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ABSTRACT 

 

 

Dissolution of chitosan in ionic liquids was accomplished. It has been shown that 1-butyl-

3-methylimidazolium acetate (BMIMAc) is a better solvent than 1-butyl-3-methylimidazolium 

chloride (BMIMCl). Dissolution of chitosan in BMIMCl required a prior regeneration of 

chitosan from 1% acetic acid solution. In the case of BMIMAc, both dried chitosan and 

regenerated chitosan from acetic acid solution have been dissolved in a relatively short amount 

of time. While concentrations up to 2 wt% of chitosan in BMIMCl could be obtained, 

concentrations of 10 wt % of chitosan in BMIMAc were realized. 

Homogeneous phthalation and benzoylation of chitosan were achieved in these ionic 

liquids. According to FT-IR data both -OH and -NH2 groups of chitosan reacted with benzoyl 

chloride and phthalic anhydride, respectively.  

The reaction of chitosan with phthalic anhydride in the presence of a base or N-

bromosuccinimide as catalyst and using ionic liquids as a solvent media was also studied. The 

presence of a base into system leads to an increase of the degree of substitution (DS = 0.41) of 

the functional groups of chitosan comparing with the reactions performed in the absence of a 

base (DS = 0.24), while the presence of a catalyst into system resulted in even higher increase of 

DS (0.85). The FT-IR data indicated that the hydroxyl groups of chitosan are being catalyzed to a 

greater extent than the amino groups. All the reactions products obtained in the presence of a 

catalyst were soluble in dimethyl sulfoxide and dimethylformamide. 

Chitosan-cellulose blends were prepared using BMIMAc as common solvent. 

Rheological measurements of polymeric solutions indicated the formation of a complex between 

chitosan and cellulose molecules. Films prepared from polymeric solutions were investigated by 

means of FT-IR, TGA, XRD and SEM measurements. The shifting of the band corresponding to 
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–NH groups of chitosan from 1597 to 1565 cm
-1 

(FT-IR), the absence of diffraction peaks at 2θ = 

10.7 and 14.9
o 

(XRD), the increased Ea for all polymeric blends (MTGA), and the presence of a 

homogeneous structure with no phase separation of the two polymers (SEM) serve as good 

evidence for the miscibility between chitosan and cellulose in the solid state.  
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CHAPTER 1 . INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1  Introduction of Polysaccharides 

Polysaccharides, one of the most abundant and diverse families of biopolymers, are 

polymeric carbohydrate structures produced by microorganisms, by plants, by mammals and 

crustaceans. These biopolymers serve living organisms as storage materials, structural components, 

and protective substances. For example, macromolecules such as chitin and cellulose play an 

important role as links between other cell wall components and as structural molecules. Starch and 

glycogen are food reserves for plants and animals, respectively.(1) When the polysaccharides have 

in their structure only one type of monosaccharide, the polysaccharide is called homopolysaccharide 

(e.g. cellulose) while when more than one type of monosacchride is present they are called 

heteropolysaccharides (e.g. chitosan).  

Polysaccharides provide the scientists with a broad spectrum of raw materials that exhibit 

biocompatibility, biodegradability, and versatility. 

1.2 Properties of Chitin 

Chitin, a polysaccharide, is found in the outer shell of insects, skeleton of shrimps, crabs, and 

other sea crustaceans, as well as in the internal structures of other intervetebrates (2-4) and cell walls 

of various fungi. Chitin, the most abundant polysaccharide containing amino groups and the second 

most abundant polysaccharide found in nature after cellulose, is composed of β(1-4) linked units of 

the amino sugar and N-acetyl-glucosamine randomly distributed throughout the polymer chain - 

depending on the processing method used to derive the biopolymer (Scheme 1.1). It took more than 

a century of study for chitin to have its structure identified and to be recognized as one of the most 

important natural biopolymers.(5) Chitin is a useful material in biomedical applications in wound 
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dressing. It was found to accelerate wound healing with the rationale that the abundantly present 

lysozyme enzyme in fresh and healing wounds acts to break down chitin powder to release the N-

acetyl-glucosamine required for wound healing.(6) Due to the presence of acetamido groups present 

in its structure, strong intra- and intermolecular hydrogen bonding with the adjacent hydroxyl groups 

are formed within the chitin structure (Scheme 1.1). This accounts for the insolubility of chitin in 

most of organic solvents encumbering in this way its derivatization and commercial applications.  

Scheme 1.1 Crystalline structure of chitin and chitosan. (7)       

   

The primary biological function of crustacean chitin is to provide a structural scaffold to 

support the animal exoskeleton through an intimate link between the biopolymer with the biological 

system in which it is found. In the crustacean shells, chitin is closely related with proteins, where it 

provides bioadhesive properties between fiber beds of stacked laminas. According to Poulicek and 

coworkers,(8) the matrix in mollusk shell is composed of two structural units (Figure 1.1): 1) a 

mineralization matrix and 2) a high molecular weight chitinoproteic complex also called the protein 

carrier. The mineralization matrix consists of an acidic polypeptide fraction with strong affinity for 

Ca
2+

 ions, and as such, it is mostly soluble in decalcifying agents, like HCl. The protein carrier has 
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no affinity to calcium which is arranged in the form of sheets and layers. Chitin is trapped between 

mineralization matrices when CaCO3 deposition takes place (Figure 1.1). 

 The isolation of chitin from the shell of mollusk is done via chemical procedures (Figure 

1.2). The shells can be first treated with 30% HCl for demineralization of the crustacean shell 

followed by the removal of proteins by NaOH. The order of the procedure with acid and base can be 

reversed.  

 

Figure 1.1 Schematic of the structure of the organic matrix in mollusk shells. Adapted from 

references. (8-9) 

1.3 Synthesis and Structures of Chitosan 

 

Chitosan is a linear polysaccharide obtained industrially through the alkaline N-deacetylation 

of the N-acetamido functional groups of chitin (Scheme 1.2). The N-deacetylation process is 

influenced by several factors: the source of chitin, NaOH concentration, reaction time, and reaction 

temperature.(2, 7) Chemically, chitosan is composed of randomly distributed β-(1-4)-linked 

deacetylated D-glucosamine units and N-acetyl-D-glucosamine units (Scheme 1.1). Typically, the 

degree of deacetylation in commercial chitosan is around 60% to 95%. Methacanon and 

coworkers(2) studied the N-deacetylation process of chitin and determined that at low NaOH 

concentrations there is not a significant change in the percent of deacetylation, not even at elevated 
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temperatures and times of reaction. However, an increase in the alkaline concentration, temperature, 

and time triggers a rapid increase in the deacetylation percent. Molecular weight and viscosity are 

affected as well by the different concentrations of NaOH and by different reaction of times. When 

50% of NaOH was used for the deacetylation of chitin, a rapid decrease of molecular weight 

distribution was observed in the first hour but decreased subsequently. A 35% of alkali concentration 

in the deacetylation process showed that the decrease of viscosity and molecular weight distribution 

of the obtained chitosan was slowed.(10)  In attempts to solve the problem involving the degradation 

of chitin main chain during the deacetylation process, it has been reported that the addition of 

NaBH4,(11) thiophenol,(12) or N2 gas(13) can minimize the chain scission. 

Over the years, X-ray diffraction has been the most employed tool for the analysis of the 

molecular conformations of chitin and chitosan. Although the first X-ray study on a chitosan fiber 

was conducted as early as the middle of 1930s, chitosan’s structure has been less studied than the 

one of chitin. Being a positively charged polymer, chitosan is soluble in acidic to neutral solutions. 

In acidic solutions chitosan behaves as a cationic polymer. Similar with the case of polyelectrolyte 

solutions, a surprising increase of the reduced viscosity (ηsp/C) of chitosan aqueous acid solutions is 

observed with a decrease in the concentration of solutions. This behavior can be attributed to an 

increase of the polymer volume following dilution, as a result of electrostatic repulsion in the 

chitosan chains. To prove this hypothesis researchers have screened these repulsions by addition of 

ionic salts to such solutions. For example, when NaCl is added to an aqueous acid chitosan solution, 

a typical linear relationship between reduced viscosity and solution concentration is obtained. Strong 

evidence correlated from multiple studies suggests that chitosan chains in solution are not very 

flexible and adopt a random coil extended conformation. In addition, the chain flexibility can be 

increased by elevating the ionic strength of solutions which disrupts the electrostatic interaction of 

the polysaccharide chains. 
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Figure 1.2  Isolation of chitosan from mollusk shell. (8-9) 

1.4 Important Properties of Chitosan 

As described in the previous section, the key factor that differentiates chitosan from chitin is 

represented by the degree of deacetylation. It is widely known that the deacetylation reaction can 

never be conducted to a complete conversion, and that the deacetylation degree in chitosan ranges 

typically from 70% to about 95%. One method yielding very high degrees of deacetylation (ca. 95%) 
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consists in reacting chitin with potassium hydroxide at 180
o
C for 30 minutes.(14) While some 

researchers have obtained chitosan by deacetylating the chitin from shrimp hulls or other 

crustaceans, other researchers have obtained it from fungi strains like absidia.(15) Since the nature of 

the manufacturing process preformed industrially often influences the characteristics of the final 

product, the quality and properties of the resultant chitosan products may vary from a company to 

another. The properties often affected by the manufacturing process include degree of deacetylation, 

purity, molecular weight, viscosity, polydispersity index, polymorphous structure etc. 

Scheme 1.2 N-deacetylation of chitin. (16) 
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The degree of deacetylation is one of the most important properties of chitosan because it 

dictates the amount of free amino groups that can later play an important role in the polymer’s 

ability to act as a chelating agent for many metal ions. Over the years several methods have been 

employed to determine the deacetylation degrees, including dye adsorption,(17) titration,(18) 

infrared spectroscopy,(19) NMR spectroscopy,(20) CHN elemental analysis,(21) high performance 

liquid chromatography (HPLC),(22) and enzymatic approaches.(23) For example, it was suggested 

that one of the best non-destructive ways to analyze the deacetylation degree in chitosan is the first 

derivative UV spectrophotometry at 199 nm.(24-26) Another proposed method was treating the 

amino groups in chitosan with sulfonic acid groups on dye ions, based on the 1:1 stoichiometry of 

interaction.(27) 

Because of its high density of amino groups chitosan has very good coagulating properties, 

acting as a flocculant/coagulant in the presence of negatively charged polymers, proteins, dyes, etc. 

Additionally chitosan acts as a chelating agent for many metal ions. It was observed that chitosan’s 

amino groups perform much better as a metal chelating agent than the acetyl groups in chitin.(5) 

Although this finding would imply that a higher amino group content is equivalent with higher metal 

adsorption rates, other studies have shown that the metal chelating ability of chitosan also depends 

on other parameters, such as crystallinity and affinity for water.(28) 

Just like any other polymer, molecular weight, M, is another characteristic of interest in 

chitosan. While the M of chitin is typically above 10
6
 g/mol, the M of chitosan is reduced through 

various degradation reactions that take place during the rough deacetylation treatment.(5) 

Commercial chitosan products have M usually in a range between 10
5
 - 10

6 
g/mol. The major factors 

that lead to the degradation of macromolecules during deacetylation include a combination of high 

temperatures, high shear forces imposed through mixing and dissolved oxygen. Typically, the 

thermal degradation of chitosan occurs at temperatures in excess of 280
o
C. Even in the absence of 
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such harsh temperatures, dissolved oxygen has been shown to slowly degrade chitosan.(5) Among 

the methods that have been employed to determine the M of chitosan are viscometry,(29) 

chromatography,(29-30) and light scattering.(31)  

Furthermore, an essential characteristic of chitosan solutions is viscosity. For a given set of 

environmental parameters (temperature, pressure, humidity etc), the viscosity of chitosan solutions 

has been observed to be influenced by factors like concentration, M, degree of deacetylation, pH and 

ionic strength.(5) Of course, if the environmental parameters are not fixed viscosity also varies with 

temperature and pressure. For example it was found that the intrinsic viscosity of dilute chitosan 

solutions decreases with an increase in the polymer’s ionization or ionic strength.(5) In addition, the 

variation of viscosity with the pH has been observed to depend on the type of acid employed. If the 

pH is decreased with acetic acid the viscosity tends to increase, while for HCl a decrease in the pH 

triggers a decrease of viscosity.(5)  

Regarding chitosan’s solubility, the polysaccharide dissolves in nearly all solutions of 

organic acids at pH values below 6. In unmodified form it is, however, insoluble in organic solvents, 

water and alkaline solutions.(5) Perhaps the most frequently used organic acids to prepare chitosan 

solutions are acetic acid and formic acid. In addition, several dilute inorganic acid solutions (e.g. 

HNO3, H3PO4, HCl, HClO4) can be employed to dissolve chitosan. It has been also shown that a 3-

to-1 mixture of dimethylformamide -to- dinitrogen tetroxide can dissolve chitosan very well.(14) 

Although chitosans with high degrees of deacetylation are water insoluble, it has been revealed that 

the polysaccharide with 50% deacetylation from homogeneous processing can be dissolved in 

water.(32) On the other hand, various chemical treatments of chitosan, like carboxymethylation for 

instance, can induce some water solubility of the biopolymer.(17, 33-34)  
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1.5 Applications of Chitosan 

Among the many reasons behind the continuous search for new applications of chitosan are 

the polymer’s biodegradability, non-toxicity and natural abundance. A comparison of the present 

trends in chitosan uses with the applications predominantly targeted 40 years ago reveals a 

broadening of the relevance spectrum. While in the 1970s chitosan was mostly utilized in sludge 

dewatering, food processing and metal ion chelation, today the industrial applications are focused on 

fabrication of high value products, such as feed additives, cosmetics, drug carriers, semi-permeable 

membranes, and pharmaceuticals.(5) The major factors that triggered the broadening of the 

applications spectrum are the improved quality and the reduced cost of the current chitosan grades, 

which can be attributed in great part to the superior industrial methods utilized today to synthesize 

the polymer.  

One of the most important characteristic of chitosan consists in its ability to act as a binding 

agent for various chemicals such as those found in cholesterol, fats, proteins, metal ions, and even 

tumor cells. Water treatment, health care, as well as food and pharmaceutical industries are some of 

the main areas where chelation is regularly employed. For the treatment of waste waters, chelation 

focused mostly on the removal of harmful metal ions like copper, lead, mercury, uranium, etc. Early 

studies indicated that, when compared to other chelating polymers, chitosan had the best collection 

ability due to its high content of amino groups.(14) Other studies showed that chitosan can remove 

uranium from river and lake waters in amounts of 40% to 74%.(35) Additionally, it has been 

suggested that the chelating ability of chitosan can be supplementary enhanced through cross-

linking,(36) homogeneous hydrolysis,(28) controlled N-acetylation,(37) and complexation with 

other polymers.(38) Owing to the high content of amino groups chitosan is a very good flocculant 

and coagulant, and is capable of interacting with negatively charged compounds, like proteins, dyes 

and various solids.(5) Some studies suggested that the coagulating efficiency of chitosan may 
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decrease with increasing the polymer molecular weight.(39) In line with the chelating applications of 

chitosan, Holme and Hall have synthesized a novel chelating chitosan derivative through the 

attachment of iminodiacetate moieties via a hydrophilic spacer group.(40) The synthetic steps 

employed in this work are presented in Figure 1.3. Starting from 1,2:3,4-di-O-isopropylidene 

galactose the authors prepared an epoxide through the reaction with epichlorohydrin. The product 

was further reacted with dimethyliminodiacetate to form a mixture of dimethyliminodiacetate and 

morpholone. The final chelating monosaccharide derivative was obtained through the base 

hydrolysis of the mixture followed by the acid treatment at 50
o
C. The coupling to chitosan via 

reductive amination gave the resultant product which showed a strong binding capacity towards Cu 

(II) ions, and exhibited much better ion-exchange ability than the one of native chitosan. 

Chitosan possesses excellent film forming characteristics, for which reason it is a valuable 

polymer in membrane fabrication. Chitosan membranes have been employed over the years in water 

purification, filtration, fruit coating, surgical dressings and drug encapsulation. In some water 

filtration studies chitosan-based membranes were showed to exhibit retention factors of 65-73% for 

sucrose, 54-57% for glucose and 3-6% for urea.(41) Most chitosan membranes are stable in both 

dilute acid and alkaline solutions. Cross-linked membranes with enhanced resistance to solvents may 

be prepared by addition of bifunctional chemicals to chitosan solutions.(39) Such bifunctional agents 

may include glutaraldehyde, carboxylic anhydrides and other various aldehydes. Additionally, the 

film forming ability of chitosan has been successfully employed in cell encapsulation for hormone 

delivery in medicine.(42) Owing to the semi-permeable nature of such membrane-films small 

molecules can diffuse from one side to the other of membranes, but cells and large molecules cannot. 

Besides cell encapsulation, chitosan has been shown to perform very well in applications related to 

controlled agrochemical release.(43)   
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Other areas where chitosan has found valuable applications include paper-making, food 

processing, pharmaceutics and biotechnology. Some of these applications are attributable to 

chitosan’s ability to accelerate wound healing and plant germination and stimulate the immune 

system. Additionally, chitosan can also inhibit antifungal effects and tumor cells. In spite of the fact 

that chitosan has been found capable to complex with DNA and coagulate with red cells in blood, it 

should be recognized that further studies are needed to elucidate the interactions between living cells 

and the functional groups of cationic polymers, like chitosan.  

 

Figure 1.3 Schematic showing the synthetic steps used by Holme and Hall to obtain the Cu(II)-

chelating chitosan derivative. Adapted from reference. (40) 
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1.6 Enzymes Involved in Chitosan Decomposition  

Many living organisms, like insects, crustaceans, fungi and bacteria, regularly incorporate 

chitosan within various parts of their bodies. Because polysaccharide decomposition and synthesis 

plays an important role in the life style of such organisms, degrading and synthesizing enzymes are 

directly and actively involved in supporting and maintaining the metabolism and life of these 

beings.(44) For a long time it was believed that mammals did not possess enzymes involved in 

chitosan or chitin synthesis/degradation. Since this was the case, such enzymes were (and still are) 

targeted by researchers to control the growth and spreading of some insects, or some fungal and 

bacterial species that could interfere with the life style of human beings. In fact, such enzymes have 

been intensively studied for biotechnological applications. Cloning and sequencing are just two of 

the most utilized laboratory processes, frequently employed to better understand and describe the 

structure-function relationship of such enzymes in living organisms. 

 Chitinases represent a family of enzymes that have the ability of hydrolyzing the β-1,4-N-

acetylglucosamide linkage in chitin and chitosan.(45) As a result of polysaccharides degradation, 

chitinases produce mainly disaccharides and a small amount of trisaccharides. More exactly, these 

enzymes can hydrolyze the bond between two consecutive N-acetylglucosamine units (here 

abbreviated GlcNAc: e.g. GlcNAc - GlcNAc) and the bond between a GlcNAc unit and a 

glucosamine one (abbreviated GlcN: e.g. GlcNAc - GlcN). Enzymes can discriminate the order of 

the linkages between consecutive units, for example GlcNAc - GlcN versus GlcN - GlcNAc. Besides 

hydrolyzing the GlcNAc – GlcN linkages, some enzymes were also found to hydrolyze the GlcN - 

GlcNAc ones. Chitinases were first detected in 1911 in orchid bulbs as part of the plant’s defense 

system against fungi. Since their discovery, these enzymes were also isolated from other plants, as 

well as from bacteria, fungi, worms, insects and fishes. Recently, some chitinases were surprisingly 

found in the gastric juices of humans, and are believed to have digestive functions for catabolic 
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activity.(46)
 
In addition to gastric juices, chitinases were also observed in the human blood(47-48)  

and cartilages.(49)
 
The activity of human chitinases is related to several allergies and even 

asthma.(50-52) 

On the other hand, chitosanases are the family of enzymes that attack chitosan, but do not 

attack chitin.(45) Just like chitinases, chitosanases decompose chitosan to the dimer and trimer 

saccharides. Chitosanases are defined by the Enzyme Commission as the enzyme family that can 

catalyze the endo hydrolysis of β-1,4-glycosidic linkages between GlcNAc and GlcN on chitosan 

polymers having degrees of acetylation in the range 30% - 60%. To date, however, the definition is 

still confusing and uncertain, suggesting that further information needs to be acquired about 

chitosanases to allow a better understanding of the enzymatic catalysis mechanisms. To provide an 

example of such an enzyme, in Figure 1.4 is presented a schematic of a crystal structure of family 46 

chitosanase from Streptomyces sp. N174. As a side note, streptomyces represent the largest genus of 

actinobacteria, and are widely known for their antibiotic capabilities, being able to produce both 

antibacterials and antifungals. Knowing the pharmacological importance of streptomyces it is quite 

clear that the enzymes involved in the synthesis/degradation must be well studied and their 

catalyzing mechanisms must be thoroughly understood. 

1.7 Cellulose and Cellulose Derivatives 

Cellulose is one of the most researched and industrially employed polysaccharides on earth 

and is made of linear chains of β(1-4) linked D-glucose units (see Figure 1.5 for chemical 

structure).(53) It is a chiral and biodegradable, hydrophilic polymer insoluble in water and in most 

organic solvents. The β(1-4) linkages of the D-glucose units in cellulose are in contrast with the α(1-

4) linkages of the D-glucose units observed in starch and other carbohydrates. These features allow 

cellulose to be a straight chain polymer, free of coils and branches, where the macromolecules adopt 

an extended, stiff, rod-like conformation.(54) Cellulose is essentially the most common organic 
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chemical on earth, being the structural component of the primary cell wall of green plants, algae and 

certain fungus-like microorganisms. For example, it was previously showed that the weight content 

of cellulose in wood and cotton is ca. 30% - 60% and 90%, respectively.(53) 

 

Figure 1.4 Schematic of a crystal structure of family 46 chitosanase from Streptomyces sp. 

N174. The catalytic crevice consists of two α helixes and three stranded β sheets. Glu22 and 

Asp40, indicated by brown and red beads, respectively, are catalytic residues. The green beads, 

symbolizing the tryptophan residueTrp28, are positioned between the upper and lower 

domains, acting like a hinge. (44) 

 

Figure 1.5 Chemical structure of cellulose. 

Industrially, cellulose is an important component in the fabrication of paper, paperboard and 

card stock, and in the manufacturing of textiles, like those obtained from cotton and linen. Although 

cellulose has numerous uses in its native form, the conversion of cellulose to other derivatives 
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considerably broadens the spectrum of applications. Several useful cellulose derivatives can be 

obtained through the partial or full treatment of the hydroxyl groups of cellulose with various 

reagents. Among the most important commercial derivatives are cellulose esters, such as cellulose 

acetate and cellulose triacetate, and cellulose ethers, like ethylcellulose, methylcellulose, 

hydroxypropyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl 

methyl cellulose, etc.(55) 

Regarding some of the characteristics and uses of certain cellulose esters, secondary 

cellulose acetate, which is obtained through the partial hydrolysis of the primary triacetate 

derivative, can be dissolved in relatively cheap and non-toxic solvents such as acetone. On the other 

hand, the primary cellulose triacetate only dissolves in more toxic solvents such as chloroform, 

nitrobenzene and epichlorohydrin.(56) The conversion of the triacetate derivative to the secondary 

diacetate derivative is very important in the development of practical fiber-making processes. 

Cellulose acetate derivatives are very good insulators and this characteristic is a major reason behind 

industrial fabrication of acetylated cotton. Furthermore, cellulose acetate fibers, with Y-shaped 

cross-sections, are commonly utilized to make cigarette filter tows.   

In contrast to cellulose esters, cellulose ethers make significant contributions to the food and 

pharmaceutical industries.(54) For example, ethylcellulose, which is obtained by replacing some of 

the hydroxyl groups on the D-glucose units with ethyl ether groups, is utilized as a food additive and 

as an emulsifier. Figure 1.6 shows a SEM image of some spray-dried ethylcellulose microcapsules, 

commonly used to encapsulate fragrances, vitamins or pigments for food applications. Methyl 

cellulose, which is also used as an emulsifier and thickener in foods, is obtained by treating cellulose 

with a sodium hydroxide solution, followed by a treatment with methyl chloride. Hydroxypropyl 

cellulose results after replacing several hydroxyl groups on the D-glucose units of cellulose with 

hydroxypropyl groups, through a treatment with propylene oxide. Hydroxypropyl cellulose, along 
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with another derivative hydroxypropyl methylcellulose, is used in the pharmaceutical industry to 

make ophthalmic lubricants, like artificial tears. In foods, hydroxypropyl cellulose is utilized as 

thickener, emulsion stabilizer and low level binder. Carboxymethyl cellulose is synthesized by 

treating cellulose with chloroacetic acid in the presence of a base. It is used as a thickener and 

emulsion stabilizer in ice-cream, toothpaste, laxatives, diet pills, detergents, and others.  

 

Figure 1.6 Typical spray-dried ethyl cellulose porous microcapsules used to encapsulate 

fragrances in foods. (57) 

1.8 Ionic Liquids  

Recently a rather new class of organic solvents, ionic liquids, has been found particularly 

useful in dissolution of polar organic materials, even polymers, which are otherwise difficult to 

dissolve.(58) Ionic liquids are organic salts that can be liquid even at temperatures as low as -96
o
C; 

however, the term “ionic liquids” refers in the patent and academic literature to liquids composed 

entirely of ions that are fluid around or below 100
o
C. Ionic liquids are generally benign solvents that 

can be used to a series of numbers of industrial processes resulting in improved yields, greater 

recyclability and an overall reduced environmental impact. These solvents have already found 

applications in commercial fields such as pharmaceuticals and fine chemicals,(59-60) nuclear 

industry,(61-62) and in mainstream petrochemical processes.(63-64) Some advantages that allowed 

ionic liquids to be called the green solvents of the future include their low vapor pressure over a 
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wide range of temperature, their excellent thermal stability, and the fact that they have good and 

tunable solubility properties and can be regenerated and used all over again in a process.  

In order for an ionic liquid to be a good solvent it needs to have a low melting point so that 

no high temperature reaction to be required during a chemical process. The melting point of an ionic 

liquid is related to its lattice energy which is a measure of the strength of bonds in the ionic 

compound. The lattice energy can be calculated using Kapustinskii equation(65) (equation 1.8.1) 

which shows that by using anionic or cationic components with larger ionic radii it is possible to 

lower the lattice energy and therefore reduce the melting point of the ionic liquid. From the 

Kapustinskii equation it also can be observed that by increasing the ionic charge the lattice energy 

will tend to increase. However, according to Fajans’ rules an increasing charge also results in 

increasing the covalent character particularly for small cations and large anions and thus reducing 

the melting point of the salt.(66) 

U = (287.2 v Z
+
Z

-
/ro)(1 - 0.345/ro)                                                                              (1.8.1) 

where: U = lattice energy, v = number of ions per molecule, ro = sum of ionic radii, Z
+
, Z

-
 = charge 

of ionic species. 

The effect of anions on the melting point of 1-ethyl methylimidazolium cations is shown in 

Table 1.1.(66) It can be seen that increasing the ionic radii of the anions results in a decreased 

melting point of the corresponding ionic liquids. To further decrease the lattice energy of the ionic 

liquids, an increase of the length of the alkyl group of the imidazolium cations can be applied. 

When choosing an ionic liquid as solvent, one has to take into consideration the 

processability of the solvent. Viscosity is one of the most important physical properties for 

determining the processability. A fluid is best to have a viscosity as low as possible and to have only 

small changes in viscosity through the normal operating temperature range. It was observed that in 

respect to the cation structure the viscosity of the ionic liquid increases with alkyl chain length(67) 



18 

 

and with the reduction of freedom of rotation (e.g. from butyl to isobutyl).(68) Published data on the 

viscosity of ionic liquids is almost nonexistent and even the few data existent in the literature are 

often neither comparable nor reproducible due to the highly dependence of viscosity on the 

measuring technique used and the purity of the sample.(66) More work needs to be done in order to 

rationalize different trends and to establish a correlation for model prediction that affects the 

viscosity of ionic liquids.  

Table 1.1 Melting points for various 1-ethyl methylimidazolium salts. 

 

Ionic liquids have an established ability to be used as replacements for volatile organic and 

dipolar aprotic solvents because most of their physical properties are close to those of the organic 

solvents. Also, ionic liquids have been found to dissolve rigid chain cellulose (69-72) and chitosan 

(73-75) under suitable conditions by disrupting the hydrogen bonds. The ionic liquids should have 

low melting points and low viscosities and need to be inert during conversion so that they can be 

suitable for the homogeneous modification of cellulose or chitosan. 

One of the most important and common impurities in ionic liquids is water. Cellulose, for 

example, dissolved in pure 1-butyl-3-methylimidazolium chloride ionic liquid to an extent of up to 

10%.(76) However, the presence of water content exceeding 1% in the ionic liquid inhibits the 

dissolution of cellulose.(69) If the water content is 0.1 to 1%, aggregation of the polymer chains take 
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place which will decrease the viscosity of the solution, the accessibility of the polymer and thereby 

the reactivity.(77) 

Ionic liquids with ammonium cations, pyridinium cations, and imidazolium cations have 

been shown to dissolve cellulose (Figure 1.7). However, there is no basic understanding regarding 

the interaction between cellulose and the ionic liquids. Moulthrop(78) and Remsing(72) concluded 

by using 
13

C and 
35/37

Cl-NMR experiments that Cl
-
 anion from 1-butyl-3-methylimidazolium 

chloride ionic liquid is much more involved in the disruption of the hydrogen bond existent in 

cellulose structure than the cation. The acetate counter-ion dissolves cellulose much better than the 

Cl
-
 counter-ion, but no measurements are known for this type of ionic liquids that would explain the 

interaction with the polymer. 

There are a couple of reports regarding the dissolution of chitosan in 1-butyl-3-

methylimidazolium chloride ionic liquid.(73, 79) However, the chitosan is not fully soluble and still 

shows some crystallinity in the solutions. 

1.9 Chemical Modification of Cellulose in Ionic Liquids 

Several studies have reported the ionic liquids as a media for the functionalization of 

cellulose for producing products with desired properties, such as: acetylation,(80-81) 

esterification,(82-83) etherification,(84) and carboxymethylation.(80) Cellulose, a polysaccharide 

with a structure similar to that of chitosan, has three hydroxyl groups in its repeating unit while 

chitosan has two hydroxyl groups (carbon 3 and 6) and an amino group at carbon 2. Due to the 

presence of three hydroxyl groups in its structure, cellulose has intermolecular and intramolecular 

hydrogen bonding which makes its dissolution impossible in most of the organic solvents. Cellulose 

is soluble in very polar organic N-oxides, such as the monohydrate of N-methyl morpholine N-

oxide, NMMO, which is now the industrial solvent of choice to manufacture lyocell fibers. (85-86) 
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Figure 1.7 Examples of ionic liquids suitable for the dissolution of cellulose. 

Acetylation of cellulose (Scheme 1.3) in 1-butyl-3-methylimidazolium chloride using acetyl 

chloride(80) or acetic acid anhydride(87) in the presence of pyridine at 80
o
C for 2 hours yielded 

soluble products of controlled degree of substitution. However, when succinic anhydride was reacted 

with cellulose in 1-butyl-3-methylimidazolium chloride at different temperatures, reaction times, and 

different molar ratios of succinic anhydride/AGU of 1:1 to 14:1, respectively, the resulting products 

had very low degree of substitution with values varying from 0.04 to 0.53.(88) This inefficient 

esterification remains unclear. 

Erdmender synthesized trityl cellulose by performing the reaction of trityl chloride with 

cellulose in 1-butyl-3-methylimidazolium chloride as solvent.(84) The addition of a base is 

necessary to prevent the degradation of cellulose by capturing the hydrogen chloride formed during 

the reaction. A degree of substitution of 1 can be obtained using a six-fold excess of trityl chloride 

and a reaction time of 3 hours. Surprisingly, when the same treatment of cellulose with trityl chloride 

was performed in different ionic liquid, 1-ethyl-3-methylimidazolium acetate, cellulose acetate was 

obtained instead of trityl cellulose. This behavior was explained by the formation of reactive trityl 
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acetic acid esters as intermediate which will undergo a transesterification reaction with cellulose to 

give cellulose acetate as final product.(89) 

Scheme 1.3 Acetylation of cellulose.   

 

where R: H or -COCH3 

Reaction of cellulose with phenyl isocyanate in 1-butyl-3-methylimidazolium chloride has 

also been reported.(76, 87) Products soluble in DMSO, DMF, and THF were obtained for phenyl 

isocyanate/AGU ratios of 3:1 to10:1, respectively. 

The homogeneous chemical modification of cellulose with phthalic anhydride in the presence 

of 1-allyl-3-methylimidazolium chloride and in the absence of catalyst has been reported by Liu and 

coworkers.(82) The phthalated cellulosic derivatives obtained showed a degree of substitution 

ranging from 0.10 to 0.73. The degree of substitution was observed to increase with the increment of 

reaction temperature, reaction time, and molar ratio of phthalic anhydride/AGU of cellulose. The 

phthalation reaction took place at C-6, C-3, and C-2 positions according to FT-IR and solid-state 

CP/MAS 
13

C NMR spectroscopy. Upon chemical modification, the thermal stability of phthalated 

cellulose had been decreased. When the same reaction of cellulose with phthalic anhydride was 

performed in a different ionic liquid, 1-butyl-3-methylimidazolium chloride, higher degree of 

substitution ranging from 0.12 to 2.54 were obtained depending on the reaction temperature, molar 

ratio of phthalic anhydride/AGU of cellulose and reaction time.(83) We have extended the work to 

chitosan and observed significant differences in the nature of the products formed. 
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CHAPTER 2 . METHODS AND PRINCIPLES 
 

 

2.1 Fourier Transform Infrared (FT-IR) Spectroscopy 

FT-IR provides information about the types of functional groups present in an organic 

molecule by measuring the characteristic frequencies associated with bond stretching and bending 

vibration. A stretching vibration (symmetric or assymmetric) is the movement along the bond axis 

while bending consists of a change in the bond angle between bonds such as twisting, rocking, 

scissoring, and torsional vibrations. Usually, symmetric stretching vibrations occur at lower 

frequencies than asymmetric stretching vibrations while the stretching vibrations arise at higher 

frequencies than bending vibrations. A necessary condition for IR absorption is that a rhythmical 

change in the dipole moment of the molecule must take place during vibration. Thus, the alternating 

electric field generated by vibration couples the molecule vibration with the oscillating electric field 

of the incoming electromagnetic radiation.(90-91) The above mentioned vibrations are called 

fundamental absorptions and they develop from excitation from ground state to the lowest-energy 

excited state. 

The vibrational frequencies are affected by the mass of the vibrating atoms and by the 

strength of the bonds. Bonds between atoms of lighter mass vibrate at higher frequencies than bonds 

between heavier atoms. Stronger bonds, which correspond to large force constants, vibrate at higher 

frequencies than weaker bonds. 

For this research, formation of carboxylic, ester, amide, and imide groups was determined by 

FT-IR spectroscopy. The stretch of C=O in carboxylic acids appears at 1760-1710 cm
-1

. A band at 

1750-1735 cm
-1

 is evidence for the presence of carbonyl ester groups. The C=O stretch in amides is 

present in the spectra at approximately 1690-1630 cm
-1

. An absorption at 1772 cm
-1

 corresponds to 

the imide carbonyl. 
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2.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a form of absorption spectrometry that 

studies the energy levels of distinct atomic nuclei of molecules when under appropriate conditions in 

a magnetic field.(92) In a magnetic field, the nuclei absorb electromagnetic radiation in the region of 

frequencies governed by the characteristics of the sample being analyzed.(93) The NMR works by 

supplying energy to the nuclei to force them to change their spin orientation with respect to that of 

the applied field. In the presence of an applied magnetic field the spin states are not equivalent 

because each nucleus is a charged particle with a magnetic field of its own called magnetic moment, 

μ. Hence, the spin states will have different energies and transitions between states become possible.   

2.2.1 1
H NMR Spectroscopy 

1
H NMR gives information about the number of each of the distinct types of hydrogen being 

studied as well as acquires information about the chemical environment of the protons.(91) Under an 

applied magnetic field a molecule absorbs electromagnetic radiation that will cause a transition 

between spin states: the ground state and the excited state. The ground state decreases in energy and 

the excited state increases in energy when in the presence of an applied field. Because the absorption 

of energy is a quantized process, the energy absorbed must be related to the energy difference 

between the two states. This energy difference is a function of the strength of the applied magnetic 

field and it is influenced by a number of factors such as: the electron density surrounding the proton, 

the presence of nearby π-bonds, and the presence of neighboring protons. In a 
1
H NMR spectrum the 

integration of the peaks gives information about the number of protons in a molecule, the chemical 

shifts indicate the type of proton environment, and the splitting patters tells about the adjacent 

protons/connectivity. 
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2.2.2 13
C NMR Spectroscopy 

13
C NMR is an important technique for determining the structures of organic molecules. A 

complete structure of an unknown compound can be identified when 
13

C NMR is used together with 

1
H NMR and IR spectroscopy. If in the 

1
H NMR spectrum the information are obtained from the 

splitting patterns or integration, in a 
13

C NMR spectrum the information about chemical structures 

are gained from the number of signals and the chemical shifts. The number of signals reveals the 

number of inequivalent carbons while the chemical shifts inform about the environment of each 

carbon. 

Even if some of the principles of 
1
H NMR apply to the study of 

13
C NMR, there are aspects 

of 
13

C NMR that differ from that of 
1
H NMR: larger chemical shift range for 

13
C peaks in 

comparison with the 
1
H range; the intensities of the 

13
C peaks do not correlate with the number of 

carbon atoms in a molecule; larger samples and longer times are required for 
13

C NMR because the 

13
C nuclei are much less abundant and much less sensitive than 

1
H; the peaks of the 

13
C spectrum are 

singlets.(93) 

2.3 Rheology 

Rheology is the study of the deformation and flow of materials.(94-95) Although the term is 

mainly applicable to liquids, it can also refer to soft solids or solids under conditions in which they 

flow rather than deform elastically. The word rheology derives from the Greek verbs rhei, to flow, 

and logos, to study. The ability of a system to store deformation energy, under the action of an 

external force, and to regain the initial shape after being deformed is called elasticity. The ability of 

a material to resist flow and to dissipate deformational energy is measured through the property 

called viscosity.(95)  
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The main relationship between force and deformation in solids is best described by the 

relation termed Hooke’s law,(96) which states that the deformation is proportional to the applied 

force: 

τ = E γ                        (2.3.1) 

In relation (2.3.1) τ represents the force per unit area, also called stress, γ represents the relative 

length change, also called strain, and E is the constant of proportionality known as elastic modulus. 

E is an intrinsic characteristic of a solid material. The equivalent relation for liquids is known as 

Newton’s law of viscosity,(94) which states that the stress, τ, is proportional to the rate of straining, 

dγ/dt: 

τ = η dγ/dt                       (2.3.2) 

The rate of straining is often symbolized as γ
. 

= dγ/dt. While several real life materials obey these 

ideal laws for solids and liquids, many of them exhibit behaviors that lie in between the ideal elastic 

solid and the ideal viscous fluid. Some examples of such materials may include blood, paints, foods, 

toothpastes, polymers etc. An example of a material exhibiting a behavior in between the ideal 

elastic solid and the ideal viscous fluid is a rubber ball, like the one in the schematic shown in Figure 

2.1. It can be seen that if the rubber ball is dropped on a hard surface from a certain altitude the ball 

does not return to that same altitude, but to a lower one. The difference in between the two altitudes 

was symbolized E”, which depending on the bouncing cycle could be E1”, E2” etc. In rheology this 

E” is known as loss modulus. The height that the rubber ball recovered after bouncing from the hard 

surface is known as the storage modulus, and is typically indicated with E’. The storage and loss 

modulus are linked through the complex modulus, E* following the relation: 

(E
*
)
2
 = (E’)

2
 + (iE”)

2 
, where i = √-1                                                                                     (2.3.4) 
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Figure 2.1 Schematic showing a rubber ball bouncing from a hard surface. 

For practical purposes, the rheological behavior of various viscous systems is studied to 

identify the relationship existing between composition and performance under shear, as well as to 

observe the variation of viscosity, storage and loss moduli as a function of several parameters in the 

system. Identifying these properties and relationships is, more often than not, critical for achieving a 

fundamental understanding of materials’ processability. For example, industrial processes require 

detailed studies of the interactions that occur among colloidal particles, polymers, surfactants and 

electrolyte salts. Although in complicated multi-component systems is difficult to formulate 

conclusions if too many parameters are varied, the reality is that the functionality of each component 

is often altered by addition of another. In order to obtain a more complete picture of how a system 

behaves in a real environment, all the constituents must be considered at once. The performance of 

polymer fluids in constrained environments can vary significantly from the one in bulk, especially 

when the molecules are confined to dimensions comparable to their sizes. 

In Figure 2.2 are presented two of the most utilized rheological geometries for analysis of 

polymer solutions and composites. Both geometries are used for analysis of small quantities of 

material. While the parallel-disks geometry is usually preferred for the systems of higher viscosities, 
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the cone-and-plate geometry is typically utilized for systems of moderate viscosities, and involves a 

smaller gap between the upper and lower tools. The main advantage of the cone-and-plate over the 

parallel-disks is that the former device eliminates the problem with the radial dependence of the 

shear rate and shear strain,(94) providing a homogeneous flow of the material independent of the 

position between the upper and lower tools.(96) For systems of even smaller viscosities (e.g. water) 

a couette geometry is typically utilized for rheological analysis, where the liquid is placed in a 

barrel-like bottom tool in which a tubular upper tool spins around a centered axis. 

 

Figure 2.2 Schematic representation of the parallel-disk (left) and cone-and-plate (right) 

geometries. The parameters are: h is the distance between the plates, Ω is the constant angular 

velocity of the plate or cone in rotation, θ is the angular displacement, R is the radius of the 

plate and/or cone. (97) 

2.4 Differential Scanning Calorimetry (DSC) 

 Differential Scanning Calorimetry (DSC) is one of the most extensively utilized thermal 

analysis techniques, in which the difference in the amount of heat needed to elevate the temperature 

of a sample and reference are measured as a function of temperature.(98) Duplicate matching 

sensors are employed for measuring the thermal changes of the sample and a reference, with the 

sample and reference being maintained at nearly the same temperature throughout the entire 

experiment. The important characteristic of this technique is highlighted by the word “differential” 

as the concept behind each measurement is to obtain information on the thermal changes in the 
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sample by heating or cooling it next to the inert reference.(99) Due to this differential attribute the 

resultant signal corresponds exclusively to the thermal variation to be studied, as any potentially 

unwanted thermal effects impact both sensors in the same way.(98) A schematic representation of the 

main DSC instrument components is presented in Figure 2.3. The sample and reference pans are 

enclosed in the DSC cell, which incorporates also the temperature sensors and the heating devices. 

As indicated in the schematic, a computer is employed to control the parameters of the system, to 

capture the data and to analyze it. 

 

Figure 2.3 Schematic representation of the main DSC instrument components. Adapted from 

website. (100) 

Another thermal technique related to DSC is Differential Thermal Analysis (DTA) in which a 

sample and an inert reference are subjected identical thermal cycles, while recording any 

temperature difference between sample and reference. The major difference between DSC and DTA 

is represented by the nature of signal produced with the two techniques. While for DSC the signal is 

proportional to the difference in thermal power between the sample and the reference (dΔq/dt), for 

DTA the signal is proportional to the temperature difference between the sample and the inert 

reference.(99) Owing to the DSC’s quantitative calorimetric advantages that DTA measurements do 
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not provide, the more recent DSC instruments have gradually replaced the older DTA instruments on 

the market.(98)   

2.5 Thermogravimetry (TG) 

Thermogravimetry (TGA or TG) is an experimental procedure in which changes in weight of 

a specimen are recorded as the specimen is heated either in air, or in a controlled atmosphere such as 

nitrogen, under a rigorously controlled temperature programme.(98, 101)
 
 In short, a sample of the 

material of interest is placed into an aluminum, platinum or alumina basket that is supported on, or 

suspended from an analytical balance located outside of a furnace chamber. Prior to the 

measurement the balance is tarred, and the sample basket is heated according to the predetermined 

thermal cycle. When the sample undergoes thermal degradation, volatile components are lost during 

the TGA experiment and the mass loss can be observed and recorded. Additionally, materials can 

lose weight from a simple physical process such as drying. The balance sends the weight signal to 

the computer for storage, along with the sample temperature and the elapsed time. The TGA curve 

plots the TGA signal, converted to percent weight change on the Y-axis against the reference 

material temperature on the X-axis. For example, in Figure 2.4a is presented a TGA curve (blue 

curve) for an HCl-doped polyaniline sample. Representations of percent weight change versus time 

(t) may be also encountered especially when isothermal decompositions are performed, such as the 

one presented in Figure 2.4b.  

The weight loss process emerges as a step in the TGA curve. Although most of the sample’s 

mass is lost around one specific temperature the shape of the curve appears sigmoid, because some 

reactions start before and/or end after the main reaction temperature. Additionally, because a 

reaction in the solid state is relatively slow compared to gas or solution reactions, a 

thermogravimetric trace of such a transformation may be seen to occupy a wide span of temperature. 

Although other factors may be involved in some cases, the rate of reaction is often controlled by the 
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rate of heat transfer to or from the reaction interface.(98) Since the reaction evolves in time and the 

temperature always increases with respect to time, graphical representations show the reaction 

covering a spread of temperature. Because of this spread of reaction over time a careful definition of 

decomposition temperature must be formulated before comparing results.(101)   

An alternate and very useful way to represent thermogravimetric results is to plot the 

temperature-derivative curve of the original data as a function of temperature (time-derivative curves 

are also possible). The resultant derivative thermogravimetry (DTGA) plot provides critical 

information about overlapping reactions or about slow reactions concurrent with fast reactions that 

may take place during the heating cycle. An example of a DTGA curve is presented in Figure 2.4a 

(red curve). The curve clearly exhibits several peaks, indicative of several decomposition processes.  

Typical TG experiments are performed raising the temperature at a constant rate. Such 

experiments are known as non-isothermal or scanning. The less encountered isothermal 

measurements, like the one presented in Figure 2.4b, are carried-on at a constant temperature and are 

often used in kinetic studies.(101) 

TGA Kinetics. Flynn and Wall developed a constant heating rate method to obtain simple 

kinetic information.(102) 

dα/dt = Z exp (-Ea/RT)(1-α)
n 

where: α = fraction of decomposition 

            t = time (seconds) 

            Z = pre-exponential factor (1/seconds) 

            Ea = activation energy (J/mole) 

            R = gas constant (8.314 J/mole K) 

            N = reaction order (dimensionless) 
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In order to determine Ea, Flynn and Wall rearranged the above mentioned equation to get the 

following: 

Ea = (-R/b) d(lnβ)/d(T
-1

) 

where: b = constant assuming n = 1 

            β = heating rate (
o
C/minute) 

            T = temperature of weight loss (
o
C) 

The activation energy (Ea) and the pre-exponential factor (Z) are calculated using the slope 

obtained from (lnβ) versus (1/T) plot. 

Modulated Thermogravimetric Analysis (MTGA).(103) This technique superimposes a 

sinusoidal temperature modulation on the traditional underlying heating profile. This sinusoidal 

temperature program produces a change in the rate of weight loss. The use of discrete Fourier 

transformation allows kinetic parameters to be calculated on a continuous basis. 

2.6 Important Thermal Parameters in Polymers 

It is generally accepted that the thermal properties of polymers depend not only on the type of 

monomeric unit(s) comprising them, but also on their secondary and tertiary structures, like for 

instance stereochemistry, molecular weight, polydispersity index, their ability to crystallize or 

remain amorphous, etc. In real life applications polymers must be stable and maintain their structure 

and morphology when exposed to various temperatures and other environmental conditions. In line 

with this idea, the present section provides general information about some critical thermal 

parameters of polymers, such as glass transition temperature, melting/crystallization temperature and 

decomposition temperature. 

The glass transition temperature, Tg, is the temperature at which the amorphous regions of a 

polymer begin behaving like glassy state materials.(104-105) From this definition it results that 

when a polymer is exposed to temperatures below the Tg, the polymer becomes very rigid and 
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brittle, because the long-range chain motions disappear. However, if the system exposed to 

temperatures below Tg is again heated to temperatures above Tg, the polymer segments slowly start 

moving and a transition from the glassy state to a rubbery-like state takes place.(106) This important 

transition in polymers is influenced by certain factors, such as chain flexibility, molecular structure, 

molar mass, branching and cross-linking. Low Tg materials exhibit high chain mobility and low 

rigidity. Low secondary forces promote mobility of the amorphous polymer leading to low Tg 

values.(105) Along with changes in hardness and elasticity, variations can also be observed in the 

specific volume, the modulus, the heat capacity, and the refractive index of a polymer when a 

transition from the glassy state to a rubbery-like state occurs.(107) The easiest way to determine the 

Tg of polymers is through a DSC measurement, where the sample is cooled below its Tg and then 

heated up. The Tg of a polymer is dependent on the heating rate utilized, for which reason the 

heating rate always needs to be specified. In Figure 2.5 is presented the Tg of a poly(methyl 

methacrylate) (PMMA) sample, as resulted from a DSC measurement. A step-like transition is 

clearly distinguishable.  

Another very important thermal characteristic of polymers is the melting temperature, Tm. 

The Tm of a polymer is the temperature at which the macromolecular chains forming the crystalline 

domains lose their periodicity and order. The size of crystallites, as well as the presence or absence 

of defects in the crystallite, influence considerably the range of temperatures that typically 

accompany the melting of a polymer.(104-105) This range of temperatures is a useful indication on 

the sample crystallinity. In theory, polymers that are 100% crystalline should show only a Tm 

transition, while polymers that are 100% amorphous should exhibit only a Tg transition. In reality, 

however, 100% crystalline polymers are never possible due to crystallization defects and varying 

sizes of the crystallites. As a result of such defects, polymers are most of the times semicrystalline 

and contain crystalline and amorphous domains, thus exhibiting both Tm and Tg. Around Tm the 
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segmental motion of chains is elevated and does not permit the formation of stable nuclei. However, 

if the temperature is decreased below Tm the translational, rotational, and vibrational energies and 

the diffusion rate of the polymeric chains decrease, allowing for the formation of crystallization 

nuclei.(104) 

 

Figure 2.4 (a) Typical thermogravimetric results as a function of temperature obtained from 

an HCl-doped polyaniline sample: TG curve - blue, DTGA curve – red. The isothermal weigh 

loss indicated in (a) with the blue thick arrow is presented in (b) as a function of time. (57) 

 

Figure 2.5 Tg of a PMMA sample as resulted from a DSC measurement performed with a 

heating rate of 10 
o
C/min. (57) 
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 The temperature of crystallization is also commonly referred to as freezing temperature Tf. 

Since crystallization is a complex development that involves formation of crystallites and the 

expansion of crystalline areas, the freezing temperature is also an interval of temperatures, much like 

Tm. Just like with the determination of Tg, a very common way to determine the relative crystallinity 

of polymers is to perform DSC measurements, as the one presented in Figure 2.6. The enthalpy 

variation ΔH resulted from the DSC measurements is directly proportional to the amount of 

crystalline polymer in the sample. When various samples are considered the ΔH values are typically 

used to compare their crystallinity with respect to each other. For comparison purposes, the lowest 

point in the DSC dip is generally regarded as the Tm of the sample. 

 

Figure 2.6 Tm and ΔH of a PLA sample as resulted from a DSC measurement performed with 

a heating rate of 10 
o
C/min. (57) 

Finally, another important thermal characteristic of polymers is the decomposition 

temperature, Td. Thermal decomposition of a chemical, also known as thermolysis, is an 

endothermic process in which the chemical is divided into at least two other new chemicals upon 

heating.(98, 101)
 
  Polymers will typically break up into more than just two chemicals because the 

macromolecular chains are long and they can be fragmented at any segmental bond in the chain. For 

this reason, while small molecules have a rather well defined Td, in the case of polymers Td is in fact 

a broad range of temperatures. For practical purposes, the Td of a polymer is generally obtained 
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through thermogravimetric (TGA) measurements, like the one presented in Figure 2.4 in the chapter 

“Thermogravimetry”. In this figure the broad range of decomposition temperatures of polyaniline is 

illustrating a large step loss in the weight vs temperature plot. To allow comparison of Td for various 

polymers or polymer composites, researchers typically report the peak temperature of a DTGA curve 

as the Td of a polymeric system. Many times it is possible for a polymer to undergo several 

concomitant decomposition processes, as is the case of the doped polyaniline presented in Figure 2.4. 

2.7 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a robust and very popular technique that offers 

researchers the possibility of obtaining greatly detailed three-dimensional-like images from a wide 

variety of heterogeneous organic and inorganic materials from the nanometer (nm) to the micrometer 

(μm) scale.(108) A tungsten filament is typically employed in SEM to provide a beam of electrons 

that is finely focused on the area or volume of the sample to be examined.(109) The electron beam 

may be either static or swept in a raster across the area of the sample to give information about a 

certain point or to generate an image, respectively. In high vacuum SEM the sample to be analyzed 

must be either conductive or must be coated with one or several of the metals from the category 

gold, palladium, iridium, etc.(110)  

The interaction between the electron beam and the sample generates several types of signals, 

including secondary electrons, backscattered electrons, characteristic X-rays and photons of various 

natures.(108-109) Depending on the signal analyzed, a large spectrum of information may be 

obtained about the surface topography, crystallography and the composition of the sample. 

Secondary electrons are generated as ionization products as a result of the sample irradiation with 

the primary electron beam. The energy of the primary electrons dictates the amount of secondary 

electrons produced, where higher energies (up to a certain limit) result in larger amounts of 

secondary electrons. Through the use of secondary electrons SEM is able to reveal sample details of 
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less than 1 – 5 nm and to provide a wide range of magnifications from cca 10 times to about 500,000 

times.  

On the other hand, backscattered electrons are the electrons reflected from the sample 

through elastic scattering, and are typically used in analytical SEM together with the characteristic 

X-rays. Backscattered electrons are characterized by higher energies than secondary electrons, for 

which reason they typically cannot be collected by a secondary electron detector. Images obtained 

with backscattered electrons generally provide useful information about the distribution of different 

elements in heterogeneous samples, since the intensity of the backscattered electrons signal is 

strongly related to the atomic number of the specimen. In order to assure a good contrast of images 

obtained using backscattered electrons, the elements from a sample subjected to analysis should have 

a difference in the atomic number of at least three.  

Finally, characteristic X-rays are generated as a result of the electron beam removing an inner 

shell electron from the sample, which causes a higher energy electron to fill the shell and release 

energy.(108) The characteristic X-rays are used to identify the composition and measure the 

abundance of elements in the sample by equipping the SEM instrument with either energy-dispersive 

X-ray spectroscopy or wavelength dispersive X-ray spectroscopy components. 

The size of the electron spot in SEM, which is affected by the wavelength of the electrons 

and the electron-optical system that produces the scanning beam, determines the final resolution of 

the resultant images. Other factors affecting the resolution may include the size of the interaction 

volume and the extent to which the material interacts with the electron beam. The SEM cannot reach 

resolutions to allow imaging of individual atoms because the spot size and the interaction volume are 

both large compared to the distances between atoms. SEM can analyze bulk samples, not only thin 

films or foils. Furthermore, when compared to the optical microscope the typical scanning electron 

microscope has a magnification limit about 250 times higher than the one of the best light 
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microscope. Besides a much better resolution and the possibility to achieve higher magnifications, 

another great advantage of the SEM over classical optical microscopy is the much improved depth of 

focus. The difference in the depth of focus obtained with the two techniques is evidenced in Figure 

2.7. 

 

Figure 2.7 An SEM image (a) showing a damaged spray-dried ethylcellulose microcapsule is 

compared to an optical microscopy image (b) from a similar system. The difference in the 

depth of focus achieved with the two techniques is apparent. While in (a) both the elevated top 

of the capsule and the bottom film surrounding capsule are clearly visible, in (b) only the 

elevated top is distinguishable, but the bottom film appears completely fuzzy. (111) 

2.8 X-Ray Diffraction (XRD) 

X-ray diffraction is a powerful non-destructive technique capable of providing information 

on the averaged volume characteristics of a crystalline sample.(112-113) It is used predominantly in 

crystallography and it involves projecting an X-ray beam against a crystalline structure and 

analyzing the pattern produced by the diffraction of rays through the closely spaced grate of atoms. 

In Figure 2.8 is presented the schematic of a typical 4-circle X-ray diffractometer. The 

diffractometer consists of three basic elements, an X-ray tube, a sample holder, and an X-ray 

detector. The X-radiation is produced in the X-ray tube through the emission of electrons from a 

tungsten cathode. Following emission, electrons are accelerated in vacuum and forced to collide with 
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the metal anode, also called target. The detector records and processes this X-ray signal and converts 

the signal to a count rate which is afterwards output to a computer monitor. One type of resultant X-

radiation is known as the “white or continuous radiation”, and is characterized by a broad, 

continuous spectrum of wavelengths. On the other hand, the “characteristic radiation” is a set of X-

rays described by very sharp peaks of discrete wavelengths that are characteristic to the analyzed 

crystal.(114) 

 Because X-rays belong to the electromagnetic spectrum, they exhibit the characteristics of 

both waves and particles.(112) This means that when X-ray beam strikes an atom the beam’s energy 

will be partly diffracted and partly adsorbed. Although the X-rays were discovered in 1895 by the 

German physicist W. Roentgen, it was the English physicists Sir W.H. Bragg and his son Sir W.L. 

Bragg, in 1913, who explained why the X-ray beams were reflected at angles of certain degrees of 

incidence by the faces of the crystals, when irradiated.(113) The explanation provided by the two 

Bragg physicists resulted in a law, widely accepted today as the Bragg’s law of diffraction, which 

states that when the X-rays strike an atom they force the electronic cloud to travel and re-radiate 

waves with essentially the same frequency.(113) The equation describing Bragg’s law is the 

following: 

nλ = 2d sinθ                        (2.8.1) 

In equation (2.8.1) λ is the wavelength of the incident X-ray beam, θ is the angle of 

incidence, n represents an integer, and d is the distance between atomic layers in the analyzed 

crystal. When several waves superimpose as a result of diffraction, a new wave is created, which 

depends on the frequency, amplitude and relative phase of the initial waves.(113) The interference of 

waves can be constructive, when the two rays are in phase, or destructive when the two waves are 

out of phase. 
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Figure 2.8 Schematic of 4-circle diffractometer also indicating the angles between the incident 

ray, the detector and the sample. Adapted from reference. (115) 
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CHAPTER 3 . HOMOGENEOUS MODIFICATION OF CHITOSAN IN 1-BUTYL-3-

METHYLIMIDAZOLIUM ACETATE 
 

 

3.1 Objective of Study 

Chitosan is a very rigid polymer due to the intra and intermolecular hydrogen bonding 

present in its structure (Scheme 3.1) and its solubility is decreased in most of the organic solvents. 

By modifying the chitosan with different reagents, new desired chemical and physical properties can 

be induced which will enlarge the field of the potential applications. However, difficulties for the 

modification of chitosan are generally encountered owing to the lack of solubility and the reactions 

under heterogeneous conditions. 

Recently a rather new class of organic solvents, ionic liquids, has been found particularly 

useful in dissolution of polar organic materials, even polymers, which are otherwise difficult to 

dissolve.(58) Ionic liquids are able to dissolve rigid chain cellulose(69-70, 116-117) and 

chitosan(73)  under suitable conditions by disrupting the hydrogen bonds.  

The removal of one to two hydrogens from the amino group of the chitosan structure and the 

replacement with hydrophobic groups has as a result the destruction of chitosan inherent crystalline 

structure and the improvement of solubility in general organic solvents. By modifying the chitosan 

with different reagents, new desired properties can be induced which will enlarge the field of the 

potential applications. Several studies have tried to accomplish regioselective and quantitative 

chemical modifications of chitosan using as a solvent dimethylformamide (DMF)(118-119), DMF 

containing 5% (v/v) water(120), DMF/ethanol(121), or acetic acid.(122-123) Chemical modification 

of the N-amino functional groups of chitosan using phthalic anhydride results in the formation of N-

phthaloylated chitosan which is a particularly important and indispensible organosoluble precursor. 

Phthaloylation is ideal for protection as well for improving solubility.(119) However, partial O-

substitution also takes place in addition to the N-phthaloylation creating an obstacle to regioselective 
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and quantitative substitution. In their work, Kurita et al.(120) reported both N,O-phthaloylation 

when using DMF as a solvent but the addition of hydroxyl-bearing cosolvents to the system leads to 

selective N- phthaloylation.   

Nishimura et al.(119) and Kurita et al.(121) have used trityl chloride for the regioselective 

ether protection of primary hydroxyl groups of the N-phthaloyl chitosan. The resulting product has 

superiority in solubility in organic solvents to the starting N-phthaloyl chitosan. The most important 

characteristic of trityl chloride and phthalic anhydride (protecting groups) is that they can easily be 

removed so that further modifications could be realized in order to obtain new types of bioactive 

polysaccharides. The dephthaloylation is efficiently carried out by treatment with hydrazine 

monohydrate at 80
o
C and the detritylation is easily done in the presence of dichloroacetic acid. 

1-Allyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium thiocyanate, 1-ethyl-3-

methylimidazolium aluminum tetrachloride, 1-ethyl-3methylimidazolium methanesulfonate, 1-butyl-

3-mehtylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium acetate (BMIMAc) 

ionic liquids have been tested for the dissolution of chitosan. Only BMIMCl and BMIMAc proved to 

be good solvents for its dissolution. While BMIMAc is able to form a homogeneous solution with 

concentrations of chitosan up to 10 wt%, BMIMCl is capable to dissolve chitosan only for 

concentrations up to 2-3 wt%. 

Due to the scarcity of reports on functionalization of chitosan in homogeneous media, the 

aim of the present chapter is to investigate the reaction of chitosan in homogeneous 1-butyl-3-

methylimidazolium acetate (BMIMAc) ionic liquid solutions (Figure 3.1). 1-Butyl-3-

methylimidazolium acetate, an organic salt with a melting point below 100
o
C, was found to 

completely dissolve chitosan under suitable conditions by disrupting the hydrogen bonds (Scheme 

3.1). Homogeneous conditions for the chemical change of the polymer are needed in order to obtain 

a high extent of reaction and regioselective substitution. 
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Figure 3.1 Chemical structure of 1-butyl-3-methylimidazolium acetate (BMIMAc). 

Scheme 3.1 Dissolution of crystalline chitosan in BMIMAc ionic liquid. 
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                         Chitosan 

3.2 Overall Synthesis Performed in the Present Project 

Chemical modification of chitosan in the presence of 1-butyl-3-methylimidazolium acetate as 

solvent was performed using phthalic anhydride and benzoyl chloride (Scheme 3.2). Chitosan with a 

Brookfield viscosity of 200K cps was dried and used for the dissolution in BMIMAc without further 

purification. The reaction of chitosan with benzoyl chloride was carried out at elevated temperatures 

in the presence of a base to capture the hydrogen chloride released during the reaction. The reaction 

of chitosan with the commercial phthalic anhydride was performed in the presence as well as in the 

absence of a base at elevated temperatures or in the presence of a catalyst. For all the reactions 

various molar ratios of the reagents and different temperatures were used. The homogeneous 
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conditions used for the chemical modification of chitosan should lead to a random distribution of the 

substituents along the polymeric chain.  

Scheme 3.2  Reaction of chitosan with phthalic anhydride or benzoyl chloride.  
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3.3 Dissolution of Chitosan in BMIMAc 

The dissolution of chitosan in the ionic liquid solvent was achieved by adding the dried 

polymer (0.06g) and the BMIMAc (2.45g) to a vial under argon followed by magnetic stirring and 

heating it to 85-95
o
C. A homogeneous, transparent, and viscous chitosan solution was obtained after 

the complete dissolution (Figure 3.2). The dissolution time varied with the percentage of polymer 

added to the ionic liquid. For a 2 wt% solution of chitosan, the dissolution time was approximatively 

12h (as observed by naked eye) while for concentrations up to 6 wt%, 2-3 days are required to 

achieve a clear solution. 
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Figure 3.2 Slurry of chitosan in BMIMAc before dissolution (left); polymeric solutions 

containing chitosan dissolved in BMIMAc (right). 

3.4 Experimental 

3.4.1 Materials 

All chemicals were used as received, without any further purification. The ionic liquid 

solvent, 1-butyl-3-methylimidazolium acetate (BMIMAc), the catalyst, N-Bromosuccinimide (NBS), 

benzoyl chloride (BC), 1,4-diazobicyclo[2.2.2] octane (DABCO), pyridine, and chitosan (K) with a 

Brookfield viscosity of 200K cps, were purchased from Sigma Aldrich Chemical Company.  The 

chitosan was dried over night at 90
o
C and used without any further purification.  Dimethyl sulfoxide, 

DMSO, was obtained from Fisher Scientific. Phthalic anhydride, PA, was acquired from 

Mallinckrodt. 

3.4.2 Instrumentation 

The 
1
H NMR spectra were recorded with a Bruker AV-400 spectrometer operating at 400 

MHz. For each spectrum thirthy two scans were accumulated at room temperature. The 
13

C NMR 

spectra were recorded on a VNMRS-700 spectrometer with an acquisition time of 0.21 sec and a 

relaxation delay of 2 sec. 256 scans were accumulated for each spectra.  
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FT-IR spectra were recorded on a ThermoNicolet 300 Fourier Transform Infrared 

spectrometer using a KBr disc containing 1% of very fine ground samples. Thirty two scans were 

taken for each sample in the range of 4000-400 cm
-1 

at a resolution of 4 cm
-1

 in the transmission 

mode. 

DSC measurements were performed using a TA 2920 MDSC instrument. Samples of 2-5 mg 

were subjected to analysis using a heating rate of 10
o
C/min. Fresh and dried samples were used for a 

first heating run to 150
o
C followed by cooling to 25

o
C and a second heating run to 150

o
C.  The 

samples were placed in a covered aluminum sample holder while an empty pan was used as a 

reference. Dynamic thermogravimetric analysis was run in a nitrogen atmosphere using a TA 

thermobalance (Model 2950). The experiments were conducted at a heating rate of 10
o
C/min until 

600
o
C. The thermogravimetric analysis was performed with 7-16 mg samples under nitrogen 

atmosphere.  The integration and processing of the curves resulted from the DSC and TGA 

instruments were done by using TA Universal analysis software.  

3.4.3 Syntheses  

3.4.3.1 Representative Procedure for the Chemical Modification of Chitosan with Benzoyl 

Chloride (BC) 

The reaction of the dissolved chitosan in BMIMAc with BC was realized by adding first 1.176 

mL pyridine in a molar ratio of 5:1 (pyridine: AGU of chitosan) to a flask containing the amber 

homogeneous solution of the dissolved chitosan (0.47g). Upon the addition of pyridine the mixture 

became less viscous. Next, 1.695 mL BC was added in small amounts. After every addition of BC 

the flask was vigorously agitated. The addition of pyridine and BC was realized under argon 

atmosphere. Two hours were allowed for the reaction to proceed at 85-90
o
C under magnetic stirring. 

After cooling the solution to room temperature, the polymer was precipitated, filtered and than 

washed with 800 mL mixture of CH3OH and H2O. The benzoylated chitosan collected was dried at 



46 

 

45
o
C for 24 hours followed by a further drying under vacuum at 50

o
C for 2 hours. The weight of the 

dry product was 0.619 g with a computed % yield of 80% if the theoretical yield is calculated for a 

degree of substitution of 1. 

3.4.3.2 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA) 

The dried chitosan (0.315g) and the BMIMAc (14.251g) were added to a round bottom flask 

under argon. The flask was heated to 100
o
C and the mixture was agitated using magnetic stirring. 

The dissolution time for the resultant 2.2 wt% amber solution of chitosan was approximatively 6 

hours (observed by naked eye). To ensure a complete dissolution of chitosan, 30 more minutes were 

allowed for the reaction mixture to proceed at 100
o
C. The reaction with PA was performed in the 

absence of any base. The fine powder of PA (0.869g) was added in a molar ratio of 3:1 (PA: AGU of 

chitosan) to a round bottom flask containing the chitosan solution. The reaction mixture was heated 

in oil bath at 100
o
C for 2 hours and 4 hours, respectively. After cooling the solution to room 

temperature, the polymer was precipitated in methanol, filtered and then washed with 800 mL 

mixture of CH3OH and H2O. The phthalated chitosan collected was dried at 45
o
C for 24 hours 

followed by a further drying under vacuum at 50
o
C for 2 hours. The weight of the dry product was 

0.445 g with a computed % yield of 78% if the theoretical yield is calculated for a degree of 

substitution of 1. 

3.4.3.3 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA) in the Presence of Pyridine or 1,4-Diazobicyclo[2.2.2] Octane (DABCO) as 

Base 

The reaction of chitosan (0.038g) with PA (0.174g) was performed by adding PA and a base 

(0.079g) (pyridine or DABCO) at room temperature to the chitosan solution in BMIMAc. The 

reaction was allowed to proceed at 100
o
C for 4 hours. After cooling the solution to room 

temperature, the polymer was precipitated in methanol, filtered and then washed with 800 mL 
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mixture of CH3OH and H2O. The phthalated chitosan collected was dried at 45
o
C for 24 hours 

followed by a further drying under vacuum at 50
o
C for 2 hours. The weight of the dry product was 

0.045 g with a computed % yield of 65% if the theoretical yield is calculated for a degree of 

substitution of 1. 

3.4.3.4 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA) in the Presence of N-Bromosuccinimide (NBS) as Catalyst 

The reaction of chitosan with PA in BMIMAc in the presence of a catalyst proceeded 

homogeneously. It was performed as follow: PA (0.165g) and NBS (0.198g) were first dissolved in 

DMSO (2mL) before addition of the solution at room temperature to the chitosan solution. The 

DMSO was also used to reduce the viscosity of the solution. The reaction was allowed to proceed at 

100°C for 4 hours under magnetic stirring. After cooling the solution to room temperature, the 

polymer was precipitated in methanol (200mL), filtered and then washed thoroughly with methanol 

(400mL). The phthalated chitosan collected was dried first at 45°C for 24 hours and then under 

vacuum at 50°C for 2 hours for a complete removal of methanol. The weight of the dry product was 

0.098 g with a computed % yield of 91% if the theoretical yield is calculated for a degree of 

substitution of 1. While the molar ratio of PA to anhydroglucose unit of chitosan was kept constant 

to 3:1, 5:1, or 7:1 the molar ratios of NBS to the anhydroglucose unit of chitosan was 3:1, 7:1, and 

10:1, respectively. 

3.5 Results/Discussion 

3.5.1 Chitosan Characterization 

FT-IR Analysis of Chitosan 

FT-IR spectroscopy is a powerful tool used to identify chemicals that are either organic or 

inorganic in the form of solids, liquids, and gases. FT-IR gives information about the functional 

groups in a molecule by identifying the frequencies of the molecular bonds vibrations. There are 
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several specific frequencies for any given bond at which it can vibrate so that species can be 

determined. For a molecule to vibrate it needs to be excited by having it absorb light energy. For this 

research, formation of the carbonyl groups from esters, amides, and imides was determined by FT-

IR. The presence of aromatic rings in the products was also established. 

The degree of acetylation of chitosan (15%) was determined by using the method of Miya, 

Iwamoto, Yashikawa, and Mima.(124) The following formula was used for the calculation of the % 

of acetyl content: 

 (A1658cm
-1

/A3435cm
-1

)*100/1.33                                                                                 (3.6.1) 

 where the A3435cm
-1

 of the –OH band was used as a reference. The areas were calculated by drawing 

a baseline for the absorbances. 

Figure 3.3 shows the FT-IR spectra of commercial chitosan. A characteristic absorption band 

between 1650-1590 cm
-1

 represents the free amino group positioned at C2 of the anhydroglucose 

units of chitosan. The peaks at 1658 cm
-1

 and 1596 cm
-1

 correspond to amide I and amide II 

indicating that the chitosan used in this research is not fully deacetylated. The absorption band at 

1658 cm
-1

 represents the C=O stretch while the 1596 cm
-1

 peak is indicative of N-H bending for 

secondary amides (this band overlaps with the N-H bend in primary amines). Usually, the absorption 

band for carbonyl groups takes place at frequencies around 1700 cm
-1

. Though, the absorption was 

shifted to a lower frequency due to the conjugation with the amine group. This conjugation results in 

an increased single bond character between the carbon and the oxygen and thus lowering the 

frequency of the C=O.  Another characteristic is the broad O-H stretching absorption band between 

3200 cm
-1

 and 3600 cm
-1

 which overlaps with the N-H stretch of amides and primary amines. The 

aliphatic C-H stretch takes place at 2878 cm
-1

 while the C-O-C bridge symmetric stretching occurs at 

1075 cm
-1

. 
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Figure 3.3 FT-IR spectra of commercial chitosan. 

1
H NMR Characterization of Chitosan 

The 
1
H NMR of chitosan was first determined by Domard and coworkers.(125) The authors 

also established the 
1
H-

1
H and 

13
C-

1
H correlations which allowed them the determination of the 

degree of deacetylation of chitosan. Using the same technique, Rinaudo and coworkers were able to 

assign the chemical shifts of 
1
H and 

13
C NMR signals for chitosan.(126) 

The 
1
H NMR spectrum of chitosan is presented in Figure 3.4 D2O/d4-CD3COOD was used as 

internal standard for assigning the chemical shifts of the protons. In the 
1
H NMR spectrum the 

chemical shift at 4.69 ppm corresponds to the internal standard. The N-acetyl peak appears at 1.9 

ppm, while the acetal proton of the glucosamine and the –CH-NH2 proton appear at 4.4 ppm and 

3.01 ppm respectively. The remaining hydrogens –CH-OH, -CH2-OH, -CH-CH2-OH, and HO-CH-

CH-CH-CH2 appear as clustered signal between 3.4 ppm and 4.1 ppm. The calculation of residual N-

acetyl groups is achieved by dividing the integral of the N-acetyl signal at 1.906 ppm by 3 (3 

hydrogens per N-acetyl group), and the result of this calculation is divided by the integral of 

glucosamine protons and multiplied by the number of glucosamine protons (Equation 3.6.1).(127) 
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Figure 3.4 
1
H NMR of commercial chitosan (82% DDA) in D2O/d4-CD3COOD. 

Equation 3.6.1: 

% N-acetyl = (I1.906/3)(5/Iglucosamine protons)*100 

% Deacetylation = 100 - % N-acetyl 

The degree of deacetylation (DDA) of commercial chitosan was computed as 82% by 
1
H 

NMR. 

3.5.2 Benzoylation of Chitosan in BMIMAc Ionic Liquid 

The reaction of chitosan with BC using BMIMAc ionic liquid as solvent is accompanied by 

N-benzoylation and O-benzoylation. The nucleophilic N-amino groups of chitosan undergo addition 

at the carbonyl groups of the BC, followed by the elimination of the chloride ion leaving group. The 

mechanistic route towards the formation of the end product via this reaction is presented in Scheme 

3.3. 
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Scheme 3.3 Mechanistic route towards the synthesis of benzoylated chitosan. 

 

3.5.2.1 FT-IR Characterization of Benzoylated Chitosan in BMIMAc Ionic Liquid 

In the FT-IR spectra of chitosan reacted with BC, the appearance of new peaks at 3091, 

1745, 1661, 1556, 1376, and 1240 cm
-1

 are indicative of the presence of substituted AGU (Figure 

3.5). The absorption peak at 3091 cm
-1 

is attributed to the sp
2 

C-H stretch in the aromatic ring. The 

C-O stretch absorption in esters is evidenced by two strong peaks at 1376 and 1240 cm
-1

 while the 

strong peak at 1745 cm
-1 

corresponds to C=O stretch  vibration in esters. The absorption bands at 

1661 cm
-1

 and 1556 cm
-1

 are indicative of carbonyl stretch and N-H bending in amides, respectively. 

The presence of these new peaks shows that benzoyl chloride indeed reacted with both the -OH and -

NH2 groups of the AGU of chitosan as shown in Scheme 3.3. 
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Figure 3.5 FT-IR spectra of chitosan (red line) and chitosan reacted with benzoyl chloride 

(blue line) using BMIMAc as solvent. 

3.5.2.2 Solid State 
13

C NMR Characterization of Benzoylated Chitosan in BMIMAc Ionic 

Liquid 

The reaction of chitosan with BC was also studied by solid state 
13

C NMR spectroscopy, and 

the spectra of benzoylated chitosan and unmodified chitosan are presented in Figure 3.7 and Figure 

3.6, respectively. According to solid state 
13

C NMR, the reaction of chitosan with BC in BMIMAc 

did not take place to a significant extent. The new signal at 173.6 ppm and the chemical shifts 

between 14.8 ppm and 23.9 ppm are attributed to traces of BMIMAc solvent still present in the final 

product. 

 

Figure 3.6 Solid-state 
13

C NMR spectrum of chitosan powder. 
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Figure 3.7 Solid-state 
13

C NMR spectrum of chitosan reacted with benzoyl chloride. 

3.5.3 Phthaloylation of Chitosan in BMIMAc Ionic Liquid 

N-phthaloylation of chitosan with PA is an efficient way for the protection of the amine 

groups of the polymer as well as for improving solubility. The first step in this type of reaction is the 

attack of the nucleophilic N-amino groups of chitosan at the carbonyl carbons of the PA. The 

intermediates formed are called tetrahedral intermediates because the carbonyl carbons have been 

changed to a tetrahedral geometry and sp
3
 hybridization. The rate determining step of the N-

phthaloylation of chitosan is the expulsion of the carboxylate (-O-COR) leaving group from the 

thetrahedral intermediate.(128) The reaction of chitosan with PA is also accompanied by partial O-

phthaloylation. The mechanistic route towards the formation of the end product via this reaction is 

summarized in Scheme 3.4.  

3.5.3.1 FT-IR Analysis of Phthalated Chitosan 

FT-IR Spectra confirms that the reaction of chitosan (dissolved in BMIMAc) with PA 

resulted in product containing carboxylic, ester, amide, and imide groups.  
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In the FT-IR spectra of chitosan reacted with PA the presence of the new peaks at 1774, 

1716, 1652, 1564, and 1378 cm
-1

 (Figure 3.8) indicates that the reaction proceeded as described 

above (Scheme 3.4). The band at 1716 cm
-1

 is evidence for the presence of carbonyl ester groups in 

anhydroglucose repeating units (AGU) of substituted chitosan. Usually the stretch of the carbonyl 

bonds occurs in the range 1750-1735 cm
-1

 for normal esters, but the absorption was shifted to a 

lower frequency due to the conjugation of the carbonyl group with the aromatic ring attached to it. 

The absorption at 1652 cm
-1

 is attributed to an overlapping of carbonyl groups from carboxylic acid 

and the amide functions. The stretch of C=O in carboxylic acids appears at 1730-1700 cm
-1

. 

However, due to the conjugation present in the system and intermolecular hydrogen bonding the 

carbonyl peak appears to a much lower frequency. The C=O stretch is present in spectra of amides at 

approximately 1680-1630 cm
-1

. In spectra of phthalated chitosan it is overlapped with the carboxyl 

absorption and consequently one peak can be seen at 1652 cm
-1

. The C-O stretch absorption in esters 

is evidentiated by the peak at 1378 cm
-1

. The band at 1564 cm
-1

 is indicative of N-H bending for 

secondary amides. The absorption at 1774 cm
-1

 corresponds to the imide carbonyl. The imide group 

is a result of the cyclization shown in Scheme 3.4. None of the aromatic anhydride carbonyl bond 

absorptions (around 1850 cm
-1

 and 1790 cm
-1

) were observed in spectra of the reaction products 

purified by washing with methanol, confirming thus that the products were free of unreacted phthalic 

anhydride. From the graph (Figure 3.8) it can be seen that the intensity peaks of the phthalated 

chitosan reacted for 2 hours are lower than the peaks of the phthalated chitosan reacted for 4 hours 

indicating that the increase of the reaction time favors the degree of substitution. The intensity of the 

newly formed peaks in the phthalated chitosan was compared in the absorption mode (after baseline 

correction) of the FT-IR spectra relative to the intensity of the C-O-C stretch of the acetal peak in the 

polymer backbone (1076 cm
-1

). 
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Scheme 3.4 Mechanistic route towards the synthesis of phthalated chitosan. 

 

 

Figure 3.8 FT-IR spectra of chitosan reacted with phthalic anhydride for 2 hours (red line) and 

phthalated chitosan for 4 hours (blue line).  
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3.5.3.2 FT-IR Analysis of Pthalated Chitosan Performed in the Presence of Pyridine or 1,4-

Diazobicyclo[2.2.2] Octane (DABCO) as Base 

The new peaks in the FT-IR spectra of the phthalated chitosan in the presence of a base, 

(BMIMAc used as solvent) indicate that the reaction proceeded as described in Scheme 3.4. The 

absorption band at 723 cm
-1

 is a characteristic for ortho-disubstituted aromatic rings, suggesting that 

the PA reacted with the chitosan (Figure 3.9). The characteristic absorptions due to phthalimido 

groups at 1778 cm
-1

 and 1716 cm
-1

 were observed in the IR spectrum indicating the amino groups of 

chitosan has been reacted. The imide group is a result of the cyclization as shown in Scheme 3.4. 

The absorption band at 1654 cm
-1

 is attributed to the carbonyl stretch in carboxylic acids and 

carbonyl stretch in amides. Typically the carbonyl stretch for carboxylic acids takes place at a higher 

frequency but the conjugation of the carbonyl group with the aromatic ring attached to it and the 

presence of intermolecular hydrogen bonding shifts the band to a lower frequency, 1654 cm
-1

.  The 

N-H bending for amide can be identified at 1561 cm
-1

. The presence of all these peaks confirms that 

both -OH and -NH2 of the chitosan anhydroglucose unit reacted with PA.  

When the films used for the FT-IR were heated to 200
o
C for 2 hours and spectra were again 

recorded, an increase in the intensity peaks corresponding to imide and ortho-disubstituted aromatic 

rings and a decrease in the intensity peaks for carbonyl stretch and N-H bending for amides is 

observed (Figure 3.10, Table 3.4 and Table 3.5). This behavior is a result of cyclization with the 

formation of imide groups (Scheme 3.4).  

When the reactions of chitosan with PA in the presence of pyridine or DABCO (Figure 3.11) 

using BMIMAc as a solvent are compared, it can be observed that in the presence of DABCO the 

absorption intensities are greater than those observed using pyridine (Table 3.1 and Table 3.2).  
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The highest absorption intensities for the reaction of chitosan with PA in the presence of 

pyridine was obtained when the temperature of the reaction was 100
o
C. Temperatures of 80

o
C or 

120
o
C resulted in lower absorption intensities (Table 3.3). 

 

Figure 3.9 FT-IR Spectra of chitosan reacted with PA (with molar ratio of PA to chitosan 

being 5:1) in: A) BMIMAc using pyridine (red spectrum) and DABCO (blue spectrum) as a 

base. 

 
Figure 3.10 FT-IR FT-IR Spectra of chitosan reacted with PA (with molar ratio of PA to 

chitosan being 5:1) in BMIMAc using DABCO (blue spectrum) as a base and using pyridine 

(red spectrum) as a base after heating the KBr pellets containing the sample to 200
o
C for 2 

hours. 
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Figure 3.11 Chemical structures of pyridine (a), N-Bromosuccinimide (NBS) (b), and 1,4-

Diazobicyclo[2.2.2] Octane (DABCO) (c). 

Table 3.1 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of pyridine:K was 3:1, 5:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (5:1).  

 

Table 3.2 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of DABCO:K was 3:1, 5:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (5:1).  

 

The DS of the reaction products were calculated using two calibration curves (Figure 3.12) 

obtained with the help of FT-IR spectra. Physical mixtures of either mono methyl phthalate or N-
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methyl phthalimide with chitosan were employed to obtain calibration curves that will be used to 

calculate the DS’s for the imide and ester groups, respectively, of the reacted chitosan. Six samples 

containing mono methyl phthalate-to-chitosan or N-methyl phthalimide-to-chitosan weight percent 

ratios of 5:95, 10:90, 15:85, 20:80, 25:75, and 30:70, respectively were prepared by mixing the 2 

compounds. Next, the ratio of the absorption peaks from FT-IR spectra corresponding to ester 

groups or imide groups to the C-O-C stretch of the acetal peak in the chitosan backbone was plotted 

against the percent content of mono methyl phthalate or N-methyl phthalimide from the physical 

mixture. The intercept corresponding to the mono methyl phthalate plot doesn’t go to zero because 

the absorption peak of the carbonyl stretch in ester groups is overlapped with the absorption peak of 

the carbonyl stretch in amide groups present in chitosan. The calculated DS’s for the reacted 

chitosan in the presence of DABCO or pyridine are presented in Table 3.6. Based upon this analysis, 

the presence of DABCO in the reaction system increases the DS of the reaction products when 

compared with those in the presence of pyridine. 

 

Figure 3.12 Calibration curves obtained for different physical mixtures of either mono methyl 

phthalate or N-methyl phthalimide with chitosan using FT-IR. 
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Table 3.3 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of both pyridine:K and PA:K was 5:1; 

temperatures of 80
o
C, 100

o
C and 120

o
C were used for reactions. 

 

Table 3.4 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

) after heating the KBr pellets containing the sample to 200
o
C 

for 2 hours; the molar ratio of pyridine:K was 3:1, 5:1, and 10:1, respectively, while the molar 

ratio of PA:K was constant (5:1).  

 

Table 3.5 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

) after heating the KBr pellets containing the sample to 200
o
C 

for 2 hours; the molar ratio of DABCO:K was 3:1, 5:1, and 10:1, respectively, while the molar 

ratio of PA:K was constant (5:1). 
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Table 3.6 Degree of substitution (DS) of phthalated chitosan in the presence of DABCO or 

pyridine as base (calculated from FT-IR calibration curves). 

 

3.5.3.3 FT-IR Analysis of Phthalated Chitosan Performed in the Presence of N-

Bromosuccinimide (NBS) as Catalyst 

N-Bromosuccinimde (Figure 3.11) showed to be a highly effective catalyst for the 

phthaloylation of chitosan at both functional groups (–OH and –NH2). The role of NBS is not clear 

but a possible explanation is that it acts as a source for Br
+
, which in turn activates the carbonyl 

groups of PA to produce highly reactive acylating agent, as shown in Scheme 3.5. The acylating 

agent reacts with hydroxyl and amino groups of chitosan, which upon elimination of NBS produces 

phthaloylated chitosan.(129-132) This hypothesis, however, needs further investigation to determine 

exactly the actual role of the NBS reagent. 

When the reaction of chitosan with PA was carried in the presence of NBS as catalyst 

significantly increased intensities of the carbonyl bands between 1720 and 1640 cm
-1

 were observed 

when compared with the reactions in the presence or absence of a base (Figure 3.12, Figure 3.9, and 

Figure 3.8). As a result, enough substitution took place at the functional groups of chitosan to disrupt 

the strong hydrogen bonding existent in its structure so that the product resulting from phthaloylation 

was soluble in DMSO and DMF. 
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Increasing the amount of catalyst in the reaction system led to an increase of the intensity 

peaks in the FT-IR spectra corresponding to imide (1777 cm
-1

), carboxyl (1716 cm
-1

), ester (1655 

cm
-1

) groups, and ortho-disubstituted aromatic rings (723 cm
-1

). The cyclization reaction with the 

formation of imide groups took place to a greater extent when higher amounts of catalyst were 

present (Table 3.7 and Table 3.8). Changing the molar ratio of PA to AGU of chitosan from 3:1 to 

5:1 didn’t have much of an impact on the intensity peaks of FT-IR spectra, but a molar ratio of 7:1 

(PA:AGU) increased the intensity peaks corresponding to imide and ester groups (Table 3.9). 

Heating the films used for the FT-IR measurements to 200
o
C for 2 hours and recording the 

spectra again, led to an increase in the intensity peaks corresponding to imide (1777 cm
-1 

and 1716 

cm
-1

) and ortho-disubstituted aromatic rings (723 cm
-1

) and a decrease in the intensity peaks for 

carbonyl stretch (1655 cm
-1

) and N-H bending (1560 cm
-1

) for amides (Figure 3.13, Table 3.10, and 

Table 3.11). This behavior is a result of amic acid cyclization leading to the formation of imide 

groups (Scheme 3.4).  

The calculated DS using the calibration curves from Figure 3.12 are compared in Table 3.12. 

Based upon this analysis, higher DS values are obtained with the increase of both PA and NBS 

added to the system. 

Table 3.7 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of NBS:K was 3:1, 7:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (3:1). 
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Figure 3.13 FT-IR spectra of chitosan reacted with PA in the presence of NBS (the molar ratio 

of PA to chitosan and NBS to chitosan being 3:1 and 10:1, respectively) in BMIMAc (blue 

spectra). The red spectrum represents the phthalated chitosan heated to 200°C for 2 hours. 

The black line shows the spectrum of original chitosan. 

Table 3.8 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of NBS:K was 3:1, 7:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (5:1). 
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Table 3.9 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of PA:K was 3:1, 5:1, and 7:1, respectively, 

while the molar ratio of NBS:K was constant (3:1). 

 

Table 3.10 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C 

bridge symmetric stretching (1076 cm
-1

) after heating the KBr pellets containing the sample to 

200
o
C for 2 hours; the molar ratio of NBS:K was 3:1, 7:1, and 10:1, respectively, while the 

molar ratio of PA:K was constant (3:1). 

 

Table 3.11 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C 

bridge symmetric stretching (1076 cm
-1

) after heating the KBr pellets containing the sample to 

200
o
C for 2 hours; the molar ratio of NBS:K was 3:1, 7:1, and 10:1, respectively, while the 

molar ratio of PA:K was constant (5:1). 
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Table 3.12 Degree of substitution (DS) of phthalated chitosan in the presence of NBS as 

catalyst (calculated from FT-IR calibration curves). 

 

Scheme 3.5 Mechanism of phthaloylation of chitosan using NBS as a catalyst.  
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3.5.3.4 1H NMR Measurements 

The 
1
H NMR spectrum of phthaloylchitosan is shown in Figure 3.14. Mainly, two sets of 

broad peaks can be observed: one set consisting of four peaks centering at 7.31, 7.45, 7.49, and 7.83 

ppm assigned to the phthaloyl groups (the peaks at 7.68 and 7.75 ppm correspond to residual 

BMIMAc ionic liquid) and the other between 1.1 and 5.0 ppm belong to the chitosan backbone 

hydrogen (associated with DMSO-d6 at 2.5 ppm and unremoved BMIMAc ionic liquid at 0.98, 1.36, 

3.83, and 4.15 ppm). The peak at 9.15 ppm is attributed to the proton in carboxylic acids. 

The 
1
H NMR (400 MHz; CD3OD) signals for BMIMAc ionic liquid are: δH: 0.98 (3H, t, 

N(CH2)3)CH3); 1.36 (2H, m, N(CH2)2CH2CH3): 1.86 (2H, m, NCH2CH2CH2CH3); 1.88 (3H, s, 

CH3COO
-
); 3.92 (3H, s, NCH3); 4.21 (2H, t, NCH2(CH2)2CH3); 7.57 (1H, d, CH3NCHCHN); 7.63 

(1H, d, CH3NCHCHN); 10.33 (1H, s, NCHN). These results are in agreement with those obtained by 

Wu and coworkers.(133) 

The degree of substitution (DS) of phthalated chitosan was determined by 
1
H NMR 

spectroscopy using the integral of peaks of the chitosan backbone at 2.8 – 5.3 ppm and integral of 

peaks due to aromatic protons at 7.0 – 8.0 ppm (equation 3.1). Because traces of the BMIMAc ionic 

liquid are still present in the final products, the calculation of DS was performed according to the 

equation 3.1 only after the area corresponding to the ionic liquid peaks was subtracted. To find out 

what is the area of the ionic liquid peaks that is overlapping with either the area of the chitosan 

backbone or the area of the aromatic protons needed for the calculation of the DS, the integral of the 

peaks corresponding to the 3 protons at 0.84 - 0.93 ppm of the methyl group from BMIMAc was 

calculated. With the obtained value, the integral peak of a single proton was obtained by dividing by 

3 (the number of protons present in the methyl group). In the region between 7.0 – 8.0 ppm of the 

aromatic protons, two protons from the ionic liquid are overlapped while in the region between 2.8-

5.3 ppm of the chitosan backbone five protons from the BMIMAc are overlapped. The integral of the 
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peaks corresponding to the solvent still present in the products was subtracted before using the 

equation 3.1 for the calculation of DS. 

DS = 7*Iarom/4*IAGU                                                                                                      (3.1) 

The calculated DS’s are compared in Table 3.13 and Table 3.14. Based upon this analysis, 

the maximum DS achieved was 0.28. These results do not seem to be reliable since the products are 

soluble in DMSO. The modified chitosan must have a higher degree of substitution in order to 

become soluble. On the other hand, the DS’s obtained from the calibration curves of the FT-IR 

spectra (Table 3.12) are more accurate with much bigger values that are close to a DS=1.  

Table 3.13 Degree of substitution (DS) of phthalated chitosan; the molar ratio of NBS:K was 

3:1, 7:1, and 10:1, respectively, while the molar ratio of PA:K was constant (3:1). 

 

Table 3.14 Degree of substitution (DS) of phthalated chitosan; the molar ratio of NBS:K was 

3:1, 7:1, and 10:1, respectively, while the molar ratio of PA:K was constant (5:1). 
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Figure 3.14 
1
H NMR spectra of BMIMAc (blue line) and chitosan reacted with PA in the 

presence of NBS (the molar ration of K to PA and K to NBS being 5:1 and 3:1, respectively). 

3.5.3.5 TGA/DSC Measurements 

The reaction of chitosan with phthalic anhydride reduced the thermal stability of the reaction 

product (Figure 3.15). The onset temperatures of degradation were 275
o
C (chitosan), 226

o
C 

(phthalated chitosan 4h) and 238
o
C (phthalated chitosan 2h), with maximum rates (DTG) at 90

o
C 
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and 300
o
C (chitosan), 93

o
C and 245

o
C (phthalated chitosan 4h), and 93

o
C and 253

o
C (phthalated 

chitosan 2h). The maximum rates at 90
o
C and 93

o
C are assigned to the water loss. The maximum 

rates at 253
o
C and 245

o
C of the phthalated chitosan are attributed to the degradation of polymer 

backbone as well as the degradation of amide and imide substituted species. At 50 % weight loss, the 

decomposition temperature of chitosan (330
o
C) is higher than those of phthalated chitosan samples 

prepared with reaction time of 2h (320
o
C) and 4h (312

o
C), respectively. The same trend was 

observed for the thermal stability: at 667
o
C chitosan lost 69% of its weight, phthalated chitosan from 

2h and 4h runs lost 71% and 73% of their initial weight, respectively. 

 

Figure 3.15 Thermogravimetric traces (TG) and corresponding derivatives for chitosan (green 

lines), phthalated chitosan 2h (red lines), and phthalated chitosan 4h (blue lines).  

Figure 3.16 illustrates the TGA thermograms of unmodified chitosan and reacted chitosan in 

the presence of a base. The TGA curves give an initial decrease below 150 C due to loss of moisture 

(Figure 3.16 left). After that, the native chitosan starts to decompose at 280 C, whereas the 

phthalated chitosan samples obtained in the presence of DABCO or pyridine begin to decompose at 

250 C and 253
o
C, respectively (Figure 3.16 right). At 50% weight loss, the decomposition 
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temperature occurs at 456 C for native chitosan and 360 C and 361 C for the phthalated chitosan 

samples obtained in the presence of DABCO and pyridine, respectively. This decreasing trend of 

decomposition temperature indicated that the thermal stability of the phthalated chitosan is lower 

than that of the native chitosan. However, when the thermal stability is compared to that of the 

regenerated chitosan from the BMIMAc ionic liquid (Table 3.15 and Table 3.16) the phthalated 

chitosan samples showed an improved thermal stability up until 350
o
C. As the temperature 

increased, the amounts of residual fractions seemed to come closer, i.e., at 600
o
C regenerated 

chitosan lost 64% of its weight, phthalated chitosan lost about 63% of its initial weight. These results 

may indicate that not much substitution took place since the weight loss of both chitosan and reacted 

chitosan showed similar values. A higher substitution would have resulted in a higher weight loss for 

the reacted chitosan. 

 

Figure 3.16 Thermogravimetric traces (TG) for chitosan reacted with PA (with molar ratio of 

PA to chitosan being 5:1) in BMIMAc using pyridine (orange spectrum) and DABCO (green 

spectrum) as a base (left); Thermogravimetric traces (TG) of the samples with the 

thermograms corresponding to the second heating scan to 600
o
C recorded imediately after the 

first run to 150
o
C (right). 
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The weight loss up to 150
o
C of the reaction products is attributed to the loss of water as a 

result of cyclization and formation of imide groups as confirmed by the FT-IR studies.  

Table 3.15 indicates that the thermal stability of the phthalated chitosan obtained in the 

presence of DABCO as base increases with the increase of the base added to the system. In the case 

of the phthalated chitosan synthesized in the presence of pyridine as base (Table 3.16), the thermal 

stability decreases with the amount of base used for the reaction. 

The thermal behavior of chitosan and phthalated chitosan obtained in the presence of NBS as 

catalyst are presented in Figure 3.17. Table 3.17 and Table 3.18 indicate that an increase for the 

onset temperatures of degradation when compared to that of regenerated chitosan and even of pure 

chitosan is observed for the reaction products when the amount of PA was kept constant (PA:AGU 

chitosan = 3:1 or 7:1) and the molar ration of NBS:AGU of chitosan is varied from 3:1 to 7:1 and 

10:1. The same trend is observed for the thermal stability of the reaction products up until 350
o
C 

(Table 3.17 and Table 3.18). If one compared the residual weights at 300
o
C and 350

o
C, respectively, 

the reacted chitosan from experiment 163 is more stable (87 % and 64 % respectively) but at 400
o
C 

the original chitosan sample has a higher weight loss (45%).  

Table 3.15 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of DABCO as base; the molar ratio of DABCO:K was 3:1, 5:1, and 10:1, respectively, 

while the molar ratio of PA:K was constant (5:1). 
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Table 3.16 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of pyridine as base; the molar ratio of pyridine:K was 3:1, 5:1, and 10:1, respectively, 

while the molar ratio of PA:K was constant (5:1). 

 

Table 3.17 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of NBS as catalyst; the molar ratio of NBS:K was 3:1, 7:1, and 10:1, respectively, 

while the molar ratio of PA:K was constant (3:1). 

 

Table 3.19 shows the thermogravimetric data for regenerated chitosan and for reaction 

products with PA in the presence of NBS as catalyst when the molar ratio of PA:K was 3:1, 5:1, and 

7:1, respectively, while the molar ratio of NBS:K was constant (3:1). From the table it can be seen 

that the increase of the amount of PA added to the system resulted in enhanced thermal stability of 

the reaction products up to 325
o
C. When the molar ratio of NBS:K is kept constant to 10:1 and the 

molar ratio of PA:K is varied from 5:1 to 7:1 (Table 3.20), respectively, a decrease of the thermal 
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stability of the phthalated chitosan is observed. However, at a molar ratio of PA:K of 3:1 the reaction 

product showed an increased thermal stability up until 350
o
C when compared with both chitosan and 

regenerated chitosan. The residual weights at 400
o
C for the reacted chitosan in the presence of NBS 

(Table 3.17- Table 3.20) showed much lower values than those of chitosan and regenerated chitosan. 

This may be attributed to the presence of a higher substitution in the reacted chitosan which will 

have as a result a higher weight loss at higher temperatures. 

 

Figure 3.17 Thermogravimetric traces (TG) for K (green line) and K reacted with PA; the 

molar ratio of NBS: K was 3:1 (black line), 7:1 (red line), and 10:1 (blue line), respectively, 

while the molar ratio of PA:K was constant (5:1). 

Table 3.18 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of NBS as catalyst; the molar ratio of NBS:K was 3:1, 7:1, and 10:1, respectively, 

while the molar ratio of PA:K was constant (7:1). 
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Table 3.19 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of NBS as catalyst; the molar ratio of PA:K was 3:1, 5:1, and 7:1, respectively, while 

the molar ratio of NBS:K was constant (3:1). 

 

Table 3.20 Thermogravimetric data for chitosan and for reaction products with PA in the 

presence of NBS as catalyst; the molar ratio of PA:K was 3:1, 5:1, and 7:1, respectively, while 

the molar ratio of NBS:K was constant (10:1). 

 

The weight loss up to 150
o
C of the reaction products is attributed to the loss of water as a 

result of cyclization and formation of imide groups as confirmed by the FT-IR studies. Differential 

scanning calorimetry (DSC) measurements (Figure 3.18) were in agreement with this hypothesis. 

Fresh and dried samples were used for a first heating run to 150
o
C followed by cooling to 25

o
C and a 
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second heating run to 150
o
C. On the second heating run no endothermic peak was observed which 

suggests complete cyclization on the first heating run to 150
o
C which showed an endothermic peak 

around 80-85
o
C.  

 

Figure 3.18 DSC thermograms of chitosan, chitosan reacted with PA (PA:AGU = 5:1) in the 

presence of: pyridine (pyridine:AGU = 3:1) or DABCO (DABCO:AGU = 3:1 and 10:1). 

Thermogram a corresponds to the first heating run to 150
o
C with an isothermal for 20 

minutes, whereas thermogram b corresponds to the second heating scan to 150
o
C recorded 

immediately after the first run. 
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CHAPTER 4 . HOMOGENEOUS MODIFICATION OF CHITOSAN IN 1-BUTYL-3-

METHYLIMIDAZOLIUM CHLORIDE 
 

 

4.1 Objective of Study 

Chitosan, a linear natural biopolymer, has been an attraction of scientists due to its wide 

application in chemical, biochemical and biomedical fields. Advantages of this polymer include 

availability, high biocompatibility, biodegradability, and nontoxicity. Chitosan is soluble in most 

solutions of organic acids when the pH of the solution is less than 6, in some dilute inorganic acids 

such as hydrochloric acid, perchloric acid, nitric acid, and in strong polar solvents such as N-dialkyl 

amides in presence of salts. There are some limitations in the above processing such as cost, toxicity, 

difficulty for the recovery of the solvent, or instability of the solvents over a wide range of 

temperature.(81)  Some of chitosan’s properties are: a chelating agent for harmful ions(134) such as 

copper, lead, mercury, and uranium from waste water; an excellent flocculant and a coagulating 

agent.(135) It is by itself hemostatic and chitosan bandages are prepared for wound protection and 

surgical treatment; it is used as a sustained release drug carrier.(136-137) 

The present chapter focuses on the dissolution and functionalization of chitosan in 

homogeneous ionic liquid solutions. 1-butyl-3-methylimidazolium chloride (BMIMCl) (Figure 4.1) 

is the ionic liquid used to accomplish these goals. There is only one paper that mentions the 

dissolution of chitosan in 1-butyl-3-methylimidazolium chloride(73) but there are no papers 

describing the chitosan functionalization in this ionic liquid. On the other hand, several studies have 

reported the ionic liquids as a media for the functionalization of cellulose for producing products 

with desired properties, such as: acetylation,(80-81) esterification,(82-83) etherification,(84) and 

carboxymethylation.(80) 
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Figure 4.1 Chemical structure of 1-butyl-3-metrylimidazolium chloride (BMIMCl). 

4.2 Overall Syntheses Performed in the Present Project 

Chemical modification of chitosan was performed in 1-butyl-3-methylimidazolium chloride 

(BMIMCl) as solvent using phthalic anhydride, benzoyl chloride, and trityl chloride. Seafresh 

Chitosan powder (85% DAC-MW 227 000) was regenerated by dissolving it in a solution of 1% 

acetic acid. After the removal of the un-dissolved chitosan by centrifugation, the biopolymer was 

precipitated in methanol and ammonium hydroxide, filtrated and used without drying. BMIMCl was 

synthesized from 1-methyl imidazol and chlorobutane.(138) The regenerated chitosan was dissolved 

in BMIMCl at 110-120
o
C under vacuum and agitation for about 4-5 hours. Toluene was used for the 

removal of the water present in the system by azeotropic distillation (Figure 4.2). A homogeneous 

chitosan solution could be obtained up to a concentration of 2wt %. The reaction of chitosan with 

phthalic anhydride was performed in the absence and in the presence of a base. The reaction of 

chitosan with benzoyl chloride or trityl chloride was carried out at elevated temperatures in the 

presence of a base to capture the hydrogen chloride released during the reaction. For all the reactions 

various molar ratios of the reagents and different temperatures were used. 

4.3 Experimental 

4.3.1 Materials 

1-Butyl-3-methylimidazolium chloride (BMIMCl) was synthesized by addition of n-butyl 

chloride to N-methylimidizole in toluene.(138) Anhydrous toluene, benzoyl chloride, 1,4-

diazobicyclo[2.2.2] octane and pyridine were obtained from Sigma Aldrich Chemical Company. 
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Seafresh chitosan powder with 85% DAC-MW 227 000 and manufactured by Seafresh Chitosan 

(Lab) Company was obtained from Bangkok, Thailand. Phthalic anhydride (PA) was acquired from 

Mallinckrodt and was ground to a fine powder before use.  

 

Figure 4.2 Dissolution of chitosan in BMIMCl. 

4.3.2 Instrumentation 

The 
13

C NMR spectra were recorded on a VNMRS-700 spectrometer with an acquisition 

time of 0.21 sec and a relaxation delay of 2 sec. 256 scans were accumulated for each spectra.  

FT-IR spectra were recorded on a ThermoNicolet 300 Fourier Transform Infrared 

spectrometer using a KBr disc containing 1% of very fine ground samples. Thirty two scans were 

taken for each sample in the range of 4000-400 cm
-1 

at a resolution of 4 cm
-1

 in the transmission 

mode. 

DSC measurements were performed using a TA 2920 MDSC instrument. Samples of 2-5 mg 

were subjected to analysis using a heating rate of 10
o
C/min. Fresh and dried samples were used for a 

first heating run to 150
o
C with an isothermal for 20 minutes followed by cooling to 25

o
C and a 

second heating run to 150
o
C.  The samples were placed in a covered aluminum sample holder while 

an empty pan was used as a reference. Dynamic thermogravimetric analysis was run in a nitrogen 



79 

 

atmosphere using a TA thermobalance (Model 2950). The experiments were conducted at a heating 

rate of 10
o
C/min until 600

o
C. Some of the experiments were first heated to 150

o
C, held isothermally 

for 15 minutes, followed by cooling to room temperature and heating again to 600
o
C. This procedure 

was used so that the water present in the systems would be completely eliminated in the first heating 

step. The thermogravimetric analysis was performed with 7-16 mg samples under nitrogen 

atmosphere.  The integration and processing of the curves resulted from the DSC and TGA 

instruments were done by using TA Universal analysis software.  

4.3.3 Syntheses 

4.3.3.1 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA)  

The regenerated chitosan (12.07 g wet chitosan that corresponds to 0.1833 g dry chitosan) 

was dissolved in BMIMCl (10 g) at 110-120
o
C under vacuum and agitation for about 4-5 hours. 

Toluene (40 mL) was used for the removal of the water present in the system. The reaction of 

chitosan with phthalic anhydride was performed by adding the PA (0.505 g) at room temperature to 

the chitosan solution. The reaction was allowed to proceed for 2 hours at 80
o
C. In a separate 

experiment the temperature was raised to 100
o
C. The product was isolated by precipitation in 450 

mL of methanol.  The polymer was isolated by filtration and washed three times with 50 mL aliquots 

of methanol. The collected modified polymer was dried at 45
o
C for 24 hours followed by a further 

drying under vacuum at 50
o
C for 2 hours. The weight of the dry product was 0.2339 g with a 

computed % yield of 70% if the theoretical yield is calculated for a degree of substitution of 1. 

4.3.3.2 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA) in the Presence of Pyridine or 1,4-Diazobicyclo[2.2.2] Octane (DABCO) as 

Base 

Chitosan (0.064 g) was dissolved in BMIMCl (6.365 g) at 90-100
o
C under magnetic stirring 

for 2 days. The reaction of chitosan with phthalic anhydride (0.294 g) in the presence of a base 
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(0.222 g) (pyridine or DABCO) was computed by adding the reagents to the chitosan solution and 

allowing the reaction to proceed at 100
o
C for 4 hours. The product was isolated by precipitation in 

450 mL of methanol.  The polymer was isolated by filtration and washed three times with 50 mL 

aliquots of methanol. The collected modified polymer was dried at 45
o
C for 24 hours followed by a 

further drying under vacuum at 50
o
C for 2 hours. The weight of the dry product was 0.083 g with a 

computed % yield of 72% if the theoretical yield is calculated for a degree of substitution of 1. 

4.3.3.3 Representative Procedure for the Chemical Modification of Chitosan with Benzoyl 

Chloride (BC) 

The reaction of regenerated chitosan (16.968 g wet chitosan which corresponds to 0.4628 g dry 

chitosan) with BC was performed by adding first pyridine (1.4 mL) at room temperature to a 

chitosan solution in BMIMCl (1.1wt%) under continuous stirring. The solution was stirred for an 

additional 20 minutes. The temperature was then raised to 50
o
C and BC (1.669 mL) was added in 

small amounts under agitation. Subsequently the reaction was allowed to proceed at 75-85
o
C under 

vacuum for 2 hours. The product was isolated by precipitation in 450 mL of methanol.  The polymer 

was isolated by filtration and washed three times with 50 mL aliquots of methanol. The collected 

modified polymer was dried at 45
o
C for 24 hours followed by a further drying under vacuum at 50

o
C 

for 2 hours. The weight of the dry product was 0.4984 g with a computed % yield of 65% if the 

theoretical yield is calculated for a degree of substitution of 1. 

4.3.3.4 Representative Procedure for the Chemical Modification of Chitosan with Trityl 

Chloride (TC) 

The reaction of chitosan (6.090 g wet chitosan which corresponds to 0.128 g dry chitosan) with 

TC was performed by adding pyridine (0.320 mL) and TC (0.664 g) to the chitosan solution in 

BMIMCl. The reaction was allowed to proceed at 80-90
o
C under vacuum for 2 hours. The product 

was isolated by precipitation in 450 mL of methanol.  The polymer was isolated by filtration and 

washed three times with 50 mL aliquots of methanol. The collected modified polymer was dried at 
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45
o
C for 24 hours followed by a further drying under vacuum at 50

o
C for 2 hours. The weight of the 

dry product was 0.147 g with a computed % yield of 46% if the theoretical yield is calculated for a 

degree of substitution of 1. 

4.3.3.5 Representative Procedure for the Chemical Modification of Chitosan with Phthalic 

Anhydride (PA) and Trityl Chloride (TC) 

A sequential reaction of PA and TC was performed by adding first the PA (3.963 g) at room 

temperature to the chitosan (1.437 g) solution in BMIMCl. The mixture was heated for 2 hours at 

80-90
o
C; next the TC (7.457 g) dissolved in pyridine (3.62 mL) was added and heating continued for 

other 2 hours at 80-90
o
C. The product was isolated by precipitation in 450 mL of methanol.  The 

polymer was isolated by filtration and washed three times with 50 mL aliquots of methanol. The 

collected modified polymer was dried at 45
o
C for 24 hours followed by a further drying under 

vacuum at 50
o
C for 2 hours. The weight of the dry product was 2.384 g.  

4.3.3.6 Representative Procedure for the Chemical Modification of Chitosan with Trityl 

Chloride (TC) and Phthalic Anhydride (PA) 

The sequential reaction with TC and PA was performed by adding first the TC (2.18 g) dissolved 

in pyridine (1.06 mL) at room temperature to 20 g of 2.85% chitosan solution in BMIMCl. The 

mixture was heated for 2 hours at 80-90
o
C; then the PA (1.16 g) was added and heating continued 

for other 2 hours at 80-90
o
C.  The product was isolated by precipitation in 450 mL of methanol.  The 

polymer was isolated by filtration and washed three times with 50 mL aliquots of methanol. The 

collected modified polymer was dried at 45
o
C for 24 hours followed by a further drying under 

vacuum at 50
o
C for 2 hours. The weight of the dry product was 0.563 g. 

4.4 Results/Discussion 

4.4.1 FT-IR Characterization of Phthaloylated Chitosan in BMIMCl Ionic Liquid 

The reaction of PA with dissolved chitosan in BMIMCl (Scheme 4.1) resulted in products 

containing carboxylic, ester, amide, and imide groups. In the FT-IR spectra of the phthalated 
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chitosan the appearance of new peaks at 1772, 1713, 1648, and 1566 cm
-1

 (Figure 4.3) indicates that 

the reaction proceeded as described in Chapter 3.6.4. The band at 1713 cm
-1

 is evidence for the 

presence of carbonyl ester groups in anhydroglucose repeating units (AGU) of substituted chitosan. 

The absorption at 1648 cm
-1

 is attributed to an overlapping of carbonyl groups from carboxylic acid 

to the amide functions. The stretch of C=O in carboxylic acids appears at 1730-1700 cm
-1

. However, 

due to the conjugation present in the system and intermolecular hydrogen bonding the carbonyl peak 

appears to a much lower frequency. The C=O stretch in amides is present in the spectra at 

approximately 1680-1630 cm
-1

. In spectra of phthalated chitosan it is overlapped with the carboxyl 

absorption and consequently one peak can be seen at 1648 cm
-1

. The band at 1566 cm
-1

 is indicative 

of N-H bending for secondary amides. The absorption at 1772 cm
-1

 corresponds to the imide 

carbonyl. The imide group is a result of the cyclization. None of the aromatic anhydride carbonyl 

bond absorptions (around 1850 cm
-1

 and 1790 cm
-1

) were observed in spectra of the reaction 

products purified by washing with methanol, confirming thus that the products were free of 

unreacted phthalic anhydride. 

 

Figure 4.3 FT-IR Spectra of unmodified chitosan (spectrum a), chitosan reacted with PA at 

80
o
C (spectrum b), and chitosan reacted with PA at 100

o
C (spectrum c); molar ratio phthalic 

anhydride/AGU 3:1. 
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Scheme 4.1 Reaction of phthalic anhydride with chitosan dissolved in BMIMCl. 
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4.4.2 FT-IR Characterization of Benzoylated Chitosan in BMIMCl Ionic Liquid 

Regarding the reaction of chitosan with BC (Scheme 4.2), the appearance of new peaks at 

3091, 1629, 1517, 752, and 622 cm
-1

 are indicative of the presence of substituted AGU (Figure 4.4). 

The absorption peak at 3091 cm
-1 

is attributed to the sp
2 

C-H stretch in the aromatic ring. The 

absorption bands at 1629 cm
-1

 and 1517 cm
-1

 are indicative of carbonyl stretch and N-H bending in 

amides, respectively. The peaks at 752 cm
-1

 and 622 cm
-1

 are evidence of the presence of 

monosubtituted aromatic rings. These new peaks confirm that only the -NH2 groups from chitosan 

AGU reacted with BC. No ester peaks are present in the FT-IR spectra which confirm that the –OH 

groups of chitosan did not react. The absence of the carbonyl stretching at 1800 cm
-1

 confirms that 

the product was free of unreacted acid chloride. 

Scheme 4.2 Reaction of benzoyl chloride with chitosan dissolved in BMIMCl. 
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Figure 4.4 FT-IR Spectra of unmodified chitosan (red spectrum), chitosan reacted with 

benzoyl chloride (blue spectrum). 

4.4.3 FT-IR Characterization of Tritylated Chitosan in BMIMCl Ionic Liquid 

In the reaction of chitosan with TC (Scheme 4.3), the appearance of new peaks at 1625, 

1512, 1164, 759, and 702 cm
-1

 are indicative of the presence of substituted AGU (Figure 4.5). The 

band at 1625 cm
-1

 is characteristic of the aromatic C=C stretch absorption. The peak at 1164 cm
-1

 is 

attributed to C-O-C stretching absorption. The absorption band at 1512 cm
-1

 corresponds to –NH 

bending in secondary amines. Characteristic to monosubstituted aromatic rings are the absorption 

bands at 759 cm
-1

 and 702 cm
-1

. These new peaks confirm that the -NH2 groups from chitosan AGU 

reacted with TC.  

Scheme 4.3 Reaction of trityl chloride with chitosan dissolved in BMIMCl. 
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Figure 4.5 FT-IR Spectra of unmodified chitosan (black spectrum), chitosan reacted with trytil 

chloride (red spectrum). 

4.4.4 FT-IR Characterization of Chitosan in BMIMCl Ionic Liquid Reacted Sequentially 

Either with Phthalic Anhydride and Trityl Chloride or with Trityl Chloride and Phthalic 

Anhydride 

The reaction of chitosan with both PA and TC was performed to improve its organic 

solubility. The reaction with PA is ideal for protection as well for improving solubility while the 

reaction with TC is perfect for the regioselective ether protection of primary hydroxyl groups of 

chitosan or N-phthaloyl chitosan.  

Figure 4.6 shows the spectra of chitosan reacted sequentially either with PA and TC 

[KPATC] or with TC then PA [KTCPA]. The absorption peaks at 1773 cm
-1

 and 1713 cm
-1

 are 

indicative of the presence of C=O stretch for imides and C=O stretch for esters, respectively. The 

formation of the ester groups is the result of the reaction of the –OH groups of chitosan with PA 

while the development of the imide groups is the result of the reaction of -NH2 groups of chitosan 

with PA followed by cyclization.  There are some differences between the two products, KPATC 

and KTCPA. When the KTCPA sequence is used, the absorption bands at 1773 cm
-1

 and 1713 cm
-1

 

are not as intense as when the KPATC sequence is performed. This suggests that the TC reacted with 
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the –NH2 groups and upon addition of PA, the availability of the –NH2 groups has been decreased. 

This can be observed by a lower intensity to the corresponding absorption bands. The intensity of the 

absorption band at 1164 cm
-1

 is much higher in the case of KPATC. PA has reacted first with the –

NH2 groups and when the TC was added it has reacted mostly with the –OH groups resulting in a 

higher intensity for the C-O-C stretching absorption. 

 

Figure 4.6 FT-IR Spectra of chitosan (black spectrum), chitosan reacted with phthalic 

anhydride and trityl chloride (blue spectrum), and chitosan reacted with trityl chloride and 

phthalic anhydride (red spectrum). 

4.4.5 FT-IR Characterization of Chitosan in BMIMCl Ionic Liquid Reacted with Phthalic 

Anhydride in the Presence of a Base (DABCO or Pyridine) 

The reaction of chitosan with PA in BMIMCl reported earlier(139) did not include a base. 

Although the reaction of chitosan with PA was confirmed by the FT-IR spectra, the intensities of the 

carbonyl bands between 1720 cm
-1

 and 1640 cm
-1

 were weak (Figure 4.7). On the other hand, the 

same reaction conducted in the presence of a base (pyridine) leads to products with stronger 

absorption bands (Figure 4.7). By increasing the amount of PA while keeping the molar ratio of 

chitosan to pyridine constant, an increase in the absorption intensities in the FT-IR spectra of the 

products is observed (Figure 4.7). However, when the amount of PA is kept constant and the molar 
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ratio of chitosan to pyridine is increased a significant change in the intensity of the peaks of the FT-

IR spectra is not noticed (Table 4.1). By enhancing the temperature of reaction from 80
o
C to 100

o
C 

an increase of the intensity peaks of the products is observed (Table 4.3). 

 

Figure 4.7 FT-IR Spectra of chitosan reacted with phthalic anhydride in a molar ratio of PA: 

AGU = 3:1 (blue spectrum); chitosan reacted with phthalic anhydride and pyridine in a molar 

ratio of: PA: AGU = 3:1 and Py: AGU = 5:1 (black spectrum); PA: AGU = 5:1 and Py: AGU = 

5:1 (red spectrum). 

The FT-IR spectra for the reactions of chitosan with PA in the presence of DABCO using 

BMIMCl as solvent are presented in Figure 4.8. It can be observed that in the presence of DABCO 

the absorption intensities are greater than those observed using pyridine. By increasing the amount 

of the base while keeping the molar ratio of chitosan to PA constant, an increase in the absorption 

intensities in the FT-IR spectra of the products has been observed (Table 4.2). This trend was not 

observed when the molar ratio of pyridine was varied while keeping constant the molar ratio of PA 

to chitosan (Table 4.1). When the films used for the collection of FT-IR spectra were heated to 

200
o
C for 2 hours and spectra were again recorded, an increase in the intensity peaks corresponding 

to imide (1775 cm
-1

) and ortho-disubstituted aromatic rings (722 cm
-1

) and a decrease in the intensity 
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peaks for carbonyl stretch (1647 cm
-1

) and N-H bending (1561 cm
-1

) for amides is observed. This 

behavior is a result of cyclization with the formation of imide groups (Scheme 4.1).  

The DS’s of the reaction products calculated using the calibration curves from the previous 

chapter (Figure 3.12) are presented in Table 4.1 and Table 4.2. It can be observed that higher DS’s 

are obtained in the presence of DABCO. 

 

Figure 4.8 FT-IR Spectra of chitosan reacted with phthalic anhydride and pyridine in a molar 

ratio of PA: AGU = 5:1 and Py: AGU = 3:1(blue spectrum); chitosan reacted with phthalic 

anhydride and DABCO in a molar ratio of: PA: AGU = 5:1 and DABCO: AGU = 3:1 (red 

spectrum); PA: AGU = 5:1 and DABCO: AGU = 5:1 (black spectrum). The spectra on the 

right represent the samples heated at 200
o
C for 2 hours. 
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Table 4.1 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of pyridine:K was 3:1, 5:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (5:1). 

 

Table 4.2 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of DABCO:K was 3:1, 5:1, and 10:1, 

respectively, while the molar ratio of PA:K was constant (5:1). 

 

Table 4.3 Ratio of the newly formed absorption peaks in the phthalated K to the C-O-C bridge 

symmetric stretching (1076 cm
-1

); the molar ratio of both pyridine:K and PA:K was 5:1; 

temperatures of 80
o
C and 100

o
C were used for reactions. 

 

4.4.6 Solid State
 13

C NMR Measurements 

The
 13

C NMR (700 MHz; DMSO-d6) resonances of the BMIMCl ionic liquid are: δC: 136.9 

(NCHN), 123.3 (NCHCHNCH3), 122.2 (CH3NCHCHN), 48.1 (NCH2(CH2)2CH3), 35.6 (NCH3), 

31.4 (NCH2CH2CH2CH3), 18.5 (NCH2CH2CH2CH3), 12.8 (NCH2CH2CH2CH3). These results are in 

agreement with the data obtained from ACDLabs CNMR Predictor.  
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The solid state 
13

C NMR spectrum of pure chitosan is presented in Figure 4.9. The chemical 

shifts between 50 ppm and 110 ppm are attributed to the 6 carbons of the glucosamine units of 

chitosan. The small peaks at 21.1 ppm and 171.5 ppm correspond to the methyl carbon and the 

carbonyl carbon of the amide functionality. These results are in agreement with those obtained by 

Paulino and Heux.(140-141) Because of the high degree of deacetylation of chitosan (82% 

calculated by NMR and 85% calculated by FT-IR) the resonances assigned to the N-acetyl-

glucosamine (171.5 ppm) units could hardly be observed. 

The solid-state 
13

C NMR spectrum of chitosan reacted with trityl chloride, benzoyl chloride, 

phthalic anhydride, KTCPA, and KPATC are presented in Figure 4.10 - Figure 4.14. In all the 

spectra the presence of the four peaks at around 11 ppm, 17 ppm, 30 ppm, and 35 ppm indicates that 

traces of BMIMCl solvent are still present in the reaction products. The spectrum of chitosan reacted 

with trityl chloride (Figure 4.10) shows the presence of new peaks at 122.2 ppm and 134.8 ppm 

which are attributed to the carbons in aromatic rings. This indicates that the trytil chloride reacted 

with the chitosan. However, the small intensity of the aromatic peaks points out that a very low 

degree of substitution of chitosan was achieved. The solid-state 
13

C NMR spectrum of chitosan 

reacted with benzoyl chloride (Figure 4.11) shows a similar pattern with the one for Figure 4.10 

indicating that benzoyl chloride reacted with chitosan but not to a great extent. When chitosan is 

reacted with phthalic anhydride the solid-state 
13

C NMR spectrum illustrates (Figure 4.12) the 

presence of more new peaks. The peak at 128.7 ppm corresponds to the aromatic ring carbons while 

the peak at 167.2 ppm corresponds to the carbonyl groups in acids, esters, and amides. It can be said 

that both the –OH and -NH2 groups of chitosan have been reacted with phthalic anhydride due to the 

broad peak at 167.2 ppm which is attributed to an overlapping of ester, amide, and imide carbonyl 

and carboxyl groups. By looking at the intensity of the newly formed peaks and comparing to those 

corresponding to chitosan spectrum, it can be concluded that a much higher degree of substitution 
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took place in the reaction of chitosan with phthalic anhydride than in those with trityl chloride or 

benzoyl chloride. 

The solid-state 
13

C NMR spectrum of KTCPA shows a similar pattern with the one of 

KPATC exception being the intensity of the peaks (Figure 4.13 and Figure 4.14). The peaks at 128.6 

ppm and 167.2 ppm (or 170.5 ppm) are indicative of the reaction of both functional groups of 

chitosan, -NH2 and –OH, with the two reagents (trityl chloride and phthalic anhydride). However, 

the intensity peaks for the KTCPA are significantly lower than those for the KPATC. This can be 

explained by the fact that when chitosan is first reacted with trityl chloride (Figure 4.10) not a 

significant degree of substitution is being observed. When next it is time for the phthalic anhydride 

to react (Figure 4.13), its accessibility to the functional groups of chitosan is impeded to some extent 

due to the presence of the big molecules of trityl chloride existent in the system as well. In the case 

of KPATC (Figure 4.14), the phthalic anhydride molecules are not hindered anymore and a higher 

degree of substitution can occur and the solid-state 
13

C NMR spectrum shows higher intensity peaks 

at 128.7 ppm and 167.2 ppm. 

 

Figure 4.9 Solid-state 
13

C NMR spectrum of chitosan powder. 
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The free hydroxyl groups at C-3 and C-6 and the free amino group at C-2 positions are the 

main reactive sites in chitosan. As shown in Figure 4.10 – Figure 4.14, the intensity of the signal at 

54.8 ppm for C-2 decreased after the reaction with BC, PA, TC, KPATC, or KTCPA indicating that 

the reactions took place at the amino groups of chitosan. The intensity signal at 72.9 ppm for C-6 

decreased as well indicating the reaction with the primary hydroxyl groups of chitosan. 

 

Figure 4.10 Solid-state 
13

C NMR spectrum of chitosan reacted with trityl chloride. 

 

Figure 4.11 Solid-state 
13

C NMR spectrum of chitosan reacted with benzoyl chloride. 
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Figure 4.12 Solid-state 
13

C NMR spectrum of chitosan reacted with phthalic anhydride. 

 

Figure 4.13 Solid-state 
13

C NMR spectrum of chitosan reacted with trityl chloride and phthalic 

anhydride. 

 

Figure 4.14 Solid-state 
13

C NMR spectrum of chitosan reacted with phthalic anhydride and 

trityl chloride. 
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4.4.7 TGA/DSC Measurements 

The thermal behavior of chitosan, K+BC, K+TC, K+PA, KTCPA, and KPATC were 

analyzed by TGA in N2. Reaction of chitosan with both BC and PA reduced the thermal stability of 

reaction products. Phthalated chitosan degraded in two steps, clearly shown both by TG and DTG 

curves (Figure 4.15). The onset temperatures of degradation were 185
o
C (chitosan reacted with BC), 

191
o
C and 225

o
C (phthalated chitosan) and 264

o
C for chitosan, with maximum rates (DTG) at 200

o
C 

(chitosan reacted with BC), 207
o
C and 234

o
C (phthalated chitosan, showing perhaps degradation of 

amide and imide substituted species) and 289
o
C (chitosan). The weight loss followed the same trend, 

viz., at 250
o
C the reacted chitosan with BC lost already 46% of the initial weight and phthalated 

chitosan lost 30%, while chitosan was still 86% undegraded. However, as temperature increased, the 

amounts of residual fractions seemed to come closer, i.e., at 450
o
C residual weights were 42%, 38% 

and 36% for chitosan, phthalated chitosan, and chitosan reacted with BC, respectively.  

 

Figure 4.15 Thermogravimetric traces (TG) and corresponding derivatives for K, KPA, KBC, 

and KTC samples. 

Thermogravimetric data for chitosan and for reaction products with TC and PA are compared in 

Table 4.4 and Figure 4.15 and Figure 4.16. Besides the nature of the reagent (TC or PA), the reaction 
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order with chitosan seems to have an equal influence on the thermal stability of the reaction 

products. According to data collected in Table 4.4, the first to decompose were the ether bonds 

formed by TC at a temperature as low as 175
o
C (DTA peak at 190

o
C), illustrated also by the first 

DTA peak occurring at 193
o
C in Figure 4.15. The subsequent temperatures refer to decomposition of 

PA reacted products and unsubstituted chitosan fractions. If one compares the residual weights at 

300
o
C and 600

o
C, the K+TC seems to be more stable than the K+PA product, with data close to that 

of unreacted chitosan (Table 4.4). However, when just the order of reaction is considered, the least 

stable was the KPATC sample, which exhibited the smallest residual weight at 300
o
C and 600

o
C, 

although up to 250
o
C both KPATC and KTCPA samples experienced the same weight loss (- 42%, 

Figure 4.16). 

 
 

Figure 4.16 Thermogravimetric traces (TG) and corresponding derivatives for K, KPATC and 

KTCPA samples. 

The reaction of chitosan with phthalic anhydride in the presence of either DABCO or 

pyridine improved the thermal stability of the corresponding products (Table 4.5 and Table 4.6). It 

can be observed that when chitosan is regenerated from the ionic liquid its thermal stability is 

considerably reduced. For example at 300
o
C the pure chitosan lost 27.9% while at the same 
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temperature the regenerated chitosan already lost 44% of its initial weight. The higher amount of 

weight loss for the regenerated chitosan may be attributed to residual BMIMCl ionic liquid still 

present in the product. The lower onset temperature for regenerated chitosan when compared to that 

of pure chitosan is attributed to the degradation of the polymer during the dissolution process. All 

the reaction products presented in Table 4.5 and Table 4.6 showed an improved onset decomposition 

temperature and an increased thermal stability up until 350
o
C when compared with both the 

regenerated chitosan and the pure chitosan. 

Table 4.4 Thermogravimetric data for chitosan and for reaction products with TC and PA.  

  

Table 4.5 Thermogravimetric data for chitosan, regenerated chitosan from BMIMCl ionic 

liquid, chitosan reacted with phthalic anhydride in the presence of DABCO when the molar 

ratio of PA:AGU was kept constant while varying the DABCO:AGU molar ratio from 3:1, 5:1, 

to 10:1. 
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Table 4.6 Thermogravimetric data for chitosan, regenerated chitosan from BMIMCl ionic 

liquid, chitosan reacted with phthalic anhydride in the presence of pyridine when the molar 

ratio of PA:AGU was kept constant while varying the pyridine:AGU molar ratio from 3:1, 5:1, 

to 10:1. 

 

The weight loss up to 150
o
C of the reaction products is attributed to the loss of water as a 

result of cyclization and formation of imide groups as confirmed by the FT-IR studies. Differential 

scanning calorimetry (DSC) measurements (Figure 4.17) were in agreement with this assumption. 

Fresh and dried samples were used for a first heating run to 150
o
C followed by cooling to 25

o
C and a 

second heating run to 150
o
C. On the second heating run no endothermic peak was observed which 

suggests complete cyclization on the first heating run to 150
o
C which showed an endothermic peak 

around 85
o
C.  

The onset temperature of degradation for chitosan is at 277.5
o
C with maximum rates (DTG) 

at 90
o
C and 300

o
C. Even if the chitosan was dried at 80

o
C for 48h before performing the TGA 

analysis, some water still exists in the chitosan structure. The polysaccharides have strong affinity 

for water due to their primary and supramolecular structures.(142) The high amount of hydroxyl and 

amino groups present in the chitosan structure are responsible for the strong water mediated 

hydrogen bonds, water which can not be completely removed simply by drying the sample at 80
o
C 
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or in desiccators.(143) Going to temperatures above 100
o
C, the water is forced out from the polymer 

network. This is evidentiated by a decrease in weight loss (12%) of chitosan at 90
o
C. A second 

degradation step can be observed for chitosan at 277.5
o
C and is attributed to the decomposition of 

chitosan molecules. 

The DSC thermograms of unmodified chitosan and phthalated chitosan have shown that even 

after successive cycles of heating and cooling, the hydrophilic groups in the amorphous regions of 

chitosan are associated with water (Figure 4.17).(143)  

 

Figure 4.17 DSC thermograms of chitosan, chitosan reacted with phthalic anhydride (PA:AGU 

= 5:1) in the presence of pyridine (pyridine:AGU = 5:1) or DABCO (DABCO:AGU = 10:1). 

Thermogram a corresponds to the first heating run to 150
o
C with an isothermal for 20 

minutes, whereas thermogram b corresponds to the second heating scan to 150
o
C recorded 

immediately after the first run. 
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CHAPTER 5 . BIOCOMPOSITE FILMS PREPARED FROM IONIC LIQUID 

SOLUTIONS OF CHITOSAN AND CELLULOSE 
  

 

5.1 Objective of Study 

Blending of polymers to improve their chemical and physical properties has been received a 

great attention in the past years.(144-150) When mixed in a common solvent, polymers may form a 

homogeneous solution. Fibers or films obtained from homogeneous solutions of two mixed 

polymers have reasonable physical properties as well as some other characteristics of both polymeric 

components. 

Due to its chemical properties, chitosan is a widely investigated polymer but the physical 

properties of fabricated products are not satisfactory. Therefore incorporating chitosan into polymer 

blends is frequently used to obtain new materials with better mechanical and thermal stability. The 

thermal stability of the blends depends strongly on the compatibility of the polymers.(151) 

The present investigation reports the formation of chitosan-cellulose blends in 1-butyl-3-

methylimidazolium acetate (BMIMAc) ionic liquid and preparation of films from the polymeric 

solutions. Since the molecular structure of chitosan and cellulose are very similar, it is expected that 

the blend films to have high compatibility and miscibility. To the best of our knowledge, there are no 

reports regarding the simultaneous dissolution of both cellulose and chitosan polymers in the same 

ionic liquid. 

5.2 Experimental 

5.2.1 Materials 

All chemicals were used as received from the vendors, without any further purification. 1-

Butyl-3-methylimidazolium acetate (BMIMAc) and chitosan, with a Brookfield viscosity of 200K 

cps, were purchased from Sigma Aldrich Chemical Company. The cellulose used was a pulp powder 
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with a degree of polymerization of 670, and was a gift from Buckeye Tech. Inc. (Memphis, TN). 

Both chitosan and cellulose were dried over night at 90
o
C and used without any further purification.   

5.2.2 Instrumentation 

Rheological measurements of the polymeric solutions were performed on a TA AR 1000 

instrument (TA Instruments, Inc., New Castle, DE). A parallel-plate geometry with a diameter of 40 

mm and a gap of 800 μm was used for all determinations. The instrument was equipped with an 

argon chamber to prevent hydroscopic absorption of atmospheric water leading to the precipitation 

of the polymers during the measurements. All rheological measurements were conducted using a 

temperature ramp step program and at a low shear rate (1/s).  

A Labconco Freeze Dryer was used to freeze dry the wet polymeric films after they were 

previously frozen using liquid nitrogen. A high vacuum (0.010 mBar) and a temperature of -89
o
C 

were employed during the drying process. The samples were allowed to rest at these conditions for 

24 hours.  

FT-IR spectra of the freeze-dried polymeric blends were recorded on a ThermoNicolet 300 

Fourier Transform Infrared spectrometer using a KBr disc containing 1% of very fine ground 

samples. One hundred scans were taken for each sample in the range of 4000-400 cm
-1 

at a 

resolution of 4 cm
-1

 in the transmission mode. 

Modulated thermogravimetric analyses (MTGA) of polymeric films were performed on a TA 

Instruments TGA 2950 thermobalance under nitrogen using the following program: 1) High 

resolution sensitivity 1; 2) Modulate +/- 5
o
C every 200 seconds; and 3) Ramp 2.00

o
C/min res 4 to 

600
o
C. This technique facilitates calculation of the activation energy of different processes involved 

in the degradation of a material from a single experiment. This is done by using an oscillatory 

temperature program to obtain kinetic parameters during a mass loss. Isothermal TGA of polymeric 

films was performed on ~2mg samples. The samples were heated under nitrogen from ambient 
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temperature to the isothermal temperature at a heating rate of 10
o
C min

-1
 before being held in 

isothermal mode at T = 200
o
C for 5 hours. The polymeric films were previously dried at 50

o
C before 

performing the TGA analyses. 

Scanning electron microscopy (SEM) measurements were made using a Hitachi S-3600N 

microscope with a voltage of 15 kV. Prior to SEM measurements the samples were freeze-fractured 

in order to expose the edge of the film and sputter-coated with a thin layer of gold.  

The X-ray diffraction measurements of sample foams were made using a Siemens-Bruker 

D5000 X-ray diffractometer with a Cu Kα radiation of 1.54 Å. Diffraction patterns were collected 

from 2θ = 2 to 35
o
 with steps of 0.02

o
 and a scan time of 2 s per step. Samples were dried at 50

o
C 

before each measurement. Powdered samples of cellulose and chitosan were examined as reference 

materials. 

5.2.3 Preparation of Biocomposite Films 

The dissolution of chitosan or cellulose in the 1-butyl-3-methylimidazolium acetate 

(BMIMAc) ionic liquid was performed by adding the material to a vial under argon followed by 

heating to 85
o
-95

o
C and using an overhead mixer (Figure 5.1). The dissolution time varied with the 

percentage and the type of polymer added to the ionic liquid. The dissolution time allotted for 

chitosan was about 3 to 4 days while the time for the cellulose dissolution was 12 hours.  Six distinct 

solutions were prepared using chitosan and/or cellulose with a total concentration of 6wt%. Two 

solutions were made of either neat chitosan or neat cellulose, while the other four solutions were 

blends of the neat solutions with chitosan-to-cellulose weight percent ratios of 5:95, 10:90, 25:75, 

and 50:50, respectively. The blends were obtained by mixing the cellulose and chitosan solutions in 

a glove box to prevent the exposure to moisture. Next, the blend solutions were mixed manually 

under argon with a spatula every 4-6 hours for 2 days. Between the mixing processes the vials were 

kept in an oven at 50
o
C. Homogeneous, transparent, and viscous solutions were obtained after the 
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complete dissolution of the polymers. Figure 5.3 displays pictures of the vials containing these 

polymeric solutions. It can be observed that all solutions, containing chitosan-cellulose blends, 

cellulose or chitosan are clear and transparent as opposed to the polymeric-BMIMAc slurries prior to 

dissolution (Figure 5.2). Films were prepared from each composition by manually spreading the 

solutions on a flat Teflon surface with a glass rod. The thickness of the spreading was kept constant 

at 1.5 mm. Following the spreading of solutions, the Teflon surface was dipped into a (50:50 by vol.) 

mixture of methanol and water to precipitate the films. The crude films (Figure 5.4) were washed 

several times with methanol and water and finally just with distilled water. In order to prevent the 

shrinkage of films, most of the absorbed water was removed by freeze drying under vacuum (Figure 

5.5). Finally the films were stored in desiccators to remove the traces of water. 

 

Figure 5.1 Dissolution of polymer (cellulose or chitosan) using an overhead mixer and heating 

to 85-95
o
C. 

 

Figure 5.2 Slurries of chitosan (187) and cellulose (188) in BMIMAc before dissolution. 
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Figure 5.3 Polymeric solutions containing chitosan and/or cellulose dissolved in BMIMAc. 

 

Figure 5.4 Polymeric films before freeze drying (from left to right: cellulose film, chitosan film, 

chitosan 5 wt%-cellulose 95 wt% film, and chitosan 50 wt%-cellulose 50 wt% film). 

 

Figure 5.5 Polymeric films containing chitosan and/or cellulose obtained by freeze drying 

technique. 
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5.3 Results/Discussion 

5.3.1 Rheological Measurements of Polymeric Solutions 

The relationship between shear viscosity (determined at a constant shear rate) and 

temperature for chitosan-cellulose blends and the pure components is illustrated in Figure 5.6. It can 

be observed that the viscosity of the solutions decreases as the temperature increases. At room 

temperature the molecules are tightly bound together by attractive intermolecular forces which are 

responsible for the viscosity of the solutions. When the temperature is increased, the thermal energy 

of the molecules is increased and the molecules become more flexible by overcoming the 

intermolecular forces within the liquid. As a result the viscosity of the solutions is decreased as the 

attractive binding energy is reduced. 

The intermolecular forces within the 6 wt% chitosan solution seem to be the strongest ones 

as indicated by its high viscosity of 1037 Pa·s (at 31
o
C) (Figure 5.6). The viscosity of the 6 wt% 

cellulose solution (472 Pa·s) at 31
o
C is less than half of that of the chitosan solution. The solutions 

comprising both chitosan and cellulose with chitosan-to-cellulose weight percent ratios of 5:95, 

10:90, 25:75, and 50:50, respectively showed a viscosity at 31
o
C that is very close to that of the 

cellulose solution: 429, 424, 414, and 455 Pa·s, respectively. In the case of the solution containing 

50:50 wt% chitosan: cellulose, one would expect a viscosity somewhere in between the viscosity of 

the chitosan and cellulose solutions. Instead, its viscosity is even lower than that of the cellulose 

solution. This behavior may be explained by the formation of a complex between the chitosan and 

cellulose molecules. The complex reduces the hydrodynamic radius leading to a solution with a 

much lower viscosity. As the temperature is increased, the viscosity of the solutions drops to a 

limiting value. For example, at 100
o
C the viscosities of chitosan, cellulose, and 5:95, 10:90, 25:75, 

and 50:50 chitosan: cellulose blends were found to be 86, 11, 10, 10, 12, and 11 Pa·s, respectively. 

http://www.scielo.cl/scielo.php?pid=S0717-97072010000100031&script=sci_arttext#img02
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Figure 5.6 The relationship between the apparent viscosity and the temperature of the blended 

mixtures at a constant shear rate. 

5.3.2 FT-IR Analysis of Polymeric Films 

Formation of homogeneous chitosan and cellulose blends is a result of strong interactions via 

hydrogen bonds between the functional groups of the blend components. FT-IR spectroscopy was 

used to examine these interactions between chitosan and cellulose. The results of the FT-IR spectra 

of the chitosan-cellulose blends are presented in Table 5.1 and Figure 5.7. Table 5.1 shows that the 

characteristic bands of chitosan and cellulose are present in the spectra of their blends, and the 

intensities of the bands vary depending on their composition in the mixture. The spectrum of 

cellulose film shows similar bands to that of chitosan film except for the absorption band at 1597 

cm
-1 

(Table 5.1). The absorption band of chitosan at 1659 cm
-1

 corresponds to carbonyl stretch in 

amides. The shifting of the carbonyl band to a lower frequency indicates that these groups are 

involved in H-bonding with cellulose functional groups. The presence of only one peak for the 

blends containing 5% and 10% chitosan with its value shifted to a lower frequency may indicate the 



106 

 

formation of a complex between the 2 polymers. The –NH bending in amide and amines is not 

observed anymore for these 2 polymeric films because the band was shifted to a higher frequency 

overlapping with the carbonyl stretch in amides. This shifting to a higher frequency indicate that the 

–NH groups of chitosan are involved in hydrogen bonding with the functional groups of cellulose, 

leading to a good miscible film. Xu and coworkers had reported a similar shift of the amino-group 

band of chitosan from 1578 cm
-1

 to 1584 cm
-1

 in the composite films with starch, a shift which the 

authors attributed to the interaction between the component polymers confirming their molecular 

miscibility.(144)  

Table 5.1 FT-IR absorption of polymeric blends (chitosan-cellulose). 

 

where: 

A = -OH and –NH stretching 

B = -CH stretching 

C = C=O stretching (amide I), water in the amorphous region 

D = -NH bending (amide II) 



107 

 

E = -CH and -NH vibrations 

G = Anti-symmetric stretching of the C-O-C bridge 

H = Skeletal vibrations involving the C-O stretching 

 

Figure 5.7 FT-IR spectra of chitosan-cellulose blends. 

5.3.3 TGA Analysis of Polymeric Films 

An investigation of the thermal behavior of the six polymeric films revealed weight loss 

values between 5–8 wt% up to 150
o
C that were attributed to the loss of water (Figure 5.8 and Table 

5.2). The thermal degradation of chitosan film consists of a thermal event that starts at 251
o
C with 

the maximum rate at 268
o
C and it is related to the depolymerisation of chitosan chains. The thermal 

event of cellulose is observed at 303
o
C with a maximal rate at 328

o
C. As indicated by derivative 

traces (DTG) plotted in Figure 5.9, the maximum decomposition rates were recorded at 268
o
C for 

neat chitosan, 328
o
C for neat cellulose, 324

o
C for the samples made of chitosan-cellulose 5:95% 
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(w/w) and 10:90%, 273
o
C and 322

o
C for chitosan-cellulose 25:75%, and 270

o
C and 316

o
C for the 

sample made of chitosan-cellulose 50:50% (w/w). The DTG degradation profile of the films cast 

from the solutions containing chitosan-cellulose 5:95% and 10:90% (w/w) display only one peak 

that has an intermediate value between the peaks corresponding to chitosan and cellulose. The 

presence of only one maximum rate of degradation (mono-modal peak) for these blends, with the 

DTG peak shifted to a lower temperature as compared to the peak temperature of neat cellulose, may 

be indicative of interactions between the two polymers and could be considered as proof of their 

molecular miscibility. However, in the case of chitosan-cellulose 25:75% and 50:50% (w/w) films, 

two maximum rates of degradation took place. Neither of these values matches the temperatures of 

peak decomposition rates of neat polymers, being slightly shifted from the peak temperatures 

recorded for the pure polymers. This behavior may be explained by a partial miscibility of chitosan 

and cellulose. It is observed in Table 5.2 that the temperature of the blends where the decomposition 

starts (onset temperature) decreases with the content of chitosan present in the blends. TGA analyses 

for physical mixtures of the 2 polymers, chitosan and cellulose, were also performed (Figure 5.10). 

From the graph it can be seen that the 10:90% chitosan-cellulose physical mixture shows the 

presence of 2 maximum peaks of degradation as opposed to one peak of degradation for the 10:90% 

chitosan-cellulose film. This indicates that limited interactions are present between the polymers in 

the physical mixture. 

The thermal stability of the chitosan-cellulose blends at 586
o
C seems to be between those of 

chitosan and cellulose. It can be observed that the higher the content of chitosan it is, the higher the 

char yield of the blends (Figure 5.8). Thus, the addition of chitosan increases the thermal stability of 

cellulose, slowing down its thermal degradation. The obtained results confirm the presence of strong 

interaction between the two polymers. Interactions between the hydroxyl groups of cellulose and the 
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amino groups of chitosan that have been formed in the ionic liquid solution remain in films after the 

removal of solvent. 

 

Figure 5.8 Thermogravimetric plot, TG, for chitosan (magenta line), cellulose (black line), and 

chitosan-cellulose films 5:95% (w/w) (green line), 10:90% (red line), 25:75% (blue line), and 

50:50% (gray line). 

Table 5.2 Thermogravimetric analysis of chitosan, cellulose, and chitosan-cellulose blends. 
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Figure 5.9 Derivative plots, DTG, for chitosan (red line), cellulose (black line), and 

chitosan/cellulose films 5:95% (w/w) (maroon line), 10:90% (blue line), 25:75% (magenta line), 

and 50:50% (green line). 

 

Figure 5.10 Derivative plots, DTG, for physical mixture of chitosan and cellulose films of 

different weight percent ratios: chitosan/cellulose films 5:95% (maroon line), 10:90% (blue 

line), and 25:75% (magenta line). 
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The activation energy (Ea) estimated by MTGA for the degradation of cellulose film (202.9 

kJ/mol) correlates very well with the Ea ≈ 170-210 kJ/mol reported by LeVan and coworkers for the 

analysis of cellulose thermal decomposition in nitrogen atmosphere.(152) 

The Ea distribution curves at the onset temperature for the polymeric blends obtained from 

MTGA are reproducible, showing very little variation between replicate runs (Table 5.3). Figure 

5.12 illustrates that the Ea of the chitosan film (194.5 kJ/mol) is lower than the Ea of the cellulose 

film (202.9 kJ/mol). The calculated Ea of the polymeric blends (obtained using the weight averaged 

experimental Ea values of the neat polymers) (Figure 5.12 – blue dots) is expected to fall between 

the Ea of cellulose film and the Ea of chitosan film. Also the Ea of the blends is expected to decrease 

with the increase amount of chitosan. However, the experimental Ea of all the polymeric blends 

(Figure 5.12 – red squares) showed higher values than the Ea of both chitosan and cellulose films. 

These results are an indicative of the miscibility of the two polymers. The Ea of the 25:75 wt% 

chitosan/cellulose film exhibited the highest Ea among the polymeric films. The reason for the 

increased Ea for all the polymeric blends is attributed to the presence of strong interaction through 

hydrogen bonding between chitosan and cellulose which require higher Ea to be broken down.  

Figure 5.11 shows the weight loss of cellulose, chitosan, and chitosan-cellulose blends versus 

time of degradation in nitrogen atmosphere at 200
o
C. After 5 hours of degradation, the weight loss of 

cellulose film is the lowest and equal to 1.3%, in comparison with chitosan (3.4%) and chitosan-

cellulose blends (2.7%, 3.2%, 4.3%, and 5.5% corresponding to 5:95%, 10:90%, 25:75%, and 

50:50% blends, respectively). The weight loss of chitosan film is higher than the weight loss of the 

5:95 and 10:90 wt% chitosan-cellulose blends but lower than the weight loss of the 25:75 and 50:50 

wt% chitosan-cellulose films. This behavior may be explained by the formation of a complex 

between chitosan and cellulose through hydrogen bonding. The molecular forces existent in the 

complex of the polymeric blends are less stable than those existent in cellulose. The blends 
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containing 25 and 50 wt% chitosan are showing a higher weight loss than any of the other films 

because the complex formed between chitosan and cellulose is much easier to break which will 

result in a less thermal stability of the films. If no interaction is present between chitosan and 

cellulose, one will expect the weight loss at 200
o
C for 5 hours for all the polymeric blends to be 

proportional to chitosan content; to be between the weight loss of chitosan and cellulose films. Since 

this not the case for the analyzed polymeric blends, the isothermal presented in Figure 5.11 is 

another proof of the compatibility of cellulose and chitosan where a complex between the two 

polymers is being formed. 

 

Figure 5.11 Isothermal TG at 200
o
C for 5 hours for chitosan cyan line), cellulose (red line), and 

chitosan-cellulose films 5:95% (w/w) (blue line), 10:90% (black line), 25:75% (magenta line), 

and 50:50% (green line). 

Table 5.3 Activation energy for 5:95 and 10:90 w/w% chitosan-cellulose films for replicate 

runs.  
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Figure 5.12 The activation energy of the polymeric films obtained from experimental data (red 

squares) and from calculation (blue dots). 

5.3.4 X-Ray Diffraction of Polymeric Films 

X-ray diffractograms of pure chitosan, pure cellulose, and chitosan and cellulose films 

prepared from ionic liquid solutions are presented in Figure 5.13. As observed, the chitosan powder 

was in a crystalline state because two main diffraction peaks (2θ = 10.7 and 19.8
o
) were present in 

the X-ray diffraction pattern. These patterns, which are typical crystalline domains in this 

polysaccharide, were in agreement with the results reported by Nunthanid and coworkers.(153) After 

making the films by precipitating the polymer from ionic liquid solutions, two crystalline peaks (2θ 

= 10.9 and 20.1
o
) still existed, but with smaller intensities. The XRD pattern of pure cellulose shows 

two diffraction peaks at 2θ = 14.9 and 23.1
o
. The strongest peak originates from the cellulose 

crystalline plane 002.(154) The diffraction pattern of the cellulose film at 19.5
o
 indicates that the 

crystalline regions decreased significantly compared to that of pure cellulose.  

When the two polymers were mixed at a chitosan to cellulose weight percent ratio of 5:95%, 

10:90%, 25:75%, and 50:50%, only one diffraction peak with very low intensity was observed at 
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19.6, 19.7, 22.1, and 20.4
o
, respectively (Figure 5.14). The presence of only one peak for the 

polymeric blends indicates that the chitosan structure was influenced by the addition of cellulose. 

The crystalline peaks of chitosan and cellulose were suppressed for all the weight percent ratios of 

chitosan-cellulose blends leading to a significantly lower proportion of crystalline material. Blending 

the two polymers makes the resulting materials more amorphous, which explains the disappearance 

of sharp diffraction peaks. The chitosan-cellulose blends do not show any diffraction peaks at 2θ = 

10.7 and 14.9
o
, which confirms good miscibility between the polymers. 

 

Figure 5.13 XRD patterns for pure chitosan, pure cellulose, and chitosan and cellulose films 

prepared from ionic liquid solutions. 
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Figure 5.14 XRD patterns chitosan-cellulose (5:95%, 10:90%, 25:75%, and 50:50%) films 

prepared from ionic liquid solutions. 

5.3.5 SEM Experiments of Polymeric Films 

In Figure 5.15 through Figure 5.20 are presented the SEM micrographs at different 

magnifications that were obtained from freeze dried chitosan and/or cellulose films. The thickness of 

the films varied between 1 mm and 1.2 mm. The films were prepared by shear spreading a polymer-

solution on a Teflon mold followed by polymer precipitation in methanol and water. Prior to SEM 

analysis the dried films were fractured following an axis perpendicular to the spreading direction. 

The fracture surface XY plane is defined in image a (Figure 5.15). Image b represents a magnified 

version of the area delimited with a dashed line in image a. Furthermore, image c represents a 

magnified version of the area delimited with a dashed line in image b (Figure 5.15).  
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Figure 5.15 SEM micrographs of a freeze dried chitosan film prepared through shear 

spreading (cross-section). 

From Figure 5.15 and Figure 5.16 it can be seen that the films of pure chitosan and pure 

cellulose have homogeneous morphology. In Figure 5.15 it can be easily observed that overall the 

precipitated chitosan film has a very porous and disorganized structure, in which the domains have 

no particular orientation. In image a it is apparent that the density of striations is higher towards the 

middle-bottom part of the film, along the thickness axis X, than at the top surface. An explanation 

could be related to the presence of solvent-rich and polymer-rich domains along the thickness of the 

film. If that was the case, the solvent-rich domains would be expected to induce a higher density of 

striations in the precipitated polymer, upon immersion in methanol and water. In images b and c it is 

apparent that the main structure of large striations that are visible in a, is interpenetrated by a 
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secondary structure of smaller striations. Overall, it is hard to quantify the porosity of the film since 

various individual features exhibit different dimensions.  

 

Figure 5.16 SEM micrographs of a freeze dried cellulose film prepared through shear 

spreading (cross-section). 

In the case of cellulose film (Figure 5.16) a well-organized fiber-like network oriented along 

the spreading direction can be observed. The fibers seem to be parallel to each other but have a 

random distribution. Voids ranging from 1.9 μm to 13.5 μm are present throughout the fiber-like 

structure. These voids are the result of the extraction of the solvent from the cellulose ionic liquid 

solutions during the polymer precipitation process. The freeze-drying technique applied to the wet 

films was performed to prevent the collapsing of the polymeric films after the polymers were 

precipitated in water. Freeze drying involves the removal of water from the frozen polymeric films 
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by a process called sublimation. Sublimation takes place when the frozen water goes directly from 

the solid state to the gaseous state without passing through the liquid phase. 

The morphology of the polymeric blends is quite different than that of pure chitosan and 

depends on the chitosan-cellulose weight percent ratio. For the samples with a 5:95% chitosan-

cellulose, the cross-section structure resembles that of cellulose with a fiber-like network oriented 

along the spreading direction and voids varying from 1.9 μm to 10.4 μm (Figure 5.17). These voids 

may be looked at as “cracks” with no particular order.  The same structure can be observed for the 

10:90% chitosan-cellulose blend with an ordered fiber-like structure and uniformly distributed voids 

ranging from 1.9 μm to 10.4 μm (Figure 5.18). However, the fiber-like network seems to be more 

organized than in the case of cellulose or 5:95% chitosan-cellulose blend with the “cracks” being 

mostly parallel to each other. When the amount of chitosan in the polymeric blends is increased to 

25 wt% (Figure 5.19), the cross-section of the corresponding film shows a more compact structure 

with fewer parallel voids than in the case of the blends with less than 25 wt% chitosan in their 

composition. The “cracks” are also smaller in size (8.33 μm). Figure 5.20 illustrates the SEM 

micrographs at different magnifications of the 50:50% chitosan-cellulose blends. The cross-section 

of the films looks more like a smooth surface with few “cracks” of about 4.16 μm. By looking and 

the voids it can be seen that the fiber-like network is present for this composition of blends (50:50%) 

as well. A homogeneous structure with no phase separation of the two polymers, cellulose and 

chitosan, was observed for all of the blends. Thus the SEM data serve as good evidence for complete 

miscibility between chitosan and cellulose in the solid state.  
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Figure 5.17 SEM micrographs of a freeze dried chitosan/cellulose (5:95%) blend prepared 

through shear spreading (cross-section). 

 

Figure 5.18 SEM micrographs of a freeze dried chitosan/cellulose (10:90%) blend prepared 

through shear spreading (cross-section). 
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Figure 5.19 SEM micrographs of a freeze dried chitosan/cellulose (25:75%) blend prepared 

through shear spreading (cross-section). 

 

Figure 5.20 SEM micrographs of a freeze dried chitosan/cellulose (50:50%) blend prepared 

through shear spreading (cross-section). 
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CHAPTER 6 . CONCLUSIONS AND FUTURE WORK 
 

 

6.1       Conclusions 

The dissolution of chitosan in ionic liquids was successfully accomplished. It has been shown 

that 1-butyl-3-methylimidazolium acetate (BMIMAc) is a much better solvent than 1-butyl-3-

methylimidazolium chloride (BMIMCl). Dissolution of chitosan in BMIMCl could not be realized 

without a prior regeneration of chitosan from 1% acetic acid solution. In the case of BMIMAc, both 

dried chitosan and regenerated chitosan from acetic acid solution have been dissolved in a relatively 

short amount of time. While concentrations only up to 1-2 wt% of chitosan in BMIMCl could be 

obtained, concentrations of 10 wt % of chitosan in BMIMAc were easily realized. 

The homogeneous phthalation and benzoylation of chitosan were successfully achieved in 

these ionic liquids. According to FT-IR data the appearance of new peaks confirm that both the -OH 

and -NH2 groups from chitosan AGU reacted with benzoyl chloride and phthalic anhydride, 

respectively. The reaction of chitosan with phthalic anhydride occurred in two steps: in the first step 

the amide has been formed and in the second step the imide cycles have been closed. Higher 

temperatures favored the imide group formation. Heating the isolated phthalated chitosan adducts to 

150
o
C leads to cyclization with the formation of imide groups and elimination of water. The FT-IR 

and DSC measurements supported this supposition. 

The reaction of chitosan with phthalic anhydride in the presence of a base and using ionic 

liquids as a solvent media was also studied. The presence of a base into the system leads to an 

increase of the degree of substitution (DS = 0.41) of the functional groups of chitosan comparing 

with the reactions performed in the absence of a base (DS = 0.24). Chemical modification of 

chitosan using the chloride ionic liquid resulted in products with a higher thermal stability than 

adducts of chitosan prepared using the acetate ionic liquid as a solvent.  
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The reaction of chitosan with phthalic anhydride in the presence of N-Bromosuccinimide as 

catalyst using BMIMAc as an ionic liquid solvent was also investigated. The presence of a catalyst 

into the system resulted in an increase of the degree of substitution (DS = 0.85) of functional groups 

of chitosan as compared to that resulted from the reactions performed in the absence of a catalyst 

(0.24). The FT-IR data indicated that the hydroxyl groups of chitosan are being catalyzed to a greater 

extent than the amino groups. All the reactions products were soluble in dimethyl sulfoxide and 

dimethylformamide. 

Blends of chitosan and cellulose were successfully accomplished using BMIMAc as solvent 

media. To the best of our knowledge, there are no reports regarding the simultaneous dissolution of 

both cellulose and chitosan polymers in the same ionic liquid. The rheological measurements of the 

polymeric solutions indicated the formation of a complex between chitosan and cellulose molecules. 

Films prepared from the polymeric solutions were investigated by means of FT-IR, TGA, X-ray 

diffraction and SEM measurements. The shifting of the band corresponding to –NH groups of 

chitosan from 1597 to 1565 cm
-1 

(FT-IR), the absence of the diffraction peaks at 2θ = 10.7 and 14.9
o 

(XRD), the increased Ea for all the polymeric blends (MTGA), and the presence of a homogeneous 

structure with no phase separation of the two polymers (SEM) serve as good evidence for the 

miscibility between chitosan and cellulose in the solid state.  

6.2     Future Work 

Future work will focus on enhancing the antimicrobial properties of chitosan by 

incorporating in it antibiotics with possible applications for local drug delivery systems. The goal is 

to deliver high levels of antibiotics to the site of wounds for a faster healing. This method will have 

the advantage of a lower overall concentration of drugs when compared to the oral or intravenous 

administration.  
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Chemical modification of chitosan and cellulose blends with antibiotics and spinning of 

fibers and casting of films for possible applications as wound dressing in biomedical field is another 

goal to be achieved. Our concepts of obtaining fibers and films from blends of chitosan and cellulose 

can be applied to skin tissue regeneration and accelerate healing of wounds effect created by the 

presence of chitosan that has distinctive biomedical properties when used as wound-dressing 

materials. The presence of cellulose is necessary so that the overall material obtained from the 

blends has better flexibility and increased mechanical properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



124 

 

REFERENCES 

 

 

1. Solomons, T. W. G. (1992) Organic Chemistry, 5 ed., John Wiley & Sons, New York. 

2. Methacanon, P., Prasitsilp, M., Pothsree, T., and Pattaraarchachai, J. (2003) Heterogeneous 

N-deacetylation of squid chitin in alkaline solution, Carbohydrate Polymers 52, 119-123. 

3. Galed, G., Miralles, B., Paños, I., Santiago, A., and Heras, Á. (2005) N-Deacetylation and 

depolymerization reactions of chitin/chitosan: Influence of the source of chitin, 

Carbohydrate Polymers 62, 316-320. 

4. Ravi Kumar, M. N. V. (2000) A review of chitin and chitosan applications, Reactive and 

Functional Polymers 46, 1-27. 

5. Goosen, M. F. A. (1997) Applications of Chitin and Chitosan, CRC Press LLC. 

6. Prudden, J. F., Migel, P., Hanson, P., Friedrich, L., and Balassa, L. (1970) The discovery of a 

potent pure chemical wound-healing accelerator, Amer. J. Surg. 119, 560-564. 

7. Cho, Y.-W., Jang, J., Park, C. R., and Ko, S.-W. (2000) Preparation and solubility in acid and 

water of partially deacetylated chitins, Biomacromolecules 1, 609-614. 

8. Poulicek, M., Voss-Foucart, M. F., and Jeuniaux, C. (1986) Chitinoproteic complexes and 

mineralization in Mollusk skeletal structures   In Chitin in Nature and Technology 

(Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G. W., Eds.), pp 7-12, Plenum Press, New 

York. 

9. Macossay, J., (Ed.) (1995) Synthesis and characterization of water soluble chitosan 

derivatives, Louisiana State University Libraries, Baton Rouge. 

10. Wu, A. C. M., and Bough, W. A. (1978) A Study of Variables in the Chitosan Manufacturing 

Process in Relation to Molecular-Weight Distribution, Chemical Characteristics and Waste-

Treatment Effectiveness., In Proceedings of the First International Conference on 

Chitin/Chitosan (Muzzarelli, R. A. A., and Pariser, E. R., Eds.), pp 88-102, Cambridge. 

11. Jolles, P., and Muzzarelli, R. A. A. (1999) Chitin and Chitinases, Birkhauser Verlag, Basel. 

12. Domard, A., and Ronaudo, M. (1983) Preparation and characterization of fully deacetylated 

chitosan, International Journal of Biological Macromolecules 5, 49-52. 

13. Bough, W. A., Salter, W. L., Wu, A. C. M., and Perkins, B. E. (1978) Influence of 

manufacturing variables on the characteristics and effectiveness of chitosan products. I. 

Chemical composition, viscosity, and molecular-weight distribution of chitosan products, 

Biotechnology and Bioengineering 20, 1931-1943. 

14. Muzzarelli, R. A. A. (1973) Natural Chelating Polymers, Pergamon of Canada Ltd., Toronto. 



125 

 

15. Kobayashi, T., Takiguchi, Y., Shimahara, K., and Sannan, T. (1988) Distribution of chitosan 

in Absidia strains and some properties of the chitosan isolated, , Nippon Nogeikagaku Kaishi 

62, 1463-1469. 

16. Solomons, T. W. G. (1989) Organic chemistry, 4 ed., John Wiley & Sons, New York. 

17. Dai, H., Zhou, J., Huang, Y. R., and Zhang, Z. C. (2006) Carboxymethylation of chitosan and 

its application in retan of leather, 7th Asian International Conference of Leather Science and 

Technology Sect 1 and 2, 389-394. 

18. Raymond, L., Morin, F. G., and Marchessault, R. H. (1993) Degree of deacetylation of 

chitosan using conductometric titration and solid-state NMR, Carbohydrate Research 246, 

331-336. 

19. Ratajska, M., Struszczyk, M. H., Boryniec, S., Peter, M. G., and Loth, F. (1997) The degree 

of deacetylation of chitosan: optimization of the IR method, Polimery 42, 572-575. 

20. Hirai, A., Odani, H., and Nakajima, A. (1991) Determination of degree of deacetylation of 

chitosan by H-1-NMR spectroscopy, Polymer Bulletin 26, 87-94. 

21. dos Santos, Z. M., Caroni, A., Pereira, M. R., da Silva, D. R., and Fonseca, J. L. C. (2009) 

Determination of deacetylation degree of chitosan: a comparison between conductometric 

titration and CHN elemental analysis, Carbohydrate Research 344, 2591-2595. 

22. Niola, F., Basora, N., Chornet, E., and Vidal, P. F. (1993) A rapid method for the 

determination of the degree of N-acetylation of chitin-chitosan samples by acid-hydrolysis 

and HPLC, Carbohydrate Research 238, 1-9. 

23. Nanjo, F., Katsumi, R., and Sakai, K. (1991) Enzymatic method for determination of the 

degree of deacetylation of chitosan, Analytical Biochemistry 193, 164-167. 

24. da Silva, R. M. P., Mano, J. F., and Reis, R. L. (2008) Straightforward determination of the 

degree of N-acetylation of chitosan by means of first-derivative UV spectrophotometry, 

Macromolecular Chemistry and Physics 209, 1463-1472. 

25. Tan, S. C., Khor, E., Tan, T. K., and Wong, S. M. (1998) The degree of deacetylation of 

chitosan: advocating the first derivative UV-spectrophotometry method of determination, 

Talanta 45, 713-719. 

26. Wu, T., and Zivanovic, S. (2008) Determination of the degree of acetylation (DA) of chitin 

and chitosan by an improved first derivative UV method, Carbohydrate Polymers 73, 248-

253. 

27. Muzzarelli, R. A. A. (1992) Modified chitosans carrying sulfonic-acid groups, Carbohydrate 

Polymers 19, 231-236. 

28. Keisuke, K., Takanori, S., and Yoshio, I. (1979) Studies on chitin. VI. Binding of metal 

cations, Journal of Applied Polymer Science 23, 511-515. 



126 

 

29. Tsaih, M. L., and Chen, R. H. (1999) Molecular weight determination of 83% degree of 

decetylation chitosan with non-gaussian and wide range distribution by high-performance 

size exclusion chromatography and capillary viscometry, Journal of Applied Polymer 

Science 71, 1905-1913. 

30. Nguyen, S., Winnik, F. M., and Buschmann, M. D. (2009) Improved reproducibility in the 

determination of the molecular weight of chitosan by analytical size exclusion 

chromatography, Carbohydrate Polymers 75, 528-533. 

31. Muzzarelli, R. A. A. (1977) Chitin, Pergamon of Canada Ltd., Toronto. 

32. Kurita, K., Sannan, T., and Iwakura, Y. (1977) Studies on chitin, 3. Preparation of pure 

chitin, poly(N-acetyl-D-glucosamine), from the water-soluble chitin 178, 2595-2602. 

33. Chen, X. G., and Park, H. J. (2003) Chemical characteristics of O-carboxymethyl chitosans 

related to the preparation conditions, Carbohydrate Polymers 53, 355-359. 

34. Yang, H., Zhou, S. B., and Deng, X. M. (2004) Preparation and properties of hydrophilic-

hydrophobic chitosan derivatives, Journal of Applied Polymer Science 92, 1625-1632. 

35. Hirano, S., Senda, H., Yamamoto, Y., and Watanabe, A. (1984) In Chitin, Chitosan and 

Related Enzymes (Zikakis, J. P., Ed.), pp 77-95, Academic Press, Inc., Orlando. 

36. Keisuke, K., Yoshiyuki, K., and Akihiko, T. (1986) Studies on chitin. IX. Crosslinking of 

water-soluble chitin and evaluation of the products as adsorbents for cupric ion, Journal of 

Applied Polymer Science 31, 1169-1176. 

37. Kurita, K., Chikaoka, S., and Koyama, Y. (1988) Improvement of Adsorption Capacity for 

Copper (II) Ion by N-Nonanoylation of Chitosan, Chemistry Letters 17, 9-12. 

38. Muzzarelli, R. A., Tanfani, F., and Scarpini, G. (1980) Chelating, film-forming, and 

coagulating ability of the chitosan-glucan complex from Aspergillus niger industrial wastes, 

Biotechnology and Bioengineering 22, 885-896. 

39. Wu, A. C. M., Bough, W. A., Holmes, M. R., and Perkins, B. E. (1978) Influence of 

manufacturing variables on the characteristics and effectiveness of chitosan products. III. 

Coagulation of cheese whey solids, Biotechnology and Bioengineering 20, 1957-1966. 

40. Holme, K. R., and Hall, L. D. (1990) Novel metal chelating chitosan derivative: attachment 

of iminodiacetate moieties via a hydrophilic spacer group, Can. J. Chem. 69, 585-589. 

41. Nakajima, A., and Shinoda, K. (1977) Permeation properties of glycol chitosan-

mucopolysaccharide complex membranes, J. Appl. Pol. Sci. 21, 1249-1255. 

42. Rha, C., Rodriguez-Sanchez, D., and Kienzle-Sterzer, C. (1984) In Biotechnology of marine 

polysaccharides (Colwell, R. R., Pariser, E. R., and Sinskey, A. J., Eds.), pp 283-311, 

Hemisphere Publishing Corp., Washington. 



127 

 

43. Shigehiro, H., Kenji, T., Masahiro, H., and Noriaki, M. (1980) Permeability properties of 

gels and membranes derived from chitosan, Journal of Biomedical Materials Research 14, 

477-485. 

44. Uragami, T., and Tokura, S. (2006) Material Science of chitin & chitosan, Kodansha Ltd., 

Tokyo. 

45. Uragami, T., and Tokura, S. (2006) Material Science, Kodansha Ltd., Tokyo. 

46. Paoletti, M. G., Norberto, L., Damini, R., and Musumeci, S. (2007) Human Gastric Juice 

Contains Chitinase That Can Degrade Chitin, Annals of Nutrition & Metabolism 51, 244-251  

47. Escott, G. M., and Adams, D. J. (1995) Chitinase activity in human serum and leukocytes, 

Infection and Immunity 63 4770–4773. 

48. Renkema, G. H., Boot, R. G., Muijsers, A. O., Donker-Koopman, W. E., and Aerts, J. M. 

(1995) Purification and characterization of human chitotriosidase, a novel member of the 

chitinase family of proteins, The Journal of Biological Chemistry 270, 2198–2202. 

49. Hakala, B. E., White, C., and Recklies, A. D. (1993) Human cartilage gp-39, a major 

secretory product of articular chondrocytes and synovial cells, is a mammalian member of a 

chitinase protein family, The Journal of Biological Chemistry 268 25803–25810. 

50. Bierbaum, S., Nickel, R., Koch, A., Lau, S., Deichmann, K. A., Wahn, U., Superti-Furga, A., 

and Heinzmann, A. (2005) Polymorphisms and haplotypes of acid mammalian chitinase are 

associated with bronchial asthma, American Journal of Respiratory and Critical Care 

Medicine 172, 1505–1509. 

51. Elias, J. A., Homer, R. J., Hamid, Q., and Lee, C. G. (2005) Chitinases and chitinase-like 

proteins in T(H)2 inflammation and asthma, The Journal of Allergy and Clinical Immunology 

116, 497–500. 

52. Zhao, J., Zhu, H., Wong, C. H., Leung, K. Y., and Wong, W. S. (2005) Increased lungkine 

and chitinase levels in allergic airway inflammation: a proteomics approach, Proteomics 5, 

2799–2807. 

53. Marsh, J. T., and Wood, F. C. (1945) An Introduction to the Chemistry of Cellulose, Vol. 3, 

Chapman And Hall Limited, London. 

54. Lejeune, A., and Deprez, T. (2010) Cellulose: Structure and Properties, Derivatives and 

Industrial Uses, Nova Science Publishers Inc. , New York. 

55. Zugenmaier, P. (2007) Crystalline Cellulose and Derivatives: Characterization and 

Structures, Springer, New York. 

56. Woodings, C. (2001) Regenerated cellulose fibers, Woodhead Publishing Ltd, Boca Raton. 

57. Stefanescu, E. A. (2009), Virginia Commonwealth University, Richmond, VA personal 

communication. 



128 

 

58. Rogers, R. D., and Seddon, K. R. (2003) CHEMISTRY: Ionic Liquids--Solvents of the 

Future?, Science 302, 792-793. 

59. Davey, P., Earle, M., Newman, C., and Seddon, K. (1999) In World Patent, WO9919288. 

60. Lok, C., Earle, M., Hamill, J., Roberts, G., Adams, C., and Seddon, K. (1998) In World 

Patent, WO9807680. 

61. Thied, R. C., Seddon, K. R., Pitner, W. R., and Rooney, D. W. (1999) In World Patent, 

WO9941752. 

62. Fields, M., Thied, R. C., Seddon, K. R., Pitner, W. R., and Rooney, D. W. (1999) In World 

Patent, WO9914160. 

63. Greco, C., Sherif, F., and Shyu, L. (1998) In U.S. Patent, US5824832. 

64. Keim, W., and Wasserscheid, P. (1997) In World Patent, WO9847616. 

65. Kapustinskii, A. F. (1933) Z. Phys. Chem. 22B, 257. 

66. Wypych, G. (2001) Handbook of Solvents, Vol. 2000, ChemTec Publishing, Toronto. 

67. Carpio, R. A., Lowell, A. K., Lindstrom, R. E., Nardi, J. C., and Hussey, C. L. (1979) J. 

Electrochem. Soc 126, 1644-1650. 

68. Bonhote, P., Dias, A., Papageorgiou, N., Kalyaanaasundaram, K., and Gratzel, M. (1996) 

Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35, 1168-

1178. 

69. Swatloski, R. P., Spear, S. K., Holbrey, J. D., and Rogers, R. D. (2002) Dissolution of 

Cellose with Ionic Liquids, J. Am. Chem. Soc. 124, 4974-4975. 

70. Zhu, S. D., Wu, Y. X., Chen, Q. M., Yu, Z. N., Wang, C. W., Jin, S. W., Ding, Y. G., and 

Wu, G. (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review, 

Green Chemistry 8, 325-327. 

71. Egorov, V. M., Smirnova, S. V., Formanovsky, A. A., Pletnev, I. V., and Zolotov, Y. A. 

(2007) Analytical and Bioanalytical Chemistry 387, 2263-2269. 

72. Remsing, R. C., Swatloski, R. P., Rogers, R. D., and Moyna, G. (2006) Mechanism of 

cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 

35/37Cl NMR relaxation study on model systems, Chemical Communications, 1271-1273. 

73. Xie, H. B., Zhang, S. B., and Li, S. H. (2006) Chitin and chitosan dissolved in ionic liquids 

as reversible sorbents of CO2, Green Chemistry 8, 630-633. 

74. Stefanescu, C., Daly, W., and Negulescu, I. (2009) 1-Butyl-3-Methylimidazolium Acetate as 

a Solvent Media for Functionalization of Chitosan, Polymer Preprints 50, 143-144. 



129 

 

75. Stefanescu, C., Daly, W., and Negulescu, I. (2009) Nucleophilic Reactivity of Chitosan in 

Ionic Liquids Promoted by Tert-Amines, Polymer Preprints 50, 551-552. 

76. Schlufter, K., Schmauder, H. P., Dorn, S., and Heinze, T. (2006) Efficient homogeneous 

chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-

methylimidazolium chloride, Macromolecular Rapid Communications 27, 1670-1676. 

77. El Seoud, O. A., and Heinze, T. (2005) Organic esters of cellulose: New perspectives for old 

polymers, In Advances in Polymer Science, pp 103-149, Springer Berlin / Heidelberg. 

78. Moulthrop, J. S., Swatloski, R. P., Moyna, G., and Rogers, R. D. (2005) High-resolution 13C 

NMR studies of cellulose and cellulose oligomers in ionic liquid solutions, Chemical 

Communications, 1557-1559. 

79. Lu, X., Hu, J., Yao, X., Wang, Z., and Li, J. (2006) Direct electron transfer of horseradish 

peroxidase and its biosensor based on chitosan and room temperature ionic liquid, 

Electrochem. Commun. 8, 874-878. 

80. Heinze, T., Schwikal, K., and Barthel, S. (2005) Ionic liquids as reaction medium in cellulose 

functionalization, Macromolecular Bioscience 5, 520-525. 

81. Wu, J., Zhang, J., Zhang, H., He, J., Ren, Q., and Guo, M. (2004) Homogeneous Acetylation 

of Cellulose in a New Ionic Liquid, Biomacromolecules 5, 266-268. 

82. Liu, C. F., Sun, R. C., Zhang, A. P., Qin, M. H., Ren, J. L., and Wang, X. A. (2007) 

Preparation and characterization of phthalated cellulose derivatives in room-temperature 

ionic liquid without catalysts, Journal of Agricultural and Food Chemistry 55, 2399-2406. 

83. Liu, C. F., Sun, R. C., Zhang, A. P., and Ren, J. L. (2007) Preparation of sugarcane bagasse 

cellulosic phthalate using an ionic liquid as reaction medium, Carbohydrate Polymers 68, 17-

25. 

84. Erdmenger, T., Haensch, C., Hoogenboom, R., and Schubert, U. S. (2007) Homogeneous 

Tritylation of Cellulose in 1-Butyl-3-methylimidazolium Chloride, Macromolecular 

Bioscience 7, 440-445. 

85. White, P. (2001) Lyocell: The Production Process and Market Development, In Regenerated 

Cellulose Fibres (Woodings, C., Ed.), pp 62-87, Woodhead Publishing, Boca Raton. 

86. Petrovan, S., Collier, J. R., and Negulescu, I. I. (2001) Rheology of Cellulosic N-

Methylmorpholine Oxide Monohydrate Solutions of Different Degrees of Polymerization, 

Journal of Applied Polymer Science 79, 396-405. 

87. Barthel, S., and Heinze, T. (2006) Acylation and carbanilation of cellulose in ionic liquids, 

Green Chemistry 8, 301-306. 

88. Liu, C. F., Sun, R. C., Zhang, A. P., Ren, J. L., Wang, X. A., and Geng, Z. C. (2006) 

Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in 

ionic liquid, Polymer Degradation and Stability 91, 3040-3047. 



130 

 

89. Kohler, S., Liebert, T., Schobitz, M., Schaller, J., Meister, F., Gunther, W., and Heinze, T. 

(2007) Interactions of ionic liquids with polysaccharides-1: Unexpected acetylation of 

cellulose with 1-ethyl-3-methylimidazolium acetate, Macromolecular Rapid 

Communications 28, 2311-2317. 

90. Silverstein, R. M., Bassler, G. C., and Morrill, T. C. (1999) Spectrometric Identification of 

Organic Compounds, 5 ed., John Wiley & Sons, Inc., New York. 

91. Pavia, D. L., Lampman, G. M., and Kriz, G. S. (1996) Introduction to Spectroscopy, 2 ed., 

Saunders Golden Sunburst Series, Orlando. 

92. Koenig, J. L. (1999) Spectroscopy of Polymers, Elsevier Science Inc., New York. 

93. Silverstein, R. M., Webster, F. X., and Kiemle, D. J. (2005) Spectrometric Identification of 

Organic Compounds, 7 ed., John Wiley & Sons, Inc., New York. 

94. Morrison, F. A. (2001) Understanding Rheology, Oxford University Press, Inc., New York, 

10016. 

95. Macosko, C. W. (1994) Rheology: Principles, Measurements, and Applications Wiley - 

VCH. 

96. Larson, L. G. (1999) The structure and rheology of complex fluids, Oxford University Press, 

New York. 

97. Stefanescu, E. A. (2008) Polymer-clay nanocomposites:impact of rheological properties of 

colloidal gels on the multilayered structure andthermo-mechanical properties of shear-

applied thin films, pp 16-17, Louisiana State University, Baton Rouge. 

98. Heal, G. R., Laye, P. G., Price, D. M., Warrington, S. B., and Wilson, R. J. (2002) Principles 

of Thermal Analysis and Calorimetry, The Royal Society of Chemistry, Cambridge, UK. 

99. Benoist, L., Berghmans, H., Hemminger, W., Hohne, G. W. H., Jansen, J. A. J., Mathot, V. 

B. F., Richardson, M. J., Riesen, R., Schuijff, A., and Wingfield, M. (1994) Calorimetry and 

Thermal Analysis of Polymers, Hanser/Gardner Publications, Inc., Geleen, The Netherlands. 

100. http://www.tainstruments.com/main.aspx?id=89&n=1&siteid=11. 

101. Wunderlich, B. (1990) Thermal Analysis, Academic Press, Inc., San Diego, CA 92101, USA. 

102. Flynn, J. H., and Wall, L. A. (1966) General Treatment of the Thermogravimetry of 

Polymers, Journal of Research of the National Bureau of Standards-A, Physics and 

Chemistry 70A, 487-523. 

103. Flynn, J. H. (1969) Thermal Analysis,  Vol. 2, R. F. Schwenker, Jr. and P. D. Garn, Eds, 

Academic Press, New York and London, 1111. 

104. Cowie, J. M. G. (1991) Polymers: Chemistry & Physics of Modern Materials, 2nd ed., 

Nelson Thornes Ltd, Cheltenham, UK. 

http://www.tainstruments.com/main.aspx?id=89&n=1&siteid=11


131 

 

105. Odian, G. (1991) Principles of Polymerization, 3rd ed., Wiley - Interscience, New York, NY. 

106. Young, R. J., and Lovell, P. A. (1991) Introduction to Polymers, 2nd ed., CRC Press LLC, 

Boca Raton, FL. 

107. Sperling, L. H. (2006) Introduction to Physical Polymer Science, 4 ed., John Wiley and Sons, 

New Jersey. 

108. Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and 

Michael, J. (2003) Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., 

Springer Science + Business Media, Inc., N.Y.10013, USA. 

109. Echlin, P., Fiori, C. E., Goldstein, J., Joy, D. C., and Newbury, D. E. (1986) Advanced 

Scanning Electron Microscopy and X-Ray Microanalysis Plenum Press, New York. 

110. Egerton, R. F. (2005) Physical Principles of Electron Microscopy: An Introduction to TEM, 

SEM, and AEM, Springer Science & Business Media, Inc., New York. 

111. Stefanescu, E. A. (2009) Effect of solution concentration on the morphology of spray-dried 

ethylcellulose microspheres Virginia Commonwealth University, Richmond, VA, personal 

communication. 

112. Warren, B. E. (1990) X-Ray Diffraction, Dover Publications, Inc., N.Y. 11501, USA. 

113. Moore, D. M., and Reynolds, R. C., Jr (1997) X-Ray Diffraction of Clay Minerals, 2nd ed., 

Oxford University Press, Inc., N.Y. 10016, USA. 

114. Cullity, B. D. (1978) Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing 

Company, Inc., Massachusetts. 

115. http://epswww.unm.edu/xrd/xrdbasics.pdf. 

116. Egorov, V. M., Smirnova, S. V., Formanovsky, A. A., Pletnev, I. V., and Zolotov, Y. A. 

(2007) Dissolution of cellulose in ionic liquids as a way to obtain test materials for metal-ion 

detection, Analytical and Bioanalytical Chemistry 387, 2263-2269. 

117. Remsing, R. C., Swatloski, R. P., Rogers, R. D., and Moyna, G. (2006) Mechanism of 

cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a C-13 and 

Cl-35/37 NMR relaxation study on model systems, Chemical Communications, 1271-1273. 

118. Liu, L., Li, Y., Li, Y., and Fang, Y. E. (2004) Rapid N-phthaloylation of chitosan by 

microwave irradiation Carbohydr. Polym. 57, 97-100. 

119. Nishimura, S.-I., Kohgo, O., Kurita, K., and Kuzuhara, H. (1991) Chemospecific 

manipulations of a rigid polysaccharide : syntheses of novel chitosan derivatives with 

excellent solubility in common organic solvents by regioselective chemical modifications, 

Macromolecules 24, 4745-4748. 

http://epswww.unm.edu/xrd/xrdbasics.pdf


132 

 

120. Kurita, K., Ikeda, H., Yoshida, Y., Shimojoh, M., and Harata, M. (2002) Chemoselective 

Protection of the Amino Groups of Chitosan by Controlled Phthaloylation: Facile Preparation 

of a Precursor Useful for Chemical Modifications Biomacromolecules 3, 1-4. 

121. Kurita, K., Ikeda, H., Shimojoh, M., and Yang, J. (2007) N-Phthaloylated Chitosan as an 

Essential Precursor for Controlled Chemical Modifications of Chitosan: Synthesis and 

Evaluation, Polymer Journal 39, 945-952. 

122. Zhang, J., Yuan, Y., Shen, J., and Lin, S. (2003) Synthesis and characterization of chitosan 

grafted poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by 

ceric (IV) ion European Polymer Journal 39, 847-850. 

123. Sajomsang, W., Tantayanon, S., Tangpasuthadol, V., and Daly, W. H. (2008) Synthesis of 

methylated chitosan containing aromatic moieties: Chemoselectivity and effect on molecular 

weight Carbohydr. Polym. 72, 740-750. 

124. Miya, M., Iwamoto, R., Yoshikawa, S., and Mima, S. (1980) IR Spectroscopic determination 

of CONH content in highly deacylated chitosan, Int. J. Biol. Macromol. 2, 323-324. 

125. Domard, A., Gey, C., Rinaudo, M., and Terrassin, C. (1987) 13C and 1H n.m.r. spectroscopy 

of chitosan and N-trimethyl chloride derivatives, Int. J. Biol. Macromol. 9, 233-237. 

126. Rinaudo, M., Dung, P. L., Gey, C., and Milas, M. (1992) Substituent distribution on O, N-

carboxymethylchitosans by 1H and 13C n.m.r, Int. J. Biol. Macromol. 14, 122-128. 

127. Hirai, A., Odani, H., and Nakajima, A. (1991) Determination of degree of deacetylation of 

chitosan by 1H NMR spectroscopy, Polymer Bulletin 26, 87-94. 

128. Satterthwait, A. C., and Jencks, W. P. (1974) Mechanism of the aminolysis of acetate esters, 

J. Am. Chem. Soc. 96, 7018-7031. 

129. Sun, X. F., Sun, R. C., and Sun, J. X. (2004) Acetylation of sugarcane bagasse using NBS as 

a catalyst under mild reaction conditions for the production of oil sorption-active materials, 

Bioresource Technology 95, 343-350. 

130. Liu, C. F., Zhang, A. P., Li, W. Y., Yue, F. X., and Sun, R. C. (2009) Homogeneous 

modification of cellulose in ionic liquid with succinic anhydride using N-bromosuccinimide 

as a catalyst, J. Agric. Food Chem. 57, 1814-1820. 

131. Karimi, B., and Seradj, H. (2001) N-Bromosuccinimide (NBS), a novel and highly effective 

catalyst for acetylation of alcohols under mild reaction conditions, Synlett 4, 519-520. 

132. Sun, X. F., Sun, R. C., Tomkinson, J., and Baird, M. S. (2003) Preparation of sugarcane 

bagasse hemicellulosic succinates using NBS as a catalyst, Carbohydrate Polymers 53, 483-

495. 

133. Wu, Y., Sasaki, T., Irie, S., and Sakurai, K. (2008) A novel biomass-ionic liquid platform for 

the utilization of native chitin, Polymer 49, 2321-2327. 



133 

 

134. Muzzarel.Ra, and Tubertin.O. (1969) Chitin and chitosan as chromatographic supports and 

adsorbents for collection of metal ions from organic and aqueous solutions and sea-water, 

Talanta 16, 1571-1577. 

135. No, H. K., and Meyers, S. P. (1989) Crawfish chitosan as a coagulant in recovery of organic-

compounds from seafood processing streams, J. Agric. Food Chem. 37, 580-583. 

136. Oungbho, K., and Muller, B. W. (1997) Chitosan sponges as sustained release drug carriers, 

Int. J. Pharm. 156, 229-237. 

137. Dhanikula, A. B., and Panchagnula, R. (2004) Development and characterization of 

biodegradable chitosan films for local delivery of paclitaxel, Aaps Journal 6, 12. 

138. Dyson, P. J., Grossel, M. C., Srinivasan, N., Vine, T., Welton, T., Williams, D. J., White, A. 

J. P., and Zigras, T. (1997) Organometallic synthesis in ambient temperature 

chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene, Journal of the 

Chemical Society-Dalton Transactions, 3465-3469. 

139. Martinas, C., Daly, W. H., and Negulescu, I. I. (2008) Reaction of Chitosan with Benzoyl 

Chloride and Phthalic Anhydride in Homogeneous Ionic Liquid Solutions, Polymer Preprints 

49, 572-573. 

140. Paulino, A. T., Simionato, J. I., Garcia, J. C., and Nozaki, J. (2006) Characterization of 

chitosan and chitin produced from silkworm crysalides, Carbohydrate Polymers 64, 98-103. 

141. Heux, L., Brugnerotto, J., Desbrieres, J., Versali, M.-F., and Rinaudo, M. (2000) Solid state 

NMR for determination of degree of acetylation of chitin and chitosan, Biomacromolecules 

1, 746-751. 

142. Kacurakova, M., Belton, P. S., Wilson, R. H., Hirsch, J., and Ebringerova, A. (1998) 

Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides, J. Sci. 

Food Agric. 77, 38-44. 

143. Kittur, F. S., Prashanth, K. V. H., Sankar, K. U., and Tharanathan, R. N. (2002) 

Characterization of chitin, chitosan and their carboxymethyl derivatives by differential 

scanning calorimetry, Carbohydr. Polym. 49, 185-193. 

144. Xu, Y. X., Kim, K. M., Hanna, M. A., and Nag, D. (2005) Chitosan–starch composite film: 

preparation and characterization, Industrial Crops and Products 21, 185-192. 

145. Flores-Ramirez, N., Elizalde-Pena, E. A., Vasquez-Garcia, S. R., Gonzalez-Hernandez, J., 

Martinez-Ruvalcaba, A. M., Sanchez, I. C., Luna-Barcenas, G., and Gupta, R. B. (2005) 

Characterization and degradation of functionalized chitosan with glycidyl methacrylate, J. 

Biomater Sci Polym Ed. 16, 473-488. 

146. Zhao, Q., Yam, R. C. M., Zhang, B., Yang, Y., Cheng, X., and Li, R. K. Y. (2009) Novel all-

cellulose ecocomposites prepared in ionic liquids, Cellulose 16, 217-226. 



134 

 

147. Luo, K., Yin, J., Khutoryanskaya, O. V., and Khutoryanskiy, V. V. (2008) Mucoadhesive and 

elastic films based on blends of chitosan and hydroxyethylcellulose, Macromol. Biosci. 8, 

184-192. 

148. Yin, J., Luo, K., Cheng, X., and Khutoryanskiy, V. V. (2006) Miscibility studies of the 

blends of chitosan with some cellulose ethers Carbohydrate Polymers 63, 238-244. 

149. Wu, Y.-B., Yu, S.-H., Mi, F.-L., Wu, C.-W., Shyu, S.-S., Peng, C.-K., and Chao, A.-C. 

(2004) Preparation and characterization on mechanical and antibacterial properties of 

chitsoan/cellulose blends Carbohydrate Polymers 57, 435-440. 

150. Pawlak, A., and Mucha, M. (2003) Thermogravimetric and FTIR studies of chitosan blends, 

Thermochimica Acta 396, 153-166. 

151. Rao, V., and Johns, J. (2008) Thermal behavior of chitosan/natural rubber latex blends. TG 

and DSC analysus, Journal of Thermal Analysis and Calorimetry 92, 801-806. 

152. LeVan, S. L. (1989) Thermal degradation, In Concise Encyclopedia of Wood & Wood-Based 

Materials (Schniewind, A. P., Ed.) 1 ed., Pergamon Press, New York. 

153. Nunthanid, J., Puttipipatkhachorn, S., Yamamoto, K., and Peck, G. E. (2001) Physical 

properties and molecular behavior of chitosan films, Dryg Dev. Ind. Pharm. 27, 143-157. 

154. Zhao, H., Kwak, J. H., Wang, Y., Franz, J. A., White, J. M., and Holladay, J. E. (2006) 

Effects of Crystallinity on Dilute Acid Hydrolysis of Cellulose by Cellulose Ball-Milling 

Study, Energy & Fuels 20, 807-811. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 

 

VITA 

 

 
Cristina Stefanescu was born in 1980 in Roman, Romania, to the proud parents of Mr. and 

Mrs. Gheorghe Martinas. After graduating from a public high school, she enrolled in the fall of 1999 

at the Industrial Chemistry Department of the Technical University of Iasi, Romania. During the last 

of the five years spent there, Cristina prepared her thesis work with the help and guidance of 

Professor Spiridon Oprea. In the summer of 2004 she obtained a Bachelor of Science from the 

Industrial Chemistry Department of the Technical University of Iasi.  

In August 2006 Cristina moved to the United States to pursue a Doctor of Philosophy in the 

Chemistry Department of Louisiana State University. She joined the research group of Professors 

William H. Daly and Ioan I. Negulescu in January 2007. Under their guidance Cristina’s research 

focuses on the dissolution and functionalization of chitosan in ionic liquid solutions and also on 

incorporating chitosan into polymer blends to obtain new materials with better mechanical 

properties. During her graduate training, she became a member of the American Chemical Society 

(ACS), American Physical Society (APS) and the Macromolecular Studies Graduate Student 

Association (MSGSA) at LSU where she served as Vice-President for the 2009-2010 academic year. 

Cristina has had the opportunity to present her research several times at the ACS national 

conference. She has received honorable awards including the 2009 and 2010 Coates Travel Award, 

the 2010 Excellence in Graduate Polymer Research Award, the 2010 Dow Macromolecular Scholar 

Award, and the 2010 Teaching Award in Organic Chemistry 2364. At the December 2010 

Commencement, Cristina Stefanescu will receive the degree of Doctor of Philosophy in chemistry. 

 


