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ABSTRACT 

My research focus was to investigate alligator blood using mass spectrometry-based 

proteomics methods to understand their innate immune systems. The first goal was to sequence 

peptides and proteins from the blood serum and leukocytes using tandem mass spectrometry and 

de novo sequencing. The second goal was to determine the function of these biological 

molecules and their relationship to the immune system.  

One- and two-dimensional gel electrophoresis was used to separate proteins from 

alligator leukocytes, which were enzymatically digested. The peptides were measured using 

reversed phase nano-high performance liquid chromatography coupled with tandem mass 

spectrometry (nano-HPLC-MS/MS) followed with de novo sequencing. The results, as described 

in Chapter 3 show that alligator leukocytes contain proteins that are similar to proteins found in 

other vertebrates such as mammals and reptiles that are related to immune responses. Isolation of 

small molecule interferences and peptides exhibiting antimicrobial activity from alligator 

leukocyte extracts are described in Chapters 4 and 5. Reversed-phase HPLC was used to separate 

the leukocyte mixture and antimicrobial activity tests were used to determine the active fractions. 

Interferants, EDTA and spermine were present and showed activity in early fractions. Two major 

peptides measured at 4.7 and 4.9 kDa in an active fraction were further separated on the basis of 

their charge, size and shape using ion mobility-mass spectrometry (IM-MS). Due to the limited 

fragmentation of the peptides using IM-MS, the peptides were isolated and fragmented using 

MALDI TOF/TOF MS for de novo sequencing.  

Lectins are a class of carbohydrate selective proteins that are part of the complement 

immune system. Chapter 6 presents results for a lectin isolated from alligators that have mannan 

and mannose binding activity. In this study, the monomeric lectin was isolated and enzymatically 

digested using five different proteases to create small and large peptides which were analyzed by 
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LC-MS/MS. The peptides were determined via de novo sequencing and overlapped to generate 

the lectin sequence. Lectins may have varying degrees of glycosylation, therefore 

deglycosylation procedures suitable for mass spectrometry analysis are described in Chapter 7. 

Conclusions and future directions for the work in this dissertation will be summarized in Chapter 

8. 
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CHAPTER 1. INTRODUCTION 

 
Alligators exhibit strong immune responses when exposed to microorganisms, and are 

highly resistant to microbial infections.1-3 Therefore, characterization of biological components 

that make up the immune system of alligators is of interest because these compounds may have 

therapeutic applications. Antibiotic resistance has become a global public health issue and is 

increasing at a rate that exceeds the pace of the development of new drugs. Hence, isolation of 

antimicrobial peptides from alligators may lead to a new class of antibiotics. 

Another class of molecules that are part of the immune system is the set of proteins 

known as lectins, which show promise for their application in cancer therapy, pharmacology and 

immunology.5 The study of lectins isolated from Alligator mississippiensis, can provide insight 

on its structure-function relationship within the crocodile’s immune system.  

The goal of this research was to use mass spectrometry-based proteomics to isolate and 

characterize biological molecules in alligator blood and identify specific components that may 

have medicinal use. 

1.1 Biochemistry of the Immune System 

The vertebrate immune system is composed of a network of circulating cells and 

molecules7 that recognize and respond to the invasion of foreign pathogens such as viruses, 

bacteria, fungi and protists.8 These molecules include antimicrobial molecules such as lysozymes 

and defensins, molecules involved in specific recognition of foreign antigens such as 

immunoglobulins and T-cell receptors, molecules that carry intracellular signals such as 

cytokines, and molecules that receive and transduce these signals such as cytokine receptors.8 

Vertebrates have both innate and adaptive immune systems that work together.7 The innate 

immune system responds rapidly and is the first line of defense against pathogens and does not 
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require previous exposure to exhibit a full immunological response.7 In contrast to the innate 

immune system, the adaptive immune system requires previous exposure to an antigen to exhibit 

a full immunological response and can take several days to weeks to become completely active.7  

Most studies on vertebrate immune systems have been performed on mammals8 and the 

evolutionary development of the immune systems of major group of vertebrates, including 

mammals, birds, amphibians and fish is well known compared to other groups of organisms.8 In 

contrast, little is known about the reptilian immune systems.8 A better understanding of reptilian 

immunology will provide important information on the evolution of both innate and adaptive 

immune mechanisms. Crocodilians are of interest because they are the only living reptilian 

archosaurs, which include the dinosaurs, pterosaurs, and crocodilians.9  

Crocodilians are vertebrates with a complex immune system. The components that make 

up the reptilian immune system are antimicrobial peptides, macrophages, heterophils, 

neutrophils, basophils, eosinophils, phagocytic B cells, and proteins of the complement system. 

Like other vertebrates, crocodilians also have an innate and adaptive immune system.7, 10 

Crocodilians thrive in microbe containing environments but exhibit a strong resistance to 

infections.  

Alligator serum has been shown to have antibacterial,3 antiviral,2 and antiamoebacidal 

properties.11 Antibacterial activity has also been observed in crocodile serum, particularly 

Crocodylus siamensis.12, 13 In addition, the leukocytes of Alligator mississippiensis have also 

shown to produce a broad antimicrobial spectrum.1 The alligator complement system, which is 

part of the innate immune system, has also been shown to be effective against gram-positive 

bacteria.3, 14 When alligator serum was compared to human serum, the alligator serum was 

effective against different strains of Gram-positive bacteria, unlike human serum which had no 

antibacterial activity. It was proposed that the complement is also responsible for antiviral 
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activity from the alligator serum. Human T-cells were infected with human immunodeficiency 

virus type 1 (HIV-1) and when incubated with alligator serum potent antiviral activity was 

observed.2 These studies suggest that crocodilians have a strong innate immune system. 

1.1.1 Innate Immune System 

The innate immune system comprises different molecules and cells including lysozymes, 

proteins of the complement system, non-specific leukocytes, and antimicrobial peptides.7 

Lysozymes are enzymes that cause bacteria cells to be lysed by the hydrolysis of their cell wall.15 

Lysozymes have been isolated from several reptilian organisms such as, lizards,16 turtles,16 

crocodiles,17 and alligators6. The complement system consists of various proteins found in 

plasma that kill bacteria via lysis or opsonization.7 Lysis entails the complement proteins 

rupturing the bacterial membrane therefore killing the invading bacteria.18 Opsonization is the 

process by which opsonin proteins found in blood serum, bind to the bacterial membrane 

allowing the bacteria to be recognized by macrophages. The macrophages then engulf the 

bacteria through phagocytosis.7   

There are three different pathways to the complement immune system: classical, 

alternative, and lectin.19 The classical pathway is activated by the immunoglobulins, 

immunoglobulin G (IgG) and immunoglobulin M (IgM) to activate an immune response.7, 19 The 

alternative pathway does not require antibodies but is activated by molecules such as viruses or 

lipopolysaccharide (LPS) that are found on the surface of bacteria.18 Finally, the lectin pathway 

is activated by mannose sugars of proteins that are on the surface of bacteria.19 The complement 

immune system has been characterized in the American alligator14 and is believed to be 

responsible for antiviral activity exhibited by alligator serum.2 

There are non-specific leukocytes in reptiles including eosinophils, herterophils, 

basophils, monocytes, and macrophages.7 Limited information is known about the function of 
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eosinophils in reptiles; however, in mammals they play a key role in the defense against parasitic 

infections.19 Heterophils are involved in the inflammatory response in reptiles and are also 

responsible for suppressing microbial invasion.20 Basophils contain immunoglobulins on their 

surface and when triggered by an antigen releases histamine.21 Monocytes and macrophages are 

phagocytic cells that are responsible for processing and releasing antigens as well as releasing 

cytokines.19 Cytokines are regulatory proteins that are released by the cells of the immune 

system to generate an immune response.22  

An important component of the innate immune system is antimicrobial peptides and 

proteins. Antimicrobial peptides are found in the host defense system and exhibit antimicrobial 

activity.23 Antimicrobial molecules are typically amphipathic and cationic small peptides less 

than10 kDa in mass.24 However, they can also be anionic peptides25 or proteins.26 Antimicrobial 

peptides can be linear and α-helical or cysteine containing and β-sheet. The linear peptides 

typically consist of 12–25 residues and no cysteines.24 The β-sheet peptides have several 

antiparallel β-strands and are stabilized with up to six disulfide bonds.24 There are also 

antimicrobial peptides that are rich in specific residues, such as tryptophan,27 proline, and/or 

arginine28, 29 and histidine.30        

There are two major antimicrobial peptide families found in vertebrates:  defensins and 

cathelicidins. Defensins are antimicrobial peptides that are rich in arginine residues and have a 

characteristic β-sheet fold and six disulfide linked cysteines.23 They are cationic peptides that 

bind to microbes via electrostatic interactions.31 Defensins have been found in mammals and 

birds32 and recently the first reptilian defensin was discovered in the European pond turtle Emys 

orbicularis.33 Defensins are 38-42 residues and found in cells and tissues involved in the host 

defense system. In many animals the highest concentration of defensins are found in the 
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granules, where the leukocytes are stored.23 Defensins exhibit antibacterial, antifungal, and 

antiviral activity.23  

Another family of antimicrobial peptides is the cathelicidins. Cathelicidins are linear 

molecules that range in size from 12 to 80 amino acids and, unlike the β-defensins, they lack 

disulfide bridges.34 Cathelicidins have antifungal35 and antibacterial activity.36 They have been 

isolated from fish,37 birds,38 mammals,39 and reptiles.40 Cathelicidins are produced in the myeloid 

cells in the bone marrow and stored in the neutrophil granules.41 Cathelicidins have also been 

found in monocytes, epithelial cells of the skin, respiratory tract, urogenital tract, as well as T 

and B lymphocytes.41 

The membranes of microbes and multicellular animals differ in that microbes, 

particularly bacteria, have an outer membrane surface that is composed of lipids with negatively 

charged phospholipid head groups. The outer membranes of plants and animals are composed of 

lipids that do not have a net negative charge (Figure 1-1); the negatively charged head groups are 

positioned towards the cytoplasm.42, 43 

The primary model that explains the mechanism of antimicrobial peptides is the Shai-

Matsuzaki-Huang model.43, 44 The Shai-Matsuzaki-Huang Model postulates that the peptide 

interacts with the pathogen membrane, displacing the lipids and disrupting the membrane 

structure. In some cases the peptide may also penetrate the cell.44 The membrane of multicellular 

animal cells contains cholesterol, which reduces the activity of the antimicrobial peptide via 

peptide interaction with the cholesterol or stabilization of the lipid bilayer. In addition to this 

proposed mechanism, studies suggest that there are other mechanisms involved. These 

mechanisms include 1) depolarization of the bacterial membrane leading to death,45 2) creation 

of holes in the cell causing cellular leakage,46 3) activation of processes that cause cell death (e.g. 

hydrolases which destroys the cell wall),47 4) disruption of the membrane function by 
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The broad antimicrobial spectrum of the antimicrobial peptides allows them to be used 

for diverse applications. However, a major drawback of antimicrobial peptides for clinical use is 

the level of toxicity. The level at which the antimicrobial peptides are effective in vivo are 

usually toxic.52 Other factors are stability and immunogenicity.49  

 
Table 1-1. Antimicrobial peptides available for therapeutic use.49, 53 
 

Peptide 
Pharmaceutical 

Name 
Origin 

Mode of 
Application

Application Stage 

Magainin 2 Pexiganan 
African 

clawed frog 
skin 

Topical Foot ulcers 

Completed 
Phase III. 

(Not 
approved by 

FDA) 

Indolicidin 
Omiganan 
(MBI-226) 

Synthetic 
analog of 

indolicidin 
Topical 

Catheter 
infection 

Phase III 

Indolicidin MBI-594AN 
Cow 

erythrocytes
Topical Acne Phase III 

Protegrin 
Iseganan 
(IB-367) 

Pig 
leukocytes 

Oral Mucositis Phase III 

Histatin P113P113D Human Oral Gingivitis Phase II 

Heliomycin Heliomycin 
Tobacco 
budworm 

Systemic Antifungal Preclinical

Lactoferricin Lactoferricin Human Systemic Antibacterial Preclinical
Bactericidal 
permeability 
increasing 

protein 
histatin 

XMP.629 Human Systemic 
Meningococcal 

meningitis 
Phase III 

 

Another group of molecules that play an important role in vertebrate innate immune 

systems is lectins. Lectins have been studied for more than 100 years in plants and have recently 

been recognized for their importance in animals.54 Lectins are proteins that can recognize 

carbohydrates that are endogenous to the animal or those on microbes.55 They have been 
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classified based on their carbohydrate ligands, biological processes, subcellular location, and 

dependence on divalent cations.55 They have a wide range of structures, but carbohydrate-

binding activity is limited to a particular region of the protein known as the carbohydrate-

recognition domain (CRD).56   

Animal lectins are grouped into two structural families: C-type and S-type.56 C-type 

lectins are found in serum, extracellular matrix, and plasma membranes. They require calcium 

for binding and bind to a variety of sugars. S-type lectins are found intracellularly and require 

sulfydryl for binding to β-galactosides.57  

Animal lectins possess a wide variety of functions such as cellular growth regulation, 

mediation of endocytosis, intracellular routing of glycoconjugates, and urate transport.58 

However, the major function of lectins is to behave as recognition molecules within the immune 

system.58 These roles within the immune system include: direct defense, cell recognition and 

trafficking, immune regulation, and prevention of autoimmunity.58 Different applications of 

lectins have been demonstrated such as immobilization onto columns for affinity separation of 

glycoproteins, glycopeptides and oligosaccharides,59 selective agglutination,60 and blood 

typing.61 Lectins show promise for their application in agriculture, cancer therapy, 

pharmacology, and immunology.5  

1.1.2 Adaptive Immune System 

The adaptive immune system becomes activated following the innate immune response. 

There are two adaptive immunity responses:  cell-mediated and humoral adaptive immunity.7 

Cell-mediated immunity involves T-cells that are responsible for regulating antibody production. 

T-cells can differentiate into two types of cells: cytotoxic T-cell (TC) or T helper cell (TH). TC 

can rapidly kill bacterial or viral infected cells through apotosis. TC regulates other immune 

cells. TH helps control other immune cells. T-cells also release cytokines that affect the humoral 
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response (the immune responses mediated by antibodies).7 Humoral adaptive immunity relies on  

B-cells that recognize antigens even before being processed.19  

1.1.3 Study of the Immune System 

To study the immune system of vertebrates, serological assays are typically used, in 

which in vitro reactions between antigen and serum antibodies are studied.62 There are many 

different types of serological assays including agglutination, precipitation, immunoassays, 

immunofluorescence, fluorescence-activated cell sorting analysis, and lymphocyte function.62 

These assays help elucidate the immune system’s functional and regulatory properties through 

lymphocyte function measurements and the responses of B- and T-cells as well as antibodies.  

Another approach to studying the immune system is hematology, which is the study of 

blood, including white blood cells, red blood cells, hemoglobin, and platelets.62 Hematological 

tests allow for observation of live blood (whole blood that is unaltered and unstained) with 

microscopy. Using this test, microbial activity in the blood and its potential effects can be 

measured. In addition, the white blood cells can be quantified, which can provide insight on how 

the immune system is functioning. There is also the standard blood microscopy technique in 

which the blood is stained and fixed; however, staining kills the blood cells.  

Another technique for studying the immune system is genomics and proteomics, which is 

discussed in Section 1.2. Genomics and proteomics provide a more comprehensive view of the 

immune system and its function as compared to serological assays and hematology tests. 

1.2 Chemical Analysis Methods for Proteomics 

Proteomics is the approach used to understand complex biological systems by analyzing 

protein expression, function, modifications, and interactions.63 Proteomics is related to genomics, 

which is the study of the genetic make-up of an organism.64 An important step towards 

understanding an organism’s biology is to determine its genome sequence. However, the genome 
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sequence is not enough to provide information on complex cellular processes; the complement of 

proteins associated with a particular genome is essential to this understanding.65  

Proteomics is complimentary to genomics and provides an additional component to the 

understanding of biological systems. However, there are significant challenges in proteomics 

such as limited sample quantity, sample degradation, broad dynamic range (>106 fold for protein 

abundance), post-translational modifications, and disease changes.66 Protein concentrations 

typically exceed the dynamic range of a single analytical instrument or method necessitating the 

use of one or more dimensions of separation.63  

Proteomics can be divided into three major branches: structural proteomics,67 expression 

proteomics,68 and functional proteomics.68 Structural proteomics involves determining the 

structures of proteins, such as its three-dimensional shape (secondary and tertiary structure) and 

its amino acid sequence (primary structure).67 A commonly used approach for protein 

sequencing is Edman degradation. Edman degradation was developed by Pehr Edman in 1950 

and is one of the oldest and most developed techniques for protein sequencing.69 However, 

Edman sequencing chemistry has largely been replaced by mass spectrometry for protein 

sequencing and identification.70, 71 Protein secondary and tertiary structures can be characterized 

by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.67  

Expression proteomics involves the quantitative and qualitative analysis of proteins under 

different conditions.68 This approach allows disease-specific proteins to be identified by 

comparing the entire proteome between two samples. Proteins that are over-expressed or under-

expressed can be identified and characterized. The techniques commonly used for expression 

proteomics are two-dimensional gel electrophoresis,72 multi-dimensional chromatography with 

mass spectrometry,73 and micro-array techniques.74 Two-dimensional electrophoresis suffers 

from  limitations such as the large dynamic range of protein expression in biological systems and 
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difficulty in analyzing proteins that are post-translationally modified.68 Limitations of microarray 

technology include the sensitivity of the arrays for detection of low abundance genes75 as well as 

its inability to measure post-translational modifications.76 Unlike 2-D electrophoresis and micro-

array techniques, multi-dimensional chromatography with mass spectrometry can measure post-

translational modifications in expression proteomics.77 

Functional proteomics is an approach to analyze and understand the properties of 

macromolecular networks involved in cells.68 Proteins and their specific roles in metabolic 

activities can be identified.  

1.2.1 Sample Purification 

Blood plasma and serum are commonly used biological fluids for proteomic analysis 

because many cells release a portion of their content into the plasma when damaged or upon cell 

death. There are approximately 10,000 proteins present in human serum78 and many proteins of 

interest are present in low abundance. Plasma comprises ~97% high abundance proteins 

including albumin (57–71%) and immunoglobulins (8–26%).79 Hence plasma samples are 

difficult to analyze directly and purification is required. In addition, proteomic samples usually 

contain a large amount of contaminants such as lipids, nucleic acids, and surfactants.80 The 

dynamic range of expressed proteins is greater than six orders of magnitude81 and protein 

mixtures can be quite complex and contain proteins with different solubility, hydrophobicity and 

hydrophilicity, pI, and molecular masses.82 Therefore, sample purification is necessary before 

mass spectrometry analysis.  

Separation methods such as affinity-based techniques, chromatography and 

centrifugation have been employed.83 It is important that the proteins of interest are well resolved 

with limited sample purification steps to avoid sample loss. Affinity-based techniques have been 

established for removal of albumin and IgG using immobilized antibodies that are selective 
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against albumin84 and protein A or protein G that selectively capture IgG on the columns.85 The 

removal of salts and other contaminants from protein samples has been accomplished using 

precipitation with centrifugation.80 Commonly used precipitation methods include acetone, 

trichloroacetic acid (TCA), ammonium sulfate, and chloroform/methanol precipitation.  

1.2.2 Digestion 

Protein digestion can be performed using three common approaches: in-gel,86, 87 in-

solution,88 or solid phase.89, 90 In an in-gel digestion, the proteins are separated on a 1- or 2-D gel 

and the gel bands are excised for chemical or proteolytic digestion.87 A major advantage of in-gel 

digestion is that it removes detergents and salts that can be interfants in the mass spectrometer.87 

However, a limitation to this method is the loss of peptides during in-gel digestion through 

binding to the polyacrylamide.87 Another approach that has been developed is in-solution 

digestion which entails digesting proteins directly in buffers or solvents such as ammonium 

bicarbonate or acetonitrile.91 This approach is advantageous in that low abundance molecules 

that may otherwise be lost in the gel can be detected. A drawback for this method includes longer 

incubation times due to lower enzymatic concentrations.92 Solid phase is another digestion 

approach which includes immobilization of an endoprotease on a solid support; examples include 

monolithic columns for trypsin digestion93 and microfluidic devises with integrated trypsin 

digestion.90 Solid phase digestion offers advantages of increased digestion rates, reduced 

interferences from trypsin autolysis products, low sample consumption, and fast response.94, 95 A 

limitation to this method is the use of organic solvents which improve digestion efficiency but 

can damage the immobilized enzyme.96  

Digestion efficiency can be improved by cysteine reduction before digestion. The 

disulfide bonds are reduced with a reagent such as dithiothreitol (DTT) and an alkylation reaction 

is performed with iodoacetamide to prevent new disulfide bridges from forming.97  
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Many of the endoproteases and chemicals cleave proteins at specific amino acids 

generating peptide fragments of varying lengths. Peptide fragments between 6–20 amino acids 

are best for MS analysis and protein database searching.98 Endoproteases and chemicals used for 

protein analysis are indicated in Table 1-2. The most commonly used endoprotease for proteomic 

analysis is trypsin. Trypsin cleaves at lysine and arginine residues, unless followed by a proline 

residue in the C-terminus direction.99 Trypsin has good activity in both in-gel and in-solution 

digests. 

 
Table 1-2. Chemicals and proteases used for enzymatic and chemical cleavage. Cleavage with 
the endoproteases only occurs if the residue after the cleavage site is not proline, except for Asp-
N.100  
 

Endoproteases Cleavage Specificity 

Trypsin K, R 

Glu-C E, D 

Lys-C K 

Asp-N D 

Arg-C R 

Chymotrypsin W, Y, F, L, M 

Chemical Agents Cleavage Specificity 

70% Formic acid D 

Cyanogen bromide M 

2-nitro-5-thiocyanobenzoate, pH 9101 C 

Hydroxylamine, pH 9102 N, G 

Iodobenzoic acid W 

 

Many proteins contain a significant number of lysine and arginine residues that are 

spaced sufficiently in the sequence so that trypsin produces fragments that are a suitable length 

for MS analysis. Another complementary enzyme used is Glu-C which cleaves at the carboxyl 
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side of glutamate residues.103, 104 In the presence of selected buffers such as sodium phosphate, it 

can cleave at both the glutamate and aspartate residues. Other proteases listed in Table 2 with 

cleavage specificities are useful for producing peptides of varying lengths depending on how 

many cleavages occur. This is useful for obtaining additional sequence information, especially if 

the protein is unknown.  

There are also non-specific endoproteases such as pepsin as well as endoproteases with 

broad specificities such as chymotrypsin that are useful for producing multiple overlapping 

peptides that can increase sequence coverage.98 Proteins can also be cleaved with cyanogen 

bromide, formic acid, and hydroxylamine. Cyanogen bromide is the most commonly used for 

protein cleavage; it cleaves specifically at methionine residues.105  

1.2.3 Separations 

Two separation methods used in proteomics are gel electrophoresis and liquid 

chromatography (LC). Gel electrophoresis is a sensitive method for separating and identifying 

proteins in a gel matrix such as agarose or polyacrylamide.80 Agarose is typically used to 

separate larger macromolecules such as nucleic acids and polyacrylamide is typically used to 

separate proteins. Polyacrylamide gel electrophoresis can be used to determine the size, 

isoelectric point and purity of proteins.80 The gel pores are made by crosslinking of the 

polyacrylamide with bis-acrylamide to form a network of pores that allows the molecules to 

move through the gel matrix like a sieve. The gel pore size is determined by the acrylamide 

monomer concentration.106  

Gel electrophoresis separates molecules based on the differences in migration velocity of 

ions in the gel under the influence of an electric field. The migration velocity is the product of 

the electrophoretic mobility and the applied electric field. The electrophoretic mobility is 

proportional to the ion charge and inversely proportional to the frictional forces. The frictional 
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forces depend on the analyte size and the viscosity of the solvent. Smaller analytes have a greater 

mobility and migrate farther down the medium in a given time.  Polyacrylamide gel 

electrophoresis (PAGE) is used to separate proteins and peptides based on their size. Sodium 

dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is the most commonly used 

gel based technique for separating proteins. SDS is used to denature the proteins and gives the 

protein an overall net negative charge.107    

Two-dimensional gel electrophoresis (2D-GE) is used to separate proteins based on their 

charge and mass.107, 108 The first dimension separates proteins based on their net charge using 

isoelectric focusing.108 Protein separation is performed in a pH gradient; the proteins migrate to 

their isoelectric point (pI), which is the pH where the protein has a net charge of zero. A 

protein’s pI is determined by the type and number of acidic and basic residues it contains.107, 108 

The second dimension in 2D-GE separates proteins based on their mass and is usually performed 

in a SDS gel (SDS-PAGE). 2D-GE has difficulty resolving large proteins, or those with extreme 

pI or hydrophobicity, and suffers from lack of reproducibility.109  

Liquid chromatography (LC) is a technique used to separate components on a stationary 

phase using a liquid mobile phase. Reversed-phase high-performance liquid chromatography 

(RP-HPLC) separates proteins and peptides by hydrophobicity.110 It is one of the most powerful 

and commonly used liquid chromatography techniques.111 Commonly used hydrocarbon ligands 

for reversed-phase resins include C4 and C18.
110 C4 is commonly used for polar proteins and C18 

is most used for peptides.  

Ultra performance liquid chromatography (UPLC) uses smaller particles as well as high 

speed and peak capacity (the number of peaks that can be resolved per unit time).112 Compared 

to conventional HPLC columns which are packed with 3.5 to 5 µm particles, UPLC columns are 
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packed with 1.7 µm particles.113 Smaller particles shorten the analyte’s diffusion path which 

improves separation efficiency, speed, and resolution.114, 115  

Ion exchange is another form of chromatography which involves the separation of 

proteins and peptides based on their charge.110 A cationic or anionic resin is used and proteins or 

peptides of opposite charge are retained due to charge attraction. Hydrophilic-interaction 

chromatography separates proteins based on their hydrophilic properties; hence the stationary 

phase is polar.116 Another separation technique is affinity chromatography, which separates 

proteins and peptides based on their specific ligand-binding affinity.110 There are two fractions 

collected from affinity separation, the unbound and the bound proteins and peptides. The 

analyses and detection of low abundant proteins, primarily in plasma, can be difficult due to the 

presence of high abundant proteins such as albumin, immunoglobulins, and transferrin.117 

Therefore, affinity-based approaches can be used to remove high abundant proteins or low 

abundant proteins can be enriched.109    

Due to the complexity of the protein samples, one-dimensional separation techniques are 

usually insufficient and multi-dimensional separations are employed. In multi-dimensional 

separation, two or more separation techniques are coupled together to improve the resolving 

power. These separation techniques are orthogonal to one another.   

1.2.4 Mass Spectrometry 

Mass spectrometry (MS) is an analytical technique used for measuring the mass and 

chemical structure of molecules and is widely used for proteome analysis. A variety of ionization 

techniques can be used for mass spectrometry but the most commonly used techniques for the 

analysis of biomolecules are electrospray ionization (ESI)118 and matrix assisted laser desorption 

ionization (MALDI).119-121 MALDI uses a matrix that absorbs laser energy and aids in ionization 

of the analyte. The ions generated are typically singly charged. ESI can also be used to analyze 
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biomolecules. Unlike MALDI, its ions are produced from solution. After the ions are formed 

they are transferred into a mass analyzer by an electric field where they are separated according 

to their mass-to-charge ratio. Two stages of mass separation can be coupled (either in space or in 

time) to obtain additional information of the sample being analyzed which is known as tandem 

mass spectrometry (MS/MS).122 Tandem mass spectrometry is used to determine peptide 

sequences from proteins.83 A peptide is separated from a mixture of peptides in the first stage of 

mass spectrometry and dissociated by collision with an inert gas. The generated fragments are 

separated in the second stage of mass spectrometry.83, 123  

There are three MS proteome analysis approaches: 1) bottom-up proteomics, 2) shotgun 

proteomics, and 3) top-down proteomics. In the bottom-up approach the protein mixture is 

separated usually by 1 or 2-dimensional electrophoresis and the individual protein bands or spots 

are cut and digested with an enzyme such as trypsin resulting in peptides. The peptides are 

analyzed by mass spectrometry using peptide mass fingerprinting or tandem mass spectrometry 

(MS/MS) to create sequence tags for database searching.124-126 Some of the major advantages of 

using the bottom-up approach are the ability to obtain high-resolution separations and a 

comprehensive coverage of proteins. It’s the most widely used technique in proteomics,127 hence 

several bioinformatics tools are available. In addition, proteins can be separated in a complex 

mixture before digestion so there is a greater chance of identification. The drawback of this 

approach is the limited dynamic range128 and difficulty separating membrane proteins.129, 130  

In shotgun proteomics, a mixture of intact proteins is enzymatically digested and 

separated using strong cation-exchange chromatography (SCX) followed by reversed-phase 

liquid chromatography (RPLC).109, 131 The separated peptides are subjected to tandem mass 

spectrometry and database searching.131 A major advantage of this technique is that thousands of 

proteins can be identified in a single analysis and the technique is better suited to membrane 
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proteins. However, limitations of this technique includes the need for complex mixtures to be 

purified prior to separation,132 limited dynamic range,63 and bioinformatics challenges to identify 

peptide and protein sequences from a large number of acquired spectra.63 

In the top-down approach, intact proteins are separated by gel electrophoresis or HPLC 

before being introduced into the mass spectrometer.124, 126 The mass of the protein is measured 

and tandem mass spectrometry is used to generate sequence tags (a short sub-sequence of a 

peptide sequence) for database searching. Alternately, de novo sequencing (an approach to 

determining a peptide sequence without prior knowledge of the sequence) can be performed.126 

Top-down sequencing can be used to locate and characterize post-translational modifications, 

determine the complete protein sequence, and minimize time-consuming preparation steps such 

as separation and digestion procedures. Conversely, spectra generated by multiply charged 

proteins can be very complex and bioinformatics tools still needs more developing for protein 

identification. In addition, top-down sequencing does not work well with intact proteins greater 

than 50 kDa. 

Separation can also be performed in the gas phase using ion mobility mass spectrometry 

(IM-MS).133-135 Ion mobility is a gas-phase technique that separates ions based on their ability to 

migrate through a gas in the presence of an electric field.133, 134 The mobility is dependent on the 

collision cross section of the ion. An ion mobility spectrometer consists of a gas filled cell where 

ions travel under the influence of an electric field.133 Ions with larger diameters undergo more 

collisions with the buffer gas, hence their passage through the drift cell is slower, whereas 

smaller molecules undergo fewer collisions and pass through the drift cell more rapidly.133 When 

coupled with MS both the mass to charge and size to charge ratio of the ions can be determined. 

Both MALDI and ESI can be used as an ionization source for IM-MS.136 However, many IM 

studies reported in literature of peptides and proteins describe the use of an ESI source coupled 
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with IM.137-139 IM can also be coupled with tandem MS for additional peptide and protein 

information.140 

IM-MS separations can obtain comparable resolutions to HPLC and CE.134 LC-MS, a 

more commonly used proteomics technique is advantageous in that it increases the dynamic 

range,141 however, coupling LC to MS limits optimization of LC and LC can take minutes to 

hours for separation which limits sample throughput.142 IM offers two major advantages over LC 

techniques; it reduces separation time and the post-ionization separation provides information on 

the product.134 Another major advantage of IM-MS is that it adds two separation dimensions for 

different chemical classes,143, 144 for example peptides, DNA, oligonucleotide and lipids or 

conformational classes such as α-helix and random coil.145 However, IM-MS has its 

shortcomings for proteomic applications, specifically poor sensitivity and limited peak 

capacity.134 Despite the limitations of IM-MS for proteomics it has still been proven to be a 

useful method for proteomics,134 metabolomics,146 and glycomics.147 

1.2.5 Protein Bioinformatics 

Bioinformatics is the approach used to analyze large numbers of genes and proteins148 

and is important for the elaboration of mass spectrometry data due to the large amount of data 

produced.149 It is used in proteomics to provide functional analysis and mining of data sets.148 

Peptide and protein data can be interpreted via peptide mass fingerprinting, database searching, 

or de novo sequencing. 

Peptide mass fingerprinting (PMF) is a high-throughput protein identification method.150 

In this method the protein is purified and cleaved using an enzymatic or chemical approach to 

generate peptides. The peptides are analyzed via ESI or MALDI mass spectrometry and a 

peptide mass fingerprint (the masses of the intact peptides in the sample) is obtained. The mass 

fingerprint is compared to theoretical cleavages of protein sequences in databases and the protein 
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matches are scored based on the best match.150, 151 Several programs have been developed for 

peptide mass fingerprinting including MassSearch, Mowse, MS-FIT, PepMAPPER, PepSea, 

PeptideSearch, ProFound and PeptIdent.152 Peptide mass fingerprinting will only yield hits for 

proteins that are in a sequence database.   

An alternate approach to database searching is mass spectral matching. This entails 

matching the experimental spectrum to a library of previously obtained MS/MS data.153 This 

method is a fast and precise means to identifying peptides whose proteome has been previously 

identified. Its major limitation is its inability to be used for identifying or discovering new 

peptides. 

Another approach for database searching compares experimental spectra to theoretical 

spectra to identify peptides in the protein database. Theoretical tandem mass spectra are 

produced from fragmentation patterns that are known for a specific series of amino acids. Search 

engines that are used for database searching includes Mascot,154, SEQUEST,155 X!TANDEM, 156 

Open mass spectrometry search algorithm (OMSSA),157 SONAR,158 ProbID,159 

PeptideProphet160 and OLAV-PMF.161 Two commonly used search engines include Mascot and 

SEQUEST. SEQUEST uses a cross-correlation score to match hypothetical spectra to 

experimental spectra155 whereas Mascot uses a probability score that indicates the probability of 

whether or not a spectral match was random.154 When some commonly used search engines were 

compared, including SEQUEST and Mascot, Mascot proved to be able to better discriminate 

between a correct and incorrect hit as compared to SEQUEST.162 An overall evaluation showed 

that Mascot outperformed the other algorithms used in the study, which included PeptideProphet, 

Spectrum Mill, SONAR and X!TANDEM. 
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Mascot is based on probability scoring and the lowest probability is the best match. The 

match significance criteria depend on the size of the database. The score is reported as -10log 

(P), where P is the probability. Hence, the best match has the highest score.  

Database searching offers several advantages including high-throughput, robustness and 

well annotated proteins (detailed information on each protein). Despite these advantages there 

are also some disadvantages that are associated with database searching including false positive 

identification due to selection of background peaks, unidentified peptides due to post 

translational modifications, scoring a longer peptide that may be from a lower quality MS/MS 

spectrum (low signal-to-noise ratio)  with a higher score than a shorter peptide from a higher 

quality MS/MS spectrum (high signal-to-noise ratio), and, most importantly, it is impossible to 

identify a peptide that is not part of a protein in the database.163  

De Novo sequencing is an approach to identifying peptides without database searching, 

for example for a species whose genome has not been previously sequenced. It is also used to 

identify post-translational modifications. The de novo approach determines peptide sequences 

using information such as the type of fragmentation method, for example collision induced 

dissociation (CID),164 electron-transfer dissociation (ETD),165 or electron-capture dissociation 

(ECD),164, 166 the type of enzyme used, as well as any chemical modifications. Some commonly 

used de novo sequencing programs are PEAKS167 Mascot Distiller97, Lutefisk,168 PepNovo,169 

and SHERENGA.170 Tandem mass spectrometry data can also be searched against expressed 

sequence tag (EST) databases to identify peptides and proteins for organisms without complete 

genomes. ESTs are nucleotide sequences (200 to 500 nucleotides long) that are generated by 

sequencing either one or both ends of an expressed gene originating from specific tissues.171  

These nucleotide sequences are translated into protein sequences for protein identification from 

tandem mass spectra. 
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Under CID, peptides fragment along the peptide backbone and fragment ions generated 

from the N-terminus of the peptide are labeled a, b, and c, whereas fragments generated from the 

C-terminus of the peptide are labeled x, y, and z.172 De novo spectra generated from low energy 

CID gives only partial peptide ion coverage because of its backbone cleavage specificity; in low 

energy CID spectra c, x, z and a-type fragment ions are not observed.172 Hence, it is usually 

beneficial to collect peptide spectra from other fragmentation methods such as ETD or ECD. 

Some of the limitations associated with CID include overlapping fragment ion peaks (which can 

cause incorrect peak assignment), low signal for some of the ions in the CID spectra, difficulty 

identifying post-translational modifications, and the inability to differentiate between the amino 

acids leucine and isoleucine.163 The ETD and ECD techniques can be used which can 

differentiate between leucine and isoleucine as well as identify post-translational modifications. 

ECD also produces less specific backbone cleavage as compared to CID; therefore, more 

extensive sequence information can be obtained on proteins.164 However, a limitation of ETD 

and ECD is their inability to produce good quality data with shorter peptides, such as those 

generated from tryptic digests.163 

Basic local alignment search tool (BLAST) is a search algorithm that is used to compare 

sequence similarities between experimentally determined nucleotide or protein sequences with 

nucleotide or protein databases.173 This approach is useful for the identification of proteins from 

organisms that have unsequenced genomes.174, 175 A BLAST alignment pairs each amino acid in 

the queried sequence to those in another sequence from a protein database.  BLAST begins a 

search by indexing short character strings (amino acid sequences) within the peptide query by 

their starting position in the query. The “word size” (length of the amino acid sequence) for a 

protein-to-protein sequence comparison is typically three. The BLAST software then searches 

the database to look for matches between the indexed “words” from the queried peptide to 
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character strings within the sequence in the database. Whenever a word match is found, BLAST 

then extends the sequence (using the database sequence) in the forward and backward direction 

to create an alignment. The BLAST score value increases as long as the alignment matches and 

will begin to decrease once it encounters mismatches.176, 177 

The BLAST results are quantified by comparing them to the expect value (E-value). The 

E-value threshold represents the number of times a good match is expected to occur by chance 

and is proportional to the size of the database. BLAST determined E-values that are greater than 

the threshold E-value are considered significant. The higher the similarity between the queried 

sequence and the sequence in the database the lower the E-value is. This can be seen in Equation 

1-1,  

ܧ ൌ ܭ	 ∗ ݉ ∗ ݊ ∗ ݁ିఒௌ  EQUATION 1-1 

where K is a constant (scaling factor), m is the length of the query sequence, n is the length of 

the database sequence, λ is the decay constant from the extreme value distribution (scales for the 

specific scoring matrix used)  and S is the similarity score.176  

1.3 Research Objectives 

The objective of this research is to characterize the biological molecules isolated from the 

Alligator mississippiensis immune system and identify antimicrobial molecules. To achieve this 

goal, the specific aims of the project were (1) to isolate and characterize the proteins of the 

leukocytes, (2) to purify and identify antimicrobial peptides from whole blood, and (3) to isolate 

and determine the primary sequence of lectin from the serum. The first set of experiments, 

described in Chapter 3, used gel electrophoresis and multidimensional gel electrophoresis to 

separate a mixture of isolated leukocyte proteins for mass spectrometry detection and sequence 

identification. A second set of experiments, described in Chapters 4 and 5, used a combination of 
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separation techniques for purification of a novel antimicrobial peptide. Although antimicrobial 

peptides have been identified and characterized in numerous organisms, antimicrobial peptides 

have not yet been identified in alligators. For the third set of experiments described in Chapter 6, 

a new lectin from Alligator missisissippiensis was identified using de novo sequencing with 

different enzymatic digests and characterized. Chapter 7 describes deglycosylation approaches 

and compares sample clean-up procedures that can be applied to glycoproteins for mass 

spectrometry analysis.    
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CHAPTER 2. EXPERIMENTAL* 

 
This chapter contains a description of the instruments and methods used for analyzing 

peptides and proteins isolated from the blood of alligators. A summary of the instruments and 

techniques used for this research, including gel-based protein separations, liquid 

chromatography, ion mobility, mass spectrometry, and proteomic bioinformatics is described. A 

detailed description of the experimental parameters and procedures used for the separation 

techniques as well as the electrospray ionization time-of-flight (ESI-TOF), matrix-assisted laser 

desorption ionization tandem time-of-flight (MALDI-TOF/TOF) and electrospray ionization-

quadrupole-time-of-flight (ESI-QTOF) mass spectrometers is given.  

2.1 Blood and Leukocyte Collection 

Adult alligators were captured at night by boat at J. D. Murphree State Wildlife Refuge in 

Port Arthur, Texas, with the use of a spotlight and a cable harness and housed at the Rockefeller 

State Wildlife Refuge in Grand Chenier, Louisiana. The animals were kept in fiberglass-lined 

concrete tanks approximately 5 m long and 2 m wide, with 50% dry bottom and 50% water of 

approximate 0.2 m depth. The temperature was maintained at 31 ºC. Several alligators up to 1.5 

m in length were housed in a single tank. The alligators were fed formulated dry pellets four 

times per week and the cages were cleaned five times per week.  

 Blood samples were collected from the supravertebral branch of the internal jugular vein 

using a heparinized 38 mm long 18 gauge needle and a 60 mL syringe178, 179 and transferred to 

250 mL plasma bottles containing 25 mL of 500 mM EDTA. This method of blood collection 

has been approved by the McNeese State University Animal Care and Use Committee and is 

routinely used to collect blood from wild and captive adult alligators (See Appendix D). 

  *Portions reprinted by permission from the Elsevier. The work reported in this chapter has 
been published in Comparative Biochemistry and Physiology Part D: Genomics and 
Proteomics.6 
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 Leukocytes were isolated from the whole blood by differential sedimentation. Whole 

blood samples were mixed with one volume of 5% dextran and the erythrocytes were allowed to 

settle for approximately two hours. The leukocytes were separated manually from the top phase 

using a transfer pipette.1   

 The leukocytes were centrifuged for 15 min. at 1500 g and the leukocyte pellet was 

resuspended in approximately one volume of 10% acetic acid and stored at -80ºC until needed. 

Prior to analysis, the leukocyte pellets were homogenized in a Dounce homogenizer and then 

centrifuged at 20,000 g for 30 min. The clear supernatant was transferred to 1 kDa concentrator 

tubes (Centriprep, Millipore Corp., Billerica, MA) and centrifuged at 5000 g to concentrate the 

sample and remove the acetic acid. The concentrated extract and precipitate were resuspended in 

10 mL of 0.1% acetic acid. The resuspended extract was centrifuged at 20,000 g and the clear 

supernatant was used in the gel electrophoresis and HPLC analysis.  

2.2 Liquid Chromatography 

In this work, reversed-phase liquid chromatography was used. Both capillary and nano 

capillary high performance liquid chromatography (HPLC) as well as nano ultra performance 

liquid chromatography (UPLC) were used.  

2.2.1 Nano HPLC 

Nano capillary HPLC (nanoLC) uses columns that have an inner diameter (ID) between 

50 and 100 µm and flow rates below approximately 120 nL/min.180 In this work, nanoLC was 

coupled to the mass spectrometer described in Section 2.6.4. Typical columns used for nanoLC 

have lengths of 50-150 mm with 3-5 µm particle diameters. For improved chromatographic 

separation, acids, including trifluoroacetic acid (TFA) and formic acid (FA), are added to the 

solvents at 0.1%. TFA is best for offline LC because it provides higher peak capacity with 

narrower peak width. However, if the LC is coupled online with the mass spectrometer, FA is 
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preferred because the high surface tension of the TFA solution makes spray formation difficult 

and trifluoroacetate can form strong ion pair complexes with peptide cationic sites causing signal 

suppression.181 

The LC separations were performed on a LC Packings/Dionex capillary and nano HPLC 

system. The HPLC system is equipped with a low pressure mixing system, micropump, flow 

splitting unit that allows flow rates from 50 nL/min to 200 µL/min, a sample injector, and UV 

detector. A Vydac C18 75 µm ID × 150 mm, 5.0 µm column was used. The solvents were water 

in 0.1% FA and acetonitrile in 0.1% FA. The column flow rate was 200 nL/min and a linear 

gradient was used for separation. 

2.2.2 Capillary HPLC 

Capillary HPLC is separation on a column that has an ID between 100 and 300 µm and 

flow rate that is several µL/min. A capillary HPLC (Agilent 1200 series) was used both online 

with the Agilent mass spectrometer (see Section 2.6.3 below) and offline with a photodiode array 

(PDA) detector over a wavelength range between 190 and 400 nm. The capillary HPLC is 

equipped with a binary and gradient pump, diode array detector, autosampler and thermostat. In 

this work, a C18 2.1 mm ID × 50 mm, 5.0 µm column (Zorbax) and a C18 4.6 mm ID × 250 mm, 

5.0 µm column (Vydac) were used. The solvents were water in 0.1% FA and acetonitrile in 0.1% 

FA. The column flow rate was 300 µL/min and a linear gradient was used for separation. 

2.2.3 Nano Ultra Performance Liquid Chromatography  

Nano ultra performance liquid chromatography (nano UPLC) uses columns that typically 

have an ID between 75 and 1000 µm and flow rates between 200 nL/min and 100 µL/min. A 

UPLC system (Waters nanoAcquity) was used online with the Waters Synapt instrument 

described in Section 2.6.5. The system is equipped with a binary solvent manager, sample 

manager, a column heating compartment and a UV detector. In this study, an C18 column 



28 
 

(Acquity) packed with 1.7 µm particles, 5 cm long × 2.1 mm ID was used. The samples were 

diluted in 0.1% FA and eluted using a gradient with 3–85% 0.1% FA in acetonitrile (v/v) for 32 

minutes. The column flow rate was 500 nL/min and 214 nm UV absorption was recorded. 

2.3 Ion Mobility 

 Another separation technique used in this work was ion mobility (IM). The ion mobility 

cell was built into a Q-TOF mass spectrometer (Waters Corporation), details of this mass 

spectrometer are found in Section 2.6.2. The peptide samples were diluted in 0.1% FA and 

injected on the UPLC system at a flow rate of 500 nL/min. The peptides were separated using a 

gradient of 3–40% B over 30 minutes. Solvent A was 95% water and 5% acetonitrile containing 

0.1% FA. Solvent B was 80% acetonitrile and 20% water containing 0.1% FA. The peptides 

were ionized using a nano-electrospray source and analyzed via a quadrupole mass analyzer 

before being introduced to travelling wave ion mobility cell. In travelling wave ion mobility 

spectrometry (TWIMS) pulsed voltage waves guide the ions through the drift cell via stacked 

ring electrodes.182 As the waves move, the ions are pushed for a short distance before moving 

over the wave. Smaller ions undergo fewer collisions with the buffer gas so travel faster in the 

traveling wave’s gradient, whereas larger ions undergo more collisions with the buffer gas 

slowing them down therefore requiring a longer time to be moved by the traveling waves.140, 182 

A pressure of 0.5 bar of nitrogen was maintained in the IM cell. Each set of experiments was run 

in triplicate. 

2.4 Gel Electrophoresis 

 Both one- and two-dimensional gel electrophoresis was used to separate protein mixtures 

prior to digestion and mass spectrometry analysis. One-dimensional gel electrophoresis was 

performed using a small format cell (BioRad mini-PROTEAN). The main components of this gel 

apparatus are a gel cassette assembly, electrode assembly, clamping frame, mini tank and a lid 
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The sample buffer system used in this work was a discontinuous buffer system that 

incorporated sodium dodecyl sulphate (SDS) and a reducing agent, β-mercaptoethanol, in the 

buffer. SDS is an anionic detergent that denatures and binds to proteins. The polypeptides 

become rod-like in shape with a negative charge.184 Because all the proteins have the same 

charge, they separate according to their molecular mass. The β-mercaptoethanol is used to reduce 

the disulfide bridges in the proteins so that they can assume the random-coil configuration 

required for optimum separation.106 

To resolve proteins with similar molecular weights, two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) was performed. 2D-PAGE is a powerful proteomics separation tool 

as it is capable of separating thousands of proteins in a typical cell.185 The first dimension, 

isoelectric focusing (IEF) was performed in an isoelectric focusing cell (Bio-Rad Protean IEF). 

IEF is usually performed in an immobilized pH gradient strip.186 The pH gradients used in this 

work were 3–10 and 3–6. Prior to the second dimension, the proteins separated by IEF 

underwent an equilibration step. The proteins were reduced and alkylated using DTT and 

iodoacetamide and SDS was added to give the proteins a negative charge. This allowed the 

separation based on size in the second dimension. The second dimension was performed using 

the Bio-Rad Protean II 2-D electrophoresis cell. 

The gels were stained to visualize the proteins. Several stains are commercially available: 

Coomassie blue R-250, Bio-safe Coomassie, Sypro ruby fluorescent stain, and silver stain.106, 185 

The choice of stain used depends on several factors such as sensitivity, ease of use, and type of 

imaging equipment available. Coomassie R-250 stain (wool dye with a red hue) is the least 

sensitive: it requires 40 ng of protein for detection.185 Bio-safe Coomasie stain is prepared with 

Coomassie G-250 (wool dye with a green hue) and can be used to detect as little as 10 ng of 

protein.185 The most sensitive stains are Sypro ruby fluorescent and silver stains which both can 
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be used to detect as little as 1 ng of protein.185 In this work, Bio-safe Coomasie or silver stains 

were used. Both stains are mass spectrometry compatible, meaning that the stains have high 

sensitivity for protein detection while minimizing crosslinking of the protein to the gel, which 

can inhibit recovery for mass spectrometry.187  

There are also specific stains that can be used for detecting modified proteins such as 

glycoproteins. The most commonly used methods for detecting glycoproteins in polyacrylamide 

gels involves detection by periodic Schiff (PAS) staining using chromogenic detection, for 

example acid fuchsin dye.188 Another approach utilizes Pro-Q Emerald 300 fluorescent dye, that 

links to glycoproteins using periodic Schiff conjugation.189 During the staining process the 

glycols in the glycoproteins are oxidized to aldehydes with periodic acid. The dye then reacts 

with the aldehydes on the glycoproteins and a fluorescent conjugate is generated.189 This stain 

can be used to detect as little as 0.5 ng of glycoprotein and is compatible with mass spectrometry 

analysis. This glycoprotein stain was used in the initial characterization of lectin proteins studied 

in this work. 

Gel images were captured using a camera (Gel Doc XR System with Quantity One 1-D 

analysis software, BioRad) which is capable of imaging Coomassie stained, silver stained, and 

fluorescent gels.  

2.5 Edman Sequencing 

Edman sequencing involves labeling the N-terminal residue of a protein or peptide with 

phenyl isothiocyanate. The peptide bond adjacent to the modified residue is cleaved via mild 

acid hydrolysis, leaving the rest of the protein intact. The terminal amino acid residue that has 

been modified is identified by liquid chromatography. The process is repeated successively for 

the residues in the peptide sequence until a complete sequence is determined.69 Protein bands 

were excised from SDS polyacrylamide gels and submitted to the University of Texas Medical 
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Branch, Protein Chemistry Core laboratory for N-terminal sequencing using a protein sequencer 

(LC 494, Applied Biosystems, Foster City, California). 

2.6 Proteolysis of Isolated Proteins 

 Proteolysis generates peptides from proteins using either enzymatic or chemical cleavage. 

Proteolysis experiments were performed for peptide sequencing. Digestions were performed both 

in-gel and in-solution. Prior to proteolytic digestions, reduction and alkylation was performed to 

reduce the disulfide bonds for more efficient digestion. For reduction and alkylation a reaction 

buffer containing 25 mM NH4HCO3 was mixed with 10 mM dithiothreitol (DTT). To a vial 

containing approximately 100 µg of lyophilized protein in 25 mM NH4HCO3, 10 µL of DTT 

solution was added and the sample mixture was heated for one hour at 57ºC. The vial was 

removed from the heat block and allowed to cool to room temperature and 40 µL of 55 mM of 

iodacetaminde (IA) solution was added and incubated at room temperature in the dark for 30 

minutes.  

Several enzymatic and chemical proteolytic agents were used: trypsin, α-chymotrypsin, 

Glu-C, Asp-N, Lys-C, cyanogen bromide (CNBr), and formic acid. The enzymatic digestions 

were performed in a heat block at 37ºC, the CNBr digestions were performed at room 

temperature in a fume hood, and the FA digestions were performed at 37ºC. 

 For the enzymatic digestions, a 0.2 µg/uL solution of trypsin was prepared in 1 mM HCl 

and stored for a maximum of four weeks at -20ºC. The reaction solution contained 1 µl of trypsin 

(0.2 µg), 9 µL of 40 mM NH4HCO3 and 9% acetonitrile by volume. For enzymatic digestions 

using Lys-C, Asp-N and Glu-C, the preparations were as follows:  0.1 µg/µL of Lys-C in a 1:20 

ratio (v/v), 0.04 µg/µL of Asp-N in a 1:50 ratio and 0.1 µg/µL of Glu-C in a 1:20 ratio. For 

CNBr digestions a 1 M solution was prepared in acetonitrile (ACN) and stored at -20ºC. The 

CNBr solution contained 5 µL of 5% TFA/50% FA and 5 µL of water (v/v).  
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calculates the probability that the observed match between the experimental data and a protein 

sequence is random.152 

The second approach, de novo sequencing with database searching, is necessary for 

organisms that do not have a large number of proteins in the sequence database. One source for 

protein database information is the genome sequence of an organism. Protein databases can be 

constructed using the translated protein sequence. Three de novo sequencing software tools were 

used in this work:  Mascot Distiller,197 PEAKS,167 and BioTools. Mascot Distiller (Version 2.4, 

Matrix Science, Boston, MA) generates peak lists for de novo sequencing. The sequencing 

software fits each peak in the mass spectrum to a hypothetical amino acid combination of the 

same mass. A list of amino acid combinations corresponding to each peak is generated from the 

best fit data.197 

 The second software used, PEAKS (Version 5.2, Bioinformatics Solutions, Waterloo, 

ON), applies four processes: preprocessing, candidate computation, refined scoring, and global 

and positional confidence scoring. First, the raw MS/MS data is smoothed and deconvoluted 

from doubly and triply charged ions to singly charged ions, and peak centering (taking the 

centroid of the first peak of the isotope distribution and removal of the other isotopic peaks) is 

performed. Second, sequences of all possible combinations of amino acids for the selected 

precursor mass are determined. The fragment ion series a, b, c, x and y are used to determine the 

peptide sequences. Next, the best sequences are scored using a stringent scoring scheme where 

the ion mass error tolerance is stricter. Last, PEAKS generates a confidence score for each of the 

top-scoring peptide sequences.167  

 BioTools (Version 2.2, Bruker Daltonics, Billerica, MA) uses MS/MS spectra from 

MALDI-TOF/TOF to generate sequence tags of various lengths and scores. Proposed sequences 

are calculated from the masses in the MS/MS spectrum using sequence tags. Sequence tags are 
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produced using the fragment masses and information added by the user to the software, such as 

terminal amino acids and enzymes used. The suggested sequence tags are then extended to 

produce a list of all peptide sequences that could fit the MS/MS data. The sequences are scored 

based on the number of matched ions. Several candidate sequences may be calculated with 

similar scores; in this case the proposed sequences needs to be manually fitted to the MS/MS 

data. However, if the peptide sequence produced complete fragmentation in the MS/MS 

spectrum one peptide sequence may be the best fit.198 

The peptide sequences found by de novo sequencing are used in protein database 

searches in order to find proteins with similar sequences. The protein databases used in this work 

were the National Center for Biotechnology Information (NCBI) database, Mass Spectrometry 

Protein Sequence Database (MSDB), and Swissprot. NCBI is a non-identical protein and nucleic 

acid database that has sequences taken from multiple sources including Swissprot, the Protein 

Data Bank, and translations from annotated coding regions in the GenBank. One of the major 

advantages of NCBI is that it is frequently updated; therefore, this database was used the most in 

this work. MSDB is also a non-identical protein database that comprises a number of other 

protein databases; however, it is not updated as frequently. Swissprot is a non-redundant protein 

database that provides a high level of annotations such as protein function and post-translational 

modifications. 

Proteins were also determined from peptide sequences using Basic Local Alignment 

Search Tool (BLAST). BLAST is used for comparing high-scoring segment pairs (HSP) in 

nucleotide or protein sequences to sequences in nucleotide or protein databases. HSP is a region 

between a pair of sequences, either nucleotide or amino acid, that share high level of 

similarity.174, 199 BLAST can also provide evolutionary relationships for the species under 

consideration, which shows how two species are related with respect to their evolutionary 
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descent. For this work, BLAST was used to compare peptide sequences generated from alligator 

leukocyte and lectin proteins to proteins in the protein database. For BLAST searching, Swiss-

Prot and NCBI databases were used to search peptide sequences using all taxonomies. The 

expect threshold was set to 20,000 and the score matrix used was PAM30.  

To look for protein sequence similarities DIALIGN and CLUSTALW software were 

used. The DIALIGN software uses both local and global alignment features by either aligning all 

residues in each sequence or aligning only residue segments that are closely related.200 

CLUSTALW allows for the alignment of multiple protein sequences in order to determine 

similarities and differences.201  

2.8 X-Ray Crystallography 

 In this work, small molecules were isolated from alligator leukocyte extracts and 

submitted for structural characterization using an X-ray diffractometer with charge coupled 

device (CCD) area-detector (Bruker Kappa Apex II, Madison, WI, USA). The X-ray 

diffractometer provides accurate and precise measurements of the entire three-dimensional 

structure of a molecule, including the bond angles and distances as well as crystal structure.    

2.9 Deglycosylation  

 Deglycosylation is the removal of a sugar from a glycogen, especially a glycoprotein. 

The oligosaccharides can be removed using either an enzyme or a chemical reagent. There are 

several enzymes available for deglycosylation of N- and O-linked oligosaccharides; these 

include peptide-N-(N-acetyl-β-glucosaminyl)asparagine amidase (PNGaseF), endo F and endo H 

(endo-β-N-acetylglucosaminidases F and H) for removal of N-linked oligosaccharides,202 as well 

as O-glycanase for removal of only galactose-N-acetylgalactosamine (Gal-GalNAc) O-linked 

oligosaccharides.203 A commonly used enzyme is PNGaseF, which was used in this work. 

PNGase cleaves between the innermost N-acetylglucosamine (GlcNAc) and asparagine residues 
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Aldrich) that was previously autoclaved at 120ºC for 20 minutes. The TSB was prepared using 

3.0 mg of TSB medium dissolved in 100 mL of nanopure water. A 20 µL volume of bacteria was 

added to 15 mL of the TSB medium containing 1% (wt/vol) low-electroendomosis-type agarose 

(Sigma Aldrich). The previously prepared TSB medium containing agarose (agar) was heated in 

a water bath at 42ºC before use. The agar was poured into an agar plate to form a uniform layer 

and allowed to solidify. Evenly spaced holes were punched using a sterilized pipette tip 

connected to a vacuum for suction to create wells. Added to individual holes was 5 µL of control 

sample (0.1% acetic acid) and polymyxin B, which was used as the standard and isolated peptide 

samples (antimicrobial peptides). The samples were added in triplicate and the plates were 

incubated for 3 hours at room temperature followed by an overnight incubation at 37ºC. After 

incubation, the size of the clear zone around each well was measured. The size of a clear zone 

around the well indicates the antimicrobial activity of the peptides. The absence of a clear zone 

indicates no antimicrobial activity.   

2.11 Reagents and Chemicals 

 Ammonium bicarbonate and cyanogen bromide (CNBr) were obtained from Sigma 

Aldrich (St. Louis, MO). The chemicals trifluoroacetic acid (TFA) and acetic acid were 

purchased from Fisher Scientific. The MALDI matrix α-cyano-4-hydroxycinnamic acid (CHCA) 

was obtained from Sigma and 3, 5-dimethoxy-4-hydroxycinnamic acid (sinapic acid), DHB, and 

sDHB were obtained from Fluka. Trypsin, α-chymotrypsin, endoprotease Asp-N from 

Pseudomonas fragi, endoprotease Glu-C from Staphylococcus aureus, and endoprotease Lys-C 

from Lysobacter enzymogenes were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

Dithiothreitol (DTT), iodacetamide, HPLC grade acetonitrile, formic acid, and glu-fibrinopeptide 

standards (Sigma-Aldrich) were used without further purification.  
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Laemmli sample buffer, 10× SDS-tris-glycine buffer, β-mercaptanol, tris-HCl gradient 

gel, Coomassie blue stain (Bio-Safe), and molecular weight marker standards were purchased 

from Bio-Rad (Hercules, CA, USA). Dithiothreitol, iodacetamide, and glu-fibrinopeptide were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Trifluoromethanesulfonic acid (TFMS), 

pyridine, and toluene were purchased as a kit from Prozyme (Hayward, CA, USA). 

The bacteria strains used in this study were obtained from American Type Culture 

Collection (ATCC) (Manassas, VA). The following American Type Culture Collection (ATCC) 

bacterial strains were used: Escherichia coli (35218), Shigella flexneri (12022), Enterobacter 

cloacae (23355), Klebsiella oxytoca (33496), Staphylococcus aureus (51153), and 

Staphylococcus epidermidis (29887). Trypticase soy broth was purchased from Voigt Global 

Distribution (Broth 23400, Lawrence, KS) and agarose Type I was purchased from Sigma. 
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CHAPTER 3. PROTEOME ANALYSIS OF THE LEUKOCYTES FROM THE 
AMERICAN ALLIGATOR (ALLIGATOR MISSISSIPPIENSIS) USING MASS 

SPECTROMETRY* 
 
The purpose of the research described in this chapter was to investigate proteins related to 

the alligator immune system. This chapter describes the use of mass spectrometry in conjunction 

with gel electrophoresis and liquid chromatography to determine peptide sequences from 

American alligator (Alligator mississippiensis) leukocytes and to identify similar proteins based 

on homology. Proteins from leukocyte extracts were separated using two-dimensional gel 

electrophoresis and the major bands were excised, digested, and analyzed with on-line nano LC 

MS/MS to generate peptide sequences. The sequences generated were used to identify proteins 

and infer their function based on similarity to previously identified proteins. Similar proteins 

were identified based on matching two or more peptides from the alligator protein to similar 

proteins by searching against the NCBI database using Mascot and Basic Local Alignment 

Search Tool (BLAST). For those proteins with only one peptide matching, the phylum of the 

organism corresponding to the matching protein was considered.  

3.1 Introduction 

A large amount of anecdotal evidence exists to suggest that crocodilians are resistant to 

bacterial, fungal and viral infections208-210 and have the ability to fight a variety of diseases that 

may pose human health risks.211, 212 Several studies have shown that the serum of alligators 

exhibit innate immunity against fungi, viruses and various bacterial species.208, 213, 214 It has been 

reported that alligator leukocyte extracts exhibit broad-spectrum antimicrobial activity against 

important human pathogens such as C. albicans, S. faecalis and E. coli.215 It is anticipated that 

elucidation of the alligator blood proteome will aid in identifying these antibacterial, antifungal  

 
*Reprinted by permission of the Elsevier. The work reported in this chapter has been published 
in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics.6 
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and antiviral peptides believed to be responsible for these properties, which in turn could lead to 

the development of new antibiotics.  

Antimicrobial peptides are typically found in granulocytic leukocytes and are part of the 

innate immune system;216 these antimicrobial peptides are active against a wide range of 

microorganisms such as fungi, bacteria, and viruses.42, 217 Various classes of antimicrobial 

peptides have been isolated from organisms such as bacteria, plants and animals218-220 and are 

characterized by their amino acid sequence and structure.217 The majority of the antimicrobial 

peptides assume linear α-helical or disulfide-stabilized β-sheet conformations24, 217 and are 

typically rich in lysine and arginine; however, some are also rich in proline, histidine or 

tryptophan residues.217 These antimicrobial peptides are typically less than 10 kDa in molecular 

mass and are cationic and amphipathic.24, 217 However, antimicrobial properties have been 

reported for anionic peptides as well as for proteins.24  

Mass spectrometry (MS) and tandem mass spectrometry (MS/MS) in combination with 

multi-dimensional separations have become powerful techniques for peptide and protein 

identification.221, 222 Mass spectrometry-based approaches have been extensively employed for 

the identification and characterization of proteins in blood components such as leukocytes,33, 223, 

224 serum,225 platelets,226, 227 plasma228 and red blood cells.229 For example, online LC MS/MS 

was used to identify 1444 proteins in human serum.230 In other studies, the human blood plasma 

proteome has been characterized using multi-dimensional separation techniques along with 

MS/MS and database searching to identify over a thousand proteins.125, 221, 228  

One of the major challenges in the study of the alligator blood proteome is the limited 

information available regarding the reptilian genome and proteome.33, 231 For proteomic analysis 

of species with limited genomic and proteomic data, de novo sequencing can be used to 

determine protein sequences.175 In de novo sequencing, proteins are isolated and enzymatically 
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digested and the resulting peptides are analyzed by tandem mass spectrometry. The sequence is 

determined by observing the mass differences between fragment peaks in the tandem mass 

spectra which are generated by low energy collision-induced dissociation (CID) of the peptide of 

interest.232 The amino acid sequence can be determined from the N-terminus using the b-ion 

series or from the C-terminus using the y-ion series.233 De novo sequencing has been used to 

identify a number of proteins from species with limited representation in protein databases.234-237 

In the present study, proteins were isolated from the leukocytes of the American alligator 

(Alligator mississippiensis) and separated by one or two dimensional gel electrophoresis. One of 

the challenges in this study is limited proteome data for the alligator hence peptide sequences 

were determined using de novo sequencing with database searching and BLAST search to 

identify similar proteins. Using this approach 43 proteins were identified that represent abundant 

proteins from the alligator leukocyte.  

3.2 Experimental 

 Adult alligators were captured for blood samples and leukocytes were isolated as 

described in Section 2.1. One-dimensional polyacrylamide gel electrophoresis (PAGE) was 

performed using precast 4–20% polyacrylamide gradient gels (8.6 × 6.8 cm) on a small format 

gel electrophoresis system. Leukocyte extracts were dissolved in sample diluting buffer (Tris-

HCl at pH 6.8, containing SDS, glycerol, 2-mercaptoethanol, and bromphenol blue dye) and 

boiled for 3 min prior to loading on the gel. A 10 μl sample volume was loaded on each 

individual lane and in a separate lane, 10 μl of a protein molecular weight standard solution was 

loaded. Electrophoresis was conducted for 1 hr at 100 V using tris–glycine (pH 8.3) as the gel 

running buffer. The gels were then stained overnight with Coomassie blue to aid in visualizing 

the proteins bands. The gels were rinsed twice with distilled water for 10 min each time to 
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µL/min for an additional 5 min. The peptides were then eluted onto a 75 μm × 15 cm C18 column 

(Biobasic Vydac) and separated using a gradient of 5–40% B over 60 min with a flow rate of 200 

nL/min. Solvent A was 95% water and 5% acetonitrile containing 0.1% FA. Solvent B was 80% 

acetonitrile and 20% water containing 0.1% FA  

The effluent was directed to the quadrupole time-of-flight mass spectrometer (QSTAR 

XL) and ionized using a nano electrospray source at a voltage of 2.5 kV. The mass spectrometer 

was operated in information dependent acquisition (IDA) mode. Three collision energies (25, 38, 

and 50 eV) were selected for fragmentation of the peptides.  

The peptide sequences were generated from MS/MS data using Mascot Distiller software. 

The software determined amino acid sequences from MS/MS data using peak fitting and isotope 

distribution.241, 242 The de novo sequencing results were verified manually.  

De Novo peptide sequences were subjected to database searching using Mascot154 and 

BLAST to find proteins that contain sequences matching with sequences determined by de novo 

sequencing. For BLAST searching, Swiss-Prot and NCBI databases were used to search peptide 

sequences using all taxonomies. The expect threshold was set to 20,000 and the score matrix 

used was PAM30. 

3.3 Results and Discussion 

One-dimensional electrophoresis of the leukocyte extracts revealed six major bands 

ranging from 10 to 75 kDa. The bands marked in Figure 3-1 were excised, digested with trypsin 

and analyzed by LC-MS/MS. 
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Figure 3-1. A similar strategy was followed for the other labeled bands from Figure 1 as well as 

the protein spots in Figure 3-2.  

For the characterization of peptides and proteins in the gel bands and spots, a three-step 

strategy was adopted. First, the peptides from the digest were sequenced using de novo 

sequencing as outlined above. Second, the sequences were searched against the full SwissProt 

and NCBI databases using Mascot to identify similar proteins. Third, a BLAST search was 

performed for de novo peptide sequences that did not match sequences in the database search of 

step two.  

The Mascot search results are summarized in Table 3-1. The matched peptides shown in 

the table were identified from either the 1D or 2D gel as indicated in the table. The proteins 

included in the table had at least two peptide matches and sequence coverage ranging from 1 to 

37%. The proteins polyubiquitin, hypothetical protein LOC100158585, ubiquitin, hypothetical 

protein, hypothetical protein 4732456N10, endonuclease P1, myosin alkali light chain, myosin 

regulatory light chain, actin, β-actin, actin-2, talin 1, chain A, chicken annexin V {complex with 

Ca2+), alkaline phosphatase-like enzyme, lysozyme C, ras-related protein O-Krev, annexin I, 

hemoglobin and vimentin-4 proteins were identified. 

The de novo sequenced peptides that didn’t match sequences in the database were 

subjected to a BLAST search to identify proteins containing similar sequences. The results of the 

BLAST search are summarized in Table 3-2 (and Appendix A, Table 1).  
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Table 3-1. Proteins identified in leukocyte extract using Mascot search. Proteins were 
identified by Mascot search of MS/MS data from the leukocyte peptide digest with databases, 
NCBI, MSDB and SWISS-PROT. NCBI accession numbers are provided in table.  
 

Band/Spot No. m/z Charge Matched Peptides Name Function Accession No. Mascot 
Score 

% Coverage 

B1 383.2 +2 MQIFVK Polyubiquitin a BAA23486 340 8 
 520.3 +2 EGIPPDQQR      
 534.8 +2 ESTLHLVLR      
 541.8 +2 TLSDYNIQK      
 508.6 +3 IQDKEGIPPDQQR      
 894.5 +2 TITIEVEPSDTIENVK      

B1 520.3 +2 EGIPPDQQR Ubiquitin a AAG22093 368 32 
 526.3 +2 NSTLHLVLR      
 534.8 +2 ESTLHLVLR      
 541.3 +2 TLSDYNIQK      
 508.6 +3 IQDKEGIPPDQQR      
 895.0 +2 TITNEVEPSDTIENVK      
 902.0 +2 TITKEVEPSDTIENVK      

B3 405.2 +2 LASYLDK Hypothetical 
protein 
LOC100158585 

b NP_001121485 70 3 

 533.3 +2 AQYEDLAKK      
B3 515.3 +2 VLDELTLAR Hypothetical 

protein 

b XP_511487 218 3 

 579.3 +2 QGVEADVNGLR      
 651.4 +2 ALEEANADLEVK      
 453.3 +3 QSVEADINGLRR      

B2 565.8 +2 NLASAVSDLLK      
 871.8 +3 AVSSAIAHLLGEVAQGNENYTGIAAR      
3 639.3 +2 LALDIEIATYR Hypothetical 

protein 
4732456N10 

b NP_808385 187 6 

 651.8 +2 SLNLDSIIAEVK      
 738.4 +2 FLEQQNKVLETK      
1 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 82 11 
 565.6 +3 LANWINEIHGSEIAK      
2 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 255 25 
 565.6 +3 LANWINEIHGSEIAK      
 567.9 +3 VSDSSLSSENHAEALR      
 851.5 +2 VSDSSLSSENHAEALR      
 665.5 +4 FLVHFIGDMTQPLHDEAYAVGGNK      
4 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 72 11 
 565.6 +3 LANWINEIHGSEIAK     
5 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 100 11 
 565.6 +3 LANWINEIHGSEIAK     
7 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 72 11 
 565.6 +3 LANWINEIHGSEIAK     
9 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 381 20 
 565.6 +3 LANWINEIHGSEIAK     

11 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 72 11 
 565.6 +3 LANWINEIHGSEIAK     

12 518.9 +3 LIGGHALSDAESWAK Endonuclease P1 c P24289 98 11 
 565.6 +3 LANWINEIHGSEIAK      
2 498.3 +2 HVLVTLGEK Myosin alkali light 

chain 

d AAA48979 181 30 

 513.2 +2 EAFQLFDR      
 686.8 +2 ALGQNPTNAEVMK      
 575.2 +3 VFDKEGNGTVMGAEIR      
3 518.2 +2 ELLTTMGDR Myosin regulatory e 1805343A 189 18 

                                                            
a
 Removal of damaged or unnecessary proteins and controlling of other cellular processes 

b Unknown function 
c Hydrolyzes only single stranded DNA and RNA without specificity for bases 
d Binds actin and modulates myosin motor function 
e Affect myosin motor function and kinetics 
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light chain 
 614.8 +2 LNGTDPEDVIR      
 708.3 +2 FTDEEVDELYR      
6 499.7 +2 DLTDYLMK Actin f ACD44586 188 14 
 895.9 +2 SYELPDGQVITIGNER      

14 527.3 +2 TALAPSTMK Actin f ACF32719 79 4 
17 566.7 +2 GYSFTTTAER β-actin f ABB91894 255 37 

 581.3 +2 EITALAPSTMK     
 895.9 +2 SYELPDGQVITIGNER     
 855.4 +3 GYSFTTTAER     

19 473.2 +2 AVFPSIVGR β-actin f CAA27396 81 7 
 652.0 +3 VAPEEHPVLLTEAPLNPK     

33 400.2 +2 AVFPSIVGR Actin-1 f P02578   275 18 
 505.9 +3 IWHHTFYNELR      
 652.0 +3 VAPEEHPVLLTEAPLNPK      

 499.7 +2 DLTDYLMK      
 566.7 +2 GYSFTTTAER      
 581.3 +2 ELTALAPSTMK      

20 473.2 +2 AVFPSIVGR β-actin f ABD48797 139 10 
 505.9 +3 IWHHTFYNELR     
 652.0 +3 VAPEEHPVLLTEAPLNPK     

35 499.7 +2 DLTDYLMK Actin f AAA20641 103 13 
 652.0 +3 VAPEEHPVLLTEAPLNPK     
 855.7 +3 LCYDALDFEQEMQTAASSSSLEK     

36 499.7 +2 DLTDYLMK Actin-2 f P45885 164 14 
 505.9 +3 IWHHTFYNELR     
 652.0 +3 VAPEEHPVLLTEAPLNPK     
 654.3 +3 YPIEHGIITNWDDMEK     

37 505.9 +3 IWHHTFYNELR Actin f Q99023 119 9 
 652.0 +3 VAPEEHPVLLTEAPINPK     
 499.7 +2 DLTDYLMK     

37 378.2 +2 LLLAVVK Chain A, Crystal 
Structures of 
Chicken Annexin V 
in Complex with 
Ca2+ 

g 1YII_A 
 

102 5 

 501.3 +2 VLTEILASR      
 

B2 
 

565.8 
 

+2 
 
NLASAVSDLLK 

 
Talin 1 

 
h 

 
XP_002192479 

 
141 

 
1 

 871.8 +3 AVSSAIAHLLGEVAQGNENYTGIAAR      
9 539.9 +2 GTSIFGLAPSK Alkaline 

phosphatase-like 

i NP_001096792 114 4 

 714.9 +2 DKQNLVQAWQAK      
12 877.4 +2 NTDGSTDYGILQINSR Lysozyme C j LZFER 114 10 
13 747.9 +2 INVNEIFYDLVR Ras-related protein 

O-Krev 

k P22123 
 

95 6 

 
18 

 
701.4 

 
+2 

 
GVDEATIIEILTK 

 
Annexin I 

 
l 

 
CAA39971 

 
141 

 
8 

 851.9 +2 GLGTDEDTLNEILASR      
31 578.3 +2 FGGPGTASRPS Vimentin-4 m P24790 151 6 

 627.7 +2 TRSYVTTSTRTYSLG      
 561.2 +2 DLYEEEMR      

12 510.8 +2 VLASFGEAVK Hemoglobin β chain n P02130 131 19 
 560.3 +2 KFIVDLWAK      
 566.7 +2 FHVDPENFK      

                                                            
f Highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells 
g Exocytosis 
h Cytoskeletal protein in lymphocyte involved in connections of major cytoskeletal structures to the plasma membrane 
i Causes the chemical reactions that remove phosphates from a number of different molecules 
j Cell derived leukocyte that is part of the immune system to fight against infectious diseases and foreign material 
k Controls a spectrum of diverse cellular processes 
l Ca2+ dependent phospholipid binding proteins with potential anti-inflammatory activity 
m Filament protein 
n Involved in oxygen transport from the lung to the various peripheral tissues 

 

Table 3-1 cont’d. 
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Table 3-2. Proteins identified at single peptide level using BLAST. De novo sequenced peptides obtained from a gel 
digest were searched using BLAST and proteins were matched based on sequence similarity and evolutionary relationship 
using the NCBI database. The top E-values with the closest related organisms are reported. 

 
 Band  

Number 
m/z Charge De novo Sequence Protein Function Accession Number Protein 

Length 
Organism E-Value 

           

 B4 1060.6 +2 EINLSPDSTSAVVSGLMVATK Fibronectin a

 
P11722 

 
1256 Gallus gallus 2e-11 

 
  

B4 
 

536.3 
 

+2 
 

YEVSVYALK 
 

Fibronectin a 

 

 
P11722 

 
1256 

 
Gallus gallus 

 

 
0.33 

 
 B4 701.3 +2 YQINQQWER Fibronectin a

 
Q91740 2481 Xenopus laevis 0.013 

 
 B1 613.9 +2 LIALLEVLSQK Filamin-C b

 
Q14315 2725 Homo sapiens 0.019 

 
 B1 487.3 +2  

VYGPGVE 
 

Filamin-C b 

 

 
Q14315 

 
2725 

 
Homo sapiens 

 
36 
 

 B2 736.4 +2 AQQVSQGLDLLTAK Vinculin 
 

c P12003 1135 Gallus gallus 5e-05 
 

 B2 739.4 +2  
LGQMTDQ+ADLR 

 
Vinculin 

 

c 

 
P12003 

 
1135 

 
Gallus gallus 

 
0.006 

 
  

B2 
 

655.9 
 

+2 
 

TVTAMDVVYALK 
 

Histone H4 
 

d 

 

 
P70081 

 
103 

 
Gallus gallus 

 

 
6e-04 

 

 B2 628.7 +2  
LITKAVSASK 

 
Histone H1 e 

 
P09987 

 
218 

 
Gallus gallus 

 
0.49 

 
  

B6 
 

833.9 
 

+2 
 

FSGSGSGTDFTFTIS 
 

Ig Κ chain V-I region 
Lay 

f 

 
P01605 

 
108 

 
Homo sapiens 

 
5e-06 

 
          

                                                            
a Cell adhesion, cell motility, opsonization, wound healing & cell shape maintenance 
b Plays a central role in muscle cells, probably by functioning as a large actin-cross-linking protein 
c Involved in attachment of the actin-based microfilaments to the plasma membrane; may also play roles in cell morphology & locomotion 
d Plays a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability; a mixture of histones H2B and H4 has antimicrobial activity against Gram-positive bacterium 
M.luteus 
e Condensation of nucleosome chains into higher order structures 
f Used by the immune system to identify and neutralize foreign objects, such as bacteria and viruses 
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B6 751.4 +2 VFGGGTKLTVL QPK Ig Λ chain V-III region 
LOI 

g P80748 111 Homo sapiens  7e-05 
 

  
B2 

 
510.8 

 
+2 

 
VLASFGEAVK 

 
Hemoglobin, β h 

 
P02130 

 
146 

 
Alligator 

mississippiensis  

 
0.27 

 

  
B2 

 
500.8 

 
+2 

 
PISGDPK 

 
Microtubule-actin cross-

linking factor 1 

i 

 
Q9UPN3 

 
5430 

 
Homo sapiens  

 
54 
 

  
B6 

 
522.8 

 
+2 

 
IMSIVDPNR 

 

 
α-actinin-1 j 

 
P05094 

 
893 

 
Gallus gallus  

 
0.1 

 

 B5 506.2 +3 QEYDESGPSIVHR γ-Actin k

 
Q5JAK2 375 Rana lessonae  3e-05 

 
 B1 683.9 +2 STDYGILQINSR Lysozyme C l P00698 147 Gallus gallus  6e-04 

 
  

B1 
 

503.3 
 

+2 
 

WDAW+ALK 
 

Acyl-CoA-binding 
protein 

m 

 
Q9PRL8 

 
86 

 
Gallus gallus  

 
1.7 

 
  

B4 
 

509.8 
 

+2 
 

MLPMQK 
 

 
Myeloid protein 1 

 

n 

 
P08940 

 
326 

 
Gallus gallus  

 

 
36 
 

  
B1 

 
565.3 

 
+2 

 
LVTDVQEAVR 

 
Proactivator polypeptide 
(Containing Saposin-A, 

B, C & D) 

o 

 
O13035 

 
518 

 
Gallus gallus  

 
0.084 

 

  
B2 

 
646.9 

 
+2 

 
ISMPDFDLNLK 

 
Neuroblast 

differentiation-associated 
protein AHNAK 

p 
 

Q09666 
 

5890 
 

Homo sapiens  
 

0.001 
 

  
B2 

 
772.0 

 
+2 

 
AVASAAAALVLK 

 
Talin-1 q 

 
P54939 

 
2541 

 
Gallus gallus  

 
0.026 

 
          

                                                            
g Activates the alternative complement pathway by binding to the short consensus repeat domain 3 (SCR3) of factor H 
h Involved in oxygen transport from the lung to the various peripheral tissues 
i Cross-linking actin to other cytoskeletal proteins 
j Anchor actin to a variety of intracellular structures 
k Highly conserved protein involved in various types of cell motility 
l Enhances the activity of immunoagents 
m Displace diazepam from the benzodiazepine recognition site located on the GABA type A receptor. Diazepam binding inhibitor (32-86) has antibacterial properties 
n Cell derived leukocyte that is part of the immune system to fight against infectious diseases and foreign material 
o Lysosomal degradation of sphingolipids takes place by the sequential action of specific hydrolases 
p Required for neuronal cell differentiation 
q Cytoskeletal protein in lymphocyte involved in connections of major cytoskeletal structures to the plasma membrane 

Table 3-2 cont’d. 
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B2 525.8 +2 LGTFLEN Histone acetyltransferase 
p300 

r Q09472 2414 Homo sapiens  36 
 

 B4 821.9 +2 V+QQQADDAEER Putative tropomyosin α-3 
chain-like protein 

s A6NL28 223 Homo sapiens  0.006 
 

  
B6 

 
587.3 

 
+2 

 
PP+PPARAA 

 
Protein bassoon t 

 
Q9UPA5 

 
3926 

 
Homo sapiens  

 
17 
 

  
B5 

 
506.8 

 
+2 

 
PSLPSGVD 

 
Stromelysin-1 u 

 
P08254 

 
477 

 
Homo sapiens  

 
12 
 

  
B6 

 
583.8 

 
+2 

 
AAGEIIAIPRR 

 
Envelope glycoprotein 

gp160 

v 
 

Q89607 
 

852 
 

HIV-2 B_EHO  
 

0.011 
 

 B1 831.4 +2 NSWGTSWGEDGYFR Dipeptidyl-peptidase 1 
(Cathepsin C) 

w Q60HG6 463 Macaca fascicularis  5e-07 
 

  
B5 

 
684.9 

 
+2 

 
FRTTMLQDSI 

 
Origin recognition 
complex subunit 2 

x 
 

Q75PQ8 
 

576 
 

Rattus norvegicus  
 

0.014 
 

  
B6 

 
586.8 

 
+2 

 
LP EQGT SSR 

 
Cadherin EGF LAG 
seven-pass G-type 

receptor 2 
 

y 
 

Q9QYP2 
 

2144 
 

Bos Taurus 
 

0.36 
 

  
B6 

 
593.3 

 
+2 

 
AILYNYWDK 

 
Complement component 

c3 

z 

 
CAC69535 

 
401 

 
Crocodylus niloticus  

 
0.50 

 
  

B6 
 

506.8 
 

+2 
 

NEALIALLR 
 
 

Plastin-2 

 

aa 

 
P13796 

 
627 

 
Homo sapiens 

 
0.79 

 

                                                            
r Functions as histone acetyltransferase and regulates transcription via chromatin remodeling 
s Binds to actin filaments in muscle and non-muscle cells 
t Involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release 
u Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans 
v The surface protein gp120 (SU) attaches the virus to the host lymphoid cell by binding to the primary receptor CD4 
w Plays a role in the generation of cytotoxic lymphocyte effector function; the central coordinator for activation of many serine proteases in immune/inflammatory cells 
x Component of the origin recognition complex (ORC) that binds origins of replication 
y Receptor that may have an important role in cell/cell signaling during nervous system formation 
z Plays a central role in the complement system and contributes to innate immunity 
aa Actin-binding protein; plays a role in the activation of T-cells 

Table 3-2 cont’d. 
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Peptide sequences found using BLAST was used in a search of both the SwissProt and NCBI 

databases. Of the peptides found by de novo sequencing, 81% matched similar proteins in the 

two databases. The proteins were identified at single peptide level by observing the E-value, 

which is a statistical value indicating sequence similarity and potential evolutionary 

relationship.243 A low E-value indicates a statistically significant match. The peptides listed in 

Table 3-2 are those returned from the BLAST search having the lowest three E-values (the 

complete Table can be found in Appendix A). Notably, the organisms associated with the low E-

value peptides are close in homology to alligators, for example Chelonia caretta (turtle), Caiman 

crocodilus (caiman) and Gallus gallus (chicken). Eleven of the thirty-two de novo sequences had 

chicken protein sequences in the top three hits. Also, there were several identified proteins that 

are associated with leukocytes and the immune system. However, the identification of 

hemoglobin β suggests contamination from red blood cells during isolation of the leukocytes 

from the whole blood. Other peptides in the table matched proteins that have not, to date, been 

associated with the immune system. 

To assess the quality of the protein matches, several factors were considered. First, the 

number of peptides matching the protein was considered. For example, three of the de novo 

sequences in Table 3-2 matched the protein fibrinonectin, which increases the confidence level 

that a similar protein is present in the alligator leukocyte. The percentage of matching residues 

was also considered. The de novo sequenced peptides matching fibrinonectin had 100% 

sequence alignment with that protein. However, the sequence coverage was only 3%.  

Last, a BLAST search was performed using a limited taxonomy containing birds and 

reptiles. Limiting the taxonomy search reduced the random matches and resulted in lower E-

values for the protein matches compared to the full database search. This data is shown in the 

supplementary material (Appendix A, Table 2). 
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The proteins were grouped based on their functionality. Protein functions were divided 

into six groups: other, cytoskeletal proteins, immune proteins, enzymes, DNA/synthesis proteins, 

and unknown. Proteins involved in the cytoskeletal system, immune system, and other make up 

the three most abundant groups of peptides with approximately 37%, 23% and 23% respectively.   

De novo sequencing coupled with Mascot and BLAST searches aided in the identification 

of 43 proteins that are similar to the proteins isolated from the alligator’s leukocyte extract. To 

identify and characterize the function of the proteins derived from the de novo sequenced 

peptides, two approaches were employed. First, if a protein was identified from more than one de 

novo sequenced peptide in the same gel band, the protein and its function were assigned. Second, 

de novo sequenced peptides with only one peptide matching a protein, the phylum of the 

matched protein was considered. From the three highest E-values from the BLAST search, seen 

in Table 3-2 (for the complete table, refer to Appendix A), E-values less than one were first 

considered and the organisms associated with the protein hit were classified by biological 

phylum and only animals were considered. Matched proteins that are from closely related 

species, e.g. reptiles and birds, were moved to the top of the list. Of the de novo sequenced 

proteins, 29% matched invertebrates 39% mammals, 18% birds, 6% amphibians, 5% fish and 3% 

reptiles. Although proteins from invertebrates are highly represented, it should be noted that 81% 

of the database proteins are associated with invertebrates. The taxonomic distribution of 

vertebrate proteins in the Swiss-Prot database is 50% mammal, 25% fish, 10% bird, 9% 

amphibian, and 6% reptile.244 This can be compared to 55% mammal, 27% bird, 8% amphibian 

6% fish, and 4% reptile, thus bird proteins are overrepresented in the matched proteins and fish 

proteins are underrepresented. This is consistent with evolutionary reports that birds have a close 

phylogenetic relationship to crocodilians.245 
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A putative function was assigned to the de novo sequenced proteins identified based on 

the function of the matched proteins. The majority of the proteins identified in the alligator 

leukocyte are common to proteins identified in leukocytes of other class of animals. 

 A range of proteins related to the immune system were identified. The identified 

immune system proteins were fibrinonectin, histone H4, Ig kappa chainV-1 region, Ig lambda 

chain V-III region, lysozyme C, acyl-CoA-binding protein, myeloid protein, cathepsin C, 

complement component c3, ubiquitin, and polyubiquitin. The protein ubiquitin was identified 

with 32% sequence coverage, the largest observed. This is consistent with previous reports 

demonstrating that ubiquitin is a highly conserved protein in eukaryotes.246  Ubiquitin has several 

functions such as the removal of damaged or unnecessary proteins and controlling other cellular 

processes such as antigen processing, apoptosis, immune response and inflammation.247 

Although it has several functions, it is related to the immune system. A de novo sequenced 

protein matched lysozyme (Chelonia mydas) from residue 50 to 61. Lysozyme was one of the 

first antibacterial proteins isolated from insects and is also a component of the humans innate 

immune system.248 The complement C3 protein also plays a role in innate immunity in 

organisms248, 249 and plays a major role in the activation of the complement system, which helps 

to remove pathogens.249 A de novo sequenced protein matched histone (Gallus gallus), a class of 

proteins that are involved in DNA packaging; however, they have been reported to behave as 

antimicrobial agents.250  

 Several cytoskeletal proteins, myosin alkali light chain, myosin regulatory light chain, β-

actin, actin-2, actin-1, annexin V, annexin I, ras-related protein O-krev, vimentin-4, talin 1, 

filamin-C, vinculin, microtubule-actin cross-linking factor 1, α-actinin-1, actin, plastin-2, and 

putative tropomyosin γ-3 chain-like protein were identified. These were the major group of 

proteins identified and play an important role in the function of leukocytes. Actin is the most 
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abundant protein in all eukaryotic cells251 and is responsible for muscle contraction and cell 

motility and works in conjunction with myosin protein through actin-myosin interactions.251, 252 

Examples of cell movements include invasion of tissue by white blood cells to fight infection 

and migration of cells involved in wound healing.252 Actin has multiple functions but is also 

related to the immune system; it regulates the integrin function, which is important for 

inflammation and immunity. Other identified cytoskeletal proteins, talin, α-actinin, plastin-2, and 

filamin-C, also play a role in the actin cytoskeletal system.253-256 Variations of myosin and 

tropomyosin proteins work along with actin to assist in phagocytosis of microorganisms.257 

Annexins have various functions such as regulation of membrane organization and of Ca2+ 

concentrations within cells as well as participation in phagocytosis.258 Vinculin, another 

cytoskeleton protein, is necessary for cell movement and changes in cell shape.259 Vimentin, a 

filament protein, is involved in structural processes such as wound healing and is also found to 

be secreted by macrophages.260 Also identified in this study was a ras-related protein; these 

proteins are GTPases that are a part of the Ras superfamily of proteins and are involved in 

regulating cell behavior such as cell growth and action.261 

A class of enzymes known as endonucleases was also identified with high Mowse scores. 

These enzymes are commonly found in bacteria and behave like an immune system:  bacteria use 

these enzymes to cut DNA from foreign material destroying them.262 Although endonucleases 

are typically found in bacteria, alligator leukocyte may contain proteins that are similar to 

endonuclease protein and play a similar role. Alkaline phosphatase is a key enzyme involved in 

the process of dephosphorylation. It is also found to be involved in the protection against 

endotoxins, which may be lethal after an infection.263 

Three matched proteins are hypothetical proteins from the western clawed frog, (Xenopus 

tropicalis), house mouse (Mus musculus), and chimpanzee (Pan troglodytes). The Pan 
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troglodyte’s hypothetical protein had four matching peptide sequences suggesting that a similar 

protein is expressed in the alligator leukocyte. However, the function of these hypothetical 

proteins is not known and their relationship to the immune system cannot be determined.  

There were proteins identified from the Mascot search that had a score greater than 57 but only 

one matching peptide:  lysozyme C and ras-related protein O-krev (Table 3-2). These proteins 

cannot be identified with the same degree of confidence as the other proteins that had more than 

one peptide matching the protein. The proteins characterized as other have not been previously 

identified in leukocytes of other organisms. However, the E-values are high which suggests 

limited sequence identity and evolutionary relationship. 

3.4 Summary 

In the work described in this Chapter, proteins from the leukocytes of the American 

alligator (Alligator mississippiensis) were identified and their functions were characterized by 

adopting a general proteomics approach. A three-step strategy was performed to identify similar 

proteins in the gel bands and spots: de novo sequencing, Mascot search, and BLAST search. 

Mascot search results identified eighteen proteins with sequence similarity to the alligator 

leukocyte proteins. The identified proteins are common among eukaryotes and are associated 

with the immune system. The BLAST search results showed that 81% of de novo sequenced 

proteins matched similar proteins in the database. Among the identified proteins, the majority 

were related to the cytoskeletal system. 

The BLAST search identified proteins most closely related to vertebrates. Proteins 

originating from birds, particularly chicken, were overrepresented in the matched proteins and 

correlated with immune related proteins reported for other species. Fish species was the least 

represented species among the matched proteins.  
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CHAPTER 4. SMALL MOLECULE INTERFERENCES IN ALLIGATOR 
MISSISSIPPIENSES LEUKOCYTE EXTRACT 

 
 In this chapter, experiments in which small molecule interferants in the leukocyte extracts 

from Alligator mississippiensis were separated and purified using reversed phase liquid 

chromatography are described. Seven bacterial species including Escherichia coli, Enterobacter 

cloacae, Shigella flexneri, Klebsiella oxytoca, Salmonella, Staphylococcus aureus, and 

Staphylococcus epidermidis were assessed for antimicrobial activity. The active fractions were 

characterized using tandem mass spectrometry and X-ray crystallography. The results from the 

mass analysis and X-ray crystallography suggest that the component exhibiting antimicrobial 

activity was ethylenediaminetetraacetate (EDTA), the anticoagulant agent used during the 

collection of the alligator blood. Tandem mass spectrometry data along with accurate mass 

measurements suggests that the other small molecule interferant is spermine. 

4.1 Introduction 

 Antimicrobial drug resistance is a growing problem. Numerous bacteria such as 

Staphylococcus aureus, Salmonella, E. coli, Pseudomonas aeruginosa, and Streptococcus 

pneumoniae have developed resistance to antibiotics.264 One of the most resistant bacteria 

affecting hospital settings is Staphylococcus aureus: over 50% of its bacterial strains have 

become resistant to penicillin.264, 265 Due to this problem, new antibiotics with broad spectra of 

activity must be developed. 

Studies have shown that when extracts of alligator leukocytes from blood are exposed to 

bacterial pathogens, the growth of the bacteria is inhibited.266 Several anticoagulant agents that 

prevent blood clotting are available, such as EDTA, heparin, citrate, and oxalate. EDTA is a 

chelating agent that synergistically inhibits growth of bacteria with antimicrobial agents267 such 

as sulfamethoxazole, trimethoprim,268
  penicillin G, ampicillin, tetracycline, and 
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chloramphenicol.269 Studies have shown that EDTA can also inhibit bacterial growth 

independently.270 EDTA enhances the effectiveness of antibiotics against bacteria, particularly 

gram-negative bacteria, and chelates Ca+2 and Mg+2 which disrupts the bridge between them and 

lipopolysaccharide (LPS) in the bacterial outer membrane.267, 271 

Peptides and small molecules have the potential for therapeutic use. Small molecules are 

less costly and easy to synthesize and are stable, therefore longer half-life.272 However, small 

molecules can potentially interact with multiple targets and accumulate in tissues causing 

toxicity.272 Unlike small molecules, peptides are more specific and can be chemically modified 

to make the peptide less susceptible to proteolysis in vivo.272  

Another small molecule that exhibits antimicrobial activity is spermine. Spermine is a 

biological polyamine that is found to be widely distributed in animal tissues.273 It has 

antibacterial activity, providing resistance to a wide range of microorganisms such as S. aureus, 

S. albus, and B. anthracis.273, 274 Spermine was first isolated from semen and exhibits 

antimicrobial activity against gram-positive microorganisms.275  

In this chapter, we report that EDTA and spermine are present and isolated from 

leukocyte extracts of alligators. These molecules can potentially cause interferences with the 

activity measurements.  

4.2 Experimental 

 Leukocyte extracts were obtained from the blood of alligators as described in Section 2.1. 

In this study, which was the first studies performed on isolation of peptides from alligator 

leukocytes, 0.1 mM EDTA was used as the blood anticoagulant.  

 A Bradford protein assay was used to determine the concentration of proteins in the 

alligator leukocyte extracts. A 2 mg/mL quantity of bovine serum albumin (BSA) was used to 

prepare five BSA dilutions from 125 to 2000 µg/mL. A 0.1% acetic acid buffer was used to 
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perform the dilutions. Each standard and leukocyte protein extract was pipette into clean test 

tubes and mixed with the protein dye reagent. The protein samples were assayed in triplicate and 

incubated for 5 min before UV-Vis analysis. Absorbance was measured at 595 nm for both the 

protein standard and leukocyte protein extracts. The concentration of the leukocyte protein 

mixture was determined using a standard Bradford curve.276  

 The leukocyte extract was tested for antimicrobial activity before chromatographic 

separation. A radial diffusion assay was used to monitor bacterial growth inhibition.277 

Leukocyte extracts and chromatographic fractions of the leukocyte extracts were pipetted into 

wells on the activity plate, incubated overnight at 37ºC, and zones of bacterial growth inhibition 

were measured the following day. 

Alligator leukocyte extracts were separated by reverse phase liquid chromatography (RP-

LC) and peak fractions were monitored with a photodiode array (PDA) detector and manually 

collected in 2 minute intervals. For PDA detection, the UV spectrum was recorded between 190 

and 400 nm.	 The fractions were tested for antimicrobial activity and the active fractions were 

lyophilized and re-suspended in 0.01% (v/v) aqueous acetic acid. The fractions that exhibited 

antimicrobial activity were injected onto the C18 reversed phase (RP) column using a gradient of 

10–90% acetonitrile over 40 minutes for further purification and analyzed using ESI-TOF mass 

spectrometry. 	

	 The purified fraction that exhibited antimicrobial activity was submitted for structural 

characterization using X-ray crystallography. Tandem mass spectrometry (MS/MS) using the 

nano ESI-Q-TOF was also performed to obtain structural information on the molecules.  
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4.3.2 Antimicrobial Activity 

 Results from this study showed that Fractions 2 and 3 exhibited antimicrobial activity 

against Escherichia coli, Shigella flexneri, Salmonella, Staphylococcus aureus, and 

Staphylococcus epidermidis (Table 4-1). When tested against Klebsiella oxytoca, a gram-

negative bacterium, neither of the fractions exhibited activity. However, growth inhibition was 

observed for Fraction 2 against Enterobacter cloacae, a gram-negative bacterium, but not for 

Fraction 3. The largest antimicrobial activities from Fractions 2 and 3 were observed for 

Staphylococcus epidermidis, a gram-positive bacterium; zones of inhibition were 17 and 14 mm 

respectively. The lowest activity was observed in Salmonella, a gram-negative bacterium, at 5 

and 4 mm respectively.  

	
Table 4-1. Antibacterial activity of Fractions 2 and 3 from leukocyte extract against bacterial 
species tested using radial diffusion assay. 
	

Bacterial Strain 
Zone of Inhibition (mm) 

(F2) 

Zone of Inhibition (mm) 

(F3) 

Escherichia coli 10.0 5.0 

Enterobacter cloacae 7.0 0 

Shigella flexneri 6.0 5.0 

Klebsiella oxytoca 0 0 

Salmonella 5.0 4.0 

Staphylococcus aureus 15.0 10.0 

Staphylococcus epidermidis 17.0 14.0 

 

Both fractions exhibited antimicrobial activity towards both gram-negative and gram-positive 

bacteria; however growth inhibition was highest for gram-positive bacteria.  
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4.4 Summary 

 In the work described in this Chapter, leukocyte extracts were subjected to purification 

and characterization by LC ESI-MS, MS/MS and X-ray crystallography analysis. The results 

from this study suggest that EDTA, a blood anticoagulant, in the presence of a protein might 

contribute to inhibition of bacterial growth. In addition, previous studies have shown that EDTA 

contributes to bacterial growth inhibition at both high and low concentrations.270  An alternate 

explanation is that the antimicrobial activity resulted from a molecule that was not detected in 

the mass spectrometry analysis. RP separation was capable of reducing the complexity of the 

leukocyte protein mixture; however, the chromatographic fractions were still not sufficiently 

pure to identify the specific molecules that contributed to antimicrobial activity. Additional off-

line RP separations assisted in small molecule purification and antimicrobial activity was 

identified for fractions collected within the first six minutes. The masses of the small molecules 

detected in the active fractions were measured by ESI-MS and the small molecules were 

identified by empirical formula calculations based on accurate mass measurement. A molecule, 

from the active fractions, F2 and F3 at m/z 203.2 had the formula, C10H26N4 with 6 ppm mass 

error. In addition, tandem MS analysis revealed fragmentation patterns for this ion that matched 

the molecule spermine. Another molecule from fraction F2 at m/z 315.1 (3 ppm accuracy) had 

the formula C10H16N2O8Na and X-ray crystallography was used for further characterization 

where results from the structural database identified the structure from the active fraction as 

EDTA disodium salt.  

 The results from this study suggest that EDTA may not be a suitable anticoagulant agent 

for isolation of blood proteins when testing for antimicrobial activity. As a result, for future 

studies the anticoagulant agent heparin was used as a substitute. The other small molecule that 

was identified was spermine, which is typically found in all animal cells and is usually excreted 
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from semen and pancreatic tissue. Blood contains various proteins that are secreted or shed from 

cells and tissues throughout the body.78 Therefore, it may not be possible to eliminate spermine 

as an interferant, hence for the studies described in the following chapters, small molecules 

eluting within the first six minutes from the leukocyte extracts were not considered as potential 

candidates for antimicrobial molecules.  
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CHAPTER 5. ISOLATION AND DE NOVO SEQUENCING OF ANTIMICROBIAL 
PEPTIDES FROM LEUKOCYTES OF THE AMERICAN ALLIGATOR (ALLIGATOR 

MISSISSIPPIENSIS) 
 

The goal of the research in this chapter was to isolate novel peptides with antimicrobial 

activity from American alligator blood (Alligator mississippiensis). Reversed-phase high 

performance liquid chromatography (RP-HPLC) was used to separate and purify peptides from 

leukocyte extracts and the HPLC fractions were checked for activity. A partially purified fraction 

containing two major peptides at 4.7 and 4.9 kDa was tested for antimicrobial activity against E. 

coli, E. cloacae, and K. oxytoca. The peptides were analyzed using ion mobility spectrometry 

mass spectrometry. Matrix assisted laser desorption ionization time-of-flight/time-of-flight mass 

spectrometry (MALDI-TOF/TOF) was used to generate MS/MS data for the peptides and de 

novo sequencing was used to determine their sequence. The 4.7 kDa peptide was aligned to other 

antimicrobial peptides and showed 36% sequence identity with Pilosulin 4 and the 4.9 kDa 

peptide showed 33% sequence identity to SpStrongylocin 2. 

5.1 Introduction 

Increasing bacterial resistance to antibiotics has become the driving force behind the 

development of new anti-infectives to replace or supplement conventional antibiotics.279 

Antimicrobial proteins and peptides from natural sources show promise as new antibiotics. 

Antimicrobial peptides (AMP) are important components of the innate immune system that have 

been isolated in plants,280 vertebrates,281 and invertebrates282 and have potential for 

pharmaceutical use. Most antimicrobial peptides are small (<10 kDa), cationic, lysine and 

arginine containing molecules; however, some anionic peptides have also been reported.25 

Cationic proteins and peptides have an affinity for microbe cell surfaces, which have negatively 

charged groups. This attraction is dependent on electrostatic interactions and their tertiary 
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structure.283 Cationic proteins and peptides vary in their size, structure, and mechanism of 

action.283 

In some vertebrates such as mammals and reptiles, antimicrobial proteins and peptides 

are found in the blood, particularly in the neutrophils. There are several classes of antimicrobial 

proteins and peptides associated with neutrophils, such as lactoferrin, cathelicidins, calprotectin 

and defensins.283 Defensins are small cationic peptides around 4 kDa with a broad antimicrobial 

activity against bacteria, fungi, viruses, and parasites.284 β-defensins serve as effector molecules 

of innate immunity, providing an initial defense against infectious agents,285 and have been 

identified in bovine neutrophils,286 turtle33 and avian leukocytes,287 and human plasma.288 

Leukocytes in the blood of crocodilian species have a range of antimicrobial, antifungal, and 

antiviral activity,1, 289, 290 but little is known about antimicrobial peptides in Alligator 

mississippiensis.  

There is limited information about reptile antimicrobial peptides. To date there are very 

few reptilian antimicrobial peptide sequences identified among the nearly 400 that have been 

reported from other sources.33, 36 The Alligator mississippiensis leukocytes have a broad range of 

activity towards bacteria, viruses and fungi.1 Some studies have been performed to characterize 

the proteins and peptides from alligator leukocytes;291 however, none have been sequenced. 

De Novo sequencing is a common approach for mass spectrometry based sequencing of 

peptides and proteins that are not in a protein sequence database. De Novo sequencing entails 

identifying peptide sequences without any previous knowledge of the protein sequence.164  

In this study, we isolated two novel peptides that exhibit antimicrobial activity from the 

leukocytes of the American alligator (Alligator mississippiensis) using reversed-phase 

chromatography separation. The peptides were sequenced using de novo sequencing and 

compared to other known antimicrobial peptides. 
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5.2 Experimental  

5.2.1 Isolation and Extraction of Antimicrobial Peptides  

Blood was drawn from farm and wild alligators ranging in size from 5 to 12 feet for 

isolation of leukocytes using an approach described in Section 2.1.  

5.2.2 Microbial Strains 

All bacterial strains were obtained from American Type Culture Collection (ATCC). The 

following bacterial strains were used: Escherichia coli (ATCC 43827), Enterobacter cloacae 

(ATCC 23355), and Klebsiella oxytoca (ATCC 33496).  

5.2.3 Antimicrobial Activity  

The antimicrobial activity of the leukocyte extracts and the peptide fractions from HPLC 

eluents were determined using an antimicrobial assay.278 Trypticase soy broth containing 1% 

agarose was sterilized and 15 mL aliquots were transferred to centrifuge tubes. The nutrient 

broth was inoculated with 20 µL of a log phase culture of bacteria and added to petri dishes. 

Wells were cut into the petri dish using a sterilized pipette with a vacuum line attached for 

suction. Five microliters of leukocyte extract dissolved in aqueous 0.1% acetic acid (v/v) was 

added to each well and allowed to diffuse at room temperature for 3 hours. The plates were then 

incubated at 37oC overnight and the zones of bacterial growth inhibition were measured. The 

antibiotic polymyxin B at 2 × 10-5 M was used as a positive control and aqueous 0.1% acetic acid 

(v/v) was used a negative control.   

5.2.4 Peptide Separation 

Leukocyte extract in 0.1% acetic acid was centrifuged to remove any insoluble residue. A 

10 µL volume of concentrated sample was injected with an autosampler system onto a 0.3 × 1 

mm trapping column on a LC system (Agilent) at a flow rate of 0.3 ml/min. The sample was 

eluted onto a 2.1 × 30 mm, 3.5 µm particle size C18 column (Zorbax) and separated using a 
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gradient of 5 to 60% B (80% acetonitrile (v/v) and 20% water (v/v) containing 0.1% formic acid 

(v/v)) over 70 min with a flow rate of 0.3 mL/min. The eluent was monitored by UV absorbance 

from 190 to 480 nm. A fraction collector was used to collect the eluent at timed intervals for 

further characterization and activity studies. 

5.2.5 Ion Mobility Mass Spectrometry 

The peptide samples were diluted in 0.1% formic acid and injected on the nanoAcquity 

ultra pressure liquid chromatography (UPLC) system at a flow rate of 500 nL/min. The peptides 

were separated using a gradient of 3–40% B over 30 minutes. The peptides were ionized using a 

nano-electrospray source, operated in positive ion mode and analyzed via a quadrupole mass 

analyzer before being introduced to the ion mobility spectrometry (IMS) on the ESI-Q/IMS/TOF 

MS. The quadrupole was operated in RF mode in order to record full mobility spectra and the 

data was processed using MassLynx software. A pressure of 0.5 bar of nitrogen was maintained 

in the ion mobility (IM) cell.  

5.2.6 MALDI Mass Spectrometry 

Alligator leukocyte fractions were mixed on a stainless steel plate using a 1:1 ratio of 1 

µL sample and 1 µL saturated matrix including α-cyao-4-hydroxycinnamic acid (CCA) and 2-

hydroxy-5-methoxybenzoic acid (sDHB) matrix solution containing 0.1% v/v TFA for molecular 

mass determination. The sample and matrix solution was air-dried at room temperature and 

analyzed in TOF mode on the MALDI TOF/TOF MS. Mass spectra were recorded in reflector 

positive ion mode with external calibration using a standard calibration mixture. Spectra were 

500 shot averages collected using a mass range from 420–5000 Da. Masses were determined 

using FlexAnalysis software. MS/MS data was obtained by LIFT/CID fragmentation. MS/MS 

experiments were carried out in reflectron mode and more than 5000 laser shots were collected.  

The MS/MS data were processed in FlexAnalysis. 
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5.2.7 ESI Mass Spectrometry 

 The fraction containing the two peptides of interest was also analyzed on the ESI-QTOF. 

The peptide sample was diluted twofold with 50% ACN solution containing 0.1% FA (v/v). 

MS/MS experiments were performed on the selected parent ion and the collision energies were 

varied from 25 to 60 eV in 5 eV intervals. 

5.2.8 De Novo Sequencing and Sequence Analysis 

De Novo sequencing of the peptide fragments generated using MALDI MS/MS was 

performed with BioTools. The de novo sequencing results were verified manually. The peptide 

sequences produced by de novo sequencing were aligned with β-defensins peptide sequences 

from other vertebrates for sequence comparison.  

The alligator antimicrobial peptide sequence was compared to other antimicrobial 

peptides in the Antimicrobial Peptide Database.292 The alligator antimicrobial peptide was also 

aligned to find the most similar peptides in the database.   

5.3 Results and Discussion 

5.3.1 Antimicrobial Activity of Leukocyte Extracts 

The antimicrobial activity of the alligator leukocyte extracts was tested against three 

species of bacteria. The leukocyte extracts exhibited antimicrobial activity against gram negative 

bacterium E.coli, K. oxytoca, and E.cloacae with approximately 0.5 mm zone of inhibition.  

5.3.2 Peptide Purification  

Several RP separations were run to separate and collect the active peptides. The 

separation of the peptide and protein mixture from the alligator leukocytes produced more than 

12 fractions (Figure 5-1). The fraction collected at 15 min at 20% acetonitrile showed 

antimicrobial activity against the tested bacteria. The deconvoluted masses from the ESI data 
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36 E 379.1282 4497.3138 4 
37 C 250.0856 4600.3230 3 
38 G 147.0764 4657.3445 2 
39 A 90.0550 4728.3816 1 

Mass tolerance: 0.5 Da 
MS/MS tolerance: 0.5 Da 
Bold represents ions found in the mass spectrum. 
 

Peptides in the low mass range of the spectrum were absent due to inefficient fragmentation of 

the 4.7 kDa peptide. However, the fragments in the higher m/z range correlated with the “b” and 

“y” ions in the mass spectrum, and allowing the determination of the peptide sequence from the 

C- to N-terminus. 

The 4.9 kDa peptide was sequenced in a similar manner to the 4.7 kDa peptide and the 

sequence obtained for this peptide is 

 MGAKTKWKRFRGLDTCVFFLLSCKKHCCLLHHTKGRNKTKAAV.  

The peptide primary structure was determined based on the fragment ions in Table 5-2. 

Fragments in the mass spectrum that were not present in either the b- or y-ion series for the 4.9 

kDa peptide were predicted by the de novo software. 	

 
Table 5-2. Fragment ions predicted and confirmed in the mass spectrum for the 4.9 kDa peptide. 

N-term Residue y-series b-series C-term 

1 M 4961.6449 132.0478 43 
2 G 4830.6044 189.0692 42 
3 A 4773.5829 260.1063 41 
4 K 4702.5458 388.2013 40 
5 T 4574.4509 489.2490 39 
6 K 4473.4032 617.3439 38 
7 W 4345.3082 803.4233 37 
8 K 4159.2289 931.5182 36 
9 R 4031.1339 1087.6193 35 
10 F 3875.0328 1234.6877 34 
11 R 3727.9644 1390.7889 33 
12 G 3571.8633 1447.8103 32 
13 L 3514.8418 1560.8944 31 
14 D 3401.7578 1675.9213 30 
15 T 3286.7308 1776.9690 29 
16 C 3185.6832 1879.9782 28 
17 V 3082.6740 1979.0466 27 
18 F 2983.6056 2126.1150 26 
19 F 2836.5371 2273.1834 25 
20 L 2689.4387 2386.2675 24 
21 L 2576.3847 2499.3516 23 
22 S 2463.3006 2586.3836 22 
23 C 2376.2686 2689.3928 21 
24 K 2273.2594 2817.4877 20 
25 K 2145.1644 2945.5827 19 

Table 5-1. cont’d. 
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Incomplete sequence information was determined from the spectrum due to the lack of 

fragmentation of the parent ion. Fragmentation with lower collision energies (e.g. 25 eV) and 

higher collision energy (e.g. 60 eV) were the same. This data suggests that 1) the size of the 

intact peptide is too large to fragment using low energy CID and 2) disulfide bond(s) may be 

present which will stabilize the peptide structure and make it difficult to fragment.  

5.3.6 Alligator Peptide Sequence Analysis 

 The alligator peptide sequence generated from  the 4.7 kDa peptide was searched against 

the antimicrobial peptide database for sequence similarity and it showed 36% sequence similarity 

to Pilosulin 4, an antimicrobial peptide from an Australian ant and 33% sequence homology to 

NA-CATH, a snake cathelicidins. The similarities between the antimicrobial peptides are seen in 

Figure 5-7.  

 

 
 
 
 
 
 
 
Figure 5-7. Sequence comparison among antimicrobial peptides with alligator 4.7 kDa peptide. 
Residues highlighted in blue represent identity in the sequence. 
 
 
The alligator peptide sequence has low sequence homology when compared to antimicrobial 

peptides from other species, including snakes, from the antimicrobial peptide database. This 

suggests that the alligator sequence may function as an antimicrobial peptide based on its 

antimicrobial characteristics but its sequence does not share strong homology to other reptilian 

antimicrobial peptides.   

Ant Peptide Alignment 
-Alignment Result-: P D + I T + K L N I K K L T K + + + A T C + K V I S K G A S M C K V L F D K + K K + Q 
E + + +  
--Input Sequence--: R D H R T K K L + + K K F D K S M M P E C E K + + C K + E S + + K + D F K K N K K T W 
E C G A 

Snake Peptide Alignment 
-Alignment Result-: + + K R F K K F F K K + L K N S + + + + + V K + K R A K K F F K K P K V I G V T F P F 
--Input Sequence--: R D H R T K K + L K K F D K + S M M P E C E K C K + E S K D F K K N K + K T W E C G A 
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The 4.7 kDa peptide has a theoretical isoelectric point (pI) of 9.63 which is close to the 

average pI of antimicrobial peptides which is 9.26.293 However, a high positive net charge is also 

required for antimicrobial peptides to carry out their function.  The 4.7 kDa peptide sequence has 

a net charge of +8 at pH 5.5, indicating that it will also be cationic under in vivo conditions near 

physiological pH. The cationic nature of antimicrobial peptides is conserved and it may be 

essential for the initial electrostatic attraction to the phospholipid membrane of bacteria and 

fungi.24  

There are seven hydrophobic residues at positions 8, 11, 15, 16, 28, 35, and 39 and the 

peptide may form an alpha helix. The total net charge, hydrophobic ratio, and Boman index for 

the peptides were calculated using the antimicrobial peptide prediction server. The antimicrobial 

peptide prediction server predicts whether a new peptide sequence has the potential to be 

antimicrobial based on principles such as size, net charge, hydrophobic percentage and residue 

composition. The system can also perform simple structural predictions, for example if 

hydrophobic residues occur at every two to three residues in the peptide sequence an 

amphipathic helix will be predicted.292 

The Boman index is an estimate of the antimicrobial peptide’s potential to bind to other 

proteins.294 A lower index value (≤1) indicates that the peptide will most likely have more 

antibacterial activity with little side effects in vivo whereas a higher index value indicates that the 

peptide is multifunctional.294  The sequence determined for the peptide measured at 4.7 kDa has 

a Boman index of 3.8 kcal/mol. It also has an even number of cysteines which suggests that it 

may form a disulfide-bond linked beta structure,292 similar to defensins. The percent 

hydrophobicity of this peptide is 25%, which is similar to that for defensins;295 suggesting that 

the peptide may have antimicrobial activity.296  
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The sequence similarity search for the 4.9 kDa peptide showed 33% sequence identity to 

SpStrongylocin 2 from sea urchin and Brevinin-2PTa from frog. The sequences of the peptides 

can be seen in Figure 5-8. 

 
 

 
 
 
 
 
 
 
Figure 5-8. Sequence similarity between antimicrobial peptides with alligator 4.9 kDa peptide. 
Highlighted in blue represent identical peptides.  
 

Like the 4.7 kDa peptide, the sequence similarity with the alligator 4.9 kDa peptide to other 

peptides in the database is low.  

 The 4.9 kDa peptide sequence has a net charge of +13 at pH 5.5 and a theortical pI of 

10.26. The peptide has 19 hydrophobic residues, 2 Val, 5 Leu, 3 Phe, 4 Cys, 1 Met, 3 Ala, and 1 

Trp and the percent hydrophobicity of the peptide is 44%. The peptide sequence of the 4.9 kDa 

peptide contains an even number of cysteines; therefore it may form a disulfide-bond linked beta 

structure similar to β-defensins. The Boman index for this peptide is 1.68 kcal/mol, which is 

similar to defensins,295 suggesting that the peptide may have antimicrobial activity.294  

5.4 Summary 

 Peptides and proteins were extracted from alligator leukocyte and the mixture was tested 

for antimicrobial activity. The extract was separated, each fraction tested for antimicrobial 

activity, and the peptides from the active fraction were sequenced using mass spectrometry and 

de novo sequencing. Based on ESI and MALDI MS measurements, the masses of the 

predominant peptides in the active fraction were found to be 4.7 and 4.9 kDa. The peptides were 

Sea urchin Peptide Alignment 
-Alignment Result-: W N P F R K L Y R K E C N D V T S C D T V S G V K T C T K K N C C + + + H R 
K F F G K T I L K A P E C T V I S  
--Input Sequence--: M G A K T K W K R F R G L D + T + C + + V F F L L S C + K K H C C L L H H T 
K G R N K T + + K A + + + A V + + 

 
Frog Peptide Alignment 
-Alignment Result-: + G A I K D A L K + + + G A A K T + V A V E L L + + K K A Q C + + + + + K + 
L E K T + + + C  
--Input Sequence--: M G A + K T K W K R F R G + L D T C V + F F L L S C K K H C C L L H H T K G 
R N K T K A A V 
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not separated by RP-HPLC; hence ion-mobility mass spectrometry was used to separate the 

peptides by their size, mass, and charge for MS analysis and sequencing. Due to limited 

fragmentation from IM-MS, MALDI MS/MS was used with de novo sequencing to determine 

the sequence of the 4.7 kDa peptide. The putative sequence has 39 residues and a net charge of 

+8 at pH 5.5 and the 4.9 kDa peptide has a putative sequence containing 43 residues and a net 

charge of +13 at pH 5.5. Based on the peptide’s primary structures, size, cationicity, and its 

predicted antimicrobial activity; the 4.7 and 4.9 kDa peptide properties are consistent with the 

characteristics of antimicrobial peptides.  
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CHAPTER 6. ISOLATION AND DETERMINATION OF THE PRIMARY STRUCTURE 
OF A LECTIN PROTEIN FROM THE SERUM OF THE AMERICAN ALLIGATOR 

(ALLIGATOR MISSISSIPPIENSIS)* 
 

In this chapter mass spectrometry in conjunction with de novo sequencing for 

determining the amino acid sequence of a 35 kDa lectin protein isolated from the serum of the 

American alligator (Alligator mississippiensis) that exhibits calcium-dependent binding to 

mannose is described. The protein was isolated from alligator serum using mannose affinity 

chromatography and the N-terminal sequence was determined using Edman degradation. 

Enzymatic digestion with trypsin, α-chymotrypsin, Lys-C, Glu-C, and Asp-N proteases was used 

to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry 

(LC-MS/MS). Separate analysis of the protein digests with multiple enzymes extended the 

protein sequence coverage. De novo sequencing was accomplished using Mascot Distiller and 

PEAKS software and the sequences were searched against the NCBI database using Mascot and 

BLAST to identify homologous peptides. A 35 kDa protein was identified as an alligator lectin. 

6.1 Introduction 

Animal lectins comprise three major families: S-type lectins, P-type lectins, and C-type 

lectins.297 S-type lectins (also known as galectins) are found in the cytoplasm and nucleus of 

cells and sometimes on cell surfaces.298 This family of lectins is involved in cell adhesion and 

plays an important role in normal development of multicellular animals.298 P-type lectins target 

lysosomal enzymes in their subcellular compartment,299 and they differ from other lectins in that 

they have the ability to recognize phosphorylated mannose residues. The C-type lectins bind to 

carbohydrates in a calcium-dependent manner and are grouped into three classes: endocytic 

lectins, collectins, and selectins.298  

 *The work reported in the chapter has been submitted to Comparative Biochemistry and 
Physiology – Part B: Biochemistry & Molecular Biology. The protein sequence data reported in 
this paper will appear in the UniProt Knowledgebase under the accession number P86928. 
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Endocytic lectins are found in cell membranes and are specific for different sugars, for example 

mannose, which is found on the cell surface of microorganisms.298 Endocytic lectins act as 

opsonins, binding to the cell surface carbohydrates on microorganisms, stimulating phagocytisis 

by leukocytes, and eventually death. Collectins function in a similar way to endocytic lectins; 

they bind to microorganisms that have mannose glycans on their surfaces, leading to lysis of the 

pathogen and activation of the innate immune system.297 Selectins direct the movement of 

leukocytes to sites of inflammation.300 The importance of animal lectins is increasingly 

recognized and studied because of their critical roles in host defense and potential for novel 

medical applications.301 

Among the family of animal lectins, the C-type lectin known as mannose-binding lectin 

(MBL) has been well characterized in humans and some other animals.302, 303 Mannose-binding 

lectin is a calcium-dependent protein found in the serum of mammals.304 This protein, which is 

generated in the liver, tags the surface of bacteria making them susceptible to destruction.304 The 

C-type lectin consists of a collagen-like domain which interacts with cells that have been 

targeted by the innate immune system.305 Binding of MBL to target cells activates the serum 

complement component of the immune system, which is an important element of innate 

immunity305 and consists of a set of plasma proteins that attack extracellular pathogens.306 

Complement proteins play an important role in innate immunity. The innate immune system can 

identify foreign material by recognizing pattern receptors, such as mannose, that are found on the 

surface of pathogens.306, 307  

Another family of animal lectins that bind to carbohydrates in a calcium-dependent 

manner is intelectins.307 Intelectins exhibit high sequence homology and have been identified in 

many organisms including human,308 mice,309 frogs,310 trout,311 and ascidians.312 The principal 

function of intelectins is to participate in cell differentiation,313 apoptosis,314 and recognize tumor 
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antigens.315 However, they also recognize pathogens and bacterial components and have roles in 

innate immunity.307 Hence, they behave similarly to C-type lectins. 

Reptilian lectins such as those from lizards316 and snakes317 have been isolated and 

characterized. However, limited information is available for alligator lectins. Alligators have a 

potent immune system and their serum produces a broader antibacterial activity compared to 

other vertebrates such as humans.318 Hence, characterization of lectins from alligator serum may 

provide a better understanding of the structure-function relationship of their immune system. 

Lectins from different species such as Turbo (Lunella) coreensis,319 Bubalus bubalis,320 

Halocynthia roretzi,312 and Salmo salar321 have been isolated and identified using Edman 

degradation and cDNA cloning.322-324 However, mass spectrometry is a more commonly used 

tool for protein sequencing and identification.325 Tandem mass spectrometry (MS/MS) in 

conjunction with separation techniques is a commonly used approach to sequence and 

characterize proteins derived from complex mixtures.325 A recent study showed the use of mass 

spectrometry to characterize the primary sequence of a galactose-binding lectin from the seeds of 

a legume plant.326 In addition to this study, several other studies have been conducted that 

demonstrate the utility of mass spectrometry for identifying lectin sequences.327-329  

One of the major challenges in the study of alligator proteins is the limited information 

available on the reptilian genome and proteome. For proteomic analysis of species with limited 

proteomic data, de novo sequencing can be used to determine protein sequences.330 In typical de 

novo sequencing methods, proteins are isolated and enzymatically digested, and the resulting 

peptides are analyzed by tandem mass spectrometry. The sequence is determined by observing 

the mass differences between fragment peaks in the tandem mass spectra that are generated by 

fragmentation of the peptide of interest.331 De novo sequencing was previously used to sequence 

peptides from proteins of the American alligator leukocytes.332  



101 
 

In the present study, mannose affinity separation was used to isolate a 35 kDa lectin 

protein from the serum of the American alligator (Alligator mississippiensis). Liquid 

chromatography ESI-MS and MALDI-MS was used to obtain the mass of the intact protein. The 

protein was digested using several different proteases. Peptide sequences were determined using 

de novo sequencing. Database searching and BLAST search was also used to match peptides 

with more than 50% homology. Using mass spectrometry and different enzymes independently, 

peptides of different lengths were generated and aligned to determine the sequence of the 

American alligator lectin. 

6.2 Experimental  

Proteins were isolated from alligator serum with affinity chromatography. Mannan 

agarose (3 mL) was equilibrated with 3 mL of mixing buffer (10 mM Tris-HCl, pH 7.8, 1.25 M 

NaCl) and allowed to settle into a column prepared from a Pasteur pipette plugged with cotton. 

Fresh alligator serum (5 mL) was mixed with 5 mL of loading buffer (20 mM Tris-HCl, pH 7.8, 

2.5 M NaCl). The diluted serum was allowed to filter through the column and the column was 

washed with 10 volumes of loading buffer. The proteins were eluted with 5 mL of elution buffer 

(10 mM Tris-HCl, pH 7.8, 1.25 M NaCl, 2 mM EDTA). The isolated lectin protein was 

transferred to 10 kDa centrifugal concentrator tubes and centrifuged at 7500 g to concentrate and 

desalt the sample. A portion of the concentrate was used for mass analysis before enzymatic 

digestion. 

The collected lectin samples were analyzed by reverse phase liquid chromatography (RP-

LC) ESI time-of-flight mass spectrometry (Agilent 6210) and matrix-assisted laser desorption 

ionization time-of-flight/time-of-flight tandem mass spectrometer to obtain the mass of the intact 

protein. For LC/MS, 10 µg of sample obtained from affinity separation was dissolved in 10 µl of 

water containing 0.1% formic acid (FA) and loaded onto a C18 reverse phase column 5 µm 250 × 
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mm (Vydac) which had been equilibrated with 0.1% FA in water. A linear gradient from 0% to 

60% of B over 60 minutes was used for protein separation. Solvent A was water containing 0.1% 

FA and solvent B was acetonitrile containing 0.1% FA. The eluent from the LC column was 

directed towards the mass spectrometer and mass spectra were acquired from 600 to 3000 m/z 

using ESI at 4200 V. The spectra were extracted and deconvoluted using Analyst software. 

The protein samples for MALDI analysis were deposited on a ground-steel target using a 

1:1 ratio (v/v) of sample and saturated matrix solution. The matrices used were a 9:1 mixture of 

2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid (sDHB) and 2,4-dimethoxy-3-

hydroxycinnamic acid (sinapinic acid, SA). The samples were analyzed in positive ion mode and 

500 shots were collected. The mass spectra were collected using a mass range from 20 to 90 

kDa. Exact masses from the spectra were determined using Bruker FlexAnalysis software.  

One-dimensional SDS-PAGE was performed using pre-cast 4–20% polyacrylamide 

gradient tris-HCl gels on the small format gel electrophoresis system. The samples were mixed 

1:1 v/v with sample buffer containing 62.5 mM tris-HCl at pH 6.8, 2% SDS, 25% glycerol (w/v), 

0.01% w/v bromophenol blue, and, in both the presence and absence of 10% 2-mercaproethanol 

(v/v), heated at 95ºC in a water bath for 5 minutes before loading on the gel. Samples were run at 

100 V for 1 h using tris-glycine (pH 8.3) as the gel running buffer. Gels were stained with 

Coomassie blue for 1 h and rinsed twice with distilled water for 10 min (each time) to remove 

the stain. The gel images were captured using the Gel Doc XR System and with BioRad Quantity 

One 1-D analysis software. Samples were excised from the SDS polyacrylamide gel and 

submitted for N-terminal sequencing by Edman degradation using a protein sequencer (Model 

494, Perkin Elmer Applied Biosystems).  

A purified alligator lectin (40 µg) was incubated in the presence of 40 µL of mannan-, 

mannose-, D-lactose-, N-acetylgalactosmine-, N-acetylglucosamine-, and β-D-glucose-agarose. 
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After 30-minute incubation at ambient temperature, the samples were centrifuged and a 20 µL 

aliquot of the supernatant (containing the unbound protein) was subjected to SDS-PAGE.  One-

dimensional SDS-PAGE was performed and the gels were stained with Coomassie blue. The 

experiment was repeated three times. The density of the bands, in pixels, was evaluated and 

compared using ImageJ software.333  

To obtain maximum sequence coverage, separate aliquots of lectin protein obtained from 

affinity separation were subjected to several different enzymatic digestions. The protein fractions 

were dissolved in a 100 mM ammonium bicarbonate buffer adjusted to the pH range in which 

each endoprotease was most active. The protein was reduced using 50 mM DTT in 25 mM 

ammonium bicarbonate buffer and incubated at 37ºC for one hour. Following reduction, the 

protein was alkylated with 50 mM iodacetamide in 25 mM ammonium bicarbonate buffer for 45 

minutes at room temperature in the dark. The in-solution digestions were performed separately 

using trypsin, α-chymotrypsin, Lys-C, Glu-C, or Asp-N according to the manufacturer’s 

protocol. Briefly, digestion with trypsin was performed using a 1:20 ratio of enzyme to substrate 

in 100 mM ammonium bicarbonate, pH 8.5; with α-chymotrypsin using a 1:20 ratio at pH 8.5; 

with Lys-C using a 1:20 ratio at pH 8.5; with Glu-C using a 1:20 ratio at pH 7.8; and with Asp-N 

using a 1:50 ratio at pH 8.5. All digestions were run at 37ºC overnight. The enzymatic digests 

were dried in a vacuum centrifuge and resuspended in 0.1% FA for LC separation. 

Bands from the one-dimensional gels were excised and cut into ~1 mm cubes, and the 

stain was removed with 200 mM NH4HCO3 and 40% acetonitrile (2×30 min). After destaining, 

the gel pieces were dried in a vacuum centrifuge, rehydrated with 20 μL of 0.4 μg trypsin in 40 

mM ammonium bicarbonate containing 9% acetonitrile to completely cover the gel pieces. The 

tubes were then incubated overnight at 37°C.334 A similar approach was used for digesting the 

protein gel pieces using α-chymotrypsin, Lys-C, Glu-C, and Asp-N proteases.335, 336 Peptides 
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were extracted from gel pieces with 60% acetonitrile and 40% water containing 0.1% 

trifluoroacetic acid (TFA). CNBr digestions were performed overnight with 1 M CNBr at room 

temperature in the dark. The following day the CNBr digestion was dried completely using a 

speed-vac and resuspended in water containing 0.1% FA for ESI analysis. FA digestions were 

performed overnight at 37ºC. 

Liquid chromatography electrospray tandem mass spectrometry (LC MS/MS) was used 

to analyze the peptides derived from the in-gel and in-solution digests. The peptides were 

dissolved in 20 µL of 0.1% FA and 10 µL of the digest was injected onto a 0.3 × 1 mm trapping 

column (PepMap) on a nano-LC system (Ultimate,) at a flow rate of 10 µL/min. The peptides 

were eluted onto a 75 µm × 15 cm C18 column (Biobasic) and separated using a gradient of 5 - 

40% B over 90 minutes with a flow rate of 200 nL/min. The peptides were analyzed via a 

quadrupole time-of-flight mass spectrometer (QSTAR) and ionized using a nano-electrospray 

source at a voltage of 2.5 kV. The mass spectrometer was operated in information-dependent 

acquisition (IDA) mode. Three collision energies (25, 38, and 50 eV) were selected to fragment 

the peptides.  

The peptide sequences were generated from MS/MS data using Mascot Distiller and 

PEAKS software. The Mascot Distiller software determined amino acid sequences from MS/MS 

data using-peak fitting and isotope distribution241 and PEAKS software computes peptides for 

whose ions matches as many of the most abundant peaks in the spectrum.167 The de novo 

sequencing results were also verified manually. De novo peptide sequences were searched using 

Mascot and BLAST for protein identification based on homology searches. For Mascot and 

BLAST search NCBI database were used to compare to peptide sequences derived from all 

taxonomies. 
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peptides were produced from Asp-N digest. A less specific endoprotease, α-chymotrypsin, was 

also used to obtain additional overlapping peptides. The endoprotease α-chymotrypsin produced 

seven fragments that overlapped with fragments generated from trypsin, Asp-N, and Lys-C. 

There was no additional sequence coverage obtained from the CNBr and FA digest. 

Peptides obtained from the in-solution and in-gel digests of the 35 kDa band were de 

novo sequenced. Figure 4 shows mass spectra for a Glu-C and tryptic digest of the protein to 

illustrate peptide sequence determination. Figures 6-4a and 6-4b show examples of mass spectra 

acquired at 57 and 58 min, respectively, in the separation of the Glu-C and tryptic digests. 

Tandem MS data were collected and peptide sequences were determined via de novo sequencing. 

Figures 6-4c and 6-4d illustrate the peptide fragment series generated from the MS/MS data 

acquired from the ion 492.8 in Figure 4a and 743.8 in Figure 6-4 b. The sequences were searched 

against the NCBI protein database using Mascot and no protein matches were found. The de 

novo sequenced peptides were subjected to a BLAST search to identify proteins with similar 

sequences. Peptide sequences found with BLAST exhibited strong similarity to intelectin-1 and 

intelectin-2 proteins from mammals. Some of the lectin peptide sequences showed a high degree 

of similarity to the intelectin peptides, with few amino acid differences; these regions of 

similarity appear to be conserved among the lectins. The de novo sequenced peptides that did not 

match peptides in the protein database with a high degree of similarity appear to be regions of 

the alligator lectin sequence that are unique.  

The peptides from the different enzymatic digests produced overlapping data that were 

aligned to create the primary sequence of the protein (Figure 6-5). Partial protein sequences were 

generated when peptide sequences from the different digests were overlapped. Multiple 

alignments of the 35 kDa alligator lectin peptides with peptides of other lectin proteins provided 

sequence positioning of the alligator lectin peptides. 
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Figure 6-5. Primary structure of the 35 kDa lectin protein isolated from American alligator 
assembled from different endoprotease digestions. The peptide sequences were generated using 
ESI-MS/MS. Peptides obtained from the different enzymes was highlighted using different 
colors. 
 
6.3.3 Binding Activity of Alligator Lectin 

The alligator lectin-binding activity was determined for four carbohydrates, and the 

results are shown in Figures 6-6A and 6-6B.  
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6.3.4 Comparison of the 35 kDa Alligator Lectin Sequence with Other Animal Lectins  

The alligator lectin sequence was compared with other calcium-dependent animal lectins, 

specifically mannose-binding lectins and intelectins, from six other species: Homo sapiens, Mus 

musculus, Rattus norvegicus, Pan troglodytes, Gallus gallus, and Xenopus tropicalis using 

DIALIGN software. A sequence comparison for the lectin of the above organisms to the alligator 

lectin sequence resulted in 13%, 3%, 1%, 5%, and 4% sequence similarity, respectively.  

Sequence comparison of the alligator lectin sequence to intelectin-1 from Homo sapiens, 

Mus musculus, Rattus norvegicus, and Xenopus tropicalis, exhibited 57%, 59%, 60%, and 57% 

similarity respectively (Figure 6-7). A sequence comparison of the 35 kDa alligator lectin protein 

was also made with intelectin-2 from Homo sapiens (58% identity) and Mus musculus (59% 

identity). The degree of similarity of alligator lectin protein sequence to intelectin-2 sequence 

(Appendix B, Figure 1) is close to that of the intelectin-1. Both mannose-binding lectin and 

intelectin proteins bind in a calcium-dependent manner.307 However, sequence comparisons 

suggest that the lectin protein isolated here is more closely related to intelectins rather than to 

mannose-binding lectins. 

For the human intelectin-1, residue 154 is the start of the consensus sequence (Asn-X-

Thr/Ser) indicating a site of N-linked glycosylation. However, this site is not present in the 

alligator lectin sequence, indicating that it lacks N-glycosylation at this site. There are several 

possible sites of glycosylation in the alligator lectin sequence, for example at the serine and 

threonine residues, suggesting that O-linkage is possible. BLAST search of the alligator lectin 

sequence showed a conserved fibrinogen-related domain near the N-terminus region of the 

sequence between residues 50 to 80. The fibrinogen related domain has been shown to be similar 

to the calcium-dependent carbohydrate-recognition domains.338 Both mouse and human 

intelectin-1 sequences have a fibrinogen domain between residues 32 to 251 and 32-255 
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respectively. A comparison of the alligator lectin sequence to both mouse and human intelectin-1 

fibrinogen domain sequences showed a high degree of sequence similarity (63% and 61% 

respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7. The Alligator mississippiensis 35 kDa lectin amino acid sequence was compared to 
intelectin-1 protein of Homo sapiensis, Mus musculus, Rattus norvegicus, and Xenopus 
tropicalis. 

 
Previous reports show that many vertebrate lectins contain homologous amino acid 

sequences.303 The 35 kDa alligator lectin sequence shows a high degree of similarity to 

Mouse           MTQLGFLLFIMVATRG-----------------------CSAAEENLDTNRWGNSFFSSL 37 
Rat             MTQLGFLLFLIVATRG-----------------------GSAAKEDLETNKGTHSFFDSL 37 
Human           MNQLSFLLFLIATTRG-----------------------WSTDEANTYFKEWTCSSSPSL 37 
Frog            MLVYSLLVFALGFPAGHAGSCEQASISEKKEKILNLLACWTEDKTDNSGSRFSGSPTGDM 60 
Alligator       NNQLALKLAATGGSTNX----------------------LPALALQNLLNTWEDTSCCSQ 38 
                    .: :     . .                        .    :   .    :   .  
 
Mouse           P---RSCKEIKQEHTKAQDGLYFLRTKNGVIYQTFCDMTTAGGGWTLVASVHENNMRGKC 94 
Rat             S---RSCKEIKEENTGAQDGLYFLRTENGVIYQTFCDMTTAGGGWTLVASVHENNMGGKC 94 
Human           P---RSCKEIKDECPSAFDGLYFLRTENGVIYQTFCDMTSGGGGWTLVASVHENDMRGKC 94 
Frog            SYGYRSCNEIKSSDPSAPDGIYTLATEHGESYQTFCDMTTNGGGWTLVASVHENNMFGKC 120 
Alligator       T----SPGQQSWPRDGAQDGLYTLSTADGEIYQTFCDMSTHGGGWTLVASVHENNAHGKC 94 
                .    *  : .     * **:* * * .*  *******:: *************:  *** 
 
Mouse           TVGDRWSSQQGNRADYPEGDGNWANYNTFGSAEAATSDDYKNPGYFDIQAENLGIWHVPN 154 
Rat             TVGDRWSSQQGNRADYPEGDGNWANYNTFGSAEGATSDDYKNPGYFDIQAENLGIWHVPN 154 
Human           TVGDRWSSQQGSKAVYPEGDGNWANYNTFGSAEAATSDDYKNPGYYDIQAKDLGIWHVPN 154 
Frog            TVGDRWSTQQGNTLQNPEGDGNWANYATFGLPEGATSDDYKNPGYYDIQAKNLALWHVPN 180 
Alligator       TVGDRWSSQQGNSPLYPEGDGNWANNNIFGSAMGSTSDDYKNPGYYDLQAGDLSVWHVPD 154 
                *******:***.    *********   ** . .:**********:*:** :*.:****: 
 
Mouse           KSPLHN--WRKSSLLRYRTFTGFLQHLGHNLFGLYKKYPVKYGEGKCWTDNGPALPVVYD 212 
Rat             NSPLHS--WRNSSLLRYRTFTGFLQHLGHNLFGLYQKYPVKYGEGKCWTDNGPALPVVYD 212 
Human           KSPMQH--WRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYGEGKCWTDNGPVIPVVYD 212 
Frog            NTPMFN--WRNSSILRYRTQNSFFTEEGGNLFELYKKYPVKYDIGKCLADNGPAVPVVYD 238 
Alligator       RAPLRKEMIESSVLLFYR--TGFLSSEGGNLLRLYEKYPVKYGAGSCKVDNGPAVPIVYD 212 
                .:*:     ..* :* **  ..*:   * **: :*:******. *.* .****.:*:*** 
 
Mouse           FGDARKTASYYSPSGQREFTAGYVQFRVFNNERAASALCAGVRVTGCNTEHHCIGGGGFF 272 
Rat             FGDAQKTASYYSPYGQKEFTAGFVQFRVYNNERAASALCAGMKVTGCNSEAHCIGGGGFF 272 
Human           FGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCNTEHHCIGGGGYF 272 
Frog            LGSAEKTSSLYSPNGRNEFTAGFVQFRVVNTEKAALALCPGVKVKGCNAEHHCIGGGGYF 298 
Alligator       FGSAEKTAAYYSPSGRGEFTAGFVQFRVFNNEKAPMALCSGLKVTGCNTEHHCIGGGGFF 272 
                :*.*.**:: *** *: *****:***** *.*:*. ***.*::*.***:* *******:* 
 
Mouse           PEGNPVQCGDFASFDWDGYGTHNGYSSSRKITEAAVLLFYR 313 
Rat             PEGNPLQCGDFGAFDWNGYGTHIGYSSSREITEAAVLLFYR 313 
Human           PEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR 313 
Frog            PEGSPRQCGDFSAFDWDGYGTHAGWSASKEITEAAVLLLYR 339 
Alligator       PEGNPRQCGDFPAFDWDGYGTHQSWSTSREMIESSVLLFYR 313 
                **..* ***** .***.***** .:*:*::: *::***:** 
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intelectins; however, intelectin proteins are animal lectins that typically have an affinity to 

galactose- and galactofuranose-binding C-type lectins and require calcium for carbohydrate-

binding activity.307 Although intelectins have been previously reported in other organisms, few 

studies have identified their binding specificity. In this study, the 35 kDa protein identified as 

alligator lectin had an affinity to mannose with a calcium-binding dependence. A previous report 

indicated that a rainbow trout intelectin had a binding specificity for both N-acetylglucosamine 

(GlcNAc) and mannose saccharides.311 The alligator lectin could be a similar intelectin-like 

protein that has a binding specificity for mannose residues.  

Intelectin proteins are oligomeric; for example, human intelectin-1 is a trimeric 

protein.339 ESI and MALDI analysis (Figures 6-2b and 6-3) suggests that the alligator lectin is an 

oligomeric protein that exists primarily as a 35 kDa monomer in vitro.  

Mammalian intelectins usually have at least 10 conserved cysteine residues339 for 

example as in human intelectin-1 (Figure 6-6); the 35 kDa alligator lectin sequence has nine 

cysteine residues. It has cysteine residues at positions 35 and 36 at the N-terminus region that are 

not present in the intelectin sequences of other vertebrates. Also, the alligator lectin sequence 

lacks a cysteine at position 42 that is conserved in the other organisms. These cysteine residues 

can influence tertiary protein structure, as well as carbohydrate-recognition specificity and 

oligomer formation and structure. When comparing the sequence to those derived from other 

vertebrates, the lack of a cysteine residue at position 41 in the alligator lectin sequence, as well 

as the different locations of the other cysteine residues may result in lower thermal stability of 

the protein.   

In addition to the presence of the cysteine residues that allow for oligomers to form via 

disulfide bonding, intelectins also have carbohydrate recognition domains.340 The calcium-

dependent carbohydrate-recognition domains are similar to the fibrinogen-like domain. 
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Fibrinogen-like proteins typically contain fibrinogen domains at the C-terminal region in both 

vertebrates and invertebrates.338, 341 An example of a human fibrinogen-like protein is ficolin. 

Although ficolin does not show sequence homology to C-type lectins or intelectins, it plays a 

vital role in innate immunity in a manner similar to the mannose-binding lectin.342 There are two 

types of ficolins found in humans, ficolin-α which is a 326 amino acid protein and has a 

fibrinogen terminal domain at residues 109 to 326, and ficolin-β, a 313 amino acid protein with a 

fibrinogen terminal domain at residues 96 to 313.338 The alligator lectin sequence has low 

sequence similarity to both the fibrinogen domains in human ficolin-α (16% similarity) and 

ficolin-β (9% similarity) (Appendix B, Figure 2), suggesting that its carbohydrate-recognition 

domain is different to that found in ficolin proteins. BLAST results for the alligator lectin 

showed that it has a fibrinogen-related domain between residues 50 and 80, suggesting that its 

carbohydrate recognition domain is near the N-terminal region of its sequence as previously 

shown in the Halocynthia roretzi lectin from ascidian plasma.312 

Binding studies were conducted with several carbohydrates leading to the conclusion that 

the alligator lectin exhibits strong selectivity for both mannan and mannose, which functions as a 

recognition molecule in the complement system. The alligator lectin showed some binding 

activity towards D-lactose suggesting that the lectin may also bind to terminal galactose as 

observed with intelectins from other organisms. The weak binding of the lectin observed in the 

presence of β-D-glucose, N-acetylglucosamine, and N-acetylgalactosamine, suggests that the 

lectin has limited binding specificities for these carbohydrates.  

6.4 Summary 

Sequence data collected from a 35 kDa protein isolated from the serum of Alligator 

mississippiensis, using a mannose affinity column, indicated that it is a lectin protein comprising 

approximately 313 amino acids. Mass spectrometry analysis of different enzymatic digests, from 
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both in-gel and in-solution, was used to generate peptide sequences by MS/MS and de novo 

sequencing as well as database searching with Mascot and BLAST. Using sequence alignment 

tools, peptides from the lectin protein were aligned with lectin proteins from other vertebrates 

and peptides from the different digests were overlapped to assemble the protein sequence.  

The primary structure of the alligator lectin exhibited more than 50% similarity to human, 

mouse, rat and frog intelectin-1 protein and less than 15% homology to mannose-binding lectin 

from other vertebrates. Although the alligator lectin showed a higher degree of similarity to 

intelectin protein, the differences of the conserved cysteine residues between the alligator and 

other vertebrate intelectins may result in structural differences. Strong homology to the 

fibrinogen-like domain of the alligator lectin was observed near the N-terminus region. There 

were no putative N-glycosylation sites identified in the alligator lectin sequence; however it has 

potential O-linkages. The isolated alligator lectin exhibited strong binding affinities toward 

mannose and mannan as compared to other tested carbohydrates. 
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CHAPTER 7. A MASS SPECTROMETRY APPROACH FOR THE STUDY OF 
DEGLYCOSYLATED PROTEINS* 

 
The work described in this chapter focuses on preparatory steps to remove salts and 

buffers for mass spectrometry (MS) analysis after enzymatic or chemical deglycosylation. In this 

work, the glycosylated protein fetuin and a lectin protein isolated from the serum of Alligator 

mississippiensis were used to evaluate methods for desalting samples after an enzymatic or 

chemical deglycosylation. Precipitation and dialysis were used to prepare the deglycosylated 

samples for MS analysis. Both the precipitation and dialysis methods were suitable for sample 

preparation prior to analysis by matrix assisted laser desorption ionization (MALDI) MS.  

7.1 Introduction 

Proteomics is the study of the structure and functions of proteins in an organism or tissue, 

and mass spectrometry is now a routinely used method for protein identification in complex 

mixtures.125 Prior to a typical mass spectrometry analysis, separation techniques such as two-

dimensional gel electrophoresis and high performance liquid chromatography (HPLC) are used 

to reduce the complexity of protein mixtures.125, 325  

 Some proteins are post-translationally modified to help regulate gene expression, protein 

turnover, and cellular structure.343 Glycosylation is a common post-translational modification 

that is involved in biological functions such as immune recognition and inflammation.344 There 

are two major types of protein carbohydrate linkages:  N- and O-linked glycosylation. With N-

glycosylation, the glycan is attached to an asparginine residue followed by any amino acid other 

than proline, which is linked to a serine or threonine residue. During O-glycosylation, the glycan 

is attached to a serine or threonine residue. Glycoproteins have been characterized by mass 

spectrometry, but this is challenging due to the heterogeneity of the carbohydrate moieties and  

*Reprinted by permission of the Elsevier. The work reported in this chapter has been 
published in the Microchemical Journal.4 
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the complexity of the resulting mass spectra.345 Glycosylation of the protein may also limit the 

extent of proteolytic digestion. To avoid this, the N- and/or O-linked carbohydrates can be 

removed prior to analysis.346, 347  

 Enzymatic or chemical removal of the glycan can be used for analysis of the protein 

without the attached oligosaccharides. An enzymatic approach using peptide: N-glycosidase 

(PNGase F)204 and a chemical approach using trifluoromethanesulfonic acid (TFMS)  have been 

used to remove the oligosaccharides.205, 348 PNGase F is an enzyme that removes N-linked 

oligosaccharides, leaving both the protein and oligosaccharides intact for further analysis. There 

is no enzyme that cleaves O-linked oligosaccharides. TFMS is a non-specific deglycosylating 

agent that cleaves both N-linked and O-linked oligosaccharides to leave the intact protein.349 

 The proteins used in this study were enzymatically or chemically deglycosylated 

followed by matrix assisted laser desorption ionization (MALDI) MS. The steps for both 

chemical and enzymatic deglycosylation have been reported previously,205, 350, 351 but the 

deglycosylated product requires cleanup prior to MALDI mass spectrometry. We have developed 

important sample desalting procedures that follow deglycosylation prior to mass spectrometry 

analysis, which are not clearly outlined in many procedures. This study focuses on the treatment 

of deglycosylated proteins for mass spectrometry analysis.   

7.2 Experimental 

7.2.1 Materials 

Fetuin, a plasma glycoprotein produced by the liver, was obtained from Sigma-Aldrich 

and the lectin protein was isolated from the blood plasma of Alligator mississippiensis. Blood 

from seven American alligators was collected, heparin added for anticoagulation, and the blood 

allowed to clot overnight at ambient temperature. The serum was collected and the lectin was 

isolated using mannan-agarose affinity chromatography.  
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7.2.2 Enzymatic Deglycosylation  

Proteins containing oligosaccharides attached through N-linked glycosylation were 

deglycosylated as described in Section 2.9. Approximately 100 µg of protein was dissolved in 18 

µl of nanopure water. Denaturing buffer (2 µl), containing 0.6 mg/mL SDS and 0.5 mg/mL DTT, 

was added and heated at 100ºC for 10 minutes to increase the rate of deglycosylation. The 

sample was incubated on ice at 0ºC for five minutes and centrifuged for 10 sec. To the denatured 

sample, a non-ionic detergent (NP-40) was added to prevent loss of enzyme activity. The 

PNGaseF enzyme was added to the sample and it was incubated at 37ºC for four hours.204, 352 

The intact protein was isolated from the mixture via protein precipitation, which removed the 

buffers that can interfere with the MALDI signal. Acetone or trichloroacetic acid (TCA) was 

used to precipitate the protein.353  

7.2.3 TCA Precipitation 

TCA precipitation was accomplished by the addition of one volume of 60% TCA. The 

sample was gently vortexed and incubated on ice overnight. The sample mixture was centrifuged 

at 10,000 g for 30 min and the supernatant was removed. Chilled acetone was added to wash the 

precipitate and it was centrifuged again at 10,000 g.80 This procedure was repeated twice. The 

precipitate was air-dried and suspended in aqueous 0.1% trifluoroacetic acid (TFA) or 0.1% 

formic acid (FA) for MALDI analysis. 

7.2.4 Acetone Precipitation 

Acetone precipitation was achieved by the addition of four volumes of acetone to the 

protein sample, followed by an overnight incubation on ice. The sample was centrifuged at 

10,000 g for 30 min at 4ºC. The supernatant was removed and the precipitate was air dried for 30 

min, then suspended in the same buffer as used above in the TCA precipitation. 
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7.2.5 Chemical Deglycosylation 

In-solution deglycosylation was performed using a deglycosylation kit (Prozyme) 

containing trifluoromethanesulphonic acid (TFMS). TFMS removes most glycan types from 

glycoproteins and leaves the protein intact.205 Briefly, approximately 0.3 mg of protein in a vial 

was dried overnight using a lyophilizer. The dried protein was capped with a septum and placed 

on a dry ice-ethanol bath for 20 seconds to reduce the temperature of the reaction. A mixture of 

TFMS and toluene solution was prepared and 50 µl was slowly added using a gas-tight syringe. 

Precautions were taken to prevent the dried protein from being exposed to moisture due to the 

potential for hydrolysis of the peptide bonds.205, 354 The vials containing the protein with TFMS 

mixture were incubated at -20ºC for five minutes then shaken briefly to help dissolve the protein. 

The solvation process was repeated and followed by a four-hour incubation at -20ºC.  

7.2.6 Dialysis 

Dialysis was performed prior to mass spectrometry analysis. After the four-hour 

incubation, the vials containing the samples were placed in a dry ice-ethanol bath for 20 seconds, 

and then 150 µl of pyridine solution was added to each vial. The vials were incubated on dry ice 

for five minutes, and then in a dry ice-ethanol bath for 15 minutes. A 400 µl quantity of 0.5% 

ammonium bicarbonate was added to each vial to neutralize the sample. Following 

deglycosylation, the protein was isolated using dialysis. Each sample was added to a dialysis 

cassette (Thermo Scientific, Rockford, IL, USA) and dialyzed against 10 mM ammonium 

formate for two hours at room temperature. The buffer was changed and dialysis was continued 

for an additional two hours. After a final buffer change, the sample was dialyzed overnight at 

room temperature. 
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7.2.7 Mass Spectrometry  

Glycoproteins and deglycosylated proteins were analyzed in linear MS mode with the 

Bruker UltrafleXtreme MALDI mass spectrometer. The glycoproteins and the deglycosylated 

proteins (after dialysis or precipitation) were mixed on a steel target using a 1:1 ratio of sample 

and saturated matrix solution. The matrices used were 2-hydroxy-5-methoxybenzoic acid 

(sDHB) and 2,4-dimethoxy-3-hydroxycinnamic acid (sinapininc acid, SA). The samples were 

analyzed in positive ion mode and 500 shot averages were collected using a mass range from 30 

to 100 kDa. Masses were determined using FlexAnalysis software.  

7.3 Results and Discussion 

Two methods were used for deglycosylation: PNGaseF and trifluoromethanesulfonic 

acid. The N- and O-linked glycoprotein protein, fetuin, was enzymatically deglycosylated to 

remove N-linked oligosaccharides and chemical deglycosylation was used to remove both N- 

and O-linked oligosaccharides. Fetuin is a glycoprotein with 359 amino acids containing N-

linked glycosylation sites at Asn 99, 156 and 176, and numerous O-linked glycosylation sites.355 

As seen in Figure 7-1a, a mass of 45.3 kDa was measured for fetuin before deglycosylation 

which is consistent with previous studies.356 The deglycosylated fetuin was analyzed with 

MALDI after deglycosylation with PNGaseF and no further cleanup. No signal was observed 

possibly due to buffers used during the deglycosylation. Using acetone and TCA precipitation 

independently, the protein was separated from the PNGaseF released oligosaccharides. The 

deglycosylated protein from the pellet of fetuin gave a 39.5 kDa in the mass spectrum and was 

compared with the glycosylated fetuin using MALDI and a mass shift of 5.8 kDa was observed 

in the mass spectrum (Figure 7-1b). Both acetone and TCA precipitation yielded sufficient 

protein recovery for MALDI analysis and the MALDI results were comparable.  
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CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 
 

 In this dissertation, mass spectrometry based proteomics was used to study the alligator 

blood proteome. Proteins and peptides found in the leukocyte extracts from the alligators were 

identified using gel electrophoresis techniques, liquid chromatography, and mass spectrometry 

sequencing, including bottom-up and top-down sequencing. Several peptides and proteins with 

immunological functions, including lectin and antimicrobial peptides were isolated and 

identified. The significance of this work lies in that it provides insight on the function and 

evolution of both innate and adaptive immune systems of crocodilians.  

In Chapter 3, the proteome of the leukocytes was investigated because they are one of the 

most important cells in the body to participate at the site of an infection and play an important 

role in innate immunity. A 1- and 2-D gel electrophoresis system was used to separate leukocyte 

proteins, and enzymatic digest of the protein bands and spots using trypsin was applied to cleave 

the proteins to peptides for peptide sequencing. Using Mascot, a comparison was made between 

the experimentally observed fragment ions and the predicted fragments for all hypothetical 

peptides of a particular mass. From the MASOT search, 17 proteins were identified based on 

sequence homology. For MS/MS data that did not match any proteins in the database, peptide 

sequences were determined using de novo sequencing. Using the de novo sequencing results, 23 

proteins were identified based on peptide matching using BLAST. 

To further investigate peptides from the acidic leukocyte extracts that exhibited 

antimicrobial activity, a series of separations and antimicrobial tests were performed. Using 

reversed-phase chromatography, the leukocyte extracts (which consisted of a mixture of peptides 

and proteins) were separated, collected, and tested for antimicrobial activity. The initial eluents 

collected within the first 10 min exhibited activity and were further characterized using mass 

spectrometry and X-ray crystallography for identification, which was described in Chapter 4. 
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Small molecules less than 500 Da were identified, and the results indicated that the 

anticoagulant, EDTA, which was used during the blood collection, may have contributed to the 

antimicrobial activity. Due to the antimicrobial activity interferences from EDTA used in the 

work in Chapter 4, heparin was used as an alternative anticoagulant for the studies described in 

Chapter 5.  

To investigate the specific peptides and proteins from the alligator leukocytes that exhibit 

antimicrobial activity, peptides and proteins isolated from alligator leukocyte extracts were 

separated by reversed phase chromatography as described in Chapter 5. The antimicrobial 

activity of the peptides from the chromatographic fractions was tested for growth inhibition of 

various microbes to determine the antimicrobial spectrum of the peptides. Among the microbes 

studied, growth inhibition was observed for E. coli, E. cloacae and K. oxytoca indicating that the 

antimicrobial peptides from the alligator are active against gram-negative bacteria. Within a 

fraction that exhibited antimicrobial activity, two peptides at masses 4.7 and 4.9 kDa were 

identified using mass spectrometry. Due to the close mass of the peptides, ion mobility was used 

to determine whether the peptides can be separated based on their charge, size and shape. The 

separated peptide was analyzed using tandem mass spectrometry; however, limited sequence 

information was determined due to incomplete fragmentation. Therefore, the peptides were 

subjected to MALDI MS/MS for sequencing. Peptide sequences were determined using de novo 

and manual sequencing. From this work, the first antimicrobial peptides were isolated and 

partially characterized from Alligator mississippiensis and showed to have a net charge of +8 and 

+13 respectively at pH 5.5, indicating that they are cationic. Based on size and charge, these 

peptides exhibit strong characteristics similar to previously identified antimicrobial peptides. 

In Chapter 6, another class of immunological proteins, lectins, was studied which 

provides insight on the structure-function relationship of another class of proteins involved 
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within crocodile’s innate immune system.   A new calcium-dependent binding lectin protein was 

isolated from the serum of the Alligator mississippiensis by affinity chromatography using 

mannose columns. The sequence of this novel class of proteins from the blood serum of the 

alligator was determined with mass spectrometry and Edman sequencing and was used for 

homologous comparison with other lectins. Molecular masses of the isolated lectin were 

determined by ESI-MS and were found to be oligomeric which are consistent with the monomer, 

dimer, trimer and tetramer of the 35 kDa monomer lectin protein. The monomeric protein was 

enzymatically digested using four different proteases, creating small and large peptides, which 

were overlapped to enhance protein sequence coverage. The primary sequence of a novel lectin 

protein isolated from Alligator mississippiensis was determined, and its binding specificity to 

selected carbohydrates was studied.  

An approach to analyze proteins that have been glycosylated also was evaluated. In 

Chapter 7, preparatory steps used after deglycosylation procedures and before mass spectrometry 

analysis were described. Here, glycosylated proteins, fetuin and alligator lectin, were 

deglycosylated and methods for sample desalting and concentrating, such as precipitation and 

dialysis were used. The dialysis and precipitation methods were both suitable for sample 

preparation prior to MS analysis. A comparison between precipitation and dialysis procedures 

showed that precipitation methods produce higher protein signal, indicating a larger protein 

recovery. 

One of the future directions is to investigate other properties of the peptides, other than 

bacterial properties. Some antimicrobial peptides have shown to have anti-inflammatory, 

antifungal, antiviral and anti-tumor activity, so these properties should be investigated. Prior 

work showed that the crude leukocyte extract exhibited antimicrobial activity, so it is 

hypothesized that the activity may be due to multiple peptides. Therefore, the alligator leukocyte 
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extract should be further investigated for other antimicrobial peptides or proteins, other than the 

two peptides isolated in this work and their antimicrobial activity should be characterized, 

including the minimal inhibitory concentration (MIC) and the antimicrobial spectrum.  

The interaction of alligator antimicrobial peptides in the presence of microbes should also 

be investigated using a technique such as atomic force microscopy (AFM). This study can help 

provide an understanding of how alligator antimicrobial peptides affect bacterial cells. This 

effect may be based on the different models proposed as discussed in Section 1.1.1., for example, 

the carpet model, where peptides cover the membrane like a carpet and destroy the bacteria lipid 

bilayer.357 By reducing the AFM cantilever size to approximately 1000 times smaller than the 

normal size, the imaging speed can be increased without destroying the bacteria.358 The bacteria 

can be immobilized on poly-L-lysine coated cover slides (which will provide stronger cell 

adhesion) and imaged in aqueous solution to keep the cells alive. Alligator antimicrobial peptide 

can be added to the liquid droplet comprised of bacteria, at a concentration above the minimal 

inhibitory concentration (MIC) to acquire images.359 It is also necessary to evaluate the 

antimicrobial peptides presented in this dissertation for their suitability in commercial products, 

such as topical creams. They can be added to existing products to enhance the antimicrobial 

activity of the product and/or they can potentially be used as an antiseptic cream for cuts or an 

antifungal cream for infections such as athlete’s foot.      

The research in this dissertation also showed that lectin proteins are present and can be 

isolated from alligators. Therefore, additional studies should be performed to further characterize 

the identified lectin in this work, such as investigating the temperature and pH effect, and the 

effect of the identified alligator lectin on bacteria induced hemagglutination activity; which will 

indicate whether or not the lectin protects against bacterial induced erythrocyte damage. Because 

carbohydrates play a vital role in biological processes and diseases, lectins can be used to 
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identify certain diseases. Depending on the specificity of the alligator lectin it can potentially be 

used as a means to identify a particular disease state. Finally, antibodies against the alligator 

lectin discussed in this work can be prepared and used for isolation of lectins from other 

crocodilian species. This will provide more insight on lectins and their function within 

crocodilian species. 

Lastly, an exhaustive MS-based proteomics study should be performed to map all the 

proteins involved in the alligator’s immune system. The immune system is complex and made of 

several types of cells and proteins that play different roles in fighting infections. Therefore, a 

more comprehensive study of the structure-function relationship of the immune related proteins 

will help provide a better understanding of crocodilian immunity as well as provide more insight 

on the evolutionary development of reptile’s immune system.   
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APPENDIX A. PROTEINS MATCHED FROM DE NOVO SEQUENCING 

 
The peptide sequences in the table were generated from MS/MS data using de novo sequencing. De novo peptide sequences were 

subjected to database searching using BLAST to find proteins that contain sequences matching with the determined de novo 

sequences. The results were used to identify biological components that comprise the alligator leukocyte proteome (Chapter 3, Section 

3.3). 

 
Table A.1. Proteins identified at single peptide level using BLAST. De novo sequenced peptides obtained from gel digest were 
searched using BLAST and proteins were matched based on sequence similarity and evolutionary relationship using the SwissProt and 
MSDB database. The top three E-values are reported. 
 

 Band  
Number 

m/z Charge De novo Sequence Protein Accession Number Protein 
Length 

Organism E-Value 

          

 B4 1060.6 +2 EINLSPDSTSAVVSGLMVATK      
    EINLSPDSTSAVVSGLMVATK Fibronectin P11722.3 1256 Gallus gallus  2e-11  

(1st hit) 
     

EINLSPDSTSAVV+GLMVATK 
 

Fibronectin 
 

Q91289.1 
 

1328 
 

Pleurodeles waltl  
 

9e-11 
 (2nd hit) 

     
EINLSPDSTS +VSGLMVATK 

 
Fibronectin 

 
P04937.2 

 
2477 

 
Rattus norvegicus  

 
7e-10  

(3rd hit) 
 B4 536.3 +2 YEVSVYALK      
    YEVSVYALK Fibronectin P07589.4 2478 Bos taurus  0.33 

 (1st hit) 
     

YEVSVYALK 
 

Fibronectin 
 

P11722.3 
 

1256 
 

Gallus gallus  
 

 
0.33 

 (2nd hit) 
     

YEVSVYALK 
 

Fibronectin 
 

P11276.3 
 

2477 
 

Mus musculus  
 

 
0.33 

 (3rd hit) 
     

YEVSVYALK 
 

Fibronectin 
 

P04937.2 
 

2477 
 

Rattus norvegicus  
 

 
0.33 

 (4th  hit) 
     

YEVSVYALK 
 

Fibronectin 
 

Q91289.1 
 

1328 
 

Pleurodeles waltl 
 

0.33 
 (5th hit) 
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YEVSVYALK Fibronectin  Q28275.2 522 Canis lupus familiaris  0.33 
 (6th  hit) 

     
YEVSVYALK 

 
Fibronectin 

 
Q28377.2 

 
522 

 
Equus caballus  

 
0.33 

 (7th  hit) 
     

YEVSVYALK 
 

Fibronectin 
 

P02751.4 
 

2386 
 

Homo sapiens  
 

0.33 
 (8th  hit) 

     
YEV+VYALK 

 
Fibronectin 

 
Q91740.1 

 
2481 

 
Xenopus laevis  

 
1.9 

 (9th hit ) 
     

Y+VSVYA 
 

Collagen alpha-1(XII) 
chain 

 
Q60847.3 

 
3120 

 
Mus musculus  

 
117  

(10th hit) 
     

Y VS+YALK 
 

RNA 2-thiouridine 
synthesizing protein B 

 
NP_240337.2 

 
95 

 
Buchnera aphidicola  

 
117 

(11th hit) 
     

YEVSVY 
 

Neuronal acetylcholine 
receptor subunit β-4 

 
NP_434693.1 

 
495 

 
Rattus norvegicus  

 
117 

(12th hit) 
     

YEVSVY 
 

Neuronal acetylcholine 
receptor subunit β-4 

 
NP_000741.1 

 
498 

 
Homo sapiens  

 
117 

(13th hit) 
     

YEVSVY 
 

Neuronal acetylcholine 
receptor subunit β-4 

 
NP_683746.1 

 
495 

 
Mus musculus  

 
117 

(14th hit) 
 B4 701.3 +2 YQINQQWER      
    YQINQQWER Fibronectin P07589.4 2478 Bos taurus  0.013 

 (1st hit) 

    YQINQQWER Fibronectin P11276.3 2477 Mus musculus  0.013 
(2nd hit) 

     
YQINQQWER 

 
Fibronectin 

 
Q91740.1 

 
2481 

 
Xenopus laevis  

 
0.013 

 (3rd hit) 
     

YQINQQWER 
 

Fibronectin 
 

P04937.2 
 

2477 
 

Rattus norvegicus  
 

0.013 
(4th hit) 

     
YQINQQWER 

 
Fibronectin 

 
P02751.4 

 
2386 

 
Homo sapiens  

 

 
0.013 

(5th hit) 
     

INQQWE 
 

 
Protein lava lamp 

 
NP_525064.1 

 
2779 

 
Drosophila melanogaster  

 
27 

 (6th hit) 
     

YQINQQ 
 

DNA topoisomerase 2-
associated protein pat1 

 
NP_595976.2 

 
754 

 
Schizosaccharomyces pombe  

 
65 

(7th  hit) 
     

YQINQQ 
 

Dynamin-like protein C 
 

XP_645576.2 
 

904 
 

Dictyostelium discoideum  
 

65 
(8th hit) 

     
YQINQQ 

 
Ornithine 

 
YP_672340.1 

 
326 

 
Escherichia coli 536  

 
65 

Table A.1. cont’d. 
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carbamoyltransferase (9th hit) 
     

QI QQW R 
 

Protein Cpn60 
 

NP_849007.1 
 

526 
 
 

Cyanidioschyzon merolae  

 
65 

(10th hit) 
     

YQINQQ 
 

Thymidylate kinase 
 

NP_077850.1 
 

230 
 

Ureaplasma parvum  
 

65 
(11th hit) 

     
YQINQQ 

 
Ornithine 

carbamoyltransferase 

 
NP_757196.2 

 
334 

 
Escherichia coli O6  

 
65 

(12th hit) 
     

YQINQQ 
 

Exodeoxyribonuclease V 
gamma chain 

 
ZP_07124340.1 

 
1122 

 
Escherichia coli K-12  

 
65 

(13th hit) 
 B1 613.9 +2 LIALLEVLSQK      
    LIALLEVLSQK Filamin-C NP_001449.3 2725 Homo sapiens  0.019 

 (1st hit) 
     

LIALLEVLSQK 
 

Filamin-C 
 

NP_001074654.1 
 

2726 
 

Mus musculus  
 

0.019 
(2nd hit) 

     
LIALLEVLSQK 

 
Filamin-B 

 
Q80X90.2 

 
2602 

 
Mus musculus  

 
0.019 

(3rd hit) 
     

LIALLEVLSQK 
 

Filamin-A 
 

CAT00728.1 
 

2647 
 

Mus musculus  
 

0.019 
(4th hit) 

     
LIALLEVLSQK 

 
Filamin-A 

 
NP_001104026.1 

 
2647 

 
Homo sapiens  

 
0.019 

(5th hit) 
     

LIALLEVLSQK 
 

Filamin-B 
 

NP_001448.2 
 

2602 
 

Homo sapiens  
 

0.019 
(6th hit) 

     
+IALL+VLSQ 

 
Autophagy-related protein 

6 

 
A5DIV5.2 

 
461 

 

 
Pichia guilliermondii  

 
5.1  

(7th hit) 
     

L+ALLEVLS QK 
 

Nesprin-1 
 

NP_892006.2 
 

8797 
 

Homo sapiens  
 

5.1  
(8th hit) 

     
LI+LLEVLS 

 
Bullous pemphigoid 

antigen 1 

 
AAK83382.1 

 
1678 

 
 

Mus musculus  

 
 

9.2  
(9th hit) 

 B1 487.3 +2 VYGPGVEPR      
    +YGPGVEP 50S ribosomal protein L25 

1 
YP_076110.1 205 Symbiobacterium thermophilum  15  

(1st hit) 
     

+YGPGVEP 
 

50S ribosomal protein L25 
2 

 
YP_076123.1 

 
194 

 
Symbiobacterium thermophilum  

 
15 

(2nd hit) 
     

VYGPGVE 
 

Filamin-C 
 

NP_001449.3 
 

2725 
 

Homo sapiens  
 

36  
(3rd hit) 

     
VYGPGVE 

 
Filamin-C 

 
NP_001074654.1 

 
2726 

 
Mus musculus  

 
36 

(4th hit) 
     

VYGPGVE 
 

Actin-binding protein 
120 

 
P13466.1 

 
857 

 
Dictyostelium discoideum  

 
36 

(5th hit) 
     

GPGVEPR 
 

Apolipoprotein N-
acyltransferase 

 
B9J8B4.1 

 
217 

 
Thermosipho africanus TCF52B  

 
49  

(6th hit) 
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VYGP VEP 

 
50S ribosomal protein L25 

 
B7IFM6.1 

 
217 

 
Thermosipho africanus TCF52B  

 
49 

(7th hit) 
 B2 736.4 +2 AQQVSQGLDLLTAK      
    AQQVSQGLDLLTAK Vinculin P12003.4 1135 Gallus gallus  5e-05  

(1st hit) 
      

AQQVSQGLD+LTAK 
 

Vinculin 
 

P85972.1 
 

1066 
 

Rattus norvegicus  
 

 
7e-04  

(2nd hit) 
     

AQQVSQGLD+LTAK 
 

Vinculin 
 

P26234.4 
 

1135 
 

Sus scrofa  
7e-04  

(3rd hit) 
     

 
AQQVSQGLD+LTAK 

 
 

Vinculin 

 
 

Q64727.4 

 
 

1066 

 
 

Mus musculus  

 
7e-04  

(4th  hit) 
     

 
AQQVSQGLD+LTAK 

 
 

Vinculin 

 
 

P18206.4 

 
 

1134 

 
 

Homo sapiens  

 
7e-04  

(5th  hit) 
     

QV+QGLD L AK 
 

Macrophage colony-
stimulating factor 1 

receptor 

 
Q9I8N6.1 

 
977 

 
Danio rerio  

 

 
3.8  

(6th hit) 

 B2 739.4 +2 MLGQMTDQVADLR        
    MLGQMTDQVADLR 

 
Vinculin 

 
P85972.1 1066 Rattus norvegicus  2e-05  

(1st hit) 
     

MLGQMTDQVADLR 
 

Vinculin 
P26234.4  

1135 
 

Sus scrofa  
 

2e-05  
(2nd  hit) 

     
MLGQMTDQVADLR 

 
Vinculin 

Q64727.4 
 

 
1066 

 
Mus musculus  

 
2e-05  

(3rd  hit) 
     

MLGQMTDQVADLR 
 

Vinculin 
 

P18206.4 
 

1134 
 

Homo sapiens  
 

2e-05  
(4th hit) 

     
LGQMTDQ+ADLR 

 
Vinculin 

 
P12003.4 

 
1135 

 
Gallus gallus  

 
0.006  

(5th hit) 
     

MLGQM +QV 
 

Uncharacterized protein 
SE_2353 

 
Q8CQQ7.1 

 
300 

 
Staphylococcus epidermidis ATCC 12228  

 
6.8  

(6th hit) 
     

L QMT D +ADLR 
 

Pre-mRNA-processing 
ATP-dependent RNA 

helicase 

 
Q2HAD8.1 

 
1064 

 
Chaetomium globosum  

 
6.8  

(7th hit) 

 B2 655.9 +2 TVTAMDVVYALK      

    TVTAMDVVYALK Histone H4 P83865.2 103 Litopenaeus vannamei  6e-04  
(1st hit) 

     
TVTAMDVVYALK 

 
Histone H4 

 
P82888.2 

 
103 

 
Olisthodiscus luteus  

 
6e-04  

(2nd  hit) 
     

TVTAMDVVYALK 
 

Histone H4 
P02310.2  

103 
 

Tetrahymena pyriformis  
 

6e-04  
(3rd  hit) 

     
TVTAMDVVYALK 

 
Histone H4 

Q6WV74.3  
103 

 
Mytilus chilensis  

 
6e-04  

(4th  hit) 
     

TVTAMDVVYALK 
 

Histone H4 
 

Q8MTV8.3 
 

103 
 

Aplysia californica  
 

6e-04  
(5th  hit) 
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    TVTAMDVVYALK  
Histone H4 

 
P50566.2 

 
103 

 
Chlamydomonas reinhardtii 

 
6e-04  

(6th  hit) 
    TVTAMDVVYALK  

Histone H4 
 

P91890.3 
 

103 
 

Trichogramma cacoeciae  
 

6e-04  
(7th  hit) 

    TVTAMDVVYALK  
Histone H4 

 
P91882.3 

 
103 

 
Diadromus pulchellus  

 
6e-04  

(8th  hit) 
    TVTAMDVVYALK  

Histone H4 
 

 
P70081.3 

 
103 

 
Gallus gallus  

 

 
6e-04 

(9th  hit) 
    TVTAMDVVYALK  

Histone H4 
 

Q43083.3 
 

103 
 

Pyrenomonas salina  
 

6e-04  
(10th  hit) 

    TVTAMDVVYALK  
Histone H4 

 
P91849.3 

 
103 

 
Apis mellifera  

 

 
6e-04  

(11th  hit) 
    TVTAMDVVYALK  

Histone H4 
 

P62786.2 
 

103 
 

Triticum aestivum  
 

6e-04  
(12th  hit) 

    TVTAMDVVYALK  
Histone H4 

 
P59259.2 

 
103 

 
Arabidopsis thaliana 

 
6e-04  

(13th  hit) 
    TVTAMDVVYALK  

Histone H4 
 

P08436.2 
 

103 
 

Volvox carteri  
 

6e-04  
(14th   hit) 

    TVTAMDVVYALK  
Histone H4 

 
Q6WV72.3 

 
103 

 
Mytilus trossulus  

 
6e-04  

(15th hit) 
    TVTAMDVVYALK  

Histone H4 
 

P62776.2 
 

103 
 

Holothuria tubulosa  
 

6e-04  
(1tht hit) 

    TVTAMDVVYALK  
Histone H4 

 
P69151.2 

 
103 

 
Tetrahymena pyriformis  

 
6e-04  

(17th hit) 
    TVTAMDVVYALK  

Histone H4 
 

P35057.2 
 

103 
 

Solanum lycopersicum  
 

6e-04  
(18th hit) 

    TVTAMDVVYALK  
Histone H4 

 
P35059.2 

 
103 

 
Acropora Formosa  

 
6e-04  

(19th hit) 
    TVTAMDVVYALK  

Histone H4 
 

Q27443.2 
 

103 
 

Ascaris suum  
 

6e-04  
(20th hit) 

     
TVTAMDVVYALK 

 
Histone H4 

 
Q9U7D0.3 

 
108 

 
Mastigamoeba balamuthi  

 
6e-04  

(21st hit) 
     

TVTAMDVVYALK 
 

Histone H4 
 

Q41811.3 
 

103 
 

Zea mays  
 

6e-04  
(22nd hit) 

     
TVTAMDVVYALK 

 
Histone H4 

P04915.2  
103 

 
Physarum polycephalum  

 
6e-04  

(23rd hit) 
     

TVTAMDVVYALK 
 

Histone H4 
 

P84040.2 

 

 
103 

 
Drosophila melanogaster  

 
6e-04  

(24th hit) 

    TVTAMDVVYALK Histone H4 P40287.1 118 Entamoeba histolytica  6e-04  
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(25st hit) 
    TVTAMDVVYALK  

Histone H4 
 

Q76NW2.1 
 

108 
 

Dictyostelium discoideum  
 

6e-04  
(26th hit) 

    TVT+MDVVYALK  
Histone H4 

 
P27996.2 

 
103 

 
Solaster stimpsoni 

 

 
0.003 

(27th hit) 
     

TVTA+DVVYALK 
 

 
Histone H4 

 
P80737.3 

 

 
103 

 
Blepharisma japonicum  

 
0.011  

(28th hit) 

    TVTA+DVVYALK 
 

Histone H4 P62790.2 104 Sterkiella nova  0.011  
(29th hit) 

    TVTA+DVVYALK 
 

 
Histone H4 

 
Q27765.3 

 
103 

 
Styela plicata  

 
0.011  

(30th hit) 
    TVTA+DVVYALK 

 
 

Histone H4 
 

P90516.1 
 

89 
 

Blepharisma japonicum  
 

0.011  
(31st hit) 

    TVTA+DVVYALK 
 

 
Histone H4 

 
P62792.2 

 
103 

 
Phanerochaete chrysosporium  

 
0.011  

(32nd hit) 
    TVTA+DVVYALK 

 
 

Histone H4 
 

P80739.3 

 
107 

 
Moneuplotes crassus  

 
0.011  

(33rd hit) 
 B2 628.7 +2 LITKAVSASK      

    LITKAVSASK Histone H1.5 P43276.2 223 Mus musculus  0.49  
(1st hit) 

     
LITKAVSASK 

 
Histone H1.03 

 

 
P08285.2 

 
224 

 
Gallus gallus  

 
0.49  

(2nd hit) 
     

LITKAVSASK 
 

Histone H1.10 
 

P08286.3 
 

220 
 

Gallus gallus  
 

0.49 
(3rd hit) 

     
LITKAVSASK 

 
Histone H1.11 

 
P08287.2 

 
225 

 
Gallus gallus  

 
0.49 

(4th hit) 
     

LITKAVSASK 
 

Histone H1.01 
 

P08284.2 

 
219 

 
Gallus gallus  

 
0.49 

(5th hit) 
     

LITKAVSASK 
 

Histone H1 
 

P09987.2 

 
218 

 
Gallus gallus  

 
0.49 

(6th hit) 
     

LITKAVSASK 
 

Histone H1.11R 
 

P08288.2 
 

219 
 

Gallus gallus  
 

0.49 
(7th hit) 

     
LITKAV+ASK 

 
Histone H1 

 
P16403.2 

 
213 

 
Homo sapiens  

 
2.9 

(8th hit) 
     

LITKAV+ASK 
Histone H1.3  

P02251.1 

 
213 

 
Cryctolagus cuniculus  

 
2.9 

(9th hit) 
     

LITKAV+ASK 
 

Histone H1.4 
 

P10412.2 
 

219 
 

Homo sapiens  
 

2.9 
(10th hit) 

     
LITKAV+ASK 

 
Histone H1.3 

 
P16402.2 

 
221 

 
Homo sapiens  

 
2.9 

(11th hit) 
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LITKAV+ASK 

 
Histone H1.1 

 
P02253.1 

 
104 

 
Bos taurus  

 
2.9 

(12th hit) 
     

LITKAV+ASK 
 

Histone H1.2 
 

P15865.3 

 
219 

 
Rattus norvegicus  

 
2.9 

(13th hit) 
     

LITKAV+ASK 
 

Histone H1.2 
 

P15864.2 

 
212 

 
Mus musculus  

 
2.9 

(14th hit) 
     

LITKAV+ASK 
 

Histone H1.4 
 

P02252.1 
 

73 
 

Oryctolagus cuniculus  
 

2.9 
(15th hit) 

     
LITKAV+ASK 

 
Histone H1.4 

 
P43274.2 

 
219 

 
Mus musculus  

 
2.9 

(16th hit) 
     

LITKAV+ASK 
 

Histone H1 
 

P09426.3 
 

218 
 

Anas platyrhynchos  
 

2.9 
(17th hit) 

     
LITKAV+ASK 

 
Histone H1.5 

 
P16401.3 

 
226 

 
Homo sapiens  

 
2.9 

(18th hit) 
     

LITKAV+ASK 
 
 

 

 
Histone H1 

 
 

 

 
P43277.2 

 
221 

 
 
 

 
Mus musculus  

 
 
 

 
2.9 

(19th hit) 
 

    LI KAVSASK 
 

Histone H1 P84408.3 55 Salmo salar  9.3  
(20th hit) 

    LI KAVSASK Histone H1 P06350.2 207 Oncorhynchus  9.3 
(21st hit) 

 B6 833.9 +2 FSGSGSGTDFTFTISR      

    FSGSGSGTDFTFTIS Ig Κ chain V-I region Lay P01605.1 108 Homo sapiens  5e-06  
(1st hit) 

     
FSGSGSGTDFTFTIS 

 
Ig Κ chain V-I region 

WAT 

 
P80362.1 

 
108 

 
Homo sapiens  

 
5e-06  

(2nd hit) 
     

FSGSGSGT+FTFTIS 
 

Ig Κ chain V-I region OU 
 

P01606.1 
 

108 
 

Homo sapiens  
 

9e-06  
(3rd hit) 

     
FSGSGSGTDFT TISR 

 
Ig Κ chain V-III region 

HIC 

 
P18136.1 

 
129 

 
Homo sapiens  

 
2e-05 

 (4th hit) 
     

FSGSGSGTDFT TISR 
 

Ig Κ chain V-III region Ti 
 

P01622.1 
 

109 
 

Homo sapiens  
 

2e-05 
(5th hit) 

     
FSGSGSGTDFT TISR 

 
Ig Κ chain V-III region 

SIE 

 
P01620.1 

 
109 

 
Homo sapiens  

 
2e-05 

(6th hit) 
     

FSGSGSGTDFT TISR 
 

Ig Κchain V-III region 
HAH 

 
P18135.1 

 
129 

 
Homo sapiens  

 
2e-05 

(7th hit) 
     

FSGSGSGTDFT TISR 
 

Ig Κ chain V-III region 
WOL 

 
P01623.1 

 
109 

 
Homo sapiens  

 
2e-05 

(8th hit) 
     

FSGSGSGTDFT TISR 
 

Ig Κchain V-III region 
GOL 

 
P04206.1 

 
109 

 
Homo sapiens  

 
2e-05 

 (9th hit) 
 B6 751.4 +2 VFGGGTKLTVLGQPK      
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    VFGGGTKLTVL QPK Ig Λ chain V-III region 
LOI 

P80748.1 111 Homo sapiens  7e-05  
(1st hit) 

     
VFGGGT+LT+LGQPK 

 
IΛ-like polypeptide 1 

 
P20764.2 

 
209 

 
Mus musculus  

 
6e-04  

(2nd hit) 
     

VFGGGTKLTVLG 
 

Ig Λ-1 chain V regions 
MOPC 

 

 
P01724.1 

 
129 

 
Mus musculus  

 
0.006  

(3rd hit) 

     
 

VFGGGTKLTVLG 

 
Ig Λ chain V-I region BL2 

 
P06316.1 

 
130 

 
Homo sapiens  

 
0.006 

(4th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ chain V-V region 
DEL 

 
P01719.1 

 
108 

 
Homo sapiens  

 
0.006 

(5th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ chain V-VI region 
EB4 

 
P06319.1 

 
131 

 
Homo sapiens  

 
0.006 

(6th hit) 
     

VFGGGTKLTVLG 
 

Ig Λchain V-II region VIL 
 

P01711.1 

 
111 

 
Homo sapiens  

 
0.006 

(7th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ-1 chain V region 
H2020 

 
P01726.1 

 
129 

 
Mus musculus  

 
0.006 

(8th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ-1 chain V region S43 
 

P01727.1 

 
129 

 
Mus musculus  

 
0.006 

(9th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ-1 chain V region  
S178 

 
P01725.1 

 
110 

 
Mus musculus  

 
0.006 

(10th hit) 
     

VFGGGTKLTVLG 
 

Ig Λ chain V-VI region 
SUT 

 
P06317.1 

 
111 

 
Homo sapiens  

 
0.006 

(11th hit) 
 B2 510.8 +2 V(I/L)ASFGEAVK      

    VLASFGEAVK Hemoglobin, β P02131.1 146 Caiman crocodilus  0.27 
(1st hit) 

     
VLASFGEAVK 

 
Hemoglobin, β 

 
P02130.1 

 
146 

 
Alligator mississippiensis  

 
0.27 

(2nd hit) 
     

VL+SFGEAVK 
 

Hemoglobin, ε 
 

P02128.2 
 

147 
 

Gallus gallus  
 

1.6 
(3rd hit) 

     
VL+SFGEAVK 

 
Hemoglobin, ρ 

 
P02127.2 

 
147 

 
Gallus gallus  

 
1.6 

(4th hit) 
     

VL SFGEAVK 
 

Hemoglobin , ε 
 

Q28496.3 
 

147 
 

Microcebus murinus  
 

2.1 
(5th hit) 

     
VLASFGEAV 

 
Hemoglobin, β 

 
P02129.1 

 
146 

 
Crocodylus niloticus 

 
2.1 

(6th hit) 
     

VL SFGEAVK 
 

Hemoglobin, ε 
 

P19759.2 
 

147 
 

Otolemur crassicaudatus  
 

2.1 
(7th hit) 

 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P13274.1 
 

146 
 

Chrysemys picta bellii  
 

2.1 
(8th hit) 
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VL SFGEAVK 
 

Hemoglobin, β 
 

P83133. 
 

146 
 

Dipsochelys dussumieri  
 

2.1 
(9th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P02125.1 

 
146 

 
Ciconia ciconia  

 
2.1 

(10th hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P14524.1 
 

146 
 

Turdus merula  
 

2.1 
(11th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P08851.1 

 
146 

 
Accipiter gentilis  

 
2.1 

(12th hit) 
     

VL SFGEAVK 
 

 
Hemoglobin, β 

 
P02116.1 

 
146 

 
Ara ararauna  

 
2.1 

(13th hit) 
          

    VL SFGEAVK Hemoglobin, β P07411.1 146 Vultur gryphus  2.1 
(14th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P15165.1 

 
146 

 
Apus apus  

 
2.1 

(15th hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P08261.1 
 

146 
 

Larus ridibundus  
 

2.1 
(16th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P21668.1 

 
146 

 
Psittacula krameri  

 
2.1 

(17th hit) 
     

VL SFGEAVK 
 

Hemoglobin, ε 
 

Q95238.3 
 

147 
 

Propithecus verreauxi  
 

2.1 
(18th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P02120.1 

 
146 

 
Anseranas semipalmata  

 
2.1 

(19th hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
P10782.1  

146 
 

Phalacrocorax carbo  
 

2.1 
(20th hit) 

     
VL SFGEAVK 

 
Hemoglobin, ε 

 
P08223.2 

 
146 

 
Eulemur fulvus fulvus  

 
2.1 

(21st hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P07406.1 
 

146 
 

Passer montanus  
 

2.1 
(22nd hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P68061.1 

 
146 

 
Aegypius monachus  

 
2.1 

(23rd hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P02122.1 
 

146 
 

Aquila chrysaetos  
 

2.1 
(24th hit) 

     
VL SFGEAVK 

 
Hemoglobin, ε 

 
Q28338.3 

 
147 

 
Cheirogaleus medius  

 
2.1 

(25th hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P02109.3 
 

147 
 

Didelphis virginiana  
 

2.1 
(26th hit) 

     
VL SFGEAVK 

 
Hemoglobin, β 

 
P02121.1 

 
146 

 
Phoenicopterus ruber ruber  

 
2.1 

(27th hit) 
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VL SFGEAVK 

 
Hemoglobin, β 

 
Q98905.3 

 
147 

 
Geochelone carbonaria  

 
2.1 

(28th hit) 
     

VL SFGEAVK 
 

Hemoglobin, β 
 

P82113.1 
 

146 
 

Stercorarius maccormicki  
 

2.1 
(29th hit) 

 B2 500.8 +2 LSSPISGDPK      

    PISGDPK Microtubule-actin cross-
linking factor 1 

Q9UPN3.3 5430 Homo sapiens  54 
(1st hit) 

     
PISGDPK 

 
Microtubule-actin cross-

linking factor 1, isoform 4 

 
Q96PK2.2 

 
5938 

 
Homo sapiens  

 
54 

(2nd hit) 
     

PISGDPK 
 

Microtubule-actin cross-
linking factor 1 

 
Q9QXZ0.1 

 
5327 

 
Mus musculus  

 
54 

(3rd hit) 
     

SP+SGDPK 
 

TonB-dependent heme 
receptor A 

 
P44523.1 

 
744 

 
Haemophilus influenza  

 
129  

(4th hit) 
     

L SPIS DP 
 

M-phase inducer 
phosphatase 1-B 

 
P30309.1 

 
550 

 
Xenopus laevis  

 
175  

(5th hit) 
     

L SPIS DP 
 

M-phase inducer 
phosphatase 1-A 

 
P30308.1 

 
550 

 
Xenopus laevis  

 
175 

(6th hit) 
     

LSSP  I+G+PK 
 

Hemoglobin subunit β-3 
 

P02136.2 
 

147 
 

Rana catesbeiana  
 

175  
(7th hit) 

     
L SPIS DP 

 
M-phase inducer 

phosphatase 3 

 
P30311.1 

 
572 

 
Xenopus laevis  

 
175 

(8th hit) 
     

L SPIS DP 
 

M-phase inducer 
phosphatase 2 

 
P30310.1 

 
599 

 
Xenopus laevis  

 
175 

(9th hit) 
 B6 522.8 +2 IMSIVDPNR      

    IMSIVDPNR 
 

α-actinin-1 Q3B7N2.1 892 Bos taurus  0.1 
(1st hit) 

    IMSIVDPNR α-actinin-1 Q2PFV7.1 892 Macaca fascicularis  0.1 
(2nd hit) 

     
IMSIVDPNR 

 
α-actinin-1 

 
Q7TPR4.1 

 
892 

 
Mus musculus  

 
0.1 

(3rd hit) 
     

IMSIVDPNR 
 

 
α-actinin-1 

 
P05094.3 

 
893 

 
Gallus gallus  

 
0.1 

(4th hit) 
    IMSIVDPNR α-actinin-1 P12814.2 892 Homo sapiens  0.1 

(5th hit) 
     

IMSIVDPNR 
 

α-actinin-1 
 

Q9Z1P2.1 
 

892 
 

Rattus norvegicus  
 

0.1 
(6th hit) 

     
IMS+VDPN 

 
α-actinin-4 

 
A5D7D1.1| 

 
911 

 
Bos taurus  

 
6.2 

(7th hit) 
     

IMS+VDPN 
 

α -actinin-4 
 

Q9QXQ0.2 
 

911 
 

Rattus norvegicus  
 

6.2 
(8th hit) 

     
IMS+VDPN 

 
α-actinin-4 

 
P57780.1 

 
912 

 
Mus musculus  

 
6.2 

(9th hit) 
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IMS+VDPN 

 
α-actinin-4 

 
Q5RCS6.1 

 
911 

 
Pongo abelii  

 
15 

(10th hit) 
     

IMS+VDPN 
 

α-actinin-2 
 

P20111.1 
 

897 
 

Gallus gallus  
 

15 
(11th hit) 

     
IMS+VDPN 

 
α-actinin-4 

 
O43707.2 

 
911 

 
Homo sapiens  

 
15 

(12th hit) 
     

IMS+VDPN 
 

α-actinin-4 
 

Q90734.1 
 

904 
 

Gallus gallus  
 

15 
(13th hit) 

 B5 506.2 +3 QEYDESGPSIVHR      
    QEYDESGPSIVHR γ-Actin P20359.2 375 Emericella nidulans 

 
3e-05  

(1st hit) 
    QEYDESGPSIVHR Actin P53455.2 375 Ajellomyces capsulatus G186AR  3e-05 

(2nd hit) 
     

QEYDESGPSIVHR 
 

POTE ankyrin domain 
family member E 

 
Q6S8J3.3 

 
1075 

 
Homo sapiens  

 
3e-05 

(3rd hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

Q0PGG4.1 
 

 
375 

 
Bos grunniens  

 
3e-05 

(4th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

P84856.1 
 

361 
 

Chlorocebus pygerythrus  
 

3e-05 
(5th hit) 

     
 

QEYDESGPSIVHR 

 
 

Chimeric POTE-actin 
protein 

 
 

A5A3E0.2 

 
 

1075 

 
Homo sapiens  

 
3e-05 

(6th hit) 

     
QEYDESGPSIVHR 

 
γ-Actin 

 
Q5JAK2.1 

 
375 

 
Rana lessonae  

 
3e-05 

(7th hit) 
     

 
QEYDESGPSIVHR 

 
 

Actin, cytoplasmic 2 

 
 

Q6P378.1 

 
 

375 

 
 

Xenopus tropicalis 
 

 
3e-05  

(8th hit) 

     
QEYDESGPSIVHR 

 
Κ-actin 

 
Q9BYX7.1 

 
375 

 
Homo sapiens 

 
3e-05 

(9th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

Q2U7A3.1 
 

375 
 

Aspergillus oryzae  
 

3e-05 
(10th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
P84336.1 

 
375 

 
Camelus dromedarius  

 
3e-05 

(11th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

Q6NVA9.1 
 

375 
 

Xenopus tropicalis  
 

3e-05 
(12th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
Q7ZVI7.2 

 
375 

 
Danio rerio  

 
3e-05 

(13th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoskeletal 3 
 

Q25379.1 
 

172 
 

Lytechinus pictus  
 

3e-05 
(14th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
Q964E1.1 

 
376 

 
Biomphalaria obstructa  

 
3e-05 

(15th hit) 
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QEYDESGPSIVHR Actin, cytoplasmic P12716.1 376 Pisaster ochraceus  3e-05 
(16th hit) 

 
     

QEYDESGPSIVHR 
 

Actin-3 
 

P41340.1 
 

376 
 

Limulus polyphemus  
 

3e-05 
(17th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic A3 

 
P04829.3 

 
376 

 
Bombyx mori  

 
3e-05 

(18th hit) 
     

QEYDESGPSIVHR 
 

Actin-2 
 

P26197.1 
 

377 
 

Absidia glauca  
 

3e-05 
(19th hit) 

     
QEYDESGPSIVHR 

 
Actin-2 

 
P92176.1 

 
376 

 
Lumbricus  

 
3e-05 

(20th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

P91754.1 
 

372 
 

Lumbricus rubellus  
 

3e-05 
(21st hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 3A 

 
P53474.1 

 
376 

 
Strongylocentrotus purpuratus  

 
3e-05 

(22nd hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoskeletal 3B 
 

P18499.1 
 

376 
 

Strongylocentrotus purpuratus  
 

3e-05 
(23rd hit) 

     
QEYDESGPSIVHR 

 
Actin-3 

 
P41113.1 

 
376 

 
Podocoryna carnea  

 
3e-05 

(24th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoskeletal 2A 
 

Q07903.1 
 

376 
 

Strongylocentrotus purpuratus  
 

3e-05 
(25th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic A3a 

 
Q25010.1 

 
376 

 
Helicoverpa armigera  

 
3e-05 

(26th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic 
 

Q964E3.1 
 

376 
 

Biomphalaria alexandrina  
 

3e-05 
(27th hit) 

     
QEYDESGPSIVHR 

 
γ-Actin 

 
P63256.1 

 
375 

 
Anser anser anser  

 
3e-05 

(28th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

P18602.1 
 

327 
 

Artemia species 
 

3e-05 
(29th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
P92179.2 

 
376 

 
Biomphalaria glabrata  

 
3e-05 

(30th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

P68142.1 
 

375 
 

Takifugu rubripes  
 

3e-05 
(31st hit) 

     
QEYDESGPSIVHR 

 
Actin 

 
P53461.1 

 
376 

 
Halocynthia roretzi  

 
3e-05 

(32nd hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic 
 

Q93131.1 
 

375 
 

Branchiostoma floridae  
 

3e-05 
(33rd hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 1 

 
P53465.1 

 
376 

 
Lytechinus pictus  

 
3e-05 

(34th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

P10365.1 
 

375 
 

Thermomyces lanuginosus 
 

3e-05 
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 (35th hit) 
     

QEYDESGPSIVHR 
 

Actin-1 
 

O18499.1 
 

376 
 

Saccoglossus kowalevskii  
 

3e-05 
(36th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
Q91ZK5.1 

 
375 

 
Sigmodon hispidus  

 
3e-05 

(37th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic type 8 
 

P53506.1 
 

376 
 

Xenopus laevis  
 

3e-05 
(38th hit) 

     
QEYDESGPSIVHR 

 
Actin-1 

 
P92182.1 

 
376 

 
Lumbricus terrestris  

 
3e-05 

(39th hit) 
     

QEYDESGPSIVHR 
 

γ-Actin 
 

Q8JJB8.1 
 

375 
 

Triakis scyllium  
 

3e-05 
(40th hit) 

     
QEYDESGPSIVHR 

 
Actin-15A 

 
P10990.1 

 
376 

 
Strongylocentrotus franciscanus 

 
3e-05 

(41st hit) 
     

QEYDESGPSIVHR 
 

γ-Actin 
 

Q9UVW9.1 
 

375 
 

Acremonium chrysogenum  
 

3e-05 
(42nd hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 2 

 
P53466.1 

 
376 

 
Lytechinus pictus  

 
3e-05 

(43rd hit) 
     

QEYDESGPSIVHR 
 

Actin-1/2 
 

P41112.1 
 

376 
 

Podocoryna carnea  
 

3e-05 
(44th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 

 
P53464.1 

 
376 

 
Heliocidaris tuberculata  

 
3e-05 

(45th hit) 
     

QEYDESGPSIVHR 
 

Actin, adductor muscle 
 

Q26065.1 
 

376 
 

Placopecten magellanicus  
 

3e-05 
(46th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 1B 

 
P53473.1 

 
376 

 
Strongylocentrotus purpuratus  

 
3e-05 

(47th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

P48975.1 
 

375 
 

Cricetulus griseus  
 

3e-05 
(48th hit) 

     
QEYDESGPSIVHR 

 
Actin-15B 

 
P69004.1 

 
376 

 
Strongylocentrotus franciscanu  

 
3e-05 

(49th hit) 
     

QEYDESGPSIVHR 
 

Actin, muscle 
 

P17304.1 
 

376 
 

Aplysia californica  
 

3e-05 
(50th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
P60711.1 

 
375 

 
Rattus norvegicus  

 
3e-05 

(51st hit) 
     

QEYDESGPSIVHR 
 

Actin, muscle-type 
 

Q25472.1 
 

378 
 

Molgula oculata  
 

3e-05 
(52nd hit) 

     
QEYDESGPSIVHR 

 
Actin 

 
Q8X119.1 

 
375 

 
Exophiala dermatitidis  

 
3e-05 

(53rd hit) 
     

QEYDESGPSIVHR 
 

Actin-42A 
 

P02572.3 
 

376 
 

Drosophila melanogaster  
 

3e-05 
(54th hit) 
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QEYDESGPSIVHR β-Actin P79818.2 375 Oryzias latipes 
 

3e-05 
(55th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
P83750.1 

 
375 

 
Cyprinus carpio  

 
3e-05 

(56th hit) 
     

QEYDESGPSIVHR 
 

Actin CyI, cytoplasmic 
 

P69002.1 
 

376 
 

Heliocidaris erythrogramma  
 

3e-05 
(57th hit) 

     
QEYDESGPSIVHR 

 
Actin-1 

 
P30163.1 

 
376 

 
Onchocerca volvulus  

 
3e-05 

(58th hit) 
     

QEYDESGPSIVHR 
 

Actin-2 
 

P30162.1 
 

376 
 

Onchocerca volvulus  
 

3e-05 
(59th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
Q93129.1 

 
375 

 
Branchiostoma belcheri  

 
3e-05 

(60th hit) 
     

QEYDESGPSIVHR 
 

Actin, non-muscle 
 

P17126.1 
 

376 
 

Hydra vulgaris  
 

3e-05 
(61st hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
O93400.1 

 
375 

 
Xenopus laevis  

 
3e-05 

(62nd hit) 
     

QEYDESGPSIVHR 
 

Actin-2 
 

O18500.1 
 

376 
 

Saccoglossus kowalevskii  
 

3e-05 
(63rd hit) 

     
QEYDESGPSIVHR 

 
Actin, clone 403 

 
P18603.1 

 
376 

 
Artemia species  

 
3e-05 

(64th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

P15475.1 
 

376 
 

Xenopus borealis  
 

3e-05 
(65th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoskeletal 1A 

 
P53472.1 

 
376 

 
Strongylocentrotus purpuratus  

 
3e-05 

(66th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

O42161.1 
 

375 
 

Salmo salar  
 

3e-05 
(67th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
Q964E0.1 

 
376 

 
Biomphalaria tenagophila  

 
3e-05 

(68th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

O13419.1 
 

375 
 

Botryotinia fuckeliana  
 

3e-05 
(69th hit) 

     
QEYDESGPSIVHR 

 
β-Actin 

 
P53486.1 

 
375 

 
Takifugu rubripes  

 
3e-05 

(70th hit) 
     

QEYDESGPSIVHR 
 

Actin-5 
 

P41339.1 
 

376 
 

Limulus polyphemus  
 

3e-05 
(71st hit) 

     
QEYDESGPSIVHR 

 
γ-Actin 

 
Q9URS0.1 

 
375 

 
Penicillium chrysogenum  

 
3e-05 

(72nd hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoskeletal 
 

P53463.1 
 

376 
 

Heliocidaris erythrogramma  
 

3e-05 
(73rd hit) 

     
QEYDESGPSIVHR 

 
Actin 

 
P50138.1 

 
375 

 
Puccinia graminis  

 
3e-05 

(74th hit) 
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QEYDESGPSIVHR 

 
Actin-1/3 

 
P10983.2 

 
376 

 
Caenorhabditis elegans  

 
3e-05 

(75th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic type 5 
 

P53478.1 
 

376 
 

Gallus gallus  
 

3e-05 
(76th hit) 

     
QEYDESGPSIVHR 

 
β-Actin B 

 
P53485.1 

 
375 

 
Takifugu rubripes  

 
3e-05 

(77th hit) 
     

QEYDESGPSIVHR 
 

Actin-3 
 

Q03342.1 
 

309 
 

Echinococcus granulosus  
 

3e-05 
(78th hit) 

     
QEYDESGPSIVHR 

 
Actin, muscle 

 
P12717.1 

 
376 

 
Pisaster ochraceus  

 
3e-05 

(79th hit) 
     

QEYDESGPSIVHR 
 

β-Actin 
 

P29751.1 
 

375 
 

Oryctolagus cuniculus  
 

3e-05 
(80th hit) 

     
QEYDESGPSIVHR 

 
Actin-2 

 
P10984.3 

 
376 

 
Caenorhabditis elegans  

 
3e-05 

(81st hit) 
     

QEYDESGPSIVHR 
 

Actin, muscle 
 

Q25381.1 
 

172 
 

Lytechinus pictus  
 

3e-05 
(82nd hit) 

     
QEYDESGPSIVHR 

 
Actin-6 

 
P53459.1 

 
373 

 
Diphyllobothrium dendriticum  

 
3e-05 

(83rd hit) 

     
QEYDESGPSIVHR 

 
Actin-11 

 
P41341.1 

 
376 

 
Limulus polyphemus  

 
3e-05 

(84th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic 
 

Q964E2.1 
 

376 
 

Biomphalaria pfeifferi  
 

3e-05 
(85th hit) 

     
QEYDESGPSIVHR 

 
Actin 

 
Q24733.1 

 
33 

 
Dictyocaulus viviparus  

 
3e-05 

(86th hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic type 5 
 

P53505.1 
 

376 
 

Xenopus laevis  
 

3e-05 
(87th hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
Q00215.1 

 
375 

 
Styela plicata  

 
3e-05 

(88th hit) 
     

QEYDESGPSIVHR 
 

Actin 
 

O17320.1 
 

376 
 

Crassostrea gigas  
 

3e-05 
(89th hit) 

     
QEYDESGPSIVHR 

 
Actin-4 

 
P10986.2 

 
376 

 
Caenorhabditis elegans  

 
3e-05 

(90th hit) 
     

QEYDESGPSIVHR 
 

Actin-1 
 

P35432.1 
 

375 
 

Echinococcus granulosus  
 

3e-05 
(91st hit) 

     
QEYDESGPSIVHR 

 
Actin, cytoplasmic 

 
O17503.1 

 
375 

 
Branchiostoma lanceolatum  

 
3e-05 

(92nd hit) 
     

QEYDESGPSIVHR 
 

Actin, cytoplasmic 
 

Q964D9.1 
 

376 
 

Helisoma trivolvis  
 

3e-05 
(93rd hit) 
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QEYDESGPSIVHR Actin, muscle Q00214.1 379 Styela plicata  3e-05 
(94th hit) 

     
QEYDESGPSIVHR 

 
Actin-5C 

 
P10987.4 

 
376 

 
Drosophila  

 
3e-05 

(95th hit) 
     

QEYDESGP+IVHR 
 

Actin-1 
 

P04751.1 
 

377 
 

Xenopus laevis 
 

2e-04  
(96th hit) 

 
    QEYDE+GPSIVHR α-Actin-1 P53479.1 377 Cyprinus carpio  2e-04  

(97th hit) 
     

QEYDE+GPSIVHR 
 

α-cardiac actin 
 

P04751.1 
 

377 
 

Xenopus laevis  
 

2e-04  
(98th hit) 

 
     

QEYDE+GPSIVHR 
 

Actin, α cardiac 
 

P53480. 
 

377 
 

Takifugu rubripes  
 

2e-04  
(99th hit) 

 
 B1 683.9 +2 STDYGILQINSR      

    STDYGILQINSR Lysozyme C P84492.1 130 Chelonia mydas  
 

6e-04  
(1st hit) 

    STDYGILQINSR Lysozyme C Q7LZI3.1 129 Tragopan satyra  6e-04  
(2nd hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

Q7LZQ1.3 
 

131 
 

Pelodiscus sinensis  
 

6e-04  
(3rd hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P24364.1 
 

129 
 

Lophura leucomelanos  
 

6e-04  
(4th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P81711.1 
 

129 
 

Syrmaticus soemmerringii  
 

6e-04  
(5th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P00702.2 
 

147 
 

Phasianus colchicus colchicus  
 

6e-04  
(6th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P00703.2 
 

147 
 

Meleagris gallopavo  
 

6e-04  
(7th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

Q7LZP9.1 
 

129 
 

Lophophorus impejanus  
 

6e-04  
(8th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P49663.1 
 

130 
 

Phasianus versicolor  
 

6e-04  
(9th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P00698.1 
 

147 
 

Gallus gallus 
 

6e-04  
(10th hit) 
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STDYGILQINSR Lysozyme C P00705.1 147 Anas platyrhynchos  6e-04  
(11th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P19849.1 
 

129 
 

Pavo cristatus  
 

6e-04  
(12th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P00701.2 
 

147 
 

Coturnix japonica  
 

6e-04  
(13th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

Q7LZQ3.1 
 

129 
 

Crax fasciolata  
 

6e-04  
(14th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P37156.1 
 

125 
 

Tachyglossus aculeatus aculeatus  
 

6e-04  
(15th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P24533.1 
 

129 
 

Syrmaticus reevesii  
 

6e-04  
(16th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

Q7LZT2.1 
 

129 
 

Tragopan temminckii  
 

6e-04  
(17th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P00707.1 
 

129 
 

Ortalis vetula  
 

6e-04  
(18th hit) 

 
     

STDYGILQINSR 
 

Lysozyme C 
 

P22910.1 
 

129 
 

Chrysolophus amherstiae  
 

6e-04  
(19th hit) 

 
     

STDYG+LQINSR 
 

 
Lysozyme C 

 
P00704.2 

 
129 

 
Numida meleagris  

 

 
0.003  

(20th hit) 
 

    STDYG+LQINSR 
 

Lysozyme C P00699.1 129 Callipepla californica  0.003 
(21st hit) 

     
STDYG+LQINSR 

 

 
Lysozyme C 

 
P00700.2 

 
129 

 
Colinus virginianus  

 
0.003 

(22nd hit) 
     

STDYGIL+INSR 
 

 
Lysozyme C 

 
P00706.1 

 
129 

 
Anas platyrhynchos 

 

 
0.004 

(23rd hit) 
 

    STDYGIL+INSR Lysozyme C Q7LZQ2.1 129 Aix sponsa  0.004 
(24th hit) 

 B1 503.3 +2 WDAWDALK      
    WDAW+ALK Acyl-CoA-binding protein Q9PRL8.1 86 Gallus gallus  1.7  

(1st hit) 
     

WDAW+AL 
 

Peroxisomal 3,2-trans-
enoyl-CoA isomerase 

 
Q9WUR2.2 

 
391 

 
 

Mus musculus  

 
13  

(2nd hit) 
     

WDAW+AL 
 

Peroxisomal 3,2-trans-
enoyl-CoA isomerase 

 
Q5XIC0.1 

 
391 

 
Rattus norvegicus  

 
13 

(3rd hit) 
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WDAW+AL 

 
Peroxisomal 3,2-trans-
enoyl-CoA isomerase 

 
O75521.4 

394 Homo sapiens  13 
(4th hit) 

    WDAW+ LK Acyl-CoA-binding protein P12026.2 87 Sus scrofa  18  
(5th hit) 

     
WDAW+ LK 

 
Acyl-CoA-binding protein 

 
Q8WN94.3 

 
87 

 
Oryctolagus cuniculus  

 
18 

(6th hit) 
     

WDAW+ LK 
 

Acyl-CoA-binding protein 
 

P07108.2 
 

87 
 

Homo sapiens  
 

18 
(7th hit) 

     
WDAW+ LK 

 
Acyl-CoA-binding protein 

 
P07107.2 

 
87 

 
Bos taurus  

 
18 

(8th hit) 
 B4 509.8 +2 IGTMLPMQK      
    I TMLPM QK Peptidoglycan hydrolase 

flgJ 
Q9I4P4.1 400 Pseudomonas aeruginosa  15  

(1st hit) 
     

MLPMQK 
 

 
Myeloid protein 1 

 

 
P08940.2 

 
326 

 
Gallus gallus  

 

 
36  

(2nd hit) 
     

IG MLPM K 
 

Arginine biosynthesis 
bifunctional protein argJ 

 
Q71Z77.1 

 
398 

 
Listeria monocytogenes str. 4b F2365  

 

 
49  

(3rd hit) 
     

IG MLPM K 
 

Arginine biosynthesis 
bifunctional protein argJ 

 
Q8Y6U2.1 

 
398 

 
Listeria monocytogenes 

 
49 

(4th hit) 
     

G+MLPM+K 
 

Replicase large subunit 
 

P18339.2 
 

1609 
 

Tobacco mild green mosaic virus  
 

49 
(5th hit) 

 B1 565.3 +2 LVTDVQEAVR      
    LVTDVQEAVR Proactivator polypeptide 

(Containing Saposin-A, B, 
C & D) 

O13035.1 518 Gallus gallus  0.084  
(1st hit) 

     
LVTDVQEA+R 

 
Hypothetical protein 

 
YP_001608779.1 

 
525 

 
Bartonella tribocorum CIP 105476  

 

 
1.2 

(2nd hit) 
 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q21XJ9.1 

 
278 

 
Rhodoferax ferrireducens  

 
17  

(3rd hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q2SVN0.1 

 
335 

 
Burkholderia thailandensis E264 

 
17 

(4th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q39GW5.1 

 
319 

 
Burkholderia species 383  

 
17 

(5th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q0BFQ0.1 

 
319 

 
Burkholderia ambifaria AMMD  

 
17 

(6th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 

 
Q3JSR6.1 

 
335 

 
Burkholderia pseudomallei 1710b  

 
17 
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import ATP-binding 
protein 
ssuB 

(7th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q62K56.2 

 
335 

 
Burkholderia mallei  

 
17 

(8th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q1BWL4.1 

 
319 

 
Burkholderia cenocepacia AU 1054  

 
17 

(9th hit) 

     
LVT DVQEAV 

 
Aliphatic sulfonates 
import ATP-binding 

protein 
ssuB 

 
Q63TW1.1 

 
327 

 
Burkholderia pseudomallei 

 
17 

(10th hit) 

 B2 646.9 +2 ISMPDFDLNLK      

    ISMPDFDLNLK Neuroblast differentiation-
associated protein 

AHNAK 

Q09666.2 5890 Homo sapiens  0.001 
 (1st hit) 

     
ISMPDFD++ 

 
DNA polymerase III 

subunit alpha 

 
Q1RKF9.1 

 
1172 

 
Rickettsia bellii RML369-C  

 

 
5.1  

(2nd hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
Q68VX1.1 

 
1180 

 
Rickettsia typhi  

 
5.1 

(3rd hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
Q92GB2.1 

 
1181 

 
Rickettsia conorii  

 
5.1 

(4th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
Q4UK40.1 

 
1207 

 
Rickettsia felis  

 
5.1 

(5th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
O05974.2 

 
1182 

 
Rickettsia prowazekii  

 
5.1 

(6th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
O51526.2 

 
1147 

 
Borrelia burgdorferi  

 
5.1 

(7th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
O83675.1 

 
1170 

 
Treponema pallidum  

 
5.1 

(8th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
Q9RX08.1 

 
1335 

 
Deinococcus radiodurans  

 
5.1 

(9th hit) 
     

ISMPDFD++ 
 

DNA polymerase III 
subunit alpha 

 
P57332.1 

 
1161 

 
Buchnera aphidicola  

 
5.1 

(10th hit) 
     

ISMPDFD 
 

DNA polymerase III 
subunit alpha 

Q9HXZ1.1 1173  
Pseudomonas aeruginosa  

 
6.8  

(11th hit) 
 B2 772.0 +2 AVASAAAALVLK      
    AVASAAAALVLK Talin-1 P26039.1 2541 Mus musculus  0.026  

(1st hit) 
     

AVASAAAALVLK 
 

Talin-1 
 

P54939.2 
 

2541 
 

Gallus gallus  
 

0.026  
(2nd hit) 
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AVASAAAALVLK 

 
Talin-1 

Q9Y490.3  
2541 

 
Homo sapiens  

 
0.026 

(3rd hit) 
     

AVA+AAA LVLK 
 

Talin-2 
 

Q9Y4G6.4 
 

2542 
 

Homo sapiens  
 
 

3.8  
(4th hit) 

    AVA+AAA LVLK  
Talin-2 

 
Q71LX4.2 

 
2375 

 
Mus musculus 

 
3.8 

(5th hit) 
     

AVA  AAALVLK 
 

Phycocyanin-645 α-1 
chain 

 
P23815.1 

 
70 

 
Chroomonas species  

 
6.8 

 (6th hit) 
 B2 525.8 +2 LGTFLENEK      
    LGTFLE+E Glutamyl-tRNA reductase Q2FTL0.1 424 Methanospirillum hungatei JF-1  36  

(1st hit) 
     

LGTFLEN 
 

Histone acetyltransferase 
p300 

 
Q09472.2 

 
2414 

 
Homo sapiens  

 
36 

(2nd hit) 
     

L TFLEN K 
 

Probable nucleoporin 
C890.06 

 
Q9URX8.3 

 
1315 

 
Schizosaccharomyces pombe  

 
87 

 (3rd hit) 
     

TFL+NEK 
 

UDP-3-O-[3-
hydroxymyristoyl] 

glucosamine N-
acyltransferase 

 
 

B0BBM4.1 

 
354 

 
Chlamydia trachomatis L2b/UCH-1/proctitis  

 
 

117 
 (4th hit) 

    TFL+NEK UDP-3-O-[3-
hydroxymyristoyl] 

glucosamine N-
acyltransferase 

B0B7F9.1 354 Chlamydia trachomatis  117 
(5th hit) 

     
TFL+NEK 

 
UDP-3-O-[3-

hydroxymyristoyl] 
glucosamine N-
acyltransferase 

 
Q254I9.1 

 
359 

 
Chlamydophila felis  

 
117 

(6th hit) 

     
TFL+NEK 

 
UDP-3-O-[3-

hydroxymyristoyl] 
glucosamine N-
acyltransferase 

 
Q5L612.1 

 
359 

 
Chlamydophila abortus  

 
117 

(7th hit) 

     
TFL+NEK 

 
UDP-3-O-[3-

hydroxymyristoyl] 
glucosamine N-
acyltransferase 

 
Q823E0.1 

 
359 

 
Chlamydophila caviae  

 

 
117 

(8th hit) 

     
TFL+NEK 

 
UDP-3-O-[3-

hydroxymyristoyl] 
glucosamine N-
acyltransferase 

 
Q9PKF1.1 

 
354 

 
Chlamydia muridarum  

 
117 

(9th hit) 

     
TFL+NEK 

 
UDP-3-O-[3-

hydroxymyristoyl] 
glucosamine N-
acyltransferase 

 
O84245.1 

 
354 

 
Chlamydia trachomatis  

 
117 

(10th hit) 
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 B4 821.9 +2 V(I/L)QQQADDAEER      

    V+QQQADDAEER Putative tropomyosin α-3 
chain-like protein 

A6NL28.2 223 Homo sapiens  0.006 
(1st hit) 

     
V+QQQADDAEER 

 
Tropomyosin α-3 chain 

 
Q63610.2 

 
248 

 
Rattus norvegicus  

 
0.006 

(2nd hit) 
     

QQQADDAE+R 
 

Tropomyosin α-4 chain 
 

 
P09495.3 

 
248 

 
Rattus norvegicus  

 
0.20 

(3rd hit) 
    QQQADDAE+R  

Tropomyosin α-4 chain 
 

 
Q6IRU2.3 

 
248 

 
Mus musculus  

 
0.20 

(4th hit) 
     

QQQAD+AE+R 
 

Tropomyosin α-4 chain 
 

 
P67937.3 

 
248 

 
Sus scrofa  

 
1.2 

(5th hit) 
     

QQQAD+AE+R 
 

Tropomyosin α-4 chain 
 

P02561.2 
 

248 
 

Equus caballus  
 

1.2 
(6th hit) 

 B6 587.3 +2 IPPKPPARAAR      

    PP+PPARAA Protein bassoon Q9UPA5.4 3926 Homo sapiens  17 
(1st hit) 

     
PPKPPAR 

 
Frizzled-8 

 
O93274.1 

 
581 

 
Xenopus laevis  

 
30 

 (2nd hit) 
     

IPPKPP R 
 

Sodium/hydrogen 
exchanger 2 

 
Q9UBY0.1 

 
812 

 
Homo sapiens  

 
30 

(3rd hit) 
     

PPKPPAR 
 

Structure-specific 
endonuclease subunit slx4 

 
Q7SFJ3.1 

 
1013 

 
Neurospora crassa  

 
30 

(4th hit) 
     

PP+PPARA 
 

Protein bassoon 
 

O88737.3 
 

3942 
 

Mus musculus  
 

97  
(5th hit) 

     
PPKPPA A 

 
DNA polymerase subunit 

γ-1 

 
P54098.1 

 
1239 

 
Homo sapiens  

 
97 

(6th hit) 
     

PP+PPARA 
 

Protein bassoon 
 

O88778.3 
 

3938 
 

Rattus norvegicus  
 

97 
(7th hit) 

     
P  PPAR+AR 

 
Stress response protein 

NST1 

 
Q5KHY3.1 

 
1353 

 
Filobasidiella neoformans  

 
97 

(8th hit) 
 B5 506.8 +2 IPSLPSGVDK      
    PSLPSGVD Stromelysin-1 P08254.2 477 Homo sapiens  12  

(1st hit) 
     

PSLPSG+D 
 

Stromelysin-1 
 

Q28397.1 
 

477 
 

Equus caballus  
 

54  
(2nd hit) 

     
IP LPSGV+ 

 
Amino-acid 

acetyltransferase 

 
A1C6J2.1 

 
718 

 
Aspergillus clavatus  

 
72  

(3rd hit) 
 B6 583.8 +2 AAGEIIAIPRR      
    AAGEIIAIPRR Envelope glycoprotein 

gp160 
Q89607.1 852 HIV-2 B_EHO  0.011  

(1st hit) 
     

AA  IIAIPRR 
 

Envelope glycoprotein 
gp160 

 
P15831.2 

 
859 

 
Human immunodeficiency virus type 2  

 
17  

(2nd hit) 
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EIIAIP+R Porphobilinogen 
deaminase 

A7GBW3.1 290 Clostridium botulinum F str. Langeland  22 
(3rd hit) 

     
IIAIPRR 

 
Envelope glycoprotein 

gp160 

 
Q76638.1 

 
857 

 
HIV-2 B_UC1  

 
22 

(4th hit) 
 B1 831.4 +2 NSWGTSWGEDGYFR      
    NSWGTSWGEDGYFR Dipeptidyl-peptidase 1 

(Cathepsin C) 
Q60HG6.1 463 Macaca fascicularis  5e-07  

(1st hit) 
     

NSWGTSWGE+GYFR 
 

Dipeptidyl-peptidase 1 
(Cathepsin C) 

 
Q3ZCJ8.1 

 
463 

 
Bos taurus  

 
3e-06  

(2nd hit) 
     

NSWGT WGEDGYFR 
 

Dipeptidyl-peptidase 1 
(Cathepsin C) 

 
Q5RB02.1 

 
463 

 
Pongo abelii  

 
5e-06  

(3rd hit) 
 B5 684.9 +2 FRTTMLQDSIR      
    FRTTMLQDSI Origin recognition 

complex subunit 2 
Q75PQ8.1 576 Rattus norvegicus  0.014  

(1st hit) 
     

FRTTMLQDSI 
 

Origin recognition 
complex subunit 2 

 
Q60862.1 

 
586 

 
Mus musculus 

 
0.014 

(2nd hit) 
     

FRTTMLQDSI 
 

Origin recognition 
complex subunit 2 

 
Q13416.2 

 
577 

 
Homo sapiens  

 
0.014 

(3rd hit) 
     

FRTTMLQD I 
 

Origin recognition 
complex subunit 2 

 
A6QNM3.2 

 
577 

 
Bos taurus  

 
0.20 

 (4th hit) 
     

FRT++LQDS 
 

Origin recognition 
complex subunit 2 

 
Q91628.1 

 
558 

 
Xenopus laevis  

 
22  

(5th hit) 
 B6 586.8 +2 LPPEQGTTSSR      

    LPPEQGTTSSR Cadherin EGF LAG 
seven-pass G-type 

receptor 2 
 

XP_002686199.1 2920 Bos Taurus (flamingo homolog, Drosophila) 0.36 
(1st hit) 

     
LPPEQGTTSSR 

 

 
Cadherin EGF LAG 
seven-pass G-type 

receptor 2 

 
NP_001179860.1 

 
2920 

 
Bos Taurus 

 
0.36 

(2nd hit) 

     
LPPE+GTTS 

 

 
26S proteasome 

regulatory subunit 7, 
putative 

 

 
XP_002778882.1 

 
543 

 
Perkinsus marinus ATCC 50983 

 
173 

(3rd hit) 

     
LPPE+GTT S 

 

 
Hypothetical protein 

LELG_03374 
 

 
XP_001525446.1 

 
716 

 
Lodderomyces elongisporus NRRL YB-4239 

 

 
173 

(4th hit) 

     
PPE+GTTS R 

 

 
Thiamine ABC 

transporter, permease 
protein 

 

 
YP_002827746.1 

 
540 

 
Rhizobium sp. NGR234 

 

 
232 

(5th hit) 

 B6 593.3 +2 AILYNYWDK      

    AILYNYWDK Complement component 
c3 

CAC69535.1 401 Crocodylus niloticus  0.50 
(1st hit) 

     
ILYNYWD 

 
Collagen-like cell surface-

anchored protein SclD 

 
YP_002745264.1 

 
324 

 
Streptococcus equi subspecies Zooepidemicus  

 
24 

(2nd hit) 
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ILYNYWD 

 
Collagen-like cell surface-

anchored protein SclD 

 
YP_002745683.1 

 
313 

 
Streptococcus equi subspecies equi 4047  

 
24 

(3rd hit) 
     

ILYNYWD 
 

Collagen-like cell surface-
anchored protein SclD 

 
YP_002122604.1 

 
336 

 
Streptococcus equi subspecies zooepidemicus 

MGCS10565  

 
24 

(4th hit) 
     

ILYNYWD 
 

Collagen-like protein D 
 

ABA41494.1 
 

258 
 

Streptococcus equi subspecies Equi  
 

24 
(5th hit) 

     
A+LY YWDK 

 
Hypothetical protein 

Btr_0321 

 
YP_001608779.1 

 
711 

 
Bartonella tribocorum CIP 105476 

 
41  

(6th hit) 
     

AILYNYW 
 

 
Complement component 

c3 
 

 
NP_990736.1   

 

 
1652 

 
Gallus gallus  

 

 
41 

 (7th hit) 

 B6 506.8 +2 NEALIALLR      

    NEALIALLR Plastin-2 Q6P698.1 624 Danio rerio  0.79 
(1st hit) 

     
NEALIALLR 

 
Plastin-2 

 
P13796.5 

 
627 

 
Homo sapiens  

 
0.79 

(2nd hit) 
     

NEALIALLR 
 

Plastin-2 
 

Q61233.4 
 

627 
 

Mus musculus  
 

0.79 
(3rd hit) 

     
NEALIALL 

 
Plastin-1 

 
 

A6H742.1 

 
 

630 

 
Bos taurus  

 
 

8.3 
(4th hit) 

     
NEALIALL 

 
Plastin-1 

 
Q14651.2 

 
629 

 
Homo sapiens  

 
8.3 

(5th hit) 
     

NEALIALL 
 

Plastin-1 
 

Q3V0K9.1 
 

630 
 

Mus musculus  
 

8.3 
(6th hit) 

     
NEALIALL 

 
Plastin-1 

 
P19179.1 

 
630 

 
Gallus gallus  

 
8.3 

(7th hit) 
     

NEALIAL  LR 
 

Metal-dependent 
hydrolase  

 
Q6KZZ9.1 

 
220 

 
Picrophilus torridus  

 
20 

(8th hit) 
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Table A.2. Proteins identified at single peptide level using BLAST. De novo sequenced peptides obtained from gel digest were 
searched using BLAST with a limited taxonomy, containing birds (taxid:8782), crocodiles (taxid:8493), turtles (taxid:8459), tuataras 
(taxid:8508) and squamates (taxid:8509) using the SwissProt database. The top three E-values are reported. 
 

 Band 
Number 

m/z Charge De Novo Sequence  Protein  Accession Number Protein Length  Organism E-Value 

 B4 1060.6 +2 EINLSPDSTSAVVSGLMVATK         

    EINLSPDSTSAVVSGLMVATK 
 

 Fibronectin  P11722 1256  Gallus gallus  2e-13  
(1st hit) 

 
    NLSP+S SA  Endoribonuclease Dicer  Q25BN1 1921  Gallus gallus  2.2  

(2nd hit) 
 

    NL P  TS  VSGL 
 

 Protein sidekick-1 
 

 Q8AV58 2169  
 

Gallus gallus  4.0 
(3rd hit) 

 B4 536.3 +2 YEVSVYALK         

    YEVSVYALK  Fibronectin  P11722 1256  Gallus gallus  
 

0.003 
 (1st hit) 

     
Y+++VYA+K 

  
Collagen α-1(XII) 

  
P13944 

 
3124 

  
Gallus gallus  

 

 
3.7 

 (2nd hit) 
     

Y VSVYA 
  

Tyrosine-protein kinase 
BTK 

  
Q8JH64 

 
657 

  
Gallus gallus  

 
12 

(3rd hit) 
 B4 701.3 +2 YQINQQWER         

    YQINQ  ER  Solute carrier family 41 
member 2 

 

 Q5ZHX6 573  Gallus gallus  2.1 
(1st hit) 

    INQQW  Thrombin-like enzyme  Q072L7 258  Lachesis stenophrys  
 

2.8 
(2nd hit) 

    INQQW  Serine α-fibrinogenase  Q8JH85 258  Macrovipera lebetina  2.8 
(3rd hit) 

     
INQQW 

  
Serine β-fibrinogenase 

  
Q8JH62 

 
257 

  
Macrovipera lebetina  

 
2.8 

(4th hit) 
     

QQWER 
  

Zyxin 
  

Q04584 
 

542 
  

Gallus gallus  
 

2.8 
(5th hit) 

     
YQ + QQWE 

  
Structural maintenance of 
chromosomes protein 2 

  
Q90988 

 
1189 

  
Gallus gallus  

 
5.0 

(6th hit) 

 B1 613.9 +2 LIALLEVLSQK         

    IA LLEVLS  Adenylate cyclase type 9  Q9DGG6 1334  Gallus gallus  
 

2.3 
(1st hit) 

     
LLEVL+Q 

  
Exportin-7 

  
Q5ZLT0 

 
1087 

  
Gallus gallus  

 

 
4.1 

(2nd hit) 
     

LI +LE +LSQK 
  

E3 ubiquitin-protein ligase 
MIB2 

  
Q5ZIJ9 

 
954 

  
Gallus gallus  

 
5.5 

(3rd hit) 
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AL EV+SQK 

 

  
Cell division 

cycle-associated protein 1 

  
Q76I90 

 
469 

  
Gallus gallus  

 
5.5 

(4th hit) 

 B1 487.3 +2 VYGPGVEPR         

    VYGP VE  116 kDa U5 small nuclear 
ribonucleoprotein 

component 

 Q5F3X4 972  Gallus gallus  6.7  
(1st hit) 

 
    VYGPG  Homeobox protein Hox-C8  Q9YH13 242  Gallus gallus  

 
29  

(2nd hit) 
     

YGP VE 
  

Protein sidekick-2 
  

Q8AV57 
 

2177 
  

Gallus gallus  
 

39  
(3rd hit) 

 B2 736.4 +2 AQQVSQGLDLLTAK         

    AQQVSQGLDLLTAK 
 

 Vinculin  P12003 1135  Gallus gallus  5e-07  
(1st hit) 

     
L+LLTAK 

  
NADH-ubiquinone 

oxidoreductase chain 3 
 

  
O47874 

 
115 

  
Alligator mississippiensis  

 
5.4  

(2nd hit) 

    LDLLT K  Probable ATP-dependent 
RNA helicase DDX10 

 Q5ZJF6 875  Gallus gallus  9.8  
(3rd hit) 

 B2 739.4 +2 MLGQMTDQVADLR         

    LGQMTDQ+ADLR  Vinculin  P12003 1135  Gallus gallus  
 

6e-05  
(1st hit) 

     
Q+TDQVA LR 

  
COUP transcription factor 2 

  
Q90733 

 
410 

  
Gallus gallus  

 

 
2.3 

 (2nd hit) 
     

MLGQM 
  

Importin-13 
  

Q5ZIC8 
 

958 
  

Gallus gallus  
 

5.5  
(3rd hit) 

 B2 655.9 +2 TVTAMDVVYALK         

    TVTAMDVVYALK  Histone H4   P70081 103  Gallus gallus  
 

5e-06 
(1st hit) 

     
TVTAMDVVYALK 

  
Histone H4 

  
P62800 

 
103 

  
Cairina moschata  

 

 
5e-06 

(2nd hit) 
     

TVT     +D VYALK 
  

Rho guanine nucleotide 
exchange factor 6 

  
Q5ZLR6 

 
764 

  
Gallus gallus  

 

 
1.7 

(3rd hit) 
     

T+T +DVVY 
  

UPF0636 protein C4orf41 
homolog 

  
Q5ZI89 

 
1132 

  
Gallus gallus  

 
5.5 

(4th hit) 

 B2 628.7 +2 LITKAVSASK         

    LITKAVSASK  Histone H1.03  P08285 224  Gallus gallus  
 

0.005 
(1st hit) 

     
LITKAVSASK 

 

  
Histone H1.10 

 

  
P08286 

 

 
220 

  
Gallus gallus  

 

 
0.005 

(2nd hit) 
     

LITKAVSASK 
  

Histone H1.11L 
  

P08287 
 

225 
  

Gallus gallus  
 

0.005 
(3rd hit) 
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LITKAVSASK 

  
Histone H1.01 

  
P08284 

 
219 

  
Gallus gallus  

 
0.005 

(4th hit) 
     

LITKAVSASK 
  

Histone H1 
  

P09987 
 

218 
  

Gallus gallus  
 

0.005 
(5th hit) 

     
LITKAVSASK 

  
Histone H1.11R 

  
P08288 

 
219 

  
Gallus gallus  

 
0.005 

(6th hit) 
     

LITKAV+ASK 
  

Histone H1 
  

P09426 
 

218 
  

Anas platyrhynchos  
 

0.028 
(7th hit) 

     
L+TKAV A 

  
Neurochondrin 

 

  
Q5ZIG0 

 
702 

  
Gallus gallus  

 
18 

(8th hit) 

 B6 833.9 +2 FSGSGSGTDFTFTISR         

    FSG GSG +FT  Large fibroblast 
proteoglycan 

 

 Q90953 3562  Gallus gallus  1.7  
(1st hit) 

    S SG GT FTF+  R  Docking protein 3  A3R064 426  Gallus gallus  
 

5.4  
(2nd hit) 

     
SG+GSG+  TF 

  
Protein PRRC1 

  
Q5F3I0 

 
442 

  
Gallus gallus  

 
13  

(3rd hit) 
 B6 751.4 +2 VFGGGTKLTVLGQPK         

    TVLGQP  Transmembrane protein 
184C 

 Q5ZMP3 445  Gallus gallus  
 

5.4  
(1st hit) 

     
GT LTVL Q K 

  
Integrator complex subunit 

2 

  
Q5ZKU4 

 
1192 

  
Gallus gallus  

 

 
13  

(2nd hit) 
     

VFG  +KLT 
  

Protein HIRA 
  

P79987 
 

1019 
  

Gallus gallus  
 

18  
(3rd hit) 

 B2 510.8 +2 VLASFGEAVK         

    VLASFGEAVK  Hemoglobin subunit β  P02131 146  Caiman crocodilus  
 

0.003 
(1st hit) 

    VLASFGEAVK  Hemoglobin subunit β  P02130 
 

146  Alligator mississippiensis  
 

0.003 
(2nd hit) 

    VL+SFGEAVK  Hemoglobin subunit 
epsilon 

 P02128 
 

147  Gallus gallus  0.015 
(3rd hit) 

     
VL+SFGEAVK 

  
Hemoglobin ρ chain 

  
P02127 

 
147 

  
Gallus gallus  

 
0.015 

(4th hit) 
     

VLASFGEAV 
  

Hemoglobin β chain 
  

P02129 
 

146 
  

Crocodylus niloticus  
 

0.021 
(5th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P13274 

 
146 

  
Chrysemys picta bellii  

 
0.021 

(6th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P83133 
 

146 
  

Dipsochelys dussumieri  
 

0.021 
(7th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P02125 

 
146 

  
Ciconia ciconia  

 
0.021 

(8th hit) 
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VL SFGEAVK 

  
Hemoglobin β chain 

  
P14524 

 
146 

  
Turdus merula  

 
0.021 

(9th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P08851 
 

146 
  

Accipiter gentilis  
 

0.021 
(10th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P02116 

 
146 

  
Ara ararauna  

 
0.021 

(11th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P07411 
 

146 
  

Vultur gryphus  
 

0.021 
(12th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P15165 

 
146 

  
Apus apus  

 
0.021 

(13th hit) 
     

VL SFGEAVK 
  

Hemoglobin β/β' chain 
  

P08261 
 

146 
  

Larus ridibundus  
 

0.021 
(14th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P21668 

 
146 

  
Psittacula krameri  

 
0.021 

(15th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P02120 
 

146 
  

Anseranas semipalmata  
 

0.021 
(16th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P10782 

 
146 

  
Phalacrocorax carbo  

 
0.021 

(17th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P07406 
 

146 
  

Passer montanus  
 

0.021 
(18th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P68061 

 
146 

  
Aegypius monachus  

 
0.021 

(19th hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

P02122 
 

146 
  

Aquila chrysaetos  
 

0.021 
(20th hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P02121 

 
146 

  
Phoenicopters ruber ruber  

 
0.021 

(21st hit) 
     

VL SFGEAVK 
  

Hemoglobin β chain 
  

Q98905 
 

147 
  

Geochelone carbonaria  
 

0.021 
(22nd hit) 

     
VL SFGEAVK 

  
Hemoglobin β chain 

  
P82113 

 
146 

  
Stercorarius maccormicki  

 
0.021 

(23rd hit) 
 B2 500.8 +2 LSSPISGDPK         

    LSSP  ISG+P  Hemoglobin subunit β  P07036 146  Chloephaga melanoptera  
 

2.3 
(1st hit) 

    PISGDP  Myosin-binding protein C  Q90688 1272  Gallus gallus  
 

4.1 
(2nd hit) 

     
LSSP  I G+PK 

  
Hemoglobin subunit ε 

  
P14261 

 
147 

  
Cairina moschata  

 
13 

(3rd hit) 
     

LSSP  I G+PK 
  

Hemoglobin ρ chain 
  

P02127 
 

147 
  

Gallus gallus  
 

13 
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 (4th hit) 
     

LSSP  I+G+P 
  

Hemoglobin β/β' chain 
  

P08261 
 

146 
  

Larus ridibundus  
 

13 
(5th hit) 

     
LSSP  I+G+P 

  
Hemoglobin β-1 chain 

  
P18993 

 
146 

  
Varanus exanthematicus 

albigularis  

 
13 

(6th hit) 
 B6 522.8 +2 IMSIVDPNR         

    IMSIVDPNR  α-actinin-1  P05094 893  Gallus gallus  
 

0.001 
 (1st hit) 

     
IMS+VDPN 

  
α-actinin-2 

  
P20111 

 
897 

  
Gallus gallus  

 

 
0.15 

 (2nd hit) 

     
IMS+VDPN 

  
α-actinin-4 

  
Q90734 

 
904 

  
Gallus gallus  

 
0.15  

(3rd hit) 
     

SIVDP NR 
  

PRELI domain-containing 
protein 1, mitochondrial 

  
Q90673 

 
215 

  
Gallus gallus  

 
5.0 

(4th hit) 
 B5 506.2 +3 QEYDESGPSIVHR         

    QEYDESGPSIVHR  γ-actin  Q5ZMQ2 375  Gallus gallus  
 

3e-07 
(1st hit) 

     
QEYDESGPSIVHR 

  
γ-actin 

  
P63256 

 
375 

  
Anser anser  

 
3e-07 

(2nd hit) 
     

QEYDESGPSIVHR 
  

β-actin 
  

P60706 
 

375 
  

Gallus gallus  
 

3e-07 
(3rd hit) 

     
QEYDESGPSIVHR 

  
Actin, cytoplasmic type 5 

  
P53478 

 
376 

  
Gallus gallus  

 
3e-07 

(4th hit) 
     

QEYDE+GPSIVHR 
  

Actin, alpha cardiac muscle 
1 

  
P68034 

 
377 

  
Gallus gallus  

 
2e-06 

(5th hit) 

     
QEYDE+GPSIVHR 

  
α-actin 

  
P08023 

 
377 

  
Gallus gallus  

 
2e-06 

(6th hit) 
     

QEYDE+GPSIVHR 
  

α-actin-1 
  

P68139 
 

377 
  

Gallus gallus  
 

2e-06 
(7th hit) 

     
QEYDE+GPSIVHR 

  
α-actin-1 

  
Q90X97 

 
377 

  
Atractaspis microlepidota  

 
2e-06 

(8th hit) 
     

EYDE+GPSIVHR 
  

Γ-2-actin 
  

P63270 
 

376 
  

Gallus gallus  
 

2e-05 
(9th hit) 

 B1 683.9 +2 STDYGILQINSR         

    STDYGILQINSR  Lysozyme C  P84492 130  Chelonia mydas  5e-06 
(1st hit) 

 
    STDYGILQINSR  Lysozyme C  Q7LZI3 129  Tragopan satyra  5e-06 

(2nd hit) 
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STDYGILQINSR 

  
Lysozyme C 

  
Q7LZQ1 

 
131 

  
Pelodiscus sinensis  

 
5e-06 

(3rd hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P24364 
 

129 
  

Lophura leucomelanos  
 

5e-06 
(4th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
P81711 

 
129 

  
Syrmaticus soemmerringii  

 
5e-06 

(5th hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P00702 
 

147 
  

Phasianus colchicus 
colchicus  

 
5e-06 

(6th hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P00703 
 

147 
  

Meleagris gallopavo  
 

5e-06 
(7th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
Q7LZP9 

 
129 

  
Lophophorus impejanus  

 
5e-06 

(8th hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P49663 
 

130 
  

Phasianus versicolor  
 

5e-06 
(9th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
P00698 

 
147 

  
Gallus gallus  

 
5e-06 

(10th hit) 
     

STDYGILQINSR 
  

Lysozyme C-1 
  

P00705 
 

147 
  

Anas platyrhynchos  
 

5e-06 
(11th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
P19849 

 
129 

  
Pavo cristatus  

 
5e-06 

(12th hit) 
    STDYGILQINSR  Lysozyme C  P00701 147   

Coturnix japonica  
 

5e-06 
(13th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
Q7LZQ3 

 
129 

  
Crax fasciolata  

 
5e-06 

(14th hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P24533 
 

129 
  

Syrmaticus reevesii  
 

5e-06 
(15th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
Q7LZT2 

 
129 

  
Tragopan temminckii  

 
5e-06 

(16th hit) 
     

STDYGILQINSR 
  

Lysozyme C 
  

P00707 
 

129 
  

Ortalis vetula  
 

5e-06 
(17th hit) 

     
STDYGILQINSR 

  
Lysozyme C 

  
P22910 

 
129 

  
Chrysolophus amherstiae  

 
5e-06 

(18th hit) 
     

STDYG+LQINSR 
  

Lysozyme C 
  

P00704 
 

129 
  

Numida meleagris  
 

3e-05 (19th 
hit) 
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STDYG+LQINSR 

 

  
Lysozyme C 

  
P00699 

 
129 

  
Callipepla californica  

 
3e-05 

(20th hit) 

     
STDYG+LQINSR 

  
Lysozyme C 

  
P00700 

 
129 

  
Colinus virginianus  

 
3e-05 

(21st hit) 
     

STDYGIL+INSR 
  

Lysozyme C-3 
 

  
P00706 

 
129 

  
Anas platyrhynchos  

 
4e-05 (22nd 

hit) 
 

     
STDYGIL+INSR 

  
Lysozyme C 

  
Q7LZQ2 

 
129 

  
Aix sponsa 

 

 
4e-05 

(23rd hit) 
 B1 503.3 +2 WDAWDALK         

    WDAW+ALK 
 

 Acyl-coenzyme A binding 
protein 

 

 Q9PRL8 86  Gallus gallus  0.017 
(1st hit) 

    WDAW AL 
 

 Acyl-CoA-binding domain-
containing protein 5 

 

 Q5ZHQ6 
 

492  Gallus gallus  
 

0.76 
(2nd hit) 

    W+ WDA  β-crystallin B3 
 

 P55165 211  Gallus gallus  11 
(3rd hit) 

     
WDAW 

  
β-crystallin A3 

  
P10042 

 
215 

  
Gallus gallus  

 
11 

(4th hit) 
     

W+AW+ LK 
  

Acyl-CoA-binding protein 
  

P45882 
 

103 
  

Anas platyrhynchos  
 

11 
(5th hit) 

 B4 509.8 +2 IGTMLPMQK         

    MLPMQK  Myeloid protein-1  P08940 326  Gallus gallus  
 

0.35 
(1st hit) 

     
TMLPM 

  
Brachyury protein 

 

  
P79777 

 
433 

  
Gallus gallus  

 
3.7 

(2nd hit) 
     

ML MQK 
  

Eukaryotic translation 
initiation factor 3 subunit 

  
Q5F428 

 
564 

  
Gallus gallus  

 
12 

(3rd hit) 
 

     
TM   LPMQ 

  
Paired box protein Pax-6 

  
P47237 

 
216 

  
Gallus gallus  

 
12 

(4th hit) 
     

TM   LPMQ 
  

Paired box protein Pax-6 
  

P47238 
 

416 
  

Coturnix japonica  
 

12 
(5th hit) 

 B1 565.3 +2 LVTDVQEAVR         

    LVTDVQEAVR  Saposin-A  O13035 
 
 

518  Gallus gallus  8e-04 
(1st hit) 

 
    VTDV EA  Cadherin-4  P24503 913  Gallus gallus  13 

(2nd hit) 
     

LVT+VQ   EA 
  

Prolactin-2 
  

P55752 
 

199 
  

Gallus gallus  
 

 
13 

(3rd hit) 
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LVT+VQ   EA 

  
Prolactin-1 

  
P55751 

 
199 

  
Alligator mississippiensis  

 
13 

(4th hit) 
     

VTD  VQEA 
  

Cystatin 
  

P08935 
 

111 
  

Bitis arietans  
 

13 
(5th hit) 

     
LVT+VQ   EA 

  
Prolactin-2 

  
P55754 

 
199 

  
Crocodylus novaeguineae  

 
13 

(6th hit) 
     

LVT+VQ   EA 
  

Prolactin-1 
  

P55753 
 

199 
  

Crocodylus novaeguineae  
 

13 
(7th hit) 

     
VTDVQ+ 

  
Fibronectin 

  
P11722 

 
1256 

  
Gallus gallus  

 
18 

(8th hit) 
 B2 646.9 +2 ISMPDFDLNLK         

    SMPDF  Myosin-Ig  Q5ZMC2 1007  Gallus gallus  
 

7.4 
(1st hit) 

     
DFDL+L 

  
Zinc finger FYVE domain-

containing protein 27 

  
Q5ZL36 

 
406 

  
Gallus gallus  

 

 
18 

(2nd hit) 
     

M D+DL LK 
  

Uncharacterized protein 
C17orf85 homolog 

  
Q5ZM19 

 
604 

  
Gallus gallus  

 
24 

(3rd hit) 
     

IS+PDF 
  

Collagen α-3(VI) chain 
  

P15989 
 

3137 
  

Gallus gallus  
 

24 
(4th hit) 

 B2 772.0 +2 AVASAAAALVLK         

    AVASAAAALVLK  Talin-1  P54939 2541  Gallus gallus  
 

2e-04  
(1st hit) 

     
VASAAAA 

  
Insulin-like growth factor 2 

mRNA-binding protein 
3 
 

  
Q5ZLP8 

 
584 

  
Gallus gallus  

 
5.5  

(2nd hit) 

    V +AA+ALVL  NADH-ubiquinone 
oxidoreductase chain 2 

 O21398 346  Struthio camelus  7.3 
 (3rd hit) 

 B2 525.8 +2 LGTFLENEK         

    LGTFL N  EK  α-type phospholipase A2 
inhibitor anMIP 

 

 A1XRN2 166  Atropoides nummifer  2.1 
(1st hit) 

    LGTFL N  α-phospholipase A2 
inhibitor clone 09 

 

 B1A4R4 166  Lachesis muta muta  6.7 
(2nd hit) 

    LGTFL N  α-phospholipase A2 
inhibitor 

 B1A4R0 166  Lachesis muta muta  6.7 
(3rd hit) 

     
LGTFL N 

  
Phospholipase A2 

myotoxin inhibitor protein 

  
Q8AYA2 

 
166 

  
Bothrops moojeni  

 
6.7 

(4th hit) 
     

LGTF  LEN 
  

Cannabinoid receptor 1 
  

P56971 
 

473 
  

Taeniopygia guttata  
 

8.9 
(5th hit) 

Table A.2. cont’d. 



190 
 

 B4 821.9 +2 VIQQQADDAEER         

    VIQ QQ+D+ EE  Tenascin  P10039 
 

1808  Gallus gallus  0.29 
(1st hit) 

     
I+Q+ADD EE 

  
Transcription factor SOX-

11 

  
P48435 

 
396 

  
Gallus gallus  

 

 
0.70 

(2nd hit) 
     

QQ   DDAEER 
  

Myosin heavy chain 
  

P29616 
 

1102 
  

Gallus gallus  
 

0.70 
(3rd hit) 

    
 

 
+Q +AD   DAEER 

  
Myosin-3 

  
P02565 

 
1940 

  
Gallus gallus  

 
1.7 

(4th hit) 
     

+Q +AD   DAEER 
  

Myosin heavy chain 
  

P13538 
 

1939 
  

Gallus gallus  
 

1.7 
(5th hit) 

 B6 587.3 +2 IPPKPPARAAR         

    +PPKPPA  G2/mitotic-specific cyclin-
B2 

 P29332 399  Gallus gallus  
 

1.7 
(1st hit) 

     
PPKP P RAA 

  
Venom protease inhibitor 2 

  
B7S4N9 

 
88 

  
Oxyuranus scutellatus  

 
5.5 

(2nd hit) 
     

PP+PPAR 
  

Eukaryotic translation 
initiation factor 3 subunit H 

  
Q5ZLE6 

 
348 

  
Gallus gallus  

 
5.5 

(3rd hit) 
     

PPKP A+AA 
  

Transcription factor SOX-
11 

  
P48435 

 
396 

  
Gallus gallus  

 
5.5 

(4th hit) 
     

PP PPAR  AR 
  

Histone H3-like 
centromeric protein A 

  
Q6XXM1 

 
131 

  
Gallus gallus  

 
7.4 

(5th hit) 
     

PARAAR 
  

SCO-spondin 
  

Q2PC93 
 

5255 
  

Gallus gallus  
 

7.4 
(6th hit) 

 B5 506.8 +2 IPSLPSGVDK         

    IP LPSGV  Coatomer subunit ∆  Q5ZL57 510  Gallus gallus  
 

13  
(1st hit) 

     
LPS VDK 

  
116 kDa U5 small nuclear 

ribonucleoprotein 
component 

  
Q5F3X4 

 
972 

  
Gallus gallus  

 
 

 
18 

 (2nd hit) 

     
LPSG+D 

  
Neural cell adhesion 

molecule 1 

  
P13590 

 
1091 

  
Gallus gallus  

 
32  

(3rd hit) 
     

IP+LP+G 
  

Hepatocyte nuclear factor 
1-α 

  
Q90867 

 
634 

  
Gallus gallus  

 
32 

(4th hit) 
 B6 583.8 +2 AAGEIIAIPRR         

    AGEI+ IP  Jumonji 
domain-containing protein 

 Q5ZHV5 425  Gallus gallus  24 
(1st hit) 
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4 
    IAIPR  Lysine-specific 

demethylase 3A 
 Q5ZIX8 1325  Gallus gallus  24 

(2nd hit) 
     

IIAIP 
  

Cytochrome 
c oxidase polypeptide I 

  
079548 

 
533 

  
Gallus gallus  

 
24 

(3rd hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
Q94WR7 

 
516 

  
Buteo buteo  

 

 
24 

(4th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O21399 

 
516 

  
Struthio camelus  

 
24 

(5th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03546 

 
337 

  
Rhea americana  

 
24 

(6th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03539 

 
337 

  
Nothoprocta perdicaria  

 
24 

(7th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03521 

 
337 

  
Casuarius bennetti  

 
24 

(8th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03515 

 

 
337 

  
Apteryx australis  

 
24 

(9th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
P18943 

 
515 

  
Gallus gallus  

 
24 

(10th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03524 

 
337 

  
Dromaius novaehollandiae  

 
24 

(11th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
P24984 

 
516 

  
Coturnix japonica  

 
24 

(12th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O03554 

 
337 

  
Tinamus major  

 
24 

(13th hit) 
     

IIAIP 
  

Cytochrome c oxidase 
subunit 1 

  
O79672 

 
514 

  
Pelomedusa subrufa  

 
24 

(14th hit) 
     

AGEII 
  

MBD1-containing 
chromatin-associated 

factor 1 

  
Q5ZIE8 

 
1085 

  
Gallus gallus  

 
43 

(15th hit) 

     
I IPRR 

  
Tenascin 

  
P10039 

 
1808 

  
Gallus gallus  

 
43 

(16th hit) 
     

EIIA  RR 
  

Protein sidekick-1 
  

Q8AV58 
 

472 
  

Gallus gallus  
 

58 
(17th hit) 

     
AAG   IIAI 

  
Alcohol dehydrogenase 1 

  
P49645 

 
375 

  
Gallus gallus  

 
58 
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(18th hit) 
     

 
AAG   IIAI 

  
 

Alcohol dehydrogenase 1 

  
 

P19631 

 
 

375 

  
 

Coturnix japonica  

 
 

58 
(19th hit) 

     
 

GEI  IPR 

  
 

Lysozyme C 

  
 

Q91159 

 
 

145 

  
 

Opisthocomus hoazin  

 
 

58 
(20th hit) 

     
 

GEI  IPR 

  
 

DNA damage-binding 
protein 1 

  
 

Q805F9 

 
 

1140 

  
 

Gallus gallus  

 
58 

(21st hit) 

 B1 831.4 +2 NSWGTSWGEDGYFR         

    NSWGT WG  GY  Cathepsin K  Q90686 334  Gallus gallus  
 

0.008  
(1st hit) 

     
NSWG  WG+ GY 

  
Cathepsin L1 

  
P09648 

 
218 

  
Gallus gallus  

 

 
0.12  

(2nd hit) 
     

NSW T WG  G+F 
  

Cathepsin B 
  

P43233 
 

340 
  

Gallus gallus  
 

0.29  
(3rd hit) 

 B5 684.9 +2 FRTTMLQDSIR         

    TML+DS+  Talin-1  P54939 2541  Gallus gallus  
 

7.3 
(1st hit) 

     
MLQD+I 

  
Hsp90 co-chaperone Cdc37 

  
O57476 

 
393 

  
Gallus gallus  

 

 
7.3 

(2nd hit) 
     

FR+TM      L+DS 
  

78 kDa glucose-regulated 
protein 

  
Q90593 

 
652 

  
Gallus gallus  

 
7.3 

(3rd hit) 
     

MLQDS 
  

5,6-dihydroxyindole-2-
carboxylic acid oxidase 

  
O57405 

 
535 

  
Gallus gallus  

 
13 

(4th hit) 
     

LQ+SIR 
  

Coiled-coil domain-
containing protein 132 

  
Q5ZKV9 

 
949 

  
Gallus gallus  

 
18 

(5th hit) 
     

TTML+ +I 
  

Filensin 
  

Q06637 
 

657 
  

Gallus gallus  
 

18 
(6th hit) 

 B6 586.8 +2 LPPEQGTTSSR         

    LPPEQG  Basic protease inhibitor  P00993 110  Caretta caretta  3.0  
(1st hit) 

     
LPPE G+ SS 

  
Muscle-specific 

regulatory factor 4 

  
Q01795 

 
242 

  
Gallus gallus  

 
13  

(2nd hit) 
     

LPPEQ 
  

Abhydrolase domain-
containing protein 

FAM108C1 

  
Q5ZJX1 

 
310 

  
Gallus gallus  

 
18  

(3rd hit) 
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LPPEQ 

  
α-actinin-2 

  
P20111 

 
897 

  
Gallus gallus  

 
18  

(4th hit) 
     

PEQG TS 
  

Dihydropyrimidinase-
related protein 2 

  
Q90635 

 
572 

  
Gallus gallus  

 
18  

5th hit) 
     

LPPEQ 
  

α-actinin-4 
  

Q90734 
 

904 
  

Gallus gallus  
 

18  
6th hit) 

 B6 593.3 +2 AILYNYWDK         

    AILYNY  Complement C3  Q01833 1651  Naja naja 
 

0.85 
(1st hit) 

     
LYNYW 

  
Ectonucleoside triphosphate 

diphosphohydrolase 

  
P79784 

 
495 

  
Gallus gallus  

 

 
1.1 

(2nd hit) 
     

LY+YW 
  

Fatty acyl-CoA reductase 1 
  

Q5ZM72 
 

515 
  

Gallus gallus  
 

12 
(3rd hit) 

     
LY NYW+ 

  
Monocarboxylate 

transporter 9 

  
Q5ZJU0 

 
507 

  
Gallus gallus  

 
12 

(4th hit) 
 B6 506.8 +2 NEALIALLR         

    NEALIALL  Plastin-1  P19179 630  Gallus gallus  
 

0.081 
(1st hit) 

     
NEA+IA LL 

  
tRNA (cytosine-)-

methyltransferase NSUN2 

  
Q5ZLV4 

 
796 

  
Gallus gallus  

 

 
21 

(2nd hit) 
     

NE+LI L R 
  

Ubiquitin carboxyl-terminal 
hydrolase 28 

  
Q5ZID5 

 
1047 

  
Gallus gallus  

 
21 

(3rd hit) 
     

EALI+L 
  

CCR4-NOT transcription 
complex subunit 10 

  
Q5ZIW2 

 
744 

  
Gallus gallus  

 
39 

(4th hit) 
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APPENDIX B. LECTIN SEQUENCE 

 

Protein sequencing with MS/MS and de novo sequencing yielded almost full coverage of an alligator 

lectin. The sequence was compared to lectins from other vertebrates using DIALIGN software to 

investigate sequence homology (Chapter 6, Section 6.4.4).   

Figure 1. Alligator mississippiensis lectin sequence aligned with Homo sapiens and Mus musculus 
intelectin-2.  

  Human           MLSMLRTMTRLCFLLFFSVATSGCSAAAASSLEMLSREFETCAFSFSSLPRSCKEIKERC 60 
Mouse           -------MTQLGFLLFIMIATRVCSAAEEN----LDTNRWGNSF-FSSLPRSCKEIKQED 48 
Alligator       -------NNQLALKLAATGGSTNXLPALALQN--LLNTWEDTSCCSQTSPGQQSWPRD-- 49 
                        .:* : *    .:    .*       *       :   .: * . .  ::   
 
Human           HSAGDGLYFLRTKNGVVYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGNKA 120 
Mouse           TKAQDGLYFLRTENGVIYQTFCDMTTAGGGWTLVASVHENNLRGRCTVGDRWSSQQGNRA 108 
Alligator       -GAQDGLYTLSTADGEIYQTFCDMSTHGGGWTLVASVHENNAHGKCTVGDRWSSQQGNSP 108 
                  * **** * * :* :*******:: *************: :*:************* . 
 
Human           DYPEGDGNWANYNTFGSAEAATSDDYKNPGYYDIQAKDLGIWHVPNKSPM--QHWRNSAL 178 
Mouse           DYPEGDGNWANYNTFGSAEGATSDDYKNPGYFDIQAENLGIWHVPNNSPL--HTWRNSSL 166 
Alligator       LYPEGDGNWANNNIFGSAMGSTSDDYKNPGYYDLQAGDLSVWHVPDRAPLRKEMIESSVL 168 
                 ********** * **** .:**********:*:** :*.:****:.:*:  .  ..* * 
 
Human           LRYRTNTGFLQRLGHNLFGIYQKYPVKYRSGKCWNDNGPAIPVVYDFGDAKKTASYYSPY 238 
Mouse           LRYRTFTGFLQRLGHNLFGLYQKYPVKYGEGKCWTDNGPAFPVVYDFGDAQKTASYYSPS 226 
Alligator       LFYR--TGFLSSEGGNLLRLYEKYPVKYGAGSCKVDNGPAVPIVYDFGSAEKTAAYYSPS 226 
                * **  ****.  * **: :*:******  *.*  *****.*:*****.*:***:****  
 
Human           GQREFVAGFVQFRVFNNERAANALCAGIKVTGCNTEHHCIGGGGFFPQGKPRQCGDFSAF 298 
Mouse           GRNEFTAGYVQFRVFNNERAASALCAGVRVTGCNTEHHCIGGGGFFPEFDPEECGDFAAF 286 
Alligator       GRGEFTAGFVQFRVFNNEKAPMALCSGLKVTGCNTEHHCIGGGGFFPEGNPRQCGDFPAF 286 
                *: **.**:*********:*. ***:*::******************: .*.:****.** 
 
Human           DWDGYGTHVKSSCSREITEAAVLLFYR 325 
Mouse           DANGYGTHIRYSNSREITEAAVLLFYR 313 
Alligator       DWDGYGTHQSWSTSREMIESSVLLFYR 313 
                * :*****   * ***: *::****** 
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Figure 2. Alligator mississippiensis lectin sequence aligned with Homo sapiens ficolin-α and ficolin-
β.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Ficolin-1       -MELSGATMARGLAVLLVLFLHIKNLPAQAADT-CPEVKVVGLEGSDKLTILRGCPGLPG 58 
Alligator       NNQLALKLAATGGSTNSLPALALQNLLNTWEDTSCCSQTSPGQQSWPRDGAQDGLYTLST 60 
                  :*:    * * :.  :  * ::**     ** * . .  * :.  :     *   *.  
 
Ficolin-1       APGPKGEAGVIGERGERGLPGAPGKAGPVGPKGDRGEKGMRGEKGDAGQSQSCATGPRNC 118 
Alligator       ADG-----EIYQTFCDMSTHGGGWTLVASVHENNAHGKCTVGDRWSSQQG-NSPLYPEGD 114 
                * *      :     : .  *.  .  .   :.:   *   *:: .: *. ...  *..  
 
Ficolin-1       KDLLDRGYFLSGWHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRMDGSVDFYRDWAAYKQG 178 
Alligator       GNWANNNIFGSAMG----STSDDYKNPGYYDLQAGDLSVWH--VPDRAPLRKEMIESSVL 168 
                 :  :.. * *.      . .   .     * :.*. :*::  : . . : ::    .   
 
Ficolin-1       FGSQLGEFWLGNDNIHALTAQGSSELRVDLVDFEGNHQFAKYKSFKVADEAEKYKLVLG- 237 
Alligator       LFYRTGFLSSEGGNLLRLYEKYPVKYGAGSCKVDNGPAVPIVYDFGSAEKTAAYYSPSGR 228 
                :  : * :   ..*:  *  : . :  ..  ..:..  ..   .*  *:::  *    *  
 
Ficolin-1       -AFVGGSAGNSLTGHNNNFFSTKDQDNDVSSSNCAEKFQGAWWYADCHASNLNGLYLMGP 296 
Alligator       GEFTAGFVQFRVFNNEKAPMALCSG-LKVTGCNTEHHCIGGGGFFPEGNPRQCGDFPAFD 287 
                  *..* .   : .:::  ::  .   .*:..*  .:  *.  :     ..  * :     
 
Ficolin-1       HESYANGINWSAAKGYKYSYKVSEMKVRPA 326 
Alligator       WDGYGTHQSWSTSREMIESSVLLFYR---- 313 
                 :.*..  .**:::    *  :   :     
 
 
 
Ficolin-2       -MELDRAVGVLGAATLLLSFLGMAWALQAAD--TCPEVKMVGLEGSDKLTILRGCPGLPG 57 
Alligator       NNQLALKLAATGGSTNSLPALALQNLLNTWEDTSCCSQTSPGQQSWPRDGAQDGLYTLST 60 
                  :*   :.. *.:*  *. *.:   *:: :  :* . .  * :.  :     *   *.  
 
Ficolin-2       APGPKGE--AGTNGKRGERGPPGPPGKAGPPGPNGAPGEPQPCLTGPRTCKDLLDRGHFL 115 
Alligator       ADGEIYQTFCDMSTHGGGWTLVASVHENNAHG-KCTVGDRWSSQQGNSPLYPEGD-GNWA 118 
                * *   :  .. . : *     ..  : .. * : : *:  ..  *  .     * *::  
 
Ficolin-2       SG--WHTIYLPDCRPLTVLCDMDTDGGGWTVFQRRVDGSVDFYRDWATYKQGFGSRLGEF 173 
Alligator       NNNIFGSAMGSTSDDYKNPGYYDLQAGDLSVWH--VPDRAPLRKEMIESSVLLFYRTGFL 176 
                ..  : :   . .   .     * :.*. :*::  * . . : ::    .  :  * * : 
 
Ficolin-2       WLGNDNIHALTAQGTSELRVDLVDFEDNYQFAKYRSFKVADEAEKYNLVLG--AFVEGSA 231 
Alligator       SSEGGNLLRLYEKYPVKYGAGSCKVDNGPAVPIVYDFGSAEKTAAYYSPSGRGEFTAG-F 235 
                   ..*:  *  : . :  ..  ..::.  ..   .*  *:::  *    *   *. *   
 
Ficolin-2       GDSLTFHNNQSFSTKDQDNDLNTGNCAVMFQGAWWYKNCHVSNLNGRYLRGTHGSFANGI 291 
Alligator       VQFRVFNNEKAPMALCSGLKVTGCNTEHHCIGGGGFFPEGNPRQCGDFPAFDWDGYGTHQ 295 
                 :  .*:*:::  :  .. .:.  *      *.  :     ..  * :     ..:..   
 
Ficolin-2       NWKSGKGYNYSYKVSEMKVRPA 313 
Alligator       SWSTSREMIESSVLLFYR---- 313 
                .*.:.:    *  :   :     
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