-d6 at 100 MHz 
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13C NMR spectrum of 131-β-Ala-AspCe6 DME 34 in chloroform-d at 100 MHz 
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13C NMR spectrum of 131-ED-Ce6 DME 35 in acetone-d6 at 100 MHz 
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13C NMR spectrum of 131-ED-LysCe6 DME 37 in dichloromethane-d2 at 100 MHz 
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Figure 2.9: Subcellular localization of conjugate Ce6 in HEp2 cells at 10 µM for 18 h (a) phase contrast, (b) 

overlay of compound Ce6 compound and phase contrast, (c) ER tracker Blue/White fluorescence (e) 

MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green fluorescence, and (d, f, h, j) 

overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.10: Subcellular localization of conjugate 152 AspCe6DME in HEp2 cells at 10 µM for 18 h (a) 

phase contrast, (b) overlay of compound 152 AspCe6 compound and phase contrast, (c) ER tracker 

Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.11: Subcellular localization of conjugate 152 PdAspCe6DME in HEp2 cells at 10 µM for 18 h (a) 

phase contrast, (b) overlay of compound 152 PdAspCe6 compound and phase contrast, (c) ER tracker 

Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.12: Subcellular localization of conjugate 152 LysCe6TME in HEp2 cells at 10 µM for 18 h (a) phase 

contrast, (b) overlay of compound 152 LysCe6 compound and phase contrast, (c) ER tracker Blue/White 

fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.13: Subcellular localization of conjugate 152 PdLysCe6TME in HEp2 cells at 10 µM for 18 h (a) 

phase contrast, (b) overlay of compound 152 PdLysCe6 compound and phase contrast, (c) ER tracker 

Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.14: Subcellular localization of conjugate 173 LysCe6TME in HEp2 cells at 10 µM for 18 h (a) phase 

contrast, (b) overlay of compound 173 LysCe6 compound and phase contrast, (c) ER tracker Blue/White 

fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.15: Subcellular localization of conjugate 131 ED-lysCe6DME in HEp2 cells at 10 µM for 18 h (a) 

phase contrast, (b) overlay of compound 131 ED-lysCe6 compound and phase contrast, (c) ER tracker 

Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.16: Subcellular localization of conjugate 131 AspCe6DME in HEp2 cells at 10 µM for 18 h (a) 

phase contrast, (b) overlay of compound 131 AspCe6 compound and phase contrast, (c) ER tracker 

Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) LysoSensor Green 

fluorescence, and (d, f, h, j) overlays of organelle tracers with compound fluorescence. Scale bar: 10 µm. 
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Figure 2.17: Subcellular localization of conjugate 131 β-Ala-AspCe6DME in HEp2 cells at 10 µM for 18 h 

(a) phase contrast, (b) overlay of compound 131 β-Ala-AspCe6 compound and phase contrast, (c) ER 

tracker Blue/White fluorescence (e) MitoTracker Green fluorescence, (g) BoDIPY Ceramide, (i) 

LysoSensor Green fluorescence, and (d, f, h, j) overlays of organelle tracers with compound 

fluorescence. Scale bar: 10 µm. 
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CHAPTER 3: SYNTHESIS AND CHARACTERIZATION OF WATER SOLUBLE CHLORIN e6 DERIVATIVES FOR 
PHOTODYNAMIC THERAPY 

 
3.1 Introduction 

In the previous chapter the importance of chlorin e6 derivatives in photodynamic therapy was 

discussed. The main goal was to increase the selectivity towards cancer cells over the normal cells.  To 

increase the selectivity, different amino acids such as aspartic acid, which has negatively charged side 

chains, and lysine which has positively charged side chains at physiological pH were introduced to find 

out how these positively and negatively charged photosensitizers accumulate in different organelles in 

the cell. Also the positions of the amino acids were changed and a series of regioisomers was prepared 

to find how this affects the cell penetration. Cell studies revealed that all amino acid derivatives readily 

accumulated within human HEp2 cells in comparison with chlorin e6 (1).  However, the most phototoxic 

compounds were found to be the 131-regioisomers, bearing either an aspartic acid or a lysine residue 

directly conjugated to position-13 of the chlorin macrocycle, or connected via a β-alanine or ethylene 

diamine spacer. The most phototoxic compound of this series, and the most promising for PDT 

applications, is 131-aspartylchlorin e6. But poor solubility of these molecules was one of the major 

drawbacks in the cellular studies. Apart from that some of these molecules tend to self-aggregate easily 

and result in lower cell uptake. To overcome these major shortcomings, a new series of chlorin e6 

derivatives which hold two amino acids in a single chlorin e6 molecule were synthesized (Figure 3.1). The 

increase in the overall charge of the molecule and amphiphilicity, might increase the water solubility1,2 

and decrease the self-aggregation in biological media.3 

Recent literature reported that increasing water solubility of photosensitizers helps to increase 

the cell uptake4,5 and hence increase the phototoxicity.6,7 Kimani and coworkers had synthesized mono-, 

di- and tri-PEGylated chlorin e6 photosensitizers with tri(ethylene glycol) attached at three carboxylic 

positions in chlorin e6.
6  These were tested for solubility and hydrolytic stability and also phototoxicity, 
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cell uptake and localization in ovarian OVCAR-5 cancer cells. Their results confirmed that the increasing 

number of PEG groups increased the water solubility and uptake into the cancer cells. Computational 

studies also indicated that PEG groups will increasingly resist formation of aggregates by π-π stacking. 

These  EG chains can wrap across the chlorin ring to prevent π-π stacking. Most significantly an 

increased number of PEG groups increased the phototoxicity, and the increase was parallel to the cell 

uptake.  

Our hypothesis was that a higher number of charged substituents will increase the phototoxicity 

by increasing cell uptake. As in the previous project, all possible regioisomers of diamino acid chlorin e6 

derivatives were synthesized (Figure 3.1). It was found from our previous study, that the position of the 

amino acid plays a vital role in determining the conformation of the molecule.8 New synthetic routes 

were developed to synthesize all three regioisomers. Both the 152,173-diamino and 131,173-diamino 

derivatives were synthesized starting from chlorin e6 (1) and the 131,152-diamino derivatives were 

synthesized from pheophytin a.   

 

Figure 3.1: Di-amino acid regioisomers of chlorin e6 

The aims of the present work were to determine: 1) the degree to which diaminochlorin e6 

derivatives were taken up and localized in cancer cells, 2) the main site of accumulation (which cell 

organelle), and 3) whether the position and charge of the amino acid substituents influenced the photo 

and dark toxicity.  
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3.2 Synthesis 

3.2.1 Synthesis of 152,173-diaspartylchlorin e6 derivative 

A major side product in the synthesis of 152-mono-aspartylchlorin e6 derivatives was the 152,173-

diaspartylchlorin e6 derivative 5.9 The yield of the byproduct 5 can be increased by changing the number 

of equivalents of coupling reagent and amino acid. According to the proposed mechanism, DCC and 

DMAP activated the acetic side chain and formed the anhydride intermediate 2.  The excess coupling 

reagent can activate the propionic acid side chain to form O-acylisourea anhydride intermediate 3 

(Scheme 3.1).  

 

Scheme 3.1: Proposed intermediates in the formation of 152-173 di-amino acid derivative 4. 

Then, the free amine group of the amino acid can attack both carbonyl groups in intermediate 3, 

one in the anhydride ring and the other one in the O-acylisourea group. Mechanistic studies revealed 

the nucleophile first attacks the more reactive 152 position of the anhydride ring instead of the 131 

position, regardless of the size or nucleophilicity of the molecule. Then the second equivalent can react 

with the O-acylisourea group to form diaminochlorin e6 derivative 4.  

The detailed synthetic route to 152,173-diaspartylchlorin e6 methyl ester (6) is shown in Scheme 

3.2. It was possible to obtain diaspartyl methyl ester 6 in 33% overall yield from chlorin e6 (1). The 

optimal yield of diaspartyl chlorin e6 6 (26%) was obtained with activation of chlorin e6 with three 
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equivalents of DCC and DMAP in CH2Cl2 at room temperature for two hours followed by coupling with 

2.5 equivalents of di-tert-butyl protected aspartic acid for 24 hours.  

 

Scheme 3.2: Synthesis of 152,173-diaspartylchlorin e6 methyl ester (6) 

Less than three equivalents of DCC and aspartic acid tend to form significant amounts of the 152-

monoaspartic acid conjugate as a side product. When the number of equivalents of either DCC or 

aspartic acid was increased, the yield of diaspartyl chlorin e6 4 improved. But it was not possible to stop 

the formation of the mono-aspartyl conjugate as a side product. Longer reaction times also helped to 

increase the yield of diaspartyl derivative 4. After confirming the formation of tert-butyl protected 

diaspartyl chorin e6 4 by mass spectrometry, freshly prepared diazomethane gas was bubbled through 

the mixture for five minutes to convert remaining free acid groups into methyl esters. This reaction was 

monitored by TLC. It was possible to see two new spots in the TLC plate. A brighter spot with lower RF 

value belongs to the desired product 152,173-diaspartylchlorin e6 5 and the second spot, which has a 

higher RF value similar to 152-monoaspartlychlorin e6.  Purification was achieved via silica gel column 

chromatography and the identity of the esterified product 5 was confirmed using 1H NMR and mass 
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spectrometry. 1H NMR spectroscopy shows four singlets around 3.0 to 4.5 ppm which integrated to 

three protons each. Out of four, three peaks belong to the methyl groups directly connected to the 

macrocycle and the remaining peak belongs to the 132 methyl ester group. The most downfield singlet 

at δ 4.25 confirmed the formation of the 131 methyl ester because this peak is unique to the methyl 

group on the formic side chain of chlorin e6 (1). That observation confirmed that aspartic acid coupled 

with the acetic and propionic side chains of the molecule.  

In the final step, all four tert-butyl ester protections in molecule 5 were removed in a TFA/CH2Cl2 

mixture for six hours at room temperature. The solvent was evaporated and aqueous work-up was 

performed to neutralize the remaining TFA. But basic aqueous work-up was unsuccessful due to the 

higher water solubility of these compounds. To avoid the aqueous work-up, TFA and CH2Cl2 was first 

removed by blowing nitrogen over the solution and the sample was placed in a high vacuum for four 

hours. Finally the product was freeze-dried by dissolving it in water/acetonitrile mixture. Once the 

sample was neutralized the color changed from purple to dark green. The identity of product 6 was 

confirmed by 1H NMR, 13C NMR and mass spectrometry. 

3.2.2 Synthesis of 131,173-diaspartylchlorin e6 derivative 

  There are two possible routes to synthesize the 131,173 chlorin e6 conjugate 10: 1) coupling of 

the first amino acid to the propionic acid chain of pheophorbide 8 and subsequent isocyclic ring opening 

of pheophorbide 8 with ethylenediamine followed by coupling of the second amino acid to the free 

amine group of the resulting chlorin derivative (Scheme 3.3), or 2) selective esterification of the acetic 

acid side chain (152 ester) of chlorin e6 (1) followed by coupling with two equivalents of an amino acid to 

afford the 131,173-di(amino acid) derivative (Scheme 3.4). 
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Scheme 3.3: Proposed route to obtain 131,173-di(amino acid) derivative 

In the first method, pheophorbide a (8) can be obtained by selective hydrolysis of the phytyl 

ester group of pheophytin a (7) using the Wasielewski and Svec procedure as mentioned in the previous 

chapter.10 Then the amino acid can be coupled to the propionic side chain to obtain the pheophorbide 

derivative 9. Then the isocyclic ring can be cleaved using ethylene diamine as accomplished in the 

previous chapter.11 That will provide a free amine group to couple the second amino acid to the 131 

position to obtained 131,152 derivative 10. 

 

Scheme 3.4: Synthesis of 131,173-diaspartyl chlorin e6 methyl ester (13) 

The key step in the second method is the selective protection of the acetic acid side chain of 

chlorin e6 (1) in the presence of the formic and propionic carboxylic side chains. From the previous work, 
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it was found that the acetic acid group of chlorin e6 can be activated selectively by forming a cyclic 

anhydride. Chlorin e6 was activated using one equivalent of DCC and DMAP to form the anhydride 

intermediate (2).9 Formation of cyclic anhydride 2 can be confirmed by using UV-Vis spectroscopy. Then 

freshly prepared 0.5 M sodium methoxide was added until the color of the reaction mixture change 

from brown-purple to dark green. Mass spectroscopy confirmed the formation of desired product 11. 

Purification of di-acid 11 was challenging due to its high polarity. After work-up it was possible to obtain 

a 1H NMR spectrum of the crude product and it was clear enough to identify the unique peak for the 152 

methyl ester, and sufficiently pure for the next step. Appearance of a new peak at 3.7 ppm for 3 protons 

provided evidence that esterification took place at the acetic acid side chain. Then tert-butyl-protected 

aspartic acid was coupled with crude 152-chlorin e6 monomethyl ester. The optimal yield was obtained 

with HOBt and TBTU as coupling reagents at room temperature for 48 hours.12 This reaction was 

monitored by TLC. The product was purified via silica gel column chromatography and the first moving 

band with 5% methanol/DCM was collected. The structure of product 12 was confirmed by mass and 1H 

NMR spectroscopy. Purified tert-butyl protected diaspartyl chlorin e6 12 was treated with TFA/CH2Cl2 

mixture for six hours at room temperature to deprotect all four carboxylic acid groups.  Pure compound 

13 was obtained after removal of TFA. The final product, 131,173-diaspartyl chlorin e6 13, was obtained 

in 28% yield over four steps.  

3.2.3 Synthesis of 131,152-di(amino acid) chlorin e6 derivatives 

Previous studies revealed that the formic and acetic acid derivatives of chlorin e6 have more 

photosensitizing ability compared to propionic acid conjugates.8 So it was assumed that the 131,152 

di(amino acid) derivatives may show more potent photosensitizing ability in this diamino acid series 

compared to the two other regioisomers. Therefore two different amino acid conjugates of 131,152 

regioisomer were synthesized. 
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The main challenge was to protect the propionic side chain in the presence of other two 

carboxyl groups. There is no known chemical method to selectively methylate the propionic side chain 

of chlorin e6 without methylating the acetic side chain. Esterification with methanol under acidic 

conditions will form the 152,173-chlorin e6 dimethyl ester.13 Diazomethane will methylate all three 

carboxylic group to form chlorin e6 trimethyl ester.14 But in the recent literature there is reported a 

chemoselective aminolysis of the β-keto ester of methyl pheophorbide a.15-17 This opens up a new route 

to synthesize 131,152 chlorin e6 derivative from methyl pheophorbide a. 

Previously, Shinoda and coworkers reported a facile transesterification of the β-keto ester of 

methyl pheophorbide a.18 These authors were able to introduce various alcohols and steroid groups in 

the presence of 2-chloro-1-methylpyridinium iodide (CMPI) and of 4-(N,N-dimethylamino)pyridine 

(DMAP) to the  132 position of pheophorbide. Recently Haavikko and coworkers also reported a selective 

aminolysis of β-keto ester of the methyl pheophorbide a.15 They used various primary, secondary and 

aromatic amines for the aminolysis of the β-keto ester.  t is known that aminolysis of the β-keto ester is 

usually facile compared to unactivated esters.19,20 In the previous literature the formation of β-

enaminoesters by reaction between secondary amines and β-ketoesters under low temperatures is 

described.21 It was noticed that at higher temperatures they tend to form substantial amounts of the 

corresponding β-ketoamide along with the expected enaminoester.  

We have observed the same behavior with pheophorbide a. In the previous work, it was 

possible to open the isocyclic ring of pheophorbide a (by cleaving the β-keto ester) using ethylene 

diamine at room temperature. This time it was noticed at higher temperatures (90 oC in toluene) that 

reaction with ethylene diamine tended to form two major products (two new very close spots in TLC). 

Both products were isolated using preparative TLC and characterized by 1H NMR and mass spectroscopy. 

One of the products still clearly shows the peak unique for the pheophorbide isocyclic ring: the proton 
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appears as a sharp singlet at δ 6.26. The disappearance of the peak for the methyl group of the β-

ketoester and new peaks for the ethylene diamine methylene groups confirmed the formation of β-

ketoamide 24. The second product was identified as the expected chlorin e6 derivative 26. As reported 

in the literature, temperature and the concentration of the amine play vital roles in deciding the major 

product.15 A large excess of amine and mild heating always produced the classical ring-opened product 

26, and a slight excess of amine in refluxing toluene yielded β-ketoamide 24 as the major product.  

The exact mechanism for this reaction is still unclear. However Gravel and coworkers had 

proposed two possible mechanisms to form β-ketoamide at high temperature (Scheme 3.5).21 Their first 

possible path involves an internal amine transfer from hemiaminal intermediate 15 to the ester carbonyl 

group through a four membered transition state.  Another possible mechanism involves formation of a 

four membered β-lactone 18 followed by cleavage of this lactone by amine to yield the β-ketoamide 19. 

These two mechanisms are also consistent with the reported high diastereomeric excess of the R-isomer 

of pheophorbide 24 (at C132).15 Indeed the R-isomer is more stable compared to the S-isomer due to 

steric interaction between the 132 and 17 side chains of pheophorbide.  However, if the reaction goes 

through an enol intermediate, the C132 position can be epimerized and end up as a mixture of isomers.  

At low temperature, the reaction follows a different mechanism, as shown in Scheme 3.5. The 

first step is the same as in the previous mechanisms. Free amine will attack at the more nucleophilic 

keto group of molecule 14 to form hemiaminal 20. Then the isocyclic ring will cleave between the C131-

C132 atoms and form the chlorin e6 derivative 21. The ease of opening of the isocyclic ring is due to the 

release of the strain in the ring upon opening. It is clear that at higher temperatures reaction goes 

through a high energy transition state and forms the keto amide 19, but at lower temperature it follows 

the low energy path and forms more stable ring-opened product 22.   
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Scheme 3.5: Suggested mechanism for aminolysis of the β-keto ester of methyl pheophorbide a at high 
temperature (top), and the corresponding ring-opening reaction of methyl pheophorbide a at low 
temperature (bottom). 

 

The first attempt to introduce the ethylene diamine to both ester and keto groups of the 

pheophorbide 23 to form 131 and 152 substituted chlorine e6 derivative 25 was unsuccessful (Scheme 

3.6). Both β-keto ester aminolysis and ring-opening reactions were attempted in one pot. First 

pheophorbide 23 and ethylene diamine were refluxed in toluene until disappearance of the starting 

material 23, as monitored by TLC. Then excess amine was added and the mixture was stirred at 40 oC for 

12 hours to complete the ring cleavage reaction. Unfortunately, this process resulted in a mixture of 

compounds, including the desired product 25. Mass spectrometry revealed three major compounds in 
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this mixture, as shown in Scheme 3.6. Purification of these compounds was challenging due to high 

polarity of the free amine groups.  

 

Scheme 3.6: Attempted synthesis of 131 and 152 ethylenediamine substituted chlorine e6 derivative 25 

Then it was decided to use half protected ethylene diamine to simplify the purification process. 

As indicated by TLC, aminolysis of the β-keto-ester of pheophorbide 23 with protected ethylene diamine 

was completed after 12 hours. But the second step, ring-cleavage was unsuccessful with Boc protected 

ethylene diamine, possibly due to steric bulkiness of the amine. Next it was decided to purify the 

product 27 before going on to the ring cleavage reaction. As it was possible to achieve the isocyclic ring 

cleavage using free ethylene diamine, unprotected ethylene diamine was used for the second step and 

the diethylene diamine substituted product 28 was obtained. Product 28 was purified using a short silica 

gel column and its identity was confirmed using mass and 1H NMR spectroscopy. Boc deprotection was 

achieved using TFA to obtain the free amines for the coupling reaction. Subsequent coupling with 

protected aspartic acid followed by deprotection produced the desired product 30, in 15% yield over 5 

steps from pheophorbide a (23, Scheme 3.7).  
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Scheme 3.7: Synthesis of 131,152-diethylenediaminylaspartylchlorin e6 30 

Advantage was taken of a previous route to introduce two types of amino acids to the 131 and 

152 positions. Protected β-alanine was used for the aminolysis reaction as it greatly reduces the 

unwanted ring-opened product and creates a carboxylic end to couple aspartic acid through its amino 

group.  Subsequent aminolysis with protected β-alanine followed by deprotection of the tert-butyl ester 

provided free acid 31. Its identity was confirmed by mass spectroscopy. Free acid 31 was activated and 

coupled with protected aspartic acid to obtain pheophorbide derivative 32. This was purified and 

characterized by 1H NMR and mass spectroscopy. A classical ring-opening reaction was performed with 

excess ethylene diamine in toluene at 40 oC to provide the chlorine e6 derivative 33. The reaction was 

monitored using UV-Vis spectroscopy, and the color changed from dark green to bright green during 

isocyclic ring-opening. 1H NMR spectroscopy shows the new peaks for ethylene diamine and mass 

spectroscopy confirmed the identity of the product. Then boc protected lysine was coupled with free 



137 
 

amine group of chlorin e6 derivative 33 to produce the desired 131-ethylenediaminyllysinyl-152-β-

alanylaspartylchlorine e6 tert-butyl methyl ester. This product was purified using silica gel 

chromatography. Finally, global deprotection with TFA in DCM produced the final product 34 in 9% yield 

over six steps starting from pheophorbide a (Scheme 3.8).  

 

Scheme 3.8: Synthesis of 131,152-di(amino acid) derivative 34 
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3.3 Cell Culture Studies 

3.3.1 Time-dependent Cellular Uptake 

The results obtained for the time-dependent uptake of chlorin e6 and its derivatives at a 

concentration of 10 μM in human HEp2 cells are shown in Figure 3.2.  The 131 amino acid conjugates of 

chlorin e6 34, 30 and 131-AspCe6DME were readily taken up by cells compared to unconjugated chlorin 

e6 (1). However, the 152,173-di(Asp)Ce6 MME (6) and 131,173-di(Asp)Ce6 MME (13) showed the similar 

uptake kinetics to unconjugated chlorin e6 (1). The 131-EDLys-152-β-AlaAspCe6 MME (34) which is a 

zwitterion at physiological pH, showed the highest cell uptake compared to the other derivatives. In 

comparison with unconjugated chlorin e6 (1), compounds 34 and 30 showed 5-fold and 4-fold cellular 

uptake after 24 hours, respectively. This is probably due to the high amphiphilicity and the linear 

extended conformation compared to other amino acid derivatives. The uptake of derivative 34 and 30 

continues to increase over the 24 hour period investigated, therefore one can expect much higher 

uptake for these derivative with time. However di-amino acid derivative 13 and 6 showed similar uptake 

to unconjugated chlorin e6; this might be due to the conjugation at the propionic side chain resulting in 

non-linear conformations for these molecules.8 Previous computational studies of mono-conjugated 

chlorine e6 derivatives revealed that the 173-conjugated chlorin e6 derivatives assume a L-shape 

conformation with the side chain positioned perpendicular to the macrocyclic plane.8 However in the 

case of the 152- and 131-conjugated derivatives, the amino acid side chain extends away from the 

macrocycle resulting in nearly linear conformations compared to 173-conjugated derivatives. A similar 

conformational change can be expected in the di-conjugated series. Amino acid conjugation at propionic 

side chain (compound 13 and 6) makes it difficult for them to pass through the cell membrane, resulting 

the lower cellular uptake.  
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Figure 3.2: Time-dependent uptake of chlorin e6 (1, green line) and its derivatives 152,173-di(Asp)Ce6 
MME (6, blue line), 131,173-di(Asp)Ce6 MME (13, light pink line), 131,152-di(EDAsp)Ce6 MME (30, purple 

line), 131-EDLys-152-β-AlaAspCe6 MME (34, black line), 131-AspCe6DME (red line), at 10 M by HEp2 
cells. 
 
 

3.3.2 Cytotoxicity 

The dark cytotoxicity and phototoxicity of chlorin e6 and its amino acid conjugated derivatives 

was evaluated in HEp2 cells exposed to increasing concentrations of each compound, up to 400 μM. 

Toxicity of 131 AspCe6 DME, which showed the highest phototoxicity in the mono conjugated amino acid 

series, was compared with the toxicity of di-conjugated chlorin e6 series. The 131 lysine isomer 131-

LysCe6 DME was also tested with the new series and the dark and phototoxicity results are shown in 

Figures 3.3 and 3.4, respectively, and summarized in Table 3.1. Chlorin e6 (1), 152,173-di(Asp)Ce6 MME (6) 

and 131,173-di(Asp)Ce6 MME (13) were found to be the least toxic in the dark and also in the presence of 

light. But all other mono- and di-substituted derivatives showed significant toxicity, even in the absence 

of light. After expose to light, all these derivatives were highly toxic to HEp2 cells. Mono substituted 

derivatives 131-LysCe6 DME and 131-AspCe6 DME were found to be most toxic compared to the di-

substituted derivatives. The estimated IC50 values of the most phototoxic 131-chlorin e6 derivatives 131-
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AspCe6 DME and 131-LysCe6 DME, are 0.8 and 0.7 μM, respectively, and this is comparable to our 

previous cytotoxicity results of mono-conjugated derivatives. Surprisingly, our results revealed that the 

introduction of a second amino acid decreased the cytotoxicity of the compound. For example, the 

131,152-di(EDAsp)Ce6 MME (30) and 131,173-di(Asp)Ce6 MME (13) were less phototoxic than its 131 

mono substituted derivative 131-AspCe6 DME by approximately 10-fold and 27-fold, respectively. As was 

expected, among the di-substituted series, the 131,173-di(Asp)Ce6 MME (13) and 152,173-di(Asp)Ce6 

MME (6) showed the least cytotoxicity, probably due to conjugation at the propionic side chain (173 

position). On the other hand the 131-EDLys -152-β-AlaAspCe6 MME (34) and 131,152-di(EDAsp) Ce6 MME 

(30) showed the highest phototoxicity with IC50 of 5.1 and 7.6 μM, respectively, but still more than 5-fold 

lower than the mono-conjugated derivatives 131-AspCe6 DME and 131-LysCe6 DME. These results show 

that the conjugation at the propionic and/or acetic acid chains of 131 AspCe6 MME derivative greatly 

reduces its cytotoxicity. Cell uptake results of di-conjugated compounds also complemented the 

phototoxicity results. 131-EDLys-152-β-AlaAspCe6 MME (34) has the highest cell uptake and the highest 

phototoxicity of the di-amino acid derivatives and 152,173-di(Asp)Ce6 MME (6) and 131,173-di(Asp)Ce6 

MME (13) showed the lowest cell uptake and lowest phototoxicity in the di-amino acid conjugated 

series.  

Table 3.1: Cytotoxicity (HEp2 cells) for chlorin e6 and its derivatives using the MTT assay 

Compound Dark toxicity 
(IC50, μM) 

Phototoxicity 
(IC50, μM) 

Ratio 

Chlorin e6 (1) 330 10.6 31 

152,173-di(Asp)Ce6 MME (6) >400 21 >19 

131,173-di(Asp)Ce6 MME (13) 286 22 13 

131,152-di(EDAsp)Ce6 MME (30) 76 7.6 10 

131-EDLys-152-β-AlaAspCe6 MME (34) 58 5.1 11 

131-AspCe6 DME 58 0.7 35 
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Figure 3.3: Dark toxicity of chlorin e6 (1, green line) and its derivatives 152,173-di(Asp)Ce6 MME (6, blue 

line), 131,173-di(Asp)Ce6 MME (13, light pink line), 131,152-di(EDAsp)Ce6 MME (30, purple line), 131-

EDLys-152-β-AlaAspCe6 MME (34, black line), 131-AspCe6 DME (red line), 131-LysCe6 DME (yellow line) 

toward HEp2 cells using 1 J/cm2 light dose and the Cell Titer Blue assay. 

 

Figure 3.4: Phototoxicity of chlorin e6 (1, green line) and its derivatives 152,173-di(Asp)Ce6 MME (6, blue 

line), 131,173-di(Asp)Ce6 MME (13, light pink line), 131,152-di(EDAsp)Ce6 MME (30, purple line), 131-

EDLys-152-β-AlaAspCe6 MME (34, black line), 131-AspCe6 DME (red line), 131-LysCe6 DME (yellow line) 

toward HEp2 cells using 1 J/cm2 light dose and the Cell Titer Blue assay. 
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3.4 Experimental 

152,173-Diaspartylchlorin e6 tetra(tert)butyl methyl ester (5):  

 

Chlorin e6 (1, 100 mg, 0.168 mmol) was dissolved in dry CH2Cl2 (7 ml) and DIEA (0.06 ml, 0.34 mmol) was 

added. A mixture of DCC (105 mg, 0.51 mmol) and DMAP (163 mg, 0.51 mmol) in CH2Cl2 (8 ml) was 

added and the mixture was allowed to stir for 2 h. Then aspartic acid di(tert)butyl ester hydrochloride 

(125 mg, 0.445 mmol) and DIEA (0.075 ml) were mixed in CH2Cl2 and added to the reaction mixture. The 

solution was allowed to stir overnight at room temperature and after 12 h it was treated with ethereal 

diazomethane. Then the mixture was diluted with CH2Cl2 and washed with 5% aqueous citric acid, 

followed by a wash with brine and water. It was dried over anhydrous Na2SO4 and the solvent was 

evaporated. The residue was dissolved in 5% methanol/CH2Cl2 and purified via silica gel column 

chromatography with the same mobile phase to afford 152,173-diaspartylchlorin e6 tera(tert)butyl 

methyl ester (5, C59H80N6O12, 54 mg, 0.051 mmol, 30%); UV-Vis (acetone):  λmax (rel. inten.) 664 nm 

(0.305), 608 (0.023), 528 (0.021), 500 (0.075), 400 (1.000); 1H NMR (acetone-d6, 400 MHz): δ 9.80 (s, 1H), 

9.63 (s, 1H), 9.06 (s, 1H), 8.15 (dd, J = 17.9, 11.6 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 

6.37 (dd, J = 17.9, 1.5 Hz, 1H), 6.10 (dd, J = 11.6, 1.4 Hz, 1H), 5.37 (d, J = 12.0 Hz, 2H), 4.67 (s, 2H), 4.26 (s, 

3H), 3.77 (d, J = 7.6 Hz, 2H), 3.57 (s, 3H), 3.48 (s, 4H), 3.25 (s, 3H), 2.83 – 2.63 (m, 3H), 2.52 – 2.28 (m, 

2H), 2.14 (s, 2H), 1.89 – 1.79 (m, 2H), 1.78 (d, J = 7.1 Hz, 3H), 1.69 (t, J = 7.6 Hz, 3H), 1.43 (s, 9H), 1.35 (s, 

9H), 1.26 (s, 9H), 1.16 (s, 9H), -1.36 (s, 1H), -1.57 (s, 1H); MS (MALDI-TOF) m/z 1065.591 [M+H]+, calcd. 

for C59H81N6O12 1065.591. 
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152,173-Diaspartylchlorin e6 methyl ester (6): 

 

 

 

 

 

152,173-Diaspartylchlorin e6 tetra(tert)butyl methyl ester (5, 54 mg, 0.051 mmol) was dissolved in 2 ml of 

dry CH2Cl2 and TFA (1 ml) was added in an ice bath under argon and the reaction mixture was allowed to 

stir overnight. Solvent was rotavaporated several times with diethyl ether to remove TFA. The residue 

was washed with CH2Cl2 several times. The final product was redissolved in a water/acetonitrile mixture 

and freeze dried to afford 152,173-diaspartylchlorin e6 methyl ester (6, C43H48N6O12, 38 mg, 0.045 mmol, 

88%); UV-Vis (MeOH):  λmax (ε/M
-1cm-1) 661 nm (71,600), 607 (11,000), 527 (9,300), 499 (22,400), 399 

(172,300); 1H NMR (acetone-d6, 400 MHz): δ 9.88 (s, 1H), 9.66 (s, 1H), 9.21 (s, 1H), 8.11 (dd, J = 17.8, 

11.6 Hz, 1H), 6.35 (d, J = 17.8 Hz, 1H), 6.14 (d, J = 11.6 Hz, 1H), 5.35 (t, J = 22.7 Hz, 2H), 4.81 (br. s, 1H), 

4.65 (br. s, 1H), 4.63 (br. S, 1H), 4.25 (s, 3H), 3.70 (d, J = 7.9 Hz, 2H), 3.54 (s, 3H), 3.46 (s, 3H), 3.18 (s, 3H), 

3.06 – 2.60 (m, 5H), 2.27 (s, 3H), 1.81 (d, J = 7.1 Hz, 3H), 1.55 (t, J = 7.4 Hz, 3H). 2.00 – 1.50 (m, 4H); 13C 

NMR (acetone-d6, 100 MHz) δ 193.10, 192.75, 191.97, 191.93, 191.86, 191.81, 191.02, 188.70, 164.12, 

160.40, 158.09, 157.49, 155.66, 155.24, 155.18, 151.90, 150.00, 149.02, 145.81, 142.62, 124.87, 121.05, 

117.58, 115.99, 73.49, 73.03, 69.42, 69.24, 68.91, 68.68, 59.56, 55.70, 53.43, 52.59, 50.75, 45.56, 44.90, 

42.86, 39.10, 36.79, 31.75, 31.58, 30.41. MS (MALDI-TOF) m/z 841 [M+H]+, calcd. for C43H49N6O12 

841.340. 
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152-Chlorin e6 monomethyl ester (11): 

 

Chlorin e6 (1, 100 mg, 0.168 mmol) was dissolved in methanol (5 ml). DCC (35 mg, 0.17 mmol) and DMAP 

(21 mg, 0.17 mmol) were added and the mixture was stirred until the anhydride intermediate was 

observed in the TLC. After 1 h, freshly prepared sodium methoxide (0.34 mL of a 0.5 M solution) was 

added into the reaction mixture dropwise until the color changed from brown to light green. The 

reaction was followed by UV-Vis spectroscopy. The solution changes from brown to light green as the 

anhydride ring opens. The mixture was diluted with ethyl acetate and then washed with 5% aqueous 

citric acid, followed by a wash with brine and water. It was dried over anhydrous Na2SO4 to afford 152-

chlorin e6 monomethyl ester (11, C35H39N4O6, 101 mg, 0.165 mmol, 100 %). Purification was challenging 

due to the two free acid groups.  Thus, the crude product was subjected to the next reaction without 

purification. 1H NMR spectrum of the crude product confirmed the methylated acetic side chain.  MS 

(MALDI-TOF) m/z 611 [M+H]+, calcd. for C35H39N4O6 611.287. 

131,173-Diaspartylchlorin e6 tetra(tert)butyl methyl ester (12): 

 

Chlorin e6 monomethyl ester (11, 101 mg, 0.165 mmol) was dissolved in dry DMF (5 ml). A mixture of 

HOBt (46 mg, 0.34 mmol), TBTU (109 mg, 0.34 mmol) and DIEA (0.06 ml, 0.34 mmol) in DMF was added 
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and the mixture was allowed to stir for 30 min at room temperature. Then aspartic acid di(tert)butyl 

ester hydrochloride (125 mg, 0.445 mmol) and DIEA (0.08 ml, 0.445 mmol) were mixed in CH2Cl2 (2 ml) 

and added to the reaction mixture. The solution was allowed to stir for 48-72 h until formation of the 

desired product was confirmed by TLC. Then the reaction mixture was washed with 5% aqueous citric 

acid, followed by a wash with brine and water. It was dried over anhydrous Na2SO4 and solvent was 

evaporated. The residue was dissolved in 5% methanol/ CH2Cl2 and purified via a short silica gel column 

chromatography with the same mobile phase to afford 152-173-diaspartylchlorin e6 tera(tert)butyl 

methyl ester (12, C59H81N6O12, 85 mg, 0.079 mmol, 48% of); UV-Vis (acetone):  λmax (rel. inten.) 663 nm 

(0.328), 607 (0.023), 528 (0.019), 500 (0.081), 399 (1.000); 1H NMR (acetone-d6, 400 MHz): δ 9.79 (d, J = 

6.1 Hz, 1H), 9.65 (s, 1H), 9.10 (s, 1H), 8.42 (d, J = 7.9 Hz, 1H), 8.12 (dd, J = 17.8, 11.6 Hz, 1H), 7.29 (d, J = 

8.2 Hz, 1H), 6.32 (d, J = 17.8 Hz, 1H), 6.06 (d, J = 11.4 Hz, 1H), 5.73 (d, J = 18.9 Hz, 1H), 5.50 – 5.21 (m, 

2H), 4.76 – 4.61 (m, 2H), 4.61 – 4.48 (m, 1H), 3.76 (s, 3H), 3.74 – 3.68 (m, 1H), 3.65 (s, 3H), 3.47 (s, 3H), 

3.42 (s, 1H), 3.22 (s, 3H), 3.20 – 3.11 (m, 2H), 2.66 (d, J = 5.2 Hz, 2H), 2.46 – 2.27 (m, 1H), 2.24 – 2.14 (m, 

1H), 1.83 – 1.72 (m, 2H), 1.66 (s, 9H), 1.55 (s, 9H), 1.41 (s, 9H), 1.35 (s, 9H), 1.72-1.2 (m, 6H); MS (MALDI-

TOF) m/z 1065 [M+H]+, calcd. for C59H81N6O12 1065.591. 

131,173-Diaspartylchlorin e6 methyl ester (13): 

 

152,173-Diaspartylchlorin e6 tetra(tert)butyl methyl ester (12, 50 mg, 0.047 mmol) was dissolved in 2 ml 

of dry CH2Cl2 in an ice bath under argon. TFA (1 ml) was added and the reaction mixture was allowed to 

stir overnight. The mixture was rotavaporated several times with diethyl ether to remove TFA. The 
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residue was dissolved in water/acetonitrile mixture and freeze dried to obtain 131,173-diaspartylchlorin 

e6 methyl ester (13, C43H48N6O12, 21 mg, 0.025 mmol, 53%). UV-Vis (MeOH):  λmax (ε/M
-1cm-1) 662 nm 

(75,300), 607 (23,000), 529 (10,000), 500(8,300), 400 (165,200); 13C NMR (methanol-d4, 100 MHz) δ 

175.47, 175.04, 174.87, 174.17, 174.03, 173.97, 173.81, 169.50, 144.08, 143.10, 142.62, 140.72, 140.57, 

138.37, 138.15, 136.27, 135.61, 134.11, 132.76, 131.44, 129.62, 124.84, 107.17, 100.27, 98.96, 97.91, 

55.09, 53.20, 51.40, 50.70, 50.31, 47.32, 39.03, 37.01, 35.50, 34.82, 33.92, 31.99, 30.83, 26.82, 26.17, 

24.34, 23.85, 20.15, 17.13, 12.36, 11.05, 9.26. MS (MALDI-TOF) m/z 841 [M+H]+, calcd. for C43H49N6O12 

841.340. 

Ethylenediaminyl(boc) pheophorbide a (27): 

 

 

 

 

Methyl pheophorbide a (23, 100 mg, 0.165 mmol) was dissolved in dry toluene and the mixture was 

heated to 100 oC under nitrogen. Then mono-boc protected ethylene diamine (32 mg, 0.20 mmol) was 

added. The reaction mixture was allowed to stir overnight at 100 oC while monitoring by TLC. Then the 

solvent was removed and the residue was dissolved in CH2Cl2 and washed with 5% aqueous citric acid, 

followed by water and brine. It was dried over anhydrous Na2SO4 and the solvent was evaporated. The 

residue was dissolved in 3% methanol/CH2Cl2 and purified via a silica gel column chromatography with 

the same mobile phase to afford  ethylenediaminyl(boc) pheophorbide a (27, C42H51N6O6, 80 mg, 0.109 

mmol, 65%); UV-Vis (D M):  λmax (rel. inten.) 667 nm (0.463), 609 (0.066), 535 (0.079), 505 (0.101), 413 

(1.000); 1H NMR (acetone-d6, 400 MHz) δ 9.58 (s, 1H), 9.30 (s, 1H), 8.87 (s, 1H), 8.13 – 7.92 (m, 2H), 6.27 

(dd, J = 17.9, 1.5 Hz, 1H), 6.18 (s, 1H), 6.12 (dd, J = 11.5, 1.4 Hz, 1H), 4.77 – 4.55 (m, 1H), 4.37 (dt, J = 9.3, 
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2.5 Hz, 1H), 3.59 (s, 3H), 3.52 (s, 3H), 3.42 – 3.36 (m, 2H), 3.35 (d, J = 6.5 Hz, 3H), 3.08 (s, 3H), 2.74 – 2.57 

(m, 2H), 2.46 – 2.33 (m, 1H), 2.31 – 2.19 (m, 1H), 1.84 (d, J = 7.3 Hz, 3H), 1.76 – 1.64 (m, 1H), 1.58 (t, J = 

7.6 Hz, 3H), 1.35 (s, 9H), -1.77 – -2.11 (m, 2H); MS (MALDI-TOF) m/z 841 [M+H]+, calcd. for C42H51N6O6 

735.387. 

152-Ethylenediaminyl(boc)-131-ethylenediaminylchlorin e6 methyl ester (28): 

 

 

 

 

Ethylenediaminyl(boc) pheophorbide-a (27, 80 mg, 0.109 mmol) was dissolved in toluene (10 ml) and 

ethylene diamine (30 mg, 0.5 mmol) was added. The reaction mixture was heated at 40 oC overnight. 

Progress was monitored by TLC and UV-Vis spectrometry. After the reaction was complete by TLC, the 

solvent was removed and the residue was dissolved in CH2Cl2 and washed with 5% aqueous citric acid to 

remove excess amine, followed by a wash with brine. It was dried over anhydrous Na2SO4 and the 

solvent was evaporated. The residue was dissolved in 5% methanol/CH2Cl2 and eluted with the same 

mobile phase. Then the methanol percentage of the mobile phase was gradually increased up to 20% to 

elute the pure product from the column. The solvent was evaporated and the residue was re-dissolved 

in 5% acetone/CH2Cl2 and filtered to remove silica from the sample. After evaporation of the solvent 

pure 152-ethylenediaminyl(boc)-131-ethylenediaminylchlorin e6 methyl ester was obtained (28, 

C44H58N8O6, 55 mg, 0.069 mmol, 64%); UV-Vis (acetone):  λmax (rel. inten.) 663 nm (0.325), 607 (0.015), 

528 (0.008), 500 (0.072), 399 (1.000);  1H NMR (acetone-d6, 400 MHz) δ 9.74 (s, 1H), 9.73 (s, 1H), 9.13 (s, 

1H), 8.36 (br. s, 1H), 8.23 (dd, J = 17.8, 11.5 Hz, 1H), 7.46 (br. s, 1H), 6.64 (br. s, 1H), 6.40 (dd, J = 17.9, 

1.5 Hz, 1H), 6.12 (dd, J = 11.7, 1.5 Hz, 1H), 5.55 (d, J = 18.0 Hz, 1H), 5.09 (d, J = 9.3 Hz, 1H), 4.76 – 4.51 



148 
 

(m, 2H), 4.28 (s, 1H), 4.01 – 3.83 (m, 1H), 3.80 – 3.67 (m, 4H), 3.58 (s, 3H), 3.54 (s, 3H), 3.52 (s, 3H), 3.29 

(s, 3H), 3.25 – 3.16 (m, 2H), 3.08 (dd, J = 9.1, 4.9 Hz, 1H), 2.78 – 2.64 (m, 1H), 2.43 – 2.21 (m, 2H), 2.00 (d, 

J = 8.0 Hz, 1H), 1.76 (d, J = 7.1 Hz, 3H), 1.68 (t, J = 7.6 Hz, 3H), 1.20 (s, 9H), -1.66 (s, 1H), -2.02 (s, 1H); MS 

(MALDI-TOF) m/z 841 [M+H]+, calcd. for C44H59N8O6 795.447. 

131,152-Diethylenediaminylchlorin e6 methyl ester (29): 

 

 

 

 

152-Ethylenediaminyl(boc)-131-ethylenediaminylchlorin e6 methyl ester (28, 55 mg, 0.069 mmol) was 

dissolved in 3 ml of dry CH2Cl2 in an ice bath under argon and 1 ml of TFA was added. Then the reaction 

mixture was allowed to stir overnight. The mixture was rotavaporated several times with diethyl ether 

to remove TFA. The residue was dissolved in water/acetonitrile mixture and and freeze dried. Without 

any further purification the crude product was taken to the next step. (29, C39H50N8O4, 42 mg, 0.06 

mmol, 88%) MS (MALDI-TOF) m/z 695 [M+H]+,calcd. for C39H51N8O4 695.403. 

131,152-Diethyleneaminylaspartylchlorin e6 di(tert)butyl di(boc) methyl ester: 

 
(Boc)Asp(tBu)OH (70 mg, 0.24 mmol) was dissolved in dry DMF (5 ml). A mixture of HOBt (32 mg, 0.24 

mmol), TBTU (77 mg, 0.24 mmol) and DIEA (0.05 ml, 0.29 mmol) in DMF (3 ml) was added and the 
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mixture was allowed to stir for 1 h. 131,152-Diethylenediaminylchlorin e6 methyl ester (29, 42 mg, 0.060 

mmol) was added to the reaction mixture and stirring was continued for 48 h. The mixture was diluted 

with CH2Cl2 and then washed with 5% aqueous citric acid, followed by washes with brine and water. The 

organic layer was dried over anhydrous Na2SO4 and the solvent was evaporated. The residue was 

dissolved in 6% MeOH/CH2Cl2 and purified via silica gel column chromatography using the same mobile 

phase to afford 131,152-diethyleneaminyl-diaspartylchlorin e6 di(tert)butyl di(boc) methyl ester 

(C65H92N10O14, 30 mg, 0.024 mmol, 40%); UV-Vis (acetone):  λmax (rel. inten.) 663 nm (0.319), 607 (0.014), 

528 (0.011), 500 (0.070), 399 (1.000); 1H NMR (chloroform-d, 400 MHz) δ 9.68 (s, 1H), 9.61 (s, 1H), 8.79 

(s, 1H), 8.07 (dd, J = 17.9, 11.5 Hz, 1H), 7.97 (d, J = 5.7 Hz, 1H), 7.74 (s, 1H), 6.34 (d, J = 17.8 Hz, 1H), 6.13 

(d, J = 11.5 Hz, 1H), 5.81 (d, J = 8.3 Hz, 1H), 5.47 (d, J = 18.1 Hz, 1H), 5.28 – 4.88 (m, 2H), 4.67 – 4.30 (m, 

3H), 4.10 – 3.68 (m, 6H), 3.54 (s, 3H), 3.48 (s, 3H), 3.31 (s, 3H), 2.93 – 2.69 (m, 2H), 2.67 – 2.53 (m, 1H), 

2.23 (d, J = 9.3 Hz, 1H), 2.04 (s, 1H), 1.90 – 1.55 (m, 6H), 1.31 (d, J = 3.9 Hz, 18H), 1.14 (d, J = 8.0 Hz, 18H), 

0.94 – 0.80 (m, 1H), -1.62 (s, 1H), -1.80 (s, 1H); MS (MALDI-TOF) m/z 1237.651 [M+H]+, calcd. for 

C65H93N10O14 1237.687. 

131,152-Diethyleneaminyl-diaspartylchlorin e6 methyl ester (30): 

 

 

 

 

 

 

131,152-Diethyleneaminyl-diaspartylchlorin e6 di(tert)butyl di(boc) methyl ester (30 mg, 0.024 mmol) 

was dissolved in 2 ml of dry CH2Cl2 in an ice bath under argon. TFA (1 ml) was added and the reaction 

mixture was allowed to stir overnight. The reaction mixture was rotavaporated several times with 



150 
 

diethyl ether to remove TFA. The residue was washed with CH2Cl2 several times. The final product was 

dissolved in water and freeze dried to obtain 131-152-diethyleneaminyl-diaspartylchlorin e6 methyl ester 

(30, C48H59N9O12, 16 mg, 0.016 mmol, 70%). UV-Vis (MeOH): λmax (ε/M
-1cm-1) 661 nm (74,700), 606 

(8,400), 527 (6200), 500 (20,500), 400 (190,200); 1H NMR (methanol-d4, 400 MHz) δ 10.18 (s, 1H), 10.03 

(s, 1H), 9.47 (s, 1H), 8.20 (dd, J = 17.7, 11.6 Hz, 1H), 6.39 (d, J = 17.8 Hz, 1H), 6.29 (d, J = 11.5 Hz, 1H), 

5.59 (d, J = 18.7 Hz, 1H), 5.42 (d, J = 18.7 Hz, 1H), 4.79 (d, J = 7.2 Hz, 1H), 4.54 (d, J = 10.8 Hz, 1H), 4.44 

(ddd, J = 24.1, 8.5, 4.2 Hz, 1H), 4.25 – 4.05 (m, 1H), 4.03 – 3.83 (m, 4H), 3.74 (s, 3H), 3.67 (s, 3H), 3.56 (s, 

3H), 3.49 (td, J = 10.6, 9.5, 4.6 Hz, 2H), 3.41 – 3.26 (m, 5H), 3.23 – 3.00 (m, 2H), 2.99 – 2.82 (m, 2H), 2.70 

(dd, J = 17.9, 9.0 Hz, 1H), 2.59 – 2.47 (m, 1H), 2.46 – 2.31 (m, 1H), 1.83 (d, J = 7.1 Hz, 3H), 1.68 (t, J = 7.3 

Hz, 3H); 13C NMR (methanol-d4, 100 MHz) δ 174.40, 173.96, 173.73, 172.85, 171.54, 171.38, 169.04, 

168.71, 168.03, 143.06, 142.09, 141.75, 139.02, 138.75, 137.66, 136.96, 135.22, 134.57, 132.80, 131.32, 

130.48, 128.32, 123.53, 105.18, 99.19, 97.42, 97.05, 53.89, 51.07, 49.95, 49.13, 39.50, 39.30, 39.19, 

39.12, 38.70, 34.67, 34.46, 30.47, 29.64, 29.30, 22.82, 22.37, 18.95, 15.79, 11.06, 10.88, 9.85; MS 

(MALDI-TOF) m/z 947 [M+Na]+, calcd. for C48H59N9NaO12 947.438. 

β-Alanylpheoporbide a (tert)butyl methyl ester: 

 

 

 

 

Methyl pheophorbide a (23, 100 mg, 0.165 mmol) was dissolved in dry toluene (10 ml) and the mixture 

was heated to 100 o  under nitrogen. Then β-alanine(tBu).HCl (45 mg, 0.25 mmol) and DIEA (0.06 ml, 

0.33 mmol) were added. The reaction mixture was allowed to stir overnight at 100 oC in an oil bath and 

was monitored by TLC. Then the solvent was removed and the residue was dissolved in CH2Cl2 and 
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washed with 5% aqueous citric acid followed by water and with brine. The organic layer was dried over 

anhydrous Na2SO4 and the solvent was evaporated. The residue was dissolved in 5% methanol/CH2Cl2 

and purified via silica gel chromatography with the same mobile phase and to afford β-

alanylpheoporbide a (tert)butyl methyl ester (31, C42H49N5O6, 65 mg, 0.090 mmol, 54%); UV-Vis (DCM):  

λmax (rel. inten.) 667 nm (0.420), 609 (0.060), 535 (0.071), 505 (0.098), 412 (1.000); 1H NMR (acetone-d6, 

400 MHz) δ 9.33, 9.23* (s, 1H), 8.99, 9.93* (s, 1H), 8.79, 8.77* (s, 1H), 7.97*, 7.92 (t, J = 6.0 Hz, 1H), 7.80 

(m, 1H), 6.16, 6.13* (s, 1H), 6.07 (d, J = 9.7 Hz, 1H), 5.99 (dd, J = 11.6, 1.5 Hz, 1H), 4.65*, 4.57 (qd, J = 7.4, 

2.0 Hz, 1H), 4.38 (tt, J = 9.7, 2.2 Hz, 1H), 3.68 (qd, J = 6.6, 2.3 Hz, 1H), 3.61 (q, J=6.4, 1H) 3.59*, 3.53 (s, 

3H), 3.49, 3.41* (s, 3H), 3.28*, 3.27 (s, 3H), 2.86*, 2.84 (s, 3H), 2.71 – 2.52 (m, 3H), 2.49 – 2.12 (m, 1H), 

1.85 (d, J = 7.3 Hz, 2H), 1.64 (d, J = 7.3 Hz, 1H), 1.48*, 1.49 (s, 9H), -2.08 (d, J = 66.3 Hz, 1H).(* Minor 132 

epimer); MS (MALDI-TOF) m/z 720 [M+H]+, calcd. for C42H50N5O6 720.368. 

β-Alanylpheoporbide a methyl ester (31): 

 

 

 

 

β-Alanylpheophorbide a (tert)butyl methyl ester (65 mg, 0.090 mmol) was dissolved in 2 ml of dry CH2Cl2 

in an ice bath under argon. TFA (1 ml) was added and the reaction mixture was allowed to stir for 6 h. 

The reaction mixture was diluted with CH2Cl2 and washed with water and then with saturated sodium 

bicarbonate. This formed a precipitate while washing with sodium bicarbonate then citric acid solution 

was added until the precipitate dissolved in the organic phase. Then the solution was washed with brine 

and dried over anhydrous Na2SO4 to give β-alanylpheoporbide a methyl ester (31, C38H41N5O6, 60 mg, 

0.09 mmol, 100%). MS (MALDI-TOF) m/z 686 [M+H]+, calcd. for C38H41N5NaO6 686.295.  
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β-Alanylaspartylpheoporbide a di(tert)butyl methyl ester (32): 

 

β-Alanylpheoporbide a methyl ester (31, 60 mg, 0.090 mmol) was dissolved in dry DMF (5 ml). A mixture 

of HOBt (18 mg, 0.135 mmol), TBTU (43 mg, 0.135) and DIEA (0.03 ml, 0.18 mmol) in DMF (3 ml) was 

added and the mixture was allowed to stir for 30 min. Then a mixture of aspartic acid di(tert)butyl ester 

hydrochloride (101 mg, 0.36 mmol) and DIEA (0.06 ml, 0.36 mmol) in CH2Cl2 (3 ml) was added to the 

reaction mixture. The mixture was allowed to stir for 24 h. The mixture was diluted with CH2Cl2 and then 

washed with 5% aqueous citric acid, followed by with water and brine. The organic layer was dried over 

anhydrous Na2SO4 and the solvent was evaporated. The residue was dissolved in 5% methanol/CH2Cl2 

and purified via silica column chromatography with the same mobile phase to afford β-alanyl aspartyl 

pheophorbide a di(tert)butyl methyl ester (32, C50H62N6O9, 48 mg, 0.053 mmol, 59%); UV-Vis (D M):  λmax 

(rel. inten.) 667 nm (0.401), 609 (0.055), 535 (0.069), 505 (0.097), 413 (1.000); 1H NMR (acetone-d6, 400 

MHz) δ 9.06, 8.98* (s, 1H), 8.70, 8.59* (s, 1H), 8.69 (s, 1H), 8.2* 8.06 (t, J = 5.9 Hz, 1H), 7.70 – 7.45 (m, 

2H), 6.17, 6.08* (s, 1H), 5.93 (dt, J = 17.7, 2.3 Hz, 1H), 5.85 (dd, J = 11.5, 1.4 Hz, 1H), 4.82*, 4.76 (dt, J = 

8.3, 5.8 Hz, 1H), 4.64*, 4.55 (tt, J = 9.0, 4.5 Hz, 1H), 4.42*, 4.35 (dt, J = 9.7, 2.5 Hz, 1H), 3.77 (q, J = 6.5 Hz, 

2H), 3.63*, 3.59 (s, 3H), 3.42, 3.31* (s, 3H), 3.14 (s, 3H), 3.05 (h, J = 6.8, 6.3 Hz, 3H), 2.78 (dd, J = 5.9, 4.7 

Hz, 2H), 2.74 – 2.66 (m, 4H), 2.63 (s, 3H), 2.49 – 2.37 (m, 1H), 2.20 (td, J = 9.0, 3.3 Hz, 1H), 1.85, 1.65* (d, 

J = 7.3 Hz, 3H), 1.45 (s, 9H), 1.42 (s, 9H), 1.35 (t, J = 7.5 Hz, 2H), -2.17*, -2.33 (s, 2H). ).(* Minor 132 

epimer); MS (MALDI-TOF) m/z 891 [M+H]+, calcd. for C50H63N6O9 891.465.  
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131-Ethylenediaminyl-152-β-alanylaspartylchlorin e6 di(tert)butyl methyl ester (33): 

 

 

 

 

 

 

 

β-Alanylaspartylpeoporbide a di(tert)butyl methyl ester (32, 48 mg, 0.053 mmol) was dissolved in 

toluene and ethylenediamine (15 mg, 0.26 mmol) was added. The reaction mixture was heated at 40 oC 

for 24-36 h. It was monitored by TLC and UV-Vis spectroscopy. After reaction was complete as 

monitored by TLC, the solvent was removed and the residue was dissolved in CH2Cl2 and washed with 

5% aqueous citric acid to remove excess amine, followed by a wash with brine. It was dried over 

anhydrous Na2SO4 and the solvent was evaporated. The residue was dissolved in 5% methanol/CH2Cl2 

and chromatographed on a silica gel column with the same mobile phase. Then the methanol 

percentage of the mobile phase was gradually increased up to 20% to elute the pure product from the 

column. The solvent was evaporated and re-dissolved in 5% acetone/CH2Cl2 and filtered to remove silica 

from the sample. After evaporation of solvent 131-ethylenediaminyl-152-β-alanyl aspartylchlorin e6 

di(tert)butyl methyl ester was obtained (33, C52H70N8O9, 30 mg, 0.031 mmol, 58 %). UV-Vis (acetone): 

λmax (rel. inten.) 664 nm (0.322), 607 (0.015), 528 (0.012), 500 (0.070), 400 (1.000); It was not possible to 

obtain the 1H NMR spectrum and so the crude product was subjected to next step. MS (MALDI-TOF) m/z 

951 [M+H]+, calcd. for C52H71N8O9 951.534. 
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132-Ethylenediaminyllysinyl-152-β-alanylaspartylchlorin e6 di(tert)butyl di(boc) methyl ester: 

 

 

 

 

 

 

Boc-Lys(Boc)OH.DCHA (61 mg, 0.116 mmol) was dissolved in dry DMF (5 ml). A mixture of HOBt (16 mg, 

0.116 mmol), TBTU (37 mg, 0.116 mmol) and DIEA (0.024 ml, 0.14 mmol) in DMF (3 ml) was added and 

the mixture was stirred for 30 min. 131-Ethylenediaminyl-152-β-alanylaspartylchlorin e6 di(tert)butyl 

methyl ester (33, 30 mg, 0.031 mmol)  was added to the reaction mixture and it was stirred for 72 h. 

After the reaction was deemed complete by TLC, the mixture was diluted with CH2Cl2 and then washed 

with 10% sodium bicarbonate, 5% aqueous citric acid, then followed by washing with brine. The organic 

phase was dried over anhydrous Na2SO4 and the solvent was evaporated. The residue was dissolved in 

10% MeOH/CH2Cl2 and purified via silica gel column chromatography using the same mobile phase to 

afford 131-ethylenediaminyllysinyl-152-β-alanylaspartylchlorin e6 di(tert)butyl di(tert)butyl carbamates 

methyl ester (C68H98N10O14,  24 mg, 0.018 mmol, 61%); UV-Vis (acetone): λmax (rel. inten.) 663 nm (0.320), 

607 (0.021), 528 (0.019), 500 (0.075), 400 (1.000); 1H NMR (acetone-d6, 400 MHz) δ 9.67 (s, 1H), 9.65 (s, 

1H), 9.10 (s, 1H), 8.71 (s, 1H), 8.26 (d, J = 5.5 Hz, 1H), 8.17 (dd, J = 17.8, 11.5 Hz, 1H), 7.05 (s, 2H), 6.34 (d, 

J = 17.8 Hz, 1H), 6.23 (d, J = 8.0 Hz, 1H), 6.07 (d, J = 11.5 Hz, 1H), 5.95 (s, 1H), 5.56 (d, J = 18.9 Hz, 1H), 

5.22 (d, J = 19.2 Hz, 1H), 4.68 (q, J = 7.1 Hz, 1H), 4.54 (d, J = 9.6 Hz, 1H), 4.29 (q, J = 3.6 Hz, 1H), 3.98 – 

3.62 (m, 9H), 3.57 (s, 3H), 3.48 (s, 6H), 3.25 (s, 3H), 3.02 (d, J = 6.0 Hz, 2H), 2.56 – 2.40 (m, 2H), 2.40 – 

2.26 (m, 2H), 2.26 – 2.17 (m, 1H), 1.91 (dt, J = 23.0, 8.6 Hz, 2H), 1.74 (d, J = 7.1 Hz, 3H), 1.66 (t, J = 7.2 Hz, 
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3H), 1.57 – 1.44 (m, 4H), 1.37 (s, 18H), 1.34 (s, 18H), -1.65 (s, 1H), -1.94 (s, 1H); MS (MALDI-TOF) m/z 

1279.775 [M+H]+, calcd. for C68H99N10O14 1279.734. 

131-Ethylenediaminyllysinyl-152-β-alanylaspartylchlorin e6 methyl ester (34): 

 

 

 

 

131-Ethylenediaminyllysinyl-152-β-alanylaspartylchlorin e6 di(tert)butyl di(boc) methyl ester (24 mg, 

0.018 mmol) was dissolved in 2 ml of dry CH2Cl2 in an ice bath under argon. TFA (1 ml) was added and 

the reaction mixture was allowed to stir overnight. The mixture was rotavaporated several times with 

diethyl ether to remove TFA and the residue was washed with CH2Cl2 several times. The final product 

was dissolved in water and then freeze dried to obtain 131-ethylenediaminyllysinyl-152-β-

alanylaspartylchlorin e6 methyl ester (34, C50H66N10O10, 14 mg, 0.014 mmol; 79%). UV-Vis (MeOH): λmax 

(ε/M-1cm-1) 658 nm (18,900), 635 (67,800), 594 (14,000), 511 (10,000), 411 (150,800); 13C NMR 

(methanol-d4, 100 MHz) δ 174.29, 173.52, 173.43, 173.36, 172.48, 172.40, 172.37, 171.98, 169.48, 

169.39, 169.22, 143.32, 143.11, 141.31, 141.27, 138.82, 138.71, 138.37, 138.20, 136.41, 134.92, 134.80, 

134.48, 132.41, 130.82, 130.22, 130.20, 128.61, 128.35, 128.12, 125.99, 125.06, 123.04, 121.12, 118.95, 

118.21, 115.29, 112.38, 109.04, 104.87, 104.84, 99.37, 96.89, 96.86, 53.87, 53.19, 51.06, 49.15, 48.72, 

39.85, 39.27, 39.14, 38.98, 37.50, 36.18, 35.26, 34.82, 30.76, 30.52, 29.82, 26.79, 22.43, 21.66, 18.72, 

15.78, 11.06, 10.83, 9.62..MS (MALDI-TOF) m/z 967.602 [M+H]+, calcd. for C50H67N10O10 967.50
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3.5 Supporting information 
1H NMR spectrum of 152,173-di(Asp)Ce6 (tBu)4 MME 5 in acetone-d6 at 400 MHz
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1H NMR spectrum of 152,173-di(Asp)Ce6 MME 6 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131,173-di(Asp)Ce6 (tBu)4 MME 12 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131-ED 152-ED(boc)Ce6 MME 28  in acetone-d6 at 400 MHz 
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1H NMR spectrum of 131,152-ED-AspCe6 (tBu)2 (boc)2 MME in chloroform-d at 400 MHz 
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1H NMR spectrum of 131,152-ED-AspCe6 MME 30 in methanol-d4 at 400 MHz 
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1H NM  spectrum of β-Ala-pheoporbide a tBu MME in acetone-d6 at 400 MHz 
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1H NM  spectrum of β-Ala-Asp-pheoporbide a (tBu)2 MME 32 in acetone-d6 at 400 MHz 
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1H NMR spectrum of 132-EDLys -152-β-AlaAspCe6 (tBu)2 (boc)2 MME in acetone-d6 at 400 MHz 
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13C NMR spectrum of 152,173-di(Asp)Ce6 MME 6 in methanol-d4 at 100 MHz 
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13C NMR spectrum of 131,152-ED-AspCe6 MME 30 in methanol-d4 at 400 MHz 
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13C NMR spectrum of 132-EDLys -152-β-AlaAspCe6 MME 34 in methanol-d4 at 100 MHz 
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CHAPTER 4: SYNTHESIS OF ELECTRON DEFICIENT PORPHYRINS FOR A SYNTHETIC CYTOCHROME 

4.1 Introduction 

A large number of enzymes contain redox centers, which comprise metal-associated 

tetrapyrrolic precursors that are important for their function. These cofactors accomplish electron 

transportation in biological systems. They display a wide range of reduction midpoint potentials. The 

magnitude of the redox potential of cofactors needs to be tuned depending on their function. These 

different values of redox potential are dictated by the oxidation state of metal ion, protein environment, 

axial ligation to the metal ion and the nature of the substituents on the porphyrin ring.1-3  

Cytochromes, which contain one or several heme groups in their active sites, are an important 

subgroup of electron transfer proteins. They are primarily responsible for ATP production via electron 

transfer processes where the heme centers serve as one-electron carriers. The iron in the cytochrome 

cycles between Fe2+ (reduced) and Fe3+(oxidized). The protein environment mainly determines the redox 

potential of the ion in the cytochrome and provides the direction of electron flow in the electron 

transfer chain. In the past, cytochromes were classified into cytochrome a, b and c depending on their 

lowest energy absorption band in the reduced state.4 But now they are labeled using the wavelength (in 

nm) of an absorption band in the reduced state, for example, cytochrome c559.5 The reduced form of 

cytochromes show three peaks in their UV-Vis spectra. Peaks are named α, β, and ϒ (the last of which is 

also known as the Soret band) and these bands are positioned around 570 nm (α band), around 530 nm 

(β band) and around 400 nm (Soret Band).  

In the past few years numerous studies have reported the preparation of model systems that 

mimic characteristics of the cytochromes.6-8 De novo design of such hemoproteins is now possible using 

modern peptide synthesis and assembly techniques.9,10 The binding of heme to an antiparallel four-α-

helix bundle (as in native cytochrome b, Figure 4.1) was investigated in detail and structural properties,7 
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electronic properties10 and redox potentials11 of heme cofactors in a synthetic cytochrome were 

examined experimentally and computationally by our collaborators.2 

 

                                          a)                                                b) 

 

 

 

 

 

Figure 4.1: The side view of the artificial cytochrome-b (a) is the same as the view of the native 
cytochrome-b (b). [Adapted with permission from reference 1. Copyright (2010) American Chemical 
Society.] 

 
The importance of the construction of artificial hemoproteins is to understand the relationship 

between the structure and the redox chemistry, the minimal requirements for function and the 

mechanism and the factors on which the electron transfer processes depend in the proteins.12 These 

investigations may be useful in bioelectronic13 and biocatalytic14,15 applications by constructing artificial 

proteins that are smaller, cheaper to produce, more efficient than natural counterparts, and more stable 

under hostile environments compared to the natural protein.1,5 

Previous studies on synthetic cytochrome-b revealed that there are significant differences in 

redox potentials of hemes in synthetic cytochromes compared with natural cytochromes. As has been 

reported, the redox potentials of two heme groups in synthetic cytochrome-b are -106 and -170 meV 

compared to the heme in the native cytochrome-b subunit +93 meV and -34 meV.8 Even though both 

artificial and native cytochromes contain the same cofactor and same axial ligation by histidine, the  

native protein showed more positive values than did the synthetic protein.8 Later studies showed that 

incorporation of electron donating and electron-withdrawing porphyrin substituents can alter the redox 
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potential by as much as 200 mV within a single four-α-helix bundle. Then the incorporation of strong 

electron-withdrawing groups resulted in a dramatic increase of the redox potential.3,11 This may be due 

to decrease in donor ability of the lone pair of nitrogen in the porphyrin (equatorial ligands) upon 

addition of electron withdrawing substituents to the macrocycle. This not only affects the equatorial 

ligands but also changes the donor power of axial ligands through a cis-effect. Therefore, introducing 

electron withdrawing substituents to a synthetic heme group will help to increase the reduction 

potential of synthetic cytochromes to move the value closer to natural cytochromes redox potentials.                                        

The main goal of this research is to synthesize a series of electron deficient porphyrins in order 

to investigate the effect of their iron complexes (heme cofactors) in a synthetic cytochrome. It is 

necessary to maintain the unnatural C2 symmetry of the heme group to minimize the number of isomers 

that can form while binding with a synthetic four-α-helix bundle. The propionic acid side chains of heme 

groups are vital in their coordination with protein as they can make salt bridges with arginine residues 

the in synthetic protein.1 By considering these factors, a symmetric porphyrin 1 (Figure 4.2) was 

designed which holds two strong electron-withdrawing groups at the β-position of one end, and 

propionic acid chains at the other end, closely resembling the native heme group.  

 

Figure 4.2: Comparison of porphyrin in native heme group and proposed porphyrin for a synthetic 
cytochrome. 
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In this research, the synthesis of a series of porphyrins, bearing electronegative nitrile groups, 

nitro groups, and halogens was attempted, starting from simple building blocks. After completing the 

syntheses of these electron deficient porphyrins, the magnitude of redox activity in synthetic proteins 

induced by the factors of heme peripheral substitution will be investigated by our collaborators. 

4.1.1 Synthesis of Porphyrins 

There are numerous methods available for synthesis of porphyrins, but the most suitable route 

depends on the structure of porphyrin, and most importantly the symmetry and the nature of the 

substituents in the target porphyrin.16 For example, fully symmetric porphyrins can be synthesized 

conveniently from polymerization of monopyrrole units (Scheme 4.1). 

 

 

 

 

 

Scheme 4.1: Condensation of pyrrole and benzaldehyde to form TAPs 

The most widely used methods for porphyrin synthesis are 1) cyclotetramerization of pyrroles; 

2) condensation of two dipyrrolic intermidiates using 2+2 MacDonald cyclization; 3) the Fischer 

porphyrin synthesis via dipyrromethenes; 4) condensation of tripyrrolic intermediates with a 

monopyrrole unit (“3+1” methodology); and 5) cyclization of open chain tetrapyrroles such as b-bilenes 

and a,c biladienes. Apart from these methods porphinoid compounds can be synthesized by 

modification of readily accessible naturally occurring tetrapyrroles such as chlorophyll and heme.  
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4.1.1.1 Cyclotetramerization of Monopyrroles 

Cyclotetramerization of monopyrroles is the most convenient approach to prepare porphyrins 

and has been used numerous times in the synthesis of simple symmetric porphyrins.17 But the usage of 

this method is limited to symmetric porphyrins. β-Substituents of the pyrrole must be identical, 

otherwise the approch leads to a mixture of structural isomers. This method is most commonly used in 

synthesis of symmetric meso-substituted porphyrin.18 It involves the formation of porphyrinogen 4 from 

the condensation between an aldehyde 3 and pyrrole 2 in the presence of a catalytic amount of acid, 

and subsequent oxidation affords the desired porphyrin (Scheme 4.1). Asymmetrically meso-substituted 

porphyrins can also be synthesized using mixed aldehyde condensation, but this results in a mixture of 

compounds. By varying the stoichiometry of the reactants the yield of the desired product can be 

maximized.  

4.1.1.2 Fischer Porphyrin Synthesis via Dipyrromethenes 

This 2+2 condensation method was first developed by Fisher in 1934.19 It involves the 

condensation of two dipyrromethene units in an organic melt at very high temperature (Scheme 4.2). 

High temperature is probably needed to convert dipyrromethene 6 in to its enamine counterpart 7 

before condensation.  The major limitation of this method is that only a few substituted 

dipyrromethenes are able to withstand the severe reaction conditions. In the 1960s MacDonald and 

coworkers developed a method to synthesize porphyrins using dipyrromethanes under milder 

conditions.20       

 

 

 

Scheme 4.2: 2+2 Condensation of dipyrromethenes – Fischer method 
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4.1.1.3 Condensation of Two Dipyrrolic Intermediates Using 2+2 MacDonald Cyclization 

This is the most widely used method for the synthesis of porphyrins. But the principal limitation 

to this method is the necessity to use at least one dipyrromethane which has a symmetric β substitution 

pattern to avoid formation of constitutional isomers (Scheme 4.3). In situ decarboxylation of 

dipyrromethane dicarboxylic acid 10 will form an α free dipyrromethane, which acts as a nucleophile in 

the condensation reaction.20   ondensation of α free dipyrromethane with diformyldipyrromethane 9 is 

catalyzed by acid. Then the intermediate porphodimethane 11a is oxidized by air to afford the desired 

porphyrin 11b.  

 

Scheme 4.3: 2+2 Condensation of Dipyrromethane – MacDonald Method 

4.1.1.4 Condensation of Tripyrrolic Intermediates with a Monopyrrole Unit 

To overcome limitations in the 2+2 cyclization, the 3+1 synthetic route was developed. This 

involves condensation of an α free tripyrrole with a diformylpyrrole, followed by oxidation to obtain the 

desired porphyrin (Scheme 4.4). To avoid constitutional isomers, one of the two units, tripyrrane or 

diformylpyrrole should be symmetrical. Molecules such as 17 can be easily obtained using the 3+1 

method, where 2+2 method condensation needs a significantly large number of steps. New 

developments in the direct synthesis of tripyrranes such as compound 15 by condensation of two 
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equivalents of an acetoxymethylpyrrole 12 with one equivalent of a diunsubstituted pyrrole 13 vastly 

reduce the number of steps needed for synthesis of the desired pyrrole 17.21   

 

 

Scheme 4.4: 3+1 Condensation of Tripyrrane with Diformylpyrrole 

4.1.1.5 Cyclization of Open Chain Tetrapyrroles such as b-Bilenes and a,c-Biladienes 

This strategy is very useful in the synthesis of a porphyrin which is asymmetric and has a variety 

of substituents at the β positions. Linear tertrapyrroles can be cyclized using transition metals by 

oxidative cyclization to obtain the desired porphyrin. The most widely used tetrapyrroles are 1,19-

dicarboxylic-b-bilenes (18) and 1,19-dimethy-a,c-biladienes (19, Scheme 4.5).  

 

 

 

 

 

 

Scheme 4.5: Synthesis of porphyrin by cyclization of tetrapyrroles 
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Condensation of 1,19-dicarboxylic-b-bilenes (18) requires orthoformate, which provides the 

methylene bridge carbon. b-Bilenes 18 are in a lower oxidation state compared to a,c-biladiene 19. This 

results in lower yield in the synthesis of porphyrin using b-bilene compared to a,c-biladiene. However 

both these cyclizations suffer from side reactions, such as poor yields, and sometimes, lack of 

reproducibility.22 Cyclization of 1,19-dimethy-a,c-biladienes (19) involves the formation of a so-called 

“valley” substituted intermediate (24) and subsequent loss of a carbon  function to afford the desired 

porphyrin (Scheme 4.6).23,24 Cyclization usually takes place in DMF or ethanol under reflux conditions in 

the presence of a copper salt. The resulting copper porphyrin is treated with strong acid to obtain the 

free porphyrin. As shown in the mechanism in the first step, the fairly acidic methylene proton of the 

a,c-biladiene 21 is lost to produced more conjugated bilatriene 22. Then the bilatriene 22 is oxidized to 

an enamine intermediate 23, which is cyclized by attack of the enamine at the electrophilic carbon of 

the terminal pyrrole ring, forms the macrocycle 24 bearing a methyl group at the α position of the 

pyrrole. This will undergo oxidation to give macrocycle 25 followed by nucleophilic displacement of the 

“valley” methyl group which results in the porphyrin 26. 

 

 

Scheme 4.6: Mechanism of a,c biladiene oxidative cyclization  
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4.2 Synthesis 

4.2.1 Retrosynthetic Analysis of Porphyrin 1 

In our retrosynthesis (Scheme 4.7), the first disconnections were made at meso positions of the 

porphyrin in order to get symmetric dipyrromethanes 27 and 28. These dipyrromethanes can be cyclized 

using the 2+2 MacDonald cyclization.20 Then these symmetric dipyrromethanes can be synthesized from 

the analogous pyrroles using self-condensation. Self-condensation of β substituted pyrrole 32 will form 

β substituted dipyrromethane 27. β-Substituted pyrrole 32 can be obtained from  acetylpyrrole 33. The 

β position of acetylpyrrole 33 can be functionalized through formation of β-free pyrrole. The Knorr 

pyrrole synthesis can be used, which is widely used in the synthesis of substituted pyrroles, to obtain 

acetylpyrrole 33.25 In the same way the lower lobe of the targeted molecule can be synthesized. 

Dipyrromethane 28 can be synthesized by self-condensation of pyrrole 29, which can be synthesized by 

the Knorr pyrrole route, namely by condensation between diketone 31 with oximinoacetate 30. 

 

 

 

 

 

 

 

 

Scheme 4.7: Retrosynthesis of porphyrin 1 
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4.2.2 Synthesis of the Lower Lobe 28 

Synthesis of dipyrromethane 28 was previously reported and gave a good yield (Scheme 4.8).26 

Treatment of benzyl acetoacetate (35) with aqueous sodium nitrite in acetic acid formed benzyl 

oximinoacetate 30 which was condensed with diketone 31 in acetic acid under Johnson conditions in the 

presence of Zn dust to obtain the benzyl pyrrole carboxylate 29.27 After precipitation and 

recrystallization, it was possible to obtain the pure product 29 in 43% yield. Prior to condensation, the α-

methyl group of the pyrrole 29 required activation. The most widely used activation methods are 1) 

bromination of an α-methyl group followed by condensation;28 or 2) oxidation of an α-methyl group 

with lead tetra-acetate.26 The lead tetra-acetate oxidation was followed first. The pyrrole 29 was treated 

with lead tetraacetate to afford acetoxymethylpyrrole 36. The product was purified via recrystallization 

in methanol. This purified product 36 was heated in methanol under acidic conditions to form the 

desired dipyrromethane 28, which was characterized by 1H NMR and mass spectroscopy.  

 

 

 

Scheme 4.8: Synthesis of benzyl dipyrromethane 28 
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4.2.3 Synthesis of the Upper Lobe 27 

The other precursor pyrrole 33 for the synthesis of the β-substituted dipyrromethane 27 was 

prepared using the same Johnson conditions (Scheme 4.9).27,29 Oximinoacetate 30 was synthesized from 

the reaction between benzyl acetoacetate (35) with sodium nitrite in acetic acid and then condensed 

with pentanedione 34 in the presence of Zn dust to obtain acetylpyrrole carboxylate 33.  

 

 

Scheme 4.9: Synthesis of acetylpyrrole 33 

The next step was to oxidize the α-methyl group of the acetylpyrrole 33 in order to facilitate the self-

condensation to obtain the desired dipyrromethane 39.  But the oxidation of acetylpyrrole 33 with lead 

tetra-acetate failed. Only the starting material was recovered after 20 hours. Different reaction 

conditions were employed but it was impossible to obtain the desired product 37. Then it was decided 

to try the α-bromination route in order to obtain α-bromomethylpyrrole 38, which can be self-

condensed to give the dipyrromethane 39. After the bromination, the crude product was subjected to 

the self-condensation reaction. But again it was not possible to obtain the desired dipyrromethane 39. 

The mass spectrum of the crude material, obtained after the bromination step, showed a peak for 

mono-brominated compound. But bromination could in theory happen on either the α-methyl group on 

the pyrrole or at the α-methyl group on acetyl group. Purification of brominated product was 

unsuccessful due to its low yield (Scheme 4.10).  
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Scheme 4.10: Attempted synthesis of acetyldipyrromethane 39 

It was then decided to replace the acetyl group with a formyl group to eliminate the competition 

in the bromination step (Scheme 4.11). To obtain formylpyrrole 33, first it was required to synthesize 

the β-free pyrrole 40. In the literature a versatile high yielding method for deacylation of pyrrole is 

reported.30 The authors were able to deacylate pyrroles with ethylene glycol and p-toluenesulfonic acid 

under reflux in benzene. When this procedure was followed a 95% yield of β-free pyrrole 40 was 

obtained. Reaction progress was monitored through TLC. After completion of the reaction, solvent was 

removed to obtain the pure crystalline product. 1H NMR and mass spectroscopy confirmed the identity 

of the product 40.  

 

Scheme 4.11: Deacylation of the acetylpyrrole 33 

 As the authors discussed in the paper, the mechanism involves initial ketal formation (41) in a 

classical carbonyl protection reaction (Scheme 4.12). Then electrophilic substitution (protonation) at the 

ketal substituted carbon followed by elimination of the bulky protected acetyl group will help to regain 

the aromaticity of pyrrole 42.  
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Scheme 4.12: Mechanism of deacylation 

The next step required formylation of the free β-position of pyrrole 40. Formylation can be 

accomplished either using triethyl orthoformate31 or under Vilsmeier-Haack conditions.32 Triethyl 

orthoformate worked best in the formylation of this pyrrole. β-Free pyrrole 40 was treated with a slight 

excess of triethyl orthoformate in TFA to obtain formylpyrrole 41 in 70% yield (Scheme 4.13). A very 

short silica gel column was used to purify the product, which was characterized by 1H NMR and mass 

spectrometry. Some difficulty was encountered in the formylation under Vilsmeier-Haack conditions, 

and the yield was always lower than the yield of the triethyl orthoformate reaction. 

 

Scheme 4.13: Formylation of β-free pyrrole 40 

Self-condensation of formylpyrrole 41 was attempted by initial bromination followed by 

condensation in methanol under acidic conditions (Scheme 4.14). After two hours of reflux a white color 

precipitate was formed in the reaction mixture. This precipitate refused to dissolve in common solvents 

tested. It seems under reflux, the pyrrole 41 tends to polymerize to give this white precipitate. Oxidation 

of the α-methyl group of formylpyrrole 41 with lead tetra-acetate (LTA) was also unsuccessful, as with 

its acetyl precursor 43.  
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Scheme 4.14: Attempted synthesis of formyldipyrromethane 42 

Then it was decided to perform chlorination of the α-methyl group instead of bromination in 

order to prevent the polymerization during the condensation reaction. Formylpyrrole 41 was treated 

with sulfuryl chloride to obtain the chloromethylpyrrole 44. Mass spectrometry showed a peak for mono 

chlorinated product but purification was unsuccessful.  Then the crude product was used for the 

condensation reaction in methanol. But again it was not possible to obtain the desired dipyrromethane 

42. Our next approach was to convert chloromethylpyrrole 44 to acetoxymethylpyrrole 45 using a SN2 

type reaction. Previous literature has reported conversion of chloromethylpyrrole into 

acetoxymethylpyrrole using sodium acetate.33 But with acetylpyrrole 44 only a trace amount of product 

45 was isolated. The yield of this reaction was very low and it was not possible to prepare enough 

material for the next condensation reaction (Scheme 4.15).  

 

Scheme 4.15: Atempted synthesis of acetyldipyyromethane 42 by chlorination 

Both acetyl and formyl groups can significantly lower the electron density in the pyrrole by 

removing electrons from the system by resonance. Lower electron density in the pyrrole makes it 
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unreactive towards electrophilic substitution reactions. To overcome electron deficiency in the pyrrole, 

the next approach employed was to synthesize β-free dipyrromethane 46 and then functionalize it with 

electron withdrawing substituents (Scheme 4.16). Removal of formyl and acetyl substituents from the 

pyrrole can increase the electron density in the pyrrole. Hence, it will increase the reactivity of α-methyl 

group of the pyrrole 40. 

 

Scheme 4.16: Retrosynthesis of dipyrromethane 47 

 The synthesis was started with the previously synthesized β-free pyrrole 40. The first attempt to 

synthesize acetoxymethylpyrrole with lead tetraacetate failed to achieve the desired product (Scheme 

4.17). 1H NMR and mass spectrometry showed the addition of an extra acetoxymethyl group to the 

product. Absence of the peak for β-hydrogen confirmed the additional substitution of hydrogen with an 

acetoxy group had taken place at β-position. Excess lead tetraacetate was reacted with both β-position 

and α-methyl group of pyrrole 40. It was not possible to obtain the desired dipyrromethane 47 even by 

changing the number of equivalents of LTA or by changing the reaction conditions. Then it was decided 

to do the condensation reaction with acetoxypyrrole 48 to obtain dipyrromethane 49, which can be 

converted into the desired dipyrromethane. But this acetoxypyrrole 48 was easily polymerized in 

methanol under acidic conditions. Bromination followed by condensation of pyrrole 40 also provided no 

success. As expected, bromination leads to di-brominated pyrrole 50. The crude mixture was refluxed in 

methanol under acidic conditions to obtain di-bromodipyrromethane 51, but only polymerized product 

was observed. 
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Scheme 4.17: Attempted self-condensation of β free pyrrole 40 

It was not possible to synthesize the starting material for the MacDonald cyclization. The 

retrosynthesis (Scheme 4.7) involved synthesis of two symmetric dipyrromethanes followed by a 2+2 

MacDonald tetramerization to give the macrocycle 1. Synthesis of dipyrromethane 28 has previously 

been reported and gave a good yield (Scheme 4.8). However using various synthetic paths, synthesis of 

the upper lobe of the molecule 27 that bears either electron-withdrawing groups or hydrogens at the β-

positions failed. The electron-withdrawing groups at the β-positions of pyrrole 32 significantly reduced 

the reactivity of the α-methyl group. For the condensation of two pyrroles, one needs an activated 

acetoxymethylpyrrole or bromomethylpyrrole.27 But in the presence of an electron-withdrawing group 

at the β-position, it was not possible to synthesize the desired acetoxymethylpyrole 37 or 

bromomethylpyrrole 38 from acetylpyrrole 33 or from formylpyrrole 41. Another possible route, self-

condensation of β-free pyrrole 40, provided a polymerized product rather than the desired 

dipyrromethane 46.  This led to the design of a different retrosynthetic path. 

4.2.4 Revised Retrosynthesis 

The designed alternate strategy is shown in Scheme 4.18; it involves an a,c-biladiene 53 

synthesis, followed by cyclization to construct the β-free porphyrin 52. Functionalization of the β-

positions of porphyrin 52 will be done to get the target molecules 1. a,c-Biladiene 53 can be synthesized 

from two different starting materials. Either reacting the dipyrromethane dicarboxylate 54a with 
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formylpyrrole 55a or the diformyldipyrromethane 54b can be react with pyrrole carboxylate 55b to 

obtain a,c-biladiene 53. Both formylpyrrole 55a and pyrrole carboxylic acid 55b can be synthesized from 

previously synthesized benzyl pyrrole carboxylate 40. Likewise diformyldipyrromethane 54b and 

dipyrromethane dicarboxylic acid 54a can be synthesized from benzyl dipyrromethane dicarboxylate 28 

which was already synthesized in good yield.  

 

 

Scheme 4.18: Revised retrosynthesis of porphyrin 1 

4.2.5 Synthesis of a,c Biladiene 

As was mentioned earlier, a,c biladienes 53 can be synthesized using two different starting 

materials. The best overall yield is obtained by reaction between a formylpyrrole 55a and a 

dipyrromethane di-carboxylic acid 54a. As shown in Scheme 4.19, first pyrrole carboxylic acid 57 was 

obtained from benzyl deprotection of benzyl pyrrole 40. Then formypyrrole 59 was obtained by 

decarboxylation followed by formylation of pyrrole 57. Pyrrole carboxylate 57 was stirred in TFA in an 

ice bath to accomplish the decarboxylation and then treated with excess triethyl orthoformate to 

selectively formylate the α-position of the α,β-unsubstituted pyrrole 58. Pyrrole undergoes electrophilic 
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aromatic substitution predominantly at the α-positions. Once formylated at the α-position, this will 

prevent the addition of a second formyl group to the β-position by deactivating the pyrrole ring through 

resonance. The desired formylpyrrole 59 was purified via a short silica gel column and characterized by 

1H NMR and mass spectrometry. 

 

 

 

Scheme 4.19: Synthesis of β-free formylpyrrole 59 

Dipyrromethane dicarboxylic acid 60 was synthesized by benzyl deprotection of the previously 

synthesized dipyrromethane 28. After de-benzylation by hydrogenolysis, the first attempt at formylation 

with triethyl orthoformate was unsuccessful, but formylation using the modified Vilsmeier-Haack 

procedure gave the diformyldipyrromethane 61 in a relatively good yield (Scheme 4.20). The modified 

Vilsmeier-Haack reaction uses benzoyl chloride (63) and dimethylformamide (62), which forms the 

reactive chloromethyleneiminium 64 salt that will react at the α-position of pyrrole by electrophilic 

substitution followed by hydrolysis of the imine to produce the formyl group.  

 

Scheme 4.20: Formylation of dipyrrolmethane using modified Vilsmeier-Haack reaction 
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Condensation of formylpyrrole 59 with dipyrromethane dicarboxylic acid 60 in trifluoroacetic 

acid afforded the corresponding a,c-biladiene salt 53 (Scheme 3.21). This involves in situ generation of 

α-free dipyrromethane by decarboxylation of the dipyrromethane dicarboxylic acid 60 in TFA. Then the 

a,c-biladiene was converted into the hydrochloride salt by bubbling HCl gas through the reaction 

mixture and there was a noticeable color change from orange to dark red. The reaction was monitored 

by UV-Vis throughout (Figure 4.3). Once the reaction was complete, the absorption spectrum showed 

two characteristic absorption bands at around 440 and 507 nm as shown in Figure 4.3. a,c-Biladiene 53 

was purified via precipitation, i.e. adding petroleum ether into a concentrated solution of a,c-biladiene 

53 in MeOH, and Figure 4.4 shows its proton NMR spectrum in CDCl3. As an alternate method, 

condensation of diformyldipyrromethane 54b with pyrrole carboxylic acid 55b was carried out but the 

overall yield was always lower than the previous method.   

 

 

 

 

 

 

Scheme 4.21: Syntheis of a,c-biladiene 
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Figure 4.3: UV-Vis spectroscopic progression of the a,c-biladiene synthesis in CH2Cl2 and UV-Vis 

spectrum of pure a,c biladiene dihydrochloride 53 (pink) in CH2Cl2.  

 

 

Figure 4.4: 1H NMR spectrum of a,c-biladiene dihydrochloride 53 in CDCl3 
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4.2.6 Synthesis of β-Free Porphyrin 52 

The literature reports two main methods for cyclization of a,c-biladiene salts to give the 

corresponding porphyrin. 1) Metal catalyzed oxidative cyclization;23 and 2) electrochemical cyclization.34 

Various metals [Cu(II), Cr(III), Ru(III) and Rh(III)] have been used in the metal catalyzed oxidative 

cyclizations.35 According to the literature, the cyclization of a,c-biladiene salts catalyzed by copper ions 

has proved to be one of the most successful syntheses of porphyrins.35 The reactions were generally 

carried out in DMF and the resulting products are the corresponding copper porphyrinates. If acid-labile 

substituents are present on the macrocycles, the removal of the metal ion can be quite difficult, as it 

requires a strong acid to remove copper from the copper porphyrinates; also, unpredictable yields of 

porphyrins have sometimes been reported. Cyclization using Cr(III), Ru(III) and Rh(III) provide the 

porphyrin free base and eliminate the harsh acidic conditions necessary for removal of copper. But the 

cyclization yields were significantly lower than those using the copper mediated oxidative cyclization.35 

After considering all these facts it was decided to use Cu(II) for the oxidative cyclization step.  

Oxidative cyclization of a,c biladiene dihydrochloride 53 was carried out in DMF using Cu(OAc)2 

and the reaction was monitored by UV-Vis spectroscopy (Scheme 4.22). The reaction mixture was 

heated at 100 oC until reaction was completed as indicated by UV-Vis spectrometry. Once reaction was 

completed, the UV-Vis spectrum showed the Soret band (400 nm) that is characteristic of porphyrins 

(Figure 4.5). After workup, the crude product was taken to the next step. Crude copper porphyrin 65 

was demetalated in the presence of ice cold H2SO4/ TFA for six hours. The final product was purified 

using a silica gel column and the porphyrin was characterized by X-ray crystallography (Figure 4.6), 1H 

NMR (Figure 4.7) and mass spectrometry. Unfortunately, the yield of these two steps was highly variable 

as reported in the literature and the maximum yield obtained was 13%.  
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Scheme 4.22: Synthesis of β-free porphyrin 52 by oxidative cyclization of a,c-biladiene 53. 

 

Figure 4.5: UV-Vis spectrum of β-free porphyrin 52 in CH2Cl2 

 

Figure 4.6: X-ray crystal structure of β-free porphyrin 52 
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Figure 4.7: 1H NMR spectrum of β-free porphyrin 52 in CDCl3 

As proposed in the revised retrosynthesis, the last step is to functionalize the β-position of the 

porphyrin 52. The plan is to functionalize it with electron withdrawing groups such as nitriles, halides, 

formyl and nitro groups. As shown in Scheme 4.23, several reactions to introduce electron-withdrawing 

substituents to the porphyrin 52 were attempted. Formylation with triethyl orthoformate, the Vilsmeier 

complex, or with the modified Vilsmeier-Haack reaction were unsuccessful and the starting material was 

recovered. Nitration of the β-position using PPh3/Br2/AgNO3, as reported in the literature,36 was also 

attempted. But it was not possible to obtain the desired product 67.  Bromination was unsuccessful with 

Br2 in ether but the peak for the desired di-bromoporphyrin 68 was visible in the mass spectrum when 

NBS was used for bromination. However, the amount of product was not sufficient to characterize by 1H 

NMR. 
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Scheme 4.23: Attempted β functionalization of β free porphyrin 52 

As can be seen from the literature, under acidic conditions the basic inner nitrogens of 

porphyrins can be easily protonated, and this deactivates the ring towards electrophilic substitution 

reactions. Therefore, formylation of free base porphyrins is not possible under acidic conditions. But 

protonation of the inner nitrogens can be prevented by inserting a metal ion into the porphyrin core. 

The best choice is to use copper complex porphyrin 65 as it forms during the synthesis as an 

intermediate. Then formylation of copper porphyrin 65 was done under Vilsmeier conditions (Scheme 

4.24). Mass spectrometry confirmed the formation of monoformylated product. But increasing the 

reaction time, temperature or number of equivalents of Vilsmeier complex did not show any sign of 

formation of the diformyl derivative 69. Reaction with triethyl orthoformate was also unsuccessful in 

giving the diformyl derivative 69.  

 

Scheme 4.24: Attempted diformylation of copper porphyrin 69 
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To test each one of these functionalization reactions, the cyclization of a,c-biladiene 53 was the 

starting point. The yield of the cyclization step of a,c biladiene 53 was very low and highly variable. Also, 

selective functionalization of the β-position of the meso unsubstituted porphyrin is extremely 

challenging due to high reactivity of the meso positions compared to the β-positions. However, the 

functionalization of β-positions of porphyrin may require preparation of β-activated porphyrins over 

meso position prior to functionalization. This led to the conclusion that addition of electron withdrawing 

groups to the β-free pyrrole 40 should be done before the cyclization step. The next approach therefore 

was to synthesize a pyrrole 71 bearing an electron-withdrawing group such as nitrile and halides at the 

β-position. This can be synthesized from the previously synthesized β-free pyrrole 40. Then a,c biladiene 

synthesis followed by oxidative cyclization should result in the final product 1 (Scheme 4.25).  

 

Scheme 4.25: New approach to synthesize porphyrin 1 from electron deficient pyrrole 71 

4.2.7 Synthesis of Electron Deficient Pyrrole  

Synthesis was started from formylpyrrole 41, which was synthesized by deacylation of 

acetylpyrrole 33 followed by formylation with triethyl orthoformate. The next step was to convert the 

formyl group into a nitrile group. Recently, Veisi reported an efficient procedure for the one-pot 

conversion of various alcohols, aldehydes and primary amines into the corresponding nitriles in 

excellent yields using trichloroisocyanuric acid (TCCA) and aqueous ammonia.37 But this oxidative 
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conversion was unsuccessful in conversion of formylpyrrole 41 to its nitrile counterpart 72 (Scheme 

4.26).  

 

 

Scheme 4.26: Attempted synthesis of 3-cyanopyrrole 72 

The next approach was to convert the formyl group into an oxime followed by dehydration to 

give the desired cyanopyrrole 72. Before that, models studies were performed using ethyl formylpyrrole 

carboxylate 73 which was readily available in the laboratory (Scheme 4.27). Formylpyrrole 73 was 

reacted with hydroxylamine hydrochloride to afford aldoxime 74 in high yield.38 For the dehydration of 

aldoxime 74, first a traditional dehydrating agent chlorosulfonic acid was used.39 After dehydration, the 

product was purified via a silica gel column to afford 31% yield, along with large number of by products 

(in the TLC).  

 

 

 

Scheme 4.27: Conversion of formylpyrrole 73 to cyanopyrrole 75 

Previous literature has reported a two-step method to convert a variety of ketones and 

aldehydes into amide and nitriles, respectively, under mild conditions.40 In this method, the first step 

involves formation of the corresponding oxime and then a rearrangement to nitrile using cyanuric 

chloride (trichlorotriazine, TCT) in DMF.  As shown in Scheme 4.28, TCT and DMF forms a Vilsmeier-

Haack type active complex 76 and then the hydroxyl group of the oxime 77 will add to the complex in a 
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type of Mannich addition. A subsequent Beckman rearrangement to the intermediate 78 will afford the 

final product; cyanopyrrole 75. The TCT/DMF complex was prepared by dissolving one equivalent of TCT 

in DMF at room temperature. During the reaction the complex precipitated as a white solid. After 

confirming complete disappearance of free TCT by TLC, one equivalent of aldoxime 77 in DMF was 

added and the reaction was monitored by TLC. After completion of the reaction, the product was 

purified via column chromatography. It was possible to isolate the desired cyanopyrrole 75 in 78% yield 

and X-ray crystallograpy (Figure 4.7), 1H NMR, and mass spectrometry confirmed the identity of the 

product 75.  

 

 

Scheme 4.28: Mechanism of dehydration by TCT 

 

 

 

 

Figure 4.7: X-ray crystal structure of cyanopyrrole 75 

As the targeted conversion of formyl to nitrile in good yield by using model compound 73 had 

been achieved, the same conversion was carried out with benzyl formylpyrrole carboxylate 41. The 

formyl group of the benzyl pyrrole 41 was transformed into nitrile by oximation followed by dehydration 

with TCT in good yield. Next it was necessary to formylate the cyanopyrrole 73 in order to do the 

condensation with a dipyrromethane dicarboxilic acid 60. Hydrogenolysis of cyanopyrrole 73 afforded 
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pyrrole carboxylic acid 81 in quantitative yield. Formylation was attempted with triethyl orthoformate in 

TFA but it was not possible to obtain the formypyrrole 82. Formylation with the Vilsmeier complex also 

provided no success (Scheme 4.29).  

 

Scheme 4.29: Synthesis of 3-cyano-1-formylpyrrole 82 

The next approach was to synthesize α-free β-cyanopyrrole 86 which can condense with 

diformyldipyrromethane 61 directly. β-Formylpyrrole 84 has been synthesized from ethyl formylpyrrole 

carboxylate 73 by ester hydrolysis under basic conditions followed decarboxylation. Then it was 

converted into the corresponding oxime 85 in good yield, but dehydration to nitrile 86 was unsuccessful 

(Scheme 4.30).  

 

Scheme 4.30: Attempted synthesis cyanopyrrole 86 

As the synthesis of both formylpyrrole 82 and α-free cyanopyrrole 86 were unsuccessful, it was 

decided to condense pyrrole carboxylic acid 81 with diformyldipyrromethane 61 to obtain the a,c-

biladiene 87 (Scheme 4.31). The reaction was monitored by UV-Vis spectroscopy over three hours, 

which showed no a,c-biladiene absorption peak. After treatment with HCl gas, petroleum ether was 
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added. If a,c-biladiene salt was present it should precipitate in the medium, but no precipitate was 

obtained. Thus, the electron withdrawing ability of the cyano group may reduce the nucleophilicity at 

the α-carbon of the pyrrole. That is most likely the reason for the failure of both formylation and 

condensation reactions.  

 

 

Scheme 4.31: Attempted synthesis of a,c biladiene 87 from cyanopyrrole 81 

Then it was decided to introduce a less electron withdrawing substituent at the β-position to 

determine its effect on the formylation. Iodo was selected as an ideal substituent as it can be used for 

further coupling reactions to introduce various substituents at the β-position. Iodination of pyrrole 40 

was archived by direct action of I2 in aqueous KI, which maintains a low concentration of free I2 in the 

reaction medium by equilibration with triiodide ion ( I3
- ). Sodium bicarbonate was used to neutralize the 

starting material and prevent the formation of HI. Iodopyrrole 88 was afforded in high yield and was 

characterized by 1H NMR and mass spectrometry (Scheme 4.32). Unfortunately, debenzylation of 

iodobenzene 88 afforded a polymerized product. 

 

 

Scheme 4.32: Attempted synthesis of iodopyrrole 89 
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The next approach was to reduce the carboxylic acid group of the cyanopyrrole 81 to a formyl 

group because its α-carbon no longer acts as a nucleophile in the condensation reaction. The resulting 

formylpyrrole 82 can potentially be condensed with dipyrromethane dicarboxylic acid 60 to obtain a,c-

biladiene 87.  The main challenge is to reduce the carboxyl without reducing the nitrile group. Strong 

reducing agents such as lithium aluminum hydride will reduce both functional groups. With this in mind 

a mild and selective reducing agent to convert carboxyl group to formyl in good yield without 

occurrence of overreduction was sought. Burns and coworkers reported a mild and selective method to 

reduce carboxyl group to formyl in the presence of an electron withdrawing β-acetyl functional group.41 

The reaction involves formation of an acid chloride in the presence of oxalyl chloride and a catalytic 

amount of trimethylphosphine followed by reduction of the acid chloride to aldehyde with sodium 

triacetoxyborohydride and trimethylphosphine (Scheme 4.33). Cyanopyrrole 81 was dissolved in CH2Cl2 

as it refused to dissolve in benzene, and was then added to the freshly distilled oxalyl chloride in CH2Cl2 

and a few drops of trimethylphosphine were added. After one day the temperature was lowered to 0 oC 

and 1.2 equivalents of sodium triacetoxyborohyride were added and the mixture was stirred for another 

one day. Mass spectrometry showed the peak for the desired formylpyrrole 82. Crude 1H NMR 

spectroscopy confirmed the formation of the aldehyde.  However the yield of purified product was less 

than satisfactory. Unfortunately, the use of other solvents such as THF, CH3CN and CH2Cl2/THF or 

different phosphine reagents, such as tributylphosphine, did not improve the yield.   

 

 

Scheme 4.33: Reduction of cyanopyrrole carboxylic acid 81 to formylpyrrole 82 

As was mentioned earlier, iodination followed by formylation of pyrrole was unsuccessful. 

Attention then focused on doing the iodination on formylpyrrole 59. It was possible to obtain 
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iodopyrrole 89 from β-free formylpyrrole 59 in good yield using N-iodosuccinimide in carbon 

tetrachloride (Scheme 4.34). Then the condensation of iodopyrrole 89 with dipyrromethane dicarboxylic 

acid was performed to afford a,c-biladiene 91. Mass spectroscopy confirmed the formation of a,c-

biladiene 91. Oxidative cyclization with copper acetate followed by demetalation with sulfuric acid 

afforded the desired iodoporphyrin 92 in only trace amount.  The compound was characterized by high-

resolution mass spectrometry. 

 

 

Scheme 4.34: Attempted cyclization of 2,18-diiodo-a,c-biladiene 91 

4.2.8 Synthesis of Electron Rich Pyrrole 

Since the difficulty encountered in the decarboxylation and formylation was probably due to 

electron-withdrawing β-substituents, the same reaction sequence was attempted with a pyrrole bearing 

a neutral or electron donating substituents at the β-position which can later be converted into electron 

withdrawing substituents.  As shown in Scheme 4.35, after cyclization of a,c-biladiene 94, hydroxymethyl 

substituents can be converted into nitriles in one step.37 a,c-Biladiene 94 will be synthesized from 

pyrrole carboxylic acid 95, condensed with diformyldipyrromethane 61. Hydroxymethylpyrrole 

carboxylic acid 95 can be synthesized from reduction of formylpyrrole 83. 
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Scheme 4.35: Retrosynthesis of porphyrin 93 

Hydroxymethylpyrrole 96 was synthesized in high yield, by reduction of formylpyrrole 73 using 

lithium borohydride (Scheme 4.36). The product was purified via silica gel column chromatography and 

characterized by 1H NMR and mass spectrometry. Pyrrole carbocyclic acid 95 was obtained by 

hydrogenolysis of hydroxymethylpyrrole 96 in quantitative yield. Then crude carboxylic acid 95 was 

dissolved in TFA in an ice bath. Within a few minutes the reaction mixture turned red in color before 

addition of diformyldipyrromethane 61. It seems in the presence of an acid that the hydroxyl group can 

protonate and leave as a water molecule to afford a methylene pyrrole intermediate, which is no longer 

a nucleophile in the condensation reaction. As an alternate method, decarboxylation was attempted 

with a catalytic amount of p-TSA but the final result was the same. Next it was attempted to dissolve 

both pyrrole carboxylic acid 95 and diformyldipyrromethane 61 in CH2Cl2/methanol and p-TSA in 

methanol was added dropwise into the reaction mixture. By doing that, it was thought that the 

decarboxylated pyrroles will readily react with diformyldipyrromethane 61 to afford a,c-biladiene 94 

before dehydration. After thirty minutes there were no a,c-biladiene absorption peaks in the UV-Vis 

spectrum.   

 

Scheme 4.36: Attempted synthesis of β-hyroxymethylpyrrole 97 
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It was also a struggle to make dipyrromethane using hydroxymethylpyrrole 96. Activation of the 

α-methyl group of pyrrole 96 with lead tetraacetate formed an unexpected product 98 (Scheme 4.37). 

After purification 1H NMR showed addition of two extra methyls to the pyrrole 96. The molecular weight 

of this compound was equal to addition of two acetate groups to pyrrole 96. This product 98 was self-

condensed to afford dipyrromethane 99 but the product could not be characterized.  

 

 
Scheme 4.37: Attempted synthesis of dipyrromethane 99 

4.3 Future work 

Recent literature has reported a total synthesis of protoporphyrin IX using a new alternate 

method to the well-known MacDonald condensation (Scheme 4.38).42 The key step is the condensation 

of diiododipyrromethane 100 with known diformyldipyrromethane 61 to obtain the desired porphyrin 

101 in a single step in 76% yield. In the classical MacDonald condensation, diformyldipyrromethane 

reacts with α-free dipyrromethane to give dihydroporphyrin as the product. Then it needs to oxidize to 

get the desired porphyrin using either air43 or DDQ.44  

 

 
Scheme 4.38: Reported synthesis of protoporphyrin IX 

Our previous attempts to synthesize benzyl 5-acetoxymethyl-4-acetyl-3-methylpyrrole 

carboxylate (37) were unsuccessful as mentioned earlier. But the authors reported a new one pot 
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synthetic procedure to obtain molecule 37 in 45% yield from benzyl 4-acetyl-3,5-dimethylpyrrole 

carboxylate (33, Scheme 4.39).  

 
 

Scheme 4.39: Reported synthesis of acetoxymethylpyrrole 37 

The new approach is to synthesize diiododipyrromethane 106 starting from formylpyrrole 33 

(Scheme 4.39). First formylpyrrole 33 will be acetoxylated using the new synthetic procedure. Reaction 

between pyrrole 33 and sulfuryl chloride will form the chloromethylpyrrole intermediate that will 

readily react with acetate to form the desired acetoxymethylpyrrole 37. Self-condensation of 

acetoxypyrrole 37 will lead to the desired dipyrromethane 42. But the formyl group at the β-position 

may diminish the nucleophilicity of the α-carbon of the pyrrole by resonance. As alternate route, 

deformylation of acetoxymethylpyrrole 37 can be achieved prior to the self-condensation reaction. That 

will help to keep the α-carbon more nucleophilic in the condensation reaction. After the self-

condensation, formyl groups can be reinserted using formylation with triethyl orthoformate. As 

mentioned earlier, formyl groups can be easily converted into nitriles using oximation followed 

dehydration, to obtain dipyrromethane 104. 

 
Scheme 4.40: Proposed synthesis of dicyanodipyrromethane 104 
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Removal of benzyl protection via hydrogenolysis with Pd/C will form the diacid 105 which can be 

converted into the desired diiododypyrromethane 106 using decarboxylation followed by iodination. 

With the previously synthesized diformyldipyrromethane 61 and diiododiyromethane 106 in hand, the 

condensation will be carried out in a mixture of acetic anhydride and trifluoromethyl sulfonic acid in 

acetic acid under anhydrous conditions to obtain the desired porphyrin 1 (Scheme 4.41). But there is a 

possibility for hydrolysis of nitrile group in the condensation step with strong acids.45 As an alternate 

route, condensation can be done with diformyldipyrromethane to obtain diformylporphyrin which can 

be converted into the desired product.  

 

Scheme 4.41: Proposed synthesis of porphyrin 1 

4.4 Experimental 

Benzyl 4-(2-methoxycarbonylethyl)-3,5-dimethylpyrrole (29): 

 

Benzyl acetoacetate (35, 33.5 g, 171 mmol) was dissolved in acetic acid (40 ml) and placed in an ice bath. 

Then it was treated with solution of sodium nitrite (13 g, 188 mmol) in water and the temperature was 

controlled around 10 oC throughout. Then the reaction mixture was stirred for another 3 h and stored in 

a refrigerator overnight to complete the formation of benzyl oximinoacetate 30. This solution was added 

to the solution of methyl 4-acetyl-5-oxohexanoate (31, 19 g, 102 mmol) in acetic acid (65 ml) during 2 h 
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at 65 oC. Simultaneously, an intimate mixture of zinc dust (19 g, 287 mmol) and sodium acetate (19g, 

231 mmol) was added while keeping zinc dust always excess in the reaction mixture. The resulting 

mixture was stirred for 1 h at 65 oC. Then it was poured into chilled water (1.5 L) while stirring. The 

resulting precipitate was filtered off and dissolved in CH2Cl2 and washed with water and brine. It was 

dried over anhydrous Na2SO4 and the solvent was removed. Crude product was recrystallized from a 

methanol/water mixture to afford  benzyl 4-(2-methoxycarbonylethyl)-3,5-dimethylpyrrole (29, 

C18H21NO4, 14g, 44 mmol, 43%); m.p. 98-102 oC, Lit m.p. 99-101 oC.46 1H NMR (chloroform-d, 400 MHz): δ 

8.56 (s, 1H), 7.53-7.23 (m, 5H), 5.29 (s, 2H), 3.66 (s, 3H), 2.71 (t, J = 8.6, 7.0 Hz, 2H), 2.43 (t, J = 8.7, 6.8 

Hz, 2H), 2.29 (s, 3H), 2.21 (s, 3H). MS (ESI) m/z 136.15 [M+H]+, calcd. for C18H22NO4 136.14.  

Benzyl 5-acetoxymethyl-4-(2-methoxycarbonylethyl)-3-methylpyrrole-2-carboxylate (36): 

 

benzyl 4-(2-methoxycarbonylethyl)-3,5-dimethylpyrrole (29, 5.0 g, 15 mmol) was dissolved in acetic acid 

(50 ml) and acetic anhydride (1.5 ml, 15 mmol) was added. Then lead tetraacetate (7.5 g, 17 mmol) was 

added in small portions over a period of 1.5 h to the reaction mixture. It was stirred overnight at room 

temperature under argon and the resulting solution was added dropwise to chilled water (200 ml) while 

continuous stirring. The resulting precipitate was filtered off and dissolved in CH2Cl2 and washed with 

water and brine. It was then dried over anhydrous Na2SO4 and the solvent was removed. The crude 

product recrystallized from CH2Cl2/hexane mixture to afford benzyl 5-acetoxymethyl-4-(2-

methoxycarbonylethyl)-3-methylpyrrole-2-carboxylate (36, C20H23NO6, 5.5g, 14.7 mmol, 98%); m.p. 106-

109 oC, Lit m.p. 109.5-110.46 1H NMR (chloroform-d, 400 MHz): δ 9.05 (br. s, 1H), 7.51-7.29 (m, 3H), 5.31 

(s, 2H), 5.06 (s, 2H), 3.67 (s, 3H), 2.79 (t, J = 7.7 Hz, 2H), 2.47 (t, J = 7.6 Hz, 2H), 2.29 (s, 3H), 2.07 (s, 3H). 

MS (ESI) m/z 374.1603 [M+H]+, calcd. for C20H24NO6 374.1604. 
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Dibenzyl 3,3'-di(2-methoxycarbonylethyl)-4,4'-dimethylpyrromethane-5,5'-dicarboxylate (28): 

 

Method a 

Benzyl 5-acetoxymethyl-4-(2-methoxycarbonylethyl)-3-methylpyrrole-2-carboxylate (36, 5.5 g, 14.7 

mmol) was dissolved in methanol (30 ml) and HCl (2 ml). The reaction mixture was heated at 70 oC for 4 

h or until a precipitate formed. Then the mixture was stirred at room temperature and placed in an ice 

bath to complete the precipitation of the product. The titled product 28 was collected by filtration 

(C35H38N2O8, 3.8 g, 6.2 mmol, 42%). 

Method b 

Benzyl 4-(2-methoxycarbonylethyl)-3,5-dimethylpyrrole (29, 5.2 g, 16.5 mmol) was dissolved in diethyl 

ether (200 ml) by heating the mixture at 40 oC. Then bromine (1.1 ml, 21.4 mmol) was added dropwise 

and the mixture was stirred for 1.5 h at room temperature. Then the solvent was evaporated and a pink 

solid residue was dissolved in methanol (35 ml). Then concentrated hydrochloric acid (0.2 ml) was added 

and the mixture was refluxed for 9 to 11 h. While cooling down to room temperature, the product 

precipitated. The precipitated product was isolated by filtration and washed with cold methanol. Then it 

was recrystallized from hot methanol to give the titled product 28 (C35H38N2O8, 3.17g, 5.2 mmol, 31%); 

m.p. 103 oC, Lit m.p. 102-103 oC.47 1H NMR (chloroform-d, 400 MHz): δ 9.06 (s, 2H), 7.44-7.23 (m, 10H), 

5.26 (s, 4H), 3.97 (s, 2H), 3.57 (s, 6H), 2.76 (t, J = 7.0 Hz, 4H), 2.52 (t, J = 7.0 Hz, 4H), 2.29 (s, 6H). MS (ESI) 

m/z 615.6908 [M+H]+, calcd. for C35H39N2O8 615.6928. 
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3,3'-Di(2-methoxycarbonylethyl)-4,4'-dimethylpyrromethane-5,5'-dicarboxylate (60): 

 

Dibenzyl 3,3'-di(2-methoxycarbonylethyl)-4,4'-dimethylpyrromethane-5,5'-dicarboxylate (28, 2.5 g, 4.1 

mmol) was dissolved in dry THF (20 ml) and degassed with argon for 10 min. Then 10% Pd/C (500 mg) 

and 1-2 drops of TEA were added and the flask was sealed. Then the flask was evacuated of air by using 

a syringe and filled with hydrogen gas using a hydrogen gas filled balloon. The reaction mixture was 

stirred for 12 h. After completion of reaction (monitored by TLC), the solvent was evaporated and the 

residue was dissolved in 2 M ammonium hydroxide and filtered through a Celite cake to remove the 

catalyst. 2 M acetic acid solution was added dropwise to the filtrate while stirring until a precipitate was 

fully formed.  The product was collected by filteration, washed with water and dried in a desiccator to 

obtain compound 60 (C21H26N2O8, 1.7 g, 3.9 mmol, 95% ); MS (ESI) m/z 457.1577 [M+Na]+, calcd. for 

C21H26N2O8Na 457.1578. 

Benzyl 4-acetyl-3,5-dimethylpyrrole carboxylate (33): 

 

Benzyl acetoacetate (35, 33.5 g, 174 mmol) was dissolved in acetic acid (40 ml) and placed in an ice bath. 

Then it was treated with a solution of sodium nitrite (13 g, 188 mmol) in water and the temperature was 

controlled around 10 oC throughout. The mixture was stirred for another 3 h and stored in a refrigerator 

overnight. This solution was added to a solution of 2,4-pentandione (34, 10.2 g, 102 mmol) in acetic acid 

(65 ml) during 2 h at 65 oC. Simultaneously, an intimate mixture of zinc dust (19 g, 287 mmol) and 

sodium acetate (19g, 231 mmol) was added while keeping zinc dust always excess in the reaction 

mixture. The resulting mixture was stirred for 1 h at 65 oC. Then it was poured into chilled water (1.5 L) 
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while stirring. The resulting precipitate was filtered off and dissolved in CH2Cl2 and washed with water 

and brine. It was then dried over anhydrous Na2SO4 and the solvent was evaporated. The crude product 

was recrystallized from a methanol/water mixture to afford benzyl 4-(2-methoxycarbonylethyl)-3,5-

dimethylpyrrole (33, C16H17NO3, 15 g, 55 mmol, 53 % of); m.p. 134-136 oC, Lit m.p. 134.5 oC.48 1H NMR 

(chloroform-d, 400 MHz): δ 9.06 (s, 1H), 7.73-7.22 (m, 5H), 5.33 (s, 2H), 2.62 (s, 3H), 2.51 (s, 3H), 2.45 (s, 

3H); MS (ESI) m/z 272.1266 [M+H]+, calcd. for C16H18NO3 272.1287. 

Benzyl 3,5-dimethylpyrrole carboxylate (40): 

 

Benzyl 4-acetyl-3,5-dimethylpyrrole carboxylate (33, 1.0 g, 3.7 mmol) in dry benzene was treated with p-

toluenesulfonic acid (0.02 g, 0.12 mmol). Then dry ethylene glycol (4 ml) was added and the mixture was 

refluxed under argon for 15 h until reaction completion was confirmed by TLC. After the reaction was 

completed, water (16 ml) was added the mixture was washed with CH2Cl2, which was then washed with 

saturated NaHCO3, water and brine. The organic layer was dried over anhydrous Na2SO4. The product 

was purified via a silica gel column chromatography to obtain benzyl 3,5-dimethylpyrrole carboxylate 

(40, C14H15NO2, 0.8 g, 3.5 mmol, 95%  ); m.p. 100-102 oC, Lit m.p. 99 oC.49 1H NMR (chloroform-d, 400 

MHz): δ 8.57 (br. s, 1H), 7.63-7.29 (m, 5H), 5.82 (s, 1H), 5.30 (s, 2H), 2.33 (s, 3H), 2.25 (s, 3H); MS (ESI) 

m/z 230.1179 [M+H]+, calcd. for C14H16NO2 230.1181. 

Benzyl 4-formyl-3,5-dimethylpyrrole carboxylate (41): 

 

Benzyl 3,5-dimethylpyrrole carboxylate (40, 1.0 g, 4.3 mmol)  was dissolved in TFA under argon in an ice 

bath. Then triethyl orthoformate was added slowly and the reaction mixture was allowed to stir an 

additional 3 h while it reached room temperature. The reaction mixture was diluted with CH2Cl2 and 
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extracted with several portions of water to remove the TFA. Then the organic layer was neutralized with 

saturated NaHCO3, washed with brine and dried over anhydrous Na2SO4. After removal of the solvent, 

the resulting crude product was dissolved in a minimum amount of CH2Cl2 and eluted through a silica gel 

column. The first fraction was collected and shown to be the title compound 41 (C15H15NO3, 0.85 g, 3.0 

mmol, 70%); m.p. 151-153 oC, Lit m.p. 151 oC.49 1H NMR (chloroform-d, 400 MHz): δ 10.00 (s, 1H), 9.37 

(br. s, 1H), 7.64-7.29 (m, 5H), 5.34 (s, 2H), 2.59 (s, 3H), 2.53 (s, 3H); MS (ESI) m/z 258.1115 [M+H]+, calcd. 

for C15H16NO3 258.1130. 

3,5-dimethylpyrrole carboxylic acid (57): 

 

Benzyl 3,5-dimethylpyrrole-2-carboxylate (40, 2.2 g, 9.6 mmol) was dissolved in dry THF (10 ml) and 

degassed with argon. Then 10% Pd/C was added and the flask was sealed. Then the flask was evacuated 

of air and filled with hydrogen gas using a balloon filled with hydrogen. The reaction mixture was stirred 

overnight. Then the catalyst was filtered off using a Celite cake and the solvent was evaporated. This 

product 57 (1.3 g, 9.3 mmol, 97%) was not purified or characterized, and was directly subjected to the 

next step.  

2-Formyl-3,5-dimethylpyrrole (59): 

 

3,5-Dimethylpyrrole carboxylic acid (57, 1.3 g, 9.3 mmol) was treated with TFA (10 ml) in an ice bath and 

stirred for 15 min. in a open flask to complete the decarboxylation to form pyrrole 58. Then triethyl 

orthoformate (5 ml) was added slowly into the reaction mixture and it was stirred for an additional 3 h 

under argon. Once at room temperature, the solution was partitioned between CH2Cl2 and water. The 

organic layer washed with saturated NaHCO3 to neutralize TFA. The resulting organic layer was washed 
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with brine and dried over anhydrous Na2SO4 and then evaporated to give a dark brown product. Crude 

product was purified via a silica gel column to afford 3,5-dimethyl-2-formylpyrrole (59, C7H9NO, 0.55 g, 

4.5 mmol, 48%); m.p. 87-89 oC, Lit m.p. 91 oC.50 1H NMR (chloroform-d, 400 MHz): δ 9.45 (s, 1H), 9.37 

(br. s, 1H), 5.86 (s, 1H), 2.32 (s, 3H), 2.29 (s, 3H); MS (ESI) m/z 122.0500 [M-H]-, calcd. for C7H8NO 

122.0606. 

3,3'-Di(2-methoxycarbonylethyl)-4,4'-dimethyl-5,5'-diformylpyrromethane (61): 

 

3,3'-Di(2-methoxycarbonylethyl)-4,4'-dimethylpyrromethane-5,5'-dicarboxylic acid (60, 0.6 g, 1.38 

mmol) was dissolved in CH2Cl2 (10 ml) and p-toluenesulfonic acid (0.1 g) was added. The reaction 

mixture was stirred for 1 h while monitoring by TLC. After completion of the decarboxylation, a 

saturated solution of NaHCO3 was added to neutralize the acid, and the mixture was washed with water, 

brine and dried over anhydrous Na2SO4. Without any purification, the crude product was dissolved in 

dimethylformamide (2 ml) and placed in an ice bath. Then Vilsmeier complex 64 was prepared by adding 

benzoyl chloride (1.2 ml, 10 mmol) dropwise to dry dimethylformamide (1.6 ml, 20 mmol) at 0 oC over 

30 min. The Vilsmeier complex was added dropwise into the solution of decarboxylated dipyrromethane 

in dimethylformamide and stirred for 15 min in an ice bath and another 1 h at room temperature. Then 

benzene (10 ml) was added to the reaction mixture to precipitate the iminium salt. The resulting 

precipitate was collected by filtration and redissolved in a saturated solution of NaOAc in methanol (12 

ml) and water (12 ml). The mixture was heated at 60 oC for 8 h until it formed a precipitate. The reaction 

mixture was extracted with CH2Cl2 and dried over anhydrous Na2SO4. Then the resulting brown solid, 

after removal of the solvent, was purified via a silica gel column eluting with 2.5% methanol/CH2Cl2 to 

afford the titled compound 61(C21H26N2O6, 0.12g, 3.1 mmol, 24%); m.p. 179-182 oC, Lit m.p. 184-185 oC.51 
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1H NMR (chloroform-d, 400 MHz): δ 10.46 (d, J = 23.5 Hz, 2H), 9.44 (s, 2H), 4.05 (s, 2H), 3.70 (s, 6H), 2.79 

(t, J = 7.4 Hz, 4H), 2.51 (t, J = 8.9, 4H), 2.29 (s, 6H). MS (ESI) m/z 403.1888 [M+H]+, calcd. for C21H27N2O6 

403.1896. 

a,c-Biladiene dihydrochloride (53): 

 

Method a:  

Dipyrromethane dicarboxylic acid (60, 0.17 g, 0.4 mmol) was treated with TFA (8 ml) in an ice bath and 

stirred under argon for 15 min to complete the decarboxylation. Then formylpyrrole (59, 0.10 g, 0.81 

mmol) in methanol (5 ml) was added to the mixture of decarboxylated dipyrromethane. During the 

addition of formylpyrrole, the color of the reaction mixture changed from yellow to red. The reaction 

was monitored by UV-Vis spectrometry and the appearance of absorption bands around 440 and 507 

nm confirmed the formation of the a,c-biladiene 53. After 2 h, freshly prepared HCl gas was bubbled 

through the reaction mixture for 5 min and the color of the reaction mixture changed from red to dark 

red. Then chilled ether was added to the mixture until the a,c-biladiene salt precipitated. Then the flask 

was sealed and kept in the refrigerator overnight. The precipitate was collected by filtration to afford 

a,c-biladiene 53 (C33H42Cl2N4O4,
 0.096 g, 0.15 mmol, 38%). 

Method b: 

3,5-dimethylpyrrole carboxylic acid  (57, 0.17 g, 1.2 mmol) was dissolved in TFA and kept in an ice bath 

for 10 min under argon. Then diformyldipyrromethane (61, 0.24 g, 0.6 mmol) in methanol was added to 

the decarboxylated pyrrole. A color change from yellow to red was observed over time and reaction was 

monitored by UV-Vis spectrometry. After completion of the reaction, freshly prepared HCl gas was 
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bubbled through the reaction mixture for 5 min. Then chilled ether was added to the mixture  until a 

precipitate of the a,c-biladiene dihydrochloride salt 53 was observed. Then the flask was sealed and kept 

in the refrigerator overnight. The precipitate was collected by filtration to afford a,c-biladiene 53  

(C33H42Cl2N4O4, 0.11g, 1.9 mmol, 32%); UV-Vis (MeOH): λmax (rel. inten.) 507 nm (1.00), 440 (0.92); 1H 

NMR (acetone-d6, 400 MHz): δ 14.16 (s, 2H), 13.92 (s, 2H), 7.15 (s, 2H), 6.24 (s, 2H), 5.07 (s, 2H), 3.43 (s, 

6H), 2.84 (t, J = 9.3 Hz, 4H), 2.68 (s, 6H), 2.39 (s, 6H), 2.27 (s, 6H), 2.05 (t, J=7.98, 4H). 

Copper(II) Porphyrin (65): 

 

 The a,c-biladiene dihydrochloride salt (53, 96 mg, 0.15 mmol ) was dissolved in dimethylformamide and 

treated with excess copper acetate in dimethylformamide. The reaction mixture was heated at 100 oC 

while monitoring with UV-Vis spectrometry. Appearance of a sharp absorption band at 399 nm (Soret 

band) in the UV-Vis spectrum confirmed the formation of porphyrin. After 40 min the mixture was 

partitioned between water and CH2Cl2. The organic layer was washed with Na2CO3 and brine. It was 

dried over anhydrous Na2SO4 to afford crude titled product (C32H32CuN4O4); MS (MALDI-TOF) m/z 

600.182 [M+H]+, calcd. for C32H33CuN4O4 600.180, which was immediately demetalated. 

Demetalation of Copper(II) Porphyrin (52): 
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The crude copper(II) porphyrin 65 was demetalated using ice cold sulfuric acid/TFA (1:4) mixture. The 

mixture was stirred in an ice bath for 6 h. Then CH2Cl2 was added to the reaction mixture and it was 

washed with water 2 times to remove the acid. Then it was washed with 10% NaOH to neutralize any 

acids remaining and then again with water and brine. After drying over anhydrous Na2SO4, the solvent 

was evaporated and the resulting residue was redissolved in CH2Cl2 and treated with ethereal 

diazomethane gas for 5 min. The solvent was evaporated and the crude product was placed on a silica 

gel column and eluted with 1% methanol/CH2Cl2. The first band (red color) was collected and crystallized 

to afford the title compound 52 (C33H34N4O4, 11 mg, 0.02 mmol, 13%); UV-Vis (DCM): λmax (rel. inten.) 

564 nm (0.054), 529 (0.064), 496 (0.083), 468 (0.030), 397 (1.000); m.p. >260 oC, Lit m.p. 224-225 oC.52 1H 

NMR (chloroform-d, 400 MHz): δ 10.05 (s, 3H), 9.92 (s, 1H), 9.04 (s, 2H), 4.40 (t, J = 7.8 Hz, 4H), 3.72 (s, 

6H), 3.67 (s, 6H), 3.62 (s, 6H), 3.29 (t, J = 7.6 Hz, 4H), -3.97 (s, 2H). MS (MALDI-TOF) m/z 539.287 [M+H]+, 

calcd. for C32H35N4O4  539.266. 

Ethyl 4-(hydroxyimino)methyl-3,5-dimethylpyrrole carboxylate (74): 

 

Ethyl 4-formyl-3,5-dimethylpyrrole carboxylate (73, 0.61 g, 3.14 mmol) was dissolved in dry methanol 

(10 mL). Sodium acetate (0.31 g, 3.77 mmol) and hydroxylamine hydrochloride (0.26 g, 3.77 mmol) were 

added and mixture was refluxed for 2 h. Then the mixture was allowed to cool to room temperature and 

diluted with ethyl acetate (20 mL). 2M NaOH (2.14 mL) was added and the solvent was removed. The 

crude product was dissolved in ethyl acetate and washed with water several times and then with brine 

(50 mL). It was dried over anhydrous Na2SO4 and filtration through cotton, followed by concentration in 

vacuo furnished an off-white solid shown to be titled compound 74 (C10H14N2O3, 0.64 g, 3.04 mmol, 

97%); 1H NMR (chloroform-d, 400 MHz): δ 8.81 (br. s, 1H), 8.17 (s, 1H), 4.33 (q, J = 7.6 Hz, 2H), 2.43 (s, 

3H), 2.39 (s, 3H), 1.37 (t, J = 7.7 Hz, 3H). MS (ESI) m/z 211.1084 [M+H]+, calcd. for C10H15N2O3  211.1083 
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Ethyl 4-cyano-3,5-dimethylpyrrole carboxylate (75): 

 

Method a 

Ethyl 4-(hydroxyimino)methyl-3,5-dimethylpyrrole carboxylate (74,0.30 mg, 1.5 mmol) was placed in a 

two neck round-bottomed flask with a condenser attached, and toluene (2 ml) was added. Then the 

mixtue was heated to 90 oC while stirring. Once it reached 90 oC, chlorosulfonic acid (0.05 ml, 0.75 

mmol) was added dropwise through the other mouth of the round-bottomed flask. The reaction mixture 

was further stirred for 30 min at 90 oC. The reaction mixture cooled to room temperature, sodium 

hydroxide (2M, 1.5 mmol) was added to neutralize the acid. Toluene (15 ml) was added to dissolve the 

product. Then it was washed with water and brine and dried over anhydrous Na2SO4. The crude product 

was purified via a silica gel column eluted with a 7% acetone/CH2Cl2 solvent system to obtain ethyl 4-

cyano-3,5-dimethylpyrrole carboxylate (75, C10H12N2O2, 0.090 g, 0.046 mmol, 31%) 

Method b 

2,4,6-Trichloro-[1,3,5]-triazine (74, 0.22 g, 1.2 mmol) was added to DMF (2 mL) and stirred at room 

temperature for 1 h. During the reaction a white precipitate (Vilsmeier-Haack-type complex) was formed 

and the reaction was monitored by TLC until complete disappearance of 2,4,6-trichloro-[1,3,5]-triazine. 

Then ethyl 4-(hydroxyimino)methyl-3,5-dimethylpyrrole (0.21 g, 1.0 mmol) in DMF (5 ml) was added and 

the reaction mixture was stirred at room temperature until complete disappearance of  ethyl 4-

(hydroxyimino)methyl-3,5-dimethylpyrrole in the TLC. The mixture was diluted with water and extracted 

with CH2Cl2. Then the organic phase was washed with saturated Na2HCO3 followed by 1M hydrochloric 

acid and brine. Then it was dried over anhydrous Na2SO4 and the solvent was evaporated. The crude 

product was  purified using a short silica gel column and eluted with 8% acetone/CH2Cl2 to afford  ethyl 

4-cyano-3,5-dimethylpyrrole carboxylate (75, C10H12N2O2, 0.15 g, 0.78 mmol, 78%); m.p. 170-172 oC. 1H 
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NMR (chloroform-d, 400 MHz): δ 9.36 (br. s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 2.40 (s, 3H) 1.38 (t, 

J=7.1 Hz, 3H). MS (ESI) m/z 193.2183 [M+H]+, calcd. for C10H13N2O2  193.2145 

Benzyl 4-(hydroxyimino)methyl-3,5-dimethylpyrrole carboxylate (80): 

 

Benzyl 4-formyl-3,5-dimethylpyrrole carboxylate (33, 0.57 g, 2.21 mmol) was dissolved in dry methanol 

(10 mL). Sodium acetate (0.22 mg, 2.7 mmol) and hydroxylamine hydrochloride (0.20 g, 2.8 mmol) were 

added and mixture was refluxed for 2 h. Then the reaction mixture was allowed to cool to room 

temperature and it was diluted with ethyl acetate (20 mL). Then 2M NaOH (1 mL) was added and the 

solvent was removed. The crude product was dissolved in ethyl acetate and washed with water several 

times and then with brine (50 mL). It was then dried over anhydrous Na2SO4 and filtration through 

cotton, followed by concentration in vacuo furnished the titled product 80 (C15H16N2O3, 0.58 g, 2.13 

mmol, 96% yield); m.p. 195-198 oC, Lit m.p. 199-200 oC.53 1H NMR (acetone-d6, 400 MHz): δ 10.71 (br. s, 

1H), 9.72 (s, 1H), 8.11 (s, 1H), 7.55-7.25 (m, 5H), 5.27 (s, 2H), 2.42 (s, 3H), 2.36 (s, 3H). MS (ESI) m/z 

173.2140 [M+H]+, calcd. for C15H17N2O3 173.2139 

Benzyl 4-cyano-3,5-dimethylpyrrole carboxylate (73): 

 

2,4,6-Trichloro-[1,3,5]-triazine (0.18 g, 1.0 mmol) was added to DMF (2 mL) and it was stirred at room 

temperature for 1 h. During the reaction a white precipitate (Vilsmeier-Haack-type complex) was formed 

and the reaction was monitored by TLC until complete disappearance of 2,4,6-trichloro-[1,3,5]-triazine. 

Then benzyl 4-(hydroxyimino)methyl-3,5-dimethylpyrrole (80, 0.25 g, 0.91 mmol) in DMF was added and 

the reaction mixture was stirred at room temperature until complete disappearance of ethyl 4-
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(hydroxyimino)methyl-3,5-dimethylpyrrole in the TLC. The mixture was diluted with water and extracted 

with CH2Cl2. Then the organic phase was washed with saturated Na2HCO3 followed by 1M hydrochloric 

acid and brine. Then it was dried over anhydrous Na2SO4 and the solvent was evaporated. The crude 

product was purified using a short silica gel column and eluted with 8% acetone/CH2Cl2 to afford benzyl 

4-cyano-3,5-dimethylpyrrole carboxylate (73, C15H14N2O2, 0.18 g, 0.71 mmol, 78%); m.p. 173-175 oC. 1H 

NMR (chloroform-d, 400 MHz): δ 9.16 (s, 1H), 7.57 – 7.22 (m, 5H), 5.32 (s, 2H), 2.41 (s, 6H). MS (ESI) m/z 

255.1127 [M+H]+, calcd. for C15H15N2O2 255.1134. 

4-Formyl-3,5-dimethylpyrrole (64): 

 

Ethyl 4-formyl-3,5-dimethylpyrrole carboxylate (73, 0.30 g, 1.5 mmol) and NaOH (0.48 g, 1.2 mmol) were 

added to ethylene glycol (10 ml) and heated at 100 oC for 30 min until it dissolved completely. Then the 

temperature was increase to 195 oC for the decarboxylation reaction. After half an hour the reaction 

mixture was allowed to cool to room temperature. Then the product was extracted with CH2Cl2 and 

purified via a silica gel column to afford 4-formyl-3,5-dimethylpyrrole (64, C7H9NO, 0.12 g, 0.97 mmol, 

65%); m.p. 124-126 oC, Lit m.p. 126 oC.54 1H NMR (chloroform-d, 400 MHz): δ 9.89 (s, 1H), 9.68 (br. s, 

1H), 6.40 (s, 1H), 2.50 (s, 3H), 2.28 (s, 3H). MS (ESI) m/z 124.1604 [M+H]+, calcd. for C7H10NO 124.0684. 

4-(Hydroxyimino)methyl-3,5-dimethylpyrrole (85): 

 

4-Formyl-3,5-dimethylpyrrole (84, 0.10 g, 0.81 mmol) was dissolved in dry methanol (10 mL). Sodium 

acetate (0.77 g, 94 mmol) and hydroxylamine hydrochloride (0.066 g, 0.94 mmol) were added and the 

mixture was refluxed for 2 h. Then the reaction mixture was allowed to cool to room temperature and 
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diluted with ethyl acetate (20 mL). 2M NaOH (1 mL) was added and the solvent was removed. The crude 

product was dissolved in ethyl acetate and washed with water several times and then with brine. Then  

it was dried over anhydrous Na2SO4 and filtration through cotton, followed by concentration in vacuo 

provided 4-(hydroxyimino)methyl-3,5-dimethylpyrrole 85 (C7H10N2O, 0.08 g, 0.58 mmol, 72%); 1H NMR 

(chloroform-d, 400 MHz): δ 8.18 (s, 1H), 7.82 (br. s, 1H), 6.41 (s, 1H), 2.33 (s, 3H), 2.18 (s, 3H). MS (ESI) 

m/z 139.0869 [M+H]+, calcd. for C7H11N2O 139.0871 

Benzyl 4-iodo-3,5-dimethylpyrrole carboxylate (88): 

 

Benzyl 3,5-dimethylpyrrole carboxylate (40, 1.0 g, 4.35 mmol)  was dissolved in dichloroethane (20 ml) 

and saturated Na2HCO3 (10 ml) was added. The mixture was heated at 50 oC for 15 min. Then a 

saturated solution of KI/I2 in water (20 ml) was added and heating was continued at 70 oC for 1 h. Then 

saturated solution of sodium thiosulfate (20 ml) was added to quench the excess iodine. The reaction 

mixture was diluted with CH2Cl2 and the organic phase was washed with water followed by 1M 

hydrochloric acid and brine. After removal of the solvent, the crude product was chromatographed on a 

silica gel column and eluted with 1% methanol/CH2Cl2 to afford benzyl 4-iodo-3,5-dimethylpyrrole 

carboxylate (88, C14H14INO2, 1.35 g, 3.8 mmol, 87%); 1H NMR (chloroform-d, 400 MHz): δ 9.04 (s, 1H), 

7.55 – 7.16 (m, 5H), 5.31 (s, 2H), 2.31 (s, 3H), 2.28 (s, 3H). MS (ESI) m/z 356.1787 [M+H]+, calcd. for 

C14H15INO2 356.1789. 

4-Iodo-3,5-dimethyl-1-formylpyrrole (89): 

 

To a solution of benzyl 3,5-dimethylformylpyrrole carboxylate (59, 0.25 mg, 2.03 mmol) in carbon 

tetrachloride (15 ml), was added N-iodosuccinimide (0.68 mg, 3.0 mmol), which was recrystallized from 
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a mixture of 1,4-dioxane/CCl4 before use. Then mixture was stirred at room temperature for 2 h. After 

confirming the formation of 4-iodo-3,5-dimethyl-1-formylpyrrole by mass spectrometry, the mixture 

was diluted with CH2Cl2 and washed with 1M NaOH and brine. The crude product was chromatograph 

on a silica gel column and eluted with 1% methanol/CH2Cl2 to give 4-iodo-3,5-dimethyl-1-formylpyrrole 

(89, C7H8INO, 0.42 mg, 1.7 mmol, 83%) ; m.p. 166-167 oC, Lit m.p. 167-170 oC.55 1H NMR (chloroform-d, 

400 MHz): δ 10.53 (s, 1H), 9.49 (s, 1H), 2.36 (s, 3H), 2.28 (s, 3H). MS (ESI) m/z 249.9721 [M+H]+, calcd. for 

C7H9INO 249.9729. 

4-Cyano-3,5-dimethyl-1-formylpyrrole (82): 

 

Benzyl 4-cyano-3,5-dimethylpyrrole carboxylate (72, 350 mg, 1.37 mmol) was dissolved in dry THF and 

10% Pd/C (70 mg) was added. The reaction flask was sealed, evacuated of air and filled with hydrogen 

gas using a hydrogen filled balloon. The reaction mixture was stirred overnight at room temperature. 

After confirming the completion of the reaction by TLC, the catalyst was removed by filtration and the 

solvent was evaporated. Then the crude carboxylic acid 81 was dissolved in benzene (7 ml) and a 

solution of oxalyl chloride (0.35 ml, 4.11 mmol) in CH2Cl2 (7 ml) was added. A few drops of 1M 

trimethylphosphine in toluene were added as a catalyst and the reaction mixture was allowed to stir at 

room temperature for 24 h under argon. The solvent was evaporated and the crude acid chloride 90 was 

redissolved in a THF/CH2Cl2 1:1 mixture (15 ml) in an ice bath. A solution of trimethylphosphine in 

toluene (1.4 ml, 1.4 mmol) was added and the mixture was stirred for 1 h. Then sodium 

triacetoxyborohydride (0.46 g, 2.17 mmol) was added and strring was continued at 0 oC for 18 h. 5% 

NaHCO3 solution was added to quench the reaction and was stired for another 2 h at room temperature. 

Then the reaction mixture was extracted with CH2Cl2 and the organic layer was washed with water, brine 

and dried over anhydrous Na2SO4. The solvent was removed and the residue was chromatographed on a 
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silica gel column to afford titled product 82 (C8H8N2O); m.p. 218-221 oC. 1H NMR (chloroform-d, 400 

MHz): δ 10.53 (s, 1H), 9.51 (s, 1H), 2.40 (s, 3H), 2.36 (s, 3H). MS (ESI) m/z 149.0710 [M+H]+, calcd. for 

C8H9N2O 249.0715. 

3,7-Diiodoporphyrin-13,17-dipropionic methylester (92): 

 

Dipyrromethane dicarboxylic acid 60 (355 mg) was treated with TFA (25 ml) in an ice bath and stirred 

under argon for 15 min to complete the decarboxylation. Then 4-iodo-3,5-dimethyl-1-formylpyrrole (89, 

400 mg) in methanol was added to the mixture of decarboxylated dipyrromethane. During the addition 

of formylpyrrole 89, the color of the reaction mixture changed from yellow to red. After 2 h, freshly 

prepared HCl gas was bubbled through the reaction mixture for 5 min and the color of the reaction 

mixture changed from red to dark red. Chilled ether was added to the mixture until the a,c-biladiene salt 

91 precipitated. The flask was sealed and kept in the refrigerator overnight. The precipitate was 

collected by filtration to afford 2,18-diiodo-a,c-biladiene dihydrochloride (91, C33H40Cl2I2N4O4) m.p. >260 

oC. The crude a,c-biladiene dihydrochloride salt 91 was dissolved in dimethylformamide and treated with 

excess copper acetate. The reaction mixture was heated at 100 oC while monitoring with UV-Vis 

spectrometry. Appearance of a sharp absorption band at 400 nm (Soret band) in the UV-Vis spectrum 

confirmed the formation of porphyrin. After 40 min the mixture was partitioned between water and 

CH2Cl2. The organic layer was washed with Na2CO3 and brine. It was dried over anhydrous Na2SO4 to 

afford the copper(II) porphyrin which was demetalated using ice cold sulfuric acid/TFA (2:8) (10 ml) 

mixture. The mixture was stirred in an ice bath for 5 h. Then CH2Cl2 was added to the reaction mixture 

and it was washed with water 2 times to remove the acid. Next it was washed with 10% NaOH to 
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neutralize any acids remaining and then again with water and brine. After drying over anhydrous 

Na2SO4, the solvent was evaporated and the resulting residue was redissolved in CH2Cl2 and treated with 

ethereal diazomethane gas for 5 min. The solvent was evaporated and the crude product was placed on 

a silica gel column and eluted with 1% methanol/CH2Cl2. The titled product 92 was characterized by 

mass spectrometry. Unfortunately, the amount was not enough to characterize by 1H NMR. 

(C32H32I2N4O4); MS (MALDI-TOF) m/z 791.051 [M+H]+, calcd. for C32H33I2N4O4 791.051. 

Ethy 4-hydroxymethyl-3,5-dimethylpyrrole carboxylate (96): 

 

Ethyl 4-formyl-3,5-dimethylpyrrole (83, 0.10 g, 0.52 mmol) was dissolved in dry CH2Cl2 (5 ml) in an ice 

bath under argon. Then a solution of sodium borohydride in THF (1.00 ml, 2.50 mmol) was added 

dropwise. After 15 min the reaction was completed as indicated by TLC. An aqueous solution of 

ammonium chloride was added slowly to quench the excess sodium borohydride. The product was 

extracted with CH2Cl2 and washed with water and brine. It was then dried over anhydrous Na2SO4. The 

crude product was chromatographed on a silica gel column and eluted with 2.5% methanol/CH2Cl2 to 

afford the titled product 96 (C10H16NO3, 0.098 g, 0.50 mmol, 96%); m.p. 125 oC. 1H NMR (chloroform-d, 

400 MHz): δ 8.78 (br. s, 1H), 4.50 (s, 2H), 4.31 (q, J = 7.1 Hz, 2H), 2.36 (s, 3H), 2.30 (s, 3H), 1.36 (t, J = 7.1 

Hz, 3H). MS (ESI) m/z 198.1126 [M+H]+, calcd. for C10H17NO3 198.1130. 
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4.5 Supporting Information 
1H NMR spectrum of benzyl pyrrole carboxylate 29 in chloroform-d at 400 
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1H NMR spectrum of acetoxymethylpyrrole carboxylate 36 in chloroform-d at 400 MHz 
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1H NMR spectrum of benzyl dimethylpyrromethane dicarboxylate 28 in chloroform-d at 400 MHz 
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1H NMR spectrum of benzyl acetylpyrrole carboxylate 33 in chloroform-d at 400 MHz 
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1H NMR spectrum of benzyl 3,5-dimethylpyrrole carboxylate 40 in chloroform-d at 400 MHz 
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1H NMR spectrum of benzyl formylpyrrole carboxylate 41 in chloroform-d at 400 MHz 
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1H NMR spectrum of formylpyrrole 59 in chloroform-d at 400 MHz 

 



228 
 

1H NMR spectrum of diformylpyrromethane 61 in chloroform-d at 400 MHz 
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1H NMR spectrum of a,c-biladiene dihydrochloride 53 in acetone-d6 at 400 MHz 
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1H NMR spectrum of porphyrin 52 in chloroform-d at 400 MHz 
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1H NMR spectrum of ethyl cyanopyrrole carboxylate 75 in chloroform-d at 400 MHz 
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1H NMR spectrum of benzyl hydroxyiminopyrrole carboxylate 80 in acetone-d6 at 400 MHz 
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1H NMR spectrum of benzyl cyanopyrrole carboxylate 73 in chloroform-d at 400 MHz
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 1H NMR spectrum of 4-formylpyrrole 64 in Chloroform-d at 400 MHz
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1H NMR spectrum of 4-(hydroxyimino)methylpyrrole 85 in chloroform-d at  400 MHz
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1H NMR spectrum of benzyl 4-iodopyrrole carboxylate 88 in chloroform-d, 400 MHz
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1H NMR spectrum of 4-iodo-formylpyrrole 89 in chloroform-d at 400 MHz 
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1H NMR spectrum of ethylhydroxymethylpyrrole carboxylate 96 in chloroform-d at 400 MHz 
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