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ABSTRACT 

Microfluidic interfaces were developed for off-line matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI). Microfluidic interfaces allow samples to be 

manipulated on-chip and deposited onto a MALDI target plate for analysis. For this research, 

microfluidic culturing devices and automated digestion and deposition microfluidic chip 

platforms were developed for the identification of proteins. The microfluidic chip components 

were fabricated on a poly(methyl methacrylate), PMMA, wafer using the hot embossing method 

and a molding tool with structures prepared via micromilling. One of the most important 

components of the chip system was a trypsin microreactor. An open channel microreactor was 

constructed in a 100 µm wide and 100 µm deep channel with a 4 cm effective channel length. 

This device integrated frequently repeated steps for MALDI-based proteomics such as digestion, 

mixing with a matrix solution, and depositing onto a MALDI target. The microreactor provided 

efficient digestion of proteins at a flow rate of 1 µL/min with a residence time of approximately 

24 s in the reaction channel. An electrokinetically driven microreactor was also developed using 

a micropost structured chip for digestion. The micropost chip had a higher digestion efficiency 

due to the higher surface area-to-volume ratio in the channel. Also, the electrokinetic flow 

eliminated the need for an external pumping system and gave a flat flow profile in the 

microchannel. The post microreactor consisted of a 4 cm × 200 µm × 50 µm microfluidic 

channel with trypsin immobilized on an array of 50 µm in diameter micropost support structures 

with a 50 µm edge-to-edge inter-post spacing. This micropost reactor was also used for 

fingerprint analysis of whole bacterial cells. The entire tryptic digestion and deposition 

procedure for intact bacteria took about 1 min. A contact deposition solid-phase bioreactor 

coupled with MALDI-TOF MS allowed for low-volume fraction deposition with a smaller spot 
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size and a higher local concentration of the analyte. A bacterial cell-culturing chip was 

constructed for growing cells on-chip followed by off-line MALDI analysis. Coupling MALDI-

TOF MS whole cell analysis with microfluidic culturing resulted in more consistent spectra as 

well as reduction of the total processing time. The microfluidic cell culturing was performed in a 

PMMA chip with a polydimethylsiloxane (PDMS) cover to allow gas permeation into the culture 

channel, which contained a 2.1 µL volume active culture chamber. After incubation of E. coli in 

a microfluidic culture device at 37 ℃ for 24 h, the cultured cells were analyzed with MALDI MS. 

Also, a microfluidic cell culture device containing continuous perfusion of culture medium was 

developed using a polycarbonate membrane. This microfluidic culturing format was improved 

with a fluidic manifold and thermostatted microheaters. Fingerprint mass spectra distinguishing 

E. coli strains tested were obtained after a 6 h incubation time, which was shorter compared to 

the 24 h incubation time using conventional culturing techniques. In addition, an enhanced 

identification procedure for bacteria was achieved by integrating on-chip digestion of cultured 

bacteria.   
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*Reprinted by permission of the John Wiley and Sons, and the Elsevier. 

CHAPTER 1. INTRODUCTION* 

The work reported in this chapter has been published in the Journal of Mass 

Spectrometry
1 and Analytica Chimica Acta.2 

1.1 Basic Principles of Proteomics 

Since the sequencing of the human genome, proteomics has become an important 

research topic in chemistry, biology, medicine and even engineering.3-6 Protein analysis has 

generated great interest as a means for the elucidation of cell function at the molecular level as 

well as for investigating the relationship between disease states and the protein complement for 

clinical diagnostics.7  

There are two general strategies for whole proteome analysis:  bottom-up and top-down. 

With the bottom-up approach,8 proteins are subjected to proteolytic digestion with an enzyme 

such as trypsin, and the resulting peptides are analyzed by peptide mass fingerprinting9 or by 

tandem mass spectrometry for peptide sequence tags.10 Typically, one or two-dimensional gel 

electrophoresis is used for separation of complex protein mixtures followed by proteolytic 

digestion of isolated spots. An alternate “shotgun” sequencing approach to bottom-up sequencing 

uses multi-dimensional separations, such as ion exchange chromatography (IEC) and high 

performance liquid chromatography (HPLC), of the proteolytic fragments generated from intact 

proteins.11 Mass spectrometric peptide mapping and database searching is then performed. With 

the top-down approach, proteins are ionized intact and subsequently fragmented in the mass 

spectrometer. In this way, both the protein mass and the mass of the peptide fragments are 

measured.8, 12 The top-down method uses a high resolution ion trapping instrument, such as a 

Fourier transform ion cyclotron resonance (FTICR)13 or an Orbitrap14 mass spectrometer. 

Progress in the area of proteomics relies heavily on new analytical tools for the sensitive,  
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selective, and high-throughput studies of target analytes.15 Mass spectrometry (MS) has evolved  

into a primary analytical tool for proteomics research, especially when coupled with separation 

techniques, due to the high information content that can be derived from these coupled 

techniques.10 Advances in MS have been facilitated by the two ionization techniques; 

electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Over the 

course of the past two decades, these ionization methods have become indispensible for the 

analysis of biological molecules, especially proteins and peptides. ESI MS produces highly 

charged ions directly from a liquid and is therefore useful for coupling to liquid separations.16-18 

MALDI is fast and efficient and has a high tolerance to non-volatile buffers and impurities.19, 20 

The samples for MALDI are typically applied to solid supports and used off-line with liquid or 

gel separations.21-23 

Separation of the components of the proteome is challenging due to the complexity of the 

proteome. For example, it has been estimated that between 100,000 to 250,000 proteins can be 

encoded by the 20,000 to 25,000 human genes through post-translational modifications and 

differential splicing, which can produce 5 to 10 different proteins from each gene.24, 25 A further 

complication is the dynamic range of protein expression at the cellular level, which can range 

from 106 to 109 copies per cell.26 Many proteins that are disease biomarkers are low abundant and 

are difficult to isolate from complex mixtures containing highly abundant species with current 

separation methods.27, 28 As an example, 2-D gel electrophoresis can separate up to 11,000 

proteins from a whole cell lysate, but is restricted to the most highly abundant proteins in the 

sample.29 High peak capacity separations of proteins with better resolution and faster run times 

are required for improved proteomic analysis. This can be accomplished in a bottom-up fashion, 

in which the proteins are proteolytically digested into peptide fragments and separated before 

MS analysis. Alternately, a top-down approach can be employed in which proteins are separated 



 3 

first and then ionized with fragmentation occurring in the mass spectrometer.11, 12 

Another critical step in proteomic sample pre-treatment is the efficient proteolytic 

digestion of proteins required for reliable identification. Because proteomic samples are typically 

available in small quantities, efficient digestion protocols are needed to achieve reliable results. 

Protocols for proteins and cell lysates have been developed for higher digestion efficiency using 

denaturation steps prior to digestion.30 In addition, digestion efficiency can be improved through 

protein enrichment from crude mixtures of cell lysates.5 Target proteins can be effectively 

isolated from cytosolic proteins by using affinity beds,31-33 which selectively capture membrane 

proteins, or through the use of derivatized gold nanoparticles.34   

1.2 Microfluidics for Mass Spectrometry  

In the past decade, integrated microfluidic systems have been widely used to address the 

analytical problems faced by scientists in basic research,  life sciences, pharmaceutics, and 

clinical research.35 Microfluidics provides a number of unique advantages compared to the 

conventional bench-top systems used for processing biological samples, including reduced 

sample and reagent consumption, improved analysis speed, process step integration for fully 

automated systems and multiplexed analyses to increase sample processing throughput.36 For 

these reasons, microfluidic devices are expected to play an important role in the development of 

high-throughput and integrated proteomic analysis systems, especially when these systems are 

interfaced to MS.37 

Various schemes for coupling microfluidics to MS have been developed. Adapting 

microfluidic chips for on-line ESI is straightforward because the flow rate is compatible with 

nano-flow electrospray.38 Various on-line separation methods are compatible with ESI, 39 and 

several approaches have been described for coupling chip-based separations and microreactors to 

ESI using electrokinetic or pressure-driven flow.38, 40-45 MALDI is not directly suitable to an 
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online approach, although several novel interfaces have been described.22, 46 Off-line coupling of 

MALDI to microfluidic-based liquid separations can be accomplished by depositing the analyte 

directly onto a MALDI target plate. The off-line approach decouples the separation or reaction 

from the mass spectrometer both in time and space and allows for optimization and, if necessary, 

reanalysis. With a microfluidic chip, deposition is not always necessary and direct analysis on 

the chip without the mass spectrometer is possible.47-51  

1.2.1 Electrospray Interfaces 

One of the main advantages of ESI for proteomic analysis is that it can be used with a 

flowing liquid, thus facilitating on-line coupling of chromatographic separations to the mass 

spectrometer. Thus, ESI is an obvious approach for on-line interfacing of microfluidic chips to 

mass spectrometry. In particular, the nL to µL per minute flow rate used in microfluidics is a 

good match to that used in nanoflow ESI sources. 

Several approaches to coupling microfluidic devices containing electrospray emitters 

with ESI-MS have been developed. Figure 1-1 is a schematic diagram of various approaches for 

the chip ESI interfaces. The simplest approach is to spray directly from the chip (Figure 1-1a). 

Here, a glass chip can be scored and broken across a channel for direct spraying from the 

opening with either pressure or electrokinetic liquid transport used to generate liquid flow.52, 53 

More sophisticated spray devices can be fabricated by attaching a capillary to the chip channel or 

(Figure 1-1b) by fabricating a spray tip in the device itself (Figure 1-1c). 54, 55 Multichannel 

microchips can be interfaced to ESI-MS for parallel analysis to increase system throughput.52  

Direct from Chip 

The first interface of a microfluidic chip with mass spectrometry was reported in 1997 

with a chip containing nine microfluidic channels.52, 53 The spray was formed from the blunt 

edge of a glass chip, which consisted of 60 µm wide and 25 µm deep channels connected to a 
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syringe pump generating a pressure driven flow of 100 to 200 nL/min. In the same year, a glass 

chip was reported with open exits at the end of the channel.53 The electrospray was generated 

from the flat edge of the glass channel through an electrokinetically-driven flow.  

 

 

Figure 1-1. Schematic of various microfluidic chip interfaces for ESI for MS using (a) a blunt-
end chip, (b) a chip with an attached ESI emitter, and (c) a chip with an integrated emitter. 
 
 

The performance of a direct-from-chip spray is limited by effluent spreading at the 

interface due to the hydrophilic properties of glass. This ultimately causes difficulty in 

controlling the spray direction.38 Moreover, polar liquids wet a large area at the edge of the 

hydrophilic glass chip, which limits the resolution of separations due to the relatively large dead 

volume of the electrospray.56 To prevent spreading of the liquid, the channel exit can be treated 
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to render it more hydrophobic; for example, silanized or polytetrafluoroethylene surfaces have 

been formed at the edge of the chip to reduce surface wetting artifacts.57   

Attached Capillary 

An alternate approach to spraying directly from the chip is to attach an electrospray 

capillary to the chip channel.58, 59 The first approach used a fused silica capillary inserted into a 

microchip serving as the  mass spectrometer interface.60 A 12 cm long fused silica capillary was 

glued to the edge of the microfluidic chip and transport of the analyte was accomplished with an 

electroosmotic pump. Although this work demonstrated the use of capillary emitters for 

electropspray from a chip, the device was limited to sample infusion and suffered from 

difficulties in alignment.  

A drilling procedure was developed for low dead volume connections between a glass 

microfluidic chip and an electrospray emitter.61  The chip had 200 µm holes for emitter 

attachment produced by 200 µm tungsten carbide bits producing a 700 pL dead volume. The 

dead volume created by using a conical-shaped carbide bit was effectively removed with a flat-

tipped drill bit. Sub-attomole detection limits for peptides was reported by using microfluidic 

devices with a nanospray tip inserted into a hole perpendicular to the cover of the chip.54 The tip 

was 50 µm i.d. and pulled to 5 µm i.d. at the tip. Time-of-flight (TOF) MS was used for detection 

at its maximum acquisition rate of 100 spectra/s. Approximately 0.5 amol of gramicidin S was 

detected using a 10 ms acquisition time period with an observed S/N ratio of 4.  

A chip-based integrated liquid junction configuration with a removable electrospray tip 

has also been developed.62, 63 The liquid junction was maintained with a make-up buffer between 

the cathode end of a capillary electrophoresis channel and the inlet of the ESI.64 Approximately 

10 pmol of cytochrome c was detected using this liquid junction. The junction provided an 



 7 

effective technique for transferring trace-level samples from a CE separation and improved the 

spray stability for ESI.65  

Although capillary spray emitters are more stable, dead volumes in the coupling between 

the chip and capillary can compromise separation performance and thus liquid separation 

resolution. Also, attachment of the emitters is labor-intensive and potentially a high-cost process 

for commercial devices. In addition, the glue used to attach the emitter can be dissolved by 

certain organic solvents and thus, produce interference peaks or render the device inoperable.  

Microfabricated Sprayer 

Electrospray emitter tips from microfluidic chips can be constructed in the microfluidic 

chip itself.66  Microfabrication procedures allow for microfluidic channels and emitters to be 

constructed during chip fabrication and therefore many chip components can be made 

simultaneously. Integrated emitters have been constructed on polymer substrates such as 

polyethylene terephthalate (PET), polycarbonate (PC), poly(methyl methacrylate) (PMMA), and 

polydimethylsiloxane (PDMS),67-70 as well as on silicon and glass devices.43, 71 A micromilling 

machine was used to fabricate an electrospray emitter from PMMA.67 This method eliminated 

the dead volume between the channel and tip and resulted in a stable spray. Parylene surface 

micromachining has also been developed for fabricating integrated ESI emitters.72-75 In this 

process, a microchip was fabricated by alternately depositing layers of parylene and photoresist 

on a silicon wafer. After dissolving the photoresist, the desired parylene structures were formed.  

A multi-nozzle chip was developed with an array of hundreds of microfabricated high 

aspect ratio spray tips formed from silicon using deep reactive ion etching (DRIE).71 The multi-

electrospray nozzle chip is now available commercially (Nanomate, Advion, Ithaca, NY).76 

However, no on-chip microfluidic components have been developed.  
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Another commercial device (Agilent, Santa Clara, CA) has been developed that uses a 

multi-layer polyimide chip with an integrated spray tip formed by laser ablation.66, 77 The chip 

consists of enrichment and separation channels and an integrated electrospray tip.78 The 

microfluidic chip is inserted between a stator and a rotary switching valve. The off-chip valving 

reduces the chip complexity, but increases the off-chip size and complexity. During operation, 

the sample is introduced into the enrichment column, which traps the peptides. By switching the 

valve, trapped peptides are eluted and injected onto the separation column. The performance of 

this microfluidic device coupled to MS is comparable to conventional HPLC-ESI methods.79  

1.2.2 MALDI Interfaces 

MALDI is typically carried out on crystallized sample spots containing matrix and 

analyte, most often under vacuum. Off-line coupling can be accomplished by dropping, spraying, 

or spotting the sample onto a sample target and adding matrix for analysis.80-84 On-line coupling 

of microfluidic devices to MALDI is challenging, but can be achieved using spray,85-87 

continuous flow,88, 89 or mechanical interfaces.90, 91 Of these, only continuous flow and 

mechanical interfaces have been coupled to microfluidic chips. 

On-line MALDI 

On-line interfaces for MALDI MS can be grouped into those using (1) aerosol particles, 

(2) capillaries, or (3) mechanical means to deliver the matrix and analyte into the mass 

spectrometer.22 Aerosol MALDI methods use a spray of particles to deliver the sample to a time-

of-flight mass spectrometer. 85 The particles are dried in a heated tube and irradiated by a pulsed 

UV laser to form ions. A flow rate of 0.5 mL/min is typical and, for this reason, the approach is 

not suited for microfluidic chip interfacing, which requires the use of much smaller volume flow 

rates. The capillary-based continuous flow (CF) MALDI interface uses a narrow bore capillary to 

deliver analyte into a liquid matrix to the point of laser desorption and ionization.92 Typical flow 
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rates are a few µL/min. A continuous pressure driven self-activating flow on-chip microfluidic 

device connected to a MALDI-TOF mass spectrometer has been reported for on-line sample 

transfer of material and monitoring of reaction products.88 This approach has been adapted for 

microfluidic chip analysis using the vacuum of the mass spectrometer to pull the reactants 

through the chip and to move them into position for analysis.89 The microfluidic chip was 

prepared from a borosilicate glass wafer consisting of inlet reservoirs, an exit reservoir, and a 

reaction microchannel with a 1.2 µL active volume. The integration was achieved by placing the 

micro-device on a modified target plate and loading the reagents before inserting it into the mass 

spectrometer. Chemical syntheses as well as biochemical reactions were carried out entirely 

inside the vacuum chamber and analyzed by MALDI-TOF MS.  

Two mechanical interfaces for on-line MALDI have been developed; both of them are 

compatible with more widely used solid matrices. With one of these approaches, liquid samples 

are transported into the mass spectrometer through a capillary at a flow rate of hundreds of 

nL/min and deposited onto a rotating quartz wheel.93 Solvent evaporation results in a thin sample 

trace on the wheel, which is rotated into position for laser desorption. The most significant 

drawback to this continuous vacuum deposition method is the requirement for manual cleaning 

of the wheel. A second mechanical approach is a modification of the rotating ball inlet. 94, 95 For 

the rotating ball MALDI analysis, a solution containing matrix and analyte are delivered to the 

surface of a stainless steel ball that rotates several times each minute. As the ball rotates, the 

solution is exposed to vacuum where the volatile solvent evaporates leaving the matrix and 

analyte on the rotating ball. When the ball has rotated one-half turn, it is in position for laser 

desorption and thus, MALDI analysis using a time-of-flight mass spectrometer.  

Several studies have been performed for incorporating chip-based capillary 

electrophoresis (CE) with MS.96-101 Direct coupling of microchip CE separations with the 
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rotating ball inlet has been described.90, 91 PMMA microfluidic chips were hot embossed and 

mechanically cut to generate a sharp V-shaped tip at the channel exit of the microchip. The tip 

was held in contact with a rotating ball at atmospheric pressure. The interface was demonstrated 

with an on-chip CE separation of tryptic peptides and peptide standards. The separation was 

performed in an 8 cm long channel that was 50 µm wide and 100 µm deep. The chip effluent was 

deposited onto the rotating ball and the matrix solution was applied to the ball surface as well 

using an external capillary. This system demonstrated the feasibility of on-chip CE separations 

followed by on-line MS detection of the tryptic peptides of cytochrome c as well as a series of 

standard peptides. The main advantage of this on-line microchip interface was the capability of 

continuous deposition on the surface of a rotating ball at atmospheric pressure and introduction 

into the vacuum chamber without the need for breaking vacuum.  

Off-line with Deposition 

In off-line MALDI, samples are deposited directly on a target for later analysis in the 

mass spectrometer. The most direct method for sample deposition is spotting, for example with a 

robotic target spotter. Here the matrix is mixed with the analyte before deposition or spotted onto 

a matrix-coated target. In this manner, fractions from a microcolumn HPLC separation can be 

collected onto a MALDI target. In one example, 102 the microcolumn was packed with 5 µm C18 

modified silica particles. The matrix solution was coaxially mixed with fractions using a 

capillary mounted at the exit of the separation column. The fraction volumes from the system 

were approximately 145 nL with a 1 mm spot size. Using this system, peptides contained in 

single neurons from a snail were fractioned and identified by MALDI-MS.  

The primary difficulty with target spotting is the relatively large volume contained in a 

droplet from a small diameter capillary. For example, a 50 µm capillary produces droplets that 

are approximately 300 nL, which can be a significant volume compared to peak volumes 
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emanating from microfluidic separation components. It can also be difficult to control the 

spotting volume with high precision. To overcome these problems, piezoelectric dispensing of 

samples onto the MALDI target can be used.103 A piezoelectric droplet dispenser has been 

developed for interfacing a microfluidic chip to a high-density array of nanovials etched into a 

silicon MALDI target.82 The nanovials were 300 µm square and 20 µm deep and served to 

collect and concentrate the sample by multiple droplet depositions on the same spot. The device 

generated droplets ranging from 65 pL to 300 nL at a droplet frequency of 50-100 Hz. The 

system was demonstrated with peptides generated from a chip tryptic-based microreactor. 

An alternate sampling approach is electrospray deposition onto a MALDI target. Several 

studies have demonstrated the viability of electrospray deposition of eluent from CE, HPLC, and 

size-exclusion chromatography (SEC) onto the MALDI plate.104 The eluent is delivered to the 

electrospray capillary operated at 2 to 4 kV and the spray is directed onto a MALDI target 

several cm away. Rapid solvent evaporation from the small droplets leads to homogeneous spots 

on the target. A hydrophobic membrane electrospray deposition device has been developed for 

interfacing polycarbonate microfluidic chips to MALDI.83 The system consisted of a 50 µm thick 

polytetrafluoroethylene (PTFE) membrane thermally annealed to the outlet of a PC microfluidic 

chip. The PTFE provided a hydrophobic spray surface and a T-junction was used for the 

electrical contact for the electrospray and the analyte solution was flowed through the chip with a 

syringe. Multiple electrospray tips deposited parallel sample spots spaced 150 µm apart on the 

MALDI target.  

Off-line MALDI Directly from the Microfluidic Chip 

There have been several innovative off-line approaches that use the chip itself as the 

MALDI target. For example, the rapid open access channel electrophoresis (ROACHE) 

technique employs an electrophoretic separation in an open channel.96 The separation is run for a 



 12 

period of time without eluting the sample. The solvent is then evaporated from the channel 

before transfer of the entire chip into the MALDI source under vacuum.  

In a similar approach, a UV-embossed polymeric chip was developed for protein 

separation by capillary isoelectric focusing (CIEF) and MALDI analysis.105 The CIEF technique 

separates proteins based on their amphoteric properties in a pH gradient under an electric field. It 

offers the advantages of high resolution (up to 0.05 pI), low sample consumption, and little effect 

on sample concentration. Five different microfluidic chips were fabricated from UV-curable 

resins that were exposed to UV light on a soft PDMS mold. After the CIEF separation, a matrix 

was sprayed onto the separated proteins using electrospray, which produced small and uniform 

crystals without sample diffusion. The chip was then inserted into the mass spectrometer for 

MALDI analysis. Among the tested materials, a polyester-based resin produced the highest mass 

signal and best signal-to-noise ratio. One of the problems with coupling CIEF to MALDI is 

evaporation of the solvent due to Joule heating that is generated by the strong electric field. To 

overcome this problem, a removable cover plate was developed.51 While the separation is 

performed the microchannel is covered; after the separation is complete, the cover plate is 

removed for MALDI analysis. 

Another approach using a removable cover plate is a CIEF chip sealed with a removable 

resin tape.49 In this approach, CIEF is performed in a serpentine channel to achieve high 

resolution. Four meandering microchannels were fabricated on a glass plate using 

photolithography and dry etching. The dimensions of each channel were 400 µm wide, 10 µm 

deep, and 60 mm long. Sample proteins were separated in the resin tape covered channel. Once 

the separation was complete, the samples were immediately frozen to prevent diffusion. The 

resin tape was then removed and the samples were freeze-dried for 15 min. After the dried 

channels were treated with a matrix solution, the chip was placed in a MALDI-TOF MS. The 
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mass spectra were obtained at 500 µm increments along the channel and then a two-dimensional 

(2-D) map was constructed by plotting pI versus m/z. The removable resin tape allowed easy 

access for matrix addition to the separated samples yet prevented the sample solution from 

drying out during the separation.  In addition, the freeze-drying method limited redistribution of 

the sample solution in the channel during evaporation, which compared favorably to a heat-

drying process. 

Infrared MALDI from a capillary gel microfluidic chip has been developed using a 

pulsed infrared source with the gel acting as an intrinsic matrix.47, 48 The chip was fabricated 

from PMMA with a removable PDMS cover slip. The microchip had a standard tee channel, 

which was 300 µm wide and 150 µm deep. A cross-linked gel was formed in the channels by 

polymerization. After gel electrophoresis, the cover was removed and either the chip or the cover 

plate was mounted on a modified MALDI target holder for analysis. The channel was irradiated 

with 2.95 µm radiation from a pulsed optical parametric oscillator (OPO), which was coincident 

with IR absorption wavelength of the gel and water within the gel. An advantage of the IR laser 

when combined with gel separations for on-chip detection is the greater depth of penetration 

compared to a UV laser, thereby overcoming the limited accessibility to biomolecules inside the 

gel structure.  

A combination surface plasmon resonance (SPR) and MALDI chip has been developed 

for direct MS detection of isolated proteins. The combination of SPR and MS was first described 

in 1996,106, 107 and since then several approaches using SPR sensor chips have been described.108-

112 SPR is an excellent method for label-free protein quantification and investigations of protein 

interactions with surface-immobilized ligands or antibodies. The addition of MS allows for the 

determination of protein structure. Recently, a novel SPR-MS array platform for high-throughput 

analysis of proteins was described.113 In this work, self-assembled monolayers were formed 
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using 11-mecaptoundecanoic acid on a gold-coated glass chip and then the carbonyl groups were 

activated with 1,1”-carbonyldimidazole. The arrays consisted of five different antibodies 

immobilized on 10 × 10 wells with 450 µm spacing. After individual target proteins were 

deposited on the array, SPR images were obtained across the surface of the chip to monitor 

binding of target proteins to their corresponding antibodies. Immuno-captured proteins were then 

directly analyzed with MALDI MS. Specific proteins were detected from individual spots on this 

SPR chip with negligible cross-reactivity.  

1.3 Materials for Microfabrication  

Over the past decade, fabrication technologies for microfluidics have evolved with a 

variety of new materials employed for building devices.114-117 Glass and fused silica are 

particularly beneficial for proteomics analyses due to their well-defined surface properties, 

established microfabrication techniques, good electroosmotic characteristics, and suitability for 

optical detection. In addition, various surface coating techniques and modification methodologies 

previously developed for capillary electrophoresis (CE) can be easily transferred to the 

microchip format. For these reasons, glass-based substrates for microfluidics have been used for 

many electrophoretic separation applications.114, 118, 119 Alternately, conductive materials such as 

glassy carbon can be used as a  substrate for the microfluidic device in cases where the optical 

properties of the material are less important, for example when used as an  interface to MS.120 

Although these materials allow for high spatial definition and reproducible fabrication results, 

the main drawback to fabricating microchips in glass or fused silica is the unit cost for large 

production runs and their fragility, which can make them difficult to produce at low-cost. 

Furthermore, processing steps such as wet etching using corrosive agents such as hydrofluoric 

acid (HF) require special safety precautions and produce low aspect ratio structures (aspect ratio 

is defined as the ratio of the structure height to lateral width).121  
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Recently, polymer-based microfluidic devices have been developed as alternatives to 

glass-based substrates.122, 123 The main advantages of polymers compared to glass or quartz is the 

ease in fabricating large quantities of devices at low-cost using micro-replication technologies. In 

addition, high aspect ratio mixed-scale structures with multiple levels can be constructed and a 

wide range of materials with different physical properties and surface-modification protocols can 

be employed.124 The most widely used polymers for microfluidic devices are 

polydimethylsiloxane (PDMS),125, 126 poly(ethylene terephthalate) (PET),127, 128 poly(methyl 

methacrylate) (PMMA),129, 130 and polycarbonate (PC).131 These polymers are easily machined 

with the substrate thermally bonded to the cover plate due to their lower glass transition 

temperature compared to glass or quartz. For example, glass requires a temperature of 600 ºC or 

more for thermal fusion bonding, whereas polymer substrates require much lower temperatures: 

~75 ºC for PET, ~106 ºC for PMMA, and ~148 ºC for PC.124 PDMS microfluidic devices have 

not been widely used for proteomic analysis due to their poor surface properties that lead to the 

adsorbtion of proteins; however, surfactants such as sodium dodecyl sulfate can prevent 

sticking.132  

Surface modification methods have been developed for polymer substrates with 

immobilization chemistries that are simple and robust compared to the siloxane chemistry 

typically used for glass. For example, to suppress the electroosmotic flow (EOF) in CE 

separations with polymer substrates, different  reagents such as diaminoalkanes, surfactants, and 

poly(ethylene glycol) can be used as dynamic or covalently-tethered surface coating 

materials.133-136 Covalent antibody and enzyme surface immobilization techniques have also been 

demonstrated for polymer-based microfluidics for isolation of target proteins, digestion, and 

immunoassay applications.137 The high production rates achievable using polymer-based chips 

result in low-cost devices that can be disposable and thereby eliminate contamination between 
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samples, which is an important consideration for clinical applications where sample carryover 

artifacts cannot be tolerated.138  

One of the main challenges associated with polymer microfluidic devices is their 

relatively low thermal conductivity compared to glass. This can result in significant Joule heating 

due to current flow through an electrokinetically driven buffer solution such as those employed 

in electrophoretic separations.139 Also, when nonconductive polymers are used for MALDI 

sample arrays, precise measurements for proteins and peptides are challenging due to charge 

accumulation on the surface during laser irradiation, resulting in ion mass shifts.140 Furthermore, 

adequate heat dissipation is critical for temperature-sensitive chemical reactions and thermally 

labile analytes. Polymer chips are also sensitive to organic solvents and may not be sufficiently 

transparent at wavelengths required for monitoring optical responses from the chip. 

Autofluorescence can be a problem as well. In most cases, the optical properties of glass or 

quartz are superior to those of most polymers. 

1.4 Microfluidic MS Devices for Proteomics 

Although proteomic analysis methods have advanced significantly in recent years, many 

analysis steps such as digestion, separation, and other necessary sample preparation steps remain 

time consuming and labor-intensive.141 Achieving high sensitivity analysis with low sample 

consumption and high protein sequence coverage are the principal analytical challenges of many 

proteomic projects.142 Microfluidic systems have been proposed as a means of automating 

sequential sample pre-treatment steps and also as a means to increase sample throughput in 

parallel proteomic analysis.82, 143 These devices have the advantages of improved portability due 

to miniaturization, reduced sample and reagent consumption, and accelerated speed of reaction 

and analysis for high-throughput and highly parallel analysis.37 In addition, multiple processing 

steps can be seamlessly integrated to a single chip or multiple chips to allow fully automated 
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sample processing that can address the labor-intensive issues associated with proteomic analyses. 

Different types of fluidic architectures can be invoked with chips to realize unique processing 

strategies compared to the conventional bench-top approaches that can offer significantly 

reduced processing times as well.   

1.4.1 Sample Purification 

A sample is typically purified to remove salts and buffers and concentrate the sample 

prior to analysis by MS and some of these procedures have been adapted to chip formats. An on-

line desalting method for ESI MS has been developed.144 In this device, a hydrophobic 

poly(vinylidene difluoride), PVDF, membrane was integrated into an inlet channel of a 

polyimide chip. This membrane was used for capturing target analytes and, after removing salts 

by washing with water, a methanol/water solution was pumped into the chip to elute the retained 

analytes. The cleanup of drugs, peptides, and proteins was demonstrated and it was found that 

the background was comparable to salt-free solutions.  

A novel compact disk (CD) microfluidic chip for parallel processing of protein digests 

for MALDI has been described.145 The microfluidic CD chip is available commercially from 

Gyros AB, Uppsala, Sweden.145, 146 Spinning the chip leads to a centrifugal force that was used to 

move liquids through multiple microstructures. For example, samples can be concentrated and 

desalted in 96 micro-columns packed with 15 µm C18 beads with salts and impurities directed to 

a waste outlet by the centrifugal force. Samples are eluted from the column using a matrix 

solution controlled by the disk rotation speed. After the microfluidic analysis, the chip is 

mounted in the mass spectrometer for MALDI. In addition, the CD chip technology has been 

used for the detection of phosphopeptides at the femtomole level.147 In this application, an 

immobilized metal affinity chromatography (IMAC) resin was packed into each microcolumn 

for phosphopeptide enrichment before MS analysis. Polymeric integrated selective enrichment 
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target (ISET) has been developed for purification and concentration of proteomic sample before 

MALDI MS analysis.148 This polymeric ISET device was fabricated in polyetheretherketone 

(PEEK) by injection molding. The device was composed of an array of perforated nanovials 

filled with beads for solid-phase extraction. Compared to a commercial affinity-based bed, such 

as ZipTip sample preparation for human seminal plasma, the ISET device offered higher capture 

capacity for biomolecules.    

A method for manipulating small volumes of sample and matrix for MALDI has been 

demonstrated using the electrowetting-on-dielectric (EWOD) principle.149, 150 An EWOD 

microfluidic chip consisted of a bottom plate with electrodes, a top plate, and spacers. The 

bottom plate was made from quartz wafers coated with polysilicon from which electrodes were 

formed by photolithography and reactive ion etching. The top plate was made from indium-tin 

oxide (ITO) coated glass plates. For the EWOD technique, the local wettability of a surface is 

manipulated by the application of voltages between electrodes placed beneath hydrophobic 

dielectric layers. This allows small liquid droplets to be moved on the surface through the use of 

applied voltages. Here, droplets containing the peptide and protein analytes were moved to 

specific positions on the chip. Water soluble impurities in a sample were removed by passing 

droplets of water over the spots. After impurity removal, a droplet of MALDI matrix was moved 

to the sample spot. When deposition was complete and the plate dried, MALDI spectra were 

collected directly from the device, which was attached to a stainless steel MALDI target. A 

modified EWOD microfluidic device has been developed for the investigation of pre-steady-state 

chemical kinetics.151 This microfluidic device consisting of individually addressable Cr/Au 

electrodes was capable of controlling precise time intervals for droplets to initiate a reaction and 

to quench the reaction.    
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1.4.2 Separation 

Microfluidic chip separations for proteomics uses either CE or liquid chromatography 

(LC) with packed beads or porous monolith stationary phases.43, 152, 153 CE is suited to the 

microfluidic chip formats due to fast separation times and the ability to drive the flow with an 

electric field rather than a mechanical pump. With LC, the microfluidic channels typically must 

contain packed beds or monoliths to reduce the diffusion distance for efficient separations. 

Capillary Electrophoresis 

There have been a number of approaches to coupling chip-based CE separations to 

MS.154-156 These have used different variants of CE, such as capillary gel electrophoresis 

(CGE),157, 158 capillary zone electrophoresis (CZE),159 micellar electrokinetic chromatography 

(MEKC),160 and isoelectric focusing (IEF).161 An electrophoresis separation of biological 

mixtures in open channels has been coupled off-line with MALDI-MS.96 The chip was made of 

glass with 250 µm wide and 250 µm deep channels. After the CE separation of oligosaccharides 

and peptides, the chip was placed on a moving stage installed inside the source chamber for 

MALDI analysis directly from the chip.   

A microfluidic chip was developed for CE separations coupled to ESI MS.43 The device 

was made from a borosilicate glass substrate with a 75 µm wide and 10 µm deep separation 

channel. The electrospray was generated at the corner of the chip. The channel surfaces were 

coated with polyamine to minimize surface interactions and enhance electroosmotic flow. 

Peptides and proteins were tested for on-chip CE separation coupled to MS. The separation 

efficiency of this chip was about 200,000 theoretical plates for the 20.5 cm long channel with a 

calculated peak capacity of 43. The separation was accomplished in less than a minute to several 

minutes depending on the channel length. 
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Several technical challenges remain for on-chip CE separations.162 For example, 

separation efficiency can be reduced due to the interaction of analytes with chip surfaces. 

Additionally, the injection volume is limited for CE microchip separations, necessitating a 

sample enrichment unit such as solid-phase extraction prior to injection for some proteomic 

applications directed toward analyzing low abundant proteins.163  Further, there remains the 

problem of the compatibility of the reagents used for the on-chip separations with the on-line 

electrospray. A liquid junction or sheath flow may be required to couple on-chip CE with ESI-

MS because separation buffers and other reagents used for the separation are not compatible with 

ESI.58  

Liquid Chromatography 

LC capillary columns have inner diameters in the range of 75 to 500 µm that are similar 

to the sizes of microfluidic channels and, therefore, separation protocols can be readily adapted 

to a chip format.164  Chip separation channels are typically under 300 µm internal diameter and 

are non-cylindrical, for example square, rectangular, or semicircular, and are fabricated in 

silicon, glass, quartz, or polymer.42 The stationary phase can be formed using packed beads or on 

monolithic support formed by in situ polymerization.  

Packed bead chromatography inside a microchannel is similar to conventional HPLC. 

Thus, many established concepts can be directly applied to microfluidic systems for proteomic 

analysis. However, packing a microchannel with beads is a technically difficult process due to 

the resistance to fluid flow, which can result in uneven packing and voids within a column.165 

The high pressure in the channels can cause leaks or bubbles and it can be difficult to introduce 

frits or other structures to trap the beads and prevent their movement through the channels. 

To create a packed stationary phase for microfluidic chips, the channel can be filled with 

beads having diameters between 3 and 5 µm and pore sizes selected according to the analyte and 
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required separation efficiency. For example, 3.5 µm C18 beads with 30 nm pore size were used to 

pack a chip separation channel, which had 75 µm width, 50 µm depth, and 45 mm length.66 This 

chip was demonstrated for the separation of tryptic peptides of BSA with on-line ESI-MS 

analysis. The retention times for tryptic peptide peaks from an extracted ion chromatogram were 

reproducible over 3 runs with less than 0.1 min standard deviation. Recently, the relation 

between the packing density and separation efficiency of packed-bed microchips was 

investigated.
152 A custom-built stainless steel holder and ultrasonication were used for high 

packing density. The separation channel had a 75 µm × 50 µm trapezoidal cross section and the 

packing material used was 5 µm C18 with an 80 Å pore size. These optimized packing procedures 

resulted in separation efficiencies for organic compounds comparable to those of commercial 

nano-HPLC.  

Monolithic Supports  

Monolithic supports for HPLC stationary phases were first introduced twenty years ago 

and have emerged as an alternative to packed columns due to the simplicity of in situ 

polymerization.166-168 These columns are completely filled with porous material and thus have no 

interparticle voids, which allows all of the mobile phase to flow through the pores of the 

stationary phase. Aside from these merits, monolithic columns have several advantages over 

packed columns for microfluidic chip applications, including simple modification of porosity, 

surface area, and functionality and the ability to form the column in place without the need for 

retaining frits.169 Disadvantages are the limited chromatographic media66, 169 and difficulties in 

producing homogeneous supports due to large differences in polarity of monomers.50, 170  

Polymer and silica-based monolithic columns have been developed for microfluidic 

separations in proteomics;171 the former have shown excellent properties for large molecule 

separations, whereas the latter are desirable for the separation of small molecules. A cyclic olefin 



 22 

copolymer (COC) microfluidic device coupled off-line to MALDI-MS has been reported. 172 The 

chip was prepared with an array of methacrylate monolithic columns that were formed by UV-

initiated polymerization. For peptide mass mapping of digested BSA, a 59% sequence coverage 

was obtained using the on-chip separation device with MALDI-MS analysis compared to 23% 

sequence coverage without separation. The chip was tested for separation efficiency and 

reproducibility of peptide mixtures in each column. A sensitivity test showed that a target 

peptide at 10 fmol/µL could be identified in the presence of 10 pmol/µL digested BSA. 

High-performance thin-layer chromatography has been coupled to MS,173, 174 and there 

have been several approaches that use direct laser desorption analysis of materials directly from 

TLC plates.175-177 A novel approach for direct coupling of thin-layer chromatography to infrared 

MALDI was developed for the analysis of gangliosides from cultured cells.176 The liquid matrix, 

glycerol, was used for MALDI sample preparation. Two different protocols for matrix addition 

to the silica gel were evaluated, spotting and spraying. An orthogonal time-of-flight mass 

spectrometer was used to obtain high mass accuracy, which otherwise would have been reduced 

by the irregular surface of the TLC plate. The lateral resolution for spots on the target was 200 

µm.  

A porous polymer monolith layer attached to a glass plate has been used for TLC 

separations of peptides and proteins as well as small molecules with subsequent direct detection 

by MALDI.50 The polymer monolith layers were prepared using photoinitiated polymerization of 

butyl methacrylate and ethylene dimethacrylate monomers on activated glass plates. The 

thickness of the monolith layers was controlled using a Teflon gasket that was placed on a glass 

plate or MALDI target. While photopolymerized monolith layers can be used to separate small 

from large molecules, a greater peak capacity and fewer polymer layers is necessary for the 
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separation of complex samples. Also, longitudinal diffusion and surface irregularities of the 

polymer layer can reduce the sensitivity and ionization efficiency in the MALDI analysis.  

1.4.3 Enzymatic Digestion 

Efficient digestion is an essential tool for protein identification with bottom-up proteomic 

strategies.178, 179 Three different approaches can be used for proteolytic digestion: in-gel,180 in-

solution,30 or solid phase.181 In-gel digestion is accomplished by cutting spots from two-

dimensional gel electrophoretic bands that contain the proteins of interest that are then subjected 

to in situ digestion.182 Drawbacks to this method are limited accessibility to the proteins inside 

the gel183 and gel destaining procedures that can cause poor digestion yields due to residual 

destaining solvents.184 Further, the process cannot easily be moved to microfluidic chip formats 

to realize process automation. A second approach is to digest proteins in-solution. This approach 

requires long incubation times due to the need for low proteolytic enzyme concentrations to 

minimize autodigestion artifacts and the need to run with relatively high temperatures to achieve 

high digestion efficiencies.185 Excessively high temperatures, enzyme concentrations, or reaction 

times can lead to autolysis of trypsin, non-specific cleavage, and deamidation.185-187   

Solid-phase digestion uses proteolytic enzymes chemically immobilized or adsorbed on 

the surface of a solid support.137, 188 This digestion protocol has the advantages of fast response, 

low sample consumption, and high throughput,189 and it is easily adaptable to microfluidic chip 

formats. A solid-phase microreactor minimizes sample loss during treatment and reduces 

autolysis products of proteolytic enzymes;190 the short diffusion distance for properly designed 

reactors, and a high enzyme-to-substrate concentration ratio results in higher digestion 

efficiencies compared to in-solution digestion.40  

The digestion efficiency of solid-phase microreactors depends on the geometry of the 

reactor, the digestion temperature, the composition of digestion solvents, and the transport 
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velocity of the target protein through the reactor.40, 191-193 Also, the digestion efficiency can be 

enhanced by physical means such as microwave energy194 or ultrasound.195, 196 Organic solvents 

can improve digestion efficiency by denaturing the proteins; however, this can be a disadvantage 

for solid-phase digestion due to damage of the immobilized enzyme by the solvent.197 Thermal 

and electrical denaturation are relatively free of contamination because additional reagents are 

not added.198, 199 However, these methods require additional control systems for temperature and 

voltage, which increases the overall chip complexity.   

The geometry of the microreactor can be in an open channel or a three-dimensional (3-D) 

structure. An open channel format is the simplest configuration, but digestion efficiency is 

limited by the relatively long diffusional distances, which can limit the digestion rate. Also, 

diffusion rates of proteins depend on their concentrations as well.200  Lower diffusion rates are 

expected at higher concentrations of proteins in an open channel, thereby achieving low 

digestion efficiency due to limited encounter numbers between proteolytic enzymes and proteins. 

A 3-D solid phase reactor format can be configured from a monolithic porous network,44, 201 or a 

packed channel.202 The high surface-to-volume ratio compared to open channel increases the 

digestion efficiency due to the lower diffusion path length, which allows for more encounters 

between the substrate and immobilized enzyme.203 A microfluidic chip packed with trypsin-

derivatized beads in a fluidic channel has been reported.202 The bead-packed chip provided faster 

protein digestion and fewer trypsin autolysis products compared to a homogeneous digestion.  

Solid-phase microreactors can be formed in situ by immobilization of enzymes through 

covalent attachment to supports or encapsulation within gel matrices.44, 181, 201, 204 This avoids the 

difficulties arising from packing beads into the microchannels. Monolithic supports for 

immobilizing proteolytic enzymes can be generated through a polymerization reaction of a 

monomer solution into a microfluidic channel.205 For example, a porous organic polymer 
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monolithic microreactor was developed in which trypsin was immobilized within the monolith 

using azlactone functional groups for covalent attachment of the enzyme.201, 204 The sequence 

coverage of tryptic peptides from myoglobin was determined by off-line MALDI and found to be 

67% for a 12 s residence time. A silica sol-gel monolith containing zeolite nanoparticles has been 

reported.181 This device had a high surface area for the immobilized enzyme, allowing for a high 

load level within the microreactor. A 0.5 µL volume containing 0.2 µg/µL of the proteins 

cytochrome c and BSA were digested within 5 s in the microreactor as indicated by off-line 

MALDI-TOF MS. The bioreactor could be used repeatedly and the enzyme remained active for 

more than a month when it was stored at temperatures below 4 ºC. A pepsin microreactor was 

developed using a sol-gel monolithic column photo-polymerized within a fused silica capillary.44 

The column was used for on-line ESI CE/MS. Although monolithic microreactors are fast and 

efficient, it can require more than 24 h for their preparation and can be difficult to make them 

reproducibly.  

A 3-D microreactor can be created using microstructures within the channel, which bypasses 

problems associated both with bead packing and with monolith formation in the channel.206, 207 

The channel structure is fixed, for example by the mold master when used to replicate a 

polymeric device, which provides a reproducible microreactor. Furthermore, the support 

structures are placed in a desired location within the device and can provide unrestricted 

substrate access to the immobilized enzyme.  

1.4.4 Cell Culture 

New capabilities for quick and reliable identification of microorganisms are required for 

the detection of environmental pathogens and for clinical applications such as cancer screening, 

the detection of blood-borne pathogens, respiratory tract infections, and quality analysis of 

donated blood.208-211 Cell culturing is an essential technique in the biological sciences as well as 



 26 

in many important clinical applications.212 Conventional cell cultivation methods have been 

developed over many decades.213-215 In general, cell culturing is performed in an incubator using 

either agarose gel or liquid broth culture media. Detection and identification can be 

accomplished using dye-conjugated antibodies.216 Conventional cell culture processes require 

large fluid volumes, bench-scale equipment, large quantities of supplies, and are labor-intensive. 

Also, it can be difficult to control the cell culture environment, which can result in considerable 

variation during the growth of the microorganisms.217 For high-throughput screening and 

bioprocess development, small volume micro-scale bioreactors are advantageous for rapid and 

accurate identification of both natural and bioengineered microorganisms.218, 219  

Microfluidic devices have been used for cell culturing due to their numerous advantages 

over traditional cell culture methods.220 Microfluidic devices can be batch-fabricated with 

provisions for automated cell loading, fluid exchange, and cell quantification without 

contamination.221, 222 The micro-scale components allow the use of small solvent volumes with 

minimal evaporation due to their closed architecture. Compared to typical 2-D and 3-D culture 

reactors, which require milliliter quantities of broth nutrients, the volume for microfluidic culture 

devices is smaller by more than three orders of magnitude. In addition, microfluidic devices 

allow more precise control of growing conditions such as temperature, pH, and nutrients, thereby 

providing more accurate identification of species.223, 224 Heat and mass transfer are fast on a 

microfluidic chip so that the conditions for cell growth can be changed quickly.225, 226 The 

microenvironment can be precisely controlled, and cells can be isolated from each other to create 

conditions of uniform growth.227, 228 Cells can also be subjected to mechanical strain and shear in 

the physiological range in order to affect their physical and biochemical properties.229  

Various materials are used to construct microfluidic devices for cell culture: glass, silica, 

and polymers. Glass-based substrates have been used for microfluidic devices due to their well-
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defined surface properties, established microfabrication methods, and suitability for optical 

detection.1 However, the substrates require a temperature of more than 600 ℃ for thermal 

bonding to make a channel. Also, the substrates are difficult and expensive to mass produce a 

microfluidic device. Different polymers have been used for microfluidic cell culturing. 

Poly(dimethylsiloxane) (PDMS) is an elastomeric polymer that can be used for cell-based 

applications due to its nontoxic and gas permeable properties.230, 231 The channels of PDMS 

devices can be sealed without heat adhesive or heat. PMMA is a thermoplastic polymer that can 

be mass-produced by injection molding or hot-embossing.124 It has optical properties that are 

advantageous for UV and fluorescence detection. PDMS has been used to make microfluidic 

devices for the culture of bacterial and yeast cells under precisely controlled conditions for cell 

growth.232 Human colon cells were cultured in an integrated PMMA chip and compared with 

those cultured in culture flasks.225 Escherichia coli (E. coli) cells were cultured in a 

microbioreactor composed of PDMS and PMMA that integrated real-time measurements of 

optical density, pH, and dissolved oxygen.233 A high aspect ratio PDMS microfluidic device with 

an array of microchambers was recently developed for culturing human carcinoma cells.234  

1.5 Research Objectives 

The objective of this research was to develop microfluidic devices for the fast and 

effective analysis of proteins with specific focus on coupling microfluidic devices to off-line 

MALDI-MS detection. In order to achieve this goal, the specific aims of the project were (1) to  

develop microfluidic bioreactors coupled with MALDI MS analysis for protein digestions, (2) to 

evaluate different strategies of sample depositions for MALDI MS analysis, and (3) to develop 

microfluidic cell culturing devices for MALDI MS detections of whole cells. The first set of 

experiments, described in Chapter 3, was designed to develop an open channel bioreactor 

operated by a pressure-driven flow for protein sample preparations. A micropost structured 
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bioreactor was fabricated to obtain higher digestion efficiencies and the experiments, 

demonstrating its performance for sample preparation is discussed in Chapter 4. The second set 

of experiments, described in Chapter 5, used a continuous deposition to deposit low-volume 

samples with a small spot size on a MALDI target and to compare with a spotting deposition. For 

the third set of experiments, novel microfluidic culturing devices for MALDI MS detection, were 

evaluated for fingerprint analysis of bacteria and there are described in Chapters 6 and 7. 
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*Portions reprinted by permission from the Elsevier. 

CHAPTER 2. EXPERIMENTAL* 

Part of the work reported in this chapter has been published in Analytica Chimica Acta.2 

2.1 Overview of Mass Spectrometry 

Mass spectrometry (MS) is one of the most common analytical techniques used to 

determine the masses of molecules by measuring the mass-to-charge ratios (m/z) of their ions. A 

mass spectrometer is composed of four basic parts as shown in Figure 2-1: A sample inlet, an ion 

source, a mass analyzer, and an ion detector. Samples can be introduced into the ionization 

region of the instrument using direct insertion, such as a sample probe or a sample target plate 

for laser desorption ionization. Samples in the gas phase or in solution can be directly infused 

into the ionization region using a capillary. In the ion source, the samples are converted into gas-

phase ions.  

 

 

Figure 2-1. Components of a Mass Spectrometer. 
 

The most widely used types of ionization for the analysis of large molecules are matrix- 

assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI).235, 236 These 

ionization techniques are called “soft ionization” that produce ions representing the intact  
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molecules with little or no fragmentation due to low internal energy. The techniques are designed 

to produce ions of biomolecules such as peptides, proteins, oligonucleotides, and lipids without 

fragmenting them. Ions generated in the ion source are transferred into a mass analyzer where 

thery are separated according to their m/z ratios. A detector measures the ion current for the 

separated ions. In this work, a MALDI-TOF mass spectrometer was used for the detection of 

proteins and peptides. 

2.1.1 Matrix-Assisted Laser Desorption/Ionization  

Matrix-assisted laser desorption/ionization (MALDI) is a “soft” ionization technique that 

has been widely used in biological mass spectrometry. It can provide molecular weight and 

structural information for intact biomolecules.237 In MALDI, the molecules to be analyzed are 

deposited onto a metal target plate with an excess of an UV-absorbing organic compound called 

a matrix, dried and co-crystallized on the surface of the target.238 The target is inserted into the 

mass spectrometer and ionization is performed with the radiation of a pulsed laser of 0.5 to 25 ns 

duration and 20 to 200 J/m2 fluence onto the target.239 Various lasers have been used to irradiate 

the co-crystallized samples such as N2 laser (337 nm), Nd:YAG laser (355, 266 nm), KrF 

excimer laser (248 nm), and ArF excimer laser (193 nm).240-242 

The matrix plays an important role in this ionization technique by absorbing the laser 

energy and causing desorption of the matrix, which entrains the analyte in the gas-phase plume. 

The desorbed analyte is then ionized by proton-transfer reactions.241 In addition, the matrix must 

be soluble in solvents compatible with analytes and must be vacuum stable. The choice of matrix 

plays a role in the MALDI analysis of biomoelcules. Several common UV matrices and their 

applications are shown in Table 2-1.243 
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Table 2-1. Some commonly used UV matrices. 

Matrix Structure 
(M+H)+ 
(mono) 

Laser Sample Types 

α-cyano-4-
hydroxycinnamic acid 

CHCA 

 

190.0504 
337 
355 

Polar biomolecules, 
500<MW<10,000 

2,5-dihydroxybenzoic 
acid (Gentisic acid) 

DHB 
 

 

155.0344 
337 
355 

Polar biomolecules, 
 500<MW<5,000 

trans-3,5-dimethoxy-4-
hydroxycinnamic acid 

(Sinapinic acid,  
Sinapic acid) 

SA 

 

225.0763 
266 
337 
355 

Polar 
biomolecules, 
MW>10,000 

3-hydroxypicolinic acid 
HPA 

 

140.0348 
337 
355 

oligonucleotides 

 

2.1.2 Time-of-Flight Mass Spectrometry 

Time-of-flight (TOF) is a common mass analyzer. The primary advantage of TOF over 

the other mass analyzers is the acquisition speed.244 An entire mass spectrum can be obtained 

simultaneously only limited by the time it takes ions to travel the flight tube, typically within 

hundreds of microseconds. A TOF is a vacuum chamber with a pressure of 10-6 torr or lower to 

avoid target ion collisions with background gas molecules. TOF mass spectrometer uses the 

differences in the flight time of ions through a field free region to separate ions of different m/z. 

Once ions are generated in the source, they are accelerated into the flight tube. All ions have the 

same kinetic energy if differences in initial position and velocities are neglected. In the field-free 

drift region, the lighter ions travel faster and arrive at the detector first due to their higher 

velocity (v). The arrival time of ions at the detector depends on their mass (m) according to; 
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where EKE is the kinetic energy of the ions, v is the velocity, and m is the ion mass.245 The kinetic 

energy of the ions is determined by the acceleration voltage; 

zeVEKE =                                                                 (2-2) 

 where z is the charge number of the ion, e is the charge of an electron, and V is the acceleration 

voltage. Equation 2-1 can be solved for velocity in the field free region giving; 
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Equation 2-3 can be rearranged to solve for the flight time (t) assuming a singly charged ion 

(z = 1); 
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where L is the length of the flight tube. By grouping constants, ( ) 2/12VLk = , giving; 
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where k is a constant representing factors related to the instrument settings. As shown in this 

equation, the time of flight of the ion varies with the square root of its mass-to-charge (m/z) ratio. 

If the flight time is measured, then the time can be used to calculate the m/z ratio of the ion. If the 

TOF is calibrated using the flight times of two known masses, the times can be directly 

converted into m/z values for the mass spectra.  

Mass resolution (R) in mass spectrometry can be defined as; 

t

t

m

m
R

∆
=

∆
=

2
                                                           (2-5) 



 33 

where m is mass of the ion and t is the flight time, and ∆m and ∆t are mass and time at the full-

width at half-maximum (FWHM) of the peak, respectively. 

Mass accuracy is a measurement of mass difference between the calculated mass and the 

observed mass. Mass accuracy can be calculated by: 

( )

T

OT

M

MM
accuracyMass

−
=                                                    (2-6) 

where MT is the calculated mass and MO is the observed mass. Typically, mass accuracy can be 

described as a percent (%) or part per million (ppm).  

 

 

Figure 2-2. Schematic of a linear TOF mass spectrometer. 
 

The linear configuration of TOF mass spectrometers is a simple and robust technique, 

which provides moderate mass resolution.243 In a linear TOF MS, there is no theoretical limit to 

the m/z range. However, the mass range of a linear TOF MS is limited by its detector, which has 
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low detection efficiency for large molecules due to their slow movement resulting in difficulty of 

inducing secondary ion emission at the detector. The schematic of a linear TOF mass 

spectrometer is shown in Figure 2-2. As shown in this figure, the accelerated ions reach the 

detector at the end of the flight tube, which is typically 1-2 m in length.19 The acquisition cycle 

for a TOF mass spectrometer is pulsed. A typical linear TOF mass spectrometer has a resolution 

of up to 8,000, mass accuracy of 100 ppm, and a mass range of up to 350 kDa.246 

One of the major limitations for the linear TOF mass spectrometer is low mass resolution. 

When ions are formed in the ion source, they have spatial distribution and different kinetic 

energies in the acceleration field. Even the same m/z ions enter the field drift region, different 

flight times are recorded due to different initial velocities and positions. These initial spatial and 

velocity dispersions result in lower resolution.19 To correct the resolution problems especially 

due to kinetic energy distribution in a TOF mass spectrometer, delayed ion extraction and an ion 

reflectron can be used.247 In delayed ion extraction, ions are extracted from the ion source after a 

period of a few hundred nanoseconds following laser irradiation on the sample. The ions with 

lower velocity are accelerated more and the ions with higher velocity are accelerated less, 

ultimately reducing the temporal spread of ions. 

 The other technique to improve resolution is an ion mirror or reflectron. The reflectron 

focus ions with the same m/z and different kinetic energies within the flight tube by 

compensating for the differences in flight times. The reflectron is an electrostatic mirror, which 

is composed of a series of ring electrodes to which a repelling potential is applied. Figure 2-3 

shows a single stage reflectron. In this figure, identical ions have different kinetic energies 

during ion formation in the desorption process. Ions with higher kinetic energy penetrate deeper 

into the reflectron field. Ions with lower kinetic energy take a shorter path in the reflectron field. 

After the direction of ion motion is reversed, the detector is placed at focus (L1 + L2). The 



 35 

longer path length is an additional factor that can enhance mass resolution.248 A typical reflectron 

TOF mass spectrometer has a resolution of up to 40,000, mass accuracy of 2 ppm, and a mass 

range of up to 60 kDa.246 

 
Figure 2-3. Schematic of a reflectron time-of-flight mass spectrometer. 
 
 
2.1.3 Detector 

A microchannel plate (MCP) is a common detector for TOF mass spectromety. 249-251 

This detector is a multichannel version of an electron multiplier, which amplifies an electron 

signal through the inner surface of a channel to which a high voltage is applied.252 MCP is a 

specially fabricated plate of 1-2 mm thickness and has several million independent channels 

which are approximately 10 micrometers in diameter. Each channel works as an independent 

electron multiplier. A general mechanism of the MCP is shown in Figure 2-4. An incident ion 

enters a channel and causes ejection of secondary electrons from the surface of the channel. 

These secondary electrons are accelerated by an electric field from a voltage applied across the 

MCP. After several multiplications of electrons along the surface along the length of the 
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channels, the electrons emerge from the rear of the plate of the MCP. These are subsequently 

converted into a signal by anodes mounted after the MCP. The gain of each individual channel is 

approximately 104 after the cascade process.253 

 
 

Figure 2-4. Illustration of the mechanism of electron multiplication inside a channel of MCP. 
 

2.2 MALDI-TOF Mass Spectrometer 

For the experiments reported in this dissertation, mass spectra were recorded using a 

MALDI TOF mass spectrometer (OmniFLEX, Bruker Daltonik, Bremen, Germany) shown in 

Figure 2-5.  This MALDI-TOF mass spectrometer was used to analyze intact proteins and 

digested peptides from typsin-immobilized bioreactors (Chapters 3, 4, and 5), and to detect 

biomolecules from whole E. coli cells from microfluidic culturing chips (Chapters 6 and 7). A 

dual MCP detector was used for linear mode and reflectron mode detection. A pulsed nitrogen 

laser (λ = 337 nm; pulse width = 3 ns; pulse energy = 150 µJ maximum) at a repetition rate of 2 
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Hz was used for desorption/ionization of analytes. The total acceleration voltage was 19 kV with 

delayed ion extraction. Positive ions were detected and 50 single-shot spectra were averaged 

from each sample spot. 

 

 
Figure 2-5. Diagram of OmniFLEX MALDI time-of-flight mass spectrometer. 
 

2.3 Microfabrication Methods 

The choice of microfabrication method depends on the device material. Glass and silicon 

substrates are hard and brittle, but can be etched with HF following a photolithographic step. 

Polymer substrates are more versatile and can be shaped into the required structures using a 

variety of techniques such as etching, micromachining, imprinting, injection molding or hot 

embossing.  
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2.3.1 Photolithography 

Photolithography is one of the most frequently used procedures for creating 

microfabricated devices in glass, silicon, and quartz.254-257 It is typically used for microfabricated 

devices with channel widths larger than 1 µm and aspect ratios less than 10.37, 254 In the 

lithographic process, protective photoresist layers and masks are used to create the desired 

pattern. Figure 2-6 illustrates the typical procedures for creating a microfluidic device using 

photolithography. The substrate material is coated with a thin protective layer of metal, such as 

gold or chromium, followed by a layer of photoresist that is added by spin coating. 

 

 

Figure 2-6. Fabrication procedures of photolithographic microfabrication using a positive 
photoresist. 
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The photoresist is a photoactive polymer that is selectively exposed to UV light that, in a positive 

photoresist, breaks chemical bonds or, in a negative photoresist, crosslinks and thereby 

strengthens the polymer chains. Submicron features can be created using X-ray radiation.255 The 

surface is exposed through a photomask, which blocks the light from selected areas to create a 

pattern of the desired structure in the photoresist. The exposed  regions (positive resist) or 

unexposed regions (negative resist) of the patterned photoresist are removed by developing 

solvents to expose the metal protecting layer, which can be subsequently removed using the 

appropriate developing reagents.  

Once the lithography process is complete, the desired substrate features are created by 

etching, which can be done either wet or dry.258, 259 In wet etching, the substrate is exposed to 

liquid reagents, such as HF for glass etching; in dry etching, the substrate is exposed to a 

plasma.260  After etching, the protective layer is removed and the chip is cleaned, followed by 

sealing of the channels by thermal fusion bonding a cover plate to the patterned substrate.  

2.3.2 Micromachining 

High-precision micromilling is widely used for microfabrication of substrate materials 

such as polymers and metals. This technique can be used to directly machine microstructures 

into substrate materials down to a few µm in size using end-mill tools rotated at speeds from 

40,000 to 200,000 rpm.261 The end-mill tools are as small as 25 µm in diameter and are selected 

based on the specific design requirements of the microstructures. The micromilling machine can 

also be used to mill a metal master to create replicate microchips by embossing or injection 

molding (see below). Micromilling is compatible with many different materials and can be used 

to create high aspect ratio structures without a clean room environment.262 The minimum size of 

the milled features is approximately 5 µm.263, 264   
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Laser etching can also be used for the direct fabrication of microstructures in polymer 

substrates.265 UV laser beams, which must be absorbed by the substrate for efficient ablation, are 

directed to the polymer surface through a mask designed by specific microstructures. Alternately,  

a tightly focused beam can be used to create the microstructures by moving the writing beam or 

work piece.266, 267 Typically, KrF (248 nm) or ArF (193 nm) excimer lasers with fluences of 0.5 

to 30 J/cm2 are used for ablation.268 The depth of the channels and other features is determined 

by the pulse energy and the number of pulses irradiating a single area on the substrate. Although 

the theoretical imaging resolution for an excimer laser is 0.2 ~ 0.4 µm, the practical resolution is 

1-5 µm due to the limits associated with the optics.267-269  

2.3.3 Imprinting and Embossing 

Microstructures can be formed in polymers from a mold master using imprinting, 

injection molding or hot embossing.261, 270 The mold master, which carries the inverse of the final 

structures to be replicated, can be fabricated using photolithography or micromilling. A typical 

polymer has a low glass temperature (Tg), in the range of 120 to 180 ºC, which makes it 

compatible with many of the commonly used molding techniques. With imprinting, small-

diameter wires are arranged in the desired geometry and held flat against the polymer in a 

press.270 The press assembly is heated in an oven to a temperature slightly below Tg then 

removed and cooled. Microchannels are formed when the wires are removed from the polymer 

substrate. Although wire imprinting is fast and simple, it is difficult to form complex channel 

geometries reproducibly.  

Another technique used for the fabrication of microstructures in polymer substrates is hot 

embossing. Here, a mold master is heated and pressed into the substrate to form the 

microchannels and other structures using a specified force and temperature. As noted above, the 

metal master can be formed by micromachining or photolithography.271 The latter process is 
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known as LiGA, after the German acronym for “lithographie, galvanoformung, und abformung” 

(lithography, electroplating, and molding). The LiGA mold master is created by electroplating 

nickel or a nickel-cobalt alloy over a conductive layer containing an appropriately developed 

photoresist that has been patterned via photolithography.207 Hot embossing is fast, requiring 

about 5 min per device. Because it uses a one-piece master, replication errors are less than with 

imprinting and more complex geometries can be created that contain sloped, curved, multi-level 

and high aspect ratio structures.  

The process of injection molding is different from the imprinting and hot embossing 

processes described above in that polymer resins (pellets) are used in contrast to polymer sheets 

used for imprinting and embossing. Also, a mold master is heated to Tg for imprinting and 

embossing, whereas a molding tool is heated to a temperature to form a free flowing melt in the 

case of injection molding.  However, in all three cases, a molding tool is employed, which 

defines the shape, size and position of the desired structures. For injection molding, a polymer 

resin is added to a hopper, which feeds an injection barrel that consists of a large screw that 

moves the polymer into the molding chamber. The polymer resin melts as it is dragged by the 

screw through the barrel. The melted polymer is injected into the molding chamber through a 

nozzle and allowed to fill the injection chamber, which also contains the molding tool.  

Following molding of the polymer resin, the chamber is cooled and the molded piece ejected 

from the machine. The advantage of injection molding is that once the machine and molding 

conditions are set, a number of pieces can be produced at rates exceeding that associated with 

imprinting or hot embossing. 

In the work described in this dissertation, a mold master was prepared using micro-

milling267 and was subsequently used to replicate polymer microparts via hot embossing. The 

desired microfluidic network was designed using computer-aided design software. The brass 
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plate was cut into a 12 cm diameter circle and the mold master was machined in the specified 

pattern with a micro-milling machine (MNP 2522, KERN Micro-und Feinwerktechnik 

GmbH & Co. KG, Germany). A laser measuring system (Laser Control NT, Blum-Novotest 

GmbH, Germany) was used to determine the tool length and radius, and an optical 

microscope (Zoom 6000, Navitar, Rochester, NY) was employed to monitor the micro-

milling process, which was accomplished at 40,000 rpm and a feed rate of 10-20 mm/min 

using a 50 µm carbide bit (McMaster-Carr or Quality Tools, Hammond, LA). After milling, 

the master was polished using a 3 µm grain size polishing paper (Fibrmet Discs-PSA, 

Buehler, Lake Fluff, IL) followed by a polypropylene cloth (Engis, Wheeling, IL) with a 1 

µm diamond suspension (Metadi Diamond Suspension, Buehler) to remove burrs at the 

surface of the microstructures.  

The mold master was used to replicate PMMA chips using hot embossing on PMMA 

disks that were 5 mm thick and 120 mm diameter.2, 272, 273  To emboss, the mold master and 

PMMA disks were mounted in a hot embossing machine (Model TS-21-H-C (4A)-5, PHI 

Precision Press, City of Industry, CA) and then both the master and the PMMA disk were 

heated separately in a vacuum chamber to a temperature of 155 ºC, which is above the glass 

transition temperature of PMMA (Tg = 107 ºC).124 After the mold master was embossed at a 

pressure of 950 PSI for 150 s, it was rapidly cooled to just below 155 ºC prior to demolding.  

2.4 Preparation of the Sold-Phase Bioreactor 

The schematic procedure for preparing bioreactors with immobilized trypsin is shown in 

Figure 2-7. The PMMA chip surfaces were first activated for covalent attachment of the 

proteolytic enzyme by exposing the microfabricated PMMA substrate and cover slip to a 254 nm 

UV lamp at 15 mW cm-2 for 20 min.206 This was followed by inserting stainless steel and silica 

tubes into guide channels on the PMMA substrate and thermally annealing the UV exposed 
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0.125 mm PMMA cover slip to the substrate at 98 °C for 20 min.267 The assembled chip was 

then rinsed with deionized water and air-dried. Then, the UV-modified channels were chemically 

treated with a mixture of 5 mM EDC and 5 mM sulfo-NHS solution for 15 min. Finally, trypsin 

was immobilized onto the surface of the UV-exposed microchannels by inserting a 20 µM 

trypsin solution prepared in a 100 mM phosphate buffer (pH 7.0) into the PMMA bioreactor 

channel for 2 h. The chip was ready for immediate use or could be refrigerated for future use.  

 

 

 
Figure 2-7. Schematic of trypsin immobilization procedure on the surface of PMMA. 
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2.5 Spotting Deposition 

PMMA chips were designed to fit into a stationary mount of a robotic fraction collector 

system (Probot, Dionex, Sunnyvale, CA); the MALDI plate translated in the xy plane for spot 

deposition. A schematic of the assembled chip is shown in Figure 2-8. The interface capillary 

was 1 or 5 cm in length and had an ID of 100 µm and an OD of 363 µm. The capillary was 

inserted into a guide channel that was embossed into the chip and placed directly at the output 

end of the microreactor and finally, glued in place. The chip had a coaxial matrix and analyte 

mixing system with the analyte exiting the chip through a silica capillary tube, which was 

surrounded by a 1 or 5 cm long stainless steel tube that was 500 µm ID and 1.5 mm OD.  

 

 
Figure 2-8. Schematic of assembled chip for spotting deposition. 
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Figure 2-9 shows a schematic of the fluid connection between the micropost bioreactor 

and the capillary tube serving as the off-line MALDI interface. The analyte flowed through the 

interface capillary and the matrix through an outer tube hydrostatically. These effluents were 

mixed at the point of target deposition on the MALDI plate. The MALDI matrix solution 

consisted of 5 mg/mL CHCA dissolved in 60% acetonitrile with the addition of 0.1% TFA 

containing an internal standard of bradykinin (5 µM). Effluent from the microchip was deposited 

onto the MALDI target plate with a micro-fraction collector (Figure 2-10) and then analyzed off-

line by MALDI-TOF MS. 

 

 
 
Figure 2-9. Schematic of the fluid connection between the micropost bioreactor and the capillary 
tube assembled chip. 
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Figure 2-10. Assembled chip with robotic fraction collector system. 

 

To control sample deposition, two pumping systems were used, pressure-driven flow and 

electrokinetically-driven flow. In pressure driven flow, the fluid was moved through the 

microchannels by a positive displacement pump, such as a syringe pump. The fluid could also be 

pumped electrokinetically by applying a potential across the channels.  

2.5.1 Pressure-Driven Flow 

A microfluidic device operated by pressure-driven flow (hydrodynamic flow) ensures 

completely laminar flow without turbulence resulting from low Reynolds numbers (Re). 

Typically, turbulent flow occurs above Re = 2000. In a microchannel, Re is less than 20 when 

flow rates are below 100 µL/min.274 The fluid velocity at the wall is zero in the low Re regime, 

producing a parabolic velocity profile within the microchannel. Compared to electrokinetically-
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driven flow, pressure-driven flow offers several advantages such as easy implementation and 

insensitivity to surface characteristics, ionic strength of fluids, and pH. However, band-

broadening due to dispersion and diffusion reduces separation efficiency.  

In this work (Chapter 3), a syringe pump (Model 11, Harvard Apparatus, MA) was used 

to supply the microchip with a protein solution. Solutions of cytochrome c, myoglobin, BSA, and 

phosphorylase b in 50 mM ammonium bicarbonate buffer solution were driven through the 

trypsin immobilized PMMA microchannel by a syringe pump at various volume flow rates. 

MALDI matrix was added to the microchip reservoir via a syringe pump at a flow rate of 5 

µL/min. 

2.5.2 Electrokinetically-Driven Flow 

In many practical microfluidic applications, including injection and collection of analytes, 

electrokinetically-driven flow has been used to generate fluid motion. A high potential, typically 

400 V- 1000 V, is applied across the sample through electrodes to produce an electroosmotic 

pump. An electrokinetic flow system can eliminate mechanical pumping systems, control back 

and forward flow, provide a flat flow profile in the microchannel, and easily couple 

electrophoresis with a mass spectrometer.275  

Although electric fields are efficient tools for separation of molecules, especially proteins 

and peptides, there are limitations in using this as a general tool of fluidic transport. One of the 

problems for electrokinetically-driven flow is that alternating plugs of buffer with different 

conductivity are needed to compensate for the ionic strength of a solution. The separation of 

different ionic components occurs due to the demixing of solutions when heterogeneous 

solutions are pumped. Also, joule heating is a problem when high voltage is used for infusing 

solution. 
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 In this work (Chapter 4), the sample was transported through the capillary via 

electroosmotic pumping, which was generated by electrokinetic flow through the bioreactor.276 

The electro-osmotic flow (EOF) in assembled devices was measured using the current-

monitoring method described in previous studies.277, 278 An in-house built high-voltage controller 

operated by LabView software was used to supply the microchip with the driving electric field. 

Sample transfer was started by applying the high voltage to the sample inlet (point A, +1.5 kV, 

see Figure 2-11) and a ground potential at point B (see Figure 2-11b). 

 

 
Figure 2-11. (a) Assembled tryptic digestion microfluidic chip; chip components including 
PMMA substrate and cover slip, inlet and outlet connectors, capillary and stainless steel tubes. 
The sample solution was electrokinetically infused through the bioreactor and the matrix solution 
was loaded hydrodynamically with a syringe pump. Coaxial tubes mixed the bioreactor output 
with a matrix solution for deposition on a MALDI target. (b) Schematic top view of the fluid 
connection between the micropost bioreactor and the capillary tube interface to the deposition 
system.  Two Pt electrodes were inserted into the sample inlet and the end of the bioreactor to 
electrokinetically drive the sample through the bioreactor. 
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2.6 Continuous Deposition 

A schematic of the continuous deposition system disscused in Chapter 5 is shown in 

Figure 2-12. The PMMA chip was designed to fit into the stationary mount of a xyz stage 

(Newport, Irvine, CA) for continuous deposition. A guide channel was embossed at the output 

end of the bioreactor channel to accept a PEEK capillary (360 µm o.d. × 50 µm i.d.), which was 

used for transporting samples onto a MALDI target.  

 
Figure 2-12. A schematic of continuous deposition mode using a PMMA microfluidic chip 
containing an immobilized trypsin bioreactor:  The channel measured 40 mm × 200 µm × 50 µm 
and had an array of 50 µm diameter with a 50 µm inter-post spacing.  
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A 10 mg/mL CHCA MALDI matrix solution was prepared in water/acetonitrile (30/70, v/v) and 

mixed with an equal volume of 5 mg/mL nitrocellulose in acetone/2-propanol (80/20, v/v). A 0.5 

mL aliquot of this solution was placed on the MALDI target plate. The plate was then spin-

coated at 4000 rpm for 20 s to coat the surface.  

The matrix-coated MALDI plate was placed on an xyz stage (M-433, Newport, Irvine) operated 

using actuators (LTA-HS, Newport, Irvine) and a motion controller (ESP300, Newport, Irvine) 

interfaced to a computer running LabView 8.0 software. During deposition, the outlet polymer 

capillary was brought into contact with the MALDI target for depositing tryptic digested 

peptides from the bioreactor.  

2.7 Microfluidic Cell Culturing 

PMMA chips were microfabricated using hot embossing as the polymer replication 

technique with die mold prepared by high-precision micromilling for cell culturing devices 

(Chapters 6 and 7).267 A more complete description of the fabrication technology utilized in this 

study has been described previously.81 The embossed microfluidic devices had two culture 

chambers that were 3 mm in diameter and 300 µm in depth. One of chambers was used for a 

blank, which contained nutrient medium without sample. The other was used for bacteria 

culturing. The total reactor volume of the culture chamber was 2.1 µL. Figure 2-13 shows a 

schematic of a culturing chamber and two microchannels. The sample inlet and medium solution 

inlet were 100 µm deep × 100 µm wide and 300 µm deep × 100 µm, respectively. Guide 

channels at the outlet end of the PMMA chip were embossed to fit into the 100 µm ID × 363 µm 

OD silica capillary for collection of cultured cells onto a MALDI target plate. A PDMS cover 

slip was prepared with a 10:1 ratio (v/v) of silicon and the curing agent (Sylgard 184, Dow 

corning Corp., Midland, MI), and then baked at 70 ℃ for 2 h for curing.  
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Figure 2-13. Diagram of a microfluidic cell culturing device consisting of a culture chamber, a 
sample channel, and a medium channel.   
 

2.7.1 Static Culturing 

A schematic of the PMMA microfluidic cell culturing device (see Chapter 6) coupled 

with MALDI-TOF MS is shown in Figure 2-14. Two different covers, PMMA and PDMS, were 

tested to investigate different cell cultivation based on culturing substrates. All culture 

components including tubing and connectors were sterilized with a 254 nm UV light at 15 mW 

cm-2 for 10 s (150 Jm-2) prior to use.279 This was followed by inserting 3 cm long silica 

capillaries into the guide channels on the PMMA substrate and thermally annealing the 0.125 

mm PMMA cover slip to the substrate at 106 °C for 20 min. A thin film of epoxy resin was then 

applied to the capillary-device interfaces to prevent leaks. Also the PMMA culturing chip was 

sealed with a 1 mm PDMS cover slip without an adhesive. 
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Figure 2-14. Schematic of a PMMA microfluidic cell culturing device consisting of two culture 
chambers for a control and a sample, respectively.  
 
 
2.7.2 Dynamic Culturing 

A photo of the microfluidic cell culturing device with continuous perfusion of medium 

interfaced to MALDI-TOF MS is shown in Figure 2-15 (Chapter 7). The cell culture device was 

composed of a culture bed, fluid microchannels, and a sample reservoir and a waste reservoir, 

which were connected to external pumps. The microfluidic cell culture device was capable of 

culturing with continuous perfusion of a medium to keep a favorable environment suitable for 

cell growth by removing metabolites from the culture chamber. A polycarbonate (PC) membrane 
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with 0.2 µm pore size was embedded into the outlet of the culture chamber for changing the 

medium without loss of cells. 

 

Figure 2-15. A photo of the microfluidic cell culturing device with continuous perfusion of 
medium using a polycarbonate membrane. 
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chip was cut horizontally to make a heat barrier of 4 mm thick and 2 mm height. The PMMA 

chip was designed to fit into the capillary tubes of 100 µm ID × 363 µm OD silica capillary for 

deposition of cultured cells and digested peptides on a MALDI target plate. 

2.8 Temperature-Controlled System 

A culturing chamber with continuous perfusion of fresh medium was improved by 

incorporating a micro thermostatic heater to keep the temperature constant. Figure 2-16 shows a 

photograph of the thermostatted microfluidic cell culturing device. This device was composed of 

a micro-heater, a Peltier cooler, and thermocouple temperature sensors. The micro-heater was 

used to maintain a constant temperature suitable for cell culturing. To control the temperature 

distribution inside the cell culturing chamber, an aluminum heating block with a Kapton 

insulated heater (KHLV-102, Omega, Stamford, CT) was prepared. The heater was connected to 

a temperature controller (CN77R344.A2, Omega, Stamford, CT) through a solid state relay 

(G3NA-210B-DC5-24, Omron, Schaumburg, IL). A set temperature of 37 ℃ was maintained by 

continuously measuring the temperature with a thermocouple (Omega, Stamford, CT) that was 

inserted into the front side of the culture bed. A Peltier cooler (TEC1-3108, Fujitaka, Japan) was 

used to maintain a temperature suitable for the immobilized trypsin in the solid-phase bioreactor. 

The Peltier cooler was powered by a DC voltage source, which caused one side of the device to 

cool, while the other side warmed. A thermocouple was inserted beneath the chip attached to the 

cold side of the Peltier cooler. The measured temperature was approximately 10 ℃ at 1.0 V of 

applied voltage and 1.5 A of current.  A fan (JF0510, Jamicono, Taiwan) and a heat sink were 

attached on the hot side of the Peltier cooler to dissipate heat from the device. 
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Figure 2-16. A photo of the temperature controllable system for the microfluidic cell culturing 
device. 
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obtained from the mass spectra through the MASCOT search engine.  A mass deviation of < 0.25 

Da and one missed cleavage were allowed in the database searches. 

2.9.2 RMIDb 

Intact cell identification was conducted by protein molecular weight and organism 

searching using the Rapid Microorganism Identification Database (RMIDb, www.rmidb.org), 

which is designed to identify bacteria by protein mass analysis. A mass deviation of < 3Da was 

allowed in the database searches. 

2.10 Reagents and Chemicals 

Microfluidic chips were fabricated from PMMA, which was secured from MSC 

Industrial Supply Co. (Melville, NY) and a 0.25″ Alloy 353 engraver’s brass plate was obtained 

from McMaster-Carr (Elmhurst, Illinois). Ammonium bicarbonate buffer (50 mM, pH 8.5) was 

purchased from Sigma (St. Louis, MO). N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC) and hydroxysulfosuccinimide (Sulfo-NHS), which were used to modify the 

surface of the PMMA microchannels, were obtained from Sigma and Pierce (Rockford, IL, 

USA), respectively. Protein standards equine cytochrome c (C-2506), equine myoglobin (M-

1882), bovine serum albumin (BSA, A-0281), β-casein(C-6905), and phosphorylase b from 

rabbit muscle (P-6635) were used as obtained from Sigma. Bradykinin (B-3259), which was 

used as an internal standard, trypsin (T-6567), isopropyl alcohol (IPA) and α-cyano-4-

hydroxycinnamic acid (CHCA) were also obtained from Sigma. Sodium phosphate buffer (100 

mM, pH 7.0) and trifluoroacetic acid (TFA) were purchased from Fluka (Buchs, Switzerland). 

Silica tubes (60 × 0.28 mm OD, 0.1 mm ID) and stainless steel tubes (60 × 1.5 mm OD, 0.5 mm 

ID) were secured from Upchurch Scientific (Oak harbor, WA, USA).  

Three different E. coli strains were obtained from the American Type Culture Collection 

(Manassas, VA); ATCC 9637, ATCC 11303, and ATCC 11775. Also, lyophilized E. coli (ATCC 
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9637) was purchased from Sigma and was used for the measurement of optical density without 

further purification. Nutrient broth was purchased from Becton Dickson (Broth 23400, Sparks, 

MA). 
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*Reprinted by permission of the Elsevier. 

CHAPTER 3. DEVELOPMENT OF AN AUTOMATED DIGESTION AND DROPLET 
DEPOSITON MICROFLUIDIC CHIPS FOR MALDI-TOF MS* 

The work reported in this chapter has been published in the Journal of the American 

Society for Mass Spectrometry.81 

3.1 Overview 

The purpose of the research described in this chapter was to develop an automated 

proteolytic digestion bioreactor and droplet deposition system for off-line interfacing to MALDI-

TOF MS. This chapter describes MALDI sample preparation using a novel trypsin-immobilized 

microfluidic chip consisting of an open channel reactor and a coaxial collection tip. In addition, 

the off-line MALDI interface included matrix addition and deposition on a MALDI target using 

a robotic fraction collector modified to accept the effluent from the bioreactor. Various proteins 

were digested with the solid-phase bioreactor and detected with off-line MALDI MS. 

3.2 Introduction 

Significant progress has been made toward the development of microchip-based 

technologies for proteomics through the integration of analytical processes into platforms that 

can provide rapid identification of proteins and the subsequent characterization of various post-

translational modifications.46, 121, 142, 162 The small sample and reagent requirements, rapid 

analysis times, high throughput processing capabilities, and low operating costs are among the 

driving forces for the development of these systems.82, 178, 280, 281 Different microfluidic devices 

have been applied to specific aspects of protein processing, in particular, protein purification and 

separation, protein digestion, and protein identification by mass spectrometry.143  

With recent advances in analytical methods for proteomics, attention has been directed 

toward development of efficient pretreatment protocols for protein identification.188 Strategies 

for identifying proteins focus on accurate, sensitive, simple, and high throughput analyses 
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achieved by either reducing processing time or with multi-channel devices.80, 282 Trypsin  

digestion for protein sample preparation is the most frequently used step in proteomic analysis 

due to the robust nature of this enzyme and the extensive data bases and software tools for 

trypsin digests of proteins.189, 202 However, the long sample incubation times required for trypsin 

digestion in solution and the extensive sample treatment steps result in long protein processing 

times. To overcome those obstacles, rapid in-solution digestion protocols have been developed 

using organic solvents to denature proteins or by applying higher incubation temperatures to 

accelerate reaction times.283-286 However, efficient protein identification from in-solution 

digestion of dilute protein samples can be difficult due to low proteolytic digestion rates and 

background from autodigested trypsin that is typically observed in mass spectra when a high 

concentration of trypsin is used.  

As an alternative to in-solution digestion, bioreactors can be used to digest small 

quantities of separated proteins. Typically, the reaction time required for homogeneous solution 

tryptic digestions is tens of  hours to achieve a sufficient population of peptide fragments for 

effective PMF because the enzyme-to-substrate ratio must be kept low to avoid interferences 

from autodigested trypsin.202 In order to overcome this problem, enzyme-immobilization on solid 

supports for solid-phase bioreactors has been introduced.44, 201, 202, 204 Many of these solid-phase 

bioreactors use immobilization of proteolytic enzymes through covalent attachment to supports 

or encapsulation within gel matrices. Compared to homogeneous reactors, solid-phase enzymatic 

bioreactors offer several advantages such as faster and simpler sample preparation steps, fewer 

enzyme autolysis products, good reproducibility, larger enzyme-to-substrate molar ratios, high 

digestion efficiency, and the possibility of repeated use. Wang et al.
202 developed a microfluidic 

chip that was packed with trypsin-loaded beads in a fluidic channel. It was found that the bead-
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packed chip gave faster protein digestion and fewer trypsin autolysis products compared to a 

homogeneous reaction.  

Functionalized 3-D support networks can also be made in situ,
44, 181, 201, 204 which 

overcomes the difficulty of packing beads into the microchannels. Typically, these in situ 

methods use a polymerization reaction of a monomer solution inside a channel to modify the 

support. Then, trypsin solution is infused into the bioreactor for about 24 h for complete 

immobilization. Even though a fast reaction time, ranging from 5 s to 1 h, was achieved, it 

required 12 to 24 h for enzyme immobilization. In addition to complex and time-consuming 

preparation, none of the above bioreactors have been adapted to MALDI target deposition.   

In this study, we report on a simple microfluidic device that incorporated both trypsin 

digestion and MALDI matrix addition for spotting tryptic digests for MALDI-TOF MS analysis. 

We prepared a novel trypsin immobilized PMMA solid-phase microfluidic chip consisting of an 

open channel reactor and a coaxial collection tip. Also, we developed an off-line MALDI 

interface to combine matrix addition and deposition on a MALDI target using a robotic plate 

spotter modified to accept the effluent from the microfluidic chip. This system was applied to the 

digestion of proteins and deposition onto a MALDI target plate. The enzymatic bioreactor was 

used for the rapid digestion of several proteins followed by off-line MALDI TOF MS detection 

of the generated peptides. The fabricated bioreactor included coaxial channels for mixing 

digested peptides with the matrix solution.  

3.3 Experimental 

The microfluidic chips were fabricated in poly(methyl methacrylate), PMMA, using a 

micromilling machine and incorporated a bioreactor, which was 100 µm wide, 100 µm deep and 

had a 4 cm effective channel length (400 nL volume). The PMMA chip was designed to fit into 

the stationary mount of a robotic fraction collector system (Probot, Dionex, Sunnyvale, CA); the 
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MALDI plate translated in the x/y plane for spot deposition. Two PMMA blocks were tapped to 

accept 1/16” tube fittings, which were epoxy glued to the microchip. A schematic and 

photograph of the assembled chip is shown in Figure 2-8 and Figure 2-9.  

The PMMA bioreactor contained surface immobilized trypsin, which was covalently 

attached to the UV-modified PMMA surface using coupling reagents, N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and hydroxysulfosuccinimide 

(sulfo-NHS). The chip had a coaxial matrix/analyte mixing system where the analyte flowed 

through an inner tube and the matrix flowed through an outer tube and was mixed at the point of 

target deposition for off-line MALDI detection. The chip was operated by pressure-driven flow 

using a syringe pump (Model 11, Harvard Apparatus, MA) which was used to supply the 

microchip with a protein solution. Solutions of proteins in 50 mM ammonium bicarbonate buffer 

solution were driven through the trypsin immobilized PMMA microchannel by a syringe pump 

at various volume flow rates. MALDI matrix was added to the microchip reservoir via a syringe 

pump at a flow rate of 5 µL/min. The MALDI matrix solution consisted of 5 mg/mL CHCA 

dissolved in 60% acetonitrile with the addition of 0.1% TFA containing an internal standard of 

bradykinin (5 µM).  The digested peptides were mixed with a MALDI matrix on-chip and 

deposited as discrete spots on MALDI targets. After the deposited samples were analyzed, mass 

spectral peaks were searched using the MASCOT search program. 

Protein standards equine cytochrome c (C-2506), equine myoglobin (M-1882), bovine 

serum albumin (BSA, A-0281), and phosphorylase b from rabbit muscle (P-6635) were dissolved 

in 50 mM ammonium bicarbonate buffer (pH 8.2). To evaluate the chip performance, a stock 

solution of 50 µM cytochrome c was prepared. The stock solution was diluted to 10, 5, 2, 1, and 

0.5 µM with 50 mM ammonium bicarbonate. 
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3.4 Results 

3.4.1 Off-Line Microfluidic Chip Interface to MALDI-TOF MS 

Cytochrome c was used as a model protein for evaluating the performance of the 

automated tryptic digestion and droplet deposition system. A 10 µM cytochrome c solution in 50 

mM ammonium bicarbonate buffer was pumped through the solid-phase bioreactor at a flow rate 

of 1 µL/min using a syringe pump. The bioreactor was an open channel design and was 4 cm 

long (100 µm width and 100 µm depth of channel) with a total reactor volume of 400 nL 

containing surface-immobilized trypsin. The effluent from the bioreactor was combined with a 

matrix solution on-chip delivered by a separate syringe pump and spotted onto a MALDI plate 

using a robotic fraction collector system. The deposition time of each fraction was 20 s and each 

drop had a total volume of 2.0 µL, which consisted of analyte with matrix solution mixed in a 

ratio of 1:5 (v/v). Therefore, each drop consisted of approximately one bioreactor volume. The 

spot sizes deposited were 1.5 mm in diameter with a standard deviation of ± 0.2 mm. The hold-

up volume of this system was estimated to be ~0.3 µL, which was primarily from the silica 

capillary tip used for deposition. The first fraction deposited onto the MALDI plate contained 

only matrix as confirmed by mass spectrometry; digested peptides could be obtained after the 

second fraction deposition at the flow rate used (1 µL/min).   

3.4.2 MALDI Analysis of Solid-Phase Bioreactor Digested Cytochrome c 

Each fraction obtained by the digestion and droplet system was analyzed by MALDI-

TOF MS; a representative mass spectrum of a fraction deposited at a 60 s system run time is 

shown in Figure 3-1. The 10 µM solution of cytochrome c was pumped through the bioreactor at 

a flow rate of 1 µL/min, which afforded a residence time within the reactor of 24 s. As seen in 

this figure, 11 fragments containing 70 out of the 104 possible amino acids of cytochrome c were 

obtained, producing a sequence coverage of 67%. Peptide fragments were assigned on the basis 
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of the MSDB database using the MASCOT search engine. The asterisks indicated identified 

peptides; the other peaks were not identified.  

 
Figure 3-1. MALDI-TOF mass spectrum of tryptic digest of cytochrome c at 60 s: 10 µM in 50 
mM ammonium bicarbonate buffer; flow rate, 1 µL/min; deposition time, 20 s (3.3 pmol); 
asterisks indicate matched peaks. Bradykinin is an internal standard. 
 

This sequence coverage identification process was evaluated by the probability-based 

Mowse score,287, 288 which is defined as; -10Log (P), where P is the probability that the match is 
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a random event (P <0.05). This score represents the accuracy of a peptide mass fingerprint hit. 

The magnitude of the score is determined by the size of the database used, number of peptides 

and the size of the protein. In our search using digested mass lists of cytochrome c, Mowse 

scores greater than 78 are considered significant identifiers of the target protein. The mass 

spectrum in Figure 3-1 corresponds to a Mowse score of 137 and a sequence coverage of 67%. 

Thus the identified peptides matched the cytochrome c sequence with a high degree of certainty 

using our open channel bioreactor when operated at a volume flow rate of 1 µL/min. Although 

the digestion efficiency of this bioreactor was high,  not all of the peptides were identified, which 

may be due to incomplete digestion for protease-inaccessible proteins, solubility of digested 

peptides, and lack of a denaturation step in the bioreactor protocol.289 Sequence coverage ranging 

from 18  to 95 % have been reported for in-solution digestion of cytochrome c, which requires 15 

minutes to 24 hours reaction time.189, 192, 285 

The extent of protein reaction in the microfluidic chip was evaluated by comparing the 

mass spectrum of the unreacted protein to that of the digested protein from the chip. Figure 3-2 

shows the mass spectra of 6.6 pmol cytochrome c flowed through the chip and deposited on the 

MALDI target. The mass spectra are from a fraction obtained 60 s after injection using MALDI-

TOF in linear mode. The chip used for Figure 3-2a was not derivatized with trypsin and the 

intact protein is observed. Figure 3-2b was obtained from a chip with a trypsin derivatized 

surface and tryptic fragments are observed. The different ionization efficiency for peptides and 

proteins and the possibility of competitive ionization make a quantitative determination of the 

efficiency of the digestion difficult; however the significant decrease in the protein signal 

suggests that the extent of reaction is quite high.  
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Figure 3-2. MALDI-TOF mass spectra obtained from a) intact cytochrome c and b) its tryptic 
digest at 60 s: 20 µM in 50 mM ammonium bicarbonate buffer; flow rate, 1 µL/min; deposition 
time, 20 s (6.6 pmol). 

 

We next evaluated the effects of sample flow rate, which changes the residence time, on 

the extent of protein digestion in the solid-phase bioreactor by monitoring the sequence 

coverage. The flow rate of cytochrome c solution was set to 0.5, 1, 2, and 5 µL/min, 

corresponding to residence times of 48, 24, 12, and 4.8 s, respectively. The mass spectra 

obtained from cytochrome c digested at these different flow rates are shown in Figure 3-3. As 

seen in this figure, the digestion of cytochrome c was more efficient at lower flow rates as 
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evidenced by a larger number of peptide peaks in the mass spectrum. Mowse scores were 181 for 

48 s residence time with 75% sequence coverage, 137 for 24 s residence time with 67% sequence 

coverage, 128 for 12 s residence time with 59% sequence coverage, and 101 for 4.8 s residence 

time with 42% sequence coverage.  

 

Figure 3-3. MALDI-TOF MS spectra obtained from digests of cytochrome c at different flow 
rates: 10 µM in 50 mM ammonium bicarbonate buffer; deposition time, 40, 20, 10, and 4 s for 
flow rate, 0.5, 1, 2, and 5 µL/min, respectively. Bradykinin is an internal standard. At low flow 
rate (long residence time) the intensity of peaks was larger compared to high flow rates. 
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The reaction rate for heterogeneous bioreactors is primarily determined by the mass 

transport of reactant to the surface and enzyme activity.290, 291 In the open channel, mass transport 

plays a major role in determining overall reaction rate at higher flow velocities due to less 

frequent encounters between the solution-phase protein and the surface-immobilized enzyme.40, 

203 Slovakova et al. described a methodology for efficient digestion using a bioreactor packed 

with immobilized trypsin beads in order to reduce diffusional distances and increase the number 

of encounters between the reactant and substrate.203  In their report, the sequence coverage of 

human growth hormone increased from 7% to 44% with increased residence time ranging from 

141 s to 564 s. 

In a previous study, Duan et al. reported increased digestion efficiency with greater 

residence time of cytochrome c in a monolithic enzymatic bioreactor prepared by in situ 

polymerization of acrylamide, N-acryloxysuccinimide, and ethylene dimethacrylate.40 In their 

report, the sequence coverage of cytochrome c at a residence time of 7 s (1 µL/min) was 54.8%.  

In our system, 67% sequence coverage with the Mowse score of 137 at the flow rat of 1.0 

µL/min (24 s residence time) was adequate to identify cytochrome c using an open channel 

reactor that did not require fabrication of a 3-D support network for the enzyme. In subsequent 

experiments reported herein, we utilized a flow rate of 1.0 µL/min since it produce a Mowse 

score adequate for protein identification.  

3.4.3 Digestion Capacity of the Solid-Phase Open Channel Bioreactor  

We next continuously monitored the peptides generated from a cytochrome c trypsin 

digest from the bioreactor at 20 s intervals to determine the stability of the bioreactor system. 

The immobilized trypsin was continuously exposed to a solution containing 10 µM cytochrome c 

prepared in 50 mM ammonium bicarbonate buffer at a flow rate of 1 µL/min. A total of 7 µL of 

10 µM cytochrome c was flowed through the bioreactor using a syringe pump with  
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approximately 7 min of infusion. Twenty fractions were collected on the MALDI target plate and 

each fraction contained peptides from 3.3 pmol of cytochrome c injected into the reactor.  The 

intensity and sequence coverage as a function of sampling interval obtained from the mass 

spectra data are shown in Figure 3-4. The intensity of the peak at m/z 1168, which is one of the 

major peptide peaks corresponding to residues 28-38 of cytochrome c (TGPNLHGLFGR), was 

normalized to the intensity of the internal standard, bradykinin (m/z 1060, 8.3 pmol) and this 

value was used as an indication of the extent of digestion. As seen in Figure 3-4a, the m/z 1168 

peak was observed 40 s (including hold-up time of 18 s) after 0.4 µL of cytochrome c was 

injected into the bioreactor. The normalized peak intensity ratio reached a maximum after one 

minute and remained at that within the standard deviation of the measurement. During the 

continuous injection of cytochrome c, the peak intensity ratio was nearly the same, which 

indicates that the activity of trypsin covalently attached onto the PMMA surface remained high 

during this experiment. In Figure 3-4b, it can be seen that the sequence coverage of cytochrome c 

was 53% at 40 s. The fraction at 60 s had a sequence coverage of 67% and remained at this value 

during the rest of this experimental run. Note that this value is appropriate for confirmation of 

cytochrome c based on Mowse score. The fraction at 100 s did not produce significant 

differences from the fraction at 60 s. In contrast with in-solution digestion which cannot be 

reused, the solid phase bioreactor could be reused without noticeable loss of activity of 

immobilized enzyme.44, 281, 292 During three independent experimental runs similar to that shown 

in Figure 3-4 using the same bioreactor, the activity remained relatively constant after rinsing the 

bioreactor with 50 mM ammonium bicarbonate between experimental runs. The memory effect 

of the bioreactor was checked between runs of cytochrome c solutions by collecting and 

analyzing the first spot. As can be seen in the figure, these blank spots did not result in any mass 

spectral peaks due to carryover.  
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Figure 3-4. Evaluation of microfluidic chip performance for the digestion of cytochrome c as a 
function of time: a) intensity ratio of selected peak (m/z 1168) using internal standard, bradykinin 
(m/z 1060) and b) sequence coverage; 10 µM in 50 mM ammonium bicarbonate buffer; flow 
rate, 1 µL/min; deposition time, 20 s. 
 
 

Typically, proteins are digested in solution at an enzyme-to-substrate molar ratio of 1:50 

for 24 h of incubation.30 When a relatively low enzyme-to-substrate molar ratio is employed, the 

enzymatic reaction has low efficiency;30, 192 however, this low molar ratio is necessary to avoid 

excessive autodigestion of trypsin. Lazar et al. discussed the effects of trypsin concentration on 

the rate of digestion in solution.192 In their work, in-solution digestion of various proteins was 

accomplished using enzyme-to-substrate molar ratios of 1:1 to 1:20 for 15 min to 24 h of 
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incubation. For the highest enzyme-to-substrate mole ratio (1:1), adequate digestion could be 

obtained after 15 min of digestion. The sequence coverage of cytochrome c at that mole ratio 

was 88-95% using ESI-TOF MS. In our experiment, 8 pmol trypsin was used for immobilization 

onto the surface of the UV-exposed microchannel. The amount of immobilized trypsin depends 

on the molecular size of trypsin and the surface density of the carboxylate group on the substrate. 

In a previous study, McCarley et al. described the effect of UV exposure time on carboxylic acid 

coverage on PMMA surfaces, which was determined to be 1×10-9 moles/cm2 after an exposure 

time of 20 min.206 Trypsin is a globular protein of 24 kDa with a diameter of about 4 nm.179 If it 

is assumed that trypsin is attached to the PMMA surface in a monolayer, the quantity of trypsin 

immobilized on the surface of the bioreactor can be calculated by taking into account the 

carboxylic acid coverage, the size of trypsin, and the surface area. Using these values, it is found 

that the reactor contains 2.1 pmol trypsin. The 10 µM of cytochrome c used to test the 

performance of the bioreactor corresponds to 4 pmol protein, thus the enzyme-to-substrate mole 

ratio was nearly 1:2 for a single enzymatic reaction.  

3.4.4 Effects of the Quantity of Cytochrome c on Sequence Coverage 

Figure 3-5a shows the intensity ratio of peptide peaks normalized to the internal standard, 

bradykinin, obtained from different amounts of cytochrome c. The digest peak at m/z 1168 was  

normalized using the internal standard peak, which resulted from 8.3 pmol of bradykinin. As 

shown in Figure 3-5a, the intensity ratio increased with increasing quantity of cytochrome c. At 

170 fmol of cytochrome c (Figure 3-5b), the peptide peaks indicated with asterisks were 

identified. The signal-to-noise ratio (SNR) of identified peaks was above 10 except for the peak 

at m/z 1633.3, where the SNR was 7. Below 0.66 pmol, the sequence coverage was 57% and it 

reached 67% at 3.3 pmol where the best sequence coverage was obtained. Above 3.3 pmol of 
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cytochrome c, the peak intensity ratio was saturated most likely due to longitudinal diffusion of 

proteins at high concentration being restricted, reducing mass transport to the surface.200  

 

Figure 3-5. a) Effect of relative intensity for the tryptic digests of cytochrome c as a function of 
quantity in pmol: internal standard, bradykinin (m/z 1060); flow rate, 1 µL/min; deposition time, 
20 s; b) MALDI-TOF mass spectrum of tryptic digest of 0.5 µM cytochrome c in 50 mM 
ammonium bicarbonate buffer (170 fmol). 
 
3.4.5 Tryptic Digestion of Proteins 

The performance of the bioreactor system was further evaluated for proteins with 

different molecular weights and isoelectric points. The immobilized trypsin bioreactor was 

exposed to solutions containing 10 µM BSA (66 kDa), 10 µM myoglobin (16.5 kDa), and 10 µM 

phosphorylase b (97 kDa) prepared in 50 mM ammonium bicarbonate buffer. Each deposited 
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spot contained digested peptides from 3.3 pmol of protein infused at 1.0 µL/min flow rate and a 

20 s deposition time. The mass spectra of the trypsin-digested proteins are shown in Figure 3-6.  

 

Figure 3-6. MALDI-TOF mass spectra of tryptic digests of a) BSA, b) myoglobin, and c) 
phosphorylase b using the automatic digestion chip. Proteins are 25 µM in 50 mM ammonium 
bicarbonate buffer; flow rate, 1 µL/min; deposition time, 20 s (3.3 pmol); Sequence coverage of 
BSA, myoglobin, and phosphorylase b was 35, 58, and 47 %, respectively. 
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The microfluidic chip coupled to the MALDI-TOF MS analysis produced an average sequence 

coverage of 35, 58, and 47% for BSA, myoglobin, and phosphorylase b, respectively. The 

probability-based Mowse score (P < 0.05)  was 143 for BSA, 121 for myoglobin, and 319 for 

phosphorylase b. Based on sequence coverages and Mowse scores of these proteins, the 

identified peptides matched target proteins with high degree of certainty. Compared to 

cytochrome c, lower sequence coverage was obtained for these proteins which was likely due to 

their proteolysis-resistant structures.191, 293 BSA is typically difficult to digest because its tertiary 

structure is stabilized by disulfide bonds. Myoglobin is also resistant to tryptic digestion at the 

stabilized hydrophobic interior and phosphorylase b has a relatively high molecular weight with 

a folded structure. 

3.5 Summary 

In the work described in this Chapter, the coupling of a PMMA microfluidic chip to 

MALDI-TOF MS was developed for an automated enzymatic digestion and droplet deposition 

system. This system integrates steps for proteomic analysis using MALDI-TOF MS such as 

digestion, mixing with a matrix solution, and depositing onto a MALDI target plate. Compared 

to several reported microfluidic devices for protein digestion that require reaction times of 3 to 

10 min to achieve the desired sequence coverage,193, 202, 203, 293 our automated digestion system 

affords comparable coverage after a residence time of less than 1 min. These results show that 

our microfluidic chip system coupled with a MALDI-TOF MS can be successfully applied to a 

wide range of proteins with high-throughput and sensitive detection of peptides for proteomic 

research.  
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CHAPTER 4. DEVELOPMENT OF AN EFFICIENT ON-CHIP DIGESTION SYSTEM 
FOR PROTEIN ANALYSIS USING MALDI-TOF MS* 

The work reported in this chapter has been published in the Analyst.294 

4.1 Overview 

 In this chapter the development of a micropost bioreactor operated with 

electrokinetically-driven flow interfaced to MALDI MS for the digestion of proteins is 

described. An increase in protein digestion efficiency was achieved by introducing micropost-

structured channels, which have a higher surface area-to-volume ratio compared to open channel 

formats. The micropost bioreactor was created using hot embossing on PMMA disks from a 

mold master in a single step. Using this bioreactor, improved protein sequence coverage was 

obtained for various proteins tested. 

4.2 Introduction 

  Most proteomic analyses rely on the combination of two-dimensional gel 

electrophoresis with MS for identification of complex protein mixtures.8 An alternative, 

shotgun sequencing, uses multi-dimensional separation of proteolytic fragments generated 

from intact proteins followed by MS analysis and data base searching.11 Effective separation 

tools with efficient digestion protocols are required to identify individual proteins for both 

multi-dimensional and shotgun approaches.10 Furthermore, the sample preparation steps such 

as digestion, separation, and cleanup can be time consuming and labor-intensive.141 

Maintaining high sensitivity and high protein sequence coverage with low sample 

consumption and high throughput are the analytical challenges for the development of a fully 

automated proteomic analysis system.142   

  Efficient digestion of intact proteins is an indispensable component of systems for 

fast and accurate protein identification.178, 179 To achieve optimal peptide identification, the  
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efficiency of digestion must be maximized. Three different approaches are used for 

proteolytic protein digestion: in-gel,180 in-solution,30 and solid-phase bioreactor.181  Among 

them a solid-phase bioreactor has many advantages in terms of fast response, low 

sample/reagent consumption, minimal sample loss, reduced autolysis of typsin, and a higher 

enzyme-to-substrate ratio.189  

  The digestion efficiency of solid-phase microreactors depends on the geometry of the 

reactor, the digestion temperature, the compositions of digestion solvents, and the transport 

velocity of the target protein through the reactor.40, 191-193 Also, the digestion efficiency can 

be enhanced by physical means such as microwave energy194 and ultrasound.195, 196 One of 

the limitations associated with solid-phase reactors for digestion is their poor kinetics due to 

the slow mass transport of proteins to the reactor surface.295 In contrast to in-solution 

digestion, proteins in a solid-phase microreactor must diffuse to the immobilized enzyme to 

undergo digestion. Therefore, optimized support geometries for the microreactors are 

required to reduce mass transfer limitations.296-298 

  The efficiency of digestion can be increased by moving from an open channel to a 

three-dimensional (3-D) format. This bioreactor type can improve digestion efficiency due to 

the high surface area-to-volume ratio resulting in reduced diffusion paths and an increase in 

the number of encounters between the substrate and immobilized enzyme.203, 298 Various 

bioreactor types have been developed to improve digestion efficiency using 3-D formats, for 

example, reactors packed with typsin-loaded beads,202 sol-gels,44 and monolithic porous 

networks.201 Fast and efficient digestion of proteins can be achieved with these 3-D 

approaches due to their higher surface area-to-volume ratio proteolysis reactions, which take 

between 5 s and 1 h with these geometries. Even though monolithic bioreactors provide fast 

reaction kinetics, relatively long times are required for preparation due to the multiple 
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steps.44, 201, 204, 282 When monomers with different polarities are used for monolithic columns, 

the preparation of homogeneous supports is also hindered.170  

  In Chapter 3, a simple and fast digestion and deposition microfluidic device with an 

open-channel bioreactor operated by pressure-driven flow was described.81 As indicated in 

the previous chapter, the limitation in this open channel bioreactor format was the relatively 

long diffusion distances, which resulted in a diffusion-limited digestion rate due to the 

relatively small diffusion constants of proteins. A 3-D structured bioreactor can be achieved 

by introducing microposts inside the open channel bioreactor. A micropost structured 

bioreactor can be manufactured in a simple fashion using micro-replication of a polymeric 

material from a mold master in a single step because it does not require bead packing or the 

formation of a polymer monolith within the channel. Also, inter-micropost distances are 

fixed, which provides reproducible devices because of the precise microfabrication 

processes.299, 300 Furthermore, the support structures are fixed in the desired location within 

the device and can provide unrestricted substrate access to the immobilized enzyme.  

  Electrokinetically-driven flow inside a microchannel has many advantages over 

pressure-driven flow for bioreactor digestion. An electrokinetic flow eliminates the need for 

a mechanical pumping system, allows easy control of forward and reverse flow, and provides 

a flat flow profile in the microchannel.275 In addition, the applied electric field can induce 

protein conformational changes, which can provide efficient enzymatic cleavage to aid in 

protein digestion.293   

  In this Chapter, we report on the fabrication, assembly, and testing of a novel trypsin 

immobilized PMMA microfluidic chip with micropost structured channels. The microfluidic 

chip was fabricated using hot embossing and trypsin was covalently immobilized on the 

surface of the PMMA microposts using a UV mediated surface modification protocol. This 
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system employed an electric field to transport proteins through the bioreactor and move the 

peptides from the enzymatic reactor directly onto a MALDI target. The electrokinetically-

driven flow was used to deposit the chip effluent on a MALDI target plate using a robotic 

fraction collector system. Cytochrome c was used as a model protein for optimizing the 

performance of the system and for evaluating digestion efficiency in terms of sequence 

coverage. The performance of this system using molecular standard proteins such as bovine 

serum albumin, phosphorylase b, and β-casein was also demonstrated. Finally, intact 

Escherichia coli (E. coli) was used to demonstrate bacterial fingerprint analysis using this 

system. 

4.3 Experimental 

A mold master was prepared using micro-milling267 and was subsequently used to 

replicate polymer microparts via hot embossing. The desired microfluidic network was designed 

using computer-aided design software. The mold master was used to replicate PMMA chips 

using hot embossing on PMMA disks that were 5 mm thick and 120 mm diameter.2, 272, 273 The 

embossed microfluidic devices had a bioreactor consisting of a 4 cm long × 200 µm wide × 50 

µm deep microfluidic channel populated with an array of 50 µm in diameter microposts with a 

50 µm inter-post spacing.  Figure 4-1 shows a photo of the micropost channel.  

 

 

Figure 4-1. A photo of the micropost channel 
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Two reservoirs of approximately 1 mm in diameter were drilled for sample and matrix solution 

introduction.  The enzyme attachment based on PMMA modification protocols was described in 

Chapter 2.206 

The PMMA microfluidic chip was mounted in a microfraction collector system. 

Electrokinectically-driven flow was used for transporting the proteins through the bioreactor 

and the deposition of the resulting peptides along with a matrix solution onto the MALDI 

target plate. The PMMA chip was designed to fit into a stationary mount of a robotic fraction 

collector system (Probot, Dionex, Sunnyvale, CA); the MALDI plate translated in the xy 

plane for spot deposition. A photo of the assembled chip was shown in Figure 4-2.  

The chip had a coaxial matrix and analyte mixing system with the analyte exiting the chip. 

To generate an electrokinetically-driven flow inside the bioreactor, platinum electrodes were 

inserted into a sample inlet (anode) and the end point (cathode) of the bioreactor, which was 

sealed in place using epoxy (see Figure 2-11). The analyte flowed through the interface 

capillary and the matrix through an outer tube using pressure driven flow. These eluents were 

mixed at the point of target deposition on the MALDI plate. The interface capillary was 1 cm 

in length and had an ID of 100 µm and an OD of 363 µm, which was surrounded by a 1 cm 

long stainless steel tube that was 500 µm ID and 1.5 mm OD. The capillary was inserted into 

a guide channel that was embossed into the chip and placed directly at the output end of the 

microreactor and, finally glued in place.  

  Solutions of cytochrome c, BSA, phosphorylase b, and β-casein in 50 mM ammonium 

bicarbonate buffer solution were infused through the microchannel at a field strength of 375 

V/cm. MALDI matrix was added to the microchip reservoir hydrostatically with a syringe 

pump at a flow rate of 2 µL/min. The MALDI matrix solution consisted of 5 mg/mL CHCA  
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dissolved in 60% acetonitrile with 0.1% TFA. Eluent from the microchip was deposited onto 

a 100 spot MALDI target plate for 10 s per spot. 

  

Figure 4-2. A photo of the micropost bioreactor attached on a robotic fraction collector for off-
line MALDI MS detection.  
 
 

4.4 Results 

  The bioreactor used in this study consisted of a microfluidic channel with 50 µm 

diameter microposts with immobilized trypsin on the reactor walls, a matrix solution channel, 

and two electrodes for generating the electrokinetic flow through the bioreactor and driving 

the eluent of the bioreactor through the interface capillary. In our previous study, we used a 4 

Sample 
reservoir 

Matrix solution 
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cm long open-channel bioreactor containing immobilized trypsin that had a total bioreactor 

volume of 400 nL with 16 mm2 surface area.81 In the current study, the total volume of the 

micropost reactor was 340 nL with a 22 mm2 surface area. There were approximately 570 

posts in the bioreactor, which increased the surface area-to-volume ratio of this chamber by 

60% compared to the open channel reactor. This higher surface-to-volume ratio will increase 

the number of encounters between the protein and the surface bound enzyme due to reduced 

diffusional distances.    

  Cytochrome c was used as a model protein for evaluating the performance of the 

micropost bioreactor and droplet deposition system. A 10 µM cytochrome c solution in 50 

mM ammonium bicarbonate buffer was moved through the bioreactor at a field strength of 

375 V/cm.  To evaluate the efficiency of fluid transfer between the bioreactor and the 

interface capillary (see Figure 2-11), a solution of cytochrome c was allowed to flow though 

the bioreactor for ~10 min without allowing matrix solution to flow into the sheath tube (see 

Figure 2-11b). This was followed by flowing a MALDI matrix solution through the outer 

sheath tube and the mixture was deposited directly on the MALDI plate in ten separate 

fractions for 30 s intervals (volume = 1 µL).  MALDI analyses confirmed that each fraction 

deposited onto the target plate contained only matrix peaks and no discernable cytochrome c 

peaks were observed in the mass spectrum. From this analysis, we concluded that the leakage 

of sample into the sheath matrix flow was minimal.  

  The eluent from the bioreactor was combined with a MALDI matrix solution 

delivered by a syringe pump and the combined streams were spotted onto a MALDI target 

plate using a robotic fraction collector system. The deposition time was 10 s for each spot 

with a total volume ~0.5 µL, which consisted of the protein digest and the matrix solution 

mixed in a ratio of 1:2 (v/v) at a sample solution flow rate of 1 µL/min and a matrix solution 
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flow rate of 2 µL/min. The entire procedure of digestion, mixing with the matrix solution and 

deposition took less than 30 s to complete. The deposited spot sizes were 1.0 mm in diameter 

with a standard deviation of ± 0.1 mm. The hold-up volume of this system was estimated to 

be 80 nL, which resulted primarily from the interface capillary (100 µm ID × 10 mm long) 

used for deposition. 

 

Figure 4-3. MALDI-TOF mass spectrum of the tryptic digest of cytochrome c from a fraction at 
30 s: 20 µM in 50 mM ammonium bicarbonate buffer (pH 8.2); field strength, 375 V/cm; 
deposition time, 10 s; asterisks indicate identified peptide peaks. 
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Figure 4-3 shows a representative mass spectrum of a cytochrome c digest from a 

fraction obtained at 30 s after injection using MALDI-TOF in reflectron mode. A total of 19 

fragments containing 101 out of the 104 possible amino acids of cytochrome c were 

obtained, producing a sequence coverage of 97%. This sequence coverage is significantly 

better than the 67% coverage obtained for an open channel bioreactor system with a similar 

residence time.81 Peptide fragments were assigned on the basis of the MSDB database using 

the MASCOT search engine. The asterisks shown in Figure 4-3 indicate identified peptides. 

This sequence coverage identification process was evaluated using the probability-based 

Mowse (molecular weight search) score,287, 288 which is defined as -10Log (P), where P is the 

probability that the match is a random event (P <0.05). In our search, using digested mass 

lists of cytochrome c, Mowse scores greater than 78 are considered significant identifiers of 

the target protein. The mass spectrum in Figure 4-3 corresponds to a Mowse score of 260; 

thus, the identified peptides matched the cytochrome c sequence with a high degree of 

certainty.  

The apparent mobility, µ app, of cytochrome c in the PMMA chip is the sum of the 

electroosmotic mobility, µ (EO), and the electrophoretic mobility, µ (EP), of cytochrome c. The 

apparent velocity at which the protein moves is governed by Equation 4-1; 

νapp = µappE = ( µ (EO) + µ (EP) )E                                                   (4-1) 

where νapp is the apparent velocity (cm/s) and E is the field strength (V/cm). The µ (EO) of 

UV-exposed PMMA and the µ (EP) of cytochrome c are 4.5 × 10-4 cm2/Vs and 0.5 × 10-4 

cm2/Vs, respectively.  From Equation 4-1, the apparent mobility was estimated to be 5.0 × 

10-4 cm2/Vs. Based on these parameters, a residence time was calculated as a function of 

field strength. For example, a field strength of 375 V/cm applied to the bioreactor produced 
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an apparent velocity of cytochrome c of 0.188 cm/s. Therefore, the residence time within the 

bioreactor at this field strength was approximately 21 s (0.188 cm/s on the 4 cm reactor). 

Also, a volumetric flow rate was estimated to 0.97 µL/min from the 0.34 µL reactor volume 

and 21 s residence time. Various field strengths were examined to find an optimal digestion 

condition for this microreactor. For field strengths of 250, 375, and 800 V/cm, the residence 

time was calculated to be 32, 21, and 10 s, respectively. The extent of sequence coverage 

decreased as the applied field strength increased. Mowse scores were 295 for a 32 s residence 

time with 100% sequence coverage, 260 for a 21 s residence time with 97% sequence 

coverage, and 165 for a 10 s residence time with 70% sequence coverage. A field strength of 

375 V/cm was used in the remaining experiments to balance the processing time with high 

sequence coverage and high protein identification probability.  

Figure 4-4 shows mass spectra obtained for different concentrations of cytochrome c. 

The immobilized trypsin bioreactor was exposed to solutions containing 0.5, 1.0, 2.0, 5.0, 

and 10 µM cytochrome c prepared in 50 mM ammonium bicarbonate buffer at identical 

bioreactor residence times of 21 s. Three replicate runs were obtained for each concentration. 

As shown in this figure, the number of peptide peaks increased with increasing cytochrome c 

concentration; the average sequence coverage was 41, 54, 64, 80, and 89% for concentrations 

of 0.5, 1.0, 2.0, 5.0, and 10 µM cytochrome c, respectively. Each deposited spot contained 

digested peptides from 0.08, 0.16, 0.32, 0.80, and 1.6 pmol of protein transported at a 375 

V/cm field strength and a 10 s deposition time per spot. At 0.5 µM of cytochrome c, the 

lowest concentration tested, 7 peptide peaks generated from the tryptic digestion were 

identified. The probability-based Mowse score (P < 0.05) was 242 for 10 µM cytochrome c, 

207 for 5 µM, 180 for 2 µM, 124 for 1 µM, and 96 for 0.5 µM. 
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Figure 4-4. (a) MALDI-TOF mass spectra of tryptic digests of cytochrome c at different 
concentrations: 50 mM ammonium bicarbonate buffer (pH 8.2); field strength, 375 V/cm; 
deposition time, 10 s. 
 
 

Figure 4-5 shows a comparison of the sequence coverage generated from the 

micropost and open channel bioreactor formats at different concentrations of cytochrome c. 

To compare these different reactors, an identical residence time of 21 s was selected. As can 

be seen in this figure, the sequence coverage increased with increasing concentration for both 

formats. However, for the open channel format, the sequence coverage gradually reached a 
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constant value above a concentration of 10 µM, most likely due to inadequate mass transport 

to the enzyme-immobilized surface.200 In contrast, the sequence coverage for the micropost 

bioreactor was 90% at 10 µM concentration of cytochrome c and increased to 100% at 20 

µM compared to only 65% at this same concentration for the open-channel format. At lower 

concentrations, the rate of increase in the sequence coverage was substantially higher for the 

micropost bioreactor compared to the open channel format, again likely due to the reduced 

diffusional distances. 

 

 
Figure 4-5. Sequence coverage for cytochrome c as a function of concentration for two 
bioreactor format; residence time, 21 s; ■ micropost channel, ● open channel. 
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The performance of the micropost bioreactor was also demonstrated for proteins with 

a range of molecular weights. For these studies, 10 µM BSA, 10 µM phosphorylase b, and 10 

µM β-casein prepared in 50 mM ammonium bicarbonate buffer were infused 

electrokinetically into the bioreactor. The average residence times within the bioreactor at a 

field strength of 375 V/cm were measured at 24, 23, and 25 s for BSA, phosphorylase b, and 

β-casein, respectively. Each deposited spot contained peptides generated from approximately 

1.42, 1.48, and 1.37 pmol for BSA, phosphorylase b, and β-casein, respectively, at 10 s 

deposition time. The mass spectra of the trypsin digested proteins are shown in Figure 4-6.  

 

Figure 4-6. MALDI-TOF mass spectra of the tryptic digests of a) BSA, b) phophorylase b, and 
c) β-casein using the micropost bioreactor and electrokinetically-driven flow. Proteins are 10 µM 
in 50 mM ammonium bicarbonate buffer (pH 8.2); field strength, 375 V/cm; deposition time, 10 
s. The sequence coverage for BSA, phosphorylase b and β-casein was 46, 63, and 79 %, 
respectively. 
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With five replicate experiments for each protein, the microfluidic chip analysis 

produced an average sequence coverage of 46, 63, and 79% for BSA, phosphorylase b, and 

β-casein, respectively. The probability-based Mowse score (P < 0.05) was 222 for BSA, 487 

for phosphorylase b, and 258 for β-casein. Based on the sequence coverage and Mowse 

scores for these proteins, the identified peptides matched the target proteins with a high 

degree of certainty. Compared to the open channel bioreactor, 10% higher sequence 

coverages were obtained for all of the protein targets.  

The micropost bioreactor was then used to investigate on-chip enzymatic digestion of 

intact bacterial cells.301, 302 The bacterium E. coli was used to demonstrate the approach. A 

suspension of 1 mg/mL E. coli in 50 mM ammonium bicarbonate buffer was prepared and 

infused electrokinetically into the trypsin immobilized bioreactor. The eluent from the 

bioreactor was combined with the matrix solution; in this case, the matrix solution contained 

an internal standard of 5 µM insulin B-chain (MW = 3495.9). Figure 4-7a shows a MALDI 

mass spectrum of 1 µL intact E. coli deposited on a MALDI target plate. Peaks observed in 

the region below m/z 900 are from the matrix itself. Compared to the MALDI spectrum 

obtained from the on-chip tryptic digestion of E. coli shown in Figure 4-7b, several tryptic 

peptide peaks could be observed. The peaks marked with closed circles (●) correspond to 

peptides generated from the digestion of the aminoglycoside 3’-phosphotransferase type 1 

protein derived from E. coli. The Mowse score for this protein was 142 with 57% sequence 

coverage based on MSDB database searches. Peaks marked with open circles (○) represent 

unidentified peaks from the tryptic digest of E. coli. Other peaks indicated by closed 

triangles (▲) were assigned to background ions arising from the intact E. coli cells.  
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Figure 4-7. MALDI-TOF mass spectra of a) intact E. coli cells and b) tryptic digest of intact E. 

coli cells using the micropost and electrokinetically-driven flow format chip. Conditions were 1 
mg/mL in 50 mM ammonium bicarbonate buffer (pH 8.2); field strength, 375 V/cm; deposition 
time, 10 s. ●, identified peptides from aminoglycoside 3’-phosphotransferase type 1 protein 
derived from E. coli with 57% sequence coverage; ○, unidentified peaks from tryptic digest of 
intact E. coli cells; ▲, background peaks from intact E. coli cells. Insulin was used as an internal 
standard. 

 

4.5 Summary 

In this chapter, the construction of a PMMA based micropost bioreactor was described 

for off-line MALDI-TOF MS analysis of digested proteins and its application to on-chip 

digestion of proteins with electrokinetically-driven flow. This system demonstrated the 

integration of steps for proteomic analysis using MALDI-TOF MS such as digestion, addition of 
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a matrix solution, and depositing onto a MALDI target plate. Our results showed that this novel 

bioreactor design is well suited for proteomic analysis and that protein identification was 

improved compared to an open channel format used previously.81 Also, the current microfluidic 

design offers a number of advantages compared to other solid-phase bioreactor formats in terms 

of simple micro-replication of the reactor bed, highly reproducible production, and efficient 

digestion. The micropost bioreactor required less than 200 nL of analyte deposited onto a 

MALDI target, yet was capable of efficient protein identification. The bioreactor also brings the 

capability for direct analysis of intact cells.  
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CHAPTER 5. SOLID-PHASE BIOREACTOR COUPLED TO MALDI-TOF MS USING 
CONTINUOUS SAMPLE DEPOSITION 

 
5.1 Overview 

 In this chapter the use of continuous sample deposition for interfacing a solid-phase 

bioreactor to MALDI-TOF MS is described. In Chapters 3 and 4, the spotting deposition of 

digested peptides from a solid-phase bioreactor was described. Here, the continuous deposition 

interface demonstrates sample deposition with low volume. Tryptic peptides were formed in an 

on-chip bioreactor and continuously deposited onto a MALDI target plate using a motor-driven 

xyz stage. The MALDI target plate was modified by spin-coating a nitrocellulose solution 

containing a MALDI matrix on the surface prior to placing it on the xyz moving stage. Protein 

molecular weight standards were used to evaluate the performance of the continuous deposition 

chip. Deposition efficiency was improved without loss of protein sequence coverage compared 

to spot deposition. 

5.2 Introduction 

A low volume sample deposition interface with integrated proteomic analysis 

components such as sample cleanup, digestion, and separation is needed to meet the 

requirements for the fast and efficient identification of low abundance proteins. The most direct 

method for sample deposition is spotting using a robotic fraction collector. However, the primary 

difficulty with target spotting is the relatively large volume contained in a droplet from a small 

diameter capillary. The deposition volumes from this spotting manner range from 150 nL to 330 

nL,102 which can be a significant volume compared to peak volumes emanating from 

microfluidic components. It can also be difficult to control the spotting volume with high 

precision. 
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A range of different deposition strategies using microfluidic chips have been described 

for depositing small sample quantities onto MALDI targets. For example, a piezoelectric flow-

through dispenser for depositing microfluidic chip eluent has been developed for the delivery of 

subnanoliter volumes to a MALDI target.82  The dispenser was fabricated in wet etched silicon 

and was developed for interfacing a microchip with a high-density silicon nanovival target 

consisting of 300 × 300 × 20 µm wells. The droplets generated by this dispenser ranged in size 

from 65 pL to 300 nL at a droplet frequency of 50 to 100 Hz with an attomole-level detection 

limit for proteins. Another chip deposition approach is electrospraying.  In one such approach, a 

hydrophobic membrane electrospray deposition device was used to deposit the output of a 

polycarbonate microfluidic chip to a MALDI target.83 The deposited volume by this chip was 70 

nL with a detection limit of 3.5 fmol of angiotensin. Although low-volume sample deposition has 

been obtained with these approaches, they have not been combined with proteomic sample 

processing in a single chip. 

The continuous deposition of flowing samples onto MALDI targets has been used to 

obtain small sample spots at low flow rates.303-305 For example, deposition volume ranges of 1 - 

40 nL/mm was achieved at sample flow rates of 0.1 – 2.5 µL/min using a continuous deposition 

system.305 However, a continuous deposition technique has not been used for microfluidic 

deposition on a MALDI target. Continuous deposition interfaces provide a narrow and uniform 

sample trace, thereby concentrating analytes in a small area and improving the detection limit. A 

further benefit is the highly uniform deposition trace that results in a reproducible MALDI signal 

from position to position on the trace. In addition, when interfaced to a separation, the 

continuous deposition approach retains the separation resolution.   

In this study, a microfluidic chip bioreactor was coupled with off-line MALDI-TOF MS 

using continuous sample deposition. The microfluidic chip channels were fabricated on a 
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poly(methyl methacrylate) (PMMA) plate with a micro-machined mold and hot embossing. The 

MALDI target plate was coated with a nitrocellulose solution containing a MALDI matrix and 

the chip eluent was directly deposited in a serpentine track using a multi-axis translation stage. 

The proteins cytochrome c, myoglobin, β-casein, and bovine serum albumin were used to 

evaluate the performance of the chip deposition system. The sequence coverage obtained by 

continuous deposition was compared to the results of spot deposition. 

5.3 Experimental 

PMMA chips were fabricated using hot embossing with a molding tool prepared via 

high-precision micromilling.1, 267 A more complete description of the fabrication techniques used 

in this study was given in Chapter 2. The microfluidic devices were constructed with a 4 cm long 

× 200 µm wide × 50 µm deep microfluidic reactor containing an array of 50 µm diameter 

cylindrical micropost support structures with a 50 µm inter-post spacing. The total reactor 

volume of the bioreactor was 340 nL with 16 mm2 surface area. A guide channel that was 0.5 cm 

long × 370 µm wide × 370 µm deep was embossed into the chip at the output end of the 

bioreactor to accept a PEEK capillary, which was used to transport samples to the MALDI target 

plate. The PMMA chip was designed to fit into the stationary mount of a xyz stage (Newport, 

Irvine, CA) for continuous deposition.   

To assemble the microfluidic bioreactor, the PMMA surfaces were first activated by 

exposing them and the cover slip to a UV lamp (254 nm; 15 mW cm-2) for 20 min.81 The 

covalent attachment of the enzyme was based on PMMA surface modification protocols 

developed in our laboratories.81, 206 A 1-cm long PEEK capillary was inserted into the guide 

channel on the UV-exposed PMMA substrate. After gluing the PEEK tube in place within the 

PMMA substrate, the UV-exposed 0.125 mm PMMA cover slip was thermally annealed to the 

substrate at 99°C for 20 min. The UV-modified channels were treated with a mixture of 5 mM 
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EDC and 5 mM sulfo-NHS solution for 15 min.  Then, a 20 µM trypsin solution in a 100 mM 

phosphate buffer (pH 7.0) was flowed through the bioreactor channel for 2 h. Following this 

step, the bioreactor was ready for use or could be refrigerated for future use.   

A schematic of the continuous deposition system is shown in Figure 2-12. The sample 

was deposited along a series of circular areas on the 10 × 10 MALDI target. The size of a 

circular well was 1 mm diameter, representing a 4 s deposition time at the stage moving speed of 

250 µm/s. The target was moved in a 20 mm square single raster pattern on the target with 2 mm 

spaced lanes. Deposition was optimized by controlling the speed of the xyz stage ranging from 

0.25 mm/s to 1.0 mm/s with the flow rate of sample solution ranging from 25 nL/min to 1 

µL/min. Cytochrome c, myoglobin, β-casein, and BSA were dissolved in 50 mM ammonium 

bicarbonate buffer (pH 8.2) to 10 µM concentration. A syringe pump (Model 11, Harvard 

Apparatus, MA) was used to deliver the sample to the microfluidic chip. 

5.4 Results 

Cytochrome c was used to characterize the continuous deposition of the digestion eluent 

from a 10 µM protein solution continuously infused into the bioreactor. The deposited streak of 

the digested cytochrome c solution was made along a 10 × 10 Bruker MALDI target plate at a 

speed 15 mm/min and a sample flow rate of 50 nL/min; the deposition volume was 3.3 nL/mm. 

The laser spot size was approximately 100 µm in diameter, which corresponded to a 400 ms 

deposition time at a 250 µm/s stage velocity. The quantity deposited in each laser diameter was 

3.3 fmol. The deposited trace width was approximately 200 µm and was laid out in a 20 mm 

square raster pattern with a 2 mm distance between the 10 traces. 

Various combinations of a stage velocity and a sample flow rate were examined to find 

suitable deposition conditions for the microfluidic chip. The effect of sample flow was 

investigated at rates between 25 and 1,000 nL/min. For a stage velocity of 250 µm/s (the lowest 
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speed for the system), the width of the trace increased with increasing sample flow rate. For 

example, at a flow rate of 1 µL/min, the trace was sufficiently broad that it overlapped the 

adjacent trace. At flow rates lower than 25 nL/min, the trace was not uniform. It was found that a 

sample flow rate of 50 nL/min resulted in the best compromise between trace width and 

uniformity.  

Figure 5-1 shows representative mass spectra of a cytochrome c tryptic digest with the 

continuous deposition interface. Mass spectra were obtained with an average of 50 single-shots  

 

Figure 5-1. MALDI-TOF mass spectra of a tryptic digest of cytochrome c using the micropost 
bioreactor and continuous deposition interface using a 10 µM protein concentration in 50 mM 
ammonium bicarbonate buffer (pH 8.2), stage velocity of 250 µm/s, deposition volume of 6.7 nL 
and 3.3 nL for sample flow rates of (a) 100 nL/min and (b) 50 nL/min, respectively.  Asterisks 
indicate matched peptides.   
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from each portion of the sample trace. A 10 µM solution of cytochrome c was pumped through 

the bioreactor at 100 nL/min (Figure 5-1a) and 50 nL/min (Figure 5-1b), which resulted in 

residence times within the reactor of 200 s and 400 s, respectively. The sample was deposited at 

250 µm/s stage speed. In Figure 5-1a, 13 tryptic peptides were identified for a sequence coverage 

of 75% and a 164 Mowse score. Peptide fragments were assigned on the basis of the MSDB 

database using the MASCOT search engine.287 In Figure 5-1b a sequence coverage of 73% from 

10 tryptic peptides and a Mowse score of 134 was obtained.  Asterisks indicated in these spectra 

represent peptides identified from cytochrome c. Based on the Mowse score, the identified 

peptides matched the cytochrome c sequence with a high degree of certainty. 

Additional proteins with different molecular weights and isoelectric points were used to 

test the performance of the continuous deposition chip device. The immobilized trypsin 

bioreactor was exposed to solutions containing 10 µM myoglobin (16.5 kDa), 10 µM β-casein 

(25 kDa), and 10 µM BSA (66 kDa) prepared in 50 mM ammonium bicarbonate buffer. The 

stage speed was 250 µm/s and the sample flow rates were 50 nL/min resulting in a residence 

times of 400 s within the bioreactor. The mass spectra of the trypsin digested proteins are shown 

in Figure 5-2. Each deposition contained digested peptides at 33 fmol/mm. In the figure, digested 

peptide peaks are indicated with asterisks. The peptide mass mapping results produced from 

these proteins at different flow rates are indicated in Table 5-1. The average sequence coverage 

was 62, 78, and 46% for myoglobin, β-casein, and BSA, respectively, and the probability-based 

Mowse score (P < 0.05) was 120 for myoglobin, 143 for β-casein, and 179 for BSA. Based on 

sequence coverages and Mowse scores of these proteins, the identified peptides matched target 

proteins with high degree of certainty.  
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Figure 5-2. MALDI-TOF mass spectra of the tryptic digested myoglobin using the micropost 
bioreactor and continuous deposition interface a 10 µM protein concentration in 50 mM 
ammonium bicarbonate buffer (pH 8.2), stage velocity of 250 µm/s, deposition volume of 6.7 nL 
and 3.3 nL for sample flow rates of a) 100 nL/min and b) 50 nL/min, respectively. Asterisks 
indicates matched peptides. 
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Figure 5-3. MALDI-TOF mass spectra of the tryptic digested β-casein using the micropost 
bioreactor and continuous deposition interface a 10 µM protein concentration in 50 mM 
ammonium bicarbonate buffer (pH 8.2), stage velocity of 250 µm/s, deposition volume of 6.7 nL 
and 3.3 nL for sample flow rates of a) 100 nL/min and b) 50 nL/min, respectively. Asterisks 
indicates matched peptides. 
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Figure 5-4. MALDI-TOF mass spectra of the tryptic digested BSA using the micropost 
bioreactor and continuous deposition interface a 10 µM protein concentration in 50 mM 
ammonium bicarbonate buffer (pH 8.2), stage velocity of 250 µm/s, deposition volume of 6.7 nL 
and 3.3 nL for sample flow rates of a) 100 nL/min and b) 50 nL/min, respectively. Asterisks 
indicates matched peptides. 
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Table 5-1. Sequence coverage and MOWSE score of model protein identification. 
 

Amounts  
(fmol/µm) 

6.66 3.33 

Protein Cyt-c Myoglobin β-Casein BSA Cyt-c Myoglobin β-Casein BSA 

Sequence 
coverage 

75 69 79 50 73 62 78 46 

MOWSE score 164 133 169 204 134 121 143 179 

 
 

The performance of the continuous deposition interface was compared to the spot 

deposition interface using identical bioreactors. Figure 2-8 shows a schematic of the spot 

deposition interface described in Chapter 2.81 A 10 µM cytochrome c solution in 50 mM 

ammonium bicarbonate buffer was infused into the bioreactor at a flow rate of 1 µL/min using a 

syringe pump. The deposition time for each droplet in the spotting deposition was 20 s and each 

drop had 330 nL of analyte solution. To achieve comparable residence times in the bioreactors, a 

flow rate of 50 nL/min with 400 s deposition time was used. The sample spot size for spot 

deposition was 1.5 mm diameter whereas a trace width of 200 µm was obtained for the 

continuous deposition. When the same lengths of each spot were compared, the areas of each 

spot were 0.3 mm2 and 1.8 mm2 for the continuous deposition and the spot deposition, 

respectively. Sampling times for each deposition technique were compared to evaluate 

deposition efficiency. Sampling time for MALDI analysis can be estimated by taking into 

account the surface area of a sample spot, the area of the laser spot, and its repetition rate. The 

nitrogen laser used for this experiment had a spot of 100 µm diameter with 2 Hz repetition rate. 

The sampling time (s) is calculated by Equation 5-1, 

 
Sampling time = AS / (AL × R)                                           (5-1) 
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where AS is the area of a sample spot (mm2), AL is the area of the laser spot (mm2), and R is the 

repetition rate (s-1). From this equation, the spot deposition and the continuous deposition 

required 115 s and 19 s to scan one spot, respectively. The analysis time for the continuous 

deposition is approximately 6 times faster as compared to the time for the spot deposition.    

The results for peptide mass mapping with the two deposition methods are shown in 

Table 5-2. Continuous deposition resulted in better peptide mass mapping for all of the tested 

proteins compared to the spot deposition method even though the deposited spot contained a 

higher volume of analyte. Compared to the other microfluidic deposition interfaces, the 

piezoelectric dispenser approach yields droplets from 65 pL to  300 nL82 and electrospray 

deposition results in spots of  70 nL,83 this microfluidic device can collect similar or lower 

fraction volumes. To compare concentrations of the deposited samples in a unit area for the two 

deposition methods, equal quantities of a sample were deposited using a same chip. For 33 fmol 

cytochrome c deposited from a solution with a concentration of 10 µM, the spot size was 

approximately 1 mm diameter, or 42 fmol/mm2. The continuous deposition trace contained an 

estimated 165 fmol/mm2 at 250 µm/s stage speed, which increased the local concentration of the 

deposit by 300% compared to the spot deposition method.  

 

Table 5-2. Comparison of the continuous deposition interface with spot deposition for bioreactor 
peptide mass mapping. 
 

Sequence coverage (%) Deposition 
method 

Deposited 
vol.(nL) 

Spot area 
(mm2) Cyt-c Myoglobin β-Casein BSA 

Continuous 3.30 0.3 73 62 78 46 

Spot 330 1.8 67 58 72 35 
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5.5 Summary 

We have described the coupling of a micropost bioreactor and continuous deposition 

device to MALDI-TOF MS for the detection of small quantities of tryptic peptides with 

improved protein identification. A uniform and narrow sample trace was obtained using a 

continuous deposition interface and the system reduced deposition volume 100-fold compared to 

droplet spotting. In addition to this deposition technology for low volume spotting of a sample, 

the microfluidic chip included a solid-phase microreactor for an on-chip digestion of low sample 

volumes. The continuous deposition interface achieved higher sequence coverage than the spot 

deposition for the identification of the proteins tested due to the increased local concentration.  
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CHAPTER 6. MICROFLUIDIC CULTURING OF BACTERIA WITH MALDI MASS 
SPECTROMETRY DETECTION 

 
6.1 Overview 

 The goal of the research described in this chapter was to develop a microfluidic cell 

culturing device for bacterial identification with MALDI MS detection. Two independent culture 

chambers for a sample and a blank were contained in a single PMMA microfluidic chip. 

Different strains of E. coli were tested for the feasibility of using a microfluidic culturing device 

coupled with MALDI-TOF MS for whole cell analysis. Two channels, a sample channel and a 

culture medium channel, were connected to a culture chamber. E. coli cells were loaded into the 

culturing area without flushing out the nutrient medium due to the different depths of the sample 

and medium inlets. The culturing device was sealed with either a PMMA or a PDMS cover slip, 

and mass spectra of the bacteria were compared after culturing.  

6.2 Introduction 

New capabilities for quick and reliable identification of microorganisms are required for 

the detection of environmental pathogens and for clinical applications such as cancer screening, 

the detection of blood-borne pathogens, respiratory tract infections, and quality analysis of 

donated blood.208-211 Cell culturing is an essential technique in biological research as well as in 

many important clinical applications.212 Microfluidic devices for cell culturing have advantages 

over conventional cell culture methods in terms of low consumption of reagents, effective 

isolation from the outside, and precise control of the microenvironment.220  

A variety of detection methods have been used for microfluidic cell culture devices 

including fluorescence and conductivity.220 Although these methods offer rapid and sensitive 

detection, they have limited ability to discriminate among more than a few different species in 

flow cytometry with fluorescence detection. Also, dye-labeled antibodies must be developed for 
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each system. Polymerase chain reaction (PCR) has been developed for the rapid detection of 

target microorganisms; however, additional steps are often necessary to remove PCR-inhibitory 

substances present in samples before DNA amplification.306 Further, PCR can give false negative 

results for mutant strains, as indicated by supporting evidence from other methods.307, 308 

Mass spectrometry (MS) is a promising method for the detection of microorganisms 

because it is capable of rapid microorganism characterization through protein biomarkers.309-313 

Matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS) has been used 

for identification of bacteria for more than fifteen years.312-318 The principle advantage of 

MALDI-TOF MS is speed: preparation and analysis of a whole-cell sample can take as little as 

five minutes.11 This is in part due to its relatively high tolerance of impurities which leads to 

fewer preparation steps.11, 13 Even though MALDI can be used to identify bacteria at the strain 

level, much of its speed advantage is lost when the bacteria are cultured with traditional 

techniques. Also, pathogenic bacteria can cause infections in human with only 10-100 cells; 

however, MALDI of bacteria requires a minimum of 1,000-10,000 cells.319 Lack of spectral 

reproducibility is another limitation of MALDI.312 Many factors affect the mass spectra, 

including the matrix, sample preparation, growth medium, and colony age.320, 321 Small 

differences in growing conditions effect gene expression, changing the protein makeup.322 

Coupling MALDI MS analysis of intact cell with microfluidic culturing could create more 

consistent spectra as well as reduce the total processing time.  

In this study, a simple microfluidic cell culture device with MALDI MS analysis is 

described for the identification of different strains of E. coli. Microfluidic cell culture chambers 

were fabricated on a PMMA plate from a mold master with a hot embossing method. To 

demonstrate the feasibility of this system, the microfluidic device was used for culturing several 

E. coli strains followed by off-line MALDI-TOF MS detection of the intact cells. 
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6.3 Experimental 

Two independent culturing beds were fabricated on a poly(methyl methacrylate) 

(PMMA) microfluidic chip for side-by-side culturing of control and experimental bacteria 

samples. Each bed consisted of a 3 mm diameter and 300 µm deep circular microfluidic chamber 

with a volume of 2.1 µL. Different cover slips, either PMMA or PDMS, were used for sealing 

the PMMA culturing chip and were compared with each other. An E. coli cell line was cultured 

simultaneously in a Petri dish and on chip for comparison (See Figure 2-14 schematic). The 8 

g/L nutrient broth culture medium was autoclaved at 121 ºC for 1 h for culturing the cell line in 

each culture chamber. Three different strains of E. coli, ATCC 9637, ATCC 11303, and ATCC 

11775, were prepared with a concentration of 8 × 106 cells mL-1. Figure 6-1 shows the procedure 

for cell culturing in the microfluidic chip. The culture medium was first added to the cell culture 

chamber through the Channel A. A 0.5 µL volume of the E. coli suspension was then loaded 

 

Figure 6-1. Procedure for chip culturing (clockwise from upper left); Filling the culture chamber 
(E) with nutrient broth (A→B); Infusing 0.5 µL of 8,000 cells/µL E. coli (C→B); Incubating at 
39 ℃ for 24 h; Pumping out cultured E. coli (A→D) and depositing 1 µL of cultured E. coli onto 
a MALDI target. 
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into the culture chamber through the Channel C using a sterile syringe. After all of the reservoirs 

were closed, the cell culture chip was placed in an incubator (G24, New Brunswick Scientific Co 

Edison, NJ) at 37 ºC for 24 h. The cultured cells were pumped out using a syringe pump through 

Channel A to Channel D and deposited onto a MALDI target through the capillary tube. To 

assess cultured cell densities, a 1 µL volume of cultured cells was collected and three 10-fold 

dilutions were made in HPLC-grade water. Cell counts were made using an Axiovert 200 M 

microscope (Carl Zeiss, Jena, Germany). 

6.4 Results 

6.4.1 Device Design and Operation 

To culture bacteria in a microfluidic device, sample and nutrient must be infused without 

disturbing the bacteria already present in the culturing area. Different channel depths for sample 

and culture medium solution were fabricated so that the bacteria could enter the culture area at 

the top and the nutrient at the bottom. Figure 2-14 shows the schematic of cell culturing device. 

The culturing area was contains 300 µm deep with a 2.1 µL active volume. The nutrient solution 

entered the culturing chamber through a 300 µm deep inlet channel. The bacteria suspension was 

then injected through a 100 µm deep inlet channel. In this manner, the cells were delivered to the 

chamber without flushing out nutrient medium. The device thus provides a closed sterile 

environment for bacteria. 

6.4.2 Calibration Curve 

The optical density (OD) of the bacterial suspensions was measured to estimate the 

number of E. coli cells in each sample. Different amounts of E. coli ATCC 9637 ranging 

between 1 µg/mL and 10 mg/mL were prepared in 10 mM phosphate buffered saline (pH 7.4). 

The calibration curve was generated by measuring the optical density of each E. coli suspension 

at 600 nm. The number of cells per µL in the each calibration suspension was estimated by 
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counting using a microscope after serial dilutions from the stock suspension of bacteria. Figure 

6-2 shows the plot of OD at 600 nm according to suspended mass of E. coli. The plot is linear 

between 0.1 and 0.5 OD. The number of cells per µL can be related to the OD value. 

 

Figure 6-2. Plot of optical density at 600 nm for E. coli ATCC 9637 suspensions prepared in 10 
mM phosphate buffer (pH 7.4) as a function of concentration. 

 

Table 6-1 shows the relationship between the concentration and the number of cells. For example, 

100 µg/mL of E. coli corresponds to approximately 81,000 cells/µL. An aliquot of each 

suspension was deposited onto a MALDI target to determine detection limit for intact E. coli 

cells. A 1 µL volume of each calibration solution was deposited on a MALDI target with a 2 µL 

of CHCA solution. Figure 6-3 shows the MALDI mass spectra of E. coli (ATCC 9637) obtained 

at various concentrations. As can be seen in this figure, the number of peaks and intensities 

increase with the number of cells. The detection limit of E. coli using our instrument is 10 µg/mL, 

which corresponds to 8,000 cells/µL. This concentration was selected as an initial concentration 

for E. coli bacteria culturing and compared to the results of E. coli in bulk. 
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Table 6-1. The relationship between E. coli concentrations and optical density (OD) and the 
corresponding number of cells for each concentration. 
 

E. coli concentration  
(µg/mL) 

Ave. cell count  
(µL-1 , n=5) 

RSD (%) 

1 742 ± 24 6.4 

10 7,871 ± 434 5.5 

100 81,367 ± 5183 3.3 

 
 

 

Figure 6-3. MALDI-TOF mass spectra of E. coli ATCC 9637 at various concentrations in 10 
mM phosphate buffer (pH 7.4); matrix, CHCA (2% TFA in water:acetonitrile(1:3, v/v)).  
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6.4.3 Cell Culture in PMMA Chip and MALDI Analysis 

MALDI mass spectra were obtained before and after culturing on the chip. Initially, 

whole cell suspensions (8 × 106 cells mL-1 in broth) of three E. coli strains (9637, 11303, and 

11775 from ATCC) were analyzed in CHCA matrix. A 1 µL aliquot of bacterial suspension 

(8000 cells / spot) was deposited on the MALDI target plate with 2 µL of CHCA. Figure 6-4 

shows the mass spectra of the three strains before culturing.  

 

Figure 6-4. MALDI-TOF mass spectra of different strains of E. coli (8000 cells/µL in nutrient 
medium) before culturing. a) ATCC 9637; b) ATCC 11303; c) ATCC 11775. 
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Different peak patterns were observed for E. coli 9637 from ATCC compared to for E. coli 9637 

obtained from Sigma (See Figure 6-3). The difference in mass spectra between these bacteria 

may have resulted from the fact that bacteria from ATCC are intended as a start culture; however, 

bacteria from Sigma are not. In Figure 6-4, some weak, broad peaks are observed but the mass 

spectra of the three strains are similar and cannot be distinguished from each another. 

Using identical E. coli suspensions, cell culturing was performed in the microfluidic 

chips. Aliquots of E. coli 9637, 11303, and 11775 were seeded into different microfluidic culture 

beds with approximately 4000 cells by injecting 0.5 µL of each strain suspension (8,000 cells  

µL-1 × 0.5 µL). The chips were incubated at 37 ºC for 24 h, after which the cell suspension was 

flushed out and 1 µL was deposited onto a MALDI target plate. Another 1 µL of the suspension 

was collected and serially diluted to 1 mL with deionized water for cell counting. A 1 µL aliquot 

of the diluted sample was spotted onto a glass slide to count the cells using a microscope. The 

cell count was 150 ± 21 over five replicate experiments corresponding to approximately 1.50 × 

105 cells µL-1. Compared to the initial number of bacteria cells, the number of cultured bacteria 

increased by approximately 80-fold in the culturing chip.  

The matrix CHCA was added to the sample deposits on the MALDI target followed by 

MS analysis. Representative mass spectra of different strains of E. coli are depicted in Figure 6-

5. As shown in this figure, some peaks are common to all strains and were highly reproducible 

over five replicate runs. Several peaks in the mass spectra are unique to each strain. Because 

most intact proteins translated by bacterial genomes are in the mass range from 4 to 15 kDa,319 

the majority of peaks below 15 kDa in MALDI mass spectra of bacteria are likely from singly 

protonated proteins, which can be used for protein biomarkers.313, 323 Peaks in the mass spectra 

that matched ribosomal proteins from E. coli using a RMIDb search are the 9 peaks indicated 

with asterisks in Figure 6-5.  
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Figure 6-5. MALDI-TOF mass spectra of different strains of E. coli after 24 h culturing at 37  ℃

in PMMA microfluidic devices. a) ATCC 9637; b) ATCC 11303; c) ATCC 11775. Asterisks 
indicate matched peaks. 
 
6.4.4 Cell Culture in PMMA Chip with PDMS Cover Slip and MALDI Analysis 

A PMMA chip with a PDMS cover was used for cell culturing. Figure 6-6 shows 

representative MALDI-TOF MS spectra of ATCC 9637, ATCC 11303, and ATCC 11775 strains 

of E. coli after 24 h culturing at 37 ºC in a PMMA microfluidic device with a 1 mm thick PDMS 

cover slip. Asterisks in the mass spectra indicate peaks matched using RMIDb search. The 
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PMMA/PDMS chip resulted in 22 peaks matching database proteins from E. coli. Among them, 

peaks at m/z 4426, 4471, 7110, 8924, 10059, 11677, 12870, 13550, and 14272 were differently 

expressed according to the strains. 

 
Figure 6-6. MALDI-TOF mass spectra of different strains of E. coli after 24 h culturing at 37  ℃

in PMMA microfluidic devices with PDMS cover. a) ATCC 9637; b) ATCC 11303; c) ATCC 
11775. Asterisks indicate matched peaks. 
 

To determine cell concentration in the PMMA/PDMS device, dilution and cell counting 

was performed as above. The number of E. coli was 155 ± 25 and the total number of bacteria 
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was approximately 1.55 × 105 cells µL-1. From these results, there is no significant difference in 

bacteria growth based on the different materials for culturing. However, it was found that the 

PDMS cover slip resulted in more protein biomarkers compared to the PMMA cover. We 

hypothesize that the gas permeability of the PDMS cover resulted in higher quality mass spectra 

due to the aerobic conditions of the culture bed, which can change the proteins expressed during 

cell growth.229, 324, 325  

6.5 Summary 

In this chapter, the construction of a PMMA based micro-culture device was described 

for off-line MALDI-TOF MS detection. The feasibility of using a microfluidic culture device 

coupled with MALDI analysis was demonstrated for identification of E. coli. The mass spectral 

patterns associated with various strains were different, providing evidence that whole cell 

analysis using microfluidic cell culture coupled with MALDI-TOF MS can serve as a tool for 

bacterial identification. Three different strains of E. coli were cultured and fingerprint spectra 

distinguishing the strains were produced using this system. Peak intensities in the spectra as well 

as the number of peaks were enhanced using a PDMS cover slip. The current microfluidic design 

offers a number of advantages in terms of low sample consumption and nutrient medium, easy 

manipulation of the cultured cells, and a reproducible environment. Our results showed that this 

novel microfluidic culture chip coupled with MALDI MS was well suited for bacterial analysis 

and protein identification could improve analysis compared to ordinary cell culture platforms. 
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CHAPTER 7. DEVELOPMENT OF A CONTINUOUS CELL CULTURING DEVICE 
WITH TEMPERATURE CONTROL FOR BACTERIAL IDENTIFICATION 

 
7.1 Overview 

The work described in this chapter focuses on a microfluidic device for culturing with 

continuous perfusion of a medium for better cell growth by removing metabolite from a culture 

area. A polycarbonate membrane was embedded in the outlet of the culture chamber for 

changing the medium without the loss of cells. Also, a temperature-control system was 

developed to directly culture cells on the chip. The device was thermostatically heated and the 

medium was changed at 6 h intervals. The chip was inspected under a microscope and MALDI 

analysis to assess the extent of cell growth.  

7.2 Introduction 

In the past a decade, the interest in manipulation and detection of complex biological 

systems including living cells has increased with the development of microfabrication 

techniques.220 Microfluidic devices are being used increasingly for biological analysis of samples 

such as DNA and proteins extracted from biological fluids and tissue.326 The properties of 

microfluidic chips make them ideally suited to the analysis of biological samples on a cell-by-

cell basis,219, 227 primarily due to the fact that the dimensions of the fluidic channels are the range 

of 10 to 100 µm, which closely matches cellular dimensions.228 This makes it possible to 

manipulate the cells individually as well as to minimize artifacts such as intracellular content 

dilution following lysis and the ability to capture specific cells from heterogeneous 

populations.327 In addition to providing a suitable environment for cell analysis, microfabricated 

culture devices offer several other advantages over conventional culturing methods.227 For 

example, they can operate at low fluid volumes and thereby have low sample and reagent 

consumption. The dimensions of the features of the culture chamber can be varied to any size for 
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batch production and disposability, which can eliminate the chances of cell contamination. Also, 

a microfluidic device allows for more precise control of cell growing conditions due to rapid heat 

and mass transfer in the microreactor. Moreover, harmful bacteria inside a culturing chip can be 

isolated from the outside due to its closed architecture. 

Cells are particularly sensitive to their environment and an accurate identification 

depends on proper growth conditions such as adding nutrient, removing waste, and maintaining 

proper temperature and pH.218 It is difficult to control the cell culture environment in a bulk 

system, which can result in conditions varying considerably during the growth of the culture.  

To maintain a consistent environment a careful control of conditions is required during cell 

culturing.223, 224 By continuously infusing culture medium into the chamber, waste products can 

be effectively removed.328 Various continuous perfusion methods have been developed for 

microfluidic culture devices.233, 329, 330 Recirculating and non-recirculating modes are the two 

most widely used perfusion methods for microfluidic culture devices. In the recirculating 

mode,331, 332 a confined volume of nutrient solution is circulated through the culturing area and 

the waste is diluted into the total nutrient volume. In a non-recirculating culture,333, 334 waste can 

be eliminated by infusing the nutrient solution through the culture chamber and sending it 

directly to waste reservoir.  

A microfluidic cell culture device containing continuous perfusion of medium will allow 

cells to grow in a favorable environment and thereby generate more consistent mass spectra 

when interfaced to MALDI-TOF MS. Also, a culturing chamber with continuous perfusion of 

fresh medium can use a fluidic manifold that incorporates microheaters to keep the temperature 

constant. 

In this study, a PMMA culture chip with continuous perfusion of nutrient medium was 

developed for off-line MALDI-TOF MS. The culture chip was also integrated with a micropost 
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bioreactor. Culturing temperatures were controlled on the surface of the integrated chip device 

with a thermostatically controlled microheater. The E. coli strains, ATCC 9637, 11303, and 

11775 were used to evaluate the performance of the continuous culture system. MALDI mass 

spectra with different culture times were compared. Finally, intact E. coli was directly digested 

in the bioreactor following on-chip culturing for fingerprint analysis.  

7.3 Experimental 

Chips were fabricated from PMMA using hot embossing with a molding die prepared by 

high-precision micromilling.267 A more complete description of the fabrication methods used in 

this study has been described in Chapter 2. All culture components including capillary tubes and 

connectors were sterilized with UV light prior to use. Each cell strain was cultured 

simultaneously in a Petri dish and on the microfluidic chip for comparison. The 8 g/L nutrient 

broth of culture medium was autoclaved at 121 ºC for 1 h for culturing the cell line in each 

culture chamber. A photo of the microfluidic cell culturing device is shown in Figure 7-1. The 

device is composed of a culture bed, two external pumps, fluid microchannels, and three 

reservoirs. Also, micropost bioreactor was fabricated at the outlet of the culture chamber. The 

total volume of the micropost channel, which contained surface-immobilized trypsin, was 750 nL 

with 37.4 mm2 surface area.  

The culture medium was first added to the culture bed through the nutrient reservoir and 

0.5 µL of an E. coli solution was then seeded in the culture bed at a concentration of 8 × 106 cells 

mL-1. The pump was connected to the nutrient reservoir and transported the culture medium into 

the culture area and then to the waste reservoir.    

All of reservoirs except the waste reservoir were then closed and the device was heated to 

a constant as 37 ºC. The nutrient medium was changed at 6 h intervals over the 24 h incubation 

time after which the cultured cells were washed by replacing the medium with 50 mM NH4HCO3 
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buffer through the continuous perfusion channel. The cells were delivered to a microscope slide 

through the capillary to assess the extent of cell growth. An additional aliquot of cultured cells 

was deposited onto a MALDI target plate for MALDI analysis. For digestion, the cultured cells 

were transferred hydrodynamically into the bioreactor by sealing the intact cell collection 

capillary outlet. Tryptic peptides generated from the bioreactor were deposited on a MALDI 

target for MALDI analysis. 

 

Figure 7-1. A photo of the microfluidic cell culturing device with continuous perfusion of 
medium and on-chip heating and cooling. 
 

Sample inlet 

Waste outlet 

Nutrient inlet 

Heating Cooling 

Micropost reactor :  
750 nL volume 

Culture chamber :  
2.1 µL volume 
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7.4 Results 

Cell culturing was performed in the thermostatted PMMA culturing chips as described in 

Chapter 2 for comparison with MALDI peak patterns of different E. coli strains. The thermostat 

comprised a digitally controllable heater and cooler that were independently set. The  

temperature precision of the system is ± 0.5 ℃ at 37 ℃ and ± 1 ℃ at 10 ℃ for the Kapton heater 

and the Peltier cooler, respectively. The heating and cooling rates on the chip are 10 ℃/min and 

2 ℃/min, respectively.  

 To culture the bacteria on-chip each of E. coli ATCC 9637, 11303, and 11775 were 

seeded into different microfluidic culture beds with approximately 4000 cells each by injecting 

0.5 µL of each strain solution (8,000 cells µL-1 × 0.5 µL). Each E. coli strain was incubated in a 

microfluidic culture device at 37 ºC for 24 h with the thermostatted system and the nutrient 

medium solution was replaced through the polycarbonate (PC) membrane at an interval of 6 h. 

After 24 h incubation, the cultured E. coli solution was flushed out and 1 µL of this solution was 

deposited directly onto a MALDI target plate.  Another 1 µL of the cultured solution was 

collected and serially diluted to 1 mL with deionized water to quantify the number of cultured E. 

coli bacteria. A 1 µL aliquot of this diluted sample was spotted onto a glass slide to count E. coli 

directly using a microscope. The number of E. coli was 250 ± 35 over five replicate experiments. 

The total number of bacteria in a culture chamber can be estimated to be approximately 2.5 × 105 

cells µL-1. Compared to the initial number of bacteria cells, the number of cultured bacteria 

increased by approximately 130-fold in this PMMA culturing chip.  

The MALDI matrix, CHCA, was added to the sample deposits on the MALDI target 

followed by MALDI-TOF MS analysis. Representative mass spectra of different strains of E. 

coli are depicted in Figure 7-2. As shown in this figure, several mass peaks are found in all 

strains tested, which means E. coli can be grown in the temperature-controlled microfluidic 
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culture device. The peaks in the mass spectra were reproducible over five replicate analyses. In 

this figure, several protein peaks detected in the mass spectrum ranging from 4 to 15 kDa are 

conserved for each strain, and these might be used for protein biomarkers in the mass spectra of 

intact bacterial cells323 since the mass spectral patterns of the E. coli strains tested are different. 

Peaks from the mass spectra were identified using a RMIDb search; 8 peaks for ATCC 9637, 8 

peaks for ATCC 11303, and 9 peaks for ATCC 11775 indicated with asterisks were matched 

with ribosomal proteins from E. coli.  The identified peaks are listed in Table 7-1. 

 

Figure 7-2. MALDI-TOF mass spectra of different strains of E. coli after 24 h culturing at 37  ℃

in a thermostatted PMMA microfluidic device. a) ATCC 9637; b) ATCC 11303; c) ATCC 
11775. Asterisks indicate matched peaks 
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Among them, peaks at m/z 6315 and 7890 for ATCC 9637, peaks at m/z 4449, 7563, and 

10265 for ATCC 111303, and peaks at m/z 6241 and 6411 for ATCC 11775 appeared to be 

differently expressed in the strains tested. These peaks might be useful for identification of 

different strains.  

 
Table 7-1. Identified mass peaks in cultured E. coli (from Figure 7-2). 

Observed mass (m/z) 

Strain 4364 4449 4752 5097 5382 6241 6315 6411 6964 7258 7563 7890 8828 9192 9554 10265 

9637 ×  × × ×  ×   ×  ×  × ×  

11303  ×       × × ×  × × × × 

11775 ×  ×  × ×  × × ×   × ×   

 

MALDI mass spectra from E. coli 9637 cultured after 6, 12, and 24 h of incubation are 

compared in Figure 7-3. The overall spectral patterns remained reproducibly consistent during 

incubation. Of the three culture times tested, 24 h gave the highest intensity of peaks and a 

significant number of peaks. As can be seen in this figure, at 12 and 24 h incubation time some 

mass peaks are missing while certain mass ranges within the spectra are similar. For example, 

after 24 h incubation, signal intensities at m/z 2825.5, 4364.0, 5382.1, 7258.7, and 9554.0 

increased, suggesting that the proteins are differently expressed according to the incubation 

times. Even though a shorter incubation time (6 h) resulted in fewer peaks and lower peak 

intensities, some peaks might be used for protein biomarkers in the mass spectra of intact 

bacterial cells. From searches for intact protein masses and the identification of protein 

biomarkers of cultured E. coli cell at 6 h incubation time, the 6 peaks indicated with asterisks 

matched with ribosomal proteins from E. coli. 
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Figure 7-3. MALDI-TOF mass spectra of E. coli 9637 from the microfluidic culturing device 
with different growth times. Asterisks indicated matched peaks. 
 
 

For the proteomic approach, a micropost bioreactor was prepared with a trypsin 

immobilized channel containing microposts after the culture chamber. E. coli (ATCC 9637) 

cells were cultured for 24 h and then washed with 5 µL of deionized water through the PC 

membrane. After the outlet of the waste reservoir was closed, 3 µL of a 100 mM phosphate 

buffer was infused into the culture chamber. The cultured E. coli solution was transferred 

into the micropost bioreactor and the flow was stopped for 5 min to allow time for digestion 

of proteins in cultured bacteria. After digestion, 1 µL was collected on a MALDI target. A 

representative MALDI mass spectrum of on-chip enzymatic digestion is shown in Figure 7-4.  
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Figure 7-4. MALDI –TOF mass spectrum of tryptic digest of E. coli 9637 from the culturing 
chamber. Asterisks indicated matched peaks. 

 

As can be seen in this figure, several tryptic peptide peaks from E. coli were found. In our 

search using mass lists of E. coli digestion, Mowse scores greater than 58 are considered 

significant identifiers of the proteins in E. coli cells. The most significant protein hit is the 

cell shape determing protein homolog protein derived from E. coli (Q9R5Y8_ECOLI) in 

which 15 fragments among total 22 peaks in the spectum were matched. The peaks marked 

with closed circles (●) correspond to peptides generated from the digestion of the protein. 

The Mowse score for this protein was 153 with 53% sequence coverage based on MSDB 

database searches. Peaks marked with open circles (○) represent unidentified peaks from the 

tryptic digest of E. coli. Other peaks below m/z 1000 were assigned to background ions 

derived from the matrix. Table 7-2  shows matched all proteins with significant Mowse 

socres from the Mascot search results. 
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Table 7-2.  Matched proteins with significant Mowse scores from search results. 
 

Match Accession Mass Score* Description 

1 Q9R5Y8_ECOLI 54839 153 Cell shape determining protein homolog (Fragment) - 
Escherichia coli. 

2 CAA38206 91374 123 ECRNE NID - Escherichia coli 

3 AAA23443 91374 122 ECOAMSG NID - Escherichia coli 

4 CAA47818 114219 108 ECGAMS NID - Escherichia coli 

5 S27311 118125 92 ribonuclease E (EC 3.1.4.-) - Escherichia coli (strain K-12) 

6 F90811 118201 92 RNase E [imported] - Escherichia coli (strain O157:H7, 
substrain RIMD 0509952) 

7 Q8FIP9_ECOL6 118272 92 Ribonuclease E (EC 3.1.4.-) - Escherichia coli O6 

8 Q1RD73_ECOUT 118105 92 RNase E (EC 3.1.4.-) - Escherichia coli (strain UTI89 / UPEC) 

*Protein scores greater than 58 are significant (p<0.05) 

 
7.5 Summary 

In this chapter, the development of a PMMA culturing chip with continuous culture 

medium perfusion and thermostatic temperature control was described for off-line MALDI-TOF 

MS detection. This system demonstrated the integration of steps for bacterial identification using 

MALDI-TOF MS: cell culturing, digestion, and deposition onto a MALDI target plate. Three 

different strains of E. coli tested were cultured and fingerprint mass spectra distinguishing the 

strains were obtained using this system. In a test for the effect of culture time, 6 h incubation 

time could be acceptable for the bacterial identification procedure, which took shorter time 

compared to 24 h incubation time.  

For proteomic analysis a micropost bioreactor after the culture area was used to 

investigate on-chip enzymatic digestion of proteins in cultured bacteria. The bioreactor brings 

the capability of an enhanced identification procedure for intact cells.  
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CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this dissertation, the fabrication and use of microfluidic chips interfaced to MALDI 

mass spectrometry for proteomic applications was described. An automated digestion and droplet 

microfluidic device allows protein samples to be prepared for MALDI analysis. A micropost 

bioreactor was developed for the fast and efficient digestion of proteins. Continuous deposition 

was also used for low volume deposition. The microfluidic culturing devices were used to 

analyze cultured whole cells. The significance of this work lies in the ability of microfluidic 

devices for mass spectrometry to serve as a fast and effective analytical mean for proteomic 

samples.  

In Chapter 3, a solid-phase bioreactor operated by a pressure-driven flow using a robotic 

fraction collector was used for off-line MALDI detection of protein samples. Here, the total 

sample preparation time was reduced from about 24 h required by a conventional digestion 

method to 40 s using the open-channel solid phase bioreactor. Also this bioreactor was 

demonstrated for proteins digestion and subsequently to deposit digested peptides with a matrix 

automatically on a MALDI target plate less than 1 min. The chip had a coaxial matrix and 

analyte mixing system, which combined the analyte with the matrix at the point of target 

deposition. It mixed digested peptides and the matrix more homogeneously, resulting in 

improved mass spectra. Microfluidic chips have been fabricated with micro-emitters combined 

with a ball inlet interface for on-line MALDI detection. However, the off-line MALDI approach 

incorporating an automated sample deposition interface had advantages of sensitivity and 

improved detection capabilities in a proteomics setting.    

 An approach to increase efficiency of digestion was developed. This approach was 

developed to address the problem of accurate protein identification from a complex sample. In a 
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solid-phase bioreactor, digestion efficiency depends on the geometry, digestion temperature, the 

compositions of digestion solvents, and the applied voltage. These parameters must be optimized 

to achieve fast and efficient digestion. Due to the precise microfabrication techniques various 

bioreactors with 3-D geometries can easily generated. The micropost bioreactor described in 

Chapter 4 provided highly reproducible micro-replication and efficient digestion by modifying 

the geometry of the open-channel bioreactor described in Chapter 3. Using this micropost 

bioreactor, the sequence coverage of proteins tested was improved compared to the open-channel 

format. In addition, proteins tested were identified with a high degree of certainty based on the 

high Mowse scores for the proteins, which means that the micropost bioreactor can be useful for 

accurate protein identification. The performance of the micropost bioreactor was extended to 

intact protein digestion in cells, giving rise to more applications for fast microorganism 

detection. This microfluidic device has the potential for use with chip-based separations using 

bottom-up proteomics as well as a shotgun proteomics of protein mixtures. One can also 

envision an on-chip 2-D separation (reversed phase plus ion exchange separation) for peptides 

that can be employed with the solid-phase digestion and deposition system. 

Although we demonstrated the micropost bioreactor with MALDI-TOF MS to quickly 

digest intact proteins with high sequence coverage and high degree of certainty, the approach 

was still limited in application due to the relatively low abundances of proteins found in cells. 

For example, using the micropost bioreactor coupled with our MALDI mass spectrometer, the 

limit of quantification was 80 fmol for cytochrome c using a spotting deposition. In order to 

implement this interface, the limit of detection must be improved. One way this can be 

accomplished is with a hydrophobic MALDI target to obtain smaller deposited spot sizes.335, 336 

Under these conditions, the deposition volume can be reduced to achieve low volume fractions 

with a higher local concentration. Another way to address this issue is to utilize a continuous 
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deposition interface which has the potential for low volume sample deposition from the 

bioreactor,303-305 thereby enhancing sensitivity.23 An alternate sample deposition strategy, 

continuous deposition, was described in Chapter 5 for low-volume deposition. This continuous 

deposition interface offered a deposition volume 100-fold better than spotting deposition. Also, 

small sample deposits improved sensitivity due to an increase of local concentration of sample 

by more than 300% compared to the spotting deposition. A uniform sample trace was produced 

with a width which is similar to the ionization laser spot; thereby the operator does not need to 

search for a “sweet spot” in the sample. The continuous deposition interface can be interfaced to 

a separation but there are some additional requirements with this interface. The linear velocity of 

the solution needs to be balanced with the peak width of the separated plug.  

A microfluidic device for more upstream proteomics was used to investigate microfluidic 

cell culturing chip for MALDI analysis. Three different strains of E. coli were cultured in the 

culturing chip and the mass spectral patterns associated with various strains were found to be 

different. Also, fingerprint mass spectra distinguishing strains were produced. These results 

showed that whole cell analysis using microfluidic cell culturing coupled with MALDI-TOF MS 

could serve as a tool for bacterial identification. This microfluidic culturing device can 

potentially be used for amplication of low abundance proteins in a cell. Collecting and preparing 

samples on this self-contained chip would extend the capabilities of MALDI-TOF to applications 

such as bacteria identification in clinical labs and water quality monitoring. To maintain a 

favorable environment for producing viable and consistent cell lines, a microfluidic cell culture 

device containing continuous perfusion of medium was developed by adding a polycarbonate 

membrane. Also a culturing area with continuous perfusion of fresh medium could be improved 

by modifying a chip manifold that incorporated a thermostatic temperature controller in place of 

an incubator to keep the temperature constant. Thus it could generate more consistent mass 
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spectra when interfaced to MALDI-TOF MS, and reduced the total detection time. Furthermore, 

a micropost bioreactor was fabricated at the end of the culture chamber to demonstrate the 

feasibility of an integrated chip for intact cell analysis. This integrated chip included dynamic 

culturing of bacteria cells using continuous perfusion of media, proteolytic digestion of cultured 

cells and deposition of generated peptides onto a MALDI target plate.   

One of the future directions is the development of highly integrated microfluidic systems 

that contain multiple functional devices on a single wafer and incorporate a high density of 

microchannels and operational units. A proteomics chip is a fully integrated microfluidic 

platform that combines multiple functions on the same chip providing complete proteomic 

analysis and thus, fully automated analysis. Fully-integrated proteomic analysis chips do not yet 

exist; however, there have been several developments toward the integration of multiple 

processing steps into chips specifically for protein analyses. These devices will provide further 

automation capabilities and process integration into the sample processing pipeline. For example, 

developing an integrated system that can perform a solid phase extraction to isolate certain 

protein fractions, separation of the large number of protein components contained in the isolate 

using multi-dimensional separation, proteolytic digestion of the isolated proteins and then, 

deposition, either off-line or on-line, of these generated peptides for peptide-based mass 

fingerprinting would be very elegant. Integration of the entire proteomic processing pipeline will 

be necessary to promote high-throughput capabilities to enhance discovery-based projects and 

clinical applications of proteomics. While we have delineated the need for protein-type isolation 

using solid-phase extraction, further up-stream processing steps should be targeted for 

integration as well, such as cell isolation, culturing, and cell lysis. Lastly, high-throughput 

screening of proteomic samples for clinical diagnostics is a potential application area that could 

take advantage of these highly integrated and functional platforms. 
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APPENDIX A. LAB VIEW PROGRAMS  
 

Moving-Stage Control Program 

This program is used to control moving stages in the continuous sample deposition for MALDI 

MS detection (Chapter 5). It can control actuator motor, moving speed, deposition range, and the 

number of cycles.  Figure A-1 shows the main page of moving control program.  

 

 

Figure A- 1. A photo of  moving-stage control program.  
 

 

VI name: XYZ Stage Microfluidics.vi 

VI Description: 

This program is used for starting the program to operate the xyz moving stages for sample 

deposition. To start the controller program this VI should be loaded.   
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List of SubVIs: 

VI Name: ESP 300.vi 

VI Name: Motor On Off.vi 

VI Name: On Off XYZ Moving.vi 

VI Name: Set Velocity.vi 

VI Name: Stop Motion.vi 

VI Name: Motion Increment.vi 

VI Name: Move to Absolute Position.vi 

VI Name: Read Error Message.vi 

VI Name: Read Actual Position.vi 

 

ESP 300.vi 

VI Description: 

This VI reads controller configurations from hard disk and sends it to the ESP-300 controller.  

List of SubVIs: 

VI Name: ESP Read.vi 

VI Name: ESP Send.vi 

 

Motor On Off.vi 

VI Description: 

This VI is used to turn actuators on and off. When the motor is on, all actuators are ready to 

move each stage.  
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On Off XYZ Moving.vi 

VI Description: 

This VI is used to select individual actuators for sample deposition.  

 

Set Velocity.vi 

VI Description: 

This VI is used to set a moving speed of stages. The velocity of each stage can be controlled 

individually 

 

Stop Motion.vi 

VI Description: 

This VI is used to manually stop moving stages during operation. 

 

Motion Increment.vi 

VI Description: 

This VI is used for selection of an interval length between traces and the number of traces.  

List subVIs: 

VI Name: Motor Off.vi 

VI Name: Motor On.vi 

VI Name: Moving.vi 

VI Name: Multiflication.vi 
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Move to Absolute Position.vi 

VI Description: 

This VI is used for moving to a specified location to choose a starting point for sample 

deposition.  

 

Read Actual Position.vi 

VI Description: 

This VI is used for finding the location of the stages.   

 

Read Error Message.vi 

VI Description: 

This VI is used for record errors during the program operation. 
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