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ABSTRACT 

 Studies of the surface assembly and molecular organization of organic thin films were 

studied using scanning probe microscopy (SPM) and scanning probe lithography (SPL). Systems 

of organic thin films such as n-alkanethiols and pyridyl functionalized porphyrins were 

characterized at the molecular level, and measurements of the conductive properties of 

polythiophenes containing in-chain cobaltabisdicarbollides were accomplished. Understanding 

the self-organization and mechanisms of self-assembly of organic molecules provides 

fundamental insight for structure/property interrelationships. Investigations of the surface 

assembly of 5,10-diphenyl-15,20-di-pyridin-4-yl-porphyrin (DPP) on Au(111) were done using 

SPL methods of nanoshaving and nanografting. Automated computer designs were developed for 

nanofabrication to provide local characterizations of the thickness of DPP films and 

nanostructures. Nanolithography was accomplished using DPP films as either matrix self-

assembled monolayers (SAMs) or as molecules for nanofabrication. Results presented in this 

dissertation demonstrate that DPP forms compact layers on Au(111), which can be used for 

inscribing nanopatterns of n-alkanethiols. Arrays of DPP nanopatterns with precise geometries 

and alignment were fabricated within n-alkanethiols by nanografting, demonstrating nanoscale 

lithography with pyridyl porphyrins can be accomplished to produce an upright surface 

orientation on Au(111) mediated by nitrogen-gold chemisorption. Beyond research 

investigations, the applicability of atomic force microscopy (AFM) and advancements with 

automated SPL were applied for teaching undergraduate chemistry laboratories to introduce the 

fundamentals of surface chemistry and molecular manipulation. New classroom activities were 

developed for the Chemistry 3493 Physical Chemistry laboratory to give students “hands-on” 

training with AFM. Undergraduates were trained to prepare nanopatterns of n-alkanethiols using 

software to control the position, force and speed of the AFM tip for nanolithography 
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experiments. The sensitivity and nanoscale resolution of current sensing AFM was applied for 

studies of the conductive properties of electropolymerized thin films of polythiophenes with 

cobaltabisdicarbollide moieties. Images acquired with AFM furnished views of the morphology 

of different polymers prepared on gold surfaces. Surface maps of the conductivity of 

electropolymerized films were acquired with AFM current images. These studies provide new 

insight of the effects of the bound cobaltabisdicarbollide moiety and coordinated metal centers 

for the electronic properties of the resulting conducting materials. 



1 

 

CHAPTER 1. INTRODUCTION 

The exquisite resolution and precision obtainable with scanning probe microscopy (SPM) 

enables studies of molecular organization, self-assembly and chemical binding processes on 

surfaces. The associated physical properties of samples can be investigated at the nanometer 

scale because of the unprecedented sensitivity of SPM. The main objectives of this dissertation 

were to develop strategies to investigate the surface assembly of n-alkanethiols and pyridyl-

functionalized porphryins; and measure the conductive properties of specific systems, such as 

organic thins of polythiophenes with cobaltabisdicarbollide moieties and electropolymerized 

carboranyldithiophenes using SPM. Methods of scanning probe microscopy (SPM) and 

nanolithography were the tools applied in this dissertation to investigate chemical reactions, 

surface structures and properties of nanomaterials and organic thin films. Our goals were to 

achieve new fundamental insight of structure-property relationships for surface reactions. 

Investigations of surface properties and processes at the molecular level will help advance the 

field of molecular electronics towards new discoveries for sensing and energy applications. 

1.1 AFM Based Nanofabrication with Self-assembled Monolayers 

 Scanning probe lithography (SPL) is one of the nanofabrication techniques which can be 

applied for writing nanometer-sized surface patterns of designed chemistry. Combined with 

computer automation, SPL can be used to create surface patterns ranging from nanometer to 

micrometer sizes with precise alignment, spacing and arrangement on surfaces. A contemporary 

review of SPL methods in Chapter 2 highlights the exquisite resolution and precision that can be 

achieved with SPM-based lithography with self-assembled monolayers(SAMs).
1
 Scanning probe 

instruments used for nanofabrication of SAMs include scanning tunneling microscopy (STM), 

atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM). Scanning 

probe microscopes have progressed beyond basic use as an imaging tool, to become a primary 
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technique for physical measurements of material properties, as well as a tool for manipulation of 

atoms and molecules at the nanoscale. Approaches for SPL with self-assembled monolayers 

(SAMs) are reviewed and summarized from research with methods of nanoshaving, 

nanografting, Dip-Pen Nanolithography (DPN), NanoPen Reader and Writer (NPRW), bias-

induced lithography, catalytic probe lithography, and NSOM lithography.  

1.2 Automated Scanning Probe Lithography with n-Alkanethiol Self Assembled 

Monolayers on Au(111): Application for Teaching Undergraduate Laboratories 

Controllers for scanning probe instruments can be programmed for automated 

lithography to generate desired surface arrangements of nanopatterns of organic thin films, such 

as n-alkanethiol self-assembled monolayers (SAMs).
2-4

 In Chapter 3, atomic force microscopy 

(AFM) methods of lithography known as nanoshaving and nanografting were used to write 

nanopatterns within organic thin films. Commercial instruments provide software to control the 

length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, 

higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, 

exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced 

displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly 

of n-alkanethiol molecules from solution.  

Advancements in AFM automation enable rapid protocols for nanolithography, which 

can be accomplished within the tight time restraints of undergraduate laboratories. Example 

experiments with scanning probe lithography (SPL) are described in Chapter 3 that were 

accomplished by undergraduate students during laboratory course activities and research 

internships in the chemistry department of Louisiana State University.
3
 Students were introduced 

to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. For 

this report, reproduced by permission from the Journal of the Association for Laboratory 
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Automation, works from three undergraduate researchers were showcased as examples of the 

capabilities of SPL for student laboratories and research activities. One of the LSU students 

mentored, Ms. Treva T. Brown received a prestigious 2009 ALA Young Scientist Award from 

the Analytical Systems Digital Library under my direction. In this chapter, work is consolidated 

and summarized from several years of effort in directing and mentoring undergraduate research 

projects based on SPL and high resolution imaging with SPM. 

1.3 Surface Assembly of Pyridyl-Substituted Porphyrins on Au(111) Investigated In Situ 

Using Scanning Probe Lithography 

 

A new direction progressing beyond studies with n-alkanethiols as a model molecular 

system was established for this dissertation. Applications of nanografting have been limited to 

creating patterns with thiol-based chemistries on gold substrates through sulfur-gold 

chemisorption. Chapter 4 demonstrates that pyridyl-functionalized porphyrins are potentially a 

new class of self-assembled monolayers which can be grafted directly onto surfaces of Au(111), 

most likely mediated through nitrogen-gold chemisorption.
5
 Our practical goals were to use SPM 

for studying a more complex and robust system of conjugated molecules such as porphyrins 

which have valuable technological applications due to inherent photoemissive and 

photoconductive properties. Our goals were to develop new AFM-based protocols for in situ 

studies in solution, whereas most studies of these systems have been accomplished either in air 

or UHV environments using STM. Scanning probe characterizations of porphyrin patterns 

prepared by nanografting in liquid media were accomplished, which provide insight for the 

molecular orientation and surface assembly of porphyrins bearing pyridyl and phenyl 

substituents. In-situ AFM provides highly local views of the assembly of pyridyl-substituted 

porphyrins on surfaces of Au(111). Matrix self-assembled monolayers (SAMs) of n-alkanethiols 

were used as a molecular ruler for gauging height measurements.  Nanografting was used as an 
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in situ tool for local measurements of the thickness of porphyrin films providing side-by-side 

comparisons against the heights of n-alkanethiol nanopatterns. As previously shown for n-

alkanethiols on Au(111), nanografting alters the assembly pathway through a mechanism of 

spatial confinement.
6
 When nanografted, pyridyl porphyrins were shown to assemble onto gold 

directly into an upright configuration rather than adopting a coplanar arrangement. The studies 

presented in Chapter 4 provide further corroborative evidence that steps of surface self-assembly 

can be altered when nanografting by spatial confinement; thus nanografting provides a tool for 

controlling molecular orientation. 

1.4 Assembly of 5,10,15,20-di-pyridin-4-yl-porphyrin on Au(111) from Mixed Solvents 

 

The mechanism of the surface assembly of porphyrins from solution results from 

complex intermolecular interactions and the affinity for surface binding. The binding interactions 

between peripheral groups and the surface as well as the influence of pi-pi stacking between 

macrocycles dictate the resulting configuration and organization for structures that form. In 

Chapter 5, high resolution AFM imaging combined with scanning probe lithography was used 

for investigations of the surface structures that form by natural solution-based assembly and 

compared to artificial nanostructures prepared by the spatially confined assembly mechanism of 

nanografting for 5,10-diphenyl-15,20-di-pyridin-4-yl-porphyrin (DPP).
7
  Our goals were to 

understand the mechanisms of solution-based assembly of pyridyl-functionalized porphyrins and 

to develop new molecular test platforms for measurements of surface properties. By comparing 

porphyrins with different molecular designs, experiments with SPM and SPL were used to gain 

insight for structure-property relationships. In situ AFM experiments disclosed that for 

spontaneous self-assembly processes, monolayers of DPP from ethanol/dichloromethane 

solutions form mixed monolayers with two distinct configurations on Au(111), exhibiting phase 

segregated domains. Nanoshaving and nanografting provide an in situ tool for local 
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measurements of the thickness of DPP films with angstrom precision. High resolution AFM 

images of DPP reveal that two distinct phase segregated domains of different heights were 

formed over time. One phase corresponds to the height of a lying-down arrangement of DPP 

with the macrocycle adapting a coplanar orientation. The thickness of the second phase 

corresponds precisely to the theoretical height of a 90 degree perpendicular orientation of the 

molecules (an upright, standing configuration), with two pyridyl groups attached to the surface. 

The surface coverage of the upright domains increased over time to near saturation. However, for 

structures of DPP nanografted within a matrix monolayer of alkanethiol SAMs under the 

conditions of spatial confinement, the heights of nanopatterns correspond to an upright 

orientation. Complicated designs and geometries of DPP patterns were successfully created by 

nanografting DPP within matrix SAMs of n-alkanethiols of different chain lengths (decanethiol, 

dodecanethiol, octadecanethiol). In collaborative work with Professor Bin Chen, models with 

energy minimized structures of pyridyl-substituted porphyrins on Au(111) were computed using 

Car-Parrinello Molecular Dynamics (CPMD)  that corroborate results with AFM. 

 Results of this research project were disclosed in presentations and garnered the best poster 

awards at conferences both at Pittcon 2010 in Orlando Florida; and at the Society for Applied 

Spectroscopy (SAS) symposium during the 34
th

 National Meeting, Federation of Analytical 

Chemistry & Spectroscopy Societies (FACSS 2007) in Memphis, TN. Also, this research was 

recognized as one of the finalists for the best poster awards for Material Systems and Processes 

for Three-Dimensional Micro- and Nanoscale Fabrication and Lithography symposium in 2009 

Materials Research Society Spring Meeting in San Francisco, CA. 

1.5 Polythiophenes Containing In-Chain Cobaltabisdicarbollide Center  

New cobalt(III) bis(dicarbollide) complexes covalently linked to two 2-oligothienyl units 

were synthesized and electropolymerized to produce the corresponding polythiophene films 
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containing in-chain metallic centers.
8
 The incorporation of the metal center in the conjugated 

chain is expected to improve electronic conductivity and magnetic and optical properties of 

metallopolymers. The goal of this project was to establish a new unprecedented conducting 

metallopolymers using metalla-bisdicarbolide complexes. My role was to furnish molecular 

details of AFM surface studies and conducting probe measurements of charge transport for these 

novel systems. Detailed characterizations using electrochemistry, UV-Vis spectroscopy and 

scanning probe microscopy (tapping mode and conducting probe AFM) are presented in Chapter 

6, towards understanding how the bound cobaltabisdicarbollide moiety influences the electronic 

properties of the resulting conducting materials. The polymer films that were electrogenerated 

from the bithienyl and terthienyl derivatives display redox processes, yielding conducting 

polymer deposits on the electrode surface. In contrast, the electrochemical oxidation of thienyl 

units resulted in the gradual passivation of the electrode surface, with no conductive polymers 

observed. Analysis with UV-Vis spectroscopy demonstrated that the polymer incorporating the 

sexithienyl segments is more conjugated than that with the quaterthienyl segments. Conducting 

probe AFM characterizations indicate that polymers with bithienyl and terthienyl behave like 

heavily doped semiconductors rather than pure semiconductors.  The current-voltage (I-V) 

profile for poly- thienyl exhibits no measurable current over the range of applied voltage which 

is consistent with the insulating character of the film. Substantial differences for the 

morphologies of the polymer films were apparent for comparisons with tapping mode AFM. The 

studies reported in Chapters 6 result from an international collaboration with Professor Bruno 

Fabre of the Université de Rennes, who is an expert in the area of electrochemistry. Professor M. 

Graca H. Vicente of the LSU chemistry department contributed expertise in organic synthesis, 

for accomplishing research overall with a broad interdisciplinary focus. 

Conjugated polymers have promising applications in the semiconductor industry for 
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microelectronics, photovoltaics, organic light emitting diodes (OLED), organic field effect 

transistors, electrochemical switching, and chemical and physical sensing. Structure-property 

relationships are important in advancing the design and synthesis of conjugated polymers for 

molecular electronic applications.
9-10
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CHAPTER 2. AFM-BASED NANOFABRICATION WITH SELF-ASSEMBLED 

MONOLAYERS* 

 

2.1 Introduction 

 

Scanning probe lithography (SPL) is an emerging family of techniques which can be 

applied for writing nanometer-sized surface patterns of designed chemistry.  One of the main 

advantages in comparison to other nanoscale lithographies is that the versatile approaches of SPL 

not only enable nanofabrication with designed size and geometry, but also provide precise 

control of the chemistry on surfaces, as determined by the choice of molecules for writing.  The 

exquisite resolution and precision of scanning probe microscopy (SPM) has brought an evolution 

of new methods and experimental configurations which can be valuable for multiple disciplines.  

One can easily predict that SPL will advance new discoveries for future science.  This chapter 

will focus on the scanning probe based lithographies which have been applied to write 

nanostructures of self-assembled monolayers (SAMs).  The chemistry of SAMs has been used 

previously to tailor the selectivity of surfaces as pattern transfer molds,
11-12

 etch resists
13-14

 and 

for microcontact printing.
15-17

 To evolve to the next generation of miniaturization at the 

nanoscale, the immediate benefits of SPL are to enable researchers to probe the fundamental 

limits of measuring molecular properties and to contribute to the fundamental knowledge of 

chemical binding, surface organization and self-assembly.   

An overview of the various lithography methods according to the type of SPM instrument 

is presented in Figure 2.1.  Scanning probe techniques applied for nanofabrication of SAMs 

include scanning tunneling microscopy (STM), atomic force microscopy (AFM) and near-field 

scanning optical microscopy (NSOM). Note that bias-induced lithography can be accomplished 

using either scanning tunneling microscopy (STM) or conductive-probe AFM.  Scanning probe  

*Reproduced with permission from American Scientific Publishers. 
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microscopes furnish tools for visualization, physical measurements and precise manipulation of 

atoms and molecules at the nanometer scale. The additional tools attainable with AFM for 

nanoscale lithography are accessible to investigators across a broad range of disciplines and do 

not require expensive instrument modification.  In fact, most SPM manufacturers have developed 

software to give operators complete control of SPL parameters such as the speed, bias, force, 

direction and residence time of the scanning probe.  To progress to the smallest sizes, SPL can be 

applied to define surface patterns at either nanometer or micrometer scales.  With computer 

automation, the arrangement, alignment and spacing of patterns can be defined precisely at the 

scale of nanometers.  

 
Figure 2.1 Overview of the most commonly used scanning probe lithography methods for 

nanofabrication of self-assembled monolayers. 
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There are several key differences when comparing SPL methods beyond the choice of 

instrument, such as the mechanism of writing, the type of chemical changes that can be achieved, 

and whether characterization of nanopatterns can be accomplished in situ.  The writing 

mechanisms and changes in surface chemistry will be detailed in succeeding sections of this 

chapter.  Lithography methods which enable in situ characterization of surface changes use the 

same SPM probe for writing and subsequent interrogation of the nanostructures that were 

written.  Often, the various steps to modify the surface chemistry of nanopatterns can be 

accomplished without removing the sample or tip, provided that the tip is not damaged or altered 

by the fabrication process.   There are a few SPL methods such as Dip-Pen Nanolithography 

(DPN) and catalytic probe lithography which require the use of different probes for the steps of 

writing and characterizing surface patterns, and these have been categorized as ex situ methods.  

Combined with the capabilities for high-resolution imaging and characterization, SPM enables a 

molecular-level approach for visualizing changes that occur on surfaces after successive steps of 

chemical reactions.  In essence, SPL furnishes a new variable for experiments by providing a 

means to manipulate or alter the chemistry of local regions of surfaces.  Very small areas of 

designed chemistry can be inscribed on surfaces with defined reactivity for binding 

nanoparticles, proteins and other molecules.  After the nanopatterned surface is subjected to 

various chemical treatments, changes in the morphology and thickness of the nanopatterns can 

assist in the interpretation of surface kinetics and reaction mechanisms.
6,18-19

  

Detailed information about the operating principles of SPM instruments can be found in 

previous publications for AFM,
20-24

 STM 
25-29

 and NSOM.
30-32

  The SPM methods for writing 

patterns are based on an operating platform which uses electronic controllers for piezoelectric 

positioning of a surface probe.  The feedback loop for tip-positioning and mechanisms of surface 

characterization are quite different for AFM, STM and NSOM; and likewise provide a range of 
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approaches for nanofabrication.  The probe for an STM instrument is a conductive metal wire 

brought within tunneling range of the surface.  The imaging and fabrication accomplished with 

STM are obtained at a proximal distance from the surface, within tunneling range of <
 
1 nm.  

Lithography using NSOM is also accomplished in non-contact operation, within the optical near-

field regime.  For NSOM lithography, a specially constructed aluminum-clad fiber optic probe 

transmitting light is scanned at a certain distance from the sample.  In contrast, AFM-based 

lithography and imaging usually involve direct contact of the scanning probe with the surface.   

The primary consideration for choosing an SPL method is the desired surface chemistry 

and environment for imaging.  A useful analogy is to consider the SPM tip as a „pen‟ which 

writes molecular „ink‟ on various surfaces or „paper.‟  A comparison of SPL methods using this 

simple analogy is presented in Table 2.1.  The summary focuses on the most widely applied 

methods for writing nanopatterns of SAMs; there are other specialized SPL methods reported for 

different surfaces and systems of molecules and nanomaterials which are beyond the scope of 

this chapter.  The table presents a brief synopsis of SPL methods, comparing the mechanism of 

writing, the environment (ambient air or liquids) as well as the outcome of the chemical or 

physical changes to the surface.  The detailed steps for writing nanopatterns and recent research 

which apply these methods for the fabrication of SAMs will be presented in later sections.  The 

chapter will begin with a general discussion of the chemistry of SAMs, followed successively by 

details of force-induced lithography methods of nanoshaving and nanografting.  Further sections 

will describe “Dip-Pen” methods of nanolithography (DPN), NanoPen Reader and Writer 

(NPRW), and catalytic probe lithography with SAMs.   Recent developments in SPL that are 

evolving with bias-induced lithography methods and NSOM photooxidation of SAMs will also 

be presented.  The chapter concludes with a prospectus of future directions in automated SPL. 

 



12 

 

Table 2.1  Mechanisms for writing SAM nanopatterns. 

SPL method pen paper environment protocol 
writing 

mechanism 

surface 

chemistry 

nanoshaving 

bare 

AFM 

tip 

SAMs 

including 

silanes, 

thiols 

air or liquid in situ 

force & 

sweeping tip 

motion 

uncovered areas 

of substrate 

nanografting 

bare 

AFM 

tip in a 

SAM 

solution 

thiol 

SAMs/Au 
liquid in situ 

force & solution 

replacement 

diverse 

functional 

groups of SAMs 

Dip-Pen 

Nanolithography 

(DPN) 

coated 

AFM 

tip 

clean, 

uncoated 

surfaces 

air ex situ 
meniscus liquid 

transfer 

diverse 

functional 

groups of SAMs 

& other 

materials 

electrochemical 

DPN 

thiol-

coated 

AFM 

tip 

clean, 

uncoated 

surfaces 

air in situ 
Local surface 

oxidation 
electrochemistry 

thermal DPN 

thiol-

coated 

AFM 

tip 

clean, 

uncoated 

surfaces 

air in situ 

heating of tip for 

deposition of 

polymer inks 
heating 

NanoPen Reader 

and Writer 

(NPRW) 

thiol-

coated 

AFM 

tip 

thiol 

SAMs/Au 
air or water in situ 

force & 

molecular 

replacement 

diverse 

functional 

groups of SAMs 

catalytic probe 

lithography 

AFM 

tip 

coated 

with a 

catalyst 

SAM 

surface 

groups 

 

air or liquid ex situ 
local tip-induced 

hydrolysis 

patterns written 

by localized 

catalysis 

bias-induced 

oxidation 

biased 

STM or 

AFM 

tip in 

air 

conductive 

or semi-

conductive 

substrates 

air in situ 

surface oxidation 

via 

electrochemistry 

in the water 

meniscus 

between the tip 

and surface 

oxidized SAMs 

bias-induced 

replacement 

biased 

STM or 

AFM 

tip in a 

SAM 

solution 

conductive 

or semi-

conductive 

substrates 

liquid in situ 

displacement of 

SAMs under 

elevated bias & 

successive 

replacement 

diverse 

functional 

groups of SAMs 

NSOM 

photooxidation 

NSOM 

probe 
SAMs air in situ 

photooxidation 

of irradiated 

areas of the SAM 

photooxidized 

SAMs 

NSOM 

photoconversion 

NSOM 

probe 
SAMs air in situ 

photoconversion 

of terminal 

groups 

irradiated by 

the probe 

photochemistry 



13 

 

2.2 Surface Chemistry of Self-Assembled Monolayers 

 

 Self-assembled monolayers of alkanethiols and alkylsilanes have been applied for 

surface modification,
15,33-35 

corrosion inhibition,
36-38

 biosensor design,
39-42

 and molecular device 

fabrication.
43-44

  The synthetic flexibility of SAMs provide advantages for designing the 

chemistry of surfaces with desired spacer lengths and functional groups.
45-46

 The surface 

properties such as wettability, acidity and adhesion can be controlled by choosing the functional 

headgroups of SAMs.  For example, to design the wettability properties of surfaces, SAMs 

terminated with methyl groups are hydrophobic, whereas SAMs terminated with carboxyl, 

hydroxyl, or amine groups (moieties that can hydrogen-bond to a polar surface) are 

hydrophilic.
47-48

    

It is well documented that SAMs of n-alkanethiols form densely packed, well-ordered 

monolayers on coinage metal surfaces such as gold or silver.
49-52

 The packing density of SAMs is 

shown to change depending on the alkane chain length or terminal chemistry of the molecule.
46

 

The basic structure of an n-alkanethiol SAM consists of three parts: the tail, the carbon 

backbone, and the headgroup (Figure 2.2).  The tail is composed of thiol molecules for 

chemisorptive attachment to surfaces.  The thiol is bonded directly to a saturated 2 to 18-carbon 

chain; this carbon backbone forms a spacer for tuning the vertical thickness of SAM 

nanopatterns.   The carbon chain is capped with a headgroup which determines the surface 

properties. A variety of functional groups (esters, alkyls, hydroxyls, carboxylates, amides, etc.) 

are commercially available, depending on the desired application.  Readers are directed to 

previous reports for details regarding synthesis, preparation, and characterization of 

SAMs.
36,46,52-53

 

To prepare SAMs of n-alkanethiols, Au(111) substrates are submerged in dilute solutions 

of alkanethiols dissolved in solvents such as ethanol or 2-butanol for various time intervals.  As 
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Figure 2.2  Basic structure of self-assembled monolayers. [A] Model of ω-functionalized n-

alkanethiol SAMs; [B] n-alkylsilane SAMs. 

examples, the wide range of conditions used to form SAMs of methyl terminated n-alkanethiols 

and alkylsilanes on various surfaces is summarized in Table 2.2.  The concentration and the 

amount of time the substrate remains in solution will vary depending on the solubility of the molecule in 

the chosen solvent, and the nature of the SAM headgroups.  Controlling variables such as the 
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solution concentration and intervals of immersion may prohibit the formation of double layers 

and ensures sufficient surface coverage to produce mature, densely-packed SAMs.
25 

 It has also 

been reported that minimizing exposure to light serves to prevent oxidation of thiols.
54-55

 For 

UHV studies, vapor deposition has also been used to prepare SAMs.
52,56-57

  

Table 2.2  Protocols for preparing SAMs. 

SAM Substrate 
Concentration 

(mM) 

Time 

(hr) 

Temperature 

(°C) 
Solvent Ref. 

hexanethiol, octanethiol, 

decanethiol, 

dodecanethiol, 

benzenethiol 

Au(111) 0.001-1 mM 24 h RT ethanol 
58

 

dodecanethiol Au(111) 1 mM 
24-

36 h 
RT ethanol 

59
 

hexadecanethiol Au(111) 0.0002 mM < 1 h 21 ethanol 
60

 

octadecanethiol Au(111) 0.0001 mM < 1 h 21 ethanol 
61

 

octadecyltriethoxysilane mica 1 mM < 1 h RT 

mixed solvents, 

water, 

tetrahydrofuran, 

hydrocholoric 

acid, 

cyclohexane 

62
 

octadecyltrichlorosilane silica 5 mM 30 s RT bicyclohexyl 
63

 

 

According to studies conducted using IR, near-edge X-ray absorption fine structure 

(NEXAFS) spectroscopy, and grazing incidence X-ray diffraction (GIXD), the alkyl chains of n-

alkanethiol SAMs are tilted approximately 30° with respect to the surface normal.
64-68

  Thiol 

atoms of SAMs bind to triple hollow sites of a Au(111) lattice by chemisorption.
35,46,54,69

 The 

solution self-assembly of n-alkanethiol SAMs on bare gold surfaces is reported to occur in two 

phases.  The stripe phase forms when thiol molecules initially make contact with the surface, in 

which the backbone of the molecules are oriented parallel to the substrate in a lying-down 

configuration.
70

  However, over time the n-alkanethiol molecules rearrange into a standing 
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position with the molecular backbone tilted ~30
o
 from surface normal.

70
  The mature crystalline 

phase forms an enthalpy favorable, close-packed commensurate (√3×√3)R30
o  

configuration with 

respect to the plane of the Au(111) lattice.
51,71-73 

 The exquisite details of the surface structure 

and long range ordering of n-alkanethiol SAMs has been revealed with STM and AFM to enable 

a direct view of defect sites such as etch pits, steps and dislocations within films.
51-53

  Etch pits 

are small depressions observed in high resolution images that result from the displacement of 

atoms of the Au(111) substrate, caused by reconstruction when thiols of the SAM endgroups 

bind to a gold surface. 

A representative AFM topographic image of a naturally-formed n-alkanethiol 

SAM/Au(111) acquired in liquid is presented in Figure 2.3.  High-resolution images obtained 

with AFM disclose substrates that are not truly smooth and flat; rather, from the atomic 

perspective, surfaces contain defects such as pinholes, missing atoms, and scars.  When SPM 

images reveal these natural defects then true molecular or atomic resolution has been achieved.  

Looking at the AFM images, the surface may appear rather rough and irregular.  However, the 

surface is actually very flat from an atomic perspective.  The height of gold steps is only 0.25 nm 

and thus the overall surface roughness of the underlying gold substrates for these samples is less 

than 1 nm.  The topography images in Figure 2.3 display height changes according to color 

contrast from dark to light, analogous to a height map of the surface terrain.  The dark colors 

indicate shallow features whereas brighter areas are taller.  In the wide view image (500 × 500 

nm
2
) of an octadecanethiol (ODT) SAM in Figure 2.3A, the terrace domains of the underlying 

gold surface are clearly observed.  The AFM image captures a detailed view of a concentric 

spiral arrangement of overlapping gold steps, which are often observed for surfaces of epitaxially 

grown gold thin films.  The step edges of the terraces are not smooth; rather the uneven and 

angular profiles at edges reflect the true surface morphology.  The ODT-covered surface is 
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decorated with tiny holes called etch pits, which are 0.2 nm deep, corresponding to the depth of 

one atomic layer of gold.  Etch pits or gold vacancy islands are defect sites resulting from the 

reconstruction of Au(111) during the chemisorption of thiol molecules.
74

 A close-up view (200 × 

200 nm
2
) of a terrace area is displayed in Figure 2.3B which begins to reveal the ordered 

molecular domains between areas of etch pits.  The size and density of etch pits varies widely for 

various samples, according to sample preparation conditions such as age and oxidation. Details 

of the surface morphology of n-alkanethiol SAMs on Au(111) substrates has also been 

investigated with STM.
58,75-76

  

 
 Figure 2.3  Views of a self-assembled monolayer of octadecanethiol on gold. [A] Topograph of 

a 500 x 500 nm
2
 area; [B] zoom-in view of a single terrace. 

 

The properties of alkylsilane SAMs are quite different from alkanethiol SAMs.  A key 

difference is that alkylsilanes can be covalently formed on a wide variety of surfaces, such as 

oxide surfaces (silicon, aluminum, and germanium), mica, glass, zinc, quartz, and 

selenide.
45,53,62,77-78

 Alkylchlorosilanes, alkylalkoxysilanes and alkylaminosilanes require 

hydroxyl groups on surfaces to form polysiloxane, which connect to surfaces via a network of Si-

O-Si bridges (Figure 2.2B).
78

 Alkylsilane monolayers typically consist of domains separated by 
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boundaries of mica.  Within these domains, silane molecules form structures without long-range 

order or periodicity.
79

 The anchoring groups of silane SAMs form a cross-linked network on 

surfaces, and the chains tilt  approximately 15° from surface normal.
67,79

 

The self-assembly of thiol and silane SAMs supply a convenient and efficient means for 

designing surface chemistry.  Depending on the mechanism of molecular writing, SAMs furnish 

a practical and effective “ink” for writing nanostructures with molecular dimensions using SPL. 

2.3 Fabrication of SAMs Using Nanoshaving  
 

Nanoshaving can be accomplished by applying mechanical force to the probe during 

scans; essentially small areas of the SAM are “shaved” away by the action of a scanning AFM 

tip.
34

 Nanoshaving is used to uncover selected regions of surfaces which are surrounded by a 

passivating matrix SAM; these uncovered regions are then available for deposition of new 

molecules and materials.  Information about the thickness of molecular layers on surfaces can be 

derived by using the nanoshaved areas as a baseline for cursor measurements.
80-81

 Nanoshaving 

was introduced in 1994 for a SAM of octadecyltriethoxysilane (OTE); changes in the observed 

lattice were used to confirm that molecules were displaced from the surface.
79,82

 

The process of nanoshaving is achieved by scanning several times over a small local area 

of a surface with an AFM tip, while applying a higher force than that used for imaging (Figure 

2.4).  After molecules are removed, the AFM probe can still be used to image the surface by 

returning to low force.  In nanoshaving, a high local pressure is applied by an AFM tip to the 

area of contact.  This pressure causes high shear forces, and thus displaces SAM adsorbates as 

the tip is scanned back and forth across the surface.  As a result, the bare substrate is exposed.  

By carefully controlling the amount of force applied, the AFM tip is not damaged during 

fabrication.  The three basic steps of nanoshaving are shown in Figure 2.4.  The first step uses an 

AFM tip under minimal force (less than 1 nN).  The surface is characterized at low force to 
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locate an area for writing.  A flat plateau area of the surface with few scars and defects is 

desirable for shaving patterns.  Next, a higher force is applied (ranging from 2-20 nN depending 

on the monolayer adsorption properties) which causes the AFM tip to push through the matrix 

SAM to make contact with the surface.  The molecules directly under the tip are shaved away, to 

uncover areas of the surface.  Sufficient force is applied to the AFM probe to ensure that matrix 

SAM molecules are removed, without disturbing the underlying gold substrate.
34

 In the final 

step, the newly fabricated areas of the surface are characterized with the same AFM tip using a 

reduced force (less than 1 nN).  Thus, nanoshaving enables in situ fabrication of SAMs.   

 Figure 2.4 Steps of  nanoshaving.  Areas of a matrix self-assembled monolayer are “shaved” 

away under high force by a scanning AFM tip. 

 It is critical to optimize the amount of force applied to the AFM tip for nanoshaving 

SAMs.  Of course, if too much force is applied the sharp apex of the tip can be broken; therefore 

it is important to find a minimum force to remove molecular layers without damaging the tip.  

Atomic force microscope controllers provide precise control of the force applied to AFM tips 

using electronic feedback.  The threshold force is determined for each experiment by 

successively incrementing the amount of force applied during scans.  As the force is increased 

the tip is pushed though the matrix SAM to contact the underlying substrate.  The tip is then 

rastered several times to sweep molecules from the surface, since the actual area of contact is 

very small between the tip and surface.  If too much force is applied, the torsion on the cantilever 
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will cause the tip to twist and produce non-linear movements.  At the optimized minimum force 

threshold, the desired square, linear or circular geometries will be produced.  

The imaging media and the nature of the molecule influence the success of nanoshaving. 

When imaging in air, displaced SAM molecules often pile up at the sides of the trenches or holes 

that are uncovered; whereas in liquid media the molecules dissolve in the surrounding solvents. 

Nanoshaving has not been accomplished for n-alkanethiols with fewer than ten carbons because 

holes or trenches refill with short-chain molecules.  Immediately after the molecules have been 

removed by the scanning AFM tip, molecules of short-chain thiol SAMs backfill into the 

uncovered areas.  In contrast, SAMs of any chainlength of n-alkylsilanes are irreversibly 

displaced by nanoshaving in either liquid or ambient environments.
82-83

  

An example array of nanoshaved patterns produced within an octadecanethiol (ODT) 

SAM is presented in Figure 2.5. The topographic image displays twelve dark squares written into 

an ODT matrix in ethanol.  The squares correspond to uncovered areas of Au(111).  The areas of 

brighter contrast indicate taller features whereas the dark areas are shallower.  Even when 

writing with an open-loop AFM scanner, there is very precise alignment of the rows and columns 

of the array and well-defined square geometries for nanoshaved patterns.  The high-resolution 

image of Figure 2.5A was acquired after nanoshaving and evidences that after writing under 

force the tip has not become blunt or damaged.  The in situ topograph clearly exhibits the 

indicators of a high-resolution image, such as circular gold terraces, concentric circular steps and 

line scars.  The friction image (Figure 2.5B) provides a spatial map of the changes in chemistry 

for nanoshaved patterns.  The matrix areas of ODT show uniform contrast, which is clearly 

distinguishable from the brighter nanoshaved areas.  Within the nanoshaved squares the 

homogeneous color evidences clean removal of the matrix SAM.  A cursor profile along the 

bottom row of nanoshaved patterns reveals the height difference between the ODT SAM and the 
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underlying surface measures 2.0 ± 0.2 nm.  This value agrees closely with the expected thickness 

(2.1 nm) for an ODT SAM. 

Figure 2.5  Nanoshaved array of 100 x 100 nm
2
 squares in an octadecanethiol matrix. [A] 

topography; [B] frictional force image; [C] corresponding cursor profile along the bottom row of 

nanopatterns. 

 

The thickness of the films can be measured from cursor profiles across the film and 

uncovered substrates.  Nanoshaving can be applied to determine the thickness of thin films with 

angstrom precision by referencing the substrate as a baseline for cursor measurements.  In 

addition to alkanethiol SAMs, nanoshaving has been used for characterizations of molecularly 

thin films of porphyrins,
84

 alkylsilanes,
79,85-86

 sexithiophene,
87

 dimercaptobiphenyl multilayers,
88

 

and DNA.
89 

After local areas of the surface have been uncovered by nanoshaving, new molecules 

or nanomaterials can then be selectively deposited on the exposed areas to form nanopatterns.
90

  

2.4 Nanografting of n-Alkanethiol SAMs 

 

Nanografting was introduced in 1997 by Xu and Liu.
80

 A useful analogy for describing 

AFM-based lithography is to consider the AFM tip as a pen, a matrix SAM on gold as the paper, 

and fresh n-alkanethiols in solution as the “ink” for writing patterns.  Nanografting basically uses 

the same procedure as nanoshaving, except that the steps are accomplished while the tip and the 

sample are immersed in a dilute solution of new thiol molecules chosen for writing (Figure 2.6).  

The matrix SAM is first characterized in liquid media by applying a low force, less than 1 nN.  
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Imaging in liquids enables one to achieve high resolution with low, nondestructive forces.
91-92

 

After choosing an area for writing, a greater force (1-10 nN) is applied to the AFM tip (pen) to 

shave the matrix molecules from the gold substrate.  The SAM molecules which are removed 

from the surface (paper) are either deposited at the edges of the nanopatterns, or are dissolved in 

the surrounding solvent.  New thiol molecules from solution immediately self-assemble onto the 

shaved areas following the scanning track of AFM tip.  The written patterns can then be 

characterized in situ without changing tips by returning to low force. 

For nanografting, it is critical to control the amount of force to ensure that the tip remains 

sharp after writing nanopatterns.  Unfortunately, the microfabrication processes used to 

manufacture tips have not yet achieved nanoscale reproducibility for the shape and spring 

constants for each lever, thus, an in situ approach is useful to derive the optimized threshold 

force for each AFM tip.  To optimize the writing force, a simple computer script can be used to 

write several patterns at incrementally increasing force. The lowest force at which a complete 

pattern is observed is then chosen as the optimized force for nanografting.  When too much force 

is applied to the AFM probe while scanning, it is possible to scratch away the underlying surface 

or to break the apex of the probe.  If the selected threshold force is too great, the torsion on the 

cantilever will cause the tip to write irregular shapes and produce stray lines and marks around 

the patterns. When a minimum force is used for nanografting, hundreds of patterns can be 

written with the same AFM tip without sacrificing topographic resolution.  In fact, often the 

resolution of AFM imaging is improved by the sharpening process or cleaning of the tip by 

scratching the surface.   

Depending on the choice of molecules, nanografting can generate patterns that are taller 

or shorter than the SAM matrix.  For example, A cross-shaped pattern of 11-mercaptoundecanol 

(MUD) was written into matrix of ODT in Figure 2.7A. The simultaneously acquired frictional 
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Figure 2.6.  Principle of nanografting.  Molecules self-assemble from solution following the 

scanning track of an AFM tip. 

 

force image exhibits dark contrast for the MUD areas of the cross, which are terminated with 

hydroxyl groups.  The surrounding methyl-terminated matrix areas of ODT exhibit lighter 

frictional contrast, clearly distinguishing the differences in surface chemistry after nanografting.   

The line profile of Figure 2.7C indicates the nanostructure is 0.7 ± 0.3 nm shorter than the matrix 

SAM, in close agreement with the theoretical differences in thickness, (ODT measures 2.1 nm, 

MUD is 1.5 nm).  The measurements of film thicknesses with nanografting are highly dependent 

on the flatness of the surface; in this example the error term for the nanografted domains take 

into consideration the roughness of gold step edges (± 0.25 nm).  

An example is presented for a positive height pattern of 16-mercaptohexadecanoic acid 

(MHA) in Figure 2.7D. The square nanopattern (200 x 200 nm
2
) was written within a 

dodecanethiol matrix and is well-centered on a terrace step of Au(111).  The friction images 

provide additional information about the chemical changes on the surface which take place after 

writing new molecules.  The corresponding friction image shows bright contrast for the 

carboxylic acid areas of the square pattern, whereas the surrounding methyl-terminated matrix 
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Figure 2.7 Nanografted patterns of self-assembled monolayers. [A] Cross-shaped pattern of 11-

mercaptoundecanol fabricated within a matrix of octadecanethiol; [B] corresponding frictional 

force image; [C] cursor profile for the white line in A. [D] Mercaptohexadecanoic acid forms a 

taller pattern within a dodecanethiol matrix, the square has bright contrast; [E] friction image; [F] 

cursor profile across the nanopattern in D. 

  

has dark contrast.  There is adhesion between the tip and surface of the square nanopattern, 

which caused linespikes only on the patterned area along the horizontal direction of the scanning 

AFM tip.  The line artifacts are clearly visible in the friction image.  In contrast, the methyl-

terminated areas do not exhibit the stick-slip adhesion because the methyl groups do not interact 

as strongly with the tip.  The expected thickness for MHA is 1.9 nm, and for dodecanethiol is 1.5 

nm.   A representative cursor profile (Figure 2.7F) indicates that the pattern is 0.4 ± 0.2 nm taller 

than the molecules of the matrix, in close agreement with the theoretical height difference.  An 

attribute of the nanografting process with thiol SAMs demonstrated with these examples is the 

remarkable angstrom to nanometer precision for edge resolution, even when using open-loop 

feedback for electronics.  Such well-formed regular geometries at the square edges and corners 

of patterns are routinely achievable with AFM, because the piezocontrollers enable exquisite 
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control of small forces applied to the tip.      

Arrays of patterns can also be produced with automation software when nanografting.  

An array of squares of 11-mercaptoundecanoic acid (MUA) was fabricated within a matrix of 

ODT in Figure 2.8.  The sides of the square elements measure 100 ± 10 nm, and each pattern is 

separated vertically and horizontally at intervals of 60 ± 10 nm.  Depending on the number of 

line scans used to write the patterns, it took approximately 30 seconds to write each pattern in 

Figure 2.8A.  The patterns were inscribed using 50 linesweeps per square, advancing 2 nm after 

each line was scanned while the AFM tip was rastered in continuous contact with the surface.  

The corresponding friction image clearly displays the changes in surface chemistry after the 

patterns were written.  The nanografted squares of carboxyl-terminated MUA exhibit bright 

frictional contrast against the darker background of the methyl-terminated ODT SAM.  The 

expected thickness difference is 0.7 nm, in good agreement with the experimental measurement 

of the cursor profile in Figure 2.8C which averages 0.6 ± 0.3 nm.  

Multiple patterns with various shapes and components can be quickly created and 

Figure 2.8 Automated nanografting can rapidly produce arrays of nanopatterns. [A] Array of 

100 nm squares of mercaptoundecanoic acid written within octadecanethiol; [B] corresponding 

friction image; [C] line profile across the bottom row of the array.  

  

 modified with nanografting, and all of the steps of nanofabrication and characterization are 

accomplished in situ.
34,93

   Nanografting enables precise control of the size, geometry, chemical 

functionality and location of structures on the surface.  A spatial precision of 1 nm and edge-
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resolution better than 2 nm have been demonstrated using nanografting.
80

 Patterns written by 

nanografting consist of well-ordered, close-packed thiol molecules with selected functionalities 

and chain lengths.
80,93-94

 Nanopatterns of thiolated molecules with different chain lengths and 

terminal groups have been written.
93

 A positive or negative height of patterns can be achieved 

(with reference to the matrix SAM) depending on the chain length of the grafted molecules.  For 

n-alkanethiol SAMs, chain lengths ranging from 2 to 37 carbons have been grafted successfully 

on Au(111) and within the nanopatterns the molecules display a periodic arrangement.
70,80

 In a 

multiple ink experiment, nanopatterns of different composition were nanografted; parallel 

arrangements of nanopatterns of octadecanethiol and docosanethiol were nanografted side-by-

side to provide molecularly-resolved views of close-packed SAMs.
34

  

A key element of nanografting is that n-alkanethiols chemisorb spontaneously to surfaces 

in an upright arrangement to form a crystalline phase, due to a mechanism of spatial 

confinement.
6
 When n-alkanethiols assemble naturally, there is a phase transition from a side-on 

orientation with the backbone of the molecule oriented along the surface, to a standing 

orientation in which the molecules adopt a tilted orientation as in Figure 2.2.
52,57,70

 When 

nanografting, it is thought that the molecules bypass the lying-down phase and assemble 

immediately into a standing configuration because there is not sufficient space for the molecules 

to assemble on the surface in a horizontal direction.
6
 A kinetic Monte Carlo model of natural and 

nanografted deposition of alkanethiols on gold surfaces was developed by Ryu and Schatz, 

which reproduces experimental observations for the variation of SAM heterogeneity with AFM 

tip writing speed.
95

 The speed of the AFM tip influences the composition of the monolayers 

formed along the writing track. 

After nanografting a pattern, new molecules or nanomaterials can be attached to the 

reactive sites of the fabricated area by selective adsorption.  For example, mercaptoundecanoic 
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acid was grafted into an octadecanethiol matrix, and then the nanopatterns were further reacted 

with octadecyltricholorosilane for positive and negative pattern transfer.
19

 The hydroxyl terminal 

groups reacted with trichlorosilane headgroups of molecules in solution to form a new layer of 

molecules on the surfaces.  The nanografted patterns provide spatial selectivity for anchoring 

molecular assemblies with desired spacer lengths and terminal functionalities.   

Metal nanostructures were produced on nanografted SAM patterns using electroless 

deposition of copper onto carboxylic acid terminal groups.
96

  Selectivity for adsorption on acid-

terminated nanopatterns was accomplished by writing within a resistive matrix of hydroxyl-

terminated SAMs.  Combining automated AFM-based nanografting with electroless metal 

deposition enables high-resolution investigation of metal deposition processes at the nanoscale.  

First, a series of nanopatterns with a programmed gradient of densities was written within a 

resistive hydroxyl-terminated SAM matrix.  Next, copper deposition was accomplished in situ 

from an alkaline copper plating solution.  The lateral dimensions of the metal deposits were 

defined by the nanografted areas of the nanopatterns.  The vertical dimensions of the patterns 

could be controlled with parameters of the surface density of reactive acid groups, and by the 

concentration of reactants in the plating solution.  This approach offers promise for preparation 

of metal-molecule-metal junctions for fundamental investigations of electron transport in 

nanoscale junctions. 

Structures of thiolated single-stranded DNA (ssDNA) were written by nanografting.
97

 

The sulfur headgroup of thiolated oligonucleotides adsorbed to uncovered areas of gold surfaces 

to adopt a standing orientation.  Line patterns as small as 10 nm were written by nanografting.  In 

situ AFM investigations revealed surface changes for ssDNA nanopatterns after adding solutions 

of enzyme to the liquid cell.  The nonrestriction endonuclease (DNase I) cleaves ssDNA 

randomly to cause a decrease in the heights of the ssDNA patterns, and the free fragments were 
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released into the surrounding buffer solution.  Label-free hybridization of ssDNA nanostructures 

was also accomplished for nanografted ssDNA patterns using complementary segments of 

designed sequences.
98

 These investigations provide fundamental information about the 

specificity and selectivity of surface-bound ssDNA towards the complementary strands, which is 

important for constructing DNA-based devices and surface assays. 

Micropatterning of proteins has already been applied for biosensors and biochips.
99-102

 In 

fact, patterning is essential for the integration of biological molecules into miniature 

bioelectronic and sensing devices since the sensing element consists of a layer of biomolecules 

for capture of target molecules and analytes.  Protein patterning has been accomplished at the 

micrometer level using microcontact printing,
103-108

 photolithography,
109-111

 and microfluidic 

channels.
112-113

 Thus, capabilities for micrometer scale methods offer valuable research 

capabilities at a size scale of hundreds of nanometers or larger.  One may predict that nanoscale 

studies will advance the development of approaches for immobilization and bioconjugation 

chemistries, particularly with regard to understanding the parameters which influence protein 

activity, structural integrity and function.  Precisely engineered surfaces can be used for the 

exploration of biochemical reactions in controlled environments and provide insight on the 

mechanisms of surface adsorption and molecular recognition.
114-116

  

Spatially well-defined regions of surfaces can be constructed with reactive or adhesive 

terminal groups for the attachment of biomolecules.  In biochips and biosensors, SAMs with 

certain functional groups such as carboxylate and aldehyde have been used as linkers for the 

immobilization of proteins and other biomolecules on surfaces.
49

 Researchers have begun to 

apply nanografting to study proteins and biomolecular reactions on surfaces, towards resolving 

reactions with single molecules.  

Thiolated proteins can be written directly on gold surfaces using nanografting.  De novo 
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proteins that were designed to contain a single cysteine thiol at the C-terminus were nanografted 

within a matrix layer of octadecanethiol.
117-118

  Both a 3-helix metalloprotein and 4-helix bundle 

protein were successfully patterned and imaged using AFM.  Measurements of the heights of 

protein nanopatterns matched the predicted dimensions, thus nanografting was demonstrated to 

enable coupling of the protein to the gold surface while preserving the tertiary structure of the 

protein.   

Nanografted patterns of SAMs can be applied to immobilize proteins for in situ nanoscale 

surface assays.  The dimensions of the apex of AFM tips are on the order of tens of nanometers, 

however, depending on the applied force and the geometry of asperities on the tip apex, the 

actual physical area of contact between the tip and surface is much smaller.  The smallest feature 

yet produced by nanografting is a 2 × 4 nm
2
 dot pattern which would accommodate 

approximately 32 thiol molecules.
119

 Patterns written by nanografting provide an ideal size for 

defining the placement of proteins on surfaces, since the dimensions of proteins are on the order 

of tens to hundreds of nanometers.  The terminal moieties of SAM nanopatterns mediate the 

mechanism for binding proteins, such as through covalent,
120-121

 electrostatic,
114

 specific 

interactions
122

 or molecular recognition.
123

 Lithography writing parameters can be used to 

precisely control the arrangement and density of SAM binding sites at the nanometer level.   

  A key advantage of using nanografting for protein assays is the ability to conduct 

experiments in situ. The successive changes in surface topography after the steps of 

nanopatterning SAMs, rinsing, and introducing buffers or protein solutions can be viewed with 

high resolution AFM imaging after each reaction step.  Protein patterns are not dried or exposed 

to air, rather the in situ steps enable immersion of proteins in a controlled buffered environment.  

Nanoscale studies with AFM offer new approaches to refine essential parameters used to link 

and organize proteins on surfaces of biochips and biosensors.  The orientation, reactivity and 
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stability of protein
 
molecules adsorbed on nanostructures of SAMs can be monitored with 

successive time-lapse images in near-physiological conditions.  These investigations provide 

molecular-level information through the visualization of biomolecular reactions on surfaces for 

advancing biotechnology towards the nanoscale.    

Adsorption of proteins such as lysozyme, rabbit IgG and BSA onto nanografted SAM 

patterns was first accomplished in 1999 by Wadu-Mesthrige et al.
114

 The general steps for in situ 

protein immobilization investigations with nanografting are (1) to write nanopatterns of SAMs 

which are adhesive for proteins within a resistive matrix monolayer; (2) accomplish selective 

protein adsorption on nanografted patterns by adding buffered protein solutions to the liquid cell; 

(3) to achieve further reactions of the proteins with antibodies or small molecules without the use 

of radiolabels or fluorescent tags.  Electrostatic binding of proteins such as IgG and lysozyme 

was demonstrated for nanografted patterns with carboxylic acid terminal groups, and covalent 

binding was accomplished by forming imine bonds to lysine residues of IgG and lysozyme.
114

 

The methyl-terminal groups of alkanethiol SAMs furnished a resistive matrix to ensure that 

proteins attached selectively to either carboxylate or aldehyde nanopatterns.  Each of the reaction 

steps for IgG nanostructures was captured in situ with AFM images when patterns were reacted 

with anti-IgG.
116

 The electrostatic immobilization of proteins (lysozyme, rabbit IgG and carbonic 

anhydrase) was investigated by Zhou et al. for nanografted patterns at varied pH conditions to 

reveal changes in surface coverage of proteins with differences in surface charge.
124

 A side-by-

side comparison of nanografted patterns with three different surface functionalities was 

accomplished in a single experimental platform, within a resistive matrix of hexa(ethylene 

glycol) SAM.  Proteins can be anchored on reactive SAM patterns using robust covalent binding 

strategies.  The surface moieties of nanografted SAM patterns were reacted with coupling 

reagents such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 



31 

 

dithiobis(succinimidyl undecanoate) (DSU) to mediate covalent linkages with proteins. By 

reacting 11-mercaptoundecanoic acid with EDC and DSU for chemical activation, Kenseth et al. 

demonstrated covalent immobilization of IgG onto nanografted patterns within a glycol-

terminated monolayer.
125

 Nanografting and AFM characterizations provide valuable new tools 

for exploring binding strategies for proteins with unprecedented nanoscale views of surface 

changes after biochemical reactions. 

2.5 Fabrication of SAMs Using Dip Pen Nanolithography 

Dip Pen Nanolithography (DPN) is an AFM-based method for writing molecules on 

surfaces developed by Professor Chad Mirkin and coworkers in 1999.
126

  The AFM tip (pen) is 

coated with the molecules or nanomaterials to be written (ink), and a clean substrate serves as the 

paper.  The molecular ink must have an affinity for both the AFM tip and for the substrate.  For 

example, n-alkanethiols attach to silicon nitride AFM tips through physisorption (physical 

adsorption) however, molecules bind through chemisorption to surfaces of coinage metals.  For 

DPN writing, molecules are transported to the surface via capillary diffusion through the 

nanoscopic water meniscus formed between the tip and sample in an ambient environment 

(Figure 9A).  The transfer of the ink has been found to depend on the relative humidity, which 

affects the size of the water meniscus formed between the tip and the surface.  Writing with DPN 

does not require applying additional force to the AFM tip, instead the tip is held in contact with 

the surface for certain time intervals.  For DPN, the naturally formed water meniscus in ambient 

environments enables capillary transport of inks to the surface.  The duration of contact and the 

nature of the ink molecules affect the size of written nanostructures, as shown for the examples 

in Figure 2.9.Individual dots, lines, and grid patterns of alkanethiols can be written by DPN.  

Examples of octadecanethiol and mercaptohexadecanoic acid nanopatterns written with DPN are 

shown with lateral force AFM images (Figure 2.9).  The duration of contact between the tip and 
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surface, the humidity and the nature of the ink influence the size of the dot patterns as evident in 

Figures 2.9B and 2.9C.  To reproducibly generate an array of dot patterns the tip motion and 

contact intervals were programmed, (Figure 2.9D) to precisely translate the tip and maintain 

contact with the surface for 20 seconds. By scanning the tip along a defined design (Figure 

2.9E), line patterns can be generated as shown for a grid pattern of 100 nm width lines.  Each 

line of the grid was written in 90 seconds using octadecanethiol ink.   

  The resolution of DPN depends on several parameters, such as the geometry of the 

AFM tip, the humidity of the ambient environment, as well as by the duration in which the inked 

tip is placed in contact with the surface – typically for 1 to 10 seconds.  With typical cantilevers, 

DPN routinely generates feature sizes down to 15 nm. The resolution for writing nanostructures 

using DPN also depends on factors such as the grain size of the substrate, the scan rate and 

relative humidity.
126-127,

 
128

 Coating an AFM tip is accomplished by dipping the probe into a drop 

of ink molecules, or immersion of tips in a liquid containing molecules to be written.  The 

surfaces of AFM tips are highly suitable for writing thiol molecules, because the sulfur groups 

have a strong affinity for silicon and silicon nitride surfaces.  Since molecules coat the AFM tips 

through physisorption, a liquid meniscus enables the flow of molecular ink to chemisorb to clean 

surfaces. 

The transfer of ink during DPN has been found to depend on the relative humidity, which 

affects the size of the water meniscus formed between the tip and surface.  Several researchers 

have investigated the transport mechanism for writing nanopatterns with DPN.
128-136

 The 

smallest size of patterns written with DPN is on the order of 10-20 nm, with an ultrasharp 

probe.
137

 Dip-pen nanolithography has begun to emerge as an important and versatile method for 

producing multicomponent arrays of SAM nanopatterns, as well as other molecules and 

nanomaterials.  Readers are directed to previous reviews of experimental work applying DPN for 
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further examples and applications.
138-140

  

 

 

Figure 2.9 Principle of Dip Pen Nanolithography (DPN) and example nanopatterns. [A] 

Schematic representation of DPN writing. [B] Lateral force microscopy images of dots of 

octadecanethiol after 2, 4, 16 seconds contact with the substrate. [C] Lateral force microscopy 

images of mercaptohexadecanoic acid after 10, 20, 40 seconds contact with the surface. [D] 

Array of octadecanethiol dots generated with 20 second contact intervals. [E] A grid written with 

octadecanethiol.  (Reprinted with permission from Ref.
126

, R. D. Piner et.al  Science 283, 661 

(1999) Copyright@ American Association for the Advancement of Science. 
 

Dip Pen nanolithography is not limited to thiols as ink and has been applied successfully 

for other molecules.  A wide range of molecules and nanomaterials have been nanopatterned on 

various surfaces using DPN.  For ambient DPN, the choice of ink must be compatible with water 
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for transfer of molecules through a water meniscus to deposit on surfaces, and the molecules 

should not be susceptible to hydrolysis reactions. The most commonly used inks reported for 

DPN are octadecanethiol and mercaptohexadecanoic acid (MHA).
126-131,136,141-147

 Higher 

molecular weight compounds such as octadecylphosphonic acid (OPA), 2-

mercaptobenzothiazole, 4-amino-5-hydrazino-1,2,4-triazo-3-thiol, 4-mercaptopyridine, and 2-

mercaptoimidazole were used successfully as inks for writing nanopatterns with DPN, by 

increasing the humidity as high as 85%.
148

 Other molecules and nanomaterials used for inks 

include silanes on semiconductive substrates;
137,149-150

 peptides on GaAs substrates;
151

 

dendrimers,
152

 dyes,
153-155

 proteins,
156-157

 and DNA
158-159

 on gold or silicon surfaces; metal salts 

on silicon substrates;
160-165

 and certain polymers on silicon.
166-169

 In addition to direct writing of 

proteins, protocols have been developed for attaching proteins
123,170-175

 or viruses
176-177

  to 

nanopatterns written by DPN.   

An approach for inking an AFM tip for DPN was developed using a 

poly(dimethylsiloxane) (PDMS) coating for ink transfer.
178

  This approach is a hybrid of 

microcontact printing and DPN, and was successfully demonstrated for ink molecules of 16-

mercaptohexadecanoic acid, 1-octadecanethiol, PAMAM dendrimers and cystamine.  The 

polymer coating provides a reservoir which adsorbs various inks, and the tip can be used for 

imaging nanostructures after writing patterns due to differences in diffusion rates of inks from 

PDMS coatings.  

Ink solutions for DPN are not limited to molecules at ambient temperatures. A method of 

thermal DPN was developed using a heated AFM cantilever and tip, to deposit solid inks.
179-182

 

An advantage of this approach is that the ink-coated cantilever can be used for fabrication as well 

as for in situ imaging of the nanostructures that were written, by changing the temperature of the 

tip.  At cold or ambient temperatures, the ink molecules remain attached to the tip, and the tip 
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can thus be used for imaging without unintended deposition of ink molecules during AFM 

characterizations.  When the cantilever is heated near the melting temperature of the solid ink, 

the molecules are transferred to the substrate following the scanning path of the AFM tip.  The 

melted liquid flows from the heated tip to the surface.  Ink molecules that have been used 

successfully with thermal DPN include octadecylphosphonic acid at 122
o
C,

179
 a conductive 

polymer of poly(3-dodecylthiophene) at 134
o
C,

181
 a mixed polymer film of diazide-diyne at 

170
o
C,

182
 and nanosoldering of indium at 500

o
C.

180
 Thus, thermal DPN enables writing with 

molecular inks that have poor solubility in water. 

2.6  Writing Patterns of n-Alkanethiol SAMs Using NanoPen Reader and Writer, NPRW 

 

An SPL method of “NanoPen Reader and Writer” (NPRW) was invented in 1999 by 

Amro et al.
183

 For NPRW, the paper is a resistive methyl-terminated surface of a SAM. As with 

DPN, an AFM tip is inked with thiol molecules and writing is accomplished in air.  At low force, 

molecules stay on the tip and provide high-resolution images of surface topography.  Tip 

coatings provide a lubricant to minimize the stick-slip adhesion that is often present with ambient 

AFM imaging.  When the force is increased, the thiol-coated tip pushes through the matrix SAM 

to deposit molecules from the tip onto the underlying gold substrate.  The thiols within the 

nanopatterns were demonstrated to be well-ordered and close-packed with the evidence of 

molecularly resolved images acquired with a coated AFM tip.
184

 Patterns can be written in air or 

in certain solvent media that are immiscible with the ink molecules. The NPRW approach 

combines the advantages of nanografting and Dip-Pen Nanolithography so that the same ink-

coated AFM tip can be used for both writing and characterizing (reading) inscribed nanopatterns.  

The resolution of NPRW depends on the sharpness of the tips used for writing and the 

capabilities of the AFM scanner.  
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Figure 2.10  Principle of “NanoPen Reader and Writer.” 

 

 The in situ steps for NPRW are illustrated in Figure 2.10.  Under low imaging force, the 

ink molecules remain attached to the AFM tip and do not deposit on the surface of a methyl-

terminated n-alkanethiol SAM matrix or „paper’ (Figure 2.10A).  Thiolated molecules readily 

physisorb to the surfaces of silicon or silicon nitride AFM tips, but are not chemically bonded.  

Thus, when the force is increased to a certain threshold, the tip is pushed through the resist layer 

of the matrix SAM to make contact with the underlying gold substrate for writing nanopatterns 

(Figure 2.10B).  Simultaneous with the shaving action of the AFM tip operating under high 

force, surface molecules are displaced and scraped away and fresh ink molecules from the tip 

chemisorb to the uncovered gold surface.  By returning to low force, the same tip can be 

operated to “read” or characterize the patterns that were written (Figure 2.10C).  An advantage of 

NPRW in comparison to DPN is that ink can be deposited only when higher forces are applied to 

the AFM tip, to enable selectivity for writing.  At low forces the ink molecules do not transfer to 

methyl-terminated SAMs of the „paper.‟  An intrinsic capability of AFM scanners is to provide 

exquisite control of the vertical forces applied to the tips, even in the range of piconewtons.  For 

NPRW, the SAM-coated gold „paper‟ resists nonspecific deposition of thiol inks throughout 

areas of the surface, because the coating remains on the tip while scanning at low force.  The ink 

also serves as a lubricant to facilitate high-resolution imaging in air.  It has previously been 
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established that coating AFM tips with organic molecules can substantially improve resolution 

by minimizing stick-slip adhesion.
185-187

  

 
Figure 2.11  Circle patterns of mercaptohexadecanoic acid written in a dodecanethiol matrix 

using NanoPen Reader and Writer (NPRW). [A] Topograph of four sets of concentric circle 

patterns; [B] Corresponding frictional force image; [C] Cursor profile for the line in A. [D] Map 

of the lithography design. 

The key difference between DPN and NPRW is the mechanism of writing.  For DPN, ink 

is transferred through a narrow water meniscus, and the size of the written patterns largely 

depends on the length of time the tip is held in contact with the surface, according to the 

diffusion rate of the ink molecules used for writing. For NPRW, an increased force on the AFM 

tip is required for writing nanopatterns; the writing mechanism provides removal of a matrix 

SAM followed by rapid replacement with new molecules from the tip via sulfur-gold 

chemisorption. 

An example set of nanopatterns written in air using NPRW is displayed in Figure 2.11 

using hexadecanethiol ink and a matrix SAM of hexanethiol.  An Agilent 5500 AFM/SPM 

system with Picoscan v5.3.3 and Picolith beta version 0.4.5 software was used to write and 
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characterize the nanopatterns. An oxide-sharpened silicon nitride probe with an average force 

constant of 0.5 N/m (Veeco ProbeStore, Santa Barbara, CA) was used for writing nanopatterns 

of SAMs.  The tip was immersed in a neat solution of hexadecanethiol for 15 minutes and dried 

in air under ambient conditions.  By applying an increased load on the AFM tip, the shorter 

molecules of the hexanethiol matrix were replaced by ink molecules of hexadecanethiol 

following the scanning track of the probe.  The speed used for writing via NPRW was 0.05 µm/s. 

Circular nanopatterns of hexadecanethiol SAM were written within a hexanethiol matrix 

using NPRW (Figure 2.11).  Four sets of patterns were written within a 1 x 1 µm
2
 area, as 

viewed in the AFM topograph of Figure 2.11A.  The gold contains a dark line scar which 

traverses the top, side and bottom of the image.  The depth of this natural defect limits the 

attenuation of the color scale for clearly resolving the contours of the nanopatterns for 

topography, however, the corresponding friction image in Figure 2.11B clearly distinguishes the 

outlines of the circular patterns.  The patterns were written by outlining concentric rings, and 

thus the composition of the patterns contains a mixture of the matrix and ink molecules.  Writing 

for all four patterns was completed in 2 minutes using NPRW.  The sets of patterns consist of 

five concentric rings which were outlined once.  The cursor profile across one of the patterns 

exhibits a thickness difference of 1.0 ± 0.3 nm in close agreement with the 0.9 nm theoretical 

difference in thickness between hexadecanethiol (1.9 nm) and hexanethiol (0.8 nm). 

User-friendly software with a graphical user interface for designing nanopatterns has 

been developed by Agilent Technologies, as displayed in Figure 2.11D. The shapes of the 

patterns can be sketched using different colored outlines, and the attributes of the patterns (bias, 

speed, force) can be assigned by choosing the pattern colors that are drawn on the computer.  In 

this example, four sets of concentric circles were designed; the execution of the drawing 

parameters is viewed in Figures 2.11A and 2.11B.  By changing colors and assigning a range of 
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variables the nanopatterning protocols can be systematically tested. Thus, automation of AFM-

based lithography with improvements in controller software enables the experimentalist to 

rapidly optimize the writing parameters such as speed and force for different surfaces and ink 

molecules.   

Nanopatterns of thiol-modified gold nanoparticles were written within a decanethiol 

SAM/Au(111) using NPRW (Figure 2.12).
188

 The probe was inked with gold nanoparticles by 

inverting the AFM tip and placing a droplet of nanoparticle solution onto the tip.  An example 

rectangular nanopattern of thiol-encapsulated gold nanoparticles written by NPRW within a C10S 

SAM matrix is presented in Figure 2.12.  The shapes of individual nanoparticles can be resolved 

within the nanostructure, and only a single layer of nanoparticles formed on the gold surface.  

For NPRW with nanoparticle ink, the decanethiol matrix was replaced with gold nanoparticles 

following the shaving track of the tip for particle sizes between 1.2 - 8.2 nm.  The methyl-

terminated matrix SAM was an effective resist layer and prevented the non-specific adsorption 

of nanoparticles when imaging at low force.  When higher force was applied, the nanoparticle 

“ink‟ could be precisely written on surfaces as defined by positioning the AFM tip.  After 

writing, the nanoparticle patterns could be characterized in situ using the same AFM tip under 

low force.   

Nanoscale characterization of the thickness of monofluoro-substituted oligo(phenylene-

ethynylene) (F-OPE) thiolated SAMs on gold was accomplished by combining AFM 

characterizations and nanofabrication.  Topographic images provide high resolution views of the 

surface morphology, and lithography enables measurements of the thickness of organic films at 

the level of angstroms.  Nanopatterns of dodecanethiol and octadecanethiol were written within a 

matrix of F-OPE using NPRW, to measure the thickness of the films.
189

 Since the heights of n-

alkanethiols are well established, the nanopatterned SAM molecules provide an internal height 
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reference or molecular ruler for nanoscale measurements.  Frictional force images were also 

acquired using a coated AFM tip, to pinpoint the locations of inscribed nanopatterns.  

  
Figure 2.12 Nanopattern of gold nanoparticles written with NPRW. The surface of the 

nanoparticles were modified with a mixture of alkanethiols and written within a decanethiol 

monolayer. (Reprinted with permission from Ref. 
90

, J. C. Garno et al., Nano Lett. 3, 389 (2003). 

Copyright@American Chemical Society. 

2.7 Catalytic Probe Lithography 

Catalytic probe lithography is a recently developed and promising strategy for chemical 

modification of surfaces with nanoscale resolution.  For catalytic probe lithography, an AFM tip 
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is coated with molecules or metals that will catalyze a chemical reaction on the sample surface.  

The catalysis reaction occurs in areas where the coated tip makes contact with the surface 

(Figure 2.13).  For example, the terminal chemistry of SAMs can be changed to a different 

functional group.  As the catalytic probe is scanned in contact with the surface, nanopatterns are 

generated following the scanning track of the AFM tip to produce designed nanopattern 

geometries.  The linewidth resolution of patterns written by catalytic SPL corresponds to the size 

of the contact area between the tip and sample.  Depending on the nature of the catalysis 

reaction, the same tip can be used to image the nanopattern by changing certain experimental 

parameters, or optical microscopy has also been applied to view nanopatterns after site selective 

surface reactions.   

 

Figure 2.13  Principle of catalytic probe lithography. 
 

 

 

 

 

 

 

Unlike DPN or NPRW lithographies, the transfer of „ink‟ from the tip to the surface is 

not part of the process for writing patterns with catalytic probe lithography.  The catalytic 

coating on the AFM probe is not the product or reactant, the role of the catalyst is to either 

initiate or accelerate the rate of a chemical reaction.  The catalyst is not consumed by the reaction 
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and is not deposited on the surface to create patterns.  The length of contact time and the amount 

of force applied to the tip affect the resolution of writing and these parameters are reaction 

specific.  Tip coatings used for catalytic probe lithography include platinum,
190

 palladium
191-192

 

and gold films with molecular coatings.
193-194

 

The earliest report of localized catalysis with an AFM probe was reported in 1995 by 

Müller et al.
190

 Chemical modification of the terminal azide group of SAMs was achieved with a 

platinum-coated AFM tip as the catalyst to produce amine-terminated patterns.  After writing 

patterns, the samples were reacted with aldehyde-modified latex or fluorescent tags which 

attached selectively to the SAM patterns.  The fluorescent patterns were then imaged using 

optical microscopy.  

A palladium-coated AFM tip was used to catalyze the chemical conversion of azide, 

carbamate, and alkene terminal groups of organosiloxane SAMs on glass substrates.
192

  Three 

reaction schemes were demonstrated for palladium-catalyzed addition and transfer reactions to 

produce amine-terminated patterns.  To demonstrate that the reactions occurred, the patterns 

were labeled with fluorescent probes and also with biotin, which selectively binds streptavidin-

functionalized gold nanoparticles. The labeled nanopatterns were imaged by tapping-mode AFM 

with an uncoated probe and also by confocal microscopy.   

A Suzuki coupling reaction was accomplished by catalytic probe lithography using a 

palladium-coated AFM tip.
195

 A gold surface was coated with an aryl bromide monolayer, and 

the palladium-coated probe and surface were immersed in a boronic acid reagent solution.  

Nanopatterned areas could be resolved by frictional force images in the absence of the reagent 

media.  Further reactions were demonstrated for the nanopatterns with amine-specific 

fluorophores and aldehyde-functionalized nanospheres, which were viewed using optical 

microscopy. 
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Catalytic probe lithography was accomplished with a gold AFM tip that was further 

coated with an acidic SAM.
193

 When brought into contact with the surface, the acid groups on 

the tip induced hydrolysis of the silyl ether groups of a reactive SAM, bis-(ω-tert-butyldimethyl-

siloxyundecyl)disulfide (Figure 2.14).  The tip was scanned across the SAM layer to produce 

well-defined patterns of different sizes and the shapes.  Patterns were imaged by frictional force 

AFM using the functionalized AFM tip.  A written resolution of 25 nm linewidths was achieved 

for these experiments, comparable to the area of contact between the coated AFM probe and the 

surface.

 

Figure 2.14 Patterns with well defined sizes and geometry can be produced using catalytic 

probelithography. [A] Friction image of line structures written on bis(ω-tert-butyldimethyl-

siloxyundecyl)disulfide (TPDMS) monolayer using a tip functionalized with 2-mercapto-5- 

benzoimidazole sulfonic acid. [B] Example of a grid pattern written by selective hydrolysis of 

TBDMS. (Reprinted with permission from Ref. 
193

, 184, M. Peter et al.,  J. Am. Chem. Soc. 126, 

11684 (2004). Copyright@American Chemical Society. 
 

2.8  Biased-induced Lithography of SAMs 

When an electric field is applied between a conductive SPM tip and sample, at certain 

bias voltages the area beneath the tip undergoes chemical or physical changes.  Such surface 
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changes provide a mechanism for local fabrication of surfaces at elevated bias.  Both STM and 

AFM have been used for bias-induced lithography, in which voltages between a conductive tip 

and sample are controlled to selectively alter the surface chemistry of local areas scanned by the 

probe.  Scanning probe based oxidation using STM was discovered in 1990
 
by Dagata et al.

196-197
 

A hydrogen-terminated silicon surface was locally oxidized when an elevated bias voltage was 

applied between an STM tip and the surface.  It was later demonstrated in 1993 that local 

oxidation of surfaces could also be achieved using AFM, oxide lines were written on silicon 

surfaces using a metal-coated AFM tip.
198

  

The general concept for surface fabrication using AFM for bias-induced lithography is 

depicted in Figure 2.15.  For nanofabrication of SAMs, bias-induced lithography is accomplished 

by generating an electric field between the tip and the sample, either to oxidize or to replace 

surface molecules.  As the AFM or STM tip is rastered over the surface at elevated bias, a pattern 

is generated for the areas scanned by the conductive probe.  Typically, short (microsecond to 

millisecond) pulses of tunneling current or bias voltage are applied between a conductive tip and 

sample, in the range of 10-30 volts.  The current generated during nanofabrication is very small, 

in the range of picoamperes or less.  To accomplish bias-induced lithography, the tip must be 

conductive and the substrate must also be conductive or semi-conductive.  Conductive AFM tips 

are prepared by sputtering a thin film of metal onto a tip.  Conductive probes for bias-induced 

lithography are available commercially with coatings of cobalt, diamond-like carbon, doped 

diamond, platinum, platinum/iridium, tungsten carbide, titanium nitride, and nickel.  The 

substrates that have been used are flat metal films (titanium tantalum aluminum, molybdenum, 

nickel, niobium) and compound III-V semiconductors.
197,199

  

There are several mechanisms that have been proposed for nanofabrication using bias-

induced lithography, depending on the nature of the environment and surfaces.  The factors that 
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Figure 2.15  Principle of bias-induced nanolithography. 

 

determine the size of features are the duration of the applied bias, the magnitude of the applied 

electric field, humidity and also the dimensions of the SPM tip.  With bias-induced oxidation, the 

changes produced by an electric field often do not induce changes in molecular heights, and thus 

cannot be detected by topographic images.  However, other AFM or STM imaging modes, such 

as lateral force imaging, force modulation and current imaging can be used to clearly resolve 

differences for oxidized areas.  Tip proximity is a key difference for using AFM versus STM.  

For STM, the tip is brought very close, within tunneling distance (< 1 nm), but remains out-of-

contact with the surface.  For AFM, the tip is brought into direct contact with the sample during 

bias-induced lithography.  Thus, the mechanisms for surface modification are quite different for 

STM versus AFM.  In a UHV environment with STM where water is essentially removed, the 

surface changes are a consequence of Ohmic heating, which induces evaporation or desorption of 

surface layers.
200-201 

  In ambient conditions, when the tip is in contact with the surface, changes 

result from electrochemistry reactions at either the tip or sample which are caused by electric 

field effects.
160

 There are advantages for using AFM rather than STM for bias-induced 

nanofabrication, because of differences in the positional feedback for STM.  With STM, the 
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tunneling current depends on the physical distance or gap between the tihp and sample, which 

varies exponentially with distance.  Thus nanofabrication with STM is accomplished without 

physical contact between the tip and surface.  In contrast, for AFM the tip touches the surface 

directly with well-controlled force, and voltage can be applied directly to the tip-surface contact.  

Direct contact with the surface intrinsically enables better control of the voltages applied for 

surface modification. 

For the mechanism of local surface oxidation of surfaces using bias-induced lithography 

in ambient environments, the tip functions as a cathode, the substrate acts as the anode, and the 

water meniscus formed between tip and surface serves as the electrolyte.  The applied bias 

induces an electric field between the tip and surface, ionizing the water molecules of the 

meniscus to effect electrochemical reactions on the surface.
202-203

 The narrow capillary meniscus 

formed in ambient environments is essentially an ultra miniaturized electrochemical cell.  This 

process is generally known as bias-induced nanolithography; however other terms used to 

describe this method of writing are local oxidation nanolithography (LON), scanning probe 

oxidation, nano-oxidation or local anodic oxidation.
197,204 

Considerable work has been published for bias-induced lithography of metals,
197,203,205-207

 

and semiconductor surfaces such as gallium arsenide,
208

 silicon nitride
209

 or silicon.
198,210-219

 

Examples which follow will present results applying bias-induced lithography for writing 

nanopatterns with SAM surfaces, such as silane SAMs on silicon or alkanethiol SAMs on gold 

surfaces.  A summary of the SAM surfaces and fabrication conditions is presented in Table 2.3.  

Parameters such as the amount of bias voltage applied and speed of writing vary according to the 

nature of the surface to be patterned.  Voltages reported for bias-induced lithography with 

surfaces of SAMs range from -7 V to +17 V.  When writing SAMs on silicon, patterns with a 

positive height with respect to the surface are formed at negative bias, whereas at positive  
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Table 2.3 Examples of bias-induced lithography. 

SAM/Surface 
Lateral resolution 

of nanopatterns 
Volts applied 

 
Reference 

octadecyltrichlorosilane/silicon 

surface methyl groups oxidized to carboxylate 
10-40 nm + 8.5-8.7 V 220-222

 

 

thiol-functionalized silane monolayer/silicon 

defined sites for electrodeposition of silver 

30 nm + 5-8 V 223
 

octadecyltrichlorosilane/silicon 

surface methyl groups oxidized to carboxylate 
60-300 nm dots +7-10 V 224

 

trimethylsilyl SAM prepared on silicon 

patterns were chemically etched 
80 nm grooves +5 V 202,225

 

18-nonadecenyltrichlorosilane/silicon 

surface vinyl groups oxidized 
9 nm lines - 8.0-9.5 V 226

 

 

oligo-(ethylene glycol)-terminated SAM/silicon 

bias-induced desorption 

90 nm holes + 17 V 122
 

octadecyltrichlorosilane/silicon 

patterns were used for grafting of polymers, or 

for adsorption of gold nanoparticles 

40 nm - 8-10 V 227
 

octadecylphosphonic acid monolayer on silicon 

molecules desorbed at positive bias; 

oxides formed at negative bias 

50-80 nm ± 6-7 V 228
 

octadecanethiol SAM on Au(111) 

bias-induced replacement with decanethiol ink 
50 nm + 4-5 V 229

 

dodecanethiol SAM on Au(111) 

bias-induced replacement 
10-15 nm lines +2.7-3.8 V 230-231

 

octanethiol, decanethiol, dodecanethiol and 

tetradecanethiol SAMs on Au(111) 

bias-induced replacement 

12 nm lines +1.9-3.3 V 200
 

palmitic acid monolayer on silicon 

positive height patterns formed at negative 

bias; desorption observed at positive bias 

60-80 nm ± 10 V 
213

 

n-octadecyl mercaptan SAM/Au(111) 10-50 nm +3 V, -3 V 
232-233
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voltage the molecules desorb to form trenches or holes in the surface layer.  Also, depending on 

the nature of the surface headgroups, at certain positive bias thresholds, the endgroups can be 

oxidized without evidencing a change in height.
223

 

Bias-induced lithography can convert the endgroups of SAMs via oxidation reactions.  

Local oxidation of methyl terminal groups of an n-octadecyltricholorosilane (OTS) monolayer 

on silicon was accomplished by Liu et al. to produce carboxylate nanopatterns.
220

    Topography 

and simultaneously acquired frictional images of the nanopatterns produced within an OTS 

monolayer are shown in Figure 2.16.  The ultrasmall dot patterns (40 ± 4 nm) are vaguely 

distinguishable in the topographic view; however the changes in surface chemistry are clearly 

evident in the friction image.  The 9 x 9 array of dot patterns was written using contact mode 

AFM by applying 8.8 volt pulses for 3.0 ms/point in ambient humidity of 60%.  Patterns written 

in OTS monolayers with bias-induced oxidation were found to be stable for months under 

ambient conditions in air.  Various methods of constructive nanolithography have been 

developed by Sagiv et al. to build complex assemblies with additional steps of chemical 

derivatization and adsorption of nanoparticles.
220-223

 The bottom-up approaches combining bias-

induced lithography with chemical processing have potential for preparing components of 

nanodevices. 

Desorption of silane molecules to form nanosized holes was accomplished for oligo-

(ethylene glycol) terminated monolayers on silicon substrates at +17 V bias.
122

 Biomolecular 

arrays were formed by attachment of proteins in further steps using avidin and biotinylated BSA.  

The glycol-terminated SAM provided an effective resist layer to prevent non-specific adsorption 

of proteins on the non-patterned areas.  This approach offers promise for producing high-density 

arrays of protein patterns for biosensing platforms. 
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Figure 2.16 Nanopatterns within n-octadecyltrichlorosilane were generated by bias-induced 

lithography (+8.8 V) to oxidize methyl headgroups.  Patterned dots in the simultaneously 

acquired [A] topography and [B] friction image have carboxylic acid terminal groups.  

(Reprinted with permission from Ref. 
220

,  S. T. Liu et al., Nano Lett. 4, 845 (2004). 

Copyright@American Chemical Society. 
 

Oxidative desorption of n-alkanethiol SAMs on gold surfaces can be applied for an STM-

based replacement lithography as developed by Gorman et al.
231

 Writing nanopatterns of thiol 

SAMs was accomplished in situ by increasing the STM bias in a nonpolar solvent containing 

new molecules to be written.  At elevated bias, the molecules under the STM tip desorb and are 

replaced by thiol molecules in solution.  Returning to nondestructive imaging conditions, the 

nanopatterns can be characterized.  The newly written patterns display height differences 

corresponding to the thickness of the ink molecules from solution.  Bias replacement lithography 

was used to selectively desorb areas of a dodecanethiol SAM on gold and replaced with 
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ferrocenyl-undecanethioacetate molecules (Figure 2.17).
230

 Thiol desorption was accomplished 

at +3.0 V bias voltage.  Gradient patterns were fabricated by adjusting the replacement bias, tip 

scan rate and the relative humidity.  The resolution of the line patterns measured 10 to 15 nm.  

The structure and electrochemical desorption properties of the surface monolayer determines the 

bias conditions for lithography; for example, SAMs composed of longer-chain molecules require 

higher bias.
200

  

Approaches have been developed which combine bias-induced lithography with various 

coatings on AFM tips.  A method of electrochemical Dip-Pen Nanolithography was 

demonstrated using a silicon cantilever coated with platinum salts (H2PtCl6).
160

  When the tip 

was scanned in a humid environment across a P-type Si(100) surface at positive DC bias (+1 to 

+4 V), platinum metal was generated at the cathodic surface. 

In another example, SPM-induced cathodic electrografting was accomplished with 

different alkyne molecules.
234

 Molecular inks of 1-octadecyne, 1-dodecyne or 1,4-

diethynylbenzene were loaded onto silicon cantilevers for writing with bias-induced lithography.  

A negative bias (-1.0 to -2.2 V) was applied to the tip for writing.  The alkyne molecules were 

shown to bind covalently to the surface forming patterns with heights corresponding to the 

thickness of a monolayer.   

Electro Pen Nanolithography uses a tip coated with „ink‟ molecules for writing, and 

requires that a bias pulses (+9 V) be applied to a conductive AFM tip.  Trialkoxysilanes were 

used as inks (mercaptopropyltrimethoxylsilane, 3-aminopropyltrimethoxysilane, octadecyl-

trimethoxysilane) to write patterns on an OTS-coated silicon wafer.  The width of the lines 

increased with humidity, achieving linewidth resolution of 50 nm.  The ink does not transfer to 

the surface unless a bias is applied, therefore the coated AFM tip can be used interchangeably for 

imaging and writing patterns by changing the voltage. 



51 

 

 
Figure 2.17 Bias-induced replacement lithography was used to write a nanopattern of ferrocenyl 

undecanethioacetate within a dodecanethiol SAM.  (Reprinted with permission from Ref. 
230

, R.  

 Fuierer et al., Adv. Mater. 14,154 (2002). Copyright@ John Wiley & Sons, Inc. 

2.9 NSOM Lithography with SAMs 

Photolithography with SAMs has become a practical tool for constructing biosensor 

arrays,
235

 fabricating microfluidic channels
236-237

 and for development of microelectronic 

devices/components.
238-239

  Chemical reactions of photolithography are accomplished by 

irradiating selected small areas of a surface, while masking other areas to prevent 

photodegradation.  By irradiating SAMs with certain wavelengths of light the molecules become 

oxidized and detach from the surface.  The exposed areas of the surface can then be etched to 

produce 3D structures.  Depending on the choice of molecules, photolithography can be used to 

change the surface chemistry of photoreactive monolayers,
240-242

 or can be applied for 

oxidation/degradation of SAMs.
243-246

  Photolithography is the primary tool used for preparing 

computer memory chips and the manufacture of photoresists has become a multimillion dollar 

http://www.wiley.com/
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industry.
247

 The resolution for conventional photolithography is limited by optical diffraction; 

structures that are smaller than the wavelength of incident light cannot be produced.  Near-Field 

Scanning Optical Microscopy (NSOM or SNOM) combines the technology of scanning probe 

instruments with optical spectroscopy in the near field regime.
32

 The resolution of NSOM 

surpasses the diffraction limit, and is determined by the size of aperture and the gap distance 

between the probe and sample.
32

  Lithography with NSOM does not require a photomask, since 

only selected areas are irradiated by the NSOM probe.  The point light source of the probe is 

scanned above the sample surface to enable selective irradiation of well-defined nanosize regions 

to accomplish photochemical conversion or oxidation reactions. 

In NSOM lithography, nanopatterns are created by exposing an area of the surface to a 

light source from a fiber optic probe.  Instruments for NSOM are operated in noncontact mode 

and use an illuminated aperture as a light source.  A tapered optical fiber coated with metal 

provides a conduit for light, with a nanoscopic aperture at the end of the sharp probe. The 

Typical distance of the probe to the sample is in the range of 10 nm and the size of aperture is 

smaller (<200 nm) than the wavelength of  light used for imaging.
31

 

Scanning near-field photolithography (SNP) uses an intense collimated light source, such 

as a laser coupled to an NSOM.
248

 Patterns as small as tens of nanometers have been fabricated 

with SNP.
249

 Scanning near field lithography has been applied to create patterns on sol-gel 

films,
250

 silicon,
251-254

 azobenzene polyester,
252

 triglycine sulfate ferroelectric surfaces,
255

 

polymers,
256

 chloromethylphenylsiloxanes,
257

 oligo(ethylene glycol) SAMs
258

 and alkanethiol 

SAMs.
249,259

For SNP with SAMs, a metal-clad fiber optic probe (aperture size ~50nm) that is 

coupled to a laser is scanned at a distance of 5-10 nm from the surface.  Either 

photooxidation
249,260

 or photochemical conversion
257

 occur selectively on the areas of the surface 

that are irradiated when the NSOM probe is scanned above the SAM.  An example of SNP by  
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Figure 2.18  Scanning near-field optical photolithography of SAMs. [A] Lines written by SNP 

photooxidation of dodecanethiol followed by immersion in 11-mercaptundecanoic acid (6x6 

µm
2
). [B] Reverse protocol with an acid-terminated matrix after immersion in dodecanethiol.  

Images are frictional force AFM views (6x6 µm
2
).  Reprinted with permission from Ref. 260, S. 

Sun et al., J. Am. Chem. Soc. (communication) 124, 2414 (2002). Copyright@American 

Chemical 
 

photooxidation of decanethiol SAMs is presented in Figure 2.18.  The line patterns were formed 

by irradiation of selected regions of the surface with an argon laser (254 nm), to form alkane-

sulfonates by photooxidation (Figure 2.18).  The oxidized SAMs of exposed areas are readily 

displaced from the surface.
259

 Nanopatterns of different molecules can be created by immersing 

the sample into a second thiol solution.  Alternatively, the sample can be placed in an etchant 

solution for selective etching of the photooxidized areas of the surface.
259,261

 The size of patterns 

generated by SNP is not limited by the size of the probe aperture, patterns as small as 20 nm 

have been written for hexadecanethiol SAMs.
249

 Examples of nanoscale patterns of SAMs 

fabricated using SNP are shown with friction images in Figure 2.18.
260

 

 Line patterns of dodecanethiol were successfully written within mercaptoundecanoic 

acid (11-MUA) as evident by the color contrast of the images.  In the patterned regions, 11-MUA 

was oxidized.  Molecules within the oxidized areas were displaced when the sample was 
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immersed in a dodecanethiol solution. The reverse protocol using a SAM of dodecanethiol as the 

matrix was accomplished in Figure 2.18B.  The changes in frictional contrast are caused by 

differences in tip-surface adhesion between methyl and carboxyl headgroups. 
260

 

Nanopatterns produced with SNP are not limited to photooxidation reactions of thiolate 

molecules.  Scanning near-field photolithography can also be accomplished for monolayers with 

photoactive terminal groups. As regions are scanned by the NSOM probe,  exposure to light 

causes the photoconversion of headgroups to different functionalities.
257

 Spatially defined 

chemical reactions can be achieved by photoconversion of certain terminal groups using SNP.  

For example, the terminal groups of monolayers of chloromethylphenyl trichlorosilane (CMPS)  

monolayers on  silicon oxide surfaces were converted to carboxylic acid moieties by irradiation 

with a 244 nm laser source.
257

 The patterns were reacted with further chemical steps to anchor 

nanoparticles and DNA molecules.   

2.10 Automated Scanning Probe Lithography 

Computer automation can precisely and accurately control the tip position, speed, bias 

voltage, and fabrication force.  All of the SPL strategies presented in Table 2.1 can be coupled 

with computer automation to enable fabrication of complex patterns.  Automated nanografting of 

SAMs was accomplished with computer assisted design (CAD) software using an open-loop 

AFM scanner.
4
 However, nanoscale imperfections in writing were introduced by creep and drift 

of the piezoscanner electronics.  Also, artifacts may be introduced by the twisting motion of the 

cantilever under force.  Closed-loop AFM controllers which incorporate a secondary sensor to 

correct for scanner non-linearities provide better alignment and precision for patterning larger 

sized areas (micron) of surfaces.  Writing individual patterns is not practical as a strategy for 

manufacturing devices, in which millions of structures may be needed for a single memory chip 

or circuit design.  The serial nature of SPL is problematic for future applications, which will 
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require high throughput and speed.  This problem has been addressed by creating arrays of 

multiple probes for parallel writing and by increasing the speed of writing processes.
262

   

Parallel writing using DPN has been accomplished with 2-D arrays of cantilevers.  Probe 

arrays with 2,
263

 8,
264

 10,
265-268

 26,
141

 32
264

 and 55,000
269

 AFM tips have been successfully 

applied for DPN.  The individual probes of the arrays are spaced at intervals ranging from 30 to 

310 microns.  For the 2-D arrays, all of the tips can be moved in unison to draw identical 

patterns, while only one of the probes is used for positional feedback by the AFM controller.  

Alternatively, 2-D arrays have been designed to activate each of the individual probes through 

various strategies for positional feedback.  Probe arrays which use electrostatic actuation,
268

 

conductivity-based sensing of surface contact
265

 and thermal bimorph actuation
266-267

 have been 

developed for parallel writing with DPN.  An optical micrograph of a probe array of cantilevers 

is presented in Figure 2.19.  For this example, the tips touch the surface through gravity-driven 

alignment under the weight of the whole array. 

 

Figure 2.19  Section of a 55,000 probe array used for parallel DPN. (Reprinted with permission 

from Ref. 
269

, K. Salaita et al., Angew. Chem. Int. Ed. 45, 7220 (2007).  Copyright@ John Wiley 

& Sons, Inc.  

http://www.wiley.com/
http://www.wiley.com/
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Several design strategies have been tested for AFM imaging which provide activation of 

individual probes within the 2-D arrays.  Parallel imaging was demonstrated with a 

microfabricated 4 × 4 array of cantilevers with integrated piezoresistive sensors.
270

 High speed (4 

mm/s) imaging was achieved with an array of 50 cantilevers spaced at 200 µm pitch.
262

 The 

design integrated a piezoresistive sensor and zinc oxide actuator for each cantilever to enable 

individual control of the set point, gain and feedback for imaging.
271

 Thermal actuation of 

individual cantilevers was demonstrated with an array of 128 probes for parallel AFM 

imaging.
272

  The cantilevers were driven to vibrate by thermal actuation at the probe resonance 

frequency, and the magnitude of the current established the cantilever deflection.  

 A 32 × 32 “Millipede” array with 1024 AFM tips was constructed by IBM corporation, 

and is envisioned for applications for data storage media.
273

  The platform design uses thermal 

sensing for read/write operations of the array.  The 2-D array of probes has an approximate size 

of 3 x 3 mm and was fabricated entirely of silicon.  The Millipede concept does not enable 

individual control of each cantilever, rather feedback is provided by three sensors for the entire 

chip.  

2.11  Summary and Future Prospectus 

The examples of SPL described in this chapter are based on writing mechanisms using 

force, elevated bias, electrochemistry, diffusion and surface adsorption, catalytic reactions and 

photochemistry with SAMs.  Depending on the nature of the molecules chosen for 

nanolithography, we predict that further innovations for writing strategies will be advanced in 

future research.  Besides the commercial goals of nanotechnology, SPL methods are becoming 

an indispensable approach for fundamental investigations of the interrelations between chemical 

structure and properties.  Surface structures of SAMs furnish test platforms for size-dependent 

studies of physical properties.  Writing with SAMs provides a way to tune the properties of 
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surfaces for specific applications, e.g. hydrophobicity, surface pKa, reactivity, etc.  Surfaces can 

be designed to anchor materials such as DNA, proteins, polymers, metals, organic molecules and 

polymers for bottom-up assembly of nanomaterials.   

Scanning probe lithography provides an efficient and versatile tool for fabrication or local 

modification of SAMs on surfaces and enables precise spatial control over chemical 

functionality, shape, dimension and spacing at the level of nanometers.  Combining molecular 

self-assembly and scanning probe lithography is a viable route towards nanotechnology.  

Although perhaps SPL is not yet practical for high-throughput manufacturing, substantial 

progress has been advanced.  One can anticipate that there will be future significant contributions 

for biotechnology, molecular electronics, engineered materials, and chemical/biochemical 

sensors.    
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CHAPTER 3. AUTOMATED SCANNING PROBE LITHOGRAPHY WITH n-

ALKANETHIOL SELF ASSEMBLED MONOLAYERS ON Au(111): APPLICATION 

FOR TEACHING UNDERGRADUATE LABORATORIES* 

 

3.1 Introduction 

Since the invention of atomic force microscopy (AFM) in 1986,
274-275

 scanning probe 

methods for imaging and nanolithography have become increasingly valuable as tools for basic 

and applied research. Advances in computer software and hardware, as well as continued 

improvements of instrument designs have progressively improved the ease-of-use for scanning 

probe microscopes (SPM). Scanning probe instruments can be operated in a range of 

environments (UHV, air, liquids) and can measure current, magnetic forces, surface charge, 

friction, electrostatic forces, etc. with nanoscale sensitivity. The imaging and measurement 

capabilities of scanning probe microscope have been introduced for undergraduate laboratories 

in several disciplines including chemistry laboratories. However, the capabilities of SPM for 

nanolithography have not been as widely applied for undergraduate teaching. New trends in 

software and improvements in the automation of SPM instruments hold promise for bringing 

nanoscale experiments into the undergraduate curriculum, and eventually may even be integrated 

into high school science labs. Optical microscopes have become common in educational labs for 

a wide range of science disciplines, and the next generation of young scientists will benefit from 

gaining skills with SPM instruments. To advance beyond the resolution limits of optical 

microscopes, SPM enables direct views, measurements and manipulation of nanoscale 

phenomena. 

A diverse range of experiments can be planned for educational lab exercises using SPM 

instruments, which have dozens of different measurement modes and instrument configurations 

integrated within a single instrument platform. The instruments are inherently a multidisciplinary 

*Reproduced with permission from Elsevier. 
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toolkit because nanoscience measurements extend across all of the science disciplines of physics, 

chemistry, materials science, biology, medicine, and engineering.
276

For example, college 

laboratory exercises have been developed to illustrate principles of nanoscale measurements for 

magnetic, electronic, adhesive or frictional forces.
277-278

A basic example would be to illustrate 

force-displacement profiles and calculations to demonstrate molecular bond rupture events by 

developing experiments using AFM probes with molecular coatings.
279-280

 Other lab exercises 

could illustrate the imaging capabilities of AFM or scanning tunneling microscopy (STM),
281

 

particularly for resolving atomic or molecular lattices.
282-286,287

   Educational lab exercises with 

SPM have been reported for imaging surface changes caused by chemical reactions,
288-

291
 nanopatterning,

277,292
 and studies with biomolecules.

284,293
 Student experiments with SPM 

provide 2D and 3D surface maps for illustrating the analysis of data such as height histograms, 

roughness measurements and digital image processing.
294

 Students obtain hands-on experience 

with molecules and nanoscience, and there are also intangible benefits of the “wow” factor for 

stimulating intellectual curiosity and enthusiasm for scientific discovery. Examples of SPM 

systems designed for college laboratories include instruments from NanoInk such as the 

NanoProfessor,
295

 and the model 5400 system from Agilent.
296-297

 These systems were designed 

with intuitive software and ease-of-use for installing probes and samples. Most of the laboratory 

time is occupied with the use of software interfaces, which minimizes possible damage to the 

scanners. Meanwhile, SPM probes are relatively inexpensive to replace, as a consumable item. 

Students can learn to tune in “slow TV” as the images are gradually generated on the computer 

monitor to reveal exquisite details of molecularly-resolved surface landscapes. 

Along with the unprecedented advantages for imaging and measurements of surfaces, a 

further compelling attribute of SPM instruments for educational activities are the capabilities for 

nanoscale manipulation of molecules and nanomaterials using scanning probe lithography (SPL), 
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Figure 3.1 Basic instrument configuration for AFM 

imaging and nanolithography. 

as described in this report. Significant advances in instrument automation to provide intuitive, 

user-friendly software offers exciting new possibilities for integrating cutting-edge technologies 

into the undergraduate laboratory curriculum. 

3.2 Basic Operating Principle of AFM 

The most common set-up for positional feedback with AFM is the deflection-type 

configuration illustrated in Figure 3.1. An AFM tip is attached directly to a piezoceramic scanner 

for directing tip movement in the x, y or z direction. The piezoceramic material of the scanner 

tube expands and contracts upon the application of small voltages causing movement at the level 

of angstroms. An electronic feedback circuit is used to control the amount of force applied 

between the tip and sample by adjusting the voltages sent to the scanner tube, to maintain a 

constant deflection of the 

cantilever.
21

 The light of a diode laser 

is reflected off the back of the 

cantilever and detected by a position 

sensitive quadrant photodetector, as 

shown with the red lines of Figure 

3.1. The amount of light impinging on 

the four photodetector elements 

changes as the tip is scanned across 

the surface, and the signals are used 

for positional feedback. As the AFM tip is scanned in a raster pattern, the up-down and left-right 

motion of the tip is profiled by the photodetector changes, and this signal is amplified and 

converted into digital images of topography and lateral force. Topographic images are maps of 

the surface morphology and are represented by an arbitrary color scale. Lateral force images 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1


61 

 

indicate variations in the chemical nature of the molecules on the surface, which result from 

changes in the attractive and repulsive forces experienced by the tip. Topographic and lateral 

force images are acquired simultaneously. Most importantly, the force applied to an AFM tip can 

be precisely controlled at the level of nano- to pico- Newtons.
298

 Low forces are used when 

characterizing surfaces to prevent unintentional damage to the sample, whereas higher forces are 

used for steps of nanofabrication for nanoshaving and nanografting of organic thin films. 

A typical set-up for “contact-mode” AFM is presented in Figure 3.1, in which the tip is 

scanned in continuous contact with the surface. Other protocols can be accomplished by lifting 

the tip from the surface at a controlled distance for modes of “non-contact” imaging. A further 

imaging mode known as “intermittent-contact” mode is accomplished with a vibrating tip which 

intermittently taps the surface, also known as “tapping” mode. Readers are directed to previous 

publications for further details of SPM imaging modes.
24,299

 Images presented in this article were 

acquired using continuous contact mode AFM imaging. 

3.3 Approaches for AFM-based Nanolithography 

Mechanisms for SPM-based nanolithography 

As methods for imaging and measurements with SPM were developed, researchers 

observed that under certain experimental conditions small areas of the surface could be 

accidentally altered or damaged. For example, when too much force was applied to the probe, the 

surface could be scratched or rearranged. Contaminants on the surface could be picked up by the 

tip and redeposited in other locations. Nanoscale lithography methods came to be developed by 

carefully controlling the changes that were made to surfaces, to selectively and intentionally 

change the chemistry of small areas under the tip. Bias-induced nanolithography, dip-pen 

nanolithography (DPN), catalytic-probe lithography, nanoshaving, nanografting and NanoPen 

Reader and Writer (NPRW) are examples of SPL which have different mechanisms for writing 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1
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Table 3.1 Approaches for scanning probe lithography 

Method Mechanism for Patterning Reference 

Nanoshaving Displacement of a surface layer by 

mechanical force 

34, 304 

Nanografting 
Simultaneous nanoshaving and replacement of surface 

molecules by applying force to an AFM tip. 
80,93 

NPRW Force is applied to a coated AFM tip to replace surface 

molecules of SAMs 

184 

DPN 
Transfer of ink molecules from a coated tip through a water 

meniscus 
126 

Catalytic probe 
A tip coated with a catalyst is used to  locally catalyze a surface 

reaction 
190 

Bias-induced 

nanolithography 

Local oxidation, desorption or replacement of surface molecules 

is accomplished under elevated bias voltage 

122, 198,200, 

305 

 

nanopatterns.
300-302

 The nature of the desired changes in surface chemistry will help determine 

which nanolithography methods are most suitable and convenient for experiments. 

A summary of different techniques for writing nanopatterns using SPM-based 

lithography is presented in Table 3.1. Very little modification of AFM instruments are needed to 

accomplish nanolithography. Methods of nanoshaving,
34,303

 nanografting
80,93

 and 

NPRW
184

 require controlling the force applied to an AFM probe to inscribe patterns within self-

assembled monolayers (SAMs). For DPN, the tip is coated with molecules or nanomaterials to be 

written. The writing of molecules on surfaces is accomplished by transfer from the tip through a 

liquid meniscus to a clean substrate.
126

 For catalytic probe lithography, an AFM tip is coated 

with catalyst molecules or metals. The coating is not transferred to the surface, instead the 

catalyst coating of the probe is used to catalyze a chemical reaction and selectively alter the 

chemistry of areas where the tip is placed in contact with the surface.
190

 The catalytic reaction 

only occurs at areas touched by the tip. Bias-induced lithography is achieved using a conductive 

tip with a conductive or semi-conductive substrate, in which an electric field is generated 

between the tip and the sample. As the AFM tip is scanned in contact with the surface at elevated 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=table&id=T1
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=table&id=T1
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bias, molecules are either oxidized,
304

 desorbed or replaced to create 

nanopatterns.
122,198,200

Details of strategies and mechanisms for patterning with SPL have 

previously been reviewed. 
34,138,197,203,300,302,305-307

 

3.4 Experimental Approach 

3.4.1 Materials and Chemicals 

Reagent grade dodecanethiol, octadecanethiol, 11-mercaptoundecanol (MUD), and 16-

mercaptohexadecanoic acid (MHA) were obtained from Sigma Aldrich (St. Louis, MO, USA) 

and used without further purification. Ethanol (200 proof) was purchased from AAper Alcohol 

and Chemical Co. (Shelbyville, KY, USA). Flame-annealed ultra flat films of Au(111) prepared 

on mica substrates were obtained from Agilent Technologies, Inc. (Tempe, Arizona, USA). 

3.4.2 Preparation of Self-assembled Monolayers (SAMs) 

Because of the ease of preparation, stability and reproducibility for preparing well-

ordered surface structures, SAMs of n-alkanethiols are good models for nanolithography 

experiments. Monolayer films of defined thickness and designed properties can be generated by 

changing the functional (head) groups of the alkyl chain; these functional groups can also be 

used for further chemical reactions in later chemical steps. The preparation, characterization, and 

properties of SAMs have been described and reviewed previously.
36,46,52-53

 Samples of matrix 

monolayer films were prepared by immersing gold substrates in 0.01 mM ethanolic solutions of 

the chosen n-alkanethiols for at least 12 hours. The samples were then removed from the thiol 

solution, rinsed copiously with fresh ethanol and placed into a liquid cell holder for AFM 

imaging and lithography. Ethanol solutions of MHA (10
−9

 M) and MUD (10
−6

 M) were freshly 

prepared for nanografting protocols. 

3.4.3 Scanning Probe Microscopy (SPM) 

Experiments were accomplished in solution using either an Agilent 5500 SPM system or 
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an RHK system interfaced with a PicoSPM scan head. The Agilent system was equipped with 

PicoScan version 5.3.3 software and PicoLITH beta v.0.6.0 for nanolithography. Images were 

acquired at a scan rate of 3.0 nm/s using 512 lines/frame. The RHK system was operated with 

XPMPro v1.1.0.9 software using SPM100 controllers. Oxide sharpened V-shaped silicon nitride 

probes from Veeco Probes (MSCT-AUHW, Santa Barbara, CA) were used for imaging and 

nanofabrication. The probes have an average force constant of 0.5 N/m. Image processing was 

accomplished using either Gwyddion software, version 2.5, which is freely available for 

download and is supported by Czech Metrology Institute
308

 or with PicoScan version 5.3.3 from 

Agilent. 

3.5 Results and Discussions  

3.5.1 Creating Patterns Within a SAM Matrix Using Nanoshaving 

Nanoshaving describes AFM-based methods of nanofabrication in which the tip is 

operated under force to uncover or scratch away selected regions of substrates that are covered 

with a matrix layer of an organic thin film. Nanoshaving can be accomplished in air or in liquid 

media. In air, the molecules that are displaced tend to accumulate at the edges of nanopatterns, 

whereas in liquid the displaced molecules can be dissolved in the surrounding solvent. Imaging 

in liquids has the advantage of improving resolution, since strong shear forces and tip-surface 

attraction caused by capillary forces in air are greatly decreased when imaging in liquids.
91-92

 

Nanoshaving is accomplished by applying a high mechanical force to an AFM tip as it is raster 

scanned across the surface to sweep away molecules of the surface layer as shown in Figure 3.2. 

 The process of nanoshaving is completed in three basic steps. First, a flat area of the 

surface is identified and imaged under low force (Figure 3.2A). For the characterization step, 

typically forces less than 1 nN are applied to the probe to enable high resolution characterization 

of the topography without damaging the sample surface. An area with few defects is chosen for  

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
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Figure 3.2 Basic steps for nanoshaving with an AFM tip operated under different forces. [A] 

Characterization under low force. [B] Nanoshaving is accomplished when the force is increased. 

[C] Returning to low force, the nanoshaved patterns can be imaged. 

 

inscribing patterns, preferentially a flat gold plateau which is wide enough to write the desired 

pattern sizes. Next, a greater force ranging from 1–10 nN is applied to the AFM tip to shave 

away the matrix molecules from the substrate as it is scanned with a pattern design (Figure 

3.2B). A sufficient amount of force is needed to ensure complete removal of the matrix SAMs 

without damaging the underlying gold substrate. After molecules are shaved away, the same 

AFM probe is used for imaging the newly fabricated patterns by returning to a low force (Figure 

3.2C). With careful control of the forces applied to the tip, hundreds of patterns can be fabricated 

within a few hours of an experiment. The uncovered regions created from nanoshaving are then 

available for deposition of new molecules and materials.
19,90,114

 Nanoshaving has also been used 

to provide information about the thickness of molecular layers on surfaces.
88,309

 The uncovered 

areas of the substrate provide a baseline for thickness measurements of SAMs with angstrom 

precision. 

3.5.2 Automated Nanolithography Using Designs Created with Picolith Software 

Computer automation of scanning probe instruments enables the rapid fabrication of 

complex patterns with intricate designs and arrangements at the nanoscale to be a relatively 

routine accomplishment. Patterns with nanometer dimensions can be readily achieved with 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F2
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precision and accuracy using software that controls the position, force, bias and speed of the 

probe. Example designs used for creating nanopatterns are shown in Figure 3.3 using PicoLITH 

software from Agilent. Automated nanoshaving is more complicated than producing images for a 

computer printer, since the user must consider where the tip is picked up or placed down on the 

surface. When the tip is picked up and placed down this can lead to gaps or stray marks for 

designs. Better fidelity is achieved when the tip is moved continuously across the surface without 

removing the tip. The analyst will need to experiment with different designs to determine how 

many times to outline the features to observe which scanning paths work best for sweeping 

material from the surface. Sketches of the desired patterns are outlined with PicoLITH scripts 

using a computer mouse or pen stylus to draw the patterns. For the examples in Figure 3.3, 

arrows indicate the writing direction for translating the AFM tip. The overall size of the patterns 

is defined by the size of the view window selected within the data acquisition window of the 

PicoSPM operating software, e.g. 1×1 μm
2
. Patterns can be outlined once or traced several times. 

The colored squares at the bottom of the PicoLITH design (Figure 3.3) are the scientific pallets 

that can be used to assign specific parameters for operating the probe. For example, experimental 

parameters for the speed, amount of force or bias voltage applied to an AFM tip are assigned by 

choosing a color and assigning values. Automated lithography with an RHK SPM is 

accomplished with a computer controlled vector scan module as previously described by 

Cruchon-Dupeyrat, et al.
4
 Computer statements to control the motion of the probe are written and 

compiled into lithography scripts to designate the writing speed, length, direction and force 

applied for inscribing nanopatterns. 

3.5.3 Writing Patterns of Self-assembled Monolayers with Nanoshaving 

Patterns for the designs of Figure 3.3 with different shapes and geometries written are 

shown in Figure 3.4, for nanoshaving within a matrix SAM of n-octadecanethiol. 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
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  Figure 3.3 Example designs created using PicoLITH software by undergraduate students, during 

  a Physical Chemistry laboratory at Louisiana State University.  From left to right, sketches for  

  patterns of stick people, cartoons of the face of a cat, and a 5 × 5 array of rings.  

 

Octadecanethiol has 18 carbons aligned in a chain as the backbone of the molecule, and is 

anchored to the surface by a single gold-sulfur bond. The headgroups at the surface of the 

molecular layer are methyl groups (CH3), and the overall thickness of the SAM film is 

approximately 2.1 nanometers. Topography images acquired with AFM are displayed by a 

selected color scale; in this report the shorter features are dark and taller structures are brighter in 

color. Nanoshaving was accomplished in ethanol by applying a high force to the AFM tip as it 

was scanned, to sweep away and remove selected areas of the matrix monolayer from the gold 

surface following the outline of the designs shown in Figure 3.3. After writing patterns, the same 

AFM probe was used to immediately characterize the patterns in situ. The images in Figure 

3.4 reveal intricate details of the surface morphology of octadecanethiol as directly viewed by 

nanosize defects such as scratches, scars, pinholes and etch pits.  Overlapping terrace steps and 

the outlines of the gold substrates underlying the SAM are also visible in the images. Although 

the surface may appear somewhat rough, the terrace steps are only 0.25 nm in height and are 

characteristic landmarks of a high-resolution image of a SAM. At the nanoscale, even very small 

features such as etch pits, which are only 0.2 nm deep can be resolved using AFM. The small 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
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Figure 3.4 Nanoshaved patterns created with the designs of Figure 3 within a matrix monolayer 

of octadecanethiol on a gold substrate.  [A] AFM topography view of six stick figures and the 

corresponding trace and retrace lateral force images (from left-to-right).  [B] Topography and 

lateral force images of the cat cartoon patterns produced with nanoshaving. [C] Topography and 

lateral force images of an array of ring nanopatterns. 
 

holes scattered over the surface are commonly called etch pits, (also known as molecular 

vacancy islands) which are produced by surface reconstruction.
74

 The fine details of the irregular 

contours of the edges of the gold terraces can only be observed with a sharp tip. Such high-
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resolution images can be routinely acquired by using AFM in liquid environments. 

Figure 3.4A displays images of six stick people inscribed within octadecanethiol using 

nanoshaving. The images and nanopatterns were produced by undergraduate students during a 3 

hour laboratory session of Physical Chemistry (Chem 3493). The trace and retrace lateral force 

images do not show height information; rather the changes in tip-surface friction are mapped to 

disclose variations in surface chemistry for the areas of the nanopatterns. Lateral force images 

are acquired simultaneously with contact mode topography images and provide additional 

chemical information of the sample nature. For these examples, the tip-surface adhesion between 

the AFM tip is markedly different for the uncovered gold substrate of the nanopatterns compared 

side-by-side with the methyl-terminated molecules of the SAM matrix areas. The patterns of 

stick people were written using a single pass of the AFM probe to outline the design and were 

completed in one minute. The linewidth measures approximately 10 nm, and varies according to 

the sharpness of the AFM probe.  

A more sophisticated pattern was nanoshaved (Figure 3.4B) to outline a cartoon of a cat 

design. This example was accomplished within 3 minutes using a writing speed of 0.1 μm/s and 

an applied force of 2 nN. The speeds used for nanoshaving are comparable to the optimized 

speeds for acquiring images; of course if the tip is rastered too quickly it can break contact with 

the surface to produce discontinuous patterns. One might be concerned that operating an AFM 

tip under force might cause it to become dull or break the apex of the probe, however this 

example exhibits superb resolution for resolving etch pits, pin hole defects and the lacey 

contours of step edges, despite having used the tip under force for nanoshaving. We have found 

that silicon nitride probes are quite robust within the typical operating range of 2–10 nN of force 

used for SPL. Often the tip becomes sharper and resolution improves over time when 

nanoshaving. The patterns of Figure 3.4B were traced once and measure 7 nm in linewidth. 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
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Using nanoshaving, 25 ring patterns were inscribed within an octadecanethiol SAM (Figure 

3.4C), however for this example the designs were outlined four times. A force of 2 nN was 

applied for nanoshaving to produce rings measuring 80 nm in diameter with widths of 18 nm. 

Scanner hysteresis and drift can produce small changes in the nanoscale registry of the pattern 

arrangements, as viewed for the misalignment along the x direction. This is likely caused by 

using too much force to write the patterns, leading to a slight drift in probe motion across the 

array of ring designs. However, the precision for writing rows of patterns in the y direction is 

near perfect, with uniform 100 nm spacing between each ring in the x and y directions. 

3.5.4 Automated SPL Using Computer Scripts 

 Examples of sixteen nanoshaved patterns of interconnected circles created within 

octadecanethiol are presented in Figure 3.5, generated with an in-house designed computer script 

with an RHK controller. The exquisite reproducibility for controlling nanoscale lithography is 

evidenced by the precise, regular shapes and interpattern spacing and alignment at the nanoscale. 

The topography frame of Figure 3.5A shows a 1.2 × 1.2 μm
2
 view of the nanopatterns and the 

corresponding design is sketched in Figure 3.5B. The design of each pattern was produced by 

outlining four circles with a common focal point. The rings are shallower than the surrounding 

monolayer of octadecanethiol. Each individual ring measures 60 nm in diameter, with the 

smallest line width measuring approximately 10 nm. A few stray marks are apparent above the 

patterns, which results from up-down translation of the tip when it is picked up or placed at 

locations for writing. For this example, the scars of the underlying gold film influence the 

brightness of the image color scale, since the nanoshaved patterns are shallower in depth (2.1nm) 

than the defects of the substrate (10 nm). However, the fidelity of nanoshaving for writing 

precise nanoscale designs can still be sufficiently well resolved at this size scale. 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F4
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F5
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F5
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F5
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Figure 3.5 Example nanopatterns produced by nanoshaving selected regions of octadecanethiol 

using an SPM instrument from RHK Technologies. [A] Contact mode topograph; [B] sketch for 

the corresponding patterns in A. 

 

3.5.5 Using Nanografting to Write Designed Patterns of n-Alkanethiols 

 Nanografting is likewise accomplished by increasing the force applied to an AFM probe; 



72 

 

however, instead of operating the tip in clean solvent, the imaging media was replaced with a 

freshly prepared, dilute solution of n-alkanethiols to be patterned. Nanografting was developed in 

1999 by Xu, et al. and since then has been used for writing a range of molecules with thiol 

groups.
93,302

 Similar to nanoshaving, there are three basic steps for nanografting as outlined 

in Figure 3.6. In the first characterization step, a flat area that has few defects is selected for 

inscribing patterns by imaging under low force, typically less than 1 nN (Figure 3.6A). Next, the 

force is increased to push through the surface monolayer to make contact with the gold surface 

underneath. As the tip is scanned under force, the matrix molecules underneath the tip are shaved 

away and immediately replaced with new molecules from the surrounding solution (Figure 

3.6B). Following the scanning path of the AFM tip, molecules assemble and bind to the areas of 

gold that were uncovered by the probe to produce designed patterns. Returning to low force 

(Figure 3.6C) the same probe is used to characterize the nanopatterns that were fabricated. When 

the tip is operated under low force the surface is not disturbed and no patterns are formed. 

Patterns are produced only when the force has been increased. 

 
Figure 3.6 Steps for nanografting are accomplished by scanning with a tip under high force, 

while the tip is immersed in a solution containing molecules to be written. [A] Surface 

characterization is accomplished under low force while imaging in a solution containing thiol 

molecules. [B] Nanografting is accomplished by increasing the force applied to the AFM tip; 

fresh molecules from solution assemble following the path of the scanning probe. [C] Returning 

to low force, the nanografted patterns can be imaged. 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F6
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http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F6
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F6
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Figure 3.7 A nanoscale AFM instrument diagram written with 11-mercaptoundecanol within an 

octadecanethiol SAM. [A] Contact mode AFM topograph for a 1×1 µm
2
 scan area; [B] 

corresponding lateral force image; [C] molecular model showing height differences between the 

pattern and matrix monolayer; [D] design used for nanografting. 

 

 When designing nanografting protocols, the analyst can choose from a range of 

commercially available thiol molecules with different lengths and head group chemistries. 

Examples are shown in Figure 3.7 of nanografted patterns with heights that are shorter than the 

matrix monolayer. The topography and corresponding lateral force images of the design for an 

AFM instrument schematic are presented in Figures 3.7A and 3.7B, respectively. The instrument 

components were described previously in Figure 3.1. Characteristics of the general morphology 

of an n-alkanethiol SAM are apparent in the topography frame, such as etch pits and terrace 

steps. The lateral force image more prominently reveals the pattern design, because the  

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F7
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F7
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F1
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Figure 3.8 Nanografted patterns of 16-mercaptohexadecanoic acid written within a SAM of 

dodecanethiol.  [A] Topography image (1.2×1.2 µm
2
) of an array of ring patterns; [B] 

corresponding lateral force image; [C] height profile for the line in A; [D] topograph of a 

rectangular pattern (2.5×2.5 µm
2
); [E] lateral force image for D; [F] line profile across the 

pattern in D; [G] height model for the nanografted pattern of A; [H] model of the double-layer 

pattern of D. 
 

headgroups of the pattern areas are chemically different than the matrix SAM which provides 

frictional contrast. The areas surrounding the pattern are methyl-terminated octadecanethiol and  

the patterns were written with hydroxyl-terminated 11-mercaptoundecanol, which is 0.6 nm 

shorter than the matrix SAM. A model of the molecular heights is shown in Figure 3.7C. The 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F7
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script used to outline the nanopatterns is shown in Figure 3.7D, with excellent correspondence 

between the design and resulting nanografted patterns for such small size scales. The smallest 

linewidth achieved for this pattern was accomplished with a single sweep for the vertical line 

between the backside of the cantilever and the diode laser, measuring 13 nm in width. With an 

ultra sharp AFM probe, the smallest feature produced with nanografting is an island of a 2×4 

nm
2
 dot pattern, which is an area that would accommodate approximately 32 thiol molecules.

119
 

Examples of nanografted patterns with heights that are taller than the matrix monolayer are 

shown in Figure 3.8. Interestingly, the same molecules were used for Figures 3.8A and 3.8D, 

however the concentration of the imaging media was increased for Figure 3.8D. The topography 

and corresponding lateral force images of an array of ring patterns shown for the design 

of Figure 3.3 are presented in Figures 3.8A and 3.8B, respectively. At low concentration, 

(10
−9

 M) 16-mercaptohexadecanoic acid (MHA) forms patterns with heights corresponding to a 

monolayer. 

 For these examples, the matrix monolayer is dodecanethiol, which has 12 carbons in the 

hydrocarbon backbone chain. Dodecanethiol is ~0.5 nm shorter than MHA, which is consistent 

with the height measured for a line profile across one of the nanopatterns (Figure 3.8C). When 

the concentration of the imaging media of MHA was increased to 10
−6

 M, molecules with 

carboxylic acid-terminated headgroups form dimers and assemble to generate double layers 

(Figure 3.8D).
310-311

 Dimers of MHA are produced in solution by coupling of the acid 

headgroups. Height models of the MHA nanopatterns are shown in Figures 3.8G and 3.8H for 

the single and double layer patterns, respectively. The acid headgroups of the nanopatterns 

exhibit strong tip-surface adhesion, producing line spike artifacts in the topography frames. The 

differences in surface chemistry between the nanografted patterns (carboxylic acid headgroups) 

and the dodecanethiol matrix SAM (methyl headgroups) provide excellent contrast for the lateral 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F7
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F3
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
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force image of Figure 3.8B. However, for the lateral force image of Figure 3.8E, the headgroups 

of the rectangular pattern are most likely terminated with a thiol endgroup. 

These examples of nanografted patterns illustrate the inherent capabilities of SPL for 3-

dimensional control of nanostructures by selecting the molecular length, headgroups, and pattern 

geometries. Nanoscale characterizations and lithography are valuable tools for directly studying 

surface chemical reactions at the nanoscale within a well-controlled, liquid environment. After 

producing nanopatterns with nanoshaving or nanografting, further chemical reaction steps can be 

accomplished by exchanging the imaging media, for example by introducing solutions of new 

molecules,
19

copper salts
96

 or proteins
116,312

 to build complicated architectures from the bottom-

up. 

3.6 Applications of Scanning Probe Nanolithography 

Scanning probe lithography approaches such as nanoshaving and nanografting with 

organic thin films extend beyond simple fabrication of nanopatterns to enable control of surface 

composition and reactivity at the nanoscale. Methods to precisely arrange molecules on surfaces 

already contribute to discoveries that are advancing future technologies in molecular electronics, 

nanomedicine and surface chemistry. Automation of SPL will likely have a significant role for 

implementing nanotechnology in commercial products. 

3.6.1 Impact of SPL for Advancements in Molecular Electronics 

 Writing individual patterns of organic films one at a time will not be a practical strategy 

for manufacturing devices in which billions of structures are needed, such as for designs of 

computer memory chips and circuits. Future nanotechnology applications will require much 

higher throughput and speed for generating patterns. This problem is being addressed by the 

development of arrays of multiple probes for parallel writing.
269,273

 For semiconductor-based 

technologies, organosilane thin films are widely used as resist layers for microfabrication of 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F8
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circuits, wires, transistors and memory chips. As the size of components achieves ever smaller 

dimensions, the inherent advantages for miniaturizing to the nanometer level will be the benefits 

of higher information density and faster processing time. Nanotechnology holds promise for 

advantages of smaller, cheaper and more energy efficient electronic devices. To achieve smaller 

elements will require molecular-level precision such as the capabilities provided by automated 

SPL. 

3.6.2 Application of SPL for Nanomedicine 

Nanoscale assays provide intriguing possibilities for the direct detection and in 

situ visualization of the binding of small molecules, DNA, antibodies or proteins to nanopatterns, 

while enabling surface changes to be monitored with time-lapse AFM images.
301-

302
 Nanostructures of SAMs written by SPL provide highly controllable test environments for 

exquisite images of surface changes during biochemical reactions.
313

Although electron 

microscopies can be used for high-resolution 2D imaging of biomolecules that have been freeze-

dried and sputter-coated with conductive films, reactions conducted in aqueous (physiological) 

media or buffers cannot be accomplished in the UHV environments of electron microscope 

chambers. Approaches with SPM provide 3D images of fragile biomolecule systems and cells 

with minimal sample preparation. Tools of SPL extend the capabilities of high-resolution 

scanning probe imaging to enable experimentalists to control surface arrangements of 

biomolecules at the molecular level. Examples of fundamental studies incorporating tools of SPL 

for investigations of biomolecules include the regulation and control of multiplexing, reactivity, 

and polyvalent interactions; nanoscale assays with oligonucleotides
98

or receptors for sensing or 

bioassays;
314-315

 as well as construction of DNA
97,316-318

 and protein
116,312

 nanostructures. 

3.6.3 Role of SPL for Fundamental Investigations of Surface Chemistry                           

 Intuitively, binding between molecules is a nanometer-sized phenomenon, thus a close-up 
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view of molecules on surfaces can provide a fresh perspective for mechanisms of how reactions 

occur. Nanografted patterns can be incubated with desired nanomaterials or molecules, and time-

lapse AFM provides direct views to monitor the successive changes in height and surface 

morphology as reactions proceed over time. The reaction sites are spatially constrained to 

nanosized areas defined by the headgroups of nanografted/nanoshaved patterns, providing 

exquisite control of reaction parameters at the nanoscale. Such studies provide insight about 

surface reaction mechanisms and kinetics. For example, in situ investigations with nanografting 

have been reported for adsorption of proteins
114,118,124-125

 electroless deposition of copper on 

nanografted SAMs,
96

templated growth of ionic self-assembled multilayers,
319

and pattern transfer 

reactions with polymers.
19

 

3.7 Underlying Themes for Undergraduate Instruction 

The take-home message from a scanning probe lab exercise would perhaps be that we 

“looked at molecules” and learned how to write nanopatterns on surfaces. The existence of atoms 

or molecules in materials is a critical concept for understanding chemistry and physics, along 

with calculations of the size and number of molecules/atoms that are present. Many students 

have difficulties in understanding concepts of atomic and molecular scale phenomena, and the 

challenge of visualizing the shapes and arrangements of atoms and molecules has been 

implicated as a core issue.
287

 Scanning probe experiments offer premiere opportunities for 

students to learn interactively to visualize surfaces, measure properties and to manipulate surface 

chemistry at resolutions down to molecular and atomic length scales. Advancements in software 

and automation have made scanning probe instruments relatively easy to operate, and the new 

capabilities are ideally suited for undergraduate laboratories. As the field of nanoscience research 

has evolved, SPM methods have mostly been limited to professional researchers and graduate 

students; however, there is increasing interest for advancing nanoscience education at the 
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Figure 3.9 Undergraduate students from an LSU physical chemistry laboratory engaged in 

learning new skills with an AFM instrument. 

undergraduate level.
320

 Our practical strategy at LSU has been to accomplish undergraduate 

teaching activities using our research instruments, with the slight expense of a few broken 

probes. 

The background information to be presented for SPM laboratories will depend on the 

timeframe and type of experiments that are designed. A complete grasp of nanoscale concepts 

most likely exceeds the scope of an undergraduate course. However, a basic introduction and 

illustration of selected topics of nanoscience can certainly be accomplished to provide a spark for 

future student interest. During the past four years at LSU, we have successfully integrated SPM 

modules into the third-year undergraduate physical chemistry lab course. During each semester, 

12–16 students are given an opportunity for hands-on experiments with AFM/STM instruments. 

One session is devoted to an introduction of the basic principles of nanoscale imaging and 

instrument operation, and a second session is used for nanolithography experiments. As an 

indicator of the level of student enthusiasm, the afternoon class is scheduled for 3 hours duration, 

but usually several students persist late into the evening to capture additional frames and to 

experiment with designs for writing nanopatterns (Figure 3.9). From these classroom groups, 30 

undergraduates have further elected to take additional hours of supervised research credit, 

choosing to work with projects using SPM. The undergraduates have all made contributions as 

http://www.nihms.nih.gov/pmc/articlerender.fcgi?artid=218198&rendertype=figure&id=F9
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co-authors of research posters and/or journal articles, and have participated in fundamental 

studies with systems of nanoparticles, proteins or self-assembled monolayers. 

3.8 Future Prospectus 

 Impressive accomplishments have been attained by manufacturers of scanning probe 

instruments for the automation of SPL and for providing user-friendly software for routinely 

imaging at the nanoscale, as evidenced by the nanofabrication examples of this report. One can 

easily predict that such capabilities will become ever more widely applied in education, research 

and technology in the near future. There is an emerging need for workers with scanning probe 

skills, since methods of SPM and SPL are becoming indispensable for fundamental 

investigations related to nanotechnology. Data published on the National Nanotechnology 

website (www.nni.gov) estimates that 20,000 researchers are currently working in 

nanotechnology worldwide, and the National Science Foundation has estimated that 2 million 

workers will be needed to support nanotechnology industries globally within 15 years.
321

 

 A skilled scientific workforce will be an essential requirement for implementing 

nanoscience discoveries in future manufacturing or technology applications. Knowledge and 

experience in modern methods of surface measurements and analysis will be pivotal to the rapid 

transfer of nanotechnology into commercial products. At present, scanning probe microscopes 

and scanning probe-based lithography aru primarily used for laboratory research investigations 

rather than as tools for manufacturing. The transfer of new technologies developed in academic 

research labs to the public sector will require dissemination of skills and information from 

cutting-edge nanoscience research to the undergraduate curriculum across scientific disciplines. 

The latest advances in automation of SPM instruments enable new possibilities for educational 

modules using SPL, providing opportunities for designing diverse and compelling student 

activities to teach the concepts of chemistry and nanoscience, showcased at the molecular level. 

http://www.nihms.nih.gov/pmc/redirect3.cgi?&&reftype=extlink&article-id=218198&journal-id=1&FROM=Article%7CBody&TO=External%7CLink%7CURI&rendering-type=normal&&http://www.nni.gov
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CHAPTER 4. SURFACE ASSEMBLY OF PYRIDYL-SUBSTITUTED PORPHYRINS 

ON Au(111) INVESTIGATED IN SITU USING SCANNING PROBE LITHOGRAPHY* 

4.1 Introduction  

Porphyrin and metalloporphyrin systems are excellent materials for molecular electronics 

due to their diverse structural motifs, associated electrical, optical and chemical properties, and 

thermal stability.
322

  Structures of porphyrins have been proposed as components for molecule-

based information-storage devices,
323-324

 photovoltaic cells,
325-326

 organic light-emitting 

diodes,
327-328

 and molecular wires.
329

  The function and efficiency of porphyrins in devices is 

largely attributable to how the molecules are organized on surfaces.
43,330-331

 The surface 

assembly of porphyrins is influenced by complex intermolecular interactions between the 

macrocycles as well as by the binding interactions between the surface and peripheral groups.  

There is a problem with processability for producing monolayer films of porphyrins on surfaces, 

because at high concentrations the pi-pi interactions between macrocycles tend to produce 

aggregate structures in solution such as nanocrystals or stacked arrangements.  In previous 

reports, porphyrins have been shown to form a coplanar arrangement on surfaces, usually 

exhibiting low-density, incomplete surface coverage.
332-338

  The conditions which produce liquid 

crystals of porphyrins are not well-suited for producing monolayer films on surfaces. A problem 

of solubility in certain solvents is posed for nanofabrication protocols, which can be addressed 

by using mixed solvent systems. 

In this report, nanografting was applied for patterning pyridyl-functionalized porphyrins.  

A model porphyrin functionalized with two pyridyl and two phenyl groups was chosen for 

nanofabrication studies.  Patterns of 5,10-diphenyl-15,20-di-pyridin-4-yl-porphyrin (DPP) were 

nanografted within n-alkanethiol self-assembled monolayers (SAMs) on gold substrates.  Our  

*Reproduced with permission from Society of Photo Optical Instrumentation Engineers (SPIE). 



82 

 

goal was to direct the surface orientation of DPP to generate single layer nanostructures with an 

upright configuration. We hypothesized that the mechanism of spatial confinement
339

 that occurs 

when nanografting in ethanolic solutions would generate an upright configuration of DPP, rather 

than produce stacks of multilayered structures with coplanar arrangements.  Pyridyl groups 

provide a means to attach porphryins to the substrate mediated by nitrogen-gold chemisorption.  

Nanostructures of DPP fabricated using nanografting can be compared side-by-side with the 

well-known dimensions of n-alkanethiol SAMs to gain molecular-level views of the surface 

orientation of DPP.  The well known heights of n-alkanethiol SAMs as a surface matrix layer 

provide a molecular ruler for local measurements of the thickness of DPP nanopatterns. 

Nanografting was introduced in 1997 by Xu and Liu for fabricating patterns of thiolated 

molecules on gold surfaces.
80

 With nanografting, a mechanical force is applied to the tip of an 

atomic force microscope (AFM) to write thiolated molecules directly in an upright orientation, 

and surface attachment occurs through sulfur-gold chemisorption.  Nanografting is accomplished 

in dilute solutions of molecules selected for patterning and has been used with a broad range of 

thiolated molecules such as alkanethiols and alkanedithiols.  Nanostructures of SAMs produced 

using nanografting  can then be used as a foundation for bottom-up assembly of complex 

nanostructures of polymers,
19

 metals,
96

 and proteins.
118,301

  Nanografting was also used to study 

the assembly mechanism of n-alkanethiol SAMs in a spatially confined environment.
6
 

Significant advantages for in situ investigations have been achieved with nanografting since the 

steps of characterization and writing are accomplished in liquid media without exchanging AFM 

tips.  Since experiments are conducted in liquid media, tremendous resolution can be achieved 

for AFM images because the strong capillary interactions between the AFM probe and sample 

that are present in ambient air are reduced or eliminated when imaging in a liquid 

environment.
2,185-186

 Details of the successive changes in morphology of the surface can be 
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viewed with high resolution AFM after successive steps of characterization and nanopatterning.  

With in situ writing, the nanopatterns remain in a carefully controlled environment and solutions 

within the liquid cell can be exchanged to introduce new reagents for further chemical reactions. 

 
Figure 4.1.  Structure and possible configurations of 5,10-diphenyl-15,20-di-pyridin-4-yl-

porphyrin (DPP) on Au(111). 

Diphenyl dipyridyl porphyrins could form either upright or co-planar orientations, with one 

or more surface linkages to the surface.  Possible configurations of 5,10,15,20-di-pyridin-4-yl-

porphyrin(DPP) on Au(111) are presented in Figure 4.1.  An upright configuration with linkages 

through two pyridyl rings anchored on the surface is shown in Figure 4.1A, measuring 1.1 nm in 

height if the molecule is oriented perpendicular to the substrate.  If the linkage is through a single 

pyridyl group, the fully extended molecular height would measure 1.6 nm for a perpendicular 

orientation (Figure 4.1B).  A coplanar orientation would have a height measuring 0.6 nm with 

the plane of the macrocycle aligned parallel to the surface (Figure 4.1C).  The peripheral 

substituents of phenyl or pyridyl rings are oriented 90 degrees relative to the plane of the 

porphyrin macrocycle for all three structures. 

4.2 Experimental Approach 

4.2.1 Materials and Reagents 

 Matrix thiols such as octadecanethiol (ODT) and decanethiol were obtained from Sigma 

Aldrich (St. Louis, MO) and used without further purification.  Ethanol (200 proof) was obtained 

from AAper Alcohol and Chemical Co. (Shelbyville, KY) and dichloromethane was purchased 
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from EMD Chemicals (Gibbstown, NJ).  The substrates used for nanolithography were flame-

annealed Au(111) film of 150 nm thickness, supported on mica (Agilent Technologies, Phoenix, 

AZ). Self-assembled monolayers (SAMs) of n-alkanethiols were prepared by immersing gold 

substrates in a 0.01 mM ethanolic solution of n-alkanethiols for at least 12 h. The SAMs on 

Au(111) were then copiously rinsed with fresh ethanol and placed in the AFM liquid cell. Stock 

solutions of porphyrins were prepared by dissolving 5,10-diphenyl-15,20-di-pyridin-4-yl-

porphyrin (DPP) in dichloromethane.  To prepare a nanografting solution of DPP, the 

dichloromethane solution was further diluted with absolute ethanol to 10
-6

 M. 

4.2.2 Atomic Force Microscopy  

  An Agilent 5500 AFM/SPM system operated in contact-mode was used for AFM 

characterizations and lithography (Agilent Technologies, Chandler, AZ). Images were acquired 

at a scan rate of 3.0 nm/s with 512 lines/frame using Picoscan v5.3.3 software.  Oxide-sharpened 

silicon nitride probes (MSCTAUHW) from Veeco (Santa Barbara, CA) were used for AFM 

experiments. The probes have V-shaped cantilevers and force constant, kavg = 0.5 N/m.  The 

same probes were used for both imaging and nanofabrication.  Picolith v2.2 was used to design 

and write patterns for nanografting. 

4.2.3 Procedure for Nanografting  

 Nanografting of DPP was accomplished by applying a local mechanical force to an AFM 

tip to replace matrix alkanethiols on the gold surface with DPP molecules from solution, 

following the scanning track of the AFM tip.  Nanografting is accomplished in situ while the tip 

and the sample are immersed in a dilute solution of new molecules chosen for writing, with three 

basic steps as shown in Figure 4.2. In the first step, the surface of a SAM was characterized with 

minimal force to select a relatively flat area with few defects. A small nondestructive force, 

typically less than 1 nN was used for the characterization step with contact mode AFM imaging.  
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Figure  4.2 Steps for nanografting DPP within an n-alkanethiol self-assembled monolayer. 
 

Next, the force was increased to 2-5 nN to push the tip through the matrix layer to touch the 

underlying gold surface. As the tip was raster scanned across the surface under high force, 

molecules from the substrate were shaved away to leave areas of the gold surface uncovered.  

Immediately following the path of the tip, DPP molecules from solution attach to the uncovered 

areas.  The area of contact between the AFM tip and substrate is quite small, producing a 

spatially confined area for surface assembly.  In the final step, the force was reduced for AFM 

imaging to characterize the nanopatterns of DPP in situ.  For nanografting, the amount of force 

applied to the tip must be carefully controlled to preserve the sharpness of the AFM probe.  The 

optimized minimal force to successfully write a complete pattern was chosen by writing a series 

of patterns at different force settings and choosing the minimal force setting which successfully 

produced a pattern. 

4.3 Results and Discussions 

The liquid media used for imaging and nanofabrication was a solution of mixed solvents, 

1% dichloromethane in ethanol with 10
-6

 M DPP.  Solvents which evaporate quickly such as 

dichloromethane or toluene are not suitable for AFM experiments; however solutions of ethanol, 

sec-butanol and water work well for AFM imaging in liquids.  Unfortunately, porphyrins are 

mostly insoluble in alcohols or aqueous solvents so a two-step protocol was developed with 

mixed-solvents in which the porphyrin was first dissolved in a chlorinated solvent, then the stock 
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solutions was subsequently diluted further in ethanol to prepare the liquid media for 

nanografting.  

4.3.1 Nanografting of DPP Within a Decanethiol SAM 

Example nanopatterns of DPP produced by nanografting in a decanethiol matrix SAM are 

shown in Figure 4.3 before and after nanografting.  For the AFM topographs, (Figures 4.3A and 

4.3D) the heights are displayed with a relative color scale, where taller structures have brighter 

contrast and shallow features appear darker.  As revealed in high resolution images, surfaces are 

not truly flat and uniform at the nanoscale; rather there are defects such as scratches, scars and 

pinholes.  A selected area of the surface shown in Figures 4.3A and 4.3B shows a staircase 

arrangement of overlapping terrace steps of a decanethiol covered gold substrate.   

 

Figure 4.3 Nanografted patterns of DPP produced within a SAM of decanethiol/Au.  [A] Contact 

mode AFM topograph of the SAM before nanografting; [B] corresponding lateral force image 

for A; [C] cursor profile for the line in A. [D] Nanografted line patterns of DPP written in the 

same area; [E] lateral force image for D; [F] cursor profile for D. 



87 

 

 The surface morphology of the SAM exhibits the characteristic features of molecular 

vacancy islands or etch pits, measuring approximately 0.2 nm in depth.  Etch pits result from the 

displacement of gold atoms during surface reconstruction upon chemisorption of n-alkanethiols 

to gold.
46

 Eight overlapping terraces of the gold surface are visible in the selected area. The 

heights of the terrace steps provide an internal reference for Z calibration with AFM 

measurements.  The simultaneously acquired lateral force image (Figure 4.3B) also defines the 

edges of overlapping gold steps. A line spike in the middle of the image results from the tip 

sticking to the surface during the scan.  A representative cursor line profile is shown in Figure 

4.3C across several gold steps. After nanografting with DPP, topography and lateral force images 

of the surface are presented in Figures 4.3D and 4.3E, respectively for the same area that was 

shown in Figure 4.3A.  Five vertical line patterns were written within the decanethiol matrix, by 

programming the direction, force and motion of the AFM tip.  The dark lines in Figure 4.3D 

correspond to areas where DPP molecules were nanografted, revealing a shorter height than the 

surrounding matrix areas of decanethiol.  A force of 2.3 nN was used for nanografting; however 

the sharpness of AFM probe was retained after writing under force, as evidenced by views of 

high resolution features characteristic of gold steps and etch pits.  The lateral force image (Figure 

4.3E) shows brighter contrast for the patterned areas compared to the surrounding matrix 

indicating that the surface chemistry of the fabricated areas has changed.  The expected height of 

the decanethiol matrix is 1.4 nm.  The thickness of DPP patterns are 0.4 ± 0.2 nm shorter than 

the surrounding decanethiol SAM which indicates that DPP adopts a standing up configuration 

with two pyridyl linkages to the surface, corresponding to the model of Figure 4.1A.  

A map of the path programmed for the AFM tip is shown in Figure 4.4. The patterns 

were written with automated software using a single pass of the AFM tip across the surface 

following the direction of the arrows.  The array of lines was completed within 1 minute.  The 
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line resolution and pattern fidelity are remarkable, considering that an open loop AFM scanner 

was used for writing nanopatterns.  The line patterns have progressively wider lateral dimensions 

of 20, 33, 50, 60, and 66 nm (from left to right), with a uniform vertical length of 400 nm.  

 
 

Figure 4.4  Computer design used for nanografting line patterns of DPP within a decanethiol 

matrix  
 

4.3.2 Nanografting of DPP Within an Octadecanethiol SAM  

Further experiments were accomplished for nanografting DPP in mixed solvent media 

with a taller matrix SAM of n-octadecanethiol (ODT).  A circular pattern filled with DPP was 

successfully nanografted within an ODT matrix as shown in Figure 4.5. The pattern was written 

in 2 min using a force of 3.4 nN.  The diameter of the filled circle measured 300 nm and the 

design of the pattern was achieved by outlining 50 concentric rings of successively increasing 

sizes.  The filled circle is mostly sited on a single terrace area of Au(111) except for a small area 

at the top left corner where it is situated on the next gold step.  The trace and retrace lateral force 

images disclose the pattern edges and changes in surface chemistry for the area patterned with 

DPP.  Bands at the sides of the pattern were introduced artificially during image processing and 
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Figure 4.5 Circular nanopattern of DPP written within an ODT SAM.  [A] contact mode 

topograph; corresponding [B] trace and [C] retrace lateral force images of the nanopattern; [D] 

corresponding line profile for A. [E] Height model for patterns of DPP nanografted within an 

ODT matrix. 

 

are not true changes in heights or frictional force.  The expected thickness of an ODT SAM is 2.1 

nm, and the DPP nanopattern is approximately 1.0 ± 0.3 nm shorter than the ODT matrix (Figure 

4.5D).  The height closely corresponds to a standing configuration for the nanografted patterns 

with two pyridyl linkages, as shown in Figure 4.5E.    

 

During nanografting, the surface assembly of DPP porphyrins most likely follows a 

similar reaction pathway previously described for alkanethiol SAMs due to spatial 

confinement.
339

 Unlike the zig-zag backbone of alkanethiol molecules, porphyrins have wider 

overall dimensions which are bulkier for surface assembly within a confined space.  It is 

interesting to note that the heights of nanografted patterns of DPP match closely with the height 

expected for a perpendicular configuration with respect to the surface.   It is likely that the 
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rotated orientation of the phenyl and pyridyl groups relative to the macrocycle provides a block-

like geometry which stabilizes the upright orientation and serves to prevent a tilted arrangement.  

Under conditions of nanografting the transient reaction environment confined between the 

scanning AFM tip and surrounding matrix SAM is sufficiently small to prevent DPP molecules 

from assembling in a coplanar, lying-down orientation.  When nanografting, a small local area of 

freshly exposed gold substrate is produced by scanning the AFM tip under high force. The 

transient bare area of the surface is confined between the AFM probe and thiol matrix molecules 

with dimensions less than the molecular length of the DPP molecules, therefore nanografted 

molecules assembling on the surface do not have sufficient space to assemble in a lying-down 

configuration. According to the height measurements, DPP molecules assemble directly onto 

gold with a standing configuration when nanografted.  

4.4  Conclusions 

Nanopatterns of pyridyl porphyrins (DPP) were successfully produced by nanografting 

within different n-alkanethiol matrices, revealing that pyridyl porphyrins can directly assemble 

on Au(111) into an upright configuration.  Nanografting in liquid media was accomplished by 

using a mixed solvent system, to solve the problem of solubility with porphyrins.  Matrix 

monolayers of decanethiol and octadecanethiol were used as a molecular ruler to evaluate the 

thickness and surface orientation of nanografted patterns of DPP.  These investigations suggest 

that a mechanism of spatially-confined self-assembly occurs when writing patterns of dipyridyl 

porphyrins during nanografting, and it is likely that surface linkages of DPP are formed through 

nitrogen-gold chemisorption.  Nanografting enables surface assembly in a dilute regime with 

mixed solvent systems, e.g. dichloromethane/ethanol.  With nanografting, DPP molecules 

assemble directly onto gold with a standing-up configuration due to spatially constrained self-

assembly. 



91 

 

CHAPTER 5. ASSEMBLY OF 5,10,15,20-DI-PYRIDIN-4-YL-PORPHYRIN ON Au(111) 

FROM MIXED SOLVENTS 

5.1 Introduction  

Porphyrins and metalloporphyrins are useful materials for devices because of 

photoelectric, catalytic and electronic properties. For surface and structural characterizations, 

porphyrins have been deposited on surfaces of Ag,
340

 Au,
341-343

 HOPG,
344-345

 Si,
346-347

 and 

sapphire.
344

 The properties and surface morphology are largely determined by the length, 

composition, nature and position of the peripheral groups attached to the macrocycle.
84,348-349

 For 

example, the electrical conductance of linear dithiolated porphyrin arrays was found to be 

influenced by molecular length.
350

 Porphyrins have applications for molecular electronics,
351-353

 

switching devices,
354

 sensors,
355-357

 photonic devices,
358

 photovoltaic cells
348

 and 

photoelectrochemical cells for light-harvesting applications.
359-361

 The organization of molecules 

on surfaces determines the function and efficiency of devices.
330-331,362

 Understanding the self-

organization and assembly of porphyrins is important for optimizing the function of these 

molecules for potential device applications.  

The assembly of porphyrins on surfaces is a complex process resulting from the interplay 

of interactions between porphyrin macrocycles, attached substituents and the nature of the 

surface chemistry. Unlike thiol
363-365

 and organosilane
366

 molecules that have been extensively 

investigated, the solution phase assembly of porphyrins has not been widely studied. The ability 

of linear molecules with thiol and silane moieties to form ordered monolayers on surfaces results 

from interactions between the alkane chains of the individual molecules as well as endgroup 

chemistry.
367

 In contrast, the planar macrocycles of porphyrins have a fully conjugated π electron 

system which enables intermolecular interactions between planar rings, which tends to result in 

self-aggregation to form crystals. Complex intermolecular interactions, such as pi-pi stacking 
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between macrocycles or binding interactions between peripheral groups and surfaces dictate the 

overall assembly processes of porphyrins from solution.
368-369

   

Porphyrins have been reported to adopt a coplanar arrangement with surfaces, forming 

stacks and clusters on surfaces because of strong pi-pi interactions.332-338
 Deposition methods and 

the nature of organic solvents have  also been found to  influence the formation of porphyrin 

clusters on surfaces.
370-371

 Different structures can be observed on the surface depending on 

methods of sample deposition, the nature of the solvent that was used and the overall molecular 

architecture. At high concentration, samples of porphyrins often spontaneously form crystals.
372-

373
  Porphyrins have limited solubility in certain solvents, and are often immiscible in water or 

alcohol which limits the processing ability for producing organic thin films for surface studies.  

In this report, high resolution imaging combined with scanning probe lithography were 

used to investigate the surface assembly of 5,10,15,20-di-pyridin-4-yl-porphyrin (DPP) on 

Au(111) from mixed solvent solutions. Details of changes in the surface morphology of pyridyl-

functionalized porphyrins were captured over time using atomic force microscopy (AFM) 

imaging.  Scanning probe lithography (SPL) approaches of nanografting and nanoshaving were 

used make local measurements of the thickness of porphyrin nanostructures. Nanoshaving has 

previously been used to characterize films of n-alkanethiol SAMs,
3,88

 organosilane SAMs,
85,374

 

polymers, 
375-376

 DNA
377-378

 and molecular micelles.
379

 Selective patterning of molecules has 

been accomplished with nanografting to write patterns of different thiolated molecules such as n-

alkanethiols,
2,34

 alpha,omega alkanedithiols,
380

 thiolated proteins,
118,381

 nanoparticles,
90

 and 

thiolated DNA.
382

 Nanografting is known to alter the assembly of n-alkanethiols through a 

mechanism of surface confinement.
6
 By designing the arrangement of pyridyl and phenyl  

substituents linked to the macrocycle our goal was to gain molecular level insight for controlling 

the orientation of porphyrins on Au(111) surfaces, to prepare a densely packed monolayer of 
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defined thickness. We hypothesized that the assembly of porphyrins which typically assemble in 

a coplanar orientation on surfaces could likewise be disrupted by spatially confined self-

assembly with nanografting to form an upright orientation on Au(111), mediated by nitrogen-

gold surface linkages of pyridyl groups.  

5.2 Materials and Methods 

5.2.1 Materials and Reagents 

 Silica gel from Sorbent Technologies 32-63 m was used for flash column 

chromatography. 
1
H- and 

13
C-NMR were obtained on a ARX-300 Bruker spectrometer. 

Electronic absorption spectra were measured on a Perkin Elmer Lambda 35 UV-Vis 

spectrophotometer and fluorescence spectra were measured on a Perkin Elmer LS55 

spectrometer. Mass spectra were obtained with an Applied Biosystems QSTAR XL. All solvents 

used for synthesis were purchased from Fisher Scientific (HPLC grade) and used without further 

purification. 

 Reagents such as ethanol (Aaper, Shelbyville, KY), dichloromethane (EMD Chemicals, 

Gibbstown, NJ), sulfuric acid (EMD Chemicals, Gibbstown, NJ), hydrogen peroxide (Fisher 

Chemical, Fairlawn, NJ) were used without further purification. Flame annealed gold-coated 

mica substrates (150 nm thickness) were acquired from Agilent Technologies, Inc. (Chandler, 

AZ). Highly ordered pyrolytic graphite (MikroMasch, Wilsonville, OR) and polished silicon 

wafers (Virginia Semiconductor, Inc. Fredericksburg, VA) were also used as substrates for AFM 

samples. Alkanethiols such as octadecanethiol, dodecanethiol and decanethiol were purchased 

from Sigma Aldrich (St. Louis, MO, USA) and used without further purification. 

5.2.2 Synthesis of Bis(pyridyl)bis(phenyl)porphyrin 

  The bis(pyridyl)bis(phenyl)porphyrin was prepared via a mixed porphyrin condensation 

in refluxing propionic acid, as previously reported.
383-385

 This procedure is known as the Adler 
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and Longo methodology
386

 and afforded all six porphyrins in yields varying from 0.5 to 5%. To a 

refluxing solution of benzaldehyde (7.0 mL, 138 mmol) and pyridine-4-carboxaldehyde (3.0 mL, 

63.0 mmol) in propionic acid (250 mL) was added pyrrole (6.25 mL, 180 mmol), dropwise. This 

caused the solution to rapidly change from yellow to black in color. The solution was stirred and 

refluxed for 1.5 h. To the cooled reaction solution diethylene glycol (175 mL) was added and the 

solution was refrigerated overnight. The precipitate formed was isolated by vacuum filtration and 

washed with methanol. The crude product was loaded on a silica gel column and eluted with 

CH2Cl2 to remove any tetraphenylporphyrin in the mixture. A second silica gel column was 

loaded with the remaining compound and eluted with 1-5% methanol/CH2Cl2 mixture, slowly 

increasing the polarity of the eluent to obtain separation of the five pyridylporphyrins. The 

compounds eluted in the following order: 5,10,15,20-tetraphenylporphyrin, 5-(4‟-pyridyl)-

10,15,20-tri(phenyl)porphyrin, cis-5,10-bis(4‟-pyridyl)-15,20-bis(phenyl)porphyrin, trans-5,15-

bis(4‟-pyridyl)-10,20 bis(phenyl) porphyrin, 5,10,15-tri(4‟-pyridyl)-20-(phenyl)porphyrin and 

5,10,15,20-tetra(4‟-pyridyl) porphyrin. The cis-5,10-bis(4‟-pyridyl)-15,20-bis(phenyl)porphyrin 

was obtained in 1 % yield (0.0620 g), and its spectroscopic characterization agreed with the 

reported values.
383-385

  

5.2.3 Preparation of Substrates 

 Prior to sample deposition, pieces of HOPG were freshly cleaved with a piece of 

adhesive scotch tape to expose a clean surface. Silicon wafers were first immersed in solution of 

concentrated sulfuric acid and hydrogen peroxide (3:1) for 1 h, then copiously rinsed with 

deionized water, followed with ethanol and sonicated for 30 min in 99% ethanol.  The acid 

cleaned silica pieces were then exposed to UV light (Spectroline, Westbury, NY), 254 nm for 15 

min prior to use. Gold substrates were used without further treatment. 

5.2.4 Preparation of Dried Samples 
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  Stock solutions of porphyrins were prepared by dissolving 5,10-diphenyl-15,20-di-

pyridin-4-yl-porphyrin (DPP) in dichloromethane(DCM). The solution was further diluted with 

absolute ethanol to the desired concentration (10
-3

 – 10
-6

 M). A single 10 µL drop of porphyrin 

solution was placed onto the substrates and dried at room temperature for at least 24 h.  

5.2.5 In Situ Investigations of the Assembly of Porphyrin Films 

 The self-assembly of 5,10-diphenyl-15,20-di-pyridin-4-yl-porphyrin (DPP) in real time 

was investigated by first imaging Au(111) in ethanol using contact mode AFM to select a flat 

area with few defects. A solution of 0.01 mM DPP in ethanol/DCM was then injected into the 

AFM liquid cell. Surface morphology changes were monitored for three hours, with images 

taken at 5 min intervals. The surface layer of DPP that formed was then further characterized by 

nanoshaving and nanografting. 

5.2.6 Preparation of n-Alkanethiol Self-Assembled Monolayers (SAMs) 

 Freshly prepared octadecanethiols (10
-9 

M) dissolved in absolute ethanol were used as 

nanografting solutions for in situ characterizations of the pyridyl porphyrin film. Matrix 

alkanethiols such as octadecanethiol, dodecanethiol and decanethiol for writing pyridyl 

porphyrins were prepared by immersing flame-annealed ultra flat films of Au(111) prepared on 

mica substrates in a (10
-3

M) solution of chosen alkanethiol in ethanol for at least 12 h.  The 

SAMs on Au(111) were then removed from the thiol solution, copiously rinsed with fresh 

ethanol and immediately placed into a liquid cell holder for AFM imaging and lithography to 

minimize surface oxidation. 

5.2.7 Atomic Force Microscopy (AFM) 

  Samples prepared by the drying method were imaged using tapping mode in air with a 

model 5500 SPM (Agilent Technologies, Inc. Chandler, AZ). Probes with resonant frequencies 

ranging from 265-400 kHz were used for tapping-mode imaging (MikroMasch Wilsonville, OR). 
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Scan rates of 3.0 um/s and 256 line frame per second were used for acquiring images. For in situ 

investigations, AFM images were acquired in contact mode using a hybrid system, a PicoSPM 

scanner from Agilent (Chandler, AZ) was interfaced with electronic controllers and software 

(XPM Pro v.1.2.1.0) from RHK Technology (Troy, MI). Silicon nitride cantilevers with force 

constants ranging from 0.1 to 0.5 Nm
–1

 were used for imaging in liquids (Veeco Probes, Santa 

Barbara, CA). Digital images were processed with Gwyddion (version 2.5) open source software 

which is freely available on the Internet and supported by the Czech Metrology Institute.
387

  

5.3 Results and Discussions   

The DPP molecule chosen for these studies is a free-base porphyrin with two adjacent 

phenyl and two adjacent pyridine rings as peripheral groups (Figure 5A). Possible configurations 

of 5,10,15,20-di-pyridin-4-yl-porphyrin(DPP) on Au(111) are shown in Figures 5.1B-5.1C with 

energy minimized structural models. Different configurations of DPP are possible on Au(111), 

depending on whether there is one, two or four linkages to the surface. In these models, DPP will  

 

Figure 5.1. Structural formula and possible configurations of 5,10-diphenyl-15,20-di-pyridin-4-

yl-porphyrin (DPP) with the corresponding heights on Au(111). [A] Molecular structure of DPP; 

[B]upright configuration of DPP with two pyridyl rings anchored to surface; [C]perpendicular  

orientation of DPP with one pyridyl anchoring group; [D] coplanar configuration of DPP on 

Au(111). 
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adapt an upright orientation if one (Figure 5.1B) or two (Figure 1C) pyridyl rings attach to the 

surface. For a coplanar orientation, the ring bends towards the surface with the macrocycle ring 

oriented as shown in Figure 5.1D. 

5.3.1 Assembly of Pyridyl Porphyrins to Form “Stacks” on Surfaces 

Surface assemblies of “stacks” of porphyrins often are formed that are oriented in a 

coplanar arrangement with respect to the surface plane when liquid samples of porphryins are 

dried on flat surfaces.
388

 Depending on the drying conditions, the nature of the solvent and the 

concentration of the porphyrin in the parent solution, different heights and surface coverage of 

stacks are produced. Initial investigations of the assembly of 5,10-diphenyl-15,20-di-pyridin-4-

yl-porphyrin (DPP) prepared either by methods of drying or immersion of various substrates in 

porphyrin solutions were found to spontaneously produce stacks when prepared in ambient 

environments, as shown in Figure 5.2. Dried samples of DPP that were prepared on surfaces of 

Au(111), HOPG and Si(111) were characterized using tapping mode AFM in air.  

Representative AFM topographs of each surface (3×3 um
2
 scan) are displayed, which 

reveal structures of small white islands or stacks distributed throughout the sample areas.  

(Figure 2). The stacks of DPP formed on Au(111) tend to be located at edges or corners of the 

irregularly shaped terraces(Figure 5.2A), and range in height from 1 to 10 nm. Analysis of the 

heights from several images (n
 
=

 
100) show that 70% of the measurements range from 2 – 4 nm, 

corresponding to 4-8 porphyrin layers per stack, oriented in a planar configuration.  The surface 

of HOPG shows preferential deposition at the step edges of graphite (Figure 5.2B).  Size analysis 

reveals that stacks range in height from 0.3 - 5.0 nm, 52% of which measure ~1.0 nm, indicating 

two layers of DPP.  On polished silicon wafers (Figure 5.2C), the distribution of porphyrin stacks 

throughout the surface areas was more random, with taller overall dimensions, compared to gold 
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and graphite surfaces. Most of the stacks measured 4 – 8 nm in height, which corresponds to 

thicknesses of 7 to 13 layers of DPP.  

 

Figure 5.2. Stack strucutures of DPP formed on surfaces of [A] Au(111); [B] HOPG; [C] 

Si(111); with corresponding height distributions for stack sizes.   

Droplet samples of porphyrins dried in ambient conditions produce stacks regardless of 

the surface, as viewed in Figure 5.2 for samples which were prepared side-by-side using similar 

conditions of concentration and solvent. The strong pi-pi interactions between the macrocycles 
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predominate to form columnar discotic phases (stacks) when solutions of porphyrins are dried.  

As the solvent evaporates during the drying step, the capillary forces of the evaporating liquid 

pulls DPP molecules closer together. The heights of the stacks are influenced by the wettability 

and resulting surface energy of the substrates. The preferential formation of stacks on step 

boundaries of gold and HOPG can be attributed to the active sites in terrace edges, as previously 

reported.
389-391

 Density functional theory (DFT) has shown that step edges of gold substrates 

have a greater concentration of electron density thereby allowing a maximum overlap between 

molecular orbitals.
389

 The same conformational feature has been observed with 5-(4-

methylthiophenyl)-10,15,20-tris(3,5-di-t-butylphenyl)porphyrin (MSTBPP) deposited on 

Au(111).
392

 Aggregates of 1-10 nm were formed on polished silicon substrates indicating that the 

intermolecular attraction between porphyrin molecules was greater than the molecule-substrate 

interaction.  After evaluating a range of different substrates, solvent media, immersion and 

drying conditions, the predominant outcome of surface morphologies observed for DPP were 

stack structures. Further experiments were designed for viewing surface assembly processes in 

situ, without a drying step, as described in the next sections. 

5.3.2 Assembly of Pyridyl Porphyrins on Au(111) from Solutions of Mixed Solvents  

A requirement for liquid AFM imaging is to use a solvent that does not evaporate rapidly 

in ambient conditions; common imaging solvents that are suitable for liquid cell imaging are 2-

butanol, ethanol or water. However, DPP is nearly insoluble in these solvents so an approach 

with mixed media was developed, similar to experiments that were previously described for 

studies of n-alkanethiols in water-based media.
393

 The media used for studies with DPP was a 

mixture of ethanol and dichloromethane (DCM). The porphyrin was first dissolved in DCM to 

prepare a parent solution, and this solution was further diluted in ethanol to approximately 1 

vol% DCM.  
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After imaging a clean surface of Au(111) in ethanol, a solution of 0.01 mM DPP was 

injected into the AFM liquid cell and the surface morphology was monitored for several hours.  

Molecular views of the spontaneous self-assembly of pyridyl-porphyrins from mixed solvent 

solutions were captured in situ using contact mode AFM as shown in Figure 5.3. A few minutes 

after injection of DPP, small islands of porphyrins of various heights begin to appear.  The initial 

changes of the surface morphology are shown in Figure 5.3A after 3 h of immersion, with the 

appearance of adsorbates, covering 15% of the surface area and a few bright island features.  The 

bright white globular structures observed were about 80 spots/µm
2
 area. The simultaneously 

acquired lateral force image (Figure 5.3B) shows no distinct features.  

In the next step of the liquid AFM experiment, a rectangular area (200 × 300 nm
2
) was 

shaved as shown in the topography and lateral force frames of Figure 5.3D and 5.3E. 

Nanoshaving is an SPL method in which local areas of a surface are scraped or shaved away by 

the action of a sweeping AFM tip to remove adsorbates.
34

 The uncovered substrate provides a 

baseline for measuring the thickness of the film.  The outline of the edges of the nanoshaved area 

is distinct both in topography and lateral force image frames. The angular boundaries of step 

edges of the underlying gold substrate are resolved in the lower corners of the topography image 

(Figure 5.3D). The clean removal of DPP is also apparent in the lateral force image (Figure 

5.3E), showing a uniformly dark contrast for the nanoshaved hole.  A cursor line profile was 

chosen across a central area of the hole without step features, as shown in Figure 5.3F. The 

height of the DPP film measured ~ 0.6 nm, which matches the expected thickness for a coplanar 

orientation.  The assembly process was continued for 48 h, and then the sample was removed 

from the DPP solution, rinsed with ethanol and immediately imaged in ethanol. Further changes 

in surface morphology for the self-assembly process were captured by imaging in ethanol using 

very low forces to prevent damage to the sample, as shown in Figure 5.4. 
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Figure 5.3.  Films of DPP on Au(111) after 3 h immersion in mixed solvent media. [A] 

Topograph of DPP film before nanoshaving; [B] lateral force image of A; [C] corresponding 

cursor profile for the line in A. [D] topograph showing the nanoshaved pattern of the DPP film; 

[E] lateral force image of D; [F] corresponding cursor profile for the line in D. 

 

Segregated domains of different thicknesses of DPP were observed to form on Au(111) after 

longer immersion.  Distinct areas of brighter islands surrounded by a film with shorter heights 

are evident in Figure 5.4A. The left side of the image shows a predominance of taller islands of 

DPP, whereas the left area exhibits very few bright islands, with saturation coverage of the 

shorter phase. Approximately 65 % of the surface for the area framed has shorter heights, 

corresponding to the coplanar arrangement.  The irregular fractal shapes of the bright islands of 

DPP in Figure 5.4B cover approximately 53% of surface in Figure 5.4A.  A magnified view in 

Figure 5.4C reveals the detailed domain structures of the mixed phases of coplanar and upright 

DPP, exhibiting 69% surface coverage for the taller structures. The width between upright 

domains measures 5-15 nm. The height difference between the taller and shorter phases of 

Figure 5.4D measures between 0.2 nm-0.4 nm.  
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Figure 5.4. Domains of mixed heights of DPP on Au(111) observed under conditions of natural 

self-assembly. [A] Contact-mode topograph showing taller and shorter DPP molecules on the 

surface; [B] topograph image of an area with greater coverage of the taller phase of DPP [C] 

zoom in topographic view of  the mixed phases of DPP;  [D] cursor profile for the line in C. 

 

The thickness of the DPP film of Figure 5.4 was measured by nanoshaving (Figure 5.5) 

in ethanol.  A 100 × 100 nm
2
 hole was neatly shaved within the DPP film, as shown in Figure 

5.5A. The thickness of the layer measured 1.1 ± 0.3 nm corresponding to an upright orientation 

of DPP with two pyridyl groups attached to gold. Nitrogen-gold chemisorption has been 
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previously reported for SAMs terminated with cyano and nitrile end groups.
394

 Thus, for the 

natural self-assembly process of dipyridyl diphenyl porphyrins, mixed domains of both co-planar 

(lying-down) and upright orientations are observed, with a predominance of the brighter domains 

of upright DPP increasing as time progressed. Height measurements from Figure 5.4B indicate 

that coplanar domains of DPP persist in the boundary areas between the bright islands.  

 

Figure 5.5. Nanoshaved hole within a DPP film formed after 48 hours of immersion. [A] 

Contact mode AFM topograph  of a  100 x 100 nm
2
 shaved area within the film; [B] cursor 

profile for the line in A. Scan size is 260 nm. 

From liquid AFM experiments captured at 3 h and 48 h time points, the surface assembly 

of DPP begins with a coplanar orientation on Au(111) and transitions over time to produce an 

upright configuration as the surface coverage increases. For studies of the assembly of 
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porphyrins in liquid media without a drying step, round domains of stack structuress were not 

observed. Instead, liquid cell experiments reveal that a continuous monolayer is formed 

throughout the surface (Figures 5.3 and 5.4). Further studies were conducted with nanografted 

structures of n-alkanethiols/Au as a molecular ruler, to verify the thicknesses obtained with 

nanoshaving experiments, as described in the next section.   

5.3.3 Molecular Rulers: Nanografting of n-Octadecanethiol Within a Porphyrin Film 

Films of DPP porphyrins formed on Au(111) are sufficiently densely packed  that 

patterns  of n-alkanethiols can be inscribed within porphyrin films via nanografting. 

Nanografting can be described as mechanical removal of SAMs under a high force followed with 

in situ replacement of another molecule following the scanning track of the tip.
34,80

 A cross-

shaped pattern of 0.001 mM octadecanethiol (ODT), was written into the porphyrin film as 

evidenced by the topograph and lateral force images (Figure 5.6). A cross pattern of taller 

molecules of ODT surrounded by DPP film are clearly visible in the topograph (Figure 5.6A). 

The lateral force image in Figure 5.6B shows darker contrast for the methyl-terminated areas of 

the nanografted pattern of ODT, which is further evidence that a new molecule was successfully 

inscribed within the monolayer. The thickness of the porphyrin film on Au(111) was evaluated 

by comparison with the  well-known height of ODT. Since the height of ODT is known to be 2.1 

nm, ODT serve as a molecular ruler to determine the exact thickness of the porphyrin monolayer 

with angstrom precision. Both nanografting as well as nanoshaving results reveal that the 

thickness of the shorter phase of DPP porphyrin films formed in situ on Au(111) measures ~0.6 

nm, in agreement with a co-planar orientation of a single layer, whereas the taller domains 

correspond to an upright orientation that is nearly perpendicular to the surface, measuring ~1.2 

nm in thickness. 



105 

 

 
Figure 5.6. Nanografted cross pattern of octadecanethiol placed within a matrix of DPP. 

[A]Contact mode AFM topograph; [B] corresponding lateral force image; [C]cursor profile for 

the line in A; [D] molecular model showing heights of DPP and octadecanethiol.  

The thickness of the upright phase also corresponds to the dimensions a multilayer 

structure of two macrocycles in a coplanar arrangement; however we would expect to observe a 

distribution of multiple heights for the nanostructures if stacking assembly takes place rather 

than a consistent bilayer dimension. It is unlikely that only bilayer structures would form if a 

coplanar assembly mechanism were followed. Also, the strong interaction between nitrogen and 

gold chemisorption is more favorable and would tend to produce a rearrangement into an upright 

orientation.  

5.3.4 Nanografted Structures of DPP Formed Under Conditions of Spatial Confinement 

 

During nanografting, assembly of pyridyl porphyrins follows a different reaction pathway 

due to a spatial confinement, which has been reported previously for n-alkanethiol SAMs.
395-396
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Under conditions of local confinement produced during nanografting, the transient reaction 

environment is sufficiently small to prevent the molecules from assembling in a lying-down 

position. When nanografting, very small areas of freshly exposed gold are produced by scanning 

with a high force applied to the AFM tip. The bare area on the surface is confined between the 

AFM probe and thiol matrix molecules. The confined area uncovered by the AFM tip has 

dimensions less than the molecular length of the molecules, therefore n-alkanethiol molecules 

from solution do not have sufficient room on the surface to assemble in a lying-down 

configuration. Thus, the initial physisorbed phase is bypassed and molecules assemble directly 

onto gold with the favored standing-up configuration.  

Nanopatterns of pyridyl porphyrins were successfully prepared by nanografting in mixed 

solvent media, using different n-alkanethiol matrices. Example arrays of nanopatterns of pyridyl 

porphyrins produced by nanografting while scanning in a solution containing a mixture of 

solvents (1% dichloromethane in ethanol) and pyridyl porphyrins are presented in Figure 5.7.  

Automated nanografting enables direct control of parameters such as the size, arrangement, 

geometry and spacing of pyridyl porphyrins at the nanoscale. The heights of the DPP 

nanopatterns shown in first column of Figure 5.7 are shorter than the selected alkanethiol SAMs 

as evidenced by the darker contrast for the patterns in the topography images. The lateral force 

images shown on the second column of Figure 5.7 exhibit contrast differences with chemistry 

present on the surface.  Since the thickness of n-alkanethiol SAMs has been well-established, the 

matrix SAMs can be used as a molecular ruler to evaluate the orientation of new molecules. 

Side-by-side comparisons of the dimensions of nanostructures formed on gold surfaces enable 

precise measurements of the thickness of pyridyl porphyrin patterns. 

Rings patterns of pyridyl porphyrins with decreasing diameter ranging from 20-60 nm 

were nanografted within decanethiol matrix (Figure 5.7A). The theoretical height of the matrix 
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decanethiol is 1.4 nm. The cursor indicates a height difference of 0.3 ± 0.2 nm, which likely 

corresponds to an upright conformation (1.1 nm) in which both of the pyridyl groups are attached 

to the surface.  To test the reproducibility of nanografting pyridyl porphyrins, ring patterns of the 

same size (75 nm diameter) were fabricated within dodecanethiol (DDT) matrix as shown in 

Figure 5.7B.  High resolution topograph was captured after nanografting as evidenced by the 

etch pits and the lacey contours of the step edges on areas covered with dodecanethiol SAMs.  

The height difference between the DDT and pyridyl porphyrins as indicated in the cursor profile 

is 0.5 nm ± 0.2 corresponding to the expected thickness between DDT and pyridyl porphyrins if 

pyridyl porphyrins have an upright orientation on Au(111).   

An array of nine filled circles of pyridyl porphyrins (Figure 5.7C) inscribed within the 

octadecanethiol matrix displayed differences in height and surface chemistry of the pyridyl 

porphyrin patterns positioned on gold terraces. The diameter of the circular pattern is about 200 

nm. The height difference between the matrix ODT and porphyrin patterns measures 1.0 ± 0.3 

nm as indicated in the representative line profile in Figure 5.7C corresponding to the expected 

difference of 1.1 nm. The sizes of the desired patterns can be produced depending on number of 

line sweeps executed by the AFM probe. With nanografting, the width of the pattern is limited 

by the size of the AFM probe and the density of the pattern.   

5.3.5 Computer Simulation of DPP Structure on Au(111) 

 

The configurations and electronic structures of DPP on Au(111) were tested using Car-

Parrinello molecular dynamics ver. 3.11.
397

  First, DPP was optimized in the gas phase to remove 

any potential bad contacts and to create a good starting configuration for the surface studies.  

Vanderbilt Ultra-Soft pseudopotentials
398

 were employed with a kinetic energy cutoff of 35 Ry 

with a electron density cutoff threshold of 10
-6

.  The gold slab had three layers, containing 150   
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Figure 5.7. Nanopatterns of DPP nanografted within various SAM matrices. AFM topograph; 

corresponding lateral force image and line profile (from left-to-right) of DPP patterns written 

within [A] decanethiol; [B] dodecanethiol; [C] octadecanethiol matrices. 

  

atoms fixed to their crystal lattice position to save computational expense.  Periodic boundary 

conditions in the x and y directions were used. The starting configurations of the porphyrin was 

placed 3.5 angstroms away from the gold surface.  A combined geometry and electronic structure 

optimization was used to initially relax this new configuration.  Then a short 200 step CPMD 

simulation was conducted to refine the structure.  The time step used here was 0.14 fs. The co-

planar orientation of DPP has two possible flat orientations on Au(111). Both configurations had 

a slight twist in the porphyrin. 
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Figure 5.8. Different configurations and electronic structures of DPP on Au(111). [A] Flat- 

Carbon ring; [B] Flat N- ring; [C] 1-Nitrogen; [D] 2-Nitrogen 

 The outer 6-membered was brought closer to the surface with and without the nitrogen. 

For flat C-ring (Figure 5.8A), the  ring bends towards the surface with the macrocycle five 

membered ring. The hydrogen atom provides a density overlap bridge to the gold surface. The 

flat N-ring conformation exhibited similar overall configuration to Flat-C (Figure 5.8B) as the 

macrocycle 5-membered ring is also drawn towards the surface.  The nitrogen‟s density is more 

localized and competes with the pi bonds in the ring which brings a hydrogen closer to the 

surface ~2.4Å.  For porphyrin anchored on the surface with one pyridyl ring as a leg (Figure 
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5.8C), the 6-membered ring was adjusted by various angles with respect to the surface to find the 

lowest energy structure. Results show that the nitrogen density is drawn towards the surface. 

Interestingly, the hydrogen orientates towards an interstitial site on the surface. The overall 

density of DPP has increased when 2 pyridine rings are anchored to the surface (Figure 5.8D). 

Both pyridine rings twist so that the pi system and nitrogens can both become closer to the 

surface. The 5-membered macrocycle is forced to the surface and the electron density overlaps 

with the hydrogens.  

 

5.4 Conclusions 

Scanning probe-based fabrication of nanostructures of porphyrins has been problematic, 

due to the insolubility of porphyrins in solvents that are typically used as liquid imaging media. 

In this report, studies of the surface self-assembly of pyridyl-functionalized porphyrins was 

accomplished using a mixture of solvents. Unconstrained assembly of pyridyl-functionalized 

porphyrins from solution produced compact monolayers with two distinct configurations on the 

surface, exhibited by a mixture of upright and co-planar islands. Nanografted patterns of n-

alkanethiols were used as a molecular ruler to evaluate the orientations of the porphyrins on 

Au(111) through side-by-side comparisons of the dimensions of the molecules. Computer 

simulation correlates with AFM results disclosing that solution phase assembly of pyridyl-

functionalized porphyrins adapts different configurations on the surface. However with 

nanografting, DPP molecules assemble directly onto gold with a standing-up configuration due 

to a mechanism of spatially constrained self-assembly. Nanografting results demonstrated for the 

first time that pyridyl porphyrins in a dilute mixed solvent solution can assemble directly on 

Au(111) in an upright orientation. Understanding the self-organization and assembly of designed 

porphyrins will contribute to rational designs for applications in electronic and photonic devices. 
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CHAPTER 6. POLYTHIOPHENES CONTAINING IN-CHAIN 

COBALTABISDICARBOLLIDE CENTER* 

6.1 Introduction 

Carboranes, in both neutral and anionic forms, are boron clusters with delocalized 

electrons and unique properties, including high hydrophobic character, low nucleophilicity, 

electron-withdrawing nature, and exceptional chemical, thermal, and optical stabilities as a result 

of their three-dimensional aromatic character. 
399-400

Furthermore, complexation of the anionic 

open cage carborane derivatives with a variety of metal ions (e.g., Fe, Ni, and Co) leads to highly 

stable sandwich-type metalla-bis(dicarbollide) compounds. 
401-402

Depending upon the valence of 

the metal these compounds can be neutral or charged, usually with one or two negative charges. 

These metal complexes have received much interest because of their prominent role in the 

extraction of radionuclides from nuclear wastes,
403

 in molecular recognition,
404-405

 in 

biomedicine, 
406-407

and in the construction of redox-switched molecular rotors. 
408-409

For 

example, Hawthorne and co-workers have reported that nickel bisdicarbollide has a rotation 

barrier of 6 kcal/mol and that it rotates depending on the valence of the metal, when actuated by 

electrical or light energy.
409

 Several carborane-containing organic molecules have been 

synthesized in the last decades and some of these are currently finding applications in medicine 

410-412
 and in materials science.

413-414
  Furthermore, their incorporation within organic materials 

has been demonstrated to be valuable to confer novel properties upon the host matrix, such as 

high thermal and chemical stability, unique optoelectronic characteristics and an ordered 

structure. Several polymers containing carborane groups, usually linked to the host molecule by 

aromatic spacers, have been synthesized and characterized. 
415-420

 These macromolecular systems 

showed extreme resistance to combustion and a two-dimensional grid-shaped structure using the  

*Reproduced with permission from the American Chemical Society. 
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boron cage as a molecular connector. However, such materials were usually synthesized in 

several steps and did not show peculiar electronic conducting properties, which preclude them 

from certain applications, such as electrochromic and charge storage devices, and 

electroresponsive sensors. Some years ago, Teixidor‟s group 
421-424

 and ourselves 
425-429

 prepared 

novel electroconducting polypyrroles and polythiophenes functionalized with various neutral and 

anionic carboranes, either via side-chain modification or direct incorporation into the polymer 

backbone. These materials, which were electrochemically generated in one step, exhibited a 

strong enhancement of their electrochemical stability and overoxidation resistance compared 

with unsubstituted parent conducting polymers. Recently, carborane-substituted polyfluorenes 

were prepared which showed advantageous luminescent properties for light-emitting diodes.
430-

431
 

Within the attractive class of boron clusters, the metalla-bisdicarbollide complexes offer 

novel opportunities to prepare unprecedented conducting metallopolymers. Toward this goal, we 

report herein the synthesis and characterization of cobalt(III) bisdicarbollide derivatives 

covalently linked to electropolymerizable 2-oligothienyl units (Scheme 6.1). It was expected that 

oxidative coupling of the aromatic rings would lead to polythiophene films with the metal 

complexes incorporated in the main polymer chain. Metal-containing polymers have been the 

focus of intense investigations because of their potential applications in catalyses and in ion or 

small molecule binding. 
432

A central issue in the development of conducting metallopolymers is 

the control of the interactions between metal centers and the conducting organic polymer 

backbone. Compared with other conducting polymers bearing a metal center, either through a 

spacer arm or by electrostatic entrapment, the presence of the metal center in the conjugated 

chain of the polymer is expected to significantly impact on the electronic conductivity and the 

magnetic and optical properties of such materials. Moreover, in addition to these interesting 

http://pubs.acs.org/doi/full/10.1021/am9007424#sch1
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effects, the presence of in-chain metalla-bisdicarbollide complex may also confer improved 

thermal and electrochemical stabilities to the host conducting material, as previously 

demonstrated for other carborane-functionalized polypyrroles 
421,423,425,427,429

and 

polythiophenes.
428-429

The new conducting polymers resulting from electropolymerization of the 

substituted cobaltabisdicarbollides have been characterized by electrochemistry, UV−vis 

spectroscopy and conducting probe atomic force microscopy in order to provide significant 

insights on the effects of the bound cobaltabisdicarbollide moiety on the electronic properties of 

the resulting conducting materials. Such metallopolymers were used for the electrocatalytic 

reduction of H
+
 and the efficiency of the electrocatalytic process was found to be highly 

dependent on the thickness of the metallopolymer film. 

 
Scheme 6.1 Synthesis of Oligothiophene-Disubstituted Cobaltabisdicarbollide Compounds 

6.2 Experimental Section 

Synthesis of Oligothiophene-Disubstituted Cobaltabisdi-carbollide Compounds. General  

All reactions were monitored by thin layer chromatography (TLC) using 0.25 mm silica gel 

plates with or without UV indicator (60F-254). The carborane clusters were detected by 

emerging into a solution of PdCl2 in aqueous HCl (1 g PdCl2 in 80 mL water and 20 mL 

concentrated HCl) and heated until black spot(s) was/were seen on TLC. Silica gel from Sorbent 

Technologies 32−63 μm was used for flash column chromatography. 
1
H and 

13
C NMR were 

obtained on either a DPX-250 or a ARX-300 Bruker spectrometer. Chemical shifts (δ) are given 

in ppm relative to CDCl3 (7.26 ppm, 
1
H; 77.2 ppm, 

13
C), CD2Cl2 (5.32 ppm,

1
H; 77.2 ppm, 

13
C) 

or acetone-d6 (2.05 ppm,
1
H; 54.0 ppm, 

13
C). MALDI-TOF mass spectra were obtained on a 
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Bruker ProFLEX III MALDI-TOF mass spectrometer using positive mode and dithranol as the 

matrix. High-resolution mass spectra were obtained by using ESI-TOF with the negative mode 

on an Applied Biosystems QSTAR XL quadrupole time-of-flight mass spectrometer. The isotope 

peaks were matched with the calculated patterns; only the most abundant peaks for each 

compound are listed. All solvents were obtained from Fisher Scientific (HPLC grade) and used 

without further purification. Toluene was dried over sodium metal and distilled. Decaborane was 

obtained from Katchem, Inc. (Czech Republic) and all other reagents were obtained from Sigma-

Aldrich and used without further purification. 

Compound 2a, Thiophene-2-o-carborane. Diethylsulfide (4 g, 44 mmol) was added under N2 

to decaborane (2.44 g, 20 mmol) in 30 mL of dry toluene. The mixture was stirred at 40 °C for 3 

h and then at 60 °C for another 2 h. A solution of commercially available 2-ethynylthiophene 1a 

(2.16 g, 20 mmol) in 30 mL of dry toluene was added and the final reaction mixture was refluxed 

for 2 days. The reaction was cooled to room temperature and the solvent was evaporated. 

Methanol (50 mL) was added and the reaction mixture was stirred for 30 min. After evaporation 

under reduced pressure, the resulting residue was purified by silica gel chromatography, using 

20% dichloromethane in hexane as the eluent. The first major fraction was collected and dried 

under a vacuum, giving white crystals of 2a (2.31 g) in 53 % yield. 
1
H NMR (CDCl3, 250 MHz) 

δ 7.25−7.27 (1H, m, ArH), 7.20−7.21 (1H, m, ArH), 6.90−6.92 (1H, m, ArH), 3.86 (1H, s, CH), 

1.50−3.50 (br, 10H, BH). 
13

C NMR (CDCl3, 63 MHz) 137.2, 130.4, 128.3, 127.7, 72.4, 63.7. 
11

B 

NMR (CDCl3, 128 MHz, BF3.OEt2)δ −3.3 (d, 
1
J(B,H) = 146 Hz, 1B) −6.6 (d, 

1
J(B,H) = 147 Hz, 

1B), −10.0 to −16.0 (br m, 8B). MALDI-TOF [M + H]
+
 226.3. HRMS(ESI) m/z calcd for 

C6H13B10S, 225.1739; found, 225.1746. 

Compound 2b, 2,2′-Bithiophene-5-o-carborane. To a 100 mL reaction flask was added 

decaborane (0.61 g, 5 mmol), 2-ethynyldithiophene 1b (0.57 g, 3 mmol), dry CH3CN (4 mL), 
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and dry toluene (16 mL). The reaction mixture was stirred under N2 at 80 °C for 24 h. After it 

was cooled to room temperature, methanol (10 mL) was added to the reaction mixture and stirred 

for 30 min. After removal of the solvents under vacuum, the residue was purified by silica gel 

chromatography, using 10% dichloromethane in hexane as the eluent. The first major fraction 

was collected and dried under vacuum, giving a light brown solid (0.70 g) in 76 % yield. 
1
H 

NMR (CDCl3, 250 MHz) δ 7.27 (1H, d, J = 5.10 Hz, ArH), 7.18 (1H, d, J = 3.00 Hz, ArH), 7.09 

(1H, d, J = 3.73 Hz, ArH), 7.03 (1H, t, J = 4.48 Hz, ArH), 6.94 (1H, d, J = 3.71 Hz, ArH), 3.86 

(1H, s, CH), 1.50−3.50 (br, 10H, BH).
13

C NMR (CDCl3, 63 MHz) 140.4, 136.0, 135.2, 131.1, 

128.5, 126.2, 125.3, 123.8, 72.4, 63.8. 
11

B NMR (CDCl3, 128 MHz, BF3.OEt2)δ −3.4 (d, 
1
J(B,H) 

= 145 Hz, 1B), −6.5 (d, 
1
J(B,H) = 141 Hz, 1B), −10.0 to −16.0 (br m, 8B). MALDI-TOF [M + 

H]
+
 309.5. HRMS (ESI) m/z calcd for C10H15B10S2, 307.1630; found, 307.1623. 

Compound 2c, 2,2′,5′,2′′-Terthiophene-5-o-carborane. This compound was prepared and 

isolated as described above for the synthesis of 2b, starting from 1c (0.25 g, 0.92 mmol) and 

decaborane (0.20 g, 1.62 mmol). The result was a light yellow solid (0.19 g) in 53% yield. 
1
H 

NMR (CD2Cl2, 300 MHz) δ 7.28 (1H, br s, ArH), 7.20 (1H, br s, ArH), 7.05−7.10 (4H, m, ArH), 

6.95 (1H, br s, ArH), 3.88 (1H, s, CH), 1.50−3.50 (br, 10H, BH).
13

C NMR (CD2Cl2, 63 MHz) 

139.9, 138.0, 136.9, 134.9, 134.5, 131.2, 128.4, 125.9, 125.5, 124.8, 124.6, 123.6, 72.5, 64.0. 
11

B 

NMR (CDCl3, 128 MHz, BF3.OEt2) δ −3.2 (d, 
1
J(B,H) = 143 Hz, 1B), −6.4 (d, 

1
J(B,H) = 148 

Hz, 1B), −10.0 to −16.0 (br m, 8B). MALDI-TOF [M + H]
+
 391.3. HRMS(ESI) m/z calcd for 

C14H17B10S3, 390.1468; found, 390.1475. 

Compound 3a, tetrabutylammonium Thiophene-2-o-nido-carborane. To a solution of 

compound 2a (1.13 g, 5.0 mmol) in 50 mL THF was added 10 mL of n-Bu4NF solution (1.0 M 

in THF). The reaction mixture was stirred at 60 °C for 2 h, until no starting material was visible 

by TLC, and then poured into 50 mL of water and extracted with ethylacetate (3 × 50 mL). The 
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organic layers were dried over anhydrous Na2SO4 and concentrated under vacuum. The resulting 

residue was purified by passing through a pad of silica gel, using ethylacetate for elution. The 

title compound was obtained as a white power (2.14 g) in 94% yield. 
1
H NMR (acetone-d6, 250 

MHz) δ 6.95−6.96 (1H, m, ArH), 6.74−6.76 (1H, m, ArH), 6.65−6.67 (1H, m, ArH), 3.37−3.39 

(8H, m, CH2), 3.35 (1H, br, CH), 1.75−1.77 (8H, m, CH2), 1.50−3.50 (br, 9H, BH), 1.37−1.45 

(8H, m, CH2), 0.91−1.01 (12H, m, CH3), −2.03−2.50 (1H, br, BH). 
13

C NMR (CDCl3, 100 MHz) 

150.9, 126.3, 121.9, 121.5, 60.3, 59.0, 24.0, 21.0, 19.7, 13.6. 
11

B NMR (CDCl3, 128 MHz, 

BF3.OEt2) δ −10.0 to −16.0 (br m, 3B), −18.0 to −20.0 (br m, 3B), −24.6 (d, 
1
J (B,H) = 149 Hz, 

1B), −34.7(dd, 
1
J (B,H) = 43.8 Hz, 

1
J (B,H) = 43.7 Hz, 1B), −37.6 (d, 

1
J(B,H) = 138 Hz, 1B). 

HRMS (ESI) [M-NBu4]
−
 m/z calcd for C6H14B9S, 214.1657; found, 214.1664. 

Compound 3b, Tetrabutylammonium 2,2′-Bithiophene-5-o-nido-carborane. This compound 

was prepared as described above for the preparation of 3a, from 2b (0.62 g, 2.0 mmol) and 4.0 

mL of nBu4NF 1.0 M solution in 20 mL of THF, in 95% yield (1.02 g). 
1
H NMR (acetone-d6, 

250 MHz) δ 7.27 (1H, dd, J = 1.11 Hz, J = 4.02 Hz, ArH), 7.08 (1H, dd, J = 1.07 Hz, J = 2.50 

Hz, ArH), 6.98 (1H, dd, J =5.04 Hz, J =1.43 Hz, ArH), 6.88 (1H, d, J = 3.69 Hz, ArH), 6.58 (1H, 

d, J = 3.73 Hz, ArH), 3.36−3.43 (8H, m, CH2), 2.87 (1H, br s, CH), 1.73−1.83 (8H, m, CH2), 

1.50−3.50 (br, 9H, BH), 1.35−1.46 (8H, m, CH2), 0.91−1.00 (12H, m, CH3), −2.51 (br, 1H, 

BH).
13

C NMR (acetone-d6, 63 MHz) 152.1, 138.8, 133.5, 128.6, 124.3, 123.7, 123.2, 122.9, 

80.5, 77.1, 59.2, 24.3, 20.3, 13.8. 
11

B NMR (CDCl3, 128 MHz, BF3.OEt2) δ −10.0 to −16.0 (br 

m, 3B), −18.0 to −20.0 (br m, 3B), −24.6 (d, 
1
J (B,H) = 149 Hz, 1B), −34.7 (dd, 

1
J (B,H) = 43.8 

Hz, 
1
J (B,H) = 43.7 Hz, 1B), −37.6 (d, 

1
J(B,H) = 138 Hz, 1B). HRMS (ESI) [M-NBu4]

−
 m/z 

calcd for C10H16B9S2, 298.1582; found, 298.1586. 

Compound 3c, Tetrabutylammonium 2,2′,5′,2′′-Terthio-phene-5-o-nido-carborane. This 

compound was prepared as described above for the preparation of 3a, from 2c (0.18 g, 0.46 
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mmol) and 1.0 mL of nBu4NF 1.0 M solution in 5 mL of THF, in 85% yield (0.25 g).
1
H NMR 

(acetone-d6, 250 MHz) δ 7.43 (1H, d, J = 4.91 Hz, ArH), 7.25 (1H, d, J = 3.41 Hz, ArH), 7.16 

(1H, d, J = 3.71 Hz, ArH), 7.05−7.08 (2H, m, ArH), 6.95 (1H, d, J = 3.61 Hz, ArH), 6.59 (1H, d, 

J = 3.64 Hz, ArH), 3.40−3.47 (8H, m, CH2), 3.02 (1H, br s, CH), 1.75−1.8 (8H, m, CH2), 

1.50−3.50 (br, 9H, BH), 1.36−1.44 (8H, m, CH2), 0.93−0.99 (12H, m, CH3), −2.40 (br, 1H, 

BH).
13

C NMR (acetone-d6, 63 MHz) 152.1, 137.2, 137.1, 135.2, 132.6, 128.6, 125.3, 124.9, 

124.1, 123.7, 123.6, 122.8, 80.8, 67.7, 59.0, 24.2, 20.0, 13.6. 
11

B NMR (CDCl3,128 MHz, 

BF3.OEt2) δ −10.0 to −16.0 (br m, 3B), −18.0 to −20.0 (br m, 3B), −24.6 (d, 
1
J (B,H) = 149 Hz, 

1B), −34.7 (dd, 
1
J (B,H) = 43.8 Hz, 

1
J (B,H) = 43.7 Hz, 1B), −37.6 (d, 

1
J(B,H) = 138 Hz, 1B). 

HRMS (ESI) [M-NBu4]
−
 m/z calcd for C14H18B9S3, 380.1462; found, 380.1466. 

Compound 4a, Tetrabutylammonium Cobalt(III) Bis-(thiophene-2-o-nido-carborane). 

Compound 3a (458 mg, 1 mmol), tBuOK (1.12 g, 10 mmol), and anhydrous CoCl2 (1.35 g, 10 

mmol) were mixed in a 50 mL Schlenk reaction tube and 10 mL of anhydrous dimethoxyethane 

(DME) was added via syringe. The reaction was refluxed for 30 h under nitrogen, and then 

cooled to room temperature and filtered to remove the inorganic salt. The filtrate was partitioned 

between dichloromethane and n-Bu4NHSO4 aqueous solution, dried under a vacuum, and 

purified by silica gel chromatography using dichloromethane as the eluent. The first major 

fraction was collected and dried under a vacuum, giving a yellow powder (251 mg) in 70 % 

yield. 
1
H NMR (acetone-d6, 250 MHz) δ 7.22−7.24 (1H, m, ArH), 7.13−7.15 (1H, m, ArH), 

6.89−6.91 (2H, m, ArH), 6.75−6.78 (1H, m, ArH), 6.63−6.64 (1H, m, ArH), 4.27 (1H, s, CH), 

3.41−3.47 (8H, m, CH2), 3.22 (1H, s, CH), 1.76−1.78 (8H, m, CH2), 1.50−3.50 (18H, br, BH), 

1.37−1.51 (8H, m, CH2), 0.95−1.01 (12H, m, CH3). 
13

C NMR (CDCl3, 100 MHz) 125.7, 125.8, 

123.2, 59.1, 30.9, 24.1, 19.7, 13.7. 
11

B NMR (CDCl3, 128 MHz, BF3.OEt2) δ 9.0−30.0 (br m, 
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max at 5.9, −0.5, −8.8 and −30.8, 18B) ppm. HRMS (ESI) [M-NBu4]
−
 m/z calcd for 

C12H26B18S2Co, 488.26; found, 488.2628. 

Compound 4b, Tetrabutylammonium Cobalt(III) Bis(2,2′-bithiophene-5-o-nido-

carborane). This compound was prepared as described above for the synthesis of 4a, from 3b 

(541 mg, 1 mmol), tBuOK (1.12 g, 10 mmol), and anhydrous CoCl2 (1.35 g, 10 mmol), and was 

obtained (0.28 g) in 63% yield as a dark yellow solid. 
1
H NMR (acetone-d6, 250 MHz) δ 

7.19−7.28 (3H, m, ArH), 7.06−7.09 (2H, m, ArH), 6.98−7.04 (2H, m, ArH), 6.79 (2H, br s, 

ArH), 6.41 (1H, br s, ArH), 4.17 (1H, br s, CH), 3.32 (1H, br s, CH), 3.07−3.11 (8H, m, CH2), 

1.60−1.62 (8H, m, CH2), 1.50−3.50 (18H, br, BH), 1.37−1.46 (8H, m, CH2), 1.00−1.06 (12H, m, 

CH3). 
13

C NMR (CDCl3, 100 MHz) 127.6, 127.4, 124.7, 123.5, 123.2, 122.8, 59.2, 43.0, 24.0, 

19.8, 13.7. 
11

B NMR (CDCl3, 128 MHz, BF3.OEt2) δ 9.0−30.0 (br m, max at 5.9, −0.5, −8.8 and 

−30.8, 18B) ppm. HRMS (ESI) [M-NBu4]
−
 m/z calcd for C20H30B18S4Co, 652.2346; found, 

652.2362. 

Compound 4c, Tetrabutylammonium Cobalt(III) Bis-(2,2′,5′,2′′-terthiophene-5-o-nido-

carborane). This compound was prepared as described above for the synthesis of 4a, from 3c 

(0.22 mg, 0.35 mmol), tBuOK (0.23 g, 2 mmol), and anhydrous CoCl2 (0.27 g, 2 mmol), and was 

obtained (0.108 g) in 61% yield as a dark yellow solid. 
1
H NMR (acetone-d6, 250 MHz) δ 

7.40−7.43 (2H, m. ArH), 7.25−7.27 (2H, m, ArH), 7.16−7.18 (2H, m, ArH), 7.05−7.08 (4H, m, 

ArH), 6.81−6.97 (2H, m, ArH), 6.50−6.61 (2H, m, ArH), 3.60 (1H, br s, CH), 3.40−3.47 (8H, m, 

CH2), 3.10 (1H, br s, CH), 1.73−1.81 (8H, m, CH2), 1.50−3.50 (18H, br, BH), 1.37−1.45 (8H, m, 

CH2), 0.95−1.00 (12H, m, CH3). 
13

C-NMR (CDCl3, 100 MHz) 138.1, 137.9, 135.1, 132.5, 127.5, 

126.2, 124.8, 123.9, 123.5, 122.7, 68.7, 58.9, 42.6, 24.2, 20.0, 13.6. 
11

B NMR (CDCl3, 128 MHz, 

BF3.OEt2) δ 9.0−30.0 (br m, max at 5.9, −0.5, −8.8 and −30.8, 18B) ppm. HRMS (ESI) [M-

NBu4]
−
 m/z calcd for C28H34B18S6Co, 816.2129; found, 816.2115. 
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6.2.1 Electrochemical Characterizations  

Linear potential sweep cyclic voltammetry experiments were performed with an Autolab 

PGSTAT 20 potentiostat from Eco Chemie B.V., equipped with General Purpose 

Electrochemical System GPES software (version 4.5 for Windows). The working electrode was a 

1 mm diameter platinum or glassy carbon disk (area: 8 × 10
−3

 cm
2
) and the counter electrode was 

a glassy carbon rod. Potentials were relative to the system 1 × 10
−2

 M Ag
+
 | Ag in acetonitrile 

used as the reference electrode (+0.29 V vs aqueous SCE). All reported potentials are referred to 

SCE (± 0.01 V). Tetra-n-butylammonium hexafluorophosphate Bu4NPF6 was purchased from 

Fluka (puriss, electrochemical grade) and was used at 0.1 mol L
−1

 as supporting electrolyte in 

acetonitrile (anhydrous, analytical grade from SDS). The (CH3CN + 0.1 M Bu4NPF6) electrolytic 

medium was dried over activated, neutral alumina (Merck) for 30 min, under stirring, and under 

argon. Alumina was previously activated at 450 °C under a vacuum for several hours. About 7 

mL of this solution was transferred with a syringe into the electrochemical cell prior to 

experiments. All electrochemical measurements were carried out inside a homemade Faraday 

cage at room temperature (20 ± 2°C) and under a constant flow of argon. 

6.2.2 UV−Visible Spectroelectrochemistry  

UV−visible absorption spectra were recorded on a Shimadzu Multispec-1501 

spectrophotometer (190−1100 nm scan range) interfaced with a microcomputer for data 

acquisition and using quartz SUPRASIL cells from Hellma (1 cm pathlength). The polymer films 

were grown on an indium tin oxide (ITO)-coated glass slide electrode. 

6.2.3 Computational Details  

Geometry optimizations of 4a−c models in a cisoid conformation were carried out with 

density functional theory (DFT)
433-434

 calculations and performed with the hybrid Becke three-

parameter exchange functional 
435-437

 and the Lee−Yang−Parr nonlocal correlation functional 
438
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(B3LYP) implemented in the Gaussian 03 (Revision D.02) program suite 
439

 using the LanL2DZ 

basis set 
440-442

 and the default convergence criteria implemented in the program. The figures 

were generated with MOLEKEL 4.3. 
443

 

6.2.4 Conducting Probe Atomic Force Microscopy (AFM)  

Samples of doped and undoped cobaltabisdicarbollide-functionalized polythiophene films 

were prepared on gold surfaces on glass (EMF Corporation, Ithaca, NY) using controlled 

potential electropolymerization. The electropolymerization potentials were previously optimized 

using cyclic voltammetry experiments with millimetric platinum electrodes. The substrates have 

a gold coating (1000 Å) on a 50 Å layer of Cr formed on glass. Surface characterizations were 

accomplished in ambient conditions using a model 5500 scanning probe microscope (SPM) 

equipped with Picoscan v5.3.3 software (Agilent Technologies, Inc., Chandler, AZ). 

Characterizations of the surface morphology were accomplished using intermittent or tapping 

mode atomic force microscopy (AFM). Tapping mode AFM images were acquired at a scan rate 

of 3.0 nm s
−1

 rastered for 512 lines per frame. Monolithic silicon probes (PPP-NCL) from 

Nanosensors (Neuchtel, Switzerland) were used for tapping mode experiments, with an average 

force constant of 48 N m
−1

 and resonant frequency of 172 kHz. A multipurpose SPM scanner 

with a scanning area of 11 × 11 μm
2
 was used for imaging, with interchangeable nose cones for 

either tapping mode or conductive probe AFM experiments. For tapping-mode, the nose cone 

contains a small piezoceramic chip for tip actuation. For current imaging and I−V measurements, 

a preamp is integrated within the nose cone. Conductive probe AFM experiments were 

accomplished using a V-shaped conductive AFM tip (CSC11/Ti-Pt, Micromasch, San Jose, CA) 

coated with 10 nm Pt layer on a sublayer of 20 nm Ti. All AFM images were processed with free 

and open source software for data visualization and analysis, Gwyddion (version 2.5) supported 

by the Czech Metrology Institute (http://gwyddion.net/). Gwyddion is a modular program for 
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SPM data visualization and analysis. Estimates of surface coverage were obtained with 

UTHSCA Image Tool.
444

 The AFM current images were converted to grayscale bitmaps and a 

threshold value was selected visually for conversion to black and white pixels. The percentage of 

colored pixels provided a relative estimate of surface coverage. 

6.3 Results and Discussions 

6.3.1 Synthesis of Oligothiophene-Disubstituted Cobaltabisdicarbollide Compounds  

As shown in Scheme 6.1, compounds 2a−c were synthesized in 53−76% yield from 

decaborane, ethyl sulfide and the terminal thienylacetylenes 1a−c. 
445-446

 Deboronation of the 

ortho-carborane cages of 2a−c using nBu4NF 
447

 gave the corresponding nido-carborane 

derivatives 3a−c as the nBu4N
+
 salts, in almost quantitative yields. The cobalt(III) complexes 

4a−c were synthesized in a two-step/one-pot procedure, by mixing tBuOK and Co(OAc)2 in 

dimethoxyethane, 
448

 followed by air oxidation in 61−70% overall yields. The target complexes 

4a−c were characterized by NMR and HRMS, which gave the expected isotope pattern 

distributions. 

6.3.2 Electrochemical Characterization of Oligothiophene-Disubstituted 

Cobaltabisdicarbollides and Corresponding Conducting Polymer Films  

Within the investigated potential range −2.0/2.3 V vs SCE, all compounds show redox 

activity in CH3CN medium both due to the reversible reduction of Co(III) to Co(II) and to the 

oxidation of the thiophene rings (Figure 6.1 and Table 6.1). This assignment is consistent with 

the results of DFT calculations (Figure 6.2) that show a significant metal character in the 

LUMOs and a major oligothiophene character in the HOMOs of 4a−c. First, the reversible one-

electron reduction of Co(III) to Co(II) occurs between −1.2 and −1.0 V vs SCE for the three 

complexes and unexpectedly gives rise to two closely spaced systems for 4a and 4b and a single 

broad system for 4c. The values of the formal potential E°′ corresponding to each system are 

http://pubs.acs.org/doi/full/10.1021/am9007424#sch1
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listed in Table 6.1 and the cyclic voltammogram of 4a is shown in Figure 6.1 as a representative 

example. The separation between the two formal potentials ΔE°′ is found to decrease with 

increasing the number of thiophene rings linked to the cobaltabisdicarbollide moiety. It is 

obvious that the second system cannot be assigned to the reduction of Co(II) to Co(I), as this 

process is observed at much more negative potentials, below −2.0 V vs SCE. Moreover, the 

Co(III)/Co(II) process of the unsubstituted cobaltabisdicarbollide is characterized by a single 

reversible wave at E°′ = −1.34 V vs SCE. 
407,449

 In the case of our study, the presence of two 

closely spaced systems is directly connected to the presence of the 2-oligothienyl substituents. 

Based on our electrochemical data, it can be proposed that the reduction of 

oligothienylcobaltabisdicarbollide complexes involves two redox conformers, both the relative 

stability and the proportion of which are strongly dependent on the number of bound thiophene 

rings (Scheme 6.2). Indeed, from Scheme 6.2, the parameter ΔE°′ can be written as a function of 

the equilibrium constants (eq 1).  

 

 

Although rotational conformers of nickel- 
408-409,450

 and cobalt-bis(dicarbollide)complexes 
451

 

have been demonstrated by Hawthorne and Teixidor et al. respectively, electrochemical evidence 

of such systems has not been reported so far, to the best of our knowledge. Further investigations 

are required in order to define the structure of the redox conformers involved in the reduction of 

these oligothienylcobaltabisdicarbollide complexes. The LUMOs of 4a−c have an antibonding 

character between the dxz or dyz-type metal atomic orbital and the pπ-type orbitals of the carbon 

atoms in the two dicarbollide cages. Populating this orbital may then trigger the relative rotation 

of the cages around the metal towards a more stable redox conformer. In addition, as the length 

of the oligothiophene substituents increases in 4a−c, the calculated nature of the LUMO becomes 

http://pubs.acs.org/doi/full/10.1021/am9007424#tbl1
http://pubs.acs.org/doi/full/10.1021/am9007424#fig1
http://pubs.acs.org/doi/full/10.1021/am9007424#eq1
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less centered on the metallabisdicarbollide and more delocalized on the oligothiophene 

substituents. We note that this correlates well with the observed decrease in ΔE°′ values in 4a−c, 

Table 6.1. 

 
 

Figure 6.1 Cyclic (solid line) and differential pulse (dotted line) voltammograms of 4a at 1 × 

10
−2

     M in CH3CN + 10
−1

 M  Bu4NPF6 (0.1 V s
−1

). 

 

Table 6.1 Cyclic Voltammetry Data of Oligothienylcobaltabisdicarbollide Complexes at 1 × 

10
−2

 M (except for 4c, 5 × 10
−3

 M) in CH3CN + 10
−1

 M Bu4NPF6; Potential Scan Rate = 0.1 V 

s
−1

 

 

Compound 

 

Reduction 

 

Oxidation 

 

E°‟ / V vs SCE 
a 

 

 

Epa / V vs SCE 
b 

 
 

4a 

4b 

c 

 

-1.06 (78); -1.19 (83) 

-1.03 (60); -1.12 (60) 

-1.07 (114) 

 

1.605 

1.21 (sh); 1.37; 1.58 (sh); 1.85 (sh); 2.18 

0.88; 0.98; 1.24; 1.49; 1.75 (sh) 
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a
 Average of anodic and cathodic peak potentials; the peak-to-peak separation in mV is indicated 

between brackets. 
b 

Irreversible processes; sh = shoulder. 

 

Figure 6.2 HOMOs and LUMOs of 4a−c from DFT calculations. 

 
 

Scheme 6.2 Square Scheme Depicting the Different Species Involved in the Reduction of 

Oligothienylcobaltabisdicarbollide Complexes.
a a

E°′a and E°′b are the formal potentials 

corresponding to the Co(III)/Co(II) couple of the two conformers denoted “a” and “b”, 

respectively. KCo(III) and KCo(II) are the related equilibrium constants between the two conformers 

for the Co(III) and Co(II) forms. 
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Now, oxidation of these compounds is characterized by a single irreversible peak at ca. 

1.6 V vs SCE for 4a (Figure 6.1) and multiple irreversible peaks in the range 1.2−2.2 V and 

0.9−1.75 V for 4b and 4c respectively (Figure 6.3A,B). The irreversible nature of anodic electron 

transfer steps at all investigated potential scan rates (0.02−1 V s
−1

) is consistent with the 

multielectronic oxidation of the 2-oligothienyl rings into reactive radical cation species. 

Furthermore, the oxidation potentials of these systems are found to decrease in the order 4a > 4b 

> 4c, in agreement with the lengthening of the linked π-conjugated segment and with the result 

of DFT calculations (Table 6.1 and Figure 6.2). The electrochemical oxidation of 4b and 4c leads 

to the formation of conducting polymer deposits on the electrode surface. Such films could be 

electrogenerated either potentiodynamically or potentiostatically with no significant effect of the 

electropolymerization method on their respective electrochemical responses.  

Representative cyclic voltammograms corresponding to the potentiodynamical 

electropolymerization of 4b and 4c are shown in Figure 6.3C, D. These are characterized by the 

regular growth of a new system at less positive potentials. In contrast to the facile 

electropolymerization of 4b and 4c, 4a does not yield a conducting polymer deposit regardless of 

the tested experimental conditions (by changing the monomer concentration, the oxidation 

potential or the solvent). Instead, a poorly electroactive film is electrogenerated, yielding the 

gradual passivation of the electrode surface. Such a situation has already been encountered in the 

case of the anodic electrochemistry of other redox-active metallic systems incorporating 2-

thienyl units 
452-453

 and can be explained by the high reactivity of the thiophene radical cation in 

close proximity of the cobaltabisdicarbollide unit which undergoes a rapid decomposition. DFT 

calculations indicate that the HOMO of 4a has a mixed and balanced character between a typical 

organic thiophene contribution, consistent with a possible electropolymerisation, and a bonding 
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contribution between a dxz or dyz-type metal atomic orbital and the pπ-type orbitals of the carbon 

atoms in the two dicarbollide cages (Figure 6.2) 

 
Figure 6.3 Oxidative cyclic voltammograms of (A) 4b at 1 × 10

−2
 M and (B) 4c at 5 × 10

−3
 M in 

CH3CN + 0.1 M Bu4NPF6. Potentiodynamical growth of (C) poly(4b) and (D) poly(4c). 

Potential scan rate: 0.1 V s
−1

. 

Removing an electron from such an orbital may explain the decomposition of the 

cobaltabisdicarbollide bridges in the resulting polymer deposit. Hence, the theoretical data are 

consistent with the experimental passivation of the electrode with an insulating material after 

anodic oxidation of 4a. As the length of the oligothiophene substituents increases, in 4b and 4c, 

the metallic and dicarbollide cage carbon atoms contributions in the HOMO decrease 

dramatically so that the highest occupied frontier orbitals of 4b and 4c can be considered as 

almost purely oligothiophene-based. This corroborates the observed electropolymerisation of 

these oligothiophenes and the stability (through the robustness of the cobaltabisdicarbollide  

bridges) and conductivity of the resulting polymers based on 4b and 4c. 
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Figure 6.4 Electrochemical response of the electrogenerated poly(4b) in CH3CN + 0.1 M 

Bu4NPF6 at 0.1 V s
−1

. The consumed electropolymerization charge is 12.5 (A) and 64 mC cm
−2

 

(B). (C) Corresponding Ipc vs v plots for the Co(III)/Co(II) process as a function of the film 

electropolymerization charge. (D) Corresponding logIpa vs logv for the p-doping/undoping 

process of poly(4b) as a function of the film electropolymerization charge. 

 

Following their electrosynthesis, the electroactive poly(4b) and poly(4c) films are 

examined in a monomer-free electrolytic medium. First, the electrochemical response of 

poly(4b) in oxidation is characterized by a broad reversible system at E°′ = 0.80−0.85 V vs SCE 

corresponding to the p-doping/undoping of the expected quaterthienyl segments (Figure 6.4). 

The oxidation of sexithienyl segments in poly(4c) is characterized by two quasi-reversible redox 
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processes at 0.72 and 1.00 V vs SCE (Figure 6.5). To evaluate the mechanism that controls the 

charge transport in poly(4b) and poly(4c), the anodic peak current intensities Ipa corresponding to 

the p-doping process were plotted as a function of the potential scan rate, v, in a logarithmic 

form. Representative plots are shown in Figure 6.4D for poly(4b) but quite similar plots are also 

obtained for poly(4c). The values of the slope for thin films are ca. 1.0, as expected for surface-

immobilized electroactive species. 
454

 A decrease in the slope from 1.0 to ca. 0.8 is observed 

upon increasing the film thickness. Ideally, a slope of 0.5 is obtained for semiinfinite diffusion-

controlled process. These results indicate that for thick films the charge transport mechanism in 

poly(4b) and poly(4c) becomes controlled by the diffusion of electrolyte counterions across the 

polymer film to ensure the electroneutrality of the material. The doping level δ
282

of poly(4b) and 

poly(4c) is estimated respectively at 0.30−0.35 and 0.20−0.25 positive charge per monomer (i.e., 

quaterthienyl and sexithienyl respectively) unit and is somewhat independent on the film 

thickness. Compared with unsubstituted polythiophene, the oxidation level of both polymers is 

much lower, which demonstrates the prominent role of the incorporated cobaltabisdicarbollide 

center on the ion transport in these films. On the basis of these values of δ, the 

oxidation/reduction of such polymers is expected to involve the transport of electrolyte cations 

(in our case, Bu4N
+
) to neutralize the negative charge of the metallic center, as opposed to the 

transport of counteranions as commonly observed for the doping of polythiophenes. 

Now, we shall turn towards the electrochemical behavior of these polymers when the potential is 

scanned towards negative potentials. As shown in Figure 6.4A for poly(4b), a perfectly 

reversible system is observed in reduction at −1.08 V corresponding to the Co(III)/Co(II) couple. 

For thin films, the peak-to-peak separation and the full width at half- maximum (fwhm) 

measured at low scan rates (typically 0.05 V s
−1

) are less than 20 mV and ca. 130 mV, 

respectively. 
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Figure 6.5 Electrochemical response of the electrogenerated poly(4c) in CH3CN + 0.1 M 

 Bu4NPF6 at 0.1 V s
−1

. The consumed electropolymerization charge is 25 mC cm
−2

. 

 

These values are very close to the theoretically predicted values as a zero peak-to-peak 

separation and a fwhm of 90 mV are expected for a surface-confined monoelectronic redox 

center. 
454

 Consistent with that, the peak currents are found to vary linearly with the potential 

scan rate v (Figure 6.4C). Interestingly, upon increasing the film thickness, the system assigned 

to Co(III)/Co(II) becomes less and less visible and the variation of the electrochemical 

parameters are all consistent with a decrease in the electron-transfer rate. Indeed, the peak-to-

peak separation and the fwhm increase to 130 and >270 mV respectively, and a deviation from 

linearity is observed in the peak currents vs v plots. Similar effects of the film thickness on the 

Co(III)/Co(II) response are obtained for poly(4c). Nevertheless, even in thin films, the 

Co(III)/Co(II) system is much less reversible than that observed for poly(4b). Indeed, the 

cathodic step ascribed to the Co(III) reduction is more intense than its related anodic component 
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(Figure 5). Such intriguing effects of the film thickness on the electroactivity of the surface-

confined Co(III)/Co(II) couple have already been reported by others with cobalt salen-based 

polymers. 
455-456

 

It must be kept in mind that the cobalt-centered redox process occurs within a potential 

range where the oligothienyl units are in their neutral reduced state, i.e., in their electronically 

insulating state. Consequently, the reduction of Co(III) to Co(II) is expected to occur by electron 

hopping between cobalt centers down to the electrode surface and involves cation migration 

through the film in order to ensure the electroneutrality of the material. For thick films, a large 

amount of cobalt centers within the film are not electrochemically addressable because 

electrolyte cations cannot migrate up to them. Such mass transport constraints can be explained 

by the more compact and less rough structure of the reduced polymer compared with the 

polymer in its oxidized state, as evidenced by their AFM analysis (vide infra). 

6.3.3 UV−Visible Spectroscopy Analysis of Polymers  

To gain further insight into the electronic properties of cobaltabisdicarbollide-substituted 

polythiophenes, a UV-vis spectroscopic analysis was performed focusing on the electroactive 

polymers electrogenerated from 4b and 4c. First, the UV-vis spectrum of compounds 4a−c in 

CH2Cl2 consists of four absorption bands within 230−500 nm. The two bands at 260−280 nm 

and 460−500 nm can be ascribed to the cobaltabisdicarbollide center,
401,405,457

the second less 

intense one being due to the d−d transition in the Co metal. The bands observed at 250, 325, and 

373 nm in the spectra of 4a, 4b, and 4c respectively are assigned to the π−π* transition in the 

aromatic substituents. However, compared with the unsubstituted parent oligothiophenes,
458

 

these bands are red-shifted by ca. 15−25 nm in the metallic complexes. Such features indicate a 

weak electronic delocalization through through the cobaltabisdicarbollide center. The 

http://pubs.acs.org/doi/full/10.1021/am9007424#fig5
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electroactive polymers in their neutral form show an absorption maximum for the interband π−π* 

transition at 410 and 448 nm for poly(4b) and poly(4c), respectively (Figure 6.6). 

 
Figure 6.6 Solid-state UV−vis spectra of (A) poly(4b) and (B) poly(4c) in their doped (solid  

line) and reduced (dotted line) states. 

Expectedly, the polymer incorporating the sexithiophene segments is more conjugated than that 

with the quaterthiophene segments. Furthermore, poly(4b) and poly(4c) display a more extended 

degree of conjugation than the parent oligothiophenes as quaterthiophene and sexithiophene 

show an absorption maximum at 388 
459

 and 432 nm 
460-461

respectively. The magnitude of the 

red-shift is similar to that observed with the monomers (ca. 20 nm), which accounts for the same 

electronic influence of the cobaltabisdicarbollide on the conjugated aromatic chain of the 

polymer. It must be stressed that the presence of the cobaltabisdicarbollide center in the polymer 

films cannot be evidenced from their optical spectra essentially because of the strong absorbance 

below 350 nm of the used optically transparent electrode and the very weak intensity of the band 

at 460−500 nm attributed to the cobalt complex. The as-grown oxidatively doped poly(4b) and 

poly(4c) films display several new doping-induced bands with maxima at 425, 664, and 738 nm 

for poly(4b) and 465, 669, 739, and 852 nm for poly(4c) (Figure 6.6). A further broad band 

attributed to the formation of the so-called “free carrier tail” 
462

 is also visible in the near IR 

region above 1100 nm. Similarly to the neutral forms, the bands of p-doped poly(4b) and 

poly(4c) are red-shifted to approximately the same extent with respect to those of oxidized 
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quaterthienyl and sexithienyl moieties. 
459

 The position of these doping-induced bands and the 

lowly doped character of the as-grown polymers indicate the formation of polaronic charge states 

along the polymer chain. 

6.3.4 Conducting Probe AFM Characterization of the Cobaltabisdicarbollide-

Functionalized Polymers  

Nanoscale Comparison of Surface Morphologies  

Samples of electropolymerized poly(4a−c) films in their doped and undoped forms were 

characterized using tapping-mode AFM in an ambient environment. Substantial differences are 

apparent for views of the surface morphology of the polymer films, as presented in Figures 6.7 

and 6.8. The surface structures of electropolymerized films and subsequently undoped by 

electrochemical reduction are shown in Figure 6.7. Undoped poly(4a) exhibits irregular island 

domains with angular features having lateral dimensions ranging from 0.45 to 2.8 μm. The height 

of the domains ranges from 100 to 390 nm. The angular domains cover 66% of the surface and 

the root-mean-square (rms) surface roughness is estimated at 81 nm. A closer view (5 × 5 μm
2
) 

reveals that the larger domains are made of segments that are tightly packed to form larger 

assemblies (Figure 6.7A). Interesting features are observed in the corresponding phase image 

(Figure 6.7B), in which the groove areas are displayed with a bright yellow color due to 

saturation. Although results for distinguishing differences in surface chemistry are not 

conclusive, the phase image is still useful for identifying edges of surface features. The surface 

of the undoped poly(4b) exhibits isolated globular structures of different sizes (Figure 6.7C). The 

smooth round domains range from 0.5 to 2.0 μm in lateral dimension and the heights range from 

23 to 180 nm. The smooth globular domains cover 23% of the surface and the local surface 

roughness measures 19 nm. The simultaneously acquired phase image (Figure 6.7D) displays a 

relatively homogeneous color for the globular domains and flatter areas of the film, which  
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Figure 6.7 (A, C, E) Tapping-mode AFM topographs and (B, D, F) corresponding phase 

topographs of (A, B) neutral undoped poly(4a), (C, D) poly(4b), and (E, F) poly(4c). The scan 

size for all topographs is 5 × 5 μm
2
. 
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Figure 6.8 (A, C, E) Tapping-mode AFM topographs and (B, D, F) corresponding phase 

topographs of as-grown p-doped (A, B) poly(4a), (C, D) poly(4b), and (E, F) poly(4c). The scan 

size for all topographs is 5 × 5 μm
2
. 
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indicates a uniform surface composition for the film. The faint dark shadows which outline the 

round features can be attributed to edge effects as the tapping tip is scanned across the sample. 

Distinct changes in surface features are evident for the undoped poly(4c) (Figures 6.7E) as 

compared to the previous samples. The surface is composed of small clusters packed tightly into 

irregular domains. There are valleys or channels between taller clusters, which range from 120 to 

260 nm in depth, with a rms roughness of 71 nm. The diameter of the grains comprising the 

clusters measures 164 ± 66 nm. The phase image exhibits relatively consistent color throughout 

areas of the surface, except at a few boundary areas of the deeper grooves (Figure 6.7F). 

Changes in surface composition are not apparent for this phase frame. 

A comparison of the surfaces of as-grown p-doped films is shown in Figure 6.8. Irregular 

islands are evident for poly(4a) (Figure 6.8A) ranging from 0.4 to 2.8 μm in lateral dimensions. 

The heights of the angular domains range from 100 to 540 nm, with an rms roughness of 91 nm 

which is not significantly different from that of the undoped sample. For the most part, the 

surface features of the undoped versus doped poly(4a) samples are indistinguishable. This is not 

really surprising because of the nonelectroactive character of this polymer in both reduced and 

oxidized forms, as demonstrated by cyclic voltammetry experiments. Even the phase frames 

exhibit markedly similar color contrast. The surface features of the doped and undoped films of 

poly(4b) are found to be slightly different at the nanoscale. Smooth round structures are apparent 

for doped poly(4b), which range from 0.1 to 1.8 μm in lateral dimensions (Figure 6.8C). The 

globular domains range from 29 to 320 nm in height, and the rms roughness is more than two 

times higher than that estimated for the undoped sample, namely 50 nm against 19 nm. At a local 

level, the round globular areas cover approximately 18% of the surface. More significant 

morphology changes are evident when comparing the doped and undoped poly(4c) films. The 

sizes of the nanoclusters and assembled domains have larger dimensions for the doped sample 
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(Figure 6.8E). The depth of the channels between taller aggregate domains measures from 68 to 

430 nm. The nanoclusters that pack tightly into surface aggregates are slightly larger and have an 

oval shape which is more elongated for the doped sample. As for poly(4b), the rms surface 

roughness of doped poly(4c) is also two times higher than that estimated for the undoped sample, 

namely 170 nm against ca. 70 nm. The phase image (Figure 6.8F) reveals more clearly the 

arrangement and packing of the round nanoclusters, which are more irregularly shaped and 

polydisperse in size. The undoped samples exhibit very small, regular shaped features, whereas 

the domains of the doped sample contain more random sizes and shapes for the nanoclusters. 

Globally, the AFM analysis of poly(4b) and poly(4c) films shows a more compact and less rough 

structure of insulating undoped samples compared with conducting doped samples, which is in 

agreement with electrochemical data of these polymers (vide supra). 

 Conducting Probe AFM Characterizations  

For our study, the local conductive properties of the doped cobaltabisdicarbollide-

functionalized films were evaluated using conductive probe AFM by measuring the current I 

flowing through the polymer/gold surface junction in ambient conditions, as a function of the 

applied voltage V. The I−V profiles were generated by measuring the current as the voltage was 

incrementally swept from −3 to +3 V. A comparison of I−V profiles plotted for the as-grown 

doped films is shown in Figure 6.9. Each curve is an average of 12 data sets acquired at different 

locations of the surface. The differences in the current measured for each polymer can be 

confidently related to the differences in their conductivity properties because the thickness of the 

studied polymer films was almost similar (close to 4.0 ± 0.5 μm) and the same contact force was 

applied to each sample. The I−V profile for poly(4a) exhibits no measurable current over the 

range of applied voltage (±3 V), which is consistent with the insulating character of this film. 

The profiles for poly(4b) and poly(4c) demonstrate that poly(4c) is more conducting than 
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poly(4b), which is consistent with the more conjugated character of poly(4c) as determined from 

optical data. From corresponding semilog plots, it can be evidenced the almost symmetrical 

character of conduction profiles. Indeed, the rectification factors measured at ±2.0 V are 0.7 and 

0.6 for poly(4b) and poly(4c), respectively. The non asymmetry of these curves suggests that 

poly(4b) and poly(4c) behave like heavily doped semiconductors rather than pure 

semiconductors for which asymmetrical current responses are usually observed. 
463-464

 The mean 

conductivity of these films was estimated using eq 2  

σ = d/(AtR)                                                    eq. 2 

where σ is the electron conductivity, d is the polymer film thickness, and R is the resistance of 

the polymer sample, which is equal to the inverse of the slope of the I−V curve. Because the I−V 

curve is not linear, the slope was estimated from the linear fit of the curve. At is the area of the 

AFM tip in contact with the surface computed as At = πr
2
, with r ≈ 35 nm, as the contact radius 

between tip and sample. 
463

 An average conductivity of 1.4 ×10
−4

 S cm
−1

 and 7.5 ×10
−4

 S cm
−1

 

were calculated for poly(4b) and poly(4c), respectively. Such conductivity values well-match 

those usually reported for other conducting metallopolymers. 
465-467

 

 
 

Figure 6.9 (A) Current−voltage curves and (B) corresponding semilog plots for as-grown doped 

poly(4a), poly(4b), and poly(4c), acquired under ambient conditions. 

http://pubs.acs.org/doi/full/10.1021/am9007424#eq2
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6.4 Electrocatalytic Reduction of Protons at Cobaltabisdicarbollide-Functionalized 

Polymers  

Redox-active metal centers, such as cobalt(III) bisdicarbollide, can provide efficient sites 

for electrocatalytic experiments at modified electrodes. As a proof-of-concept, we demonstrate 

that the reduction of protons to dihydrogen can be efficiently electrocatalyzed by the cobalt(II) 

form of the metal center incorporated in the host polythiophene matrix. As illustrated for the case 

of poly(4b), the electrochemical response of the bound Co(III)/Co(II) system is dramatically 

changed upon the addition of H
+
 in the electrolytic medium (Figure 6.10A). An increase in the 

reduction wave of Co(III) to Co(II) is observed, the intensity of which is found to vary linearly 

with the proton concentration. A simple electrocatalytic mechanism consistent with our data can 

be written as follows. 

 

Figure 6.10 (A) Cyclic voltammograms at 0.1 V s
−1

 of a poly(4b)-coated glassy carbon (1 mm 

diameter) electrode in CH3CN + 0.1 M Bu4NPF6 in the absence (dashed line) and in the presence 

of 1, 2, 5, 10, 15, and 20 mM HBF4 (solid lines). The consumed electropolymerization charge is 

64 mC cm
−2

. (Inset) Corresponding Icat vs H
+
 concentration plot with Icat, the electrocatalytic 

current (difference between the reduction currents observed in the presence and in the absence of 

H
+
) determined at −1.15 V vs SCE. (B) Effect of the poly(4b) thickness on the electrocatalytic 

reduction of H
+
 at 20 mM. The consumed electropolymerization charge is 25 (red), 50 (black), 

64 (blue), and 255 mC cm
−2

 (purple). The dotted line corresponds to the cyclic voltammetry 

curve obtained at the bare glassy carbon electrode. 

 

 Compared with the cyclic voltammogram obtained for the direct reduction of H
+
 at the 

bare glassy carbon electrode, the electrocatalytic effect of the immobilized metal center is 

evident and leads to a significant shift of the cyclic voltammogram towards less negative  
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potentials (Figure 6.10B). As commonly observed for catalysis at redox polymer coated 

electrodes, 
468

 the electrocatalytic activity of cobaltabisdicarbollide-functionalized polythiophene 

films is strongly dependent on the film thickness. For the thinnest films, the increase in the film 

thickness produces the expected increase of the catalytic current as a result of an increase in the 

surface coverage of cobalt catalyst. The catalytic effect is maximum for a film electrogenerated 

with a ca. 50 mC cm
−2

 charge and decreases dramatically for thicker films. For the latter 

situation, the catalysis becomes kinetically controlled by the transport of charge and/or the 

diffusion of the substrate through the film, 
468

 which is entirely consistent with the thickness-

dependent Co(III)/Co(II) electrochemical response (vide supra). 

Analysis of the data reported on Figure 6.10B for the optimum polymer thickness (black 

curve, 50 mC cm
−2

 electropolymerization charge) shows that the overpotential for hydrogen 

evolution is significantly decreased by ca. 230 mV with respect to that obtained with the bare 

glassy carbon electrode (measured for a current density of 1.4 mA cm
−2

 in the presence of 20 

mM HBF4). Despite the improved performance of the optimized modified electrode for proton 

reduction, the absolute potential for catalysis remains fairly negative (ca. −0.85 V vs. SCE at 1.4 

mA cm
−2

, black curve Figure 6.10B). We note, however, that this potential compares well with 
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the potential range where most of the synthetic metal complexes hydrogenase mimics that have 

been reported so far operate (in similar organic electrolytes). 
469

 

6.5 Concluding Remarks 

The electrochemical oxidation of bis(bithienyl) and bis(terthienyl) 

cobalt(III)bisdicarbollide complexes yielded conducting metallopolymers with quaterthienyl and 

sexithienyl segments, respectively. The electrochemical response of such polymers showed two 

reversible well-separated redox processes attributed to the Co(III)/Co(II) couple and the p-

doping of the organic polymer backbone. Although the metal-based process was totally 

reversible for thin films, a decrease in the rate of electron hopping between the metal centers was 

observed upon increasing the film thickness. This was consistent with an electron transfer 

controlled by the diffusion of electrolyte countercations through the film to ensure the 

electroneutrality. Moreover, the optical data indicated a weak electronic communication between 

the oligothienyl segments through the cobaltabisdicarbollide bridge. However, the presence of 

the metallic complex accounted for the lowly doped character of the polymer film and the 

measured conductivity values below 1 × 10
−3

 S cm
−1

, which are much lower than those 

commonly found for doped polythiophene films. The electrocatalytic results suggest that 

conducting polymers containing in chain metallabisdicarbollide could find interesting 

applications as robust and efficient catalysts for the activation of small molecules, and especially 

for the important H
+
/H2 inter-conversion.

470
 So far, little attention has been paid to the catalytic 

potential of metallabisdicarbollides, as most catalysis studies have involved the metal 

dicarbollide fragment as a substitute/alternative to a piano-stool metallocene framework. 
471

 We 

believe that the present work opens the way for refining this promising new type of 

electrocatalytic material in terms of the nature of the conducting polymer, length of monomer, 

nature of the metal, and thickness of polymer. Toward the challenging goal of preparing highly 
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conducting carborane-based metallopolymers with versatile electrocatalytic properties, other 

electropolymerizable metallabisdicarbollides with metal cations, such as Fe, Ni, and Cu, will be 

investigated in order to obtain different overlaps of the electrochemical responses for the metal 

and the polymer backbone. 
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APPENDIX A. LABORATORY PROTOCOL FOR PREPARING ORGANOSILANE 

NANOPORES ON POLISHED SILICA USING PARTICLE LITHOGRAPHY 

COMBINED WITH TEMPLATE IMMERSION 

 

Cleaning of silica mesoparticle template 

1. Standard dry form Angstromsphere silica powder (Fiber Optic Center, New Bedford, 

MA) need to be redispersed in solution prior to use as templates for particle lithography. 

a. Measure 10 ml of absolute ethanol using a graduated cylinder. 

b. Transfer into a glass bottle with cover. 

c. Add the previously weighed 0.1 g Silica particles. Cover. 

d.  Sonicate for 30 min or longer until all the powder is completely redispersed in 

solution. 

2. The first step is not needed if Silica particles are already suspended in solution, e.g. silica 

spheres from Thermo scientific. 

3. Measure 400 uL of silica particles using a micropipette. 

4. Transfer into a plastic centrifuge tube. 

5. Add deionized water to about 1 mL. 

6. Vortex mix for 2 min or until particles are completely suspended in solution. 

7. Centrifuge for 10 min at 20000 rpm. Longer time may be needed for smaller particles. 

8. Carefully remove the liquid portion with a Pasteur pipette and discard the liquid. 

9. Repeat steps 5-8 twice for complete cleaning of the particles. 

10. After the third rinse, measure about 200 uL of ethanol using a micropipette. 

11. Add the measured ethanol to the solids left in centrifuge tube. This will be the particle 

template. 

12. Vortex mix. Make sure all particles are uniformly dispersed in the solution.  
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Cleaning Si wafer  

 It is important that silica substrates must be properly cleaned prior to use. Cleaning with 

acidic piranha removes any organic residues and facilitates the formation of oxide layer on the 

surface. Proceed with caution when preparing piranha solution. A solution of piranha is highly 

energetic and may cause explosion. Use glass, pyrex containers for preparing the solution as 

piranha will melt plastics. All work must be performed inside the hood and proper protective 

measures such as gloves and eye goggles must be used. Glasswares must be properly cleaned and 

dried before use. 

1. Cut pieces of silica into 1 x 1 cm
2
. 

2. Clean silica pieces with copious amount of ethanol. Let dry at ambient. 

3. Measure 9 mL of sulfuric acid using graduated cylinder and transfer acid into a clean 

beaker. 

4. Using a pipet, measure 3 mL of 30% hydrogen peroxide.  

5. Add the measured amount of hydrogen peroxide to the beaker containing sulfuric acid. 

REMEMBER: Add slowly to avoid violent reaction.  

6. Swirl mixture to mix completely. 

7. Heat the solution in a hot water bath, keep the water bath temp at around 70
o
C, do not 

boil the piranha solution. 

8. Slowly and individually immerse silica pieces for 30 min.  A longer immersion time 

promotes surface roughening. Make sure silica pieces are separated from each other in 

the beaker to prevent scratching and for uniform cleaning of substrates. 

9. Using a tweezers, remove silica pieces and immediately rinse with copious amount of 

water. 
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10. Dry silica using a stream of Argon or Nitrogen gas. Use the substrates immediately. Do 

not let cleaned silica be exposed to ambient air for a long time since adventitious carbon 

can immediately deposit on the surface. 

Deposition of template particles 

1.  Measure 20 uL of diluted particle template using a micropipette. 

2. Deposit slowly to the center of cleaned silica wafer. 

3. Let sample dry in ambient conditions for approximately 2 min. 

4. Heat sample in oven for 20 min at 100 ºC.  

5. Expose to ambient environment for 20 min. Record the humidity using a humidity meter. 

Preparation of alkylsilane solution for immersion  

Glasswares used for preparing silane solution need to be completely dried. Even minute 

amount of water present in the glasswares can make silane polymerized. The polymerized 

solution appears to have a milky color. The most common solvent used for silane is anhydrous 

toluene; however, bicyclohexyl also works well. 

1. To preserve the integrity of the anhydrous toluene, use a syringe for drawing the solvent 

out of sure seal bottle by following the outlined steps.  

a. Fill syringe with Nitrogen gas. The volume of the Nitrogen gas should be 

approximately the same as the needed amount of solvent.  

b. Insert needle into the septum inlet making sure that the needle is above the surface 

of the liquid.   

c. Push the plunger of syringe to release gas inside the bottle. 

2.  Using the same syringe, slowly pull back plunger to draw about 5 mL of solvent back 

into the syringe. 
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3. Prepare 1 % silane solution in anhydrous toluene (5µl silane/5ml solvent).  

4. Swirl the solution slowly to ensure complete mixing. 

5. Immerse the template into the silane solution for 8h. Cover. 

Rinsing of sample 

1. Using tweezers, carefully remove sample from the solution of silane. 

2. Individually rinse each sample with copious amount of deionized water, followed by 

ethanol. 

3. Place the sample in a glass bottle with about 10 mL toluene. Do not crowd the bottle with  

samples to avoid scratches of samples.  Cover the bottle. 

4. Sonicate for 30 minutes. Do not let the water in the sonicator get hot. Place ice in the 

sonicator if water gets warm. 

5. Rinse with ethanol, followed by toluene. 

6.  Sonicate again in fresh toluene for another 30 min or until the template is no longer 

visible. 

7. Rinse with ethanol followed with water. 

8. Sample should look like very clean silica. If not, continue sonicating in fresh toluene, and 

followed by sonication in clean ethanol. 
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APPENDIX B. LABORATORY PROTOCOL FOR PREPARING NANOGLOBULES OF 

OCTADECYLTRICHLOROSILANE ON POLISHED SILICA USING PARTICLE 

LITHOGRAPHY COMBINED WITH TEMPLATE IMMERSION 

 

Cleaning of polystyrene latex mesospheres template 

1. Measure 400 uL of polystyrene latex spheres using a micropipette. 

2. Transfer into a plastic centrifuge tube. 

3. Add deionized water to about 1 mL. 

4. Mix sample using a vortex mixer for 2 min or until particles are completely suspended 

in solution. 

5. Centrifuge for 15 min at 20000 rpm. Longer centrifugation time may be needed for 

smaller particles. 

6. Carefully remove the liquid portion with a Pasteur pipette and discard the liquid. 

7. Repeat steps 3-6 twice for complete cleaning of the particles.  

8. After the third rinse, measure about 100 uL of absolute ethanol water using a 

micropipette. 

9. Add the measured absolute ethanol to the solids left in centrifuge tube. This will be the 

particle template. 

10. Vortex mix. Make sure all particles are uniformly dispersed in the solution.  

Cleaning Si wafer  

Refer to appendix A for preparation of silica substrates 

Deposition of template particles 

1.  Measure 20 uL of diluted particle template using a micropipette. 

2. Deposit slowly to the center of cleaned silica wafer. 

3. Expose sample in ambient conditions until dry, approximately 2 min. 

4. Heat sample in oven for 30 min at 75 ºC.  
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5. Expose to ambient environment for 30 min. Record the humidity using a humidity 

meter. 

Preparation of alkylsilane solution for immersion  

 Glasswares used for preparing silane solution need to be completely dried. Even minute 

amount of water present in the glasswares can make silane polymerized. The polymerized 

solution appears to have a milky color.  

1. Prepare 1 % octadecyltrichlorosilane(OTS) solution in bicyclohexyl (5µl OTS/5ml 

solvent).  

2. Swirl the solution slowly to ensure complete mixing. 

3. Immerse the template into the silane solution for 8h. Cover. 

Rinsing of sample 

 Refer to appendix A for rinsing of samples. 
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APPENDIX C. PROTOCOLS FOR BACKFILLING NANOPORES OF 

OCTADECYLTRICHLOROSILANE (OTS) FILM WITH 

CHLOROMETHYLPHENYLTRICHLOROSILANE (CMPS) 

 

1. Clean all glasswares thoroughly. 

2. Dry glasswares using a vacuum oven at 120ºC to remove all traces of water.  

3. Add 5 µL of  Chloromethylphenyltrichlorosilane (CMPS) to 5 mL of anhydrous toluene.  

Refer to Appendix A. PREPARATION OF ALKYLSILANE SOLUTION FOR 

IMMERSION for details. 

4. Immerse the sample into the CPS solution for desired time (30 min-24 h). 

5. After the immersion step, individually rinse the sample with acetone. 

6. Sonicate the sample in chloroform for 2 min four times. 

7. Dry in Nitrogen or Argon gas.  

8. Store in a close container. 
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APPENDIX D. VACUUM LINE OPERATION 

Make sure the oil on the vacuum pump is on appropriate level before usage. 

Preparation of sample for vacuum line deposition 

1. Place about 20 uL of the sample for deposition on a quartz glass. 

2. Let sample dry at ambient conditions. 

Vacuum line operation 

1. Open all the valves. 

2. Purge the whole vacuum line through the gas inlet with nitrogen gas for about 3 

min. 

3. The valves are numbered and at the start of the operation should be: 

1 open 

2 close 

3 open 

4 close 

5 close 

4. Fill Nitrogen dewar with liquid nitrogen slowly until it is three quarters full. 

5. Turn on the vacuum pump. 

6. Let the pump run for 15 min. 

7. Place the substrate for deposition on the metal plate attached to the sample holder. 

8. Cover with quartz glass, side with sample film facing the substrate. 

9. Move up the substrate holder by turning the knob slowly so that the substrate is 

very close but not touching the quartz glass. 

10. Open vacuum line to the sample by slowly opening valve 4. The whole system 

should be in vacuum now. 
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Figure D.1 Vacuum line setup for organic thin film deposition. 

11. Turn on the digital pressure read out. Drop in pressure should be observed. 

12. Place the UV lamp directly on top of quartz glass. Secure the UV lamp with 

clamps. 

13. Cover the areas of the UV lamp that are not in contact with aluminum foil.  

14. Monitor the pressure. 

15. Refill liquid nitrogen in the dewar when the liquid level drops. 

16. Time required for deposition is dependent on the type of sample. 
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Figure D. 2 UV lamp is placed directly on top of the sample, secured tightly and covered 

with aluminum foil. 

 

 

After sample deposition 

1. Turn off UV lamp. 

2. Remove UV lamp. 

3. Open the valve for Nitrogen gas inlet, valve 4.  

4. Slowly fill the vacuum line with Nitrogen while supporting the quartz glass. It 

will pop out if not handled correctly. 

5. Turn off vacuum pump. 
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Figure E.1 Scanner and nose cone assembly for current sensing AFM.  The nose cone 

for current sensing has four pins. 

APPENDIX E: STANADARD OPERATING PROCEDURE FOR CURRENT SENSING 

AFM 

 

Current sensing AFM(CS-AFM) or Conductive Probe AFM(CP-AFM) is an advance 

imaging mode which is use to characterize conductive materials on the surface.  The probes used 

for CSAFM must be coated with a thin film of conducting metal; typical coatings are Platinum, 

Iridium, Gold.  The conductivity of the sample as wel as topography and lateral force images are 

mapped with CSAFM. Consequently,  current volatage(IV) plots at a specific location on the 

sample can be generated with CSAFM. A bias voltage is applied to the sample while the 

cantilever is kept grounded.  A current flow, which is use to map the conductivity of the sample 

is generated when an applied voltage is applied between thesample and the conductive probe. 

The CSAFM is operated in contact mode while keeping the force applied to the AFM tip 

constant.   

When imaging using CSAFM, surface contamination should be avoided at all times. The 

presence of water layer on the surface of sample can greatly affect the resolution. It is 

recommended that CSAFM be performed in a low humidity environment. The environmental 
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Figure E.2 Sample plate set-up of current sensing AFM. 

 

 

 

chamber should be kept dry at  all times and be closed tightly prior to imaging.  A petri dish of 

drierite is recommended to be placed inside the environmental chamber to help remove moisture. 

The nose cone for CSAFM must be properly inserted to the Agilent Multipurpose 

scanner. The nose cone assembly has a pre-amp that is color coded for sensitivity. Verify the 

color of the wire on the pre-amp prior to imaging.  The existing pre-amp for CSAFM nosecone 

in the laboratory is green which has a sensitivity of 1 nA/V , bandwidth of 6.3 kHz and resistor 

of 1 GΩ. 

1. Insert a conducting AFM tip and focus the laser. 

2. Prepare the sample for mounting on the sample plate. A microscope glass must be   

placed in between the sample plate and the sample. It is important that the sample 

must be electrically isolated from the sample plate.  

3. Attach a copper wire as an electrode connecting the sample and the sample. Insert  the 

copper wire under the spring loaded electrode clip. 



190 

 

 

4. Check that the copper wire touches the sample. 

5. Check the continuity of the electrical connection by using a conductivity meter.  

6. Plug the 3-pin socket of the sample plate to the 3-pin EC connector of the AC/MAC 

cable. 

7. Mount the sample on the AFM microscope. 

8. In the PicoScan, choose mode: CSAFM. 

9. In the Buffer assignment window, activate topography, friction, deflection and AUX 

in BNC. The current channel is displayed in AUX in BNC. 

 

10. The operation of CSAFM is the same as the contact mode such as setting set point, 

I/P gains, scan speed in the servo control window. 

11. Approach the sample. 

12. After approaching, in the servo control AFM window, enter the bias voltage. The The 

applied bias depends on the conductivity of the sample. (Start with a small voltage 

first, then increase if no signal is achieved.) 

13. The current signal shown in the image channel is a positive which is viewed as high 

features when a negative bias is applied to the sample.  
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To acquire current-voltage (I-V) profiles: 

1. Pick a certain location in the sample. 

2. In the AC Mode Control Window, click sweep. 

3. The AFM IV Spectroscopy should appear. If not, go to mode, choose AFM IV 

Spectroscopy. 

4. Select voltage to use by using the slider. 

5. Click  START. 

6. Save the spectra.  
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7.  Multiple spectra can be acquired at several locations on the sample by following the 

same steps in acquiring the spectra. 
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APPENDIX F. PICO PLUS TAPPING MODE OPERATING PROCEDURE 

A. Mounting the sample and AFM tip. 

1. Mount the sample on the Pico Plus sample holder. 

2. Inspect that the right nose cone for tapping mode is inserted in the scanner. 

The oscillation of the cantilever is driven by the piezo-electric transducer in the nosecone. 

The nosecone assembly has two contact pins for the signal to be routed to the transducer. 

 

Figure F.1 Nose cone assembly for tapping mode AFM. 

3. Insert nosecone assembly to the scanner using a nose cone removal tool. Do not use a 

tweezer to prevent damage to the nose cone. 

4. Insert a tapping mode tip on the tip holder.  

5. Load the scanner in the system. 

6. Load the sample plate. 

7. Adjust its distance by pressing open and close in the black head electronics box. Close 

brings the sample closer to the scanner. 
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Figure F. 2 Head electronics box. 

6. Make sure that the laser is on by turning the On button on the laser box controller. 

7. On the desktop, open UltraTV so you can view the AFM tip. 

 

8. Focus the laser on the tip of the AFM probe. 

9. Adjust the Deflection and LFM so that both values are „0‟. 

B. AC Mode Software Controls 

1. Open the Picoplus software in the desktop by clicking the PicoScan icon. 

 

2. Under the Mode on the main menu, select AC AFM. 
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3. Under the View on the main menu, select AC Mode Controls,  then  

 

4. Check drive on. 

5. Enter 5 for the drive % 

6. Set the Gain to 1x. 

7. Click the Sweep button. The AFM AC mode frequency plot will appear. 
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8. A full scale scan of the cantilever frequency should be performed. 

a. Drag the top frequency slider completely to the right and the bottom frequency 

slider to the left. 

b. Click the start button. 

The peak obtained corresponds to the resonant frequency of the cantilever. 

.  

Scanning range high value 

Scanning range low value 
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c. Narrow the resonance peak frequency by adjusting the frequency slider until the 

resonance peak is centered on the plot. 

 

d. Click the Start button for another frequency sweep. 

e. Repeat steps 8b-8d until the frequency range is less than 10 kHz and the 

amplitude is between 3-7. 

f. Check the Active check box in the Frequency plot window. 

 

g. Left click on the left side of the peak maximum to get the exact resonance 

frequency. 

h. Adjust the drive frequency to 5 ± 1 Volts. 
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i. Set the Proportional (P) gain to 0.5 and the integral (I) gain % to 1.000 in the 

Servo tab of the Servo Control window. 

 

Make sure the Servo Range is set to its maximum value. 

  9. Ready to approach. 

 

The approach speed should be around 10. 

The scan speed should be around 1.0-3.0. 

10. Click Approach button. When it has engaged, this message will appear. 
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11. Adjust the amplitude setpoint below the initial amplitude. 

12. Optimize imaging resolution by changing speed, I/P gains and set point. 
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APPENDIX G. LETTERS OF PERMISSION 
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