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Abstract 

The availability of single crystals is vital for understanding the intrinsic properties of 

crystalline materials.  The flux growth method is a versatile technique which may be used to grow 

single crystals.  However, their synthesis can often be challenging, especially when a competing 

phase is very robust.  Herein, we study the growth competition between structurally related 

compounds in the Ln-Ru-Al phase space.  We demonstrate the benefits of single crystals and 

suggest methods to grow competing phases. 

CeRu2Al10 has garnered interest due to its higher ordering temperate than expected from 

de Gennes scaling and its metal-to-insulator transition at the same temperature.  Here, we report 

the magnetic and transport properties of three sets of compounds which are structurally related to 

CeRu2Al10: LnRu2Al10 (Ln = Pr, Gd, Yb), CeRu4(Al,Si)15.58, and Ln2Ru3Al15 (Ln = Ce, Gd, Tb).  

We find that despite the structural similarities, none of these compound display properties similar 

to those of CeRu2Al10.  Our extensive study of these structurally related compounds allows us to 

draw conclusions about the structure-property relationships in these systems. 
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Chapter 1.† Introduction 

Intermetallics exhibit many properties which can be useful for applications.1.1  

Aluminides have found use in high-temperature structural applications1.2, 3 and silicides are used 

in electronics.1.4  Rare earth intermetallics, such as Nd2Fe14B, are used as permanent magnets in 

devices such as hybrid cars and wind turbines.1.5  Other intermetallics offer possible energy 

applications such as thermoelectrics,1.6, 7 magnetocalorics,1.8 and superconductivity.1.9, 10  On the 

nanoscale, intermetallics can potentially be used in magnetic data storage devices,1.11 for 

biomedical applications,1.12 and as catalysts.1.13  

One class of materials which are of particular interest are strongly correlated electron 

systems, systems whose properties arise as the result of electron-electron interactions.1.14-16  

These materials exhibit many properties which are both useful for current applications as well as 

offer potential for future applications.  RKKY interactions, through which the conduction 

electrons couple magnetic moments,1.17-19 can lead to long range magnetic ordering.  The Kondo 

effect, a mechanism in which the conduction electrons screen the magnetic moments, competes 

with the RKKY interaction and can lead to heavy fermion behavior, where the conduction 

electrons appear to have an enhanced mass.1.20  Additionally, electron-electron interactions can 

give rise to metal-to-insulator transitions where a small temperature change can result in an 

orders of magnitude change in the resistivity.1.21  Perhaps the epitome of strongly correlated 

systems, is high-Tc superconductivity, where electron-electron interactions within pairs of 

electrons reduces the resistivity to zero.1.22 

†Partially reproduced with permission from Morrison, G. W.; Menard, M. C.; Treadwell, L. J.; 

Haldolaarachchige, N.; Kendrick, K. C.; Young, D. P.; Chan, J. Y., Philos. Mag. 2012, 92, 2524-

2540. Copyright 2012 Taylor & Francis.  

http://www.tandfonline.com/doi/full/10.1080/14786435.2012.669063 

and Morrison, G.; Haldolaarachchige, N.; Chen, C.-W.; Young, D. P.; Morosan, E.; Chan, J. Y., 

Inorg. Chem. 2013, 52, 3198-3206.  Copyright 2013 American Chemical Society. 



2 

 

 Despite the technological demand for crystalline materials, the United States’ solid state 

community is grappling with a shortage of high quality crystalline samples for physical property 

studies.1.23  The synthesis of crystalline material within the US has fallen behind the efforts in 

other countries.  In response to this, the National Academy of Sciences released a report 

highlighting the need for increased growth of crystalline materials.  The report laid out three 

grand challenges: the synthesis of crystalline materials for energy applications, the synthesis of 

crystalline materials for new technologies, and the design of crystalline materials through the use 

of computational methods.1.24 

 The research described within this document is in line with the first two grand challenges.  

Two main methods are used in selecting materials to be studied.  First, structure types with 

specific motifs can be targeted.  For example, compounds with triangular arrangements of 

lanthanides or 3rd row transition metals, such as kagome lattices, may exhibit magnetic 

frustration.1.25  Likewise, layered materials sometimes show large magnetoresistance.1.26  In 

Chapters 2-6 of this document, compounds of three structure types will be studied due to their 

similarities to CeRu2Al10, whose properties will be discussed in Chapter 2.  Second, specific 

structure types which display desired properties can be targeted.  By substituting one element 

with another, these physical properties can be tuned.  In Chapter 7 of this document, a doping 

studies of YbAl1-xFexB4 will be discussed.  Using these two techniques, structurally similar 

materials can be compared in order to reveal trends such as how structural motifs, metal 

coordination, or valence electron concentrations are correlated to desired behavior.   

 When studying new materials, single crystals offer many advantages over polycrystalline 

materials.  Single crystals allow for structure determination using single crystal X-ray diffraction 

(XRD).  Furthermore, single crystals allow for the measurement of the intrinsic properties of a 
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material.  In polycrystalline samples, the properties can be affected by grain boundaries between 

crystallites and by impurities trapped in the grain boundaries.  Finally, single crystals allow for 

the measurement of anisotropic properties, properties down a specific orientation of a crystal.  

Anisotropic properties are useful for elucidating a compounds magnetic structure and for 

studying crystalline electric field effects, which will be discussed at the end of this chapter.  For 

the above reasons, single crystals are initially targeted for all studies in this document.  Only 

when single crystals cannot be obtained are polycrystalline samples used. 

One challenge to crystal growth is obtaining a single phase within a growth, as multiple 

phases often grow in a single batch.  For this reason, investigation of the competition between 

phases by systematically varying the reactant ratio and heating profile is required in order to 

determine the optimal growth conditions of one phase with respect to another.  This is especially 

important when one compound in a phase space is considerably more stable than the others.  In 

such a case, the growth of the other phases can be very difficult.  Several examples of the 

competition between the growth of two compounds can be found in the Ln:Ru:Al and 

Ln:Ru:Al:Si (Ln = lanthanide) phase spaces.  The competition between the growth of 

CeRu4(Al,Si)15.58 and Ru23(Al,Si)97 will be discussed in Chapter 3 and the competition between 

the growth of Ce2Ru3Al15 and CeRu2Al10 will be discussed in Chapter 4. 

 Many techniques are available for the growth of crystalline materials, and each technique 

offers certain advantages and disadvantages.  Often, phase pure compounds tend to prefer a 

specific growth technique.  In this document, three different solid state synthesis techniques, flux 

growth, radio frequency induction heating, and arc melting, will be used in attempt to grow 

physical property measurement quality samples. 
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  The first technique, flux growth, uses a low melting metal as a solvent, or flux, in order 

to dissolve metals with higher melting points.  The reactant metals are heated in a high 

temperature muffle furnace which allows for fine-tuned temperature control.  Typically, flux 

growth reactions are quickly heated (~100 °C/h) to a high temperature (1000-1200 °C) at which 

the reaction is dwelled for ~24 h in order to ensure homogeneity.  The reaction is then slowed 

cooled (1-15 °C/h) to a temperature above the melting point of the flux.  By inverting and 

centrifuging the sample, the excess flux can be spun off.  The slow cooling often results in the 

growth of single crystals.  Furthermore, the high degree of control over reaction conditions can 

allow for the growth of congruently melting, incongruently melting, and even metastable phases. 

However, in order to prevent the reactant metals from oxidizing, flux growth reactions are 

typically sealed in an evacuated fused-silica tube.  As fused-silica begins to become molten at 

~1250 °C, the maximum temperature available to flux growth is about 1250 °C.   

 A second technique, radio frequency (RF) induction heating, applies an alternating 

current to a coil, creating an alternating magnetic field.  An alumina crucible wrapped with 

tantalum foil is placed in an argon environment in the center of the coil.  The magnetic field 

creates eddy currents in the tantalum foil which leads to resistive heating of the foil and, in turn, 

heats the crucible.  Because the sample is in an inert environment, higher temperatures can be 

reached than in the flux method.  Furthermore, by changing the amplitude of the applied current 

or partially raising the sample out of the coil, the temperature can be controlled.  However, 

because an alumina crucible is used, the maximum temperature is limited by the melting point of 

alumina, 2053 °C.1.27   

 A third technique, arc melting, uses an arc of electricity in order to melt the reactant 

metals under an inert atmosphere.  This technique heats the reaction to ~3000-4000 °C.  
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However, arc melting provides little temperature control, and the rapid heating and cooling 

involved results in a polycrystalline sample.  Furthermore, in order to obtain phase pure material, 

arc melted samples typically have to be annealed at lower temperatures (500 - 1200 °C) for 

extended time periods (often 1 - 4 weeks). 

 During the course of this dissertation, several physical phenomena will be mentioned.  

One reoccurring phenomena, crystalline electric field (CEF) effects, will be discussed in detail 

here.  CEF effects occur when a non-spherical electron density surrounding a lanthanide breaks 

the degeneracy of the f-orbitals.  The way in which these orbitals are split is dependent on the 

point symmetry of the lanthanide site.  CEFs can strongly affect the magnetic properties of 

crystalline materials.1.28 

     One effect of crystalline electric fields which is most common in Pr, Tb and Tm 

containing compounds is the existence of a non-magnetic ground state.  In Pr compounds, CEF 

splitting can lead to two possible non-magnetic ground states, a singlet ground state and a non-

magnetic doublet ground state.  For example, under cubic point symmetry, the f-electron 

multiplet of a Pr3+ ion is split into a singlet, a non-magnetic doublet and two triplets.1.29  Which 

of these states is the ground state depends on the electrostatic interaction between the f-electrons 

and the aspherical electron density surrounding the lanthanide.1.28  In systems with a non-

magnetic ground state, the system is magnetic at temperatures sufficiently above the splitting 

energy between the ground state and first excited state.  At these temperatures, both states are 

equally populated.  When the thermal energy becomes too small to excite electrons from the 

ground state, the system becomes non-magnetic.  This is characterized by the magnetic 

susceptibility becoming nearly temperature independent, as is observed in PrTi2Al20
1.30 and 

PrOs2Al10.
1.31 
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 A second effect of crystalline electric fields is anisotropic magnetism.  The CEF can 

dominate over the applied field and polarize the magnetic moments in one direction.1.32  This can 

lead to anisotropic magnetic susceptibility, such as with HoNi2B2C
1.33 and Tb30Ru4Sn31.

1.34  This 

anisotropy can be used to calculate the CEF splitting energies, as was done for CeRu2Al10.
1.35 

 One final effect that crystalline electric fields can have on magnetic properties, which 

will be discussed, here is their effect on the Weiss temperature.  Along with leading to 

anisotropic susceptibility, the pulling of the magnetic moments by the CEF contributes to θW.  

The CEF contribution to the Weiss temperature, θCF, can be determined by doping a non-

magnetic lanthanide onto the rare earth site as this doping has little effect on θCF but reduces the 

portion of the Weiss temperature due to the exchange interaction.1.32  Such studies have been 

performed on Nd2-xLaxTi2O7
1.32 and Ho1-xLuxNi2B2C

1.33.  Not only can CEF affect the Weiss 

temperature, they can also enhance the ordering temperature.  When the CEF pulls the magnetic 

moment in the same direction as the exchange interaction, the ordering temperature can be 

increased.1.36  As the f-electrons in Gd are spherically symmetric, there are no CEF effects on Gd 

ions.  As a result, when the CEF enhances the ordering temperature, a deviation from the 

expected RKKY ordering temperatures is observed.  An example of this deviation is observed in 

the LnRh4B4 system.1.36   

The synthesis of large single crystals focuses on crystal growth while minimizing 

nucleation.  On the other end of the size scale, the synthesis of nanoparticles focuses on 

maximizing nucleation while keeping growth low.  Like with the synthesis of bulk crystals, the 

synthesis of nanoparticles offers many challenges.  When considering large single crystals, the 

stability of a phase is almost entirely dependent on the energetics of the bulk.  However, for 

nanoparticles, the surface energy of the particle becomes important due to the large percentage of 
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atoms on the surface of a nanoparticle.1.37  For example, nanoparticles which are smaller than 10 

nanometers have over 50% of their atoms on the surface.1.38  One direct results of this is the 

importance of surfactants on nanoparticle morphology.  The use of surfactants allows for the 

stabilization of certain faces over others, thereby controlling nanoparticles morphology.1.39  For 

example, CTAB preferentially binds to the (100) face of gold allowing for the growth of 

nanorods.1.40  Likewise, the addition of amine surfactants to PbTe nanoparticles reactions 

stabilizes Pb rich (111) faces leading to the formation of cuboctahedra or octahedra instead of 

cubes, depending on the Pb:Te ratio.1.41  A second result of the large surface area to volume ratio 

of nanoparticles is Oswald ripening.  Smaller nanoparticles have a higher chemical potential than 

larger nanoparticles and as a result, dissolve at a faster rate.  For this reason, over time, when 

monomer concentrations are low, smaller nanoparticles will become smaller and larger 

nanoparticles will become larger, thereby increasing the size distribution of the nanoparticles.1.37  

A similar effect is the aggregation of nanoparticles upon heating.1.42 
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1.1. Stoloff, N. S.; Liu, C. T.; Deevi, S. C., Intermetallics 2000, 8, 1313-1320. 
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Chapter 2.† Magnetic and Transport Properties of Single Crystal LnRu2Al10 (Ln = 

Pr, Gd, Yb) 

2.1   Introduction 

As part of our effort to grow single crystals of Ln-M-Al (M = Transition metal) systems to 

study the interplay of magnetism in rare earth and transition metal sublattices,2.1 we have chosen 

to work with compounds of the Fe triad.  This effort is motivated by our interests in understanding 

the mechanism of magnetism, especially the competition between itinerant and localized moments.  

We have previously reported a series of lanthanide analogues of Ln4FeGa12 where the magnetic 

rare earth compounds order with magnetism due to the rare earth ions. However, the nonmagnetic 

rare earth analogue Y4FeGa12 seems to exhibit itinerant magnetism.2.2  A competition between 

itinerant and localized magnetism has also been observed in (La1-xYx)Mn4Al8 (0 ≤ x ≤ 1) of the 

CeMn4Al8 structure type, an ordered derivative of ThMn12 type.  In these compounds, the spin 

pseudogap is continuously tunable between 200 K and 500 K by varying x.2.3 

Compounds consisting of Ln-M-Al (Ln = Lanthanide; M = Fe, Ru, Os) can adopt a wide 

variety of structure types including YbFe2Al10 
2.4, CeRu3-xAl10+x,

2.5 Ce2Ru3Al15,
2.6 Gd3Ru4Al12,

2.7 

CeRuAl,2.8 La11Ru2Al6,
2.9 La5Ru3Al2,

2.10 and Gd4RhIn.2.11  These structure types include many 

structural motifs, some of which can be observed in more than one structure type.  The YbFe2Al10 

structure type, a substitutional and stacking variant of the ThMn12 structure type 2.4 is adopted by 

LnFe2Al10 (Ln = Y, La-Nd, Sm, Gd-Lu), LnRu2Al10 (Ln = Y, La-Nd, Sm, Gd, Tb, Ho-Yb),2.12 

LnOs2Al10 (Ln = La-Nd, Sm, Gd),2.12, 13 and UM2Al10 (M = Fe, Ru, Os).2.14-16  Despite the 

pervasiveness of the YbFe2Al10 structure type for M = Fe, Ru, Os, it has only been reported for the  

Fe triad.  LnM2Al10 (Ln = Y, La-Nd, Sm, Gd-Dy, Yb; M = Mn, Re) instead prefers to adopt 

†Reproduced with permission from Morrison, G.; Haldolaarachchige, N.; Young, D. P.; Chan, J. 

Y., J. Phys. Condens. Matter 2012, 24, 356002.  Copyright 2012 IOP Publishing Limited 



11 

 

the ThMn12 or CaCr2Al10 structure types2.17, 18 and Ln-M-Al (M = Co, Rh, Ir) does not adopt a 

LnM2Al10 structure. 

Several LnM2Al10 (Ln = Lanthanide, M = Fe, Ru, Os) compounds of the YbFe2Al10 

structure type2.4 have been extensively studied due to the properties of some of the member 

compounds.  The Ce, Pr, Nd and Yb analogues of LnFe2Al10 were found to be paramagnets with 

the Ce and Yb analogue containing mixed valent Ce and Yb, respectively.  The Sm – Tm analogues 

are antiferromagnets with GdFe2Al10 ordering at the highest temperature, 15(3) K.2.12  Notably, 

YFe2Al10 was found to lie near a quantum critical point where the Fe atoms carry a magnetic 

moment of 0.45 µB and the quantum criticality was attributed to the magnetic ordering of the Fe 

moments tuned to T = 0 K by an external magnetic field.  Furthermore, the resistivity displays a 

Kondo upturn near 20 K.2.19 

CeRu2Al10 is a heavy fermion compound, γ = 246 mJ/(K2mol), which shows a magnetic 

transition at 27.3 K, higher than the 16.5 K antiferromagnetic ordering for GdRu2Al10.
2.20  This 

transition is characterized by a sharp decrease in the magnetic susceptibility as temperature 

decreases.  Furthermore, below this transition the resistivity, which shows semiconducting 

behavior at high temperatures, begins to rapidly increase to a maximum at 23 K.  After this 

maximum, CeRu2Al10 displays metallic resistivity.2.21  Based on heat capacity and Knight shift 

experiments, the transition is a second order phase transition which is accompanied by the opening 

of a gap at the Fermi surface.2.22  Single crystal neutron diffraction indicates that CeRu2Al10 is an 

antiferromagnet with a (1,0,0) propagation vector.2.23  However, it is still unclear what mechanism 

leads to the higher ordering than GdRu2Al10.
2.24 

The properties of LnOs2Al10 (Ln = Ce, Pr, Nd, Sm, and Gd) have also been reported.  The 

Ce analogue displays similar properties to CeRu2Al10 except with an ordering temperature of 28.7 



12 

 

K.2.20 The Pr analogue shows no magnetic ordering down to 0.4 K, whereas the other three 

analogues show antiferromagnetic ordering.  Following the magnetic ordering, the Sm analogue 

has two further magnetic transitions, and the Gd has one.  Below the initial antiferromagnetic 

ordering, the resistivities of the Sm and Gd analogues increase before decreasing again at even 

lower temperatures.2.13 

Due to the properties of CeRu2Al10 and LnOs2Al10 (Ln = Ce, Nd, Sm, Gd), it is of interest 

to grow other lanthanide analogues of LnRu2Al10 to determine the role of the lanthanide on the 

physical properties of this family of compounds.  Herein, we report the synthesis, structure, and 

physical properties of LnM2Al10 (Ln = Pr, Gd and Yb). 

2.2   Experimental 

2.2.1 Synthesis   

Pr (Chunks- 99.9% metal basis excluding Ta), Gd (Chunks- 99.9% metal basis excluding 

Ta), Yb (chunks- 99.9% REO), Al (Shot- 99.999%), and Ru (Powder- 99.9%) were used as 

received.  No evidence for the incorporation of Ta into the crystals was seen for either the Pr or 

Gd analogues.  For all syntheses except PrRu2Al10, the lanthanide, ruthenium, and aluminum were 

combined in a 1:1:20 atomic ratio in an alumina crucible.  For the Pr analogue, a ratio of 1:2:40 

was used in order to prevent the growth of Pr3Al11.  A second crucible was inverted on top of the 

first, and the two crucibles were sealed in an evacuated fused-silica tube.  For the synthesis of 

PrRu2Al10 and GdRu2Al10, the sealed tube was rapidly heated to 1150 °C and dwelled at this 

temperature for 24 h.  The tube was then cooled to 720 °C at a rate of 15 °C/h.  After cooling, the 

samples were inverted and spun to remove excess flux.  For the synthesis of YbRu2Al10, a similar 

heating scheme was utilized except that the dwell temperature was lowered to 1050 °C due to the 

higher vapor pressure of ytterbium compared to the other lanthanides.  After spinning, the 
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remaining aluminum flux was removed from the surface of the crystals using dilute HCl so that 

physical properties could be obtained on clean single crystals. 

Figure 2.1 shows crystals typical of each growth.  Crystals of the Pr and Gd analogues were 

about 3 mm on each side, while crystals of YbRu2Al10 were typically 1 mm on each side or smaller.  

In an attempt to grow larger crystals of the Yb analogue, a cooling rate of 5 °C/h was attempted.  

However, there was no noticeable increase in crystal size. 

Figure 2.1 Crystals typical for the growth of the (a) Pr, (b) Gd, and (c) Yb analogues of 

LnRu2Al10. 

2.2.2 Structure 

Single crystals were characterized by single crystal X-ray diffraction using an Enraf Nonius 

KappaCCD diffractometer with a Mo Kα source (λ = 0.71 Å).  An initial structural model was 

obtained through direct methods using SIR92.2.25  This model was refined using SHELXL-97.2.26  

Crystallographic data and atomic positions for the refinement of each analogue can be found in 

Tables 2.1 and 2.2.   

The composition of each analogue was confirmed by energy dispersive spectroscopy, EDS, 

data obtained using an FEI Quanta 200 SEM equipped with an EDAX detector.  The compositions 

of the three analogues, as indicated by EDS, were Pr1.00(7)Ru2.09(16)Al10.6(8), Gd1.00(2)Ru2.03(8)Al9.42(2), 

and Yb1.00(6)Ru1.36(10)Al8.0(5).  To ensure the homogeneity of single crystals, powder X-ray 

diffraction of ground single crystals was performed using a Bruker AXS D8 Advance 
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Diffractometer with a Cu Kα source (λ = 1.54 Å) equipped with a Ge incident beam 

monochromator. 

Table 2.1 Crystallographic Data for LnRu2Al10 (Ln = Pr, Gd, Yb) 

Formula PrRu2Al10 GdRu2Al10 YbRu2Al10  

Space group Cmcm Cmcm Cmcm  

a (Å) 9.1232(15) 9.0930(15) 9.0850(15)  

b (Å) 10.2664(10) 10.218(2) 10.2150(15) 

c (Å) 9.1800(15) 9.1370(15) 9.1110(15)  

V (Å3) 859.82(4) 848.9(3) 845.5(2) 

Z 4 4 4 

Crystal dimensions (mm3) 0.06x0.06x0.12 0.07x0.10x0.13 0.02x0.07x0.10 

Temperature (K) 298(3) 298(3) 298(3)  

Density (g cm-3) 4.734 4.923 5.067  

  Range (°) 2.99-31.04 3-30.98 3-30.02 

μ (mm-1) 9.988 12.189 15.455   

Data Collection and Refinement 

Collected reflections 1328 1313 1181   

Unique reflections 760 750 672 

Rint 0.0164 0.0223 0.0253   

h -13  h  13 -13  h   13 -12  h   12   

k -14  k  14 -14  k  14  -14  k  14   

l -13  l  13 -13  l  13  -12  l  12   

Δρmax (e Å-3) 2.059 2.914 1.608   

Δρmin (e Å-3) -1.511 -1.255 -0.932  

GoF 1.149 1.161 1.075 

Extinction coefficient 0.0131(4) 0.0230(5) 0.0177(4)  
a R1(F) for Fo

2 > 2σ(Fo
2) 0.0191 0.0207 0.0191   

b Rw(Fo
2) 0.0441 0.0415 0.0392  

 

aR1 = Σ||F0| - |Fc||/Σ|F0| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0232P)2 + 1.7949P], w = 

1/[σ2(Fo
2) + (0.0116P)2 + 0.0000P], and w = 1/[σ2(Fo

2) + (0.0078P)2 + 0.0000P] for Pr, Gd and Yb 

analogues, respectively 
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Table 2.2 Atomic Coordinates and Atomic Displacement Parameters for LnRu2Al10 (Ln = Pr, Gd, 

Yb) 

 

Atom Wyckoff site x  y  z   Ueq (Å
2)a  

Pr(1)  4c 0  0.12424(2) ¼  0.00703(11)  

Ru(1)  8d ¼   ¼   0  0.00522(10)  

Al(1)  8g 0.22436(13) 0.36401(10) ¼   0.0083(2)  

Al(2)  8g 0.35026(13) 0.13025(10) ¼   0.0085(2)  

Al(3)  8f 0  0.16051(10) 0.60094(12) 0.0078(2)  

Al(4)  8f 0  0.37721(10) 0.44980(13) 0.0093(2)  

Al(5)  8e 0.22681(14) 0  0  0.0083(2) 

 

Gd(1)  4c 0  0.12674(3) ¼  0.00777(12)  

Ru(1)  8d ¼   ¼   0  0.00548(12)  

Al(1)  8g 0.22231(16) 0.36405(12) ¼   0.0088(3)  

Al(2)  8g 0.34965(15) 0.13058(11) ¼   0.0086(3)  

Al(3)  8f 0  0.15748(12) 0.60019(13) 0.0082(2)  

Al(4)  8f 0  0.37660(11) 0.45121(14) 0.0094(3)  

Al(5)  8e 0.22564(16) 0  0  0.0088(3)  

 

Yb(1)  4c 0  0.12507(3) ¼  0.00883(13)  

Ru(1)  8d ¼   ¼   0  0.00583(13)  

Al(1)  8g 0.22192(19) 0.36322(13) ¼   0.0093(3)  

Al(2)  8g 0.34793(17) 0.12904(12) ¼   0.0094(3)  

Al(3)  8f 0  0.15537(13) 0.59921(16) 0.0091(3)  

Al(4)  8f 0  0.37544(12) 0.45334(17) 0.0098(3)  

Al(5)  8e 0.22518(19) 0  0  0.0096(3)  

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 
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2.2.3 Physical Property Measurements  

Physical properties of LnRu2Al10 (Ln = Pr, Gd, Yb) were measured using a Quantum 

Design Physical Property Measurement System (PPMS).  Magnetization was measured as a 

function of applied field up to 9 T at 3 K.  The temperature dependent DC magnetization was 

measured under zero-field cooled conditions at 0.1 T, for the Pr and Yb analogues, or 1 T, for the 

Gd analogue.  Resistivity was measured as a function of temperature using the four probe method 

with an excitation current of 5.13 mA, for the Pr analogue, or 8.21 mA for the Gd and Yb 

analogues.  Magnetoresistance was measured at 3 K.   

2.3   Results and Discussion 

2.3.1 Structure   

Figure 2.2 (a) Structure of PrRu2Al10 and (b) the Pr polyhedral environment. 

LnRu2Al10 (Ln = Pr, Gd, Yb) are members of the YbFe2Al10 structure type2.4 and crystallize 

in the orthorhombic space group Cmcm.  Each ruthenium atom is surrounded by 10 aluminum and 

2 lanthanide atoms in a distorted icosahedral geometry with point symmetry -1.  The Ru-Al 

distances range from 2.5753(3) - 2.7595(7) Å, 2.5641(5) - 2.7437(8) Å, 2.5637 - 2.7398(8) Å, and 

a

c

b

Ru

Pr Al

Pr

Ru

Al

a. b.
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the Ru-Ln distances are 3.4837(4) Å, 3.4600(4) Å, and 3.4606(4) Å for the Pr, Gd, and Yb 

analogues, respectively.   These polyhedra are edge-sharing in the ac plane and corner-sharing in 

the b-direction.  As shown in Figure 2.2b, each lanthanide atom is surrounded by 16 aluminum 

and 4 ruthenium atoms with point symmetry m2m.  The Ln-Al distances range from 3.1794(11) - 

3.6690(12) Å, 3.1461(13) - 3.6852(14) Å, and 3.1581(14) - 3.6793(16) Å, for the Pr, Gd, and Yb 

analogues, respectively.  These contact distances are larger than the sum of the covalent radii and 

may explain why the atomic displacement parameters for the lanthanide atoms are similar in size 

to those of the Al atoms.  The somewhat cage-like environment of the lanthanide atoms allows for  

increased motion as compared to the closer bound Ru and Al atoms.  This increased motion is 

considerably less pronounced than in caged compounds such as clathrates and skutteridites, where  

Table 2.3 Select Interatomic Distances in LnRu2Al10 (Å) 

Interaction   PrRu2Al10 GdRu2Al10 YbRu2Al10 

Ln(1)-Ru(1) (x4) 3.4837(4) 3.4600(4) 3.4606(4) 

Ln(1)-Al(1) (x2) 3.2014(12) 3.1569(14) 3.1596(16) 

Ln(1)-Al(1) (x2) 3.6690(12) 3.6852(14) 3.6793(16) 

Ln(1)-Al(2) (x2) 3.1961(13) 3.1796(15) 3.1612(16) 

Ln(1)-Al(3) (x2) 3.2278(11) 3.2106(13) 3.1771(14) 

Ln(1)-Al(3) (x2) 3.2431(12) 3.2151(13) 3.1967(15) 

Ln(1)-Al(4) (x2) 3.1794(11) 3.1461(13) 3.1581(14) 

Ln(1)-Al(5) (x4) 3.3430(9) 3.3324(10) 3.3174(11) 

 

Ru(1)-Ln(1) (x2) 3.4837(4) 3.4600(4) 3.4606(4) 

Ru(1)-Al(1) (x2) 2.5868(6) 2.5767(6) 2.5673(7) 

Ru(1)-Al(2) (x2) 2.7595(7) 2.7437(8) 2.7398(8) 

Ru(1)-Al(3) (x2) 2.6277(6) 2.6267(7) 2.6287(8) 

Ru(1)-Al(4) (x2) 2.6683(6) 2.6533(7) 2.6422(7) 

Ru(1)-Al(5) (x2) 2.5753(3) 2.5641(5) 2.5637(4) 
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the room temperature ADP of the rattler atom is often several times larger than the other 

atoms.2.27, 28  The Ln polyhedra are face-sharing and form columns in the c-direction with the 

closest lanthanide contacts being 5.2509(8) Å, 5.2516(7) Å and 5.2232(7) Å for the Pr, Gd and Yb 

analogues, respectively, as shown in Figure 2.2a.  Bond distances for the Ln and Ru polyhedra can 

be found in Table 2.3.  

The lattice parameters for YbRu2Al10,  a = 9.0850 (15) Å, b = 10.2150(15) Å and c = 

9.1110(15) Å, are only slightly smaller than the lattice parameters of the Gd analogue, a = 

9.0930(15) Å, b = 10.218(2) Å and c = 9.1370(15) Å, and the volume (845.5(2) Å3) is intermediate 

of Tb (845.6(5) Å3) and Ho (843.7(6) Å3).2.12   

2.3.2 Magnetic Properties 

Table 2.4 provides a summary of the magnetic data of the reported LnM2Al10 (M = Ru, Os) 

analogues from this work and previously reported measurements.  For the magnetic lanthanides, 

μH << kBT such that the internal interactions and not the external field should dominate the 

magnetization.   Figure 2.3a shows the magnetic susceptibility of PrRu2Al10 measured at 0.1 T.  

The high temperature data were fitted using a modified Curie-Weiss law, = o + C/(T - ), where 

o is a temperature independent term which accounts for the Pauli paramagnetic and diamagnetic 

contributions.  Fitting down to 50 K yields a paramagnetic Curie-Weiss temperature of -49.8(14) 

K and a μeff of 3.60(3) μB/Pr, close to the 3.58 μB expected for Pr3+.  A kink at 13.2 K is indicative 

of a non-magnetic singlet ground state for Pr3+ caused by crystal electric field (CEF) splitting of 

the 4f orbitals.  Similar behavior was also observed in PrOs2Al10
2.13 and other Pr containing 

compounds such as PrTi2Al10.
2.29  The CEF splitting has previously been calculated for CeRu2Al10, 

where the first two CEF splittings were found to be 500 K and 760 K.  The lack of magnetic 

ordering in PrRu2Al10 is similar to that of  PrOs2Al10
2.13 and PrFe2Al10, the latter of which was 
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Table 2.4 Magnetic Properties for Select LnM2Al10 (Ln = Lanthanide; M = Fe, Ru, Os) 

 χo TN (K) θ (K) μcalc (μB) μeff (μB) Fit Range (K) Ref. 

PrFe2Al10  ― 0 3.58 3.6(1)  2.12 

GdFe2Al10  15 0 7.94 7.9(1)  2.12 

CeRu2Al10  27.3 -44 2.54 3.03  2.30 

PrRu2Al10 0.00122(8) ― -49.8(14) 3.58 3.60(3) 50-250  

GdRu2Al10 0.00015(4) 15.5 -15.45(8) 7.94 8.14(10) 50-275 

YbRu2Al10 ― ― ― ― ― ― 

CeOs2Al10  28.6 -30 2.54 2.7  2.31 

PrOs2Al10  ― -10 3.58 3.4  2.13 

NdOs2Al10  2.2 -6 3.62 3.3  2.13 

SmOs2Al10  12.5 -4 0.85 0.69  2.13 

GdOs2Al10  18 -13 7.94 7.6  2.13  

 

 

 

 

Figure 2.3 (a) Magnetic susceptibility and inverse susceptibility of PrRu2Al10.  (b) Field-

dependent magnetization of PrRu2Al10. 
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found to be paramagnetic down to 3 K.2.12  However, the paramagnetic Curie-Weiss temperatures 

for the Fe and Os analogues, 0 and -10 K, respectively, are substantially smaller than that of the 

Ru analogue.2.12, 13  While CEF effects can lead to negative paramagnetic Curie-Weiss 

temperatures, the large θN (-49.8(14) K) of the PrRu2Al10 compared to that of PrOs2Al10, which 

shows similar CEF splitting, suggests stronger antiferromagnetic correlations in the Ru analogue 

than the Fe and Os analogues.  Magnetization as a function of applied field is shown in Figure 2.3b 

and no hysteresis or saturation is observed.   

 

Figure 2.3 (a) Magnetic susceptibility and inverse susceptibility of PrRu2Al10.  (b) Field-

dependent magnetization of PrRu2Al10. 

 Figure 2.4a shows the magnetic susceptibility of GdRu2Al10.  This phase orders 

antiferromagnetically at 15.5 K, which is in agreement with previous work.2.20  Below the 

antiferromagnetic transition, a spin reorientation is seen at 7.8 K.  Fitting χ-1 down to 50 K using 

a modified Curie-Weiss law results in a θN of -15.45(8) K and a μeff of 8.14(10) μB/Gd.  While the 

effective moment is 2.5% higher than the 7.94 μB which is expected for Gd3+, it is not believed 

that the Ru atoms carry a moment, as ruthenium is a 4d transition metal and typically does not 
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carry a magnetic moment.  This is further supported by the fact that no localized moment was 

observed on the Ru atoms in YbRu2Al10, a Pauli paramagnet in which Yb is divalent.  

Magnetization as a function of applied field is shown in Figure 2.4b.  The magnetic moment does 

not saturate, only reaching 3.82 μB/Gd at 9 T.  A change of slope is seen between 1 T and 1.5 T, 

possibly indicative of a metamagnetic transition. 

 

Figure 2.4 (a) Magnetic susceptibility and inverse susceptibility of GdRu2Al10.  (b) Field-

dependent magnetization of GdRu2Al10. 

 The previously reported GdFe2Al10 and GdOs2Al10 were found to order 

antiferromagnetically at 15(3) K2.12 and 18 K,2.13 respectively.  The unit cell volumes of the  Fe, 

Ru and Os analogues, 829.9 Å3,2.12 848.9(3) Å3, and 856.58 Å3,2.13 respectively, suggest that the 

Gd-Gd interaction distances increase down the Fe triad.  The increase in ordering temperature with 

increasing Gd-Gd distances is possibly due to an increase in conduction electron concentration 

down the triad as GdRu2Al10 was found to have a higher resistivity than GdOs2Al10.
2.13  The trend 

may also be explained by the cosine dependence of the RKKY interaction. 
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Magnetization measurements, not shown, suggest that YbRu2Al10 is a Pauli paramagnet, 

indicating that Yb is in its nonmagnetic 2+ state.  The field dependent susceptibility reaches a 

maximum at 0.4 T before the diamagnetic contribution of the sample holder becomes observable.  

As shown in Table 2.1, the unit cell volume for the Yb analogue is 3.4(4) Å3 smaller than the Gd 

analogue.  While a unit cell size close to that of the Sm analogue is typically expected for Yb2+ 

containing compounds, due to the polyhedral rare earth environment in LnRu2Al10, the smaller unit 

cell size is not unexpected.  Although the Yb in YbFe2Al10 is mixed valent, YbFe2Al10 and 

YbRu2Al10 display similar deviations from the expected lanthanide contraction.2.12  This suggests 

that the Yb in the Fe analogue may actually be diamagnetic and the observed magnetism arises as 

a result of an Fe magnetic moment.  In many LnTX (Ln = lanthanide, T = 3d transition metal, X = 

p block element) compounds, when the lanthanide is non-magnetic, the transition metal carries a 

magnetic moment.2.2 

2.3.3 Transport Properties     

The resistivities of PrRu2Al10, GdRu2Al10 and YbRu2Al10 are shown in Figure 2.5a-c, 

respectively.  Each analogue displays metallic resistivity, although the Gd analogue is a poor metal 

with a resistivity on the order of 1 mΩ∙cm.  The Pr and Yb analogues have similar residual 

resistivities of 6.60(15) μΩ∙cm for PrRu2Al10 and 6.0(2) μΩ∙cm for YbRu2Al10.  GdRu2Al10, on 

the other hand, displays a considerably higher residual resistivity of 190(6) μΩ∙cm.  A similar, 

although less pronounced, trend was observed in the LnOs2Al10 series with the Gd analogue having 

a higher resistivity than the Pr analogue.2.13  While the Pr and Yb analogues have similar residual 

resistivities, YbRu2Al10 has a higher resistivity at 290 K, 423.18(12) μΩ∙cm, than the Pr analogue, 

120.5(2) μΩ∙cm.  As a result, YbRu2Al10 has a residual resistivity ratio (ρ(290 K)/ρ(3 K)) of 70.5, 

greater than the RRR for PrRu2Al10, 18.3, and GdRu2Al10, 8.9.  This indicates that the YbRu2Al10 
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sample has a greater crystal quality than the other two analogues.  This can be explained by the 

dwell temperature required to grow each analogue.  The Yb analogue was grown with a dwell 

temperature of 1050 °C while the other two analogues where grown with a dwell temperature of 

1150 °C.  As the number of defects increases with temperature, a higher growth temperature means 

the Gd and Pr analogues should have lower crystal qualities than the Yb analogue.  Attempts to 

grow GdRu2Al10 at the lower dwell temperature only resulted in polycrystalline product supporting 

that this analogue formed at higher temperatures than 1050 °C.  The lower crystal quality of the 

Gd analogue, as compared to the other two, may be the cause of the higher residual resistivity of 

GdRu2Al10. 

At low temperatures, the resistivities of PrRu2Al10, T ≤ 70 K, and GdRu2Al10, 25 K ≤ T ≤ 

140 K, display T2 dependences, which is typical of Fermi liquids, i.e. metallic compounds.  This 

indicates that the dominant factor contributing to the resistivity at low temperatures is electron-

electron scattering and not the magnetic contribution to the resistivity.   While the Yb analogue 

also displays a T2 dependence for 65 K ≤ T ≤ 150 K , below 65 K, it displays a T3
 dependent 

resistivity.  This dependence can be attributed to scattering by phonon mediated s-d transitions and 

has been observed in other Pauli paramagnetic compounds.2.32 

 The resistivity of GdRu2Al10 displays a sharp decrease at 15.2 K.  This corresponds to the 

antiferromagnetic ordering and can be attributed to spin-reduced scattering.  Prior to the 

antiferromagnetic transition, the resistivity has a slight upturn at 25.1 K.  This upturn is reminiscent 

of the increase in resistivity at 20 K of EuB6, another compound in which the rare earth adopts a 

4f 7  configuration.2.33  In EuB6 the upturn in the resistivity is due to the formation of magnetic 

polarons prior to the magnetic ordering.2.34  The magnetoresistance of each analogue, not shown, 

was measured at 3 K and found to remain below 2.5 % up to 9 T. 
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Figure 2.5 Resistivity of (a) PrRu2Al10, (b) GdRu2Al10, and (c) YbRu2Al10.  Insets highlight the 

low temperature dependence of the resistivity for each analogue. 

2.4   Conclusion 

We report the structure and physical properties of flux grown single crystals of LnRu2Al10 

(Ln = Pr, Gd, Yb).  GdRu2Al10 was found to order antiferromagnetically at 15.5 K with a 

paramagnetic Curie-Weiss temperature of a similar magnitude.  PrRu2Al10, on the other hand, 

displays no magnetic ordering but has a θN of -49.8(14) K.  Crystal electric field splitting leads to 
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a non-magnetic singlet ground state for Pr3+ causing a kink in the susceptibility at 13.2 K and 

possibly contributing to the large negative paramagnetic Curie-Weiss temperature.  YbRu2Al10 

was found to be a Pauli paramagnet, indicating the Yb is divalent. 
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Chapter 3.† Serendipitous Growth of Single Crystals with Silicon Incorporation 

3.1   Introduction 

The availability of single crystals over polycrystalline samples is desirable for many 

reasons including structural determination via single crystal X-ray diffraction and the measurement 

of anisotropic physical properties.  The self-flux method for the growth of single crystals has 

several advantages over other solid state growth methods.  Arc-melting is not conducive to the 

growth of single crystals because the very high reaction temperatures (~ 3000 °C) and fast cooling 

rate typically results in polycrystalline samples.  Other single crystal growth methods often require 

extensive equipment, such as floating zone furnaces, or large reactant amounts, such as in the 

Czochralski method.  In the self-flux method, the solubility of metals in a low-melting flux allows 

for the synthesis of new materials at lower reaction temperatures.  Furthermore, the self-flux 

growth method can be performed using small amounts of reactant metals, often less than one gram, 

and can be carried out in a conventional high temperature furnace.  Finally, the high degree of 

control over reaction conditions which the self-flux method provides allows for the synthesis of 

congruently melting, incongruently melting, and even metastable phases. 

While the flux growth method is a very versatile method, growing single crystals of one 

compound can be challenging when another compound is very stable and robust.  An examples of 

the competition between the growth of two compounds can be found in the Ln:M:X:Si (Ln = 

lanthanide; M = transition metal; X = Al, Ga) phase space.  In the flux growth method, silica wool 

is typically used to aid in the separation of crystals from the excess flux.  In high temperature (1200 

°C) growths involving Al or Ga flux, the wool is very soluble, and can allow silica to enter the  

†Reproduced with permission from Morrison, G. W.; Menard, M. C.; Treadwell, L. J.; 

Haldolaarachchige, N.; Kendrick, K. C.; Young, D. P.; Chan, J. Y., Philos. Mag. 2012, 92, 2524-

2540. Copyright 2012 Taylor & Francis.  

http://www.tandfonline.com/doi/full/10.1080/14786435.2012.669063 
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reaction.  This silica is then reduced by the molten aluminium flux to produce silicon metal and 

alumina.3.1  While this is typically an undesirable result, an insidious entrance of silicon into the 

reaction can often lead to the serendipitous growth of aluminium silicide phases which may not be 

stabilized without silicon.3.2  Herein, the synthesis, structure and properties of two competing metal 

silicide phases, Ru23(Al,Si)97 and CeRu4(Al,Si)15.5 are reported. 

3.2   Experimental  

The reactant metals, in the form of powders, rods, or pellets of 99.9% purity or greater, are 

used as received and weighed in the desired reaction ratio.  The metals are placed in an alumina 

crucible as per the self-flux method.  Several reviews providing detailed descriptions of the flux 

method are reported elsewhere,3.3, 4 and therefore, the details of this method will not be discussed 

here.  The reaction ratio and temperature profile are varied to determine the variables affecting 

phase formation and crystal size.  Adjustable variables include the heating/cooling rates, dwell 

times at high/low temperatures, dwell temperatures, and spin temperatures. 

The separation of single crystals from excess flux requires great care in the selection of the 

etching medium.  Dilute HCl is used as the etching which is unusual, as typically NaOH is used 

as the etching agent, since the base often reacts with aluminium with minimal degradation of the 

crystals. 3.3, 4  However, in this case of Ru23(Al,Si)97, the use of NaOH as an etching agent led to 

faster degradation of the crystal than did HCl.   

Once single crystals are separated, their structures are characterized by single crystal X-ray 

diffraction (XRD) using a Nonius KappaCCD diffractometer equipped with a Mo Kα source (λ = 

0.711 Å).  The elemental compositions of the crystals are analysed with energy dispersive 

spectroscopy (EDS) using an EDAX detector equipped to a FEI Quanta 200 or a Hitachi S-3600N 

scanning electron microscope.  Composition, structure and sample homogeneity of polycrystalline 
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samples are determined via powder XRD using a Bruker AXS D8 Advance diffractometer with a 

Cu Kα source (λ = 1.541 Å). 

Temperature-dependent magnetic susceptibility (χ) of single crystals are measured from 3 

- 265 K at H = 0.1 T using a Quantum Design Physical Property Measurement System (PPMS).  

Field-dependent magnetization of samples is generally measured from 0 T - 9 T at 3 K.  Specific 

heat is measured using the thermal relaxation option of the PPMS down to 0.4 K.  Temperature-

dependent electrical resistance is measured down to 3 K using the four-probe method.  

Magnetoresistance is measured at 3 K in fields up to 9 T.  

3.3   Ru23(Al,Si)97 

Ru23(Al,Si)97 is a highly stable phase which grows in a wide range of reactions compositions.  

Large, phase pure, single crystals were synthesized by using a Ru:Al:Si ratio of 23:400:55.6 (12% 

Si in Al).  The reaction was dwelled at 1050 °C for 24 h before slow cooling at a rate of 10 °C/h 

to 720 °C, at which temperature the reaction was spun.  This reaction profile resulted in two large 

single crystals, shown in Figure 3.1, each of which was approximately 5 mm on each side.  EDS 

analysis of the crystals indicated an elemental composition of Ru23.0(12)Al83.0(6)Si9.6(12). 

Figure 3.1 Two crystals of Ru23(Al,Si)97. 

1 mm 1 mm
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The percent Si in the compound can be varied by changing the Si to Al ratio in the reaction.  

When a Ru:Al:Si ratio of 23:400:26 (6% Si in Al) was used with the same heating profile, very 

poor quality crystals were formed.  By dwelling at 1150 °C instead of 1050 °C, single crystals with 

a stoichiometry, determined by EDS analysis, of Ru23.0(9)Al86.3(4)Si8.6(9) or 9.1(10)% Si were 

obtained.  When a Ru:Al:Si ratio of 23:400:129.2 (24% Si in Al) was used with the original heating 

profile, single crystals with a stoichiometry of Ru23.0(2)Al83.4(4)Si15.3(4) or 15.5(4)% Si were grown.  

The large amount of Si used in this reaction led to the growth of Si crystals intermingled with the 

Ru23(Al,Si)97 crystals.  However, the two are easily distinguished by morphology, Si grows plates 

as opposed to polyhedra, and Si is darker grey in colour than Ru23(Al,Si)97.  While the uncertainty 

in the EDS data is too high to show clear evidence that different amounts of Si are present in the 

crystals of each growth, this can be seen by single crystal XRD.  As shown in the Table 3.1, when 

the Si concentration in Ru23(Al,Si)97 is increased, the unit cell lattice parameters decrease.  This is 

expected as Si has a smaller covalent radius than Al. 

Ru23(Al,Si)97 is a new member of the α-(AlFeSi) structure type3.5 and crystallizes in the 

hexagonal space group P63/mmc with dimensions a = 12.6490(5) Å and c = 26.7560(10) Å. Tables 

of crystallographic data, atomic positions, interatomic distances, and figures of the structure can 

be found in Tables 3.1-3 and Figure 3.2, respectively.  Ru23(Al,Si)97 varies from α-(AlFeSi) in that 

the latter has three positionally disordered and 15 ordered Al/Si sites, whereas the prior has 17 

completely occupied Al/Si sites.  Due to the similarity between Al and Si electron densities, the 

Al and Si atoms could not be distinguished by XRD.  Since it is unclear whether Si is statistically 

distributed across all of the Al sites or is localized on a smaller number of sites, the final structural 

model was refined with only Al atoms.  While single crystals large enough for neutron diffraction 
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have been grown, recent evidence suggests that Al and Si cannot be distinguished by neutron 

diffraction either.3.6 

Table 3.1 Crystallographic Data of Ru23(Al,Si)97 

Crystal data     

Composition  Ru23Al88.2Si8.8 Ru23Al86.9Si10.1 Ru23Al82.0Si15.0 

Space group P63/mmc P63/mmc P63/mmc 

a (Å) 12.6523(10) 12.6395(10) 12.6138(15) 

c (Å) 26.752(3) 26.748(3) 26.696(4) 

V (Å3) 3708.8(6) 3700.6(6) 3678.5(8) 

Z 2 2 2 

Crystal size (mm3) 0.05 x 0.10 x 0.13 0.05 x 0.013 x 0.013 0.03 x 0.07 x 0.07 

Data Collection 

Temperature (K) 298(2) 298(2) 298(2) 

Measured reflections 11745 11649 14343 

Independent reflections 2256 2250 2242 

Reflections with I > 2σ(I) 1851 1841 1702 

Rint 0.0589 0.0627 0.0953 

h -18 → 18 -18 → 18 -18 → 17 

k -15 → 15 -15 → 15 -15 → 15 

l -24 → 38 -38 → 24 -38 → 38 

Refinement 

θ range (˚) 1.00-31.00 1.00-31.00 1.00-31.00 
aR1[F

2 > 2σF2)] 0.0235 0.0248 0.0326 
bwR2(F

2) 0.0493 0.0518 0.0551 

Parameters 122 122 122 

GooF on F2 1.047 1.043 1.027 

μ (mm-1)  5.713 5.725 5.760 

Δpmax (e Å-3) 0.956 1.117 0.993 

Δpmin (e Å-3) -0.929 -1.016 -1.321 

Extinction coefficient 0.00115(3) 0.000136(4) 0.00083(3) 

aR1 = Σ||F0| - |Fc||/Σ|F0|     
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0197P)2 + 4.7574P], w = 1/[σ2(Fo

2) + (0.0235P)2 + 

2.7873P], and w = 1/[σ2(Fo
2) + (0.0193P)2 + 7.2046P] for 9.1 %, 10.4 % and 15.5 % Si analogues, respectively 
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Table 3.2 Atomic Positional and Displacement Parameters for Ru23Al86.9Si10.1 

Atom  Wyckoff site x  y  z   Ueq (Å
2)a  

Ru(1) 12k  0.538546(15) 0.07709(3)  0.837391(14) 0.00664(8)  

Ru(2) 12k  0.129206(15) 0.25821(3) 0.648949(15)  0.00733(8)  

Ru(3) 12k  0.212892(15) 0.42578(3) 0.030155(13) 0.00692(8)  

Ru(4) 6h  0.21134(2) 0.42268(4) ¼   0.00600(10)  

Ru(5) 4f  ⅓  ⅔  0.60011(2) 0.00689(12)  

M(1)b 24l  0.34583(9) 0.29235(9) 0.89706(4) 0.0105(2)  

M(2) 24l  0.32731(8) 0.33525(8) 0.80164(4)  0.00870(19)  

M(3) 12i  0.37481(11) 0  0  0.0113(3)  

M(4) 12k  0.10696(6) 0.21393(11) 0.01690(5) 0.0058(2)  

M(5) 12k  0.40395(6) 0.80790(11) 0.51678(6) 0.0083(3)  

M(6) 12k  0.45386(6) 0.90772(12) 0.89642(6) 0.0109(3)  

M(7) 12k  0.08373(6) 0.16746(13) 0.33199(6) 0.0110(3)  

M(8) 12k  0.59627(6) 0.19253(12) 0.91831(6) 0.0104(3)  

M(9) 12k  0.20258(6) 0.40515(12) 0.93205(6) 0.0102(3)  

M(10) 12k  0.06790(6) 0.13580(11) 0.92540(5) 0.0079(3)  

M(11) 12k  0.24891(7) 0.49783(13) 0.32718(6) 0.0138(3)  

M(12) 12k  0.24986(6) 0.49971(13) 0.83660(6) 0.0158(3)  

M(13) 6h  0.58333(9) 0.16666(17) ¼    0.0132(4)  

M(14) 6h  0.84056(8) 0.68112(17) ¼   0.0065(4)  

M(15) 6h  0.09013(9) 0.18025(18) ¼   0.0126(4)  

M(16) 6h  0.45649(8) 0.91297(17) ¼   0.0127(4)  

M(17) 2c  ⅓  ⅔  ¼   0.0114(7)  

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 
bM = Al/Si 
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Table 3.3  Select interatomic distances in Ru23(Al,Si)97 

Ru(1)-Al(1) (x2) 2.8005(10)  Ru(3)-Al(1) (x2) 2.6143(11) 

Ru(1)-Al(2) (x2) 2.5156(10)  Ru(3)-Al(3) (x2) 2.5637(4) 

Ru(1)-Al(6)   2.4352(15)  Ru(3)-Al(4)  2.3460(13) 

Ru(1)-Al(8)  2.5062(15)  Ru(3)-Al(5) (x2) 2.6158(8) 

Ru(1)-Al(11) (x2) 2.4847(4)  Ru(3)-Al(8) (x2) 2.6766(9) 

Ru(1)-Al(13)  2.5348(9)  Ru(3)-Al(9)  2.6338(16) 

Ru(1)-Al(16)  2.9481(12)   

      Ru(4)-Al(2) (x4) 2.6264(10) 

Ru(2)-Al(1) (x2) 2.8324(10)  Ru(4)-Al(12) (x2) 2.4649(16) 

Ru(2)-Al(2) (x2) 2.5557(10)  Ru(4)-Al(15)  2.654(2) 

Ru(2)-Al(7) (x2) 2.5353(5)  Ru(4)-Al(16) (x2) 2.6835(10) 

Ru(2)-Al(9)  2.6983(15)  Ru(4)-Al(17)   2.6707(5) 

Ru(2)-Al(10)  2.3980(15)   

Ru(2)-Al(12)  2.6716(15)  Ru(5)-Al(5) (x3) 2.7126(16) 

Ru(2)-Al(15)  2.8344(8)  Ru(5)-Al(6) (x3) 2.6402(13) 

      Ru(5)-Al(9) (x3) 2.9890(14) 

      Ru(5)-Al(12) (x3) 2.4911(15) 

 

 

 

Figure 3.2  Structure of  Ru23(Al,Si)97 showing (a) the Ru1, Ru2, Ru4 slab, (b) the Ru3 slab and 

(c) the stacking of the two slabs with the Ru5 atoms laying in between.  Ru4 and Ru5 polyhedra 

are not shown for clarity. 
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3.4   CeRu4(Al,Si)15.58 

While attempting to grow single crystals of a Ce:Ru:Al phase, a sample was prepared with 

a Ce:Ru:Al ratio of 2:3:18 and was heated to 1200 °C for 24 h.  A single crystal approximately 0.3 

cm on each side was obtained from this growth. Single crystal XRD found this crystal to be a new 

phase, CeRu4(Al,Si)15.58.  EDS analysis found the composition of this crystal to be 

Ce1.00(10)Ru3.59(14)Al9.7(2)Si4.5(2).  In order to grow this phase, silica wool must have entered the 

reaction during the growth. 

The synthesis of CeRu4(Al,Si)15.58 is difficult due to the stability of Ru23(Al,Si)97.  Several 

attempts were made to flux grow CeRu4(Al,Si)15.58 using the self-flux method while avoiding the 

growth of the pseudo-binary.  Initially, the isolated growth of CeRu4(Al,Si)15.58 was attempted by 

varying the Si to Al ratio in the reaction.  As CeRu4(Al,Si)15.58 has 31% Si and Ru23(Al,Si)97 has 

only 12% Si, increasing the Si concentration was expected to favour the growth of the quaternary 

phase.  Multiple growths were carried out with a Ce:Ru:Al:Si ratio of 1:4:32:X (X = varying 

amounts of silicon) in which the reaction was heated to 1200 °C for 24 h before slow cooling to 

720 °C at 5 °C/h.  At low Si concentrations, circa 12%, only Ru23(Al,Si)97 forms.  When the Si 

concentration is increased to near 33%, a mixture of the two phases results.  However, a large 

amount of Si also precipitates out of the reaction making the separation of the crystals very 

difficult.  Further increasing the Si concentration to 42% prevents the growth of the pseudo-binary.  

However, due to the very high Si concentration, only Si single crystals were visible in the growth, 

with CeRu4(Al,Si)15.58 being a poor quality polycrystalline material.  Next, instead of increasing 

the Si concentration, the Ce concentration was increased while keeping the Si close to its maximum 

soluble concentration at 720 °C (22%).  A reaction with a Ce:Ru:Al:Si ratio of 2:4:32:9.63 and the 
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heating scheme discussed above did not yield any of the desired CeRu4(Al,Si)15.58.  Further 

increasing the Ce ratio was not attempted as to avoid the precipitation of Ce3Al11. 

As changing the reaction ratio did not appear to lead to phase pure CeRu4(Al,Si)15.58, the 

next step was to change the reaction profile.  The previously reported analogues of this structure 

type were all grown at lower dwell temperatures with longer dwell times.3.7, 8  A reaction was 

prepared with a Ce:Ru:Al:Si ratio of 1:4:20:5, similar to the ratio used for the Fe analogues.3.8  

This reaction was dwelled at 850 °C for 4 days before being slow cooled at 5 °C/h.  Lowering the 

dwell temperature and increasing the time did not yield the desired product but instead grew 

Ru23(Al,Si)97. 

One final flux growth route which was attempted involved the pre-alloying of Ce with 

another element in order to kinetically favour the growth of CeRu4(Al,Si)15.58 over Ru23(Al,Si)97.  

Ce:Ru ratios of 1:2 and 1:4 were arc-melted together and the resulting alloy was added to Al and 

Si such that the Ru:Al:Si ratio was 4:32:5.  Using the initial heating scheme, these reactions yielded 

Ru23(Al,Si)97 and other binary or psuedobinary phases but no CeRu4(Al,Si)15.58.  Similarly, the pre-

alloying of Ce and Al did not result in the desired product but instead grew multiple RuSi phases. 

While the flux growth method is often a very good technique to grow phase pure crystals, 

it is not always the best or even a viable method.  Following the failure of both changing the 

reaction ratio and reaction profile to yield phase pure CeRu4(Al,Si)15.58, a polycrystalline growth 

was attempted via arc melting.  This phase was arc melted on stoichiometry using chunks or pellets 

of each element.  The resulting button was turned over and remelted two times to ensure 

homogeneity.  The resulting mass loss was less than 0.5%.  Following the arc melting, powder 

XRD indicated a small impurity of CeSi2-x.  This impurity persisted after annealing for 2.5 days at 

800 °C.  Further annealing at 850 °C for two weeks decreased the amount of CeSi2-x by 
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approximately half but also led to the formation of a similar amount of RuAl2.  In an attempt to 

remove both impurities, the button was then annealed at 1150 °C, which is above the melting point 

of RuAl2, for one week.  However, this lead to the complete decomposition of CeRu4(Al,Si)15.58 

into several binary phases. 

CeRu4(Al,Si)15.58 is a new member of the NdRh4Al15.37 structure type3.7 and crystallizes in 

the tetragonal space group P42/nmc with the dimensions a = 8.9690(5) Å and c = 15.7050(10) Å.  

Two LnFe4Al9Si6 (Ln = Tb, Er) analogues have also been reported for this structure type.3.8  As 

with Ru23(Al,Si)97, the Al and Si atoms could not be distinguished by XRD, and therefore, the 

structural model was refined with only Al atoms.  Figures and tables of crystallographic data, 

atomic positions, and interatomic distances can be found in Figure 3.3 and Tables 3.4-6, 

respectively. 

 
Figure 3.3 Structure of CeRu4(Al,Si)15.58 showing (a) the Ce environment, (b and c) the Ru 

polyhedra viewed down the x and y axes, respectively, to emphasize the channels in which the Ce 

lie. 
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Table 3.4 Crystallographic Data of CeRu4(Al,Si)15.58 

 

NdRh4Al15.37 contains two Rh sites, the Rh1 site, which is coordinated by eight fully-

occupied and three partially-occupied Al atoms, and the Rh2 site, which is coordinated by 10 Al 

atoms in a distorted pentagonal antiprism.3.7  CeRu4(Al,Si)15.58 has similar disorder of the Al atoms 

around the Ru1 site.  The Ru1 atoms are coordinated by eight ordered aluminium atoms along with 

five disordered aluminium atoms (Al7, Al8 and Al9).  The eight ordered aluminium atoms along 

with the two Al7 atoms form a distorted pentagonal antiprism.  The two Al8 atoms and the Al9 

atom lie above the Al7 atoms.  The Al7, Al8 and Al9 atoms have occupancies of 29.6(6)%,   

Crystal data     

Composition  CeRu4Al10.63Si4.95 

Space group P42/nmc 

a (Å) 8.9690(5) 

c (Å) 15.7050(10) 

V (Å3) 1263.36(13) 

Z 4 

Crystal size (mm3) 0.10 x 0.13 x 0.13 

Data Collection 

Temperature (K) 298(2) 

Measured reflections 7532 

Independent reflections 1121 

Reflections with I > 2σ(I) 1053 

Rint 0.0203 

h -12 → 12 

k -12 → 12 

l -22 → 22 

Refinement 

θ range (˚) 2.62-31.00 
aR1[F

2 > 2σF2)] 0.0171 
bwR2(F

2) 0.0405 

Parameters 75 

GooF on F2 1.231 

μ (mm-1)  9.266 

Δpmax (e Å-3) 1.141 

Δpmin (e Å-3) -1.008 

Extinction coefficient 0.00300(9) 

aR1 = Σ||F0| - |Fc||/Σ|F0|     
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0106P)2 + 4.4120P] 
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Table 3.5 Atomic Positional and Displacement Parameters for CeRu4(Al,Si)15.58 

Atom Wyckoff site x  y  z     Occ.a  Ueq (Å
2)b  

Ce(1)  4d ¼   ¼   0.334900(17)   1.00  0.00607(8) 

Ru(1)  8g ¼   0.48983(3) 0.001175(17)   1.00  0.00936(8)  

Ru(2)  8f 0.50104(2) 0.49896(2) ¾      1.00  0.00588(8) 

Al(1)  16h 0.46234(12) 0.49966(9) 0.41687(5)   1.00  0.01553(18)  

Al(2)  8g ¼   0.01512(12) 0.68508(7)    1.00  0.00636(19)  

Al(3)  8g ¼   0.06838(13) 0.16103(7)   1.00  0.0094(2)  

Al(4)  8g ¼   0.38945(15) 0.52425(7)   1.00  0.0142(2)  

Al(5)  8g ¼   0.59714(12) 0.30621(7)   1.00  0.00704(19)  

Al(6)  8g ¼  0.59648(13) 0.84339(8)   1.00  0.0137(2)  

Al(7)  8g ¼    0.6351(4) 0.5329(2)   0.296(6) 0.0105(12)  

Al(8)  8g ¼   0.6453(5) 0.4519(3)   0.281(7) 0.0164(15)  

Al(9)  4c ¾   ¼   0.5231(3)   0.430(10) 0.0155(15)  

aOccupancy 
bUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

 

 

Table 3.6 Select interatomic distances in CeRu4(Al,Si)15.58 

Ce(1)-Ru(1) (x2) 3.3832(17)  Ru(1)-Al(4) (x2) 2.5145(8) 

Ce(1)-Ru(2) (x4) 3.4400(2)  Ru(1)-Al(6)  2.6562(16) 

Ce(1)-Al(1) (x4) 3.2091(9)  Ru(1)-Al(7) (x2) 2.6066(17) 

Ce(1)-Al(2) (x2) 3.1582(11)  Ru(1)-Al(8) (x2) 2.6208(19) 

Ce(1)-Al(3) (x2) 3.1796(11)  Ru(1)-Al(9)  2.3587(7) 

Ce(1)-Al(4) (x2) 3.2261(12)   

Ce(1)-Al(5) (x2) 3.1460(11)  Ru(2)-Al(1) (x2) 2.6413(8) 

Ce(1)-Al(6) (x2) 3.1104(12)  Ru(2)-Al(2) (x2) 2.4749(5) 

      Ru(2)-Al(3) (x2) 2.7066(6) 

Ru(1)-Al(1) (x4) 2.6130(8)  Ru(2)-Al(5) (x2) 2.5511(6) 

Ru(1)-Al(3)  2.5642(11)  Ru(2)-Al(6) (x2) 2.8259(8) 
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28.1(7)% and 43.0(10)%, respectively.  The above occupancies, along with bond distances, 

suggest that either the Al9 atom is present or a nonadjacent pair of Al7 and Al8 atoms is present 

in each Ru1 polyhedron.  Based on the uncertainties in the occupancies of the three sites, the 

formula becomes CeRu4(Al,Si)15.58(3). 

Each cerium atom is surrounded by 14 aluminium and six ruthenium atoms.  These 

polyhedra are similar in structure to the cerium polyhedra found within CeRu2Al10
3.9 and 

Ce2Ru3Al15.
3.10  Unlike in these previously reported structures, the Ce polyhedra do not form face-

sharing columns.  Instead, they are corner sharing through Ru2 atoms.  The Ce-Ce distance 

between vertically stacked cerium atoms is 7.8525(6) Å.  The closest Ce-Ce interaction is actually 

between diagonally adjacent cerium polyhedral which are separated by 6.8798(18) Å and have a 

Ru2 atom located at their centroid. 

The stability of this phase has been explained by considering the valence electron density.  

NdRh4Al15.37 has 85.11 valence electrons per formula unit.  LnFe4Al9Si6 (Ln = Er, Tb) has a similar 

valence electron concentration with 86 valence electrons per formula unit.3.8  The NdRh4Al15.37 

structure type being a valence electron count stabilized phase provides an explanation for why the 

iron analogue contains silicon.  As Rh has one more valence electron than the iron analogue, silicon 

provides the extra valence electrons which are required to bring the electron density to the required 

level.  This can also be seen in CeRu4(Al,Si)15.58 where the ~31% silicon brings the valence 

electron density to 86.69 valence electrons per formula unit (Ce: 3; Ru: 8; Al: 3; Si: 4). 

  Figure 3.4a shows the temperature-dependent magnetic susceptibility at 0.1 T for a 

sample of CeRu4(Al,Si)15.58 that was arc melted and annealed at 800 °C.  Fitting with a modified 

Curie-Weiss law, = o + C/(T - ), from 50 to 200 K, χ0 = 0.00107(5) emu/mol-Ce and 

θ = -21.9(14) K.  An effective moment of 1.93(2) µB/Ce is calculated from the data and is smaller 
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than the 2.54 µB expected for Ce3+.  The inverse 

susceptibility, shown in the inset, displays a 

ferromagnetic transition at about 13 K.  This transition 

is not accompanied by the large increase in 

susceptibility which is typically expected for 

ferromagnetic transitions.  Instead, the susceptibility 

only reaches 0.12 emu/mol-Ce at 3 K.  Furthermore, 

the magnetization as a function of field, shown in 

Figure 3.4b, only shows a very small hysteresis loop.  

These two characteristics, coupled with the negative 

Weiss temperature, suggest that CeRu4(Al,Si)15.58 is 

paramagnetic and that the slight ferromagnetic 

behaviour arises due to the CeSi2-x impurity, which is 

ferromagnetic for x between 0.2 and 0.3 with Tc ≈ 10 

K.3.11  Paramagnetic behaviour down to 3 K is expected 

for CeRu4(Al,Si)15.58 as the closest Ce-Ce contacts are 

6.8798(18) Å.  This is in agreement with other Ce 

containing compounds with large Ce-Ce distances.3.12  

This is also in agreement with LnFe4Al9Si6 (Ln = Tb, 

Er) which were both found to be paramagnetic.3.8  The 

presence of a ferromagnetic impurity in the arc-melted 

sample highlights one of the advantages single crystals 

offer over polycrystalline samples. 
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Figure 3.4  Physical properties of 

CeRu4(Al,Si)15.58. 
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The resistivity of the single crystal of CeRu4(Al,Si)15.58, shown in Figure 3.4c, displays 

semiconducting-like behaviour.  While negative in slope, the high temperature region of the 

resistivity does not follow the activated behaviour ( = oe
-EG/2kT) which is expected for 

semiconductors. 

3.7   Conclusions  

The self-flux technique offers a great deal of control over reaction conditions in crystal 

growth experiments.  This control is especially important when two or more competing phases 

exist within a phase space.  The ability to control elements such as reactant ratio, dwell 

temperature, cooling rate and spin temperature often allows for the selective growth of one 

compound over another.  While the self-flux method is not always the best method, and sometimes 

not even a viable method, for the growth of a phase, it is a simple, highly versatile technique which 

should always be considered.  One case in which the self-flux method is especially useful is in the 

synthesis of aluminium silicides.  The high solubility of silicon in aluminium, along with the lack 

of any ordered binaries within either phase space, makes these phases ideal candidates for the self-

flux technique. 
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Chapter 4.† Synthesis, Structure, and Properties of Ln2Ru3Al15 (Ln = Ce, Gd): A 

Comparison with LnRu2Al10 and CeRu4(Al,Si)15.58 

4.1   Introduction 

 CeRu2Al10, a member of the YbFe2Al10 structure type,4.1 has received attention because it 

exhibits a metal-to-insulator transition and orders at 27 K,4.2 higher than the 16 K antiferromagnetic 

(AFM) ordering of GdRu2Al10.
4.3  Single crystal neutron scattering data indicates that the magnetic 

ordering is AFM with a (1,0,0) propagation vector4.4 and a reduced moment of 0.34(2) μB/Ce at 

1.5 K.4.5  Furthermore, the magnetic susceptibility displays a large degree of anisotropy.4.6  Both 

the anisotropy and the reduced moment can be attributed to crystal electric field splitting,4.7 where 

the first two splitting terms have been calculated to be 500 K and 760 K.4.8  While the AFM 

ordering has been well characterized, its origin remains in question.  Two possible explanations 

for the ordering are a charge density wave formation4.9 or a Spin-Peierls transition.4.10  Recently, a 

computational study4.11 on CeRu2Al10 suggested that the atoms in the Ce polyhedra are shifted 

from the lowest energy state structure by about 0.025 Å.  Magnetic calculations on the 

computationally relaxed structure found it to have a non-magnetic ground state, while calculations 

on the actual structure resulted in a competition between non-magnetic and AFM states.  This 

suggests that the Ce polyhedra are important to the low temperature properties of CeRu2Al10.
4.11   

 In an effort to explore the relationship between the structure and the properties of 

CeRu2Al10, we have studied the effect of  the rare earth on the properties of LnRu2Al10 (Ln = 

lanthanide).4.12  PrRu2Al10 displays paramagnetic behavior down to 13.2 K, when it enters a 

nonmagnetic singlet ground state due to crystal electric field splitting of the f orbitals, and has a  

†Reproduced with permission from Morrison, G.; Haldolaarachchige, N.; Chen, C.-W.; Young, D. 

P.; Morosan, E.; Chan, J. Y., Inorg. Chem. 2013, 52, 3198-3206.  Copyright 2013 American 

Chemical Society. 
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large paramagnetic Curie-Weiss temperature of -49.8(14) K.  GdRu2Al10 was found to order 

antiferromagnetically at 15.5 K with θN = -15.45(8) K.  YbRu2Al10 is a Pauli paramagnet, 

indicating that Yb is in its divalent state.  All three analogues display metallic behavior, although 

GdRu2Al10 is a poor metal with a resistivity on the order of 1 mΩ-cm.4.12 

In order to further explore the role of the structure of CeRu2Al10 on the properties we have 

grown CeRu4(Al,Si)15.58, a member of the NdRh4Al15.37 structure type,4.13 which contains Ce 

polyhedra that closely resemble the Ce environment in CeRu2Al10.  However, instead of the face-

sharing columns seen in CeRu2Al10, the polyhedra in CeRu4(Al,Si)15.58 form corner-sharing sheets.  

CeRu4(Al,Si)15.58 follows a Curie-Weiss law with θ = -21.9(14) K but does not order down to 3 K.  

The resistivity displays a negative temperature dependence but does not follow the activated 

behavior ( = oe-EG/2kT) typical of semiconductors.4.14    

 Another structure type which is related to YbFe2Al10 is the Ce2Ru3Al15 structure type.4.15  

Like CeRu4(Al,Si)15.58, Ce2Ru3Al15 contains Ce polyhedra which are similar to those in CeRu2Al10.  

Furthermore, these polyhedra form face sharing columns much like the columns in CeRu2Al10.  It 

is therefore of interest to study the properties of Ce2Ru3Al15 in order to gain a better understanding 

of both how the Ce environment and the packing of the Ce polyhedra influence the properties.  

Herein, we report on the synthesis, structure, and properties of Ln2Ru3Al15 (Ln = Ce, Gd) and 

compare them to the properties of LnRu2Al10. 

4.2   Experimental Section 

4.2.1 Synthesis 

Ce (Pieces- 99.9% metal basis excluding Ta), Gd (Pieces- 99.9% metal basis excluding 

Ta), Al (Shot- 99.999%), and Ru (Powder- 99.9%) were used as received.  For flux growth 

reactions, the elements were loaded into an alumina crucible, covered with a second crucible, and 



46 
 

sealed in an evacuated fused-silica tube.  Individual reaction ratios and temperature profiles for the 

growths will be discussed in the results section.  After the heating cycles were complete, the 

reactions were inverted and centrifuged to remove any excess flux.  For radio frequency induction 

furnace growths, the reactant metals were loaded into an alumina crucible which was wrapped in 

tantalum foil.  The crucible was placed in the furnace chamber which was evacuated and flushed 

with Ar three times then pressurized with Ar during heating.  The temperature was increased (~100 

°C per minute) until the sample was completely melted.  The sample was further heated and 

dwelled for ~ 10 minutes before being quick cooled (~100 °C per minute) to room temperature.  

Unfortunately, the utilized induction furnace is not equipped with a temperature probe.  However, 

based on previous experience with the furnace and experimental results (vide infra) it is believed 

that the reaction temperature was above the 1200 °C maximum achieved by the conventional flux 

method.  For growths via arc melting, the reactant metals were placed on a copper hearth in the 

arc furnace chamber.  The chamber was evacuated and flushed with Ar three times then pressurized 

with Ar.  The reactant metals were melted into a button which was turned over and remelted three 

times to ensure homogeneity.  In order to minimize mass loss, the ruthenium powder was initially 

arc melted into buttons before being used for the synthesis of Ln2Ru3Al15.  Mass loss in these 

reactions ranged from 0.53 - 1.16%.  Arc melted samples were placed in alumina crucibles and 

sealed in quartz tubes filled with a partial pressure of argon prior to annealing.  A partial pressure 

was used such that the internal pressure and external pressure were similar in order to help maintain 

tube integrity during long, high temperature dwells.    

4.2.2 Structure 

Structure determination was performed using single crystal X-ray diffraction data.  For 

Ce2Ru3Al15, a single crystal was obtained from an aluminum poor flux growth reaction, and for 
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Gd2Ru3Al15 a single crystal was extracted from an arc melted pellet.  Data collections were 

performed using an Enraf Nonius KappaCCD diffractometer with a Mo Kα source (λ = 0.71073 

Å).  Direct methods using SIR974.16 were performed in order to obtain an initial structural model 

which was then refined using SHELXL-97.4.17  Crystallographic data and atomic positions for 

Ln2Ru3Al15 can be found in Tables 4.1 and 4.2, respectively.  In order to determine reaction 

products and to ensure that the annealed arc melted buttons were phase pure, powder X-ray 

diffraction was performed using a Bruker AXS D8 Advance Diffractometer with a Cu Kα source 

(λ = 1.54056 Å) equipped with a Ge incident beam monochromator.   

Table 4.1 Crystallographic Data for Ln2Ru3Al15 (Ln = Ce, Gd) 

Formula Ce2Ru3Al15.04 Gd2Ru3.08Al15 

Space group P63/mcm P63/mcm 

a (Å) 13.1210(10) 13.0320(10) 

c (Å) 9.0970(10) 9.0590(10) 

V (Å3) 1356.3(2) 1332.4(2) 

Z 4 4 

Crystal dimensions (mm3) 0.13 x 0.15 x 0.15 0.03 x 0.03 x 0.13  

Temperature (K) 295(1) 295(1) 

Density (g cm-3) 4.845 5.137 

  Range (°) 1.79-30.99 1.80-30.98 

μ (mm-1) 10.784 14.184 

 

Data Collection and Refinement 

Collected reflections 5182 4760 

Unique reflections 813 799 

Rint 0.0256 0.0309 

h  -19  h  19 -18  h  18 

k -15  k  15 -15  k  15 

l -13  l  12 -12  l  13 

Δρmax (e Å-3) 1.409 1.803 

Δρmin (e Å-3) -0.882 -2.134 

GoF 1.181 1.091 

Extinction coefficient 0.00325(9) 0.00091(8) 
a R1(F) for Fo

2 > 2σ(Fo
2) 0.0192 0.0218 

b Rw(Fo
2) 0.0390 0.0527 

 

aR1 = Σ||F0| - |Fc||/Σ|F0| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0129P)2 + 3.6920P]  

and w = 1/[σ2(Fo
2) + (0.0247P)2 + 6.3560P] for Ce and Gd analogues, respectively 
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Table 4.2 Atomic Coordinates and Atomic Displacement Parameters for Ln2Ru3Al15 

Atom Wyckoff site x y z Ueq (Å
2)a Occ. 

Ce2Ru3Al15.04 

Ce(1) 6g 0.60512(2) 0 ¼ 0.00674(8) 1 

Ce(2) 2a 0 0 ¼ 0.00551(15) 0.825(2) 

Ce(3) 4e 0 0 0.2219(6) 0.00551(15) 0.0874(12) 

Ru(1) 12i 0.203474(11) 0.40695(2) 0 0.00532(8) 1 

Al(1) 12k 0.79755(8) 0 0.02717(13) 0.0082(2) 1 

Al(2) 12i 0.40892(5) 0.81785(10) 0 0.0078(2) 1 

Al(3) 12j 0.16673(10) 0.87969(9) ¼ 0.0075(2) 1 

Al(4) 12j 0.72320(10) 0.47613(9) ¼ 0.0087(2) 1 

Al(5) 12k 0.61777(8) 0 0.89713(13) 0.0077(2) 1 

Al(6) 2b 0 0 0 0.004(5) 0.0874(12) 

 

Gd2Ru3.08Al15 

Gd(1) 6g 0.60675(2) 0 ¼ 0.00804(10) 1 

Gd(2) 2a 0 0 ¼ 0.00738(17) 0.670(2) 

Gd(3) 4e 0 0 0.2093(4) 0.00738(17) 0.1649(11) 

Ru(1) 12i 0.203187(14) 0.40637(3) 0 0.00588(11) 1 

Ru(2) 2b 0 0 0 0.0196(13) 0.1649(11) 

Al(1) 12k 0.79815(10) 0 0.02826(17) 0.0094(3) 1 

Al(2) 12i 0.40949(6) 0.81898(12) 0 0.0085(3) 1 

Al(3) 12j 0.16530(13) 0.87973(12) ¼ 0.0084(3) 1 

Al(4) 12j 0.72567(13) 0.47679(12) ¼ 0.0097(3) 1 

Al(5) 12k 0.61650(10) 0 0.89787(17) 0.0084(3) 1  

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

Energy-dispersive X-ray spectroscopy was performed on a single crystal of Ce2Ru3Al15 

from an aluminum poor flux growth using a FEI Quanta 200 SEM equipped with an EDAX 

detector.  Data were collected for six different locations on a single crystal, and the average and 

standard deviation were taken as the composition and uncertainty, respectively.  The determined 

composition of the sample, normalized to Ce, was Ce2.0(3)Ru2.59(16)Al13.4(5).  
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4.2.3 Physical Properties 

Physical properties were measured on polycrystalline annealed arc melted samples of 

Ln2Ru3Al15 which were sanded into bar shapes.  Magnetic and electrical transport properties were 

measured using a Quantum Design Physical Property Measurement System (QD PPMS).  Zero 

field cooled DC magnetic susceptibility was measured as a function of temperature from 3-290 K, 

and field dependent magnetization was measured up to an applied field of 9 T.  Resistivity was 

measured from 3-290 K, and magnetoresistance was measured from 0-9 T at 3 K using the standard 

four probe method with an excitation current of 5.13 mA.  H = 0 heat capacity was measured in a 

QD PPMS using an adiabatic relaxation technique, for temperatures between 2 and 50 K.  

4.3   Results and Discussion 

4.3.1 Synthesis 

Initially, the growth of Ce2Ru3Al15 was attempted using the self-flux method.  However, 

its synthesis proved difficult due to the stability of CeRu2Al10.  A graphical depiction of the 

competition between the two phases is shown in Figure 4.1.  When an excess of flux is used, the 

reaction favors the growth of CeRu2Al10.  Dwelling a reaction with a Ce:Ru:Al ratio of 2:3:18 at 

1200 °C for 24 h before cooling to 720 °C at 5 °C/h only yielded CeRu2Al10.  When stoichiometric  

amounts of the reactant metals were used, the reaction products were found to be highly dependent 

on reaction temperature.  When the reaction was dwelled at 1050 °C, polycrystalline CeRu2Al10 

and Ru4Al13 were grown with none of the desired Ce2Ru3Al15.  Raising the dwell temperature to 

1200 °C yielded polycrystalline Ce2Ru3Al15 as the majority product with large amounts of 

CeRu2Al10 and Ru4Al13 as impurities.  The results of higher temperature syntheses will be 

discussed in the next paragraph.  Single crystalline Ce2Ru3Al15 can be grown using the self-flux 

method with flux poor reaction ratios.  Reactions with Ce:Ru:Al ratios of either 2:3:12 or 3:4:12, 
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which were dwelled at 1200 °C, sometimes yielded single crystalline Ce2Ru3Al15 imbedded in a 

matrix of binaries.  However, the crystals were too small and difficult to extract to be able to be 

used for the measurement of physical properties. 

 

Figure 4.1 Two schematics showing the products of flux growth reactions dwelled at 1200 °C 

with various reactant ratios and the products of reactions with a Ce:Ru:Al composition of 2:3:15 

heated to various temperatures. 

Following the failure to obtain large, extractable single crystals using the flux growth 

method, the growth of Ce2Ru3Al15 was attempted using higher temperature synthesis methods, as 
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the former flux-grown stoichiometric reactions suggested that higher temperatures favored the 

formation of Ce2Ru3Al15 over CeRu2Al10 and Ru4Al13.  A Ce2Ru3Al15 growth was attempted by 

arc melting on stoichiometry, and as expected, no CeRu2Al10 was present in the final button.  

However, the high temperatures stabilized a different impurity phase, Ce3Al11, which was present 

in the button along with Ce2Ru3Al15.  In an attempt to eliminate all three impurities, an intermediate 

temperature growth was performed on stoichiometry using an RF induction furnace.  This growth 

was found to contain Ce2Ru3Al15, CeRu2Al10 and Ce3Al11, indicating that there is no ideal 

temperature regime which avoids the growth of all impurities. 

 Although no optimal temperature was found to grow Ce2Ru3Al15 on stoichiometry, phase 

purity of the arc melted pellet can be obtained by annealing.  When annealing at low temperatures, 

circa 800 °C, CeRu2Al10 forms in the sample.  In order to avoid this, annealing at 1150 °C is 

required.  By annealing at this temperature for six days, almost-phase-pure Ce2Ru3Al15 was 

obtained.  In attempt to anneal out the remaining impurity (a small, unidentified impurity resulting 

in a diffraction peak at 2θ = 73.8 °), a sample was annealed at 1150 °C for 12 days.  However, this 

longer annealing time led to the formation of CeRu2Al10.  Thus, samples of phase-pure Gd2Ru3Al15 

and almost-phase-pure La2Ru3Al15 were also prepared via arc melting and annealing for six days.   

4.3.2 Structure 

  Ce2Ru3Al15 crystallizes in the hexagonal space group P63/mcm with a = 13.1210(10) Å and 

c = 9.0970(10) Å.  Gd2Ru3Al15 is reported for the first time and has the lattice parameters a = 

13.0320(10) Å and c = 9.0590(10) Å.  This structure type has also been reported for Ln2Os3Al15 

(Ln = Nd, Sm, Gd) as an impurity product in arc melted pellets of LnOs2Al10.
4.18  Initially, the 

structural models of Ln2Ru3Al15 were refined in agreement with the previously reported structure 

of  Ce2Ru3Al15.
4.15  In this model there is one Ru site and two lanthanide sites.  Each Ru(1) atom 



52 
 

is surrounded by 10 Al atoms forming a distorted pentagonal antiprism which is bicapped by Ln(1) 

atoms such that the point symmetry is 2.  The Ru-Al distances, 2.5673(3)-2.6912(6) Å (Ce) and 

2.5564(3)-2.6772(8) Å (Gd), are close to the sum of their covalent radii, while the two Ru-Ln(1) 

interactions, 3.4500(3) Å (Ce) and 3.4230(3) Å (Gd), are > 0.5 Å outside of bonding.  As shown 

in Figure 4.2a, each Ru(1) polyhedron is edge-sharing with two other polyhedra, and six of these  

 

Figure 4.2 The (a) structure of Ce2Ru3Al15 showing the Ru polyhedra and the (b) Ce(1) sublattice 

and (c) Ce(2) sublattice.  The Ce(3) and Al(6) sites are omitted for clarity. 

polyhedra form a ring.  Each polyhedron within the ring is also corner-sharing with two other 

rings.  This generates triangular and quadrilateral channels within the Ru-Al sheets.  These sheets 

lie in the ab plane and are edge-sharing in the c direction.  The Ru sheets resemble the sheets seen 

in Ru23(Al,Si)97 of the α-AlFeSi structure type.4.14  

 The Ln(1) polyhedra lie in the square channels created by the Ru sublattice.  Each Ln(1) 

atom is surrounded by 14 Al and 4 Ru atoms with point symmetry mm.  The Ln(1) polyhedra 

resemble the 20 coordinate Ln polyhedral seen in LnRu2Al10
4.1 and CeRu4(Al,Si)15.58.

4.14  The 

Ln(1)-Al distances [3.1438(11)-3.3703(7) Å (Ce) and 3.1037(14)-3.3524 Å (Gd)] and Ln(1)-Ru 

distances [3.4500(3) Å (Ce) and 3.4230(3) Å (Gd)], while larger than the sums of the covalent 

radii, are similar to the distances seen in the respective analogues of the other two structure types.  

As shown in Figure 4.2b, each Ln(1) polyhedron is face sharing with two other Ln(1) polyhedra to 
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form columns in the c direction.  These columns are edge sharing with each other through the 

Ru(1) atoms. 

Figure 4.3a compares the Ce(1) environment in Ce2Ru3Al15 to the Ce environments in 

CeRu2Al10 and CeRu4(Al,Si)15.58.  As stated above, the 18 coordinate Ce(1) polyhedra in 

Ce2Ru3Al15 are closely related to the 20 coordinate Ce polyhedra in the other two compounds.  The 

main difference between these three polyhedra concerns two equivalent atoms.  In 

CeRu4(Al,Si)15.58 these two atoms are Ru2 atoms, and the Ce-Ru2 distances are comparable to the  

 

Figure 4.3 A comparison of the Ce(1) environments in CeRu4(Al,Si)15.58, CeRu2Al10 and 

Ce2Ru3Al15 showing the (a) Ce(1) polyhedra, (b) Ce(1)-Ce(1) nearest neighbors and (c) packing 

of the Ce(1) polyhedra within the unit cells. 
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other Ce-Ru distances in the polyhedra.  In CeRu2Al10, these atoms are Al(1) atoms and the Ce-

Al(1) distances are approximately 0.36 Å larger than the other Ce-Al distances.  In Ce2Ru3Al15, 

these atoms are Al(8) atoms but the Ce(1)-Al(8) distances are over 0.5 Å larger than the largest 

Ce(1)-Al distance, and therefore the Al(8) atoms are no longer considered part of the Ce(1) 

polyhedron.  Figure 4.3b shows the packing of the Ce(1) polyhedra in each compound.  The Ce 

polyhedra in Ce2Ru3Al15 and CeRu2Al10 pack in the same way.  That is, they form face sharing 

columns in the c direction.  While packing in the same way, the Ce(1)-Ce(1) distances in 

CeRu2Al10, 5.2497(7) Å, are somewhat closer than in Ce2Ru3Al15, 5.3196(4) Å.  The Ce polyhedral 

in CeRu4(Al,Si)15.58, on the other hand, form corner sharing columns in the b direction through the 

Ru(2) atoms.  Due to the fact that they are corner sharing, the Ce(1)-Ce(1) distances in 

CeRu4(Al,Si)15.58 of 6.8799(18) Å are considerably larger than in the other two compounds.4.14  It 

is important to note that while Ce(1) is the only Ce site in CeRu2Al10 and CeRu4(Al,Si)15.58, this is 

not the case in Ce2Ru3Al15.  A comparison of all of the Ln-Ln contact distances in each structure 

can be found in Table 4.3 and pack in different ways, as can be seen in Figure 4.3c.  In both 

 

Table 4.3 Comparison of Ln-Ln distances between titled structure types 

Interaction  Ce (Å) Gd (Å) Ref. 

LnRu4(Al,Si)15.58  

Ln(1)-Ln(1) 6.8799(18) — 4.14 

LnRu2Al10  

Ln(1)-Ln(1) 5.2497(7) 5.2516(7) 4.12 

Ln2Ru3Al15 

Ln(1)-Ln(1) 5.3196(4) 5.3158(5) 

Ln(1)-Ln(2) 5.1812(3) 5.1248(4) 

Ln(1)-Ln(3) 5.1875(4) 5.1381(5) 

Ln(2)-Ln(2) 4.5485(5) 4.5295(5) 

Ln(2)-Ln(3) 4.293(6) 4.161(4) 

Ln(3)-Ln(3) 5.060(8) 5.267(5) 
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compounds the columns are corner sharing through the Ru atoms, but in CeRu2Al10 the columns 

are aligned with each other while in Ce2Ru3Al15 each column is rotated 120 ° with respect to the 

adjacent columns.   

 The Ln2 polyhedra lie in the center of the six-membered Ru polyhedral rings.  Each Ln(2) 

is surrounded by 18 Al atoms with point symmetry -6m2.  The Ln(2)-Al distances range from 

3.2759(11) to 3.6625(9) Å (Ce) and 3.2363(14) to 3.6433(12) Å (Gd).  The Ln(2) polyhedra form 

volume sharing columns in the c direction, as shown in Figure 4.2c.  Each Ln(2) polyhedron is 

also face sharing with three Ln(1) polyhedra in the ab plane. 

 Following the initial refinement of the models using the previously reported structure of 

Ce2Ru3Al15, the largest residual electron density was 3.931 and 18.869 e-/Å3 for the Ce and Gd 

analogues, respectively.  These Q peaks were located at the origin with the closest contacts being 

two Ln(2) atoms 2.27 (Ce) or 2.26 (Gd) Å away.  Because of the close proximity of the Ln(2) 

contacts, it was believed that the site was either a partially occupied Al or Ru atom.  Due to the 

partial occupancy of the site, either atom resulted in the same quality structural model.  For the Ce 

analogue the resulting site occupancies were 8.5(13)% (Al) and 2.4(4)% (Ru), and for the Gd 

analogue the occupancies were 46.5(16)% (Al) and 13.5(4)% (Ru).  While the identity of the atom 

can not be determined by looking at the site, it can be determined from the splitting of the Ln(2) 

site.  Since the Ln(2) contacts are inside the sum of the covalent radii, when the partially occupied 

atom is present, the adjacent Ln(2) atoms are pushed off the mirror plane to a Ln(3) site.  Because 

of the closeness of the Ln(2) and Ln(3) sites, the atomic displacement parameters of these sites had 

to be refined isotropically.  The occupancy of the Ln(3) site was found to be 9.0(14)% for the Ce 

analogue and 17.8(4)% for the Gd analogue.  Comparing these occupancies to the Al or Ru 

occupancies reveals that the partially-occupied site is an Al site [Al(6)] for the Ce analogue and a 



56 
 

Ru site [Ru(2)] for the Gd analogue.  Since the occupancy of Ln(3) should equal that of Al(6) or 

Ru(2), the occupancies of the sites were then confined.  This resulted in an Al(6) occupancy of 

8.72(12)% and a Ru(2) occupancy of 16.49(11)%.  Based on these occupancies, the resulting 

stoichiometries are Ce2Ru3Al15.04 and Gd2Ru3.08Al15.  For simplicity, the two analogues will 

continue to be referred to using the Ln2Ru3Al15 stoichiometry. 

 The Ln(3) site is surrounded by 15 Al atoms and either an Al(6) or Ru(2) atom with point 

symmetry 3.  The Ln(3)-Al distances range from 3.193(3) to 3.502(4) Å (Ce) and 3.100(2) to 

3.546(3) Å (Gd).  The Ce(3)-Al(6) contact is 2.530(5) Å and the Gd(3)-Ru(2) contact is 2.663(3) 

Å, both of which are closer than the sum of their covalent radii, 2.90 and 2.85 Å, respectively.4.19    

The closer Ce-Al contact, despite the larger sum of covalent radii, suggests that Ce(3) is tetravalent.  

The different atom types in the two structures does not appear to be a structural effect, as Ru and 

Al have very close covalent radii and have similar interatomic distances within Ln-Ru-Al 

compounds.4.12, 20, 21  On the other hand, the structural difference may be an electronic effect.  

Tetravalent Ce donates more electrons to the conduction band than Gd3+.  This difference is 

counteracted by the fact that Ru has a greater number of valence electrons than does Al.  

Excluding the disordered Ln(3), the closest Ln-Ln contacts within Ln2Ru3Al15 are between 

volume sharing Ln(2) polyhedra and are 4.5485(5) Å (Ce) and 4.5295(5) (Gd) Å.  The Ln(1)-Ln(1) 

contacts are 5.3196(4) (Ce) and 5.3158(5) (Gd) Å which is farther than the contacts found in 

LnRu2Al10 (5.2497(7) (Ce) and 5.2516(7) (Gd) Å).  The Ln(1)-Ln(2) contacts, which are closer 

than the Ln(1)-Ln(1) contacts and the LnRu2Al10 contacts, are 5.1812(3) (Ce) and 5.1248(4) (Gd) 

Å.  These distances along with the Ln-Ln(3) distances can be found in Table 4.4. 
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Table 4.4 Select Interatomic Distances in Ln2Ru3Al15 (Ln = Ce, Gd) (Å) 

Interaction  Ce2Ru3Al15.04 Gd2Ru3.08Al15 

Ln(1)-Ru(1) (x4) 3.4500(3) 3.4230(3) 

Ln(1)-Al(1) (x2) 3.2380(12) 3.2026(15) 

Ln(1)-Al(2) (x4) 3.3703(7) 3.3524(9) 

Ln(1)-Al(3) (x2) 3.1438(11) 3.1037(14) 

Ln(1)-Al(4) (x2) 3.1477(12) 3.0976(15) 

Ln(1)-Al(5) (x2) 3.2144(12) 3.1925(16) 

Ln(1)-Al(5) (x2) 3.2162(11) 3.2029(14) 

Ln(2)-Al(1) (x6) 3.3414(11) 3.3098(14) 

Ln(2)-Al(1) (x6) 3.6625(9) 3.6433(12) 

Ln(2)-Al(3) (x6) 3.2759(11) 3.2363(14) 

Ln(3)-Al(1) (x3) 3.193(3) 3.100(2) 

Ln(3)-Al(1) (x3) 3.491(4) 3.399(2) 

Ln(3)-Al(1) (x3) 3.502(4) 3.546(3) 

Ln(3)-Al(3) (x6) 3.2859(12) 2.2572(14) 

Ln(3)-Ma   (x1) 2.530(5) 2.663(3) 

Ru(1)-Ln(1) (x2) 3.4500(3) 3.4230(3) 

Ru(1)-Al(1) (x2) 2.6879(6) 2.6690(8) 

Ru(1)-Al(2) (x2) 2.5673(3) 2.5564(3) 

Ru(1)-Al(3) (x2) 2.6686(6) 2.6597(7) 

Ru(1)-Al(4) (x2) 2.6686(6) 2.6259(7) 

Ru(1)-Al(5)(x2) 2.6912(6) 2.6772(8) 

Ma-Ln(3) (x2) 2.530(5) 2.633(3) 

Ma-Al(1) (x6) 2.6678(11) 2.6439(13) 

aM = Al6 for Ce analogue and Ru2 for Gd analogue 

 

4.4   Physical Properties 

4.4.1 Magnetization 

Table 4.5 summarizes the magnetic data for LnRu2Al10 and Ln2Ru3Al15 (Ln = Ce, Gd).  

Figure 4.4a shows the magnetic susceptibility of Ce2Ru3Al15 as a function of temperature at an 

applied field of 0.1 T.  The inset shows the derivative of the susceptibility and highlights two 
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apparent low temperature transitions.  Heat capacity data (vide infra) shows that these transitions 

are bulk transitions and occur at 3.7 K and 3.1 K.  Below 100 K, the inverse susceptibility drops 

below Curie-Weiss behavior, which can be attributed to crystalline electric field effects.  Similar 

behavior has been observed in other rare earth intermetallics such as hexagonal CeNiIn4.22 and 

orthorhombic CePtSi2
4.23 and is expected as CeRu2Al10 was found to display considerable CEF 

effects.4.8  Fitting from 100-290 K with a modified Curie-Weiss law = o + C/(T - ), where χ0 

is a temperature independent sum of the diamagnetic and Pauli paramagnetic contributions, yields  

a Curie-Weiss temperature of -7(3) K.  The negative θ, coupled with the increase in dχ/dT below 

 

Figure 4.4 (a) Magnetic susceptibility and inverse susceptibility of Ce2Ru3Al15.  Inset shows the 

derivative of the susceptibility, highlighting two low temperature transitions.  (b) Field-dependent 

magnetization of Ce2Ru3Al15. 
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Table 4.5 Magnetic Properties for LnRu2Al10 and Ln2Ru3Al15 (Ln = Ce, Gd) 

 χo(emu/mol-Ln) TN (K) θ (K) μcalc (μB) μeff (μB) Fit Range (K) Ref. 

CeRu2Al10  27.3 -44 2.54 3.03  4.6 

GdRu2Al10 0.00015(4) 15.5 -15.45(8) 7.94 8.14(10) 50-275 4.12 

Ce2Ru3Al15 0.00018(7) 3.7 -7(3) 2.54 2.33(4) 100-290 

Gd2Ru3Al15 0.0008(3) 21.0 11.5(17) 7.94 7.97(7) 160-288 
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3.7 K and the AFM ordering of Gd2Ru3Al15, as shown below, suggests that the 3.7 K transition is 

an AFM ordering.  An effective moment of 2.33(4) μB is determined from the Curie-Weiss fit at 

high temperatures and is less than the 2.54 μB expected for Ce3+.  The magnetization as a function 

of field, shown if Figure 4.4b, appears to saturate at ~1.04 μB/Ce which is smaller than the 2.14 μB 

expected for trivalent Ce. 

The temperature dependent magnetic susceptibility of Gd2Ru3Al15 at 0.1 T, shown in 

Figure 4.5a, displays an AFM ordering at TN = 21.0 K with a spin reorientation at 4.1 K, similar 

to the two spin reorientations observed in Ce2Ru3Al15.  Below 150 K, the inverse susceptibility 

deviates below Curie-Weiss behavior.  This deviation is believed to be caused by a small FM 

impurity, below the detection limit of powder XRD, such as GdAl2, which orders at ~170 K, 

depending on sample purity and disorder.4.24  Fitting with a modified Curie-Weiss law above 160 

K yields an effective moment of 7.97(7) μB, close to the 7.94 μB expected for Gd3+, and a θ of 

11.5(17) K.  This suggests that the Ru atoms are non-magnetic.  As the f orbital of Gd is half-filled,  

 
Figure 4.5 (a) Magnetic susceptibility and inverse susceptibility of Gd2Ru3Al15.  Inset highlights 

the two low temperature transitions.  (b) Field-dependent magnetization of Gd2Ru3Al15. 
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and therefore spherically symmetric, the positive Curie-Weiss temperature cannot be due to CEF 

effects.  Therefore, a positive θ, despite the antiferromagnetic ordering, suggests strong 

ferromagnetic correlations within the structure.  One possibility is that these correlations involve 

the Gd(3) atoms.  As the Gd(2)-Gd(3) distance, 4.161(4) Å, is the closest distance in the structure, 

based on 1/r3 attenuation of the RKKY interaction,4.25-27 a mechanism in which the conduction 

electrons mediate magnetic ordering, it may have the strongest J coupling.  However, due to the 

partial occupancy of the Gd(3) site, no long range order can exist.  This would also explain the 

lack of a positive Curie-Weiss temperature in Ce2Ru3Al15, as Ce(3) is believed to be tetravalent.  

Magnetization as a function of field is shown in Figure 4.5b and does not saturate up to 9 T.  A 

broad transition, possible a partial spin reorientation, is observed at H ~ 2.5 T. 

4.4.2 Electrical Transport 

  Figures 4.6a and 4.6b show the polycrystalline resistivity (a) and magnetoresistance (b) of 

Ce2Ru3Al15 (green) and Gd2Ru3Al15 (blue), respectively.  Both analogues display a similar 

 

Figure 4.6 (a) Resistivity and (b) magnetoresistance of Ln2Ru3Al15 (Ln = Ce, Gd).  Inset in (a) 

highlights the low temperature dependence of the resistivity for the Gd analogue. 
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magnitude of resistivity, with ρ290K  0.42 mΩ-cm (Ce) and 0.55 mΩ-cm (Gd) and ρ2K of 0.12 mΩ-

cm and 0.091 mΩ-cm (Gd).   This leads to residual resistivity ratios, RRR = (ρ290K/ ρ2K), of 3.4 

(Ce) and 6.1 (Gd).  These RRR values are smaller than the 8.9 observed for a single crystal of 

GdRu2Al10 and can be attributed to grain boundary scattering due to the polycrystalline nature of 

the samples.  For 40 ≤ T ≤ 100 K, the resistivity of Gd2Ru3Al15 follows a T2  dependence, shown 

in the inset of Figure 4.6a, which is typical of metallic compounds at low temperature. 

Decreases in the resistivities at 5.3 K (Ce) and 21.3 K (Gd) can be attributed to a loss of 

spin disorder scattering due to the magnetic ordering.  Prior to this decrease, the Ce analogue 

displays an upturn at 20 K, suggestive of the Kondo effect, a mechanism in which the conduction 

electrons screen the magnetic moment of the rare earths.4.28  This is in agreement with the 

magnetoresistance (MR), which is negative for Ce2Ru3Al15 and reaches -24% at 9 T.  Before the 

AFM ordering, the resistivity of Gd2Ru3Al15 displays a small upturn at 26.3 K.  Similar behavior 

was observed in GdRu2Al10
4.12 and may be due to the formation of magnetic polarons prior to the 

magnetic ordering, such as is observed in EuB6.
4.29  The MR of Gd2Ru3Al15 is positive, which is 

typical for intermetallics, and reaches 26% at 9 T.  The magnitude of the MR is greater than in 

most intermetallic compounds.  For example, GdRu2Al10, which orders antiferromagnetically at 

15.5 K, with a spin reorientation at 7.8 K, has a MR of less than 1% at 9 T.4.12  The large MR in 

Gd2Ru3Al15 may be due to the proximity of the 3 K measurement temperature to the spin 

reorientation at 4.1 K.  Enhanced MR has been observed in other intermetallics near magnetic 

transitions.4.30, 31  At 2.5 T, the MR changes slope, which can be attributed to the broad transition 

observed in the magnetization as a function of applied field. 
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4.4.3 Heat Capacity 

 Figure 4.7 shows the specific heat capacity of Ln2Ru3Al15 (Ln = La, Ce).  The low 

temperature data, emphasized in the inset, displays two transitions in Ce2Ru3Al15 at 3.7 and 3.1 K.  

Typically, the low temperature heat capacity of metals follows Cp = γT + βT3, where γ is the 

electronic specific heat coefficient and βT3 is the phonon contribution to the specific heat.  The 

non-magnetic contribution to the specific heat can be approximated as the specific heat of a 

non-magnetic analogue, and can be subtracted from Cp to obtain Cm, the magnetic specific heat.  

 

Figure 4.7 (a) Heat capacity of Ln2Ru3Al15 (Ln = La, Ce).  Inset highlights the low temperature 

transitions in the Ce analogue.  (b)  Magnetic entropy of Ce2Ru3Al15 as a function of temperature.  

The solid line indicates Rln2. 

The specific heat of the La analogue was subtracted from the Ce analogue in order to obtain Cm.  

For a magnetic transition, Rln(2J+1) of entropy (Sm) should accompany the transition, where J is 

the total angular momentum.  Integrating the magnetic entropy of Ce2Ru3Al15 from 2 K to 15 K 

recovers Sm  Rln2 entropy, based on the trivalent Ce concentration from the susceptibility.  The 

entropy is actually recovered prior to 15 K as the phase transition is still occurring below 2 K and 
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therefore, not all of the magnetic entropy has been integrated.  Due to the non-linearity of Cm/T vs. 

T2 above the magnetic orderings, believed to be caused by small impurities in the arc melted 

samples, the Sommerfeld coefficient was not determined. 

4.4.4 Comparison of Structure Types 

 GdRu2Al10 orders antiferromagnetically at 15.5 K, while Gd2Ru3Al15 orders 

antiferromagnetically at 21.0 K.  Two Gd-Gd interactions are similar in distance to the 5.2516(7) 

Å distance in GdRu2Al10: the Gd(1)-Gd(1) interaction, 5.3158(5) Å and the Gd(1)-Gd(2) 

interaction, 5.1248(4) Å.  However, it is not readily apparent between which Gd atoms the AFM 

ordering occurs.  Gd2Ru3Al15, despite being polycrystalline, also has a lower resistivity at the 

ordering temperature, ~0.2 mΩ-cm, than does GdRu2Al10, ~0.3 mΩ-cm.  This suggests that 

Gd2Ru3Al15 has a higher carrier concentration, which would lead to stronger RKKY interactions. 

 Based on the 16 K ordering of GdRu2Al10 and deGennes scaling, CeRu2Al10 is expected to 

order at 0.1 K.4.3  Instead, CeRu2Al10 shows an enhanced ordering temperature of 27 K.4.2  A 

similar trend is not observed in Ln2Ru3Al15, where the Gd analogue orders at 21.0 K, and the Ce 

analogue orders at 3.7 K.  Furthermore, Ce2Ru3Al15 displays metallic resistivity over the entire 

measured temperature range, 2 - 290 K, unlike CeRu2Al10 which displays a metal-to-insulator 

transition at 27 K indicative of a narrow gap opening at the Fermi surface.4.2  While structurally 

related to CeRu2Al10, it is apparent that Ce2Ru3Al15 does not display the same anomalous behavior.  

The contrast in properties despite both structures containing very similar columns of Ce polyhedra 

suggests that either the properties are dependent on the packing of the columns within the unit cell, 

or as was suggested in the computation study discussed in the introduction, that the properties of 

CeRu2Al10 arise due to small changes in the Ce polyhedra.  Due to the similar structure but 

contrasting properties, Ce2Ru3Al15 offers potential for further comparison studies with CeRu2Al10. 
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4.5   Conclusions  

 The synthesis of Ce2Ru3Al15 is difficult due to the stability of CeRu2Al10 at low 

temperatures and in flux rich melts and the stability of Ce3Al11 at high temperatures.  Ln2Ru3Al15 

(Ln = La, Ce, Gd) were synthesized by arc melting and annealing at 1150 °C for 6 days.  The 

crystal structure was modified from the originally reported structure4.15 in order to account for a 

partially-occupied atom at the origin (2b) and the resulting splitting of the Ln(2) site into a Ln(2) 

site and a Ln(3) site.  Based on the occupancy of the Ln(3) site, the 2b site was determined to be 

an Al atom in the Ce analogue and a Ru analogue in the Gd analogue. 

 Gd2Ru3Al15 was found to order antiferromagnetically at 21.0 K with a spin reorientation at 

4.1 K.  The Curie-Weiss temperature was found to be positive, indicating FM interactions within 

the structure, possibly involving the partially-occupied Gd(3) atoms.  Ce2Ru3Al15 displays two 

spin reorientations, the first of which is believed to be an AFM ordering, at low temperatures, 3.7 

K and 3.1 K, made apparent by dχ/dT and heat capacity measurements.  Below 100 K, the 

susceptibility deviates below the Curie-Weiss fit which is characteristic of lost moment due to 

Kondo screening.  This is supported by an upturn in the resistivity at 20 K and a negative 

magnetoresistance of -24% at 9 T.  Ce2Ru3Al15 does not display the enhanced ordering temperature 

or metal-to-insulator transition observed in CeRu2Al10 despite the two structures containing similar 

columns of Ce polyhedra.  For this reason, further comparison studies between the two compounds 

is warranted and could help elucidate the cause of the anomalous properties observed in 

CeRu2Al10.     
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Chapter 5. Synthesis and Anisotropic Properties of Single Crystalline Gd2Ru3Al15.09 

5.1   Introduction 

Single crystalline samples offer many advantages over polycrystalline samples including 

structure determination via single crystal X-ray diffraction and the measurement of intrinsic 

properties unaltered by impurities or grain boundaries, including anisotropic properties.5.1, 2  

Anisotropic properties can be instrumental in understanding the intrinsic properties of a system.  

For example, studies of the anisotropic magnetization of EuZn2Sb2 found that the 

antiferromagnetic ordering consisted of spins lying perpendicular to the c-axis.5.3  Similarly,  

anisotropic magnetic properties of CeNiSb2 indicated that the ferromagnetic easy axis is the a-

axis.5.4  In some cases, the bulk polycrystalline properties can differ from the properties of a single 

crystal.5.5, 6  For example, the Neel temperatures of single crystals of Ln(Cu,Al)12 follow de Gennes 

scaling5.7 while the Neel temperatures of polycrystalline samples deviate significantly.5.8 

While single crystalline samples offer many advantages, their growth can be difficult, 

especially when another compound is more robust and stable.  We previously reported on the 

synthesis, structure, and magnetic and transport properties of Ln2Ru3Al15 (Ln = Ce, Gd).5.9  The 

synthesis of Ln2Ru3Al15 was complicated by the stability of LnRu2Al10 relative to Ln2Ru3Al15.
5.9  

As a result of the difficulty in growing Ln2Ru3Al15, magnetic and transport measurements were 

conducted on polycrystalline arc-melted samples.  Polycrystalline Gd2Ru3.08Al15 was found to be 

metallic and ordered antiferromagnetically at 21.0 K with a spin reorientation at 4.1 K.  A deviation 

from Curie-Weiss behavior at 150 K was believed to be attributed to a ferromagnetic impurity.  

Fitting the susceptibility above this deviation resulted in a positive Weiss temperature of 11.5(17) 

K and an effective moment of 7.97(7) μB/mol-Gd, which is in good agreement with the expected 

moment for a free Gd3+ ion.  Finally, a positive magnetoresistance (MR) of 26% was observed at 
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3 K and 9 T which was believed to be due to the proximity of the 3 K measurement to the spin 

reorientation at 4.1 K.5.9 

We have succeeded in synthesizing large single crystals of Gd2Ru3Al15 using the flux 

growth method.  Herein, we report on the synthesis, structure and anisotropic properties of single 

crystals of Gd2Ru3Al15.09 and compare them to polycrystalline Gd2Ru3.08Al15.      

5.2   Experimental 

5.2.1 Synthesis 

 High purity elements, Gd (pieces, 99.9% REO), Y (pieces, 99.9% REO), Ru (powder, 

99.98% metal basis excluding Ca), and Al (99.999% metal basis), were used as obtained.  Single 

crystals were grown using the self-flux technique.  The elements were placed in a 99.8% alumina 

crucible with the Al flux on top.  A second crucible was covered on top of the first and the reaction 

vessel was sealed in an evacuated fused-silica tube backfilled with ~1/6 atm of Ar to help maintain 

their integrity at high dwell temperatures.  Specific elemental ratios and heating profiles will be 

discussed in the Results and Discussion section.  After the growth was complete, the resulting 

single crystal was mechanically extracted from the flux and polished into a bar shape. 

5.2.2 Structure 

Structure determination was carried out via single crystal X-ray diffraction of a fragment 

broken off of the same single crystal used for physical property measurements.  Diffraction data 

was collected on an Enraf Nonius KappaCCD diffractometer equipped with a Mo Kα source (λ = 

0.71073 Å).  Direct methods using SIR975.10 were used to obtain an initial structural model which 

was then refined using SHELXL-97.5.11  A summary of the crystallographic data can be found in 

Table 5.1.  Elemental composition was checked by energy dispersive X-ray spectroscopy using an  
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Table 5.1 Crystallographic Data for Gd2Ru3Al15.09 

Formula Gd2Ru3Al15.09 

Space group P63/mcm 

a (Å) 13.0114(10) 

c (Å) 9.0552(10) 

V (Å3) 1327.6(2) 

Z 4 

Crystal dimensions (mm3) 0.07 x 0.07 x 0.13  

Temperature (K) 295(1) 

Density (g cm-3) 5.127 

  Range (°) 3.13-30.98 

μ (mm-1) 14.153 

 

Data Collection and Refinement 

Collected reflections 5269 

Unique reflections 797 

Rint 0.0351 

h -18  h  18 

k -15  k  15 

l -13  l  13 

Δρmax (e Å-3) 1.572 

Δρmin (e Å-3) -1.749 

GoF 1.128 

Extinction coefficient 0.00482(16) 
a R1(F) for Fo

2 > 2σ(Fo
2) 0.0229 

b Rw(Fo
2) 0.0528 

 

aR1 = Σ||F0| - |Fc||/Σ|F0| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0233P)2 + 4.9683P]  

 

FEI Quanta 200 SEM equipped with an EDAX detector.  Six scans across a freshly cut face of the 

single crystal gave an elemental composition of Gd2.00(12)Ru3.33(18)Al18.0(6). 

Orientation of the extracted, bar-shaped, single crystal was carried out using single crystal 

X-ray diffraction data.  Phi scans were collected on three non-confacial corners in order to ensure 

that the bar was indeed a single crystal with one orientation throughout.  The crystallographic c-

axis was found to coincide with the long axis of the bar-shaped crystal.  Because of the hexagonal 

space group and poor macroscopic alignment of the a and b crystallographic axes, anisotropic 

properties will be reported as parallel and perpendicular to the c-axis. 
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After all physical properties measurements were conducted, the bar-shaped single crystal 

was cut into several faces and the resulting faces were visually inspected to check for any 

inclusions.  Furthermore, a portion of the crystal was ground and used for a powder X-ray 

diffraction experiment.  Powder diffraction was conducted on a Bruker AXS D8 Advance 

Diffractometer equipped with a Cu Kα (λ = 1.54056 Å) source and a Ge incident beam 

monochromator.  No indication of an impurity was observed using either technique. 

5.2.3 Physical Properties 

 Anisotropic magnetic and transport properties were measured on a bar-shaped crystal 

parallel and perpendicular to the crystallographic c-axis.  Magnetic properties were measured on 

a Quantum Design Magnetic Property Measurement System (MPMS).  Magnetic susceptibility 

was measured from 1.8 - 390 K at H = 0.1 T under zero-field-cooled (ZFC) and field-cooled (FC) 

conditions and field dependent magnetization was measured for H = 0 - 7 T at 2 K.  Electrical 

resistivity and magnetoresistance were measured on a Quantum Design Physical Property 

Measurement System (PPMS).  Resistivity was measured from 3 - 295 K at an applied current of 

5.18 mA and magnetoresistance was measured at 3 K for H = 0 - 9 T using the four probe method. 

5.3   Results and Discussion 

5.3.1 Synthesis 

 The competition between the growth of Ce2Ru3Al15 and CeRu2Al10 was previously 

reported.5.9  In summary, it was found that when dwelled at 1200 °C, Al rich reactions (Ce:Ru:Al 

- 2:3:18) favored the growth of CeRu2Al10, a stoichiometric reaction (Ce:Ru:Al - 2:3:15) resulted 

in a mixture of Ce2Ru3Al15 and CeRu2Al10, and only in Al poor conditions (Ce:Ru:Al - 2:3:12) 

was the growth of Ce2Ru3Al15 dominant.  However, due to the flux-poor conditions, only small, 

irregularly shaped single crystals were formed.  Furthermore, it was found that on a stoichiometric 
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concentration of Ce:Ru:Al (2:3:15), at low dwell temperatures (1050 °C) the growth of CeRu2Al10 

dominated, while at intermediate temperatures (1200 - ~2000 °C) both CeRu2Al10 and Ce2Ru3Al15 

grew, and only at temperatures achieved by arc-melting (~ 3000 °C) was the growth of CeRu2Al10 

prevented.  As a result, the previously reported physical property studies were carried out on 

polycrystalline arc-melted samples of Ln2Ru3Al15 (Ln = Ce, Gd).5.9 

 The arc-melted Gd analogue was almost phase pure prior to annealing and contained single 

crystals large enough for single crystal X-ray diffraction.  These two indicators, along with the fact 

that Gd metal is more soluble in Al than is Ce metal, suggested that large single crystals of 

Gd2Ru3Al15 may form more readily than Ce2Ru3Al15.  For this reason, the studies done in this 

manuscript were conducted on Gd2Ru3Al15.  Indeed, the method reported here grows large single 

crystals of the Gd analogue and other latter rare earth analogues, while the same method using Ce 

yields predominantly CeRu2Al10 and Ce3Al11.  

 The formula for Gd2Ru3Al15 can be reduced to Gd1.33Ru2Al10 which highlights that it is 

only more Gd rich than GdRu2Al10.  It follows that Gd2Ru3Al15 may be stabilized over GdRu2Al10 

in Gd rich reactions.  A reaction with a Gd:Ru:Al ratio of 4:3:24 which was dwelled at 1250 °C 

for 24 h before being slow cooled to 720 °C at 5 °C/h yielded predominantly Gd2Ru3Al15.  

However, the flux poor nature of the reaction only allowed for the growth of small (< 0.5 mm), 

poorly shaped single crystals of Gd2Ru3Al15.  In order to grow larger single crystals, a more Al 

rich reaction was prepared.  To counteract the increased Al content, which is known to favor the 

growth of GdRu2Al10, the Ru concentration was lowered.  Furthermore, the cooling rate was 

decreased between 1250 °C to 1150 °C, the temperature range in which it is believed that 

Gd2Ru3Al15 grows from the Ce study.  A reaction with a Gd:Ru:Al ratio of 4:2:40 was dwelled at 

1250 °C for 24 h, slow cooled to 1150 °C at 1 °C/h, and cooled to 1000 °C at 5 °C/h at which 
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temperature it was removed from the oven.  This reaction resulted in one large single crystal (~4 

mm on its longest side) surrounded by frozen flux.  A bar-shaped single crystal weighing 15.4 mg 

was mechanically extracted and polished.  While the crystal used here was mechanically extracted, 

the excess flux can also be spun off at 1000 °C.  Figure 5.1 shows pictures of the large Gd2Ru3Al15 

single crystal, the polished bar used for physical property measurements, and a 45 mg piece of a 

single crystal of Y2Ru3Al15 grown using the same method. 

Figure 5.1 (a) Single crystal of Gd2Ru3Al15.09 (b) bar-shaped Gd2Ru3Al15.09 single crystal used for 

physical property measurements and (c) single crystal of Y2Ru3Al15.04. 

 

Table 5.2 Atomic Coordinates and Atomic Displacement Parameters for Gd2Ru3Al15.09 

Atom Wyckoff site x y z Ueq (Å
2)a Occ. 

Gd(1) 6g 0.60641(2) 0 ¼ 0.00887(10) 1 

Gd(2) 2a 0 0 ¼ 0.00782(17)

 0.6556(16) 

Gd(3) 4e 0 0 0.1917(3) 0.00782(17) 0.1722(8) 

Ru(1) 12i 0.202841(13) 0.40568(3) 0 0.00715(11) 1 

Al(1) 12k 0.79727(10) 0 0.02888(16) 0.0107(2) 1 

Al(2) 12i 0.40955(6) 0.81911(12) 0 0.0095(2) 1 

Al(3) 12j 0.16565(12) 0.88007(11) ¼ 0.0096(2) 1 

Al(4) 12j 0.72558(12) 0.47621(11) ¼ 0.0099(3) 1 

Al(5) 12k 0.61621(10) 0 0.89711(16) 0.0091(3) 1  

Al(6) 2b 0 0 0 0.008(3) 0.1722(8) 

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

 

1 mm

C

1 mma. b. c.
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5.3.2 Structure 

 Table 5.2 provides atomic positions for single crystalline Gd2Ru3Al15.09.  Gd2Ru3Al15.09 is 

a member of the Ce2Ru3Al15 structure type5.12 and crystallizes in the hexagonal space group 

P63/mcm with lattice parameters a = 13.0114(10) Å and c = 9.0552(10) Å. The structure consists 

of two main Gd sites.  As shown in Figure 5.2a, Gd(1) is surrounded by 14 Al and 4 Ru atoms 

with point group symmetry mm.  The Gd(1) polyhedra form face sharing columns in the c-

direction.  Each Gd(2) atom is surrounded by 18 Al atoms with point symmetry -6m2.  The Gd(2) 

polyhedra form volume sharing columns in the c-direction, shown in Figure 5.2b.   

 

Figure 5.2 Structure of Gd2Ru3Al15.09 showing (a) Gd(1) polyhedra (b) Gd(2) polyhedra (c) 

disorder surrounding the partially occupied M site. 

Directly between two Gd(2) atoms lies a partially occupied M atom, shown in Figure 5.2c.  

When this atom is present, the Gd(2) atom is pushed off a mirror plane onto a Gd(3) site.  The 

identity of the partially occupied site can be determine by comparing the refined occupancy of the 

Gd(3) site to the refined occupancy of the M as either a Ru atom or an Al atom.  For polycrystalline 

Gd2Ru3.08Al15, the occupancy of the M site refined to 46.5(16)% as an Al atom and 13.5(4)% as a 

Ru atom.  The Gd(3) site was found to be 17.8(4)% occupied indicating that M is a Ru atom.  After 

confining the Gd(3) and M site, Ru(2), occupancies to be equal, the resulting occupancy was 

16.49(11)%.5.9  For single crystalline Gd2Ru3Al15.09, the M site occupancy refined to 14(4)% as an 

Gd(2)Gd(3)

M

a

c
b a

c
b

Gd(2)Gd(1)
Ru

Al
a. b. c.
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Al atom and 3.9(10)% as a Ru atom.  The occupancy of the Gd(3) site refined to 17.22(10)%, 

indicating that the M site is an Al atom.  After confining the Gd(3) and M site, Al(6), occupancies 

to be equal, the resulting occupancy was 17.22(8)%.  Despite the different atom types, the two 

occupancies of the M site are very similar between the single crystalline and polycrystalline 

samples.  This is not unexpected given the similarity of the covalent radii of Ru and Al.5.13 

 The atom identity of the M site appears to be synthesis dependent.  Flux grown single 

crystals of Y, Gd and Tb analogues using the Ln:Ru:Al 4:2:40 reaction ratio were all found to have 

an Al atom on the M site.  Likewise, the Al poor Ce flux growths were found to have Al atoms, 

suggesting that it is not the excess Al that leads to the atomic identity.  The only instance in which 

the M site was found to be a Ru atom was in the arc-melted Gd2Ru3.08Al15.  For these reasons, it 

appears that the identity of the M atom is synthesis method dependent, with the lower temperature 

and slower cooling flux growth method favoring Al on the site.  Unfortunately, no other arc-melted 

analogues of Ln2Ru3Al15 yielded X-ray diffraction quality single crystals and the two powder 

diffraction patterns are too similar to be distinguishable on an in-house powder diffractometer. 

As a result of the slightly different structure, the a and c lattice parameters for single 

crystalline Gd2Ru3Al15.09 are 0.0206 Å and 0.0037 Å smaller than for polycrystalline 

Gd2Ru3.08Al15, respectively.  As shown in Table 5.3, all of the Gd-Gd interactions are shorter in 

the single crystalline analogue than in the polycrystalline analogue.  Interestingly, the Gd(3) 

splitting is more pronounced in the single crystalline Gd2Ru3Al15.09 despite the smaller lattice 

parameters. 

5.3.3 Physical Properties 

 Figure 5.3 shows the magnetic susceptibility with the field applied parallel to the ab-plane 

and the c-direction.  At high temperatures, the susceptibility in the two directions overlap.  This is 
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Figure 5.3 Zero-field-cooled magnetic susceptibility with (a) H // ab (b) H // c.  Insets show the 

ZFC and FCC susceptibilities at low temperature. 

expected as the f-electrons in Gd3+
 are spherically symmetric and therefore, not susceptible to 

crystalline electric field effects.  When H // ab, the susceptibility displays an antiferromagnetic 

ordering at TN = 18.3 K, similar to what is observed in the polycrystalline analogue.  When H // c, 

the susceptibility has a negative slope for all T with only a kink at 18.3 K.  This behavior is 

indicative of an antiferromagnetic ordering with the spins aligned in the ab-plane.  The fact that 

the susceptibility with H // c does not become temperature independent, as is expected for a canted 

antiferromagnet, suggests that the magnetic ordering does not involve all three Gd sites. 

  Polycrystalline Gd2Ru3.08Al15 was found to order at a higher temperature, 21.0 K, than 

single crystalline Gd2Ru3Al15.09.  As all of the Gd-Gd distances are shorter in the single crystalline 

analogue than in the polycrystalline analogue, this suggests that the RKKY interaction strengthens 

with increasing Gd distance.  The same behavior was observed in GdM2Al10 (M = Fe, Ru, Os) 

which has similar Gd-Gd distances.5.14 
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In polycrystalline Gd2Ru3.08Al15, a small upwards deviation was observed in the 

susceptibility at 150 K.  This deviation was believed to be caused by a ferromagnetic impurity, 

likely GdAl2, whose concentration was below the detection limit of our powder X-ray 

diffractometer.5.9  No deviation was observed in single crystalline Gd2Ru3Al15.09, confirming that 

this behavior was indeed due to an impurity. 

Table 5.4 Magnetic Properties for Gd2Ru3Al15 

 H dir. Fit Range χo(emu/mol-Ln) TN (K) θ (K) μeff (μB) Ref. 

Gd2Ru3.08Al15  160-288 0.0008(3) 21.0 11.5(17) 7.97(7) 5.9 

Gd2Ru3Al15.09 H // ab 50-300 -0.00143(4) 18.3 -0.38(5) 8.27(6)  

Gd2Ru3Al15.09 H //c 50-300 -0.00148(4) 18.3 -0.14(5) 8.21(6)   

 

Table 5.4 summarizes the anisotropic magnetic properties of single crystalline 

Gd2Ru3Al15.09 along with the previously reported Gd2Ru3.08Al15 polycrystalline properties.5.9  

Fitting the high temperature, 50-300 K, region of the susceptibility using a modified Curie Weiss 

law, χ = χ0 + C/(T - θ), where χ0 is a temperature independent sum of the diamagnetic and Pauli 

paramagnetic contributions, yields effective moments of 8.27(6) μB/mol-Gd3+ (H // ab) and 8.21(6) 

μB/mol-Gd3+ (H // c).  While this is somewhat higher than the 7.94 μB/mol expected for a free Gd3+ 

ion, no local moment was observed in Y2Ru3Al15.04, suggesting that the Ru atoms do not carry a 

moment in Gd2Ru3Al15.09.  From the Curie-Weiss fit, Weiss temperatures, θN, of -0.38(5) K 

(H // ab) and -0.14(5) K (H// c) were obtained.  A θN of ~0 K despite the antiferromagnet ordering 

suggests that there are ferromagnetic correlations present in the structure.  Ferromagnetic 

correlations were suggested to be between the Gd(2) and partially occupied Gd(3) atoms, thereby 

preventing the occurrence of long range order.5.9  These ferromagnetic correlations could explain 

the bifurcation that arises between the ZFC and FC susceptibilities near the antiferromagnetic 

ordering when H // ab, shown in the inset of Figure 3a.  The fact that no such bifurcation was 
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observed in polycrystalline Gd2Ru3.08Al15 may be due to the large difference in Gd2-Gd3 

interaction lengths between the two analogues.  Alternatively, a small spin-glass component may 

be present due to the disorder caused by the partially occupied M site. 

 Figure 5.4 shows the magnetization as a 

function of field at 2 K for the two crystallographic 

directions.  When H // ab, a metamagnetic 

transition occurs at H ≈ 1.2 T.  This transition is not 

observed when H // c, which is consistent with an 

antiferromagnet with the spins aligned in the ab-

-plane.  The magnitude of the magnetization in 

each direction is similar and does not saturate up to 

7 T, only reaching 4.6 μB/Gd3+ (H// ab) and 4.4 

μB/Gd3+ (H// c). 

 Figure 5.5a shows the resistivity as a function of temperature in both measured directions 

of single crystalline Gd2Ru3Al15.09.  Due to the dimensions of the bar-shaped single crystal, the 

magnitude of the resistivity with i // ab is likely inaccurate.  For this reason, only the relative 

resistivity, ρ/ρ2K, is reported for this direction.  While the absolute magnitude of the resistivity in 

the two directions can not be compared, the resistivity is clearly anisotropic, with the resistivity 

with i // ab having a steeper slope than with i // c.  In both directions, a decrease in the resistivity 

occurs at 18.3 K, in agreement with a reduction in spin disorder scattering due to the 

antiferromagnetic ordering.  The magnetoresistance, shown in Figure 5.5b, is negative in both 

directions and reaches -6.3% (i // ab) and -4.3% (i // c) at 9 T and 2 K.  As grain boundaries can  

 

Figure 5.4 Magnetization as a function 

of field in the two directions. 
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Figure 5.5 (a) Resistivity and (b) magnetoresistance with current applied in the two directions. 

have a large effect on MR,5.15 the negative MR is most likely intrinsic, while the larger magnitude 

positive MR observed in polycrystalline Gd2Ru3.08Al15 is likely extrinsic.   

5.4   Conclusions 

 Gd2Ru3Al15 can be stabilized over GdRu2Al10 at high temperatures, i.e. arc-melting, and in 

Ru poor conditions.  Large single crystals of Gd2Ru3Al15.09 have been grown from a Ru poor melt 

using the self-flux method.  The anisotropic properties of the single crystalline analogue highlights 

the advantages of single crystals over polycrystalline samples, with  single crystals allowing for 

the study of the intrinsic properties of Gd2Ru3Al15.09 unaltered by the ferromagnetic impurity that 

was present in the polycrystalline sample.  Furthermore, the anisotropic susceptibility provides 

information on the type antiferromagnetism observed in the polycrystalline sample.  The downturn 

turn in the susceptibility with H // ab, combined with the continuously negative slope with H // c, 

indicates that the antiferromagnetic ordering occurs with the spins aligned in the ab-plane.  This 

is consistent with the metamagnetic transition in the magnetization as a function of field with 

H // ab. 
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 Along with providing insight into the magnetic ordering, the single crystalline 

Gd2Ru3Al15.09 also exhibits different properties than polycrystalline Gd2Ru3.08Al15.  The atomic 

identity of the partially occupied M site was found to be synthesis method dependent.  This change 

in the structure led to shorted Gd-Gd interactions in the flux grown single crystalline analogue.  As 

a result, the single crystalline analogue orders antiferromagnetically at 18.3 K, which is lower than 

the 21.0 K ordering of polycrystalline Gd2Ru3.08Al15. 
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Chapter 6. Highly Anisotropic Properties due to Strong Crystalline Electric Field 

Effects in Tb2Ru3Al15.05 

6.1   Introduction   

 The non-spherical crystalline electric field (CEF) surrounding the lanthanide’s f-orbitals of 

Ln containing intermetallics (Ln = Ce-Eu, Tb-Yb) can affect their magnetic properties in many 

ways.  Common CEF effects include non-magnetic6.1, 2 or reduced moment ground states, 

anisotropic magnetization,6.3-5 and deviation from Curie-Wiess behavior.6.6-8  In some cases, CEFs 

can lead to highly anisotropic properties.  For example, in TmAgGe, the anisotropy of the magnetic 

susceptibility, χab/χc, reaches 30 at T = 5.0 K.  Furthermore, field dependent magnetization has a 

series of metamagnetic transitions with H // [1 2 0] which are not observed for H // [0 1 0].6.9  

Similarly, a large splitting energy of 370 K between the ground state and first excited state leads 

to highly anisotropic magnetism in CeRh2Si2.6.10  Despite the highly anisotropic magnetism, in 

both of these compounds the magnetic transitions are observed in both axial directions.6.9, 10  This 

is not the case in HoNi2B2C, where a splitting energy of ~90 K between the low-lying energy levels 

and the next set of energy levels leads to a broad hump in the susceptibility with H // c which is 

not observed with H // ab.6.3  However, even in this compound, the 5 K antiferromagnetic order is 

observed with both H // ab and H // c,6.11 indicating that the polarization of the moment into the 

ab-plane is not complete.  

 We have studied three families of compounds which are structurally related to CeRu2Al10 

and all contain very similar Ln environments: LnRu2Al10 (Ln = Pr, Gd, Yb),6.12 

CeRu4(Al,Si)15.58,6.13 and Ln2Ru3Al15 (Ln = Ce, Gd).6.14  Crystalline electric field effects were 

found to result in a nonmagnetic ground state in PrRu2Al10 at 13.2 K6.12 and lead to a deviation 

from Curie-Weiss behavior in Ce2Ru3Al15.6.14  Furthermore, the magnetization of CeRu2Al10 was 

found to be anisotropic and the first two splitting energies were calculated to be 500 and 760 K.6.5 
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 The CEF effects observed in these structurally related compounds, combined with our 

recent ability to grow large single crystals of Ln2Ru3Al15 for latter rare earths,6.15 made it of interest 

to further study CEF effects in Ln2Ru3Al15.  Herein, we report the anisotropic magnetization of 

Tb2Ru3Al15.05. 

6.2   Experimental 

6.2.1 Synthesis 

 A single crystal of Tb2Ru3Al15.05 was grown using the self-flux growth conditions reported 

for Gd2Ru3Al15.09.6.15  Tb (pieces, 99.9 % REO), Ru (powder, 99.98 % metal basis excluding Ca) 

and Al (shot, 99.999 %) were used as received.  A Tb:Ru:Al ratio of 4:2:40 was placed in an 

alumina crucible, covered with a second crucible, and sealed in a fused-silica tube.  The tube was 

sealed under a partial pressure (~ 1/6 atm) in order to help maintain its integrity at high 

temperatures.  The reaction was rapidly heated to 1250 °C, dwelled for 24 h, slow cooled at 1 °C/h 

to 1150 °C, and cooled to 1000 °C at 5 °C/h.  It was then removed from the oven, inverted, and 

spun in a centrifuge to remove the excess flux.  This growth resulted in one large single crystal (3- 

 

Figure 6.1 (a) Large single crystal of Tb2Ru3Al15.05 and (b) bar-shaped single crystal used for 

physical property measurements.  
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4 mm on each side), as shown in Figure 6.1a.  A single crystal of suitable size for physical property 

measurements, shown in Figure 6.1b, was mechanically extracted from the larger single crystal 

and polished into a bar shape. 

6.2.2 Structure 

 Single crystal X-ray diffraction data was collected using an Enraf Nonius KappaCCD 

diffractometer equipped with a Mo Kα source (λ = 0.71073 Å).  An initial structural model was 

obtained with direct methods using SIR976.16 which was then refined using SHELXL-97.6.17  A 

summary of crystallographic data and atomic positions can be found in Tables 6.1 and 6.2, 

respectively.  Orientation of the bar shaped single crystal was also done using X-ray diffraction  

Table 6.1 Crystallographic Data for Tb2Ru3Al15.05 

Formula Tb2Ru3Al15.05 
Space group P63/mcm 
a (Å) 13.0072(10) 
c (Å) 9.0289(10) 
V (Å3) 1322.9(2) 
Z 4 
Crystal dimensions (mm3) 0.07 x 0.07 x 0.10 
Temperature (K) 295(1) 
Density (g cm-3) 5.156 
θ  Range (°) 1.81-30.97 
µ (mm-1) 14.866 
 
Data Collection and Refinement 
Collected reflections 5257 
Unique reflections 795 
Rint 0.0296 
h -18 ≤ h ≤ 18 
k -15 ≤ k ≤ 15 
l -12 ≤ l ≤ 13 
∆ρmax (e Å-3) 1.721 
∆ρmin (e Å-3) -1.506 
GoF 1.154 
Extinction coefficient 0.00106(8) 
a R1(F) for Fo

2 > 2σ(Fo
2) 0.0229 

b Rw(Fo
2) 0.0548 

 
aR1 = Σ||F0| - |Fc||/Σ|F0| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0223P)2 + 6.5326P]  
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data collected on three non-confacial corners of the crystal in order to ensure that the bar was a 

single crystal with one orientation throughout.  The c-direction was found to be the medium axis 

of the bar, labeled in Figure 6.1b.  The a and b axes did not align with macroscopic axes of the 

bar.  For this reason, properties will be reported as parallel to the c-direction and parallel to the ab-

plane.   

Table 6.2 Atomic Coordinates and Atomic Displacement Parameters for Tb2Ru3Al15.05 

Atom Wyckoff site x y z Ueq (Å2)a Occ. 

Tb(1) 6g 0.60706(2) 0 ¼ 0.00926(11) 1 

Tb(2) 2a 0 0 ¼ 0.00834(17) 0.813(2) 

Tb(3) 4e 0 0 0.2036(6) 0.00834(17) 0.0935(10) 

Ru(1) 12i 0.202956(15) 0.40591(3) 0 0.00695(11) 1 

Al(1) 12k 0.79804(11) 0 0.02806(17) 0.0102(3) 1 

Al(2) 12i 0.40950(6) 0.81901(13) 0 0.0095(3) 1 

Al(3) 12j 0.16506(13) 0.87981(12) ¼ 0.0095(3) 1 

Al(4) 12j 0.72605(13) 0.47679(13) ¼ 0.0105(3) 1 

Al(5) 12k 0.61580(11) 0 0.89771(17) 0.0095(3) 1  

Al(6) 2b 0 0 0 0.032(11) 0.0935(10) 
aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

Elemental analysis was performed via energy dispersive X-ray spectroscopy, EDS, using 

an FEI Quanta 200 SEM equipped with an EDAX detector.  Six data points were collected on each 

of two clean cut faces of a single crystal of Tb2Ru3Al15 and provided an average composition of 

Tb2.00(13)Ru3.72(16)Al22.4(8). 

6.2.3 Physical Properties 

 Anisotropic magnetic properties were collected for H // ab and H // c on a Quantum Design 

Magnetic Property Measurement System (QD-MPMS).  Magnetic susceptibility was collected 

under zero-field-cooled (ZFC) and field-cooled (FC) conditions from 2-395 K at H = 0.1 T and 

magnetization as a function of field was collected at 2 K for H = 0-7 T.  Further magnetic 
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susceptibility measurements were collected for H // ab on a Quantum Design Physical Property 

Measurement System (QD-PPMS) under ZFC and FC conditions from 3-290K at H = 2 and 5 T.  

Resistivity for T = 3-290 K and magnetoresistance was measured for H = 0-9 T with i // ab and 

i // c on the QD-PPMS. 

6.3   Results and Discussion 

6.3.1 Structure 

 Tb2Ru3Al15.05 contains three unique Tb sites.  Table 6.3 provides Tb contacts less than 3.7 

Å.  Tb(1), which constitutes 75% of the Tb atoms, is surrounded by 14 Al atoms and 4 Ru atoms 

with point symmetry mm.  As shown in Figure 6.2a, the mirrors lie in the ab and ac-planes.  The 

Tb(1) polyhedra form face-sharing columns in the c-direction.  Due to the hexagonal symmetry of 

the structure, there are three different orientations of the columns, each a 120° rotation from the 

others.  Likewise, there are three orientations of the mirror planes in the ac-direction, with each 

polyhedron containing one of the mirror planes.  Tb(2), which constitutes 20.33(5)% of the Tb 

atoms, is surrounded by 18 Al atoms with point symmetry mm.  Like with Tb(1), these mirror 

planes lie in the ab and ac-planes.  However, as shown in Figure 6.2b, each polyhedron contains  

Table 6.3 Selected Interatomic Distances in Tb2Ru3Al15.05 (Å) 

Interaction  Distance (Å) Interaction  Distance (Å) 

Tb(1)-Ru(1) (x4) 3.4128(2) Tb(2)-Al(1) (x6) 3.3040(14) 

Tb(1)-Al(1) (x2) 3.1917(15) Tb(2)-Al(1) (x6) 3.6337(15)  

Tb(1)-Al(2) (x4) 3.3453(9) Tb(2)-Al(3) (x6) 3.2265(15) 

Tb(1)-Al(3) (x2) 3.0951(14) Tb(3)-Al(1) (x3) 3.068(3) 

Tb(1)-Al(4) (x2) 3.0872(15) Tb(3)-Al(1) (x3) 3.358(4)  

Tb(1)-Al(5) (x2) 3.1828(16) Tb(3)-Al(1) (x3) 3.574(4) 

Tb(1)-Al(5) (x2) 3.1908(15) Tb(3)-Al(3) (x6) 3.2536(16) 

  Tb(3)-Al(6) (x1) 2.676(6)  
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Figure 6.2 Structure of Tb2Ru3Al15.05 showing the three Tb environments and the packing of the 
Tb polyhedra.  

all three mirror planes in the ac-direction.  The Tb(2) polyhedra from volume-sharing polyhedra 

in the c-direction.  Directly in between two adjacent Tb(2) atoms is a partially occupied Al(6) 

atom.  When this atom is present, the two neighboring Tb(2) atoms deviate from the ab mirror 

plane onto a Tb(3) site.  Tb(3), which constitutes 4.67(5)% of the Tb atoms, is surrounded by 16 

Al atoms with point symmetry m.  As shown in Figure 6.2c, the Tb(3) polyhedra still contain the 

three ac mirror planes but, unlike the Tb(1) and Tb(2) polyhedra, do not contain the ab mirror 

plane. 

6.3.2 Properties 

 Table 6.4 summarizes the anisotropic magnetic data for Tb2Ru3Al15.05.  Figure 6.3 shows 

the anisotropic magnetic susceptibility of Tb2Ru3Al15.05 with H parallel to the ab-plane and 
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c-direction.  For H // ab, three 

successive magnetic transitions 

occur at low temperatures, shown 

in the top inset.  At ~17 K, the 

system enters a reduced moment 

ground state due to crystalline 

electric field effects.  An upturn at 

16.7 K suggests a partial 

ferromagnetic ordering followed 

by an antiferromagnetic ordering 

at 15.2 K.  The large magnitude 

change at 15.2 K, as compared to most antiferromagnetic transitions, is due to the overlap of the 

antiferromagnetic ordering and the reduced moment ground state.  A small bifurcation between 

the zero-field-cooled and field-cooled (not shown) susceptibilities, is consistent with a partial 

ferromagnetic ordering.  Fitting the high temperature susceptibility with a modified Curie-Weiss 

law, χ = χ0 + C/(T - θ), where χ0 is a temperature independent sum of the diamagnetic and Pauli 

paramagnetic contributions, yields an effective moment of 9.462(15) µB/Tb3+, smaller than the 

9.72 µB expected for a free Tb3+, and a Weiss-temperature of 12.8(3) K.  As will be discussed later, 

these values are likely the result of a deviation for Curie-Weiss behavior due to CEF effects. 

Table 6.4 Magnetic Properties for Tb2Ru3Al15.05 

 H dir. Field (T) Fit Range χo(emu/mol-Ln) TN (K) θ (K) µeff(µB) 

Tb2Ru3Al15.05 H // ab 0.1 150-390 0.00070(8) 15.2 12.8(3) 9.462(15)  

Tb2Ru3Al15.05 H // ab 2 150-295 -0.00215(10) - 9.7(4) 9.554(18)  

Tb2Ru3Al15.05 H // ab 5 150-295 -0.00398(16) - 5.0(5) 9.81(3)  

Tb2Ru3Al15.05 H // c 0.1 150-390 0.00008(10) - -13.5(6) 9.78(2)  
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 Figure 6.4 Magnetic susceptibility of Tb2Ru3Al15.05. 
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The magnetic susceptibility with H // c does not resemble the susceptibility with H // ab.  

Instead, the system appears to enter a reduced moment ground state at 49 K with no indication of 

the three low temperature transitions observed in the other direction.  This suggests that the 49 K 

transition is not a reduced moment ground state but is instead the result of CEF effects completely 

polarizing a portion of the moment, likely the moment from Tb(1), into the ab plane.  The bottom 

inset of Figure 6.3, shows the susceptibility for H // c at 15 K, highlighting how complete the 

polarization is and how accurate the crystal alignment is.  Fitting the susceptibility from 150-390 

K yields an effective moment of 9.78(2) µB/Tb3+ and a θN of –13.5(6) K.  The good agreement 

between these values and the values expected for a free Tb3+ ion and a 15.2 K antiferromagnet, 

respectively, suggests that the high temperature susceptibility is less affected by the CEF with 

H // c than ab.  

 Figure 6.4 shows the  

magnetization as a function of field at 

2 K for Tb2Ru3Al15.05.  When H // c, at 

low fields the magnetization is small 

and linear, consistent with the 

susceptibility.  Starting at ~ 5 T, the 

magnetization begins to increase 

above linearity, which may be due to 

the large applied field disrupting the 

crystalline electric field effects.  When 

H // ab, the magnetization is initially 

linear up to 0. 8 T, at which field it undergoes the first of 3-4 metamagnetic transitions.  At H ~ 4 
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T, the magnetization saturates at 6.6 µB/mol-Tb3+ which is less than the 9 µB expected for a free 

Tb3+
 ion and is consistent with a reduced moment ground state.  The magnetization under 

descending field with H // ab does not overlay with the ascending field magnetization.  This 

hysteresis may be due to the ferromagnetic component observed in the susceptibility.  

Interestingly, only two of the metamagnetic transitions are observed under descending field and 

the system does not revert back to its original state down to zero field. 

 To investigate the origin of 

the metamagnetic transitions 

observed in the magnetization as a 

function of field, the magnetic 

susceptibility was measured at the 

plateaus at 2 and 5 T, shown in 

Figure 6.5.  When H = 2 T, the 

antiferromagnetic ordering has been 

disrupted, leaving the reduced 

moment ground state and a brief 

spike in the susceptibility at 16.0 K, 

whose origin is unclear.  The 

bifurcation observed at 0.1 T is still present at 2 T.  When H = 5 T, the susceptibility saturates at 

6.3 µB/mol-Tb3+
, similar to the saturated moment observed in the magnetization as a function of 

field and consistent with a reduced moment ground state.  No magnetic transitions are observed, 

presumably because the spins are almost saturated at the temperatures the orderings would occur.  
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Finally, the temperature at which the system enters its reduced moment ground state has been 

reduced, as is expected for an applied external field. 

 As shown in Table 6.4, fitting the high temperature magnetic susceptibility with H // ab at 

0.1 T yields an effective moment of 9.462(15) µB/Tb3+ and a positive Weiss temperature of 12.8(3) 

K.  Under an applied field of 2 T, the effective moment was found to be 9.554(18) µB/Tb3+ with 

θN of 9.7(4) K.  Finally at H = 5 T, a Curie-Weiss fit yields an effective moment of 9.81(3) µB/Tb3+ 

and a Weiss temperature of 5.0(5) K.  The increase in the moment and the decrease in the θN with 

increased field suggest that the positive Weiss temperature and reduced moment with H // ab are 

the effect of deviations from Curie-Weiss behavior due to the crystalline electric field.    

6.4   Conclusions 

 The magnetic properties of Tb2Ru3Al15.05 are highly anisotropic due to strong crystalline 

electric field effects.  Three successive magnetic transitions are observed in the magnetic 

susceptibility with H // ab, the most prominent of which is an antiferromagnetic ordering at 15.2 

K.  These transitions are not observed with H // c.  Instead, a broad transition at T ≈ 49 K is 

indicative of a portion of the moment, likely the Tb(1) moment, being polarized into the ab-plane.  

Furthermore, the magnetization as a function of field, is small and linear with H // c whereas when 

H // ab, a series of metamagnetic transitions are observed, leading to a saturation of the moment 

at ~ 4 T. 

 Several compounds have been reported with highly anisotropic magnetic properties due to 

crystalline electric field effects.  However, in all of these compounds, the low temperature 

magnetic transitions are observed with the external field applied in all directions, indicating that 

the polarization of the spins is not absolute.  Tb2Ru3Al15.05 is unique in that a portion of the 

magnetic moment appears to be completely polarized into the ab-plane.  This polarization, 
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combined with the ability to easily grow large single crystals, makes Tb2Ru3Al15.05 an ideal subject 

for further studies, such as neutron scattering experiments. 
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Chapter 7. Single Crystal X-ray Diffraction of α- and β-YbAl1-xFexB4 
 

7.1   Introduction 

YbAlB4 exists as two polymorphs.  α-YbAlB4 is a member of the YCrB4 structure type and 

crystallizes in the noncentrosymmetric space group Pbam.7.1  The Yb atoms have an intermediate 

valence of +2.737.2 and the system has a heavy Fermi liquid ground state.7.3  β-YbAlB4 crystallizes 

in the ThMoB4 structure type with the space group Cmmm.7.1  Like the α- polymorph, β-YbAlB4 

has an intermediate Yb valence of +2.757.2 and is a heavy fermion system.7.1  β-YbAlB4 has a 

superconducting ground state with Tc ~ 80 mK and Hc2 ~ 30 mT.  In this superconducting state, 

quantum criticality arises without any field or pressure tuning.  Quantum criticality is noteworthy 

within β-YbAlB4 as it is the first example of a quantum critical point (QCP) without the need for 

tuning and is also the first instance of a quantum critical heavy fermion system with a non-integer 

valence.7.4 

A quantum critical point is a point at which the temperature of a phase transition is 

depressed to 0 K and is of interest as the suppression of the normal state can lead to novel or new 

states of matter.  Typically, a quantum critical point is reached through the tuning of a non-

temperature parameter such as pressure or dopant concentration.  For example, a magnetic field of 

0.66 T can tune the antiferromagnetic ordering of YbRh2Si2 to T = 0 K.7.5  Similarly, at x = 0.32, 

BaFe2(As1-xPx)2 exists at a QCP which corresponds with the suppression of a spin-density wave 

and emergence of a superconducting state.7.6     

In some special cases, such as YFe2Al10
7.7 and β-YbAlB4,

7.4 a compound exists at a 

quantum critical point without the need for any tuning.  This makes the normal state of the system  

difficult to determine as it has been completely suppressed.  In YFe2Al10, the normal state is 

believed to be characterized by the ferromagnetic ordering of localized Fe moments.  In order to 
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study the suppressed ordered state of β-YbAlB4, single crystals of α- and β-YbAl1-xFexB4 have 

been prepared.7.8  Herein, single crystal X-ray diffraction is used to study the effect of Fe doping 

on the structure of α- and β-YbAl1-xFexB4 at 295 and 100 K.7.8 

Table 7.1† Crystallographic Data for α-YbAl0.93Fe0.07B4, β-YbAl0.97Fe0.03B4, and 

β-YbAl0.97Fe0.03B4 at 295(3) and 100(1) K 
Formula α-YbAl0.93Fe0.07B4  β-YbAl0.97Fe0.03B4  β-YbAl0.97Fe0.05B4 

Temperature (K) 295(3) 100(1)  295(3) 100(1)  295(3) 100(1) 

Space group Pbam Pbam  Cmmm Cmmm  Cmmm Cmmm 

a (Å) 5.9184(6) 5.9167(6)  7.3075(9) 7.3015(12)  7.3023(12) 7.3013(12) 

b (Å) 11.4645(15) 11.4602(15)  9.3178(15) 9.3133(12)  9.3178(12) 9.3130(12) 

c (Å) 3.4832(6) 3.4780(4)  3.4971(6) 3.4892(6)  3.4917(6) 3.4852(6) 

V (Å3) 236.34(6) 235.83(4)  238.1(3) 237.27(6)  237.58(6) 236.98(6) 

Z 4 4  4 4  4 4 

Crystal dimensions 

(mm3) 
0.07x0.13x0.17  0.01x0.07x0.07  0.01x0.07x0.07 

Density (g cm-3) 6.894 6.904  6.787 6.811  6.801 6.819 

  Range (°) 3.55-31.01 3.56-30.97  3.54-30.92 3.54-30.99  3.54-30.96 3.55-30.90 

μ (mm-1) 39.918 39.972  39.242 39.380  39.320 39.425 

Data Collection and Refinement 

Collected reflections 710 699  2160 2252  2251 2598 

Unique reflections 433 426  244 244  244 243 

Rint 0.0179 0.0155  0.0133 0.0128  0.0234 0.0203 

h -8  h  8 

-16  k  16 

 -10  h   10 

-13  k  13 

-5  l  5 

 -10  h   10 

-13  k  13 

-4  l  5 

k   

l -5  l  5 -4  l  5   

Δρmax (e Å-3) 3.068 2.999  2.611 2.474  5.223 4.764 

Δρmin (e Å-3) -1.862 -1.768  -2.607 -2.758  -4.680 -3.777 

GoF 1.149 1.294  1.149 1.159  1.183 1.159 

Extinction coefficient 0.0121(10) 0.0119(10)  0.0166(11) 0.0144(10)  0.018(3) 0.014(3) 
a R1(F) for Fo

2 > 

2σ(Fo
2) 

0.0209 0.0237  0.0177 0.0186  0.0388 0.0424 

b Rw(Fo
2) 0.0553 0.0603  0.0459 0.0462  0.1016 0.1116 

aR1 = Σ||F0| - |Fc||/Σ|F0| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(F0

2)2]1/2; P = (Fo
2 + 2Fc

2)/3; w = 1/[σ2(Fo
2) + (0.0261P)2 + 3.2341P], w = 1/[σ2(Fo

2) + 

(0.0258P)2 + 4.5691P], w = 1/[σ2(Fo
2) + (0.0663P)2], and w = 1/[σ2(Fo

2) + (0.0559P)2] for α-YbAl0.93Fe0.07B4 at 
295K and 100 K and β-YbAl0.97Fe0.03B4 at 295 K and 100 K, respectively 

†Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuji, 

S., Phys. Rev. B 2012, 86, 224413.  Copyright 2012 American Physical Society. 
 

7.2   Experimental 

 The synthesis of single crystals of α-YbAl1-xFexB4 (0 ≤ x ≤ 0.07) and β-YbAl1-xFexB4 (0 ≤ 

x ≤ 0.06) has previously been reported.7.1, 8  The Fe concentration in the crystals was determined 

using ICP data for the α-phase and EDX data for the β-phase.7.8  Single crystal X-ray diffraction 
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data were collected using a Nonius KappaCCD diffractometer equipped with a Mo Kα source (λ = 

0.70930 Å) at room temperature, 295(3) K, and at 100(1) K.  Direct methods using SIR927.9 was 

performed in order to obtain an initial structural model which was then refined using 

SHELXL-97.7.10  Crystallographic data and atomic coordinates for α-YbAl1-xFexB4 (x = 0.07) and 

β-YbAl1-xFexB4 (x = 0.03, 0.05) can be found in Tables 7.1-3. 

Table 7.2† Atomic Coordinates and Atomic Displacement Parameters for α-YbAl0.93Fe0.07B4  

Atom Wyckoff site x y z  Ueq (Å
2)a Occ. 

295(3) K 

Yb(1) 4g 0.12859(5) 0.15052(3) 0 0.00344(17) 1 

Al(1) 4g 0.1365(4)  0.4109(2)  0 0.0042(8) 0.929(15) 

Fe(1) 4g 0.1365(4)  0.4109(2)  0 0.0042(8) 0.071(15) 

B(1) 4h 0.2921(16) 0.3135(8) ½  0.0056(16) 1 

B(2) 4h 0.3654(15) 0.4695(8) ½  0.0054(16) 1 

B(3) 4h 0.3850(16) 0.0479(8) ½  0.0063(15) 1 

B(4) 4h 0.4725(16) 0.1939(8) ½ 0.0042(16) 1 

 

100(1) K 

Yb(1) 4g 0.12862(6) 0.15052(3) 0 0.00166(19) 1 

Al(1) 4g 0.1361(4)  0.4109(2)  0 0.0023(9) 0.935(17) 

Fe(1) 4g 0.1361(4)  0.4109(2)  0 0.0023(9) 0.065(17) 

B(1) 4h 0.2915(19) 0.3138(9) ½  0.0047(18) 1 

B(2) 4h 0.3651(17) 0.4686(8) ½  0.0032(17) 1 

B(3) 4h 0.3875(17) 0.0482(9) ½  0.0023(16) 1 

B(4) 4h 0.4751(18) 0.1929(9) ½ 0.0037(18) 1 

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

†Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuji, 

S., Phys. Rev. B 2012, 86, 224413.  Copyright 2012 American Physical Society. 
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7.3   Results and Discussion 

7.3.1 α-YbAl1-xFexB4 

 Table 7.2 shows the atomic coordinates for α-YbAl0.93Fe0.07B4.  When the Fe substitution 

was not accounted for, the Al site (4g) had an anomalously small atomic displacement parameter 

as compared to the undoped α-YbAlB4. Therefore, the Fe was partially substituted on the Al site 

and the occupancies of the two elements were freely refined.  This resulted in a mixed occupancy 

of 7.1(15)% Fe and 92.9(15)% Al at 295(3) K and is in good agreement with the composition as 

obtained from the elemental analysis using the ICP method.  Furthermore, no evidence for a 

structural transition was observed with substitution, and likewise, no structural transition was 

observed for any Fe concentration upon cooling from room temperature down to 100(1) K.7.8 

Figure 7.1 shows the effect that the Fe dopant concentration has on the lattice parameters 

and volume of α-YbAl1-xFexB4.  For both temperatures studied, the a and b lattice parameters show 

an initial increase upon doping from YbAlB4 to YbAl1-xFexB4 (x = 0.005) after which, a steady 

decrease occurs with increased Fe concentration.  The c lattice parameter does not show this initial 

increase, only steadily decreasing with increased Fe concentration at both temperatures.  The c 

lattice parameter was found to have a much greater dependence on the dopant concentration than 

the a and b lattice parameters.  Substitution of the smaller Fe onto the Al site allows for the boron 

layers to collapse towards each other leading to the decrease in the c direction.  On the other hand, 

while doping Fe onto the Al site affects the YbAl layers, it has little effect on the boron layer, 

consistent with the greater change in the c lattice parameter than the a and b lattice parameters.  

Overall, the volume shows a continuous decrease with increasing Fe doping.  Compared to the 

undoped analogue, α-YbAl0.93Fe0.07B4 shows a volume contraction of ~0.8%.  This indicates that 

Fe doping applies chemical pressure to the system. 



 

 

97 

 

 
Figure 7.1 The effect of Fe dopant concentration on the lattice parameters and volume of 

α-YbAl1-xFexB4. 

7.3.2 β-YbAl1-xFexB4 

 Tables 7.3 and 7.4 provide atomic coordinates for β-YbAl1-xFexB4 (x = 0.03, 0.05).  When 

the Fe substitution was not included in the model, the Al site (4g) had a similar atomic 

displacement parameter to the Yb site (4i) suggesting that the Fe occupies the Al site.  For 

β-YbAl0.97Fe0.03B4, Fe was partially substituted onto the Al site and the occupancies were freely 

refined.  The resulting site occupancy was 1.3(15)% Fe and 98.7(15)% Al at 295(3) K.  This is in 
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Table 7.3† Atomic Coordinates and Atomic Displacement Parameters for β-YbAl0.97Fe0.03B4 

Atom Wyckoff site x y z  Ueq (Å
2)a Occ. 

295(3) K 

Yb(1) 4i 0 0.30065(4) 0 0.00388(19) 1 

Al(1) 4g 0.1808(3)  0 0 0.0042(8) 0.987(15) 

Fe(1) 4g 0.1808(3)  0 0 0.0042(8) 0.013(15) 

B(1) 4h 0.1219(13) ½ ½  0.0050(13) 1 

B(2) 8q 0.2226(8) 0.1594(14) ½  0.0061(10) 1 

B(3) 4j 0 0.0922(9) ½  0.0044(13) 1 

 

100(1) K 

Yb(1) 4i 0 0.30066(3) 0 0.00260(19) 1 

Al(1) 4g 0.1810(3)  0 0 0.0031(8) 0.996(15) 

Fe(1) 4g 0.1810(3)  0 0 0.0031(8) 0.004(15) 

B(1) 4h 0.1215(13) ½  ½  0.0046(14) 1 

B(2) 8q 0.2224(8) 0.1596(8) ½  0.0046(10) 1 

B(3) 4j 0 0.0921(9) ½  0.0043(14) 1 

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

†Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuji, 

S., Phys. Rev. B 2012, 86, 224413.  Copyright 2012 American Physical Society. 
 

agreement with the ICP data which indicated the stoichiometry to be β-YbAl0.98Fe0.02B4.  While 

the atomic displacement parameters also suggested that the Fe occupied the Al site in 

β-YbAl0.95Fe0.05B4, no Fe could be refined onto this site, or any other site, for the model.  The 

inability to model the Fe doping in β-YbAl0.95Fe0.05B4 can be attributed to the lower quality 

diffraction data for this analogue compared to the other analogues.  β-YbAl0.95Fe0.05B4 grew as 

thin plates whereas β-YbAl0.97Fe0.03B4 grew as thick plates and α-YbAl0.93Fe0.07B4 grew as rods.   

The thinner plates for β-YbAl0.95Fe0.05B4 led to lower quality X-ray diffraction data which is 

apparent in both the increased R1 and residual electron densities for this analogue.  Due to the 

increased ∆ρmin/max, the Fe substitution could not be modeled.  As with α-YbAl1-xFexB4, no 
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Table 7.4† Atomic Coordinates and Atomic Displacement Parameters for β-YbAl0.95Fe0.05B4 

Atom Wyckoff site x y z  Ueq (Å
2)a Occ. 

295(3) K 

Yb(1) 4i 0 0.30070(4) 0 0.0054(4) 1 

Al(1) 4g 0.1799(6)  0 0 0.0049(8) 1 

B(1) 4h 0.122(3) ½ ½  0.005(2) 1 

B(2) 8q 0.2225(8) 0.1607(15) ½  0.0067(17) 1 

B(3) 4j 0 0.0917(15) ½  0.006(2) 1 

 

100(1) K 

Yb(1) 4i 0 0.30072(5) 0 0.0042(4) 1 

Al(1) 4g 0.1802(6)  0 0 0.0031(8) 1 

 B(1) 4h 0.124(3) ½  ½  0.009(3) 1 

B(2) 8q 0.2227(15) 0.1598(18) ½  0.009(2) 1 

B(3) 4j 0 0.0913(12) ½  0.004(3) 1 

aUeq is defined as one-third of the trace of the orthogonalized Uij tensor. 

†Reproduced with permission from Kuga, K.; Morrison, G.; Treadwell, L.; Chan, J. Y.; Nakatsuji, 

S., Phys. Rev. B 2012, 86, 224413.  Copyright 2012 American Physical Society. 
 

structural transition was observed in β-YbAl1-xFexB4 upon doping or cooling down to 100 K.7.8 

 Single crystal X-ray diffraction data was also collected on a sample of β-YbAl0.94Fe0.06B4. 

Although the mosaicity of the single crystal was suitable for data collection at 295(3) K, upon 

cooling in 50 K intervals down to 100(1) K, a continuous decrease in crystal quality, indicated by 

increased χ2s and mosaicity, was observed. For example, the mosaicity of the crystal increased 

from 0.45 degrees at 295(3) K to 0.87 degrees at 100(1) K.  When the crystal was warmed back to 

room temperature, the crystal quality returned to its original state. Diffraction data of 

β-YbAl0.94FexB4 was collected at both 295(3) K and 100(1) K and no evidence for a structural 

transition was observed. In α-YbAl0.93Fe0.07B4 and β-YbAl1-xFexB4 (x = 0.03, 0.05), on the other 

hand, the degradation of crystal quality on cooling was not observed. Synthesis experiments 
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suggest that the concentration x = 0.06 is close to the edge of the stability of the Fe doped β-phase, 

and this may be the origin of the increase in the mosaicity on cooling. 

Figure 2 shows the effect that the Fe dopant concentration has on the lattice parameters and 

volume of β-YbAl1-xFexB4.  The a and c lattice parameters decrease with increased Fe 

concentration while the b direction increases slightly.  Like with α-YbAl1-xFexB4, the change in  

 

Figure 7.2 The effect of Fe dopant concentration on the lattice parameters and volume of 

β-YbAl1-xFexB4. 
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the c-direction is more pronounced than in the other two directions, consistent with the structure.  

Overall, the volume of the unit cell decreases with increasing Fe concentration, indicating that the 

Fe doping applies chemical pressure to the system.  At x = 0.05, the volume has contracted 0.2% 

compared to the undoped analogue. 

7.4   Conclusion 

 Single crystal X-ray diffraction data were collected on crystals of α-YbAl1-xFexB4 (0 ≤ x ≤ 

0.07) and β-YbAl1-xFexB4 (0 ≤ x ≤ 0.06).  The Fe was found to dope onto the Al site in both 

polymorphs.  No structural transition was observed upon doping Fe into the systems or upon 

cooling from 295 K to 100 K in any analogue.  However, in both analogues, a continuous decrease 

in unit cell volume was observed with increasing Fe concentration and was most pronounced in 

the c direction.  This indicates that Fe doping applies chemical pressure to the systems.  In this 

way, a thorough understanding of the structural effects of Fe doping helps explain the properties 

of  the two polymorphs of YbAl1-xFexB4 and to shed light on the normal state of the quantum 

critical β-YbAl1-xFexB4.
7.8
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Chapter 8. Synthesis, Characterization, and Surface Patterning of FeNi3 and Ln2O3 

Nanoparticles 

8.1   Nanointermetallic FeNi3 

Magnetic sample modulation, MSM, is an enhanced atomic force microscopy, AFM, 

technique which can provide magnetic information about individual nanoparticles.  In MSM, an 

alternating current electromagnetic field is applied beneath the AFM sample stage.  The magnetic 

field causes magnetic nanoparticles to oscillate which can be detected by a non-magnetic tip in 

contact mode.  Using MSM, surface topography and magnetic mapping can be concurrently 

obtained.8.1  

 To further explore the capabilities of MSM, A. Kelley et al. synthesized FeNi3 

nanoparticles.8.2  The samples used in these studies consisted of FeNi3 and Fe3O4 nanoparticles.  

While this allowed for the investigation of whether MSM can distinguish between two types of 

nanoparticles,8.2 for further studies of MSM, phase pure FeNi3 nanoparticles are desired. 

 FeNi3 crystallizes in the face-centered cubic structure (AuCu3 type) with cubic space group 

Pm3m and lattice parameter a = 3.525 Å.8.3  FeNi3 can either crystallize as an intermetallic with 

Ni on the corners of the unit cell and Fe in the face centers, or as an alloy with a mix on each site.  

Typically, the intermetallic forms in low temperature growth conditions, under 500 °C, such as 

those used in most nanoparticle syntheses.8.3  However, it can be difficult to distinguish between 

the two forms.8.4  FeNi3 is a room temperature ferromagnet and for this reason, FeNi3 nanoparticles 

are of interest for purposes such as magnetic memory, sensors, and biomedical applications.8.5-7 

8.1.1 Synthesis 

 The co-reduction method8.8 was used for the synthesis of FeNi3.  In all reactions, 2.64 x 

10-4
 moles of an Fe source and three times that of Ni(NO3)2·6H2O were added to water along with 
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a reducing agent.  Heating of the reaction was carried out either in a Parr Bomb which was heated 

to 180 °C for 15 h or in microwave vessel which was heated to 180 °C for 1 h.   

 Initially, two reactions were carried out using the previously reported procedure.8.2  These 

reactions used Fe(NO3)3·9H2O as the Fe source and hydrazine, N2H4·H2O, as the reducing agent.  

For hydrazine to act as a reducing agent, a basic environment is required and was obtained by the 

addition of NaOH to the reaction.  Both reactions were degassed by bubbling with nitrogen before 

heating.  The first reaction was heated in a Parr Bomb and resulted in a mixture of FeNi3 and 

magnetite, Fe3O4.  The second reaction, was heated in the microwave and did not yield the desired 

product, FeNi3.  Instead, only Ni(OH)2 and an unknown product formed.  This can be explained 

by Reaction 8.1.  Hydrazine can undergo two competing reactions.  The desired reaction, the 

reduction of a metal center, produces one equivalent of nitrogen gas.  The second reaction, which 

is more energetically favorable at standard conditions, is the decomposition of hydrazine into one 

equivalent of nitrogen gas and four equivalents of ammonia gas.  Therefore, in order to carry out 

the desired reduction, hydrazine requires high pressure.  This was achieved in the Parr Bomb which 

was about 75 % full but was not achieved in the microwave vessel, which was approximately 25 

% full. 

Reaction 8.1 Standard reaction potentials for pertinent hydrazine reactions.8.5  

 

 In an attempt to purify the synthesis of FeNi3, several further reactions were carried out.  

As shown in Reaction 8.2, for magnetite to form, Fe+2, Fe+3 and a basic environment are required.  

Initially, it was attempted to remove the basic environment by using a reducing agent that did not 

require hydroxide ions.  For this reason, a reaction using potassium oxalate was attempted.  This 

2Fe2+ + 4OH- + N2H4  2Fe + N2 + 4H2O  E0 = 0.44 V

2Ni2+ + 4OH- + N2H4  2Ni + N2 + 4H2O  E0 = 0.49 V

3N2H4  N2 + 4NH3 E0 = 1.05 V
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reaction was split in half and one half was heated in a Parr Bomb and the other half in a microwave.  

These reactions did not yield any FeNi3 but instead only yielded Ni(II) oxalate.  This suggests that 

the oxalate ion preferred to be a ligand instead of a reducing agent.  Instead of removing the basic 

environment, it then became of interest to remove one of the iron cations.  As an Fe(III) source  

was being used, some of the Fe(III) must have been reduced to Fe(II) during the reaction process.   

 

Figure 8.1 Powder diffraction pattern of FeNi3 nanoparticles heated in a Parr Bomb 

To avoid the presence of both cations, an Fe(II) source, FeCl2, was used.  This reaction was 

degassed before heating in a Parr Bomb and resulted in a mixture of FeNi3 and Fe3O4.  In order for 

magnetite to form, an oxidizing agent must have been present to oxidize some of the Fe(II).  As 

this oxidizing agent was believed to be oxygen, another reaction was carried out using a glovebox 

to prepare the reaction.  This reaction was heated in a Parr Bomb and the powder XRD, shown in 

Figure 8.1, indicated that only FeNi3 was produced. 

Reaction 8.2 Formation of magnetite.8.9  

 

After the successful synthesis of FeNi3 using a Parr Bomb, it was of interest to produce it 

using a microwave.  In order to increase the pressure within the microwave vessel and thereby 

favor the reduction of the metal centers over the decomposition of hydrazine, an excess of 

hydrazine was added to the reaction.  In this way, some hydrazine would initially decompose, 

Fe2+ + 2Fe3+ + 8OH-
 Fe3O4 + 4H2O
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increasing the pressure enough to allow for the remaining hydrazine to act as a reducing agent.  As 

shown in Figure 8.2, this reaction yielded phase pure FeNi3. 

 

Figure 8.2 Powder diffraction pattern of FeNi3 nanoparticles produced using microwave heating 

8.2   Spatially Separated Y2O3 Arrays 

Due to the two valence states available to cerium, CeO2 has the ability to release oxygen.  

This ability makes cerium oxide a useful oxidative catalyst for a variety of applications such as 

three-way automotive catalysts,8.10, 11 gas sensors,8.12 fine chemical synthesis,8.13-15 and solid oxide 

fuel cells.8.16    For many of these applications, the ceria catalysts is coupled with a noble metal, 

such as Pt or Pd.8.17  These catalytic properties can be enhanced by using ceria nanoparticles.8.16 

Two processes occur which decrease the efficiency of nanoparticles for catalysis: 

agglomeration and Ostwald ripening.  Agglomeration is the adhesion of particles which are in 

contact with each other while Ostwald ripening is the dissolution of smaller particles in order to 

provide monomer for the growth of larger particles.  Both of these processes lead to larger particle 

sizes and smaller surface areas thereby reducing particle efficiency.8.18, 19 

In order to prevent agglomeration and to limit Ostwald ripening, we have proposed to 

produce ordered arrays of spatially separated ceria nanoparticles using nanolithography 

techniques.  Due to the difficulty of ceria synthesis compared to other lanthanide oxides, namely 

the need for hydrofluoric acid, we have selected Y2O3 to evaluate synthetic variables.         
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8.2.1 Synthesis 

Yttrium trichloroacetate was prepared according to a previously published procedure.8.20 

Yttria powder (15 mmol) was dissolved in concentrated nitric acid (100 mL) heated to 80 °C. The 

dissolved Y2O3 solution was cooled to room temperature, and yttrium hydroxide was precipitated 

from the solution by adding NH4OH until the solution registered as basic. The precipitate was 

separated via vacuum filtration and washed several times with deionized water. A solution of 

yttrium trichloroacetate was prepared by dissolving the hydroxide precipitate in a 25% 

trichloroacetic acid solution. 

Microchannels of Y2O3 were patterned on a UV-ozone cleaned silicon wafer. A PDMS 

mold of 3 μm triangular channels was placed on the clean silicon wafer. A drop of the yttrium 

trichloroacetate solution was placed next to the PDMS mold. Capillary action at the opening of the 

stamp draws liquid into the microchannels. The solution was dried overnight and the stamp was 

removed leaving behind patterned yttrium trichloroacetate. The sample was heated to 150 °C for 

3 h in order to decompose the acid and form Y2(CO3)3. The carbonate was further decomposed to 

Y2O3 by heating to 800 °C overnight. 

 Nanoparticles of Y2O3 were patterned in hexagonal close packed arrays of pores in an 

octadecyltrichlorosilane (OTS) surface assembled monolayer (SAM) on silicon made using two 

particle lithography.  Yttrium trichloroacetate solution was filled into the pores using 

discontinuous dewetting, a process in which a polar solution selectively adheres to a hydrophilic 

pore over a hydrophobic SAM by removing the sample from the solution on an angle.  After the 

pores are filled, the sample was air dried and then heated using the same profile as for the 

microchannels.  The 800 °C dwell temperature was sufficient to both decompose the carbonate 

and to burn off the OTS monolayer, leaving only the yttria nanoparticles on the quartz surface. 
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Chapter 9. Conclusions 

 The research in this document focused on three structurally related sets of compounds: 

LnRu2Al10, CeRu4(Al,Si)15.58 and Ln2Ru3Al15.  These studies were initially motivated by the 

anomalous properties observed in CeRu2Al10, namely the higher ordering temperature than 

expected from de Gennes scaling9.1 and the metal to insulator transition near this ordering 

temperature.9.2 

 PrRu2Al10 enters a non-magnetic ground state at 13.2 K due to crystalline electric field 

effects, GdRu2Al10 orders antiferromagnetically at 15.5 K, and YbRu2Al10 is a Pauli paramagnetic.  

All three analogues display metallic resistivity for all T with the Yb analogue exhibiting a T3 

dependence at low temperatures, believed to be the result of scattering due to s-d transitions.  

CeRu4(Al,Si)15.58 follows Curie-Weiss behavior with θ = -21.9(14) K but does not order down to 

3 K, and the resistivity displays a negative temperature coefficient.  Finally Ce2Ru3Al15.08 and 

Gd2Ru3.08Al15 order antiferromagnetically at 3.7 K and 21.0 K, respectively.   

Despite the similar Ln environments, none of the compounds studied displayed similar 

behavior to those of CeRu2Al10.  It has been suggested from computational studies that the Ce 

polyhedra play a large role in the properties of CeRu2Al10.
9.3  For this reason, structurally related 

Ce2Ru3Al15 can serve as a good comparison structure for further studies of CeRu2Al10.  

 While the initial goal of this research was to look for properties resembling those of 

CeRu2Al10, these studies also highlighted the difficulties and benefits of single crystal flux growth 

and the large effect that crystalline electric fields can have on compounds.  LnRu2Al10 compounds 

are very robust and easily grow from melts with a variety of compositions dwelled at a broad range 

of temperatures.  As a result, growing other compounds in the Al rich portion of the Ln-Ru-Al 

phase space can be challenging.  Similarly, the growth of CeRu4(Al,Si)15.58 was made difficult due 
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to the high stability of Ru23(Al,Si)97.  The growth of Ln2Ru3Al15 was found to be favored over the 

growth of LnRu2Al10 at high temperatures and in Ru poor conditions.  The prior allowed for the 

growth of polycrystalline Ln2Ru3Al15 (Ln = Ce, Gd) via arc melting while the latter allowed for 

the flux growth of large single crystals of Ln2Ru3Al15 (Ln = Y, Gd, Tb). 

 Single crystalline Gd2Ru3Al15.09 and polycrystalline Gd2Ru3.08Al15 demonstrate the 

advantages of single crystals for materials characterization.  The availability of high quality single 

crystals allowed for the measurement of the intrinsic magnetization and magnetoresistance 

unaffected by grain boundaries and impurities.  Furthermore, the ability to measure anisotropic 

properties provided insight into the arrangement of moments in the antiferromagnetic ordering.  

Finally, the structure of Gd2Ru3Al15 was found to be synthesis method dependent, with the 

resulting change in Gd-Gd contact lengths leading to different Neel temperatures in the 

polycrystalline and single crystalline analogues. 

 One of the advantages of studying multiple structurally related compounds within a phase 

space is that it allows for the study of structure-property relationships.  For example, in both the 

GdM2Al10 (M = Fe, Ru, Os) and the Gd2Ru3Al15 analogues, it was found that increased Gd-Gd 

interactions led to lower ordering temperatures.  This suggests that the cosine dependence of the 

RKKY interaction is on an upturn at these distances leading to increased interaction strengths with 

increased distance.   

 A second structure-property relationship can be drawn between the Ln polyhedra and 

crystalline electric field effects.  As CEF effects are important to the properties of CeRu2Al10, it 

was expected that CEF effects would be observed in the structurally related compounds.  Indeed, 

crystalline electric field splitting led to a non-magnetic ground state in PrRu2Al10 and were 

observed below 100 K in Ce2Ru3Al15.04.  Anisotropic magnetization can be a powerful tool for 
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studying CEF effects.  The ability to grow large single crystals of Ln2Ru3Al15 for latter rare earths 

combined with the CEF effects observed in the structurally related compounds made it of interest 

to further study CEF effects in Ln2Ru3Al15.  As the f-electrons in Gd3+ are spherically symmetric 

and therefore not susceptible to CEF effects, these studies were carried out on single crystals of 

Tb2Ru3Al15.05.  The highly anisotropic properties observed in Tb2Ru3Al15.05, show the strong CEF 

effects that the 20 coordinate polyhedra found in LnRu2Al10, CeRu4(Al,Si)15.58 and Ln2Ru3Al15 

have on the f-electrons. 

 Along with the study of structure-property relationships within the Ln-Ru-Al phase space, 

this work also provides insights into methods to grow competing phases.  It is not uncommon for 

a system to contain a highly stable binary.  However, these are often easily avoided in flux-growths 

with the aid of binary phase diagrams by spinning the reaction above their formation temperature 

or using more flux rich conditions.  Avoiding stable ternaries can be more challenging, as ternary 

phase diagrams are typically less studied or non-existent, and the undesired ternary often prefer 

more flux rich melts than their competing phases.  This was the case with both Ru23(Al,Si)97 and 

CeRu2Al10. 

 The two methods that can often easily favor the desired ternary over the competing ternary, 

using high temperature conditions, such as in arc melting, and flux poor reactions, typically result 

in polycrystalline products.  Throughout the course of this dissertation, several strategies have been 

devised for growing single crystals of competing phases which may be applied to other systems. 

 First, flux rich conditions can sometimes be used by sufficiently decreasing the 

concentration of another reactant.  For Ln2Ru3Al15, it was found that flux rich growths favored the 

formation of the undesired LnRu2Al10.  Relatedly, Ln rich conditions help stabilize Ln2Ru3Al15 but 

lead to the melt freezing at too high a temperature to facilitate single crystal growth.  Reactions 
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which were both Ln and flux rich were achieved by using a Ru poor melt.  In this was, large single 

crystals of Ln2Ru3Al15 were grown while avoiding the growth of LnRu2Al10. 

 Second, the synthesis of different Ln analogues should be considered.  While a phase may 

form for all Ln, the growth of single crystals may be easier for some rare earth analogues than 

others.  This may be the case when a competing binary or ternary only grows for certain Ln.  For 

example, the synthesis of Ce2Ru3Al15.04 was more challenging than that of Gd2Ru3Al15.09 because 

the stable Ln3Al11 binary only forms for Ln = La - Sm.  This is also the case when one analogue is 

near the edge of stability.  The mixed valence of Ce2Ru3Al15.04 suggests that the Ln2Ru3Al15 

structure is more stable for smaller rare earths.  Indeed, the latter rare earth analogues were found 

to more readily grow as single crystals. 

  Finally, special consideration should be given to the temperature profile used.  Often, 

reactions are heated to an arbitrarily high temperature, such as 1150 °C, to achieve homogeneity 

before slow cooling.  As was shown with Ln2Ru3Al15, changing dwell temperatures can have a 

large effect on the resulting products.  When dealing with competing phases, a temperature profile 

similar to that used for the growth of Gd2Ru3Al15, with a slow cool at high temperatures and a 

faster cool at lower temperatures, is likely ideal for growing thermodynamically stable ternaries, 

i.e. phases that can be grown via arc melting. 

 Ultimately, the single crystal growth of competing phases requires careful study of the 

stability of the phases.  Only through the systematic study of the competition between the phases 

by varying the temperature profile and reaction ratio can single crystals of the less robust phase be 

grown.  While the growth of single crystals can be challenging and time consuming, the power of 

single crystals for physical properties studies makes such research rewarding.  
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