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ABSTRACT 

For decades, there has been a lot of focus on the development of new carriers for drug 

delivery applications.  From all of the carriers, stimuli-responsive liposomes have been studied 

extensively, but only a handful have been enzyme-responsive liposomes.  Therefore, the field of 

endogenous proteins as activators of liposomes is a fertile field worthy of exploration.  

The research described in this dissertation involves how structural changes on the 

quinone moiety altered their electronic properties, as well as their behavior toward the human 

enzyme NAD(P)H:quinone oxidoreductase type-1 (hNQO1, over expressed in certain tumor 

tissues), thus yielding a series of triggerable quinones to be used in the formation of enzyme-

activated liposomes.  The step-wise process to achieve the ultimate research objective includes: 

(1) measurement by cyclic voltammetry of–the electronic properties of naked, propionic acid 

quinones and those attached to an ethanolamine handle, (2) detailed kinetics (Michaelis constant 

(Km), maximum velocity (Vmax), catalytic constant (kcat), enzyme efficiency (kcat/Km)) and 

computational docking studies for a series of quinone derivatives against hNQO1, and (3) 

preparation of quinone-based liposomes and evaluation in the presence of the different 

components included in an hNQO1 assay.  

Structural alterations on the quinone ring had an effect on their reduction behavior.  

Electrochemical studies exposed a trend in reduction potential; quinones with electron-

withdrawing groups were easy to be reduced and the opposite happens to quinones with electron- 

donating groups.  Enzyme and docking studies showed the different quinone responses obtained 

from the interaction of hNQO1 with structural-altered quinones.  Liposome experiments 

provided all the obstacles that need to be overcome when designing an enzyme-responsive 

liposome system.  The inclusion of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 

cholesterol decreased the leakage of contents from the liposome systems.  Gathering all this 
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information provided me a strong background on the fundamentals of structure-reactivity 

relationships between quinones and hNQO1 and their importance toward the design of a 

triggerable drug delivery system. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Research Goals and Aims 

The goal of the research presented in this dissertation is the characterization of quinone 

trigger groups that are to be used to further develop enzyme-responsive liposomes.  In particular, 

liposomes activated by human NAD(P)H:quinone oxidoreductase type-1 (hNQO1), an          

over-expressed enzyme in certain solid tumors (e.g. non-small cell lung, colon and pancreas 

tumors),1-5 are targeted because they are expected to selectively deliver to the desired site more 

drug units per carrier than will a prodrug system.  

The challenge of producing a prodrug or drug delivery system that actively releases its 

contents at the desired site but maintains its integrity in the bloodstream for long periods of time 

has been a continuing issue for researchers around the world over the past 30 years.  Liposomes 

have been able to address one of those issues as a result of the addition of lipids possessing 

poly(ethylene glycol) chains (PEG) that have led to increased liposome circulation times in the 

body.6  PEGylated liposomes are able to circulate in the bloodstream for sufficient periods of 

times that they are able to accumulate at tumor sites via the enhanced permeability and retention 

(EPR) effect.7,8  Nevertheless, while drug-loaded PEGylated liposomes are in the circulatory 

system, non-specific interactions still occur, resulting in drug leakage from liposomes, an event 

that impacts healthy cells.  Also, due to the slow nature of drug delivery at the target site, high 

concentration of liposomes is required, causing side effects, such as mucositis and hand-foot 

syndrome.9  In today’s market, there are 11 approved liposomal formulations and 6 more 

currently in clinical development;10 however, none of those 17 liposomal formulations deliver 

their contents as a result of enzyme triggering.  Therefore, the use of endogenous enzymes as an 

active stimulus for liposome contents release is a fertile field worthy of exploration.    
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Currently, extensive literature for enzyme-activated prodrugs is available;11 this 

information has been an important contribution in the design of enzyme-responsive liposomes. 

However, the design and formulation of enzyme-responsive liposomes is still in the early stages.  

Only a few research groups have explored endogenous enzymes (e.g. elastase, alkaline 

phosphatase, phospholipase C, phospholipase A2 (PLA2) and matrix metalloproteinases 

(MMPs)) as trigger stimuli for liposome contents release.9,12,13   

The design of a liposome with triggerable groups that can be activated by an enzyme will 

allow for selective and site-specific controlled delivery of the liposomal contents.  This scenario 

results in a lower frequency of drug administration and minimizes systemic side effects.  The 

McCarley research group developed a redox-responsive liposome that contains a quinone head 

group and a fusogenic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE).14  It was 

demonstrated that the liposomes are able to be opened and then release their contents as a result 

of a two-electron/two-proton chemical reduction, but their contents release has yet to be explored 

by a reductive enzyme.15  Among the different reductive enzymes used as stimuli for prodrug 

activation,16,17  NQO1 is an enzyme that specifically reduces quinones to hydroquinones by a 

two-electron/two-proton process.18 NQO1 has also been studied for bioreductive activation of 

anticancer drugs19 and prodrugs16,17 but to date has been investigated as a trigger for liposome 

contents release. 

 
Figure 1.1. Illustration of quinone derivatives investigated in this dissertation. 

The first aim of this research was the electrochemical characterization of a series of 

quinone derivatives: naked quinones (no propionic acid side chain), quinones containing a 
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propionic acid side chain, and quinones containing a trimethyl-lock motif (R3 = Y = methyl), 

Figure 1.1.  All quinones used underwent a two-electron/two-proton reduction process in 

aqueous media, and their electronic properties were measured by cyclic voltammetry (CV).  

Cyclic voltammetry is an electrochemical technique that provides information regarding the 

reduction potential and cyclization kinetics of the quinone derivatives.  The main advantage of 

tuning the reduction potential of quinones is that these compounds can undergo reduction in a 

particular environment such as where a high concentration of NQO1 is available but remain 

inactive in healthy cells.  It is crucial for the stability of quinone-based liposomes that their 

quinone derivatives have a reduction potential that can only be reduced by human NQO1, thus 

avoiding any non-specific reduction by other reducing species present inside the human body.  

Furthermore, the reduction/cyclization process resulting from quinone derivatives possessing the 

trimethyl-lock system is also believed to be dependent on the electronic properties of the 

quinones.   

The second aim of this research was the characterization of quinone derivatives by 

enzyme assays and docking studies using the human enzyme NQO1.  Enzyme kinetic assays 

gathered information on how structural changes of the quinone moiety affected the interaction 

between recombinant human NQO1 (rhNQO1) and the quinone derivatives.  This information 

was based on the kinetic parameters Km (Michaelis constant), Vmax (maximum velocity), kcat 

(catalytic constant), and kcat/Km (enzyme efficiency) extracted from the rhNQO1 assays.  In 

addition, molecular docking studies were used to determine the possible interaction and optimum 

orientations between quinone derivatives and human NQO1. 

The ultimate goal was the preparation of quinone-based liposome systems and 

observations of their behavior under rhNQO1 assay conditions.  A variety of quinone-based 

liposome systems were prepared following a modified version of the well-known “lipid thin-film 

and extrusion” method.20,21  The stability of the quinone-liposome systems in the presence of 
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bovine serum albumin (BSA), reduced nicotinamide adenine dinucleotide (NADH) and rhNQO1 

were investigated by fluorescence spectroscopy.  As a probe, the self-quenching dye calcein was 

loaded into the liposome systems at concentrations where the dye is non-fluorescent.  Liposome 

leakage caused by the introduction of BSA, NADH, or rhNQO1 to the liposome solution will 

result in the dilution of calcein and consequently a fluorescent signal is observed.  In addition, 

chemical release curves for the new liposome formulations were investigated using the reducing 

agent sodium dithionite (Na2S2O4).  Calcein-loaded liposome formulations were characterized 

with UV-vis spectroscopy, dynamic light scattering (DLS) and zeta potential. 

From the results in this work, there is a clear understanding of the structure-activity 

relationship of quinone derivatives with recombinant human NQO1 and the interaction between 

rhNQO1 assay contents and quinone-based liposome systems.  These nanosizes structures are a 

promising tool as triggered release carriers because they hold potential for selectively unload 

their contents in a controlled manner at the desired site.       

1.2 Prodrugs Activated by Endogenous Oxidoreductase Enzymes Other Than NQO1 

 Conventional chemotherapeutic drugs have been limited in their use due to low 

therapeutic index, and poor selectivity for tumor cells.11  One of the most promising technologies 

to overcome this issue is the use of prodrugs where nontoxic drugs are carried and activated at 

the specific tumor site by over-expressed enzymes.  Numerous tumor-associated enzymes have 

been exploited for prodrug activation in the field of gene- and virus-directed enzyme prodrug 

therapy (GDEPT, VDEPT), but effectiveness has been limited by insufficient transduction of 

tumor cells in vivo.11,22  Endogenous enzymes such as transferases, phosphorylases, kinases, 

hydrolases and oxidoreductases have also been investigated as a strategy to achieve local 

activation of prodrugs.11  In the section that follows, the characteristics, localization and prodrug 

developments towards human oxidoreductases (except NQO1 that will be detailed reviewed in 

the last section) will be discussed. 
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1.2.1 Aldehyde Oxidase 

 Aldehyde oxidase (AO) is a homodimeric enzyme with a molecular mass of 300 kDa 

containing 1338 amino acids.23-25  Its structure contains flavin adenine dinucleotide (FAD), 

molybdenum, and heme-iron groups.11,23,25  This cytosolic protein is present in high levels in 

human liver, lung, adrenal, testis and prostate tissue; however, little is known about the 

difference in the concentration levels of AO between normal and tumor tissues.26  AO oxidizes 

aldehydes to the corresponding acids using molecular oxygen, and it catalyzes the oxidation of 

pyrroles, pyridines, purines, pterins, and pyrimidines.11   

AO has been used in an attempt to increase organ selectivity of 5-ethynyluracil, a 

compound that prevents the rapid breakdown of 5-fluorouracil (5-FU), a well-known anticancer 

agent.  Porter and co-workers assayed the 5-ethynyl-2(1H)-pyrimidinone as a potential liver-

specific prodrug; however, their results showed lack of liver selectivity.27  Later, Guo et al. 

synthesized a 5-fluoro-2-pyrimidinone prodrug to increase organ selectivity towards the liver.  

Even though the authors succeeded in their task, this prodrug had similar cytostatic activity as 

the conventional drug 5-FU.28  AO has also been explored as an enzyme to increase the 

bioavailability of drugs.  In this matter, a prodrug of the radiosensitizer 5-iodo-2'-deoxyuridine 

(IUdR) was developed; it exhibited promising results and is currently under phase I clinical 

trials.29-31  Few attempts have been made to target AO as an enzyme that activates prodrugs, due 

to the wide distribution of this enzyme in humans.27  Moreover, AO differs greatly in substrate 

specificity between species, and what may be promising in animal models is not always 

successful in humans.11 

1.2.2 Amino Acid Oxidases 

Amino acid oxidases (AAO) are dimeric flavoproteins that contain FAD as a prosthetic 

group, and they stereoselectively catalyze the oxidative deamination (loss of an amine group) of 

amino acids to the corresponding α-keto acids, ammonia and hydrogen peroxide, as noted in 
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Figure 1.2.11,32-34  These enzymes also catalyze the β-elimination reactions of β-chloroalanine, β-

cyanoalanine, and selenocysteine Se-conjugates (SeCys conjugates) that result in the production 

of chloride, cyanide, and selenols, along with the formation of pyruvate and ammonia.11    

 
Figure 1.2.  Mechanism of action of D-amino acid oxidase.   Adapted from Pollegioni (2007).32 

LAAO (catalyzes the oxidative deamination of L-amino acids) has a molecular mass between 85 

and 150 kDa, while the molecular mas range of DAAO (catalyzes the oxidative deamination of 

D-amino acids) is between 38 and 125 kDa.11  High levels of AAO have been found in human 

tissues such as those of the kidney and liver, while low levels of AAO were found in brain 

tissue.33  

 SeCys conjugates have been the most studied approach in the targeting of AAO.11  

Several Se-conjugates have been shown to possess chemopreventive and antitumor 

properties.34,35  So far, investigations on the β-elimination mechanism of Se-conjugates have 

been done with rat renal cytosol, rat and human kidney cytosol but targeting β-lyse enzymes.36,37  

Later, Rooseboom et. al. demonstrated the activation of Se-conjugates by purified LAAO from 

Crotalus adamanteous and by DAAO from porcine kidney.38 The activation of Se-conjugates is 

stereoselective, thus, it needs to be taken into account when designing a prodrug to activate 

DAAO or LAAO. 

1.2.3 NADPH-Cytochrome P450 Reductase 

 Cytochrome P450 reductase (CPR) is a NADPH-ferrihemoprotein that catalyzes the 

reduction of cytochrome P450s, as well as the reduction of aldehydes (to form alcohols) and 
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quinones (to form semiquinone free radicals).11  Human CPR is localized in the endoplasmic 

reticulum and has a molecular mass of approximately 82 kDa that includes 676 amino acids.39,40  

CPR is a multidomain protein divided into a hydrophobic N-terminal domain, a flavin 

mononucleotide-binding (FMN) domain, and a FAD/NADPH binding domain (flavin adenine 

dinucleotide/nicotinamide adenine dinucleotide phosphate).41,42  The mechanism of this enzyme 

consists of accepting a pair of electrons from NADPH as a hydride ion, with FAD and FMN 

being the points of entry and exit, respectively.  Then, these electrons are transferred to 

cytochrome P450s, or to aldehydes or quinones.43  High levels of CPR were found in liver, lung, 

and small intestine based on immunohistochemical staining of human tissues.44  CPR was also 

found in a variety of tumor cells, such as lung, breast, and liver.45  However, only liver tumor 

cells were shown to have a significant increase in activity (2-fold) of CPR versus normal 

tissue.46,47  Moreover, in general, CPR activity is lower in tumor tissue than in the corresponding 

normal tissue.48   

 CPR has been explored as a target for prodrug activation under hypoxic conditions (low 

oxygen levels) where the one-electron reduction of substrates by CPR generates toxic free 

radicals that cause cell damage.  Studies on Chinese hamster ovary cells demonstrate CPR is the 

major enzyme that activates mitomycin C (MMC) and its analog porfiromycin under hypoxic 

conditions.49,50  In those studies, the hamster ovary cells where transfected with human CPR and 

compared with the parental cells.  The authors found that porfiromycin exhibited greater 

cytotoxicity under hypoxic conditions than under aerobic conditions, while MMC had the same 

toxicity regardless of the oxygenation state.49,50  RH1 (2,5-diaziridinyl-3-(hydroxymethyl)-6-

methyl-1,4-benzoquinone) prodrug was also demonstrated to be reduced by CPR of pig liver 

origin.51  However, studies in human cancer cell lines (T47D human breast cancer cells and 

T47D-P450 transfected with P450 Red gene) did not demonstrate any significant increase in 
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cytotoxicity after treatment with RH1.52  Therefore, human CPR does not appear to have a 

substantial contribution in the activation of RH1.  

 To date, the major focus on CPR-targeted prodrugs has been the bioreductive agent 

tirapazamine (TPZ).  In the late 1980s, it was demonstrated that TPZ could be activated by CPR 

leading to DNA cleavage, as noted in Figure 1.3.11,17,53  Several in vitro investigations led to 

promising clinical trials; however, those results did not translate into in vivo success.  It is 

believed poor drug penetration through the extravascular tumor was the key factor in affecting in 

vivo activity.11,17,53   

 
Figure 1.3.  Reductive activation of TPZ.   Adapted from Chen (2009).17 

1.2.4 Cytochrome P450s 

 Cytochrome P450s (CYPs) consist of a family of several isoenzymes containing a heme 

prosthetic group that catalyzes the monooxygenation of a variety of substrates (from small 

molecules to large antibiotics) by incorporating one atom of molecular oxygen into a substrate 

and reducing the other oxygen atom to water.11  CYPs accept electrons from either the enzyme 

CPR or from NADPH and use them in its catalytic cycle.11  Human CYPs encoded by 57 genes 

are divided into families based on their homology in amino acid sequence identity.54  The most 

important human isoenzymes are CYP1A1/2, 2C9/19, 2D6, 2E1 and 3A4.11  Based on the three-

dimensional structure availability, Johnson and Stout compared the structure of CYP2A6, 2C8, 

2C9, and 3A4.55  The investigation revealed that 3A4 and 2A6 share less than 40% amino acid 

CPR 
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identity, whereas the active site of 2A6 is one-sixth the volume of that for 3A4.  The authors also 

reported that 3A4 and 2C8 active sites are similar in size but different in shape, while the active 

site of 2C9 is larger than 2A6, but smaller than 2C8.  The difference in active site architecture 

and chemical properties of the amino acids involved are probably the reasons why for all the 

CYPs, CYP3A4 contributes to over 60% of the metabolism of drugs reported to date.54   

Human CYPs are located in the endoplasmic reticulum, mainly in liver and adrenal gland 

tissues; however, low concentrations of CYPs were also found in kidney and testis tissues.56  

CYPs in general have lower levels in tumor tissues than in normal tissue,11 yet higher levels of 

the enzyme isoforms CYP1A and CYP3A were found in tumors versus their corresponding 

normal tissues.56 

Most CYPs chemotherapeutic agents were not initially designed as prodrugs to target 

CYPs; however, later investigations demonstrated that they could be activated by CYPs.11  That 

was the case for the example of 4-ipomeanol (1-(3-furyl)-4-hydroxy-1-pentanone) which is 

metabolized by CYP1A2, 3A3, and 3A4.  Although bioactivation was demonstrated, 4-

ipomeanol failed in clinical trials towards lung cancer.11  Another example is Tegafur, a prodrug 

of 5-FU (anticancer drug) that was initially thought to be activated by thymidine phosphorylase 

and CYPs, but later it was demonstrated that Tegafur was mainly activated by CYPs.11  

Investigations revealed that the isoenzymes responsible for its activation are CYP1A2, 2A6, and 

2C8/9.57,58  Dacarbazine (DTIC) is another CYP-activated prodrug used in the treatment of 

malignant melanoma and Hodgkin’s lymphoma.59  It has been demonstrated that isoforms 

CYP1A1, 1A2, and 2E1 account for the activation of DTIC.11  However, in spite of the 

successful antitumor effect in rodents, an insufficient amount of antitumor activity was exhibited 

in humans.11  

To date, the major prodrug compounds activated by CYPs are oxazaphosphorines and 

1,4-bis [2-(dimethylamino-N-oxide) ethyl] amino-5,8-dihydroxyanthracene-9,10-dione 
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(AQ4N).11  Oxazaphosphorines, in particular cyclophosphamide, is the most used alkylating 

agent with widespread application in cancer therapy.  This prodrug and its isomer are activated 

by the isoforms CYP2B6 and 3A4.  Cyclophosphamide, along with its isomer ifosfamide, 

presented issues because of the high concentration of CYPs in liver and low levels in tumor 

cells.11  Those obstacles were overcome by gene-directed enzyme prodrug therapy (GDEPT).60 

AQ4N is converted into a potent topoisomerase II inhibitor after bioreduction by CYPs 

(in particular the isoform 3A4) to AQ4, Figure 1.4.11  AQ4 is also a high-affinity DNA-binding 

agent where its tertiary amine side chains ensure good uptake of the compound into the cells.17  

AQ4 is currently in phase-2 clinical trials for brain tumor, chronic lymphocytic leukemia, and 

non-Hodgkin’s lymphoma.17   

 
Figure 1.4.  Reductive activation of AQ4N.   Adapted from Chen (2009).17    

The major drawbacks on targeting CYPs are their high concentration levels in liver and 

adrenal glands, their low turnover rates resulting in generally slow drug formation, and their low 

activity in tumors cells compared with normal cells.  However, several prodrugs activated by 

CYPs are successfully used in the clinic.11     

1.2.5 Tyrosinase 

 Tyrosinase is a copper enzyme (two copper ions per enzyme molecule) that catalyzes the 

oxidation of L-tyrosine to the corresponding o-quinone dopaquinone as well as the oxidation of 

phenols and catechols to o-diphenols and o-quinones, respectively.11,61  This enzyme was found 

to have an approximate molecular mass of 67 kDa by SDS electrophoresis.61  The X-ray 
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structure of human tyrosinase has not yet been determined; however, the three-dimensional 

structure from Streptomyces castaneoglobisporus (gram-positive bacteria) has been solved, and 

it has been useful to describe in detail the tyrosinase catalytic mechanism, Figure 1.5.62  The 

authors proposed that first a peroxide ion is bridged to copper ions following a proton extraction 

from the phenolic hydroxyl to later have the deprotonated oxygen atom bound to copper.  At this 

point, copper is hexa-coordinated and an ortho-carbon of the substrate is approached by the 

peroxide ion which adds one of the peroxide oxygens to the ortho-carbon of monophenol. 

 
Figure 1.5.  Catalytic mechanism of tyrosinase.  Adapted from Matoba (2006).62 

 Tyrosinase is responsible for skin pigmentation abnormalities and has the very peculiar 

property that it is only located in melanoma cells, making this enzyme a very attractive target for 

treatment of the cancer, melanoma.63  The first prodrug dependent on tyrosinase activity was 2,4-

dihydroxyphenylalanine.64  This prodrug showed good selectivity towards tyrosinase-containing 

cells versus tyrosinase-lacking cells.  In spite of these findings, the potential of 2,4-

dihydroxyphenylalanine as a prodrug was not further evaluated.11  4-S-Cysteaminylphenol (4-S-

CAP) and N-acetyl-4-S-cysteaminylphenol (N-Ac-4-S-CAP) are other two prodrugs that showed 

tyrosine-mediated cytotoxicity.11  Later, analogs of N-Ac-4-S-CAP were synthesized and 

presented activities comparable to that of cisplatin, a well-known chemotherapy drug.65  Phenyl- 
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and urea- mustard prodrugs were also synthesized and assayed for tyrosinase activity.66,67  The 

authors found a positive correlation between prodrug toxicity and tyrosinase activity.  More 

recently, the stability of these prodrugs in the presence of phosphate buffer and bovine serum 

were evaluated;68 the authors identified the urea prodrugs as the lead compounds for further 

studies.  

1.3 Enzyme-Activated Liposomes 

 Currently marketed drug delivery systems based on liposomes and polymeric materials 

rely on passive diffusion or slow non-specific degradation of the liposomal carrier.9  To improve 

therapeutic efficiency, scientists have been putting their effort in designing carriers for active 

targeting (e.g. ligands on carrier surface) and active triggering (e.g. hyperthermia) to safely 

deliver carrier cargo to and at the desired site.9  These systems are composed of nanosize 

particles, ranging from liposomes to macromolecular dendrimers.6,13,69-71  It is not the intent of 

this dissertation to focus on each of these systems, but rather the few ones so far published that 

correspond to enzyme-responsive liposomes.  The activation of liposomes by the endogenous 

enzymes elastase, alkaline phosphatase, phospholipase C, phospholipase A2 and 

metalloproteinase, and their characteristics will be discussed below.  

1.3.1 Elastase 

 Elastase is an enzyme released from the azurophil granules (cytoplasmic small particles 

in white blood cells) of activated neutrophils (50–70% of all white blood cells).  Human 

neutrophil elastase has an approximate molecular mass of 30 kDa that includes 218 amino acids 

with two asparagine-linked carbohydrate side chains and four disulfide bonds.72  This enzyme 

became of particular interest in the activation of liposomes because it is ubiquitously present in 

inflammatory (e.g. rheumatoid arthritis,73,74 acute respiratory distress syndrome,75 emphysema,76 

cystic fibrosis77,78) and tumor (e.g. breast,79 skin80) tissues.  Elastase has been used to activate 

enzyme-triggered liposomes where DOPE is capped with a short peptide sequence (e.g. N-Ac-
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ala-ala) that is a substrate for the enzyme, Figure 1.6; stable non-fusogenic liposomes can be 

formed from N-Ac-ala-ala-DOPE.81  The stable peptide-DOPE liposome system became unstable 

upon cleavage of the peptide by elastase, resulting in liposome fusion with cells.  

 
Figure 1.6. Cleavage of peptide-DOPE structure by elastase.  Adapted from Pak (1998).81 

This liposome system was further improved by attachment of a different peptide named 

N-methoxy-succinyl-ala-ala-pro-val (MeO-suc-AAPV) to the DOPE lipid that exhibited greater 

sensitivity and selectivity towards elastase than the previous peptide N-Ac-ala-ala.  MeO-suc-

AAPV-DOPE liposomes (250 μM) were proved to be activated by 0.42 μM elastase, an amount 

that is between 3 and 20 fold less than the amount found in cystic fibrosis tissue, with subsequent 

transfer of their aqueous content probes into adherent cells.82  The authors also observed that 

heat-inactivated elastase (95 °C for 1h) did not activate the MeO-suc-AAPV-DOPE liposomes.  

Other potential elastase substrates have been designed and are currently under development.12 

1.3.2 Alkaline Phosphatase 

 Alkaline phosphatase is a non-specific phosphomonoesterase enzyme that is present in 

serum and on the cell membrane, as well as over-expressed in certain tumor tissues (e.g. 

testicular and ovarian).83,84  Its structure is the one of a dimeric metalloprotein with two Zn2+ ions 

and a Mg2+ ion in each active site.85  The earlier demonstration on the ability of alkaline 
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phosphatase to activate prodrugs86 and remove the phosphate group from a polysaccharide,87 

suggested the application of the enzyme to activate liposomes composed of phospholipid 

derivatives.  Szoka and co-workers have been the only ones that took advantage of those results 

to design an alkaline phosphatase-sensitive liposome system composed of DOPE lipid and 

cholesterol phosphate derivatives.88  They found that the liposome with the most sensitive 

behavior towards the enzyme exhibited a leakage of encapsulated fluorophore of 40% in 24 

hours, while no leakage was observed in the presence of heat-inactivated enzyme.88  The nature 

of the enzyme after being inactivated by heat could not be established because of the lack in 

information about the time and temperature at what the procedure was performed.  The wide 

distribution of this enzyme in the body limited its use, unless the enzyme is directed to activate 

conjugated prodrugs (e.g. antibody).11    

1.3.3 Phospholipase C 

 Phospholipase C (PC-PLC) is an enzyme found in human gallbladder bile.89,90  High 

levels of PC-PLC have been found in rheumatoid arthritis tissues as well as in epithelial ovarian 

cancer cells and breast tumor cells.91-93  The molecular mass of PC-PLC found in human 

monocytic U937 cell lines was 40kDa as determined by SDS gel electrophoresis.91  Later, a 

study on natural killer cells (NK cells) demonstrated the presence and subcellular localization of 

two PC-PLC isoforms with molecular masses of 40 and 66 kDa, respectively.94  PC-PLC 

requires the presence of calcium ion as cofactor for its catalytic function for the hydrolysis of the 

phosphoester bond of lecithin to yield the amphiphile diacylglycerol (DAG) and the headgroup 

phosphocholine.95-97   

This enzyme was the first catalytic agent to induce fusion of liposomes, an investigation 

done by Nieva and co-workers in the late 1980s.95  The same investigation demonstrated that 

bilayer composition is critical.  Phosphatidylethanolamine (PE) and cholesterol are essential, in 

addition to phosphatidylcholine (PC), for significant liposome fusion to occur at low levels of 
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phospholipase C.95  In addition, it was later found that PC-PLC becomes inhibited by DAG, the 

end product, when DAG concentration is over 20 mol% in the liposome bilayer.96  Contrary to 

the observation of Nieva, pure lecithin liposomes underwent aggregation and fusion with 

concomitant leakage of vesicle contents in the presence of PC-PLC, as reported by Luk.98  

However, in the fusion process described by Nieva, no leakage was observed.95  In summary, 

PC–PLC-induced liposome fusion may be considered to happen in three steps: generation of 

DAG in the bilayer, aggregation of liposomes, and fusion of apposed membranes.96    

1.3.4 Phospholipase A2 (PLA2) 

Phospholipase A2 (PLA2) and metalloproteinases have been the two enzymes most 

widely studied for liposome activation;13 the latter will be discussed in the next section.  PLA2 is 

an enzyme present in a wide variety of mammalian cells,99,100 and it hydrolyzes 

phosphoglycerides–such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and 

phosphatidylserine (PS)–at the acyl ester bond at the sn-2 position, yielding the corresponding 

lysophospholipid and fatty acid, as described in Figure 1.7.101 

 
Figure 1.7. Mode of action of PLA2 versus other phospholipases.  AA = arachidonic acid.  
Adapted from Kaiser (1999).101  
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Mammalian PLA2 is composed of three distinct isozymes: group I (PLA2-I), group II 

(PLA2-II), and cytosolic PLA2 (cPLA2).102  Group I is the secretory pancreatic type, with a 

molecular mass of approximately 14 kDa, and it requires millimolar amounts of Ca2+ for 

activation.101  The complete sequence of PLA2-I consists of a single polypeptide chain of 125 

amino acids with seven cross-linked disulfide bridges.103  Group II is the non-pancreatic PLA2 

that can be further subdivided into secretory enzymes and membrane-associated enzymes.102  

PLA2-II has the same molecular mass and requirements of activation as PLA2-I.  The major 

difference is the absence of cysteine residues at position 11 and 77, along with the corresponding 

disulfide bridge in PLA2-II.  In spite of these differences, their respective active sites and 

hydrophobic regions are similar.101  Cytosolic PLA2 enzymes have a molecular mass of 

approximately 80 kDa, with some being Ca2+ dependent (c PLA2) enzymes and others are Ca2+ 

independent (i PLA2) enzymes.101  An 85 kDa cPLA2 was purified from human monocytic cell 

line (U937) and sequenced.104  This cPLA2 consisted of 749 amino acids and had no apparent 

disulfide bonds, in contrast to the PLA2 enzymes found in Group I and II.104  PLA2 has been a 

target for cancer therapy because of its over expression in various types of cancer, such as 

pancreatic, breast, lung, stomach, and prostate; PLA2-II is found in elevated concentrations in all 

types of cancer.9,101,105  In addition, high amounts of PLA2-II in blood have been associated with 

systemic bacterial infections and malaria.101  Furthermore, it has been reported that elevated 

serum levels of PLA2-II has been found in effusions from 47 patients with various cancers.102 

It has been essential to gain knowledge about the physical properties of liposomes (e.g. 

charge) and how that affects the substrate specificity towards PLA2 for the rational design of a 

degradable drug delivery system.  It was reported in the early 1990s that pig PLA2 had a slight 

preference for anionic phospholipids (2–3 fold).106  This preference was confirmed later by 

various investigations on the interaction of PLA2-II and anionic membranes.107-111  Those 

investigations reported that the specificity of the enzyme for anionic membranes is a result of the 



17 
 

electrostatic nature of the active site of PLA2-II that is high in cationic residues that provides 

non-specific electrostatic interactions that in turn promote surface binding.  This specificity 

prevents PLA2-II from interacting with unperturbed mammalian cells that are composed mostly 

of neutral lipids such as sphingomyelin, phosphatidylcholines, and cholesterol.110   

PLA2 has a fascinating feature of preference for aggregated lipid substrates, such as 

liposomes over lipid monomers.9  Thus, the design of liposomes with appropriate lipid 

composition will maximize PLA2-II activity.112  In addition, it has been proved that the addition 

of PEG modified lipids into the liposomal formulation did not preclude PLA2 from binding to 

the liposome surface.  On the contrary, PEG-lipid addition enhanced PLA2 activity due to the 

anionic headgroup of the PEG-lipid.112-114 

So far, the literature has presented two liposome designs: one is composed of different 

lipids and the other is formed by prodrug-lipid conjugates.  Thompson and co-workers designed 

a cascade liposomal system that utilizes liposome photooxidation and contents release to activate 

PLA2.115  This method employs a mixture of two liposomes, one composed of a photosensitive 

synthetic lipid, namely 1,2-dihexadec-1’-enyl-sn-glycero-3-phosphocholine (DPPIsCho) in 

conjunction with Ca2+, and the other composed of 1,2-dihexadecanoyl-sn-glycero-3-

phosphocholine (DPPC) with the DPPC liposome containing the encapsulated fluorophore 

calcein.  Upon light irradiation at 800 nm, the photosensitive liposome released Ca2+ ions thereby 

promoting PLA2 activation which lead to a 50% calcein release in 40 min.  A few years later, 

Davidsen et al. developed an experimental model using liposomes composed of 1,2-

dihexadecanoyl-sn-glycero-3-phosphocholine/1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000], (DPPC/DPPE-PEG2000); these 

were activated by PLA2 that caused destabilization of a second type of liposome inert to PLA2 

activity (mimicking stability of a target cell).116  Specifically, the generation of lysolipids and 

fatty acids by PLA2 from a DPPC/DPPE-PEG2000 liposome caused cargo leakage from the inert 
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liposomes 1,2-O-octadecyl-sn-glycero-3-phosphocholine (1,2-di-O-SPC) that were in close 

proximity to the DPPC/DPPE-PEG2000 liposomes. 

Anticancer ether lipids (AELs) are a class of drugs that inhibit tumor cell growth without 

causing mutagenic or myelosuppressive effects.9  However, the use of AELs was limited by 

severe hemolysis.9  In order to circumvent this issue, Andresen and co-workers synthesized AEL 

prodrugs (proAELs) to be included into a liposomal formulation sensitive to PLA2.117,118  

ProAEL liposomes successfully delivered the AELs into tumor cells showing no hemolytic 

toxicity.117-119  Very recently, Andresen et al. reported the synthesis of retinoid phospholipid 

prodrugs and proved that those pro-lipids can form liposomes sensitive to PLA2.  The ProAEL 

structures and their mechanism of release are represented in Figure 1.8.  In addition to the work 

made by the Andresen group, Linderoth and co-workers reported the synthesis of a thio-ester 

anticancer ether lipid (S-ProAEL) and subsequent liposome formulations that were also sensitive 

to the enzyme PLA2.120    

 
Figure 1.8. ProAELs structures and mechanism of AELs release in the presence of PLA2.  
Adapted from Andresen (2005).9   
 
1.3.5 Matrix Metalloproteinase (MMP) 

 Matrix metalloproteinases (MPPs) are zinc-dependent endopeptidases (they break peptide 

bonds of nonterminal amino acids) that together can degrade all components of the extracellular 

matrix (ECM).121  There are 21 members of the MMP family located in the membrane, as well as 

in the extracellular environment.121  Most of the MMPs secreted by cells are inactive zymogens 
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(or proenzyme, inactive enzyme precursors) that require proteolytical activation by tissue or 

plasma proteinases, bacterial proteinases or others MMPs.121  From the 21 MMPs known, MMP–

2 (Gelatinase A) and MMP–9 (Gelatinase B) have been exploited for prodrug and liposome 

activation, because high levels of these enzymes are present in a variety of tumor cells, such as 

bladder, colorectal, gastric, lung, and ovarian with all of these causing poor prognosis and 

survival rate.121  MMP–2 has a molecular mass of 72 kDa in the inactive form and 62 kDa in the 

active form, while MMP–9 has a molecular mass of 92 kDa in the inactive form and 82 kDa in 

the active form.122  X-ray structures for both proenzymes have been reported.123,124  The 

structures of MMP–2 and MMP–9 are very similar; they both have two zinc ions in the catalytic 

site and three calcium ions in different parts of the enzyme.123,124  They also share the same 

number of domains consisting of the N-terminal propeptide domain (where the enzyme is 

activated), the catalytic domain (S1' pocket), the C-terminal domain and an additional three- 

tandem fibronectin type II (FnII) domain (4 versus 3 in the other MMPs).124  The major 

differences between MMP–2 and MMP–9 rely on the side chain of Arg424 in MMP–9 that is 

angled slightly away from the S1' pocket when compared with the corresponding residue in 

MMP–2 (Thr424) and on the position of the second FnII domain.124 

  The mode of action of the MMPs is cleavage of the peptide sequence, acetyl-L-prolyl-L-

leucyl-glycyl-L-leucine (Ac-Pro-Leu-Gly-Leu), at the Gly-Leu bond.125  Thus, prodrugs 

derivatized with that peptide should be substrates for MMP–2 and MMP–9, as envisioned by 

Kline and co-workers, who synthesized four peptides and four peptidomimetic compounds.  

From the 8 molecules synthesized, only two peptides were substrates for the enzymes, with one 

having higher cleavage rates for MMP–9.125  Likewise, Chau et al. synthesized dextran-peptide-

methotrexate conjugates for drug delivery in tumors that expressed MMP–2 and MMP–9.  Pro-

Val-Gly-Leu-Ile-Gly was the optimal peptide linker between the fully neutralized dextran and 
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the methotrexate drug.126  This new peptide prodrug exhibited a bimolecular rate constant 

(kcat/Km) of 1.21 × 105 M–1 s–1 for MMP–2 and 3.60 × 103 M–1 s–1 for MMP–9. 

 Prodrug activation by MMPs gave the precedent for the design of triggerable liposomes 

capable of releasing their contents via MMP activation.  Triple helical collagen-mimetic peptides 

conjugated to stearic acid (lipopeptides), along with 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC), were used to form the first liposomal formulation to be activated by MMP-9 which 

causes bilayer destabilization and release of liposomal contents.127  In a later paper, the authors 

showed the mechanistic studies of liposomal formulations composed of three different 

lipopeptides integrated with 1-palmitoyl-2-oleoy-sn-glycero-3-phosphocholine (POPC), 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DSPC lipids.128  Those studies concluded that 

the rate and extent of leakage was dependent on MMP–9 concentration, and that upon MMP–9 

activation, release of contents occurs due to lipid mismatch between the lipopeptide and the other 

lipids present in the liposome.  Moreover, they proved that the lipopeptide liposomes did not 

release their contents in the presence of trypsin, even though the individual peptide is a substrate 

of the enzyme.129  Recently, the same research group reported the release profile of liposome-

encapsulated carboxyfluorescein in the presence of cancer cells.130  They observed a 40% release 

in the presence of MCF7 cells (high levels of MMP–9) in 30 min versus a 10% release when 

liposomes where incubated with HT-29 cells (low levels of MMP–9) in the same amount of time. 

 In addition to the release mechanisms mentioned above, a different research group 

investigated the interactions between PEG-peptide-DOPE-liposomes and MMP–2.131  They 

found that MMP–2 hydrolyzed the peptide between PEG and DOPE.  This indicates that the 

inclusion of PEG in the liposomal system to increase circulation time in vivo did not prevent 

MMP–2 from accessing the peptide substrate. 
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1.4 NAD(P)H:Quinone Oxidoreductase Type-1 (NQO1) 

 Prodrug activation by oxidoreductase enzymes other than NQO1, as well as enzyme-

responsive liposomes, were discussed previously.  This section will review NQO1 

characteristics, as well as the different approaches to target NQO1 for cancer treatment.       

1.4.1 Origin, Types, Structure, Mechanism, Location and Over Expression 

 NAD(P)H:quinone oxidoreductase Type-1 (NQO1, DT-diaphorase, EC 1.6.99.2) was 

accidentally discovered in 1955 and 1956 by Drs. Lars Ernster and Franco Navazio.132,133  The 

first published report (1958) of NQO1 described the enzyme as a soluble diaphorase found in 

animal tissue.134  The term DT-diaphorase came later in order to differentiate NQO1 from other 

diaphorases specific to NADH135 or NADPH.18  DT-diaphorase (NQO1) has the ability to accept 

electrons from the cofactors NADH (initially called DPNH) and NADPH (initially called 

TPNH).136  Today, DT-diaphorase officially corresponds to NQO Type 1 (NQO1).137  NQO has 

five genetic loci: NQO1 and NQO2 correspond to the human genes, as well as other mammals; 

NQO3 belongs to eubacteria; NQO4 belongs to fungi; and NQO5 belongs to archaebacteria.137  

 NQO1 is a homodimeric flavoprotein of 62 kDa containing 273 amino acids; each of the 

monomers has a non-covalently but tightly-attached FAD prosthetic group that remains bound 

during the catalytic cycle.138,139  The amino acid sequences and crystal structures of rat,138 

mouse139 and human139 NQO1s have been determined and are an important tool in identifying 

the similarities and differences among them.     

In 1995, Li and co-workers reported the crystal structure of rat NQO1 (rNQO1) 

complexes with duroquinone and cibacron blue (2.1 Å resolution), where each subunit was 

shown to contain two separate domains: a major, catalytic domain (residues 1-220) folded in a 

predominantly α/β structure, and a small, C-terminal domain (residues 221-273).138  The 

isoalloxazine moiety of the FAD interacts with different enzyme residues; the major interactions 

are those with aromatic residues Tyr104, Trp105, Phe106 and Leu103.138  The oxygen atoms on 
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the isoalloxazine ring form hydrogen bonds with the –NH of Phe106 and Gly150, whereas the 

nitrogen atoms of the isoalloxazine ring form hydrogen bonds with the –NH of Gly149 and 

Trp105 as described in Figure 1.9.138  The nicotinamide of NADP+ is stacked on top of the ring 

that contains the methyl groups of the isoalloxazine at a distance of approximately 3.4 Å.  The 

nitrogen atom on the amine attached to the carbonyl group on the NADP+ makes hydrogen bonds 

with the –OHs (hydroxyl groups) of Tyr126 and Tyr128.138 

  Fifteen years later, the crystal structure of human NQO1 (hNQO1) containing only the 

FAD prosthetic group (1.7 Å resolution), as well as the crystal structure of mouse NQO1 

(mNQO1, 2.8 Å resolution) revealed that most of the FAD-enzyme interactions in human and 

mouse NQO1 are highly homologous to those described in the structure of rat NQO1, Figure 

1.9.139  The residues' interaction with the cofactor of NQO1 were identified in the 

rNQO1/NADP+ structure; however, in human and mouse NQO1s, residues in loop 9 shift their 

positions by several Å, thereby closing the cleft.  Moreover, Tyr128 retrocedes from the cleft, 

resulting in widening of the cleft by 0.5 Å in hNQO1 relative to rNQO1. 139 

  
Figure 1.9. Schematic representation of FAD interactions with rat NQO1 (A) and human NQO1 
(B).  A) Shows hydrogen bonds of FAD with residues.  W means water.  B) Shows hydrogen 
bonds and van der Waals interactions of FAD with hNQO1.  Open radiated circles indicate 
hydrophobic interactions.  Hydrogen bonds are represented by dashed green lines; water 
molecules are shown as blue filled circles.  Adapted from Li (1995)138 and Faig (2000).139 
 

Overall, the sequence and structural similarities between hNQO1 and mNQO1 and 

hNQO1 and rNQO1 are both 86%, while it is 94% between mNQO1 and rNQO1.139  The 86% 

similarity between rat and human NQO1 accounts for a difference of 37 amino acids.140  The 

A B 
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major differences involve the replacement of Tyr104 present in the rNQO1 with Gln104 in the 

hNQO1 and mNQO1 structures, along with the absence of several water molecules in the 

rNQO1.139  Comparison of the X-ray structures of hNQO1 and mNQO1 versus rNQO1 shows 

replacement of the bulky aromatic residue (Tyr104) with a smaller aliphatic residue (Gln104) 

increases the space in the binding pocket of hNQO1 and mNQO1, thus allowing the 

dimethylbenzene ring of the FAD (ring C in Figure 1.9 (B)) to be located 0.5–0.7 Å deeper in the 

enzyme cavity.139,140  Those differences are reflected by the ability of NQO1 to activate different 

antitumor compounds, such as Mitomycin C and Streptonigrin (both with 5-fold lower rates for 

hNQO1 versus rNQO1).141  In addition, Walton et al. have found that rNQO1 and hNQO1 

catalyzed the reduction of menadione with a similar Km (1.4–3.1 µM) but the Vmax was 7 to 8-

fold lower for hNQO1.142  The same authors found that rNQO1 readily reduced the antitumor 

agent, EO9; however, no activity could be detected with hNQO1.142  Mutation studies replacing 

residues in rNQO1 with the human sequence and residues in hNQO1 with the rat sequence have 

shown that amino acid 104 (Tyr in rat and Gln in human) accounts for the catalytic differences 

between hNQO1 and rNQO1.143  Therefore, it is important to assay quinoid substrates with 

human NQO1 and not to rely on the data described for rat NQO1. 

The catalytic site has three distinct regions in all types of NQO1: one that binds to FAD, 

one that binds to the adenine ribose portion of NAD(P), and one that binds to either the hydride 

acceptor (substrate) or the hydride donor (NADH or NADPH).139  The binding pocket where the 

substrate and the cofactor bind has an internal wall (Phe106, Gly174, Phe178, Trp105), a floor 

(isoalloxazine ring), a roof (Tyr126, Tyr128) and an entrance (Gly149, Gly150, His194, 

Pro68).139  The non-occupied substrate binding pocket is 10 Å wide, 9 Å deep and 4 Å high.139  

Comparison of the X-ray structure of apo-hNQO1 (no quinone substrate present) with that of the 

hNQO1/duroquinone complex shows that duroquinone binds to the enzyme mainly by 

hydrophobic interactions, and that the plane of the quinone ring stacks 3.5 Å from the 
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isoalloxazine ring of hNQO1.139  It also revealed that Tyr128 adopts different conformations, 

resulting in opening and closing of the binding site.139   

NQO1 follows a ping-pong mechanism where the cofactor (NADH or NADPH) binds to 

NQO1 and donates a hydride to reduce FAD to FADH2.  Then, the cofactor leaves the binding 

pocket and a quinone binds to NQO1 and gets reduced to hydroquinone.18  This direct two-

electron reduction of quinones is unique among the reductive enzymes.18,144  In the X-ray 

structure of the hNQO1/duroquinone complex, it is shown that the closest distances from the 

flavin N5 (hydride donor) to the possible atom acceptors (of the hydride ion) in the quinone are 

4.5 Å to oxygen, 4.1 Å to carbon, and 3.55 Å to the other carbon.139  The details of the reduction 

of quinone to hydroquinone by the NQO1 mechanism are not fully understood, but it is believed 

residues Tyr155 and His161 play an important role in the charge stabilization of NQO1 during 

the hydride transfer process.138,145   

For the most part, NQO1 is located in the cytosol of cells, but it has also been found in 

the nucleus,146 membrane,147 endoplasmic reticulum,148 mitochondria,18,149 and in the 

extracellular environment.150  In human tissue, NQO1 has been primarily detected in epithelial 

and endothelial cells,3,4,151 and it is over expressed in various solid tumors, such as those of the 

liver (20 to 50-fold),1 lung (12 to 18-fold),3,11 pancreas,152 colon (3 to 4-fold)11 and breast (3-

fold).11  For that reason, hNQO1 is a promising target for bioreductive activation of therapeutic 

agents. 

1.4.2 Inhibitors of Human NQO1 

 NQO1 is considered a detoxifying enzyme because it prevents superoxide formation by 

reducing quinone radicals (before they react with molecular oxygen to form superoxides) to the 

less damaging hydroquinone compounds.153,154  Therefore, deactivation of NQO1 will lead to 

superoxide accumulation and cell death.  Dicoumarol is the best known competitive inhibitor for 

NQO1 with respect to the cofactors NADH and NADPH.18  The major problem with the use of 
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dicoumarol is its non-specific nature and ability to inhibit other enzymes besides hNQO1.155,156  

In addition, the effective concentration of dicoumarol that is required to inhibit NQO1 depends 

on the efficiency of the second substrate based on the NQO1 ping-pong mechanism.155  Few 

research groups have been investigating different quinone derivatives as inhibitors of NQO1 to 

use them as a possible route for cancer treatment. 

 The tumor blood-flow inhibitors flavone-8-acetic acid (FAA) and 5,6-

dimethylxanthenone-4-acetic acid (DMXAA) were reported by Phillips as competitive inhibitors 

of hNQO1 with respect to NADH.157  DMXAA and FAA presented relatively high Ki values (20 

µM and 75 µM); however, therapeutically-achievable levels of DMXAA and FAA would be 

sufficient to inhibit hNQO1 activity in vivo (IC50 of 49.6 µM and 110.9 µM).157  It was also 

reported that 3.55 mM of FAA exhibited only 6.51% inhibition on cytochrome b5 activity while 

DMXAA was found to partially inhibit cytochrome b5 (25% inhibition).  The authors also found 

that 1.77 mM of FAA partially inhibited cytochrome P450 while 2 mM of DMXAA had only an 

8.9% inhibition on the same enzyme.157 

Ross and collaborators reported in 2001 a more specific inhibitor (ES936) for hNQO1.158  

ES936 is a mechanism-based inhibitor that depends on NADH to deactivate hNQO1.158  

Incubation of ES936 (2 µM) with NADH (100 µM) and hNQO1 (2 µg·mL–1) resulted in more 

than 99% inhibition of enzyme activity in less than 5 min.158  X-ray, ESI-LC/MS/MS and 

MALDI-TOFMS analysis confirmed alkylation on one of the tyrosine residues (Tyr126 or 

Tyr128) in the active site of hNQO1.158  Later, ES936 analogs were investigated by Ross and 

coworkers as possible inhibitors of hNQO1.159  Growth inhibition activity in MIA PaCa-2 cells 

and computational-based molecular docking simulations revealed that ES936 and analog 2 were 

the best inhibitors of hNQO1 (~95% inhibition) and they stopped cell growth (IC50 of 

approximately 0.63 µM and 0.64 µM).159  Analogs 5, 6, and 7 were found to be good inhibitors 

(~90% inhibition) of hNQO1, but they were not effective in stopping cell growth.159 
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In 2006, Bryce et al. identified novel inhibitors of hNQO1 from the National Cancer 

Institute (NCI) compound database.160  They applied a virtual screening on thousands of 

compounds and narrowed them down to 28 for biological activity testing towards recombinant 

human NQO1.  From those 28 compounds, only the most potent inhibitor (NSC645827) had an 

observed IC50 of 0.7 µM that was comparable with that of dicoumarol (IC50 = 0.45 µM in the 

presence of BSA).160  In 2007, the same research group investigated 26 coumarin analogs as 

inhibitors of hNQO1 from the NCI database.161  Analogs were assayed in the presence and 

absence of BSA, providing information on the effect of nonspecific protein binding.  In the case 

of dicoumarol, it was found that the IC50 = 0.45 µM in the presence of BSA and IC50 = 0.005 

µM in the absence of BSA towards recombinant human NQO1, confirming its non-specific 

nature.161  The best inhibitors in the presence of BSA towards recombinant human NQO1 

comparable to dicoumarol were compound 2, 22, and 23 having IC50 values of 0.35 µM, 0.65 

µM and 0.60 µM, respectively.161  Cell growth inhibition studies on MIA PaCa-2 cell lines in the 

presence of dicoumarol, compound 2, 22 and 23 gave IC50 values of 75, 190, 150 and 140 µM, 

respectively.161  A few years later in a continued study on coumarin analogs, Bryce and 

collaborators investigated 29 dicoumarol analogs (with greater water solubility) as potential 

hNQO1 inhibitors.162  From those 29 analogs, several of them had IC50 values comparable or 

even better than the IC50 value of dicoumarol towards recombinant human NQO1; however, 

none of the analogs were as toxic as dicoumarol when incubated with MIA PaCa-2 or HCT116 

cell lines.162  More recently, Bryce and colleagues reported a range of triazoloacridin-6-ones 

(structurally related to NSC645827) as novel inhibitors of hNQO1.163  In this work, all of the 

fifteen compounds were assayed in the absence of BSA and had an IC50 far from dicoumarol’s 

IC50 value of 0.005 µM towards recombinant hNQO1.163 

In summary, ES936 and analog 2 have been the only reported mechanism inhibitors of 

hNQO1, with IC50 values comparable to that of dicoumarol.  In spite of the effort made by 
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research groups to find better inhibitors on structurally similar dicoumarol compounds, 

dicoumarol is still the most potent inhibitor of hNQO1.  Today, there are a handful of X-ray 

structures of hNQO1/inhibitor complexes that has been solved to gain an understanding of the 

mechanism of action of the different inhibitors and for the development and identification of 

additional potent inhibitors of hNQO1.158,162,164 

1.4.3 Bioreductive Drugs Activated by Human NQO1 

 NQO1 is known to reductively activate anticancer agents, such as mitomycins (MMC), 

aziridinyl benzoquinones (AZQ, MeDZQ, RH1), indolequinone EO9, streptonigrin, β-lapachone 

and benzoquinone ansamycins.19,43,154,165,166  The mechanism of action of those antitumor agents 

depends on the reactivity of the corresponding hydroquinone, Figure 1.10.43 

 
Figure 1.10. Mechanism of action of antitumor agents after bioreductive activation by human 
NQO1.  Adapted from Siegel (2008).43 
 

Mitomycin C (MMC) is one of a series of mitomycin antibiotics isolated in the late 

1950s.167 It was found to be effective towards different human tumors,168 but there has been 

controversy with respect to hNQO1 activation of MMC.  In the presence of air, hNQO1 activates 

MMC in a pH-dependent manner;169,170 however, under hypoxic conditions, hNQO1 detoxifies 

the drug.165  Despite this controversy, there is agreement that hNQO1 is the enzyme that 

activates MMC which in turn results in DNA crosslinking.  Experiments with HT-29 (high 
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hNQO1 expression) and BE (deficient hNQO1 expression) cells have shown that cells with high 

expression of hNQO1 are about 6-fold more sensitive to MMC.170  However, it has become 

evident that superior substrates for hNQO1 exist, and that the response to MMC in vivo cannot 

be predicted on the basis of hNQO1 activity.19,171,172 

EO9 is an indolequinone antitumor drug developed to undergo bioreductive activation 

similar to MMC.43,173  Beall et al. found that EO9 was a good substrate for hNQO1, having a Km 

value of 13.6 µM and a kcat value of 778 min–1.  They also observed that the reduction rate of 

EO9 by hNQO1 was 50% faster than that of MMC at a 50 µM quinone concentration.172  

However, EO9 failed to demostrate a significant antitumor response in clinical trials because its 

poor pharmacokinetics properties, such as short half-life and poor tissue penetration.17,174,175 

Aziridinylbenzoquinones are another class of DNA alkylating quinones.  In this series, 

MeDZQ was found to have a better response than AZQ toward killing HT-29 human cell (high 

hNQO1 expression) with IC50 values of 0.075 and 7.6 µM, respectively.176  The same 

compounds were tested later against recombinant hNQO1.  It was observed that MeDZQ was an 

excellent substrate with a reduction rate of 860 µmol·min–1·µmol–1, while the AZQ reduction 

rate was 160 µmol·min–1·µmol–1, both at a 100 µM quinone concentration.141 However, 

MeDZQ’s use was limited by its poor solubility.19  A few years later, Ross and coworkers 

identified a new azidinybenzoquinone, RH1, as an NQO1-directed antitumor agent.177  RH1 had 

an increased solubility versus MeDZQ and was found to be more effective than MeDZQ towards 

recombinant human NQO1 at a 50 µM quinone concentration (NADH oxidation rates RH1 = 

45.2 µmol·min–1·mg–1 and MeDZQ = 21.6 µmol·min–1·mg–1).177  RH1 toxicity was confirmed 

toward high expression NQO1 human cell lines (H460 and HT29), with IC50 values of 0.002 and 

0.011 µM, respectively.177  It was also reported that bioreductive activation of RH1 by other 

reductive enzymes would be unlikely because high concentrations of RH1 (0.5 µM) will be 

required for that to happen, while 0.05 µM of RH1 is already enough to produce 100% DNA 
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cross-linking on human blood mononuclear cells.178  RH1 has also proven to be efficient against 

paediatric tumor cell lines.179  Furthermore, RH1 has recently completed Phase I trials in adults 

in the United Kingdom and further clinical evaluation is ongoing.179 

Streptonigrin (SN) and β-lapachone (β-lap) are examples of redox-cycling quinones.43  

Streptonigrin was found to be the best substrate when compared to MeDZQ and EO9 towards 

recombinant hNQO1 with a Km value of 35.6 µM and a kcat value of 7,320 min–1 (MeDZQ 

values were 33.2 µM and 3940 min–1 and EO9 values were 13.6 µM and 778 min–1).172  The 

same study reported SN as the antitumor agent with better selectivity ratios (86-fold more toxic) 

when compared with the IC50 of human cell lines H596 (deficient in NQO1) with H460 (high 

NQO1 expression).172  In addition, it was reported that SN was much more cytotoxic towards 

human colon carcinoma cell line HT-29 with high NQO1 expression than human colon 

carcinoma BE (deficient NQO1 activity).180  In the 1960s, clinical use of SN was limited by 

myelotoxicity.181,182  β-lap was found to have enhanced cytotoxicity towards breast cancer cells 

expressing NQO1 versus deficient NQO1 cell line.  It was determined that 4 µM of β-lap was 

sufficient to kill over 99% of the cells with high NQO1 content.183  β-lap was also found to be an 

efficient  cytotoxic compound towards human pancreatic cancer cells (MIA PaCa-2) that over-

express NQO1.184,185 

 Benzoquinone ansamycin compounds such as geldanamycin, 17-AAG, 17-DMAG, and 

17AG have been identified as substrates for hNQO1; these compounds generate a hydroquinone 

that inhibits the heat shock protein 90 (HSP90), causing degradation of several important 

oncogenic client proteins.43,186  In two independent in vitro studies between the lead 

geldanamycin derivative 17-AAG and human cancer cell lines, a positive relationship was 

observed between hNQO1 expression level and growth inhibition by 17-AAG.187  Moreover, 

Guo and coworkers have reported a detailed study of the reduction of 17-AAG to 17-AAGH2 by 

hNQO1 and its 12-fold increase in growth inhibition towards MDA468/NQ16 cells (high 
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hNQO1 content) versus MDA468 cells (deficient hNQO1 content) based on its IC50 values.188  A 

year later, Guo and coworkers extended their detailed study to the reduction 17-AAG analogs by 

hNQO1 and found that these analogs also presented higher sensitivity towards MDA468/NQ16 

cells versus MDA468 cells.189  17-AAG and 17-DMAG (a more water soluble derivative of 17-

AAG) were found to be the most sensitive compounds in the series and are currently in clinical 

trials.189         

Out of all the bioreductive drugs mentioned above, just a few like RH1 are still in clinical 

trials.  The structures of the different bioreductive drugs that did not make it out of the clinical 

trials have been taken as models to design analogs that could have better response in cancer 

treatments.190  In the last 15 years, several research groups have emphasized their work on the 

structure–activity relationships between antitumor agents such as indolequinones,191-195 

benzoquinone mustards,196,197 benzimidazoles,198 quinolinequinones,199 lavendamycins200 and 

human NQO1 with the aim of finding new therapeutic agents.  Among the antitumor compounds, 

indolequinone analogs received the most attention as a possible prodrug system.16,190  Following 

this strategy, Borch et al. examined the delivery of phosphoramide mustards attached to 

indolequinones by hNQO1 activation.  The authors found that compounds substituted at the 2-

position were excellent substrates for hNQO1 (kcat/Km = (2–5) × 106 M–1·s–1) and potent 

inhibitors of cell growth with GI50 (growth inhibition) values in the low micromolar to 

nanomolar range.201 To date, none of the analogs developed have been approved for clinical 

use.17  In addition, the X-ray structure of three antitumor quinones (ARH019, RH1, EO9) 

complexed with human NQO1 were reported to improve the knowledge regarding the interaction 

of model compounds and hNQO1.202   
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1.4.4 Prodrugs Presenting the Trimethyl-Lock System Activated by Human NQO1 

  This section will focus on the quinone moieties, which after being reduced by hNQO1; 

release their cytotoxic agents by intramolecular cyclization facilitated by the presence of the 

trimethyl-lock system. 

 Chikhale et al. investigated benzoquinone-prodrugs (TDDS) that can selectively deliver 

the anticancer drug methylester of melphalan (MME) based on their electronic nature.203,204  The 

authors found that TDDS presenting less negative reduction potential had a higher amount of 

TDDS reduced under reductive chemical conditions and the extent of drug-delivery was 

proportional to the amount of TDDS reduced.203  In their follow up paper, they reported TDDS 

reduction by purified hNQO1 and found that the H-TDDS analog had the fastest rate of 

reduction followed by the Br-TDDS analog based on their t1/2 values of 3 min and 15 min, 

respectively.204  

 In 2007, Volpato et al. reported the human NQO1 activation of a benzoquinone prodrug 

conjugated to a 4-aminophenyl nitrogen mustard with a Km value of ~ 3 µM and a Vmax value of 

~ 12 µmol·min–1·mg–1.205  The authors identified the formation of lactone and 4-aminophenyl 

nitrogen mustard using LC/MS after the prodrug was reduced by hNQO1 in a cell free assay.  In 

addition, chemosensitivities studies show the prodrug is selectively toxic to cells that have 

elevated levels of NQO1 (H460) versus cells that are NQO1-deficient (BE) with IC50 values of 

36 µM and greater than a 100 µM, respectively.205 

 More recently, Moody and colleagues reported a benzoquinone prodrug conjugated to an 

antiangiogenic agent (SU5416) derivative as a potent inhibitor of the vascular endothelial growth 

factor (VEGF).206  The authors proved 100% inhibition of VEGF-stimulated angiogenesis in 

HUEVs (human umbilical vein endothelial cells with NQO1 expression) by addition of 10 µM of 

two different benzoquinone prodrugs conjugated with SU5416. 
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CHAPTER 2 

ELECTROCHEMICAL BEHAVIOR OF QUINONE DERIVATIVES POTENTIALLY 
USABLE FOR DRUG DELIVERY APPLICATIONS 

 
2.1 Introduction 

Quinones are known to be electrochemically active and undergo a two-electron, two-

proton reduction in aqueous media where the pH is below the pKa of the corresponding 

hydroquinone1 as presented in Scheme 2.1.  Electrochemical techniques, such as cyclic 

voltammetry (CV), can provide important thermodynamic as well as kinetic information on 

quinone-related compounds.2  The electrochemical properties of quinones can be tuned by subtle 

structural changes of the quinone moiety by adding a functional group or a handle, such as a 

propionic acid chain; in that way, the electronic properties of these compounds can be affected 

and a change in their reduction potential is possible.   

The goal of this work is to construct a series of quinone derivatives with various 

electronic properties that will be later tested with the human enzyme NAD(P)H:quinone 

oxidoreductase type 1 (hNQO1), which is known to reduce quinones to hydroquinones;3-5 thus 

these quinones may be used as triggers for endogenous target activation.  More explicitly, the 

research in the McCarley group focusses on the use of quinone triggers in the formation of 

enzyme-responsive liposomes for drug delivery applications.  It is known that the half-wave 

reduction potential of the flavin adenine dinucleotide (FAD) center of  rat NQO1 is –0.159 V vs. 

the standard hydrogen electrode (SHE).6  This enzyme follows a ping-pong mechanism using 

reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) as the electron source.  It is also known that the reduction 

potentials of NADH/NAD+ and NADPH/NADP+ are –0.310 V and –0.320 V versus SHE, 

respectively.7,8   
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To successfully assess the quinones as substrates of  hNQO1, it is necessary that their 

reduction potential be more positive than –0.159 V, but not so positive that the quinone substrate 

is possibly reduced directly by NADH or NADPH, as previously demonstrated in the literature 

for simple quinones.8  In addition, it is important to tune the reduction potential of quinone 

triggers to prevent non-specific interactions with potential reducing species that are endogenous 

in biological environments, such as glutathione (E1/2 = –0.22 V vs. SHE)9 and ascorbate (E1/2 = 

0.051 vs. SHE),10 so as to avoid the opening of  liposomes at undesired locations.  The 

thermodynamic parameters of cathodic reduction peak (Ep,c), anodic oxidation peak (Ep,a) and 

half-wave potential  (E1/2) of quinone derivatives were measured.   The half-wave potentials 

were calculated using Equation 2.1. 

𝐸1
2

= �∆𝐸p
2
� + 𝐸p, c                                                 Equation 2.1 

Moreover, it has been well established in earlier works that quinones possessing a 

trimethyl-lock system (R3 = R4 = R5 = CH3) experience an intramolecular cyclization passing 

through a tetrahedral intermediate after being reduced to the corresponding hydroquinone and 

forming the lactone compound as is depicted in Scheme 2.2.11  Such a reduction/cyclization 

process for propionic acid quinones is also thought to be dependent on the reduction potential 

(electronic properties) of the corresponding quinone; thus, the rate constant for the disappearance 

of hydroquinone was calculated using the peak current ratios (ip,a/ip,c) and their evaluation by the 

Nicholson and Shain method.12,13  Therefore, it may be possible to estimate the time for release 

of a target, such as a drug to be delivered after reduction occurs on the quinone moiety.   

O

O

OH

OH

+ +2 H+ 2 e-

 

Scheme 2.1. Reduction of 1,4-benzoquinone to 1,4-hydroquinone. 
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Scheme 2.2. Cyclization process of trimethyl-lock propionic acid 1,4-benzoquinones. 
 
2.2 Experimental Section 

2.2.1 Materials and Methods 

Quinone synthesis was previously described by a colleague in our group.14  Cyclic 

voltammetry (CV) experiments were performed with a computer-controlled EG&G PAR model 

273 A potentiostat (Princeton, NJ).  The electrochemical cell was composed of three electrodes: 

a (pretreated) glassy-carbon working electrode (A=0.07 cm2, CH Instruments, Austin, TX), a 

homemade 99.9 % platinum counter electrode (d=0.05 cm), and an Ag/AgCl (3.0 M KCl, CH 

Instruments) reference electrode.  The procedure starts with the polishing of the carbon electrode 

on a Buehler microcloth with 1 micron alpha alumina slurry micropolish, followed by 

pretreatment of this electrode by applying +1.5 V for 10 minutes while the electrode is immersed 

in the buffer solution used for the evaluation of the quinones. Polishing the working electrode 

eliminates any species that the electrode may absorb, and pretreatment activates the surface of 

the electrode, permitting a reproducible electron transfer at the working electrode surface.15  

Scans were conducted at a rate of 0.1 V s–1 at room temperature (22±2 °C) in a degassed 0.1 M 

phosphate buffer (PB)/0.1 M KCl (pH=7.1).  Each solution was degassed with nitrogen for 10 

min before obtaining the voltammogram.  Before the quinone was tested, the buffer was scanned 

to confirm a clear background with no unexpected peaks present.   Each individual quinone was 

tested on a different day, with 4 replicates per day.  Between replicates, no polishing or cleaning 

of the electrodes was performed.  Quinone solutions contained 1% ethanol or where sufficiently 
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soluble, solutions were sonicated for 30 min to ensure complete dissolution in the buffer 

solution; quinone concentrations ranged from 0.3 to 1 × 10-3 M. 

2.3 Results and Discussion 

2.3.1 Thermodynamic Parameters of Naked Quinones 

In Table 2.1 are summarized the thermodynamic results for six naked (not containing 

propionic acid) quinones whose voltammograms are presented in Figure 2.1.  It can be noted that 

all of the naked quinones, except the QBr, deviated from the ideal peak separation (ΔEp) of 30 

mV that corresponds to a total two proton/two electron reversible system.16  Instead, these 

compounds follow the behavior of a quasireversible system, which may be due to the slow 

electron transfer kinetics at the electrode surface.17-19  Therefore, the half-wave potential (E1/2) of 

each of the naked quinones was used as an approximation of the formal potential (E°') in these 

systems. 

Theoretically, quinones with electron withdrawing groups (EWG) attached to the ring 

will possess a more positive reduction potential (easier to reduce); while for quinones with 

electron donating groups (EDG), the opposite should happen.  In Table 2.1, it can be seen that 

1,4-benzoquinone is the easiest quinone to be reduced with a peak cathodic potential (Ep,c) of 

0.286 V and an E1/2 of 0.326 V.  When functional groups are added to the benzoquinone, its 

potential changes following a trend close to our expectations with E1/2 values of 0.220 V for QBr, 

0.212 V for QH, 0.196 V for QdiMeO, 0.155 V for QMe, and 0.078 V for DQ.  QBr, where bromine 

has the property of withdrawing electron density from the quinone moiety by the inductive 

effect, has a more positive Ep,c and E1/2 than the hydrogen, methoxy and methyl analogs, as I 

anticipated.  Even though the trend was clear, when comparing the QBr to the QH, the difference 

in the half-way potential was only 0.008 V more positive for the bromine analog.  This similarity 

of potential between QH and QBr may be explained by the inductive effect of the bromine being 

counteracted by a resonance effect and a lone pair contribution to the electron density of the 
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quinone moiety by the halogen as reported in earlier work.20  Another interesting observation 

was the dimethoxy substituted quinone case; QdiMeO was expected to be more negative than the 

methyl analog due to its strong resonance effect; however, the opposite was observed.  A 

colleague in our group determined the crystal structure of QdiMeO and observed that one of the 

methoxy groups is twisted from the quinone plane when two methoxy groups are adjacent on the 

quinone ring.14  Such a conformation for the QdiMeO results in a decrease of the resonance effect.  

This finding was supported by previous research groups that came to the same conclusion for 

quinones where two adjacent methoxy groups are present.21,22    

Table 2.1. Thermodynamic results for naked quinones.  Potential scans were conducted at a rate 
of 0.1 V s–1 at 22±2 °C in a pH 7.1 0.1 M PB/0.1 M KCl buffer solution.  A three-electrode cell 
was used containing a glassy carbon electrode, a platinum counter electrode, and an Ag/AgCl 
(3M KCl) reference electrode.  Potentials were converted to values versus the standard hydrogen 
electrode (SHE) by adding 0.210 V.23  Results are reported as the mean of 4 replicates ± one 
standard deviation. 

Quinone Ep,c (V) vs. SHE Ep,a (V) vs. SHE ΔEp (V)  E1/2 (V) vs. 
SHE 

O

O  
BQ 

0.286±0.001 0.365±0.001 0.079±0.001 0.326±0.001 

O

O

Br

 
QBr 

0.202±0.000 0.239±0.001 0.037±0.001 0.220±0.001 

O

O  
QH 

0.176±0.000 0.249±0.000 0.073±0.000 0.212±0.001 

O

O
O

O

 
QdiMeO 

0.143±0.000 0.249±0.003 0.106±0.003 0.196±0.002 

O

O  
QMe 

0.107±0.001 0.204±0.000 0.097±0.001 0.155±0.001 

O

O  
DQ 

0.033±0.001 0.123±0.001 0.090±0.000 0.078±0.001 
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Figure 2.1. Cyclic voltammograms of naked quinones.  Potential scans were conducted at a rate 
of 0.1 V s–1 at room temperature (22±2 °C) in a pH 7.1 0.1 M PB/0.1 M KCl buffer solution.  A 
three-electrode cell was used containing a glassy carbon electrode (A=0.07 cm2), a platinum 
counter electrode, and an Ag/AgCl (3M KCl) reference electrode (0.210 V vs. SHE).23  Potential 
sweeps started at 0.6 V to –0.6 and back to 0.6 V.  Positive current peak corresponds to the 
reduction peak (Ep,c) and negative current corresponds to oxidation peak (Ep,a). Colored lines 
represent 4 trials performed on each quinone and dashed line represents the buffer solution. 
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2.3.2 Thermodynamic Parameters of Propionic Acid Quinones and QMe-ETA 

In Table 2.2 are shown the thermodynamic values for eleven propionic acid quinones and 

one quinone propionic acid derivatized with an ethanolamine group.  In Figure 2.2 are contained 

the voltammograms for each of the quinone compounds mentioned above.  All the quinones in 

Table 2.2, with the only exception being NQ-COOH, had a ΔEp ranging between 0.242 V and 

0.446 V meaning, that these systems are electron-transfer irreversible.  This is not surprising, as 

the quinone propionic units have disturbed benzoquinone rings,14 while the conversely 

hydroquinone rings are expected to be planar.24  Thus, there is a significant change in ring 

geometry during the electron-transfer process that should lead to kinetics sluggishness.   

To compare the electronic properties of the various quinones, the reduction peak (Ep,c) 

was selected, as it is a better approximation for the reduction potential than  E1/2 for this type of 

system.  In Table 2.2, the first 10 quinones are subdivided into two groups: quinones without a 

trimethyl lock system (quinones 1–3) and quinones possessing it (quinone 4–10).  In the first 

group (NQ-COOH, Q’-COOH, QnogemMe-COOH), the Ep,c decreases from 0.249 V to 0.004 V 

when methyl groups are added to the quinone ring, as expected because methyl functions as an 

electron donating group and will provide electron density to the ring, resulting in a lower 

reduction potential for the quinone (harder to be reduced).  In the second group are quinones 

where the only difference is the functional group at the 2-position on the ring.  How much an 

electron donating or withdrawing group affects the reduction of quinones is represented clearly 

in this series.  When a halogen (Br or I) is attached to the quinone propionic acid, the Ep,c is –

0.026 V and  –0.047 V, respectively, and thus are the easier quinones to reduce in the series.  

When an electron donating group, such as methoxy or methyl, is present, the Ep,c value shifts 

negatively to  –0.107 V and –0.125 V, respectively.  It is interesting to observe that the more 

negative value of Ep,c between QMeO-COOH and QMe-COOH, corresponds to the methyl analog 

and not to the methoxy analog, as it was expected.  This result, opposite to what it was 
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anticipated, may be due to the not planar conformation that a methoxy group (hindered by a 

methyl at the 3-position) can acquired with respect to the quinone ring which will decrease the 

electron density contribution that the methoxy group can bring to the quinone.22  Moreover, 

when the functional group at the 2-position on the quinone ring is an n-propyl amine or a methyl 

amine, the reduction peak shifts even further negative achieving a value of –0.188 V and –0.219 

V respectively.  Such a strong electron density on the quinone moiety makes them the hardest in 

this series to be reduced.  The last quinones in Table 2.2 are QdiMeO-COOH and QMe-ETA.  The 

Ep,c of QdiMeO-COOH  differs by only 0.012 V from QMeO-COOH, meaning that addition of an 

adjacent methoxy group does not alter the electronic properties, probably because the quinone 

can receive electron density from just one methoxy group, as stated before for the naked 

quinones.  In the case of QMe-ETA, the electronics are virtually the same as QMe-COOH, 

meaning that the nature of the propionic acid side change (neutral or anionic at pH 7.1) does not 

impact electronic properties of the quinone moiety, as judged by voltammetry. 

Finally, when comparing the naked quinone, such is duroquinone, to the QnogemMe-COOH 

with a propionic acid handle, the reduction peak moves to the negative side by 0.029 V.  

Likewise, when compared QMe to Q’-COOH, having a propionic acid handle that include the 

presence of germinal methyls, the reduction peak moves to the negative side by 0.085 V.  

Moreover, the reduction peak of QMe-COOH, presenting the trimethyl-lock, compared with the 

reduction peak of duroquinone, is 0.158 V more negative.  This confirms the fact that the 

addition of a handle makes the quinones more difficult to be reduced and that this difficulty 

increases as the handle includes germinal methyls or the whole trimethyl-lock system is present.  

The reason for the furthest shift of Ep,c to the negative side, is that the trimethyl-lock induces 

conformational strain onto the quinone ring, resulting in a deviation from a typical planar 

conformation by roughly 20°.  These observations were made from X-ray crystallography on 
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each of these compounds14 and supported by a previous study by Wang et al. that also described 

the strain caused by the trimethyl-lock system.25 

Table 2.2. Thermodynamic results for propionic acid quinones.  Potential scans were conducted 
at a rate of 0.1 V s–1 at 22±2 °C in a pH 7.1 0.1 M PB/0.1 M KCl buffer solution.  A three-
electrode cell was used containing a glassy carbon electrode, a platinum counter electrode, and 
an Ag/AgCl (3M KCl) reference electrode.  Potentials were converted to standard hydrogen 
electrode (SHE) by adding 210 mV.23  Results are reported as the mean of 4 replicates ± one 
standard deviation. aThe anodic peak potential of lactone oxidation, Ep,l, is reported for those 
propionic acid quinones that exhibit this voltammetric feature. 

Quinone Ep,c (V) vs. 
SHE 

Ep,a (V) vs. 
SHE ΔEp (V)  E1/2 (V) vs. 

SHE 
Ep,l (V) vs. 

SHEa 

O

O

OH

O

 
NQ-COOH 

0.249±0.002 0.321±0.001 0.072±0.003 0.285±0.001 N/A 

O

O

OH

O

 
Q’-COOH 

0.022±0.001 0.267±0.001 0.245±0.001 0.144±0.001 N/A 

O

O

OH

O

 
QnogemMe-COOH 

0.004±0.002 0.281±0.002 0.277±0.003 0.143±0.002 N/A 

O

O

OH

O

 
QH-COOH 

–0.019±0.002 0.253±0.002 0.272±0.001 0.117±0.002 0.659±0.002 

O

O

OH

O

Br

 
QBr-COOH 

–0.026±0.001 0.216±0.003 0.242±0.004 0.095±0.001 0.706±0.002 

O

O

OH

O

I

 
QI-COOH 

–0.047±0.003 0.289±0.005 0.336±0.008 0.121±0.001 0.711±0.003 
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Table 2.2 continued. 

Quinone Ep,c (V) vs. 
SHE 

Ep,a (V) vs. 
SHE ΔEp (V) E1/2 (V) vs. 

SHE 
Ep,l (V) vs. 

SHE 

O

O

OH

O

O

 
QMeO-COOH 

–0.107±0.002 0.303±0.002 0.410±0.003 0.098±0.001 0.612±0.003 

O

O

OH

O

 
QMe-COOH 

–0.125±0.001 0.218±0.005 0.343±0.007 0.047±0.002 0.615±0.003 

O

O

OH

O

H
N

 
Qn-pr-NH-COOH 

–0.188±0.001 0.144±0.002 0.332±0.003 –0.022±0.001 0.640±0.004 

O

O

OH

O

H
N

 
QMe-N-COOH 

–0.219±0.002 0.165±0.002 0.384±0.005 –0.027±0.001 0.618±0.003 

O

O

OH

O

O

O

 
QdiMeO-COOH 

–0.095±0.000 0.351±0.002 0.446±0.002 0.128±0.001 0.694±0.004 

O

O

N
H

O
OH

 
QMe-ETA 

–0.118±0.002 0.199±0.000 0.317±0.002 0.041±0.001 0.640±0.003 
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Figure 2.2. Cyclic voltammograms of quinones with a propionic acid side chain.  Potential scans 
were conducted at a rate of 0.1 V s–1 at 22±2 °C in a pH 7.1 0.1 M PB/0.1 M KCl buffer solution.  
A three-electrode cell was used containing a glassy carbon electrode (A=0.07 cm2), a platinum 
counter electrode, and an Ag/AgCl (3M KCl) reference electrode (0.210 V vs. SHE).23  Potential 
sweeps started at 0.6 V to –0.6 and back to 0.6 V.  Positive current peak corresponds to the 
reduction peak (Ep,c) and negative current corresponds to oxidation peak (Ep,a). Colored lines 
represent 4 trials performed on each quinone and dashed lines represent the buffer solution. 
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Figure 2.2 continued. 
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2.3.3 Propionic Acid Quinones and Their Cyclization Behavior 

Earlier voltammograms of propionic acid quinones containing the trimethyl-lock system 

dissolved in 50% acetonitrile/buffer solutions, showed a lactone peak appearing when QH-

COOH is reduced to its corresponding hydroquinone.26  The cyclic voltammetry data obtained 

here in aqueous buffer electrolyte on our trimethyl-lock quinones, led to observation of a lactone 

peak (Ep,l) when these quinones were reduced to their hydroquinones under the experimental 

conditions used here.  However, quinone propionic acid where the trimethyl-lock is absent (NQ-

COOH, Q’-COOH, QnogemMe-COOH) does not present a lactone peak.  Such a difference 

between the quinone propionic acid is due to the fact that when the trimethyl-lock system is 

absent, the cyclization rate is significantly slower, as was reported previously in our group and in 

earlier works.24,27-30  In Scheme 2.2 is presented the reaction sequence for the lactone formation.  

It is important to our final goal not only to determine the ease of reduction of our quinones but 

also to find the rate at what hydroquinone disappear to become a lactone.  In this matter, the peak 

current ratio for quinone reduction and hydroquinone oxidation was measured for all the 

propionic acid quinone and subsequently predicted according to Nicholson and Shain for a 

chemical step following electron transfer.13  As a result, the rate constant for the disappearance 

of hydroquinone, called kf was obtained.  In Table 2.3 are presented the rate for the 

disappearance of hydroquinone after reduction of the quinone.  The results from Table 2.3 

revealed that quinones with no trimethyl-lock have the slowest rate among the propionic acid 

series (NQ-COOH = 0.02 s–1, QnogemMe-COOH = 0.08 s–1, Q’-COOH = 0.13 s–1).  Those values 

confirm the rate enhancement produced by the trimethyl-lock presence when lactone is form by 

the cyclization of propionic acid quinones. 
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Table 2.3. Rate constant for the disappearance of propionic acid hydroquinones.  aRatio 
measured between peaks current where the potential scan was conducted at a rate of 0.1 V s–1 at 
22±2 °C in a pH 7.1 0.1 M PB/0.1 M KCl buffer solution.  bRatio measured between peaks 
current where the potential scan was conducted at a rate of 1 V s–1 22±2 °C in a 0.1 M PBS / 0.1 
M KCl pH 7.1 buffer solution.  A three-electrode cell was used containing a glassy carbon 
electrode, a platinum counter electrode, and an Ag/AgCl (3M KCl) reference electrode.  

Quinone kf (s-1) 

NQ-COOH 0.02a 

QnogemMe-COOH 0.08a 

Q’-COOH 0.13a 

QH-COOH 0.19a 

QMeO-COOH 0.27a 

QdiMeO-COOH 0.29a 

QMe-N-COOH 0.37a 

Qn-pr-NH-COOH 0.39a 

QMe-COOH 1.0b 

QI-COOH 1.8b 

QBr-COOH 2.4b 

 

 
Figure 2.3.  Cyclic voltammograms of QMe-COOH.  Potential scans were conducted at a rate of 
0.1 V s–1 at 22±2 °C in the specified buffer solution.  A three-electrode cell was used containing 
a glassy carbon electrode (A=0.07 cm2), a platinum counter electrode, and an Ag/AgCl (3M KCl) 
reference electrode (0.210 V vs. SHE).23  Potential sweeps started at 0.6 V to –0.6 and back to 
0.6 V.  Positive current peak corresponds to the reduction peak (Ep,c) and negative current 
corresponds to oxidation peak (Ep,a), and to the anodic peak of the lactone (Ep,l).  
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To conclude the study on the cyclization rate of propionic acid quinones, the influence of 

buffer catalysis and salt concentration was investigated for QMe-COOH.  In Figure 2.3 is clearly 

shown that the increase in buffer concentration increases the rate of cyclization as seen by the 

bigger size on the lactone peak and the change on the current peak ratio.  On the other hand, 

adding more salt does not have an effect on the current ratio peak, thus, no impact is seen in the 

cyclization rate.  

2.4 Conclusions 

The electronic properties of six naked quinones, eleven propionic acid quinones, and a 

quinone propionic acid with an ethanolamine handle were characterized by cyclic voltammetry.  

In all cases, it was demonstrated that structural changes on the quinone moiety altered their 

reduction behavior.  In the case of naked and trimethyl-lock propionic acid quinones, their 

reduction potentials were changed by addition of different functional groups to the benzoquinone 

moiety.  Both type of quinones followed the same trend where quinones with a halogen had the 

more positive (or less negative) reduction potential, and quinones with a group that donates 

electron density to the ring, such as methyl, methoxy or amine, had more negative reduction 

potentials.  However, it seems that halogens donate some electron density to the quinone ring 

because their reduction potentials with respect to their hydrogen variant were very close (–0.026 

V vs. –0.019 V).  A similar conclusion was reached for iodo, chloride and bromine substituted 

quinones in Novak work.20  I also observed that propionic acid quinones without the presence of 

the trimethyl-lock system had a more positive reduction potential and more easily reduced than 

those where the trimethyl-lock system is present.  The contorted strain produced onto the 

quinone ring by the trimethyl-lock makes the transfer of electrons more difficult.  Although, 

quinone derivatives are harder to reduce when the trimethyl lock is present, its inclusion is 

fundamental to create quinones that can have a fast cyclization, as seen previously by in our 

group and by other research groups.24,27-30  In Figure 2.3, it is stated that an increase in buffer 
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concentration increases the cyclization rate but that no impact is seen when more salt is present 

into the solution.  As shown in Table 2.3, quinone propionic acids without the presence of 

trimethyl lock had the slowest rate for the disappearance of the hydroquinone after reduction of 

the quinone moiety occurred.  It is important to mention that the nature of the handle does not 

alter the reduction potential of the quinone as seen when comparing QMe-COOH versus QMe-

ETA.  From our summarized results, I can conclude that halogen, hydrogen, methyl, and 

methoxy trimethyl-lock propionic acid quinones can be assayed against the human enzyme 

NQO1 without further concerns of non-enzymatic reduction with the aim of finding possible 

trigger-quinones for enzyme activation.   
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CHAPTER 3 

TRIGGERABLE QUINONES ACTIVATED BY NAD(P)H:QUINONE 
OXIDOREDUCTASE TYPE I (HNQO1) FOR POTENTIAL DRUG DELIVERY 

APPLICATIONS 
 

3.1 Introduction 

In the last two decades, there has been remarkable interest in the activation of drug 

delivery systems and cellular process by enzymes associated with inflammatory diseases and 

cancer.1  The latter has been addressed in two ways: 1) using such endogenous, unregulated 

proteins to selectively activate antitumor compounds,2 prodrugs,3-6 and very recently liposomes7-

13 and 2) deactivating the enzyme which causes cell death through accumulation of damaged 

species, such as superoxide.14  Among the enzymes used as stimuli for these therapeutic routes, a 

significant research effort has been directed at a subgroup of  reductase enzymes, of which 

NAD(P)H: quinone oxidoreductase-1 (NQO1, DT-diaphorase, EC 1.6.99.2)15,16 has become of 

great interest.17  This homodimeric flavoprotein is unique among reductases, as it catalyzes the 

direct two-electron reduction of a wide variety quinones using NADH or NADPH as cofactor 15.  

NQO1 is located mainly in the cytosol of cells, but can also be found in the nucleus, endoplasmic 

reticulum, membrane and mitochondria, as well as extracellularly.15,18-24  The over-expression of 

human NQO1 in certain tumor tissues (e.g. non-small cell lung, pancreas and colon)25-29 makes it 

a valuable target for activating stimuli-responsive drug delivery systems based on quinone 

derivatives.  As a result, many groups have been actively studying its molecular structure using 

crystallography methods so as to improve our understanding about its nature (e.g. human code 

1D4A),30 as well as its behavior with substrates or inhibitors (e.g. duroquinone-enzyme code 

1DXO).30-35  Importantly, the ability of NQO1 to reductively activate sophisticated quinone and 

quinoidal compounds such as antitumor compounds36 and prodrugs37 has been studied a great 

deal  in the past.  However, the interaction of rhNQO1 with simple quinones or quinones useful 

for trigger groups in prodrugs and delivery vehicles, has to date not been studied.   



73 
 

Trigger groups that upon activation by a reductive stimulus are subsequently cleaved 

from a targeted group,6 hold much promise in the development of endogenously-triggered 

prodrugs and drug delivery vehicles, such as liposomes.  Our group has shown that reductively-

activated liposomes can have their contents delivered upon self-cleavage of the reduced quinone 

headgroup of the fusogenic lipids composing the liposomes.38  The key step of this delivery 

process is the initial reduction of the cleavable quinone head group, which should be controlled 

by the structure of the trimethyl-locked quinone propionic acid trigger (QPA), Scheme 3.1. 

 

Scheme 3.1. Reduction and cyclization process on quinone propionic acid triggers (QPA).   

Variants of the QPA trigger groups have also been investigated for prodrugs, such those 

based on mustard39 and oxindoles.40  Tunability in the reductive triggering of QPA groups for 

either prodrug or liposome delivery applications will be achieved by substituent variation at R1, 

R2, and R3 (Scheme 3.1).  Although others groups have previously demonstrated that simple 

quinones can be tuned for better interaction with rat NQO1,41-43 and there exist a good number of 

reports on structure-relationship activity44-51 and docking studies of NQO1 inhibitors and 

substrates for anticancer therapy,14,32,52-56 there is little data in the literature for the interaction of 

simple quinones with recombinant human NQO1.  Volpato et al. found that rhNQO1 activated 

an aromatic nitrogen mustard prodrug containing the QPA group with R1=R2=R3=R4=CH3.39  In 

this paper, we examine a good number of QPA derivatives as potential substrates for human 

NQO1.  We report detailed solution-phase kinetic parameters, as well as molecular docking 

studies, to help understand how these quinones interact with hNQO1.  Using the known crystal 
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structure of the hNQO1-duroquinone complex (1DXO),30 six different receptors (changing 

interface radius, oxidation state of cofactor, and method to define active site) were defined.  

Quinone derivatives were docked in each receptor to see if there was any difference on the 

outcomes and to have a better prediction for the orientation of our quinones into the active site of 

hNQO1.  Furthermore, we intended to correlate the experimental free energies extracted from the 

kinetic assays with the theoretical free energies from the docking studies.    

3.2 Experimental Section 

3.2.1 Materials   

Recombinant human enzyme NAD(P)H:quinone oxidoreductase-1 (EC 1.6.99.2) 

(rhNQO1), nicotinamide adenine dinucleotide reduced (β-NADH) and bovine serum albumin 

(BSA) were purchased from Sigma (D1315, N8129, A3294).  Potassium dihydrogen phosphate 

(KH2PO4, Fluka 60219), dipotassium hydrogen phosphate (K2HPO4, Fisher P288), potassium 

chloride (KCl, Sigma P9541) and potassium hydroxide pellets (KOH, Mallinckrodt) were used to 

make the buffer.  Ethyl alcohol (200 Proof-Absolute-Anhydrous) was purchased from Pharmaco-

AAPER.  Nanopure water was obtained from a Nanopure Diamond Barnstead System (18.2 MΩ-

cm).  Quinone substrates were synthesized as previously described or as outlined in the 

Appendix.57  The quartz 96-well microplate used in the enzyme assays was purchased from 

Hellma (730.009-QG).  FLUOstar Optima plate reader from BMG Labtech was used to follow 

NADH consumption during the enzyme assay.  

3.2.2 Enzyme Kinetic Assay 

Enzyme activities were determined using UV-vis spectroscopy by adapting a previous 

assay58 to a 96-well plate reader. The oxidation of NADH at 340 nm was measured using an 

experimental determined extinction coefficient of 4390 M–1cm–1 (Table A.1 and Figure A.1).  

Kinetic experiments were performed on three different days with at least three replicates of each 

condition performed.  The assay solution consisted of 0.1 M PB/0.1 M KCl buffer solution at pH 
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7.10 containing 0.007% of bovine serum albumin, 100 µL of appropriate concentration of 

quinone substrate, 50 µL of a 400 µM NADH solution, and 50 µL of enzyme solution (0.11–3.00 

µg).  The total assay volume was 200 µL.  All stock quinone solutions were prepared by 

dissolving each quinone in ethanol (100 µL) with subsequent dilution to 10.00±0.02 mL with 

0.007% BSA solution.  Quinone solutions of the desired concentrations were made by taking the 

appropriate volume from the quinone stock solution and diluting it to 10.00±0.02 mL in a 

volumetric flask.  The solutions were kept at room temperature (22±2 °C), in the dark, for 

approximately 2 hours before the experiments were started.  Once the 96-well plate was filled 

with the assay solutions, except the NADH solution, it was placed into the instrument and left to 

sit for 5 min before starting the measurements.  The enzyme reaction was started by automated 

dispensing of the NADH solution, and the absorbance change at 340 nm was measured for 1.6 

min at room temperature (22 to 26 °C).  The linear portion of the absorbance vs. time graphs (the 

first 20 seconds to 1 min) were fitted and slopes were calculated.  The average slopes from the 

replicates was used to calculate the kinetic parameters, with the Q–test being applied so as to 

reject values outside of the 90% confidence level.59  Plots of velocity versus quinone 

concentration were used to obtain Km and Vmax values from non-linear least squares analysis.60  

T-test was applied to the close values in the kinetic parameters so as to see if they were 

statistically different at the 95% confidence level.61  Due to instrument sensitivity, quinones with 

Km values lower than 15 µM could only be estimated.  

3.2.3 Molecular Docking 

Docking studies were performed using FlexX from LeadIT (1.3.0 version).62-69  Quinone 

structures were prepared in Chemdraw3D and subsequently minimized using Sybyl-X (Version 

1.1.1) using the Tripos force field for suitable bond distances and angles and the Gasteiger-

Hückel method for charge calculation.  Enzyme coordinates used in the FlexX software were 

obtained from The Protein Data Bank (code: 1DXO).  A molecular visualization system called 
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PyMOL was used to prepare the docking frames.  Construction of six different receptors was 

done with the FlexX software by selecting the active site containing amino acids from monomer 

A and C of the enzyme crystal structure.  Two water molecules were present in each of the 

receptors.  Receptor 1 includes FAD (as it is in the X-ray coordinates) as a cofactor with 

duroquinone as the reference ligand (X-ray coordinates edited by FlexX for correct atom 

hybridization and bond type) and the binding site is defined within an interface of 6 Å 

encompassing the reference ligand.  Receptor 2 includes FADH2 (FAD X-ray coordinates 

modified) as a cofactor with duroquinone as the reference ligand (X-ray coordinates edited by 

FlexX for correct atom hybridization and bond type) and the binding site is defined within an 

interface of 6 Å encompassing the reference ligand.  Receptor 3 is the same as Receptor 1 but 

has an interface radius of 8 Å.  Receptor 4 is the same as Receptor 2 but has an interface radius 

of 8 Å.  Receptor 5 includes FAD as a cofactor with the active site defined by a sphere of 8.5 Å 

with N5 from FAD as its center.  Receptor 6 includes FADH2 as a cofactor with the active site 

defined by a sphere of 8.5 Å with N5 from FADH2 as its center.   

In FlexX flexible docking calculations, the initial position of the substrate is outside the 

active site.  Then, an algorithm for fragmenting the quinone substrate is executed, and a base 

fragment is automatically selected and placed in the active site on which an incremental 

construction algorithm is performed.  From these calculations, each substrate examined using 

different receptors, has a set of solutions where the closest poses (based on score, position and 

interactions with the protein) were selected for detailed investigation.  On these selected poses, 

the influence of the cofactor state (oxidized FAD or reduced FADH2 form), receptor radius, and 

the inclusion or not of a reference ligand was studied.  In addition, the total score was used as an 

estimate of the free energy of binding and was subsequently used to plot theoretical free energies 

of binding versus experimental free energies of binding (ΔG = –RTLnKm).63 
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The docking method is based on the experimental observed range of nonbonded contact 

geometries revealed by statistical analysis of the Cambridge Structural Database (CSD), the 

analysis of the CSD is used to define the range of allowed angles and dihedrals describing the 

nonbonded contact geometry.70 The program discards any solution with electrostatic repulsion 

(based on a threshold limit distance).  The scoring function accounts for hydrogen bonds, ionic 

interactions, hydrophobic contact surface, and the number of rotatable bonds in the substrate.  

The limitations of the scoring function is that it does not account for differences in binding 

strengths between various neutral hydrogen bonds or ionic interactions, and it does not include 

the conformational energy of the substrate.63,70 The FlexX algorithm breaks down the substrate 

into fragments where one is automatically elected as the base fragment,66 and then the fragments 

are connected flexibly during docking in an incremental way.65  In the triangle algorithm, 

triangles of interaction centers are formed using the base fragment, and those are mapped onto 

triangle points lying on the receptor’s surface.  As an alternative to the triangle algorithm, a line 

algorithm is used when only two interactions exist simultaneously between the substrate and the 

enzyme.   The receptor is rigid and the ligand is flexible for both algorithms.  The scoring 

function is a modification of Böhm’s function.66-68  

3.3 Results and Discussion 

3.3.1 Kinetic Studies on Triggerable Quinones   

All the rhNQO1 kinetic parameters for the different quinone derivatives studied here are 

presented in Table 3.1.  To compare our data, we divided our complete list of quinone 

derivatives into 3 groups: a) changing the substituents at the 2-position (R1) on the quinone ring 

for the trimethyl lock series (R3=R4=CH3), b) presence versus absence of the trimethyl lock 

system, and c) charged versus neutral quinone propionic acid. 
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Table 3.1. Kinetic parameters for the reduction of quinone derivatives by hNQO1.  Values are 
the mean ± one standard deviation for three independent determinations. 

Quinone Km (µM) Vmax (µmol·min–1·mg–1 

of hNQO1) kcat (min–1) kcat/Km  (min–1·µM–1) 

O

O

OH

O

Br

 
QBr-COOH 

41±8 88±7 5500±400 
 

133±28 
 

O

O

OH

O

  
QH-COOH 

50±11 83±8 5100±500 103±25 

O

O

OH

O

  
QMe-COOH 

158±41 38±5 2400±300 15±4 

O

O

OH

O

O

  
QMeO-COOH 

447±102 42±5 2600±300 6±1 

O

O

OH

O

  
Q’-COOH 

20±3 78±3 4800±200 242±37 

O

O

OH

O

  
QnogemMe-COOH 

5±1 66±4 4100±200 853±178 

O

O

OH

O

O

O

  
QdiMeO-COOH 

376±87 14±1 800±100 2±0.5 

O

O

N
H

O
OH

  
QMe-ETA 

132±32 60±7 3700±400 28±7 
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• Changing the Substituent at the 2-position on the Quinone Ring–Trimethyl Lock Series.   

We obtained the kinetic parameters for four quinones that differ in their functional group 

at the 2-position on the quinone ring (bromine, hydrogen, methyl, methoxy).  Of this group, QBr-

COOH (R1=Br) and QH-COOH (R1=H) appear to be the best substrates based on its Km, Vmax 

and kcat/Km values.  The Michaelis constant values of Km = 41 µM (QBr-COOH) and Km = 50 

µM (QH-COOH), as well as, the maximum velocity values of Vmax = 88 µmol·min–1·mg–1 (QBr-

COOH) and Vmax = 83 µmol·min–1·mg–1 (QH-COOH) were found to be statistically equal at the 

95% confidence level.  Both QBr-COOH and QH-COOH are efficient substrates for rhNQO1, 

based on their kcat/Km values of 133 min–1·µM–1 and 103 min–1·µM–1, respectively.  In the case 

of QMe-COOH, there are two clear effects on the kinetic parameters as a consequence of the 

presence of a methyl group at the 2-position of the quinone ring.  First, the presence of the 

methyl group increases the electron density of the quinone core (due to its electron donating 

character) possibly making the analog less wishful to accept the electrons that come from the 

enzyme cofactor FADH2.  Second and more prominent, the methyl substituent causes steric 

interactions between the quinone ring and the hNQO1 active site, resulting in an unfavorable 

alignment and position of the quinone, causing lower binding, thus lowering the reduction rate.  

Steric hindrance at R1 position on the quinone ring has been previously observed to be an 

important factor in changing the rate of reduction between human NQO1 and structures such as 

indolequinones and benzoquinone mustard compounds.48,51,56  Lastly, QMeO-COOH has a very 

similar turnover rate compared to its methyl analog, and even though the methoxy group has a 

higher electron-donating ability, the alignment of this group with respect to the quinone ring 

reduces its power and make it behaves as a methyl.  The alignment distortion is caused by the 

methyl group at the 3-position of the quinone ring, because when a hydrogen is placed instead, 

the methoxy group adopt a coplanar conformation with the quinone ring that permits fully 

contribution of the electron density.71,72  However, the Km value of the QMeO-COOH differs from 
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that of its methyl analog because the methoxy group is a bulkier substituent than methyl.  

Consequently, steric interactions between the quinone and the hNQO1 active site, lead to 

decreased QMeO-COOH binding affinity, resulting in it being the worst substrate for hNQO1 in 

this series.  To complete the enzyme kinetic analysis of different functional groups at R1 position 

on the quinone rings, attempts were made to investigate QMe-N-COOH and Qn-pr-NH-COOH 

responses toward rhNQO1 but the results obtained are not reliable because both substrates 

absorb at the wavelength (340 nm) that NADH consumption is measured.   

• Special Note to QdiMeO-COOH.   

Although this analog possesses the trimethyl-lock structural motif, QdiMeO-COOH does 

not fall into the category discussed above, because it does not have a methyl group at the 3-

position on the quinone ring.  However, it was synthetically readily achievable and so it was 

investigated.  The pressure of one more methoxy group versus QMeO-COOH does not alter the 

Km value, which are statistically equal.  However, the Vmax value of QdiMeO-COOH is 1/3 times 

that of the quinone with only one methoxy group, QMeO-COOH (Vmax=42 µmol·min–1·mg–1).  

The cause associated with the rate difference, may be the presence of adjacent methoxy groups in 

the QdiMeO-COOH analog.  It has been reported before that when methoxy groups are in adjacent 

locations on the quinone ring, one of them is coplanar to the quinone ring, and the other one is 

not.71,72  Therefore, the quinone ring will receives full electron density contribution from the 

coplanar methoxy group making the quinone not as happy to receive electrons.  Moreover, the 

steric hindrance caused by the second methoxy group, which is a bulkier group than a methyl at 

R2 position on the quinone ring, could also affect the reduction rate of the quinone by hNQO1.        

• The Presence versus the Absence of the Trimethyl-Lock Motif in the Quinone.   

QBr-COOH, QH-COOH, QMe-COOH and QMeO-COOH all contain the trimethyl-lock 

motif, whereas Q’-COOH and QnogemMe-COOH do not.  All quinone structures are shown in 

Table 3.1.  In Q’-COOH, a hydrogen is present (instead of a methyl) at the 5-position on the 
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quinone ring and its observed Michaelis constant of 20 µM, it is substantially lower than that of 

QMe-COOH that possesses the trimethyl-lock motif (158 µM).  In addition, QH-COOH and Q’-

COOH, both have a hydrogen group on the quinone ring but the difference in position of that 

hydrogen at R1 and R3, respectively, make QH-COOH a trimethyl-lock derivative and Q’-

COOH  not.  This difference is reflected on the Km value of 50 µM for QH-COOH and 20 µM 

for Q’-COOH, resulting the last one a better substrate toward the hNQO1 enzyme.  This change 

in affinity can be explained by the ease of the trimethyl-lock strain when hydrogen is placed on 

the quinone ring on the same side as the propionic acid chain.  To further probe the effect of the 

trimethyl-lock motif, a quinone with no germinal methyl groups on the propionic side chain was 

examined, QnogemMe-COOH.  It was found that QnogemMe-COOH was even more specific 

toward the enzyme, as stated by its Km value of roughly 5 µM (Km values lower than 15 µM 

could only be estimated).   

• The Role of Charged Quinone versus Neutral Quinone.   

To investigate the effect of a neutral quinone in the active site, versus a negatively-

charged quinone, we studied a quinone with an ethanolamine (QMe-ETA) attached to the 

propionic acid group via an amide bond (with a pKa around 10)73 and compared its hNQO1 

values obtained for the QMe-COOH that is anionic at physiological pH.74  QMe-ETA presents a 

higher maximum velocity; however, the Michaelis constant values (Km) are statistically equal, 

therefore, no significant difference is presented in binding affinity.  The increase of 22 

µmol·min–1·mg–1 in maximum velocity for the QMe-ETA could be due to the absence of charge 

on the molecule or to the longer extended chain that QMe-ETA presents, that permits a different 

arrangement of the quinone-ethanolamine derivative into the active site of the enzyme.  This 

hypothesis will be later discussed by analysis of the docking outcomes. 
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3.3.2 Docking Studies on Triggerable Quinones 

In order to validate the docking methods used for the various quinone propionic acids, we 

examined docking results for duroquinone.  It was found that excellent results were achieved 

with all of the receptors, with an observed root mean square deviation (RMSD) < 0.5 Å for the 

best prediction and a RMSD < 1.34 Å for the lowest score.  In all of these outcomes, it was 

found that the orientation of the duroquinone was very similar, with differences of less than 1.2 

kJ·mol–1 from the lowest energy to the 20th lowest energy in each receptor.  In Figure 3.1, the 

best pose for duroquinone is shown and compared with the original crystal structure.   

 

Figure 3.1. Best prediction for the docked duroquinone in receptor 1 compared with the position 
of the duroquinone in the original crystal structure.  Docked duroquinone (pink) differ from the 
original duroquinone (yellow) by 0.4530 Å. Representation of amino acids (stick display; color 
by atom type, carbon atoms colored in purple) and FAD (sticks display; color by atom type, 
carbon atoms colored in cyan) in receptor 1.      

• Which Receptor Gives the Best Prediction?  

In docking, the way in which a receptor is defined affects in different ways the 

predictions of substrate interactions.  It is important to know what amino acids are to be included 

(defined by the radius of interaction), and the cofactor oxidation state must also be selected.  For 

the catalyzed NQO1 reduction of quinones with NADH, there is still much debate as to where 
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the negative charge stays after the first hydride transfer happens.  The most prominent proposal 

is that in which the negative charge stays on O2 and then this oxygen gets protonated to become 

an OH and the hydride is transferred to form FADH2.37,75,76  Scheme 3.2 represents the charge 

relay process and the possible atom sites on the quinone moiety where the hydride can be 

transferred to.   
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Scheme 3.2. Hydride transfer mechanism on all possible atom sites on QPAs. 
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There are also concerns about the geometry of FAD versus FADH2 and how the 

protonation can affect its conformation.  In the literature, it is reported that the conformation of 

FADH2 changes to a butterfly-like shape in solution (versus planar for FAD), but in most 

modeling structures FADH2 retains its planar conformation.30,75  To elucidate the possible 

influence of all these factors on the computed interactions between the QPAs and hNQO1, a 

variety of receptors were defined and evaluated.  All the QPAs tested in the kinetic assays were 

docked in the active site of hNQO1.  In addition, the QPA amine derivatives, QN-Me-COOH and 

Qn-pr-NH-COOH, were also docked in the active site of hNQO1with the aim of predicting their 

position and binding energy because of the lack of kinetic data for them.  

• FAD (Oxidized) versus FADH2 (Reduced).  

The outcome solutions from docking the quinone analogs in different receptors, having 

the active site FAD or FADH2 as cofactor, were examined.  For this, we compared the results 

from receptor 1 versus receptor 2, receptor 3 versus receptor 4, and receptor 5 versus receptor 6.  

In all cases, the positions of the quinones were the same.  The only slight difference was the 

energy score.  For the lowest energy score a slight increase of 0.6 kJ·mol–1 was observed for the 

outcome solution of the receptor containing FAD versus the receptor containing FADH2 and for 

the best prediction energy the increase was of 0.8 kJ·mol–1.  

• Interface Radius of 6 Å versus Interface Radius of 8 Å.   

The binding conformations of the quinone analogs were examined where the only 

difference was the interface radius of the active site.  We compared receptor 1 versus receptor 3 

and receptor 2 versus receptor 4.  In this case, the orientation of the quinone analogs in all the 

receptors mentioned above were the same, and the outcome solution with the lowest score 

energy for the duroquinone in each receptor differ by only 1 kJ·mol–1.  
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• Defining Active Site (Reference Ligand versus Sphere).   

The binding conformations of the quinone analogs were examined by defining the active 

site differently.  In the case of receptor 3 and 4, the ligand bound to the enzyme was used as 

reference ligand (duroquinone) and had an interface radius of 8 Å defined from its position.  In 

the case of receptor 5 and 6, the nitrogen N5 from the cofactor FAD or FADH2 was used as the 

sphere center and had an interface radius of 8.5 Å defined from it.  We compared receptor 3 

versus receptor 5 and receptor 4 versus receptor 6.  In these scenarios, the outcome with the 

lowest score and the best prediction differ in their orientations only for duroquinone but not for 

the other quinone analogs.  However, the outcome for the lowest energy value and the one 

associated with the best orientation is different for all of the quinones.  The lower energy score is 

smaller by 1 kJ·mol–1 in the receptors where the active site is defined by the 8.5 Å radius sphere.  

The best prediction corresponds to the quinone located deeper in the receptors 5 and 6.  In this 

case the energy is 0.6 kJ·mol–1 lower than in receptors 3 and 4.  We conclude that in this case for 

quinone analogs, even though there is a difference in score energy, this difference is minimal and 

does not affect the outcome.  Therefore, there is no apparent effect of active site definition on 

quinone positions or score energies.  

After comparing all the receptors, we observed that there is no effect of the oxidation 

state of the cofactor or of the interface radius in the docking outcomes.  There is little influence 

on the docking solutions when the active site was defined in different ways.  While the observed 

difference in the docking outcomes was major for duroquinone, the rest of the quinone analogs 

were unaffected.  In Figures A.5 and A.6 are represented the lower score frame of QBr-COOH 

(representative example of outcomes for all of the quinone analogs) in each of the receptors, and 

its corresponding poseview so as to help to visually support the conclusions made above.  These 

conclusions are also based on data in Table A.2 that contains the lowest score energies for QBr-

COOH in all the receptors.   
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The docking solutions of receptor 1 were used to compare the quinone analogs among 

themselves, and those outcomes are an accurate representation of what happened in all the 

receptors, Figure 3.2.   

  

  

  

  
Figure 3.2. Structural frames of FlexX-docked quinones in the active site of hNQO1.  Stick 
display in all the frames,  FAD (color by atom type; carbon atoms colored in cyan), amino acids 
(color by atom type, carbon atoms colored in purple) and docked-quinones (color by atom type, 
carbon atoms in pink): (A) QBr-COOH, (B) QH-COOH, (C) QMe-COOH, (D) QMeO-COOH, (E) 
QdiMeO-COOH, (F) Q'-COOH, (G) QnogemMe-COOH, (H) QMe-ETA, (I) Q(Me-N)-COOH, and (J) 
Q(n-pr-NH)-COOH.                                                                       
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Figure 3.2 continued. 

  

It was observed that QBr-COOH, QH-COOH and QMe-COOH all lay parallel to the 

isoalloxazine ring of the FAD cofactor, but the carbon site of the quinone for the possible 

hydride transfer is different due to the slight variance in the binding orientation with respect to 

FAD.  In the case of the methoxy and amine quinone derivatives, they do not bind as tightly as 

the other quinone analogs.  The obvious possible explanation for this is that the bulky 

substituents on the ring need more space, thereby preventing these analogs from venturing as 

deeply into the active site.  Other research groups reported in the past that a bulky amine at 2-

position of the quinone ring for indolequinones and quinolinequinones, decreased tremendously 

the reduction rate of these compounds with hNQO1 making them not a good substrate for this 

enzyme.46,47,49 

Furthermore, the theoretical binding energies from these docking outcomes were used in 

an attempted correlation with the experimental binding affinities. The experimental binding 

energies were calculated using the free energy equation ΔG = RTlnK,63 so as to plot |ΔG 

(experimental)| versus |ΔG (theoretical)|.  To our disappointment, there was no clear correlation 

between these values (Figure A.7).  However, this is not surprising based on the controversy that 

exist in the literature about whether or not docking binding energies can be correlated with 

experimental reactivity.35,53-55,77  In addition, other attempts were made to correlate reactivity 

with the information extracted from the docking outcomes.  The only correlation observed was 

the one between the log (atom distance) and the log (kcat/Km) as seen in Figure 3.3.  The atom 

distance corresponds to the distance between the closer atom on the quinone ring and the N5 

I J 
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atom of FAD.  This correlation indicates that the closer the atoms on the quinone are to receive a 

hydride from the N5 of FAD, the more reactive the quinone derivative will be with hNQO1.  

Based on this observation, the reactivity of the amine derivatives with hNQO1 should be similar 

to the one observed for the methoxy analogs. 

 Energy results for the more accurate score of each quinone and the distance from N5 of 

the FAD center in hNQO1 to the possible hydride transfer atoms of the quinone substrates78 are 

presented in Table 3.2.  It can be deduced that the hydride transfer for most of the quinones will 

be accepted by the carbon atom, except in the case of the quinones containing methoxy groups 

where the orientation favors a hydride transfer to the carbonyl oxygen.  In the case of the amine-

quinone derivatives, no conclusion can be made because the preferred site for Q(N-Me)-COOH is 

the oxygen and the preferred site for Q(n-pr-NH)-COOH is the carbon. 

Table 3.2.  Energy score and distance from N5 of FAD to the possible hydride transfer atoms.  
Atoms closer in distance to N5 are highlighted in red. 

Quinone Score (kJ·mol–1)  d [N5-C](Å) d [N5-C=O](Å) d [N5-O](Å) 

QBr-COOH - 25.2018 3.25 3.47 3.58 

QH-COOH - 24.0028 3.40 4.11 4.50 

QMe-COOH -26. 4276 3.58 3.54 3.71 

QMeO-COOH -20.3317 3.83 3.90 3.50 

QdiMeO-COOH -28.3849 4.05 4.05 3.68 

Q’-COOH -26.9646 3.18 3.81 3.92 

QnogemMe-COOH -25.8435 3.22 3.49 3.68 

QMe-ETA -28.4801 3.43 3.73 3.81 

Q(N-Me)-COOH -24.8434 3.95 3.90 3.45 

Q(n-pr-NH)-COOH -20.9808 3.68 4.36 4.32 
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Figure 3.3. Correlation between the log (distance of the closer atom on the quinone ring with 
respect to N5 of FAD) and the log (kcat/Km).   

Superimposed images of the quinones containing trimethyl-lock motif (Figure A.2), 

quinones with the trimethyl-lock motif present and absent (Figure A.3) and quinones differing on 

the molecule charge (Figure A.4), were prepared to see if there was any correlation between the 

kinetic results and the docking studies.  In Figure A.2, it was found that QBr-COOH holds the 

deepest location into the active site, whereas QMeO-COOH penetrates the least deep.  These 

observations are in accordance with the kinetic data for these quinone series.  In Figure A.3, 

QnogemMe-COOH is the closest to the FAD and QMe-COOH the one located further from the 

isoalloxazine ring.  These observations agree with the order of reactivity of these compounds 

with hNQO1.  In Figure A.4, the longer chain present in the QMe-ETA permits the quinone to 

accede to a deeper location in the active site of the enzyme.  This could be the cause for the 

increase of 22 µmol·min–1·mg–1 in maximum velocity for the QMe-ETA. 
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3.4 Conclusions 

In conclusion, we studied the reduction of eight quinone derivatives by human 

recombinant NQO1 using a 96-well microplate enzyme assay and obtained kinetic parameters 

Km and Vmax having excellent reproducibility.  Minor alterations in structure resulted in 

significant changes in the kinetic parameters; for example QBr-COOH is much more active at a 

low concentration than is QMe-COOH, and so is the case for QMe-COOH versus QMeO-COOH, 

and QMeO-COOH versus QdiMeO-COOH.  QBr-COOH appears to be the preferred substrate 

among the quinones containing the trimethyl-lock system based on its higher kcat/Km value of 

133 min–1·µM–1.  It is also notable that sterics seems to predominate over electronic effects 

among the trimethyl-lock series, an outcome similar in nature for the benzoquinone mustards.48,51  

As far as the best substrate in Table 3.1, the quinone without the geminal methyls is the most 

efficient of all with the highest product formation at small concentration of reactant (kcat/Km = 

853 min–1·µM–1).  This conclusion guides us to believe that the presence of the trimethyl-lock 

affects the geometry of the quinone ring, which has somewhat of an effect on the interaction of 

the quinone with the active site of the enzyme. 

The docking studies completed on ten quinone derivatives suggested that small 

modifications of the quinone core alter the ability of the quinone to be reduced by the enzyme, 

results that are in agreement with those of indolequinones.56  Based on the kinetic and modeling 

studies with the QPAs, hNQO1 can accommodate a range of quinones having characteristics 

binding affinities.  The unsuccessful correlation between experimental binding energy versus 

theoretical binding energy makes us think that, in order to quantitatively analyze the influence of 

a functional group in the quinone core, experimental assays are required.  However, we were 

able to qualitatively visualize the different positions of the quinone trimethyl-lock series in the 

active site, and our results are in qualitative agreement with the experimental binding values 

(strongest toward weakest  QBr > QH > QMe > QMeO).  In the same manner, we obtained the same 
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qualitative correlation for quinones either containing or lacking the trimethyl-lock (QnogemMe > Q’ 

> QMe).  Lastly, docking and kinetics studies revealed that the presence of a longer side chain 

attached to the quinone (i.e. QMe-ETA versus QMe-COOH) can cause the quinone core to 

penetrate deeper into the active site.  This suggest that addition of spacers to the quinone 

derivatives79 may increase quinone-enzyme binding and perhaps the enzyme rate of conversion. 

The combination of the experimental kinetic and theoretical docking data support our 

predictions: changing functional groups on the quinone ring affects how deep the quinone is 

located in the active site of the enzyme, and this difference in position has consequences on the 

binding affinity and on the hydride transfer rate. Overall, this analysis will enrich the knowledge 

for simple quinones and hNQO1 interactions, providing valuable information for the design of 

enzyme triggerable systems.     
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CHAPTER 4 

QUINONE TRIGGER-BASED LIPIDS FOR FORMING ENZYME-RESPONSIVE 
LIPOSOMES AND THEIR RESPONSE TOWARD HNQO1 ASSAY CONDITIONS   

 
4.1 Introduction 

In general, quinones have been applied to different systems with the aim of improving 

therapeutic responses in the area of targeting cancer, such is the case for antitumor compounds 

and prodrugs; both being activated by reductive enzymes.1-3  The McCarley research group went 

a step further from prodrugs and designed a quinone-based liposome system to be specifically 

activated by the human reductive enzyme NAD(P)H:quinone oxidoreductase type-1 (hNQO1), 

which is over-expressed in certain solid tumors,4-7 with the objective of adding more deliverable 

drug units per delivery carrier.  Such liposome systems have been proved by the McCarley group 

to open by chemical reduction under bench-top conditions.8  However, these liposomes still need 

to be assayed against the human enzyme NQO1 for the development of enzyme-responsive 

liposomes.  Initial information was extracted from the characterization of trimethyl-lock quinone 

derivatives by cyclic voltammetry (chapter 2), enzyme assays and docking (chapter 3).  With 

such knowledge in hand, it was expected that contents release would occur for quinone-based 

liposomes (Q-liposomes) upon hNQO1 activation (reduction) of the quinone headroup to the 

hydroquinone, and as a result, destabilization of the liposome bilayer would lead to cargo 

release, Scheme 4.1.  In order to clearly demonstrate liposome opening through this enzyme 

mechanism, first proper control experiments needed to be done wherein in the dye-containing 

liposomes are examined in the sole presence of bovine serum albumin (BSA), reduced nicotine 

adenine dinucleotide (NADH), and hNQO1, common components of the NQO1 assay.9  Those 

control experiments will provide knowledge on the interaction between quinone-liposome 

systems and hNQO1 assay components.  
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Scheme 4.1. Proposed enzyme-responsive liposome system. 

4.2 Experimental Section 

4.2.1 Materials  

Potassium dihydrogen phosphate (KH2PO4, Fluka 60219), dipotassium hydrogen 

phosphate (K2HPO4, Fisher P288), potassium chloride (KCl, Sigma P9541) and potassium 

hydroxide pellets (KOH, Mallinckrodt) were used to make the buffer.  Recombinant human 

enzyme NAD(P)H:quinone oxidoreductase type 1 and type 2 (rhNQO1 and rhNQO2 ), 

nicotinamide adenine dinucleotide reduced (β-NADH) and bovine serum albumin (BSA) were 

purchased from Sigma Aldrich (D1315, Q0380, N8129, A3294).  Triton X-100 (> 99% pure, 

Sigma T8787) was also purchased from Sigma Aldrich.  Calcein (85% pure, Acros Organics) 

was purchased from Fisher Scientific.  1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] 

(PEG2000-DOPE), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (CHO) 

were purchased from Avanti Polar Lipids and used without further purification.  Sephadex Fine 

G-50 was purchased from GE Healthcare.  NORM-JECT syringes were purchased from Fisher 

Scientific.  Nanopure water was obtained from a Nanopure Diamond Barnstead system (18.2 

MΩ·cm).  Q-DOPE syntheses and characterizations were published previously.10  The 
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instrument used was a Perkin-Elmer LS 55 Fluorescence Spectrometer with a PTP-1 

Fluorescence Peltier System and PCB 1500 Water Peltier System (PerkinElmer, Waltham, MA). 

4.2.2 Calcein-loaded Liposome Preparation  

Liposomes were prepared using a modified version of the well-known lipid thin-film and 

extrusion method.11,12  Around 20 mL of pH 7.1 0.1M phosphate buffer (PB)/0.1 M KCl was 

placed under argon to degas.  1–3 mg of quinone-DOPE (taken out of the freezer 20 min before 

weighing) was dissolved in a minimal amount of chloroform (approximately 1 mL).  Depending 

on the liposome system to be prepared, appropriate amounts of PEG2000-DOPE, DOPC, or 

cholesterol were weighed, and subsequently dissolved in certain volume of chloroform to reach 

the desired concentration for later addition to the Q–DOPE solution.  Then, the solution was 

transferred into a 10-mL (14/20) ground joint test tube.  Chloroform was removed by rotary 

evaporation for 15 min, and a thin film layer was formed at the bottom of the tube.  The lipid 

film was further dried under high vacuum for 1 hour.  While the lipid was drying, a 40 mM 

calcein solution in degassed buffer was prepared.  Approximately 248 mg of calcein and 70 mg 

of potassium hydroxide were added into a vial followed by addition of 8 mL of degassed pH 7.1 

0.1 M PB/0.1 M KCl buffer solution.  The mixture was sonicated to help dissolve the solids, 

yielding an orange solution.  Titration with KOH solution (KOH pellets and pH 7.1 0.1 M PB/0.1 

M KCl buffer) gave the desired pH of 7.1.  The calcein solution was transferred to a 10-mL 

volumetric flask and filled with degassed buffer to the calibration mark.  Dried lipids were 

hydrated in 1 mL of calcein solution by vortexing the mixture for 30 seconds and allowed to 

stand every 2 min for a total of 30 min.  The hydrated lipids went through six-freeze thaw cycles 

using an acetone/dry ice bath and a warm water-bath.  At this point, an Avanti Mini-Extruder 

(Avanti Polar Lipids, Alabaster, AL) was assembled and rinsed with buffer and then with calcein 

solution before injection of the lipid solution into the extruder.  A total of 19 extrusions were 

performed at room temperature (22±2 °C) using one 100-nm diameter pore Whatman 
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Nucleopore polycarbonate track-etched membrane.  Free calcein was separated from liposome-

encapsulated calcein by column centrifugation method, as follows 100–250 µL of solution was 

added to a 3-mL syringe with glass-cotton frit, packed with Sephadex Fine G-50 and then 

centrifuged for 3 min at 500 x g.  Solutions of liposome-encapsulated calcein were stored in an 

amber vial under argon and then placed in the refrigerator at 8 °C for subsequent experiments.  

Liposome-encapsulated calcein solutions are stable for up to 5 days. 

4.2.3 Characterization of Calcein-loaded Liposomes 

Liposome sizes (diameters) were measured using dynamic light scattering from 

backscattered light intensities (173°, 633-nm red laser) at 25 °C in a Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, U. K.) particle analyzer.  No significant size differences were found 

previously between calcein-loaded liposomes and calcein-free liposomes.8  Liposome charge was 

obtained by measuring the zeta potential at 25 °C in a folded capillary zeta potential cell using a 

Smoluchowski model. 

4.2.4 Stability and Calcein Release Experiments 

10 µL of calcein-loaded liposomes and 990 µL of pH 7.1 0.1 M PB/0.1 M KCl buffer 

solution were added to a 1-cm quartz cuvette, and an absorbance scan was performed at room 

temperature from 200 to 600 nm in a Varian Cary 50 Bio UV-Visible Spectrophotometer.  The 

peak at 497 nm corresponds to the encapsulated calcein, and its absorbance ranged from 0.06 to 

0.1 a.u. depending on the liposome system.  The peak at 264.9 nm corresponded to the QMe 

headgroup absorbance, when it was equal to 0.55 a.u., meant that the lipid concentration was 100 

µM based on a ɛ265 = 5500 M–1 for the QMe headgroup.13  A ratio between this value and the 

absorbance value measured for a particular experiment containing QMe-DOPE gave the 

corresponding amount of liposome solution needed to have 100 µM liposome in a 3-mL volume.  

In these liposome stability experiments, different assay components were present in the 4-sided 

transparent cuvette by the time the fluorescent experiment start.  All fluorescence intensity 
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experiments were performed at 25 °C on a Perkin-Elmer LS 55 Fluorescence Spectrometer with 

a PTP-1 Fluorescence Peltier System and PCB 1500 Water Peltier System.  The excitation 

wavelength was λex = 490 nm, and the emission wavelength was λem = 515 nm, both with a slit 

width of 2.5 nm.  Data was acquired every 1 min with a 0.1 second integration time; the total 

experimental time varied from 1 hour to 24 hours.  To avoid detector saturation, two neutral 

density filters (ND 0.3 and ND 0.5, Omega Optics, Brattleboro, VT) were placed inside the 

instrument so as to reduce the total transmission to 16% of the original intensity.  The percent of 

calcein release was calculated as follows: 

                                          % 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 = (𝐹𝑡−𝐹0)
(𝐹100−𝐹0)

∗ 100                                            Equation 4.1 

F0 is the intensity value that corresponds to the point before addition of the assay component 

(BSA, NADH, hNQO1, dithionite, liposomes) where there is a 0% leakage.  Ft corresponds to 

the fluorescence intensity observed at the point in time after addition of the assay component.  

F100 is the fluorescence intensity observed after addition of 15 µL of 30% (v/v) Triton X-100 that 

ensures lysing of the liposomes for release of all calcein. 

4.2.4.1 Bovine Serum Albumin 

When BSA was tested with the different liposome systems, the concentration of 

liposomes was calculated as described in Section 4.2.4.  BSA solutions were made using a 10- 

mL volumetric flask containing pH 7.1 0.1 M PB/0.1 M KCl and 0.7 mg or 7 mg of BSA, 

corresponding to a 1 µM or 10 µM BSA solutions.  The experiment started by addition of 

liposome solution to the already present BSA solution in the cuvette or the other way around.  In 

both cases the same result was observed, reaffirming that the addition order had no effect on the 

outcome.  Fluorescence at 515 nm was recorded upon addition of either component. 

4.2.4.2 Reduced Nicotine Adenine Dinucleotide 

When NADH was tested with the different liposome systems, the concentration of 

liposomes was calculated as described in Section 4.2.4.  NADH solutions were made using a 10- 
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mL volumetric flask containing pH 7.1 0.1 M PB/0.1 M KCl and 7.25 mg of NADH, 

corresponding to a 1 mM solution.  300 µL of 1 mM NADH solution were added to the cuvette 

and fluorescence as a function of time was recorded. 

4.2.4.3 Human NAD(P)H:Quinone Oxidoreductase Type 1 (hNQO1) and Type 2 (hNQO2)  

The reaction started when 300 µL of hNQO1 solution were added to the liposome 

solution in the 4-sided transparent cuvette.  The amount of enzyme used in the experiment was 

calculated based on hNQO1 enzyme kinetics assays carried out previously on QMe-COOH.  

Enzyme solutions were prepared from a 50 µL frozen enzyme aliquot (2 mg·mL–1) added to 275 

µL of pH 7.1 0.1 M PB/0.1 M KCl buffer to yield a 5 µM solution.  For inhibition experiments, 

599 µL of pH 7.1 0.1 M PB/0.1 M KCl buffer containing NADH (100 µM) and ES936 (30 µM) 

were added to the hNQO1 enzyme (50 µL frozen aliquot), and this solution was incubated at 

room temperature for 30 min prior to its addition to the 4-sided transparent cuvette.  For heat 

inactivation of hNQO1, the enzyme was heated at 85 °C for 25 min, and then 300 µL were added 

to the liposome solution.  hNQO2 experiments were performed as described for hNQO1 but 

using an enzyme concentration of 2.5 µM.  Fluorescence at 515 nm was recorded upon addition 

of either component 

4.2.4.4 Sodium Dithionite 

Around 15 mL of buffer was purged with argon for 20 min.  The appropriate amount of 

liposome solution and degassed buffer were mixed to yield a total volume of 3 mL and then 

added to a 4-sided cuvette with a screw-cap septum; the solution was purged with argon for 10 

min.  The cuvette was taken to the room where the fluorescence instrument is located, and the 

experiment was started.  Approximate 5.3 mg of dithionite was added to an amber-septum vial 

and then purged with argon for 1 min.  To the degassed vial containing dithionite, 1 mL of 

degassed buffer was added.  The oxygen-free dithionite solution was taken to the fluorometer 

room and an appropriate amount of this solution was injected into the cuvette using a 50-µL 
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Gastight syringe (Hamilton, Reno, NV).  After injection, the cuvette was shaken, and then the 

time-dependent fluorescence was recorded. 

4.3 Results and Discussion 

4.3.1 Stability and Calcein Release for Q-DOPE Liposome Systems  

4.3.1.1 Liposomes Composed of 100% QMe-DOPE  

QMe-DOPE liposomes have been extensively studied in the McCarley group, and their 

contents release curves were reported previously upon addition of dithionite.8,10,13  Therefore, 

there was an imminent curiosity to see how they will behave under hNQO1 assay conditions.  

The appropriate amounts of QMe-DOPE liposome, NADH and BSA solutions were calculated as 

outlined in Section 4.2.  The absorbance spectrum of 100% QMe-DOPE liposomes is presented in 

Figure 4.1.  In this spectrum is clearly observed the quinone headgroup peak (λmax = 264.9 nm) 

used to calculate the liposome concentration as well as the necessary value for the encapsulated 

calcein peak (λmax = 497 nm) to avoid detector saturation.   

 

Figure 4.1. UV-vis absorbance spectrum of 100% QMe-DOPE liposomes in pH 7.1 0.1 M PB/0.1 
M KCl at room temperature. λmax = 264.9 nm corresponds to the QMe headgroup and λmax = 497 
nm corresponds to the encapsulated calcein. 

The first experiment intended to verify if the presence of NADH, an hNQO1 electron 

donor during the ping-pong mechanism,9 has any impact on the liposome stability.  In Figure 4.2 

0

0.1

0.2

0.3

0.4

0.5

0.6

200 300 400 500 600

A
bs

or
ba

nc
e 

Wavelength (nm) 

264.9 nm 

497 nm 



107 
 

is shown the behavior of 100% QMe-DOPE liposome upon addition of 300 µL of 1 mM NADH 

solution.  To our satisfaction, liposomes were stable up to 18 hours (the maximum time 

measured) in the presence of the hNQO1 cofactor.  The stability of the liposomes in the presence 

of NADH confirms the absence of direct reduction between the quinone headgroup and the 

cofactor.  In this matter, any liposome opening should be caused by the enzymatic reduction of 

the quinone headgroup as illustrated in Scheme 4.1.   

 

Figure 4.2. Stability of 100 µM 100% QMe-DOPE liposomes in the presence of 100 μM NADH.  
(↑) the time for addition of 300 µL of 1 mM NADH solution.  No leakage was observed as 
noted by the lack of increase in fluorescence intensity with time.  (●) time at which 100% QMe-
DOPE liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  (     ) 
Instrument stopped by itself and was started again by me; no consequences observed on the 
measurement. 

The next enzyme assay component to be tested against the liposomes was BSA, which 

has been mentioned numerous times as an NQO1 activator in a way that to this date is not fully 

understood.14  In Figure 4.3 are displayed both trials made on this liposome system with addition 

of only BSA solution.  Unfortunately, they were not stable in the presence of this protein.  Trial 1 

exhibited a calcein leakage of 44% in 3 hours and 61% in 16 hours and 30 min while trial 2 

resulted in a calcein leakage of 54% in 3 hours and 71% in 15 hours and 12 min.  The shape of 

the release curves varied because of the different order of addition between the liposomes and 

the BSA solution; in both cases this did not affect the % calcein leakage results. The fast release 
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rate of contents for the 100% QMe-DOPE system took us by surprise based on the previous 

knowledge of the interaction of liposomes with BSA solutions.       

 

Figure 4.3. Instability of 100 µM 100% QMe-DOPE liposomes in the presence of 0.007% BSA.  
(↑) the time for addition of 300 µL of 0.07% BSA solution into liposome solution.  (↑) the 
addition time for 100% QMe-DOPE liposomes into 0.007% BSA solution.  (●) time at which 
100% QMe-DOPE liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100. 

Kim and co-workers described that egg phosphatidylcholine (PC) liposomes had a percent 

leakage of ca. 13% in 5 hours and ca. 18% in 10 hours when incubated with approximate 8 µM 

BSA solution (in TES buffer pH 7.4) at 37 °C.15  In addition, Guo and Szoka depicted their 

liposome system (DSPE-PEG/DOPE 1:9) to have a leakage of 13% in 4 hours and 20% in 12 

hours in the presence of 75% of fetal serum albumin (in pH 7.4 0.05 M PB/0.1 M NaCl).16  

Because of the instability of the 100% QMe-DOPE liposomes toward the protein BSA, other 

liposome formulations were investigated with the objective of finding the system that would be 

assay against hNQO1.  

4.3.1.2 Liposomes Composed of 97% QMe-DOPE/3% PEG2000-DOPE  

Based on the previous results with 100% QMe-DOPE liposomes, the liposome 

formulation was adjusted by including 3% of a lipid attached to poly(ethylene glycol), PEG-

DOPE in the mixture.  It is well known that PEG lipids stabilize liposomes containing PEGs of 

2,000 MW with respect to non-specific protein absorption and disruption.  Due to the properties 
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of PEG lipids, long-circulation liposomes, known as “Stealth Liposomes,” have helped improved 

the therapeutic efficiency of liposomes as drug delivery carriers with reported circulatory half-

lives of up to 45 hours.17,18  QMe-DOPE, BSA, NADH and hNQO1 solutions were prepared as 

described in Section 4.2.  PEG2000-DOPE was obtained from Avanti Polar Lipids and dissolved 

in an appropriate amount of chloroform previous to its addition to chloroform solutions of QMe-

DOPE solution.  The absorbance spectrum of 97% QMe-DOPE/3% PEG2000-DOPE liposomes is 

presented in Figure 4.4 and look exactly as the one in Figure 4.1.  Thus, as expected, the addition 

of PEG2000-DOPE did not introduce extra peak that could interfere with the fluorescence 

experiments.  The quinone headgroup peak as well as the encapsulated calcein peak is observed 

as seen previously for 100% QMe-DOPE liposomes.  The new formulation was tested with BSA 

to see its impact on liposome stability.  In Figure 4.5 is shown the behavior of 97% QMe-

DOPE/3% PEG2000-DOPE liposomes upon addition of BSA solution.  Even with 3% 

polyethylene glycol in the liposome formulation, the liposomes were not stable when they came 

in contact with BSA.  The calcein leakage was 59% in 3 hours and 77% in 15 hours and 45 min.   

 

Figure 4.4. UV-vis absorbance spectrum of 97% QMe-DOPE/3% PEG2000-DOPE liposomes in 
pH 7.1 0.1 M PB/0.1 M KCl at room temperature.  λmax = 264.9 nm corresponds to the QMe 
headgroup and λmax = 497 nm corresponds to the encapsulated calcein.  
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Figure 4.5. Instability of 100 µM 97% QMe-DOPE/3% PEG2000-DOPE liposomes in the 
presence of 0.007% BSA.  (↑) the time for addition of 300 µL of 0.07% BSA solution into 
liposome solution.  (●) time at which 97% QMe-DOPE/3% PEG2000-DOPE liposomes were lysed 
with the addition of 15 µL of 30% (v/v) Triton X-100.  

At this point, two hypotheses can be presented for the way that BSA interacts with the Q-DOPE 

liposomes: 1) the attraction of BSA to the liposomes is based on surface-charge interactions 

or/and 2) the attraction of BSA to the liposomes is based on hydrophobic interactions between 

the protein and the lipid bilayer.  Hypothesis 1 is less feasible based on the fact that BSA is a 

negatively charged protein at pH 7.1 (isoelectric point between 4.5–4.9)19-21 and the liposomes 

also present a highly negative surface charge (Table 4.1), thus, electrostatic interactions at pH 7.1 

should be minimal or none.  Sweet and Zull indicated that other factors, besides electrostatic 

interactions, are involved in the interaction of BSA with phospholipid membranes.21  The same 

authors later stated that electrostatic interactions between negatively charged membranes and 

BSA would be more probably near or below the isoelectric point of BSA (4.5–4.9).19  In 

addition, Kim and co-workers came to the conclusion that BSA attacks the lipid bilayer whether 

it is at the inner or at the outer phase of the bilayer and induces leakage of the entrapped 

materials.15  Therefore, it is more probable that BSA caused the release of calcein from the 

liposomes by penetrating into the lipid bilayer.  The observations that Sweet and Zull found for 
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their systems19 made me think of the possibility that hNQO1, with an isoelectric point of 8.91,22 

could have electrostatic interactions with our negative liposomes and induce leakage of contents 

by a different mechanism that the one proposed on Figure 4.1.  Therefore, the 97% QMe-

DOPE/3% PEG2000-DOPE liposomes were evaluated in the presence of only hNQO1.  

 

Figure 4.6. Instability of 100 µM 97% QMe-DOPE/3% PEG2000-DOPE liposomes in the 
presence of 0.5 μM hNQO1.  (↑) the time for addition of 300 µL of 5 µM hNQO1 solution into 
liposome solution.  (●) time at which 97% QMe-DOPE/3% PEG2000-DOPE liposomes were lysed 
with the addition of 15 µL of 30% (v/v) Triton X-100.  

Upon inspection of Figure 4.6, a calcein release of 80% was observed in 70 min and 91% 

in 2 hours and 36 min after exposure of 97% QMe-DOPE/3% PEG2000-DOPE liposomes to 

hNQO1.  In fact, the calcein release rate provoked by hNQO1 was faster than the one caused by 

BSA.  Such a difference in the release rate could be a consequence of the apparent different 

mechanisms for the proteins acting on the liposomes.  Human NQO1 seems to interact by surface 

charge attractions that would disrupt the liposomes (faster release), while on the other hand, BSA 

seems to interact by penetrating the lipid bilayer (slower release).   

At this moment, the attention was focused on the fact that the liposome opened by the 

sole presence of the enzyme by a path different from the one proposed in Scheme 4.1.  In this 

regard, another experiment using hNQO1 and NADH was performed to see if the rate of leakage 
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was increased from the results obtained in Figure 4.6.  The addition of NADH provides the 

necessary component for the enzyme to act through its ping-pong mechanism.9   

 

Figure 4.7. Instability of 100 µM 97% QMe-DOPE/3% PEG2000-DOPE liposomes in the 
presence of 100 μM NADH and 0.5 µM hNQO1.  (↑) the addition time for 300 µL of 5 µM 
hNQO1 solution into liposome/NADH solution.  (●) time at which 97% QMe-DOPE/3% 
PEG2000-DOPE liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  

 

Figure 4.8. Overlap of the calcein release curves for 100 µM 97% QMe-DOPE/3% PEG2000-
DOPE liposomes in the presence of 0.5 µM hNQO1 (red line) and 100 µM 97% QMe-DOPE/3% 
PEG2000-DOPE liposomes containing 100 µM NADH in the presence of 0.5 µM hNQO1 (blue 
line).  (↑) the addition time for 300 µL of 5 µM hNQO1 solution into liposome/NADH solution.  
(●) time at which 97% QMe-DOPE/3% PEG2000-DOPE liposomes were lysed with the addition 
of 15 µL of 30% (v/v) Triton X-100.  Times were offset to compare the curves.  
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In Figure 4.7 is displayed the behavior of 97% QMe-DOPE/3% PEG2000-DOPE liposomes 

in the presence of NADH and hNQO1, showing minimal difference with respect to Figure 4.6.  

In fact, both curves can be almost overlapped as shown in Figure 4.8.   

The instability of 97% QMe-DOPE/3% PEG2000-DOPE liposomes in the presence of 

bovine serum albumin and hNQO1 lead me to investigate more liposome formulations with the 

aim of finding one that is stable under hNQO1 assay conditions. 

4.3.1.3 DOPC Liposomes  

The new liposome formulation described in this section is devoid of the QMe-DOPE lipid; 

no quinone headgroup is present in this liposome system.  In that way, I could investigate how 

much the presence of the QMe headgroup affected liposome leakage when they came in contact 

with BSA or hNQO1.  Unfortunately, DOPE lipids do not form stable liposomes at pH 7.1,23,24 

therefore, DOPC lipids where used instead.  DOPC has a similar structure to DOPE, with the 

difference being the polar group as illustrated in Figure 4.9; therefore, the fluidity of the bilayer 

is not changed because the transition temperature of the lipids are very similar (Tm DOPE = –16 

°C and Tm DOPC = –20 °C). 
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Figure 4.9. Structure of DOPE and DOPC lipids. 

In Figure 4.10 is presented the absorbance spectrum of DOPC liposomes containing 

calcein.  As can be seen, the quinone peak at 264.9 nm is absent, as expected, and the peak at 

497 nm corresponds to the encapsulated calcein.  In effect, the encapsulated calcein peak was 
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used to approximate the concentration of this liposome formulation to be 100 µM as it was for 

our previous experiments.  DOPC liposomes were tested in the presence of BSA and also with 

hNQO1. 

  

Figure 4.10. UV-vis absorbance spectrum of DOPC liposomes in pH 7.1 0.1 M PB/0.1 M KCl at 
room temperature.  The peak of λmax = 497 nm corresponds to the encapsulated calcein. 

In Figure 4.11 is shown the stable behavior of DOPC liposomes with BSA for almost 17 

hours.  The lack of interaction between BSA and DOPC liposomes, lead me to believe that the 

QMe headgroup played an important role in liposome leakage.  In the previous section, I referred 

to BSA as a protein that interacts with liposomes through the lipid bilayer; it could happen that in 

the QMe-DOPE liposome systems, the hydrophobic quinone mediated the interaction between 

BSA and the liposome membrane, permitting the protein to penetrate the QMe-DOPE liposome 

system. 

In Figure 4.12 is displayed the stability of DOPC liposomes in the presence of hNQO1 

for approximately 15 hours.  The absence of interaction between DOPC liposomes and hNQO1 

could be credited to two things: 1) the almost neutral surface charge of DOPC liposomes (Table 

4.1) and/or 2) the absence of the QMe headgroup in the liposome formulation.  The first one 

would definitely decrease any electrostatic interaction that the positively charged enzyme could 

have with the slightly negative charge liposomes, and the second one would lead me to the 
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option that hNQO1could just embrace the quinone headgroup of the liposomes inducing bilayer 

destabilization and liposome leakage.    

 

Figure 4.11. Stability of 100 µM DOPC liposomes in the presence of 0.007% BSA.  (↑) the 
addition time for 300 µL of 0.07% BSA solution into liposome solution.  No leakage was 
observed as noted by the lack of increase in fluorescence intensity with time.  (●) time at which 
DOPC liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  

   

Figure 4.12. Stability of 100 µM DOPC liposomes in the presence of 0.5 µM hNQO1.  (↑) the 
addition time for 300 µL of 5 µM hNQO1 solution into liposome solution.  No leakage was 
observed as noted by the lack of increase in fluorescence intensity with time.  (●) time at which 
DOPC liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  

The stability of DOPC liposomes toward both proteins proved the fact that QMe 

headgroup played a significant role in the instability of Q-DOPE liposomes toward BSA and 

hNQO1.  For the development of enzyme-responsive liposomes the presence of quinone 
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headgroups into the liposome formulation is essential because of the inherent substrate affinity of 

hNQO1 towards quinones.9  Therefore, a potential solution for liposome stability is to create 

liposomes based on mixtures of QMe-DOPE and DOPC lipids.  

4.3.1.4 Liposomes Composed of 90% QMe-DOPE/10% DOPC and 80% QMe-DOPE/20% 
DOPC  
 

With the intent of finding a stable system that contains QMe-DOPE, two different 

formulations that included DOPC were prepared as described in Section 4.2.  Those formulations 

were intended to decrease the amount of QMe-DOPE and consequently decrease the leakage of 

liposomes when they come in contact with BSA or hNQO1.  In addition, a calcein release 

experiment initiated by chemical reduction using dithionite (which resembles the reduction by 

hNQO1) was also performed with the aim to demonstrate that these liposome formulations also 

follow the proposed mechanism illustrated in Scheme 4.1.  In Figure 4.13 is shown the 

absorbance spectrum for 90% QMe-DOPE/10% DOPC and 80% QMe-DOPE/20% DOPC 

liposomes.  It is observed that both liposome formulations exhibited the peak at 264.9 nm that 

corresponds to the quinone head group and the peak at 497 nm that corresponds to the calcein 

encapsulated in the liposomes.  In Figure 4.14 is revealed the behavior of 90% QMe-DOPE/10% 

DOPC and 80% QMe-DOPE/20% DOPC liposomes in the presence of BSA.  The 90% QMe-

DOPE/10% DOPC system had a calcein leakage of 40% in 66 min while 80% QMe-DOPE/20% 

DOPC liposomes had a calcein leakage of 13% in 3 hours and 31% in 11 hours and 24 min.  

Both examples show that decreasing the amount of QMe-DOPE helps to slow down the leakage 

process when BSA is present.  The reasonable stability observed for 80% QMe-DOPE/20% 

DOPC liposomes in the presence of BSA, provides hope for testing the same system with 

hNQO1. 
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Figure 4.13. UV-vis absorbance spectrum of 90% QMe-DOPE/10% DOPC (blue line) and 80% 
QMe-DOPE/20% DOPC (red line) liposomes in pH 7.1 0.1 M PB/0.1 M KCl at room 
temperature.   λmax = 264.9 nm corresponds to the QMe headgroup and λmax = 497 nm 
corresponds to the encapsulated calcein.  

 

Figure 4.14. Unstable behavior of 100 µM 90% QMe-DOPE/10% DOPC and 100 µM 80% QMe-
DOPE/20% DOPC liposomes in the presence of 0.007% BSA.  (↑) the time for addition of 300 
µL of 0.07% BSA solution into the 90% QMe-DOPE/10% DOPC liposome solution.  (↑) the 
addition time for 80% QMe-DOPE/20% DOPC liposomes into 0.007% BSA solution.  (●) time at 
which 90% QMe-DOPE/10% DOPC and 80% QMe-DOPE/20% DOPC liposomes were lysed 
with the addition of 15 µL of 30% (v/v) Triton X-100.  

In Figure 4.15 is displayed the behavior of 80% QMe-DOPE/20% DOPC liposomes in the 

presence of hNQO1.  These liposomes experienced a calcein release of 48% in 70 min and 68% 

in 3 hours.  Although these liposomes are not stable in the sole presence of the enzyme, the rate 

of leakage is decreased when compared with the previous liposome formulations that contained 
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QMe-DOPE.  The inclusion of DOPC lipids in the liposome formulation resulted in reduced 

leakage in an inverse relationship, with more DOPC being present leading to less calcein release.    

 

Figure 4.15. Instability of 100 µM 80% QMe-DOPE/20% DOPC liposomes in the presence of 
0.5 µM hNQO1.  (↑) the addition time for 300 µL of 5 µM hNQO1 solution into liposome 
solution.  (●) time at which 80% QMe-DOPE/20% DOPC liposomes were lysed with the addition 
of 15 µL of 30% (v/v) Triton X-100.  

After performing the stability experiments, it was important to see how the QMe-

DOPE/DOPC liposomes behave when they are opened by chemical reduction.  In that way, I 

could predict the time that liposomes will take to open and deliver their cargo by the proposed 

mechanism, and see if adding more DOPC lipids to the liposome mixture was feasible.  The 

calcein release curves for both formulations for sodium dithionite addition are shown in Figure 

4.16.  Upon introduction of the reducing agent into the liposome solution, a “lag” phase 

happened that corresponds to the reduction of the QMe headgroup and its detachment from the 

DOPE lipid.  Such action initiates a bilayer destabilization (as labeled in Scheme 4.1), and 

subsequent opening of the liposome occurred as noticed by the increase in fluorescence intensity. 

The 90% QMe-DOPE/10% DOPC liposomes exhibited a lag time of 31 minutes, and 

reached a maximum in 20 min, with a total calcein release of 63%.  However, the 80%QMe-

DOPE/20% DOPC liposomes experienced a lag time of 38 min and took 3 hours to reach the 

maximum with a total calcein release of 55%.       
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Figure 4.16. Calcein release curves of 100 µM 90% QMe-DOPE/10% DOPC and 100 µM 80% 
QMe-DOPE/20% DOPC by chemical reduction using 5 eq. of sodium dithionite.  (↑) the time 
for addition of sodium dithionite solution into the 90% QMe-DOPE/10% DOPC liposome 
solution.  (↑) the time for addition of sodium dithionite solution into the 80% QMe-DOPE/20% 
DOPC liposome solution.  (●) time at which 90% QMe-DOPE/10% DOPC and 80% QMe-
DOPE/20% DOPC liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.   

The increase in DOPC content from 10% to 20% in the liposome formulation caused the lag time 

to rise by 7 minutes and the time to reach maximum contents release to be reached 160 min later.  

The important decrease in the rate at which calcein is released required me to take a different 

approach for the formulation of QMe-DOPE liposomes, because it was anticipated that the 

amount of DOPC content necessary to make the system more stable toward proteins will create 

liposomes not suitable for hNQO1 enzyme assay (too slow to open). 

4.3.1.5 Liposomes Composed of 70% QMe-DOPE/30% Cholesterol (CHO) 

The results in Section 4.3.1.4 directed me to look for a new liposome system that is stable 

in the presence of BSA and hNQO1.  A review by Pagano and Weinstein published in 1978 

described that up to 50% of cholesterol can be added to liposomes to decrease their leakage.25  It 

was also mentioned in the literature that the addition of CHO decreases liposome fluidity and 

permeability of contents across the membrane.25,26  CHO-containing liposomes were prepared as 

described in Section 4.2.  In Figure 4.17 is shown the absorbance spectrum for 70% QMe-

DOPE/30% CHO liposomes and as seen previously no unpredicted peaks are present.   
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Figure 4.17. UV-vis absorbance spectrum of 70% QMe-DOPE/30% CHO liposomes in pH 7.1 
0.1 M PB/0.1 M KCl at room temperature.   λmax = 264.9 nm corresponds to the QMe headgroup 
and λmax = 497 nm corresponds to the encapsulated calcein. 

To make sure that CHO does not prevent liposomes from opening, the calcein release 

profile of 70% QMe-DOPE/30% CHO liposomes opened by chemical reduction was investigated.  

In Figure 4.18 are presented the calcein release curves for 70% QMe-DOPE/30% CHO liposomes 

caused by sodium dithionite.  Upon introduction of the reducing agent into the liposomes 

solution, a “lag” phase is noted where the reduction of the QMe headgroup and its detachment 

from the DOPE lipid occurs.  Such action initiates bilayer destabilization (as labeled in Scheme 

4.1) and opening of the liposome as noticed by the increase in fluorescence intensity.  The 

current liposome system exhibited a lag time of 27 min and took 12 min to reach the 

fluorescence maximum with an average calcein release of 71%.  It is interesting to notice that 

when cholesterol was included in the mixture, the release of contents happened much faster than 

when DOPC was present at the same level in the formulation.  In addition, the “lag” phase 

differed a little in shape from the one observed for QMe-DOPE/DOPC liposomes in Figure 4.16. 
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Figure 4.18. Calcein release curves of 100 µM 70% QMe-DOPE/30% CHO by chemical 
reduction using 5 eq. of sodium dithionite.  The arrows (↑ and ↑) depict the time for addition of 
sodium dithionite solution into the 70% QMe-DOPE/30% CHO liposome solution for each trial.  
(●) time at which 70% QMe-DOPE/30% CHO liposomes were lysed with the addition of 15 µL 
of 30% (v/v) Triton X-100.   

After confirming that the CHO-containing liposomes opened upon chemical reduction, 

stability experiments were performed on these systems.  As a rule, the first experiment made on 

the new liposome system was to test the integrity of it in the presence of BSA.  In Figure 4.19 is 

shown the behavior of 70% QMe-DOPE/30% CHO liposomes in the presence of BSA.  As it was 

expected, calcein leakage was lower than in the other formulations with a 15% in 1 hour and 

20% in 3 hours and 10 min.  The favorable results with liposomes containing CHO agreed with 

the statement previously made on the mechanism of action of cholesterol by other scientists 

because its inclusion diminished the penetration of the BSA molecules into the lipid bilayer 

resulting in less leakage of liposome contents.26   

After the satisfactory behavior of the liposomes with BSA, the next obvious step was to 

test them with hNQO1.  Displayed in Figure 4.20 is presented the behavior of 70% QMe-

DOPE/30% CHO liposomes with hNQO1.  Unfortunately, the enzyme still caused a liposome 

leakage of 47% in 1 hour and 61% in 3 hours. 
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Figure 4.19. Instability of 100 µM 70% QMe-DOPE/30% CHO liposomes in the presence of 
0.007% BSA.  (↑) the time for addition of liposome solution into the 0.007% BSA solution.  (●) 
time at which 70% QMe-DOPE/30% CHO liposomes were lysed with the addition of 15 µL of 
30% (v/v) Triton X-100. 

 
Figure 4.20. Instability of 100 µM 70% QMe-DOPE/30% CHO liposomes in the presence of 0.5 
µM hNQO1.  (↑) the addition time for 300 µL of 5 µM hNQO1 solution into liposome solution.  
(●)    time at wich 70% QMe-DOPE/30% CHO liposomes were lysed with the addition of 15 µL 
of 30% (v/v) Triton X-100.  

The difference in observed behavior between BSA and hNQO1 with the CHO-liposomes 

confirmed the previous hypothesis of the mechanisms in which the proteins interact with the 

liposome system.  For BSA, it is clear that hydrophobic interactions are the driving force in the 

BSA-liposome contact.  On the other hand, hNQO1 attacks the liposomes by electrostatic 
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interactions or by just embracing the quinone headgroup which causes bilayer destabilization and 

liposome leakage.   

A series of 3 experiments was performed on 100% QMe-DOPE liposomes to have more 

knowledge about the mode of interaction between hNQO1 and the liposomes.  The first 

experiment corresponds to the interaction of inhibited hNQO1 with the liposomes.  100% QMe-

DOPE liposomes were assayed with 0.25 µM hNQO1 and also with inhibited 0.25 µM hNQO1.  

Human NQO1 is known to be completely inhibited by ES936, an inhibitor that alkylates one of 

the tyrosine residues in the active site of the enzyme.27,28  The results of UV-vis experiments for 

QMe-COOH (quinone headgroup of the QMe-DOPE lipid), hNQO1, NADH and ES936 

confirmed the mode of action of ES936, as seen in Figure 4.21.  If hNQO1 inhibition prevents 

liposome leakage, then it will be clear that the mechanism of action of hNQO1 is the embracing 

of the quinone headgroup by the enzyme.   

  

Figure 4.21. UV-vis spectra for hNQO1 assay (A) and hNQO1 inhibition assay (B).  A) QMe-
COOH and NADH (blue line) and QMe-COOH and NADH and hNQO1 after 1 min (pink line).  
B) QMe-COOH and NADH (blue line) and QMe-COOH and NADH and hNQO1 after 30 min 
(pink line), after 1 hour (green line) and after 4 hours (cyan line). 

The behavior of 100% QMe-DOPE liposomes with inhibited hNQO1 is shown in Figure 

4.22.  It is clear that inhibition of hNQO1 by ES936 did not preclude the enzyme from causing a 

liposome leakage as noted by the observed 56% release of contents in 2 hours and 3 min, while 

54% calcein leakage was seen with the non-inhibited hNQO1.    
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Figure 4.22. Instability of 100 µM 100% QMe-DOPE liposomes in the presence of 0.25 µM 
hNQO1 (red line) and 0.25 µM inhibited hNQO1 (blue line).  (↑) the addition time for 300 µL 
of 2.5 µM hNQO1 or inhibited hNQO1 solution into liposome solution.  (●) time at which 100% 
QMe-DOPE liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  

A second experiment to see if electrostatic interaction was the factor of attraction 

between hNQO1 (isoelectric point of 8.91)22 and the 100% QMe-DOPE liposomes was 

performed using the human enzyme NQO2 with an isoelectric point of 5.87 that will have a 

negative charge under the experimental conditions.22  The protein sequences of hNQO1 and 

hNQO2 can be aligned without insertions or deletions, and are 49% identical over their shared 

length.29,30  The major differences are that hNQO2 is 43 amino acids shorter than hNQO1 at the 

C-terminal domain and 10 amino acids present at the C-terminal domain of hNQO2 have no 

sequence homology with the corresponding residues in hNQO1.29,30  Also hNQO2 uses 

dihydronicotinamide riboside (NRH) instead of NAD(P)H as an electron donor.29,30  Therefore, 

the active sites of hNQO1 and hNQO2, both having the FAD prosthetic group are very similar in 

nature.  If hNQO2 provokes liposome leakage, then electrostatic interactions would not be the 

driving force for the hNQO1-liposome interactions.   

In Figure 4.23 is shown the behavior of hNQO2 versus hNQO1 in the presence of 100% 

QMe-DOPE liposomes.  HNQO1 caused a calcein leakage of 54% in 2 hours and 3 min while 

hNQO2 caused a calcein leakage of 37% in the same amount of time.  It is clear that hNQO2 
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caused liposome leakage in a very similar manner to that of hNQO1, indicating that the quinone 

is the reason why liposomes open in the presence of these enzymes and not surface charge 

interactions. 

 

Figure 4.23. Instability of 100 µM 100% QMe-DOPE liposomes in the presence of 0.25 µM 
hNQO1 (red line) and 0.25 µM hNQO2 (blue line).  (↑) the addition time for 300 µL of 2.5 µM 
hNQO1 or hNQO2 solution into liposome solution.  (●) time at which 100% QMe-DOPE 
liposomes were lysed with the addition of 15 µL of 30% (v/v) Triton X-100.  

 

Figure 4.24. Stability of 100 µM 100% QMe-DOPE liposomes in the presence of 0.25 µM heat 
inactivated hNQO1.  (↑) the addition time for 300 µL of 2.5 µM heat inactivated hNQO1 
solution into liposome solution.  (●) time at which 100% QMe-DOPE liposomes were lysed with 
the addition of 15 µL of 30% (v/v) Triton X-100.  

The last experiment of the series of 3 performed on the 100% QMe-DOPE liposomes was 

heat inactivation of hNQO1 and its behavior with the liposomes.  In Figure 4.24 is shown no 

-5

15

35

55

75

95

0 50 100 150

%
 C

al
ce

in
 R

el
ea

se
 

Time (min) 

hNQO1
hNQO2

-10

10

30

50

70

90

0 50 100 150

%
 C

al
ce

in
 R

el
ea

se
 

Time (min) 

↓ 

● 

● 
54% Release 

37% Release 

● ↓ 



126 
 

content release for Q-DOPE liposomes in the presence of heat-inactivated hNQO1, indicating 

that the active site of the enzyme is the one responsible for the calcein leakage from the 100% 

QMe-DOPE liposomes.  These three experiments performed on 100% QMe-DOPE liposomes 

demonstrate that the mechanism of interaction between hNQO1 and quinone-based liposomes is 

through the quinone head group.   

In summary, after examining all the quinone-based liposome formulations, there is still 

the need of a stable system in the sole presence of hNQO1.  

4.3.2 DLS and Zeta Potential of Q-DOPE Liposome Systems  

Liposome diameters and surface charge were measured for each of the liposome systems 

to help me understand the interaction of BSA and hNQO1 with liposomes.  In Table 4.1 are 

presented the average values of diameter and zeta potential for each system.  

In general, the QMe-DOPE liposome systems fall in the expected range of 100–120 nm, 

as previously reported in the McCarley group.10,13  DOPC liposomes are almost identical in 

diameter to the 100% QMe-DOPE liposomes, with values that overlap considering the error 

associated with them.  The equal value in diameter between the liposome systems indicates that 

the size of the liposomes has no effect on their interaction with the proteins. 

Table 4.1 Average diameters and zeta potentials of QMe-DOPE liposome systems.  Experiments 
performed at 25 °C in pH 7.1 0.1M PB/0.1M KCl.  Results are the average of 3 determinations ± 
one standard deviation.  aPolydispersity indexes ≤ 0.3 are considered acceptable.  bReference 2; 
pH 7.4 0.05 M PB/0.075 M KCl.  cMeasurement done by Dr. Martin Loew. 

Liposome System Avg. Diameter (nm) Avg. PDIa Avg. Zeta Potential (mV) 
100% QMe-DOPE 123±1 0.06±0.02 –60±3b 
97% QMe-DOPE / 

3% PEG2000-DOPE 117±1c 0.12±0.01c not measured 

100% DOPC 126±3 0.06±0.02 –7±2 
90% QMe-DOPE /  

10% DOPC 112±1 0.08±0.02 –48±4 

80% QMe-DOPE /  
20% DOPC 119±1 0.09±0.01 –52±2 

70% QMe-DOPE / 
30% CHO 119±2 0.20±0.05 –50±3 
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  The surface charge values for all the QMe-DOPE liposome systems measured in pH 7.1 

0.1 M PB/0.1 M KCl ranged between –44 to –53 mV.  The zeta potential of 100% QMe-DOPE 

liposome system (–60 mV) was measured by a colleague in 0.05 M PB/0.075 M KCl pH 7.4.10  

The surface charge of DOPC was measured to be –7 mV, much less negative than the systems 

that included QMe-DOPE.  The consistency of negative surface charge in all QMe-DOPE 

liposome systems is an indicative of the potent attraction of  hNQO1 (isoelectric point 8.91)22 at 

pH 7.1 to those liposomes; interaction that is not observed with DOPC liposomes.  It also 

supports the hypothesis that BSA (isoelectric point 4.5–4.7)19,20 would rather interact with the 

QMe-DOPE liposome systems by penetrating into the lipid bilayer (hydrophobic interactions) 

than by surface charge interactions.  

4.4 Conclusions 

Five different liposome formulations containing QMe-DOPE and one containing 100% 

DOPC were tested against the common components of an hNQO1 assay.  To my disappointment, 

none of the formulations were completely stable in the presence of BSA or hNQO1.  However, 

important conclusions can be made from the results obtained, and they are summarized in Table 

4.2.  All the liposomes systems had an average diameter between 100 and 130 nm as previously 

seen in the McCarley group for similar systems.10  Also, the liposome systems containing QMe-

DOPE lipids experienced a negative surface charge between –44 and –53 mV, while 100% 

DOPC liposomes presented an almost neutral surface charge of –7 mV.  After examining the 

stability experiments, it is clear that the inclusion of the QMe headgroup facilitates the interaction 

of BSA with the lipid membrane as seen by the absence of leakage of DOPC liposomes.  

Likewise, the interaction of hNQO1 with the liposomes is also mediated by the presence of QMe 

headgroup as seen by the different experiments performed on the quinone based liposome 

systems.  The chemical release profiles of new quinone-based liposome systems were 

investigated and different results were seen depending on the nature of the liposome components.  
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The liposomal formulation with 10% DOPC and 90% QMe-DOPE presented a much faster 

calcein release rate than the formulation with 20% DOPE and 80% QMe-DOPE (63% in 20 min 

versus 55% in 3 hours).  From these results I can infer that only a 10% increase in DOPC content 

caused significant changes on the mechanism of release of the liposomes.  On the other hand, the 

inclusion of 30% of cholesterol in the liposome mixture did not decrease the rate of calcein 

release (71% in 12 min) but did affect the mechanism of release as concluded by comparing 

these release profiles versus the chemical release profile for 100% QMe-DOPE liposomes 

performed by a colleague in the McCarley group at pH 7.4 0.05 M PB/0.075 M KCl.13  The 

examination of a variety of liposome formulations reflected the important quality of liposome 

that it is its versatility to change the outcome by incorporation of different lipids.  This versatility 

can be explored further with the aim of finding a liposomal formulation that would only open by 

the mechanism described in Scheme 4.1.   
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Table 4.2. Summarized results from calcein release, DLS, and zeta potential experiments performed on QMe-DOPE liposome systems at 25 °C in 
pH 7.1 0.1 M PB/0.1 M KCl.  aReference 2; pH 7.4 0.05 M PB/0.075 M KCl.  bMeasurement done by Dr. Martin Loew. 

 100%QMe-DOPE 
97%QMe-DOPE 

3%PEG2000 
100%DOPC  

90%QMe-DOPE 
10% DOPC 

80%QMe-DOPE 
20% DOPC 

70%QMe-DOPE 
30% CHO 

0.007%BSA 50% in 3h 60% in 3h Stable for 17 h 40% in 1h 6 min 13% in 3 h 20% in 3h 10 min 

100 µM NADH Stable for 18 h      

0.5 µM hNQO1  80% in 1h 10 min Stable for 15 h  48% in 1h 10 min 47% in 1h 

0.5 µM hNQO1 
100 µM NADH 

 
77% in 1h 10 min 

    

0.25 µM hNQO1 54% in 2h 3 min      

0.25 µM hNQO2 37% in 2h 3 min      

0.25 µM inhibited 
hNQO1 

56% in 2h 3 min      

 
5 eq. Na2S2O4 

   31 min lag time 

20 min reach max 

63% in 20 min 

38 min lag time 

3h reach max 

55% in 3h 
 

27 min lag time 

12 min reach max 

71% in 12 min 
 

Diameter (nm) 123±1 (n=3) 117±1b (n=3) 126±3 (n=3) 112±1 (n=3) 119±1 (n=3) 119±2 (n=3) 

Zeta Pot. (mV) –60±3a (n=3)  –7±2 (n=3) –48±4 (n=3) –52±2 (n=3) –50±3 (n=3) 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 
 

5.1 Summary 

The ultimate goal of this research was the development of an enzyme-responsive 

liposome system composed of a fusogenic lipid, DOPE, capped with a quinone headgroup that is 

potentially capable of selectively delivering its contents at a desired tumor site.  In this system, 

the stimulus was the human reductive enzyme NAD(P)H:quinone oxidoreductase type-1 

(hNQO1) that is over-expressed in certain tumor tissues.1-4  The hypothesized mechanism 

involves the interaction of hNQO1 with the liposomes via initial reduction of the quinone 

headgroup (quinone triggers), followed by cyclization of the corresponding hydroquinone 

moiety, subsequent bilayer destabilization, and contents release.  Characterization of the quinone 

trigger groups was important to elucidate the electronic properties, kinetic profiles, and active 

site orientation of these triggers before attachment to the lipid that would be used to form 

liposomes.  

An electrochemical technique named cyclic voltammetry was used to determine the 

reduction potential and cyclization rates of electrochemically-active quinones in aqueous media.  

It was found that naked quinones (no propionic acid handle) are electrochemically 

quasireversible systems because the difference in the anodic and cathodic peak potentials 

deviates from the ideal value of 30 mV.  It was also observed that benzoquinone was the naked 

quinone easiest to be reduced (most positive reduction potential), whereas in the substituted 

benzoquinone series, addition of electron-withdrawing groups resulted in more positive 

reduction potentials, while addition of electron-donating groups resulted in more negative 

potentials.  In the propionic acid quinone series, most of the systems were found to be electron-

transfer irreversible with peak separations over 200 mV.  As observed for the naked quinones, 

propionic acid quinones with electron-withdrawing groups displayed a less negative reduction 
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potential, while the inverse happened when electron-donating groups were present.  It was also 

elucidated that the presence of a propionic acid handle on the quinone moiety made the reduction 

of the quinone more difficult (more negative reduction potential), and that difficulty increased as 

geminal methyls were added or when the whole trimethyl-lock unit was present.  Interestingly, 

the nature of the propionic acid handle did not affect the electronic properties of the quinone 

derivatives based on the results obtained for QMe-COOH and QMe-ETA.  In addition to the 

thermodynamic parameters of quinones, the cyclization rate for the disappearance of the 

corresponding hydroquinone after quinone reduction was determined.  The higher cyclization 

rates corresponded to the quinones containing the trimethyl-lock moiety, in particular the ones 

with a methyl, an iodine or a bromine group at the 2-position of the quinone ring.  Moreover, an 

enhancement in the cyclization rate was observed when buffer concentration was increased. 

Cyclic voltammetry studies on QMe-COOH at various salt concentrations revealed no change in 

the cyclization rate.  

Solution-phase enzyme kinetics and molecular docking studies were applied to a variety 

of quinone propionic acid derivatives with the aim of establishing quinone-hNQO1 interactions.    

These quinone derivatives were divided in three groups: 1) trimethyl-lock quinones varying the 

functional group at the 2-position on the quinone, 2) quinones not possessing the trimethyl-lock 

unit vs. quinones with the trimethyl-lock unit, and 3) charged versus neutral quinones.  In the 

first group, it was found that quinones with a hydrogen or halogen group presented higher 

affinity and faster turnover rates toward the enzyme, while quinones with an electron-donating 

group (methyl or methoxy) presented lower affinity and slower turnover rates.  Docking studies 

in this group revealed that all quinones laid parallel to the isoalloxazine ring, with a slight 

variance in orientation and that the bromine analog was positioned deepest in the enzyme active 

site.  In the second group, it was clear that quinones with no trimethyl-lock unit presented higher 

affinity and good turnover rates.  Moreover, QnogemMe-COOH, which is in this group, was the 
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best substrate for hNQO1 among all the quinone derivatives studied.  It was found that QnogemMe-

COOH was the one quinone located closest to the isoalloxazine ring in the enzyme active site.   

In the third group, no change in binding affinity was observed between quinones.  However, the 

neutral quinone exhibited a higher turnover rate with respect to the charged quinone.  

Superimposed images of these two derivatives exposed that the neutral quinone is located deeper 

in the enzyme active site than the charged quinone.  In addition, from all the quinone derivatives 

analyzed with docking, the preferable atom acceptor for hydride transfer appears to be the carbon 

atom (next to the carbonyl on the opposite side of the propionic acid handle) based on the 

distance measured from the N5 atom of FAD and the closer atoms in the quinone ring.  Docking 

studies also unveiled no strong correlation between the theoretical binding energies and the 

experimental binding affinities. 

Finally, quinone triggers were characterized and ready to use in the design of enzyme-

responsive liposomes.  QMe-COOH was the only quinone trigger group used to form a variety of 

liposome systems.  Stability studies on five quinone-based liposome formulations and one DOPC 

liposome formulation in the presence of hNQO1 common assay components were accomplished.  

DLS, zeta potential and chemical release curves on the liposome formulations were also 

performed.  The liposomal formulation containing only QMe-DOPE was stable in the presence of 

NADH.  None of the quinone-based liposomal formulations designed to date were stable under 

the individual presence of BSA or hNQO1.  Conversely, liposomes composed of only DOPC 

were stable in the presence of BSA and hNQO1.  Inclusion of DOPC lipids or cholesterol in the 

quinone-based liposome formulation resulted in alterations of their chemical release profiles 

compared with the chemical release profile for a 100% QMe-DOPE liposome reported 

previously.  All quinone-based liposomes had an average diameter between 110 and 124 nm and 

a zeta potential between –48 and –60 mV.  The diameter of the DOPC liposomes was 126 nm, 

and its zeta potential was –7 mV.  
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5.2 Conclusions 

The results of this research demonstrated that the electronic properties of quinone 

derivatives can successfully be tuned by addition of various functional groups, as well as by 

inclusion of structural changes such as a handle.  Quinone triggers followed a qualitative trend 

where electron-donating groups retarded the turnover rate with respect to hNQO1 while the 

opposite happened with the inclusion of electron-withdrawing groups.  Docking studies 

qualitatively predicted the position of the quinone triggers, and the trend was in agreement with 

the kinetic outcomes.  The best substrate for hNQO1 corresponds to the quinone located closer to 

the isoalloxazine ring of FAD in the active site of hNQO1.  All quinone-based liposomes were 

destabilized and leaky after addition of BSA or hNQO1.  It is believed that the key factor for the 

leakage of liposomes is the quinone headgroup.  Modifying quinone-based liposomes by 

inclusion of other lipid components can result in a formulation able to release its contents in a 

controllable manner.     

5.3 Outlook 

Carving through the last 20 years of literature, it is clear that a great deal of research is 

focused on prodrugs and carriers for triggerable drug release.  Also there is extensive literature 

on the structure-activity relationships between antitumor quinones and NQO1 for the 

development of new prodrug systems.  Nevertheless, few prodrugs are currently being marketed 

and no triggerable drug delivery liposomal system has made it to clinical use.5-9   

The detailed information provided in this dissertation on simple quinone triggers could be 

useful in the design of new quinone-based prodrugs for fast or slow release as well as for the 

development of carriers where combination of both is also possible.  However, further studies 

need to be performed in order to optimize the quinone-based liposome formulations described in 

this research document.  The optimized formulation would lead to a system that is stable in the 

presence of BSA and hNQO1 (at low concentrations) but unstable at the concentrations were 
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hNQO1 is over expressed in the human body.  This ideal situation has a key piece that is still 

unknown in the hNQO1 field and corresponds to the quantitative information on the 

concentration of hNQO1 in the body.2,10,11  In the absence of that information, it is important to 

investigate the behavior of quinone-based liposomes at various hNQO1 concentrations to obtain 

a correlation between calcein release rates and hNQO1 activity.  Moreover, quinone-based 

liposome stability could be increased by: 1) addition of other lipids such of those with higher Tm 

values than DOPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE Tm = 74 °C)12 or 

1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE Tm = 38 °C))12 that could form more 

rigid bilayers, 2) reduction of the quinone-DOPE content in the liposomal formulation to 

investigate if dilution of the quinone prevent the liposomes from leaking, and 3) attach a positive 

charged quinone to decrease the negative surface charge of liposomes. 

The optimized triggerable system will selectively release their contents at the desired site, 

thus maximizing efficacy and reducing unwanted release on healthy cells.  The versatility of 

these systems allow them to be loaded with a variety of units such as drugs, probes, genes and 

virus for application in drug delivery, cell imaging or gene and virus therapy.    
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APPENDIX A: SUPPLEMENTAL INFORMATION 

Table A.1. Extinction coefficient values for NADH in a 96-well plate.  Experiments performed 
at 22±2 °C in 0.007% BSA solution. 

 Trial 1 Trial 2 Trial 3   
NADH (µM) Abs. (a.u.) Abs. (a.u.) Abs. (a.u.) Average (a.u) St. Dev. 

10 0.0304 0.0192 0.0112 0.0203 0.0096 
30 0.1232 0.11105 0.1062 0.1135 0.0088 
50 0.1866 0.2258 0.2128 0.2084 0.0200 
80 0.3336 0.3412 0.3264 0.3337 0.0074 

100 0.3873 0.4078 0.4058 0.4003 0.0113 
120 0.4828 0.5258 0.5028 0.5038 0.0215 
150 0.597 0.6348 0.598 0.6099 0.0215 
200 0.84255 0.8534 0.8306 0.8422 0.0114 
250 1.0858 1.10255 1.0726 1.0870 0.0150 
300 1.3153 1.3058 1.276 1.2990 0.0205 

 

 

Figure A.1. Calibration curve for NADH in a 96-well plate.  Experiments performed at 22±2 °C 
in 0.007% BSA solution. 
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Figure A.2.  Superposition of trimethyl-lock quinones in the active site of hNQO1.  
Representation of QBr-COOH (sky blue), QH-COOH (magenta), QMe-COOH (yellow), QMeO-
COOH (light pink); amino acids (lines display; color by atom type, carbon atoms colored green); 
Tyr 155, His 161 and FAD (stick display; color by atom type, carbon atoms colored green).  The 
figure was created using PyMOL. 
 

 
 
Figure A.3.  Superposition of quinones with and without presence of trimethyl-lock in the active 
site of hNQO1.  Representation of QnogemMe-COOH (sky blue), Q’-COOH (magenta), QMe-
COOH (yellow); amino acids (lines display; color by atom type, carbon atoms colored green); 
Tyr 155, His 161 and FAD (stick display; color by atom type, carbon atoms colored green).  The 
figure was created using PyMOL. 
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Figure A.4.  Superposition of charged quinone versus neutral quinone in the active site of 
hNQO1.  Representation of QMe-ETA (sky blue), QMe-COOH (magenta); amino acids (lines 
display; color by atom type, carbon atoms colored green); Tyr 155, His 161 and FAD (stick 
display; color by atom type, carbon atoms colored green).  The figure was created using PyMOL. 
 
Table A.2.  Associated energies for QBr-COOH when docked in hNQO1 active site.  Above is 
the lowest score energy for each receptor and the components of the Böhm scoring function. 
 

Receptor Score (kJ·mol–1) Match Lipo Ambig Clash Rot 
1 -25.2018 -19.7347 -12.0594 -6.8892 3.8815 4.2000 
2 -24.7270 -19.0412 -11.8116 -7.0926 3.6185 4.2000 
3 -24.1662 -18.5762 -12.2120 -6.9455 3.9675 4.2000 
4 -23.6224 -17.8762 -11.8138 -7.4545 3.9220 4.2000 
5 -24.1743 -19.7347 -11.2013 -6.7019 3.8636 4.2000 
6 -23.6994 -19.0412 -10.9535 -6.9053 3.6006 4.2000 

 

 
 

R1 R2 
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Figure A.5.  Lowest score frames of QBr-COOH in all the receptors.  Representation of QBr-
COOH (stick display; color by atom type, carbon atoms colored grey); amino acids and FAD 
(lines display; color by atom type, carbon atoms colored grey).  Dashed purple lines 
corresponded to hydrophobic interactions. 
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Figure A.6.  Poseview frames of QBr-COOH in all the receptors.  Representation of a 2D view 
of the docked pose of QBr-COOH (line display; color by atom type, carbon atoms colored black); 
amino acids and FAD label in green or structure line display; color by atom type, carbon atoms 
colored black.  Hydrophobic interactions are displayed as green contact curves with only the 
names of the interacting residues attached to these lines.  Dashed lines corresponded to hydrogen 
bond interactions. 
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Figure A.7.  Correlation of estimated theoretical and experimental free energies of binding.   
 

Chemical Synthesis and Characterization of QMe-ETA. 
 

Preparation of N-(2-hydroxyethyl)-3-methyl-3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-

dien-1-yl)butanamide (QMe-ETA).  The quinone amine derivative was prepared by adding QMe-

NHS1 (150 mg, 0.4328 mmol) into a 25 mL round bottom flask and letting the solid dry under 

high vacuum for 15 minutes.  Then argon was purged through the flask to have it under inert 

atmosphere; the flow was stopped for two minutes to add 4.5 mL of dichloro methane.  Continue 

argon flow and cooled the mixture to 0 °C.  Then add dropwise triethylamine (310 µL, 2.2241 

mmol) followed by ethanolamine (40 µL, 0.6647 mmol) using glass syringes.  Stopped the argon 

flow and sealed the round bottom flask.  Let the mixture stir for 4 hours.  Reaction was followed 

by TLC (3:1:2 DCM/MeOH/Hex) until no QMe-NHS was present.  After the reaction was 

completed, the mixture was diluted with 50 mL of dichloro methane and washed with 5 % of 

sodium bicarbonate (2 X 100 mL).  Organic layer was dried over sodium sulfate, and evaporated 

to yield 87.8 mg of a yellow solid (75 %). 
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1H NMR (400 MHz, CDCl3): δ 1.44 (s, 6H), 1.95-1.97 (d, 6H), 2.14 (s, 3H), 2.85 (s, 2H), 3.32-

3.33 (q, 2H), 3.65 (t, 2H), 5.82 (s, 1H). 

13C NMR (400 MHz, CDCl3): δ 12.13, 12.68, 14.15, 28.98, 38.34, 42.20, 49.14, 62.48, 137.95, 

138.09, 143.45, 153.12, 173.06, 187.54, 191.35. 

HRMS (ESI+) m/z [M+H]+, calcd = 294.1706 (calcd for C16H24NO4), obsd = 294.1709, 0.9 ppm 

error. 

 

Figure A.8.  1H NMR for QMe-ETA (CDCl3, 400 MHz) 
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Figure A.9.  13C NMR for QMe-ETA (CDCl3, 400 MHz) 

 

Figure A.10.  High resolution mass spectrum (positive ion, electrospray ionization) for QMe-
ETA. 

[M+H]+ 

[M+Na]+ [2M+Na]+ 

294.1709 
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APPENDIX B: PERMISSIONS 
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