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Abstract 

Phthalocyanines (Pcs) are excellent candidates for use as fluorophores for near-infrared 

(near-IR) fluorescent tagging of biomolecules and as photodynamic therapy (PDT) agents. 

Synthesis of Pcs with asymmetrical substitution on the periphery is often difficult due to the 

problems during the purification of the Pc mixtures obtained.  

The objective of this project is to design and synthesize chemically robust near-IR 

fluorophores for bioanalytical applications and to develop new synthetic methods for rapid 

synthesis of the target compounds.  A novel synthetic route was developed utilizing a 

hydrophilic, polyethylene glycol-based (PEG) support with different types of linkers.  The Pcs 

were functionalized with either hydroxyl or amine groups for covalent conjugation purposes and 

were decorated with solubilizing groups such as carboxylic acids and short PEG chains.  Mono-

hydroxyl and mono-amine functionalized oligoethylene glycol substituted Pcs were synthesized 

via a solid-phase phthalonitrile tetramerization reaction. In order to alter the photophysical 

properties of the desired compounds different metals were inserted in the cavity of the 

macrocycle.   

The potential of several of the compounds for PDT has been evaluated in vitro. Generally, 

these compounds are readily taken up in cells, have very low dark toxicity, exhibit rapid toxicity 

in near-infrared light, and are broadly dispersed in the cell including in lysosomes and in the 

endoplasmic reticulum.   
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Chapter 1 
Introduction 
 
1.1 Phthalocyanines 
 

Phthalocyanines (Pcs), known systematically as tetraazatetrabenzporphyrins, are a member 

of porphyrinoid derivative aromatic compounds (Figure 1.1).  Pcs are 18 π electron aromatic, 

planar macrocycles comprising four isoindole units linked together through their 1, 3 positions 

by aza bridges (Figure 1.1).  Pcs have a number of characteristic properties such as high thermal 

stability, unique photophysical properties, intense color, non-toxicity and high phototoxicity 

upon irradiation with light, contributing to their effectiveness in different research areas.1-4   

Photophysical properties of phthalocyanines are key to many of their industrial and research 

uses. Due to the four isoindole units linked via aza bridges, Pcs have a well-defined Q band 

(650-800 nm) lying well to the red relative to porphyrins.5  On the other hand, B band (300-400 

nm) of Pcs is less well-defined and broader than the one of porphyrins.5  Pcs have moderate 

fluorescence quantum yields (Φ ~ 0.1-0.5) and high extinction coefficients (~105 ).  Upon 

irradiation with red light, Pcs become very toxic to the surrounding environment by producing
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Figure 1.1 Porphyrinoid derivatives. 
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highly reactive oxygen species,3,6 which makes them promising candidates as the next generation 

photosensitizers for photodynamic therapy (PDT) as discussed in the Chapter 5.    

Chemical and photophysical properties of the Pcs can be tuned by replacing the two 

hydrogen atoms of the central cavity with over 70 different metals and/or altering the substituent 

pattern and/or the type of the substituent on the exterior of the ring system.  For instance, 

solubility of the Pcs can be improved by decorating the macrocycle with carboxylic acids,7 

amine7 or short polyethylene glycol (PEG) chains.8   While strong emission can be obtained by 

having Zn, Al, or Si in the Pc core, Cu, as a metal guest, can turn off the fluorescence of the 

aromatic system.9  All these properties of the Pcs make them excellent candidates for a wide 

variety of applications as discussed in detail in the Chapters 3 and 4. 

Aggregation, a well-known phenomenon for Pcs and other macrocycles, is the main 

disadvantage of the Pcs.  Due to the strong π-π interactions between the two aromatic cores of 

neighboring molecules, Pcs form dimers and higher order aggregates both in organic solvents 

and aqeous media, which causes problems in synthesis, purification and characterization of the 

target compounds.  Concentration, solvent, pH, ionic strength and temperature influence the 

aggregation of the Pcs.10 For instance, Seiters et. al., clearly demonstrated the effect of 

temperature on dimerization of the CoPc.  As the temperature increased from 20 °C to 85 °C, the 

momomer predominated as judged by the red-shifted Q band of the CoPc.11  Aggregation can be 

identified by a broadened and  blue-shifted absorption band and/or splitting of the Q band and 

can be overcome by employing long alkyl chains or bulky groups as peripheral substitutions 

and/or having axially substituted metals such as Si or Al in the center of the ring.12,13  Pcs, with 

six coordinate metals in the center, have a low tendency to aggregate since the axial ligands of 

the metal keep Pc molecules apart from each other due to the steric hindrance.
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1.1.2 Synthesis of Phthalocyanines       

After the first accidental synthesis of symmetrically-substituted Pc in 1907 by Braun,14 

different synthetic approaches have been described in the literature.15 Due to the challenges faced 

during the isolation of the asymmetrically-substituted Pcs, various synthetic methods, including 

statistical condensation, subphthalocyanine route and solid-phase synthesis, employed to 

synthesize asymmetrically-substituted Pcs.  Statistical condensation is utilized for preparation of 

AB3 type phthalocyanines by employing appropriate stoichiometric ratios of the two different 

reactants (A and B).16,17  Typically, ≥ 3:1 molar ratios are employed to give desired compound in 

yields ranging from 10 to 20%.  A detailed discussion about the statistical condensation method 

is presented in the Chapter 2.    

Kobayashi developed a new method, ring expansion of subphthalocyanines for selective 

synthesis of AB3 type Pcs.18  The reaction proceeds through a partial or total fragmentation of 

subphthalocyanine ring followed by ring closure of fragments which may result in formation of 

all possible Pc congeners via scrambling process.18,19  It has been shown that the outcome of this 

reaction depends on the substituents on the starting materials.20-23 The best yields and selectivity 

are achieved in the reaction between electron poor subphthalocyanine, having no substituents or 

electron withdrawing ones, and diiminoisoindoline derivatives bearing electron donating groups.  

Solid-phase synthesis, mainly developed by Leznoff,24-26 involves the immobilization of a 

phthalonitrile to a polymer support and condensation of the phthalonitrile-bound polymer 

support with a different type of phthalonitrile in solution. The main advantage of this route is that 

purification of the desired compound is relatively easy. Solid-phase synthesis of asymmetrically-

substituted AB3 type Pcs is discussed in detail in the Chapters 3 and 4.  

Regardless of the chosen synthetic method, synthesis of tetra-substituted Pcs (Figure 1.2) 

from mono-substituted phthalonitriles or their derivatives yields a mixture of four different types  
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of isomers. 27  Figure 1.3 shows the structural isomers of 1,4-tetra-substituted Pcs. While the 2,3-

tetra-substituted Pcs generally give constant isomer ratios, percentage of the each isomer highly 

depends on the bulkiness of the substitutent in the case of 1,4-tetra-substituted Pcs.  It is also 
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Figure 1.3 Structural isomers of 1,4-tetra-substituted Pcs. 

possible to enrich one of the isomers by employing bulky substitutent bearing phthalonitrile 

precursors. If desired, each isomer of the 1,4-tetra-substituted Pc can be isolated by HPLC.28  
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Complete separation of the structural isomers of the 2,3-tetra-substituted Pcs was shown to be 

more difficult using chromatographic methods.27    

1.1.3 Polymer Supports 

Type of the polymer support, selected to be used for solid-phase synthesis of 

asymmetrically-substituted Pcs, has a great impact on the outcome of the cyclotetramerization 

reaction.  Hydrophobic polystyrene (PS)-based polymer supports29 (Figure 1.4) increase the non-

covalent interactions between the resin and the Pc in solution.  Consequently, isolation of the 

symmetrically-substituted Pc requires extensive extraction process.24-26   

H2N

n

NH2

 

Figure 1.4 Simplified structure of aminomethyl PS-based resin.  

Amphiphilic polyethyleneglycol (PEG)-based resins (Figure 1.5)30 offer great advantages 

over PS-based resins:  1) Since the non-covalent interactions are greatly reduced, the product, 

asymmetrically- substituted Pc, is recovered without extensive purification process; 2) the PEG-

based resin, made from primary ether bonds, is highly stable under the cyclotetramerization 

reaction and cleavage conditions; 3) amphiphilic resin is compatible with a wide variety of 

organic solvents as well as water which is utilized during the isolation of the symmetrically-
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Figure 1.5 Simplified structure of aminomethyl PEG-based ChemMatrix resin.
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substituted Pc.  Due to the number of advantages, solid-phase synthesis of asymmetrically 

substituted Pcs was performed on PEG-based ChemMatrix resins.  Extarnal surface and section 

of the ChemMatrix resin bead, obtained by focused ion beam (FIB), are shown in Figure 1.6.30

 

 

Figure 1.6 External surface of a ChemMatrix bead (left) and section of a ChemMatrix bead 

(right) by Focused Ion Beam (FIB). 

1.1.4 Applications of Phthalocyanines 

Since the discovery of Pcs in the early 1900’s, they have drawn considerable attention in 

different research areas due to  their exceptional chemical and electronic properties.  Their ability 

to form a variety of condensed phases including monocrystals, polycrystalline films, liquid 

crystals and Langmuir-Blodgett films improved Pcs’ incorporation into molecular devices.1,31  

The conducting properties of Pcs have been explored and devices like field-effect transistors 

have been prepared using LiPc.32  Conductivity of the Pcs was further investigated by combining 

Pcs with  macromolecules such as polymers and dendrimers.33  A wide variety of polymer-Pc-

based semiconductors have been developed using different types of metallo Pcs.34-36  Utilizing 

Pcs π-π stacking abilities, outstanding Pc-based supramolecular wires were obtained, which 

utilize the Pc-Pc fast energy transfer.37,38 Due to the Pcs’ excellent stabilities and high extinction 

coefficients in the near-IR region of the electromagnetic spectrum, they are used for photovoltaic 
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systems for clean energy conversion. Using CuPc, efficient power conversion was obtained.39  

Recently, Pcs have also been used for organic light emitting devices.40   Pcs’ ability to generate 

highly reactive singlet oxygen is utilized not only for PDT but also catalytic oxidation of toxic 

compounds such as phenols, chlorinated phenols and sulfur containing compounds.41 

1.2 Objective of the Project   

The overall goal of this project was to design and synthesize chemically robust near-IR 

fluorophores for bioanalytical applications and to develop new synthetic methods for rapid 

synthesis of the target compounds.  Pcs were selected as the potential fluorophores to develop the 

desired systems due to the their outstanding chemical and photophysical properties.  

With the aim of conjugation of the Pc to biomolecules such as oligonucleotide and peptide, 

the asymmetrically-substituted target Pc was designed such that it has only one functional group 

for covalent conjugation and has multiple water solubilizing groups to improve the solubility of 

the hydrophobic core as shown in Figure 1.7.  In order to tune the photophysical properties of the  

N
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N
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FG M
Solubilizing Group = COOH, O(CH2CH2O)xCH3

Functional Group = NH2, OH, COOH
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Figure 1.7 Design of asymmetrically-substituted AB3 type of Pc. 

desired compounds, different metals were inserted in the cavity of the macrocycle.  The Pcs were 

functionalized with either hydroxyl or amine groups for covalent conjugation purposes and were 

decorated with solubilizing groups such as carboxylic acids and short PEG chains.  With the 



 8 

purpose of a rapid synthesis of the asymmetrically substituted Pcs a new synthetic method was 

developed.  

1.3 References 

 (1) Dini, D.; Hanack, M. Phthalocyanines as materials for advanced technologies: 
some examples J. Porphyr. Phthalocyanines 2004, 8, 915-933. 
 
 (2) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. Review The 
fluorescent toolbox for assessing protein location and function Science 2006, 312, 217-224. 
 
 (3) Rosenthal, I. In Phthalocyanines Properties and Applications; Leznoff, C. C. L., 
A.B.P., Ed.; VCH Publishers: New York, 1996; Vol. 4, p 485-514. 
 
 (4) Saji, T. In Phthalocyanines Properties and Applications; Leznoff, C. C. L., 
A.B.P., Ed.; VCH Publishers: New York, 1993; Vol. 2, p 167-195. 
 
 (5) Stuzhin, P. A.; Khelevina, O. G. Azaporphyrins: Structure of the reaction centre 
and reactions of complex formation Coord. Chem. Rev. 1996, 147, 41-86. 
 
 (6) Taquet, J. P.; Frochot, C.; Manneville, V.; Barberi-Heyob, M. Phthalocyanines 
covalently bound to biomolecules for a targeted photodynamic therapy Curr. Med. Chem. 2007, 
14, 1673-1687. 
 
 (7) Kliesch, H.; Weitemeyer, A.; Muller, S.; Wohrle, D. Synthesis of Phthalocyanines 
with One Sulfonic-Acid, Carboxylic-Acid, or Amino Group Liebigs Ann. 1995, 1269-1273. 
 
 (8) Erdem, S. S.; Nesterova, I. V.; Soper, S. A.; Hammer, R. P. Solid-phase synthesis 
of asymmetrically substituted "AB3-type" phthalocyanines J. Org. Chem. 2008, 73, 5003-5007. 
 
 (9) Verdree, V. T.; Pakhomov, S.; Su, G.; Allen, M. W.; Countryman, A. C.; 
Hammer, R. P.; Soper, S. A. Water soluble metallo-phthalocyanines: The role of the functional 
groups on the spectral and photophysical properties J. Fluoresc. 2007, 17, 547-563. 
 
 (10) Stillman, M. J. N., T. In Phthalocyanines Properties and Applications; Leznoff, 
C. C. L., A.B.P., Ed.; VCH Publishers: New York, 1989; Vol. 1, p 139-247. 
 
 (11) Seiders, R. P.; Ward, J. R. Effect of Visible-Light on the Dimerization of Cobalt 
(II) Tetrasulfonated Phthalocyanine in Water Anal. Lett. Pt A 1984, 17, 1763-1769. 
 
 (12) Ford, W. E.; Rodgers, M. A. J.; Schechtman, L. A.; Sounik, J. R.; Rihter, B. D.; 
Kenney, M. E. Synthesis and Photochemical Properties of Aluminum, Gallium, Silicon, and Tin 
Naphthalocyanines Inorg. Chem. 1992, 31, 3371-3377. 
 
 (13) Li, H. R.; Jensen, T. J.; Fronczek, F. R.; Vicente, M. G. H. Syntheses and 
properties of a series of cationic water-soluble phthalocyanines J. Med. Chem. 2008, 51, 502-
511. 



 9 

 
 (14) Braun, A.; Tcherniac, J. The products of the action of acet-anhydride on 
phthalamide  Ber. Der Dtsch. Chem. Ges. 1907, 40, 2709-2714. 
 
 (15) Montfortz, F. P. In The Porphyrin Handbook; Kadish, K. M., Smith,K. M., 
Guilard, G., Ed.; Academic Press: New York, 1999; Vol. 19, p 105-149  
 
 (16) Vacus, J.; Memetzidis, G.; Doppelt, P.; Simon, J. The Synthesis of 
Unsymmetrically Functionalized Platinum and Zinc Phthalocyanine Complexes J. Chem. Soc.-
Chem. Commun. 1994, 697-698. 
 
 (17) Aoudia, M.; Cheng, G. Z.; Kennedy, V. O.; Kenney, M. E.; Rodgers, M. A. J. 
Synthesis of a series of octabutoxy- and octabutoxybenzophthalocyanines and photophysical 
properties of two members of the series J. Am. Chem. Soc. 1997, 119, 6029-6039. 
 
 (18) Kobayashi, N.; Kondo, R.; Nakajima, S.; Osa, T. New Route to Unsymmetrical 
Phthalocyanine Analogs by the Use of Structurally Distorted Subphthalocyanines J. Am. Chem. 
Soc. 1990, 112, 9640-9641. 
 
 (19) Sastre, A.; Torres, T.; Hanack, M. Synthesis of Novel Unsymmetrical 
Monoaminated Phthalocyanines Tetrahedron Lett. 1995, 36, 8501-8504. 
 
 (20) Kasuga, K.; Idehara, T.; Handa, M.; Isa, K. Preparation of Unsymmetrical 
Phthalocyanine by Means of a Ring Expansion of Subphthalocyanine Inorg. Chim. Acta 1992, 
196, 127-128. 
 
 (21) Weitemeyer, A.; Kliesch, H.; Wohrle, D. Unsymmetrically Substituted 
Phthalocyanine Derivatives Via a Modified Ring Enlargement Reaction of Unsubstituted 
Subphthalocyanine J. Org. Chem. 1995, 60, 4900-4904. 
 
 (22) Sastre, A.; delRey, B.; Torres, T. Synthesis of novel unsymmetrically substituted 
push-pull phthalocyanines J. Org. Chem. 1996, 61, 8591-8597. 
 
 (23) Kobayashi, N.; Ishizaki, T.; Ishii, K.; Konami, H. Synthesis, spectroscopy, and 
molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, 
and compounds derived therefrom by ring expansion J. Am. Chem. Soc. 1999, 121, 9096-9110. 
 
 (24) Leznoff, C. C.; Hall, T. W. The Synthesis of a Soluble, Unsymmetrical 
Phthalocyanine on a Polymer Support Tetrahedron Lett. 1982, 23, 3023-3026. 
 
 (25) Hall, T. W.; Greenberg, S.; McArthur, C. R.; Khouw, B.; Leznoff, C. C. The 
Solid-Phase Synthesis of Unsymmetrical Phthalocyanines New J. Chem. 1982, 6, 653-658. 
 
 (26) Leznoff, C. C.; Svirskaya, P. I.; Khouw, B.; Cerny, R. L.; Seymour, P.; Lever, A. 
B. P. Syntheses of Monometallated and Unsymmetrically Substituted Binuclear Phthalocyanines 
and a Pentanuclear Phthalocyanine by Solution and Polymer Support Methods J. Org. Chem. 
1991, 56, 82-90. 
 



 10 

 (27) Schmid, G. S., M.; Geyer, M.; Hanack, M. In Phthalocyanines Properties and 
Applications; Leznoff, C. C. L., A.B.P., Ed.; VCH Publishers: New York, 1996; Vol. 4, p 5-16. 
 
 (28) Hanack, M.; Schmid, G.; Sommerauer, M. Chromatographic-Separation of the 4 
Possible Structural Isomers of a Tetrasubstituted Phthalocyanine - Tekrakis(2-
Ethylhexyloxy)Phthalocyaninatonickel(II) Angew. Chem.-Int. Edit. Engl. 1993, 32, 1422-1424. 
 
 (29) Zikos, C. C.; Ferderigos, N. G. Preparation of High-Capacity Aminomethyl-
Polystyrene Resin Tetrahedron Lett. 1995, 36, 3741-3744. 
 
 (30) Matrix-innovation ChemMatrix-100% PEG Matix 2008, http://www.matrix-
innovation.com/notes.asp. 
 
 (31) Bourgoin, J. P.; Doublet, F.; Palacin, S.; Vandevyver, M. High in-plane 
anisotropy in phthalocyanine LB films Langmuir 1996, 12, 6473-6479. 
 
 (32) Guillaud, G.; Simon, J.; Germain, J. P. Metallophthalocyanines - Gas sensors, 
resistors and field effect transistors Coord. Chem. Rev. 1998, 180, 1433-1484. 
 
 (33) Ali-Adib, Z.; Budd, P. M.; McKeown, N. B.; Thanapprapasr, K. Ordered 
Langmuir-Blodgett films derived from a mesogenic polymer amphiphile J. Mater. Chem. 2000, 
10, 2270-2273. 
 
 (34) Nohr, R. S.; Kuznesof, P. M.; Wynne, K. J.; Kenney, M. E.; Siebenman, P. G. 
Highly Conducting Linear Stacked Polymers - Iodine-Doped Fluoroaluminum and 
Fluorogallium Phthalocyanines J. Am. Chem. Soc. 1981, 103, 4371-4377. 
 
 (35) Toscano, P. J.; Marks, T. J. Electrically Conductive Metallomacrocyclic 
Assemblies - High-Resolution Solid-State Nmr-Spectroscopy as a Probe of Local Architecture 
and Electronic-Structure in Phthalocyanine Molecular and Macromolecular Metals J. Am. Chem. 
Soc. 1986, 108, 437-444. 
 
 (36) Schouten, P. G.; Warman, J. M.; Dehaas, M. P.; Vannostrum, C. F.; Gelinck, G. 
H.; Nolte, R. J. M.; Copyn, M. J.; Zwikker, J. W.; Engel, M. K.; Hanack, M.; Chang, Y. H.; 
Ford, W. T. The Effect of Structural Modifications on Charge Migration in Mesomorphic 
Phthalocyanines J. Am. Chem. Soc. 1994, 116, 6880-6894. 
 
 (37) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped 
molecules to coiled-coil aggregates with tunable helicity Science 1999, 284, 785-788. 
 
 (38) Kobayashi, N. Dimers, trimers and oligomers of phthalocyanines and related 
compounds Coord. Chem. Rev. 2002, 227, 129-152. 
 
 (39) Xue, J. G.; Uchida, S.; Rand, B. P.; Forrest, S. R. Asymmetric tandem organic 
photovoltaic cells with hybrid planar-mixed molecular heterojunctions Appl. Phys. Lett. 2004, 
85, 5757-5759. 
 



 11 

 (40) Hohnholz, D.; Steinbrecher, S.; Hanack, M. Applications of phthalocyanines in 
organic light emitting devices J. Mol. Struct. 2000, 521, 231-237. 
 
 (41) de la Torre, G.; Claessens, C. G.; Torres, T. Phthalocyanines: old dyes, new 
materials. Putting color in nanotechnology Chem. Commun. 2007, 2000-2015. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 2 
Solution Phase Synthesis of Phthalonitrile Precursors and Phthalocyanines 
 
2.1 Introduction 
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One of the disadvantages of the phthalocyanines (Pcs) limiting their use in bioanalytical and 

medical applications is their hydrophobic structure.  Hydrophilicity of dyes is crucial for 

different reasons as in many bioanalytical applications are performed in aqueous media such as 

labeling of the biomolecules,1 in vivo imaging,2 and photodynamic therapy (PDT), which 

requires injection of the photosensitizer into the blood stream or a biological medium.3  Thus, for 

both applications, it is highly desired to have a readily water soluble Pc.  Solubility of the Pc also 

plays a role during the preparation of the compound as it increase the variety of organic solvents 

and/or buffer solutions that can be used for purification and characterization.  There is a lot of 

prior work on the synthesis of water-soluble Pcs utilizing different type of phthalonitriles bearing 

hydrophilic groups including carboxylate,4 sulfonate,5 phosphonate,6 amine,7 and polyethylene 

glycol (PEG).8  

Herein are reported syntheses of new phthalonitriles, building blocks of the Pcs, decorated 

with water solubilizing groups, and asymmetrically- and symmetrically-substituted Pcs.  

Phthalonitriles, bearing carboxylic acid, polyethyleneglycol (PEG) or amine as water solubilizing 

group, were synthesized starting from commercially available nitro- or chloro-substituted 

phthalonitriles following the published methods in the literature.  Pcs were synthesized 

employing the most commonly used method, statistical condensation. The Pcs containing 

carboxylic acid as a peripheral substituent have desired water solubility due to the capability to 

form multiple intra-and inter-molecular hydrogen bonds.  Challenges faced during the solution-

phase synthesis of the Pcs and attempts to modification of the peripheral substituents on the Pcs 

are discussed.                                                                                                                                                                   

 

2.2 Results and Discussion 

2.2.1 Synthesis of Phthalonitriles Bearing Carboxylate, Amine and Nitro Groups 
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Pcs having carboxylic acids as solubilizing group on the Pc core have been reported in the 

literature several times.9   The interest in the carboxylic acid bearing Pcs is due to the their 

improved solubility in aqueous solutions as well as in organic solvents.  With the aim of the 

synthesis of the readily water-soluble Pcs, corresponding phthalonitrile precursors were designed 

and synthesized as building blocks for the target Pcs.  

Synthesis of the isophthalic butyl ester functionalized phthalonitrile 2.2 started with 

commercially available 5-hydroxyisophthalic acid.  According to well established procedure,10 5-

hydroxyisophthalic acid was refluxed in n-BuOH with catalytic amount of sulfuric acid. 

Following extractive workup, the ester was obtained in 88% yield (Scheme 2.1).   Protection of 

the carboxylic acid is necessary to prevent possible side reactions such as esterification and 

amidation, which would occur during the cyclotetramerization of the phthalonitriles.  Since the  
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Scheme 2.1 

cyclotetramerization reaction is typically performed in high boiling point alcohols such as n-

BuOH or n-pentanol,11 it is crucial to protect the carboxylic acid with the ester version of the 
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solvent to prevent side product formation as a result of transesterification reaction.  Nucleophilic 

aromatic substitution of dibutyl 5-hydroxyisophthalate 2.1 with the chlorines on 4,5-dicholoro 

phthalonitrile was performed in DMF and ester functionalized phthalonitrile 2.2 was obtained in 

67% yield (Scheme 2.1). Later experiments showed that increasing the amount of 

hydroxyisophthalate 2.1 from 2.1 equivalents to 3 or more equivalents relative to equivalency of 

4, 5 dichloro phthalonitrile improves the yield to over 80%.   

Synthesis of 4-(3,4-dicyanophenoxy)benzoic acid (2.3) (Scheme 2.1) was done following 

the very commonly used reaction for phthalonitrile synthesis, adopted from the literature.11 

Substitution of nitro group on commercially available 4-nitrophthalonitrile by 4-hydroxybenzoic 

acid proceeded via SRN1 mechanism in which substitution occurs via a radical intermediate.12 

Substitution of aliphatic and aromatic nitro groups by a wide variety of nucleophiles has been 

studied by different research groups.13-16 SRN1 type of reactions proceed in three steps: Initiation, 

propagation and termination as shown in Scheme 2.2.17 At the initiation step, a radical anion is 

formed by a single electron transfer to the substrate (nitro compound) and disassociation of the 

radical anion generates a radical and an anion.  The propagation step, in where the chain reaction  

starts, involves the formation of a radical anion via reaction of the radical and the nucleophile. 
 
 

R +X

R + Nu

R X +e R X

R Nu

R Nu + R X R Nu R X+

R +XR X

R + R R R

Initiation

Propogation

Termination  

Scheme 2.2 
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(e.g., deprotonated form of 4-hydroxybenzoic acid).  A single electron transfer from the newly 

formed radical anion to substrate generates the product (R-Nu) and a radical anion.  In the last 

step, the chain reactions are quenched by termination of all radicals via coupling to each other 

In the case of the synthesis of carboxylate phthalonitrile 2.3, the suspension of 4-nitro 

phthalonitrile, 4-hydroxybenzoic acid and K2CO3 in anhydrous DMF was stirred at room 

temperature. The target compound was obtained by precipitation from acidic CH3OH solution 

and further purified by column chromatography. 

The last carboxylate-bearing phthalonitrile 2.4 (Scheme 2.1), 2-(tert-butoxycarbonylamino)-

3-(4-(3,4-dicyanophenoxy)phenyl)propanoic acid, was synthesized employing the same synthetic 

strategy as used in the synthesis of carboxylic acid functionalized 2.3.  Commercially available 

Boc-Tyr-OH (Boc-protected α amine) was added to the suspension of 4-nitro phthalonitrile and 

K2CO3 in anhydrous DMF.  The reaction was carried until the 4-nitrophthalonitrile was 

completely consumed.  Following the aqueous work up, the product was purified by column 

chromatography and obtained in 70% yield.  The last two phthalonitriles, discussed above (2.3 

and 2.4), were synthesized to immobilize to a solid support via C-terminal amidation, which 

requires free carboxylic acid (discussed in the Chapter 4).  Thus, the carboxylic acids were left 

unprotected.   

After the successful synthesis of carboxylate-substituted phthalonitriles, syntheses of 

precursors were continued with amine and nitro functionalized phthalonitriles.  These 

compounds were synthesized as starting materials for the solution-phase synthesis of AB3 type 

Pcs having three or more carboxylic acid units and one amine group, which could be utilized for 

covalent conjugation of the biomolecules to the Pcs.1  The nitro group on the 4-

nitrophthalonitrile was reduced to amine by refluxing in CH3OH with Fe and concentrated HCl.18   
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Following the work up, simple recrystalization from benzene gave the 4-amino phthalonitrile 2.5 

in 70% yield (Scheme 2.3).   

CN
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CNH2N

Fe, HCl

70 % yield
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CH3OH
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78 % yield O2N
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H

O
CN

CN

2.6  

Scheme 2.3 

N-(3,4-Dicyanophenyl)-4-nitrobenzamide (2.6) was synthesized via nucleophilic acyl 

substitution between 4-amino phthalonitrile 2.5 and commercially available 4-

nitrobenzoylchloride (Scheme 2.3).  In order to neutralize in situ generated HCl, the reaction was 

performed in the presence of a weak base, Na2CO3.  The product was purified by column 

chromatography, recrystallized from acetone and obtained in 78% yield.  The structure of the 

product was confirmed by X-ray crystallography (Figure 2.1).  

 

 

Figure 2.1 ORTEP representation of the molecular structure of 2.6 with 50% ellipsoids. 
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2.2.2 Synthesis of Polyethyleneglycol Substituted Phthalonitriles 

Carboxylate-substituted phthalonitriles are great precursors for water-soluble Pcs.  However, 

there are several disadvantages of carboxylic acid functionalized Pcs regarding to nature of the 

substituents. One of the biggest challenges is that they still have a tendency to aggregate,19 which 

causes series of problems for any applications as well as purification processes. To improve the 

water solubility and to break the aggregates, high pH values may be necessary which may not be 

compatible with the desired application.  We have hypothesized that the Pcs decorated with short 

ethylene glycol chains would have improved solubility in water and organic solvents and less 

tendency to aggregate. Thus, di- and triethyleneglycol-substituted phthalonitriles were 

synthesized starting from commercially available starting materials.  

In order to convert hydroxyl group to a better living group, triethyleneglycol monomethyl 

ether was tosylated with 4-methyl-benzenesulfonyl chloride to give sulfonic acid ester20 2.7  

(Scheme 2.4).  High water solubility of triethyleneglycol monomethyl ether was utilized during 

the purification process. The product was simply purified by extraction and the clear oil was 

obtained in 94 % yield. 
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Scheme 2.4 

Stepwise synthesis of oligoethyleneglycol-substituted phthalonitrile 2.11 was continued with 

the protection of one the hydroxyl groups on the phloroglucinol.  The benzyl group was chosen 
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as a protecting group for two reasons: 1) The benzyl group can easily be cleaved under mild 

conditions by hydrogenation; 2) since the side product formation would be unavoidable, the 

separation of the product (2.8) from di- and tri-protected pholoroglucinol would be easier due to 

the expected difference of the Rf values of the each compound.  For instance, initially a methyl 

group was employed as a protecting group and the reaction yield all three, mono-, di- and tri-

protected, compounds as well as unreacted pholoroglucinol, which was used in large excess.  

Attempts to purify the target compound from the sea of the variously methylated phloroglucinols 

were unsuccessful due to the very close Rf values of the compounds.  Benzylation of 

phloroglucinol was carried out by slow addition of benzyl bromide to the suspension of 

phloroglucinol and K2CO3 at room temperature.21 While using a large excess of phloroglucinol 

prevented the formation of tri-protected compound, it was not enough to preclude the formation 

of di-protected phloroglucinol.  The product was purified by column chromatography to give 

monobenzyl ether 2.8 in 40% yield. (Scheme 2.4)  

The next nucleophilic substitution reaction involved formation of an ether bond. 3-fold 

molar excess of PEG-tosylated 2.7 was refluxed with monobenzyl ether 2.8 in freshly distilled 2-

butanone in the presence of K2CO3 and catalytic amount of KI 22  (Scheme 2.5).  Following the  
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aqueous work up procedure, pegylated monobenzyl ether 2.9 was purified by column 

chromatography and obtained as an oil in 67% yield.  The benzyl group of 2.9 was cleaved by 

hydrogenation in the presence of a palladium on carbon in EtOH under 50 psi H2.21 (Scheme 

2.5).   Following the removal of the metal, the crude mixture was run through a silica gel column 

to give bis-triethyleneglycol phenol 2.10 in 73% yield. 

A previously published procedure was followed to synthesize pegylated phthalonitrile 2.11 

via an SRN1 type of mechanism.11  4-Nitrophthalonitrile, an excess of bis-triethyleneglycol 

phenol 2.10, and K2CO3 were stirred in DMF at room temperature until the 4-nitrophthalonitrile 

was consumed.  It was noted that longer reaction times results in a large amount of green colored 

side product, the corresponding metal free Pc formed by self-cyclotetramerization of 4-

nitrophthalonitrile.  In general, this can be explained by an increased reactivity of the 

phthalonitrile towards nucleophilic attack.  The strong electron-withdrawing nitro group 

activates the phthalonitrile to cyclotetramerization by increasing the positive charge density on 

the nitrile carbon.  Nucleophilic attack to nitrile carbon starts the cyclotetramerization process. It 

is nearly impossible to prevent the Pc formation.  However, using one of the reagents in excess 

reduces the quantity of the side product.  Triethyleneglycol-decorated phthalonitrile 2.11 was 

purified by column chromatography and obtained in 65% yield (Scheme 2.5).  

Two other phthalonitriles, having similar structures to pegylated phthalonitrile 2.11, were 

designed hypothesizing that the Pcs synthesized from these phthalonitriles would have not only 

the desired water solubility but also different photophysical properties due to the altered 

substitution patterns.  Retrosynthetic analysis of the two desired phthalonitriles revealed that the 

same starting material (2.12), could be used to synthesize two different phthalonitriles.  The first 

step of the syntheses was the ether bond formation via SN2 type mechanism (Scheme 2.6). 

Commercially available 1-bromo-2-(2-methoxyethoxy)ethane was added to the suspension of 
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hydroquionone and K2CO3 in acetonitrile at 50 °C and the mixture was brought to reflux.23  In 

order to prevent formation of di-substituted product, hydroquinone was used in 3.3-fold molar 

excess.  Following the filtration of excess of inorganic salts, the product was purified by column 

chromatography.  Due to the formation of the large amount of di-substituted product, the yield of 

the reaction was only 35%. 
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Scheme 2.6 

Mono- and di-subtituted phthalonitriles 2.13 and 2.14 were synthesized employing the same 

synthetic strategy11 discussed above, with either commercially available 3-nitrophthalonitrile or 

4,5-dichlorophthalonitrile, respectively (Scheme 2.6).  Nucleophilic substitution via radical 

intermediate (SRN1) between diethyleneglycol-bearing phenol 2.12 and 3-nitrophthalonitrile gave 

the product in 83% yield after column chromatography.  Nucleophilic aromatic substitution of 

the two chlorines on 4,5-dicholorophthalnitrile with phenol 2.12 yielded di-substituted 

phthalonitrile 2.14 and the mono-substituted side product as well.  The product was purified by 

column chromatography and the target compound was obtained in 54% yield.  Nucleophilic 

aromatic substitution with 4,5-dichlorophthalonitrile has usually low yields due to the mono 

substituted side product formation. Yet, it is possible to suppress the quantity of the side product 



 21 

by using the nucleophile in large excess. The molecular structures of the diethyleneglycol-

bearing phthalonitriles are presented in Figure 2. 2 and Figure 2.3.  

 

Figure 2.2 ORTEP representation of the molecular structure of 2.13 with 50% ellipsoids. 

.  

Figure 2.3 ORTEP representation of the molecular structure of 2.14 with 50% ellipsoids.  

Oligoethyleneglycol-bearing phthalonitriles 2.11, 2.13 and 2.14 have similar structural 

features.  In all of them, ethylene glycol chains are connected to the phthalonitrile with an ether 

linkage via a benzene ring.  Aggregation may be the main disadvantage of the Pcs synthesized 

from these phthalonitriles.  We expected a high degree of aggregation due to the strong π-π 
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interactions between benzene rings.  In order to overcome this expected problem, new series of 

phthalonitriles bearing ethylene glycol chains directly connected to phthalonitrile without a 

benzene ring were designed.  The position of the substituents were altered to be able tune the 

photophysical properties of the Pcs.  The same synthetic methods, discussed above, were 

employed to synthesize the target phthalonitriles.  (Scheme 2.6)   

Tri-or diethylene glycol-substituted phthalonitriles 2.15 and 2.16 were synthesized via SRN1 

type reaction.11 4-nitrophthalonitrile was stirred with either triethyleneglycol monomethylether 

(2.15) or diethylene glycol (2.16)8 in the presence of K2CO3 in DMF (Scheme 2.7).  In the case 

of triethyleneglycol-substituted phthalonitrile 2.15, the reaction was quenched by pouring the 

suspension to ice-water and left overnight.  The resulting precipitate was further purified by 

column chromatography to give 4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phthalonitrile 2.15 in 

74% yield.  During the purification of 2.16, the precipitation step was skipped due to the high 

solubility of the product in water. 4-(2-(2-hydroxyethoxy)ethoxy)phthalonitrile 2.16 was purified 

by column chromatography and obtained in 58% yield.  The molecular structures of the 

phthalonitriles are shown in Figure 2.4 and Figure 2.5.  
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Scheme 2.7 

There are many examples in the literature regarding the red-shifted absorption spectrum of 

the Pcs synthesized from 3,6-disubstituted phthalonitriles.24,25  3,6-Dihydroxyphthalonitrile was 

selected as a common starting material for both of the target compounds.  Commercially 
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available 3,6-dihydroxyphthalononitrile was stirred with a 2.2-fold molar excess of either 

tosylated triethyleneglycol monomethyl ether 2.7 or a primary halide, 1-bromo-2-(2- 

methoxyethoxy)ethane with K2CO3 in DMF (Scheme 2.8). Both of the reactions, preceded via 

 

 
Figure 2.4 ORTEP representation of the molecular structure of 2.15 with 50% ellipsoids. 

 

 

Figure 2.5 ORTEP representation of the molecular structure of 2.16 with 50% ellipsoids. 
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SN2 type mechanism, were followed by TLC.  A very small amount of mono-substituted 

products were formed during the reactions.  Following the work up, while triethyleneglycol-

substituted phthalonitrile 2.17 was purified by column chromatography in 86% yield, 

diethyleneglycol-bearing phthalonitrile 2.18 was purified by recrsytallization from THF-hexane 

mixture and obtained in 90% yield.  The molecular structures of short oligoethyleneglycol-

substituted phthalonitriles 2.17 and 2.18 are shown in Figure 2.6 and Figure 2.7, respectively. 

 

Figure 2.6 ORTEP representation of the molecular structure of 2.17 with 50% ellipsoids. 

Preparation of ethyleneglycol-substituted phthalonitriles was continued with a small change 

in the linker type.  Triethyleneglycol mono methyl ether was attached to the commercially 

available phthalonitriles via a thioether linkage at different positions.  Synthesis of the three 
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Figure 2.7 ORTEP representation of the molecular structure of 2.18 with 50% ellipsoids. 

different phthalonitriles started with conversion of an alcohol to thiol via tosylate intermediate 

2.7.26   Tosylated tirethyleneglycol 2.7 and thiourea were dissolved in EtOH-water mixture and 

brought to reflux.  Following the workup procedure, the product was distilled under high vacuum 

and obtained as malodorous oil in 54 % yield (Scheme 2.9).   
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The prepared thiol 2.19 was utilized in three different phthalonitrile syntheses.  The 

procedure, employed in the synthesis of triethyleneglycol-substituted phthalonitrile 2.15,11 was 

used as a reference for the synthesis of thioethylene glycol-bearing phthalonitriles 2.20 and 2.21. 

Excess of thiol 2.19 was stirred with either 3-nitrophthalonitrile (2.20) or 4-nitrophthalonitrile 

(2.21) in the presence of K2CO3 in DMF (Scheme 2.10).  After completion of the reaction, 3- 

thioethylene glycol-substituted phthalonitrile 2.20 was simply purified by precipitation.  The 

suspension was poured into ice-water mixture and left overnight at room temperature.  The 

product was collected by filtration and obtained in 91% yield (Scheme 2.10).  The same
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purification method was also used to purify 4-thioethyleneglycol-substituted phthalonitrile 2.21.  

However, the product was obtained in an oil form rather than solid.  The molecular structure of 

the thio-pegylated phthalonitrile 2.20 is shown in Figure 2.8. 

 

.  

Figure 2.8 ORTEP representation of the molecular structure of 2.20 with 50% ellipsoids. 
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The last, di-substituted phthalonitrile, was synthesized via nucleophilic aromatic substitution 

between the thiol 2.19 and chlorine on the 4,5-dichlorophthalonitrile as previously discussed.  

The product was purified by column chromatography and obtained in 79% yield (Scheme 2.10). 

2.2.3 Solution-Phase Synthesis of Phthalocyanines 

After the successful syntheses of phthalonitrile precursors, bearing different types of water 

solubilizing groups, we attempted to synthesize asymmetrically- (AB3) and symmetrically- (B4 or 

A4) substituted Pcs in solution via base-promoted cyclotetramerization of phthalonitriles. Two 

precedented methods were employed to synthesize both kinds of Pcs.  The difference between 

the two methods is the reagents used during the synthesis.  While the most commonly used 

cyclotetramerization method requires refluxing in high boiling point alcohol in the presence of a 

base, generally DBU,11 the other method necessitates refluxing in DMF and utilizes HMDS as a 

base.27   In both cases, the reaction proceeds through the similar mechanism: (Scheme 2.11)28  

Herein discussed is the mechanism of the first method which was predominantly used in the 

synthesis of the Pcs.  Following the formation of an alkoxide in situ, the reaction starts with the 

nucleophilic attack to the one of the nitrile carbon on phthalonitrile (2.23) to generate isoindoline 

derivative (2.24).  In the next step, isoindoline derivative behaves as a nucleophile and attacks 

the other phthalonitrile in solution to form dimeric species (2.25).  In the presence of a metal salt, 

this step is facilitated due to the chelation of the metal with the nitrile group (2.23), which makes 

the nitrile carbon more electron deficient as a consequence more likely to be attacked by a 

nucleophile.  This step is repeated one more time to generate another dimeric (half Pc) species.  

The ring closure occurs in two steps:  Nucleophilic attack of the imide on the aryl ether followed 

by the loss of alkoxide leads the formation of an aza bridge (2.26).  The repeat of this step 

generates anti-aromatic macrocycle 2.27.  By the loss of two electrons, the conjugated system 

 



 28 

C

C

N

N

OR

C

C N

N

OR

N

N

OR

C

C

N

N

N

N
N

N

RO

N

NN

N

OR

N

N
N

N

N

N

N

N

N

N

N

N

N

N

N

N

- OR

2.23 2.24

2.25

2.262.27

RO

N

NH

N

N

N

HN

N

N

RCH2OH

RCHO

- OR

 

Scheme 2.11 The mechanism of cyclotetramerization in the presence of alkoxide 

gains aromaticity, which is the driving force for the reaction, and the Pc is generated.  The 

balanced equation of an unsubstituted-metal free Pc formation in BuOH is shown below in 

Equation 2.1. 

C8H4N2 C32H18N84 C4H9OH C4H8O+ +

Unsubstituted phthalonitrile Unsubstituted-metal free Pc

(Eq. 2.1)  

The first target Pc 2.29 was designed to have dodeca-carboxylic acid units to improve the 

solubility of the hydrophobic Pc core and one amine group to utilize for covalent conjugation to 

biomolecules.  As shown in Scheme 2.12, retrosynthetic analysis of amine functional Pc 2.30 

revealed that the synthesis would start with condensation of two different phthalonitrile 
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Scheme 2.12 
 

precursors in 3:1 molar ratio, 4-amino phthalonitrile 2.2 and ester functionalized phthalonitrile 

2.5 respectively.  Following the isolation of dodeca-ester-bearing Pc 2.28, hydrolysis of the ester 

groups would yield the target amino, carboxylic acid bearing Pc 2.30.  Amine and ester 

substituted phthalonitriles, 2.2 and 2.5 respectively, with Zn(OAc)2, as a metal source, were 

dissolved in anhydrous BuOH in the presence of DBU.  The reaction mixture was refluxed for 

24h under Ar (Scheme 2.13).  As a result of random chemoseletive process, cyclotetramerization
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of two different phthalonitriles produced a mixture of congeners, which required an extensive 

purification process to separate one congener from another.  Figure 2.9 shows the mass spectrum 

(MALDI-MS) of the crude mixture as an indication of the random cyclotetramerization of the 

phthalonitriles during the reaction.  The blue colored crude mixture contained the target AB3 

type Pc (2.28) along with symmetrically-substituted hexadeca-carboxylic acid-bearing B4 type Pc 

(2.29), which was formed via self condensation of ester substituted Pc 2.2, another 

symmetrically-substituted tetra amine units containing A4 type Pc, as well as A2B2 and/or AB2 

type Pc having di-amines and octa-carboxylic acid units.  The mass spectrum also showed

 

 

Figure 2.9 MALDI-MS spectrum of the crude mixture of ZnPc 2.28. 

another major peak with m/z value 3061, which could not be identified.  Several attempts were 

made to purify the product by chromatographic methods.  Series of column chromatography on 
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silica gel were performed to isolate the target Pc from the sea of Pcs.  Purification of Pc mixtures 

is a laborious process due to their tendency to aggregate via non-covalent interactions.  A wide 

variety of solvent systems and chromatographic methods must be employed to break down the 

aggregates in order to obtain pure Pcs.  While symmetrically-substituted Pc 2.29 was isolated in 

93% purity (by MALDI-MS), the desired Pc could not be entirely isolated from the mixture after 

running silica gel and ion exchange columns.  The crude mixture of mono-amine functional Pc 

2.28 and the purified symmetrically-substituted ester Pc 2.29 was individually submitted to 

hydrolysis reaction. Butyl ester groups were hydrolyzed to the parent carboxylic acid and alcohol 

using large excess of LiOH in CH3OH-H2O mixture at 60 °C.29  The complete hydrolysis was 

achieved by repeating the reaction.  Following the work up, symmetrically-substituted hexadeca-

carboxylic acid-bearing Pc 2.31 was purified on silica gel column (Figure 2.10 shows the mass 

spectrum of 2.31).  In contrast, the mixture, containing the mono-amine functional desired Pc 

2.30 and symmetrically-substituted Pc 2.31, were submitted to series of column chromatography 

in order to isolate the dodeca-carboxylic acid-bearing Pc 2.30.  Initially, ion exchange column 

was run using MP-TsOH column.  The target compound was expected to be “caught” by the 

sorbent bed, while the impurities, lacking an amine group, would pass through the column. 

Elution of the desired compound with an appropriate solvent system would yield pure mono-

amine functional Pc 2.30. Following the procedure, provided by the producer of the MP-TsOH 

column, two different fractions were collected.   However, both fractions were a mixture of the 

two Pc congeners.  Further purification of the mono-amine functionalized Pc 2.30 was performed 

by column chromatography on silica gel column.  Four different silica gel columns, using 

different eluting systems, were followed by a reverse phase C18 column to isolate mono-amine 

functional dodeca-carboxylic acid bearing Pc 2.30 in 7% overall yield.  Figure 2.11 shows the 

mass spectrum of desired AB3 type asymmetrically-substituted Pc 2.30.
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Figure 2.10 MALDI-MS spectrum of ZnPc 2.31. 

Uv-vis spectra of the isolated Pcs, before and after hydrolysis, had close absorption maxima 

along with similar Q band shapes. The absorption spectra in Figure 2.12 belong to the crude 

mixture of symmetrically-substituted ester Pc 2.28 (after attempted purification) and AB3 type 

asymmetrically-substituted mono-amine contaning Pc 2.29.  Both of the spectra were taken in 

CH2Cl2.  While hexadeca-ester-bearing Pc 2.28 had absorption maxima at 686 nm, dodeca-ester 

containing 2.29 had a split Q band with absorption maxima at 642 and 676 nm.  Broadness and 

the splitting of the Q band indicated the aggregation of the Pcs in the selected solvent.  After 

hydrolysis, while asymmetrically-substituted mono-amine functionalized Pc 2.30 had a sharp Q 

band at 677 nm in DMSO, hexadeca-carboxylic acid-bearing Pc 2.31 showed signs of 

aggregation in THF with a split Q band with absorption maxima at 676 and 649 nm (Figure 2.13)
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Figure 2.11 MALDI-TOF spectrum of ZnPc 2.30. 

 

  
 

Figure 2.12 Absorption spectra of ZnPc 2.28 (left) and ZnPc 2.29 (right). 
 
 

In contrast to asymmetrically-substituted Pcs, purification of the symmetrically-substituted Pcs, 

synthesized from single phthalonitrile precursors, is relatively easy process since the crude

mixture contains the target compound without contamination of any other Pc congeners.
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Figure 2.13 Absorption spectra of ZnPc 2.30 (left) and ZnPc 2.31 (right). 

 
 

Symmetrically-substituted target Pc 2.32 was designed to have octa-ethylene glycol chains as 

water solubilizing groups.  Triethyleneglycol-substituted phthalonitrile 2.11 and Zn(OAc)2 with 

DBU was refluxed in BuOH for 24h.  (Scheme 2.14)  Oligoethyleneglycol-substituted Pc 2.32 
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was purified on silica gel column and obtained in 20% yield. As a result of randomregioselective 

cyclotetramerization, the product was obtained as a mixture of isomers.  However, any attempt to 

isolate a single isomer has not made. 
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Unlike mono-amine functional asymmetrically-substituted Pc 2.30, octa-triethyleneglycol- 

bearing symmetrically-substituted Pc 2.32 was obtained in moderate yield due to the two factors: 

1) Cyclotetramerization of a single type phthalonitrile yields only one of the six congeners of the 

Pc.  The crude mixture contains high percentage of the desired Pc contaminated with some low 

molecular weight impurities; 2) limited column chromatography on silica gel reduces loss as 

nonspecific adsorption of Pcs to the silica gel results in poor recovery of the Pcs.  Consequently, 

as the number of chromatography steps on silica gel increase, the yield of the product decreases.   

Symmetrically-substituted Pc 2.32, decorated with triethyleneglycol chains, has a distinctive 

Q band with absorption maxima at 680 nm in DMSO (Figure 2.14) and a well-defined emission 

band at 688 nm upon excitation at 610 nm (Figure 2.15).   A broad, split and blue shifted Q band 

of oligoethyleneglycol-substituted Pc 2.32 in CH3OH, water and CH3OH-H2O mixtures 

 

 

Figure 2.14 Absorption spectrum of 2.32 in DMSO systems (Figure 2.16).   

at different ratios at 10-5 M concentration was an indication of aggregation of the Pc in the 

selected solvent. Consequently, symmetrically substituted Pc 2.32 has very low fluorescence 

intensity and blue shifted emission band in CH3OH upon excitation at 610 nm.  Absorption
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Figure 2.15 Emission spectra of 2.32 in DMSO (red) and CH3OH (black). 

 
Figure 2.16 Absorption spectra of 2.32 in different ratios of CH3OH-H2O mixtures. 

profiles of the target Pc in different ratios of CH3OH-water mixture are shown in Figure 2.16. 

Syntheses of symmetrically substituted Pcs were continued with the nitro substituted Pc 

2.33.  The target Pc was designed to have tetra-nitro groups as a functional group, which could 

be reduced to amine to increase the solubility after the cyclotetramerization reaction.  To prevent 

any premature reactions during the cyclotetramerization of the phthalonitrile, reduction of the 

nitro group was planned as the final step in the syntheses.  Self condensation of 4-nitro 
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benzamide phthalonitrile 2.6 with Zn(OAc)2 and HMDS in DMF for 12h.27 gave a dark green 

colored crude mixture of symmetrically substituted tetra-nitro bearing Pc 2.33 (Scheme 2.15). 
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The crude mixture of the target compound was only soluble in DMF and DMSO and partially 

soluble in ether and acetone.    Due to the poor solubility of the Pc, it was nearly impossible to 

purify the desired compound by chromatographic techniques.  Attempted purification of the nitro 

functional Pc 2.33 by simply washing the crude mixture with CH3OH and H2O, and boiling the 

crude product in different organic solvents for 2 h. was partially successful at removing the low 

molecular weight impurities.  While the mass spectrum of the symmetrically substituted Pc 

confirmed the identity of the product, the purity of the product was questionable.  Without any 

further purification, the crude mixture was submitted to next reaction.  

Reduction of the nitro groups of the crude mixture of 2.33 was performed via catalytic 

hydrogenation. (Scheme 2.16) Treatment of tetra-nitro containing Pc 2.33 with Raney-nickel 

under 50 psi H2
30 resulted in cleavage of the amide bond at several positions, which was not 

expected.  With the assumption of high pressure would initiate the amide bond cleavage, 

catalytic hydrogenation was performed at atmospheric pressure in the presence of Pd/C as a 

metal catalyst (Scheme 2.16). Surprisingly, this method resulted in decomposition of the Pc.  The 

product of the reaction, brown colored solid, could not be identified. The last method, employed 
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to reduce the nitro groups, was Zn catalyzed reduction in the presence of acetic acid.31  Mass 

spectrum of the green colored solid, did not show any evidence to support the formation of 

amine containing Pc 2.34.   Any other route to synthesize the Pc 2.34 was not attempted.  

2.3 Conclusion and Future Work 

In this chapter synthesis of phthalonitrile precursors, bearing a variety of water solubilizing 

groups, and water-soluble symmetrically- and asymmetrically-substituted Pcs via solution phase 

cyclotetramerization are reported.  Synthesis of phthalonitrile precursors starting from 

commercially available phthalonitriles was a success.  While the purification of the 

symmetrically substituted Pcs can be accomplished in relatively short amount of time, 

modification of the products was an unexpected problematic situation. As a result of congener 

formation, purification of the asymmetrically-substituted Pcs using chromatographic techniques 

is a laborious and extremely difficult process.  Great amount of time needs to be invested to 

isolate the desired compound.  For a general, reproducible synthesis of asymmetrically- 

substituted Pcs, an improved method needs to be developed.  
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2.4 Experimental 

2.4.1 General Experimental Information  

Unless otherwise indicated, all commercially available starting materials were used directly 

without any further purification.  Reactions under anhydrous conditions were performed in dried 

solvents under argon atmosphere. Commercially available starting compounds were used without 

further purification. Reactions were monitored by TLC using Sorbent Technologies silica gel 

plates 250 µm with UV activator.  Silica gel Sorbent Technologies 40-63 µm was used for 

column chromatography. 1H NMR and 13C NMR were obtained on DPX-250 Bruker 

spectrometer.  Chemical shifts (δ) are given in ppm relative to methylene chloride (5.32 ppm 1H; 

54 ppm, 13C NMR) or DMSO (2.49 ppm 1H NMR; 39.51 ppm 13C NMR). Low-resolution mass 

spectra (MS) were obtained on a Bruker Proflex III MALDI-TOF massspectrometer.  Unless 

otherwise indicated, all MALDI-MS spectra were obtained using CCA as a matrix.  FT-IR 

spectra were obtained on Bruker Tensor 27 spectrometer.  Electronic absorption spectra were 

measured on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer. Emission spectra were 

obtained using a FLUOROLOG-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) equipped 

with a 450-W xenon lamp and a cooled Hamamatsu R928 photomultiplier operated at 900V in 

the photon-counting mode.  A quartz cuvette with a 10 mm path length was utilized throughout 

these experiments.  All measurements were performed under ambient room conditions within 3h. 

of solutions preparation.  Stock solution and dilutions were prepared in anhydrous DMSO, 

CH3OH, THF or CH2Cl2. 

2.4.2 Experimental Procedures 

5-Hydroxy isophthalic acid dibutyl ester (2.1)   

To a solution of 5-hydroxyisophthalic acid (5 g, 27.4 mmol) in C4H9OH,  (30 mL), a catalytic 

amount of concentrated H2SO4 was added and the clear solution was refluxed for 5 h.  The 
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mixture was concentrated by evaporating of C4H9OH and the residue was dissolved in EtOAc.  

The organic layer was washed with saturated NaHCO3 solution (3x50 mL), H2O (3x50 mL), 

brine (2x50 mL) and then dired over MgSO4.  (White crystals, 88%) 1H NMR (250 MHz, DMSO-

d6) δ10(1Η), 7.9(1Η), 7.5(2Η), 4.3(4Η), 1.6(4Η), 1.4(4Η), 0.9(6Η) 

4-(3,5-Bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenoxy)phthalonitrile (2.2) 

 5-Hydroxyisophthalic acid dibutyl ester (1) (2.5 g, 8.5 mmol) and K2CO3 (1.2 g, 9 mmol) were 

stirred in anhydrous DMF (10 mL) at 70 oC for 30 minutes. The solution of 4,5-dichloro- 

phthalonitrile (0.79 g, 4 mmol) in DMF (4 mL) was added to the suspension dropwise.  After 

seven h, (yellow suspension), the solvent was evaporated and the crude mixture was dissolved in 

CH2Cl2 and washed with saturated NaHCO3 (3x50 mL), H2O (3x50 mL) and brine (2x50 mL). 

The crude mixture was purified by column chromatography on silica gel with CH2Cl2-hexane 

(3:2) as eluting solvent to give a white solid in 67% yield. 1H NMR (250 MHz, DMSO-d6) 

δ 8.2(1Η), 8.1(1Η), 7.7(2Η), 4.3(4Η), 1.7(4Η), 1.4(4Η), 0.94(6Η).   

4-(3,4-Dicyanophenoxy)benzoic acid (2.3) 

Into a solution of 4-hydroxybenzoic acid (2.4 g, 17.3 mmol) in anhydrous DMF (10 mL), 4-

nitrophthalonitrile (2.0 g, 11.6 mmol) and finely ground K2CO3 (4.8 g, 34.7 mmol) were added. 

The mixture was stirred at room temperature for 24 h.  As the reaction proceeded, a light yellow 

precipitate formed.  Purification method 1: The crude mixture was evaporated to dryness and 

the resultant mixture was dissolved in CH3OH (~10 mL) and neutralized by 1N HCl solution.  

The light yellow colored precipitate was collected by filtration and was further purified by 

column chromatography on silica gel with EtOAc-hexanes  (1:1) as eluting solvent to give a 

white solid 71% yield.  Purification method 2:  Following the removal of the inorganic salts, 

the reaction mixture was diluted with CH2Cl2 (~ 20 mL) and it was neutralized with 1N HCl 

solution with continuous stirring at room temperature.  The product was extracted with CH2Cl2 
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and the solvent was evaporated.  The resultant oil was solidified by pouring into the 400 mL ice-

water and the precipitate was collected by filtration to give the product as a white solid in 67% 

yield. 1H NMR (250 MHz, DMSO-d6) δ 8.1(1Η), 8.0(2Η), 7.9(1Η), 7.5(1Η), 7.2(2Η)  13C NMR 

(250MHz,CH2Cl2-d2)δ 169.40, 160.14, 135.54, 132.77, 126.37, 122.50,  119.83, 117.70, 115.18,  

114.78, 110. 00.  FT-IR (KBr, cm-1) 3087, 3039, 2846, 2553, 2231, 1672, 1608, 1589, 1570, 

1504, 1489, 1427, 1309, 1296, 1278, 1252, 1211, 1165, 1127, 1112, 1088, 1014, 951, 934, 905, 

869, 848, 776, 734, 710.  

2-(Tert-butoxycarbonylamino)-3-(4-(3,4-dicyanophenoxy)phenyl)propanoic acid (2.4) 

Into a solution of 4-nitrophthalonitrile (1.35 g, 7.8 mmol) in anhydrous DMF (10 mL), Boc-Tyr-

OH (2 g, 7.1 mmol) and finely ground K2CO3 (1.95 g, 14.2 mmol) were added.  The mixture was 

stirred at room temperature for 24 h. The color of the solution turned from yellow to clear 

overnight.  The reaction was followed by TLC.  After running the TLC (EtOAc), the plate was 

placed in concentrated HCl chamber for a minute to remove the Boc protecting group and then 

was stained with ninhydrin solution.  The clear TLC plate was heated with a heat gun until the 

purple spot with higher Rf value relative to Boc-Tyr-OH was appeared, corresponding to free 

amine containing compound.  Following the removal of inorganic salts, the solution was 

neutralized with 1N HCl solution.  The product was extracted with EtOAc and purified by 

column chromatography on silica gel.  The column was first washed with EtOAc-hexane 

(99.5:0.5) mixture and the excess of 4-nitrophthalonitrile was collected.  EtOAc concentration 

was gradually increased up to 100% to collect the product.  Following the evaporation of the 

solvent, the product was obtained as a yellow solid in 70% yield. 1H NMR (250 MHz, CH2Cl2-

d2) δ 7.8 (1Η), 7.3 (5Η), 7.1(2Η), 4.7(1Η), 3.3(1Η), 3.0(1Η) 

 

 



42  

4-Aminophthalonitrile (2.5) 

 4-Nitrophthalonitrile (0.77 g, 4.45 mmol) was added to mixture of CH3OH (16 mL) and 

concentrated HCl (3.5 mL).  Suspension was brought to boil and Fe dust (0.8 g, 14.5 mmol) was 

added portionwise over 45 minutes. Heating continued briefly and CH3OH was evaporated.  The 

mixture was poured into the 200 mL of H2O and filtered.  Recrystallization of crude mixture 

from benzene gave a pale yellow product in 70% yield.   
1H NMR(250 MHz, DMSO-d6) 

δ 7.7(1H), 7.0(1H), 6.9(1H), 6.7(2H); 13C NMR (250 MHz, DMSO-d6) δ150.02, 132.14, 121.24, 

120.14, 117.12,  115.24, 116.45, 104.20.  GC-MS Cald C8H5N3
+: 143.0; found: 143.0 

N-(3,4-Dicyanophenyl)-4-nitrobenzamide (2.6) 

To a stirring solution of 4-nitrobenzoylchloride (2.72 g, 14.7 mmol) in anhydrous acetone (40 

mL), 4-aminophthalonitrile (1.43 g, 10 mmol) and Na2CO3 (5.3 g, 50 mmol) were added and the 

mixture was refluxed for 4 h.  Dark yellow suspension was filtered when it was hot.  Filtrate was 

left in -20 oC overnight.  Crystals were collected and dissolved in CH2Cl2 and purified by column 

chromatography on silica gel with CH3OH-CH2Cl2 (3:97) as eluting solvent.  The product was 

recrystallized from EtOH to give a pale yellow solid in 70% yield. mp: 259-261oC; ESI Calcd 

C15H8N4O3-H: 291.0; found 291.1. 1H NMR (250 MHz, DMSO-d6) δ11.3(2H), 8.4(3H), 8.2(4H)   

13C NMR (250 MHz, DMSO-d6) δ 193.76, 165.69, 150.45, 144.45, 140.20, 140.14, 135.90, 

130.36, 125.08, 125.00, 124.58, 116.69, 116.23, 109.23, 109.5  

Toluene-4-sulfonic acid 2-[2-(2-methoxyethoxy)-ethoxy]-ethyl ester (2.7) 

NaOH (1.6 g, 40 mmol) was dissolved in H2O (10 mL) and added to solution of 2-[2-(2-

methoxyethoxy)-ethoxy]-ethanol (4.6 g, 20 mmol) in THF (10 mL).  The mixture was cooled 

down to 0-5 oC and the solution of p-toluene sulfonyl chloride (5 g, 20 mmol) in THF (10 mL) 

was added to reaction mixture over 1 hour.  The mixture was poured into the ice-water  (50 mL) 

and extracted with CH2Cl2 (2x75 mL).  The combined organic layers were washed with H2O 
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(2x75 mL) and brine (2x75 mL). The organic layer was dried over MgSO4 and CH2Cl2 was 

evaporated to give a clear oil in 94% yield.  1H NMR (250 MHz, CH2Cl2-d4) δ 7.8(2H), 7.7(2H), 

4.1(2H), 3.6(10H), 2.4(3H); 13C NMR (250 MHz, DMSO-d6) δ 145.75, 133.51, 131.23, 130.81, 

128.80, 128.70, 127.87, 73.30, 72.16, 71.81, 70.58, 7.84, 61.20, 58.90, 25.94, 21.74.    

5-Benzyloxybenzene-1,3-diol (2.8) 

Phloroglucinol, (3 g, 23 mmol) was dissolved in anhydrous DMF (10 mL) and added to 

suspension of K2CO3 (1.44 g, 10 mmol) in DMF (10 mL).  The mixture was stirred for 10 

minutes.  Benzyl bromide (1.76 g, 1 mmol) in DMF (5 mL) was added to mixture dropwise over 

40 minutes.  The brown colored mixture was stirred 1 more hour and inorganic salts were 

removed by filteration.  DMF was evaporated and the crude mixture was dissolved in EtOAc and 

washed with 1N HCl solution (3x20 mL).  Organic layers was combined and purified by column 

chromatography on silica gel with THF- CH2Cl2 (7:93) to give a light brown oil in 40% yield.  

1H NMR (250 MHz, DMSO-d6) δ 9.1(2H), 7.3(5H), 5.8(3H), 4.9 (2H). GC-MS Cald C13H12O3
+: 

216.0; found: 216.2 

1-Benzyloxy-3,5-bis-{2-[2-(2-methoxyethoxy)-ethoxy]-ethoxy}-benzene (2.9)   

5-Benzyloxy-benzene-1,3-diol (2.8) (0.6 g, 2.7 mmol) and toluene-4-sulfonic acid 2-[2-(2-

methoxyethoxy)-ethoxy]-ethyl ester (2.7) (2.65 g, 8.3 mmol) were dissolved in freshly distilled 

2-butanone (20 mL).  After addition of K2CO3 (4 g, 28.9 mmol) and a spatula tip quantity of KI, 

the yellow suspension was refluxed under Ar for 20 h.  The solvent was evaporated to dryness 

and the crude mixture was redissolved inCH2Cl2.  The organic layer was washed with 1N HCl 

(2x50 mL), H2O (2x50 mL), brine (2x50 mL) and dried over MgSO4.  The crude mixture was 

purified by column chromatography on silica gel by washing the column with hexane-EtOAc 

(1:1), EtOAc, and EtOAc-CH3OH (9:1) to give a light brown oil in 67% yield.  1H NMR (250 

MHz, DMSO-d6) δ 7.4(5H), 6.1(3H), 5.05(2H), 4.04(5H), 3.7(5H), 3.5(18H),3.24(8H) 
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3,5-Bis-{2-[2-(2-methoxyethoxy)-ethoxy]-ethoxy}-phenol (2.10) 

Into a solution of benzyl ether 2.9 (0.3 g, 0.59 mmol) was dissolved in EtOH (8 mL) and Pd/C 

(30 mg, 10% by weight) was added.  Reaction was run under 50 psi H2 (g) for 20 h.  The 

resultant suspension was passed through a plug of celite and EtOH was evaporated.  The crude 

mixture was loaded onto a 10 g silica column.  First, column was washed with EtOAc-CH2Cl2 

(9:1) and then with CH3OH-EtOAc-CH2Cl2 mixture by increasing gradually CH3OH percentage 

by 1% in until the percentage of CH3OH reaches 10% in the mixture.  The light brown oil was 

obtained in 73% yield.  1H NMR (250 MHz, DMSO-d6) δ 9.59(1H), 5.9(3H), 3.99(4H), 3.7(4H), 

3.4(16H), 3.3(6H).  GC-MS Cald C20H34O9
+: 418.2; found: 418.3.  

4-(3,5-Bis-{2-[2-(2-methoxyethoxy)-ethoxy]-ethoxy}-phenoxy)-phthalonitrile (2.11) 

Into a solution of 4-nitrophthalonitrile (0.17 g, 0.97mmol) in anhydrous DMF (5 mL), 3,5-bis-

{2-[2-(2-methoxyethoxy)-ethoxy]-ethoxy}-phenol (2.10) (0.45 g, 1.07 mmol) and finely ground 

K2CO3 (0.3g, 1.94 mmol) was added.  As soon as K2CO3 was added, the color of the solution 

turned from yellow to dark brown.  The mixture was stirred at room temperature for 48 h.  After 

removal of the inorganic salts by filtration, DMF was evaporated and the crude mixture was 

purified by column chromatography on silica gel with CH3OH-EtOAc (1:199) as eluting solvent 

to give a brown oil in 65% yield.  1H NMR (250 MHz, CDCl3-d6) δ 7.7(1H), 7.3(2H), 7.2(1H), 

6.4(1H), 6.2(2H), 4.1(4H), 3.8(4H), 3.7(16H), 3.5(4H) 

4-(2-(2-Methoxyethoxy)ethoxy)phenol (2.12)   

Hydroquinone (10 g, 90.9 mmol) was dissolved in CH3CN with K2CO3 (12.5 g, 90.9 mmol) and 

stirred at 50 °C for 20 minutes. 1-Bromo-2-(2-methoxyethoxy)ethane (3.7 mL, 27.3 mmol) was 

dropwise added to mixture. The color of the suspension changed from yellow to pale yellow over 

the time.  After 24 h, salts were removed by filtration and the filtrate evaporated to dryness.  The 

crude mixture was dissolved in CH2Cl2 and resulting precipitate, excess of hydroquinone, was 
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removed by filtration.  The filtrate was concentrated and purified by column chromatography 

with CH3OH-CH2Cl2 (9:91) mixture as eluting solvent. The product was obtained in 35% yield. 

1H NMR (250MHz,DMSO-d6) δ 8.9(1H), 6.8(2H), 6.6(2H), 3.9(2H), 3.7(2H), 3.6(2H), 3.4(2H), 

3.2(3H); 13CNMR (250MHz, DMSO-d6) δ 152.09, 116.55, 116.21, 72.14, 70.54, 69.94, 68.37, 

58.92, 54.83 

3-(4-(2-(2-Methoxyethoxy)ethoxy)phenoxy)phthalonitrile (2.13)  

Into a solution of 3-nitrophthalonitrile (1.1 g, 6.45 mmol) in anhydrous DMF (10 mL), 4-(2-(2-

methoxyethoxy)ethoxy)phenol (2.12) (1.1 g, 5.3 mmol) and K2CO3 (1.48 g, 10.74 mmol) were 

added. The mixture was stirred at room temperature under Ar for 24 h.  Following the filtration 

of the salts, DMF was evaporated to dryness.  The product was purified by column 

chromatography on silica gel.  The silica gel column was initially washed with CH2Cl2, then with 

CH3OH-CH2Cl2 (5:95) mixture as eluting solvent.  The product was obtained in 83% yield. The 

compound was recyrstallized from n-BuOH. M.p. 58 °C; GCMS Calcd C19H18N2O4
+: 338.1; 

found: 338.0. 1H NMR (250MHz, DMSO-d6) δ7.8(2H), 7.2(3H), 7.1(2H), 4.1(2H), 3.7(2H), 

3.6(2H), 3.5(2H), 3.2(3H); 13CNMR (250MHz, DMSO-d6) δ161.70, 157.21, 147.86, 136.81, 

128.48, 122.54, 121.75, 116.61, 114.36, 105.09, 72.16, 70.58, 69.74, 68.49, 58.95.   

4,5-Bis(4-(2-(2-methoxyethoxy)ethoxy)phenoxy)phthalonitrile (2.14) 

Into a solution of 4-(2-(2-methoxyethoxy)ethoxy)phenol (2.12) (1.75 g, 8.25 mmol) in anhydrous 

DMF (2 mL), K2CO3 (1.13 g, 8.25 mmol) was added and the mixture stirred for 0.5 h at 70 oC.  

4,5-Dichlorophthalonitrile (0.77 g, 3.9 mmol) in DMF (2 mL) was added to reaction mixture 

dropwise.  The yellow colored mixture was stirred for 5.5 h at 90 °C.  After removal of K2CO3 

by filtration, DMF was evaporated and the crude mixture was purified by column 

chromatography on silica gel with EtOAc:hexanes (2:1) mixture as eluting solvent to give a 

brown solid in 54% yield. The compound was recrystallized from n-BuOH. 1H NMR 
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(250MHz,DMSO-d6) δ 7.5(2H), 7.1(2H),7.0(4H),4.1(4H), 3.7(4H), 3.6(4H), 3.4(4H), 3.2(6H); 

13CNMR (250MHz, DMSO-d6) δ 156.64, 152.58, 148.62, 123.75, 121.43, 116.83, 116.30, 

110.67, 72.15, 70.57, 69.77, 68.44, 58.95 GC-MS Cald C30H32N2O8
+: 548.2; found: 548.1 

4-(2-(2-(2-Methoxyethoxy)ethoxy)ethoxy)phthalonitrile (2.15) 

Into a solution of 4-nitrophthalonitrile (2.0 g, 11.6 mmol) in anhydrous DMF (10 mL), 

trietyhleneglycol monomethylether  (3.8 g, 23.1 mmol) and finely ground K2CO3 (6.38 g, 46.2 

mmol) were added.  As soon as K2CO3 was added, the color of the solution turned from yellow 

to dark brown.  The mixture was stirred at room temperature for 24 h.  The crude mixture was 

poured into the 450 mL of ice-water and left overnight. The resulting yellow precipitate was 

isolated by filtration and purified by column chromatography on silica gel with EtOAc-hexane 

(1:1) as an eluting solvent to give yellow solid in 74% yield. The compound was recrystallized 

from n-BuOH.  m.p. 63 °C; 1H NMR (250 MHz, DMSO-d6) δ 8.0(1H), 7.7(1H), 7.4(1H), 

4.2(2H), 3.7(2H), 3.5(6H), 3.4(2H), 3.2(3H);  13C NMR (250 MHz, DMSO-d6) δ 162.7, 136.6, 

121.2, 121, 117.11, 116.6, 106.8, 72.1, 70.8, 70.6, 70.4, 69.4, 69.3, 58.9 

4-(2-(2-Hydroxyethoxy)ethoxy)phthalonitrile (2.16) 

To diethyleneglycol (22.5 mmol, 2.14 mL) under Argon, a solution of 4-nitrophthalonitrile (15 

mmol, 2.59 g) in anhydrous DMF (6 mL) and K2CO3 (30 mmol, 4.14 g) were added.  The 

suspension was stirred at room temperature for 12 h.  The color of the reaction turned from 

colorless to yellow-green over 12 h.  Following the filtration to remove the salts, the DMF was 

evaporated and crude mixture was purified by column chromatography on silica gel with EtOAc 

as an eluting solvent.  The yellow solid was obtained in 58% yield. The compound was 

recrystallized from n-BuOH.  m.p. 58-60 °C.  1H NMR (250 MHz, DMSO-d6) δ 7.7(1H), 

7.3(1H), 7.2(1H), 4.2(2H), 3.8(2H), 3.8(2H), 3.6(2H), 1.8(1H). 13C NMR (300 MHz, DMSO-d6) 

δ 162.5, 135.8, 120.4, 120.1, 117.4, 116.4, 116, 107.3, 73.2, 72.7, 69.3, 61.7 
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3,6-Bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phthalonitrile (2.17)  

2,3-Dicyanohydroquinone (2.5 g, 15.6 mmol) and K2CO3 (5 g, 36.2 mmol) was stirred in 

anhydrous DMF (7 mL) for 30 min. at 50 °C. Toluene-4-sulfonic acid 2-[2-(2-methoxyethoxy)-

ethoxy]-ethyl ester (2.7) (10.9 g, 34.3 mmol) in anhydrous DMF (10 mL) was added to reaction 

mixture dropwise over 40 min.  The suspension was heated up to 90°C and vigorously stirred for 

24h.  The color of the suspension turned from yellow to brown over the time.  Following the 

removal of salts, DMF was evaporated and the crude mixture was dissolved in EtOAc.  The 

organic layer was washed with NaHCO3 (3x50 mL), H2O (3x50 mL) and brine (2x50 mL).  The 

combined organic layers were evaporated and the crude mixture was purified by column 

chromatography on silica gel with EtOAc-CH3OH (8:92) mixture as an eluting solvent.  A 

yellow solid was obtained in 85% yield. The compound was recrystallized from n-BuOH.  m.p. 

46-48 °C; 1H NMR (250 MHz, DMSO-d6) δ 7.6(2H), 4.3(4H), 3.7(4H), 3.6(4H), 3.5(8H), 

3.4(4H), 3.(6H); 13C NMR (300 MHz, DMSO-d6) δ 155.86, 121.70, 114.44, 103.84, 72.12, 

70.94, 70.63, 70.45, 69.52, 58.9  

3,6-Bis(2-(2-methoxyethoxy)ethoxy)phthalonitrile (2.18)  

2,3-Dicyanohydroquinone (2.5 g, 15.6 mmol) and K2CO3 (5 g, 36.2 mmol) was stirred in 

anhydrous DMF (7 mL) for 30 min. at 50 °C. 1-Bromo-2-(2-methoxyethoxy)ethane (4.6 mL, 

34.3 mmol) in anhydrous DMF (4 mL) was added to reaction mixture dropwise in 40min.  The 

suspension was heated up to 60°C and vigorously stirred for 24h. Following the removal of salts, 

DMF was evaporated and the crude mixture was dissolved in EtOAc.  The organic layer was 

washed with NaHCO3 (3x50 mL), H2O (3x50 mL) and brine (2x50 mL).  The combined organic 

layers were evaporated and the crude mixture was purified by recrystallization from THF-

hexanes mixture.  The crude mixture was dissolved in a minimum amount of THF at room 

temperature.  Hexanes was added to the solution until it got cloudy and retained the cloudiness 
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for 30 seconds.  The solution was kept at -5 °C overnight.  Following the filtration, the product 

was obtained in 90% yield as a yellow solid. m.p. 75-76 °C; 1H NMR (250 MHz, DMSO-d6) 

δ 7.6(2H), 4.3(2H), 3.7(2H), 3.6(2H), 3.4(2H), 3.2(6H); 13C NMR (300 MHz, DMSO-d6) 

δ 155.87, 121.72, 114.44, 103.87, 72.12, 70.27, 70.53, 69.51, 58.94 

2-(2-(2-Methoxyethoxy)ethoxy)ethanethiol (2.19)  

Toluene-4-sulfonic acid 2-[2-(2-methoxyethoxy)-ethoxy]-ethyl ester (2.7) (10.8 g, 34 mmol) and 

thiourea (2.6 g, 34 mmol) were dissolved in a mixture of absolute EtOH (20 mL) and H2O (14 

mL) and the mixture was refluxed for 3h.  4N NaOH solution (10 mL) was added to mixture and 

the reaction mixture refluxed 2 more h.  The reaction mixture was concentrated under reduced 

pressure to ~ 10 mL, diluted with distilled H2O (10 mL) and neutralized with concentrated HCl.  

The solution was extracted with CH2Cl2 (3x10mL) and the solvent was evaporated under 

reduced pressure.  The pink-yellow liquid was distilled at 0.45 torr pressure.  The product was 

collected as a clear liquid and obtained in 54% yield. B.p. 55-57 °C at 0.45 torr.  GC-MS Calcd. 

C7H16O3S+: 180.0; found: 179.9. 1H NMR (250 MHz, CDCl3) δ 3.6(6H), 3.5(4H), 3.4(3H), 

2.7(2H), 1.6(1H); 13C NMR (300 MHz, CDCl3) δ 76.92, 73.30, 72.34, 70.98, 70.63, 59.46, 24.66 

3-(2-(2-(2-Ethoxyethoxy)ethoxy)ethylthio)phthalonitrile (2.20) 

Into a solution of 3-nitrophthalonitrile (2.5 g, 13.9 mmol) in anhydrous DMF (5 mL), 2-(2-(2-

methoxyethoxy)ethoxy)ethanethiol (2.19) (2 g, 11.6 mmol) and finely ground K2CO3 (1.9 g, 13.9 

mmol) were added. The yellow colored mixture was stirred at room temperature for 5.5 h.  The 

crude mixture was poured into the 600 mL of ice-water and left at room temperature overnight. 

The resulting yellow precipitate was isolated by filtration to give a yellow solid in 91% yield. 

The compound was recrystallized from n-BuOH.  m.p. 58-59 °C; GCMS Calcd C15H18N2O3S+: 

306.1; found: 306.8.  1H NMR (250 MHz, DMSO-d6) δ 7.8(3H), 3.6(3H), 3.4(12H), 3.2(3H); 13C 
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NMR (300 MHz, DMSO- d6) δ 145.46, 134.55, 132.93, 131.17, 116.71, 115.13, 113.73, 72.12, 

70.62, 70.46, 69.50,32.92 

4-(2-(2-(2-Ethoxyethoxy)ethoxy)ethylthio)phthalonitrile (2.21) 

Into a solution of 4-nitrophthalonitrile (1.6 g, 9.24 mmol) in anhydrous DMF (5 mL), 2-(2-(2-

methoxyethoxy)ethoxy)ethanethiol (2.19) (1.9 g, 10 mmol) and finely ground K2CO3 (2.55 g, 

18.4 mmol) were added. The yellow suspension was stirred at room temperature for 24 h.  The 

crude mixture was poured into the 500 mL of ice-water and left overnight at room temperature. 

The resulting oil was extracted with CH2Cl2 and dried over MgSO4. The solvent was evaporated 

under reduced pressure to give a yellow solid in 87% yield.  m.p. 35-36 °C; GCMS Calcd 

C15H18N2O3S+: 306.1; found: 306.1.  1H NMR (250 MHz, DMSO-d6) δ 8.1(1H), 7.9(1H), 

7.7(1H), 3.6(2H), 3.5(6H), 3.4(4H), 3.2(3H); 13C NMR (300 MHz, DMSO- d6) δ 169.07, 157.70, 

147.50, 134.45, 131.49, 131.38, 117.00, 116.55, 115.87, 110.51, 72.11, 70.63, 70.45, 69.47, 

58.90, 31.65  

4,5-Bis(2-(2-(2-ethoxyethoxy)ethoxy)ethylthio)phthalonitrile (2.22) 

2-(2-(2-Methoxyethoxy)ethoxy)ethanethiol (2.19) (2 g, 10.15 mmol) in anhydrous DMF (5 mL) 

and finely ground K2CO3 (2.8 g, 20.3 mmol) were heated up to 70 °C and the mixture stirred at 

that temperature for 0.5 h. 4,5 Dichlorophthalonitrile (3.65 g, 20.3 mmol) in anhydrous DMF (6 

mL) was added to reaction mixture dropwise.  The mixture was stirred for 6 h at 70 °C.  The 

color of the solution was turned from yellow to orange over the time.  After removal of K2CO3 

by filtration, DMF was evaporated and the crude mixture was purified by column 

chromatography on silica gel with EtOAc-hexanes (3:1) mixture as eluting solvent to give a 

yellow oil in 79% yield. 1H NMR (250 MHz, DMSO-d6) δ7.9(2H), 3.7(4H), 3.5(12H), 3.4(8H), 

3.2(6H); 13C NMR (300 MHz, DMSO- d6) δ143.82, 129.76, 116.93, 110.92, 72.70, 70.64, 70.47, 

69.32, 58.91, 32.50  
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23-Amino, 2,3,9,10,16,17 hexa-(3,5 dibutoxycarbonyl) phthalocyanato zinc (2.28).  

4,5-Bis isophthalic acid dibutyl ester phthalonitrile (2.2) (0.71 g, 1 mmol), 4-aminophthalonitrile 

(2.5) (0.047 g, 0.3 mmol) and Zn(OAc)2 (0.12 g, 0.65 mmol) was added to anhydrous C4H9OH          

(5 mL ) under argon and heated up to 90 oC.  DBU (0.1 mL, 0.6 mmol) was added to mixture and 

the mixture was refluxed for 36 hours.  The color of the solution was turned from yellow to dark 

blue.  The solvent was evaporated and the crude mixture was partially purified by column 

chromatography on silica gel first with EtOAc-CH2Cl2 (1:199) and then starting from 1:199 

EtOAc-CH2Cl2, gradually EtOAc percentage was increased up to 2%. Pc 2.29 was isolated from 

the crude mixture. The remaining of the crude mixture was dissolved in CH2Cl2 and loaded to 

MP-TsOH ion exchange column.  By washing column with EtOAc, CH2Cl2  and CH3OH first 

fraction was collected..  Column was washed with 1M NH3 in CH3OH solution to collect second 

fraction.  Pc 2.28 could not be isolated and the crude mixture was submitted to the next reaction. 

MALDI-MS Calcd. C160H176N8O40Zn+: 2916.46; found 2916.39 

23-Amino, 2, 3, 9, 10, 16, 17 hexa-(3,5 dicarboxylic acid) phthalocyanato zinc (2.30-2.31) 

Solution of the crude mixture of 2.28 and 2.29 (0.2 g, 0.085 mmol) was individually dissolved  in 

3 mL THF and were added dropwise to a solution of LiOH (0.43 g, 17.9 mmol) in CH3OH-H2O 

(7:3) .Blue colored solutions were stirred at 60 oC for 16 hours.  The organic layers were 

removed in under high pressure and aqueous layer was washed with CHCl3 (3x20 mL) and 

acidified with 4N HCl to pH 2.  The resultant precipitates were filtered, washed with CHCl3 

(3x20 mL) and H2O. The crude mixture of 2.30 was dissolved in CH3OH and run through MP-

TsOH ion exchange column.  Column was washed with 1M NH3 in CH3OH solution and finally 

with H2O to collect two different fractions.  Collected fractions were further purified by column 

chromatography on silica gel.  EtOAc-CH2Cl2 (1:199), CH3OH-CH2Cl2 (3:97;2 times), EtOAc-

CH2Cl2-THF (94:4:2).  Finally, C18 column was run starting from 100% H2O and gradually 
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increasing CH3OH percentage up to 100%.  Asymmetrically-substituted, desired Pc was obtained 

in 7%yield. 2.30: MALDI-MS Calcd. C80H41N9O30Zn+:1671.13; found: 1671.10;  2.31: MALDI-

MS Calcd. C96H48N8O40Zn+: 2016.13; found 2016.70 

Octa-triethyleneglycol monomethyl ether substituted ZnPc (2.32)  

 Oligoethyleneglycol-substituted phthalonitrile 2.11 (0.22 g, 0.4 mmol), and Zn(OAc)2 (0.036 g, 

0.2 mmol) was added to anhydrous C4H9OH   (4 mL) under argon and heated up to 90 oC.  DBU 

(0.03 mL, 0.2 mmol) was added to mixture and the mixture was refluxed for 36 hours.  Color of 

the solution was turned from yellow to dark green overnight.  The solvent was evaporated and 

the crude mixture was purified by column chromatography on silica gel starting from 1% 

CH3OH in CH2Cl2, the percentage of the CH3OH was gradually increased up to 5%. MALDI-MS 

Calcd. C112H144N8O36Zn+: 2240.90, found 2240.16 

2,9,16,23 Tetra-(4-nitrobenzamide) phthalocyanato zinc (2.33)   

N-(3,4-Dicyano-phenyl)-4-nitrobenzamide (2.6) (0.06g, 0.2 mmol) and Zn(OAc)2 (0.09g, 

0.05mmol) were added to 10 mL round bottom flask and argon flushed through 2-3 minutes. 

Anhydrous DMF (3 mL) and HMDS (0.086 mL, 0.4 mmol) were added to flask.  The mixture 

was heated at 100 oC for 10 hours. DMF was evaporated and the crude mixture was washed with 

H2O (30 mL) and CH3OH (30 mL). The crude mixture was boiled in acetone, CH3OH, EtOAc, 

EtOH mixture for 2 hours and filtered after cooled down to room temperature to give a dark 

green solid in 28% yield. MALDI-MS Calcd. C60H32N16O12Zn+: 1232.16; found: 1232.65 

2,9,16,23 Tetra-(4-aminobenzamide) phthalocyanato zinc (2.34) 

A) Tetra-nitro Pc 2.33( 100 mg, 0.08 mmol) was dissolved in DMF (2 mL) and 3 mL of 

CH3COOH with 1 mL of Raney-Nickel catalyst were added to solution.  The reaction was run 

under 50 psi H2 (g) for 5 hours.  The mixture was run through celite and the solvent was 

evaporated under reduced pressure. The green solid was washed with saturated Na2CO3 solution 
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and H2O.  MALDI-MS results showed a peak corresponding to cleavage of the amide bond. 

MALDI-MS Calcd C60H40N16O4Zn+:1112.30 found; 879.47, 861.05,825.36, 650.75 

B) Tetra-nitro Pc 2.33 (100 mg, 0.08 mmol) was dissolved in DMF (2 mL) and flask was flushed 

with N2 (g) for 5 minutes.  Pd/C (10 mg, 10% by weight) was added to green solution and all the 

N2 (g) was vacuumed.  H2 (g) was flushed and vacuumed back for 3 times. Flask was flushed 

with H2 (g) the last time and the reaction stirred at room temperature over night.  Decomposition 

of phthalocyanine was observed.  

C) Tetra-nitro Pc 2.33 (150 mg, 0.12 mmol) was dissolved in 3 mL DMF containing Zn powder 

(48.5 g, 0.75 mmol).  To the stirring mixture, 88% HCOOH (2.5 mL) was added in one portion.  

Reaction mixture was stirred at room temperature for 4 hours.  After removal of the remaining 

Zn dust by filtration, DMF was removed in under reduced pressure to provide the green solid.  

The solid was washed with saturated Na2CO3 and brine solution several times.  
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Chapter 3 
Solid-Phase Synthesis of Asymmetrically Substituted “AB3-Type” Phthalocyanines1 
 
3.1 Introduction 

As discussed in the previous chapter, synthesis of Phthalocyanines (Pcs) with 

asymmetrical substitution on the periphery is most commonly performed by a statistical 

condensation of two different phthalonitriles or related derivatives, which yields a mixture of 

six Pc congeners.1  While it is beneficial to isolate multiple products to assess the relative 

importance of each Pc in different applications, isolation of the desired AB3 (or A3B) Pc is 

often laborious due to difficulty in separating chemically similar species out of the Pc 

mixtures obtained.  

To date, several chemoselective techniques for asymmetric Pc synthesis have been 

described in the literature including the subphthalocyanine (subPc) route2 and solid-phase 

synthesis.3-5 The subPc route is a well-known method for the synthesis of AB3 type of Pcs, 

though it is only applicable to certain phthalonitrile precursors. For example, the 

condensation of a diiminoisoindoline having electron-donating groups and an unsubstituted 

subPc or one with electron-withdrawing groups promotes the selective synthesis of AB3 type 

Pcs. Contrastingly, in the presence of electron-donating substitutents on the subPc leads to a 

mixture of Pcs through a scrambling process that results from disassembly of the subPc under 

the reaction conditions to form the Pc.6-8  Solid-phase synthesis of AB3 type asymmetric Pcs 

is as yet an underutilized method. Leznoff and co-workers’ solid-phase synthesis of AB3 type 

asymmetrically-substituted Pcs using a polystyrene resin support is touted as the first 

synthesis of pure asymmetric Pcs.3,4 Solid-phase synthesis of Pcs starts with one of the 

                                                
1 Reproduced with permission from S. Sibel Erdem, Irina V. Nesterova, Steven A. Soper and 
Robert P. Hammer, The Journal of Organic Chemistry, 73 (13), pp 5003–5007, 2008, 
American Chemical Society. 
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Scheme 3.1 Solid-Phase Synthesis of Pcs 

phthalonitrile precursors (Scheme 3.1) attached to the support via a cleavable linker. 

Reaction of the solid supported phthalonitrile with an excess of phthalonitrile B in solution 

produces the AB3 type asymmetrically-substituted Pc on the solid support while the B4 type 

symmetrical Pc forms in solution.  Symmetrical Pc is removed by washing and subsequent 

cleavage of the linkage of “A” from the resin yields the pure AB3 type Pc (Scheme 3.1). Such 

a strategy has also been utilized in the polymer-supported synthesis of monofunctionalized 

mesotetraarylporphyrins as developed by Borhan and co-workers.9 One of the challenges of 

the method of Leznoff is the requirement for extensive washing via Soxhlet extraction to 
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remove symmetrical B4 Pc from the hydrophobic polystyrene resin. Additionally, Soxhlet 

extraction is required to fully remove the cleaved asymmetrical AB3 Pc from the polymer 

support. For example, Leznoff reports4 that 4-5 days of Soxhlet extraction are required to 

isolate pure asymmetrical Pc. The challenge of removing the symmetrical Pc product was 

demonstrated in a later paper by Leznoff5 that reported the failure of even extensive Soxhlet 

extraction to completely remove the symmetrical Pc from the resin. This resulted in a 

contaminated “AB3” product after cleavage from the support that required additional 

chromatographic purification to obtain pure asymmetrically- substituted Pc.  

It is clear that a new chemoselective synthetic methodology needs to be developed, 

which yields a single Pc congener without need of extensive chromatographic purification 

techniques. Herein this chapter described the solid-phase synthesis of AB3 type 

asymmetrically-substituted Pcs utilizing a polyethylene glycol (PEG)-based support. In a 

desire to provide a scalable and rapid synthesis of asymmetrically-substituted Pcs, we 

hypothesized that a more hydrophilic resin would reduce nonspecific adsorption of Pc 

products on the solid support. Thus, we utilized a hydrophilic, poly(ethylene glycol) (PEG) 

resin in place of the more traditional polystyrene support. Using a Wang-type linker, we have 

developed the synthesis of monohydroxylated, oligoethylene glycol- substituted Pcs utilizing 

an amidine-base promoted, solid-supported phthalonitrile tetramerization reaction.  The use 

of the hydrophilic support allows symmetrical Pc product formed in solution to be readily 

and completely removed by washing, while retaining the AB3 product on the support. 

3.2 Results and Discussion 

3.2.1 Solid-Phase Synthesis of “AB3” Type Oligoethyleneglycol Substituted 
Phthalocyanines 

 
Wang-ChemMatrix resin was chosen as the point of attachment for a hydroxy-

functionalized phthalonitrile to the solid support since the benzyl ether linkage would be 
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stable to the basic reaction conditions for Pc formation. Initially, we chose this system of 

almost symmetrical oligoethylene glycol-substituted Pcs as a demonstration of the method as 

it would be nearly impossible to separate mixtures of congeners of such similar Pcs by 

chromatographic or other methods. The Wang linker was activated by tricholoroacetonitrile, 

and the resulting trichloroacetimidate resin10 3.1 was treated with an excess of 

hydroxyfunctionalized phthalonitrile 2.16, to give resin-bound phthalonitrile 

3.2 in high yield with a loading capacity of 0.54 mmol/g (90% yield based on starting loading 

capacity of the Wang resin, 0.6 mmol/g) (Scheme 3.2).  As further evidence for  
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Scheme 3.2 

the integrity of the reaction, FT-IR shows the disappearance of the acetimidate NH band at 

3055 cm-1 of resin 3.1 and the appearance of a CN band at 2229 cm-1 of polymer-bound 

phthalonitrile 3.2.  

Condensation of resin-bound phthalonitrile 3.2 with phthalonitrile 2.15 in solution in the 

presence of Zn(OAc)2 and DBU in refluxing BuOH for 24 h produced a mixture of resin-

bound AB3 Pc and the corresponding symmetrically-substituted Pc 3.3 in solution (Scheme 

3.3).  The resin was washed with hot BuOH and CH2Cl2 until a colorless filtrate was 

collected.  The absorbance spectrum of each successive wash solution showed decreasing 

absorbance.  Dramatic decrease of the absorbance was observed after the first two washes 

indicating the most of the symmetrically-substituted Pc 3.3 was washed away by the first
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BuOH and CH2Cl2 washes (typical washing times, 3-5 h).  Polymer-bound p-

alkoxybenzyl ethers can be cleaved in 1-10% TFA in CH2Cl2 solution.10 High concentrations 

of TFA (>70%) resulted in decomposition of Pc as well as removal of the metal from the Pc 

core. Cleavage conditions were optimized by monitoring the absorbance of the cleavage 

cocktail at 1%, 5%, and 10% TFA in CH2Cl2. 10% TFA in CH2Cl2 resulted in the highest 
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cleavage yield (as judged by absorbance of the washes) without loss of the metal from the Pc 

core and thus was selected as the standard cleavage cocktail. (Later experiments showed that 

addition of scavengers such as triisopropylsilane to the cleavage cocktail or increased TFA 

concentrations as high as 20% do not degrade the Pc product purity.) Analysis of the crude 

cleavage solution showed that none of the symmetrical B4 product was present, but that the 

desired AB3 Pc was accompanied by a significant amount (∼20% MALDI-MS) of the A2B2 

(or AB2) Pc.  This may have been due to increased rate of intra resin reactions11,12 due to the 

relatively high loading of the resin (0.54 mmol/g). That is, reactions between phthalonitrile 

active sites on the resin 3.2 are similar in rate to reactions between activated phthalonitrile 

species in solution and resin-bound phthalonitriles, thus producing the undesired A2B2 Pc. In 

order to overcome this problem, we reduced the loading of the resin (Scheme 3.2) by reaction 

of trichloroacetimidate resin 3.1 with only 1.2 equiv of hydroxyphthalonitrile 2.16 followed 

by capping of the remaining amidate sites with an excess of CH3OH to give a phthalonitrile 

resin 3.2 at a loading of 0.28 mmol/g.  Resin-bound phthalonitrile 3.2 was reacted as before 

with an excess of oligoethylene glycol-substituted phthalonitrile 2.15 in the presence of 

Zn(OAc)2. Following the removal of symmetrical 3.3a by washing, the desired Pc was 

cleaved from the polymer support. The crude mixture was filtered through a silica gel 

column to remove low molecular weight impurities to give Zn-Pc 3.4a in 12% yield (based 

on 0.28 mmol/g loading capacity) without contamination from the A2B2 Pc product (Scheme 

3.3). Reducing the loading capacity resulted in the pure AB3 type Pc, but the overall yield, 

based on the initial loading of the phthalonitrile, was not reduced. All the symmetrically-

substituted Pc products 3.3 were recovered and purified by precipitation of a MeOH solution 

into ether.  Asymmetrical Pcs 3.4 were purified by filtration through silica gel column, 

except for CuPc 3.4b and H2Pc 3.4d, which were purified by Sephadex LH-20 
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chromatography. We have found that LH-20 is the preferred method of purification as there 

is less nonspecific adsorption of Pcs to the LH-20 matrix and results in improved Pc 

recovery. All Pcs prepared in this work were characterized by absorbance and fluorescence 

spectroscopy, HPLC, and mass spectrometry.  Figure 3.1 shows the mass spectrum of the 

desired ZnPc 3.4a.  The HPLC chromatogram with absorption and emission spectra of the 

ZnPc 3.4a are presented in Figure 3.2.   The target compound had a characteristic Q-band at 

680 nm and emission maxima at 690 nm in DMSO. Fluorescence quantum yield of 3.4a was 

calculated as 0.15, which is in the range of the reported quantum yields of tetra-substituted 

ZnPcs.13 

 

Figure 3.1 MALDI-MS spectrum of Pc ZnPc 3.4a. 

The same synthetic route to ZnPc 3.4a was applied to synthesize Cu, Ni, and metal-free 

Pcs.  Condensation of ethyleneglycol-substituted phthalonitrile 2.15 with resin-bound 
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phthalonitrile 3.2 in the presence of CuBr2 and DBU in refluxing BuOH for 24 h gave a dark 

blue solution and resin (Scheme 3.3).Following purification, mono-hydroxy functionalized 

phthalonitrile 3.2 in the presence of CuBr2 and DBU in refluxing BuOH for 24 h gave a dark  

  

Figure 3.2 HPLC chromatogram of 3.4a (left), absorption-emision spectra of 3.4a (right). 
 

CuPc 3.4b was obtained in 13% yield (Table 3.1). In the case of NiPcs (3.3c, 3.4c) NiCl2 was 

employed as a metal source.  Due to the low solubility of NiCl2 in BuOH, the reaction was 

carried out at higher temperature and NiPc 3.4c was purified by filtration through a silica gel 

column in 11% yield (Table 1).  To synthesize the metal-free Pc (3.3d, 3.4d), the same 

strategy was employed except without any metal ion. But in this case, cleavage of metal-free 

Pc resin yielded two products, the AB3 metal-free Pc 3.4d and an A2B2 H2Pc in 3:2 molar 

ratio (MALDI-MS). As an alterative route to the asymmetrical H2Pc, Mg2+ ion was utilized 

to template the tetramerization, as it is known that the acidity of the cleavage cocktail is 

sufficient for the removal of Mg from the Pc core to yield metal free Pc. Thus, condensation 

of polymer –bound phthalonitrile 3.2 with oligoethylene glycol-substituted phthalonitrile 

2.15 in the presence of MgCl2 (Scheme 3.3) gave, following the cleavage, AB3 H2Pc 3.4d 

without any contamination by the A2B2 product in 17% yield.  From the results of the 

synthesis of the metal-free Pc 3.4d, it is clear that the metal ion plays a crucial role in the 
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tetramerization process.  Adding divalent metal ion improves the effective site isolation of 

the reactive groups in the resin matrix. As argued by Jayalekshmy and Mazur, this improved

Table 3.1 Oligoethyleneglycol Substituted Pcs 

 
Compound 

Number2 / Pc Metal Salt Yield 

(%)3 

λmax 

(abs) 
(nm) 

log ε 
(cm-1M-1) 

λmax 

(em) 
(nm)4 

φf
c 

    3.4a / ZnPc Zn(OAc)2 12 680 4.9 690 0.15 
 3.4b / CuPc CuBr2 13 681 4.8 n.d n.d 

  3.4c / NiPc NiCl2 11 671 4.3 678 0.0003 AB3 
Type 
Pcs 

3.4d / H2Pc MgCl2 16 
 646,           
676, 

   706 

3.4, 
3.5, 

     3.4 
709 0.08 

3.3a / ZnPc Zn(OAc)2 21 681 5.5 691 0.15 
3.3b / CuPc CuBr2 15 681 5.1 n.d n.d 

    3.3c / NiPc NiCl2 17 671 5.1 678 0.0038 

3.3d / H2Pc - 18  676, 
   706 

3.5, 
     3.5 709 0.06 

    3.3e / MgPc MgCl2 20 682 5.5 691 0.31 

B4 
Type 
Pcs 

    3.6a / ZnPc Zn(OAc)2 13 740 4.4 751 0.12 
 

“pseudodilution”12 of sites is a kinetic phenomena since we know that phthalonitrile 

cyclotetramerization is faster in the presence of metal ion. We propose a pathway that 

accounts for this pseudodilution in the presence of metal ion, which follows from the 

proposed mechanism of DBU-promoted phthalonitrile tetramerization in alcohol.14 That is, 

                                                
2 Asymmetrically-substituted Pcs, 3.4, were purified by filtration through silica gel, except 
for 3.4b and 3.4d, which were purified by Sephadex LH-20 chromatography. 
 
3 Yields of asymmetrically-substituted Pcs were calculated based on the loading of the 
phthalonitrile on the support. 
 
4 Fluorescence spectra and quantum yield determinations were done using 605 nm excitation 
wavelength for 3.4a, 3.4c, 3.4d, 3.3a, 607 nm for 3.3c and 3.3e, and 615 nm for 3.3d, 664 
nm for 3.6a. CuPcs 3.3b and 3.4b did not show any detectable fluorescence, which is noted 
in the table as “n.d.”. All Spectra were taken in DMSO except for 3.3c and 3.3d, which were 
taken in THF.  Fluorescence quantum yield measurements for all Pcs were done using 
methylene blue as a standard at absorbance 0.04 - 0.05 for both Pc and standard solutions to 
avoid any error due to inner-filter effect.42 
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metal chelated isoindolines (or other similar phthalonitrile derived precursors) present in 

solution react faster with resin-bound phthalonitriles than the resin-bound phthalonitriles can 

react with themselves, resulting in only AB3 products.  In the absence of metal, the reaction 

of resin-bound phthalonitriles with solution intermediates is slowed so that resin-bound 

intermediates have a longer time to find a proximate resin-bound phthalonitrile with which to 

react, thus giving rise to a significant fraction of A2B2 H2Pc products (Scheme 3.4).  Similar 

results were also obtained during the synthesis of non-peripherally substituted ZnPc 3.6b (1, 

4 substitution pattern, Figure 3.3).  Since nonperipherally substituted phthalonitriles have low 

reactivity in cyclotetramerization reaction, it is usually necessary to convert one of the 

phthalonitriles to more reactive and advanced precursor, diiminoisoindoline.15 Thus, prior the
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O

CN

CNO
2

O

3.2

O

O
2

O

NH

NH

NH

3.5

N

NN

N

N

N
N N

Zn

HO

O

N

NN

N

N

N
N N

Zn

O

3.6a

3.5 +

OR=

OR

OR

CN

CN

2.18

1. Cyclotetramerization

2. Cleavage

A2B2+ +

2

ORRO

OR

OR

RO OR

OR

OR

RO OR

OR

OR

ORRO

3.6b

NH3, Na

CH3OH

 

Scheme 3.5 

cyclotetramerization, polymer bound phthalonitrile was converted to corresponding 

diimininoisoindoline unit (Scheme 3.5). While cyclotetramerization gave the corresponding

symmetrically-substituted ZnPc 3.6a, mass spectrometry of the cleaved crude product 

showed that the desired non-peripherally substituted ZnPc 3.6b was contaminated with A2B2 

side product (13%).  In a similar mechanism to metal free Pc synthesis, the 
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cyclotetramerization in solution proceeds slower than the one on the solid-support due to the 

low reactivity and/or the steric hindrance of the employed phthalonitrile, resulting in 

formation of A2B2 type Pcs on the polymer support. 

In order to explore the applicability of the method to different systems, variety of 

symmetrically- and asymmetrically-substituted Pcs were synthesized.  In each case, different 

phthalonitrile precursor was condensed with resin-bound phthalonitrile 3.2 in BuOH in the 

presence of Zn(OAc)2 and DBU.  Pcs synthesized by solid-phase method and the 

corresponding phthalonitrile precursors are shown in Schemes 3.6 and 3.7.  All 

asymmetrically-substituted Pcs were purified by filtering the crude mixture through LH-20 

column to remove low molecular weight impurities. Table 3.2 summarizes the spectroscopic 

properties of all the Pcs.  It was noted that the type and the position of the substitution, 
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peripheral vs. non-peripheral, was very effective in tuning the spectral properties of the Pcs.  

For instance, while Pc ZnPc 3.11b, bearing oligoethylene glycol chains via thio linkage as 

non-peripheral substituent, had a red shifted Q band at 713 nm, ZnPc 3.9b bearing the same 

substitution at the peripheral position had a Q band at 692 nm.  The similar effect was 

alsoobserved in the case of Pc non-peripherally substituted 3.7b (Table 3.2).  The red shift of 
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the Q band can be explained by two reasons: 1) Lone pair electrons of the O or S at the non-

peripheral position are in conjugation with the 18 π electron system, which results in longer 

wavelength absorption.16 This effect is more significant with electron donating substituents 

linked to the Pc via thio linkage due to the interaction of the 3p orbital of the sulfur with the  

Table 3.2 Peripherally and non-Peripherally Oligoethyleneglycol Substituted Pcs 

 
Compound 

Number / Pc 

Yiel
d 

(%)5 

λmax 

(abs) 
(nm) 

Excitation 
Wavelength 

(nm) 

log ε 
(cm-1M-1) 

λmax 

(em) 
(nm)6 

φf
c 

3.7a / ZnPc 8 695 625 4.9 702 0.17 
3.8a / ZnPc 15 681 615 5.1 687 0.13 
3.9a / ZnPc 13 690 610 5.5 698 0.06 
3.10a / ZnPc 10 705 610 5.5 712 0.10 

AB3 
Type 
Pcs 

3.11a / ZnPc 8 691 610 5.0 699 0.10 
3.7b / ZnPc 19 698 630 5.4 705 0.04 
3.8b / ZnPc 17 681 615 5.2 685 0.08 
3.9b / ZnPc 27 692 610 5.3 695 0.13 

3.10b / ZnPc 19 709 610 5.5 716 0.13 

B4 
Type 
Pcs 

3.11b / ZnPc 16 713 610 5.2 718 0.07 
 

2p orbital of the carbon at the non-peripheral position;17 2) while electron donating 

substituents at the non-peripheral position significantly destabilize the HOMO, they slightly 

destabilize the LUMO resulting in smaller HOMO-LUMO gap.18  As a result, Q band, 

compiled mainly HOMO-LUMO interactions shifts to the longer wavelengths. Position of 

the substituent not only affects the absorption wavelength but also fluorescence quantum 

yields.  Lower fluorescence quantum yield of non-peripherally substituted ZnPc 3.11b 

relative to peripherally substituted ZnPc 3.9b can be due to the destabilization of the π 

                                                
5 Yields of asymmetrically-substituted Pcs were calculated based on the loading of the 
phthalonitrile on the support. 
 
6 All Spectra were taken in DMSO. Fluorescence quantum yield measurements for all Pcs 
were done using methylene blue as a standard at absorbance 0.04 - 0.05 for both Pc and 
standard solutions to avoid any error due to inner-filter effect.42 
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orbitals as result of deviation from planarity of the Pc ZnPc 3.11b. In order to have a better 

understanding of the relationship between the planarity and the fluorescence quantum yield, 

several attempts have been made to grow a single crystal of ZnPcs 3.11b and 3.9b. However, 

these attempts were unsuccessful. Effects of the deviated planarity on the spectral properties 

of the Pcs were discussed in the literature several times.16,19-21 Kobayashi and coworkers 

showed that the perfectly flat Pc skeleton could be easily disordered by the substituent 

pattern.  They reported highly disordered, with a maximum degree of deviation 1.03 Å, tetra 

substituted Pcs, bearing bulky phenyl groups at the non-peripheral poisition.22  In another 

paper, Kobayashi discussed the effect of peripheral substitution on absorption and 

fluorescence spectra of Zn and metal free Pcs.18  Authors reported fluorescence quantum 

yields as low as 0.038 for the Pcs decorated with electron donating groups at the non-

peripheral position. The gap between HOMO and LUMO is the main factor determining the 

fluorescence quantum yield.  As the energy difference between the two orbitals, HOMO and 

LUMO, decreases, non-radiative decay becomes easier than radiative decay, which yields a 

weak fluorescence.18 Since the energy difference between HOMO-LUMO is smaller in non-

peripherally substituted ZnPc 3.11b than peripherally substituted ZnPc 3.9b, judged by the 

absorption and emission spectra, non-peripherally substituted ZnPc 3.11b more likely 

undergoes to non-radiative decay as it returns to the ground state.  The similar effect was also 

seen for ZnPc 3.7b having tetra- phenoxy groups at the non-peripheral positions.   While the 

ZnPc 3.7b had a red shifted Q band at 698 nm, as a result of extended conjugation, 

fluorescence quantum yield of the ZnPc 3.7b was as low as 0.04.     

3.2.3 Activation of Hydroxy Functionalized Phthalocyanines Towards Conjugation to 
Biomolecules 

 
After the successful syntheses of mono hydroxy functionalized Pcs, the next goal was to 

activate the hydroxy group for covalent conjugation of the Pcs to bioorganic molecules.  The 
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first attempt was the conversion of the hydroxy group of ZnPc 3.7a to p-cyanoethyl 

phosphoramidite via nucleophilic substitution of the hydroxy with chlorine on commercially 

available N,N-diisopropylamino cyanoethyl phosphoramidyl chloride (Scheme 3.8).23 Since 

the phosphitylating reagent is very prone to hydrolysis, the reaction was carried in anhydrous 

THF and was followed by 31P NMR (Figure 3.4).  After 24h. time period, 31P NMR spectrum 

of the reaction mixture showed three peaks at 180, 140, 
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Scheme 3.8 

15 ppm corresponding to unreacted N, N-diisopropylamino cyanoethyl phosphoramidyl 

chloride, the target compound and the side product formed by the hydrolysis of the 

phosphitylating reagent, respectively.  The major peak at 15 ppm suggested that even under 

anhydrous conditions the hydrolysis of N, N-Diisopropylamino cyanoethyl phosphoramidic-

Cl took place as a major reaction.  This could be due to the hygroscopic nature of the ZnPc 

3.7a due to the oligoethylene glycol chains.  Since longer reaction times did not improve the 

yield of the reaction, judged by 31P NMR, the reaction was quenched with anhydrous 

CH3OH.  Following the extraction, 31P NMR spectrum of the crude mixture revealed that 

while the peak at 180 ppm disappeared, another peak at 150 ppm emerged along with the 

other two peaks at 141 and 15 ppm.  The peak at 150 ppm was assigned as the methyl ester 

form of phosphitylating reagent, formed after the addition of the CH3OH.  Nucleophilic 



 71 

substitution of chlorine with methoxy group and hydrolysis of the starting material was 

further confirmed by performing a control experiment employing triethyleneglycol 

monomethyl ether as an alcohol source.  Attempt to purify 3.12 by filtration through LH-

20column was unsuccessful. Thus, precipitation of CH3OH solution into ether was selected

 

 
Figure 3.4 31P NMR of the reaction mixture and purification progress of the phosphitylation 
of ZnPc 3.12. 
 
as an appropriate purification method.  Collected blue color precipitate and supernatant was 

submitted to 31P NMR.  In both cases, only one peak was observed at 15 ppm confirming the 

decomposition of the desired compound during the purification process. 

Due to the inconveniences during the synthesis and the purification of ZnPc 3.10, 

another approach was taken to convert to hydroxy group to more reactive functional group, 

ester. Synthesis of succinimide ester of Pc ZnPc 3.11a started with alkylation of mono-
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hydroxy functioanalized 3.11a with iodoacetic acid to provide carboxylic acid 3.13 (Scheme 

3.9).24  Due to the incomplete reaction, this step was repeated twice using 10-fold molar 

excess of NaH as a base and 5-fold molar excess of iodoacetic acid (Scheme 3.9).  The 

analysis of the crude mixture by mass spectrometry showed that the mixture 
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Scheme 3.9 

contained ~ 7% of the starting material, mono-hydroxy functionalized ZnPc 3.11a. Without 

any purification, the crude mixture was submitted to the next reaction.  Active ester of 3.13 

was prepared employing a standard protocol for esterification with DCC and N-

hydroxysuccinimide in anhydrous CH2Cl2.25  Succinimide ester functionalized ZnPc 3.14 

was purified by precipitation from CH2Cl2 followed by LH-20 column and obtained in 54% 

overall yield. 

3.2.4 FRET-RET Pairing 

Pcs, having absorption and emission profiles in the far-red and near-infrared region of 

the electromagnetic spectrum with easily tunable photophysical properties, are excellent 

candidates for various bioanalytical applications using fluorescence as the read out mode for 

the detection such as analysis of PCR products,26 single gene mutation detection27 and 

numerous fluorescence resonance energy transfer (FRET) based assays.28  To date, the most 
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commonly used dyes for the desired applications are tricarbocyanines having absorption and 

emission profiles in the visible range of the electromagnetic spectrum.29  While these dyes 

have extinction coefficients as high as 105 M-1cm-1 with favorable water solubility, their poor 

chemical and photochemical stability disfavor their use in the bioanalytical applications.30  

The biggest advantage of Pcs over other dyes is their moderate fluorescence quantum yields, 

coupled with low photobleaching quantum yields,13 high molar absorptivities (>105 M-1cm-

1)13,31 and excellent chemical and photochemical stabilities.  All these properties of the Pcs 

bring numerous advantages to these applications.  Besides taking advantage of using cheap 

diode lasers, background interferences are significantly reduced since very limited number of 

molecules fluoresce in the Near-IR region of the electromagnetic spectrum.  Narrow 

emission band of the Pcs is utilized to diminish the spectral leakage, which increases the 

possibility for ultra sensitive applications.  In spite of the fact that their attractive properties, 

Pcs have limited usage in the bioanalytical applications for a number of reasons.  From the 

synthetic perspective, one of the main challenges of the Pcs is the difficulty faced in the 

purification process a fluorophore possessing favorable properties discussed above.   

The desired applications are established based on resonance energy transfer between two 

fluorophores utilizing from molecular beacons, synthetic DNA molecules having “stem-

loop” structure with two fluorophores at the 5’and 3’ends (Figure 3.5).32  The 

 

 

Figure 3.5 Pc based molecular beacon. 
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stem, complimentary to itself, remains closed and energy transfer between donor and 

acceptor takes place until the addition of complimentary DNA.  The stem is reversibly 

disassociated by the hybridization of the loop with the complimentary DNA and energy 

transfer is ended due to the large distance in between the donor and the acceptor molecules.  

Molecular beacons are widely used in variety of applications including real-time nucleic acid 

detection,33,34 quantitative real-time PCR detection,35 single gene mutation detection36 and 

mRNA detection in living cells.37 

Dr. Irina V. Nesterova performed FRET-RET experiments of symmetrically- substituted 

Pcs in solution to determine the best FRET-RET pair among the oligoethylene glycol-

substituted Pcs.  Based on the spectral overlap of absorption with emission spectra, ZnPc 

3.3a was chosen as a potential donor to be paired with ZnPcs 3.10b or 3.11b as an acceptor 

(Scheme 3.10). Absorption and emission spectra of the selected Pcs are presented in Figure
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Figure 3.6 Absorption and emission spectra of ZnPcs 3.3a (up left), 3.10b (up right) and 
3.11b (bottom). 
 
 

 

Figure 3.7 Emission spectra of donor (blue), acceptor (black), mixture of donor and        
acceptor (green) and theoretical emission of the mixture of the donor and acceptor (blue). 
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3.6.  Figure 3.7 shows the overlayed emission profiles of Pcs as well as the mixture of donor 

and acceptor solutions.  The red and black lines are the emission profiles of the donor and 

acceptor, respectively.  The blue line is the theoretical emission profile of the mixture of the 

donor and the acceptor, obtained by linear addition of individualemission spectrum of the 

corresponding Pcs together.  The green line is the emission of the mixture of the ZnPcs 3.3a 

and 3.10b at known concentration.  As it is clearly seen, while the intensity of the donor 

emission significantly decreased, the acceptor’s emission intensity increased, indicating the 

occurrence of FRET between the 3.3a-3.10b pair.  The area of the spectral overlaps of the 

donor emission and the acceptor absorption, proportionally related to energy transfer rate, 

were calculated from the absorption and emission spectra of the fluorophores.  Besides the 

spectral overlap, FRET highly depends on the distance between the donor and the acceptor 

molecules.  If the distance between the molecules is greater than the Förster distance R0, the 

distance at which 50% energy transfer occur, the energy transfer efficiency immediately 

drops to zero.28
  Reported R0 distances of the commonly used donor-acceptor pairs are in a 

range from 20 to 90 Å.28  From the absorption and emission spectra of the fluorophores, the 

R0 value of the selected ZnPc pair, 3.3a-3.10b, was calculated as 63 Å.  Based on the  results, 

it was concluded that the more efficient energy transfer is expected between the selected 

donor and acceptor pair than the commonly used TMR-Cy5 FRET pair (Table 3.3).38   

The same experiment and the calculations were also performed for the next ZnPc pair, 

3.3a-3.11b.  The emission spectra of the mixture of the fluorophores are presented in Figure 

Table 3.3 Calculated Spectral Overlap and Förster Distances for FRET Pairs 

Donor Acceptor Overlap integral 
(J(λ), M-1cm-1nm4) 

Förster Distance 
(R0, Å) 

3.10b 3.44×1016 63 3.3a 3.11b 1.06×1016 56 
TMR Cy5 5.5x1015 46 
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3.8.  In comparison with the 3.3a-3.10b pair, slightly shorter distance is required, for 50% 

efficient energy transfer between the two fluorophores.  However, the distance is still

 

 

Figure 3.8 Emission spectra of donor (red), acceptor (black), mixture of donor and        
acceptor (green) and theoretically obtained emission of the donor and acceptor (blue). 
 
convenient to study various biological molecules.  Between two FRET pairs, the 3.3a-3.11b 

displays slightly better spectral overlap and longer Förster distance for efficient FRET, which 

could be beneficial for studies with larger biomolecules.   

RET experiments were performed in a similar way using two different Pc pair.  NiPc 

3.3c and CuPc 3.3b were selected as potential quenchers (acceptor) and ZnPc 3.3a was 

selected as the donor (Scheme 3.11).  Figure 3.9 shows the absorption profiles of the selected 

acceptor Pcs.  Figures 3.10 and 3.11 shows the emission spectra of the donor and acceptor 

mixtures at different concentrations.  Excitation wavelength of 605 nm, providing excitation 

of donor molecule, was used throughout the experiments. As the quencher concentration was 

increased, the intensity of the emission decreased, indicating the energy transfer from the 

donor to the acceptor.  While in the case of ZnPc-CuPc (3.3a-3.3b) pair, 
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Figure 3.9 Absorption profiles of the potential acceptor Pcs: CuPc 3.3b (left) and NiPc 3.3c 
(right).  
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Figure 3.10 Emission spectra of fluorescence quenching.  

 

Figure 3.11 Emission spectra of fluorescence quenching. 

250 µM concentration of the quencher was required to diminish the emission of the donor 97 

% (Figure 3.10), for ZnPc-NiPc (3.3a-3.3c) pair this value was 180 µM (Figure 3.11)
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Spectral overlaps and Förster distances were calculated from the absorption and emission 

spectra.  Preliminary results indicated that ZnPc-CuPc (3.3a-3.3b) is a promising candidate 

for the desired applications due to the better spectral overlap in larger Förster distance (Table 

3.4).  Thus, better energy transfer efficiency is expected for ZnPc-CuPc (3.3a-3.3b) pair than 

ZnPc-NiPc (3.3a-3.3c).  SternVolmer plots were evaluated for both of the systems (Figure 

3.12).  As predicted from the previous results, CuPc 3.3b provided better quenching 

efficiencies with KSV=35569 M-1 than NiPc 3.3c, KSV=21292 M-1.

 
Table 3.4 Calculated Spectral Overlap and Förster distances for RET Pairs 

Donor Acceptor (Quencher) Overlap integral 
(J(λ), M-1cm-1nm4) 

Förster Distance 
(R0, Å) 

3.3b 1.22×1016 53 3.3a 3.3c 2.45×1015 41 
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Figure 3.12 Stern-Volmer plot of 3.3a-3.3b and 3.3a-3.3c quenching systems. 
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3.3 Conclusion and Future Work 

Solid-phase synthesis is a fundamental methodology in organic synthesis, and it has been 

utilized for preparation of myriad different molecular classes and cyclization reaction types.  

Since the development of solid-phase synthesis39 related phenomena such as intrasite 

interaction and site isolation have been extensively studied. It has been shown that the 

outcome of a reaction on solid support is significantly influenced from intrasite reactions, 

which can be diminished by altering the loading or the cross-linked density of the polymer, 

changing the structure of the linker, increasing the concentration of incoming reagent, or 

changing the solvent and reaction temperature.40 While intrasite interaction generally leads to 

undesired products, it can be utilized for selective synthesis of dimeric cross-linked 

molecules. Schreiber et al. showed the synthesis of homodimeric molecules via intrasite 

olefin crossmetathesis on solid support using highly loaded (1-2 mmol/g) and lightly cross-

linked (1% DVB) polystryene resin with the goal of split-pool synthesis of homodimer 

libraries.41 Thus, it may be possible through optimization of resin, solvent, and other reaction 

conditions to prepare “2 + 2” (A2B2) Pc products as the predominant or only product, which 

may have unique applications as well.   

The advantage of the solid-phase method described here is the ability to synthesize a 

variety of asymmetrical phthalocyanines quickly and easily without the need for extensive 

purification steps to get homogeneous Pc products. The method is a significant advancement 

of previous solid-phase synthesis of Pcs and applicable to Pcs with wide variety of 

substituents.  The use of hydrophilic PEG-based resin is key for the success of this method to 

allow easy removal of symmetrical Pc coproducts by washing of the resin as well as to 

prevent noncovalent adsorption of the desired AB3 Pc to the support.  Site-isolation on the 

PEG-based resin can be accomplished using slightly lower loadings and by inclusion of a 
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divalent metal ion in alkoxide-promoted phthalonitrile tetramerization. The method described 

here provides pure asymmetrically-substituted Pcs is very efficient, taking <3 days to 

complete including loading, Pc formation, washings, cleavage, and simple chromatography.   

Using solid-phase synthesis method, vide variety of AB3 type substituted, mono hydroxy 

functionalized fairly water-soluble Pcs were synthesized and evaluated for possible FRET-

RET applications.  Attempts to convert the hydroxy group to more reactive functional groups 

were somehow successful.  Since the conversion requires extra steps and is not applicable to 

different functional groups, it is necessary to synthesize Pcs having more reactive functional 

groups using alternative solid-support linking strategies to be able to conjugate the Pcs to 

biomolecules without the need of extra step.    

3.4 Experimental 

3.4.1 General Experimental Information   

Unless otherwise indicated, all commercially available starting materials were used 

directly without any further purification.  Reactions under anhydrous conditions were 

performed in dried solvents under argon atmosphere.  Reactions were monitored by TLC 

using Sorbent Technologies silica gel plates 250 µm with UV activator.  Silica gel Sorbent 

Technologies 40-63 µm was used for column chromatography.  PEG-based Wang Resin was 

obtained from Matrix-Innovation.  SephadexTM LH-20, in 18-111 µm particle size, was used 

for purification of the asymmetrically-substituted Pcs.  Unless otherwise indicated, MALDI-

MS spectra of the compounds were obtained using CCA as a matrix.  FT-IR spectra were 

obtained on Bruker Tensor 27 spectrometer.  Electronic absorption spectra were measured on 

a Perkin-Elmer Lambda 35 UV-vis spectrophotometer. The HPLC chromatograms were 

obtained using a JASCO (Easton, MD) 2000-series HPLC equipped with a quaternary 

gradient pump, autosampler, and fluorescence and diode-array detectors.  
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HPLC was performed using Zorbax, C18 5µm, 150 × 4.6 mm column with a 1 mL/min 

flow rate.  Three different solvent gradient conditions were used:  Condition A: HPLC was 

performed with 0.05 M TEAA in a H2O and CH3OH as the eluents.  Column was initially 

held at 95% 0.1 M TEAA-5% CH3OH for 5 min and then concentration of CH3OH was 

ramped to the 95% in 30 min. and was held at that concentration for 5 min.  Column was 

washed with 100% CH3OH for 15 min. The column was allowed to equilibrate at the initial 

mobile phase conditions for 20 min before the next injection.  Condition B: 0.05M TEAA in 

a H2O and CH3OH-THF (80:20) was used as an eluting solvent.  Column was initially held at 

50% 0.1 M TEAA-50% CH3OH for 5 min and than it was ramped to the 5% 0.05 M TEAA-

95% CH3OH in 15 min and held at that concentration for 15 min.  The column was allowed 

to equilibrate at the initial mobile phase conditions for 20 min before the next injection.  

Condition C:  CH3OH was used as an eluting solvent.  Column was held at 100% CH3OH for 

30 min.  The column was allowed to equilibrate at the initial mobile phase conditions for 

20 min before the next injection.   

Emission spectra were obtained using a FLUOROLOG-3 spectrofluorometer (Horiba 

Jobin Yvon, Edison, NJ) equipped with a 450-W xenon lamp and a cooled Hamamatsu R928 

photomultiplier operated at 900V in the photon-counting mode. A quartz cuvette with a 

10 mm path length was utilized throughout these experiments.  All measurements were 

performed under ambient room conditions within 3 h of solutions preparation.  Stock solution 

and dilutions were prepared in anhydrous DMSO or THF.  The quantum yields were 

calculated using a secondary standard method.42 Methylene blue, a dye with 

excitation/emission wavelengths similar to Pcs and an established quantum yield was used as 

a secondary standard. According to the approach, the integrated fluorescence intensity of the 

analyte (I) and standard (IR), the optical density of the analyte (OD) and the standard (ODR), 
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and the refractive index of analyte solvent (n) and standard solvent (nR) are related to the 

quantum yield of the analyte (Q) as: 

2
R

2
R

R

R
n

n

OD

OD

I

I
QQ =  

where QR is a quantum yield of the reference standard (0.03 for Methylene Blue). To account 

for incomplete spectra, the bands were extrapolated using appropriate fitting models 

whenever necessary. 

3.4.2 Experimental Procedures 

Trichloroacetimidate resin (3.1) 

 Chem-Matrix™ Wang resin (0.6g, 0.6 mmol/g loading) was swelled in an anhydrous 

CH2Cl2 (20 mL) for an hour.  Tricholoracetonitrile (5.4 mmol, 0.54 mL) was added to resin 

and the mixture was cooled to 0 °C.  A catalytic amount of DBU was added to the suspension 

over 5 min and the reaction continued at     0 °C for an additional 45 min.  The color of the 

solution changed from clear to light brown.  The resin was washed with CH2Cl2 (4 x 20 mL), 

DMSO (2 x 20 mL), THF (3 x 20 mL) and CH2Cl2 (3 x 20 mL).  FTIR (KBr, cm-1)  3055, 

2872, 1665, 1512, 1452, 1348, 1265, 1093, 951, 836, 798, 730, 700, 648. 

Polymer-supported 4-(2-(2-hydroxyethoxy)ethoxy)phthalonitrile (3.2) 

Trichloroacetimidate resin 3.1 (0.6 g) was suspended into the anhydrous CH2Cl2-cyclohexane 

(2:1; 20 mL) under argon for 40 min.  Hydroxyphthalonitrile 2.16 (100 mg, 0.43 mmol) was 

dissolved in anhydrous CH2Cl2 (2 mL) and added to the suspension over 5 min at room 

temperature.  BF3.OEt2 (5 µL) was added to the suspension and reaction was monitored by FT-

IR. After 3 hrs, anhydrous CH3OH (2.5 mL) in anhydrous CH2Cl2 (1.5 mL) was added to 

suspension and the reaction continued for an additional 3 hrs.  The resin was washed with 
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CH2Cl2 (5 x 20 mL), THF (3 x 20 mL) and CH2Cl2 (6 x 20 mL). FTIR  (KBr, cm-1) 2868, 2229, 

1764, 1659, 1597, 1510, 1453, 1349, 1295, 1248, 1088, 946, 841, 730, 699.   

Diiminoisoindoline Resin (3.5)  

Resin 3.2 (0.6 g) was swelled in anhydrous CH3OH (15 mL) for 30 min.  Na metal (0.04 g) was 

dissolved in anhydrous CH3OH (5mL) and the solution was added to the well -swelled resin.  

Anhydrous NH3 was bubbled through the reaction mixture and the mixture refluxed for 4h.  The 

reaction was followed by FT-IR and run until the CN stretching peak was disappeared. The resin 

was washed with CH3OH (5 x 30 mL), CH2Cl2 (5 x 30 mL), CH2Cl2–THF (1:1; 2 x 15 mL) and 

finally with CH2Cl2 (5 x 15 mL). FTIR (KBr, cm-1) 3055, 2870, 1665, 1510, 1453, 1348, 1268, 

1093, 950, 836, 798, 730, 700, 648. 

General Procedure for Synthesis of Pc  (3.3-3.11) 

Resin 3.2 (0.6 g) was swelled in 15 mL of anhydrous BuOH overnight.  A 9 fold molar excess of 

corresponding phthalonitrile  (3.24 mmol) and metal salt (0.9 mmol) were dissolved in 

anhydrous BuOH (7 mL) and added to well swelled resin under Ar.  Concentration of 

phthalonitrile in the reaction mixture was kept around 0.16 M. The mixture was heated up to 90 

°C and DBU (1.8 mmol, 0.27 mL) was added to mixture. The reaction was carried out at 110 °C 

for 24 hrs.  The resin was washed until a colorless filtrate was obtained, first with hot BuOH (15 

x 25 mL), CH2Cl2 (5 x 25 mL), and then BuOH-CH2Cl2 (1:1; 3 x 25 mL) and CH2Cl2 (2 x 25 

mL). 

General Procedure for Purification of Symmetrical Pcs (3.3-3.11) 

 Filtrate solutions were combined and evaporated to dryness.  A portion (100 mg) of the crude 

mixture was dissolved in ~3 mL of CH3OH and 50 mL of diethyl ether was added to solution.  

Solution was left in the fridge overnight and the suspension was centrifuged to give Pcs 3.3-3.11 

as a blue / green solid.  
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General Procedure for Cleavage of the AB3 type Pc (3.3-3.11) 

The resin was suspended into a solution of TFA-CH2Cl2 (1:9; 50 mL) and left in the shaker for 

3h. at room temperature.  Filtrate was evaporated to dryness and the crude mixture was purified 

by filtration through a silica gel or LH-20 column using CH3OH as an eluting solvent.  

Determination of the Loading Capacity of Resin 3.2   

The loading capacity of 3 was determined by cleavage of the ether bond as described in general 

procedure for cleavage of the AB3 type Pc.  From 0.5 g of 3.2, 0.033g, (0.14 mmol) of 4-(2-(2-

hydroxyethoxy)ethoxy)phthalonitrile (2.16) was obtained.  The loading capacity of 3.2 was 

determined as 0.28 mmol/g.  The yields of the AB3 type Pcs were calculated based on 0.28 

mmol/g.  

Diisopropylphosphoramidite ZnPc(3.12)  

ZnPc 3.7a (115 mg, 8.7µmol) was dissolved in anhydrous pyridine (4 mL) and the solvent was 

evaporated under Ar.  This step was repeated three times.  3.7a was redissolved in THF (5 mL) and 

N, N-Diisopropylamino cyanoethyl phosphoramidyl chloride (8 µL, 35µmol) with DIEA (7.6µL, 

43µmol) were added to the solution under Ar.  The reaction was stirred at room temperature for 

24h.  Anhydrous CH3OH (10mL) was added to mixture and the solvent was evaporated to 

dryness.  The crude mixture was dissolved in EtOAc (8 mL) and washed with water (3 x 8 mL).  

Combined organic layers were evaporated to dryness and the crude mixture was filtrated through 

LH-20 column using DMF as eluting solvent. 31P NMR (250 MHz, CD2Cl2) δ 150.88, 141.68, 

16.19, 5.31 Attempt for further purification of the crude mixture was resulted in decomposition 

of the product: The crude mixture was dissolved in CH2Cl2 (1 mL) and ether (10 mL) was added 

to solution.  The solution was kept at -20 °C overnight and the suspension was centrifuged.  
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Carboxylated ZnPc (3.13) 

To a mixture of anhydrous THF (1 mL) and NaH (7.5 mg, 156 µmol) ZnPc 3.11a (38 mg, 31.2 

µmol) in anhydrous THF (3 mL) was added and the mixture was stirred at 0 °C for an h.  

Iodoacetic acid (57.4 mg, 312 µmol) was dissolved in anhydrous THF (3 mL) and added to the 

mixture drop wise. The reaction was stirred at room temperature overnight.  The mixture was 

diluted with water and water layer was saturated with NaCl.  The pH was adjusted to 4 with 

concentrated HCl.  The crude mixture was extracted with EtOAc (3 x 15 mL) and purified by 

filtration through LH-20 column using CH3OH as eluent.  MALDI-MS: Cald C59H68N8O14S3Zn 

+H+: 1273.33; found 1273.35, 1214.35  

Succinimide Ester ZnPc (3.14) 

Pc 3.13 (57.5 mg, 45 µmol), DCC (93 mg, 45 µmol) and N-Hydroxy succinimide ester (52 mg, 

45 µmol) were dissolved in anhydrous CH2Cl2 and stirred under Ar for 24h.  After 3h. white 

precipitate was formed.  The suspension was cooled down to 0 °C and precipitate was filtered 

off.  The crude mixture was initially filtered through LH-20 column and collected blue band was 

evaporated to dryness.  The crude mixture was further purified by precipitation of the impurities 

from CH2Cl2.  Pc 3.14 was obtained in 54% overall yield.  MALDI-MS: Cald 

C63H71N9O16S3Zn+Na+: 1394.33; found 1394.56  

ZnPc (3.3a): 21% yield as a blue solid.  Condition A was employed to perform HPLC.    

tR=39.71 min.  MALDI-MS: Calcd C60H72N8O16Zn+H+: 1225.44; found 1225.40.  λmax (DMSO): 

681 nm (logε=5.5).  λmax (em) (DMSO): 691 nm.  φ f : 0.15 

CuPc (3.3b):  15% yield by centrifuging the suspension. Condition B was employed to perform 

HPLC.  tR=22.65 min.  MALDI-MS: Calcd C60H72CuN8O16+H+: 1124.44; found: 1124.45.  λmax 

(DMSO): 681 nm (logε=5.1). λmax (em): n.d.  φ f : n.d. 
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NiPc (3.3c):  17% yield as a blue solid.  Condition B was employed to perform HPLC.  tR=23.32 

min.  MALDI-MS: Calcd. C60H72N8NiO16
+H: 1219.44; found: 1219.43.  λmax (THF): 671 nm 

(logε=4.3).  λmax (em) (THF): 678 nm.  φ f: 0.0003 

H2Pc (3.3d):  18% yield as a blue solid.  Condition C was employed to perform HPLC.  tR=6.56 

min.  MALDI-MS: Calcd C60H74N8O16
+

 : 1162.52; found: 1162.51.  λmax (DMSO): 676 nm 

(logε=3.5), 706 nm (logε=3.5).  λmax (em) (DMSO): 709 nm.  φ f: 0.06 

MgPc (3.3e): 20% yield as a blue solid. Condition A was employed to perform HPLC.  tR=38.15 

min. MALDI-MS: Calcd C60H72MgN8O16+H+: 1185.49; found: 1185.50.  λmax (DMSO): 682 nm 

(logε=5.5).  λmax (em) (DMSO): 691 nm.  φ f: 0.31 

ZnPc (3.4a):  The crude mixture was purified by column chromatography on silica gel with a 

mixture of CH3OH-CH2Cl2 starting from 1:99 and gradually increasing the CH3OH percentage 

up to 5% in CH2Cl2 to give ZnPc in 12% yield.  Condition A was employed to perform HPLC.  

tR=38.32 min.  MALDI-MS: Calcd C57H66N8O15Zn+H+: 1167.39; found: 1167.80.  λmax 

(DMSO): 680 nm (logε=4.9).  λmax (em) (THF): 690 nm.  φ f: 0.15 

CuPc (3.4b):  The crude mixture was purified by running it through a LH-20 column with 

CH3OH as an eluting solvent to give CuPc in 13% yield.  Condition B was chosen as the eluent 

to perform HPLC.  tR=20.31 min.  MALDI-MS:Calcd C57H66CuN8O15+H+: 1166.39; found: 

1166.38.  λmax (DMSO):  671 nm (logε=4.8). λmax (em): n.d.  φ f: n.d. 

NiPc (3.4c):  The crude mixture was purified by column chromatography on silica gel with 

CH3OH-CH2Cl2 (1:19) as the eluent to give NiPc in 11% yield.  HPLC was performed under the 

B condition. tR=37.27 min.  MALDI-MS: Calcd C57H66N8NiO15+H+: 1161.40; found: 1161.39.  

λmax (THF): 671 nm (logε=5.1).  λmax (em) (THF): 678 nm.  φ f: 0.0038 

H2Pc (3.4d):  The crude mixture was purified by running it through a LH-20 column with 

CH3OH as an eluting solvent to give H2Pc in 16% yield.  Condition C was employed to perform 
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HPLC.  tR=5.39 min.  Calcd C57H68N8O15+H+: 1105.48; found: 1105.47.  λmax (DMSO): 646 nm 

(logε=3.4), 676 nm (logε=3.5), 706 nm (logε=3.4).  λmax (em) (DMSO): 709 nm.  φ f: 0.08 

ZnPc (3.6a): 13% yield as a blue solid. Condition A was employed to perform HPLC.   ESI: 

Calcd C72H96N8O24Zn+2H: 761.30; found: 761.30. λmax (DMSO): 740 nm (logε=4.4).  λmax (em) 

(DMSO): 751 nm. φ f: 0.12 

ZnPc (3.7a): 8% yield as a blue solid. Condition A was employed to perform HPLC. tR=34.17 

min.  MALDI-MS Calcd C69H66N8O15Zn+: 1310.39; found: 1310.03.  λmax (DMSO): 695 nm 

(logε=4.9).  λmax (em) (DMSO): 702 nm.  φ f: 0.17 

ZnPc (3.7b): 19% yield as a blue solid. Condition A was employed to perform HPLC. tR=32.66, 

33.54, 34.88, 37.31 min.  MALDI-MS Calcd C76H72N8O16Zn+: 1416.44; found: 1416.33.  λmax 

(DMSO): 698 nm (logε=5.4).  λmax (em) (DMSO): 705 nm.  φ f: 0.04 

ZnPc (3.8a): 15% yield as a blue solid. Condition A was employed to perform HPLC. tR=38.57 

min.  MALDI-MS Calcd C102H108N8O27Zn+: 1943.41; found: 1943.40 λmax (DMSO): 681 nm 

(logε=5.1).  λmax (em) (DMSO): 687 nm.  φ f: 0.13 

ZnPc (3.8b): 17% yield as a blue solid. Condition A was employed to perform HPLC. tR=44.35 

min.  MALDI-MS Calcd C120H128N8O32Zn+: 2256.79; found: 2256.98.  λmax (DMSO): 681 nm 

(logε=5.2).  λmax (em) (DMSO): 685 nm.  φ f: 0.08 

ZnPc (3.9a): 13% yield as a blue solid. Condition A was employed to perform HPLC. tR=34.72 

min.  MALDI-MS Calcd C57H66N8O12S3Zn+: 1214.33; found: 1214.94.  λmax (DMSO): 690 nm 

(logε=5.5).  λmax (em) (DMSO): 698 nm.  φ f: 0.06 

ZnPc (3.9b): 27% yield as a blue solid. Condition A was employed to perform HPLC. tR=36.65 

min.  ESI Calcd C60H72N8O12S4Zn+H: 1289.35; found: 1289.36.  λmax (DMSO): 692 nm 

(logε=5.3).  λmax (em) (DMSO): 695 nm.  φ f: 0.13 
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ZnPc (3.10a): 10% yield as a green solid. Condition A was employed to perform HPLC. 

tR=33.85 min.  ESI Calcd C78H108N8O21S6Zn+: 1751.53; found: 1751.01. λmax (DMSO): 705 nm 

(logε=5.5).  λmax (em) (DMSO): 712 nm.  φ f: 0.10 

ZnPc (3.10b): 10% yield as a green solid. Condition A was employed to perform HPLC. 

tR=37.90 min.  ESI Calcd C88H128N8O24S8Zn+: 2003.93; found: 2003.59 λmax (DMSO): 709 nm 

(logε=5.5).  λmax (em) (DMSO): 716 nm.  φ f: 0.13 

ZnPc (3.11a): 8% yield as a green solid. Condition A was employed to perform HPLC. 

MALDI-MS Calcd C57H66N8O12S3Zn+: 1214.33; found: 1214.73.  λmax (DMSO): 691 nm 

tR=19.80 min., 22.83 min., 27.98min. (logε=5.0).  λmax (em) (DMSO): 699 nm.  φ f: 0.10 

ZnPc (3.11b): 16% yield as a green solid. Condition A was employed to perform HPLC. 

tR=33.53, 36.70 min.  MALDI-MS Calcd C60H72N8O12S4Zn+: 1288.34; found: 1288.57.  λmax 

(DMSO): 713 nm (logε=5.2).  λmax (em) (DMSO): 718 nm.  φ f: 0.07 
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Chapter 4 
Microwave-Assisted Solid-Phase Synthesis of AB3 Type Asymmetrically Substituted Mono-
Amine Functionalized Phthalocyanines and Oligonucleotide Labeling Techniques 
 
4.1 Introduction 

Solid-phase synthesis is a paramount method to obtain AB3 type asymmetrically-substituted 

phthalocyanines (Pcs) in a short period of time with comparable yields to the statistical 

condensation method.1 Covalent conjugation of mono-hydroxy functionalized Pcs to the 

biomolecules of interest typically requires additional steps to activate the hydroxy group. In 

addition, the modification of the Pcs can be problematic depending on the selected method as 

discussed in Chapter 3.  In order to overcome this problem, we explored the alternative linkage 

strategies to synthesize amine functionalized Pcs.  

Conventional synthesis of Pcs requires long reaction times (10-48 h) at elevated 

temperatures (100-150 °C) depending on the nature of the phthalonitrile derivatives and the 

metal template used.2 As a result of harsh reaction conditions, increased number of side reactions 

cause low Pc yields. It is well-known that microwave irradiation can accelerate organic reactions 

and can greatly promote the reactions proceeding through a dipolar transition state via neutral 

reagents.3 Microwave assisted synthesis of symmetrically-substituted metal free or metallo Pcs 

and related macrocycles in a variety of solvents and as well as under solvent free conditions have 

been reported in the literature.4-6  Herein, microwave-assisted solid-phase synthesis of AB3 type 

asymmetrically-substituted Pcs and conjugation strategies to biomolecules are presented. 

With the aim of oligonucleotide labeling, designing of the Pcs are based on the following 

criteria: 1) In order to prevent formation of the side products in the latter step, conjugation of the 

Pcs to biomolecules, Pc should bear only one functional group;  2) to improve the solubility of 

the hydrophobic macrocycle, the Pc should be decorated with solubilizing peripheral or non-

peripheral substituents;  3) to have an efficient energy transfer between the donor and the 
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acceptor molecules for FRET-RET based assays, maximum overlap between the absorption 

spectrum of the acceptor with emission spectrum of the donor is desired.   

Retrosynthetic analysis of the mono functionalized Pc revealed that the synthesis would start 

with immobilization of the amine functionality and the phthalonitrile to the polymer support via 

a cleavable linker (Scheme 4.1).  Cyclo-tetramerization of polymer bound phthalonitrile with the 
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Scheme 4.1 

second type of phthalonitrile in solution having solubilizing group would yield the target Pc on 

the polymer support and the symmetrically-substituted Pc in solution. Cleavage of the Pc from 

the polymer support would give the desired compound.   

Due to the dynamic nature of the polymer, outcome of the solid-phase reactions are affected 

by many factors such as reaction time and the temperature, loading of the resin, linker length, 

availability of the nearby groups, reactivity of the functional groups, solvent and the 

concentration of the incoming reagent.7 In order to obtain AB3 type Pcs in high purity with 

improved yields, the cyclo-tetramerization reaction was optimized by tuning the solid-phase 

reaction parameters and evaluating the outcome of the each reaction in all cases.   
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4.2. Results and Discussion 

4.2.1 Effects of the Loading of the Resin and the Reaction Time on the Outcome of the 
Cyclotetramerization Reaction 
 
Polyethyleneglycol (PEG)-based Rink Amide ChemMatrixTM resin with initial loading of 0.52 

mmol/g was chosen as the starting point.  Amine functionality could be obtained by either 

incorporation of the natural amino acids having an amine functional group on the side chain such 

as lysine or with modified amino acids bearing more than one functional group like tyrosine.  

Fmoc solid-phase peptide synthesis method8 was utilized to immobilize the selected amino acids 

and the phthalonitrile to the polymer support (Scheme 4.2).   

Solid-phase peptide synthesis is a practical method to synthesize different length of peptides 

in a short period of time without extensive purification process.  In general, solid-phase peptide 

synthesis starts with deprotection of the temporary protecting group on the linker to obtain free 

amine where the peptide starts to grow.  This step can be skipped depending on the selected 

linker type.  The first amino acid, having temporary protecting group on the α amine and the 

permanent protecting group on the side chain amine, is anchored to the linker via amidation.  

Following the removal of the temporary protecting group, the next amino acid is coupled to 

amino terminus of the polymer bound amino acid.  This cycle can be repeated until the desired 

sequence is built on the polymer support.  Generally, acidic cleavage gives the desired peptide 

and removes all permanent acid labile protecting groups on the side chains of the residues.  We 

modified the last step of the solid-phase peptide synthesis by anchoring the carboxylic acid 

functionalized phthalonitrile to the amino terminus of the amino acid on the polymer support. 

Phthalonitrile loaded resin is submitted to cyclotetramerization to give polymer bound Pc.  

Acidic cleavage of the product from the linker yields peptide-Pc conjugate. 



 97 

H
N

N
H

O

Linker
R'

X

Y'

H2N
N
H

O

Linker

R'

Y'

H
N

O

O

A

R''

X

Y''
H
N

N
H

O

Linker

R'

Y'

N
X

O

R''

Y''

H
N

NH2

O

R'

Y'

H2N

O

R''

Y''

Deprotect !"amino function

Couple

(Repeat)n

Deprotect !-amino function

and cleave from resin

CN

CNHOOC H
N

N
H

O

Linker

R'

Y'

N
H

O

Cyclo-tetramerization

Peptide-Pc

R"

Y'

O

NC

NC

X= Temporary protecting group

Y= Permanent side-chain protecting group

A= Carboxy activating group

 

Scheme 4.2 

 

Synthesis of the amine functional Pcs 4.4, 4.5 and 4.6 started with coupling of commercially 

available Fmoc-Lys-(Boc)-OH, having the base labile Fmoc protecting group on the α amine and 

the acid labile Boc protecting group on the ε−amine, which gives the Pc an amine functionality 

after the cleavage of the product from the polymer support (Scheme 4.3).  Coupling efficiency of 

the Fmoc-Lys-(Boc)-OH was qualitatively followed by bromophenol blue test8,9 and following 

the removal of the Fmoc group, commercially available Fmoc-8-amino-3,6-dioxaoctanoic acid 

(mini-PEG) was anchored to the α amine of the polymer bound Lys via amidation.  Mini peg 

would not only serve as a spacer between the amine group and the Pc but also improve the 

solubility of the target compound.  In order to examine the dependence of site-site interactions on 

the loading of the resin, which gives a rise to formation of the other Pc congeners on the polymer 
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support, immobilization of the carboxylate phthalonitrile 2.3 to the polymer support was 

performed at three different phthalonitrile concentrations.   Consequently, the phthalonitrile 

loading of the each resin significantly differ from each other.  Loading capacities of the polymer 

supports 4.3 were determined as 0.46, 0.23 and 0.1 mmol/g using quantitative Fmoc test8 (Table 

4.1).  In each case, phthalonitrile coupling was confirmed by FT-IR spectrum showing CN 
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stretching at 2232 cm-1.The rest of the active sites on the polymer support were acetylated with 

excess amount of acetic anhydride to prevent premature reactions during the 

cyclotetramerization process.  

 Cyclotetramerization reactions were performed at the constant reaction concentration (0.16 

M) employing one of the oligoethyleneglycol-substituted phthalonitrile precursors (2.15, 2.20 or 

2.22) at different reaction times under microwave irradiation as well as using conventional 

heating (Scheme 4.4) (Table 4.1).  Following the condensation, the symmetrically-substituted
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Scheme 4.4 
 
Pcs were removed by washing the resin with hot BuOH until a colorless filtrate was collected.  

Polymer bound amides are typically cleaved in 88% TFA solution in CH2Cl2.8   Since high acid 

concentration of TFA (>70%) results in decomposition of the Pc and removal of the metal from 

the Pc core, optimized standard cleavage solution, 20% TFA in CH2Cl2 in the presence of 

Triisopropylsilane as a scavenger, was used to cleave the asymmetrically-substituted Pcs from 

the polymer support.  Following the filtration of the each crude product through LH-20 column 

to remove low molecular weight impurities, MALDI-MS analysis of the asymmetrically- 

oligoethyleneglycol-substituted Pcs revealed that the Pc 4.6 was contaminated with other Pc 
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congeners as result of high loading of the resin, 0.46 mmol/g (Table 4.1, entries 1-3).   As the 

phthalonitrile loading decreased from 0.46 mmol/g to 0.23 mmol/g, A3B type Pc was eliminated 

(Table 4.1, entries 4-7).  However, complete site isolation could not be achieved even at the 

loadings as low as 0.1 mmol/g. Thus, formation of A2B2 type Pc could not be prevented (Table 

4.1, entries 8-9).   

Occurrence of site interactions as a result of high loading was published in the literature 

several times since the invention of the solid phase synthesis.10-13  Yan and Sun clearly 

demonstrated the occurrence of site-site interactions via hydrogen bonding by using three 

different 1% DVB polystyrene resins, p-alkoxy benzyl (Wang resin), Hydroxymethyl and Trityl 

alcohol.7   They also discussed the effects of steric hindrance on interactions of alcohols.  In 

another paper, Grubbs and co-workers tested the activity of the titanocene catalyst in 

hydrogenation of organic compounds.14   Authors reported that as the loading of the titanocene 

increased, the reaction rate was decreased indicating the reduced activity of the catalyst as a 

result of the interactions of the nearby sites. The rate of the reaction reached a maximum with 

lower loadings of the catalyst. 

While neither the reaction time nor the temperature affected the outcome of the 

cyclotetramerization reaction, the yield of the recovered product was improved as the reaction 

time increased (Table 4.1, entries 1-3).  At elevated reaction temperatures (>180 °C) we saw the 

decomposition of the PEG resin.  Thus, later experiments were performed at 150 °C.  Changing 

the amino acid sequence on the resin, Lys-mini-PEG-phthalonitrile vs. mini-PEG-Lys-

phthalonitrile, did not affect the outcome of the reaction at or above 0.23 mmol/g of loading.  

Interestingly, MALDI-MS mass spectrometry analysis of the cleaved products showed another 

major ion at m/z M+100, corresponding to displacement of t-butyl group of the Boc protecting 

group with n-butyl (Table 4.1, entry 4).  Further proof for this transition was obtained by 
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performing the reaction in different solvents such as n-pentanol and 2-butanol.  In both cases, 

MALDI-MS mass spectrometry showed the corresponding peaks at m/z M+114 and M+99, 

respectively (Table 4.1, entries 5 and 6). Unlike Boc protecting group, the newly formed n-butyl, 

Table 4.1 Effects of the Phthalonitrile Loading and the Reaction Time on Cyclotetramerization 
Reaction 
 

 Squence on 
the Resin 

Loading of 
the Resin 
(mmol/g) 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 
Lys(Boc)-
mini-PEG-

phthalonitrile 
0.46 0.16 / 2.22 

Microwave, 
11 min. 
200 °C 

BuOH 

Mixture of 
all Pc 

congeners 
/ 6 % 

2 
Lys(Boc)-
mini-PEG-

phthalonitrile 
0.46 0.16 / 2.22 

Microwave, 
18 min. 
200 °C 

BuOH 

Mixture of 
all Pc 

congeners 
/ 9 % 

3 
Lys(Boc)-
mini-PEG-

phthalonitrile 
0.46 0.16 / 2.22 

Microwave, 
30 min. 
200 °C 

BuOH 

Mixture of 
all Pc 

congeners 
/ 19 % 

4 
mini-PEG- 
Lys(Boc)-

phthalonitrile 
0.23 0.16 / 2.20 

Microwave, 
30 min. 
180 °C 

BuOH 

Mixture of 
AB3, A2B2 

and 
(M+100) / 

20 % 

5 
mini-PEG- 
Lys(Boc)-

phthalonitrile 
0.23 0.16 / 2.20 

Microwave, 
30 min. 
180 °C 

n-Pentanol 

Mixture of 
AB3, A2B2 

and 
(M+114) / 

20% 

6 
mini-PEG- 
Lys(Boc)-

phthalonitrile 
0.23 0.16 / 2.20 

Microwave, 
30 min. 
180 °C 

2-Butanol 

Mixture of 
AB3, A2B2 

and 
(M+99) 
 / 8 % 

7 
mini-PEG- 
Lys(Boc)-

phthalonitrile 
0.23 0.16 / 2.15 

Microwave, 
30 min. 
180 °C 

BuOH 

Mixture of 
AB3, A2B2 

and 
(M+100) / 

21 % 
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Table 4.1 Contd. 

8 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.10 0.16 / 2.20 

Microwave, 
30 min. 
150 °C 

BuOH 

Mixture of 
AB3 and 
A2B2 /  
18 % 

 

9 
Lys(Boc)-
mini-PEG-

phthalonitrile 
0.10 0.16 / 2.20 

Conventional 
heating, 

24h. 
120°C 

BuOH 

Mixture of 
AB3, A2B2 

and 
(M+100) / 

7 % 
 

n-pentyl or 2-butyl carbamates could not be cleaved under acidic conditions due to the unstable 

carbocation formation.  Mechanism of the transition has not been studied.  However, we 

speculate that it is either transesterification taking place between the alcohol and the Boc group, 

or the amide nitrogen is deprotonated to give isocyanate derivative which is attacked by the 

nucleophile, solvent, to give the corresponding carbamates. Due to the inseparable mixtures 

obtained with Boc protected amine, we switched to another acid labile protecting group, Mtt 

(Table 4.1, entry 8).  Mtt protecting group is easily cleaved under very mild acidic conditions (1-

3% TFA).15  Since the cleavage of the Pc from the polymer support requires more acidic 

condition (20% TFA), during the cleavage of the product, Mtt group is also removed.  In view of 

the fact that it was nearly impossible to obtain pure AB3 type Pcs by only altering the loading 

capacity of the resin, we explored other variables to achieve our goal.   

4.2.2 Effects of Solvent and Incoming Reagent Concentration on the Outcome of the 
Cyclotetramerization Reaction 
 
In order to evaluate the effect of the solvent and the incoming reagent concentration on the 

outcome of the cyclotetramerization reaction on solid support, resin 4.7 was prepared with three 

different phthalonitrile loadings. The cyclotetramerization reaction was carried at variable 

incoming reagent concentrations employing two different solvents under microwave irradiation.   
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Synthesis of phthalonitrile loaded resin 4.7 started with anchoring of mini-PEG to the Rink 

Amide resin, as the first amino acid, utilizing Fmoc solid phase synthesis as discussed above 

(Scheme 4.5).  Following the removal of the Fmoc protecting group, commercially available 

Fmoc-Lys-(Mtt)-OH was coupled to the amino terminus of the mini-PEG residue.  After removal 

of the temporary α amine protecting group, carboxylate phthalonitrile 2.3 was coupled to the 

amino terminus of the polymer bound Lys.   The last step was carried at different phthalonitrile 

concentrations to give resin 4.7 with three different phthalonitrile loadings. Loading capacities of 

the polymer supports 4.7 were determined as 0.20, 0.14 and 0.10 mmol/g using quantitative 

Fmoc test8 (Table 4.2).  The rest of the active sites on the resin 4.7 were capped with excess 

amount of acetic anhydride. 
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  Scheme 4.5 

Synthesis of oligoethyleneglycol-substituted Pcs 4.8 - 4.12 were performed under 

microwave irradiation employing resin bound phthalonitrile 4.7 and one of the oligoethylene 

glycol-substituted phthalonitriles 2.15, 2.20 or 2.22 with DBU in the presence of metal salt as 

well as in metal free condition (Scheme 4.6).  Initially, the effect of the incoming reagent 

concentration on the outcome of the cyclotetramerization reaction was evaluated.  At high 

incoming reagent concentration, molecules in solution occupy most of the active sites and the 

remaining sites have difficulty to find the nearby reactive groups to react.  As a result of this, 
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site-site interactions in solid support decrease. Cyclotetramerization reaction was performed at 

three different concentrations.  Modified resin 4.7 with 0.20 mmol/g phthalonitrile loading was 
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Scheme 4.6 

condensed with ethyleneglycol-substituted thio-ether phthalonitrile 2.20 in BuOH at 0.16, 0.20 

and 0.27 M concentrations under microwave irradiation for 30 min (Table 4.2, entries 1-3). 

Symmetrically substituted Pcs were washed away using hot BuOH until a colorless filtrate was 

collected and the desired products were cleaved from the resin under acidic condition. All 

asymmetrically-substituted desired Pcs were purified by filtering through LH-20 column.  Mass 

spectrometry analysis of the recovered Pcs revealed that in all cases the desired Pc 4.9 was 

contaminated with up to 33% of A2B2 type congener (Table 4.2, entry 2). As the reaction 
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concentration increased from 0.16 M to 0.27 M, the percentage of the A2B2 type congener in the 

mixture slightly decreased (MALDI-MS) (Table 4.2, entry 3). However, complete site isolation 

could not be achieved under the applied conditions. 

Solvent effect is another factor regulating site interactions in polymer support.16 While 

“bad” solvents that do not swell the resin maximally decrease the site-site interactions by 

Table 4.2 Effects of Incoming Reagent Concentration and Solvent on the Outcome of the 
Cyclotetramerization Reaction 
 

 Squence on 
the Resin 

Loading 
of the 
Resin 

(mmol/g) 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.16 / 2.20 

Microwave, 
30 min. 
150 °C 

BuOH 
AB3:A2B2 
(67:33) / 

18 % 

2 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.20 / 2.20 

Microwave, 
30 min. 
150 °C 

BuOH 
AB3:A2B2 
(74:26) / 

18 % 

3 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.27 / 2.20 

Microwave, 
30 min. 
150 °C 

BuOH 
AB3:A2B2 
(80:20) / 

19 % 

4 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.20 / 2.20 

Microwave, 
30 min. 
150 °C 

Dodecanol 
AB3:A2B2 
(>95:<5) / 

16 % 
 

limiting the mobility of the active sites on the resin, “good” solvents, in which the resin is 

swelled maximally raise the chance for site-site interactions due to the increased mobility of the 

nearby sites on the polymer support.  Dodecanol, having a high boiling point in which the resin 

swelling is minimum, was selected as the “bad” solvent to perform the cyclotetramerization 

reaction.  The major disadvantage of dodecanol is that phthalonitrile precursors are not soluble in 

the solvent at room temperature.  This problem was solved by heating the suspension up to 80 °C 

in water bath and transferring the solution into a microwave vessel.   
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Condensation of resin 4.7 with oligoethyleneglycol-substituted phthalonitrile 2.20 in 

dodecanol at 0.27M concentration gave the desired Pc 4.9, accompanied with small amount 

(<5%) of A2B2 type Pc, in 16% yield (Table 4.2, entry 4).  It was possible to decrease the amount 

of the side product (A2B2 type Pc) by only changing the solvent.  However, it was not enough to 

completely overcome the site-site interactions at 0.20 mmol/g of phthalonitrile loading.  It was 

also noted that changing the solvent from BuOH to dodecanol slightly decreased the yield.  This 

can be explained by poor swelling of the resin in dodecanol.  As the polymer support swells in a 

solvent, active sites on the resin expands and have a higher chance to react.  In poor swelling 

solvents, most of the active sites are buried in the channels and polymer backbone’s dynamic 

fluctuation is limited, consequently the limited number of them get involve in the reaction 

causing low yields.   

Influence of the solvent on site isolation has been previously published in the literature 

starting from as early as 1970’s.  Regen and Lee studied the solvent effect by detecting the 

complex formation between poly(styry1-diphenylphosphine) and Co(NO)(CO)3 through FT-IR 

analysis with highly (20%) and lightly (2%) cross-linked polystyrene resins.17  They showed that 

in the presence of “good” solvent, CH2Cl2, only 35% of 1:1 cobalt complex formed.  On the 

other hand, in the absence of solvent or by addition of “bad” solvent, n-hexadecane, 2:1 complex 

of cobalt was not detected indicating the achievement of complete site isolation.  Regardless of 

the cross-linking degree of the polymer, they obtained similar results.  Another example of the 

solvent effect was clearly demonstrated in Wulff and Schulze’s paper.18 The polymer support, 

having mercapto groups in random distribution, was prepared from p-vinylbenzyl thioacetate.  Due 

to the increased mobility of the active sites in good swelling solvent, toluene, formation of disulfide 

bridges increased via oxidation of the nearby mercapto groups.    
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Employed phthalonitriles and metal salt also play an important role on the outcome of the 

cyclotetramerization reaction due to the difference of their reactivity.  In order to have a better 

understanding about the solid-phase cyclotetramerization reaction, oligoethyleneglycol- 

substituted phthalonitriles with different substitution pattern, 2.15 and 2.22, were employed in 

condensation reaction under the condition described in Table 4.2, entry 4.  Unfortunately, in both  

Table 4.3 Effect of Reactivity of Phthalonitrile on the Outcome of the Cyclotetramerization 
Reaction 
 

 Squence on 
the Resin 

Loading 
of the 
Resin 

(mmol/g) 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.20 / 2.15 

Microwave, 
30 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(3:1) /  
19 % 

2 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.20 0.20 / 2.22 

Microwave, 
30 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(1:1) /  
16 % 

 

cases the desired Pcs, 4.8 and 4.10 were contaminated with the corresponding A2B2 type 

congeners up to 50% (Scheme 4.6) (Table 4.3, entries 1-2).  Increased amount of the side product 

formation can be explained by low reactivity of the phthalonitrile used.  Since 4,5 disubstituted 

phthalonitrile, 2.22, has low reactivity, relative to 4-oligoethyleneglycol-substituted 

phthalonitrile (2.15), polymer bound phthalonitriles have longer time to find a proximate resin-

bound phthalonitrile with which to react. Consequently, A2B2 type Pc forms on solid support.   

Similar results were also obtained in the case of CuPc (4.11) and metal free Pcs (4.12).  CuPc 

(4.11) were synthesized employing CuBr2 as a metal source (Scheme 4.6). Due to the low 

solubility of CuBr2 in dodecanol, the reaction was carried in a mixture of BuOH-dodecanol (2:8).  

Following the cyclotetramerization, blue colored symmetrically-substituted CuPc 3.3b was washed 

away using wide variety of solvents.  Unlike other metallo Pcs, due to the high adsorption of the 
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CuPc on solid support, isolation of the symmetrically-substituted CuPc required extensive wash 

with hot BuOH, CH2Cl2, CH3OH and 1:1 mixture of CH3OH-BuOH.  Following the cleavage of 

the polymer bound Pc and filtration through LH-20 column; MALDI-MS mass spectrometry 

analysis of the CuPc revealed that the desired compound was contaminated with A2B2 type 

congener (Table 4.4, entry 1).  In the case of metal free Pc (4.12), cyclotetramerization reaction was 

performed employing the same oligoethyleneglycol-substituted phthalonitrile 2.15 and DBU in the 

absence of a metal salt.  Interestingly, after cyclotetramerization reaction, very light green-brown 

color solution and lime color beads were obtained indicating the extremely slow reaction.  As a 

result of that, trace amount of symmetrically-substituted metal free Pc 3.3d was recovered.  

Following the quick wash of the beads with hot BuOH, the acidic cleavage gave trace amount of the 

metal free Pc, 4.12.  Mass spectrometry analysis of the crude mixture showed that the metal free Pc 

4.12 was contaminated with a significant amount of A2B2 type congener (Table 4.4, entry 2).  The 

low yields and the contamination of the desired product not only related the loading capacity of the 

resin but also the particularly slow reaction in the absence of a metal template.  Since the desired 

results could not be obtained by only changing the swelling property of the resin and/or employing 

different types of phthalonitrile precursor, loading capacity of the polymer support was lowered 

from 0.20 mmol/g to 0.14 mmol/g. 

Condensation of polymer support 4.7, with 0.14 mmol/g phthalonitrile loading, with 2.15 in the 

presence of Zn(OAc)2 and DBU in dodecanol under microwave irradiation gave the symmetrically-

Table 4.4 Effect of the Metal Template on the Outcome of the Cyclotetramerization Reaction   
 

 Squence on 
the Resin 

Loading 
of the 
resin 

(mmol/g) 
/ Pc 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor 
Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 

0.20 / 
CuPc 0.20 / 2.15 

Microwave, 
30 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(2:1) /  
25 % 

2 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 

0.20 / 
H2Pc 0.20 / 2.15 

Microwave, 
40 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(2:1) /  
<1 % 
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substituted Pc 3.3a in solution and the corresponding asymmetrically-substituted Pc on solid 

support (Scheme 4.6).  After standard purification and cleavage processes, mono-amine 

functionalized Pc 4.8 was obtained as a mixture with A2B2 type congener (Table 4.5, entry 1).  

Since dropping the phthalonitrile loading on the resin from 0.2 mmol/g to 0.14 mmol/g did not 

make a significant difference on the outcome of the reaction, further experiments with the 0.15 

mmol/g phthalonitrile loaded resin was skipped.  

The exploration of the solid-phase synthesis of asymmetrically-substituted Pcs continued with the 

condensation of polymer support, having 0.10 mmol/g phthalonitrile loading, with oligoethylene 

glycol-substituted 2.15 in the presence of Zn(OAc)2 as a metal source under microwave irradiation 

for 40 min (Scheme 4.6).  The target ZnPc 4.8 was cleaved from the resin and purified by filtration 

through LH-20 column.  Desired compound was obtained in 27% yield without contamination of 

any other Pc congeners (Table 4.5, entry 2).  It was noted that 10 min. increase of the reaction time 

significantly improved the yield of the reaction.  The same synthetic strategy was employed to 

synthesize the ZnPc 4.10.  However, the mass spectrometry analysis of the cleaved product showed 

that the ZnPc 4.10 was contaminated with significant amount of A2B2 type Pc (Table 4.5, entry 3).  

 
Table 4.5 Effect of Loading, Reaction Time and Reactivity of the Phthalonitrile on the Outcome of 
the Cyclotetramerization Reaction 
 

 Squence on 
the Resin 

Loading 
of the 
Resin 

(mmol/g) 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.14 0.20 / 2.15 

Microwave, 
30 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(3:1) /  
17 % 

2 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.10 0.20 / 2.15 

Microwave, 
40 min. 
150 °C 

Dodecanol AB3 /  
27 % 

3 
mini-PEG- 
Lys(Mtt)-

phthalonitrile 
0.10 0.20 / 2.22 

Microwave, 
40 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(2:1) /  
22 % 
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From the results above, it can be concluded that at or above 0.1 mmol/g phthalonitrile loading 

outcome of the reaction subjected to change depending on the reactivity of the employed

phthalonitrile precursor.  Swelling property of the resin plays an irrelevant role due to the minor 

difference of the swelling of the resin in the selected solvents.  Increase of the reaction time, from 

30 min. to 40 min., remarkably improves the yield of the recovered Pcs. Since the results were not 

satisfying, optimization of the solid-phase cyclotetramerization reaction continued with the altering 

the linker length and the concentration of the incoming reagent. 

4.2.3 Effects of Linker Length and Incoming Reagent’s Concentration on the Outcome of 
the Cyclotetramerization Reaction 

 
With aim of the synthesis of pure asymmetrically-substituted mono amine functionalized 

Pcs, the linker length was altered by excluding the mini-PEG from the sequence.  Resin 4.14 was 

prepared employing the Fmoc solid-phase peptide synthesis method8 as discussed before.  Fmoc-

Lys(Mtt)-OH was anchored as the first amino acid to the PEG based Rink Amide Resin (Scheme 

4.7).  Coupling efficiency of the Fmoc-Lys-(Mtt)-OH was qualitatively followed by 

Bromophenol blue test.9  Fmoc protecting group was cleaved from the α amine of the Lys using 

20% 4-methyl piperidine solution in DMF.  In order to alter the phthalonitrile loading of the 

polymer support, coupling of carboxylate phthalonitrile 2.3 was performed using different 

amounts of the selected phthalonitrile.  Polymer support 4.13 was split in two halves and the 

carboxylate phthalonitrile was coupled to each batch individually.  Following the immobilization 

of the phthalonitrile to the resin, the remaining active sites were acetylated with acetic anhydride.  

Loading of the resin 4.14 was determined as 0.3 and 0.1 mmol/g using quantitative Fmoc 

analysis test.8 The modified polymer supports were individually submitted to 

cyclotetramerization reaction.  

Initially, polymer support 4.14 with 0.30 mmol/g phthalonitrile loading was employed for 

the synthesis of ZnPc 4.15.  Condensation of polymer bound phthalonitrile 4.14 with 



 111 

 

N
H

O

O

NH2 OMe

OMe
HOBt/HBTU, DIEA

DCM/DMF rt, 2h

1. Fmoc-Lys(Mtt)-OH

N
H

O

O

NH OMe

OMe

O

NH2MttHN

2. 20% 4-methylpipiridine

souliton in DMF 

rt, 2 X 10 min

4.13

4.13

1.

HOBt/HBTU, DIEA

DCM / DMF rt, 1h

2.  Ac2O, DIEA, DMF

     rt, 3h

N
H

O

O

NH OMe

OMe

O

N
H

MttHN

O

O

CN

CN

4.14

O

HOOC CN

CN

2.3

 

Scheme 4.7 

oligoethyleneglycol -substituted phthalonitrile 2.15 in the presence of Zn(OAc)2 was carried 

under microwave irradiation at 0.20 M concentration for 40 min (Scheme 4.8).  Following the 

standard washing procedure to isolate the symmetrically-substituted ZnPc 3.3a, the target 

compound was cleaved from the polymer support under the acidic condition.  Mass spectrometry 

analysis of the recovered ZnPc 4.15 showed that the desired compound was obtained as a 1:1 

mixture with A2B2 type congener (Table 4.6, entry 1).  From the results above it can be 

concluded that the loading of the resin is the key factor of the solid-phase synthesis of the Pcs.  

As the loading of the resin increase, regardless of the linker length, site-site interactions occur 

due to the highly dynamic nature of the polymer.  

Yan and Sun demonstrated the influence of the solid-phase reactions on the linker length 

and incoming reagent concentration via diester formation using various linker length.7  From the 

results obtained by interpretation of the FT-IR spectra of the polymer supports, they concluded 

that the linker length plays a marginal role on regulating the site-site interactions on the resin.  

Further more, they stated that the linker length effect can be diminished by using large excess of 

incoming reagent. 
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Scheme 4.8 

 

In order to examine the effect of linker length at low loading of resin, synthesis of 4.15 was 

performed using the polymer support 4.14 with 0.10 mmol/g phthalonitrile loading.  The reaction 

was performed at 0.30 M concentration in Dodecanol (Scheme 4.8).  Mass spectrometry analysis 

of the cleaved product showed that the desired ZnPc was contaminated with a trace amount of 

A2B2 type congener (Table 4.6, entry 2).   

The next reaction was performed using the same resin 4.14 (0.1 mmol/g) and the 

phthalonitrile precursor (2.15) at different concentration, 0.8M (Table 4.6, entry 3).  

Symmetrically-substituted Pc was washed away with hot BuOH until a colorless filtrate was 
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Table 4.6 Effect of Linker Length and Incoming Reagent Concentration on the Outcome of the 
Cyclotetramerization Reaction 
 

 Squence on the 
Resin 

Loading 
of the 
Resin 

(mmol/g) 

Reaction 
Concentration 

(M) / 
Phthalonitrile  

Precursor Used 

Reaction 
Condition Solvent 

Outcome 
of the 

Reaction / 
Crude 

Mixture 
Yield (%) 

1 Lys(Mtt)-
phthalonitrile 0.30 0.20 / 2.15 

Microwave, 
40 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(1:1) /  
18 % 

2 Lys(Mtt)-
phthalonitrile 0.10 0.30 / 2.15 

Microwave, 
40 min. 
150 °C 

Dodecanol 
AB3:A2B2 

(97:3)/  
22 % 

3 Lys(Mtt)-
phthalonitrile 0.10 0.80 / 2.15 

Microwave, 
40 min. 
150 °C 

Dodecanol AB3
7 

 / 24 % 

4 Lys(Mtt)-
phthalonitrile 0.10 0.80 / 2.15 

Microwave, 
40 min. 
150 °C 

BuOH AB3
7 

 / 28 % 

 

collected and the polymer bound ZnPc was cleaved from the resin.  The crude mixture was 

filtered through a LH-20 column and the collected blue band was submitted to mass 

spectrometry analysis.  MALDI-MS analysis showed a major ion peak corresponding to the 

desired Pc.  ZnPc 4.15 was obtained in 24% yield without contamination of the other Pc 

congeners (Table 4.6, entry 3).  With the purpose of examining the solvent effect under the 

selected conditions, the same reaction was performed in another solvent, BuOH.  The desired 

compound was obtained as a single congener.  As expected, the yield of the reaction was 

improved to 28% by only changing the solvent (Table 4.6, entry 4).  Thus, later experiments 

were performed in BuOH by employing the conditions showed in Table 4, entry 4.  Increase of 

the yield is due to the slightly better swelling property of the resin in BuOH.  Figure 4.1 shows

                                                
7 A2B2 type congener was not detected  
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Figure 4.1 HPLC chromatogram of ZnPc 4.15. 

 

 

Figure 4.2 MALDI-MS Spectrum of ZnPc 4.15 

HPLC chromatogram and Figure 4.2 shows the MALDI-MS spectrum of the ZnPc 4.15 with 

expected isotopic pattern.  ZnPc 4.15 showed sharp Q band at 681 nm and emission band at 691 

nm upon excitation at 615 nm (Table 4.7). 
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The same synthetic strategy was employed to synthesize mono amine functionalized Pcs 

4.16, 4.17 and 4.18.  In the case of 4.16, phthalonitrile, substituted with oligoethyleneglycol via 

sulfur linkage, 2.20 was condensed with polymer bound phthalonitrile 4.14 in the presence of 

Zn(OAc)2 and DBU in BuOH.  Following the standard purification method, ZnPc 4.16b was 

obtained in 19% yield (Table 4.7). 

The last Zn hosting Pc 4.17b was synthesized using 4,5 bis-Oligoethyleneglycol-substituted 

phthalonitrile 2.22.  Condensation of resin 4.14 with 2.22 gave the desired Pc in 15% (Table 4.7).  

The low yield of the desired Pc, relative to 4.15, is associated with the low reactivity of the 

employed phthalonitrile in cyclotetramerization reaction.  

In the case of CuPc 4.18, CuBr2 was used as a metal source in the condensation of the 

polymer support 4.14 with 2.15.  Due to the high adsorption of the symmetrically-substituted 

CuPc on solid support, it was necessary to wash the polymer support with wide variety of hot 

solvents until a colorless filtrate was collected.  Following the cyclotetramerization reaction, the 

     Table 4.7 Mono-amine Functionalized Pcs 

Compound 
Number / Pc 

Metal 
Salt 

Yield 

(%)8 

λmax 

(abs) 
(nm) 

log ε 
(cm-1M-1) 

λmax 

(em) 
(nm) 

φf
9 

4.8 / ZnPc Zn(OAc)2 27 680 5.1 690 0.10 
4.15 / ZnPc Zn(OAc)2 28 681 5.0 691 0.10 
4.16 / ZnPc Zn(OAc)2 19 701 5.1 708 0.09 
4.17 / ZnPc Zn(OAc)2 15 701 5.2 709 0.11 

AB3 
Type 
Pcs 

4.18 / CuPc CuBr2 24 680 4.3 n.d n.d 
 

                                                
8 Yields of asymmetrically-substituted Pcs (4.15-4.18) were calculated based on the loading of 
the phthalonitrile on the support, 0.1 mmol/g and 4.8 was calculated based on 0.3 mmol/g. 
9 Fluorescence spectra and quantum yield determinations were done using 613 nm excitation 
wavelength for 4.15 and 4.8, 630 nm for 4.16 and 4.17. CuPc 4.18b did not show any detectable 
fluorescence, which is noted in the table as “n.d.”. All spectra were taken in DMSO. 
Fluorescence quantum yield measurements for all Pcs were done using methylene blue as a 
standard at absorbance 0.04 - 0.05 for both Pc and standard solutions to avoid any error due to 
inner-filter effect. 
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polymer support was washed with hot solvents including BuOH, CH3OH, CH2Cl2, CH3OH- 

BuOH mixture to completely isolate the symmetrically-substituted Pc.  Following the cleavage 

and simple purification process, CuPc 4.18 was obtained in 24% yield (Table 4.7). 

4.2.4 Covalent Labeling of Oligonucleotides with Amine Functionalized Phthalocyanines 

The successful syntheses of the amine functionalized oligoethyleneglycol-substituted AB3 type 

Pcs was followed by the covalent labeling of oligonucleotides for FRET-RET based applications.   

Oligonucleotide is a small fragment of DNA or RNA consisting of 10-100 nucleic acids 

(adenine, cytosine, guanine, thymine / uracil).  Due to the weak fluorescence intensity of the 

oligonucleotides for bioanalytical applications, it is necessary to label them with fluorescent 

molecules for fluorescence-based applications.  Labeling of the oligonucleotides is accomplished 

by non-covalent or covalent labeling techniques.  Non-covalent labeling composed of 

hydrophobic and electrostatic interactions between the fluorescent molecule, intercalating dye, 

and the oligonucleotide.19,20  Commonly used intercalating dyes are ethidium bromide, thiazole 

orange, oxazole yellow and their homodimers.21   

Covalent labeling of the oligonucleotides is achieved by employing pre-synthetic or post 

synthetic methods.  In pre-synthtetic method, the fluorescence dye is covalently conjugated to 

oligonucleotide’s 3’or 5’ ends and as well as any desired internal position utilizing 

phosphoramidite chemistry during the oligonucleotide synthesis.  Several labeling techniques at 

different regions of the oligonucleotide including phosphate backbone,22 sugar23 and base 

residue24 (purine or pyrimidine) labeling have been published in the literature.  Post-synthetic 

labeling is the covalent attachment of the fluorescent dye to the oligonucleotide after the 

synthesis of the probe.25-27 Thus, this technique requires modification of oligonucleotides with 

the desired functional groups at the 3’ and/or 5’ ends.  The major disadvantage of the post 

labeling is that oligonucleotides can easily be hydrolyzed at low pH values or at elevated 
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temperatures.  Also, their limited solubility in organic solvents restricts the post synthetic 

applications or requires extra steps for modification of the fluorescent labeling dyes.   

Conjugation of amine functionalized Pcs to oligonucleotides was achieved by employing the 

post synthetic methods.  13mer oligonucleotide, modified with C10 carboxylic acid linker at the 

5’ end, was used for the labeling experiment.  The sequence of the oligonucleotide is given 

below. 

5’(Carboxylic acid C10)-GTA AAA CGA CGG CCA GT 3’  

Prior the labeling, oligonucleotide was purified by ethanol precipitation to remove any 

amine containing compounds. Amine functional ZnPc 4.15 was covalently attached to the 

oligonucleotide via C10 carboxylic acid linker by amide formation (Scheme 4.9). The labeling 

was performed in microwave at 75 °C for 30 min. in the presence of large excess of coupling 

reagents, EDC and NHS, in pH 7.6 carbonate buffer. The conjugate was separated from large 

excess of the dye by ethanol precipitation and the labeled oligonucleotide (4.19) was isolated by 
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Figure 4.3 Supernatant’s data was extracted at 680 nm and the precipitate’s data was extracted at 
260 nm wavelength. 
 
reverse-phase HPLC.  Figure 4.3 shows the HPLC chromatograms of the supernatant and the 

precipitate after the ethanol precipitation.  In order to verify that non-covalent labeling does not 

occur between the oligonucleotide and the selected ZnPc and to confirm that the dye is stable  

 

Figure 4.4 HPLC analysis of oligonucleotide labeling with ZnPc 4.15. The data were extracted 
at 680 nm wavelength. 
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under the selected reaction conditions control experiments were also performed in the presence 

and absence of the oligonucleotide employing the same conditions.  HPLC chromatograms of the 

labeling experiment were shown in Figure 4.4. The control experiments did not show any 

evidence neither for the non-covalent interaction between the dye and the oligonucleotide nor the 

decomposition of the dye under the reaction condition. 

Labeling of the oligonucleotides was continued with a 13mer oligonucleotide modified with 

4-formyl N-Hexylbenzamide via C6 linker at the 5’ end. Sequence of the oligonucleotide is 

given below. 

5’(Aldehyde C6)-GTA AAA CGA CGG CCA GT 3’ 

ZnPc 4.15 was conjugated to oligonucleotide via reductive amination28,29 in the presence of large 

excess of NaCNBH3 as reducing reagent in pH 5.5 NaOAc buffer (Scheme 4.10). The reaction  
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Scheme 4.10 

was incubated in microwave at 70 °C as well as at room temperature overnight.  After the 

labeling processes, the conjugates were precipitated in ethanol and further purified by reverse-

phase HPLC (Figure 4.5).  Control experiments were performed under the same condition as the  
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Figure 4.5 Labeling of the oligonucleotide via reductive amination.  The data were extracted at 
680 nm wavelength.  
 
labeling reactions were done.  Analysis of the HPLC chromatograms of the control experiments 

revealed that there was not any non-covalent interaction between the Pc and the oligonucleotide. 

Also, the ZnPc 4.15 was stable in the presence of a reducing reagent under the reaction 

conditions.  While microwave irradiation did not significantly affect the labeling efficiency of 

the oligonucleotide, it reduced the reaction time from hours to minutes. 

Conjugation of Pcs to biomolecules continued with a double labeling of a oligonucleotide on 

both the 3’ and 5’ ends.  Since their report in 1996,30 doubly-dye-labeled oligonucleotide ((Pc)2-

DNA), referred to as molecular beacons, are widely used in various bioanalytical applications 

including detection of interactions of nucleic acids with proteins,31 PCR monitoring32,33 and 

nucleic acid analysis.34  

For this study, the designed (Pc)2-DNA had a stem containing 5 bases, and the loop 

consisting of 19 nucleotide bases.  Both the 5’ and 3’ends of the probe were modified with 4-

formyl N-hexylbenzamide via C6 linker (Figure 4.6). In order to utilize self-quenching ability of  
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Figure 4.6 Squence of the doubly-labeled oligonucleotide used in the labeling experiment. 

the Pcs due to the high degree of aggregation, both ends of the probe were labeled with the ZnPc 

4.15 instead of two different dyes serving as a quencher and a donor.  The ZnPc 4.15 was 

conjugated to both the 3’ and 5’ ends of the doubly-labeled oligonucleotide, using twice as much 

dye relative to labeling of 4.20, via reductive amination in the presence of large excess of the dye 

and NaCNBH3 in pH 5.5 NaOAc buffer (Scheme 4.11).  The labeling and the control reactions  
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Figure 4.7 HPLC chromatograms of the ZnPc 4.15 and the doubly-labeled oligonucleotide.  The 
data of the ZnPc 4.15 was extracted at 680 nm and the conjugation reaction’s data was extracted 
at 260 nm.  
 

were performed in microwave at 50 °C for 40 min (Scheme 4.11).  Ethanol precipitation of the 

conjugate was followed by isolation of the labeled molecular beacon by reverse phase HPLC 

(Figure 4.7). 

4.2.5 Solid-Phase Synthesis of Phthalocyanine-Peptide Conjugate 

Further investigation of conjugation of the Pcs to biomolecules continued by preparing a Pc-

peptide conjugate on the solid support.  In collaboration with Margaret W. Ndinguri, the 

conjugate was prepared using solid-phase Pc and peptide syntheses.  ZnPc 4.15 was synthesized 

in microwave with a minor change in the preparation of the polymer support 4.14. Limited 

amount of Lys was coupled to the resin to give 0.1 mmol/g of loading.  The rest of the active 

sites of the resin was acetylated before the phthalonitrile anchored to the α amine of the polymer 

bound Lys.  Since the peptide starts to grow on the ε amine of the Lys, it is necessary not to have 

a free Lys to prevent the formation of the Lys-peptide side product.  The prepared resin was 
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submitted to cyclotetramerization reaction.  Following the washing of symmetrically-substituted 

Pc 3.3a, Mtt protecting group on the ε-amine of the Lys was selectively removed by treating the 

resin with 2% TFA solution in CH2Cl2 without cleaving the Pc 4.15b from the polymer support 

(Scheme 4.12).  Cleavage of the Mtt group was observed by the collected yellow filtrate after 
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Scheme 4.12 

each wash of the polymer support with the cleavage solution.  The resin was washed with the 

acidic solution until a colorless filtrate was collected and the polymer support 4.22 was 

submitted to next step, anchoring of the amino acids to the free amine on the polymer support.  

Peptide synthesis on the solid support was done by Margaret W. Ndinguri using automated 

peptide synthesizer.  The product was cleaved from the resin under acidic conditions to give Pc-

peptide conjugate.  Analysis of the crude mixture by mass spectrometry showed the 
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corresponding m/z ion peak.  However, attempts to cyclisize the peptide before the cleavage step 

was not successful.   

The successful synthesis of the Pc-peptide conjugate on solid support was a demonstration 

of the stability of the Pc on solid support under strong basic conditions under which the peptide 

synthesis is done.  Using the same method, it is possible to synthesize wide variety of Pc-peptide 

conjugates in less then 3 days.   

4.3 Conclusion and Future Work 

Microwave assisted solid-phase synthesis of mono-amine functionalized Pcs was achieved 

in high yields and short amount of time relative mono-hydroxy functionalized Pcs as discussed in 

the Chapter 3.  Microwave irradiation not only improved the yield of the cyclotetramerization 

reaction but also reduced the reaction time from hours to minutes.   

From the results discussed through this chapter, we concluded that while outcome of the 

solid-phase cyclotetramerization reaction highly depends on the phthalonitrile loading of the 

resin, linker length and incoming reagent concentration, choice of solvent has a marginal effect 

on the purity of the product when a longer linker is used.  It is possible to improve the yield of 

the reaction by choosing a solvent in which the resin moderately swells.  Linker structure plays a 

crucial role during the reaction by regulating the site-site interactions. Comparison of two 

different types of linkers, Rink Amide and p-alkoxy benzyl, it is concluded that the every type of 

resin has a different phthalonitrile loading which needs to be determined during the optimization 

of the reaction in order to obtain pure AB3 type asymmetrically-substituted Pcs.  For instance, 

while with Rink Amide linker, complete site isolation was achieved at 0.1 mmol/g phthalonitrile 

loading at 0.8 M reaction concentration, the similar results were obtained at 0.28 mmol/g of 

phthalonitrile loading at 0.16 M concentration with p-alkoxy benzyl type linker.  
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Covalent conjugation of Pcs to biomolecules, oligonucleotide and peptide, was achieved 

employing well-established solid and solution phase synthetic methods.  While microwave 

irradiation did not significantly improve the labeling efficiency of the oligonucleotide, it greatly 

reduced the reaction time giving an opportunity to synthesize and isolate the labeled 

oligonucleotide in the same day.    

As a future work, using the same synthetic methods, it is possible to synthesize Pcs with a 

wide variety of substituent patterns to alter their chemical and photophysical properties for the 

need of biological and bioanalytical applications.  Alternative linkers can be explored to 

synthesize AB3 type asymmetrically-substituted Pcs with different functional groups such as 

carboxylic acid, hydroxylamine, or azide which gives a chance to use alternative conjugation 

strategies.  

4.4 Experimental 

4.4.1 General Experimental Information   

Unless otherwise indicated, all commercially available starting materials were used directly 

without any further purification. PEG-based Rink Amide Resin was obtained from Matrix-

Innovation.  SephadexTM LH-20, 18-111 µm, was used for purification of the asymmetrically-

substituted Pcs.  FT-IR spectra were obtained on Bruker Tensor 27 spectrometer.  Microwave 

reactions were performed in MARS Extraction system.  Unless otherwise indicated, MALDI-MS 

mass spectra of the compounds were obtained using CCA as a matrix.  Electronic absorption 

spectra were measured on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer. The HPLC 

chromatograms were obtained using a JASCO (Easton, MD) 2000-series HPLC equipped with a 

quaternary gradient pump, autosampler, and fluorescence and diode-array detectors. HPLC was 

performed using Zorbax, C18 5µm, 150 × 4.6 mm column with a 1 mL/min flow rate.  Three 

different solvent gradient conditions were used:  Condition A: HPLC was performed with 0.05 
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M TEAA in H2O and CH3OH as the eluants.  Column was initially held at 95% 0.1 M TEAA-5% 

CH3OH for 5 min and then concentration of CH3OH was ramped to the 95% in 30 min. and was 

held at that concentration for 5 min.  Column was washed with 100% CH3OH for 15 min. The 

column was allowed to equilibrate at the initial mobile phase conditions for 20 min before the 

next injection.  Condition B: 0.05M TEAA in a H2O and CH3OH-THF (80:20) was used as an 

eluting solvent.  Column was initially held at 50% 0.1 M TEAA, 50% CH3OH-THF (80:20) for 

5 min and than it was ramped to the 5% 0.05 M TEAA, 95% CH3OH-THF (80:20) in 30 min and 

held at that concentration for 5 min.  The column was washed with 100% CH3OH-THF (80:20) 

for 15 min.  The column was allowed to equilibrate at the initial mobile phase conditions for 

20 min before the next injection.  Condition C:  CH3OH was used as an eluting solvent.  Column 

was held at 100% CH3OH for 30 min.  The column was allowed to equilibrate at the initial 

mobile phase conditions for 20 min before the next injection.  Emission spectra were obtained 

using a FLUOROLOG-3 spectrofluorometer (Horiba Jobin Yvon, Edison, NJ) equipped with a 

450-W xenon lamp and a cooled Hamamatsu R928 photomultiplier operated at 900V in the 

photon-counting mode. A quartz cuvette with a 10 mm path length was utilized throughout these 

experiments.  All measurements were performed under ambient room conditions within 3 h of 

solutions preparation.  Stock solution and dilutions were prepared in anhydrous DMSO or THF.  

The quantum yields were calculated using a secondary standard method.35 Methylene blue, a dye 

with excitation/emission wavelengths similar to Pcs and an established quantum yield was used 

as a secondary standard. According to the approach, the integrated fluorescence intensity of the 

analyte (I) and standard (IR), the optical density of the analyte (OD) and the standard (ODR), and 

the refractive index of analyte solvent (n) and standard solvent (nR) are related to the quantum 

yield of the analyte (Q) as: 
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where QR is a quantum yield of the reference standard (0.03 for methylene blue). To account for 

incomplete spectra, the bands were extrapolated using appropriate fitting models whenever 

necessary.  In order to remove any amine containing compounds, all oligonucleotides were 

purified by ethanol precipitation before the conjugation reactions.  Oligonucleotides were 

dissolved in nuclease free water and their concentrations were calculated based on the absorption 

at 260 nm in their electronic absorption spectra.  Labeling buffers were prepared using 

corresponding salts in nuclease free water.  The pH values were adjusted using HCl and/or 

NaOH.  Labeling efficiencies of the conjugation reactions were calculated using the following 

equation.25 

Extent of Labeling % = ((A control 260 nm – A sample 260 nm) / (A control 260 nm)) x 100      

A control 260 nm : peak area (absorption at 260nm) of the unlabeled oligonucleotide in the control 

reaction (no dye present) 

A sample 260 nm : peak area (absorption at 260nm) of the unlabeled oligonucleotide in the post-

reaction  

4.4.2 Experimental Procedures 

General Procedure for Amino Acid Coupling to the Rink Amide Resin                    

Prior to the synthesis, the Rink Amide resin (0.4 g) with 0.52 mmol/g loading capacity was 

swelled in CH2Cl2 (20 mL) for 30 min.  The solvent was filtered off and CH2Cl2 (3 mL) was 

added to the well-swelled resin.  HOBt (0.83 mmol, 0.11 g), HBTU (0.83 mmol, 0.31 g) and the 

selected amino acid (0.83 mmol) were dissolved in DMF (1 mL) to have 0.2 M amino acid 

concentration in the reaction mixture.  The solution and DIEA (1.66 mmol, 0.29 mL) were added 

to the resin and the reaction flask was placed in a shaker and kept at room temperature for 2h.  
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The reaction was followed by bromophenol blue test:  A few resin beads were taken and placed 

in a small test tube.  The beads were washed with CH2Cl2 several times to remove the residual 

amount of DMF.  Couple of drops of 1% solution of bromophenol blue in acetonitrile was placed 

on the resin beads and the color change of the beads was observed. While yellow beads confirm 

the complete reaction, blue beads indicate the presence of free amine on the resin.  Following the 

bromophenol blue test, the resin was washed with CH2Cl2  (4 x 15 mL), DMF (3 x 15 mL) and 

CH2Cl2  (3 x 15 mL).   

General Procedure for Fmoc Cleavage 

 The resin was suspended in 20% solution of piperidine or 4-methyl piperidine in DMF (10 mL).  

The reaction was placed in a shaker and kept at room temperature for 10 min.  Following the 

filtration of the solution, the fresh cleavage cocktail (10 mL) was added to the resin and the 

reaction was shaken 10 more min. at room temperature.  The reaction was followed by 

bromophenol blue test.  The resin was washed with DMF (5 x 15 mL), CH2Cl2 (3 x 15 mL) and 

the resin was submitted to next amino acid coupling. 

General Procedure for Acetylation of the Polymer Support  

The resin was suspended in 0.28 M solution of DIEA in DMF (25 mL).  Ac2O (8.4 mmol, 0.8 

mL) was added to the suspension and the reaction was placed in a shaker and kept at room 

temperature for 3h.  The reaction was followed by bromophenol blue test.  Following the 

completion of the reaction, the resin was washed with DMF (5 x 15 mL) and CH2Cl2 (5 x 15 

mL).   

Polymer supported 4-(3,4-dicyanophenoxy)benzoic Acid (4.14) 

4-(3, 4-Dicyanophenoxy)benzoic acid (0.05 mmol, 13 mg), HOBt (0.05 mmol, 6.7 mg) and HBTU 

(0.05 mmol, 19 mg) were dissolved in DMF (1 mL).  The solution was added to the resin in 

CH2Cl2 (7 mL).  DIEA (0.1 mmol, 17.4 µL) was added to the suspension and the reaction flask 
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was placed in a shaker and kept at room temperature for 1h to give the resin 4.14 with 0.1 

mmol/g of loading.  (0.15 mmol of 4-(3,4-Dicyanophenoxy)benzoic acid with proportional amount 

of coupling reagents and DIEA were used to prepare the resin 4.14 with 0.3 mmol/g of 

phthalonitrile loading)  The resin was washed with CH2Cl2 (4 x 15 mL), DMF (2 x 15 mL) and 

CH2Cl2 (4 x 15 mL). FT-IR (KBr, cm-1): 3513, 3305, 3055, 2865, 2233, 1953, 1738, 1651, 1611, 

1589, 1536, 1507, 1487, 1454, 1348, 1324, 1293, 1248, 1209, 1176, 1093, 1035, 948, 840, 771  

Determination of Loading Capacity of the Phthalonitrile Bound Resin 

Before the acetylation step, ~ 50 mg of the resin was taken and placed in 5 mL syringe equipped 

with coarse frit and CH2Cl2 (0.5 mL) was added to the resin.  Commercially available Fmoc-Gly-

OH (0.1 mmol, 29.7 mg), HOBt (0.1 mmol, 13.5 mg) and HBTU (0.1 mmol, 38 mg) were 

dissolved in DMF (1 mL).  The solution and DIEA (0.2 mmol, 35 µL) were added to the 

suspension and the reaction was placed in a shaker and kept at room temperature for 2h.  The 

reaction was followed by bromophenol test.  Following the completion of the coupling, the resin 

was washed with DMF (4 x 5 mL) and CH2Cl2 (4 x 5 mL) and dried in the desicator for 4-5 h.  6-

7 mg of the dry resin was placed in the 3 mL syringe equipped with coarse frit and swelled in 

CH2Cl2 (1 mL) for 30 min.  Following the filtration of the CH2Cl2, the resin was placed in 20% 

piperidine or 4-methyl piperidine solution in DMF (1 mL) and kept in the cleavage solution for 20 

min.  The solution was collected by filtration and the resin was washed with CH3OH (3 x 2 mL).  

Combined filtrate solution (7 mL) was detected with electronic absorption spectrometry.  The 

loading capacity of the resin was calculated using the following equation: 

0.52 - (UV300 x 106 x 0.007L) / (7800 x # of mg of the resin) 

General Procedure for Synthesis of AB3 Type Pcs (4.15-4.18)  

The resin 4.14 (0.4 g) was swelled in BuOH (2 mL) for 30 min in the microwave vessel. 

Corresponding phthalonitrile  (5 mmol, xx g) and metal salt (1.4 mmol, xx g) were placed in a 20 

mL glass vial in BuOH (4.5 mL) and heated up to 90 °C in water bath.  DBU (2.8 mmol, 0.38 
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mL) was added to the suspension and the mixture was vigorously stirred until all the metal salt 

was dissolved.  The solution was quickly transferred to the microwave vessel, having the resin 

4.14 with BuOH (2 mL), and the screw-capped vessel was tightened.  The microwave vessel was 

equipped with the pressure and temperature probes and the reaction irradiated in the microwave 

at 850 W.  The temperature was ramped to 150 °C in 5 min. and held at the temperature for 40 

min.  The resin was washed, until a colorless filtrate was obtained, first with hot BuOH (12 x 25 

mL), and then hot CH2Cl2 (3 x 25 mL).  In the case of CuPc 4.18, the resin was washed with hot 

BuOH (10 x 25 mL), CH3OH (5 x 30 mL), CH2Cl2 (5 x 30 mL), CH3OH-BuOH (1:1; 8 x 30 mL) 

and finally with BuOH (3 x 30 mL).   

General Procedure for Cleavage of the AB3 type Pc (4.4-4.18) 

The resin was suspended into a solution of TFA-CH2Cl2-TIPS (20:78:2; 25 mL) and left in the 

shaker for 3h at room temperature.  Filtrate was evaporated to dryness and the crude mixture was 

purified by filtration through a LH-20 column using CH3OH as eluent.  For the purification and 

the analysis of the symmetrically substituted Pcs, see the experimental section in Chapter 3. 

ZnPc (4.8): 27% yield as a blue solid.  Condition A was employed to perform HPLC.    tR=33.24 

min.  MALDI-MS: Calcd C72H86N12O18Zn+: 1470.55; found: 1470.93 λmax (DMSO): 680 nm 

(logε=5.3).  λmax (em) (DMSO): 690 nm.  φ f : 0.10 

ZnPc (4.15): 28% yield as a blue solid.  Condition A was employed to perform HPLC.    

tR=29.45 min.  MALDI-MS: Calcd C66H75N11O15Zn+: 1325.47; found: 1324.98 λmax (DMSO): 

681 nm (logε=5.2). λmax (em) (DMSO): 691 nm.  φ f : 0.10 

ZnPc (4.16): 19% yield as a green solid.  Condition A was employed to perform HPLC.    

tR=34.77 min.  MALDI-MS: Calcd C66H75N11O12S3Zn+: 1373.41; found: 1373.69 λmax (DMSO): 

701 nm (logε=5.1).  λmax (em) (DMSO): 708 nm.  φ f : 0.09 
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ZnPc (4.17): 15% yield as a green solid.  Condition A was employed to perform HPLC.    

tR=30.37 min.  MALDI-MS: Calcd C87H117N11O21S6Zn+: 1907.60; found: 1907.77 λmax (DMSO): 

701 nm (logε=5.3).  λmax (em) (DMSO): 709 nm.  φ f : 0.11 

CuPc (4.18): 24% yield as a blue solid.  CuPc 4.18 could not be eluted from the column.  

MALDI-MS: Calcd C66H75CuN11O15
+: 1324.47; found: 1324.81 λmax (DMSO): 680 nm 

(logε=4.3).  λmax (em) n.d.  φ f : n.d. 

Preparation of Oligonucleotide-Pc Conjugate (4.19) 

To a 3.6 mM oligonucleotide solution in water (4.4 µL) in an Eppendorf tube, NaHCO3 buffer 

(pH=7.6; 60 µL), 10 mM ZnPc 4.15 solution in CH3OH (30 µL), 150 mM EDC solution in 

DMSO (5 µL) and 350 mM NHS solution in DMSO (5 µL) were added in the given order.  The 

Eppendorf tube was placed in a screw-capped microwave vessel containing enough water to 

surround the Eppendorf tube (~1.5 mL) and the vessel tightened.  The microwave vessel was 

equipped with the temperature and pressure probes and the reaction was irradiated at 400 W.  

The temperature was ramped to 75 °C in 1 min. and held at the set temperature for 30 min.  

Following the completion of the reaction, cold ethanol (300 µL) and 3M NaCl solution in water 

(10 µL) were added to reaction mixture and the suspension was placed in -20 °C and kept for an 

hour.  The suspension was centrifuged at 4 °C at 12,000 rpm for 30 min.  The precipitate was 

reconstituted in 0.05 M TEAA solution in water and isolated by HPLC in 35% labeling 

efficiency. Condition B was employed to perform HPLC.  tR=19.17 min. Two of the control 

experiments were also performed employing the same method using the reagents in the 

following ratios:  

Control Experiment 1. 3.6 mM oligonucleotide solution in water (4.4 µL) NaHCO3 buffer 

(pH=7.6; 60 µL), 10 mM ZnPc 4.15 solution in CH3OH (30 µL), and DMSO (10 µL)  
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Control Experiment 2. Water (4.4 µL) NaHCO3 buffer (pH=7.6; 60 µL), 10 mM ZnPc 4.15 

solution in CH3OH (30 µL), 150 mM EDC solution in DMSO (5 µL) and 350 mM NHS solution 

in DMSO (5 µL).   

Preparation of Oligonucleotide-Pc Conjugate (4.20) 

To a 4.3 mM oligonucleotide solution in water (4.4 µL) in an Eppendorf tube, NaOAc buffer 

(pH=5.5; 50 µL), 10 mM ZnPc 4.15 solution in CH3OH (51.6 µL) and 10 mM NaCNBH3 

solution in CH3OH (10 µL) were added in the given order. The reaction was incubated either at 

room temperature for 16 h or in microwave for 30 min.  The Eppendorf tube was placed in a 

screw-capped microwave vessel containing enough water to surround the Eppendorf tube (~1.5 

mL) and the vessel tightened.  The microwave vessel was equipped with temperature and 

pressure probes and the reaction was irradiated at 400 W.  The temperature was ramped to 70 °C 

in 1 min. and held at the set temperature for 30 min.  Following the completion of the reactions, 

cold ethanol (300 µL) and 3 M NaCl solution in water (10 µL) were added to reaction mixtures 

and the suspensions were placed in -20 °C and kept for an hour.  The suspensions were 

centrifuged at 4 °C at 12,000 rpm for 30 min. The precipitates were reconstituted in 0.05 M 

TEAA solution in water and isolated by HPLC in 79% labeling efficiency. (76% labeling 

efficiency was obtained when the reaction was incubated at room temperature.) Condition B was 

employed to perform HPLC.  tR=18.95 min.  ESI-TOF Calcd (M-3): 2255.14; found: 2255.14.  

Two of the control experiments were also performed employing the same methods using the 

reagents in the following ratios.   

Control Experiment 1.  4.3 mM oligonucleotide solution in water (4.4 µL) NaOAc buffer 

(pH=5.5; 50 µL), 10 mM ZnPc 4.15 solution in CH3OH (51.6 µL) and CH3OH (10 µL) 

Control Experiment 2.  Water (4.4 µL), NaOAc buffer (pH=5.5; 50 µL), 10 mM ZnPc 4.15 

solution in CH3OH (51.6 µL) and 10 mM NaCNBH3 solution in CH3OH (10 µL). 
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Preparation of Oligonucleotide-Pc Conjugate (4.21) 

To a 5 mM oligonucleotide solution in water (4 µL) in an Eppendorf tube, NaOAc buffer 

(pH=5.5; 50 µL), 20 mM ZnPc 4.15 solution in CH3OH (50 µL) and 10 mM NaCNBH3 solution 

in CH3OH (10 µL) were added in the given order. The Eppendorf tube was placed in a screw-

capped microwave vessel containing enough water to surround the Eppendorf tube (~1.5 mL) 

and the vessel tightened.  The microwave vessel was equipped with temperature and pressure 

probes and the reaction was irradiated at 400 W.  The temperature was ramped to 50 °C in 1 min. 

and held at the set temperature for 40 min.  Following the completion of the reaction, cold 

ethanol (300 µL) and 3 M NaCl solution in water (10 µL) were added to reaction mixture and the 

suspension was placed in -20 °C and kept for an hour.  The suspensions were centrifuged at 4 °C 

at 12,000 rpm for 30 min. The precipitate was reconstituted in 0.05 M TEAA solution in water 

and isolated by HPLC in 35 % labeling efficiency.  Condition B was employed to perform 

HPLC.  tR=22.57 min.  Two of the control experiments were also performed employing the same 

methods using the reagents in the following ratios. 

Control Experiment 1.  5 mM oligonucleotide solution in water (4 µL) NaOAc buffer (pH=5.5; 

50 µL), 20 mM ZnPc 4.15 solution in CH3OH (50 µL) and CH3OH (10 µL) 

Control Experiment 2.  Water (4µL), NaOAc buffer (pH=5.5; 50 µL), 10 mM ZnPc 4.15 

solution in CH3OH (50 µL) and 10 mM NaCNBH3 solution in CH3OH (10 µL). 

Selective Cleavage of the Mtt protecting group  (4.22) 

The Pc bound polymer support was suspended into a solution of TFA-CH2Cl2-TIPS (2:96:2; 10 

mL) and left in the shaker for 2 min. and the solution was filtered off.  This step was repeated for 

10 times using 10 mL f cleavage cocktail at a time.  The resin was washed with CH2Cl2 (10 X 10 

mL) and submitted to the next step. 
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Preparation of Pc-Peptide Conjugate (4.23) 

ZnPc 4.15 was prepared as discussed above and the resin was placed in automated peptide 

synthesizer with the appropriate amino acids and the reagents.  Following the conjugation, ~ 50 mg 

of the polymer-bound Pc-peptide conjugate was cleaved using TFA-CH2Cl2-TIPS (30:68:2; 2 mL) 

solution.  The crude product was obtained in ~ 15% yield and analyzed by mass spectrometry. 

MALDI-MS: Calcd C102H138N24O29S2Zn+: 2290.88; found: 2290.37 
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Chapter 5 
In vitro Biological Evaluation of Oligoethyleneglycol Substituted Phthalocyanines for 
Photodynamic Therapy  
 
5.1 Introduction 
 

Long wavelength absorption in the electromagnetic spectrum (650-800 nm) coupled with 

high extinction coefficients and low photobleaching yields, make phthalocyanines (Pcs) 

promising drug, photosensitizer candidates for photodynamic therapy (PDT).  PDT is a treatment 

in which the combination of dye, light, and oxygen causes photochemically induced cell death.1,2 

The PDT agent, which is injected to the blood stream or other biological fluid (eye)3,4 selectively 

localizes in the neoplastic tissues in a mechanism that is not fully understood.  Irradiation of the 

localized photosensitizer with a specific wavelength of light results in death of the malignant 

tissue via formation of the cytotoxic species such as singlet oxygen, super oxide and radical 

hydroxyl.1,5   

Figure 5.1 shows the simplified Jablonski diagram for the PDT process.6  Excitation of the 

photosensitizer from its singlet ground state (S0) produces an excited state (S1) (1) sensitizer.  

The sensitizer, existing in the lowest excited singlet state (S1), can relax to the ground state (S0) 

via different pathways including fluorescence (emission of light) (2), and non-radiative decay 

(dissipation of the energy as heat) (3).  An alternative way to return to the ground state is that
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Figure 5.1 Simplified Jablonski diagram for the PDT process. 
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the sensititzer can undergo the non-radiative process of inter-system crossing to give the triplet 

state molecule (T1) (4). Since the decay of the triplet to singlet state, phosphorescence (5), is 

forbidden, this transition is relatively slow.  Therefore, the triplet state sensitizer has time to react 

with its chemical environment.  The triplet sate sensitizer may react with biomolecules 

depending on the environment and concentration of species in two different ways known as Type 

I and Type II reactions.6  The type I mechanism involves the formation of radical ions via direct 

electron transfer from the photosensitizer or electron abstraction from a substrate molecule such 

as endogenous amino acids and alcohols (6).7  Formed radicals rapidly react with molecular 

oxygen resulting in production of highly reactive oxygen species such as peroxide anions and 

superoxide, which subsequently attack the cellular targets.  The type II mechanism involves 

production of singlet oxygen, the lowest excited state of the molecular oxygen, by energy 

transfer from photosensitizer to ground state oxygen (7).  Singlet oxygen is very toxic to tumor 

cells,8 and it shows a limited radius of action (< 0.02 µm) with a life time shorter than 0.04 

microseconds.9  Thus, the toxicity of the photosensitizer is limited by its localized area. After the 

singlet oxygen production, the photosensitizer can return to its starting point where it is available 

to start the whole process again. The type II process is usually preferred at low concentration of 

substrate and high concentration of oxygen.  In PDT, it is difficult to distinguish between two 

mechanisms.  There is probably a contribution from both Type I and Type II mechanisms.     

 PDT has been used as an alternative method for treatment of cancer and it has been 

evaluated in various types of cancers including early stage head and neck,10 esophageal,11 lung,12 

bladder,13 as well as brain tumors.14  Currently, there are two drugs, Photofrin15 and Visudyne,16 

approved by United States Food and Drug Administration (FDA) to be used in PDT.  However, it 

is known that the Photofrin, a synthetic porphyrin, is not an ideal drug for PDT for the following 

reasons: 1) Since Photofrin consists of a mixture of porphyrins, an unknown chain length of 
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hematoporphyrin oligomer, the identity of the active component is debatable;6  2) the wavelength 

used to photoactivate the Photofrin, 630 nm, can only penetrate tissue to a depth of a few mm due 

to the endogenous chromophores and light scattering;17 3) dispersion of the Photofrin may take 

up to six weeks which makes the patient photosensitive to sunlight.6   These drawbacks of the 

Photofrin have brought up a new research area regarding the synthesis and evaluation of next 

generations of photosensitizers that are more effective than the currently used FDA approved 

drugs.   

A promising photosensitizer should be a pure compound and exhibit the following 

characteristics: 1) Strong absorption in the near-IR or IR region of the electromagnetic spectrum; 

2) high quantum yield of triplet formation; 3) high singlet oxygen quantum yield; 4) low dark 

toxicity and strong phototoxicity upon irradiation with a specific wavelength of light; 5) high 

selectivity for a malignant tissue over a healthy tissue; 6) rapid clearance from the healthy tissue 

and blood stream.  In addition, a practical and scalable synthesis of the drug is desirable.  With 

the aim of the synthesis of a new generation of porphyrin- and Pc-based drugs for PDT, 

tremendous effort has been devoted over the last two decades.18-21  Consequently, a number of 

porphyrin-and Pc-based drugs are being evaluated in clinical trials.17  Recently, phase I clinical 

studies of SiPc for cutaneous malignancies were completed.22 Also, phase I clinical trials of SiPc 

for PDT for the treatment of pre-malignant and malignant skin conditions are expected to be 

completed by the end of 2008.23 Another Pc, tetra-sulfonated ZnPc, was evaluated in phase I 

clinical trials for PDT in dogs having naturally occurring tumors.24  The tetra-sulfonated ZnPc 

gave promising results for further studies.    

Phthalocyanines have attracted much interest due to the their red shifted Q band and large 

extinction coefficients relative to porphyrin analogues.25  The red shifted absorption and 

excitation wavelength provide a significant advantage in increased tissue penetration. Their low 
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toxicity and high phototoxicity toward cells make them promising drug candidate for PDT.  In 

this chapter, in vitro evaluation of oligoethyleneglycol-substituted Pcs is discussed.     

5.2 Results and Discussion 

Dark toxicity, phototoxicity, cellular uptake as well as intracellular localization of 

oligoethyleneglycol-substituted ZnPcs in human carcinoma HEp2 cells were evaluated.  The 

structures of the Pcs used for in vitro studies are shown in Scheme 5.1.  ZnPcs 3.8a, 3.8b and 

3.10b precipitated in the cell medium.  Thus, the data is not presented for these compounds.  

While precipitation of the ZnPcs 3.8a and 3.8b, bearing octa-and hexa-benzyl rings, respectively, 
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could be due to the their hydrophobic nature and high tendency to aggregate, thio ether 

oligoethyleneglycol-substituted ZnPc 3.10b could precipitate due to the having octa sulfur atoms 

which are much larger than oxygen. 

5.2.1 Time-Dependent Cellular Uptake 

The time-dependent cellular uptake of triethylene glycol-substituted ZnPcs 3.4a, 3.9b and 

3.7a, 3.7b, decorated with dietyhlene glycol via benzyl linkage, were evaluated in human 

carcinoma HEp2 cells over a 24h time period.  As shown in Figure 5.2, while ZnPcs 3.7a, 3.7b 

and 3.9b were rapidly accumulated in the first 4h, ZnPc 3.4a, bearing mono-hydroxyl and tri-

triethylene glycol chains, continued to accumulate for 24h time period and was the most readily 

taken up by the cells.  It is known that accumulation of porphyrinoids in cells is accentuated by 

increased amphiphilic character of them.19,25-27 Consequently, the most hydrophobic ZnPc 3.7b, 

 

 
Figure 5.2 Time-dependent cellular uptake of ZnPcs into HEp2 cells at 10 µM concentration.  
3.7b (red), 3.9b (green), 3.7a (blue), and 3.4a (yellow).  
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bearing four benzyl rings, accumulated in the cells approximately three times less than the 

asymmetrically substituted version ZnPc 3.7a having tri-benzyl groups and mono-hydroxyl 

group. 

5.2.2 Dark Cytotoxicity 
 

Dark toxicity of short oligoethyleneglycol-substituted ZnPcs 3.4a, 3.7a, 3.7b and 3.9b 

toward human carcinoma HEp2 cells was evaluated.  Figure 5.3 shows the dark toxicity of the 

ZnPcs 3.4a, bearing mono-hydroxyl and tri-triethylene glycol units, and tetra-thio ether 

triethylene glycol-substituted 3.9b at concentrations up to 100 µM.  Dark toxicity of the ZnPcs 

3.7a and 3.7b, bearing tri-and tetra benzyl units, respectively, at concentration up to 10 µM are 

shown in Figure 5.4.  While the tetra- or tri-benzyl ether substituted ZnPcs 3.7a and 3.7b were 

found to be non-toxic to HEp2 cells under the test conditions up to 10 µM concentration

 

 

Figure 5.3 Dark cytotoxicity of ZnPcs toward HEp2 cells at 100 µM concentration.  3.4a (blue), 
3.9b (red). 
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 (Figure 5.4), tri-triethylene glycol bearing ZnPc 3.4a exhibited low dark toxicity up to 20 µM 

concentration (Figure 5.3).  Toxicity of 3.4a increased with increasing concentration up to 100 

µM.  ZnPc 3.9b, substituted with thio ether oligoethyleneglycol chains, was found to be the most 

toxic among the tested ZnPcs with measurable dark toxicity at an estimated IC50 of ~ 85 µM 

concentration (Figure 5.3). 

 

Figure 5.4 Dark cytotoxicity of ZnPcs toward HEp2 cells at 10 µM concentration.  3.7b 
(yellow), 3.7a (purple). 
 

5.2.3 Phototoxicity 

The HEp2 cells, loaded with short oligoethyleneglycol bearing ZnPcs 3.4a, 3.7a, 3.7b and 

3.9b, were exposed to light.  The total light exposure was approximately 0.5 J/cm2. Figure 5.5 

shows the phototoxicity of the ZnPcs to 10 µM concentration.   Tri-triethylene glycol-substituted 

ZnPc 3.4a, which was the most taken up by cells, exhibited high phototoxicity with an estimated 

IC50 of ~ 1 µM up to 10 µM concentration. Benzyl ether bearing ZnPcs 3.7a and 3.7b showed 
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close phototoxicity results with an estimated IC50 of ~ 0.6 µM and of ~ 0.8 µM concentrations, 

respectively.  Vicente et. al., published similar results with cationic ZnPc, peripherally decorated 

with octa-triethylene glycol chains.26  The ZnPc was highly phototoxic toward human HEp2 cells 

with an IC50 of  ~2.2 µM.26  In another paper, Vicente et al., evaluated hexadeca-carboxylate 

substituted ZnPc toward human HEp2 cells.28  Water-soluble ZnPc found to be phototoxic 

toward human HEp2 cells with an IC50 of 4.6 µM.  Short oligoethyleneglycol chains bearing 

ZnPcs 3.7a and 3.7b, having a similar substituent pattern with the published cationic ZnPc, were 

found to be more phototoxic toward human carcinoma cells with IC50 < 1 µM (Figure 5.5). 

 

 

Figure 5.5 Phototoxicity of ZnPcs toward HEp2 cells at 10 µM concentration.  3.7a (red), 3.7b 
(blue), 3.4a (green), and 3.9a (yellow). 

 

 Comparison of the phototoxicity results of the tri-triethylene glycol-substituted ZnPc 3.4a 

with tetra-benzyl ether bearing ZnPc 3.7b suggested that the phototoxicity of the Pcs is not 

proportional to extent of accumulation of them in the cells.  ZnPc 3.4a, decorated with 

triethylene glycol chains, with the highest cellular uptake value is found to be less toxic than the 
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tetra-benzyl ether bearing ZnPc 3.7b.  As previously observed,27 this result indicates that 

probably short oligoethyleneglycol-substituted ZnPc 3.4a has the most enhanced amphiphilic 

character to cross the HEp2 cell membrane, which results in higher accumulation in the cells.  

Since phototoxicity of Pcs is also related with the ability of them to generate reactive oxygen 

species, it can be concluded that the ZnPc 3.7b, decorated with tetra-benzyl ether, is capable of 

generating the toxic species in high concentrations to destroy the higher percentage of the human 

HEp2 cells.  

Among the short Polyethylene glycol (PEG) chains bearing Pcs, thio ether 

oligoethyleneglycol-substituted ZnPc 3.9b was found to be the least phototoxic with an 

estimated IC50 of ~ 8 µM.  The low phototixicty of the thio ether bearing ZnPc 3.9b can be due 

to the low cellular uptake as well as low concentration of generated reactive oxygen species.  

5.2.4 Intracellular Localization  

Fluorescence microscopy was used to evaluate the preferential sites of subcellular 

localization of short oligoethyleneglycol bearing ZnPcs 3.4a, 3.7a, 3.7b and 3.9b.  The HEp2 

cells were exposed to 10 µM Pc concentrations overnight. The fluorescence patterns of the Pcs 

were presented in Figures 5.6-5.9. For co-localization experiments, the cells were incubated 

concurrently with the specific organelle tracers.  All Pcs are mainly localized in lysosomes and 

endoplasmic reticulum.  It is known that hydrophilic and/or aggregated porphyrinoids are taken 

up into the cells by pinocystosis and/or endocytosis in which the compound travels within small 

vesicles.1  Since these vesicles are fused with lysosomes and endosomes, and the light exposure 

permeabilize the lysosomes, the porphyrinoid derivatives are most likely be localized in 

lysosomes.  Our results are in agreement with the previously reported subcellular localization of 

Pc-peptide conjugates and PEG containing porphyrins.19,29,30  
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Figure 5.6 Intracellular localization of ZnPc 3.4a in HEp2 cells at 10 µM for 24 h.  (a) phase 
contrast; (b) Pc fluorescence; (c) BODIPY FL- C5-Ceramide fluorescence (Golgi label); (d) 
overlay with Pc; (e) LysoSensor fluorescence (lysosome label); f: overlay; (g) MitoTracker 
fluorescence (mitochondria label); (h) overlay; (i) ERTracker Green FM fluorescence (ER label); 
(j) overlay. Scale bar: 10 µm. 
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Figure 5.7 Intracellular localization of ZnPc 3.7a in HEp2 cells at 10 µM for 24 h.  (a) phase 
contrast; (b) Pc fluorescence; (c) BODIPY FL- C5-Ceramide fluorescence (Golgi label); (d) 
overlay with Pc; (e) LysoSensor fluorescence (lysosome label); f: overlay; (g) MitoTracker 
fluorescence (mitochondria label); (h) overlay; (i) ERTracker Green FM fluorescence (ER label); 
(j) overlay. Scale bar: 10 µm. 
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Figure 5.8 Intracellular localization of ZnPc 3.7b in HEp2 cells at 10 µM for 24 h.  (a) phase 
contrast; (b) Pc fluorescence; (c) BODIPY FL- C5-Ceramide fluorescence (Golgi label); (d) 
overlay with Pc; (e) LysoSensor fluorescence (lysosome label); f: overlay; (g) MitoTracker 
fluorescence (mitochondria label); (h) overlay; (i) ERTracker Green FM fluorescence (ER label); 
(j) overlay. Scale bar: 10 µm. 
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Figure 5.9 Intracellular localization of ZnPc 3.9b in HEp2 cells at 10 µM for 24 h.  (a) phase 
contrast; (b) Pc fluorescence; (c) BODIPY FL- C5-Ceramide fluorescence (Golgi label); (d) 
overlay with Pc; (e) LysoSensor fluorescence (lysosome label); f: overlay; (g) MitoTracker 
fluorescence (mitochondria label); (h) overlay; (i) ERTracker Green FM fluorescence (ER label); 
(j) overlay. Scale bar: 10 µm. 
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5.3 Conclusion 

While benzyl ether bearing ZnPcs 3.7a and 3.7b were non-toxic to the human HEp2 cells, 

short oligoethyleneglycol-substituted ZnPcs 3.4a and 3.9b exhibited measurable toxicity to the 

cells.  The ZnPc 3.7a, bearing mono-hydroxyl and tri-diethylene glycol benzyl ether, was found 

to be the most phototoxic with an estimated IC50 of~0.6 µM.  Tetra diethylene glycol benzyl 

ether substituted ZnPc 3.9b, the least taken up by the cells, was the least phototoxic (IC50 of ~ 8 

µM) and the most toxic (IC50 of ~ 85 µM) to the carcinoma cells.  The preferential sites of 

subcellular localization of the Pcs were found to be lysosomes and endoplasmic reticulum. 

5.4 Experimental   

Oligoethyleneglycol-substituted ZnPcs were evaluated in vitro by Mr. Tim Jensen in the Life 

Science Building at Louisiana State University.  

Cell Culture 

All tissue culture media and reagents were obtained from Invitrogen. HEp2 cells were obtained 

from ATCC and maintained in a 50:50 mixture of DMEM:Advanced MEM containing 5% FBS. 

Cells were subcultured biweekly to maintain subconfluent stocks. 

Time-dependent Cellular Uptake  

HEp2 cells were plated at 10000 per well in a Costar 96 well plate and allowed to grow 

overnight. Compound stocks were prepared in DMSO at a concentration of 10 mM. Compound 

was then diluted in medium to final working concentrations.  Cells were exposed to 10 µM 

compound for 0, 1, 2, 4, 8, and 24 hours. Uptake was stopped by removing the loading medium 

and washing the cells with PBS. Cells were solubilized by the addition of 100 µL of 0.25% 

Triton X-100 (Calbiochem) in PBS. To determine compound concentration, fluorescence 

emission was read at 670/700 nm (excitation/emission) using a BMG FLUO star plate reader. 

Cell numbers were quantified using CyQuant reagent (Molecular Probes). 
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Cytotoxicity Assay 

HEp2 cells were plated as described above and allowed 36-48h to attach. Cells were then 

exposed to various concentrations of compound up to 100 µM and incubated overnight. The 

loading medium was then removed and the cells fed medium containing CellTitre Blue 

(Promega) as per manufacturer’s instructions. Cell viability was then measured by reading the 

fluorescence at 520/584 nm using a BMG FLUOstar plate reader. Signal was normalized to 

100% viable (untreated cells) and 0% viable (cells treated with 0.2% saponin (Sigma)). 

Phototoxicity Assay 

HEp2 cells were prepared as per the cytotoxicity assay.  After compound loading, the medium 

was removed and replaced with medium containing 50 mM HEPES pH 7.4.  Cells were then 

placed on ice and exposed to light from a 100W halogen lamp filtered through a 610nm long 

pass filter (Chroma) for 10 minutes. An inverted plate lid filled with water to a depth of 5mm 

acted as an IR filter. The total light exposure was approximately 0.5 J/cm2. Cells were then 

returned to the incubator overnight and assayed for viability as described for the cytotoxicity 

assay. 

Intracellular Localization 

HEp2 cells were plated on LabTek 2 chamber coverslips and incubated overnight.  Cells were 

then exposed to 10  µM of each Pc overnight.  For co-localization experiments using organelle 

tracers, cells were incubated concurrently with compound the following morning for 30 minutes 

with the following organelle tracers: MitoTracker Green (Molecular Probes) 250 nM, 

LysoSensor Green (Molecular Probes) 50nM, DiOC6 (Molecular Probes) 5 µg/ml. Slides were 

then washed 3 times with growth medium and fed medium containing 50 mM HEPES pH 7.4. 

Fluorescent microscopy was performed using a Zeiss Labovert 200M inverted fluorescent 

microscope fitted with a standard FITC filter set (Ex/Em 470nm/540nm) for organelle tracers 
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and a 660nm/687nm set for compound detection (Chroma).  Images were acquired with a Zeiss 

Axiocam MRM CCD camera fitted to the microscope.  
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Appendix A- X-Ray Diffraction Data 
 

A.1 Single Crystal X-ray Diffraction Data 

N-(3,4-Dicyanophenyl)-4-nitrobenzamide (2.6) 

O2N

N
H

O
CN

CN

 

Crystal data 
C15H8N4O3·C3H6O1 F000 = 364 
Mr = 350.33 Dx = 1.387 Mg m−3 
 
Triclinic, P¯1                                           Mo Kα radiation  
                                                                   λ = 0.71073 Å 
 
Hall symbol: -P 1 Cell parameters from 2870 reflections  
a = 7.901 (5) Å 
b = 10.006 (6) Å θ = 2.5–26.0° 
c = 11.698 (10) Å µ = 0.10 mm−1 
α = 107.47 (2)° T = 110 K 
β = 100.06 (2)°  
γ = 100.96 (2)° Lath, colorless 
V = 839.1 (10) Å3 0.50 × 0.22 × 0.01 mm 
Z = 2  
  

Data collection 
KappaCCD (with Oxford Cryostream) Diffractometer 3207 independent reflections 
 
 
Radiation source: fine-focus sealed tube 1196 reflections with I > 2σ(I) 
Monochromator: graphite Rint = 0.125 
 θmax = 26.1° 
T = 110 K θmin = 2.7° 
P =  kPa h = −9→9 
ω scans with κ offsets k = −12→12 
Absorption correction: none l = −14→14 
10559 measured reflections  
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Refinement 

Refinement on F2                Secondary atom site location: difference Fourier map   
Least-squares matrix: full    Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.105                                                              H-atom parameters constrained 

wR(F2) = 0.317                                                          w = 1/[σ2(Fo
2) + (0.0878P)2 + 2.757P]  

                                                                                              where P = (Fo
2 + 2Fc

2)/3 
S = 1.05                   (Δ/σ)max < 0.001 
3207 reflections                Δρmax = 0.34 e Å−3 
237 parameters              Δρmin = −0.35 e Å−3                      
                                                                                                            Extinction correction: none 
Primary atom site location:                                                 structure-invariant direct methods
  
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
      x      y      z Uiso*/Ueq  
O1 0.2820 (7) 0.7646 (6) 0.5841 (5) 0.0445 (15)  
O2 0.6866 (8) 0.8975 (7) 0.1425 (6) 0.0650 (19)  
O3 0.5433 (8) 0.6875 (7) 0.0143 (6) 0.0632 (18)  
N1 0.2723 (7) 0.5229 (6) 0.5089 (6) 0.0362 (17)  
H1N 0.2897 0.4551 0.4473 0.043*  
N2 0.5892 (10) 0.7803 (9) 0.1190 (8) 0.051 (2)  
N3 −0.1028 (9) 0.0235 (8) 0.6149 (7) 0.057 (2)  
N4 −0.0310 (10) 0.2994 (7) 0.9457 (8) 0.057 (2)  
C1 0.3078 (10) 0.6611 (9) 0.5068 (8) 0.041 (2)  
C2 0.3868 (9) 0.6832 (8) 0.4027 (7) 0.035 (2)  
C3 0.4972 (10) 0.8172 (8) 0.4240 (8) 0.041 (2)  
H3 0.5254 0.8891 0.5039 0.049*  
C4 0.5672 (10) 0.8500 (9) 0.3345 (8) 0.042 (2)  
H4 0.6461 0.9418 0.3511 0.050*  
C5 0.5190 (9) 0.7450 (8) 0.2190 (8) 0.0349 (19)  
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C6 0.4094 (10) 0.6102 (8) 0.1892 (8) 0.045 (2)  
H6 0.3806 0.5402 0.1084 0.054*  
C7 0.3409 (10) 0.5803 (9) 0.2854 (8) 0.043 (2)  
H7 0.2624 0.4885 0.2692 0.052*  
C8 0.2106 (10) 0.4803 (9) 0.6010 (8) 0.040 (2)  
C9 0.1234 (9) 0.3346 (8) 0.5721 (7) 0.0358 (19)  
H9 0.1061 0.2673 0.4913 0.043*  
C10 0.0637 (10) 0.2896 (8) 0.6599 (8) 0.037 (2)  
C11 0.0864 (10) 0.3873 (8) 0.7795 (8) 0.040 (2)  
C12 0.1759 (10) 0.5315 (8) 0.8095 (8) 0.045 (2)  
H12 0.1961 0.5974 0.8913 0.054*  
C13 0.2352 (10) 0.5793 (8) 0.7221 (8) 0.041 (2)  
H13 0.2930 0.6787 0.7424 0.049*  
C14 −0.0299 (11) 0.1393 (10) 0.6326 (8) 0.042 (2)  
C15 0.0211 (12) 0.3379 (9) 0.8719 (9) 0.049 (2)  
O4 0.3267 (7) 0.2759 (6) 0.3298 (5) 0.0450 (15)  
C16 0.2448 (12) 0.1726 (9) 0.2362 (9) 0.043 (2)  
C17 0.3360 (11) 0.0683 (8) 0.1711 (8) 0.050 (2)  
H17A 0.4638 0.1013 0.2105 0.076*  
H17B 0.3168 0.0619 0.0843 0.076*  
H17C 0.2879 −0.0274 0.1752 0.076*  
C18 0.0522 (12) 0.1477 (11) 0.1784 (9) 0.069 (3)  
H18A −0.0022 0.2053 0.2381 0.103*  
H18B −0.0078 0.0446 0.1540 0.103*  
H18C 0.0401 0.1769 0.1052 0.103*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.044 (3) 0.037 (3) 0.051 (4) 0.012 (3) 0.011 (3) 0.012 (3) 
O2 0.075 (4) 0.057 (4) 0.056 (4) −0.005 (4) 0.021 (4) 0.019 (4) 
O3 0.078 (4) 0.050 (4) 0.052 (5) 0.003 (3) 0.016 (4) 0.011 (4) 
N1 0.038 (4) 0.030 (4) 0.046 (5) 0.013 (3) 0.017 (3) 0.013 (3) 
N2 0.051 (5) 0.044 (5) 0.058 (6) 0.013 (4) 0.010 (4) 0.019 (5) 
N3 0.057 (5) 0.053 (5) 0.057 (6) 0.004 (4) 0.017 (4) 0.017 (4) 
N4 0.074 (5) 0.035 (4) 0.065 (6) 0.011 (4) 0.030 (5) 0.014 (4) 
C1 0.032 (5) 0.042 (5) 0.047 (6) 0.009 (4) 0.005 (4) 0.017 (5) 
C2 0.030 (4) 0.032 (5) 0.036 (5) 0.004 (4) 0.006 (4) 0.006 (4) 
C3 0.035 (4) 0.030 (5) 0.045 (6) −0.002 (4) 0.005 (4) 0.006 (4) 
C4 0.042 (5) 0.036 (5) 0.048 (6) 0.010 (4) 0.011 (4) 0.016 (5) 
C5 0.031 (4) 0.034 (5) 0.047 (6) 0.011 (4) 0.016 (4) 0.020 (4) 
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C6 0.053 (5) 0.027 (5) 0.048 (6) 0.003 (4) 0.009 (5) 0.008 (4) 
C7 0.041 (5) 0.034 (5) 0.051 (6) 0.003 (4) 0.006 (4) 0.018 (5) 
C8 0.037 (5) 0.041 (5) 0.040 (6) 0.012 (4) 0.009 (4) 0.012 (4) 
C9 0.040 (5) 0.030 (5) 0.030 (5) 0.007 (4) 0.008 (4) 0.002 (4) 
C10 0.037 (5) 0.035 (5) 0.040 (6) 0.018 (4) 0.011 (4) 0.010 (4) 
C11 0.033 (4) 0.030 (5) 0.051 (6) −0.004 (4) 0.010 (4) 0.013 (4) 
C12 0.043 (5) 0.036 (5) 0.047 (6) 0.005 (4) 0.011 (4) 0.006 (4) 
C13 0.045 (5) 0.036 (5) 0.045 (6) 0.014 (4) 0.016 (4) 0.016 (4) 
C14 0.046 (5) 0.038 (5) 0.043 (6) 0.003 (4) 0.007 (4) 0.021 (4) 
C15 0.064 (6) 0.036 (5) 0.051 (6) 0.021 (4) 0.013 (5) 0.016 (5) 
O4 0.055 (4) 0.034 (3) 0.051 (4) 0.013 (3) 0.015 (3) 0.020 (3) 
C16 0.057 (6) 0.031 (5) 0.050 (6) 0.014 (4) 0.010 (5) 0.025 (5) 
C17 0.052 (5) 0.033 (5) 0.057 (6) 0.006 (4) 0.017 (5) 0.005 (4) 
C18 0.066 (7) 0.084 (8) 0.067 (7) 0.028 (6) 0.019 (6) 0.035 (6) 
 
Geometric parameters (Å, °) 
O1—C1 1.231 (9) C8—C9 1.398 (10) 
O2—N2 1.196 (8) C8—C13 1.419 (11) 
O3—N2 1.236 (9) C9—C10 1.360 (10) 
N1—C1 1.366 (9) C9—H9 0.9500 
N1—C8 1.400 (9) C10—C11 1.404 (10) 
N1—H1N 0.8800 C10—C14 1.455 (11) 
N2—C5 1.484 (10) C11—C12 1.387 (10) 
N3—C14 1.131 (9) C11—C15 1.449 (12) 
N4—C15 1.152 (10) C12—C13 1.368 (10) 
C1—C2 1.515 (11) C12—H12 0.9500 
C2—C3 1.379 (10) C13—H13 0.9500 
C2—C7 1.382 (10) O4—C16 1.227 (9) 
C3—C4 1.360 (11) C16—C17 1.480 (11) 
C3—H3 0.9500 C16—C18 1.493 (12) 
C4—C5 1.375 (11) C17—H17A 0.9800 
C4—H4 0.9500 C17—H17B 0.9800 
C5—C6 1.364 (10) C17—H17C 0.9800 
C6—C7 1.415 (11) C18—H18A 0.9800 
C6—H6 0.9500 C18—H18B 0.9800 
C7—H7 0.9500 C18—H18C 0.9800 
C1—N1—C8 125.4 (7) C10—C9—H9 120.1 
C1—N1—H1N 117.3 C8—C9—H9 120.1 
C8—N1—H1N 117.3 C9—C10—C11 121.1 (7) 
O2—N2—O3 122.7 (8) C9—C10—C14 121.3 (8) 
O2—N2—C5 118.9 (8) C11—C10—C14 117.6 (7) 
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O3—N2—C5 118.5 (8) C12—C11—C10 119.4 (8) 
O1—C1—N1 123.9 (7) C12—C11—C15 120.1 (8) 
O1—C1—C2 120.1 (7) C10—C11—C15 120.5 (7) 
N1—C1—C2 115.9 (7) C13—C12—C11 120.4 (8) 
C3—C2—C7 118.9 (7) C13—C12—H12 119.8 
C3—C2—C1 117.8 (7) C11—C12—H12 119.8 
C7—C2—C1 123.0 (7) C12—C13—C8 120.0 (7) 
C4—C3—C2 122.2 (8) C12—C13—H13 120.0 
C4—C3—H3 118.9 C8—C13—H13 120.0 
C2—C3—H3 118.9 N3—C14—C10 177.9 (9) 
C3—C4—C5 117.3 (8) N4—C15—C11 179.5 (9) 
C3—C4—H4 121.3 O4—C16—C17 120.9 (8) 
C5—C4—H4 121.3 O4—C16—C18 122.9 (8) 
C6—C5—C4 124.5 (8) C17—C16—C18 116.2 (8) 
C6—C5—N2 117.3 (8) C16—C17—H17A 109.5 
C4—C5—N2 118.1 (7) C16—C17—H17B 109.5 
C5—C6—C7 116.2 (8) H17A—C17—H17B 109.5 
C5—C6—H6 121.9 C16—C17—H17C 109.5 
C7—C6—H6 121.9 H17A—C17—H17C 109.5 
C2—C7—C6 120.8 (7) H17B—C17—H17C 109.5 
C2—C7—H7 119.6 C16—C18—H18A 109.5 
C6—C7—H7 119.6 C16—C18—H18B 109.5 
C9—C8—N1 118.4 (7) H18A—C18—H18B 109.5 
C9—C8—C13 119.3 (7) C16—C18—H18C 109.5 
N1—C8—C13 122.3 (7) H18A—C18—H18C 109.5 
C10—C9—C8 119.8 (8) H18B—C18—H18C 109.5 
C8—N1—C1—O1 −3.2 (12) C1—N1—C8—C9 158.3 (7) 
C8—N1—C1—C2 175.5 (7) C1—N1—C8—C13 −22.5 (11) 
O1—C1—C2—C3 28.2 (11) N1—C8—C9—C10 179.3 (7) 
N1—C1—C2—C3 −150.6 (7) C13—C8—C9—C10 0.0 (11) 
O1—C1—C2—C7 −146.0 (8) C8—C9—C10—C11 0.6 (11) 
N1—C1—C2—C7 35.2 (11) C8—C9—C10—C14 179.0 (7) 
C7—C2—C3—C4 −2.2 (12) C9—C10—C11—C12 −1.9 (11) 
C1—C2—C3—C4 −176.6 (7) C14—C10—C11—C12 179.6 (7) 
C2—C3—C4—C5 2.0 (12) C9—C10—C11—C15 179.7 (8) 
C3—C4—C5—C6 −1.4 (12) C14—C10—C11—C15 1.2 (11) 
C3—C4—C5—N2 178.1 (7) C10—C11—C12—C13 2.6 (11) 
O2—N2—C5—C6 −179.5 (7) C15—C11—C12—C13 −178.9 (8) 
O3—N2—C5—C6 1.1 (10) C11—C12—C13—C8 −2.1 (12) 
O2—N2—C5—C4 1.0 (10) C9—C8—C13—C12 0.8 (11) 
O3—N2—C5—C4 −178.4 (7) N1—C8—C13—C12 −178.5 (7) 
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C4—C5—C6—C7 0.9 (12) C9—C10—C14—N3 176 (100) 
N2—C5—C6—C7 −178.6 (7) C11—C10—C14—N3 −6(24) 
C3—C2—C7—C6 1.6 (11) C12—C11—C15—N4 35 (100) 
C1—C2—C7—C6 175.7 (7) C10—C11—C15—N4 −146 (100) 
C5—C6—C7—C2 −1.0 (11)   
  

Hydrogen-bond geometry (Å, °) 

D—H···A D—H H···A D···A D—H···A 
N1—H1N···O4 0.88 2.01 2.879 (8) 168 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 

A.2 Single Crystal X-ray Diffraction Data 

3-(4-(2-(2-Methoxyethoxy)ethoxy)phenoxy)phthalonitrile (2.13) 

CN

CN

O

O
O

O  

 
Crystal data 
 
C19H18N2O4 Dx = 1.323 Mg m−3 
Mr = 338.35  
 
Monoclinic, P21/c                                Mo Kα radiation  
                                                                   λ = 0.71073 Å 
Hall symbol: -P 2ybc Cell parameters from 3513 reflections 
a = 9.297 (3) Å θ = 2.5–25.6° 
b = 34.275 (14) Å µ = 0.09 mm−1 
c = 10.672 (4) Å T = 90 K 
β = 92.88 (2)°  
V = 3396 (2) Å3 Prism, colorless 
Z = 8 0.23 × 0.12 × 0.07 mm 
F000 = 1424  
  

Data collection 
Nonius KappaCCD (with Oxford Cryostream)                        5664 independent reflections 
Diffractometer   
Radiation source: fine-focus sealed tube                                 3059 reflections with I > 2σ(I) 
Monochromator: graphite Rint = 0.036 
 θmax = 25.7° 
T = 90 K θmin = 2.6° 
P =  kPa h = −11→11 
ω scans with κ offsets k = −26→41 
Absorption correction: none l = −13→13 
12472 measured reflections  
  

Refinement 
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Refinement on F2                                Secondary atom site location: difference Fourier map 
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.076                                                              H-atom parameters constrained 
                                                                               w = 1/[σ2(Fo

2) + (0.0636P)2 + 4.2274P]  
                                                                                          where P = (Fo

2 + 2Fc
2)/3 

wR(F2) = 0.183                                                                   
S = 1.01                   (Δ/σ)max < 0.001 
5664 reflections                Δρmax = 0.39 e Å−3 
453 parameters              Δρmin = −0.29 e Å−3 
constraints                                                                                        Extinction correction: none 
Primary atom site location:                                                structure-invariant direct methods  
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 0.4578 (3) 0.64053 (8) 0.6202 (2) 0.0189 (7)  
O2 0.5984 (3) 0.51493 (8) 0.3219 (3) 0.0247 (7)  
O3 0.5488 (3) 0.45068 (8) 0.1254 (3) 0.0237 (7)  
O4 0.4278 (3) 0.39733 (8) −0.0564 (3) 0.0247 (7)  
O5 0.9424 (3) 0.64507 (8) 0.6236 (3) 0.0229 (7)  
O6 1.1296 (3) 0.51786 (9) 0.3595 (3) 0.0277 (8)  
O7 1.0284 (3) 0.44376 (9) 0.1386 (3) 0.0249 (7)  
O8 0.9455 (3) 0.40452 (9) −0.0927 (3) 0.0313 (8)  
N1 0.2499 (4) 0.68983 (11) 0.8296 (4) 0.0265 (9)  
N2 0.3336 (4) 0.80079 (11) 0.7586 (3) 0.0248 (9)  
N3 0.7560 (4) 0.69481 (11) 0.8401 (4) 0.0282 (9)  
N4 0.8383 (4) 0.80545 (11) 0.7626 (3) 0.0259 (9)  
C1 0.4945 (4) 0.67772 (12) 0.5911 (4) 0.0141 (9)  
C2 0.4286 (4) 0.70693 (11) 0.6599 (3) 0.0128 (9)  
C3 0.4595 (4) 0.74624 (12) 0.6365 (4) 0.0160 (10)  
C4 0.5560 (4) 0.75609 (12) 0.5470 (4) 0.0207 (10)  
H4 0.5765 0.7827 0.5304 0.025*  
C5 0.6222 (4) 0.72669 (12) 0.4818 (4) 0.0186 (10)  
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H5 0.6888 0.7334 0.4207 0.022*  
C6 0.5935 (4) 0.68816 (12) 0.5038 (4) 0.0173 (10)  
H6 0.6415 0.6685 0.4591 0.021*  
C7 0.3296 (4) 0.69674 (12) 0.7536 (4) 0.0175 (10)  
C8 0.3897 (4) 0.77667 (12) 0.7055 (4) 0.0178 (10)  
C9 0.4947 (4) 0.60973 (12) 0.5395 (4) 0.0170 (10)  
C10 0.4547 (4) 0.61082 (12) 0.4132 (4) 0.0215 (10)  
H10 0.4056 0.6329 0.3783 0.026*  
C11 0.4873 (4) 0.57906 (12) 0.3370 (4) 0.0197 (10)  
H11 0.4613 0.5795 0.2497 0.024*  
C12 0.5575 (4) 0.54722 (12) 0.3898 (4) 0.0183 (10)  
C13 0.5927 (4) 0.54589 (12) 0.5166 (4) 0.0214 (10)  
H13 0.6381 0.5234 0.5523 0.026*  
C14 0.5616 (4) 0.57756 (13) 0.5923 (4) 0.0242 (11)  
H14 0.5864 0.5769 0.6797 0.029*  
C15 0.5795 (5) 0.51800 (13) 0.1867 (4) 0.0273 (11)  
H15A 0.6259 0.5421 0.1574 0.033*  
H15B 0.4757 0.5191 0.1614 0.033*  
C16 0.6476 (5) 0.48277 (13) 0.1295 (4) 0.0271 (11)  
H16A 0.6753 0.4891 0.0435 0.033*  
H16B 0.7358 0.4755 0.1799 0.033*  
C17 0.6189 (5) 0.41649 (12) 0.0838 (4) 0.0251 (11)  
H17A 0.6875 0.4070 0.1510 0.030*  
H17B 0.6742 0.4228 0.0096 0.030*  
C18 0.5119 (5) 0.38546 (12) 0.0508 (4) 0.0241 (11)  
H18A 0.5621 0.3607 0.0333 0.029*  
H18B 0.4492 0.3810 0.1218 0.029*  
C19 0.3481 (5) 0.36593 (13) −0.1132 (4) 0.0314 (12)  
H19A 0.4145 0.3475 −0.1504 0.047*  
H19B 0.2808 0.3762 −0.1788 0.047*  
H19C 0.2941 0.3525 −0.0495 0.047*  
C20 0.9851 (4) 0.68163 (13) 0.5949 (4) 0.0189 (10)  
C21 0.9266 (4) 0.71158 (12) 0.6650 (4) 0.0165 (10)  
C22 0.9610 (4) 0.75067 (12) 0.6382 (4) 0.0155 (10)  
C23 1.0545 (4) 0.75966 (12) 0.5447 (4) 0.0187 (10)  
H23 1.0774 0.7860 0.5269 0.022*  
C24 1.1135 (4) 0.72959 (13) 0.4785 (4) 0.0209 (10)  
H24 1.1790 0.7355 0.4157 0.025*  
C25 1.0794 (4) 0.69101 (13) 0.5013 (4) 0.0209 (10)  
H25 1.1201 0.6708 0.4533 0.025*  
C26 0.8315 (5) 0.70187 (12) 0.7620 (4) 0.0191 (10)  
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C27 0.8933 (4) 0.78140 (13) 0.7080 (4) 0.0190 (10)  
C28 0.9907 (4) 0.61353 (12) 0.5514 (4) 0.0202 (10)  
C29 1.1177 (5) 0.59547 (13) 0.5875 (4) 0.0262 (11)  
H29 1.1747 0.6050 0.6573 0.031*  
C30 1.1619 (5) 0.56336 (13) 0.5216 (4) 0.0255 (11)  
H30 1.2507 0.5509 0.5446 0.031*  
C31 1.0759 (4) 0.54941 (12) 0.4216 (4) 0.0231 (11)  
C32 0.9472 (5) 0.56755 (13) 0.3882 (4) 0.0290 (12)  
H32 0.8878 0.5578 0.3202 0.035*  
C33 0.9045 (5) 0.60022 (13) 0.4545 (4) 0.0284 (11)  
H33 0.8162 0.6130 0.4321 0.034*  
C34 1.0415 (5) 0.50091 (14) 0.2631 (4) 0.0307 (12)  
H34A 1.0263 0.5193 0.1922 0.037*  
H34B 0.9465 0.4938 0.2945 0.037*  
C35 1.1208 (5) 0.46483 (13) 0.2221 (4) 0.0299 (12)  
H35A 1.2092 0.4724 0.1802 0.036*  
H35B 1.1489 0.4485 0.2959 0.036*  
C36 1.1006 (5) 0.41072 (13) 0.0911 (4) 0.0274 (11)  
H36A 1.1469 0.3958 0.1616 0.033*  
H36B 1.1768 0.4194 0.0359 0.033*  
C37 0.9951 (5) 0.38516 (12) 0.0187 (4) 0.0255 (11)  
H37A 1.0421 0.3603 −0.0028 0.031*  
H37B 0.9127 0.3791 0.0706 0.031*  
C38 0.8577 (5) 0.37946 (14) −0.1711 (4) 0.0362 (13)  
H38A 0.9160 0.3578 −0.2002 0.054*  
H38B 0.8181 0.3942 −0.2436 0.054*  
H38C 0.7786 0.3692 −0.1235 0.054*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.0264 (16) 0.0137 (16) 0.0172 (16) 0.0018 (13) 0.0071 (13) −0.0024 (13) 
O2 0.0383 (18) 0.0171 (17) 0.0191 (17) 0.0052 (15) 0.0058 (14) 0.0002 (14) 
O3 0.0265 (17) 0.0202 (17) 0.0245 (17) 0.0028 (14) 0.0026 (14) −0.0061 (14) 
O4 0.0334 (17) 0.0170 (16) 0.0233 (17) −0.0009 (14) −0.0039 (14) −0.0031 (13) 
O5 0.0314 (18) 0.0166 (17) 0.0217 (17) −0.0039 (14) 0.0110 (14) −0.0036 (13) 
O6 0.0286 (17) 0.0236 (18) 0.0308 (18) 0.0033 (15) 0.0024 (15) −0.0102 (15) 
O7 0.0205 (15) 0.0265 (18) 0.0275 (18) 0.0061 (14) −0.0016 (14) −0.0121 (14) 
O8 0.0352 (18) 0.0290 (19) 0.0290 (19) −0.0048 (16) −0.0043 (15) −0.0079 (16) 
N1 0.026 (2) 0.026 (2) 0.028 (2) 0.0026 (18) 0.0064 (19) 0.0016 (18) 
N2 0.025 (2) 0.023 (2) 0.027 (2) 0.0005 (18) 0.0043 (17) 0.0020 (18) 
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N3 0.031 (2) 0.026 (2) 0.029 (2) 0.0033 (19) 0.0120 (19) 0.0016 (18) 
N4 0.031 (2) 0.020 (2) 0.027 (2) 0.0026 (19) 0.0064 (18) 0.0026 (18) 
C1 0.014 (2) 0.014 (2) 0.013 (2) −0.0039 (18) 0.0001 (18) 0.0020 (18) 
C2 0.012 (2) 0.013 (2) 0.013 (2) 0.0003 (18) 0.0022 (18) 0.0032 (18) 
C3 0.014 (2) 0.019 (2) 0.014 (2) −0.0018 (19) −0.0014 (19) −0.0017 (19) 
C4 0.023 (2) 0.016 (2) 0.024 (3) −0.005 (2) 0.001 (2) 0.000 (2) 
C5 0.015 (2) 0.023 (3) 0.018 (2) −0.003 (2) 0.0049 (19) −0.001 (2) 
C6 0.020 (2) 0.019 (2) 0.013 (2) 0.001 (2) 0.0038 (19) −0.0066 (19) 
C7 0.021 (2) 0.012 (2) 0.020 (2) 0.0025 (19) 0.000 (2) −0.0043 (19) 
C8 0.019 (2) 0.014 (2) 0.021 (2) −0.002 (2) 0.002 (2) 0.002 (2) 
C9 0.018 (2) 0.012 (2) 0.022 (3) 0.0012 (19) 0.0087 (19) −0.0058 (19) 
C10 0.025 (2) 0.020 (2) 0.020 (2) 0.004 (2) 0.001 (2) 0.001 (2) 
C11 0.021 (2) 0.023 (2) 0.015 (2) 0.004 (2) −0.0004 (19) −0.007 (2) 
C12 0.021 (2) 0.015 (2) 0.019 (2) −0.001 (2) 0.0059 (19) −0.0039 (19) 
C13 0.031 (3) 0.013 (2) 0.021 (3) 0.004 (2) 0.003 (2) 0.001 (2) 
C14 0.028 (3) 0.027 (3) 0.018 (2) 0.001 (2) 0.003 (2) −0.003 (2) 
C15 0.041 (3) 0.025 (3) 0.016 (2) 0.000 (2) 0.002 (2) −0.004 (2) 
C16 0.033 (3) 0.025 (3) 0.023 (3) 0.000 (2) 0.006 (2) −0.009 (2) 
C17 0.028 (3) 0.019 (2) 0.028 (3) 0.004 (2) 0.000 (2) −0.007 (2) 
C18 0.033 (3) 0.017 (2) 0.023 (3) 0.007 (2) 0.000 (2) 0.000 (2) 
C19 0.037 (3) 0.026 (3) 0.031 (3) −0.009 (2) 0.001 (2) −0.008 (2) 
C20 0.017 (2) 0.023 (3) 0.018 (2) −0.001 (2) 0.0014 (19) 0.001 (2) 
C21 0.014 (2) 0.021 (2) 0.015 (2) 0.0038 (19) 0.0023 (18) −0.0011 (19) 
C22 0.016 (2) 0.014 (2) 0.016 (2) 0.0021 (19) −0.0029 (19) −0.0012 (19) 
C23 0.021 (2) 0.019 (2) 0.016 (2) −0.002 (2) 0.003 (2) 0.0038 (19) 
C24 0.020 (2) 0.027 (3) 0.016 (2) −0.003 (2) 0.0033 (19) 0.001 (2) 
C25 0.020 (2) 0.024 (3) 0.018 (2) 0.000 (2) −0.001 (2) 0.001 (2) 
C26 0.021 (2) 0.014 (2) 0.022 (3) 0.003 (2) 0.001 (2) −0.002 (2) 
C27 0.015 (2) 0.020 (3) 0.021 (3) −0.001 (2) −0.003 (2) 0.007 (2) 
C28 0.020 (2) 0.020 (2) 0.021 (2) −0.001 (2) 0.009 (2) −0.001 (2) 
C29 0.029 (3) 0.028 (3) 0.022 (3) 0.000 (2) 0.003 (2) −0.004 (2) 
C30 0.026 (2) 0.024 (3) 0.027 (3) −0.002 (2) −0.001 (2) 0.000 (2) 
C31 0.022 (2) 0.015 (2) 0.032 (3) 0.004 (2) 0.007 (2) −0.005 (2) 
C32 0.031 (3) 0.026 (3) 0.029 (3) 0.000 (2) −0.004 (2) −0.010 (2) 
C33 0.026 (3) 0.023 (3) 0.035 (3) 0.008 (2) −0.003 (2) −0.003 (2) 
C34 0.026 (3) 0.033 (3) 0.032 (3) 0.004 (2) −0.003 (2) −0.009 (2) 
C35 0.027 (3) 0.025 (3) 0.037 (3) 0.003 (2) −0.001 (2) −0.008 (2) 
C36 0.025 (2) 0.026 (3) 0.031 (3) 0.012 (2) 0.001 (2) −0.007 (2) 
C37 0.031 (3) 0.016 (2) 0.030 (3) 0.000 (2) 0.006 (2) −0.004 (2) 
C38 0.034 (3) 0.038 (3) 0.037 (3) −0.003 (2) 0.006 (2) −0.021 (3) 
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Geometric parameters (Å, °) 
O1—C1 1.359 (5) C16—H16A 0.9900 
O1—C9 1.416 (4) C16—H16B 0.9900 
O2—C12 1.386 (5) C17—C18 1.487 (6) 
O2—C15 1.448 (5) C17—H17A 0.9900 
O3—C17 1.423 (5) C17—H17B 0.9900 
O3—C16 1.432 (5) C18—H18A 0.9900 
O4—C18 1.413 (5) C18—H18B 0.9900 
O4—C19 1.425 (5) C19—H19A 0.9800 
O5—C20 1.354 (5) C19—H19B 0.9800 
O5—C28 1.414 (5) C19—H19C 0.9800 
O6—C31 1.375 (5) C20—C21 1.397 (6) 
O6—C34 1.408 (5) C20—C25 1.399 (6) 
O7—C35 1.406 (5) C21—C22 1.410 (6) 
O7—C36 1.423 (5) C21—C26 1.434 (6) 
O8—C37 1.418 (5) C22—C23 1.390 (6) 
O8—C38 1.427 (5) C22—C27 1.452 (6) 
N1—C7 1.150 (5) C23—C24 1.379 (6) 
N2—C8 1.143 (5) C23—H23 0.9500 
N3—C26 1.143 (5) C24—C25 1.384 (6) 
N4—C27 1.145 (5) C24—H24 0.9500 
C1—C6 1.389 (5) C25—H25 0.9500 
C1—C2 1.401 (5) C28—C33 1.355 (6) 
C2—C3 1.403 (5) C28—C29 1.371 (6) 
C2—C7 1.436 (6) C29—C30 1.380 (6) 
C3—C4 1.385 (6) C29—H29 0.9500 
C3—C8 1.449 (6) C30—C31 1.386 (6) 
C4—C5 1.386 (6) C30—H30 0.9500 
C4—H4 0.9500 C31—C32 1.380 (6) 
C5—C6 1.370 (6) C32—C33 1.393 (6) 
C5—H5 0.9500 C32—H32 0.9500 
C6—H6 0.9500 C33—H33 0.9500 
C9—C14 1.372 (6) C34—C35 1.516 (6) 
C9—C10 1.381 (6) C34—H34A 0.9900 
C10—C11 1.401 (6) C34—H34B 0.9900 
C10—H10 0.9500 C35—H35A 0.9900 
C11—C12 1.378 (6) C35—H35B 0.9900 
C11—H11 0.9500 C36—C37 1.500 (6) 
C12—C13 1.376 (5) C36—H36A 0.9900 
C13—C14 1.392 (6) C36—H36B 0.9900 
C13—H13 0.9500 C37—H37A 0.9900 
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C14—H14 0.9500 C37—H37B 0.9900 
C15—C16 1.506 (6) C38—H38A 0.9800 
C15—H15A 0.9900 C38—H38B 0.9800 
C15—H15B 0.9900 C38—H38C 0.9800 
C1—O1—C9 119.3 (3) H19A—C19—H19B 109.5 
C12—O2—C15 116.1 (3) O4—C19—H19C 109.5 
C17—O3—C16 109.8 (3) H19A—C19—H19C 109.5 
C18—O4—C19 112.4 (3) H19B—C19—H19C 109.5 
C20—O5—C28 118.6 (3) O5—C20—C21 115.6 (4) 
C31—O6—C34 117.6 (3) O5—C20—C25 125.1 (4) 
C35—O7—C36 110.5 (3) C21—C20—C25 119.2 (4) 
C37—O8—C38 111.3 (3) C20—C21—C22 119.4 (4) 
O1—C1—C6 125.3 (4) C20—C21—C26 119.1 (4) 
O1—C1—C2 115.4 (3) C22—C21—C26 121.4 (4) 
C6—C1—C2 119.3 (4) C23—C22—C21 120.8 (4) 
C1—C2—C3 119.7 (4) C23—C22—C27 120.7 (4) 
C1—C2—C7 120.2 (4) C21—C22—C27 118.5 (4) 
C3—C2—C7 120.1 (4) C24—C23—C22 118.8 (4) 
C4—C3—C2 120.1 (4) C24—C23—H23 120.6 
C4—C3—C8 119.8 (4) C22—C23—H23 120.6 
C2—C3—C8 120.0 (4) C23—C24—C25 121.6 (4) 
C3—C4—C5 119.2 (4) C23—C24—H24 119.2 
C3—C4—H4 120.4 C25—C24—H24 119.2 
C5—C4—H4 120.4 C24—C25—C20 120.2 (4) 
C6—C5—C4 121.3 (4) C24—C25—H25 119.9 
C6—C5—H5 119.3 C20—C25—H25 119.9 
C4—C5—H5 119.3 N3—C26—C21 178.8 (5) 
C5—C6—C1 120.3 (4) N4—C27—C22 179.1 (5) 
C5—C6—H6 119.9 C33—C28—C29 122.0 (4) 
C1—C6—H6 119.9 C33—C28—O5 118.8 (4) 
N1—C7—C2 177.8 (4) C29—C28—O5 119.0 (4) 
N2—C8—C3 179.2 (5) C28—C29—C30 119.4 (4) 
C14—C9—C10 121.1 (4) C28—C29—H29 120.3 
C14—C9—O1 117.9 (4) C30—C29—H29 120.3 
C10—C9—O1 120.8 (4) C29—C30—C31 119.5 (4) 
C9—C10—C11 119.4 (4) C29—C30—H30 120.3 
C9—C10—H10 120.3 C31—C30—H30 120.3 
C11—C10—H10 120.3 O6—C31—C32 124.2 (4) 
C12—C11—C10 119.3 (4) O6—C31—C30 115.6 (4) 
C12—C11—H11 120.3 C32—C31—C30 120.2 (4) 
C10—C11—H11 120.3 C31—C32—C33 119.8 (4) 
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C13—C12—C11 120.8 (4) C31—C32—H32 120.1 
C13—C12—O2 115.4 (4) C33—C32—H32 120.1 
C11—C12—O2 123.7 (4) C28—C33—C32 119.0 (4) 
C12—C13—C14 119.9 (4) C28—C33—H33 120.5 
C12—C13—H13 120.0 C32—C33—H33 120.5 
C14—C13—H13 120.0 O6—C34—C35 105.9 (3) 
C9—C14—C13 119.4 (4) O6—C34—H34A 110.6 
C9—C14—H14 120.3 C35—C34—H34A 110.6 
C13—C14—H14 120.3 O6—C34—H34B 110.6 
O2—C15—C16 108.3 (3) C35—C34—H34B 110.6 
O2—C15—H15A 110.0 H34A—C34—H34B 108.7 
C16—C15—H15A 110.0 O7—C35—C34 108.1 (3) 
O2—C15—H15B 110.0 O7—C35—H35A 110.1 
C16—C15—H15B 110.0 C34—C35—H35A 110.1 
H15A—C15—H15B 108.4 O7—C35—H35B 110.1 
O3—C16—C15 110.3 (4) C34—C35—H35B 110.1 
O3—C16—H16A 109.6 H35A—C35—H35B 108.4 
C15—C16—H16A 109.6 O7—C36—C37 109.9 (3) 
O3—C16—H16B 109.6 O7—C36—H36A 109.7 
C15—C16—H16B 109.6 C37—C36—H36A 109.7 
H16A—C16—H16B 108.1 O7—C36—H36B 109.7 
O3—C17—C18 110.6 (3) C37—C36—H36B 109.7 
O3—C17—H17A 109.5 H36A—C36—H36B 108.2 
C18—C17—H17A 109.5 O8—C37—C36 109.6 (4) 
O3—C17—H17B 109.5 O8—C37—H37A 109.7 
C18—C17—H17B 109.5 C36—C37—H37A 109.7 
H17A—C17—H17B 108.1 O8—C37—H37B 109.7 
O4—C18—C17 108.8 (3) C36—C37—H37B 109.7 
O4—C18—H18A 109.9 H37A—C37—H37B 108.2 
C17—C18—H18A 109.9 O8—C38—H38A 109.5 
O4—C18—H18B 109.9 O8—C38—H38B 109.5 
C17—C18—H18B 109.9 H38A—C38—H38B 109.5 
H18A—C18—H18B 108.3 O8—C38—H38C 109.5 
O4—C19—H19A 109.5 H38A—C38—H38C 109.5 
O4—C19—H19B 109.5 H38B—C38—H38C 109.5 
C9—O1—C1—C6 −15.2 (5) C28—O5—C20—C21 176.3 (3) 
C9—O1—C1—C2 167.1 (3) C28—O5—C20—C25 −2.8 (6) 
O1—C1—C2—C3 −179.9 (3) O5—C20—C21—C22 −177.7 (3) 
C6—C1—C2—C3 2.3 (5) C25—C20—C21—C22 1.6 (6) 
O1—C1—C2—C7 −0.1 (5) O5—C20—C21—C26 1.6 (5) 
C6—C1—C2—C7 −177.9 (3) C25—C20—C21—C26 −179.2 (4) 
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C1—C2—C3—C4 −0.8 (6) C20—C21—C22—C23 −1.4 (6) 
C7—C2—C3—C4 179.4 (3) C26—C21—C22—C23 179.3 (3) 
C1—C2—C3—C8 178.8 (3) C20—C21—C22—C27 177.0 (3) 
C7—C2—C3—C8 −1.0 (6) C26—C21—C22—C27 −2.3 (6) 
C2—C3—C4—C5 −0.5 (6) C21—C22—C23—C24 0.0 (6) 
C8—C3—C4—C5 179.9 (4) C27—C22—C23—C24 −178.3 (4) 
C3—C4—C5—C6 0.4 (6) C22—C23—C24—C25 1.3 (6) 
C4—C5—C6—C1 1.1 (6) C23—C24—C25—C20 −1.1 (6) 
O1—C1—C6—C5 180.0 (3) O5—C20—C25—C24 178.8 (4) 
C2—C1—C6—C5 −2.5 (6) C21—C20—C25—C24 −0.3 (6) 
C1—O1—C9—C14 130.9 (4) C20—O5—C28—C33 −95.7 (5) 
C1—O1—C9—C10 −54.0 (5) C20—O5—C28—C29 89.4 (5) 
C14—C9—C10—C11 −2.2 (6) C33—C28—C29—C30 1.9 (7) 
O1—C9—C10—C11 −177.1 (4) O5—C28—C29—C30 176.6 (4) 
C9—C10—C11—C12 0.6 (6) C28—C29—C30—C31 −1.3 (7) 
C10—C11—C12—C13 1.6 (6) C34—O6—C31—C32 −6.0 (6) 
C10—C11—C12—O2 −178.0 (4) C34—O6—C31—C30 175.5 (4) 
C15—O2—C12—C13 −172.2 (4) C29—C30—C31—O6 178.7 (4) 
C15—O2—C12—C11 7.4 (6) C29—C30—C31—C32 0.1 (7) 
C11—C12—C13—C14 −2.2 (6) O6—C31—C32—C33 −177.7 (4) 
O2—C12—C13—C14 177.4 (4) C30—C31—C32—C33 0.7 (7) 
C10—C9—C14—C13 1.6 (6) C29—C28—C33—C32 −1.1 (7) 
O1—C9—C14—C13 176.7 (4) O5—C28—C33—C32 −175.8 (4) 
C12—C13—C14—C9 0.6 (6) C31—C32—C33—C28 −0.2 (7) 
C12—O2—C15—C16 172.5 (3) C31—O6—C34—C35 −174.2 (4) 
C17—O3—C16—C15 −173.8 (3) C36—O7—C35—C34 176.5 (4) 
O2—C15—C16—O3 84.3 (4) O6—C34—C35—O7 171.7 (3) 
C16—O3—C17—C18 −167.0 (3) C35—O7—C36—C37 171.1 (4) 
C19—O4—C18—C17 165.2 (4) C38—O8—C37—C36 173.3 (3) 
O3—C17—C18—O4 67.3 (4) O7—C36—C37—O8 68.2 (5) 
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A.3 Single Crystal X-ray Diffraction Data 

4,5-Bis(4-(2-(2-methoxyethoxy)ethoxy)phenoxy)phthalonitrile (2.14) 

O O

CNNC

O O
O

O
O

O

 

Crystal data 
 
C30H32N2O8 Dx = 1.304 Mg m−3 
Mr = 548.58  
 
Monoclinic, P21/c                                Mo Kα radiation  
                                                                   λ = 0.71073 Å 
Hall symbol: -P 2ybc Cell parameters from 4179 reflections 
a = 22.598 (7) Å θ = 2.5–26.7° 
b = 16.029 (5) Å µ = 0.10 mm−1 
c = 7.7135 (15) Å T = 90 K 
β = 91.03 (2)°  
V = 2793.6 (13) Å3 Plate, colorless 
Z = 4 0.42 × 0.23 × 0.03 mm 
F000 = 1160  
  

Data collection 
Nonius KappaCCD (with Oxford Cryostream)                            18124 measured reflections 
diffractometer  
Radiation source: fine-focus sealed tube              4666 independent reflections 
Monochromator: graphite             2771 reflections with I > 2σ(I) 
 
Detector resolution: pixels mm-1 Rint = 0.053 
T = 90 K θmax = 26.1° 
P = kPa θmin = 2.9° 
ω scans with κ offsets h = −27→27 
Absorption correction: multi-scan 
Denzo and Scalepack (Otwinowski & Minor, 1997) k = −18→19 
Tmin = 0.961, Tmax = 0.997 l = −7→7 
  

Refinement 
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Refinement on F2                                Secondary atom site location: difference Fourier map 
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.050                                                              H-atom parameters constrained 
wR(F2) = 0.105                                                        w = 1/[σ2(Fo

2) + (0.0397P)2 + 0.4119P]  
                                                                                            where P = (Fo

2 + 2Fc
2)/3 

S = 1.03 (Δ/σ)max < 0.001 
4666 reflections Δρmax = 0.28 e Å−3 
364 parameters Δρmin = −0.21 e 
Å−3 
constraints                     Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 
Primary atom site location: structure-invariant direct methods  
                                                                                                    Extinction coefficient: 0.0045 (6) 
Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 0.33722 (7) 0.46029 (10) 0.5207 (2) 0.0310 (5)  
O2 0.52579 (7) 0.24106 (10) 0.5066 (2) 0.0255 (4)  
O3 0.63993 (7) 0.16771 (10) 0.4376 (2) 0.0258 (4)  
O4 0.58968 (8) 0.00017 (11) 0.4782 (2) 0.0333 (5)  
O5 0.25403 (7) 0.56600 (10) 0.4853 (2) 0.0287 (5)  
O6 0.10882 (7) 0.84017 (10) 0.3893 (2) 0.0251 (4)  
O7 0.06051 (7) 0.97236 (10) 0.1935 (2) 0.0252 (4)  
O8 0.05254 (8) 1.18146 (11) 0.0291 (2) 0.0368 (5)  
N1 0.12026 (10) 0.45990 (14) 1.1054 (3) 0.0345 (6)  
N2 0.25237 (10) 0.29694 (15) 1.1560 (3) 0.0383 (6)  
C1 0.29497 (11) 0.45551 (15) 0.6432 (3) 0.0228 (6)  
C2 0.24927 (11) 0.51451 (15) 0.6257 (3) 0.0220 (6)  
C3 0.20406 (11) 0.51727 (15) 0.7445 (3) 0.0224 (6)  
H3 0.1732 0.5572 0.7327 0.027*  
C4 0.20450 (11) 0.46041 (15) 0.8821 (3) 0.0216 (6)  
C5 0.24974 (11) 0.40144 (15) 0.8992 (3) 0.0212 (6)  
C6 0.29508 (11) 0.39930 (15) 0.7785 (3) 0.0240 (6)  
H6 0.3259 0.3592 0.7897 0.029*  
C7 0.15724 (12) 0.46115 (15) 1.0054 (3) 0.0246 (6)  
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C8 0.25071 (11) 0.34289 (17) 1.0412 (4) 0.0274 (7)  
C9 0.38449 (11) 0.40322 (16) 0.5274 (3) 0.0249 (6)  
C10 0.37937 (11) 0.32773 (16) 0.4412 (3) 0.0270 (6)  
H10 0.3430 0.3121 0.3869 0.032*  
C11 0.42766 (11) 0.27584 (16) 0.4352 (3) 0.0255 (6)  
H11 0.4247 0.2241 0.3755 0.031*  
C12 0.48118 (11) 0.29853 (15) 0.5165 (3) 0.0218 (6)  
C13 0.48554 (12) 0.37435 (15) 0.6019 (3) 0.0265 (6)  
H13 0.5217 0.3903 0.6574 0.032*  
C14 0.43675 (12) 0.42677 (16) 0.6058 (3) 0.0282 (7)  
H14 0.4396 0.4791 0.6631 0.034*  
C15 0.57970 (11) 0.25934 (15) 0.6019 (3) 0.0249 (6)  
H15A 0.5705 0.2771 0.7214 0.030*  
H15B 0.6013 0.3052 0.5448 0.030*  
C16 0.61703 (11) 0.18207 (15) 0.6068 (3) 0.0265 (7)  
H16A 0.6500 0.1890 0.6916 0.032*  
H16B 0.5929 0.1338 0.6428 0.032*  
C17 0.67116 (11) 0.09073 (15) 0.4231 (3) 0.0260 (6)  
H17A 0.6875 0.0751 0.5386 0.031*  
H17B 0.7048 0.0985 0.3443 0.031*  
C18 0.63327 (12) 0.02150 (16) 0.3565 (3) 0.0291 (7)  
H18A 0.6138 0.0387 0.2461 0.035*  
H18B 0.6582 −0.0279 0.3329 0.035*  
C19 0.55240 (13) −0.06565 (16) 0.4150 (3) 0.0377 (7)  
H19A 0.5335 −0.0486 0.3053 0.057*  
H19B 0.5219 −0.0777 0.5002 0.057*  
H19C 0.5763 −0.1158 0.3962 0.057*  
C20 0.21397 (12) 0.63336 (15) 0.4668 (3) 0.0236 (6)  
C21 0.15863 (12) 0.62118 (15) 0.3947 (3) 0.0258 (6)  
H21 0.1457 0.5665 0.3650 0.031*  
C22 0.12161 (11) 0.68929 (15) 0.3653 (3) 0.0242 (6)  
H22 0.0833 0.6816 0.3150 0.029*  
C23 0.14122 (11) 0.76837 (15) 0.4102 (3) 0.0203 (6)  
C24 0.19755 (11) 0.77939 (15) 0.4825 (3) 0.0234 (6)  
H24 0.2109 0.8338 0.5125 0.028*  
C25 0.23401 (11) 0.71182 (16) 0.5109 (3) 0.0253 (6)  
H25 0.2725 0.7192 0.5602 0.030*  
C26 0.05186 (11) 0.83514 (15) 0.3073 (3) 0.0251 (6)  
H26A 0.0259 0.7971 0.3726 0.030*  
H26B 0.0554 0.8136 0.1876 0.030*  
C27 0.02666 (11) 0.92127 (15) 0.3049 (3) 0.0273 (6)  
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H27A −0.0150 0.9196 0.2632 0.033*  
H27B 0.0275 0.9447 0.4236 0.033*  
C28 0.03675 (11) 1.05430 (15) 0.1781 (3) 0.0270 (6)  
H28A 0.0319 1.0794 0.2942 0.032*  
H28B −0.0024 1.0527 0.1184 0.032*  
C29 0.07981 (12) 1.10464 (15) 0.0743 (3) 0.0297 (7)  
H29A 0.1164 1.1149 0.1437 0.036*  
H29B 0.0906 1.0738 −0.0318 0.036*  
C30 0.09167 (14) 1.23311 (17) −0.0674 (4) 0.0459 (8)  
H30A 0.1274 1.2447 0.0026 0.069*  
H30B 0.0718 1.2857 −0.0967 0.069*  
H30C 0.1027 1.2043 −0.1742 0.069*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.0321 (11) 0.0311 (11) 0.0303 (11) 0.0136 (9) 0.0114 (9) 0.0104 (8) 
O2 0.0240 (10) 0.0260 (10) 0.0263 (10) 0.0057 (9) −0.0034 (8) −0.0044 (8) 
O3 0.0307 (11) 0.0247 (10) 0.0220 (11) 0.0060 (9) 0.0027 (8) −0.0011 (7) 
O4 0.0388 (12) 0.0272 (11) 0.0341 (11) −0.0075 (9) 0.0074 (9) −0.0039 (8) 
O5 0.0333 (11) 0.0246 (10) 0.0286 (11) 0.0119 (9) 0.0099 (8) 0.0110 (8) 
O6 0.0264 (11) 0.0168 (10) 0.0320 (11) 0.0018 (8) −0.0043 (8) 0.0011 (8) 
O7 0.0314 (11) 0.0161 (10) 0.0283 (10) 0.0045 (8) 0.0038 (8) 0.0051 (7) 
O8 0.0485 (13) 0.0233 (11) 0.0387 (11) 0.0047 (10) 0.0010 (9) 0.0058 (8) 
N1 0.0326 (15) 0.0361 (15) 0.0352 (15) 0.0004 (12) 0.0065 (12) 0.0037 (11) 
N2 0.0418 (16) 0.0353 (15) 0.0381 (16) 0.0017 (12) 0.0023 (12) 0.0075 (12) 
C1 0.0233 (15) 0.0203 (15) 0.0249 (16) 0.0008 (12) 0.0040 (12) 0.0022 (12) 
C2 0.0260 (15) 0.0174 (14) 0.0226 (16) −0.0001 (12) 0.0005 (12) 0.0014 (11) 
C3 0.0234 (15) 0.0172 (14) 0.0265 (16) 0.0001 (12) −0.0016 (12) 0.0001 (11) 
C4 0.0220 (15) 0.0216 (15) 0.0213 (15) −0.0041 (12) −0.0007 (12) −0.0023 (11) 
C5 0.0257 (16) 0.0165 (14) 0.0212 (15) −0.0020 (12) −0.0023 (12) 0.0016 (11) 
C6 0.0226 (15) 0.0215 (15) 0.0279 (16) 0.0053 (12) −0.0002 (12) −0.0002 (12) 
C7 0.0271 (16) 0.0198 (15) 0.0268 (16) 0.0000 (13) −0.0027 (14) 0.0014 (12) 
C8 0.0240 (16) 0.0254 (16) 0.0328 (18) 0.0011 (13) 0.0030 (13) 0.0005 (14) 
C9 0.0247 (16) 0.0255 (16) 0.0247 (15) 0.0082 (13) 0.0075 (12) 0.0056 (12) 
C10 0.0250 (16) 0.0300 (17) 0.0261 (16) 0.0006 (13) −0.0006 (12) 0.0030 (12) 
C11 0.0289 (17) 0.0221 (15) 0.0257 (16) 0.0027 (13) 0.0015 (12) −0.0003 (11) 
C12 0.0218 (15) 0.0225 (15) 0.0213 (15) 0.0064 (12) 0.0050 (12) 0.0028 (12) 
C13 0.0275 (16) 0.0241 (16) 0.0278 (16) 0.0019 (13) 0.0006 (12) −0.0030 (12) 
C14 0.0357 (18) 0.0216 (15) 0.0276 (16) 0.0028 (14) 0.0069 (13) −0.0003 (12) 
C15 0.0265 (16) 0.0259 (16) 0.0224 (15) −0.0008 (13) −0.0010 (12) −0.0029 (11) 
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C16 0.0338 (17) 0.0287 (16) 0.0169 (16) 0.0052 (13) −0.0013 (12) −0.0019 (11) 
C17 0.0275 (16) 0.0271 (16) 0.0236 (16) 0.0072 (13) 0.0021 (12) −0.0004 (12) 
C18 0.0330 (17) 0.0287 (17) 0.0258 (16) 0.0058 (14) 0.0030 (13) −0.0025 (12) 
C19 0.0447 (19) 0.0274 (17) 0.0411 (18) −0.0068 (15) 0.0016 (14) −0.0060 (14) 
C20 0.0292 (17) 0.0211 (15) 0.0207 (15) 0.0069 (13) 0.0063 (12) 0.0074 (11) 
C21 0.0332 (17) 0.0139 (14) 0.0304 (16) −0.0003 (13) 0.0050 (13) 0.0021 (11) 
C22 0.0270 (16) 0.0199 (15) 0.0258 (15) −0.0023 (13) −0.0002 (12) 0.0018 (12) 
C23 0.0263 (16) 0.0168 (14) 0.0181 (15) 0.0027 (12) 0.0056 (12) 0.0016 (11) 
C24 0.0289 (16) 0.0170 (15) 0.0243 (15) −0.0029 (12) −0.0016 (12) 0.0018 (11) 
C25 0.0245 (16) 0.0261 (16) 0.0253 (16) 0.0014 (13) −0.0011 (12) 0.0050 (12) 
C26 0.0254 (16) 0.0252 (15) 0.0249 (15) −0.0009 (13) 0.0009 (12) 0.0033 (12) 
C27 0.0259 (15) 0.0236 (15) 0.0325 (16) 0.0031 (13) 0.0040 (12) 0.0018 (12) 
C28 0.0336 (17) 0.0203 (15) 0.0272 (16) 0.0073 (13) −0.0015 (12) −0.0030 (12) 
C29 0.0449 (18) 0.0183 (15) 0.0259 (16) 0.0105 (13) 0.0028 (13) 0.0041 (12) 
C30 0.065 (2) 0.0296 (18) 0.0438 (19) −0.0068 (16) 0.0079 (16) 0.0102 (14) 
  

Geometric parameters (Å, °) 
O1—C1 1.358 (3) C14—H14 0.9500 
O1—C9 1.407 (3) C15—C16 1.499 (3) 
O2—C12 1.369 (3) C15—H15A 0.9900 
O2—C15 1.442 (3) C15—H15B 0.9900 
O3—C17 1.427 (3) C16—H16A 0.9900 
O3—C16 1.431 (3) C16—H16B 0.9900 
O4—C18 1.415 (3) C17—C18 1.488 (3) 
O4—C19 1.430 (3) C17—H17A 0.9900 
O5—C2 1.368 (3) C17—H17B 0.9900 
O5—C20 1.415 (3) C18—H18A 0.9900 
O6—C23 1.372 (3) C18—H18B 0.9900 
O6—C26 1.426 (3) C19—H19A 0.9800 
O7—C27 1.420 (3) C19—H19B 0.9800 
O7—C28 1.423 (3) C19—H19C 0.9800 
O8—C29 1.418 (3) C20—C21 1.373 (3) 
O8—C30 1.430 (3) C20—C25 1.377 (3) 
N1—C7 1.148 (3) C21—C22 1.392 (3) 
N2—C8 1.152 (3) C21—H21 0.9500 
C1—C6 1.379 (3) C22—C23 1.385 (3) 
C1—C2 1.405 (3) C22—H22 0.9500 
C2—C3 1.385 (3) C23—C24 1.392 (3) 
C3—C4 1.399 (3) C24—C25 1.376 (3) 
C3—H3 0.9500 C24—H24 0.9500 
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C4—C5 1.397 (3) C25—H25 0.9500 
C4—C7 1.443 (4) C26—C27 1.493 (3) 
C5—C6 1.397 (3) C26—H26A 0.9900 
C5—C8 1.442 (4) C26—H26B 0.9900 
C6—H6 0.9500 C27—H27A 0.9900 
C9—C14 1.370 (3) C27—H27B 0.9900 
C9—C10 1.385 (3) C28—C29 1.506 (3) 
C10—C11 1.374 (3) C28—H28A 0.9900 
C10—H10 0.9500 C28—H28B 0.9900 
C11—C12 1.400 (3) C29—H29A 0.9900 
C11—H11 0.9500 C29—H29B 0.9900 
C12—C13 1.385 (3) C30—H30A 0.9800 
C13—C14 1.387 (3) C30—H30B 0.9800 
C13—H13 0.9500 C30—H30C 0.9800 
C1—O1—C9 118.72 (18) C18—C17—H17B 109.0 
C12—O2—C15 116.83 (18) H17A—C17—H17B 107.8 
C17—O3—C16 113.44 (17) O4—C18—C17 110.7 (2) 
C18—O4—C19 111.40 (18) O4—C18—H18A 109.5 
C2—O5—C20 118.76 (18) C17—C18—H18A 109.5 
C23—O6—C26 118.69 (18) O4—C18—H18B 109.5 
C27—O7—C28 112.10 (18) C17—C18—H18B 109.5 
C29—O8—C30 111.1 (2) H18A—C18—H18B 108.1 
O1—C1—C6 124.9 (2) O4—C19—H19A 109.5 
O1—C1—C2 114.8 (2) O4—C19—H19B 109.5 
C6—C1—C2 120.3 (2) H19A—C19—H19B 109.5 
O5—C2—C3 125.0 (2) O4—C19—H19C 109.5 
O5—C2—C1 114.5 (2) H19A—C19—H19C 109.5 
C3—C2—C1 120.5 (2) H19B—C19—H19C 109.5 
C2—C3—C4 119.1 (2) C21—C20—C25 121.5 (2) 
C2—C3—H3 120.5 C21—C20—O5 120.6 (2) 
C4—C3—H3 120.5 C25—C20—O5 117.7 (2) 
C5—C4—C3 120.5 (2) C20—C21—C22 119.7 (2) 
C5—C4—C7 119.5 (2) C20—C21—H21 120.2 
C3—C4—C7 120.0 (2) C22—C21—H21 120.2 
C6—C5—C4 119.9 (2) C23—C22—C21 119.2 (2) 
C6—C5—C8 119.3 (2) C23—C22—H22 120.4 
C4—C5—C8 120.9 (2) C21—C22—H22 120.4 
C1—C6—C5 119.8 (2) O6—C23—C22 124.8 (2) 
C1—C6—H6 120.1 O6—C23—C24 115.0 (2) 
C5—C6—H6 120.1 C22—C23—C24 120.2 (2) 
N1—C7—C4 178.2 (3) C25—C24—C23 120.3 (2) 
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N2—C8—C5 178.7 (3) C25—C24—H24 119.8 
C14—C9—C10 121.1 (2) C23—C24—H24 119.8 
C14—C9—O1 119.0 (2) C24—C25—C20 119.1 (2) 
C10—C9—O1 119.6 (2) C24—C25—H25 120.5 
C11—C10—C9 119.1 (2) C20—C25—H25 120.5 
C11—C10—H10 120.5 O6—C26—C27 107.1 (2) 
C9—C10—H10 120.5 O6—C26—H26A 110.3 
C10—C11—C12 120.5 (2) C27—C26—H26A 110.3 
C10—C11—H11 119.7 O6—C26—H26B 110.3 
C12—C11—H11 119.7 C27—C26—H26B 110.3 
O2—C12—C13 124.8 (2) H26A—C26—H26B 108.5 
O2—C12—C11 115.6 (2) O7—C27—C26 109.3 (2) 
C13—C12—C11 119.6 (2) O7—C27—H27A 109.8 
C12—C13—C14 119.5 (2) C26—C27—H27A 109.8 
C12—C13—H13 120.3 O7—C27—H27B 109.8 
C14—C13—H13 120.3 C26—C27—H27B 109.8 
C9—C14—C13 120.2 (2) H27A—C27—H27B 108.3 
C9—C14—H14 119.9 O7—C28—C29 107.0 (2) 
C13—C14—H14 119.9 O7—C28—H28A 110.3 
O2—C15—C16 108.34 (19) C29—C28—H28A 110.3 
O2—C15—H15A 110.0 O7—C28—H28B 110.3 
C16—C15—H15A 110.0 C29—C28—H28B 110.3 
O2—C15—H15B 110.0 H28A—C28—H28B 108.6 
C16—C15—H15B 110.0 O8—C29—C28 108.3 (2) 
H15A—C15—H15B 108.4 O8—C29—H29A 110.0 
O3—C16—C15 108.84 (18) C28—C29—H29A 110.0 
O3—C16—H16A 109.9 O8—C29—H29B 110.0 
C15—C16—H16A 109.9 C28—C29—H29B 110.0 
O3—C16—H16B 109.9 H29A—C29—H29B 108.4 
C15—C16—H16B 109.9 O8—C30—H30A 109.5 
H16A—C16—H16B 108.3 O8—C30—H30B 109.5 
O3—C17—C18 112.9 (2) H30A—C30—H30B 109.5 
O3—C17—H17A 109.0 O8—C30—H30C 109.5 
C18—C17—H17A 109.0 H30A—C30—H30C 109.5 
O3—C17—H17B 109.0 H30B—C30—H30C 109.5 
C9—O1—C1—C6 1.3 (4) C11—C12—C13—C14 0.0 (3) 
C9—O1—C1—C2 −179.6 (2) C10—C9—C14—C13 −0.9 (4) 
C20—O5—C2—C3 7.2 (3) O1—C9—C14—C13 −174.7 (2) 
C20—O5—C2—C1 −173.1 (2) C12—C13—C14—C9 0.7 (3) 
O1—C1—C2—O5 1.5 (3) C12—O2—C15—C16 167.72 (18) 
C6—C1—C2—O5 −179.4 (2) C17—O3—C16—C15 −173.8 (2) 
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O1—C1—C2—C3 −178.7 (2) O2—C15—C16—O3 71.6 (2) 
C6—C1—C2—C3 0.4 (4) C16—O3—C17—C18 94.4 (2) 
O5—C2—C3—C4 179.7 (2) C19—O4—C18—C17 179.3 (2) 
C1—C2—C3—C4 0.0 (3) O3—C17—C18—O4 −67.3 (3) 
C2—C3—C4—C5 −0.3 (3) C2—O5—C20—C21 −82.9 (3) 
C2—C3—C4—C7 −178.8 (2) C2—O5—C20—C25 102.0 (3) 
C3—C4—C5—C6 0.3 (4) C25—C20—C21—C22 −0.1 (4) 
C7—C4—C5—C6 178.8 (2) O5—C20—C21—C22 −175.0 (2) 
C3—C4—C5—C8 179.7 (2) C20—C21—C22—C23 −0.3 (3) 
C7—C4—C5—C8 −1.8 (4) C26—O6—C23—C22 −3.5 (3) 
O1—C1—C6—C5 178.6 (2) C26—O6—C23—C24 176.6 (2) 
C2—C1—C6—C5 −0.4 (4) C21—C22—C23—O6 −179.4 (2) 
C4—C5—C6—C1 0.1 (4) C21—C22—C23—C24 0.5 (3) 
C8—C5—C6—C1 −179.3 (2) O6—C23—C24—C25 179.5 (2) 
C1—O1—C9—C14 −96.5 (3) C22—C23—C24—C25 −0.4 (3) 
C1—O1—C9—C10 89.6 (3) C23—C24—C25—C20 0.0 (3) 
C14—C9—C10—C11 0.2 (4) C21—C20—C25—C24 0.3 (4) 
O1—C9—C10—C11 174.0 (2) O5—C20—C25—C24 175.32 (19) 
C9—C10—C11—C12 0.6 (3) C23—O6—C26—C27 179.05 (18) 
C15—O2—C12—C13 4.1 (3) C28—O7—C27—C26 176.76 (19) 
C15—O2—C12—C11 −174.7 (2) O6—C26—C27—O7 66.9 (2) 
C10—C11—C12—O2 178.2 (2) C27—O7—C28—C29 173.8 (2) 
C10—C11—C12—C13 −0.7 (3) C30—O8—C29—C28 178.9 (2) 
O2—C12—C13—C14 −178.7 (2) O7—C28—C29—O8 169.29 (18) 
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A.4 Single Crystal X-ray Diffraction Data 

4-(2-(2-(2-Methoxyethoxy)ethoxy)ethoxy)phthalonitrile (2.15) 

CN

CNO
O

3  

Crystal data 
C15H18N2O4 F000 = 308 
Mr = 290.31 Dx = 1.301 Mg m−3 
 
Triclinic, P¯1 Mo Kα radiation 

                    λ = 0.71073 Å 
Hall symbol: -P 1                                Cell parameters from 3714 reflections 
  
a = 7.6600 (10) Å  θ = 2.5–32.0° 
b = 8.2470 (12) Å µ = 0.10 mm−1 
c = 12.996 (2) Å T = 90 K 
α = 98.098 (9)°  
β = 97.453 (9)° Plate, colorless 
γ = 111.584 (8)° 0.30 × 0.25 × 0.10 mm 
V = 740.96 (18) Å3  
Z = 2  
  

Data collection 
 
KappaCCD (with Oxford Cryostream) diffractometer         4287 independent reflections 
 
Radiation source:                                 fine-focus sealed tube 3252 reflections with I > 2σ(I) 
Monochromator: graphite Rint = 0.023 
 θmax = 32.0° 
T = 90 K θmin = 2.7° 
P = kPa h = −10→11 
ω scans with κ offsets k = −11→11 
Absorption correction: none l = −18→18 
19427 measured reflections  
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Refinement 

 
Refinement on F2                               Secondary atom site location: difference Fourier map  
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.042                                                              H-atom parameters constrained 
 
wR(F2) = 0.108                                                          w = 1/[σ2(Fo

2) + (0.044P)2 + 0.2446P]  
                                                                                             where P = (Fo

2 + 2Fc
2)/3 

S = 1.04 (Δ/σ)max < 0.001 
4287 reflections Δρmax = 0.35 e Å−3 
192 parameters                                                                                                 Δρmin = −0.24 e Å−3  
                                                                                                    Extinction correction: SHELXL,  
                                                                                                 Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 
Primary atom site location:                                                structure-invariant direct methods Extinction coefficient: 0.019 (4) 
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 0.47228 (12) 0.34743 (10) 0.71857 (6) 0.01772 (18)  
O2 0.39249 (12) 0.22250 (10) 0.49455 (6) 0.01872 (18)  
O3 0.56577 (12) 0.16393 (11) 0.31934 (7) 0.0204 (2)  
O4 0.95490 (13) 0.39555 (12) 0.37622 (7) 0.0245 (2)  
N1 0.75301 (17) 1.06277 (14) 0.99575 (9) 0.0284 (3)  
N2 0.95232 (17) 0.83050 (15) 1.20380 (9) 0.0299 (3)  
C1 0.57267 (16) 0.45562 (15) 0.81273 (8) 0.0161 (2)  
C2 0.60104 (16) 0.63448 (15) 0.84001 (9) 0.0172 (2)  
H2 0.5514 0.6892 0.7908 0.021*  
C3 0.70346 (16) 0.73193 (14) 0.94073 (9) 0.0168 (2)  
C4 0.77827 (16) 0.65282 (15) 1.01422 (9) 0.0174 (2)  
C5 0.75085 (17) 0.47426 (15) 0.98455 (9) 0.0190 (2)  
H5 0.8021 0.4196 1.0331 0.023*  
C6 0.64993 (17) 0.37692 (15) 0.88523 (9) 0.0182 (2)  
H6 0.6326 0.2558 0.8657 0.022*  
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C7 0.73034 (17) 0.91628 (16) 0.97058 (9) 0.0203 (2)  
C8 0.87695 (18) 0.75260 (16) 1.11931 (9) 0.0208 (2)  
C9 0.38154 (17) 0.42055 (15) 0.64364 (9) 0.0184 (2)  
H9A 0.4798 0.5182 0.6209 0.022*  
H9B 0.2971 0.4692 0.6769 0.022*  
C10 0.26646 (17) 0.27359 (15) 0.54994 (9) 0.0188 (2)  
H10A 0.1797 0.1701 0.5741 0.023*  
H10B 0.1874 0.3148 0.5022 0.023*  
C11 0.29004 (17) 0.09387 (15) 0.39944 (9) 0.0202 (2)  
H11A 0.2350 0.1494 0.3485 0.024*  
H11B 0.1835 −0.0054 0.4154 0.024*  
C12 0.42262 (18) 0.02375 (15) 0.35138 (9) 0.0210 (2)  
H12A 0.4840 −0.0249 0.4039 0.025*  
H12B 0.3492 −0.0736 0.2893 0.025*  
C13 0.7150 (2) 0.11537 (17) 0.28910 (11) 0.0256 (3)  
H13A 0.6655 0.0264 0.2215 0.031*  
H13B 0.7622 0.0615 0.3441 0.031*  
C14 0.87530 (18) 0.27854 (17) 0.27613 (10) 0.0240 (3)  
H14A 0.9745 0.2452 0.2484 0.029*  
H14B 0.8263 0.3378 0.2252 0.029*  
C15 1.1129 (2) 0.5529 (2) 0.37304 (11) 0.0305 (3)  
H15A 1.2133 0.5206 0.3478 0.046*  
H15B 1.1635 0.6280 0.4443 0.046*  
H15C 1.0708 0.6184 0.3248 0.046*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.0224 (4) 0.0159 (4) 0.0141 (4) 0.0086 (3) −0.0007 (3) 0.0018 (3) 
O2 0.0199 (4) 0.0186 (4) 0.0153 (4) 0.0078 (3) 0.0000 (3) −0.0016 (3) 
O3 0.0228 (4) 0.0192 (4) 0.0230 (4) 0.0111 (3) 0.0060 (3) 0.0068 (3) 
O4 0.0227 (4) 0.0259 (4) 0.0228 (4) 0.0068 (4) 0.0040 (3) 0.0061 (4) 
N1 0.0367 (6) 0.0200 (5) 0.0270 (6) 0.0116 (5) 0.0022 (5) 0.0033 (4) 
N2 0.0328 (6) 0.0319 (6) 0.0210 (5) 0.0120 (5) −0.0016 (5) 0.0011 (5) 
C1 0.0164 (5) 0.0174 (5) 0.0139 (5) 0.0060 (4) 0.0032 (4) 0.0027 (4) 
C2 0.0196 (5) 0.0188 (5) 0.0147 (5) 0.0086 (4) 0.0028 (4) 0.0057 (4) 
C3 0.0183 (5) 0.0157 (5) 0.0162 (5) 0.0062 (4) 0.0040 (4) 0.0039 (4) 
C4 0.0186 (5) 0.0188 (5) 0.0144 (5) 0.0073 (4) 0.0024 (4) 0.0029 (4) 
C5 0.0215 (6) 0.0207 (5) 0.0168 (5) 0.0102 (5) 0.0027 (4) 0.0059 (4) 
C6 0.0220 (6) 0.0172 (5) 0.0169 (5) 0.0093 (5) 0.0033 (4) 0.0045 (4) 
C7 0.0229 (6) 0.0208 (6) 0.0161 (5) 0.0082 (5) 0.0006 (4) 0.0038 (4) 
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C8 0.0221 (6) 0.0219 (6) 0.0179 (5) 0.0087 (5) 0.0018 (4) 0.0048 (4) 
C9 0.0231 (6) 0.0180 (5) 0.0159 (5) 0.0114 (5) 0.0003 (4) 0.0032 (4) 
C10 0.0191 (5) 0.0200 (5) 0.0176 (5) 0.0093 (5) 0.0011 (4) 0.0022 (4) 
C11 0.0224 (6) 0.0167 (5) 0.0160 (5) 0.0040 (5) 0.0000 (4) 0.0000 (4) 
C12 0.0279 (6) 0.0154 (5) 0.0189 (5) 0.0080 (5) 0.0041 (5) 0.0026 (4) 
C13 0.0269 (6) 0.0226 (6) 0.0298 (7) 0.0134 (5) 0.0066 (5) 0.0026 (5) 
C14 0.0252 (6) 0.0270 (6) 0.0225 (6) 0.0133 (5) 0.0056 (5) 0.0038 (5) 
C15 0.0244 (7) 0.0318 (7) 0.0317 (7) 0.0059 (6) 0.0058 (5) 0.0092 (6) 
 
Geometric parameters (Å, °) 
O1—C1 1.3522 (13) C6—H6 0.9500 
O1—C9 1.4468 (13) C9—C10 1.4995 (16) 
O2—C10 1.4219 (14) C9—H9A 0.9900 
O2—C11 1.4267 (13) C9—H9B 0.9900 
O3—C13 1.4248 (15) C10—H10A 0.9900 
O3—C12 1.4260 (15) C10—H10B 0.9900 
O4—C14 1.4151 (15) C11—C12 1.5003 (17) 
O4—C15 1.4222 (16) C11—H11A 0.9900 
N1—C7 1.1473 (16) C11—H11B 0.9900 
N2—C8 1.1470 (16) C12—H12A 0.9900 
C1—C2 1.3948 (16) C12—H12B 0.9900 
C1—C6 1.4034 (15) C13—C14 1.4998 (18) 
C2—C3 1.3957 (15) C13—H13A 0.9900 
C2—H2 0.9500 C13—H13B 0.9900 
C3—C4 1.4053 (15) C14—H14A 0.9900 
C3—C7 1.4447 (16) C14—H14B 0.9900 
C4—C5 1.3974 (16) C15—H15A 0.9800 
C4—C8 1.4393 (16) C15—H15B 0.9800 
C5—C6 1.3787 (16) C15—H15C 0.9800 
C5—H5 0.9500   
C1—O1—C9 117.54 (9) O2—C10—H10B 109.8 
C10—O2—C11 111.24 (9) C9—C10—H10B 109.8 
C13—O3—C12 112.80 (9) H10A—C10—H10B 108.3 
C14—O4—C15 112.88 (10) O2—C11—C12 109.75 (10) 
O1—C1—C2 124.19 (10) O2—C11—H11A 109.7 
O1—C1—C6 115.73 (10) C12—C11—H11A 109.7 
C2—C1—C6 120.08 (10) O2—C11—H11B 109.7 
C1—C2—C3 119.04 (10) C12—C11—H11B 109.7 
C1—C2—H2 120.5 H11A—C11—H11B 108.2 
C3—C2—H2 120.5 O3—C12—C11 109.61 (9) 
C2—C3—C4 121.06 (10) O3—C12—H12A 109.7 
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C2—C3—C7 119.50 (10) C11—C12—H12A 109.7 
C4—C3—C7 119.44 (10) O3—C12—H12B 109.7 
C5—C4—C3 118.91 (10) C11—C12—H12B 109.7 
C5—C4—C8 120.51 (10) H12A—C12—H12B 108.2 
C3—C4—C8 120.56 (10) O3—C13—C14 109.09 (10) 
C6—C5—C4 120.44 (10) O3—C13—H13A 109.9 
C6—C5—H5 119.8 C14—C13—H13A 109.9 
C4—C5—H5 119.8 O3—C13—H13B 109.9 
C5—C6—C1 120.45 (10) C14—C13—H13B 109.9 
C5—C6—H6 119.8 H13A—C13—H13B 108.3 
C1—C6—H6 119.8 O4—C14—C13 108.48 (10) 
N1—C7—C3 178.99 (13) O4—C14—H14A 110.0 
N2—C8—C4 178.64 (14) C13—C14—H14A 110.0 
O1—C9—C10 107.97 (9) O4—C14—H14B 110.0 
O1—C9—H9A 110.1 C13—C14—H14B 110.0 
C10—C9—H9A 110.1 H14A—C14—H14B 108.4 
O1—C9—H9B 110.1 O4—C15—H15A 109.5 
C10—C9—H9B 110.1 O4—C15—H15B 109.5 
H9A—C9—H9B 108.4 H15A—C15—H15B 109.5 
O2—C10—C9 109.31 (9) O4—C15—H15C 109.5 
O2—C10—H10A 109.8 H15A—C15—H15C 109.5 
C9—C10—H10A 109.8 H15B—C15—H15C 109.5 
C9—O1—C1—C2 −2.98 (16) C4—C5—C6—C1 −0.27 (18) 
C9—O1—C1—C6 176.78 (10) O1—C1—C6—C5 −178.42 (10) 
O1—C1—C2—C3 178.44 (10) C2—C1—C6—C5 1.35 (17) 
C6—C1—C2—C3 −1.31 (17) C1—O1—C9—C10 −175.40 (9) 
C1—C2—C3—C4 0.22 (17) C11—O2—C10—C9 −174.83 (9) 
C1—C2—C3—C7 −178.74 (11) O1—C9—C10—O2 −67.87 (12) 
C2—C3—C4—C5 0.84 (17) C10—O2—C11—C12 −171.90 (9) 
C7—C3—C4—C5 179.80 (11) C13—O3—C12—C11 170.29 (10) 
C2—C3—C4—C8 −177.47 (11) O2—C11—C12—O3 −64.77 (12) 
C7—C3—C4—C8 1.49 (17) C12—O3—C13—C14 −169.69 (10) 
C3—C4—C5—C6 −0.81 (17) C15—O4—C14—C13 178.15 (10) 
C8—C4—C5—C6 177.50 (11) O3—C13—C14—O4 65.11 (13) 
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A.5 Single Crystal X-ray Diffraction Data 

4-(2-(2-Hydroxyethoxy)ethoxy)phthalonitrile (2.16) 

CN

CNO
O

H

2  

Crystal data 
 
C12H12N2O3 Dx = 1.334 Mg m−3 
Mr = 232.24  
Monoclinic, P21/c                               Mo Kα radiation  
                                                                  λ = 0.71073 Å 
Hall symbol: -P 2ybc Cell parameters from 3600 reflections 
a = 11.3397 (14) Å θ = 2.5–30.8° 
b = 14.4892 (15) Å µ = 0.10 mm−1 
c = 7.3662 (10) Å T = 90 K 
β = 107.136 (5)°  
V = 1156.6 (2) Å3 Needle fragment, yellow 
Z = 4 0.22 × 0.20 × 0.15 mm 
F000 = 488  
  

Data collection 
Nonius KappaCCD (with Oxford Cryostream)                         3575 independent reflections 
diffractometer  
Radiation source: fine-focus sealed tube                       2978 reflections with I > 2σ(I) 
Monochromator: graphite                       Rint = 0.019 
                       θmax = 30.8° 
T = 90 K                       θmin = 2.8° 
P =  kPa                       h = −16→16 
ω scans with κ offsets                       k = −20→19 
Absorption correction: none                       l = −10→10 
24325 measured reflections  
  

Refinement 
 
Refinement on F2                                Secondary atom site location: difference Fourier map 
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
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R[F2 > 2σ(F2)] = 0.039                                       H atoms treated by a mixture of independent             
                                                                             and constrained refinement 
wR(F2) = 0.107                                          w = 1/[σ2(Fo

2) + (0.0552P)2 + 0.3131P]  
                                                                              where P = (Fo

2 + 2Fc
2)/3 

S = 1.03                                                                                                                    (Δ/σ)max < 0.001 
3575 reflections                                                                                                  Δρmax = 0.39 e Å−3 
157 parameters                                                                                                 Δρmin = −0.24 e Å−3 
Primary atom site location: structure-invariant direct methods  
Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 0.16462 (6) 0.42958 (5) 0.46645 (10) 0.01642 (15)  
O2 0.08440 (6) 0.59153 (5) 0.24915 (9) 0.01604 (15)  
O3 0.11344 (7) 0.52376 (5) −0.11014 (11) 0.02049 (16)  
H3O 0.0398 (15) 0.5004 (10) −0.150 (2) 0.031*  
N1 0.62049 (8) 0.25375 (7) 0.95088 (14) 0.0255 (2)  
N2 0.44703 (9) 0.02248 (7) 0.73726 (16) 0.0299 (2)  
C1 0.22720 (8) 0.35086 (6) 0.52970 (13) 0.01384 (17)  
C2 0.34780 (8) 0.34833 (6) 0.65229 (13) 0.01464 (18)  
H2 0.3915 0.4038 0.6966 0.018*  
C3 0.40245 (8) 0.26247 (7) 0.70807 (13) 0.01475 (18)  
C4 0.33990 (8) 0.18017 (6) 0.64055 (13) 0.01560 (18)  
C5 0.21935 (8) 0.18406 (7) 0.51777 (14) 0.01594 (18)  
H5 0.1761 0.1287 0.4711 0.019*  
C6 0.16351 (8) 0.26852 (7) 0.46466 (13) 0.01547 (18)  
H6 0.0812 0.2709 0.3833 0.019*  
C7 0.52491 (9) 0.25855 (7) 0.84107 (14) 0.0181 (2)  
C8 0.39929 (9) 0.09246 (7) 0.69475 (15) 0.0201 (2)  
C9 0.22619 (8) 0.51656 (6) 0.52827 (13) 0.01518 (18)  
H9A 0.2977 0.5239 0.4783 0.018*  
H9B 0.2561 0.5193 0.6687 0.018*  
C10 0.13226 (9) 0.59158 (7) 0.45162 (13) 0.01570 (18)  
H10A 0.0630 0.5839 0.5065 0.019*  
H10B 0.1709 0.6522 0.4936 0.019*  
C11 0.16700 (9) 0.63002 (7) 0.15498 (13) 0.01658 (18)  
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H11A 0.2478 0.5983 0.1974 0.020*  
H11B 0.1802 0.6964 0.1860 0.020*  
C12 0.11053 (9) 0.61771 (7) −0.05626 (13) 0.0182 (2)  
H12A 0.0240 0.6395 −0.0933 0.022*  
H12B 0.1564 0.6557 −0.1246 0.022*  
  

Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 
O1 0.0133 (3) 0.0126 (3) 0.0203 (3) 0.0004 (2) 0.0001 (2) 0.0020 (2) 
O2 0.0142 (3) 0.0169 (3) 0.0160 (3) −0.0017 (2) 0.0028 (2) 0.0021 (2) 
O3 0.0178 (3) 0.0183 (4) 0.0240 (4) −0.0030 (3) 0.0041 (3) −0.0047 (3) 
N1 0.0160 (4) 0.0333 (5) 0.0251 (5) 0.0004 (3) 0.0028 (3) 0.0072 (4) 
N2 0.0236 (4) 0.0211 (5) 0.0424 (6) 0.0045 (3) 0.0056 (4) 0.0050 (4) 
C1 0.0130 (4) 0.0144 (4) 0.0136 (4) 0.0008 (3) 0.0033 (3) 0.0022 (3) 
C2 0.0126 (4) 0.0154 (4) 0.0151 (4) −0.0015 (3) 0.0027 (3) 0.0014 (3) 
C3 0.0115 (4) 0.0182 (4) 0.0146 (4) 0.0002 (3) 0.0040 (3) 0.0027 (3) 
C4 0.0146 (4) 0.0154 (4) 0.0174 (4) 0.0021 (3) 0.0055 (3) 0.0033 (3) 
C5 0.0153 (4) 0.0151 (4) 0.0172 (4) −0.0014 (3) 0.0047 (3) 0.0004 (3) 
C6 0.0124 (4) 0.0172 (4) 0.0154 (4) −0.0008 (3) 0.0019 (3) 0.0014 (3) 
C7 0.0149 (4) 0.0202 (5) 0.0194 (4) 0.0009 (3) 0.0053 (3) 0.0045 (3) 
C8 0.0161 (4) 0.0192 (5) 0.0247 (5) 0.0005 (3) 0.0055 (4) 0.0019 (4) 
C9 0.0143 (4) 0.0139 (4) 0.0160 (4) −0.0018 (3) 0.0024 (3) 0.0004 (3) 
C10 0.0168 (4) 0.0147 (4) 0.0155 (4) 0.0005 (3) 0.0046 (3) 0.0003 (3) 
C11 0.0174 (4) 0.0148 (4) 0.0171 (4) −0.0035 (3) 0.0043 (3) 0.0005 (3) 
C12 0.0204 (4) 0.0164 (4) 0.0164 (4) 0.0004 (3) 0.0034 (3) 0.0019 (3) 
 
Geometric parameters (Å, °) 
O1—C1 1.3515 (11) C4—C8 1.4386 (13) 
O1—C9 1.4477 (11) C5—C6 1.3804 (13) 
O2—C10 1.4289 (11) C5—H5 0.9500 
O2—C11 1.4327 (11) C6—H6 0.9500 
O3—C12 1.4211 (12) C9—C10 1.5102 (13) 
O3—H3O 0.868 (16) C9—H9A 0.9900 
N1—C7 1.1477 (13) C9—H9B 0.9900 
N2—C8 1.1486 (14) C10—H10A 0.9900 
C1—C2 1.3998 (12) C10—H10B 0.9900 
C1—C6 1.4038 (13) C11—C12 1.5086 (13) 
C2—C3 1.3965 (13) C11—H11A 0.9900 
C2—H2 0.9500 C11—H11B 0.9900 
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C3—C4 1.4016 (13) C12—H12A 0.9900 
C3—C7 1.4456 (13) C12—H12B 0.9900 
C4—C5 1.4005 (13)   
C1—O1—C9 118.07 (7) O1—C9—H9A 110.4 
C10—O2—C11 113.81 (7) C10—C9—H9A 110.4 
C12—O3—H3O 111.6 (10) O1—C9—H9B 110.4 
O1—C1—C2 123.95 (8) C10—C9—H9B 110.4 
O1—C1—C6 115.75 (8) H9A—C9—H9B 108.6 
C2—C1—C6 120.29 (8) O2—C10—C9 113.51 (8) 
C3—C2—C1 118.54 (8) O2—C10—H10A 108.9 
C3—C2—H2 120.7 C9—C10—H10A 108.9 
C1—C2—H2 120.7 O2—C10—H10B 108.9 
C2—C3—C4 121.27 (8) C9—C10—H10B 108.9 
C2—C3—C7 119.26 (8) H10A—C10—H10B 107.7 
C4—C3—C7 119.45 (8) O2—C11—C12 108.30 (8) 
C5—C4—C3 119.37 (8) O2—C11—H11A 110.0 
C5—C4—C8 120.19 (9) C12—C11—H11A 110.0 
C3—C4—C8 120.43 (8) O2—C11—H11B 110.0 
C6—C5—C4 119.85 (9) C12—C11—H11B 110.0 
C6—C5—H5 120.1 H11A—C11—H11B 108.4 
C4—C5—H5 120.1 O3—C12—C11 111.32 (8) 
C5—C6—C1 120.65 (8) O3—C12—H12A 109.4 
C5—C6—H6 119.7 C11—C12—H12A 109.4 
C1—C6—H6 119.7 O3—C12—H12B 109.4 
N1—C7—C3 177.63 (11) C11—C12—H12B 109.4 
N2—C8—C4 179.62 (12) H12A—C12—H12B 108.0 
O1—C9—C10 106.70 (7)   
C9—O1—C1—C2 0.37 (13) C3—C4—C5—C6 −0.01 (14) 
C9—O1—C1—C6 −179.67 (8) C8—C4—C5—C6 −179.25 (9) 
O1—C1—C2—C3 179.80 (8) C4—C5—C6—C1 1.20 (14) 
C6—C1—C2—C3 −0.17 (13) O1—C1—C6—C5 178.92 (8) 
C1—C2—C3—C4 1.37 (14) C2—C1—C6—C5 −1.12 (14) 
C1—C2—C3—C7 −177.34 (8) C1—O1—C9—C10 −175.03 (8) 
C2—C3—C4—C5 −1.29 (14) C11—O2—C10—C9 −76.94 (10) 
C7—C3—C4—C5 177.41 (9) O1—C9—C10—O2 −59.71 (10) 
C2—C3—C4—C8 177.94 (9) C10—O2—C11—C12 174.83 (7) 
C7—C3—C4—C8 −3.36 (14) O2—C11—C12—O3 −71.58 (10) 
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Hydrogen-bond geometry (Å, °) 

D—H···A D—H H···A D···A D—H···A 
O3—H3O···O2i 0.868 (16) 1.920 (16) 2.7420 (10) 157.5 (14) 
Symmetry codes:                              (i) −x, −y+1, −z. 
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A.6  Single Crystal X-ray Diffraction Data 

3,6-Bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phthalonitrile (2.17) 

 

O

O

CN

CN

O

O
3

3

 

Crystal data 
C22H32N2O8 Dx = 1.303 Mg m−3 
Mr = 452.40  
 
Monoclinic, P21/n                                 Mo Kα radiation  
   λ = 0.71073 Å 
Hall symbol: -P 2yn                                 Cell parameters from 3585 reflections 
a = 7.4919 (14) Å θ = 2.5–26.7° 
b = 43.065 (8) Å µ = 0.10 mm−1 
c = 7.9930 (15) Å T = 90 K 
β = 116.541 (8)°  
V = 2307.1 (7) Å3 Lath fragment, colorless 
Z = 4 0.45 × 0.30 × 0.03 mm 
F000 = 968  
  

Data collection 
 
Nonius KappaCCD (with Oxford Cryostream) diffractometer 13077 measured reflections 
 
Radiation source: fine-focus sealed tube 4715 independent reflections 
Monochromator: graphite 3648 reflections with I > 2σ(I) 
 Rint = 0.028 
T = 90 K θmax = 26.7° θmin = 2.8° 
ω scans with κ offsets h = −9→9 
Absorption correction: multi-scan 
Denzo and Scalepack (Otwinowski & Minor, 1997) k = −43→54 
Tmin = 0.957, Tmax = 0.997 l = −9→9 
  

Refinement 
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Refinement on F2                                Secondary atom site location: difference Fourier map 
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.047                                                              H-atom parameters constrained 
wR(F2) = 0.126                                                        w = 1/[σ2(Fo

2) + (0.0596P)2 + 1.0054P]  
                                                                                                                  where P = (Fo

2 + 2Fc
2)/3 

S = 1.03 (Δ/σ)max = 0.001 
4715 reflections Δρmax = 0.50 e Å−3 
292 parameters                                                                                                 Δρmin = −0.24 e Å−3 
                                         Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 
Primary atom site location:                                                  structure-invariant direct method  
                                                                                                    Extinction coefficient: 0.0030 (8) 
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 0.50055 (17) 0.81241 (3) 0.44353 (15) 0.0197 (3)  
O2 0.75293 (17) 0.86391 (3) 0.44483 (15) 0.0189 (3)  
O3 1.14881 (17) 0.88710 (3) 0.60838 (16) 0.0237 (3)  
O4 1.4186 (3) 0.93878 (4) 0.7756 (2) 0.0477 (5)  
O5 0.47120 (17) 0.68475 (3) 0.51017 (15) 0.0183 (3)  
O6 0.55863 (17) 0.61746 (3) 0.54604 (15) 0.0208 (3)  
O7 0.6130 (2) 0.53833 (3) 0.70674 (18) 0.0326 (3)  
O8 0.7554 (2) 0.47426 (3) 1.0265 (2) 0.0386 (4)  
N1 0.4667 (2) 0.80263 (4) 0.8599 (2) 0.0257 (4)  
N2 0.4544 (2) 0.71319 (4) 0.9110 (2) 0.0230 (3)  
C1 0.4775 (2) 0.76791 (4) 0.6002 (2) 0.0168 (4)  
C2 0.4720 (2) 0.73547 (4) 0.6182 (2) 0.0160 (3)  
C3 0.4778 (2) 0.71574 (4) 0.4813 (2) 0.0164 (3)  
C4 0.4873 (2) 0.72911 (4) 0.3265 (2) 0.0182 (4)  
H4 0.4912 0.7161 0.2322 0.022*  
C5 0.4912 (2) 0.76106 (4) 0.3080 (2) 0.0184 (4)  
H5 0.4953 0.7695 0.2001 0.022*  
C6 0.4893 (2) 0.78102 (4) 0.4448 (2) 0.0165 (4)  
C7 0.4715 (2) 0.78771 (4) 0.7429 (2) 0.0185 (4)  



190 

C8 0.4622 (2) 0.72255 (4) 0.7799 (2) 0.0177 (4)  
C9 0.4884 (2) 0.82716 (4) 0.2756 (2) 0.0201 (4)  
H9A 0.3509 0.8256 0.1734 0.024*  
H9B 0.5803 0.8169 0.2344 0.024*  
C10 0.5460 (2) 0.86056 (4) 0.3227 (2) 0.0194 (4)  
H10A 0.5133 0.8723 0.2061 0.023*  
H10B 0.4674 0.8695 0.3828 0.023*  
C11 0.8731 (2) 0.86487 (4) 0.3473 (2) 0.0193 (4)  
H11A 0.8533 0.8849 0.2807 0.023*  
H11B 0.8331 0.8479 0.2537 0.023*  
C12 1.0887 (2) 0.86120 (4) 0.4849 (2) 0.0208 (4)  
H12A 1.1070 0.8418 0.5570 0.025*  
H12B 1.1717 0.8599 0.4174 0.025*  
C13 1.3539 (3) 0.88505 (5) 0.7397 (2) 0.0255 (4)  
H13A 1.4375 0.8847 0.6727 0.031*  
H13B 1.3777 0.8656 0.8123 0.031*  
C14 1.4101 (3) 0.91224 (5) 0.8694 (3) 0.0280 (4)  
H14A 1.3104 0.9150 0.9178 0.034*  
H14B 1.5417 0.9085 0.9770 0.034*  
C15 1.4659 (4) 0.96565 (6) 0.8939 (3) 0.0562 (7)  
H15A 1.3695 0.9676 0.9451 0.084*  
H15B 1.4600 0.9842 0.8208 0.084*  
H15C 1.6006 0.9635 0.9967 0.084*  
C16 0.4574 (3) 0.66438 (4) 0.3602 (2) 0.0197 (4)  
H16A 0.5874 0.6637 0.3560 0.024*  
H16B 0.3560 0.6724 0.2388 0.024*  
C17 0.4008 (3) 0.63256 (4) 0.3918 (2) 0.0209 (4)  
H17A 0.2821 0.6339 0.4154 0.025*  
H17B 0.3645 0.6200 0.2774 0.025*  
C18 0.5133 (3) 0.58521 (4) 0.5461 (2) 0.0226 (4)  
H18A 0.5132 0.5750 0.4351 0.027*  
H18B 0.3789 0.5828 0.5395 0.027*  
C19 0.6657 (3) 0.57018 (4) 0.7208 (3) 0.0264 (4)  
H19A 0.8012 0.5727 0.7301 0.032*  
H19B 0.6632 0.5796 0.8328 0.032*  
C20 0.7196 (3) 0.52234 (5) 0.8781 (3) 0.0360 (5)  
H20A 0.6899 0.5316 0.9763 0.043*  
H20B 0.8649 0.5241 0.9185 0.043*  
C21 0.6578 (3) 0.48882 (5) 0.8499 (3) 0.0373 (5)  
H21A 0.5112 0.4870 0.8008 0.045*  
H21B 0.6974 0.4790 0.7596 0.045*  
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C22 0.7276 (4) 0.44177 (5) 1.0151 (3) 0.0461 (6)  
H22A 0.5847 0.4371 0.9603 0.069*  
H22B 0.7945 0.4328 1.1408 0.069*  
H22C 0.7844 0.4329 0.9365 0.069*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.0273 (6) 0.0185 (7) 0.0150 (6) −0.0027 (5) 0.0108 (5) 0.0011 (5) 
O2 0.0186 (6) 0.0241 (7) 0.0144 (5) −0.0027 (5) 0.0076 (5) −0.0016 (5) 
O3 0.0182 (6) 0.0250 (7) 0.0231 (6) −0.0007 (5) 0.0048 (5) −0.0057 (5) 
O4 0.0705 (12) 0.0284 (9) 0.0276 (8) −0.0075 (8) 0.0070 (8) 0.0008 (6) 
O5 0.0239 (6) 0.0176 (6) 0.0131 (5) −0.0001 (5) 0.0079 (5) −0.0015 (5) 
O6 0.0233 (6) 0.0187 (6) 0.0169 (6) −0.0002 (5) 0.0057 (5) 0.0011 (5) 
O7 0.0439 (8) 0.0218 (7) 0.0248 (7) −0.0032 (6) 0.0087 (6) 0.0014 (6) 
O8 0.0470 (9) 0.0272 (8) 0.0325 (8) −0.0052 (7) 0.0095 (7) 0.0031 (6) 
N1 0.0337 (9) 0.0240 (9) 0.0202 (8) 0.0007 (7) 0.0128 (7) −0.0005 (7) 
N2 0.0293 (8) 0.0235 (8) 0.0178 (7) 0.0003 (6) 0.0120 (6) −0.0008 (6) 
C1 0.0152 (8) 0.0216 (9) 0.0132 (7) −0.0002 (7) 0.0060 (6) −0.0016 (7) 
C2 0.0136 (7) 0.0209 (9) 0.0124 (7) −0.0003 (6) 0.0048 (6) −0.0003 (7) 
C3 0.0132 (7) 0.0194 (9) 0.0139 (7) 0.0000 (6) 0.0038 (6) −0.0007 (7) 
C4 0.0179 (8) 0.0235 (9) 0.0128 (8) −0.0008 (7) 0.0064 (6) −0.0030 (7) 
C5 0.0172 (8) 0.0261 (10) 0.0118 (7) −0.0011 (7) 0.0065 (6) 0.0005 (7) 
C6 0.0137 (7) 0.0193 (9) 0.0147 (8) −0.0013 (6) 0.0047 (6) 0.0005 (7) 
C7 0.0184 (8) 0.0200 (9) 0.0161 (8) −0.0007 (7) 0.0068 (7) 0.0026 (7) 
C8 0.0169 (8) 0.0183 (9) 0.0158 (8) 0.0005 (7) 0.0054 (7) −0.0029 (7) 
C9 0.0199 (8) 0.0261 (10) 0.0113 (7) −0.0025 (7) 0.0043 (6) 0.0029 (7) 
C10 0.0182 (8) 0.0227 (9) 0.0175 (8) 0.0026 (7) 0.0080 (7) 0.0040 (7) 
C11 0.0203 (8) 0.0231 (9) 0.0168 (8) −0.0024 (7) 0.0103 (7) −0.0004 (7) 
C12 0.0217 (8) 0.0212 (9) 0.0197 (8) −0.0006 (7) 0.0095 (7) −0.0020 (7) 
C13 0.0201 (9) 0.0303 (11) 0.0219 (9) −0.0025 (7) 0.0057 (7) 0.0010 (8) 
C14 0.0244 (9) 0.0334 (11) 0.0238 (9) −0.0017 (8) 0.0087 (8) 0.0009 (8) 
C15 0.0735 (18) 0.0265 (13) 0.0441 (13) −0.0039 (12) 0.0044 (13) −0.0072 (11) 
C16 0.0245 (9) 0.0205 (9) 0.0125 (7) 0.0016 (7) 0.0067 (7) −0.0032 (7) 
C17 0.0210 (8) 0.0228 (10) 0.0146 (8) 0.0002 (7) 0.0040 (7) −0.0009 (7) 
C18 0.0259 (9) 0.0192 (9) 0.0229 (9) −0.0025 (7) 0.0109 (8) −0.0022 (7) 
C19 0.0337 (10) 0.0190 (10) 0.0258 (9) −0.0016 (8) 0.0126 (8) −0.0015 (8) 
C20 0.0421 (12) 0.0284 (11) 0.0297 (10) −0.0004 (9) 0.0092 (9) 0.0035 (9) 
C21 0.0457 (13) 0.0279 (12) 0.0305 (11) −0.0047 (9) 0.0099 (9) 0.0032 (9) 
C22 0.0540 (14) 0.0272 (12) 0.0418 (12) −0.0070 (10) 0.0078 (11) 0.0089 (10) 
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Geometric parameters (Å, °) 
O1—C6 1.354 (2) C10—H10B 0.9900 
O1—C9 1.4509 (19) C11—C12 1.502 (2) 
O2—C10 1.423 (2) C11—H11A 0.9900 
O2—C11 1.430 (2) C11—H11B 0.9900 
O3—C12 1.423 (2) C12—H12A 0.9900 
O3—C13 1.424 (2) C12—H12B 0.9900 
O4—C14 1.384 (2) C13—C14 1.494 (3) 
O4—C15 1.435 (3) C13—H13A 0.9900 
O5—C3 1.359 (2) C13—H13B 0.9900 
O5—C16 1.4515 (19) C14—H14A 0.9900 
O6—C17 1.428 (2) C14—H14B 0.9900 
O6—C18 1.430 (2) C15—H15A 0.9800 
O7—C20 1.418 (2) C15—H15B 0.9800 
O7—C19 1.418 (2) C15—H15C 0.9800 
O8—C22 1.411 (3) C16—C17 1.489 (3) 
O8—C21 1.414 (2) C16—H16A 0.9900 
N1—C7 1.148 (2) C16—H16B 0.9900 
N2—C8 1.149 (2) C17—H17A 0.9900 
C1—C6 1.403 (2) C17—H17B 0.9900 
C1—C2 1.407 (2) C18—C19 1.499 (3) 
C1—C7 1.441 (2) C18—H18A 0.9900 
C2—C3 1.401 (2) C18—H18B 0.9900 
C2—C8 1.439 (2) C19—H19A 0.9900 
C3—C4 1.395 (2) C19—H19B 0.9900 
C4—C5 1.385 (3) C20—C21 1.502 (3) 
C4—H4 0.9500 C20—H20A 0.9900 
C5—C6 1.396 (2) C20—H20B 0.9900 
C5—H5 0.9500 C21—H21A 0.9900 
C9—C10 1.501 (2) C21—H21B 0.9900 
C9—H9A 0.9900 C22—H22A 0.9800 
C9—H9B 0.9900 C22—H22B 0.9800 
C10—H10A 0.9900 C22—H22C 0.9800 
C6—O1—C9 117.72 (13) C14—C13—H13B 109.7 
C10—O2—C11 112.77 (12) H13A—C13—H13B 108.2 
C12—O3—C13 111.46 (13) O4—C14—C13 109.79 (15) 
C14—O4—C15 111.51 (17) O4—C14—H14A 109.7 
C3—O5—C16 116.61 (12) C13—C14—H14A 109.7 
C17—O6—C18 109.73 (13) O4—C14—H14B 109.7 
C20—O7—C19 112.12 (14) C13—C14—H14B 109.7 
C22—O8—C21 112.33 (16) H14A—C14—H14B 108.2 



193 

C6—C1—C2 120.43 (15) O4—C15—H15A 109.5 
C6—C1—C7 119.99 (15) O4—C15—H15B 109.5 
C2—C1—C7 119.58 (15) H15A—C15—H15B 109.5 
C3—C2—C1 120.64 (15) O4—C15—H15C 109.5 
C3—C2—C8 119.92 (16) H15A—C15—H15C 109.5 
C1—C2—C8 119.44 (15) H15B—C15—H15C 109.5 
O5—C3—C4 125.15 (15) O5—C16—C17 109.68 (13) 
O5—C3—C2 116.54 (14) O5—C16—H16A 109.7 
C4—C3—C2 118.31 (16) C17—C16—H16A 109.7 
C5—C4—C3 121.05 (15) O5—C16—H16B 109.7 
C5—C4—H4 119.5 C17—C16—H16B 109.7 
C3—C4—H4 119.5 H16A—C16—H16B 108.2 
C4—C5—C6 121.36 (15) O6—C17—C16 112.16 (14) 
C4—C5—H5 119.3 O6—C17—H17A 109.2 
C6—C5—H5 119.3 C16—C17—H17A 109.2 
O1—C6—C5 125.93 (15) O6—C17—H17B 109.2 
O1—C6—C1 115.89 (14) C16—C17—H17B 109.2 
C5—C6—C1 118.18 (16) H17A—C17—H17B 107.9 
N1—C7—C1 177.76 (18) O6—C18—C19 109.71 (14) 
N2—C8—C2 177.80 (18) O6—C18—H18A 109.7 
O1—C9—C10 107.17 (13) C19—C18—H18A 109.7 
O1—C9—H9A 110.3 O6—C18—H18B 109.7 
C10—C9—H9A 110.3 C19—C18—H18B 109.7 
O1—C9—H9B 110.3 H18A—C18—H18B 108.2 
C10—C9—H9B 110.3 O7—C19—C18 105.92 (14) 
H9A—C9—H9B 108.5 O7—C19—H19A 110.6 
O2—C10—C9 111.87 (14) C18—C19—H19A 110.6 
O2—C10—H10A 109.2 O7—C19—H19B 110.6 
C9—C10—H10A 109.2 C18—C19—H19B 110.6 
O2—C10—H10B 109.2 H19A—C19—H19B 108.7 
C9—C10—H10B 109.2 O7—C20—C21 108.60 (16) 
H10A—C10—H10B 107.9 O7—C20—H20A 110.0 
O2—C11—C12 109.32 (13) C21—C20—H20A 110.0 
O2—C11—H11A 109.8 O7—C20—H20B 110.0 
C12—C11—H11A 109.8 C21—C20—H20B 110.0 
O2—C11—H11B 109.8 H20A—C20—H20B 108.4 
C12—C11—H11B 109.8 O8—C21—C20 106.81 (16) 
H11A—C11—H11B 108.3 O8—C21—H21A 110.4 
O3—C12—C11 109.21 (14) C20—C21—H21A 110.4 
O3—C12—H12A 109.8 O8—C21—H21B 110.4 
C11—C12—H12A 109.8 C20—C21—H21B 110.4 
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O3—C12—H12B 109.8 H21A—C21—H21B 108.6 
C11—C12—H12B 109.8 O8—C22—H22A 109.5 
H12A—C12—H12B 108.3 O8—C22—H22B 109.5 
O3—C13—C14 109.88 (16) H22A—C22—H22B 109.5 
O3—C13—H13A 109.7 O8—C22—H22C 109.5 
C14—C13—H13A 109.7 H22A—C22—H22C 109.5 
O3—C13—H13B 109.7 H22B—C22—H22C 109.5 
C6—C1—C2—C3 −0.2 (2) C7—C1—C6—C5 −178.86 (15) 
C7—C1—C2—C3 −179.99 (15) C6—O1—C9—C10 −168.61 (13) 
C6—C1—C2—C8 179.31 (15) C11—O2—C10—C9 85.10 (17) 
C7—C1—C2—C8 −0.5 (2) O1—C9—C10—O2 70.29 (17) 
C16—O5—C3—C4 −5.1 (2) C10—O2—C11—C12 −167.39 (14) 
C16—O5—C3—C2 174.15 (13) C13—O3—C12—C11 −178.84 (14) 
C1—C2—C3—O5 −179.82 (14) O2—C11—C12—O3 −64.54 (18) 
C8—C2—C3—O5 0.7 (2) C12—O3—C13—C14 −178.75 (15) 
C1—C2—C3—C4 −0.5 (2) C15—O4—C14—C13 178.09 (19) 
C8—C2—C3—C4 −179.99 (14) O3—C13—C14—O4 −72.2 (2) 
O5—C3—C4—C5 179.27 (15) C3—O5—C16—C17 −165.87 (14) 
C2—C3—C4—C5 0.0 (2) C18—O6—C17—C16 −167.88 (14) 
C3—C4—C5—C6 1.2 (2) O5—C16—C17—O6 −70.50 (17) 
C9—O1—C6—C5 8.3 (2) C17—O6—C18—C19 −172.89 (14) 
C9—O1—C6—C1 −172.62 (13) C20—O7—C19—C18 −168.17 (16) 
C4—C5—C6—O1 177.28 (15) O6—C18—C19—O7 −178.35 (14) 
C4—C5—C6—C1 −1.8 (2) C19—O7—C20—C21 −178.98 (18) 
C2—C1—C6—O1 −177.87 (14) C22—O8—C21—C20 −173.2 (2) 
C7—C1—C6—O1 2.0 (2) O7—C20—C21—O8 −175.61 (17) 
C2—C1—C6—C5 1.3 (2)    
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A.7 Single Crystal X-ray Diffraction Data 

3,6-Bis(2-(2-methoxyethoxy)ethoxy)phthalonitrile (2.18) 

O

O

CN

CN

O
O

O
O

 

Crystal data 
 
C18H24N2O6 Dx = 1.345 Mg m−3 
Mr = 364.39  
 
Monoclinic, P21                                Mo Kα radiation  
                                                                    λ = 0.71073 Å 
Hall symbol: P 2yb Cell parameters from 1582 reflections 
a = 4.6074 (12) Å θ = 2.5–28.2° 
b = 26.513 (8) Å µ = 0.10 mm−1 
c = 7.586 (2) Å T = 90 K 
β = 103.904 (12)°  
V = 899.5 (4) Å3 Plate fragment, colorless 
Z = 2 0.45 × 0.25 × 0.12 mm 
F000 = 388  
  

Data collection 
Nonius KappaCCD (with Oxford Cryostream)                         2263 independent reflections 
diffractometer   
Radiation source: fine-focus sealed tube                                 2159 reflections with I > 2σ(I) 
Monochromator: graphite Rint = 0.018 
 θmax = 28.3° 
T = 90 K θmin = 2.7° 
P =  kPa h = −6→6 
ω scans with κ offsets k = −35→22 
Absorption correction: none l = −10→10 
6074 measured reflections  
  

Refinement 
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Refinement on F2                         Hydrogen site location: inferred from neighbouring sites 
Least-squares matrix: full                                                        H-atom parameters constrained 
R[F2 > 2σ(F2)] = 0.028                                           w = 1/[σ2(Fo

2) + (0.0371P)2 + 0.1419P]  
                                                                                                                  where P = (Fo

2 + 2Fc
2)/3 

wR(F2) = 0.072 (Δ/σ)max < 0.001 
 
S = 1.04 Δρmax = 0.22 e Å−3 
2263 reflections Δρmin = −0.18 e 
Å−3 
238 parameters                                    
                                         Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 
constraints: Absolute  
Primary atom site location: structure-invariant direct methods   Flack parameter:  
                                                                                                      Extinction coefficient: 0.018 (3) 
Secondary atom site location: difference Fourier map 
parameter:                                                                                                                           Rogers 
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
O1 −0.1720 (3) 0.33495 (5) 0.88536 (15) 0.0162 (2)  
O2 −0.2020 (3) 0.23140 (5) 0.98747 (17) 0.0173 (2)  
O3 −0.4165 (3) 0.10341 (5) 0.86286 (17) 0.0201 (3)  
O4 0.4730 (2) 0.49502 (5) 0.70612 (15) 0.0153 (2)  
O5 0.7157 (2) 0.60106 (5) 0.69229 (16) 0.0167 (2)  
O6 0.9183 (3) 0.70876 (5) 0.45922 (18) 0.0221 (3)  
N1 −0.4797 (3) 0.35446 (6) 0.4224 (2) 0.0201 (3)  
N2 −0.0324 (3) 0.46404 (6) 0.2988 (2) 0.0204 (3)  
C1 −0.0622 (3) 0.39243 (6) 0.6774 (2) 0.0133 (3)  
C2 0.1023 (4) 0.43313 (6) 0.6318 (2) 0.0136 (3)  
C3 0.3263 (3) 0.45648 (6) 0.7646 (2) 0.0136 (3)  
C4 0.3784 (3) 0.43905 (6) 0.9433 (2) 0.0145 (3)  
H4 0.5265 0.4549 1.0355 0.017*  
C5 0.2164 (3) 0.39869 (6) 0.9882 (2) 0.0144 (3)  
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H5 0.2567 0.3873 1.1105 0.017*  
C6 −0.0046 (3) 0.37463 (6) 0.8564 (2) 0.0135 (3)  
C7 −0.2955 (4) 0.37011 (6) 0.5378 (2) 0.0151 (3)  
C8 0.0343 (3) 0.45090 (6) 0.4477 (2) 0.0154 (3)  
C9 −0.1327 (4) 0.31785 (7) 1.0706 (2) 0.0157 (3)  
H9A −0.1929 0.3446 1.1455 0.019*  
H9B 0.0796 0.3093 1.1234 0.019*  
C10 −0.3263 (4) 0.27187 (7) 1.0667 (2) 0.0166 (3)  
H10A −0.3363 0.2628 1.1918 0.020*  
H10B −0.5317 0.2789 0.9949 0.020*  
C11 −0.3831 (4) 0.18715 (7) 0.9716 (2) 0.0177 (3)  
H11A −0.5860 0.1941 0.8959 0.021*  
H11B −0.4008 0.1759 1.0930 0.021*  
C12 −0.2319 (4) 0.14712 (7) 0.8840 (2) 0.0184 (3)  
H12A −0.2084 0.1589 0.7644 0.022*  
H12B −0.0313 0.1394 0.9616 0.022*  
C13 −0.3116 (4) 0.06553 (7) 0.7598 (2) 0.0229 (4)  
H13A −0.3262 0.0779 0.6363 0.034*  
H13B −0.4339 0.0351 0.7549 0.034*  
H13C −0.1026 0.0576 0.8174 0.034*  
C14 0.6980 (3) 0.52110 (6) 0.8420 (2) 0.0154 (3)  
H14A 0.8345 0.4964 0.9177 0.018*  
H14B 0.6017 0.5412 0.9220 0.018*  
C15 0.8708 (3) 0.55516 (6) 0.7449 (2) 0.0163 (3)  
H15A 1.0690 0.5625 0.8259 0.020*  
H15B 0.9031 0.5377 0.6358 0.020*  
C16 0.8730 (4) 0.63003 (7) 0.5860 (2) 0.0174 (3)  
H16A 0.8402 0.6154 0.4627 0.021*  
H16B 1.0901 0.6293 0.6430 0.021*  
C17 0.7616 (4) 0.68372 (7) 0.5737 (2) 0.0181 (3)  
H17A 0.5432 0.6849 0.5208 0.022*  
H17B 0.8050 0.6996 0.6954 0.022*  
C18 0.8198 (4) 0.75920 (7) 0.4207 (3) 0.0245 (4)  
H18A 0.6038 0.7594 0.3675 0.037*  
H18B 0.9237 0.7741 0.3347 0.037*  
H18C 0.8641 0.7789 0.5333 0.037*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
O1 0.0196 (5) 0.0158 (6) 0.0127 (5) −0.0026 (4) 0.0028 (4) 0.0012 (4) 
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O2 0.0170 (5) 0.0133 (6) 0.0227 (6) −0.0006 (4) 0.0068 (4) −0.0012 (5) 
O3 0.0225 (6) 0.0144 (6) 0.0248 (6) −0.0028 (5) 0.0087 (5) −0.0019 (5) 
O4 0.0150 (5) 0.0150 (6) 0.0145 (5) −0.0031 (4) 0.0008 (4) 0.0003 (4) 
O5 0.0150 (5) 0.0147 (6) 0.0213 (5) 0.0015 (4) 0.0059 (4) 0.0023 (5) 
O6 0.0253 (6) 0.0172 (6) 0.0265 (6) 0.0018 (5) 0.0111 (5) 0.0045 (5) 
N1 0.0214 (7) 0.0201 (7) 0.0176 (6) −0.0033 (6) 0.0024 (5) 0.0008 (6) 
N2 0.0222 (7) 0.0192 (7) 0.0179 (7) −0.0029 (6) 0.0012 (5) 0.0012 (6) 
C1 0.0131 (7) 0.0137 (7) 0.0128 (6) 0.0016 (6) 0.0024 (5) −0.0019 (6) 
C2 0.0138 (7) 0.0144 (7) 0.0124 (7) 0.0025 (6) 0.0027 (5) 0.0007 (6) 
C3 0.0118 (6) 0.0136 (8) 0.0157 (7) 0.0011 (5) 0.0041 (5) −0.0010 (6) 
C4 0.0136 (7) 0.0151 (8) 0.0138 (7) 0.0008 (6) 0.0015 (5) −0.0015 (6) 
C5 0.0155 (7) 0.0138 (8) 0.0133 (7) 0.0020 (6) 0.0023 (5) 0.0006 (6) 
C6 0.0132 (7) 0.0128 (7) 0.0152 (7) 0.0020 (6) 0.0044 (5) 0.0002 (6) 
C7 0.0165 (7) 0.0147 (8) 0.0148 (7) 0.0008 (6) 0.0052 (6) 0.0013 (6) 
C8 0.0145 (7) 0.0139 (8) 0.0171 (7) −0.0014 (6) 0.0025 (6) −0.0020 (6) 
C9 0.0171 (7) 0.0171 (8) 0.0133 (7) 0.0002 (6) 0.0044 (5) 0.0005 (6) 
C10 0.0173 (7) 0.0140 (8) 0.0200 (7) 0.0008 (6) 0.0074 (6) 0.0017 (6) 
C11 0.0175 (7) 0.0148 (8) 0.0211 (7) −0.0017 (6) 0.0053 (6) 0.0020 (6) 
C12 0.0188 (8) 0.0149 (8) 0.0223 (8) −0.0015 (6) 0.0066 (6) 0.0008 (6) 
C13 0.0288 (9) 0.0188 (9) 0.0214 (8) 0.0000 (7) 0.0067 (7) −0.0018 (7) 
C14 0.0118 (7) 0.0159 (8) 0.0166 (7) −0.0017 (6) −0.0001 (5) −0.0007 (6) 
C15 0.0129 (7) 0.0157 (8) 0.0198 (7) 0.0012 (6) 0.0030 (6) 0.0000 (6) 
C16 0.0160 (7) 0.0172 (8) 0.0205 (8) −0.0008 (6) 0.0072 (6) 0.0002 (6) 
C17 0.0173 (7) 0.0184 (8) 0.0194 (7) −0.0003 (6) 0.0059 (6) 0.0007 (7) 
C18 0.0306 (9) 0.0165 (9) 0.0251 (9) −0.0004 (7) 0.0040 (7) 0.0026 (7) 
 
Geometric parameters (Å, °) 
O1—C6 1.354 (2) C9—H9A 0.9900 
O1—C9 1.4458 (19) C9—H9B 0.9900 
O2—C10 1.416 (2) C10—H10A 0.9900 
O2—C11 1.428 (2) C10—H10B 0.9900 
O3—C12 1.424 (2) C11—C12 1.509 (2) 
O3—C13 1.426 (2) C11—H11A 0.9900 
O4—C3 1.357 (2) C11—H11B 0.9900 
O4—C14 1.4496 (18) C12—H12A 0.9900 
O5—C15 1.419 (2) C12—H12B 0.9900 
O5—C16 1.430 (2) C13—H13A 0.9800 
O6—C18 1.420 (2) C13—H13B 0.9800 
O6—C17 1.420 (2) C13—H13C 0.9800 
N1—C7 1.141 (2) C14—C15 1.507 (2) 
N2—C8 1.151 (2) C14—H14A 0.9900 
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C1—C6 1.401 (2) C14—H14B 0.9900 
C1—C2 1.409 (2) C15—H15A 0.9900 
C1—C7 1.442 (2) C15—H15B 0.9900 
C2—C3 1.401 (2) C16—C17 1.508 (2) 
C2—C8 1.435 (2) C16—H16A 0.9900 
C3—C4 1.397 (2) C16—H16B 0.9900 
C4—C5 1.393 (2) C17—H17A 0.9900 
C4—H4 0.9500 C17—H17B 0.9900 
C5—C6 1.398 (2) C18—H18A 0.9800 
C5—H5 0.9500 C18—H18B 0.9800 
C9—C10 1.507 (2) C18—H18C 0.9800 
C6—O1—C9 117.30 (12) H11A—C11—H11B 108.6 
C10—O2—C11 111.75 (12) O3—C12—C11 107.21 (13) 
C12—O3—C13 111.29 (13) O3—C12—H12A 110.3 
C3—O4—C14 117.01 (12) C11—C12—H12A 110.3 
C15—O5—C16 109.28 (13) O3—C12—H12B 110.3 
C18—O6—C17 112.44 (14) C11—C12—H12B 110.3 
C6—C1—C2 120.54 (14) H12A—C12—H12B 108.5 
C6—C1—C7 120.51 (15) O3—C13—H13A 109.5 
C2—C1—C7 118.94 (14) O3—C13—H13B 109.5 
C3—C2—C1 120.59 (14) H13A—C13—H13B 109.5 
C3—C2—C8 120.36 (15) O3—C13—H13C 109.5 
C1—C2—C8 119.05 (14) H13A—C13—H13C 109.5 
O4—C3—C4 125.67 (14) H13B—C13—H13C 109.5 
O4—C3—C2 115.87 (14) O4—C14—C15 108.06 (13) 
C4—C3—C2 118.45 (15) O4—C14—H14A 110.1 
C5—C4—C3 120.94 (14) C15—C14—H14A 110.1 
C5—C4—H4 119.5 O4—C14—H14B 110.1 
C3—C4—H4 119.5 C15—C14—H14B 110.1 
C4—C5—C6 121.08 (15) H14A—C14—H14B 108.4 
C4—C5—H5 119.5 O5—C15—C14 111.23 (13) 
C6—C5—H5 119.5 O5—C15—H15A 109.4 
O1—C6—C5 125.71 (14) C14—C15—H15A 109.4 
O1—C6—C1 115.90 (14) O5—C15—H15B 109.4 
C5—C6—C1 118.39 (15) C14—C15—H15B 109.4 
N1—C7—C1 176.74 (19) H15A—C15—H15B 108.0 
N2—C8—C2 176.92 (18) O5—C16—C17 109.31 (13) 
O1—C9—C10 107.43 (13) O5—C16—H16A 109.8 
O1—C9—H9A 110.2 C17—C16—H16A 109.8 
C10—C9—H9A 110.2 O5—C16—H16B 109.8 
O1—C9—H9B 110.2 C17—C16—H16B 109.8 
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C10—C9—H9B 110.2 H16A—C16—H16B 108.3 
H9A—C9—H9B 108.5 O6—C17—C16 105.28 (13) 
O2—C10—C9 108.87 (13) O6—C17—H17A 110.7 
O2—C10—H10A 109.9 C16—C17—H17A 110.7 
C9—C10—H10A 109.9 O6—C17—H17B 110.7 
O2—C10—H10B 109.9 C16—C17—H17B 110.7 
C9—C10—H10B 109.9 H17A—C17—H17B 108.8 
H10A—C10—H10B 108.3 O6—C18—H18A 109.5 
O2—C11—C12 107.03 (13) O6—C18—H18B 109.5 
O2—C11—H11A 110.3 H18A—C18—H18B 109.5 
C12—C11—H11A 110.3 O6—C18—H18C 109.5 
O2—C11—H11B 110.3 H18A—C18—H18C 109.5 
C12—C11—H11B 110.3 H18B—C18—H18C 109.5 
C6—C1—C2—C3 0.0 (2) C2—C1—C6—O1 −179.11 (14) 
C7—C1—C2—C3 178.63 (15) C7—C1—C6—O1 2.3 (2) 
C6—C1—C2—C8 −179.06 (15) C2—C1—C6—C5 0.9 (2) 
C7—C1—C2—C8 −0.4 (2) C7—C1—C6—C5 −177.68 (15) 
C14—O4—C3—C4 −1.7 (2) C6—O1—C9—C10 −176.52 (13) 
C14—O4—C3—C2 177.72 (14) C11—O2—C10—C9 −177.18 (12) 
C1—C2—C3—O4 179.44 (14) O1—C9—C10—O2 70.38 (16) 
C8—C2—C3—O4 −1.5 (2) C10—O2—C11—C12 179.30 (13) 
C1—C2—C3—C4 −1.1 (2) C13—O3—C12—C11 172.49 (14) 
C8—C2—C3—C4 177.91 (15) O2—C11—C12—O3 −178.24 (12) 
O4—C3—C4—C5 −179.28 (15) C3—O4—C14—C15 169.47 (13) 
C2—C3—C4—C5 1.4 (2) C16—O5—C15—C14 −174.51 (13) 
C3—C4—C5—C6 −0.4 (2) O4—C14—C15—O5 81.64 (16) 
C9—O1—C6—C5 4.1 (2) C15—O5—C16—C17 −164.48 (13) 
C9—O1—C6—C1 −175.85 (14) C18—O6—C17—C16 174.94 (13) 
C4—C5—C6—O1 179.32 (15) O5—C16—C17—O6 −177.18 (13) 
C4—C5—C6—C1 −0.7 (2)   
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A.8 Single Crystal X-ray Diffraction Data 

3-(2-(2-(2-Ethoxyethoxy)ethoxy)ethylthio)phthalonitrile (2.20) 

CN

CN

S
O

3  

Crystal data 
 
C15H18N2O3S F000 = 324 
Mr = 306.37 Dx = 1.301 Mg m−3 
Triclinic, P¯1  
 
Hall symbol: -P 1                                Mo Kα radiation  
                                                                   λ = 0.71073 Å 
a = 7.947 (5) Å Cell parameters from 1905 reflections 
b = 7.969 (6) Å θ = 2.5–23.0° 
c = 13.704 (11) Å µ = 0.22 mm−1 
α = 95.09 (3)° T = 100 K 
β = 92.13 (4)°  
γ = 114.77 (4)° Plate, colorless 
V = 782.3 (10) Å3 0.32 × 0.22 × 0.01 mm 
Z = 2  
  

Data collection 
Nonius KappaCCD (with Oxford Cryostream)                          6918 measured reflections 
diffractometer  
Radiation source: fine-focus sealed tube              2157 independent reflections 
Monochromator: graphite             1731 reflections with I > 2σ(I) 
             Rint = 0.064 
T = 100 K              θmax = 23.1° 
P = kPa              θmin = 2.8° 
ω scans with κ offsets              h = −8→8 
Absorption correction: multi-scan 
Denzo and Scalepack (Otwinowski & Minor, 1997)              k = −8→8 
Tmin = 0.934, Tmax = 0.998 l = −15→15 
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Refinement 
 
Refinement on F2                                Secondary atom site location: difference Fourier map 
Least-squares matrix: full            Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.081                                                              H-atom parameters constrained 
wR(F2) = 0.258                                                        w = 1/[σ2(Fo

2) + (0.1242P)2 + 1.8912P]  
                                                                                           where P = (Fo

2 + 2Fc
2)/3 

S = 1.22 (Δ/σ)max < 0.001 
2157 reflections Δρmax = 0.36 e Å−3 
192 parameters Δρmin = −0.36 e 
Å−3 
 constraints                    Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 
Primary atom site location: structure-invariant direct methods 
                                                                                                    Extinction coefficient: 0.094 (19) 
 

Refinement: Refinement of F2 against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to 
zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for 
calculating R-factors(gt) etc. and is not relevant to the choice of reflections for 
refinement. R-factors based on F2 are statistically about twice as large as those based 
on F, and R- factors based on ALL data will be even larger. 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
 x y z Uiso*/Ueq  
S1 0.6219 (2) 0.5549 (3) 0.76187 (13) 0.0341 (7)  
O1 0.7105 (6) 0.4146 (6) 0.5595 (3) 0.0303 (12)  
O2 0.7187 (6) 0.1288 (6) 0.4182 (3) 0.0334 (13)  
O3 0.9501 (6) −0.0311 (7) 0.3199 (4) 0.0343 (13)  
N1 0.2448 (9) 0.6511 (10) 0.8417 (5) 0.0455 (18)  
N2 0.3483 (10) 0.8634 (10) 1.1182 (5) 0.0435 (17)  
C1 0.6827 (9) 0.6539 (9) 0.8843 (5) 0.0280 (17)  
C2 0.5540 (9) 0.7016 (10) 0.9336 (5) 0.0295 (17)  
C3 0.5920 (9) 0.7785 (9) 1.0321 (5) 0.0304 (17)  
C4 0.7605 (9) 0.8113 (10) 1.0826 (5) 0.0325 (18)  
H4 0.7873 0.8631 1.1496 0.039*  
C5 0.8891 (10) 0.7664 (10) 1.0329 (5) 0.0343 (18)  
H5 1.0051 0.7904 1.0664 0.041*  
C6 0.8518 (9) 0.6889 (10) 0.9372 (5) 0.0312 (17)  
H6 0.9413 0.6581 0.9057 0.037*  
C7 0.3800 (11) 0.6726 (11) 0.8818 (5) 0.0338 (18)  
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C8 0.4570 (10) 0.8233 (10) 1.0811 (5) 0.0331 (18)  
C9 0.8446 (9) 0.5993 (10) 0.7138 (5) 0.0317 (17)  
H9A 0.9398 0.7213 0.7442 0.038*  
H9B 0.8844 0.5020 0.7298 0.038*  
C10 0.8263 (9) 0.5988 (9) 0.6044 (5) 0.0293 (17)  
H10A 0.7711 0.6846 0.5882 0.035*  
H10B 0.9507 0.6425 0.5789 0.035*  
C11 0.6828 (10) 0.4065 (10) 0.4564 (5) 0.0326 (17)  
H11A 0.8043 0.4712 0.4293 0.039*  
H11B 0.6048 0.4719 0.4410 0.039*  
C12 0.5912 (9) 0.2116 (10) 0.4092 (5) 0.0324 (17)  
H12A 0.4773 0.1411 0.4417 0.039*  
H12B 0.5553 0.2091 0.3390 0.039*  
C13 0.6526 (10) −0.0440 (9) 0.3564 (6) 0.0333 (17)  
H13A 0.6396 −0.0230 0.2869 0.040*  
H13B 0.5292 −0.1300 0.3747 0.040*  
C14 0.7903 (10) −0.1281 (9) 0.3687 (5) 0.0352 (18)  
H14A 0.8259 −0.1211 0.4395 0.042*  
H14B 0.7321 −0.2608 0.3412 0.042*  
C15 1.0742 (11) −0.1178 (12) 0.3200 (6) 0.047 (2)  
H15A 1.1834 −0.0461 0.2858 0.071*  
H15B 1.0112 −0.2445 0.2862 0.071*  
H15C 1.1136 −0.1224 0.3879 0.071*  
  

Atomic displacement parameters (Å2) 
 U11 U22 U33 U12 U13 U23 
S1 0.0232 (10) 0.0410 (11) 0.0343 (12) 0.0113 (8) −0.0003 (8) −0.0007 (8) 
O1 0.033 (3) 0.029 (3) 0.027 (3) 0.011 (2) −0.001 (2) 0.002 (2) 
O2 0.027 (3) 0.031 (3) 0.038 (3) 0.011 (2) −0.001 (2) −0.005 (2) 
O3 0.031 (3) 0.035 (3) 0.041 (3) 0.016 (2) 0.005 (2) 0.005 (2) 
N1 0.031 (4) 0.060 (5) 0.048 (4) 0.021 (3) 0.002 (3) 0.008 (3) 
N2 0.043 (4) 0.061 (5) 0.038 (4) 0.032 (4) 0.007 (3) 0.006 (3) 
C1 0.021 (4) 0.023 (4) 0.038 (4) 0.007 (3) 0.001 (3) 0.004 (3) 
C2 0.024 (4) 0.031 (4) 0.035 (4) 0.013 (3) 0.000 (3) 0.008 (3) 
C3 0.026 (4) 0.029 (4) 0.039 (4) 0.015 (3) 0.004 (3) 0.007 (3) 
C4 0.025 (4) 0.039 (4) 0.034 (4) 0.015 (3) −0.002 (3) 0.003 (3) 
C5 0.024 (4) 0.037 (4) 0.042 (5) 0.013 (3) −0.001 (3) 0.007 (4) 
C6 0.028 (4) 0.034 (4) 0.033 (4) 0.016 (3) −0.001 (3) 0.002 (3) 
C7 0.031 (4) 0.047 (5) 0.028 (4) 0.020 (4) 0.005 (3) 0.011 (3) 
C8 0.032 (4) 0.031 (4) 0.036 (4) 0.013 (4) −0.001 (3) 0.003 (3) 
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C9 0.020 (4) 0.032 (4) 0.038 (4) 0.008 (3) 0.002 (3) 0.000 (3) 
C10 0.019 (3) 0.024 (4) 0.040 (4) 0.004 (3) 0.004 (3) 0.001 (3) 
C11 0.030 (4) 0.033 (4) 0.037 (4) 0.015 (3) 0.002 (3) 0.002 (3) 
C12 0.028 (4) 0.041 (4) 0.031 (4) 0.018 (3) −0.002 (3) 0.000 (3) 
C13 0.030 (4) 0.028 (4) 0.040 (4) 0.010 (3) 0.003 (3) 0.003 (3) 
C14 0.038 (4) 0.023 (4) 0.037 (4) 0.007 (3) 0.002 (3) 0.000 (3) 
C15 0.040 (5) 0.047 (5) 0.058 (6) 0.024 (4) −0.002 (4) −0.004 (4) 
 
Geometric parameters (Å, °) 
S1—C1 1.749 (7) C6—H6 0.9500 
S1—C9 1.815 (7) C9—C10 1.500 (10) 
O1—C11 1.413 (8) C9—H9A 0.9900 
O1—C10 1.431 (8) C9—H9B 0.9900 
O2—C12 1.429 (8) C10—H10A 0.9900 
O2—C13 1.430 (8) C10—H10B 0.9900 
O3—C14 1.411 (9) C11—C12 1.483 (10) 
O3—C15 1.421 (9) C11—H11A 0.9900 
N1—C7 1.127 (9) C11—H11B 0.9900 
N2—C8 1.158 (9) C12—H12A 0.9900 
C1—C2 1.406 (10) C12—H12B 0.9900 
C1—C6 1.409 (10) C13—C14 1.515 (10) 
C2—C3 1.400 (10) C13—H13A 0.9900 
C2—C7 1.449 (10) C13—H13B 0.9900 
C3—C4 1.395 (10) C14—H14A 0.9900 
C3—C8 1.436 (10) C14—H14B 0.9900 
C4—C5 1.397 (10) C15—H15A 0.9800 
C4—H4 0.9500 C15—H15B 0.9800 
C5—C6 1.365 (10) C15—H15C 0.9800 
C5—H5 0.9500   
C1—S1—C9 103.3 (3) O1—C10—H10B 109.7 
C11—O1—C10 112.3 (5) C9—C10—H10B 109.7 
C12—O2—C13 110.3 (5) H10A—C10—H10B 108.2 
C14—O3—C15 111.9 (6) O1—C11—C12 111.5 (6) 
C2—C1—C6 117.7 (6) O1—C11—H11A 109.3 
C2—C1—S1 117.8 (5) C12—C11—H11A 109.3 
C6—C1—S1 124.5 (5) O1—C11—H11B 109.3 
C3—C2—C1 120.9 (6) C12—C11—H11B 109.3 
C3—C2—C7 119.2 (6) H11A—C11—H11B 108.0 
C1—C2—C7 119.8 (6) O2—C12—C11 108.5 (5) 
C4—C3—C2 120.1 (6) O2—C12—H12A 110.0 
C4—C3—C8 120.1 (6) C11—C12—H12A 110.0 
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C2—C3—C8 119.8 (6) O2—C12—H12B 110.0 
C3—C4—C5 118.8 (7) C11—C12—H12B 110.0 
C3—C4—H4 120.6 H12A—C12—H12B 108.4 
C5—C4—H4 120.6 O2—C13—C14 108.8 (6) 
C6—C5—C4 121.5 (6) O2—C13—H13A 109.9 
C6—C5—H5 119.3 C14—C13—H13A 109.9 
C4—C5—H5 119.3 O2—C13—H13B 109.9 
C5—C6—C1 121.1 (6) C14—C13—H13B 109.9 
C5—C6—H6 119.5 H13A—C13—H13B 108.3 
C1—C6—H6 119.5 O3—C14—C13 109.9 (6) 
N1—C7—C2 179.6 (9) O3—C14—H14A 109.7 
N2—C8—C3 177.6 (8) C13—C14—H14A 109.7 
C10—C9—S1 109.2 (5) O3—C14—H14B 109.7 
C10—C9—H9A 109.8 C13—C14—H14B 109.7 
S1—C9—H9A 109.8 H14A—C14—H14B 108.2 
C10—C9—H9B 109.8 O3—C15—H15A 109.5 
S1—C9—H9B 109.8 O3—C15—H15B 109.5 
H9A—C9—H9B 108.3 H15A—C15—H15B 109.5 
O1—C10—C9 109.6 (5) O3—C15—H15C 109.5 
O1—C10—H10A 109.7 H15A—C15—H15C 109.5 
C9—C10—H10A 109.7 H15B—C15—H15C 109.5 
C9—S1—C1—C2 158.5 (5) C4—C5—C6—C1 1.0 (11) 
C9—S1—C1—C6 −21.6 (7) C2—C1—C6—C5 0.0 (10) 
C6—C1—C2—C3 −1.0 (10) S1—C1—C6—C5 −179.9 (6) 
S1—C1—C2—C3 179.0 (5) C1—S1—C9—C10 −155.8 (5) 
C6—C1—C2—C7 178.5 (6) C11—O1—C10—C9 178.0 (5) 
S1—C1—C2—C7 −1.6 (9) S1—C9—C10—O1 −68.3 (6) 
C1—C2—C3—C4 0.9 (11) C10—O1—C11—C12 170.0 (5) 
C7—C2—C3—C4 −178.6 (6) C13—O2—C12—C11 −167.7 (6) 
C1—C2—C3—C8 −179.0 (7) O1—C11—C12—O2 −68.6 (7) 
C7—C2—C3—C8 1.5 (10) C12—O2—C13—C14 −179.4 (6) 
C2—C3—C4—C5 0.2 (11) C15—O3—C14—C13 −173.4 (6) 
C8—C3—C4—C5 −179.9 (7) O2—C13—C14—O3 −74.5 (7) 
C3—C4—C5—C6 −1.1 (11)   
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