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Abstract

The availability of single crystals is vital for understanding the intrinsic properties of
crystalline materials. The flux growth method is a versatile technique which may be used to grow
single crystals. However, their synthesis can often be challenging, especially when a competing
phase is very robust. Herein, we study the growth competition between structurally related
compounds in the Ln-Ru-Al phase space. We demonstrate the benefits of single crystals and
suggest methods to grow competing phases.

CeRuzAly0 has garnered interest due to its higher ordering temperate than expected from
de Gennes scaling and its metal-to-insulator transition at the same temperature. Here, we report
the magnetic and transport properties of three sets of compounds which are structurally related to
CeRu2Al10: LNRu2Aly0 (Ln = Pr, Gd, Yb), CeRus(Al,Si)1s58, and Ln2RuzAlss (Ln = Ce, Gd, Th).
We find that despite the structural similarities, none of these compound display properties similar
to those of CeRu2Al. Our extensive study of these structurally related compounds allows us to

draw conclusions about the structure-property relationships in these systems.



Chapter 1." Introduction

Intermetallics exhibit many properties which can be useful for applications.’!
Aluminides have found use in high-temperature structural applications'? 2 and silicides are used
in electronics.>* Rare earth intermetallics, such as Nd,Fe14B, are used as permanent magnets in
devices such as hybrid cars and wind turbines.™® Other intermetallics offer possible energy
applications such as thermoelectrics,® 7 magnetocalorics,® and superconductivity.>% 1 On the
nanoscale, intermetallics can potentially be used in magnetic data storage devices,'! for
biomedical applications,'*? and as catalysts.>®

One class of materials which are of particular interest are strongly correlated electron
systems, systems whose properties arise as the result of electron-electron interactions.416
These materials exhibit many properties which are both useful for current applications as well as
offer potential for future applications. RKKY interactions, through which the conduction
electrons couple magnetic moments,'*’-1° can lead to long range magnetic ordering. The Kondo
effect, a mechanism in which the conduction electrons screen the magnetic moments, competes
with the RKKY interaction and can lead to heavy fermion behavior, where the conduction
electrons appear to have an enhanced mass.'?° Additionally, electron-electron interactions can
give rise to metal-to-insulator transitions where a small temperature change can result in an
orders of magnitude change in the resistivity.>? Perhaps the epitome of strongly correlated
systems, is high-T. superconductivity, where electron-electron interactions within pairs of
electrons reduces the resistivity to zero.'??
Partially reproduced with permission from Morrison, G. W.; Menard, M. C.; Treadwell, L. J.;
Haldolaarachchige, N.; Kendrick, K. C.; Young, D. P.; Chan, J. Y., Philos. Mag. 2012, 92, 2524-
2540. Copyright 2012 Taylor & Francis.
http://www.tandfonline.com/doi/full/10.1080/14786435.2012.669063

and Morrison, G.; Haldolaarachchige, N.; Chen, C.-W.; Young, D. P.; Morosan, E.; Chan, J. Y.,
Inorg. Chem. 2013, 52, 3198-3206. Copyright 2013 American Chemical Society.



Despite the technological demand for crystalline materials, the United States’ solid state
community is grappling with a shortage of high quality crystalline samples for physical property
studies.?® The synthesis of crystalline material within the US has fallen behind the efforts in
other countries. In response to this, the National Academy of Sciences released a report
highlighting the need for increased growth of crystalline materials. The report laid out three
grand challenges: the synthesis of crystalline materials for energy applications, the synthesis of
crystalline materials for new technologies, and the design of crystalline materials through the use
of computational methods.>*

The research described within this document is in line with the first two grand challenges.
Two main methods are used in selecting materials to be studied. First, structure types with
specific motifs can be targeted. For example, compounds with triangular arrangements of
lanthanides or 3™ row transition metals, such as kagome lattices, may exhibit magnetic
frustration.1?® Likewise, layered materials sometimes show large magnetoresistance.1?® In
Chapters 2-6 of this document, compounds of three structure types will be studied due to their
similarities to CeRu2Al1, whose properties will be discussed in Chapter 2. Second, specific
structure types which display desired properties can be targeted. By substituting one element
with another, these physical properties can be tuned. In Chapter 7 of this document, a doping
studies of YbAlixFexBs will be discussed. Using these two techniques, structurally similar
materials can be compared in order to reveal trends such as how structural motifs, metal
coordination, or valence electron concentrations are correlated to desired behavior.

When studying new materials, single crystals offer many advantages over polycrystalline
materials. Single crystals allow for structure determination using single crystal X-ray diffraction

(XRD). Furthermore, single crystals allow for the measurement of the intrinsic properties of a



material. In polycrystalline samples, the properties can be affected by grain boundaries between
crystallites and by impurities trapped in the grain boundaries. Finally, single crystals allow for
the measurement of anisotropic properties, properties down a specific orientation of a crystal.
Anisotropic properties are useful for elucidating a compounds magnetic structure and for
studying crystalline electric field effects, which will be discussed at the end of this chapter. For
the above reasons, single crystals are initially targeted for all studies in this document. Only
when single crystals cannot be obtained are polycrystalline samples used.

One challenge to crystal growth is obtaining a single phase within a growth, as multiple
phases often grow in a single batch. For this reason, investigation of the competition between
phases by systematically varying the reactant ratio and heating profile is required in order to
determine the optimal growth conditions of one phase with respect to another. This is especially
important when one compound in a phase space is considerably more stable than the others. In
such a case, the growth of the other phases can be very difficult. Several examples of the
competition between the growth of two compounds can be found in the Ln:Ru:Al and
Ln:Ru:Al:Si (Ln = lanthanide) phase spaces. The competition between the growth of
CeRuas(Al,Si)1558 and Ruzz(Al,Si)e7 will be discussed in Chapter 3 and the competition between
the growth of CezRusAlis and CeRuz2Al10 will be discussed in Chapter 4.

Many techniques are available for the growth of crystalline materials, and each technique
offers certain advantages and disadvantages. Often, phase pure compounds tend to prefer a
specific growth technique. In this document, three different solid state synthesis techniques, flux
growth, radio frequency induction heating, and arc melting, will be used in attempt to grow

physical property measurement quality samples.



The first technique, flux growth, uses a low melting metal as a solvent, or flux, in order
to dissolve metals with higher melting points. The reactant metals are heated in a high
temperature muffle furnace which allows for fine-tuned temperature control. Typically, flux
growth reactions are quickly heated (~100 °C/h) to a high temperature (1000-1200 °C) at which
the reaction is dwelled for ~24 h in order to ensure homogeneity. The reaction is then slowed
cooled (1-15 °C/h) to a temperature above the melting point of the flux. By inverting and
centrifuging the sample, the excess flux can be spun off. The slow cooling often results in the
growth of single crystals. Furthermore, the high degree of control over reaction conditions can
allow for the growth of congruently melting, incongruently melting, and even metastable phases.
However, in order to prevent the reactant metals from oxidizing, flux growth reactions are
typically sealed in an evacuated fused-silica tube. As fused-silica begins to become molten at
~1250 °C, the maximum temperature available to flux growth is about 1250 °C.

A second technique, radio frequency (RF) induction heating, applies an alternating
current to a coil, creating an alternating magnetic field. An alumina crucible wrapped with
tantalum foil is placed in an argon environment in the center of the coil. The magnetic field
creates eddy currents in the tantalum foil which leads to resistive heating of the foil and, in turn,
heats the crucible. Because the sample is in an inert environment, higher temperatures can be
reached than in the flux method. Furthermore, by changing the amplitude of the applied current
or partially raising the sample out of the coil, the temperature can be controlled. However,
because an alumina crucible is used, the maximum temperature is limited by the melting point of
alumina, 2053 °C.1-%’

A third technique, arc melting, uses an arc of electricity in order to melt the reactant

metals under an inert atmosphere. This technique heats the reaction to ~3000-4000 °C.



However, arc melting provides little temperature control, and the rapid heating and cooling
involved results in a polycrystalline sample. Furthermore, in order to obtain phase pure material,
arc melted samples typically have to be annealed at lower temperatures (500 - 1200 °C) for
extended time periods (often 1 - 4 weeks).
During the course of this dissertation, several physical phenomena will be mentioned.
One reoccurring phenomena, crystalline electric field (CEF) effects, will be discussed in detail
here. CEF effects occur when a non-spherical electron density surrounding a lanthanide breaks
the degeneracy of the f-orbitals. The way in which these orbitals are split is dependent on the
point symmetry of the lanthanide site. CEFs can strongly affect the magnetic properties of
crystalline materials.1-28
One effect of crystalline electric fields which is most common in Pr, Tb and Tm
containing compounds is the existence of a non-magnetic ground state. In Pr compounds, CEF
splitting can lead to two possible non-magnetic ground states, a singlet ground state and a non-
magnetic doublet ground state. For example, under cubic point symmetry, the f-electron
multiplet of a Pr3* ion is split into a singlet, a non-magnetic doublet and two triplets.1?® Which
of these states is the ground state depends on the electrostatic interaction between the f-electrons
and the aspherical electron density surrounding the lanthanide.X?® In systems with a non-
magnetic ground state, the system is magnetic at temperatures sufficiently above the splitting
energy between the ground state and first excited state. At these temperatures, both states are
equally populated. When the thermal energy becomes too small to excite electrons from the
ground state, the system becomes non-magnetic. This is characterized by the magnetic
susceptibility becoming nearly temperature independent, as is observed in PrTi2Alx>* and

PrOs,Alg. 131



A second effect of crystalline electric fields is anisotropic magnetism. The CEF can
dominate over the applied field and polarize the magnetic moments in one direction.>-32 This can
lead to anisotropic magnetic susceptibility, such as with HoNi2B2C*** and TbsoRusSnz1.>** This
anisotropy can be used to calculate the CEF splitting energies, as was done for CeRuzAl10.1%°

One final effect that crystalline electric fields can have on magnetic properties, which
will be discussed, here is their effect on the Weiss temperature. Along with leading to
anisotropic susceptibility, the pulling of the magnetic moments by the CEF contributes to Aw.
The CEF contribution to the Weiss temperature, fcr, can be determined by doping a non-
magnetic lanthanide onto the rare earth site as this doping has little effect on écr but reduces the
portion of the Weiss temperature due to the exchange interaction.!*? Such studies have been
performed on NdzxLaxTi207%? and Ho1-xLuxNi2B2C**. Not only can CEF affect the Weiss
temperature, they can also enhance the ordering temperature. When the CEF pulls the magnetic
moment in the same direction as the exchange interaction, the ordering temperature can be
increased.>® As the f-electrons in Gd are spherically symmetric, there are no CEF effects on Gd
ions. As a result, when the CEF enhances the ordering temperature, a deviation from the
expected RKKY ordering temperatures is observed. An example of this deviation is observed in
the LnRh4B4 system.!-3¢

The synthesis of large single crystals focuses on crystal growth while minimizing
nucleation. On the other end of the size scale, the synthesis of nanoparticles focuses on
maximizing nucleation while keeping growth low. Like with the synthesis of bulk crystals, the
synthesis of nanoparticles offers many challenges. When considering large single crystals, the
stability of a phase is almost entirely dependent on the energetics of the bulk. However, for

nanoparticles, the surface energy of the particle becomes important due to the large percentage of



atoms on the surface of a nanoparticle.1*” For example, nanoparticles which are smaller than 10
nanometers have over 50% of their atoms on the surface.l®® One direct results of this is the
importance of surfactants on nanoparticle morphology. The use of surfactants allows for the
stabilization of certain faces over others, thereby controlling nanoparticles morphology.3® For
example, CTAB preferentially binds to the (100) face of gold allowing for the growth of
nanorods.>4%  Likewise, the addition of amine surfactants to PbTe nanoparticles reactions
stabilizes Pb rich (111) faces leading to the formation of cuboctahedra or octahedra instead of
cubes, depending on the Pb:Te ratio.1** A second result of the large surface area to volume ratio
of nanoparticles is Oswald ripening. Smaller nanoparticles have a higher chemical potential than
larger nanoparticles and as a result, dissolve at a faster rate. For this reason, over time, when
monomer concentrations are low, smaller nanoparticles will become smaller and larger
nanoparticles will become larger, thereby increasing the size distribution of the nanoparticles.t?
A similar effect is the aggregation of nanoparticles upon heating.!42
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Chapter 2." Magnetic and Transport Properties of Single Crystal LnRu2Alo (Ln =
Pr, Gd, Yb)

2.1 Introduction

As part of our effort to grow single crystals of Ln-M-Al (M = Transition metal) systems to
study the interplay of magnetism in rare earth and transition metal sublattices,?! we have chosen
to work with compounds of the Fe triad. This effort is motivated by our interests in understanding
the mechanism of magnetism, especially the competition between itinerant and localized moments.
We have previously reported a series of lanthanide analogues of LnsFeGai, where the magnetic
rare earth compounds order with magnetism due to the rare earth ions. However, the nonmagnetic
rare earth analogue YsFeGai2 seems to exhibit itinerant magnetism.2? A competition between
itinerant and localized magnetism has also been observed in (LaixYx)MnsAlg (0 < x < 1) of the
CeMnsAlg structure type, an ordered derivative of ThMn12 type. In these compounds, the spin
pseudogap is continuously tunable between 200 K and 500 K by varying x.%3

Compounds consisting of Ln-M-Al (Ln = Lanthanide; M = Fe, Ru, Os) can adopt a wide
variety of structure types including YbFezAl1o 24, CeRuzxAl1o+x,>> CezRu3zAl15,2% GdsRusAlz,%’
CeRuUAl,?® LaiiRu2Als,>® LasRusAl,%° and GdsRhIn.2t These structure types include many
structural motifs, some of which can be observed in more than one structure type. The YbFe2Al1o
structure type, a substitutional and stacking variant of the ThMn12 structure type >* is adopted by
LnFezAlp (Ln =Y, La-Nd, Sm, Gd-Lu), LnRuzAl (Ln =Y, La-Nd, Sm, Gd, Tb, Ho-Yb),2*?
LnOs2Alp (Ln = La-Nd, Sm, Gd),2'? 3 and UMzAle (M = Fe, Ru, 0s).2141% Despite the
pervasiveness of the YbFexAlyo structure type for M = Fe, Ru, Os, it has only been reported for the

Fe triad. LnM2Alo (Ln =Y, La-Nd, Sm, Gd-Dy, Yb; M = Mn, Re) instead prefers to adopt

"Reproduced with permission from Morrison, G.; Haldolaarachchige, N.; Young, D. P.; Chan, J.
Y., J. Phys. Condens. Matter 2012, 24, 356002. Copyright 2012 IOP Publishing Limited
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the ThMn12 or CaCr2Alyg structure types®!” 18 and Ln-M-Al (M = Co, Rh, Ir) does not adopt a
LnM:Al1o structure.

Several LnM2Aly (Ln = Lanthanide, M = Fe, Ru, Os) compounds of the YbFe>Alio
structure type?* have been extensively studied due to the properties of some of the member
compounds. The Ce, Pr, Nd and Yb analogues of LnFe>Al1o were found to be paramagnets with
the Ce and Yb analogue containing mixed valent Ce and Yb, respectively. The Sm—Tm analogues
are antiferromagnets with GdFe.Alo ordering at the highest temperature, 15(3) K.%2 Notably,
YFe>Al was found to lie near a quantum critical point where the Fe atoms carry a magnetic
moment of 0.45 g and the quantum criticality was attributed to the magnetic ordering of the Fe
moments tuned to T = 0 K by an external magnetic field. Furthermore, the resistivity displays a
Kondo upturn near 20 K219

CeRuzAly is a heavy fermion compound, y = 246 mJ/(K2mol), which shows a magnetic
transition at 27.3 K, higher than the 16.5 K antiferromagnetic ordering for GdRu2Al10.2?° This
transition is characterized by a sharp decrease in the magnetic susceptibility as temperature
decreases. Furthermore, below this transition the resistivity, which shows semiconducting
behavior at high temperatures, begins to rapidly increase to a maximum at 23 K. After this
maximum, CeRu2Alio displays metallic resistivity.>?! Based on heat capacity and Knight shift
experiments, the transition is a second order phase transition which is accompanied by the opening
of a gap at the Fermi surface.??? Single crystal neutron diffraction indicates that CeRu2Alyo is an
antiferromagnet with a (1,0,0) propagation vector.2?® However, it is still unclear what mechanism
leads to the higher ordering than GdRu2Al10.2%

The properties of LnOs2Al10 (Ln = Ce, Pr, Nd, Sm, and Gd) have also been reported. The

Ce analogue displays similar properties to CeRu2Al10 except with an ordering temperature of 28.7

11



K.22% The Pr analogue shows no magnetic ordering down to 0.4 K, whereas the other three
analogues show antiferromagnetic ordering. Following the magnetic ordering, the Sm analogue
has two further magnetic transitions, and the Gd has one. Below the initial antiferromagnetic
ordering, the resistivities of the Sm and Gd analogues increase before decreasing again at even
lower temperatures.?

Due to the properties of CeRu2Al1 and LnOszAl10 (Ln = Ce, Nd, Sm, Gd), it is of interest
to grow other lanthanide analogues of LnRu2Al1g to determine the role of the lanthanide on the
physical properties of this family of compounds. Herein, we report the synthesis, structure, and
physical properties of LnM2Al1 (Ln = Pr, Gd and Yb).

2.2 Experimental
2.2.1 Synthesis

Pr (Chunks- 99.9% metal basis excluding Ta), Gd (Chunks- 99.9% metal basis excluding
Ta), Yb (chunks- 99.9% REO), Al (Shot- 99.999%), and Ru (Powder- 99.9%) were used as
received. No evidence for the incorporation of Ta into the crystals was seen for either the Pr or
Gd analogues. For all syntheses except PrRu2Al1o, the lanthanide, ruthenium, and aluminum were
combined in a 1:1:20 atomic ratio in an alumina crucible. For the Pr analogue, a ratio of 1:2:40
was used in order to prevent the growth of PraAli1. A second crucible was inverted on top of the
first, and the two crucibles were sealed in an evacuated fused-silica tube. For the synthesis of
PrRuzAle and GdRu2Al1, the sealed tube was rapidly heated to 1150 °C and dwelled at this
temperature for 24 h. The tube was then cooled to 720 °C at a rate of 15 °C/h. After cooling, the
samples were inverted and spun to remove excess flux. For the synthesis of YbRu2Al1o, a similar
heating scheme was utilized except that the dwell temperature was lowered to 1050 °C due to the

higher vapor pressure of ytterbium compared to the other lanthanides. After spinning, the

12



remaining aluminum flux was removed from the surface of the crystals using dilute HCI so that
physical properties could be obtained on clean single crystals.

Figure 2.1 shows crystals typical of each growth. Crystals of the Pr and Gd analogues were
about 3 mm on each side, while crystals of YbRu2Al1 were typically 1 mm on each side or smaller.
In an attempt to grow larger crystals of the Yb analogue, a cooling rate of 5 °C/h was attempted.

However, there was no noticeable increase in crystal size.

— -

» m ] gl

Figufe 21 riystralsyl f;t rwth the (a), (b) aj ad c; Yanalogues 0
LnRuzAl1o.
2.2.2 Structure

Single crystals were characterized by single crystal X-ray diffraction using an Enraf Nonius
KappaCCD diffractometer with a Mo K, source (A = 0.71 A). An initial structural model was
obtained through direct methods using SIR92.2% This model was refined using SHELXL-97.2%
Crystallographic data and atomic positions for the refinement of each analogue can be found in
Tables 2.1 and 2.2.

The composition of each analogue was confirmed by energy dispersive spectroscopy, EDS,
data obtained using an FEI Quanta 200 SEM equipped with an EDAX detector. The compositions
of the three analogues, as indicated by EDS, were Pr1.007)RU2.09(16)Al10.68), Gd1.002)RU2.038)Al9.42(2),

and Ybiooe)RU13s010)Als0i).  To ensure the homogeneity of single crystals, powder X-ray

diffraction of ground single crystals was performed using a Bruker AXS D8 Advance
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Diffractometer with a Cu Ko source (A = 1.54 A) equipped with a Ge incident beam
monochromator.

Table 2.1 Crystallographic Data for LnRuzAl10 (Ln = Pr, Gd, Yb)

Formula PrRuzAlw0 GdRu2Al1w0 YbRu2Al10
Space group Cmcm Cmcm Cmcm

a (A 9.1232(15) 9.0930(15) 9.0850(15)
b (A) 10.2664(10) 10.218(2) 10.2150(15)
c(A) 9.1800(15) 9.1370(15) 9.1110(15)
V (A% 859.82(4) 848.9(3) 845.5(2)

Z 4 4 4

Crystal dimensions (mm?®) 0.06x0.06x0.12 0.07x0.10x0.13 0.02x0.07x0.10
Temperature (K) 298(3) 298(3) 298(3)
Density (g cm™) 4.734 4,923 5.067

6 Range (°) 2.99-31.04 3-30.98 3-30.02

u (mm™) 9.988 12.189 15.455
Data Collection and Refinement

Collected reflections 1328 1313 1181
Unique reflections 760 750 672

Rint 0.0164 0.0223 0.0253

h -13<h<13 -13<h <13 -12<h <12
K -14<k<14 -14<k<14 -14<k<14
I -13<1<13 -13<1<13 -12<1<12
Apmax (e A%) 2.059 2.914 1.608

Apmin (e A3) -1.511 -1.255 -0.932

GoF 1.149 1.161 1.075
Extinction coefficient 0.0131(4) 0.0230(5) 0.0177(4)
aR1(F) for Fo? > 20(Fo?)  0.0191 0.0207 0.0191

b Ru(Fo?) 0.0441 0.0415 0.0392

Ry = Z||Fo| - |Fe[|/Z[Fol

BWR, = [ZW(Fo? - FA)YZW(Fe?)?]¥2; P = (Fo? + 2FA)/3; w = 1/[c%(Fo?) + (0.0232P)? + 1.7949P], w =
1/[6?(Fs?) + (0.0116P)? + 0.0000P], and w = 1/[c%(Fo?) + (0.0078P)? + 0.0000P] for Pr, Gd and Yh
analogues, respectively

14



Table 2.2 Atomic Coordinates and Atomic Displacement Parameters for LnRu2Alzo (Ln = Pr, Gd,

Yb)

Atom Wyckoff site x y z Ueq (A2)?
Pr() 40 0.12424(2) Y 0.00703(11)
Ru(1) 8d Y Y, 0 0.00522(10)
Al(1) 8g  0.22436(13) 0.36401(10) Y 0.0083(2)
Al(2) 8g  0.35026(13) 0.13025(10) Y 0.0085(2)
Al(3) gf 0 0.16051(10) 0.60094(12) 0.0078(2)
Al(4) 8 0 0.37721(10) 0.44980(13) 0.0093(2)
Al(5) 8¢  0.22681(14) 0 0 0.0083(2)
Gd(1) 40 0.12674(3) ¥ 0.00777(12)
Ru(1) 8d Y Yy 0 0.00548(12)
Al(1) 8g  0.22231(16) 0.36405(12) Y 0.0088(3)
Al(2) 8y  0.34965(15) 0.13058(11) Y 0.0086(3)
Al(3) g 0 0.15748(12) 0.60019(13) 0.0082(2)
Al(4) g 0 0.37660(11) 0.45121(14) 0.0094(3)
Al(5) 8¢  0.22564(16) 0 0 0.0088(3)
Yb(1) 4 0 0.12507(3) Y 0.00883(13)
Ru(1) 8d Y Yy 0 0.00583(13)
Al(1) 8g  0.22192(19) 0.36322(13) Y 0.0093(3)
Al(2) 8y  0.34793(17) 0.12904(12) Y 0.0094(3)
Al(3) g 0 0.15537(13) 0.59921(16) 0.0091(3)
Al(4) g 0 0.37544(12) 0.45334(17) 0.0098(3)
Al(5) 8¢  0.22518(19) 0 0 0.0096(3)

8Ueq is defined as one-third of the trace of the orthogonalized U;; tensor.
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2.2.3 Physical Property Measurements

Physical properties of LnRuzAlw (Ln = Pr, Gd, Yb) were measured using a Quantum
Design Physical Property Measurement System (PPMS). Magnetization was measured as a
function of applied field up to 9 T at 3 K. The temperature dependent DC magnetization was
measured under zero-field cooled conditions at 0.1 T, for the Pr and Yb analogues, or 1 T, for the
Gd analogue. Resistivity was measured as a function of temperature using the four probe method
with an excitation current of 5.13 mA, for the Pr analogue, or 8.21 mA for the Gd and Yb
analogues. Magnetoresistance was measured at 3 K.
2.3 Results and Discussion

2.3.1 Structure

Figure 2.2 (a) Structure of PrRu2Ali and (b) the Pr polyhedral environment.

LnRuzAli (Ln = Pr, Gd, Yb) are members of the YbFe2Al1o structure type?# and crystallize
in the orthorhombic space group Cmcm. Each ruthenium atom is surrounded by 10 aluminum and
2 lanthanide atoms in a distorted icosahedral geometry with point symmetry -1. The Ru-Al

distances range from 2.5753(3) - 2.7595(7) A, 2.5641(5) - 2.7437(8) A, 2.5637 - 2.7398(8) A, and
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the Ru-Ln distances are 3.4837(4) A, 3.4600(4) A, and 3.4606(4) A for the Pr, Gd, and Yb
analogues, respectively. These polyhedra are edge-sharing in the ac plane and corner-sharing in
the b-direction. As shown in Figure 2.2b, each lanthanide atom is surrounded by 16 aluminum
and 4 ruthenium atoms with point symmetry m2m. The Ln-Al distances range from 3.1794(11) -
3.6690(12) A, 3.1461(13) - 3.6852(14) A, and 3.1581(14) - 3.6793(16) A, for the Pr, Gd, and Yb
analogues, respectively. These contact distances are larger than the sum of the covalent radii and
may explain why the atomic displacement parameters for the lanthanide atoms are similar in size
to those of the Al atoms. The somewhat cage-like environment of the lanthanide atoms allows for
increased motion as compared to the closer bound Ru and Al atoms. This increased motion is
considerably less pronounced than in caged compounds such as clathrates and skutteridites, where

Table 2.3 Select Interatomic Distances in LnRuzAl1 (A)

Interaction PrRuzAl1o GdRu2Ale  YbRuU2AI0
Ln(1)-Ru(1) (x4) 3.4837(4) 3.4600(4) 3.4606(4)
Ln(1)-Al(1) (x2) 3.2014(12) 3.1569(14)  3.1596(16)
Ln(1)-Al(1) (x2) 3.6690(12) 3.6852(14)  3.6793(16)
Ln(1)-Al(2) (x2) 3.1961(13) 3.1796(15)  3.1612(16)
Ln(1)-Al(3) (x2) 3.2278(11)  3.2106(13)  3.1771(14)
Ln(1)-Al(3) (x2) 3.2431(12) 3.2151(13)  3.1967(15)
Ln(1)-Al(4) (x2) 3.1794(11)  3.1461(13)  3.1581(14)
Ln(1)-Al(5) (x4) 3.3430(9)  3.3324(10)  3.3174(11)
Ru(1)-Ln(1) (x2)  3.4837(4)  3.4600(4)  3.4606(4)
Ru(1)-Al(1) (x2) 2.5868(6) 2.5767(6) 2.5673(7)
Ru(1)-Al(2) (x2) 2.7595(7)  2.7437(8)  2.7398(8)
Ru(1)-Al(3) (x2)  2.6277(6)  2.6267(7)  2.6287(8)
Ru(1)-Al(4) (x2) 2.6683(6)  2.6533(7)  2.6422(7)
Ru(1)-Al(5) (x2) 2.5753(3)  2.5641(5)  2.5637(4)
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the room temperature ADP of the rattler atom is often several times larger than the other
atoms.22" 22 The Ln polyhedra are face-sharing and form columns in the c-direction with the
closest lanthanide contacts being 5.2509(8) A, 5.2516(7) A and 5.2232(7) A for the Pr, Gd and Yb
analogues, respectively, as shown in Figure 2.2a. Bond distances for the Ln and Ru polyhedra can
be found in Table 2.3.

The lattice parameters for YbRu2Al1o, a = 9.0850 (15) A, b = 10.2150(15) A and ¢ =
9.1110(15) A, are only slightly smaller than the lattice parameters of the Gd analogue, a =
9.0930(15) A, b =10.218(2) A and ¢ =9.1370(15) A, and the volume (845.5(2) A®) is intermediate
of Th (845.6(5) A®%) and Ho (843.7(6) A%).212
2.3.2 Magnetic Properties

Table 2.4 provides a summary of the magnetic data of the reported LnM2Al (M = Ru, Os)
analogues from this work and previously reported measurements. For the magnetic lanthanides,
uH << kgT such that the internal interactions and not the external field should dominate the
magnetization. Figure 2.3a shows the magnetic susceptibility of PrRu>Alix measured at 0.1 T.
The high temperature data were fitted using a modified Curie-Weiss law, y = yo + C/(T - 6), where
%o IS a temperature independent term which accounts for the Pauli paramagnetic and diamagnetic
contributions. Fitting down to 50 K yields a paramagnetic Curie-Weiss temperature of -49.8(14)
K and a pefr of 3.60(3) pe/Pr, close to the 3.58 ug expected for Pr3*. A kink at 13.2 K is indicative
of a non-magnetic singlet ground state for Pr3* caused by crystal electric field (CEF) splitting of
the 4f orbitals. Similar behavior was also observed in PrOs,Alx>* and other Pr containing
compounds such as PrTi2Al10.2% The CEF splitting has previously been calculated for CeRuzAlo,
where the first two CEF splittings were found to be 500 K and 760 K. The lack of magnetic

ordering in PrRu2Alq is similar to that of PrOs;Al10?13 and PrFe2Alio, the latter of which was
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Table 2.4 Magnetic Properties for Select LnM2Al1o (Ln = Lanthanide; M = Fe, Ru, Os)

Yo Tn(K)  0(K) Heale (uB)  perf (us)  Fit Range (K) Ref.
PrFe2Al10 — 0 3.58 3.6(1) 2.12
GdFezAls 15 0 7.94 7.9(1) 2.12
CeRu2Al1o 27.3 -44 2.54 3.03 2.30
PrRuAly  0.00122(8) — -49.8(14) 3.58 3.60(3)  50-250
GdRuAlp  0.00015(4) 155  -15.45(8) 7.94 8.14(10)  50-275
YbRuzAlo — — — — — —
CeOs,Al10 28.6 -30 2.54 2.7 2.31
PrOs,Al1o — -10 3.58 3.4 2.13
NdOsAl10 2.2 -6 3.62 3.3 2.13
SmOszAl10 12.5 -4 0.85 0.69 2.13
GdOsAl10 18 -13 7.94 7.6 2.13
a. b.
200 0.40 | .
— PrRu,Al;q
0.025 | ! T=3K |
~— )‘/
1150 0.30 / ,
= 28
& 0.020 + ‘—’,A = 025 // -
g 50-250 K 3 &
3 %o =0.00122(8) ]| 100 > 3m 0-20 / i
g 0.015 - 6= -49.8(14) K T = 015
2 C = 1.62(3) cm®K/mol = ' / 1
= R = 0.99987 3
0.010 IR w10 |
PrRU,Alq 0.05 4 ,
H=01T
0.005 ' : : ‘ : 0 0.00 : ' : ‘
0 50 100 150 200 250 300 0 2 4 6 8 10

T(K)

pH (T)

Figure 2.3 (a) Magnetic susceptibility and inverse susceptibility of PrRuzAlw. (b) Field-
dependent magnetization of PrRuzAlo.
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found to be paramagnetic down to 3 K.2'? However, the paramagnetic Curie-Weiss temperatures
for the Fe and Os analogues, 0 and -10 K, respectively, are substantially smaller than that of the
Ru analogue.?!> B  While CEF effects can lead to negative paramagnetic Curie-Weiss
temperatures, the large On (-49.8(14) K) of the PrRu2Alio compared to that of PrOs»Al1, which
shows similar CEF splitting, suggests stronger antiferromagnetic correlations in the Ru analogue
than the Fe and Os analogues. Magnetization as a function of applied field is shown in Figure 2.3b

and no hysteresis or saturation is observed.

| b.
200 0.40 , .
PrRu,Al,q
0.025 | 0351 T-o3k /_ |
1130 P? 0.30 | P |
= &
Q. 0.020 L 025 |
c 50-250 K g &
) a |
2 o015 =0001228) 1100 o = 0.20 /
e U i 8 =-49.8(14) K T =
= C =1.62(3) cm® = 0.15 |
= 62(3) omKimol = /
= R = 0.99987 3
0.010 150 2 auti | |
PrRu,Alyq — p |
H=01T
e e 0 0.00 . .
0 50 100 150 200 250 300 0 > i . . -
T H(T)

Figure 2.3 (a) Magnetic susceptibility and inverse susceptibility of PrRuzAlw. (b) Field-
dependent magnetization of PrRuzAlo.

Figure 2.4a shows the magnetic susceptibility of GdRu2Ali. This phase orders
antiferromagnetically at 15.5 K, which is in agreement with previous work.2?° Below the
antiferromagnetic transition, a spin reorientation is seen at 7.8 K. Fitting x> down to 50 K using
a modified Curie-Weiss law results in a Oy of -15.45(8) K and a pest of 8.14(10) us/Gd. While the
effective moment is 2.5% higher than the 7.94 pg which is expected for Gd®", it is not believed

that the Ru atoms carry a moment, as ruthenium is a 4d transition metal and typically does not

20



carry a magnetic moment. This is further supported by the fact that no localized moment was
observed on the Ru atoms in YbRuzAlw, a Pauli paramagnet in which Yb is divalent.
Magnetization as a function of applied field is shown in Figure 2.4b. The magnetic moment does
not saturate, only reaching 3.82 ug/Gd at 9 T. A change of slope is seen between 1 Tand 1.5 T,

possibly indicative of a metamagnetic transition.

a b.
40 4.0 :
GdRu,Al,
0.25 35 351 T=3K
30 & 30 |
= 0.20 - O?:
9 25 4 S 25+
= iy
g 015 50275K o0 3 sz.o i
S 25 = 0.00015(4) T~ =
€ = ®
S 0.10 6=-1545@)K 45 & = 15/
= C=8277(11) =
= cm?3-K/mol 10 3 10L P
0.05 R=1 = s
1
" GdRuAl, S 05
H=1T
0.00 ' ' ‘ ‘ ‘ 0 0.0 :
50 100 150 200 250 300 0 2

T (K)

Figure 2.4 (a) Magnetic susceptibility and inverse susceptibility of GdRu2Al. (b) Field-
dependent magnetization of GdRuAl1o.

The previously reported GdFe2Alip and GdOs:Alip  were found to order
antiferromagnetically at 15(3) K?*? and 18 K,2*3 respectively. The unit cell volumes of the Fe,
Ru and Os analogues, 829.9 A3 212 848.9(3) A3, and 856.58 A3 212 respectively, suggest that the
Gd-Gd interaction distances increase down the Fe triad. The increase in ordering temperature with
increasing Gd-Gd distances is possibly due to an increase in conduction electron concentration
down the triad as GdRu2Al10 was found to have a higher resistivity than GdOs,Al10.2* The trend

may also be explained by the cosine dependence of the RKKY interaction.
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Magnetization measurements, not shown, suggest that YbRu2Alo is a Pauli paramagnet,
indicating that Yb is in its nonmagnetic 2+ state. The field dependent susceptibility reaches a
maximum at 0.4 T before the diamagnetic contribution of the sample holder becomes observable.
As shown in Table 2.1, the unit cell volume for the Yb analogue is 3.4(4) A% smaller than the Gd
analogue. While a unit cell size close to that of the Sm analogue is typically expected for Yb?*
containing compounds, due to the polyhedral rare earth environment in LnRu2Al10, the smaller unit
cell size is not unexpected. Although the Yb in YbFe»Al is mixed valent, YbFe;Alo and
YbRuzAl display similar deviations from the expected lanthanide contraction.?? This suggests
that the YD in the Fe analogue may actually be diamagnetic and the observed magnetism arises as
a result of an Fe magnetic moment. In many LnTX (Ln = lanthanide, T = 3d transition metal, X =
p block element) compounds, when the lanthanide is non-magnetic, the transition metal carries a
magnetic moment.??

2.3.3 Transport Properties

The resistivities of PrRuzAlg, GdRu2Ale and YbRu2Al are shown in Figure 2.5a-c,
respectively. Each analogue displays metallic resistivity, although the Gd analogue is a poor metal
with a resistivity on the order of 1 mQ-cm. The Pr and Yb analogues have similar residual
resistivities of 6.60(15) uQ-cm for PrRuzAl1g and 6.0(2) pQ-cm for YbRu2Alo. GdRu2Al10, on
the other hand, displays a considerably higher residual resistivity of 190(6) uQ-cm. A similar,
although less pronounced, trend was observed in the LnOs,Al1o series with the Gd analogue having
a higher resistivity than the Pr analogue.>*®* While the Pr and Yb analogues have similar residual
resistivities, YbRu2Alo has a higher resistivity at 290 K, 423.18(12) uQ-cm, than the Pr analogue,
120.5(2) uQ-cm. As a result, YbRu2Al1g has a residual resistivity ratio (peeo k)/p@a k) of 70.5,

greater than the RRR for PrRuzAl1, 18.3, and GdRu2Al1, 8.9. This indicates that the YbRu2Al1o
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sample has a greater crystal quality than the other two analogues. This can be explained by the
dwell temperature required to grow each analogue. The Yb analogue was grown with a dwell
temperature of 1050 °C while the other two analogues where grown with a dwell temperature of
1150 °C. Asthe number of defects increases with temperature, a higher growth temperature means
the Gd and Pr analogues should have lower crystal qualities than the Yb analogue. Attempts to
grow GdRu2Alyo at the lower dwell temperature only resulted in polycrystalline product supporting
that this analogue formed at higher temperatures than 1050 °C. The lower crystal quality of the
Gd analogue, as compared to the other two, may be the cause of the higher residual resistivity of
GdRu2Alq0.

At low temperatures, the resistivities of PrRu2Al, T <70 K, and GdRu2Al1, 25 K< T <
140 K, display T2 dependences, which is typical of Fermi liquids, i.e. metallic compounds. This
indicates that the dominant factor contributing to the resistivity at low temperatures is electron-
electron scattering and not the magnetic contribution to the resistivity. While the Yb analogue
also displays a T2 dependence for 65 K < T < 150 K , below 65 K, it displays a T* dependent
resistivity. This dependence can be attributed to scattering by phonon mediated s-d transitions and
has been observed in other Pauli paramagnetic compounds.?32

The resistivity of GdRu2Al1o displays a sharp decrease at 15.2 K. This corresponds to the
antiferromagnetic ordering and can be attributed to spin-reduced scattering. Prior to the
antiferromagnetic transition, the resistivity has a slight upturn at 25.1 K. This upturn is reminiscent
of the increase in resistivity at 20 K of EuBs, another compound in which the rare earth adopts a
4f7 configuration.>*® In EuBe the upturn in the resistivity is due to the formation of magnetic
polarons prior to the magnetic ordering.23* The magnetoresistance of each analogue, not shown,

was measured at 3 K and found to remain below 2.5 % upto 9 T.
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Figure 2.5 Resistivity of (a) PrRu2Al1g, (b) GdRu2Al10, and (c) YbRu2Al. Insets highlight the
low temperature dependence of the resistivity for each analogue.

2.4 Conclusion

We report the structure and physical properties of flux grown single crystals of LnRu2Al1o

(Ln = Pr, Gd, Yb).

GdRuzAl0 was found to order antiferromagnetically at 15.5 K with a

paramagnetic Curie-Weiss temperature of a similar magnitude. PrRu2Ali, on the other hand,

displays no magnetic ordering but has a 6n of -49.8(14) K. Crystal electric field splitting leads to
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a non-magnetic singlet ground state for Pr3* causing a kink in the susceptibility at 13.2 K and

possibly contributing to the large negative paramagnetic Curie-Weiss temperature. YbRuU2Al1o

was found to be a Pauli paramagnet, indicating the Yb is divalent.
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Chapter 3. Serendipitous Growth of Single Crystals with Silicon Incorporation
3.1 Introduction

The availability of single crystals over polycrystalline samples is desirable for many
reasons including structural determination via single crystal X-ray diffraction and the measurement
of anisotropic physical properties. The self-flux method for the growth of single crystals has
several advantages over other solid state growth methods. Arc-melting is not conducive to the
growth of single crystals because the very high reaction temperatures (~ 3000 °C) and fast cooling
rate typically results in polycrystalline samples. Other single crystal growth methods often require
extensive equipment, such as floating zone furnaces, or large reactant amounts, such as in the
Czochralski method. In the self-flux method, the solubility of metals in a low-melting flux allows
for the synthesis of new materials at lower reaction temperatures. Furthermore, the self-flux
growth method can be performed using small amounts of reactant metals, often less than one gram,
and can be carried out in a conventional high temperature furnace. Finally, the high degree of
control over reaction conditions which the self-flux method provides allows for the synthesis of
congruently melting, incongruently melting, and even metastable phases.

While the flux growth method is a very versatile method, growing single crystals of one
compound can be challenging when another compound is very stable and robust. An examples of
the competition between the growth of two compounds can be found in the Ln:M:X:Si (Ln =
lanthanide; M = transition metal; X = Al, Ga) phase space. In the flux growth method, silica wool
is typically used to aid in the separation of crystals from the excess flux. In high temperature (1200

°C) growths involving Al or Ga flux, the wool is very soluble, and can allow silica to enter the

"Reproduced with permission from Morrison, G. W.; Menard, M. C.; Treadwell, L. J;
Haldolaarachchige, N.; Kendrick, K. C.; Young, D. P.; Chan, J. Y., Philos. Mag. 2012, 92, 2524-
2540. Copyright 2012 Taylor & Francis.
http://www.tandfonline.com/doi/full/10.1080/14786435.2012.669063
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reaction. This silica is then reduced by the molten aluminium flux to produce silicon metal and
alumina.®! While this is typically an undesirable result, an insidious entrance of silicon into the
reaction can often lead to the serendipitous growth of aluminium silicide phases which may not be
stabilized without silicon.? Herein, the synthesis, structure and properties of two competing metal
silicide phases, Ru23(Al,Si)g7 and CeRus(Al,Si)1s5 are reported.

3.2 Experimental

The reactant metals, in the form of powders, rods, or pellets of 99.9% purity or greater, are
used as received and weighed in the desired reaction ratio. The metals are placed in an alumina
crucible as per the self-flux method. Several reviews providing detailed descriptions of the flux
method are reported elsewhere,>3 4 and therefore, the details of this method will not be discussed
here. The reaction ratio and temperature profile are varied to determine the variables affecting
phase formation and crystal size. Adjustable variables include the heating/cooling rates, dwell
times at high/low temperatures, dwell temperatures, and spin temperatures.

The separation of single crystals from excess flux requires great care in the selection of the
etching medium. Dilute HCI is used as the etching which is unusual, as typically NaOH is used
as the etching agent, since the base often reacts with aluminium with minimal degradation of the
crystals. 334 However, in this case of Ruzs(Al,Si)e7, the use of NaOH as an etching agent led to
faster degradation of the crystal than did HCI.

Once single crystals are separated, their structures are characterized by single crystal X-ray
diffraction (XRD) using a Nonius KappaCCD diffractometer equipped with a Mo K, source (A =
0.711 A). The elemental compositions of the crystals are analysed with energy dispersive
spectroscopy (EDS) using an EDAX detector equipped to a FEI Quanta 200 or a Hitachi S-3600N

scanning electron microscope. Composition, structure and sample homogeneity of polycrystalline
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samples are determined via powder XRD using a Bruker AXS D8 Advance diffractometer with a
Cu Kq source (L = 1.541 A).

Temperature-dependent magnetic susceptibility (y) of single crystals are measured from 3
- 265 K at H = 0.1 T using a Quantum Design Physical Property Measurement System (PPMS).
Field-dependent magnetization of samples is generally measured from 0 T - 9 T at 3 K. Specific
heat is measured using the thermal relaxation option of the PPMS down to 0.4 K. Temperature-
dependent electrical resistance is measured down to 3 K using the four-probe method.
Magnetoresistance is measured at 3 K in fieldsup to 9 T.
3.3 Ruzs(Al,Si)e7
Ruz3(Al,Si)e7 is a highly stable phase which grows in a wide range of reactions compositions.
Large, phase pure, single crystals were synthesized by using a Ru:Al:Si ratio of 23:400:55.6 (12%
Si in Al). The reaction was dwelled at 1050 °C for 24 h before slow cooling at a rate of 10 °C/h
to 720 °C, at which temperature the reaction was spun. This reaction profile resulted in two large

single crystals, shown in Figure 3.1, each of which was approximately 5 mm on each side. EDS

analysis of the crystals indicated an elemental composition of Ru2z.0(12)Alg3.06)Si9.6(12).

o

Figure 3.1 Two crystals of Rus(Al,Si)gr.



The percent Si in the compound can be varied by changing the Si to Al ratio in the reaction.
When a Ru:Al:Si ratio of 23:400:26 (6% Si in Al) was used with the same heating profile, very
poor quality crystals were formed. By dwelling at 1150 °C instead of 1050 °C, single crystals with
a stoichiometry, determined by EDS analysis, of Ru2zo@)Alss3@4)Siss@ or 9.1(10)% Si were
obtained. When a Ru:Al:Si ratio of 23:400:129.2 (24% Si in Al) was used with the original heating
profile, single crystals with a stoichiometry of Ruzz.02)Alss.44)Si1s.34) Or 15.5(4)% Si were grown.
The large amount of Si used in this reaction led to the growth of Si crystals intermingled with the
Ruz3(Al,Si)e7 crystals. However, the two are easily distinguished by morphology, Si grows plates
as opposed to polyhedra, and Si is darker grey in colour than Ru23(Al,Si)ge7. While the uncertainty
in the EDS data is too high to show clear evidence that different amounts of Si are present in the
crystals of each growth, this can be seen by single crystal XRD. As shown in the Table 3.1, when
the Si concentration in Ru23(Al,Si)e7 is increased, the unit cell lattice parameters decrease. This is
expected as Si has a smaller covalent radius than Al.

Ruz3(Al Si)e7 is a new member of the a-(AlFeSi) structure type®® and crystallizes in the
hexagonal space group P6s/mmc with dimensions a = 12.6490(5) A and ¢ = 26.7560(10) A. Tables
of crystallographic data, atomic positions, interatomic distances, and figures of the structure can
be found in Tables 3.1-3 and Figure 3.2, respectively. Ru3(Al,Si)e7 varies from a-(AlFeSi) in that
the latter has three positionally disordered and 15 ordered Al/Si sites, whereas the prior has 17
completely occupied Al/Si sites. Due to the similarity between Al and Si electron densities, the
Al and Si atoms could not be distinguished by XRD. Since it is unclear whether Si is statistically
distributed across all of the Al sites or is localized on a smaller number of sites, the final structural

model was refined with only Al atoms. While single crystals large enough for neutron diffraction
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have been grown, recent evidence suggests that Al and Si cannot be distinguished by neutron

diffraction either.3

Table 3.1 Crystallographic Data of Ruz3(Al,Si)e7

Crystal data

Composition
Space group

a(A)

c(A)

V (A%

z

Crystal size (mm?)

Data Collection

Temperature (K)
Measured reflections
Independent reflections
Reflections with | > 24(1)
Rint

h

k

I

Refinement

6 range (°)

aR[F?> 20F?)]
bWR2(F?)

Parameters

GooF on F?

# (mm)

Apmax (e A?)

APmin (e A3)
Extinction coefficient

Ru23Algg 2Sig s
P6s/mmc
12.6523(10)
26.752(3)
3708.8(6)

2

0.05x0.10x 0.13

298(2)
11745
2256
1851
0.0589
-18 — 18
-15—> 15
-24 — 38

1.00-31.00
0.0235
0.0493
122

1.047
5.713
0.956
-0.929
0.00115(3)

Ru23Algs.9Si10.1
P6s/mmc
12.6395(10)
26.748(3)

3700.6(6)

2

0.05x0.013 x 0.013

298(2)
11649
2250
1841
0.0627
-18 = 18
-15—> 15
-38 524

1.00-31.00
0.0248
0.0518

122

1.043

5.725

1.117
-1.016
0.000136(4)

Ru23Alg2.0Siis.0
P6s/mmc
12.6138(15)
26.696(4)
3678.5(8)

2

0.03 x 0.07 x 0.07

298(2)
14343
2242
1702
0.0953
-18 > 17
-15—> 15
-38 — 38

1.00-31.00
0.0326
0.0551
122

1.027
5.760
0.993
-1.321
0.00083(3)

3Ry = X|[Fo| - [Fe|l/Z|Fo|

PWR2 = [ZW(Fo? - FA)Z/ZwW(Fo?)?]Y2; P = (Fo? + 2F?)I3; w = 1/[c?(Fo?) + (0.0197P)? + 4.7574P], w = 1/[c?(Fs?) + (0.0235P)? +
2.7873P], and w = 1/[c?(Fo?) + (0.0193P)? + 7.2046P] for 9.1 %, 10.4 % and 15.5 % Si analogues, respectively
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Table 3.2 Atomic Positional and Displacement Parameters for RuzsAlgs 9Si10.1

Atom Wyckoff site  x y z Ueq (A%)2
Ru() 12k 0.538546(15) 0.07709(3)  0.837391(14) 0.00664(8)
Ru(2) 12k 0.129206(15) 0.25821(3)  0.648949(15) 0.00733(8)
Ru(3) 12k 0.212892(15) 0.42578(3)  0.030155(13) 0.00692(8)
Ru(4) 6h 0.21134(2)  0.42268(4) Y 0.00600(10)
Ru(5) 4f v, 2 0.60011(2)  0.00689(12)
M(L)? 241 0.34583(9)  0.29235(9)  0.89706(4)  0.0105(2)
M(2) 241 0.32731(8)  0.33525(8)  0.80164(4)  0.00870(19)
M(3) 12i 0.37481(11) O 0 0.0113(3)
M(4) 12k 0.10696(6)  0.21393(11) 0.01690(5)  0.0058(2)
M(5) 12k 0.40395(6)  0.80790(11) 0.51678(6)  0.0083(3)
M(6) 12k 0.45386(6) 0.90772(12) 0.89642(6)  0.0109(3)
M(7) 12k 0.08373(6)  0.16746(13) 0.33199(6)  0.0110(3)
M(8) 12k 0.59627(6)  0.19253(12) 0.91831(6)  0.0104(3)
M(9) 12k 0.20258(6)  0.40515(12) 0.93205(6)  0.0102(3)
M(10) 12k 0.06790(6)  0.13580(11) 0.92540(5)  0.0079(3)
M(11) 12k 0.24891(7)  0.49783(13) 0.32718(6) 0.0138(3)
M(12) 12k 0.24986(6)  0.49971(13) 0.83660(6)  0.0158(3)
M(13) 6h 0.58333(9)  0.16666(17) Y 0.0132(4)
M(14) 6h 0.84056(8)  0.68112(17) Y 0.0065(4)
M(15) 6h 0.09013(9)  0.18025(18) Y 0.0126(4)
M(16) 6h 0.45649(8)  0.91297(17) Y 0.0127(4)
M(17) 2c v, % Yy 0.0114(7)

8Ueq is defined as one-third of the trace of the orthogonalized Uj; tensor.

°M = Al/Si
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Table 3.3 Select interatomic distances in Ruzs(Al Si)g7

Ru(1)-Al(1) (x2)  2.8005(10) Ru@3)-Al(l) (x2)  2.6143(11)
Ru(1)-Al2) (x2)  2.5156(10) Ru(3)-Al(3) (x2)  2.5637(4)
Ru(1)-Al(6) 2.4352(15) Ru(3)-Al(4) 2.3460(13)
Ru(1)-Al(8) 2.5062(15) Ru@3)-Al(5) (x2)  2.6158(8)
Ru(1)-Al(11) (x2)  2.4847(4) Ru(3)-Al(8) (x2)  2.6766(9)
Ru(1)-Al(13) 2.5348(9) Ru(3)-Al(9) 2.6338(16)
Ru(1)-Al(16) 2.9481(12)

Ru(4)-Al(2) (x4)  2.6264(10)
Ru(2-Al(l) (x2)  2.8324(10) Ru(4)-Al(12) (x2)  2.4649(16)
Ru(2-Al(2) (x2)  2.5557(10) Ru(4)-Al(15) 2.654(2)
Ru(2)-Al(7) (x2)  2.5353(5) Ru(4)-Al(16) (x2)  2.6835(10)
Ru(2)-Al(9) 2.6983(15) Ru(4)-Al(17) 2.6707(5)
Ru(2)-Al(10) 2.3980(15)
Ru(2)-Al(12) 2.6716(15) Ru(5)-Al(5) (x3)  2.7126(16)
Ru(2)-Al(15) 2.8344(8) Ru(5)-Al(6) (x3)  2.6402(13)

Ru(5)-Al(9) (x3)  2.9890(14)

Ru(5)-Al(12) (x3)  2.4911(15)

Figure 3.2 Structure of Ru23(Al,Si)e7 showing (a) the Rul, Ru2, Ru4 slab, (b) the Ru3 slab and
(c) the stacking of the two slabs with the Ru5 atoms laying in between. Ru4 and Ru5 polyhedra
are not shown for clarity.
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3.4 CeRu4(Al,Si)1558

While attempting to grow single crystals of a Ce:Ru:Al phase, a sample was prepared with
a Ce:Ru:Al ratio of 2:3:18 and was heated to 1200 °C for 24 h. A single crystal approximately 0.3
cm on each side was obtained from this growth. Single crystal XRD found this crystal to be a new
phase, CeRus(Al,Si)isss. EDS analysis found the composition of this crystal to be
Cevooa0)RUss914/Ale72)Sias2). In order to grow this phase, silica wool must have entered the
reaction during the growth.

The synthesis of CeRua(Al,Si)1s5s is difficult due to the stability of Ruzz(Al,Si)e7. Several
attempts were made to flux grow CeRus(Al,Si)1s58 using the self-flux method while avoiding the
growth of the pseudo-binary. Initially, the isolated growth of CeRus(Al,Si)1558 was attempted by
varying the Si to Al ratio in the reaction. As CeRus(Al,Si)1558 has 31% Si and Ruz3(Al,Si)e7 has
only 12% Si, increasing the Si concentration was expected to favour the growth of the quaternary
phase. Multiple growths were carried out with a Ce:Ru:Al:Si ratio of 1:4:32:X (X = varying
amounts of silicon) in which the reaction was heated to 1200 °C for 24 h before slow cooling to
720 °C at 5 °C/h. At low Si concentrations, circa 12%, only Ruz23(Al,Si)e7 forms. When the Si
concentration is increased to near 33%, a mixture of the two phases results. However, a large
amount of Si also precipitates out of the reaction making the separation of the crystals very
difficult. Further increasing the Si concentration to 42% prevents the growth of the pseudo-binary.
However, due to the very high Si concentration, only Si single crystals were visible in the growth,
with CeRus(Al,Si)1558 being a poor quality polycrystalline material. Next, instead of increasing
the Si concentration, the Ce concentration was increased while keeping the Si close to its maximum

soluble concentration at 720 °C (22%). A reaction with a Ce:Ru:Al:Si ratio of 2:4:32:9.63 and the
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heating scheme discussed above did not yield any of the desired CeRus(Al,Si)is58. Further
increasing the Ce ratio was not attempted as to avoid the precipitation of CesAl11.

As changing the reaction ratio did not appear to lead to phase pure CeRus(Al,Si)1s5g, the
next step was to change the reaction profile. The previously reported analogues of this structure
type were all grown at lower dwell temperatures with longer dwell times.>"8 A reaction was
prepared with a Ce:Ru:Al:Si ratio of 1:4:20:5, similar to the ratio used for the Fe analogues.?®
This reaction was dwelled at 850 °C for 4 days before being slow cooled at 5 °C/h. Lowering the
dwell temperature and increasing the time did not yield the desired product but instead grew
Ruz3(Al,Si)e7.

One final flux growth route which was attempted involved the pre-alloying of Ce with
another element in order to kinetically favour the growth of CeRua(Al,Si)15.58 over Ruzz(Al,Si)g7.
Ce:Ru ratios of 1:2 and 1:4 were arc-melted together and the resulting alloy was added to Al and
Sisuch that the Ru:Al:Si ratio was 4:32:5. Using the initial heating scheme, these reactions yielded
Ruz3(Al,Si)e7 and other binary or psuedobinary phases but no CeRus(Al,Si)1s58. Similarly, the pre-
alloying of Ce and Al did not result in the desired product but instead grew multiple RuSi phases.

While the flux growth method is often a very good technique to grow phase pure crystals,
it is not always the best or even a viable method. Following the failure of both changing the
reaction ratio and reaction profile to yield phase pure CeRu4(Al,Si)1s58, a polycrystalline growth
was attempted via arc melting. This phase was arc melted on stoichiometry using chunks or pellets
of each element. The resulting button was turned over and remelted two times to ensure
homogeneity. The resulting mass loss was less than 0.5%. Following the arc melting, powder
XRD indicated a small impurity of CeSi>x. This impurity persisted after annealing for 2.5 days at

800 °C. Further annealing at 850 °C for two weeks decreased the amount of CeSi>.x by
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approximately half but also led to the formation of a similar amount of RuAl.. In an attempt to
remove both impurities, the button was then annealed at 1150 °C, which is above the melting point
of RuAly, for one week. However, this lead to the complete decomposition of CeRuas(Al,Si)1558
into several binary phases.

CeRuas(Al,Si)1s5s is a new member of the NdRhsAl:s 37 structure type®’ and crystallizes in
the tetragonal space group P4,/nmc with the dimensions a = 8.9690(5) A and ¢ = 15.7050(10) A.
Two LnFesAlsSis (Ln = Th, Er) analogues have also been reported for this structure type.3® As
with Ruz3(Al,Si)e7, the Al and Si atoms could not be distinguished by XRD, and therefore, the
structural model was refined with only Al atoms. Figures and tables of crystallographic data,
atomic positions, and interatomic distances can be found in Figure 3.3 and Tables 3.4-6,

respectively.

Figure 3.3 Structure of CeRus(Al,Si)1s58 showing (a) the Ce environment, (b and c) the Ru
polyhedra viewed down the x and y axes, respectively, to emphasize the channels in which the Ce
lie.
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Table 3.4 Crystallographic Data of CeRu4(Al,Si)15.58

Crystal data

Composition CeRusAl10,63Sis.95
Space group P4,/nmc

a(A) 8.9690(5)

c(A) 15.7050(10)

V (A% 1263.36(13)

YA 4

Crystal size (mm?)
Data Collection

0.10x0.13x0.13

Temperature (K) 298(2)
Measured reflections 7532
Independent reflections 1121
Reflections with I > 25(1) 1053

Rint 0.0203

h -12 —> 12
k -12 - 12

I -22 — 22
Refinement

O range (°) 2.62-31.00
aR1[F? > 20F?)] 0.0171
PWR2(F?) 0.0405
Parameters 75

GooF on F? 1.231

u (mm?t) 9.266
Apmax (e A3) 1.141
Apmin (8 A?) -1.008
Extinction coefficient 0.00300(9)

3Ry = 3|[Fo| - [Fel/Z[Fo|

bWRz = [ZW(Fo? - Fe2)/ZW(Fe2)2]Y2; P = (Fo? + 2Fc?)/3; W = 1/[3(Fo?) + (0.0106P)2 + 4.4120P]

NdRhsAl1537 contains two Rh sites, the Rh1 site, which is coordinated by eight fully-
occupied and three partially-occupied Al atoms, and the Rh2 site, which is coordinated by 10 Al
atoms in a distorted pentagonal antiprism.®’ CeRua(Al,Si)1sss has similar disorder of the Al atoms
around the Rul site. The Rul atoms are coordinated by eight ordered aluminium atoms along with
five disordered aluminium atoms (Al7, AI8 and Al9). The eight ordered aluminium atoms along
with the two Al7 atoms form a distorted pentagonal antiprism. The two AI8 atoms and the Al9

atom lie above the Al7 atoms. The Al7, Al8 and Al9 atoms have occupancies of 29.6(6)%,
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Table 3.5 Atomic Positional and Displacement Parameters for CeRuas(Al,Si)15.58

Atom Woyckoff site  x y z Occ.2 Ueq (A2)P
Ce(1) 4d Ya Ya 0.334900(17) 1.00 0.00607(8)
Ru(1) 8g Y 0.48983(3)  0.001175(17) 1.00 0.00936(8)
Ru(2) 8f 0.50104(2) 0.49896(2) 1.00 0.00588(8)
Al(1) 16h  0.46234(12) 0.49966(9) 0.41687(5) 1.00 0.01553(18)
Al(2) 89 Ya 0.01512(12) 0.68508(7) 1.00 0.00636(19)
Al(3) 8g Y 0.06838(13) 0.16103(7)  1.00 0.0094(2)
Al(4) 89 Ya 0.38945(15) 0.52425(7) 1.00 0.0142(2)
Al(5) 89 Ya 0.59714(12) 0.30621(7) 1.00 0.00704(19)
Al(6) 89 Ya 0.59648(13) 0.84339(8) 1.00 0.0137(2)
Al(7) 89 Y 0.6351(4)  0.5329(2) 0.296(6)  0.0105(12)
Al(8) 89 Ya 0.6453(5) 0.4519(3) 0.281(7) 0.0164(15)
Al(9) i Y Yy 0.5231(3) 0.430(10)  0.0155(15)
a0ccupancy
bUeq is defined as one-third of the trace of the orthogonalized Ujj tensor.
Table 3.6 Select interatomic distances in CeRus(Al,Si)1s 58
Ce(1)-Ru(1) (x2) 3.3832(17) Ru(1)-Al(4) (x2) 2.5145(8)
Ce(1)-Ru(2) (x4)  3.4400(2) Ru(1)-Al(6) 2.6562(16)
Ce(1)-Al(1) (x4) 3.2091(9) Ru(1)-Al(7) (x2) 2.6066(17)
Ce(1)-Al(2) (x2)  3.1582(11) Ru(1)-Al(8) (x2)  2.6208(19)
Ce(1)-Al(3) (x2) 3.1796(11) Ru(1)-Al(9) 2.3587(7)
Ce(1)-Al(4) (x2)  3.2261(12)
Ce(1)-Al(5) (x2)  3.1460(11) Ru(2-Al(l) (x2)  2.6413(8)
Ce(1)-Al(6) (x2)  3.1104(12) RU(2)-Al(2) (x2)  2.4749(5)
Ru(2)-Al(3) (x2)  2.7066(6)
Ru(1)-Al(1) (x4) 2.6130(8) Ru(2)-Al(5) (x2) 2.5511(6)
Ru(1)-Al(3) 2.5642(11) Ru(2)-Al(6) (x2) 2.8259(8)
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28.1(7)% and 43.0(10)%, respectively. The above occupancies, along with bond distances,
suggest that either the AI9 atom is present or a nonadjacent pair of Al7 and Al8 atoms is present
in each Rul polyhedron. Based on the uncertainties in the occupancies of the three sites, the
formula becomes CeRuas(Al,Si)1558(3).

Each cerium atom is surrounded by 14 aluminium and six ruthenium atoms. These
polyhedra are similar in structure to the cerium polyhedra found within CeRu2Al0*° and
CezRusAls.31% Unlike in these previously reported structures, the Ce polyhedra do not form face-
sharing columns. Instead, they are corner sharing through Ru2 atoms. The Ce-Ce distance
between vertically stacked cerium atoms is 7.8525(6) A. The closest Ce-Ce interaction is actually
between diagonally adjacent cerium polyhedral which are separated by 6.8798(18) A and have a
Ru2 atom located at their centroid.

The stability of this phase has been explained by considering the valence electron density.
NdRhsAl15.37 has 85.11 valence electrons per formula unit. LnFesAlgSis (LN = Er, Tb) has a similar
valence electron concentration with 86 valence electrons per formula unit.3>® The NdRhsAls.37
structure type being a valence electron count stabilized phase provides an explanation for why the
iron analogue contains silicon. As Rh has one more valence electron than the iron analogue, silicon
provides the extra valence electrons which are required to bring the electron density to the required
level. This can also be seen in CeRus(Al,Si)1558 Where the ~31% silicon brings the valence
electron density to 86.69 valence electrons per formula unit (Ce: 3; Ru: 8; Al: 3; Si: 4).

Figure 3.4a shows the temperature-dependent magnetic susceptibility at 0.1 T for a
sample of CeRua(Al,Si)1558 that was arc melted and annealed at 800 °C. Fitting with a modified
Curie-Weiss law, y = y + C/(T - 6), from 50 to 200 K, yo = 0.00107(5) emu/mol-Ce and

6 =-21.9(14) K. An effective moment of 1.93(2) ps/Ce is calculated from the data and is smaller
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than the 2.54 pg expected for Ce3*. The inverse
susceptibility, shown in the inset, displays a
ferromagnetic transition at about 13 K. This transition
IS not accompanied by the large increase in
susceptibility which is typically expected for
ferromagnetic transitions. Instead, the susceptibility
only reaches 0.12 emu/mol-Ce at 3 K. Furthermore,
the magnetization as a function of field, shown in
Figure 3.4b, only shows a very small hysteresis loop.
These two characteristics, coupled with the negative
Weiss temperature, suggest that CeRus(Al,Si)isss is
paramagnetic and that the slight ferromagnetic
behaviour arises due to the CeSizx impurity, which is
ferromagnetic for x between 0.2 and 0.3 with Tc = 10
K311 paramagnetic behaviour down to 3 K is expected
for CeRus(Al,Si)1s58 as the closest Ce-Ce contacts are
6.8798(18) A. This is in agreement with other Ce
containing compounds with large Ce-Ce distances.?2
This is also in agreement with LnFesAlgSis (Ln = Tb,
Er) which were both found to be paramagnetic.>8 The
presence of a ferromagnetic impurity in the arc-melted
sample highlights one of the advantages single crystals

offer over polycrystalline samples.
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The resistivity of the single crystal of CeRuas(Al,Si)1558, shown in Figure 3.4c, displays
semiconducting-like behaviour. While negative in slope, the high temperature region of the
resistivity does not follow the activated behaviour (p = poe®e’?T) which is expected for
semiconductors.

3.7 Conclusions

The self-flux technique offers a great deal of control over reaction conditions in crystal
growth experiments. This control is especially important when two or more competing phases
exist within a phase space. The ability to control elements such as reactant ratio, dwell
temperature, cooling rate and spin temperature often allows for the selective growth of one
compound over another. While the self-flux method is not always the best method, and sometimes
not even a viable method, for the growth of a phase, it is a simple, highly versatile technique which
should always be considered. One case in which the self-flux method is especially useful is in the
synthesis of aluminium silicides. The high solubility of silicon in aluminium, along with the lack
of any ordered binaries within either phase space, makes these phases ideal candidates for the self-
flux technique.
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Chapter 4. Synthesis, Structure, and Properties of Ln2RusAlis (Ln = Ce, Gd): A
Comparison with LnRu2Ale and CeRus(Al,Si)15.58

4.1 Introduction

CeRuzAl10, a member of the YbFe,Alg structure type,*! has received attention because it
exhibits a metal-to-insulator transition and orders at 27 K,*2 higher than the 16 K antiferromagnetic
(AFM) ordering of GdRu2Al10.*?® Single crystal neutron scattering data indicates that the magnetic
ordering is AFM with a (1,0,0) propagation vector** and a reduced moment of 0.34(2) us/Ce at
1.5 K.*° Furthermore, the magnetic susceptibility displays a large degree of anisotropy.*® Both
the anisotropy and the reduced moment can be attributed to crystal electric field splitting,*’ where
the first two splitting terms have been calculated to be 500 K and 760 K.*8 While the AFM
ordering has been well characterized, its origin remains in question. Two possible explanations
for the ordering are a charge density wave formation*® or a Spin-Peierls transition.*° Recently, a
computational study*'* on CeRu2Alo suggested that the atoms in the Ce polyhedra are shifted
from the lowest energy state structure by about 0.025 A. Magnetic calculations on the
computationally relaxed structure found it to have a non-magnetic ground state, while calculations
on the actual structure resulted in a competition between non-magnetic and AFM states. This
suggests that the Ce polyhedra are important to the low temperature properties of CeRuzAl10. !

In an effort to explore the relationship between the structure and the properties of
CeRu2Al1o, we have studied the effect of the rare earth on the properties of LnRuxAli (Ln =
lanthanide).**? PrRu.Alyo displays paramagnetic behavior down to 13.2 K, when it enters a

nonmagnetic singlet ground state due to crystal electric field splitting of the f orbitals, and has a

"Reproduced with permission from Morrison, G.; Haldolaarachchige, N.; Chen, C.-W.; Young, D.
P.; Morosan, E.; Chan, J. Y., Inorg. Chem. 2013, 52, 3198-3206. Copyright 2013 American
Chemical Society.
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large paramagnetic Curie-Weiss temperature of -49.8(14) K. GdRuAlyp was found to order
antiferromagnetically at 15.5 K with v = -15.45(8) K. YbRu2Aly is a Pauli paramagnet,
indicating that Yb is in its divalent state. All three analogues display metallic behavior, although
GdRu2Aly is a poor metal with a resistivity on the order of 1 mQ-cm.*12

In order to further explore the role of the structure of CeRu>Al1o on the properties we have
grown CeRus(Al,Si)is5s, a member of the NdRhsAls37 structure type,** which contains Ce
polyhedra that closely resemble the Ce environment in CeRu2Al0. However, instead of the face-
sharing columns seen in CeRu2Al1o, the polyhedra in CeRus(Al,Si)15.58 form corner-sharing sheets.
CeRuas(Al,Si)15.58 follows a Curie-Weiss law with 8 = -21.9(14) K but does not order down to 3 K.
The resistivity displays a negative temperature dependence but does not follow the activated
behavior (p= pe’Ee2T) typical of semiconductors.**

Another structure type which is related to YbFe2Alyo is the CezRusAlss structure type.*°
Like CeRua(Al,Si)15.58, Ce2RusAl1s contains Ce polyhedra which are similar to those in CeRuzAl0.
Furthermore, these polyhedra form face sharing columns much like the columns in CeRuzAlz. It
is therefore of interest to study the properties of Ce2RusAl1s in order to gain a better understanding
of both how the Ce environment and the packing of the Ce polyhedra influence the properties.
Herein, we report on the synthesis, structure, and properties of LnzRusAlis (Ln = Ce, Gd) and
compare them to the properties of LnRu2Alo.
4.2 Experimental Section
4.2.1 Synthesis

Ce (Pieces- 99.9% metal basis excluding Ta), Gd (Pieces- 99.9% metal basis excluding
Ta), Al (Shot- 99.999%), and Ru (Powder- 99.9%) were used as received. For flux growth

reactions, the elements were loaded into an alumina crucible, covered with a second crucible, and
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sealed in an evacuated fused-silica tube. Individual reaction ratios and temperature profiles for the
growths will be discussed in the results section. After the heating cycles were complete, the
reactions were inverted and centrifuged to remove any excess flux. For radio frequency induction
furnace growths, the reactant metals were loaded into an alumina crucible which was wrapped in
tantalum foil. The crucible was placed in the furnace chamber which was evacuated and flushed
with Ar three times then pressurized with Ar during heating. The temperature was increased (~100
°C per minute) until the sample was completely melted. The sample was further heated and
dwelled for ~ 10 minutes before being quick cooled (~100 °C per minute) to room temperature.
Unfortunately, the utilized induction furnace is not equipped with a temperature probe. However,
based on previous experience with the furnace and experimental results (vide infra) it is believed
that the reaction temperature was above the 1200 °C maximum achieved by the conventional flux
method. For growths via arc melting, the reactant metals were placed on a copper hearth in the
arc furnace chamber. The chamber was evacuated and flushed with Ar three times then pressurized
with Ar. The reactant metals were melted into a button which was turned over and remelted three
times to ensure homogeneity. In order to minimize mass loss, the ruthenium powder was initially
arc melted into buttons before being used for the synthesis of Ln,RuszAlis. Mass loss in these
reactions ranged from 0.53 - 1.16%. Arc melted samples were placed in alumina crucibles and
sealed in quartz tubes filled with a partial pressure of argon prior to annealing. A partial pressure
was used such that the internal pressure and external pressure were similar in order to help maintain
tube integrity during long, high temperature dwells.
4.2.2 Structure

Structure determination was performed using single crystal X-ray diffraction data. For

CezRusAlss, a single crystal was obtained from an aluminum poor flux growth reaction, and for
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Gd2RuzAlss a single crystal was extracted from an arc melted pellet. Data collections were
performed using an Enraf Nonius KappaCCD diffractometer with a Mo K, source (A = 0.71073
A). Direct methods using SIR9741 were performed in order to obtain an initial structural model
which was then refined using SHELXL-97.41" Crystallographic data and atomic positions for
Ln2RusAlgs can be found in Tables 4.1 and 4.2, respectively. In order to determine reaction
products and to ensure that the annealed arc melted buttons were phase pure, powder X-ray
diffraction was performed using a Bruker AXS D8 Advance Diffractometer with a Cu Ka source
(L =1.54056 A) equipped with a Ge incident beam monochromator.

Table 4.1 Crystallographic Data for Ln,RuzAlss (Ln = Ce, Gd)

Formula Ce2RusAl15.04 Gd2Rus.0sAl15
Space group P6a/mcm P6a/mcm
a(A) 13.1210(10) 13.0320(10)
c(A) 9.0970(10) 9.0590(10)
V (A% 1356.3(2) 1332.4(2)

Z 4 4

Crystal dimensions (mm?) 0.13x0.15x0.15 0.03x0.03x0.13
Temperature (K) 295(1) 295(1)
Density (g cm™) 4.845 5.137

6 Range (°) 1.79-30.99 1.80-30.98
w (mm™) 10.784 14.184
Data Collection and Refinement

Collected reflections 5182 4760
Unique reflections 813 799

Rint 0.0256 0.0309

h -19<h<19 -18<h<18
k -15<k<15 -15<k<15
I -13<1<12 -12<1<13
Apmax (e A®) 1.409 1.803

Apmin (e A®) -0.882 -2.134

GoF 1.181 1.091
Extinction coefficient 0.00325(9) 0.00091(8)
ARy (F) for Fo? > 20(Fo?) 0.0192 0.0218

b Ruw(Fo?) 0.0390 0.0527

“R1 = Z[|Fol - |Fel[/Z[Fo|

PWR, = [EW(Fo? - F/EW(Fe)?]Y; P = (Fo? + 2Fc)/3; W = 1/[6%(Fo?) + (0.0129P)? + 3.6920P]
and w = 1/[¢%(Fo?) + (0.0247P)? + 6.3560P] for Ce and Gd analogues, respectively
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Table 4.2 Atomic Coordinates and Atomic Displacement Parameters for LnoRuzAl1s

Atom Wyckoff site  x y z Ueq (A?)? Occ.
Ce2RuzAl1s 04

Ce(l)  6g 0.60512(2) O Y, 0.00674(8) 1

Ce(2) 2a 0 0 ” 0.00551(15) 0.825(2)
Ce@)  de 0 0 0.2219(6)  0.00551(15) 0.0874(12)
Rul)  12i 0.203474(11) 0.40695(2) 0 0.00532(8) 1

Al(L) 12 0.79755(8) O 0.02717(13) 0.0082(2) 1

AlQ) 12 0.40892(5)  0.81785(10) 0 0.0078(2) 1

AI(3) 12§ 0.16673(10) 0.87969(9) Y 0.0075(2) 1

Al4) 12 0.72320(10) 0.47613(9) Y 0.0087(2) 1

Al(5) 12k 0.61777(8) 0 0.89713(13) 0.0077(2) 1

Al(G)  2b 0 0 0 0.004(5)  0.0874(12)
Gd2Ruz 0sAl1s

Gd(1)  6g 0.60675(2) 0 Yy 0.00804(10) 1

Gd(2) 2a 0 0 ” 0.00738(17) 0.670(2)
GdB)  4e 0 0 0.2093(4)  0.00738(17) 0.1649(11)
Rul)  12i 0.203187(14) 0.40637(3) O 0.00588(11) 1

Ru@2)  2b 0 0 0 0.0196(13)  0.1649(11)
Al(L) 12 0.79815(10) O 0.02826(17) 0.0094(3) 1

Al  12i 0.40949(6)  0.81898(12) O 0.0085(3) 1

AlGB)  12] 0.16530(13) 0.87973(12) ¥ 0.0084(3) 1

Al(d)  12] 0.72567(13) 0.47679(12) Y 0.0097(3) 1

AlG) 12k 0.61650(10) 0 0.89787(17) 0.0084(3) 1

8Ueq is defined as one-third of the trace of the orthogonalized Uj; tensor.

Energy-dispersive X-ray spectroscopy was performed on a single crystal of Ce;RuzAlis

from an aluminum poor flux growth using a FEI Quanta 200 SEM equipped with an EDAX

detector. Data were collected for six different locations on a single crystal, and the average and

standard deviation were taken as the composition and uncertainty, respectively. The determined

composition of the sample, normalized to Ce, was Cezoz)RuU259(16)Al13.4(5).
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4.2.3 Physical Properties

Physical properties were measured on polycrystalline annealed arc melted samples of
Ln2RusAlis which were sanded into bar shapes. Magnetic and electrical transport properties were
measured using a Quantum Design Physical Property Measurement System (QD PPMS). Zero
field cooled DC magnetic susceptibility was measured as a function of temperature from 3-290 K,
and field dependent magnetization was measured up to an applied field of 9 T. Resistivity was
measured from 3-290 K, and magnetoresistance was measured from 0-9 T at 3 K using the standard
four probe method with an excitation current of 5.13 mA. H = 0 heat capacity was measured in a
QD PPMS using an adiabatic relaxation technique, for temperatures between 2 and 50 K.
4.3 Results and Discussion
4.3.1 Synthesis

Initially, the growth of Ce;RuszAlis was attempted using the self-flux method. However,
its synthesis proved difficult due to the stability of CeRu2Alw. A graphical depiction of the
competition between the two phases is shown in Figure 4.1. When an excess of flux is used, the
reaction favors the growth of CeRu2Ali. Dwelling a reaction with a Ce:Ru:Al ratio of 2:3:18 at
1200 °C for 24 h before cooling to 720 °C at 5 °C/h only yielded CeRu2Al10. When stoichiometric
amounts of the reactant metals were used, the reaction products were found to be highly dependent
on reaction temperature. When the reaction was dwelled at 1050 °C, polycrystalline CeRu2Al10
and RusAliz were grown with none of the desired Ce;RusAlis. Raising the dwell temperature to
1200 °C vyielded polycrystalline Ce;RusAlis as the majority product with large amounts of
CeRu2Alp and RusAlz as impurities. The results of higher temperature syntheses will be
discussed in the next paragraph. Single crystalline Ce2RuszAlis can be grown using the self-flux

method with flux poor reaction ratios. Reactions with Ce:Ru:Al ratios of either 2:3:12 or 3:4:12,
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which were dwelled at 1200 °C, sometimes yielded single crystalline Ce2RuzAlis imbedded in a
matrix of binaries. However, the crystals were too small and difficult to extract to be able to be

used for the measurement of physical properties.
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Figure 4.1 Two schematics showing the products of flux growth reactions dwelled at 1200 °C
with various reactant ratios and the products of reactions with a Ce:Ru:Al composition of 2:3:15
heated to various temperatures.

Following the failure to obtain large, extractable single crystals using the flux growth

method, the growth of Ce;RuzAl1s was attempted using higher temperature synthesis methods, as
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the former flux-grown stoichiometric reactions suggested that higher temperatures favored the
formation of Ce;RusAlis over CeRu2Alp and RusAlz. A Cez:RusAlis growth was attempted by
arc melting on stoichiometry, and as expected, no CeRu2Al0 was present in the final button.
However, the high temperatures stabilized a different impurity phase, CesAl11, which was present
in the button along with Ce2RusAlzs. In an attempt to eliminate all three impurities, an intermediate
temperature growth was performed on stoichiometry using an RF induction furnace. This growth
was found to contain CezRusAlis, CeRuz2Alp and CesAlu, indicating that there is no ideal
temperature regime which avoids the growth of all impurities.

Although no optimal temperature was found to grow Ce2RusAlis on stoichiometry, phase
purity of the arc melted pellet can be obtained by annealing. When annealing at low temperatures,
circa 800 °C, CeRuzAlyo forms in the sample. In order to avoid this, annealing at 1150 °C is
required. By annealing at this temperature for six days, almost-phase-pure Ce;RuzAlis was
obtained. In attempt to anneal out the remaining impurity (a small, unidentified impurity resulting
in a diffraction peak at 20 = 73.8 °), a sample was annealed at 1150 °C for 12 days. However, this
longer annealing time led to the formation of CeRu2Al10. Thus, samples of phase-pure GdzRuzAlss
and almost-phase-pure La;RusAlis were also prepared via arc melting and annealing for six days.
4.3.2 Structure

CezRusAlss crystallizes in the hexagonal space group P6s/mem with a = 13.1210(10) A and
¢ = 9.0970(10) A. Gd:RusAlss is reported for the first time and has the lattice parameters a =
13.0320(10) A and ¢ = 9.0590(10) A. This structure type has also been reported for LnOssAl1s
(Ln = Nd, Sm, Gd) as an impurity product in arc melted pellets of LnOs;Al10.*® Initially, the
structural models of LnoRusAlis were refined in agreement with the previously reported structure

of CezRusAlis. ™ In this model there is one Ru site and two lanthanide sites. Each Ru(1) atom
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is surrounded by 10 Al atoms forming a distorted pentagonal antiprism which is bicapped by Ln(1)
atoms such that the point symmetry is 2. The Ru-Al distances, 2.5673(3)-2.6912(6) A (Ce) and
2.5564(3)-2.6772(8) A (Gd), are close to the sum of their covalent radii, while the two Ru-Ln(1)
interactions, 3.4500(3) A (Ce) and 3.4230(3) A (Gd), are > 0.5 A outside of bonding. As shown

in Figure 4.2a, each Ru(1) polyhedron is edge-sharing with two other polyhedra, and six of these

Figure 4.2 The (a) structure of Ce2RusAlis showing the Ru polyhedra and the (b) Ce(1) sublattice
and (c) Ce(2) sublattice. The Ce(3) and Al(6) sites are omitted for clarity.

polyhedra form a ring. Each polyhedron within the ring is also corner-sharing with two other
rings. This generates triangular and quadrilateral channels within the Ru-Al sheets. These sheets
lie in the ab plane and are edge-sharing in the c direction. The Ru sheets resemble the sheets seen
in Rus(Al,Si)e7 of the a-AlFeSi structure type.*14

The Ln(1) polyhedra lie in the square channels created by the Ru sublattice. Each Ln(1)
atom is surrounded by 14 Al and 4 Ru atoms with point symmetry mm. The Ln(1) polyhedra
resemble the 20 coordinate Ln polyhedral seen in LnRuzAlio*! and CeRua(Al,Si)1ss8.** The
Ln(1)-Al distances [3.1438(11)-3.3703(7) A (Ce) and 3.1037(14)-3.3524 A (Gd)] and Ln(1)-Ru
distances [3.4500(3) A (Ce) and 3.4230(3) A (Gd)], while larger than the sums of the covalent
radii, are similar to the distances seen in the respective analogues of the other two structure types.

As shown in Figure 4.2b, each Ln(1) polyhedron is face sharing with two other Ln(1) polyhedra to
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form columns in the c direction. These columns are edge sharing with each other through the
Ru(1) atoms.

Figure 4.3a compares the Ce(1) environment in Ce2RusAlis to the Ce environments in
CeRu2Al and CeRus(Al,Si)iss8.  As stated above, the 18 coordinate Ce(1) polyhedra in
CezRusAlss are closely related to the 20 coordinate Ce polyhedra in the other two compounds. The
main difference between these three polyhedra concerns two equivalent atoms. In

CeRus(Al,Si)15 58 these two atoms are Ru2 atoms, and the Ce-Ru2 distances are comparable to the

CeRu,4(Al,Si);5 55 CeRu,Al, Ce,RuzAl 5.,

b.

(b\‘k* .
<
K
)
o

Figure 4.3 A comparison of the Ce(1) environments in CeRus(Al,Si)1558, CeRu2Alp and
Ce2RusAlis showing the (a) Ce(1) polyhedra, (b) Ce(1)-Ce(1) nearest neighbors and (c) packing
of the Ce(1) polyhedra within the unit cells.
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other Ce-Ru distances in the polyhedra. In CeRu2Alio, these atoms are Al(1) atoms and the Ce-
Al(1) distances are approximately 0.36 A larger than the other Ce-Al distances. In CezRuzAls,
these atoms are Al(8) atoms but the Ce(1)-Al(8) distances are over 0.5 A larger than the largest
Ce(2)-Al distance, and therefore the AI(8) atoms are no longer considered part of the Ce(1)
polyhedron. Figure 4.3b shows the packing of the Ce(1) polyhedra in each compound. The Ce
polyhedra in Ce2RuzAlis and CeRuzAl1 pack in the same way. That is, they form face sharing
columns in the c direction. While packing in the same way, the Ce(1)-Ce(1) distances in
CeRu2Al1g, 5.2497(7) A, are somewhat closer than in Ce;RusAlis, 5.3196(4) A. The Ce polyhedral
in CeRus(Al,Si)1558, on the other hand, form corner sharing columns in the b direction through the
Ru(2) atoms. Due to the fact that they are corner sharing, the Ce(1)-Ce(1) distances in
CeRus(Al,Si)1558 of 6.8799(18) A are considerably larger than in the other two compounds.*** It
is important to note that while Ce(1) is the only Ce site in CeRu2Al1o and CeRua(Al,Si)1s 58, this is
not the case in Cez;RuzAlis. A comparison of all of the Ln-Ln contact distances in each structure
can be found in Table 4.3 and pack in different ways, as can be seen in Figure 4.3c. In both

Table 4.3 Comparison of Ln-Ln distances between titled structure types

Interaction Ce (A Gd (A) Ref.
LnRua(Al,Si)1558

Ln(1)-Ln(1) 6.8799(18) _ 4.14
LnRu2Al1w0

Ln(1)-Ln(1) 5.2497(7) 5.2516(7) 4.12
Ln2RusAl1s

Ln(1)-Ln(2) 5.3196(4) 5.3158(5)

Ln(1)-Ln(2) 5.1812(3) 5.1248(4)

Ln(1)-Ln(3) 5.1875(4) 5.1381(5)

Ln(2)-Ln(2) 4.5485(5) 4.5295(5)

Ln(2)-Ln(3) 4.293(6) 4.161(4)

Ln(3)-Ln(3) 5.060(8) 5.267(5)
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compounds the columns are corner sharing through the Ru atoms, but in CeRu2Al1o the columns
are aligned with each other while in Cez2RuzAlis each column is rotated 120 ° with respect to the
adjacent columns.

The Ln2 polyhedra lie in the center of the six-membered Ru polyhedral rings. Each Ln(2)
is surrounded by 18 Al atoms with point symmetry -6m2. The Ln(2)-Al distances range from
3.2759(11) to 3.6625(9) A (Ce) and 3.2363(14) to 3.6433(12) A (Gd). The Ln(2) polyhedra form
volume sharing columns in the c direction, as shown in Figure 4.2c. Each Ln(2) polyhedron is
also face sharing with three Ln(1) polyhedra in the ab plane.

Following the initial refinement of the models using the previously reported structure of
CezRusAlss, the largest residual electron density was 3.931 and 18.869 e /A3 for the Ce and Gd
analogues, respectively. These Q peaks were located at the origin with the closest contacts being
two Ln(2) atoms 2.27 (Ce) or 2.26 (Gd) A away. Because of the close proximity of the Ln(2)
contacts, it was believed that the site was either a partially occupied Al or Ru atom. Due to the
partial occupancy of the site, either atom resulted in the same quality structural model. For the Ce
analogue the resulting site occupancies were 8.5(13)% (Al) and 2.4(4)% (Ru), and for the Gd
analogue the occupancies were 46.5(16)% (Al) and 13.5(4)% (Ru). While the identity of the atom
can not be determined by looking at the site, it can be determined from the splitting of the Ln(2)
site. Since the Ln(2) contacts are inside the sum of the covalent radii, when the partially occupied
atom is present, the adjacent Ln(2) atoms are pushed off the mirror plane to a Ln(3) site. Because
of the closeness of the Ln(2) and Ln(3) sites, the atomic displacement parameters of these sites had
to be refined isotropically. The occupancy of the Ln(3) site was found to be 9.0(14)% for the Ce
analogue and 17.8(4)% for the Gd analogue. Comparing these occupancies to the Al or Ru

occupancies reveals that the partially-occupied site is an Al site [Al(6)] for the Ce analogue and a
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Ru site [Ru(2)] for the Gd analogue. Since the occupancy of Ln(3) should equal that of Al(6) or
Ru(2), the occupancies of the sites were then confined. This resulted in an Al(6) occupancy of
8.72(12)% and a Ru(2) occupancy of 16.49(11)%. Based on these occupancies, the resulting
stoichiometries are Ce;RusAlisos and GdzRuzesAlis.  For simplicity, the two analogues will
continue to be referred to using the Ln,RuzAlzs stoichiometry.

The Ln(3) site is surrounded by 15 Al atoms and either an Al(6) or Ru(2) atom with point
symmetry 3. The Ln(3)-Al distances range from 3.193(3) to 3.502(4) A (Ce) and 3.100(2) to
3.546(3) A (Gd). The Ce(3)-Al(6) contact is 2.530(5) A and the Gd(3)-Ru(2) contact is 2.663(3)
A, both of which are closer than the sum of their covalent radii, 2.90 and 2.85 A, respectively.*1°
The closer Ce-Al contact, despite the larger sum of covalent radii, suggests that Ce(3) is tetravalent.
The different atom types in the two structures does not appear to be a structural effect, as Ru and
Al have very close covalent radii and have similar interatomic distances within Ln-Ru-Al
compounds.*1? 20: 2L On the other hand, the structural difference may be an electronic effect.
Tetravalent Ce donates more electrons to the conduction band than Gd**. This difference is
counteracted by the fact that Ru has a greater number of valence electrons than does Al.

Excluding the disordered Ln(3), the closest Ln-Ln contacts within LnoRusAlis are between
volume sharing Ln(2) polyhedra and are 4.5485(5) A (Ce) and 4.5295(5) (Gd) A. The Ln(1)-Ln(1)
contacts are 5.3196(4) (Ce) and 5.3158(5) (Gd) A which is farther than the contacts found in
LnRuzAl1o (5.2497(7) (Ce) and 5.2516(7) (Gd) A). The Ln(1)-Ln(2) contacts, which are closer
than the Ln(1)-Ln(1) contacts and the LnRu2Al1o contacts, are 5.1812(3) (Ce) and 5.1248(4) (Gd)

A. These distances along with the Ln-Ln(3) distances can be found in Table 4.4.
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Table 4.4 Select Interatomic Distances in LnzRusAlis (Ln = Ce, Gd) (A)

Interaction CezRusAl1s.04 Gd2Rus.0sAl1s
Ln(1)-Ru(1) (x4) 3.4500(3) 3.4230(3)
Ln(1)-Al(1) (x2) 3.2380(12) 3.2026(15)
Ln(1)-Al(2) (x4) 3.3703(7) 3.3524(9)
Ln(1)-Al(3) (x2) 3.1438(11) 3.1037(14)
Ln(1)-Al(4) (x2) 3.1477(12) 3.0976(15)
Ln(1)-Al(5) (x2) 3.2144(12) 3.1925(16)
Ln(1)-Al(5) (x2) 3.2162(11) 3.2029(14)
Ln(2)-Al(1) (x6) 3.3414(11) 3.3098(14)
Ln(2)-Al(1) (x6) 3.6625(9) 3.6433(12)
Ln(2)-Al(3) (x6) 3.2759(11) 3.2363(14)
Ln(3)-Al(1) (x3) 3.193(3) 3.100(2)
Ln(3)-Al(1) (x3) 3.491(4) 3.399(2)
Ln(3)-Al(1) (x3) 3.502(4) 3.546(3)
Ln(3)-Al(3) (x6) 3.2859(12) 2.2572(14)
Ln(3)-M? (x1) 2.530(5) 2.663(3)
Ru(1)-Ln(1) (x2) 3.4500(3) 3.4230(3)
Ru(1)-Al(1) (x2) 2.6879(6) 2.6690(8)
Ru(1)-Al(2) (x2) 2.5673(3) 2.5564(3)
Ru(1)-Al(3) (x2) 2.6686(6) 2.6597(7)
Ru(1)-Al(4) (x2) 2.6686(6) 2.6259(7)
Ru(1)-Al(5)(x2) 2.6912(6) 2.6772(8)
M2-Ln(3) (x2) 2.530(5) 2.633(3)
M?-Al(1) (x6) 2.6678(11) 2.6439(13)

aM = Al6 for Ce analogue and Ru2 for Gd analogue

4.4 Physical Properties
4.4.1 Magnetization

Table 4.5 summarizes the magnetic data for LnRu2Alg and LnaRusAlss (Ln = Ce, Gd).
Figure 4.4a shows the magnetic susceptibility of Ce2.RuzAlss as a function of temperature at an
applied field of 0.1 T. The inset shows the derivative of the susceptibility and highlights two
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Table 4.5 Magnetic Properties for LnRuzAl10 and LnzRusAlis (Ln = Ce, Gd)

yo(emu/mol-Ln) Tn(K) 6 (K) Heale (uB)  peff (us)  Fit Range (K) Ref.
CeRu2Al1o 27.3 -44 2.54 3.03 4.6
GdRuzAl  0.00015(4) 15.5 -15.45(8)  7.94 8.14(10) 50-275 4.12
Ce;RuzAlis 0.00018(7) 3.7 7(3) 254 2.33(4)  100-290
GdzRusAlis 0.0008(3) 21.0 11.5(17) 7.94 7.97(7)  160-288

apparent low temperature transitions. Heat capacity data (vide infra) shows that these transitions
are bulk transitions and occur at 3.7 K and 3.1 K. Below 100 K, the inverse susceptibility drops
below Curie-Weiss behavior, which can be attributed to crystalline electric field effects. Similar
behavior has been observed in other rare earth intermetallics such as hexagonal CeNiln*?? and
orthorhombic CePtSi>*?% and is expected as CeRu2Alio was found to display considerable CEF
effects.*® Fitting from 100-290 K with a modified Curie-Weiss law y = yo + C/(T - 6), where yo
is a temperature independent sum of the diamagnetic and Pauli paramagnetic contributions, yields

a Curie-Weiss temperature of -7(3) K. The negative 0, coupled with the increase in dy/dT below
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Figure 4.4 (a) Magnetic susceptibility and inverse susceptibility of Ce2RuszAlss. Inset shows the
derivative of the susceptibility, highlighting two low temperature transitions. (b) Field-dependent
magnetization of CezRuzAljs.
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3.7 K and the AFM ordering of Gdz2RusAl1s, as shown below, suggests that the 3.7 K transition is
an AFM ordering. An effective moment of 2.33(4) us is determined from the Curie-Weiss fit at
high temperatures and is less than the 2.54 pg expected for Ce®*. The magnetization as a function
of field, shown if Figure 4.4b, appears to saturate at ~1.04 pg/Ce which is smaller than the 2.14 pg
expected for trivalent Ce.

The temperature dependent magnetic susceptibility of Gd2RusAlis at 0.1 T, shown in
Figure 4.5a, displays an AFM ordering at Tn = 21.0 K with a spin reorientation at 4.1 K, similar
to the two spin reorientations observed in Ce2RuszAlis. Below 150 K, the inverse susceptibility
deviates below Curie-Weiss behavior. This deviation is believed to be caused by a small FM
impurity, below the detection limit of powder XRD, such as GdAl,, which orders at ~170 K,
depending on sample purity and disorder.*?* Fitting with a modified Curie-Weiss law above 160
K yields an effective moment of 7.97(7) us, close to the 7.94 pg expected for Gd**, and a 6 of

11.5(17) K. This suggests that the Ru atoms are non-magnetic. As the f orbital of Gd is half-filled,

a. 0.40 ‘ ‘ ; ; ; 35 b. 6
[ Gd,RuAl 5 | Gd,Ru,Al ¢ ]
035 - \ H=01T . 5 T=3K ]
, & [ ]
i 0.30 ¥ 425 &} [
Ko : — o Ar 1
@ 025 —~ ™ i
% g 4120 3 geo)
£ o020 2 Qm 3r .
£ : IECTNSC
o 015 P i
2 [ & = 2t y
= [ H 10 3 [
0.10 . £ [
¥ . 1L ]
0.05 | 0 5 10 15 20 25 4 5 :
0.00 L I Ll L I B i o 0 ¥ A R R R DR
0 50 100 150 200 250 300 0 2 4 6 8 10
T (K) H (T)

Figure 4.5 (a) Magnetic susceptibility and inverse susceptibility of Gd2RusAls. Inset highlights
the two low temperature transitions. (b) Field-dependent magnetization of Gd2RuzAlss.
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and therefore spherically symmetric, the positive Curie-Weiss temperature cannot be due to CEF
effects. Therefore, a positive 6, despite the antiferromagnetic ordering, suggests strong
ferromagnetic correlations within the structure. One possibility is that these correlations involve
the Gd(3) atoms. As the Gd(2)-Gd(3) distance, 4.161(4) A, is the closest distance in the structure,
based on 1/r® attenuation of the RKKY interaction,*?>?" a mechanism in which the conduction
electrons mediate magnetic ordering, it may have the strongest J coupling. However, due to the
partial occupancy of the Gd(3) site, no long range order can exist. This would also explain the
lack of a positive Curie-Weiss temperature in Ce2RuzAlss, as Ce(3) is believed to be tetravalent.
Magnetization as a function of field is shown in Figure 4.5b and does not saturate upto 9 T. A
broad transition, possible a partial spin reorientation, is observed at H ~ 2.5 T.
4.4.2 Electrical Transport

Figures 4.6a and 4.6b show the polycrystalline resistivity (a) and magnetoresistance (b) of

CezRusAlis (green) and Gd2RusAlis (blue), respectively. Both analogues display a similar
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Figure 4.6 (a) Resistivity and (b) magnetoresistance of Ln,RuzAlis (Ln = Ce, Gd). Inset in (a)
highlights the low temperature dependence of the resistivity for the Gd analogue.
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magnitude of resistivity, with p29ok = 0.42 mQ-cm (Ce) and 0.55 mQ-cm (Gd) and p2k of 0.12 mQ-
cm and 0.091 mQ-cm (Gd). This leads to residual resistivity ratios, RRR = (p290x/ p2k), of 3.4
(Ce) and 6.1 (Gd). These RRR values are smaller than the 8.9 observed for a single crystal of
GdRu2Ale and can be attributed to grain boundary scattering due to the polycrystalline nature of
the samples. For 40 < T < 100 K, the resistivity of Gd2RusAlss follows a T? dependence, shown
in the inset of Figure 4.6a, which is typical of metallic compounds at low temperature.

Decreases in the resistivities at 5.3 K (Ce) and 21.3 K (Gd) can be attributed to a loss of
spin disorder scattering due to the magnetic ordering. Prior to this decrease, the Ce analogue
displays an upturn at 20 K, suggestive of the Kondo effect, a mechanism in which the conduction
electrons screen the magnetic moment of the rare earths.*? This is in agreement with the
magnetoresistance (MR), which is negative for Ce2RusAlis and reaches -24% at 9 T. Before the
AFM ordering, the resistivity of Gd2RuzAlzs displays a small upturn at 26.3 K. Similar behavior
was observed in GdRuzAl10**? and may be due to the formation of magnetic polarons prior to the
magnetic ordering, such as is observed in EuBe.** The MR of GdzRusAlss is positive, which is
typical for intermetallics, and reaches 26% at 9 T. The magnitude of the MR is greater than in
most intermetallic compounds. For example, GdRu2Al1, which orders antiferromagnetically at
15.5 K, with a spin reorientation at 7.8 K, has a MR of less than 1% at 9 T.*!2 The large MR in
Gd2RuzAlis may be due to the proximity of the 3 K measurement temperature to the spin
reorientation at 4.1 K. Enhanced MR has been observed in other intermetallics near magnetic
transitions.*3% 3! At 2.5 T, the MR changes slope, which can be attributed to the broad transition

observed in the magnetization as a function of applied field.
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4.4.3 Heat Capacity

Figure 4.7 shows the specific heat capacity of LnoRusAlis (Ln = La, Ce). The low
temperature data, emphasized in the inset, displays two transitions in Ce2RuzAls at 3.7 and 3.1 K.
Typically, the low temperature heat capacity of metals follows C, = yT + BT3, where 7 is the
electronic specific heat coefficient and PT2 is the phonon contribution to the specific heat. The
non-magnetic contribution to the specific heat can be approximated as the specific heat of a

non-magnetic analogue, and can be subtracted from C, to obtain Cr, the magnetic specific heat.
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Figure 4.7 (a) Heat capacity of Ln2RusAlis (Ln = La, Ce). Inset highlights the low temperature
transitions in the Ce analogue. (b) Magnetic entropy of Ce2RuzAl1s as a function of temperature.
The solid line indicates RIn2.

The specific heat of the La analogue was subtracted from the Ce analogue in order to obtain Cn.
For a magnetic transition, RIn(2J+1) of entropy (Sm) should accompany the transition, where J is
the total angular momentum. Integrating the magnetic entropy of Ce;RusAlss from 2 K to 15 K
recovers Sm =~ RIn2 entropy, based on the trivalent Ce concentration from the susceptibility. The

entropy is actually recovered prior to 15 K as the phase transition is still occurring below 2 K and
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therefore, not all of the magnetic entropy has been integrated. Due to the non-linearity of Ci/T vs.
T2 above the magnetic orderings, believed to be caused by small impurities in the arc melted
samples, the Sommerfeld coefficient was not determined.
4.4.4 Comparison of Structure Types

GdRuAle orders antiferromagnetically at 15.5 K, while Gd:RuzAlis orders
antiferromagnetically at 21.0 K. Two Gd-Gd interactions are similar in distance to the 5.2516(7)
A distance in GdRuzAl: the Gd(1)-Gd(1) interaction, 5.3158(5) A and the Gd(1)-Gd(2)
interaction, 5.1248(4) A. However, it is not readily apparent between which Gd atoms the AFM
ordering occurs. Gd2RuzAlss, despite being polycrystalline, also has a lower resistivity at the
ordering temperature, ~0.2 mQ-cm, than does GdRuzAl, ~0.3 mQ-cm. This suggests that
Gd2RuzAlss has a higher carrier concentration, which would lead to stronger RKKY interactions.

Based on the 16 K ordering of GdRu2Al10 and deGennes scaling, CeRu2Al1o is expected to
order at 0.1 K.*3 Instead, CeRu-Alio shows an enhanced ordering temperature of 27 K.*? A
similar trend is not observed in LnzRusAlss, where the Gd analogue orders at 21.0 K, and the Ce
analogue orders at 3.7 K. Furthermore, CeoRuzAl1s displays metallic resistivity over the entire
measured temperature range, 2 - 290 K, unlike CeRuzAl which displays a metal-to-insulator
transition at 27 K indicative of a narrow gap opening at the Fermi surface.*? While structurally
related to CeRu2Al1, it is apparent that Ce;RusAlis does not display the same anomalous behavior.
The contrast in properties despite both structures containing very similar columns of Ce polyhedra
suggests that either the properties are dependent on the packing of the columns within the unit cell,
or as was suggested in the computation study discussed in the introduction, that the properties of
CeRuAlyo arise due to small changes in the Ce polyhedra. Due to the similar structure but

contrasting properties, Ce2RuzAlss offers potential for further comparison studies with CeRu2Al1o.
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4.5 Conclusions

The synthesis of Ce;RusAlis is difficult due to the stability of CeRu2Alip at low
temperatures and in flux rich melts and the stability of CezAl1; at high temperatures. LnoRusAlss
(Ln = La, Ce, Gd) were synthesized by arc melting and annealing at 1150 °C for 6 days. The
crystal structure was modified from the originally reported structure**® in order to account for a
partially-occupied atom at the origin (2b) and the resulting splitting of the Ln(2) site into a Ln(2)
site and a Ln(3) site. Based on the occupancy of the Ln(3) site, the 2b site was determined to be
an Al atom in the Ce analogue and a Ru analogue in the Gd analogue.

Gd2RusAlss was found to order antiferromagnetically at 21.0 K with a spin reorientation at
4.1 K. The Curie-Weiss temperature was found to be positive, indicating FM interactions within
the structure, possibly involving the partially-occupied Gd(3) atoms. Ce2RuzAlss displays two
spin reorientations, the first of which is believed to be an AFM ordering, at low temperatures, 3.7
K and 3.1 K, made apparent by dy/dT and heat capacity measurements. Below 100 K, the
susceptibility deviates below the Curie-Weiss fit which is characteristic of lost moment due to
Kondo screening. This is supported by an upturn in the resistivity at 20 K and a negative
magnetoresistance of -24% at 9 T. CezRuszAlis does not display the enhanced ordering temperature
or metal-to-insulator transition observed in CeRu2Al1o despite the two structures containing similar
columns of Ce polyhedra. For this reason, further comparison studies between the two compounds
is warranted and could help elucidate the cause of the anomalous properties observed in

CeRuzAljp.
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Chapter 5. Synthesis and Anisotropic Properties of Single Crystalline Gd2Ru3zAl1s 09
5.1 Introduction

Single crystalline samples offer many advantages over polycrystalline samples including
structure determination via single crystal X-ray diffraction and the measurement of intrinsic
properties unaltered by impurities or grain boundaries, including anisotropic properties.>! 2
Anisotropic properties can be instrumental in understanding the intrinsic properties of a system.
For example, studies of the anisotropic magnetization of EuzZn,Sb, found that the
antiferromagnetic ordering consisted of spins lying perpendicular to the c-axis.>® Similarly,
anisotropic magnetic properties of CeNiSh> indicated that the ferromagnetic easy axis is the a-
axis.>* In some cases, the bulk polycrystalline properties can differ from the properties of a single
crystal.>>® For example, the Neel temperatures of single crystals of Ln(Cu,Al)12 follow de Gennes
scaling®’ while the Neel temperatures of polycrystalline samples deviate significantly.>®

While single crystalline samples offer many advantages, their growth can be difficult,
especially when another compound is more robust and stable. We previously reported on the
synthesis, structure, and magnetic and transport properties of Ln,RusAlis (Ln = Ce, Gd).>° The
synthesis of Ln,RuzAlis was complicated by the stability of LnRuzAlyg relative to LnzRuzAlys.>®
As a result of the difficulty in growing Ln2RusAlis, magnetic and transport measurements were
conducted on polycrystalline arc-melted samples. Polycrystalline Gd2Rus0sAlis was found to be
metallic and ordered antiferromagnetically at 21.0 K with a spin reorientation at 4.1 K. A deviation
from Curie-Weiss behavior at 150 K was believed to be attributed to a ferromagnetic impurity.
Fitting the susceptibility above this deviation resulted in a positive Weiss temperature of 11.5(17)
K and an effective moment of 7.97(7) us/mol-Gd, which is in good agreement with the expected

moment for a free Gd** ion. Finally, a positive magnetoresistance (MR) of 26% was observed at
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3 Kand 9 T which was believed to be due to the proximity of the 3 K measurement to the spin
reorientation at 4.1 K.>°

We have succeeded in synthesizing large single crystals of Gd>RuszAlss using the flux
growth method. Herein, we report on the synthesis, structure and anisotropic properties of single
crystals of Gd2RuzAl1s.09 and compare them to polycrystalline Gd2Rus osAlss.
5.2 Experimental
5.2.1 Synthesis

High purity elements, Gd (pieces, 99.9% REO), Y (pieces, 99.9% REO), Ru (powder,
99.98% metal basis excluding Ca), and Al (99.999% metal basis), were used as obtained. Single
crystals were grown using the self-flux technique. The elements were placed in a 99.8% alumina
crucible with the Al flux on top. A second crucible was covered on top of the first and the reaction
vessel was sealed in an evacuated fused-silica tube backfilled with ~1/6 atm of Ar to help maintain
their integrity at high dwell temperatures. Specific elemental ratios and heating profiles will be
discussed in the Results and Discussion section. After the growth was complete, the resulting
single crystal was mechanically extracted from the flux and polished into a bar shape.
5.2.2 Structure

Structure determination was carried out via single crystal X-ray diffraction of a fragment
broken off of the same single crystal used for physical property measurements. Diffraction data
was collected on an Enraf Nonius KappaCCD diffractometer equipped with a Mo Ka source (A =
0.71073 A). Direct methods using SIR97°° were used to obtain an initial structural model which
was then refined using SHELXL-97.> A summary of the crystallographic data can be found in

Table 5.1. Elemental composition was checked by energy dispersive X-ray spectroscopy using an
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Table 5.1 Crystallographic Data for Gd2RusAl1s 09

Formula Gd2RuszAlzs.09
Space group P63/mcm

a (A 13.0114(10)
¢ (A) 9.0552(10)
V (A% 1327.6(2)

z 4

Crystal dimensions (mm?) 0.07 x 0.07 x 0.13
Temperature (K) 295(1)
Density (g cm™) 5.127

6 Range (°) 3.13-30.98
u (mm™) 14.153
Data Collection and Refinement

Collected reflections 5269
Unique reflections 797

Rint 0.0351

h -18<h<18
k -15<k<15
I -13<1<13
Apmax (e A9) 1.572

Apmin (e A%) -1.749

GoF 1.128
Extinction coefficient 0.00482(16)
aRy(F) for Fo? > 20(Fo?) 0.0229

b Ru(Fo?) 0.0528

“R1 = Z||Fo - |Fel[/Z[Fo|

PWR, = [EW(Fo? - F)Z/EW(Fe)?) Y2 P = (Fo? + 2Fc)/3; w = 1/[6%(Fo?) + (0.0233P)? + 4.9683P]

FEI Quanta 200 SEM equipped with an EDAX detector. Six scans across a freshly cut face of the
single crystal gave an elemental composition of Gd2012)RU3.33(18)Al18.0()-

Orientation of the extracted, bar-shaped, single crystal was carried out using single crystal
X-ray diffraction data. Phi scans were collected on three non-confacial corners in order to ensure
that the bar was indeed a single crystal with one orientation throughout. The crystallographic c-
axis was found to coincide with the long axis of the bar-shaped crystal. Because of the hexagonal
space group and poor macroscopic alignment of the a and b crystallographic axes, anisotropic

properties will be reported as parallel and perpendicular to the c-axis.
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After all physical properties measurements were conducted, the bar-shaped single crystal
was cut into several faces and the resulting faces were visually inspected to check for any
inclusions. Furthermore, a portion of the crystal was ground and used for a powder X-ray
diffraction experiment. Powder diffraction was conducted on a Bruker AXS D8 Advance
Diffractometer equipped with a Cu Ka (A = 1.54056 A) source and a Ge incident beam
monochromator. No indication of an impurity was observed using either technique.

5.2.3 Physical Properties

Anisotropic magnetic and transport properties were measured on a bar-shaped crystal
parallel and perpendicular to the crystallographic c-axis. Magnetic properties were measured on
a Quantum Design Magnetic Property Measurement System (MPMS). Magnetic susceptibility
was measured from 1.8 - 390 K at H = 0.1 T under zero-field-cooled (ZFC) and field-cooled (FC)
conditions and field dependent magnetization was measured for H =0 - 7 T at 2 K. Electrical
resistivity and magnetoresistance were measured on a Quantum Design Physical Property
Measurement System (PPMS). Resistivity was measured from 3 - 295 K at an applied current of
5.18 mA and magnetoresistance was measured at 3 K for H =0 -9 T using the four probe method.
5.3 Results and Discussion
5.3.1 Synthesis

The competition between the growth of Ce;RusAlis and CeRuxAlip was previously
reported.>® In summary, it was found that when dwelled at 1200 °C, Al rich reactions (Ce:Ru:Al
- 2:3:18) favored the growth of CeRu2Al1p, a stoichiometric reaction (Ce:Ru:Al - 2:3:15) resulted
in a mixture of Ce;RusAlis and CeRu2Al10, and only in Al poor conditions (Ce:Ru:Al - 2:3:12)
was the growth of Ce;RuzAlis dominant. However, due to the flux-poor conditions, only small,

irregularly shaped single crystals were formed. Furthermore, it was found that on a stoichiometric
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concentration of Ce:Ru:Al (2:3:15), at low dwell temperatures (1050 °C) the growth of CeRu2Al1o
dominated, while at intermediate temperatures (1200 - ~2000 °C) both CeRu2Al1o and Ce2RuzAl1s
grew, and only at temperatures achieved by arc-melting (~ 3000 °C) was the growth of CeRuxAl1o
prevented. As a result, the previously reported physical property studies were carried out on
polycrystalline arc-melted samples of LnzRusAlis (Ln = Ce, Gd).>°

The arc-melted Gd analogue was almost phase pure prior to annealing and contained single
crystals large enough for single crystal X-ray diffraction. These two indicators, along with the fact
that Gd metal is more soluble in Al than is Ce metal, suggested that large single crystals of
Gd2RusAlis may form more readily than Ce2RusAls. For this reason, the studies done in this
manuscript were conducted on Gd2RuzAlss. Indeed, the method reported here grows large single
crystals of the Gd analogue and other latter rare earth analogues, while the same method using Ce
yields predominantly CeRu2Al1o and CezAls.

The formula for Gdz2RusAlis can be reduced to GdissRu2Ali0 which highlights that it is
only more Gd rich than GdRu2Aly. It follows that Gd2RusAlis may be stabilized over GdRu2Al 1o
in Gd rich reactions. A reaction with a Gd:Ru:Al ratio of 4:3:24 which was dwelled at 1250 °C
for 24 h before being slow cooled to 720 °C at 5 °C/h yielded predominantly Gd2RuszAlss.
However, the flux poor nature of the reaction only allowed for the growth of small (< 0.5 mm),
poorly shaped single crystals of Gd>RusAlss. In order to grow larger single crystals, a more Al
rich reaction was prepared. To counteract the increased Al content, which is known to favor the
growth of GdRu2Al, the Ru concentration was lowered. Furthermore, the cooling rate was
decreased between 1250 °C to 1150 °C, the temperature range in which it is believed that
Gd2RusAlss grows from the Ce study. A reaction with a Gd:Ru:Al ratio of 4:2:40 was dwelled at

1250 °C for 24 h, slow cooled to 1150 °C at 1 °C/h, and cooled to 1000 °C at 5 °C/h at which
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temperature it was removed from the oven. This reaction resulted in one large single crystal (~4
mm on its longest side) surrounded by frozen flux. A bar-shaped single crystal weighing 15.4 mg
was mechanically extracted and polished. While the crystal used here was mechanically extracted,
the excess flux can also be spun off at 1000 °C. Figure 5.1 shows pictures of the large Gd2RuszAl1s
single crystal, the polished bar used for physical property measurements, and a 45 mg piece of a

single crystal of Y2RuzAlis grown using the same method.

Figure 5.1 (a) Single crystal of Gd2RuzAl1s09 (b) bar-shaped Gd2RusAl1s 09 single crystal used for
physical property measurements and (c) single crystal of Y2RuzAl1s 04.

Table 5.2 Atomic Coordinates and Atomic Displacement Parameters for Gd2RusAl1s o9

Atom Wyckoff site  x y z Ueq (A?)? Occ.

Gd(1)  6g 0.60641(2) 0 " 0.00887(10) 1

Gd2) 2a 0 0 Yy 0.00782(17)
0.6556(16)

GdB)  4e 0 0 0.1917(3)  0.00782(17) 0.1722(8)

Rul)  12i 0.202841(13) 0.40568(3) 0 0.00715(11) 1

Al(l) 12 0.79727(10) 0 0.02888(16) 0.0107(2) 1

AlQ)  12i 0.40955(6)  0.81911(12) 0 0.0095(2) 1

AI(3) 12§ 0.16565(12) 0.88007(11) Y 0.0096(2) 1

Al4) 12 0.72558(12) 0.47621(11) Y 0.0099(3) 1

Al(5) 12k 0.61621(10) 0 0.89711(16) 0.0091(3) 1

Al()  2b 0 0 0 0.008(3)  0.1722(8)

8Ueq is defined as one-third of the trace of the orthogonalized Uj; tensor.
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5.3.2 Structure

Table 5.2 provides atomic positions for single crystalline Gd2RusAlis09. Gd2RusAl1s.09 IS
a member of the Ce;RusAlss structure type®!? and crystallizes in the hexagonal space group
P6s/mem with lattice parameters a = 13.0114(10) A and ¢ = 9.0552(10) A. The structure consists
of two main Gd sites. As shown in Figure 5.2a, Gd(1) is surrounded by 14 Al and 4 Ru atoms
with point group symmetry mm. The Gd(1) polyhedra form face sharing columns in the c-
direction. Each Gd(2) atom is surrounded by 18 Al atoms with point symmetry -6m2. The Gd(2)

polyhedra form volume sharing columns in the c-direction, shown in Figure 5.2b.

b/

b<i+a b‘i"a

Figure 5.2 Structure of Gd>RuzAlis09 showing (a) Gd(1) polyhedra (b) Gd(2) polyhedra (c)
disorder surrounding the partially occupied M site.

Directly between two Gd(2) atoms lies a partially occupied M atom, shown in Figure 5.2c.
When this atom is present, the Gd(2) atom is pushed off a mirror plane onto a Gd(3) site. The
identity of the partially occupied site can be determine by comparing the refined occupancy of the
Gd(3) site to the refined occupancy of the M as either a Ru atom or an Al atom. For polycrystalline
Gd2Ruz.08Alss, the occupancy of the M site refined to 46.5(16)% as an Al atom and 13.5(4)% as a
Ru atom. The Gd(3) site was found to be 17.8(4)% occupied indicating that M is a Ru atom. After
confining the Gd(3) and M site, Ru(2), occupancies to be equal, the resulting occupancy was

16.49(11)%.>° For single crystalline Gd2RusAl1s g, the M site occupancy refined to 14(4)% as an
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Al atom and 3.9(10)% as a Ru atom. The occupancy of the Gd(3) site refined to 17.22(10)%,
indicating that the M site is an Al atom. After confining the Gd(3) and M site, Al(6), occupancies
to be equal, the resulting occupancy was 17.22(8)%. Despite the different atom types, the two
occupancies of the M site are very similar between the single crystalline and polycrystalline
samples. This is not unexpected given the similarity of the covalent radii of Ru and Al.>13

The atom identity of the M site appears to be synthesis dependent. Flux grown single
crystals of Y, Gd and Tb analogues using the Ln:Ru:Al 4:2:40 reaction ratio were all found to have
an Al atom on the M site. Likewise, the Al poor Ce flux growths were found to have Al atoms,
suggesting that it is not the excess Al that leads to the atomic identity. The only instance in which
the M site was found to be a Ru atom was in the arc-melted GdzRusz0sAlis. For these reasons, it
appears that the identity of the M atom is synthesis method dependent, with the lower temperature
and slower cooling flux growth method favoring Al on the site. Unfortunately, no other arc-melted
analogues of LnoRuzAlss yielded X-ray diffraction quality single crystals and the two powder
diffraction patterns are too similar to be distinguishable on an in-house powder diffractometer.

As a result of the slightly different structure, the a and c lattice parameters for single
crystalline Gd,RusAlisee are 0.0206 A and 0.0037 A smaller than for polycrystalline
Gd2Ruz08Alss, respectively. As shown in Table 5.3, all of the Gd-Gd interactions are shorter in
the single crystalline analogue than in the polycrystalline analogue. Interestingly, the Gd(3)
splitting is more pronounced in the single crystalline Gd2RusAliso9 despite the smaller lattice
parameters.
5.3.3 Physical Properties

Figure 5.3 shows the magnetic susceptibility with the field applied parallel to the ab-plane

and the c-direction. At high temperatures, the susceptibility in the two directions overlap. This is
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Figure 5.3 Zero-field-cooled magnetic susceptibility with (a) H // ab (b) H // c. Insets show the
ZFC and FCC susceptibilities at low temperature.

expected as the f-electrons in Gd®* are spherically symmetric and therefore, not susceptible to
crystalline electric field effects. When H // ab, the susceptibility displays an antiferromagnetic
ordering at Tn = 18.3 K, similar to what is observed in the polycrystalline analogue. When H // c,
the susceptibility has a negative slope for all T with only a kink at 18.3 K. This behavior is
indicative of an antiferromagnetic ordering with the spins aligned in the ab-plane. The fact that
the susceptibility with H // ¢ does not become temperature independent, as is expected for a canted
antiferromagnet, suggests that the magnetic ordering does not involve all three Gd sites.
Polycrystalline Gd>RusesAlis was found to order at a higher temperature, 21.0 K, than
single crystalline Gd2RusAl1s09. As all of the Gd-Gd distances are shorter in the single crystalline
analogue than in the polycrystalline analogue, this suggests that the RKKY interaction strengthens
with increasing Gd distance. The same behavior was observed in GdM2Aly (M = Fe, Ru, Os)

which has similar Gd-Gd distances.>*

75



In polycrystalline Gd2RuszesAlis, a small upwards deviation was observed in the
susceptibility at 150 K. This deviation was believed to be caused by a ferromagnetic impurity,
likely GdAl>, whose concentration was below the detection limit of our powder X-ray
diffractometer.>® No deviation was observed in single crystalline Gd2RusAlis .09, confirming that
this behavior was indeed due to an impurity.

Table 5.4 Magnetic Properties for Gd2RuzAl1s

Hdir.  FitRange yo(emu/mol-Ln) Tn(K) 6 (K) Ueff (u)  Ref.

Gd2Ruz08Als 160-288  0.0008(3) 210  115(17) 7.97(7) 5.9
Gd:RusAlisee H//ab  50-300  -0.00143(4) 183  -0.38(5)  8.27(6)
Gd:RusAlisee H//c  50-300  -0.00148(4) 183  -0.14(5)  8.21(6)

Table 5.4 summarizes the anisotropic magnetic properties of single crystalline
Gd2RusAls09 along with the previously reported GdzRusoesAlis polycrystalline properties.>®
Fitting the high temperature, 50-300 K, region of the susceptibility using a modified Curie Weiss
law, x = yo + C/(T - 0), where yo is a temperature independent sum of the diamagnetic and Pauli
paramagnetic contributions, yields effective moments of 8.27(6) ps/mol-Gd* (H // ab) and 8.21(6)
ps/mol-Gd* (H // ¢). While this is somewhat higher than the 7.94 ps/mol expected for a free Gd®*
ion, no local moment was observed in Y2RusAlis 04, Suggesting that the Ru atoms do not carry a
moment in Gd:RuzAlis0e. From the Curie-Weiss fit, Weiss temperatures, 6n, of -0.38(5) K
(H // ab) and -0.14(5) K (H// c) were obtained. A 6n of ~0 K despite the antiferromagnet ordering
suggests that there are ferromagnetic correlations present in the structure. Ferromagnetic
correlations were suggested to be between the Gd(2) and partially occupied Gd(3) atoms, thereby
preventing the occurrence of long range order.>® These ferromagnetic correlations could explain
the bifurcation that arises between the ZFC and FC susceptibilities near the antiferromagnetic

ordering when H // ab, shown in the inset of Figure 3a. The fact that no such bifurcation was
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observed in polycrystalline Gd2RusesAlis may be due to the large difference in Gd2-Gd3
interaction lengths between the two analogues. Alternatively, a small spin-glass component may

be present due to the disorder caused by the partially occupied M site.

Figure 5.4 shows the magnetization as a 5 —
function of field at 2 K for the two crystallographic i ]
4r H// ab ]
directions. ~When H // ab, a metamagnetic | H// ]
o+gc 3L C ]
transition occurs at H= 1.2 T. This transitionisnot O |
o |
3. L
observed when H // ¢, which is consistent withan s 2r ]
antiferromagnet with the spins aligned in the ab- 1) ]
-plane. The magnitude of the magnetization in o: T= 2 K|
0 1 2 3 4 5 6 7 8
each direction is similar and does not saturate up to H (T)

_ Figure 5.4 Magnetization as a function

us/Gd** (H// c).

Figure 5.5a shows the resistivity as a function of temperature in both measured directions
of single crystalline Gd2RusAlis09. Due to the dimensions of the bar-shaped single crystal, the
magnitude of the resistivity with i // ab is likely inaccurate. For this reason, only the relative
resistivity, p/pax, is reported for this direction. While the absolute magnitude of the resistivity in
the two directions can not be compared, the resistivity is clearly anisotropic, with the resistivity
with i // ab having a steeper slope than with i // c. In both directions, a decrease in the resistivity
occurs at 18.3 K, in agreement with a reduction in spin disorder scattering due to the
antiferromagnetic ordering. The magnetoresistance, shown in Figure 5.5b, is negative in both

directions and reaches -6.3% (i // ab) and -4.3% (i // ¢) at 9 T and 2 K. As grain boundaries can
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Figure 5.5 (a) Resistivity and (b) magnetoresistance with current applied in the two directions.

have a large effect on MR,>*® the negative MR is most likely intrinsic, while the larger magnitude
positive MR observed in polycrystalline Gd2Ruz 0sAls is likely extrinsic.
5.4 Conclusions

Gd2RusAlss can be stabilized over GdRu2Aly at high temperatures, i.e. arc-melting, and in
Ru poor conditions. Large single crystals of Gd2RusAl1s.09 have been grown from a Ru poor melt
using the self-flux method. The anisotropic properties of the single crystalline analogue highlights
the advantages of single crystals over polycrystalline samples, with single crystals allowing for
the study of the intrinsic properties of Gd2RusAlis.09 unaltered by the ferromagnetic impurity that
was present in the polycrystalline sample. Furthermore, the anisotropic susceptibility provides
information on the type antiferromagnetism observed in the polycrystalline sample. The downturn
turn in the susceptibility with H // ab, combined with the continuously negative slope with H // c,
indicates that the antiferromagnetic ordering occurs with the spins aligned in the ab-plane. This
is consistent with the metamagnetic transition in the magnetization as a function of field with

H // ab.
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Along with providing insight into the magnetic ordering, the single crystalline

Gd2RuzAlis09 also exhibits different properties than polycrystalline Gd2RusosAlis. The atomic

identity of the partially occupied M site was found to be synthesis method dependent. This change

in the structure led to shorted Gd-Gd interactions in the flux grown single crystalline analogue. As

a result, the single crystalline analogue orders antiferromagnetically at 18.3 K, which is lower than

the 21.0 K ordering of polycrystalline Gd2Rus.0gAlss.
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Chapter 6. Highly Anisotropic Properties due to Strong Crystalline Electric Field
Effects in Th2Ru3Alis.05

6.1 Introduction
The non-spherical crystalline electric field (CEF) surrounding the lanthanide’s f-orbitals of
Ln containing intermetallics (Ln = Ce-Eu, Tb-Yb) can affect their magnetic properties in many

ways. Common CEF effects include non-magnetic®! 2

or reduced moment ground states,
anisotropic magnetization,®-> and deviation from Curie-Wiess behavior.56® In some cases, CEFs
can lead to highly anisotropic properties. For example, in TmAgGe, the anisotropy of the magnetic
susceptibility, yasrye, reaches 30 at T = 5.0 K. Furthermore, field dependent magnetization has a
series of metamagnetic transitions with H // [1 2 0] which are not observed for H // [0 1 0].%°
Similarly, a large splitting energy of 370 K between the ground state and first excited state leads
to highly anisotropic magnetism in CeRh2Si».%!° Despite the highly anisotropic magnetism, in
both of these compounds the magnetic transitions are observed in both axial directions.®® ' This
is not the case in HoNi2B2C, where a splitting energy of ~90 K between the low-lying energy levels
and the next set of energy levels leads to a broad hump in the susceptibility with H // ¢ which is
not observed with H // ab.%® However, even in this compound, the 5 K antiferromagnetic order is
observed with both H // ab and H // ¢,*!! indicating that the polarization of the moment into the
ab-plane is not complete.

We have studied three families of compounds which are structurally related to CeRuzAlio
and all contain very similar Ln environments: LnRu2Alip (Ln = Pr, Gd, Yb),512
CeRuy(ALSi)1558,%"® and LnoRusAljs (Ln = Ce, Gd).5' Crystalline electric field effects were
found to result in a nonmagnetic ground state in PrRu»Aljo at 13.2 K%' and lead to a deviation

from Curie-Weiss behavior in Ce;RuzAl;s.5!* Furthermore, the magnetization of CeRu2Aljp was

found to be anisotropic and the first two splitting energies were calculated to be 500 and 760 K.5

81



The CEF effects observed in these structurally related compounds, combined with our

615 made it of interest

recent ability to grow large single crystals of LnoRu3sAls for latter rare earths,
to further study CEF effects in LnoRusAlis. Herein, we report the anisotropic magnetization of
Tb2RuzAlis.05.

6.2 Experimental

6.2.1 Synthesis

A single crystal of TboRu3zAlis0s was grown using the self-flux growth conditions reported
for GdoRuzAls00.51° Tb (pieces, 99.9 % REO), Ru (powder, 99.98 % metal basis excluding Ca)
and Al (shot, 99.999 %) were used as received. A Tb:Ru:Al ratio of 4:2:40 was placed in an
alumina crucible, covered with a second crucible, and sealed in a fused-silica tube. The tube was
sealed under a partial pressure (~ 1/6 atm) in order to help maintain its integrity at high
temperatures. The reaction was rapidly heated to 1250 °C, dwelled for 24 h, slow cooled at 1 °C/h
to 1150 °C, and cooled to 1000 °C at 5 °C/h. It was then removed from the oven, inverted, and

spun in a centrifuge to remove the excess flux. This growth resulted in one large single crystal (3-

Figure 6.1 (a) Large single crystal of TboRuszAlisos and (b) bar-shaped single crystal used for

physical property measurements.
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4 mm on each side), as shown in Figure 6.1a. A single crystal of suitable size for physical property
measurements, shown in Figure 6.1b, was mechanically extracted from the larger single crystal
and polished into a bar shape.
6.2.2 Structure

Single crystal X-ray diffraction data was collected using an Enraf Nonius KappaCCD
diffractometer equipped with a Mo Ka source (A = 0.71073 A). An initial structural model was
obtained with direct methods using SIR97%!® which was then refined using SHELXL-97.%!7 A
summary of crystallographic data and atomic positions can be found in Tables 6.1 and 6.2,
respectively. Orientation of the bar shaped single crystal was also done using X-ray diffraction

Table 6.1 Crystallographic Data for TboRuzAlis.05

Formula Th2Ru3Alis.05
Space group P63/mcm

a (A) 13.0072(10)
c(A) 9.0289(10)
V (A% 1322.9(2)

Z 4

Crystal dimensions (mm?) 0.07x0.07x0.10
Temperature (K) 295(1)
Density (g cm™) 5.156

6 Range (°) 1.81-30.97
i (mm™) 14.866
Data Collection and Refinement

Collected reflections 5257
Unique reflections 795

Rint 0.0296

h -18<h< 18
k -15<k<15
1 -12<1<13
Apmax (e A7) 1.721

Apmin (€ A) -1.506

GoF 1.154
Extinction coefficient 0.00106(8)
aR/(F) for Fo? > 26(F,?) 0.0229

> Rw(Fo?) 0.0548

Ry = ZIFol - [Fll/ZIFol
SWR; = [Ew(F,? - F)YEw(Fo?)?"%; P = (Fo? + 2F2)/3; w = 1/[c*(Fo?) + (0.0223P)? + 6.5326P]
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data collected on three non-confacial corners of the crystal in order to ensure that the bar was a
single crystal with one orientation throughout. The c-direction was found to be the medium axis
of the bar, labeled in Figure 6.1b. The a and b axes did not align with macroscopic axes of the
bar. For this reason, properties will be reported as parallel to the c-direction and parallel to the ab-
plane.

Table 6.2 Atomic Coordinates and Atomic Displacement Parameters for TboRuzAljs.05

Atom Wyckoff site  x y z Ueq (AD*  Occ.

Tb(1) 6g 0.60706(2) O Y4 0.00926(11) 1

Tb(2) 2a 0 0 Va 0.00834(17) 0.813(2)
Tb(3) 4e 0 0 0.2036(6) 0.00834(17) 0.0935(10)
Ru(1) 12i 0.202956(15) 0.405913) O 0.00695(11) 1

Al(1) 12k 0.79804(11) O 0.02806(17) 0.0102(3) 1

Al(2) 12i 0.40950(6) 0.81901(13) O 0.0095(3) 1

Al(3) 12§ 0.16506(13) 0.87981(12) Va 0.0095(3) 1

Al(4) 12j 0.72605(13) 0.47679(13) Ya 0.0105(3) 1

Al(5) 12k 0.61580(11) O 0.89771(17) 0.0095(3) 1

Al(6) 2b 0 0 0 0.032(11) 0.0935(10)

4Ueq 1s defined as one-third of the trace of the orthogonalized Uj; tensor.

Elemental analysis was performed via energy dispersive X-ray spectroscopy, EDS, using
an FEI Quanta 200 SEM equipped with an EDAX detector. Six data points were collected on each
of two clean cut faces of a single crystal of TboRuzAl5s and provided an average composition of
Tb2.0013)RU3.72(16)Al22.4(8).

6.2.3 Physical Properties

Anisotropic magnetic properties were collected for H // ab and H // ¢ on a Quantum Design
Magnetic Property Measurement System (QD-MPMS). Magnetic susceptibility was collected
under zero-field-cooled (ZFC) and field-cooled (FC) conditions from 2-395 K at H=0.1 T and

magnetization as a function of field was collected at 2 K for H = 0-7 T. Further magnetic
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susceptibility measurements were collected for H // ab on a Quantum Design Physical Property
Measurement System (QD-PPMS) under ZFC and FC conditions from 3-290K at H=2 and 5 T.
Resistivity for T = 3-290 K and magnetoresistance was measured for H = 0-9 T with 1 / ab and
1// ¢ on the QD-PPMS.
6.3 Results and Discussion
6.3.1 Structure

TboRusAljs05 contains three unique Tb sites. Table 6.3 provides Tb contacts less than 3.7
A. Tb(1), which constitutes 75% of the Tb atoms, is surrounded by 14 Al atoms and 4 Ru atoms
with point symmetry mm. As shown in Figure 6.2a, the mirrors lie in the ab and ac-planes. The
Tb(1) polyhedra form face-sharing columns in the c-direction. Due to the hexagonal symmetry of
the structure, there are three different orientations of the columns, each a 120° rotation from the
others. Likewise, there are three orientations of the mirror planes in the ac-direction, with each
polyhedron containing one of the mirror planes. Tb(2), which constitutes 20.33(5)% of the Tb
atoms, is surrounded by 18 Al atoms with point symmetry mm. Like with Tb(1), these mirror
planes lie in the ab and ac-planes. However, as shown in Figure 6.2b, each polyhedron contains

Table 6.3 Selected Interatomic Distances in TboRuzAljs.05 (A)

Interaction Distance (A) Interaction Distance (A)
Tb(1)-Ru(1) (x4)  3.4128(2) Tb(2)-Al(1) (x6) 3.3040(14)
Tb(1)-Al(1) (x2) 3.1917(15) Tb(2)-Al(1) (x6) 3.6337(15)
Tb(1)-Al(2) (x4) 3.3453(9) Tb(2)-Al(3) (x6) 3.2265(15)
Tb(1)-Al(3) (x2) 3.0951(14) Tb(3)-Al(1) (x3) 3.068(3)
Tb(1)-Al(4) (x2) 3.0872(15) Tb(3)-Al(1) (x3) 3.358(4)
Tb(1)-Al(5) (x2) 3.1828(16) Tb(3)-Al(1) (x3) 3.574(4)
Tb(1)-Al(5) (x2) 3.1908(15) Tb(3)-Al(3) (x6) 3.2536(16)
Tb(3)-Al(6) (x1) 2.676(6)
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Figure 6.2 Structure of TboRu3Al;s.05s showing the three Tb environments and the packing of the
Tb polyhedra.

all three mirror planes in the ac-direction. The Tb(2) polyhedra from volume-sharing polyhedra
in the c-direction. Directly in between two adjacent Tb(2) atoms is a partially occupied Al(6)
atom. When this atom is present, the two neighboring Tb(2) atoms deviate from the ab mirror
plane onto a Tb(3) site. Tb(3), which constitutes 4.67(5)% of the Tb atoms, is surrounded by 16
Al atoms with point symmetry m. As shown in Figure 6.2c, the Tb(3) polyhedra still contain the
three ac mirror planes but, unlike the Tb(1) and Tb(2) polyhedra, do not contain the ab mirror
plane.
6.3.2 Properties

Table 6.4 summarizes the anisotropic magnetic data for TboRusAlises. Figure 6.3 shows

the anisotropic magnetic susceptibility of TboRuzAlisos with H parallel to the ab-plane and
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c-direction. For H // ab, three
successive magnetic transitions
occur at low temperatures, shown
in the top inset. At ~17 K, the
system enters a reduced moment
ground state due to crystalline
electric field effects. An upturn at
16.7 K suggests a partial
ferromagnetic ordering followed
by an antiferromagnetic ordering

at 15.2 K. The large magnitude
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Figure 6.4 Magnetic susceptibility of TboRu3Al;s os.

change at 15.2 K, as compared to most antiferromagnetic transitions, is due to the overlap of the

antiferromagnetic ordering and the reduced moment ground state. A small bifurcation between

the zero-field-cooled and field-cooled (not shown) susceptibilities, is consistent with a partial

ferromagnetic ordering. Fitting the high temperature susceptibility with a modified Curie-Weiss

law, y = %o + C/(T - 0), where Y is a temperature independent sum of the diamagnetic and Pauli

paramagnetic contributions, yields an effective moment of 9.462(15) pp/Tb**, smaller than the

9.72 us expected for a free Tb**, and a Weiss-temperature of 12.8(3) K. As will be discussed later,

these values are likely the result of a deviation for Curie-Weiss behavior due to CEF effects.

Table 6.4 Magnetic Properties for TboRuzAli5.05

H dir. Field (T) Fit Range yo(emu/mol-Ln) Tn (K) 6 (K) Mefr(LLB)
TboRusAlisos H//ab 0.1 150-390  0.00070(8) 15.2 12.8(3)  9.462(15)
TboRuzAlisos H/fab 2 150-295  -0.00215(10) - 9.7(4) 9.554(18)
TboRusAlisos H//ab 5 150-295  -0.00398(16) - 5.005) 9.81(3)
TboRusAlisos H// ¢ 0.1 150-390  0.00008(10) - -13.5(6) 9.78(2)
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The magnetic susceptibility with H // ¢ does not resemble the susceptibility with H // ab.
Instead, the system appears to enter a reduced moment ground state at 49 K with no indication of
the three low temperature transitions observed in the other direction. This suggests that the 49 K
transition is not a reduced moment ground state but is instead the result of CEF effects completely
polarizing a portion of the moment, likely the moment from Tb(1), into the ab plane. The bottom
inset of Figure 6.3, shows the susceptibility for H // ¢ at 15 K, highlighting how complete the
polarization is and how accurate the crystal alignment is. Fitting the susceptibility from 150-390
K yields an effective moment of 9.78(2) us/Tb** and a On of —13.5(6) K. The good agreement
between these values and the values expected for a free Tb** ion and a 15.2 K antiferromagnet,
respectively, suggests that the high temperature susceptibility is less affected by the CEF with

H // ¢ than ab.

Figure 6.4  shows the
magnetization as a function of field at

2 K for TboRuzAlisos. When H// ¢, at

low fields the magnetization is small
and linear, consistent with the
susceptibility. Starting at ~ 5 T, the

magnetization begins to increase

above linearity, which may be due to

the large applied field disrupting the

crystalline electric field effects. When H (T)
Figure 6.4 Field dependent magnetization of
H // ab, the magnetization is initially  Th,RuzAlysos.

linear up to 0. 8 T, at which field it undergoes the first of 3-4 metamagnetic transitions. AtH ~ 4
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T, the magnetization saturates at 6.6 pp/mol-Tb>* which is less than the 9 up expected for a free

Tb** ion and is consistent with a reduced moment ground state. The magnetization under

descending field with H // ab does not overlay with the ascending field magnetization. This

hysteresis may be due to the ferromagnetic component observed in the susceptibility.

Interestingly, only two of the metamagnetic transitions are observed under descending field and

the system does not revert back to its original state down to zero field.

To investigate the origin of
the  metamagnetic  transitions
observed in the magnetization as a
function of field, the magnetic
susceptibility was measured at the
plateaus at 2 and 5 T, shown in
Figure 6.5. When H = 2 T, the
antiferromagnetic ordering has been
disrupted, leaving the reduced
moment ground state and a brief
spike in the susceptibility at 16.0 K,

whose origin is unclear.  The

M (1_/mol-Tb>")

0.85

100 150 200 250 300
T (K)

Figure 6.4 Magnetic susceptibility of TboRu3zAliss at
several field strengths with H // ab.

bifurcation observed at 0.1 T is still present at 2 T. When H =5 T, the susceptibility saturates at

6.3 us/mol-Tb** similar to the saturated moment observed in the magnetization as a function of

field and consistent with a reduced moment ground state. No magnetic transitions are observed,

presumably because the spins are almost saturated at the temperatures the orderings would occur.
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Finally, the temperature at which the system enters its reduced moment ground state has been
reduced, as is expected for an applied external field.

As shown in Table 6.4, fitting the high temperature magnetic susceptibility with H // ab at
0.1 T yields an effective moment of 9.462(15) us/Tb** and a positive Weiss temperature of 12.8(3)
K. Under an applied field of 2 T, the effective moment was found to be 9.554(18) ps/Tb** with
On of 9.7(4) K. Finally at H=15 T, a Curie-Weiss fit yields an effective moment of 9.81(3) us/Tb>*
and a Weiss temperature of 5.0(5) K. The increase in the moment and the decrease in the Ox with
increased field suggest that the positive Weiss temperature and reduced moment with H // ab are
the effect of deviations from Curie-Weiss behavior due to the crystalline electric field.

6.4 Conclusions

The magnetic properties of TboRuszAlisos are highly anisotropic due to strong crystalline
electric field effects. Three successive magnetic transitions are observed in the magnetic
susceptibility with H // ab, the most prominent of which is an antiferromagnetic ordering at 15.2
K. These transitions are not observed with H // ¢. Instead, a broad transition at T = 49 K is
indicative of a portion of the moment, likely the Tb(1) moment, being polarized into the ab-plane.
Furthermore, the magnetization as a function of field, is small and linear with H // ¢ whereas when
H // ab, a series of metamagnetic transitions are observed, leading to a saturation of the moment
at~4T.

Several compounds have been reported with highly anisotropic magnetic properties due to
crystalline electric field effects. However, in all of these compounds, the low temperature
magnetic transitions are observed with the external field applied in all directions, indicating that
the polarization of the spins is not absolute. Tb2RuzAlises is unique in that a portion of the

magnetic moment appears to be completely polarized into the ab-plane. This polarization,
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combined with the ability to easily grow large single crystals, makes TboRu3Al;s.0s an ideal subject

for further studies, such as neutron scattering experiments.
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Chapter 7. Single Crystal X-ray Diffraction of a- and pB-YbAI1.xFexBa
7.1 Introduction

YbAIB;exists as two polymorphs. a-YbAIB4 is a member of the YCrB4 structure type and
crystallizes in the noncentrosymmetric space group Pbam.”! The Yb atoms have an intermediate
valence of +2.73"2 and the system has a heavy Fermi liquid ground state.”? B-YbAIBs crystallizes
in the ThMoB;4 structure type with the space group Cmmm.’! Like the a- polymorph, B-YbAIBs
has an intermediate Yb valence of +2.7572 and is a heavy fermion system.”! B-YbAIB,4 has a
superconducting ground state with T¢ ~ 80 mK and Hc2 ~ 30 mT. In this superconducting state,
quantum criticality arises without any field or pressure tuning. Quantum criticality is noteworthy
within B-YDAIB4 as it is the first example of a quantum critical point (QCP) without the need for
tuning and is also the first instance of a quantum critical heavy fermion system with a non-integer
valence.”*

A quantum critical point is a point at which the temperature of a phase transition is
depressed to 0 K and is of interest as the suppression of the normal state can lead to novel or new
states of matter. Typically, a quantum critical point is reached through the tuning of a non-
temperature parameter such as pressure or dopant concentration. For example, a magnetic field of
0.66 T can tune the antiferromagnetic ordering of YbRh,Si>to T =0 K.”® Similarly, at x = 0.32,
BaFe2(As1xPx)2 exists at a QCP which corresponds with the suppression of a spin-density wave
and emergence of a superconducting state.”®

In some special cases, such as YFezAlio"” and B-YbAIB4,# a compound exists at a
guantum critical point without the need for any tuning. This makes the normal state of the system
difficult to determine as it has been completely suppressed. In YFe2Alio, the normal state is

believed to be characterized by the ferromagnetic ordering of localized Fe moments. In order to
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study the suppressed ordered state of B-YbAIB4, single crystals of a- and B-YbAIli.xFexBs have

been prepared.”® Herein, single crystal X-ray diffraction is used to study the effect of Fe doping

on the structure of - and B-YbAl1xFexBa at 295 and 100 K.’

Table 7.17 Crystallographic Data for a-YbAlo.gsFeo.07Ba, B-YbAlog7Feo.03B4, and
B-YbAlo.97Feo.03B4 at 295(3) and 100(1) K

Formula a-YbAIlo.9sFeo.o7Ba B-YbAlo.s7Feo.03B4 B-YbAlogs7Feo.osB4
Temperature (K) 295(3) 100(1) 295(3) 100(1) 295(3) 100(1)
Space group Pbam Pbam Cmmm Cmmm Cmmm Cmmm
a(A) 5.9184(6)  5.9167(6) 7.3075(9)  7.3015(12) 7.3023(12) 7.3013(12)
b (A) 11.4645(15) 11.4602(15) 9.3178(15) 9.3133(12) 9.3178(12)  9.3130(12)
c(A) 3.4832(6) 3.4780(4) 3.4971(6)  3.4892(6) 3.4917(6)  3.4852(6)
V (A3 236.34(6) 235.83(4) 238.1(3) 237.27(6) 237.58(6)  236.98(6)
Z 4 4 4 4 4 4
%ﬁg?' dimensions 0.07x0.13x0.17 0.01x0.07x0.07 0.01x0.07x0.07
Density (g cm™®) 6.894 6.904 6.787 6.811 6.801 6.819

6 Range (°) 3.55-31.01 3.56-30.97 3.54-30.92 3.54-30.99 3.54-30.96  3.55-30.90
« (mm?) 39.918 39.972 39.242 39.380 39.320 39.425
Data Collection and Refinement

Collected reflections 710 699 2160 2252 2251 2598
Unique reflections 433 426 244 244 244 243
Rint 0.0179 0.0155 0.0133 0.0128 0.0234 0.0203

h -8<h<8 -10<h <10 -10<h <10

k -16 <k<16 -13<k<13 -13<k<13

| -5<I1<5 -4<1<5 -5<1<5 -4<1<5

Apmax (€ A3) 3.068 2.999 2.611 2474 5.223 4,764
Apmin (e A3) -1.862 -1.768 -2.607 -2.758 -4.680 -3.777
GoF 1.149 1.294 1.149 1.159 1.183 1.159
Extinction coefficient  0.0121(10)  0.0119(10) 0.0166(11) 0.0144(10) 0.018(3) 0.014(3)
a 2

256(:'?)“” Fo™> 0.0209 0.0237 00177  0.0186 00388  0.0424

® Rw(Fo?) 0.0553 0.0603 0.0459 0.0462 0.1016 0.1116

“R1 = Z[|Fo| - |Fc[l/Z[Fy|

BWR, = [ZW(Fo? - Fe?)%/ZW(Fo?)?]¥?; P = (Fo? + 2FA)/3; w = 1/[c?(Fo?) + (0.0261P)? + 3.2341P], w = 1/[c%(Fo?) +
(0.0258P)? + 4.5691P], w = 1/[c%(Fs?) + (0.0663P)?], and w = 1/[c?(F,2) + (0.0559P)?] for a-YbAl.ssFeoo7Bs at
295K and 100 K and B-YbAlge7Feo.03B4 at 295 K and 100 K, respectively

"Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuiji,
S., Phys. Rev. B 2012, 86, 224413. Copyright 2012 American Physical Society.

7.2 Experimental
The synthesis of single crystals of a-YbAlixFexBa (0 < x<0.07) and B-YbAIl1xFexBs (0 <
X < 0.06) has previously been reported.”!:8 The Fe concentration in the crystals was determined

using ICP data for the a-phase and EDX data for the B-phase.”® Single crystal X-ray diffraction
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data were collected using a Nonius KappaCCD diffractometer equipped with a Mo K, source (A =
0.70930 A) at room temperature, 295(3) K, and at 100(1) K. Direct methods using SIR927° was
performed in order to obtain an initial structural model which was then refined using
SHELXL-97.719 Crystallographic data and atomic coordinates for a-YbAl1.«FexBs (x = 0.07) and
B-YbAIl1xFexBa (x = 0.03, 0.05) can be found in Tables 7.1-3.

Table 7.27 Atomic Coordinates and Atomic Displacement Parameters for a-YbAlo.g3Feo.07B4

Atom Wyckoff site x y z Ueq (A2)? Occ.
295(3) K

Yb(1) 49 0.12859(5) 0.15052(3) O 0.00344(17) 1

Al(L) 49 0.1365(4)  0.4109(2) 0.0042(8) 0.929(15)
Fe(1) 49 0.1365(4)  0.4109(2) 0.0042(8) 0.071(15)
B(1) 4h  02921(16) 03135(8) % 0.0056(16) 1

B(2) 4h  0.3654(15) 0.4695(8) % 0.0054(16) 1

B(3) 4h  03850(16) 0.0479(8) % 0.0063(15) 1

B(4) 4h  0.4725(16) 0.1939(8) % 0.0042(16) 1
100(1) K

Yb(1) 49 0.12862(6) 0.15052(3) O 0.00166(19) 1

Al(L) 49 0.1361(4)  0.4109(2) 0.0023(9) 0.935(17)
Fe(1) 49 0.1361(4)  0.4109(2) 0.0023(9) 0.065(17)
B(1) 4h  0.2915(19) 0.3138(9) % 0.0047(18) 1

B(2) 4h  0.3651(17) 0.4686(8) % 0.0032(17) 1

B(3) 4h  0.3875(17) 0.0482(9) % 0.0023(16) 1

B(4) 4h  04751(18) 0.1929(9) % 0.0037(18) 1

8Ueq is defined as one-third of the trace of the orthogonalized Uj; tensor.

"Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuiji,
S., Phys. Rev. B 2012, 86, 224413. Copyright 2012 American Physical Society.
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7.3 Results and Discussion
7.3.1 0-YbAIl1-xFexBa

Table 7.2 shows the atomic coordinates for a-YbAloo3Feoo7Bs. When the Fe substitution
was not accounted for, the Al site (4g) had an anomalously small atomic displacement parameter
as compared to the undoped a-YDbAIB4. Therefore, the Fe was partially substituted on the Al site
and the occupancies of the two elements were freely refined. This resulted in a mixed occupancy
of 7.1(15)% Fe and 92.9(15)% Al at 295(3) K and is in good agreement with the composition as
obtained from the elemental analysis using the ICP method. Furthermore, no evidence for a
structural transition was observed with substitution, and likewise, no structural transition was
observed for any Fe concentration upon cooling from room temperature down to 100(1) K.”®

Figure 7.1 shows the effect that the Fe dopant concentration has on the lattice parameters
and volume of a-YbAI1.xFexBs. For both temperatures studied, the a and b lattice parameters show
an initial increase upon doping from YbAIB4 to YbAIl:«xFexBas (X = 0.005) after which, a steady
decrease occurs with increased Fe concentration. The c lattice parameter does not show this initial
increase, only steadily decreasing with increased Fe concentration at both temperatures. The c
lattice parameter was found to have a much greater dependence on the dopant concentration than
the a and b lattice parameters. Substitution of the smaller Fe onto the Al site allows for the boron
layers to collapse towards each other leading to the decrease in the ¢ direction. On the other hand,
while doping Fe onto the Al site affects the YbAI layers, it has little effect on the boron layer,
consistent with the greater change in the c lattice parameter than the a and b lattice parameters.
Overall, the volume shows a continuous decrease with increasing Fe doping. Compared to the
undoped analogue, a-YbAlo.93Feo07B4 shows a volume contraction of ~0.8%. This indicates that

Fe doping applies chemical pressure to the system.
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Tables 7.3 and 7.4 provide atomic coordinates for B-YbAIl:1xFexBs (x = 0.03, 0.05). When

the Fe substitution was not included in the model, the Al site (4g) had a similar atomic

displacement parameter to the Yb site (4i) suggesting that the Fe occupies the Al site.

For

B-YbAlo.e7Feo03Ba, Fe was partially substituted onto the Al site and the occupancies were freely

refined. The resulting site occupancy was 1.3(15)% Fe and 98.7(15)% Al at 295(3) K. Thisis in
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Table 7.3" Atomic Coordinates and Atomic Displacement Parameters for B-YbAlo.o7Fe0.03B4

Atom Wyckoff site x y z Ueq (A?)? Occ.
295(3) K

Yb(1) 4i 0 0.30065(4) 0 0.00388(19) 1

Al(D) 49 0.1808(3) O 0.0042(8) 0.987(15)
Fe(1) 49 0.1808(3) O 0.0042(8) 0.013(15)
B(1) 4h  01219(13) % 1 0.0050(13) 1

B(2) 8q  0.2226(8)  0.1594(14) % 0.0061(10) 1

B(3) 4] 0 0.0922(9) % 0.0044(13) 1
100(1) K

Yb(1) 4i 0 0.30066(3) 0 0.00260(19) 1

Al(L) 49 01810(3) O 0.0031(8) 0.996(15)
Fe(1) 49 01810(3) O 0.0031(8) 0.004(15)
B(1) 4h  0.1215(13) % Y 0.0046(14) 1

B(2) 8q  0.2224(8)  0.1596(8) % 0.0046(10) 1

B(3) 4] 0 0.0921(9) % 0.0043(14) 1

8U¢q is defined as one-third of the trace of the orthogonalized Uj; tensor.

"Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuji,
S., Phys. Rev. B 2012, 86, 224413. Copyright 2012 American Physical Society.

agreement with the ICP data which indicated the stoichiometry to be B-YbAlogsFeo02Ba. While

the atomic displacement parameters also suggested that the Fe occupied the Al site in

B-YbAlo.gsFeo0sBs, no Fe could be refined onto this site, or any other site, for the model. The

inability to model the Fe doping in B-YbAlogsFeoosBs can be attributed to the lower quality

diffraction data for this analogue compared to the other analogues. B-YbAlogsFeoosBs grew as

thin plates whereas B-YbAlo.97Feo.03B4 grew as thick plates and a-YbAlo.93Feo.07B4 grew as rods.

The thinner plates for B-YbAloosFeoosBa led to lower quality X-ray diffraction data which is

apparent in both the increased R: and residual electron densities for this analogue. Due to the

increased Apmin/max, the Fe substitution could not be modeled. As with a-YbAIli-xFexBas, no
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Table 7.47 Atomic Coordinates and Atomic Displacement Parameters for B-YbAlo.osFeo.05B4

Atom Wyckoff site x y z Ueq (A?)? Occ.
295(3) K

Yb(1) 4i 0 0.30070(4) 0 0.0054(4) 1
Al(1) 49 01799(6) O 0 0.0049(8) 1
B(1) 4h  0122Q3) W n 0.005(2) 1
B(2) 8q  0.2225(8)  0.1607(15) % 0.0067(17) 1
B(3) 4] 0 0.0917(15) % 0.006(2) 1
100(1) K

Yb(1) 4i 0 0.30072(5) 0 0.0042(4) 1
Al(L) 49 0.1802(6) O 0 0.0031(8) 1
B(1) ah  0124(3) ¥ v 0.009(3) 1
B(2) 8q  0.2227(15) 0.1598(18) % 0.009(2) 1
B(3) 4 0 0.0913(12) % 0.004(3) 1

8Ueq is defined as one-third of the trace of the orthogonalized Uj; tensor.

"Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuiji,
S., Phys. Rev. B 2012, 86, 224413. Copyright 2012 American Physical Society.

structural transition was observed in B-YbAl:xFexBs upon doping or cooling down to 100 K.’®
Single crystal X-ray diffraction data was also collected on a sample of B-YbAlo.9sFeo.06B4.
Although the mosaicity of the single crystal was suitable for data collection at 295(3) K, upon
cooling in 50 K intervals down to 100(1) K, a continuous decrease in crystal quality, indicated by
increased y%s and mosaicity, was observed. For example, the mosaicity of the crystal increased
from 0.45 degrees at 295(3) K to 0.87 degrees at 100(1) K. When the crystal was warmed back to
room temperature, the crystal quality returned to its original state. Diffraction data of
B-YbAlo.esFexBa was collected at both 295(3) K and 100(1) K and no evidence for a structural
transition was observed. In a-YbAlo.g3Feo.07B4 and B-YbAl1xFexBs (x = 0.03, 0.05), on the other

hand, the degradation of crystal quality on cooling was not observed. Synthesis experiments
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suggest that the concentration x = 0.06 is close to the edge of the stability of the Fe doped -phase,
and this may be the origin of the increase in the mosaicity on cooling.

Figure 2 shows the effect that the Fe dopant concentration has on the lattice parameters and
volume of B-YbAlixFexBs. The a and c lattice parameters decrease with increased Fe

concentration while the b direction increases slightly. Like with a-YbAl1.xFexBas, the change in
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Figure 7.2 The effect of Fe dopant concentration on the lattice parameters and volume of
B'YbAIl-xFexBA.
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the c-direction is more pronounced than in the other two directions, consistent with the structure.
Overall, the volume of the unit cell decreases with increasing Fe concentration, indicating that the
Fe doping applies chemical pressure to the system. At x = 0.05, the volume has contracted 0.2%
compared to the undoped analogue.
7.4 Conclusion

Single crystal X-ray diffraction data were collected on crystals of a-YbAIl1xFexBs (0 <x <
0.07) and B-YbAlixFexBs (0 < x < 0.06). The Fe was found to dope onto the Al site in both
polymorphs. No structural transition was observed upon doping Fe into the systems or upon
cooling from 295 K to 100 K in any analogue. However, in both analogues, a continuous decrease
in unit cell volume was observed with increasing Fe concentration and was most pronounced in
the c direction. This indicates that Fe doping applies chemical pressure to the systems. In this
way, a thorough understanding of the structural effects of Fe doping helps explain the properties
of the two polymorphs of YbAIli«FexB4 and to shed light on the normal state of the quantum
critical B-YbAIl1xFexB4 "8
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Chapter 8. Synthesis, Characterization, and Surface Patterning of FeNiz and Ln2O3
Nanoparticles

8.1 Nanointermetallic FeNis

Magnetic sample modulation, MSM, is an enhanced atomic force microscopy, AFM,
technique which can provide magnetic information about individual nanoparticles. In MSM, an
alternating current electromagnetic field is applied beneath the AFM sample stage. The magnetic
field causes magnetic nanoparticles to oscillate which can be detected by a non-magnetic tip in
contact mode. Using MSM, surface topography and magnetic mapping can be concurrently
obtained.??

To further explore the capabilities of MSM, A. Kelley et al. synthesized FeNis
nanoparticles.®? The samples used in these studies consisted of FeNis and Fe3Os nanoparticles.
While this allowed for the investigation of whether MSM can distinguish between two types of
nanoparticles,®? for further studies of MSM, phase pure FeNis nanoparticles are desired.

FeNis crystallizes in the face-centered cubic structure (AuCus type) with cubic space group
Pm3m and lattice parameter a = 3.525 A3 FeNis can either crystallize as an intermetallic with
Ni on the corners of the unit cell and Fe in the face centers, or as an alloy with a mix on each site.
Typically, the intermetallic forms in low temperature growth conditions, under 500 °C, such as
those used in most nanoparticle syntheses.®3 However, it can be difficult to distinguish between
the two forms.®# FeNis is a room temperature ferromagnet and for this reason, FeNis nanoparticles
are of interest for purposes such as magnetic memory, sensors, and biomedical applications.®>”
8.1.1 Synthesis

The co-reduction method®® was used for the synthesis of FeNis. In all reactions, 2.64 x

10“*moles of an Fe source and three times that of Ni(NOs).-6H,O were added to water along with
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a reducing agent. Heating of the reaction was carried out either in a Parr Bomb which was heated
to 180 °C for 15 h or in microwave vessel which was heated to 180 °C for 1 h.

Initially, two reactions were carried out using the previously reported procedure.®? These
reactions used Fe(NOz)3-9H-0 as the Fe source and hydrazine, NoH4-H20O, as the reducing agent.
For hydrazine to act as a reducing agent, a basic environment is required and was obtained by the
addition of NaOH to the reaction. Both reactions were degassed by bubbling with nitrogen before
heating. The first reaction was heated in a Parr Bomb and resulted in a mixture of FeNis and
magnetite, FesO4. The second reaction, was heated in the microwave and did not yield the desired
product, FeNis. Instead, only Ni(OH). and an unknown product formed. This can be explained
by Reaction 8.1. Hydrazine can undergo two competing reactions. The desired reaction, the
reduction of a metal center, produces one equivalent of nitrogen gas. The second reaction, which
is more energetically favorable at standard conditions, is the decomposition of hydrazine into one
equivalent of nitrogen gas and four equivalents of ammonia gas. Therefore, in order to carry out
the desired reduction, hydrazine requires high pressure. This was achieved in the Parr Bomb which
was about 75 % full but was not achieved in the microwave vessel, which was approximately 25
% full.

Reaction 8.1 Standard reaction potentials for pertinent hydrazine reactions.®>

2Fe?* + 40H- + N,H, > 2Fe + N, + 4H,0 E;=0.44V

3N,H, > N, + 4NH, E,=1.05V
In an attempt to purify the synthesis of FeNis, several further reactions were carried out.
As shown in Reaction 8.2, for magnetite to form, Fe*?, Fe*3 and a basic environment are required.
Initially, it was attempted to remove the basic environment by using a reducing agent that did not

require hydroxide ions. For this reason, a reaction using potassium oxalate was attempted. This
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reaction was split in half and one half was heated in a Parr Bomb and the other half in a microwave.
These reactions did not yield any FeNis but instead only yielded Ni(ll) oxalate. This suggests that
the oxalate ion preferred to be a ligand instead of a reducing agent. Instead of removing the basic
environment, it then became of interest to remove one of the iron cations. As an Fe(l1l) source

was being used, some of the Fe(111) must have been reduced to Fe(ll) during the reaction process.

111 FeNi, - Parr Bomb
200 - () 3 ]

Counts

0
30 40 50 60 70 80
26 (°)

Figure 8.1 Powder diffraction pattern of FeNis nanoparticles heated in a Parr Bomb
To avoid the presence of both cations, an Fe(ll) source, FeCl,, was used. This reaction was
degassed before heating in a Parr Bomb and resulted in a mixture of FeNisz and FezOa. In order for
magnetite to form, an oxidizing agent must have been present to oxidize some of the Fe(ll). As
this oxidizing agent was believed to be oxygen, another reaction was carried out using a glovebox

to prepare the reaction. This reaction was heated in a Parr Bomb and the powder XRD, shown in

Figure 8.1, indicated that only FeNis was produced.

Reaction 8.2 Formation of magnetite.®*

Fe2* + 2Fe3* + 80H- > Fe,0, + 4H,0

After the successful synthesis of FeNiz using a Parr Bomb, it was of interest to produce it
using a microwave. In order to increase the pressure within the microwave vessel and thereby
favor the reduction of the metal centers over the decomposition of hydrazine, an excess of

hydrazine was added to the reaction. In this way, some hydrazine would initially decompose,
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increasing the pressure enough to allow for the remaining hydrazine to act as a reducing agent. As

shown in Figure 8.2, this reaction yielded phase pure FeNis.

T
r (111) FeNi; - Microwave |

30 40 50 60 70 80
26 (°)
Figure 8.2 Powder diffraction pattern of FeNis nanoparticles produced using microwave heating

8.2 Spatially Separated Y203 Arrays

Due to the two valence states available to cerium, CeO- has the ability to release oxygen.
This ability makes cerium oxide a useful oxidative catalyst for a variety of applications such as
three-way automotive catalysts,31% ! gas sensors,®*? fine chemical synthesis,®*%1° and solid oxide
fuel cells.®'®  For many of these applications, the ceria catalysts is coupled with a noble metal,
such as Pt or Pd.3" These catalytic properties can be enhanced by using ceria nanoparticles.6

Two processes occur which decrease the efficiency of nanoparticles for catalysis:
agglomeration and Ostwald ripening. Agglomeration is the adhesion of particles which are in
contact with each other while Ostwald ripening is the dissolution of smaller particles in order to
provide monomer for the growth of larger particles. Both of these processes lead to larger particle
sizes and smaller surface areas thereby reducing particle efficiency.®18 1

In order to prevent agglomeration and to limit Ostwald ripening, we have proposed to
produce ordered arrays of spatially separated ceria nanoparticles using nanolithography
techniques. Due to the difficulty of ceria synthesis compared to other lanthanide oxides, namely

the need for hydrofluoric acid, we have selected Y»0s to evaluate synthetic variables.
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8.2.1 Synthesis

Yttrium trichloroacetate was prepared according to a previously published procedure.?2

Yttria powder (15 mmol) was dissolved in concentrated nitric acid (100 mL) heated to 80 °C. The
dissolved Y203 solution was cooled to room temperature, and yttrium hydroxide was precipitated
from the solution by adding NH4OH until the solution registered as basic. The precipitate was
separated via vacuum filtration and washed several times with deionized water. A solution of
yttrium trichloroacetate was prepared by dissolving the hydroxide precipitate in a 25%
trichloroacetic acid solution.

Microchannels of Y203 were patterned on a UV-ozone cleaned silicon wafer. A PDMS
mold of 3 um triangular channels was placed on the clean silicon wafer. A drop of the yttrium
trichloroacetate solution was placed next to the PDMS mold. Capillary action at the opening of the
stamp draws liquid into the microchannels. The solution was dried overnight and the stamp was
removed leaving behind patterned yttrium trichloroacetate. The sample was heated to 150 °C for
3 h in order to decompose the acid and form Y2(COz)3z. The carbonate was further decomposed to
Y203 by heating to 800 °C overnight.

Nanoparticles of Y203 were patterned in hexagonal close packed arrays of pores in an
octadecyltrichlorosilane (OTS) surface assembled monolayer (SAM) on silicon made using two
particle lithography.  Yttrium trichloroacetate solution was filled into the pores using
discontinuous dewetting, a process in which a polar solution selectively adheres to a hydrophilic
pore over a hydrophobic SAM by removing the sample from the solution on an angle. After the
pores are filled, the sample was air dried and then heated using the same profile as for the
microchannels. The 800 °C dwell temperature was sufficient to both decompose the carbonate

and to burn off the OTS monolayer, leaving only the yttria nanoparticles on the quartz surface.
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Chapter 9. Conclusions

The research in this document focused on three structurally related sets of compounds:
LnRu2Al, CeRus(Al,Si)is58 and LnaRusAlis.  These studies were initially motivated by the
anomalous properties observed in CeRuAli, namely the higher ordering temperature than
expected from de Gennes scaling®! and the metal to insulator transition near this ordering
temperature.®2

PrRuAl enters a non-magnetic ground state at 13.2 K due to crystalline electric field
effects, GdRuAlo orders antiferromagnetically at 15.5 K, and YbRu2Alo is a Pauli paramagnetic.
All three analogues display metallic resistivity for all T with the Yb analogue exhibiting a T®
dependence at low temperatures, believed to be the result of scattering due to s-d transitions.
CeRuas(Al,Si)1s58 follows Curie-Weiss behavior with 6 = -21.9(14) K but does not order down to
3 K, and the resistivity displays a negative temperature coefficient. Finally Ce;RusAlis08 and
Gd2Ruz.0sAlss order antiferromagnetically at 3.7 K and 21.0 K, respectively.

Despite the similar Ln environments, none of the compounds studied displayed similar
behavior to those of CeRu2Alw0. It has been suggested from computational studies that the Ce
polyhedra play a large role in the properties of CeRu2Al10.%2 For this reason, structurally related
CezRuzAlss can serve as a good comparison structure for further studies of CeRu2Al1o.

While the initial goal of this research was to look for properties resembling those of
CeRu2Aly, these studies also highlighted the difficulties and benefits of single crystal flux growth
and the large effect that crystalline electric fields can have on compounds. LnRu2Alio compounds
are very robust and easily grow from melts with a variety of compositions dwelled at a broad range
of temperatures. As a result, growing other compounds in the Al rich portion of the Ln-Ru-Al

phase space can be challenging. Similarly, the growth of CeRu4(Al,Si)15 58 was made difficult due
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to the high stability of Ru23(Al,Si)e7. The growth of Ln2RusAlis was found to be favored over the
growth of LnRu2Alyo at high temperatures and in Ru poor conditions. The prior allowed for the
growth of polycrystalline LnoRusAlis (Ln = Ce, Gd) via arc melting while the latter allowed for
the flux growth of large single crystals of LnoRuzAls (Ln =Y, Gd, Th).

Single crystalline Gd2RusAliso9 and polycrystalline Gd2RusosAlis demonstrate the
advantages of single crystals for materials characterization. The availability of high quality single
crystals allowed for the measurement of the intrinsic magnetization and magnetoresistance
unaffected by grain boundaries and impurities. Furthermore, the ability to measure anisotropic
properties provided insight into the arrangement of moments in the antiferromagnetic ordering.
Finally, the structure of Gd:RusAlis was found to be synthesis method dependent, with the
resulting change in Gd-Gd contact lengths leading to different Neel temperatures in the
polycrystalline and single crystalline analogues.

One of the advantages of studying multiple structurally related compounds within a phase
space is that it allows for the study of structure-property relationships. For example, in both the
GdM2Alp (M = Fe, Ru, Os) and the Gd>RuzAl1s analogues, it was found that increased Gd-Gd
interactions led to lower ordering temperatures. This suggests that the cosine dependence of the
RKKY interaction is on an upturn at these distances leading to increased interaction strengths with
increased distance.

A second structure-property relationship can be drawn between the Ln polyhedra and
crystalline electric field effects. As CEF effects are important to the properties of CeRu2Al1o, it
was expected that CEF effects would be observed in the structurally related compounds. Indeed,
crystalline electric field splitting led to a non-magnetic ground state in PrRuzAlp and were

observed below 100 K in Ce;RuzAls04. Anisotropic magnetization can be a powerful tool for
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studying CEF effects. The ability to grow large single crystals of LnoRuzAl1s for latter rare earths
combined with the CEF effects observed in the structurally related compounds made it of interest
to further study CEF effects in Ln,RusAls. As the f-electrons in Gd** are spherically symmetric
and therefore not susceptible to CEF effects, these studies were carried out on single crystals of
ThaRuzAlis0s. The highly anisotropic properties observed in ThaRuzAlss.0s, show the strong CEF
effects that the 20 coordinate polyhedra found in LnRu2Alw, CeRua(Al,Si)1558 and LnaRusAlis
have on the f-electrons.

Along with the study of structure-property relationships within the Ln-Ru-Al phase space,
this work also provides insights into methods to grow competing phases. It is not uncommon for
a system to contain a highly stable binary. However, these are often easily avoided in flux-growths
with the aid of binary phase diagrams by spinning the reaction above their formation temperature
or using more flux rich conditions. Avoiding stable ternaries can be more challenging, as ternary
phase diagrams are typically less studied or non-existent, and the undesired ternary often prefer
more flux rich melts than their competing phases. This was the case with both Ru23(Al,Si)g7 and
CeRu2Alqo.

The two methods that can often easily favor the desired ternary over the competing ternary,
using high temperature conditions, such as in arc melting, and flux poor reactions, typically result
in polycrystalline products. Throughout the course of this dissertation, several strategies have been
devised for growing single crystals of competing phases which may be applied to other systems.

First, flux rich conditions can sometimes be used by sufficiently decreasing the
concentration of another reactant. For LnaRuzAlss, it was found that flux rich growths favored the
formation of the undesired LnRu2Al10. Relatedly, Ln rich conditions help stabilize LnoRusAls but

lead to the melt freezing at too high a temperature to facilitate single crystal growth. Reactions
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which were both Ln and flux rich were achieved by using a Ru poor melt. In this was, large single
crystals of Ln2RusAlis were grown while avoiding the growth of LnRuAl1o.

Second, the synthesis of different Ln analogues should be considered. While a phase may
form for all Ln, the growth of single crystals may be easier for some rare earth analogues than
others. This may be the case when a competing binary or ternary only grows for certain Ln. For
example, the synthesis of Ce2RusAl1s04 Was more challenging than that of Gd2RuzAlis.09 because
the stable LnsAl.: binary only forms for Ln = La - Sm. This is also the case when one analogue is
near the edge of stability. The mixed valence of Ce;RuzAlis04 suggests that the LnoRuzAls
structure is more stable for smaller rare earths. Indeed, the latter rare earth analogues were found
to more readily grow as single crystals.

Finally, special consideration should be given to the temperature profile used. Often,
reactions are heated to an arbitrarily high temperature, such as 1150 °C, to achieve homogeneity
before slow cooling. As was shown with LnzRusAlss, changing dwell temperatures can have a
large effect on the resulting products. When dealing with competing phases, a temperature profile
similar to that used for the growth of Gd2RusAlss, with a slow cool at high temperatures and a
faster cool at lower temperatures, is likely ideal for growing thermodynamically stable ternaries,
i.e. phases that can be grown via arc melting.

Ultimately, the single crystal growth of competing phases requires careful study of the
stability of the phases. Only through the systematic study of the competition between the phases
by varying the temperature profile and reaction ratio can single crystals of the less robust phase be
grown. While the growth of single crystals can be challenging and time consuming, the power of

single crystals for physical properties studies makes such research rewarding.
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