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ABSTRACT 

 Previous research demonstrated environmentally persistent free radicals (EPFRs) will 

form on particulate surfaces under combustion conditions (temperature range of 150-400 °C) 

from reactions of organic precursors with redox-active transition metals.  With an understanding 

of how these EPFRs form, it is necessary to determine how they behave in a natural environment 

after emission.  To better understand this, the nature of EPFRs in ambient PM2.5 under simulated 

atmospheric conditions was investigated. 

 Ambient PM2.5 samples were collected at a roadside ambient monitoring site near heavy 

interstate traffic and major industrial activity.  The EPFR concentration and general radical 

structure were determined with EPR spectroscopy.  Studies of EPFR decay in ambient air 

demonstrated four decay patterns to emerge from analysis: a fast followed by a slow decay (47% 

of samples), a slow decay (24% of samples), no decay (18% of samples), and a fast decay 

followed by no decay (11% of samples) with half-lives for the decays lasting from several days 

to several months.  All decays were suggested to result from reaction with oxygen and 

strengthened from an overall shift in the EPR g-factor.  This shift implied an increased presence 

of oxygen centered radicals. 

The negative health impacts of PM2.5 were studied by the generation of hydroxyl radicals.  

These studies revealed dissolved oxygen coupled with the presence of PM2.5 necessary to 

generate significant levels of hydroxyl radicals without the addition of H2O2. 

Exposure of PM2.5 to ozone and NO revealed no effect on the organic radical (EPFR) 

signal, while NO2 exhibited a 5-8 time increase.  When these exposed EPFRs were evaluated by 

hydroxyl radical generation, the NO and ozone exposed samples maintained the same levels as  



xiv 
 

the unexposed sample, while NO2 exposed samples displayed a decreased ability due to the 

formation of acid.   

When PM2.5 was exposed to simulated solar exposure, the EPFR concentration was 

observed to increase substantially in all samples.  Decay from irradiation followed a 2 decay 

pattern with the shorter, solar decay demonstrating a half-life of 8 hours and the longer decay 9 

days.  Irradiation also increased the amount of hydroxyl radicals generated from PM2.5. 
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CHAPTER I. INTRODUCTION 

The research described herein is from studies on environmentally persistent free radicals 

(EPFRs) in ambient PM2.5. This research is divided into four parts with two overall goals.  The 

first is assessing the EPFR concentration and how they are transformed from common 

atmospheric reactions.  The second is evaluating how these reactions affect the EPFRs’ ability to 

generate biologically damaging hydroxyl radicals. 

 Previous research already identified EPFRs as an inherent constituent from combustion 

emissions in addition to ambient PM2.5 [1-4].  However, how these EPFRs are affected by 

common atmospheric reactions, such as with oxygen, nitrogen oxides (NOx), ozone, and solar 

radiation, are not yet known.  For the first study, PM2.5 samples were collected from a Louisiana 

Department of Environmental Quality ambient air monitoring site.  This site is near heavy 

interstate traffic from I-10 in addition to a major industrial corridor of the Mississippi River.  

Investigations were performed to ascertain the initial EPFR characteristics of PM2.5 using 

electron paramagnetic resonance (EPR) spectroscopy.  The PM2.5 EPFRs were aged in an 

ambient environment at two different temperature and humidity settings to elucidate how their 

behavior changed over time.  Additional studies were performed to detect the presence of 

precursors identified from previous research utilizing GC/MS.  Correlations were calculated to 

identify if any common pollutants or meteorological conditions impact the formation or stability 

of the EPFRs.  Also considering the similarity of EPFRs in PM2.5 and cigarettes, a comparison of 

health effects for EPFRs between PM2.5 and cigarettes was calculated. 

 PM2.5 is documented as producing a toxic response from inhalation [5-14].  The exact 

mechanism is not completely understood, but this research group has identified a catalytic cycle 
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involving EPFRs bound to model PM as a possible source.  Confirmation is needed for this cycle 

in ambient PM2.5.  Accordingly, the ability of EPFRs in PM2.5 to generate hydroxyl radicals was 

investigated as the second study. 

 Due to the constant presence of ozone and NOx in the atmosphere, the interaction of these 

atmospheric oxidizers with PM2.5 bound EPFRs is of interest.  Therefore, in the third study, the 

effects of ozone and NOx exposure on the EPFR signal and the subsequent generation of 

hydroxyl radicals were examined. 

 The sun generates a large amount of UV radiation and corresponds to wavelengths 

matching normal bond energies [15].  Given this information, the effect of solar radiation may be 

an important pathway to EPFR formation.  Therefore, the effect of simulated solar radiation on 

the EPFR signal and the resulting generation of hydroxyl radicals were determined in the fourth 

study. 

1.1    Particulate Matter 

Particulate matter (PM) is airborne particles resulting from natural and anthropogenic 

sources.  They contain solid particles in addition to liquid droplets and described as a whole by 

total suspended particles (TSP).  This can be further divided into three size categories based on 

the aerodynamic diameter of the particle, which is the diameter of a sphere with the same 

terminal velocity as the particle [16].  The largest size is PM10, also known as coarse PM, and 

defined as PM of 10 to 2.5 μm.  PM2.5, also known as fine PM, is the intermediate size and 

represented as PM of 2.5 to 0.1 μm.  The smallest is PM0.1, also known as ultrafine PM (UFPM), 

and assigned as PM of 0.1 μm or smaller. 
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 Due to its small size, UFPM mass demonstrates only a few percentage of the TSP mass 

but constitutes over 90% of the number concentration [17-20].  In PM2.5, UFPM composes only 

20% of the mass but fulfills 80% of the number concentration [21, 22].  Due to UFPM’s small 

size but large number concentration, this allows a large surface to volume ratio for uptake of 

toxic pollutants, such as organic compounds, nonvolatile species, and transition metals [19, 23].  

Additionally, these properties permit UFPM to remain airborne for extended periods of time and 

transported over extended distances [24, 25].  For example, studies calculated PM in the US can 

travel approximately 60 – 600 miles and comparable distances in Asia [26-28]. 

PM is physically and chemically complex with composition changing between locations, 

time of the year, and time of the day [29-34].  For example, differences in PM and its oxidative 

capacity were found between the morning and afternoon [35].  This study cited the reason as PM 

undergoing atmospheric processes changing the PM composition.  This is also applied to 

differences from a more industrial urban setting to those of a more rural setting [36].  Despite 

large variations, there is some common components of PM; that is, PM will contain elemental 

carbon, organic carbon, sulfates, nitrates, natural minerals from alumina/silica, and transition 

metals, such as iron, manganese, and copper [37-41]. 

In addition to outdoor PM emissions, PM was identified from indoor activities, such as 

cigarette smoking, gas stoves, pet dander, and fireplaces [42, 43].  These indoor emissions also 

include the same kind of composition, though different in concentration, as outdoor sources [44]. 

1.2    Origin of Combustion Generated EPFRs and PM 

PM2.5 and its ultrafine component are mainly derived from combustion and thermal 

processes [37, 45], such as engine exhaust, biomass burning, and industrial processes [30, 31, 46-
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52].  Combustion and thermal processes are documented to initiate by radical chain processes 

and continued due to the intense temperatures dissociating molecules [53-55].   

The zone theory of combustion explains this formation in further detail, as displayed in 

Figure 1.1 [56-58].  This theory branches the combustion process into 4 separate and distinct 

zones.  In zone 1, the fuel is vaporized as well as mixed, and this is noted as the preflame zone.  

In zone 2, the fuel is introduced into the high temperature flame where the molecular fuel is 

dissociated into radical products.  In zone 3, these radical species proceed by gas phase reactions 

to condense into nanoparticles or recombine into molecular compounds.  In zone 4, the gases are 

cooled and surface-mediated reactions with transition metals occur.  Zone 4 is where the 

formation of persistent radicals occur from combustion processes [1, 59]. 

The reactions in zone 4 are what led to the discovery of EPFRs.  Previous research 

revealed the formation of polychlorinated dibenzo-p-dioxins and furans (PCDD/F) resulted from 

Figure 1.1 Zone theory of combustion in the formation surface-mediated radicals “Reprinted 

with permission from Reference 58.  Copyright 2006 American Chemical Society.” 
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precursors adsorbed onto the surface of metal oxides at temperatures below 600 °C, the same as 

in zone 4, from the result of surface mediated radical processes [60, 61].  This was a new 

mechanism for PCDD/F formation due to the established de novo pathway needing higher 

temperatures [62]. 

Further research established a mechanism for EPFR formation as demonstrated in Figure 

1.2.  This mechanism is dependent on a catalytically active transition metal, displayed as Cu(II)O 

and an organic precursor, displayed as hydroquinone.  Initially, the organic precursor physisorbs 

to the surface of the metal oxide.  This is followed by chemisorption via elimination of water or 

in chlorinated organics, hydrochloric acid.  The metal is subsequently reduced from the 

chemisorbed organic precursor via electron transfer.  This step was confirmed from X-ray 

measurements indicating the metal oxide was indeed reduced from the chemisorbed organic [63].  

The overall mechanism results in the formation of a surface-associated organic radical [60]. 

 

Figure 1.2 Formation of EPFRs from hydroquinone on a Cu(II)O containing particle.  

“Reprinted with permission from Reference 70.  Copyright 2008 American Chemical 

Society.” 
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Free radicals, unlike EPFRs, have very short half-lives, such as the highly reactive 

hydroxyl radical exhibiting a half-life of 10
-9

 s [64].  Detection of these free radicals can be quite 

difficult resulting in the use of low temperature or various spin trapping techniques [65-68]; 

however, EPFRs associated onto the particle surface imparts additional stabilization to these 

radicals [59, 69]. This results from the EPFR’s dual radical property allowing it to be oxidized 

enough to be detected by EPR yet reduced enough to allow stability and relatively non-reactivity 

[60].  Consequently, this allows EPFRs to persist in the environment, hence the name 

environmentally persistent free radicals (EPFRs) [70]. 

1.3    EPFRs in Soot 

Soot formation has many different formation routes, such as gas phase nucleation, 

molecular growth, and aggregation of organic species.  Previous research demonstrated soot 

from the combustion of charcoal, coal, diesel, and plastics contain an EPFR signal [69, 71-73].  

Due to the broadness of the signal, exact identification was not established and merely noted as a 

soot radical [73, 74].  Part of this signal was attributed to the radicals entrapped in the bulk of the 

soot with the unpaired electron delocalized over many conjugated or aromatic bonds [69, 72, 73]. 

This observation was concluded from stability of the radical signal as well as its apparent 

unreactive nature to oxygen [69, 72, 73].  These radicals do not migrate to the surface and 

accordingly cannot undergo oxidation in air allowing them to persist indefinitely. 

Soot generated from halogenated hydrocarbons established EPFRs in hazardous waste 

incinerators with implications for incinerators as a whole [75].  The EPR spectra from this study 

are given in Figure 1.3.  These radicals were mainly carbon centered radicals with two of the 

soot samples, tetrachloroethylene and bromoform, demonstrating an oxidized carbon or 
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semiquinone-type radical [75].  More recently, studies on radical species formed from the 

oxidative pyrolysis of 1-methylnaphthalene were performed [76].  Using low temperatures, the 

gas phase radicals were identified as carbon centered radicals with trace amounts of an oxygen 

centered radical [76].  The presence of these species was enhanced when Fe(III)2O3 was added 

suggesting metal nanoparticles act as a surface mediated mechanism for soot growth by forming 

and stabilizing PAH radicals [76]. 

1.4    EPFRs in Soils 

 Demonstrating EPFR formation in combustion, EPFRs were also believed present in soils 

due to the same redox transition metals present.  These transition metals arise from the clay and 

Figure 1.3 EPR spectra of soot from the combustion of toxic halocarbons.  “Reprinted with 

permission from Reference 75.  Copyright 2000 American Chemical Society.” 
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mineral component of soil.  The differences between soils and combustion systems are the 

reaction times and temperatures [77].  In the combustion systems, the reaction times are in 

seconds under high temperatures; in soils, the reaction times are over the course of years at 

ambient temperatures. 

 In order to understand how soil components, minerals, and organic matter aid in the 

formation of organic pollutants from contaminated soils, investigations into EPFR formation in 

soils were performed. From these studies, EPFRs were confirmed present in contaminated soils 

from superfund sites [77].  Non-contaminated soils outside a superfund site were compared to 

pentachlorophenol (PCP) contaminated soils inside a superfund site.  This finding is displayed in 

Figure 1.4.  The contaminated soil was demonstrated to contain an increase in EPFRs over the 

Figure 1.4 EPR spectra of contaminate soils (red) and non-contaminated soils (blue).  

“Reprinted with permission from Reference 77.  Copyright 2011 American Chemical 

Society.” 
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non-contaminated site.  This increase was attributed to the additional presence of PCP, and this 

was verified from PCP extracts of the contaminated soils in addition to dosing gas phase PCP 

onto a clean model soil [77].  

Despite remaining outside of the contamination, radicals were still detected in the soil.  

This stems from humic acid, a major organic component of soil, containing a semiquinone or 

quinhydrone-type radical [78].  These radicals are generated during formation of humic acid 

from organic matter through radical polymerization [79-82].    

1.5    EPFRs in PM2.5 

As stated above, combustion processes generate particulate matter (PM2.5), and these 

particles are directly emitted into the atmosphere.  PM2.5 is also documented as a by-product of 

metal processing, such as smelting [1, 84-86].  Once the particles are emitted from the 

aforementioned sources, they undergo atmospheric processes, like photo-oxidation as well as 

uptake of other gas phase species [87-90].  These gas phase species can include VOCs and other 

combustion emissions [1, 91, 92].  This suggested ambient PM2.5 would likely contain EPFRs.  

To determine this hypothesis, PM2.5 was collected from five US cities and analyzed by EPR [1].  

Findings from this study are given in Figure 1.5.  Despite the diverse locations for the sample 

collection, all signals were similar to each other.  Perhaps more remarkable was the similarity of 

the EPR signal from the PM2.5 EPFR and the signal from smoking one cigarette.   

The radicals observed from PM2.5 were suggested as semiquinone radicals [1].  Quinones, 

including semiquinones, are emitted from combustion processes [93-95], and further 

investigation revealed quinones were also present in PM2.5 [3, 96].  Cigarette smoke is 

additionally documented to contain semiquinone radicals [97, 98].  Despite both PM2.5 and 
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cigarette radical signals attributed to semiquinone radicals, the signals do not exactly match.  

This was suggested to arise from inhomogeneity of the PM2.5 in addition to various degrees of 

interactions from metals ions [1].  Another implication from this study, although not explicitly 

stated, is EPFRs will persist for long periods of time from the combustion source, even in the 

oxidizing and photochemical conditions of the atmosphere. 

These processes listed above are not limited to combustion generated PM.  They can 

occur from atmospheric reactions of natural terpenes, such as limonene, pinene, etc., from 

biogenic emissions [99-102].  These reactions result in aerosol formation and subsequent 

 

Figure 1.5 EPR spectra of EPFRs in PM2.5 from 5 US cities.  “Reprinted with permission from 

Reference 1. Copyright 2001 American Chemical Society.” 
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agglomeration.  After these atmospheric processes occur, these particles are referred to as 

secondary organic aerosols (SOA).   

1.6    Decay of EPFRs 

As stated earlier, EPFRs associated onto the particle surface imparts additional 

stabilization to these radicals and consequently allows them to persist in the environment [59, 

69].  This behavior was observed in the long half-lives of radicals from the combustion of 

charcoal [103], wood, and coal [73].  In the cases of wood and coal, there were two consecutive 

decays resulting from reaction with oxygen where the relative intensity but not the ∆Hp-p of the 

radical signal decreased [73].  Other decay behaviors are also reported.  The organic radical 

decay in peanuts exhibited a fast decay followed by stabilization of the signal, in addition to 

temperature independent decay behavior [104].  Stabilized organic radical signals were 

additionally observed in soot from the combustion of plastics [69] as well as the indefinite 

persistence of semiquinone radicals from cigarette smoke [105].  In addition to natural samples, 

investigations on radical decay from a model soot system of 1-methylnapthalene and Fe2O3 were 

performed [106]. These studies demonstrated two decays with the presence of Fe2O3 generating 

longer half-lives than just the 1-methylnapthalene soot alone [106]. 

Previous decays from model EFPR systems demonstrated a range of half-lives in addition 

to the presence of multiple decays in some cases [70, 107-109].  Organic precursors on CuO 

displayed one decay with the longest half-life from phenol at 74 min [70].  Decays from Fe2O3 

also indicated one decay exhibiting an average half-life of 3.1 ± 1.5 days [107].  When the same 

experiments were performed on Ni, a two decay pattern was observed from the chemisorption of 

phenol, a faster decay of 0.56 days and a slower decay of 5.2 days [108].  Zn bound EPFRs 

exhibited two decays from half of the precursors studied [109].  Additionally, Zn bound EPFRs 
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demonstrated the longest decays with phenol displaying half-lives of 10 days for the faster decay 

and 23 days for the slower decay [109].  The decays from Zn bound EPFRs is given in Figure 

1.6.  All decay studies implied phenoxyl radicals are the short lived species, while semiquinone 

radicals are the long lived species [70, 109].  Semiquinone radicals, however, were suggested to 

decompose into phenoxyl radicals [70, 109]. 

1.7    Health Implications from PM and EPFRs 

Research in mortality from PM exposure demonstrated higher associations with PM2.5 

than PM10 indicating the smaller size fractions are responsible [110-113].  Additional 

correlations with PM2.5 found any increase in PM2.5 levels increase mortality and morbidity [5-

14].  These results were verified from a more recent report of association from PM2.5 exposure 

and early death in the United Kingdom [114]. 

Figure 1.6 Decay of EPFRs on ZnO.  HQ is hydroquinone, CT is catechol, PH is phenol, 1,2-

DCBz is 1,2-dichlorobenzene, MCBz is monochlorobenzene, and 2-MCP is 2-

monochlorophenol.  All half-lives given are 1/e half-lives.  “Reprinted with permission from 

Reference 109.  Copyright 2011 American Chemical Society.” 
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Adverse health effects are implicated from PM2.5, including cardiovascular [115-117] and 

respiratory diseases [118] in addition to lung cancer [12, 119].  These effects are observed to 

generate the most damage to prone populations, such as the elderly, children, and those already 

exhibiting cardiovascular and respiratory problems [118, 120, 121].  Even at safe levels, PM2.5 is 

associated with a higher risk of ischemic stroke [122].  A report demonstrated both short and 

long term exposure to PM2.5 leads to increased hospital visits [123]. More ancillary effects 

suggested a link to faster cognitive decline in older women from an increase in PM2.5 levels over 

a long term, and this is believed to arise from cardiovascular influences [124].  Indoor PM 

pollution has also been linked to higher incidents of lung cancer for nonsmokers [125]. 

Other studies investigated the exposure of different PM with common atmospheric 

oxidizers NOx and ozone.  The oxides of nitrogen are common from combustion of both mobile 

and stationary sources contributing to the formation of photochemical smog, a known health 

hazard [126-129].  Reports suggested there were health effects from exposure to NO2 even below 

the national air quality standard [130].  When comparing PM alone and with exposure to NO2, 

one study observed only minor differences for enhancing acute cardiovascular effects [131].  

Others did not notice an effect from exposure of NO2 with PM suggesting some antagonism 

between the two [132]. 

Ozone, a secondary pollutant resulting from reactions of NOx, volatile organic 

compounds (VOCs), and solar radiation, is documented to induce airway inflammation [133-

136].  When exposing ozone and diesel PM, increases in cell epithelial injury or inflammation 

markers were observed suggesting a cumulative or synergistic effect [137-139].  Other studies 

distinguished airway hyper-responsiveness when exposed to ozone and carbon black [140].  

Even when PM2.5 and ozone levels were far below the national standard, decreases in lung 
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function were reported [141].  In addition to exposure studies, correlations between ozone and 

reactive oxygen species (ROS) generation from PM were observed [142]. 

Investigators of PM toxicology implicated the importance of particle size in 

understanding these adverse health effects [143].  PM10 contains toxic components but not 

considered due to filtering by the nose with deposition mainly occurring in the upper respiratory 

tract [144, 145].  These depositions are eliminated by the mucociliary escalator, where the mucus 

in the lungs transports foreign objects up the trachea, into the pharynx, and subsequently 

swallowed [144, 145].  PM2.5 has a small aerodynamic radius allowing deeper penetration into 

the lungs consequently depositing in the alveoli, bronchi, and lower respiratory system [115-

117].  Correlations demonstrated PM2.5 and its ultrafine component can increase asthma in both 

adults and children resulting from inflammation of the respiratory tract [113, 146-148].  The 

smaller component of PM2.5, UFPM, even penetrates into the bloodstream and the cell depositing 

into the mitochondria where structural damage occurs [149].  UFPM also translocates across the 

blood-brain barrier and ultimately the brain exerting damaging effects [117, 150-153].  

Toxicological effects result from oxidative stress triggered when the cell is overwhelmed 

by ROS generated from the PM [154-158].  ROS includes hydrogen peroxide, superoxide anion, 

and hydroxyl radical with hydroxyl radical the most biologically damaging of all ROS [159-

162].  Superoxide is needed in some normal biological functioning, such as phagocytosis [163], 

and is naturally created in the body from inefficiencies in the electron transport chain within the 

mitochondria [164, 165].  Only when the body is overwhelmed with ROS does it become a 

problem accruing in cellular component damage [149].  When this happens, the body is in a state 

of oxidative stress resulting in a stress response [144, 166-173].  Maintaining such a state for 
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extended periods of time has been postulated to result in acute and chronic diseases [174, 175] 

originating from chronic inflammation [176, 177]. 

However, the exact nature of ROS formation and its source are still debatable.  PM2.5 is 

already documented to induce a toxic response from ROS generation whether from wood smoke, 

other biomass burning, or ambient PM2.5, but the specific components responsible are not yet 

agreed upon [1, 172, 178, 179]. Metals in PM are already established to generate ROS, especially 

in the presence of hydrogen peroxide due to metal mediated formation of superoxide [156, 180-

186]. Specifically, iron was implicated in many of the pro-inflammatory effects because of its 

ability to generate hydroxyl radicals from hydrogen peroxide [171, 187-195].  Exogenous iron in 

PM was once thought to be inactive towards the Fenton reaction, because iron exists in its more 

oxidized form, Fe
3+

, rather than its reduced form, Fe
2+

, in addition to immobilization in the 

particle [196];  however, in the presence of biological reducing agents, iron, as well as other 

redox active metals, was demonstrated to generate ROS [183, 185, 187, 197].  Furthermore, iron 

in PM was observed to become partially soluble once introduced into an aqueous solution 

thereby increasing its bioavailability [2, 4, 171, 195, 198-201]. 

Along with metals, the adsorbed organic carbon on PM2.5 exhibited ROS formation [35, 

149, 184, 202-204].  One such organic component was the semiquinone-type radical.  The 

semiquinone radical, capable of redox cycling, produced the superoxide anion by reducing 

oxygen [97, 98, 168, 172, 173, 205-209].  The superoxide anion underwent dismutation [210] 

with biological reducing agents producing hydrogen peroxide, and this further reacted with 

transition metals present in the PM via the Fenton reaction.  This resulted in hydroxyl radicals 

causing biological damage, such as DNA strand breaks and scission [168, 207-210]. In addition 

to dismutating to hydrogen peroxide, superoxide was observed to attack Fe-S clusters in proteins 
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releasing the bound iron and concomitantly allowing availability for the Fenton reaction [211]. A 

schematic depicting the mechanism of ROS production from a surface-stabilized semiquinone-

type radical is given in Figure 1.7.   

Recent evidence demonstrated ROS was generated from the red-ox cycling of a model 

EPFR system consisting of 4-monochlorophenol bound to CuO demonstrating the importance of 

both the adsorbed organic and metal [68, 212].  In this study, EPFRs were found to generate 

significant levels of superoxide anion and hydroxyl radical in vitro.  Hydroxyl radical production 

Figure 1.7 Generation of ROS catalyzed by a surface-bound semiquinone radical.  

“Reprinted with permission from Reference 68.  Copyright 2011 American Chemical 

Society.” 
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was decreased when catalase, known to eliminate hydrogen peroxide, and superoxide dismutase, 

known to eliminate the superoxide anion, were added.  Furthermore, EPFRs are indicated as 

biologically active [1, 168, 172].  Studies demonstrated oxidative stress, leading to pulmonary 

[213-215] and cardiac dysfunction [216-218], resulted from exposure to the model EPFR system. 

1.8    Research Objectives 

There are four objectives for this research.  First is to investigate the concentration of 

EFPRs in ambient PM2.5; observe if the radicals mirror similar decay behavior as the model 

EPFR system; and determine if any conditions affect the decay.  The second is to establish if 

EPFRs in PM2.5 are capable of generating ROS in vitro and resolving if the proposed ROS 

catalytic cycle holds true for ambient PM.  The third objective is to expose common atmospheric 

oxidants to EPFR containing PM2.5 and observe any interactions from the exposure and 

concomitant hydroxyl radical generation.  Finally, the fourth objective is to expose the EPFR 

containing PM2.5 to simulated solar radiation and discern any change in the observed EPFR 

signal in addition to its resulting ability to generate hydroxyl radicals. 

The first objective was achieved by collecting PM2.5 in an urban environment with heavy 

interstate traffic and industrial complexes nearby and monitoring their initial concentration and 

decay over time with electron paramagnetic (EPR) spectroscopy.  GC/MS analysis of common 

organic precursors found in previous model system EPFR research was performed to elucidate 

and identify, at least partially, the EPFRs in PM2.5.  Correlations of common meteorological and 

pollutant conditions collected from the same sampling site were calculated to determine if any of 

these conditions have any bearing on the initial EPFR properties or decays.  In addition to this, 

calculations comparing the EPFR content of both PM2.5 and cigarettes were performed 
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demonstrating the number of equivalent cigarettes one must smoke to gain the same health 

effects from inhaling PM2.5. 

 The second objective was accomplished by in vitro studies of EPFRs in PM2.5 to 

determine if biologically damaging hydroxyl radicals were generated.  Due to the short half-life 

of the hydroxyl radical, spin trapping studies utilizing 5,5-dimethyl-pyrroline-N-oxide (DMPO) 

as the spin trap were performed.  These studies were carried out under different aeration 

conditions to ascertain how the presence of dissolved oxygen can influence the generation of the 

hydroxyl radical.  Studies also compared freshly collected samples with aged samples to observe 

if the EPFR concentration alters the generation of hydroxyl radicals. H2O2 was also added to 

confirm the generation of hydroxyl radicals through Fenton reaction. 

In the third objective, collected PM2.5 was extracted from a filter and used as a powder.  

This powder was subsequently exposed to NOx and ozone at different concentrations and 

reaction times to determine if these oxidants have any effect on the EPFR signal.  The exposed 

samples were compared to unexposed samples to determine if exposure to the oxidant impacted 

the ability of EPFRs in PM2.5.  After exposure, the same exposed and unexposed samples’ 

generation of the hydroxyl radical were compared. 

The final objective was realized by exposing thin portions of PM2.5 powder to a xenon 

lamp equipped with an AM1.5 filter.  The lamp intensity matched insolation levels comparable 

to the midday intensity for Baton Rouge during the summer.  The decay and half-lives resulting 

from the solar exposure were measured and compared to the previous decay study.  The ability to 

generate altered levels of hydroxyl radicals due to the simulated solar exposure were compared 

to an unexposed sample. 
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CHAPTER II.  EXPERIMENTAL 

2.1    PM2.5 Sampling Site Description 

PM2.5 samples were acquired from a Louisiana Department of Environmental Quality 

(LDEQ) ambient air monitoring station situated 30 ft away from roadside and 10 ft off the 

ground.  This site is located on the north side of the LSU campus in Baton Rouge, LA near heavy 

traffic from Interstate 10 and a major industrial corridor of the Mississippi River.  An aerial view 

of the location is displayed in Figure 2.1. 

 

Figure 2.1 Aerial view of the PM2.5 sampling site.  The arrow shows the exact location of the 

PM2.5 samplers. 
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2.2    PM2.5 Sampling 

Samples were collected using a Thermo Scientific Partisol-Plus Model 2025 equipped 

with a PM2.5 fractionator. The flow rate was 16.7 L/min, and samples were collected on a 

Whatman 2 μm polytetrafluoroethylene (PTFE) 46.2 mm diameter filter with a polypropylene 

supported ring for 24 hours. 

In addition to the Thermo sampler, samples were collected using a Tisch Environmental 

TE-6070V with a PM2.5 size selective inlet.  Each sample was allowed to collect 24 hours at a 

flow rate of 1100 L/min on a glass fiber filter (Whatman GF/A 8 x 10 in). 

2.3    Extraction of PM2.5 from Various Filters 

2.3.1  Extraction from PTFE Filters 

The extraction procedure closely followed extraction procedures in the literature [1].  

After collection, filters had the support ring removed, analyzed for an initial radical 

concentration and transferred into 0.01 M PBS solution prepared in ultra-pure double distilled 

H2O (UP H2O) to maintain the pH at 7.4.  The solution with filters were shaken for 15 min on a 

Daigger Vortex Genie 2, sonicated 5 min (Fisher Scientific FS20) at 40 W, and shaken again for 

15 min. The filter was removed from suspension, dried, and the difference in weight determined 

how much PM2.5 was removed [1, 2].  

2.3.2  Extraction of PM2.5 from Binder Free Glass Fiber Filters 

This extraction procedure closely followed extraction procedures found in the literature 

[3]. After collection, the PM loaded filter was cut into several small pieces and placed in a flask 

with 50 mL of ultrapure double distilled H2O (UP H2O).  The flask was manually shaken until 
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the filter had mostly broken down in solution forming a thick suspension.  After which, the 

suspension was sonicated for 20 min (Fischer Scientific FS10 at 40 W) to facilitate additional 

removal of PM from the filter.  The filter pieces were removed from the PM solution and 

centrifuged to remove any remaining filter fibers.  This was decanted and dried in a crucible at 

102 °C for 5 hours.  The resulting powder was removed from the crucible and measured by EPR 

spectroscopy. 

2.4    PM2.5 Analysis 

2.4.1  PM2.5 Metal Analysis 

The metal content of PM2.5 samples was quantified by utilizing Inductively Coupled 

Plasma – Atomic Emission Spectroscopy (ICP-AES). The whole filter, in the case of the PTFE 

filter, or part of the whole filter, in the case of the GF/A filter, was placed in a beaker. The 

sample was digested in 10 mL ICP grade HNO3 solution for 48 h in a preheated block at an 

approximate temperature of 50 °C.  This was subsequently diluted with 10 mL of 3% HNO3 

solution.  A 1 mL aliquot was taken and diluted to 100 mL with 3% HNO3 solution. The samples 

were analyzed for all the metal content, including: Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, 

Si, and Zn. 

2.4.2 GC/MS Analysis of Substituted Phenols 

An Agilent 6890 Gas Chromatograph (GC) coupled with a 5973 Mass Selective Detector 

(MS) in the manual injection mode was utilized with the following parameters: column type 50 

J&W DB5 MS 60 m x 0.25 mm i.d. x 0.25 μm, preceded by 5 m of 0.25 mm deactivated 

retention gap; injection type and temperature - splitless / 250 °C; column temperature program - 

initial 60 °C hold for 6 minutes, ramp 10 °C/min to 180 °C, 15 °C/min to 300 °C, hold for 2 
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minutes; total run time was 28.0 minutes; carrier gas - Helium; transfer line temperature – 280 

°C; injection volume - 1 μL; column flow - 1 μL/min (constant flow); solvent Delay - 14 

minutes; MS source temperature – 230 °C; MS quadrupole temperature – 150 °C; MS mode - 

SIM; ion dwell time – 100 ms. The mass-spectral library (NIST 98 version 1.6d) was used to 

identify the extraction products. 

2.4.2.1 Sample Preparation 

The filter was placed in a 50 mL conical flask containing 10 mL of tert-butyl methyl 

ether (TBME) and 0.16 mg of o-chlorophenol as the internal standard.  The mixture was shaken 

for 20 min, and 250 μL of the sample extract was transferred to an amber vial with an additional 

500 μL of TBME as well as 250 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for a 

total volume of 1000 μL.  The vial was capped using Teflon/Silicone 11 mm crimp caps and 

mixed.  The contents of the vial were heated in a preheated heating block for 30 min at 76 °C (± 

5 °C). 

Table 2.1 Standard calibration concentrations for 

GC/MS 

Calibration 

Standard 

Volume (mL) of 

Stock Solution 

Final Volume 

(mL) 

1 0.10 50 

2 0.25 50 

3 0.50 50 

4 1.00 50 

5 1.50 50 

6 2.50 50 

7 3.50 50 
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2.4.2.2 Standard Calibration Preparation 

 A standard stock solution was prepared by adding 40 mg phenol, 10 mg o-cresol, 10 mg 

m-cresol, 10 mg p-cresol, 100 mg catechol, 10 mg resorcinol, 80 mg of hydroquinone, 16 mg o-

chlorophenol to TBME in a 100 mL amber volumetric flask.  From this stock solution, aliquots, 

as presented in Table 2.1, were taken and diluted to 50 mL with TBME in a 50 mL volumetric 

flask.  The concentrations of each standard are shown in Table 2.2. 

2.4.2.3 Analysis and Calculation 

 The substituted phenol concentrations were calculated using equation 1 by calculating the 

peak area ratio of the sample analyte to o-chlorophenol.  This was compared to the standards 

from the 7 point calibration curve and divided by the sample weight to obtain the concentration 

of the analyte from the sample in ppm (μg/g). 

  
     

 
      equation 1 

Table 2.2 Substituted phenol standard calibration concentrations 

 
Concentration (μg/mL) 

Compound 
Standard 

1 

Standard 

2 

Standard 

3 

Standard 

4 

Standard 

5 

Standard 

6 

Standard 

7 

Phenol 0.8 2.0 4.0 8.0 12.0 20.0 28.0 

o-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0 

m-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0 

p-Cresol 0.2 0.5 1.0 2.0 3.0 5.0 7.0 

Catechol 2.0 5.0 10.0 20.0 30.0 50.0 70.0 

Resorcinol 0.2 0.5 1.0 2.0 3.0 5.0 7.0 

Hydroquinone 1.6 4.0 8.0 16.0 24.0 40.0 56.0 
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where C (ug/g) is the concentration of the substituted phenol in the sample; m is the mass of the 

sample; V (mL) is the dilution factor of the sample; R is the peak area ratio of the analyte to o-

chlorophenol; and S is the estimated concentration of the sample derived from the linear equation 

of the calibration curve.   

2.4.3  EPR Analysis 

 PM2.5 loaded filters or PM2.5 powder were positioned in high purity quartz EPR tubes and 

analyzed at room temperature with a Bruker EMX -- 10/2.7 EPR Spectrometer.  Samples were 

measured in a dual cavity with modulation and microwave frequencies of 100 kHz and 9.76 

GHz, respectively.  The parameters used to measure the radical concentration signal were:  2.05 

mWatt power; modulation amplitude of 4.0 G; scan range of 100 G; time constant of 40.96 msec 

corresponding to a conversion of 163.84 msec; sweep time of 167.77 seconds; receiver gain 

3.56x10
4
; and three scans using 1024 points.  Before any sample measurement, a vacuum sealed 

DPPH standard was measured at the same parameters listed above.  This was performed to 

ensure proper working operation of the EPR.  The DPPH standard, in vacuum, was not observed 

to decay and maintained a stable signal within ±11%. 

2.4.3.1  Analysis and Calculation 

All ∆Hp-p and g-factors were measured and calculated with the Bruker WINEPR data 

processing software.  The radical concentrations were calculated by using the formula found in 

equation 2.  Overall, this was calculated by comparing the area of the 1
st
 derivative signal peak, 

as calculated by the ΔHp-p
2
 * relative intensity, to a DPPH standard 4-point calibration curve [4]. 
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where: C2 is the radical concentration of the sample in spins/g; A is the area count of the sample; 

RGDPPH is the receiver gain used to acquire the DPPH signal; ADPPH is the area count of DPPH; 

RG is the receiver gain used to acquire the sample; and m is the mass of the sample analyzed. 

2.4.3.2  Calibration Curve 

 A calibration curve was prepared to determine the quantitative radical concentration of 

samples measured by EPR.  5.4 mg of DPPH was weighed using a microbalance with 1 μg 

readability.  This was dissolved in 100mL of benzene to make a stock solution of 54 μg/mL.  

From this, a 1 mL aliquot was removed and subsequently diluted to 10 mL with benzene.  The 

concentration of the diluted standard was analyzed using a UV-Vis-NIR spectrophotometer 

(Shimadzu, model UV-3101PC, double beam) with the following parameters: λmax at 520 nm and 

a molar extinction coefficient (ε) of 12,800 M
-1

cm
-1 

[5, 6].  This verified the concentration of the 

original stock solution, after accounting for dilution, as 1.37x10
-4

 M.  Using the original DPPH 

standard solution, four different aliquots of the DPPH solution were taken (20 μL, 60 μL, 80 μL, 

and 100 μL) and placed in a high purity quartz EPR tube.  This range was used to correspond to 

the normal concentration range of all radicals measured.  The samples were dried by flowing 

nitrogen.  Additional nitrogen was slowly flowed in the tube to keep the dry DPPH under an inert 

environment until EPR analysis.  The area counts were determined by ΔHp-p
2
 * relative intensity 

of the DPPH 1
st
 derivative signal [4].  The area count was plotted against the amount of DPPH 

used to generate the calibration curve.  The calibration curve was found to have an R value of 

0.98, and the calibration curve generated was used for the quantitative calculation of all samples 

in these studies. 

                                  

          
                                        equation 2 
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2.5    Determination of Half-Lives of EPFRs in PM2.5 

After obtaining a final weight, the filter was removed from the polypropylene supported 

ring and analyzed by EPR to ascertain its initial spin concentration.  The sample was placed in a 

controlled temperature and humidity incubator to age in order to determine the persistency of the 

bound radicals. Two separate temperature and humidity settings were employed for this 

investigation.  One setting at room temperature and humidity while the other at a temperature of 

30 °C and a relative humidity of 50 (± 5%).  The incubator was maintained under ambient air 

circulation with the aim of reproducing previous decay experiments. Subsequent analyses were 

performed intermittently, normalized to the initial spin concentration, and plotted against time 

from the initial analysis.  An exponential regression was performed on the plotted data in order 

to calculate the decay rate and 1/e half-lives of the radicals.   

2.5.1  Calculation of 1/e Half-Life 

A pseudo-first order decay where oxygen is the reactant in excess was applied to all 

samples, because molecular oxygen is documented as the principle pathway for organic radical 

removal by peroxide radical formation or radical decomposition [7-10].  This can be written as: 

       

where R is the radical and S is the product.  The rate decay for this reaction is written as: 

 [ ]

  
  [  ][ ]     equation 3 

 As stated above, the oxygen is in excess, therefore its contribution is negligible.  In other 

words, there is a steady state of oxygen, or 
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 [  ]

  
   

With that, equation 3 then integrates to 

   [ ]         where k=K [O2] 

∫    [ ]   ∫     
 

 

  

  

 

              

  
  

  
                 equation 4 

  

  
               equation 5 

resulting in the normalized radical concentration as a function of the decay rate and time.  The 

1/e half-life is the time it takes for the initial radical concentration to decay to 1/e, that is, 

          

Substituting this into equation 5 gives, 

 

 
      

    

  
 

 
 

 
                     equation 6 

For a first order reaction, the 1/e half-life results in the reciprocal of the rate constant.  As shown, 

using a 1/e half-life allows for easier conversions from the reaction rate and used instead of a 

normal half-life. 
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2.6    Meteorological Data 

All meteorological data was retrieved from the LDEQ ambient monitoring station as 

sample collection, except for solar and ultraviolet (UV) radiation measurements which were 

obtained from the capitol monitoring site less than a mile away. 

2.7    Calculation of Pearson’s Correlation Coefficient 

 In order to observe a direct (linear) dependence between two factors, the Pearson’s 

correlation coefficient was calculated using the formula in equation 7 

  
 (∑  ) (∑ )(∑ )

√[∑   (∑ ) ][ ∑   (∑ ) ]
     equation 7 

where p is the correlation coefficient, n is the number of samples correlated, x is the first item, 

and y is the second item.  Calculating the correlation between the two items resulted in a 

correlation coefficient between -1.0 and 1.0, where 1.0 indicated a perfect direct relationship 

(linear) between the two items and -1.0 indicated a complete anticorrelation.  In the case of an 

anticorrelation, this implied the two items are inversely related to each other.  If the correlation 

coefficient was 0, then there was no correlation or an insignificant correlation.  Correlations were 

considered significant when p >0.05 or when p <-0.05. 

2.8    Calculation for Equivalent Cigarettes Smoked from Inhaling PM2.5 

The number of equivalent cigarettes smoked from inhaling PM2.5 was calculated first by 

converting the PM2.5 radical concentration to radicals inhaled daily using equation 8: 

                             equation 8 

where RIPM is the radicals inhaled from PM2.5 (radicals/day); RCPM is the averaged radical 
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concentration in PM2.5 (radicals/g); F is the conversion from g to μg; PCPM is the particle 

concentration of PM2.5 (μg/m
3
); and V is the volume of air breathed daily for an adult male (20 

m
3
/day)[11].  This was then compared to the number of radicals inhaled from smoking a cigarette 

using equation 9: 

    
    

(          )
      equation 9 

where EQ is the number of equivalent cigarettes smoked; RCcig is the radical concentration in 

cigarette tar (radicals/g tar)[12-16]; and Ctar is the amount of tar per cigarette (g tar/cigarette). 

2.9    Spin Trapping of Hydroxyl Radical 

2.9.1  Materials 

2,2-diphenyl-1-picrylhydrazyl (DPPH), deferoxamine mesylate (DFO, assay 92.5%, 

TLS), and 0.01 M phosphate-buffered saline pH 7.4 (PBS, NaCl 0.138 M, KCl 0.0027 M) were 

all purchased from Sigma-Aldrich.  High purity 5,5-dimethyl-1-pyroline-N-oxide (DMPO, 

99%+, GLC) was obtained from Enzo Life Sciences and used without additional purification.  

Hydrogen peroxide (Assay, 30%) and diethylenetriaminepentaacetic acid (DETAPAC, 99%) 

were purchased from Fluka Analytical. In the few experiments using DFO and DETAPAC, the 

solutions were made to a final concentration of 0.1mM DFO or DETAPAC in sample solution.  

A 0.03% H2O2 solution was made by diluting 100 μL of H2O2 in 100 mL ultrapure H2O.  The 

concentration was verified by UV-VIS absorption to be 0.0104 M.  This was further diluted with 

sample to give a final concentration of approximately 2 mM H2O2. 

Compressed air was utilized to prepare aerobic samples and compressed UHP N2 for 

anaerobic samples.  Unless otherwise stated, aeration or N2 purging times were 10 min.   



47 

 

2.9.2  Chelex Treatment of H2O 

1.3 g of Chelex resin was added to 10 mL PBS solution and mixed rigorously for 1 hour.  

The PBS solutions with resin were left overnight before use and filtered from solution using a 

Fisherbrand P5 filter paper. 

2.9.3  In Vitro Studies 

A 0.01 M PBS solution was prepared in H2O to maintain the pH at 7.4 and aerated for 10 

min using compressed air.  PM suspensions were made for each sample and subsequently diluted 

with additional PBS to a volume of 190 μL containing a final concentration of approximately 

400-500 μg/mL.  DMPO (10 μL from a freshly prepared solution of 3 M) was added to the 

dilutions and vigorously shaken for 30 s at a final volume of 200 μL.  This concentration of 

DMPO (150 mM) was found to prevent secondary reactions, such as dimerization [17] and 

decomposition reactions with molecular oxygen.  20 μL of the suspension was transferred to an 

EPR capillary tube (i.d. ~1 mm, o.d. 1.55 mm) and sealed at one end with sealant (Fisher brand).  

The capillary was inserted in a 4 mm EPR tube and placed in the EPR resonator.  The EPR 

spectra of DMPO-OH adducts were taken at specified times from initial DMPO addition using 

the following parameters: scan range of 100 G; time constant of 40.96 msec corresponding to a 

conversion of 163.84 msec; sweep time of 167.77 seconds; receiver gain 3.56x10
4
; modulation 

amplitude of 0.80 G, a power of 10.25 mW, and two scans.  The resulting 4-line peak areas for 

DMPO-OH adducts, as calculated by ΔHp-p
2
 * relative intensity for each peak and reported in 

arbitrary units, were summed together for each time interval collected.  The calculated area was 

then plotted against the time from the initial DMPO addition.  This resulted in a DMPO-OH 

curve for each sample. 
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2.10    Effects of NOx and O3 on EPFRs in PM2.5 

2.10.1  Materials 

2,2-diphenyl-1-picrylhydrazyl (DPPH), copper turnings, phosphate buffered saline pH 

7.4 (PBS, NaCl 0.138 M, KCl 0.0027 M), and potassium iodide (Reagent Plus, 99%) were all 

purchased from Sigma-Aldrich.  Concentrated nitric acid and boric acid were purchased from 

Fischer Scientific, and high purity 5,5-dimethyl-1-pyroline-N-oxide (DMPO) came from Enzo 

Life Sciences and used without any additional purification. 

All nitrogen and air used was ultra-high purity (UHP) grade.  All water employed was 

double distilled milli-Q water. 

2.10.2  O3 Exposure 

An Enmet Corporation model 04052-011 ozone generator was operated so a minimal air 

flow was maintained (100 mL/min), as a Teflon tube was inserted within 2 - 3 mm of the PM 

powder inside an EPR tube (inner diameter 9.07 mm, length 178 mm).  The slow flow prevented 

any PM from being blown out of the tube while still exposing to adequate amounts of ozone.  

The exit went to a gas washing bottle where an ozone indicator solution was maintained.  The 

ozone indicator solution was prepared using the KI method [18] of detection by mixing 3.1 g 

H3BO3 with 5.0 g KI in 500 mL of H2O.  Total ozone exposure was found to be 2 ppm which 

converts to 2.760 x10
-6

 torr. 

2.10.3  NO Exposure 

Approximately 5 g of Cu turnings was added into a stoppered flask connected to a gas 

line and collection flask.  N2 was purged through the collection system for 1 hr to remove any 
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O2.  Nitric acid was added to the flask by a globe funnel to start the reaction.  The line was 

flushed with freshly formed NO for an additional 30 min, allowing time to react with any trace 

O2 still present before condensing the NO in a flask using liquid N2.  The gas was purified by gas 

distillation using a vacuum system before use.  Samples were placed in a vacuum line and 

evacuated down to less than 10
-2

 torr before exposure to NO.  The tube containing the NO and 

sample was sealed and allowed to react over the specified time with the radical concentration 

monitored periodically.  After exposure, unreacted NO was removed by vacuum for 30 min and 

the radical concentration was inspected again. 

2.10.4  NO/NO2 Exposure 

NO2 was produced by further oxidation of NO by air.  The collection flask was opened to 

ambient air to form NO2 and confirmed by the presence of orange fumes in the system.  The 

NO/NO2 was condensed back in the collection tube using liquid N2.  The entire system was 

evacuated out again and purified from traces of oxygen by gas distillation.  The exact ratio of 

NO/NO2 was not determined.  The procedure for sample exposure was the same as NO. 

2.10.5  Spin Trapping of Hydroxyl Radical After Exposure 

 Spin trapping of hydroxyl radicals generated from a reference and sample exposed to the 

oxidant of interest are described in Section 2.9 on page 46.   

2.11    Simulated Solar Exposure of EPFRs in PM2.5 

2.11.1  Irradiation of Sample.   

5 - 8 mg of sample was loaded in a high purity quartz EPR tissue flat cell. An initial 

radical concentration of the sample was measured. The loaded flat cell was placed in a Model 
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3940 Series Forma Environmental Chamber and irradiated by an Oriel Universal Xenon Arc 

Lamp at 150 W equipped with an Air Mass (AM) 1.5 filter. Using a LP02 pyranometer, 

insolation of the sample at 950 W/m
2
 was verified.  This value corresponded with the Baton 

Rouge June/July midday maximum insolation as recorded by a Louisiana Department of 

Environmental Quality ambient air monitoring station. After exposure, the sample radical signal 

was measured. The procedure was repeated for 15 min, 30 min, 60 min, and 90 min exposure 

time resulting in a total of 195 min insolation. 

2.11.2 Spin Trapping of Hydroxyl Radical After Exposure 

Spin trapping of hydroxyl radicals generated from a reference and sample exposed to the 

simulated solar radiation are described in Section 2.9 on page 46. 

 

Figure 2.2 The Zeeman Effect 
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2.12    Basics of EPR Spectroscopy 

 EPR spectroscopy is used to detect species with one or more unpaired electrons by the 

Zeeman effect.  In the absence of a magnetic field (B0), the two electron states, α (+1/2, the high 

energy electron) and β (-1/2, the low energy electron), are degenerate, and the electrons are 

oriented randomly.  When an external magnetic field is applied, the unpaired electrons align 

either parallel or antiparallel to the external magnetic field.  This results in the α and β states 

having different energies.  This is called the Zeeman effect (cf. Figure 2.2). 

 Due to the electrons favoring the lower energy state, the Boltzman population in the β 

 

Figure 2.3 Example of an absorption and first derivative EPR spectrum 
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state is more than α state.  Keeping the microwave radiation frequency constant, the magnetic 

field is scanned until the energy splitting of the two states is matched by the incident radiation. 

 When these conditions are met, a field of resonance is achieved, and given by equation 

10: 

             equation 10 

where: h is Plank’s constant (h = 6.63x10
-24

 Js); ν (in Hz) is the frequency of the incident 

microwave radiation; μ0 is the Bohr magneton (μ0 = 9.27x10
-24

 JT
-1

); and B (in Tesla or Gauss) is 

the magnetic field.  An example of an absorption and a first-derivative EPR spectra are given in 

Figure 2.3.  

 

Figure 2.4 Schematic representation of EPR instrumentation 
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2.13    EPR Instrumentation 

 The Bruker EMX EPR utilized for all experiments is depicted in Figure 2.4.  Samples 

were loaded into the sample cavity with a continuous nitrogen flow to maintain a water free 

environment.  This is important as water, with a high dielectric constant, will absorb part of the 

microwave radiation resulting in false measurements.  The sample cavity is located between 2 

water cooled (65 °F) magnets, and the microwave radiation enters into the sample cavity by the 

microwave bridge.  All EPR component control is operated through the EPR console with a user 

interface observed on a computer.  All data acquisition and processing are also performed 

through the computer. 
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CHAPTER III.  EPFRS AND THEIR HALF-LIVES IN PM2.5 

3.1    Detection of EPFRs in PM2.5 

 The first objective was to investigate if EPFRs decayed in ambient air similar to the 

previous reports of the model EPFR system, and this was performed by an expansive study of 

collected PM2.5.  The samples decayed in two temperature settings, one at ambient conditions 

and another at 30 °C and 50% relative humidity.  Correlations with the metal content of the 

sample as well as the conditions during collection were calculated to explain the radical content 

and decay behavior. 

3.1.1  Initial Radical Concentrations  

All collected PM2.5 samples initially displayed a single, unstructured organic peak 

exhibiting an average ΔHp-p of 5 - 8 Gauss.  The relatively wide peak in addition to a lack of 

hyperfine splitting implied multiple organic species of the same radical family present or signal 

broadening by organic-metal interactions [1-4].  These signals displayed initial g-factors of 

2.0035 ± 0.0004 suggesting semiquinone-type radicals in a complex matrix [1-3, 5-10] 

In addition to an organic peak, the presence of paramagnetic metals was detected.  These 

metal peaks were persistent throughout the decay and not observed to degrade.  The most 

common peak was Fe
3+

 at an approximate g-factor of 2.1 attributed to Fe
3+

 distributed in clusters 

[11, 12].  The presence of Mn(I=5/2) was also noticed in two samples collected on April 30
th

 and 

May 1
st
 of 2010, and this is believed to result from the in situ oil burn in the Gulf of Mexico.  

Aside from the noticeable smell of these fumes in Baton Rouge, the NOAA HYSPLIT model 

calculated air trajectory during this time shows air from the burns passing over our sampler (data 

not shown). 
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The average initial radical concentration along with the number of samples for each 

decay category (vide infra) are displayed in Table 3.1.  The displayed concentrations resulted 

from an average weight of 512 ± 300 μg collected per day.  The overall radical concentration is 

comparable to the same concentration range from cigarette smoke [1], corresponding to 69 ppm 

as a semiquinone radical.  A complete list of samples’ initial radical concentration, decay rate, 

and 1/e half-lives are given in APPENDIX 1 on page 120. 

3.2    Decay of Radical Signal 

Decay of a well behaved radical signal is presented in Figure 3.1.  All decays resulted 

from a diminishing relative intensity.  There was no consistent broadening or narrowing of the 

signal during decay with the ΔHp-p maintaining an average 6.49 ± 1.69 Gauss for all samples.  

The g-factor slightly increased throughout the decay by an average of 0.0002, and this is 

attributed to sample oxidation, therefore consistent with the elimination of organic radicals by 

reaction with oxygen [2, 13-15].  Although, there is also the possibility of losing more of the 

carbon centered radicals thereby shifting the g-factor higher. 

Table 3.1 Range of initial radical concentration and 

the number of samples for each decay category 

Decay 

Category 

Range of Initial 

Radical 

Concentration 

(radicals/g) 

# 

Samples 

Fast Decay  

/Slow Decay 
2.32x10

16
 - 3.48x10

18
 54 

Slow Decay 2.02x10
16

 -  1.34x10
18

 27 

No Decay 2.65x10
16

 -  1.17x10
18

 21 

Fast Decay 

/No Decay 
5.92x10

16
 -  1.99x10

18
 12 

Overall 2.02x10
16

 – 3.48x10
18

 94 
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There was no difference in decay behavior between the two temperature-humidity 

settings chosen.  With PM2.5 constituents changing daily, any differences in decay rate from 

temperature are not apparent; however, only 30 samples were analyzed using the lower 

parameters, so analyzing more samples at the lower conditions might identify an observable 

trend.   

3.3    Categories of Decay 

As displayed in Figure 3.2, four categories of decay were observed.  The majority (47%) 

exhibited two consecutive decays with a relatively fast decay followed by a slower decay, Figure 

3.2A.  The fast decay rate was 0.05 – 0.002 hr
-1

 corresponding to a 1/e half-life of 1 – 21 days, 

and the slow decay rate was 0.002 – 8x10
-6

 hr
-1 

equivalent to a 1/e half-life of 21 – 5028 days.  

Figure 3.1 Decay of organic radical signal over 2 months as 

observed by EPR spectra.  The g-factors are included to indicate 

oxidation of the radicals as the signal decays. 
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The large range for the slow decay results from seven samples decaying extremely slowly yet 

consistently with 1/e half-lives of 1000 – 5000 days.  When these samples were removed, the 

slow 1/e half-life was 21 – 417 days. 

 A single slow decay was observed from approximately a quarter (24%) of the samples, 

Figure 3.2B.  The decay rate was 0.01 – 2x10
-5

 hr
-1

 indicating a 1/e half-life of 4 – 2083 days.  

Comparable to the previous category, there were two samples shifting the range.  When these 

 

Figure 3.2 Representation of the 4 categories of decay observed.  All represented decays 

occurred at 30 C and 50% RH.  All displayed half-lives are 1/e half-lives.  A.  Representation 

of samples exhibiting two consecutive decays, a relatively fast decay followed by a slower 

decay (47% of samples).  B. Representation of samples exhibiting one slow decay (23%).  C. 

Representation of samples exhibiting no decay (18%).  D. Representation of samples 

exhibiting a relatively fast decay followed by no decay (11%). 
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were removed, the 1/e half-life was 4 – 595 days.  This range is similar to the previous category 

suggesting these samples may also exhibit a fast decay; however, due to a long atmospheric 

residence time, they decayed before an initial measurement. 

The last two decay types were no decay (18%), Figure 3.2C, and a relatively fast decay 

followed by no decay (11%), Figure 3.2D.  Similar to the first category, fast decay rate was 

0.159 – 0.002 hr
-1

 analogous to a 1/e half-life of 0.25 – 21 days.  Due to the unknown range of 

residence times in the atmosphere, decay 2C may just be after the fast decay in 2D was 

completed. 

 In all cases, we attribute the faster decay (displayed as τ~21 days) to decomposition of a 

phenoxyl-type radical [3, 16].  This is further supported from correlations of phenol with the 

initial radical concentration in addition to the fast decay rate (vide infra).  The slow decay is 

attributed to decomposition of a semiquinone-type radical (displayed as τ~208 and 417 days) 

[17].  The no decay pattern is explained by radicals entrapped in the bulk of PM2.5 or restricted in 

a solid matrix (i.e. internal radicals) where the unpaired electron is delocalized over many 

conjugated or aromatic bonds [3, 10, 18-21].  These radicals remain internal and cannot undergo 

oxidation in air and therefore persist indefinitely. 

3.4    Substituted Phenol Analysis   

Of all the substituted phenols measured, only phenol was above the detection limit of the 

instrumentation.  The phenol concentration was correlated to the initial ΔHp-p, initial radical 

concentration, initial g-factor, and the fast/slow decay rate.  As observed in Figure 3.3A, the 

phenol data exhibited a strong correlation with the initial ΔHp-p where the presence of more 

phenol increased the initial ΔHp-p.  This suggested agreement with the concept of concentration 
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broadening [22, 23], where an increase in the same specific radical constituent will increase the 

ΔHp-p.  

 

Figure 3.3  Plots of phenol correlations.  A. Initial ΔHp-p vs. phenol concentration with a 

correlation value of p=0.95.  B. Initial spins/g vs. phenol concentration with a correlation 

value of p=0.61.  C.  Initial g-factor vs. phenol concentration with a correlation value of 

p=0.97 
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There was a strong association from the initial radical concentration where an increase in 

phenol resulted in an increased radical concentration, Figure 3.3B.  This does not suggest only 

phenoxyl radicals are present in PM2.5.  This is supported from the g-factor correlation, Figure 

3.3C. A shift in g-factor occurs when there is a change in radical species.  For example, existence 

of a semiquinone-type radical, one of the persistent radicals, was considered present in tobacco 

tar [24] and PM [2, 3], and more recently, semiquinone redox cycling was demonstrated in the 

oxidative capacity of PM2.5 [25].  The increased presence of a semiquinone-type radical, more 

oxygen centered in nature when compared to the phenoxyl radical [26], will increase the g-

factor.  This is corroborated by the radical signal, because the organic radical signal is a single, 

broad, unstructured peak in all the samples studied; therefore, multiple superimposed radical 

signals may be present [3, 10, 21].   

Correlations of phenol with the fast decay conveyed a very significant correlation of 

p=0.60 (n=7).  In contrast to this, the slow decay exhibited a weak, negative correlation of p=-

0.20 (n=3).  These associations further implicate the fast decay to occur from phenoxyl radical 

decomposition. 

3.5    Metals Analysis and Correlation  

There was a wide variety and concentration of metals found in PM2.5.  Although, there 

were weakly significant or no correlations observed with metals.  The complete list of metal data 

for all samples studied in addition to their correlations with the initial radical concentration and 

decay rates are presented in APPENDIX 1 on page 120. 
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3.6    Meteorological and Atmospheric Pollutant Correlations 

In general, meteorological correlations were not strong.  The highest positive association 

for initial radical concentration resulted from ozone (p=0.28) implying the importance of 

photochemical processes for EPFR formation.  This is supported by positive relationships with 

both solar (p=0.14) and UV radiation (p=0.12).  Correlations for the fast decay indicated the 

presence of ozone (p=-0.10) as well as solar (p=-0.45) and UV radiation (p=-0.42) decrease the 

fast decay rate.  Previous sets of relationships demonstrate the ability of all three to increase the 

radical concentration; so consequently, their presence will slow down the fast decay rate due to 

new radical formation.  Correlations for the slow decay were the weakest overall and less clear.  

Detailed data for meteorological conditions and atmospheric pollutants used in addition to their 

respective associations are presented in APPENDIX 1 on page 120.   

3.7    Comparison of Radicals Inhaled in PM2.5 to Cigarettes 

Our research demonstrated EPFRs induce various types of heart and respiratory 

dysfunction in rats and mice similar to those observed from smoking cigarettes [27-29].  While 

direct comparison of EPFR effects in PM2.5 and cigarette smoke were not performed, the data 

suggests common EPFRs in cigarette tar and PM2.5 result in very similar human diseases. 

In order to assess the potentially negative health consequences of PM2.5, the overall 

average concentration of radicals from PM2.5 in Baton Rouge was compared to the average 

concentration of radicals in cigarette smoke [24, 30-33].  The outcome is expressed as the 

equivalent number of cigarettes a person smokes in a day from exposure to the same number of 

EPFRs inhaled from polluted air, Table 3.2.  An example calculation using the US 24-hour PM2.5 

concentration average is given below. 
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Table 3.2  Number of equivalent cigarettes smoked from inhaling 

PM2.5 with 95% Confidence Interval.  All PM2.5 data is for  

2007-2009 designation values from reference 34. 
Average 

Concentrations  

and Regulatory 

Standards  

Concentration of 

PM2.5 (μg/m
3
) 

# of equivalent 

cigarettes 

US 24 hour average  26.9 0.3±0.1 per day 

US yearly average  10.6 47±16 per year 

    

EPA 24 hour standard 

(2011)  
35 0.4±0.1 per day 

EPA yearly standard 

(2011)  
15 67±23 per year 

    

24 Hour PM2.5 Non-Attainment Locations 

Region State 

PM2.5 24-hour 

Design Value  
(μg/m

3
) 

†
 

# of equivalent 

cigarettes 

Chico CA 59 0.7±0.2 

Cleveland-Akron-

Lorain OH 36 0.4±0.1 

Fairbanks AK 57 0.7±0.2 

Klamath Falls OR 47 0.6±0.2 

Liberty-Clairton PA 50 0.6±0.2 

Logan UT-ID 40 0.5±0.2 

Los Angeles-South 

Coast Air Basin CA 49 0.6±0.2 

Milwaukee-Racine WI 37 0.5±0.2 

Oakridge OR 41 0.5±0.2 

Pittsburgh-Beaver 

Valley PA 37 0.5±0.2 

Provo UT 50 0.6±0.2 

Sacramento CA 51 0.6±0.2 

Salt Lake City UT 48 0.6±0.2 

San Francisco Bay 

Area CA 36 0.4±0.1 

San Joaquin Valley CA 70 0.9±0.3 

Seattle-Tacoma WA 46 0.6±0.2 

Steubenville-Weirton 

OH-

WV 37 0.5±0.2 

Yuba City-Marysville CA 42 0.5±0.2 
†
Design Values are computed from PM2.5 monitoring data reported to the 

 EPA’s Air Quality System from the local agencies.  Exceptional events  

(wildfires, construction, volcanic eruption) are not included in the calculation. 
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Based on the initial radical concentration and the US 24-hour air quality data, each 

person in the US smokes the equivalent of 0.3 cigarettes per day from PM2.5 inhalation.  The 

same calculation using the US yearly average results in 47 cigarettes per year.  In the more 

polluted areas (based on air quality exceedances), such as San Joaquin Valley, each person 

smokes nearly a full cigarette per day and as high as 101 cigarettes per year. 
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CHAPTER IV.  HYDROXYL RADICAL GENERATION FROM EPFRs IN PM2.5 

4.1    Detection of Hydroxyl Radicals Utilizing Spin Traps 

The second objective was to investigate whether a previously proposed catalytic cycle for 

a model system remained true for PM2.5.  Previous work demonstrated model EPFRs to generate 

•OH by utilizing 5,5-dimethyl-N-oxide (DMPO) as a spin trapping agent.  Spin trapping with 

nitrones and nitroso compounds allow the detection of short-lived radical species [1, 2] by 

reacting the spin trap molecule and a radical to produce a stable aminoxyl or nitroxide species, 

respectively.  This resulting formation is referred to as a spin adduct.  The spin trap gives a 

unique EPR spectrum depending on the radical trapped, and this allows the radical to be 

identified.  This can sometimes be difficult for more complicated species, but relatively simple 

for the hydroxyl radical. 

4.1.1  Proposed Mechanism for Hydroxyl Radical Generation 

The proposed red-ox cycle for EPFRs associated with metals in PM2.5 [3-9] is displayed 

in Figure 4.1.  In this cycle, the EPFR is formed as the transition metal is reduced.  The surface 

bound EPFR is deprotonated in water and reduces oxygen to the superoxide anion.  The 

superoxide anion undergoes a dismutation reaction to form H2O2 followed by the Fenton reaction 

using the surface bound metal to generate •OH and an oxidized metal.  If biological reducing 

agents were present, a reduction of the metal occurs, allowing electron transfer, and regeneration 

of the original EPFR-metal system.   

Detecting the red-ox reactions of EPFRs associated in a matrix with other metals and 

organics is challenging.  Many types of spin traps are used for spin trapping experiments, e.g. 

DMPO, DEPMPO (5-diethoxyphosphoryl-5-methyl-1-pyroline-N-oxide), and fluorescent 
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reagents, e.g. dichlorofluorescein, dithiothreitol. All these assays are sensitive to different types 

of organics and metals found in PM [11].   Furthermore, there are many types of PM used in 

these experiments, e.g. wood smoke, diesel exhaust, coarse (PM10), fine (PM2.5), and ultrafine 

(PM0.1) particles [5, 6, 12-17].  This can make comparison between studies difficult and therefore 

only the general trends are discussed.  

 

Figure 4.1 Proposed mechanism for ROS generation by a semiquinone EPFR-CuO particle 
system.  The reactions in red denote proposed reactions for the reduction of O2 to O2

•-
 by a 

surface bound semiquinone.  This is followed by a dismutation to H2O2 which undergoes a 
Fenton reaction (in this example Cu

1+
 instead of the usual Fe

2+
), indicated by the blue line, 

to form •OH and an oxidized Cu.  The remaining reactions marked in black complete the 
cycle by regenerating the reduced metal followed by an electron transfer to produce the 
original semiquinone-CuO system [2, 10].  “Reprinted with Permission from Reference 9.  
Copyright 2011 Bentham Science Publishers.” 
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4.2 EPR Spectra 

The EPR examination of all PM2.5 samples exhibited a single, unstructured peak with a 

ΔHp-p between 5-8 Gauss, indicating multiple organic species of the same radical family present 

or broadening by organic-metal  interaction [4, 18-20].  All sample g-factors were in the range of 

2.0030-2.0043, indicating a group of semiquinone-type or other oxygenated radicals [4, 5, 18, 

19, 21-25] (cf.  Figure 4.2). The concentrations were in the range of ~10
16

-10
17

 radicals/g of 

PM2.5, which is comparable to the concentration range in cigarette smoke [4].  This corresponds 

to 1.8 - 18 ppm as a semiquinone radical. 

Transition metal concentrations in representative PM2.5 samples are presented in Table 

4.1.; however, the data is for total metals, while there is only interest in surface-associated 

metals.  Because the metal concentrations varied significantly from sample to sample, the 

variation in hydroxyl radical generation could not be tested between samples. Instead, the 

 
Figure 4.2 EPR spectrum of EPFR in PM2.5. The radical concentration 

was 5.57x10
17

 radicals/g (ΔHp-p =5.28 G, g = 2.0035).  The drift in the 

spectrum is from Fe
3+

 signal. 
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suspended PM2.5 was allowed to decay over time, and the difference in the hydroxyl radical 

generation in the original and decayed radical samples were compared. 

4.3    Fresh vs. aged PM2.5 samples  

The PM samples were aged at room temperature in PBS solution.  Typical 1:2:2:1 

spectra, indicative of the DMPO-OH spin adduct [24, 25] were observed in PBS solutions 

containing PM2.5 and DMPO. The comparisons of hydroxyl radical generation in two samples 

are depicted in Figure 4.3. When the PM2.5 was left in a suspended solution for 2 days, a 

reduction of 35% in the DMPO-OH intensity was seen in one sample, Figure 4.3A, and when 

suspended in solution for 1 day, an 11% reduction in a second sample, Figure 4.3B .  A reduction 

in 
●
OH generation after aging was also observed by others when H2O2 was added [23].  

Likewise, a reduction in integrated fluorescence activity or oxidative capacity after aging was 

observed [14, 26-28].  Unfortunately, due to small extraction weights from the filter (on the order 

of 200-300 μg) and subsequent measurements using the same small sample volume, an exact 

radical concentration could not be established after the aging occurred.  Previous experiments 

have shown polar solvents can extract EPFRs from the particles but are eliminated after 

Table 4.1 Transition metals found in representative PM2.5 samples (ppm). 
Sample 

Name 
Al As Cd Co Cr Cu Fe Mn Ni Pb Si Zn 

102N 32.94 0.212 0.062 0.031 0.21 5.04 41.08 1.09 0.43 1.37 77.62 9.57 

108 21.76 0.059 0.033 0.022 0.09 3.19 27.30 0.71 0.20 0.56 52.63 8.92 

112 19.60 0.097 0.044 0.024 0.08 2.91 25.09 0.66 0.22 0.75 52.47 9.00 

141 42.38 0.212 0.027 0.027 0.11 2.62 36.08 1.28 0.20 0.68 90.80 9.85 

147 36.84 0.050 0.025 0.032 0.17 3.00 34.46 1.26 0.34 0.62 86.24 5.62 

36188 331.71 1.648 0.295 0.368 0.93 59.48 253.97 11.23 4.36 4.23 486.89 46.459 

36191 101.01 0.000 0.094 0.078 0.38 7.32 84.09 3.99 1.27 1.73 181.59 17.389 
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extraction either through hydrogen abstraction, radical dimerization, or radical-radical 

recombination [29].  

       

 

Figure 4.3 Generation of the DMPO-OH adduct signal over time.  A.  Generation of 

DMPO-OH adduct from blank solution of PBS + DMPO (green), a blank PTFE filter (red), 

freshly extracted PM2.5 (black), and PM2.5 extract suspension aged in the dark for 2 days.  

This was from sample 141, where the initial radical concentration was 3.37x10
17

 radicals/g. 

B.  Demonstration of another sample (#36191 with a radical concentration of 6.94x10
16

 

radicals/g) to depress DMPO-OH adduct formation after aged in the dark for 1 day. 

A 

B 
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    The blank solution (PBS + DMPO) did not have any significant contribution to the 

formation of 
●
OH; however, the extracted blank PTFE filter was found to consistently generate 

DMPO-OH, Figure 4.3A.  This was expected as a result of the sonication readily removing any 

loosely bound metals in the filter.  Additionally, DMPO is well documented to be easily 

hydrolyzed, in the presence of metals, into DMPO-OH as an experimental artifact [7, 8].  The 

ability of the PTFE filter to generate low levels of the DMPO-OH adduct was also reported 

elsewhere [30].  However, all sample signals in this report were at least 2x greater than the blank 

filter.  

4.4    Effect of Particle Concentration  

The effectiveness of red-ox cycling (Figure 4.1) may be observed in dependence of the 

DMPO-OH adduct concentration generated vs. incubation time at two different particle 

concentrations, Figure 4.4.  The larger particle concentration exhibited a larger DMPO-OH 

adduct intensity. Similar behavior has been reported for PM samples with the addition of H2O2 

and other ROS detection methods [6, 31].   

4.5    Addition of H2O2   

Addition of H2O2 into the PM2.5 suspension resulted in an average doubling of the 

DMPO-OH formation (data not shown).  With the blank filter, there was a 60% increase of 

DMPO-OH production, further suggesting the leeching of metals from the PTFE filter during 

extraction.  Data generated from H2O2 addition is consistent with literature data demonstrating 

metals in PM2.5, or other analogous systems, can catalyze 
●
OH formation in the presence of H2O2 

[6-8, 16, 32-35]. Addition of H2O2 to the system facilitates ROS formation via the exogenous 

Fenton reactions (Figure 4.1).  However, in these experiments, external addition of H2O2 was not 
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needed to generate 
●
OH.  What was observed in this study was a combination of EPFRs and 

surface metals working in tandem towards ROS formation.   

4.6    Air Rich vs. N2 Purged PM2.5 Suspensions 

To determine the effect of dissolved oxygen on ROS production, a suspension was 

purged with pure N2 to remove dissolved O2.  Without O2, the suspension, while containing 

EPFRs, cannot generate hydroxyl radicals due to blocking the superoxide and H2O2 formation 

channel (cf. Figure 4.1). The non-purged samples generated 13% greater quantity of 
●
OH than 

the purged sample, Figure 4.5A.  This is similar to the literature, where formation of 
●
OH was 

eliminated by N2 purging, unless H2O2 was added [6]. This was consistent with previous work 

where the largest differences between the control (CuO on amorphous Si) and the EPFR model 

system were observed when the suspensions were aerated resulting in the EPFR model system 

having the larger DMPO-OH adduct formation [8]. 

 

Figure 4.4 Impact of particle concentration on DMPO-OH adduct 

generation.  This is from sample 36191. 
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Following the 19 day decay in solution, the non-purged sample decreased by 18% from 

when it was fresh, while only a 10% diminution was observed between the fresh and aged non-

purged sample (Figure 4.5B). A 5% decrease in DMPO-OH intensity was observed between the 

aged non-purged and purged sample.  The lesser effect in the aged sample is simply thought due 

to a reduced presence of the organic radical.  Overall, there was a 21% decrease from the fresh 

non-purged sample to the decayed purged sample.  This decrease demonstrates the impact 

A 

B 

 

Figure 4.5 DMPO-OH adducts accumulation vs. time at different conditions for 

sample # 36191: A. 10 min aeration (labeled as Non-purged Sample) and 10 min N2 

purging (labeled as Purged Sample) of freshly extracted PM. B. Fresh and aged (19 

days) samples aerated or purged by N2. 
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EPFRs have on ROS formation as it was already documented the oxidation state of Fe
2+

, the 

main contributor to the Fenton reaction in PM2.5, changes little over the course of 40 days [15].  

4.7    “Passive” vs. “Active” PM2.5  

There were a few samples not altering in hydroxyl radical formation under different 

conditions (cf. 4.6A), which is referred to as passive, versus the samples developing differences 

 

Figure 4.6 Demonstration of a passive sample and comparison of active and passive 

samples.  A.  Demonstration of a passive sample # 36188 with no impact from aeration.  The 

initial radical conentration was 1.84x10
17

 radical/g.  (a) - aeration for 10 min, (b) - aeration 

for 1 hr, (c) - aeration for 2 hr, and (d) -  purged with N2 for 2 hr.  B.  DMPO-OH adducts 

concentration vs. radical concentration for active (solid line) and passive (dashed line) 

samples. 
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in hydroxyl radical generation, referred to as active (cf. 4.6B). The active set produced fewer 

hydroxyl radicals from a lack of oxygen or longer aging and corresponded to a reduction in 

DMPO-OH intensity. The active set of samples exhibited an average increase of the DMPO-OH 

signal when the samples increased in radical concentration, Figure 4.6B.  Conversely, the passive 

samples exhibited no dependence on aging time or aeration and were relatively independent of 

the radical concentration.   

The active radicals are probably external (or sterically available) enabling reaction on the 

exposed surface.  The passive radicals are probably internal where no species can react with 

them.  Other researchers reference the presence of internal radicals and no change in the EPR 

signal of combusted plastics after 6 months [25].  DEP samples generate little 
●
OH and may also 

be internal radicals [6]. 
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CHAPTER V. EFFECTS OF NOX AND OZONE ON EPFRs IN PM2.5 AND THEIR 

ABILITY TO GENERATE HYDROXYL RADICALS 

 The previous chapters indicated oxygen reduces the EPFR concentration in PM2.5 as well 

as reducing hydroxyl radical formation.  Thus, the third objective was to determine how the 

presence of other oxidizing species, NOX and ozone, affect the EPFRs in PM2.5.  Subsequently, 

understanding how exposure of these oxidizing agents altered hydroxyl radical generation was of 

interest. 

5.1    Initial EPR Measurements of PM2.5 and Extraction 

The initial EPR examination of all PM2.5 samples displayed a single, unstructured organic 

radical peak [1].  The average ΔHp-p was 6-7 Gauss, and this implied multiple organic species of 

the same radical family present or broadening by organic-metal interactions [2-5].  All initial g-

factors were in the range of 2.0038 – 2.0043, characteristic for a group of semiquinone radicals 

or more oxygenated radicals in a complex matrix [2-4, 6-11].  All PM2.5 samples immediately 

before exposure exhibited an average initial radical concentration of 2.08x10
17

 ± 0.66x10
17

 

         Table 5.1 Radical concentration of PM2.5 after extraction from filter *. 

Date of 

collection 

Number of 

collection 

Days  

Radical 

Concentration 

After Extraction 

(radicals/g) 

1/30/2012 7 5.38x10
16

 

2/6/2012 19 2.43x10
17

 

2/24/2012 7 2.78x10
17

 

3/2/2012 13 8.05x10
16

 

3/14/2012 6 1.66x10
17

 

3/20/2012 8 1.43x10
17

 

* Due to difficulties to measure the radical concentration on the glass fiber filter, 

only the radical concentration following extraction is given as accurate data. 
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radicals/g, Table 5.1.  This radical concentration is comparable to the same concentration range 

from cigarette smoke [2], corresponding to 37 ppm as a semiquinone radical. 

The effect of extraction from the binder free glass fiber filter on the PM2.5 radical signal 

is displayed in Figure 5.1.  Inspection of the wide magnetic range indicated the presence of Fe
3+

 

at g-factors of 4.2950, from a strong rhombic distorted tetrahedral or octahedral position [12-16], 

and 2.1343, from Fe
3+

 distributed in clusters [16, 17], (black spectrum in Figure 5.1).  As 

observed in Figure 5.1, the Fe
3+

 peaks are significantly diminished after extraction (red 

spectrum), and this arises from surface associated Fe
3+

 dissolving into solution.  

 

Figure 5.1 Effect of extraction on the PM2.5 powder spectrum collected from 3/14/12 (1150 

G - 5500 G range).  Inset is a close up of the organic radical signal (singlet) overlaid on Mn 

signal (6 equidistant lines) in the range 3200 – 3600 G.  

* 
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At the same time, the extra signals (the red inset of Figure 5.1) resulting from extraction 

are attributed to a strong Mn
2+

 (I=5/2) presence.  The singlet line among the spectrum of Mn
2+

 at 

g = 2.0042 (highlighted by the red asterisk) is the organic radical.  After extraction, the organic 

radical concentration was indicated to decrease [18].  Overall, this data indicates care must be 

taken in the identification of radicals when the soluble fraction dissolves in solution thus 

drastically changing the EPFR environment, Figure 5.1.   

5.2    Effect of Ozone on PM2.5 

The outcome of ozone exposure to the radical signal is displayed in Figure 5.2 A and B.  

In regards to the organic radical, the gapp remained the same at 2.0039, Figure 5.2B, and there 

A        B 

 

Figure 5.2 Effect of ozone on the PM2.5 powder spectrum collected from 2/24/12.  A. 

Inorganic radical EPR spectrum (1300 G - 5500 G) B. Organic radical in magnetic range 

3420 G - 3500 G with Mn peaks present.  The peaks in the red box are the organic signal. 
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was no significant change in the ΔHp-p after exposure.  The radical concentration slightly 

diminished from 1.90x10
17

 to 1.83x10
17

 radicals/g after 2 hr of exposure and 1.69x10
17

 radicals/g 

after 4 hr of exposure.  The radical concentration from the control (open to lab air) also 

decreased from 1.96x10
17

 to 1.84x10
17

 radicals/g at the same time. Essentially, there was no 

appreciable change in the organic radical signal after exposure of PM2.5 to ozone.   

However, there was some interaction of ozone with the other paramagnetic species in 

PM2.5; the Fe
+3

 g-factor at 4.2950 slightly diminished, Figure 5.2A.  One relevant explanation 

here might be Fe
3+

 (as Fe2O3) is acting as a catalyst [19] to remove ozone resulting in a change 

of Fe
3+

 coordination (a strong rhombic distorted tetrahedral or octahedral position [12-16]).  

Because of this expected physical change of the Fe
+3

 environment, a small diminution in the 

signal will occur.  In addition, a new signal at g = 2.9995 appears after exposure of ozone and the 

new peak is suggested to result from Fe in a complex matrix [20], Figure 2A. 

Generally, the interaction mechanism of ozone with organics is complex.  For instance, 

               Table 5.2 Concentration of soot in PM2.5and diesel 

Soot 

Concentration
†
 

(μg/m
3
) 

PM2.5 

Concentration
†
 

(μg/m
3
) 

Percentage of 

soot in PM2.5 

 

1.7 17.2 9.9% 

1.9 26.5 7.2% 

1.6 16.5 9.7% 

4.1 22.9 18.1% 

1.9 17.9 10.6% 

Percent Concentration of Soot in Diesel[28, 30] 

47.9% 

48% 
                   †

All values used were given or averages of all measurements [26, 27, 29, 31, 32] 
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interaction with unsaturated hydrocarbons induces formation of radicals through Criegee 

intermediates in the gas phase [21, 22] or during the formation of secondary organic aerosols 

[23].  In the latter case, formation of new, short lived radicals, such as alkyl, alkoxyl, and 

peroxyl, were detected using electrospray ionization/tandem mass spectrometry in the ozonolysis 

of α-pinene [23].  However, there is controversial information in the literature concerning direct 

interaction of ozone with PM, in particular soot and carbon black.  One study observed ozone to 

decrease radicals found in soot [24], while another indicated the radical concentration to increase 

when ozone was exposed to carbon black [25].  In our study, the alteration of EPFRs in PM2.5 

was not observed from the interaction of ozone, Figure 5.2B. The main difference between this 

and the previous studies [24, 25] is a significantly diminished amount of soot detected in 

different PM2.5 samples [26-32], Table 5.2.  In addition, the EPFRs in these samples might be 

located in the inner layers of PM2.5 [1].  Remaining in the inner layers, those radicals are 

inaccessible to oxidizers as also observed during exposure of PM2.5 to NO (vide infra).  The 

existence of these types of samples, abbreviated as “passive” (in term of •OH generation), was 

advocated earlier, CHAPTER IV on page 68. 

5.3    •OH Generation After Exposure of PM2.5 to Ozone 

The effects of ozone exposure on PM2.5 and concomitant •OH generation is displayed in 

Figure 5.3.  Clearly, there was no significant change in the •OH generating capabilities between 

the exposed sample and its control, but the ozone exposed sample generated marginally more 

•OH.   

However, other PM, notably soot and diesel exhaust particles (DEP) with a high content 

of soot (~48% [28, 29]), report greater oxidant yield after exposure to ozone [33, 34].  Even low 
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levels of ozone exposure increases the potency of DEP to induce lung injury [35].  In these cases, 

oxidation by ozone contributed to the organic carbon content  (similarly to other work [25]) of 

the DEP by possibly forming quinones [36, 37] which may generate reactive oxygen species [7, 

38].  Concerning to the present case, a much lower amount of soot in PM2.5 (Table 5.2) in 

addition to the possibility of EPFRs internal location in PM2.5 [1] might be the reasons nearly 

identical levels of •OH were generated in the control and exposed PM2.5, Figure 5.3.   

5.4    Effect of NO on Radical Signal and •OH Generation 

Exposure to NO (starting from 2 torr) demonstrated no statistical effect on the radical 

EPR signal.  The gapp, ΔHp-p, and the intensity of the signal remained the same as the control 

(PM2.5 powder exposed to air). Even exposing to high levels of NO (up to 395 torr) for 3 days at 

room temperature only slightly decreased the radical concentration, from 2.47x10
17

 radicals/g to 

 
Figure 5.3 Effect of ozone exposure on •OH generation from PM2.5.  This sample was 

collected on 3/2/12.  Both points were taken at the maximum •OH generation i.e. after 5  

hours of incubation. 
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2.42x10
17

 radicals/g; however, the control also exhibited a slight decline, from 2.38x10
17

 

radicals/g to 2.31x10
17

 radicals/g, in the radical concentration.  This indicated, overall, there was 

no fluctuation in the radical signal intensity from exposure to NO.  Subsequently, there was no 

effect from NO exposure on the PM2.5’s ability to generate altered levels of •OH, Figure 5.4.  

These results are similar to the ozone exposure. 

5.5    Effect of NO/NO2 on Radical Signal 

The effect of NO/NO2 exposure on the wide magnetic range radical signal is displayed in 

Figure 5.5.  After 30 min of exposure, the Fe
3+

 peak at a g-factor of 2.1343 (Fe
3+

 distributed in 

clusters [16, 17]) is sharpened.  After an overnight exposure to NO2, the Fe
3+

 peak at the g-factor 

of 2.1343 is significantly diminished.  In the sample displayed in Figure 5.5A, there was no Fe
3+

 

peak at a g-factor of 4.2950, but for the samples exhibiting the Fe
+3

 peak, introducing NO2 to the 

PM completely eliminates the Fe
3+

 peak at g = 4.2950, Figure 5.5B.  There was also a sharpening 

 
Figure 5.4 Effect of NO exposure on •OH generation from PM2.5.  This sample was 

collected 3/20/12.  Both points were taken at the maximum •OH generation. 
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of the Mn signal in the same sample after exposure, Figure 5.5B.  This implied a geometry 

change of Fe
3+

 and Mn after exposure, similar to the ozone exposure (vide supra, Figure 5.2A).   

The organic radical signal exhibited a noticeable difference after NO/NO2 exposure, 

Figure 5.6, with a drastic increase in the organic radical concentration.  Before exposure, the 

sample displayed 1.28x10
17

 radicals/g, and after only 15 min of NO/NO2 exposure, the radical 

concentration intensified to 2.40x10
17

 radicals/g.  Further exposures over a short time scale (1 hr) 

maintained approximately the same radical concentration.  When exposed overnight, another 

A           B     

 

Figure 5.5 Effect of NO2 on two different PM2.5 samples.  A.  Effect of NO2 on PM2.5 EPFR 

spectrum collected from 3/14/12 illustrated in wide range magnetic field, 1500- 5500 G.  B.  

Demonstration of NO2 to eliminate the Fe
3+

 peak at a g-factor of 2.1343 for sample collected 

from 3/2/12.  The extra peaks are from Mn. 
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large escalation to 8.33x10
17

 radicals/g was observed.  This increase was confirmed by 

comparison to the control, only diminishing from 1.56x10
17

 to 1.39x10
17

 radicals/g.  Subsequent 

evacuation and re-exposure of NO2 to the same sample (8.33x10
17

 radicals/g) affected the 

organic signal little, marginally increasing to 8.45x10
17

 radicals/g with no variation in the other 

spectral features. 

Several suggestions may explain the different behavior of the PM2.5 NO2 exposure.  The 

activity of NO2 in the gas phase at low and ambient temperature is well documented, and the 

addition of NO2 to tobacco smoke or mixtures of unsaturated hydrocarbons form alkyl and 

 
Figure 5.6 Effect of NO2 exposure on the organic radical signal for PM2.5 collected from 

3/14/12 (same exposure as Figure 5.5A).  The organic peak (assigned by asterisk) is overlaid 

on Mn signal. 
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alkoxyl radicals [39-42]. There are few articles demonstrating heterogeneous interaction of NO2 

on other adsorbed substrates [43-45].  For catechol thin films, there was no reaction of NO2 with 

catechol alone, and only when catechol was complexed with beznophenone did formation of 4-

nitrocatechol occur [43].  Under dark conditions, the mechanism was implied to occur through 

hydrogen bonding of catechol with benzophenone stabilizing formation of the o-semiquinone 

radical [43].  However, when catechol was adsorbed on aerosol surrogates, formation of 4-

nitrocatechol was observed without the addition of other substituents [45].  The unpaired electron 

on the surface was suggested to react with other paramagnetic species, such as NO2 [46, 47]. 

NO is also relatively unreactive with organic species when compared to NO2 [39].  This 

was observed with carbon blacks generating nitrated product formation from reactions of NO2 

but not NO [48].  Other correlations of NO2 with nitrated and oxygenated PAHs were deemed 

significant (Spearman correlation p < 0.10) to an insignificant correlation with NO [49]. 

The large difference in activity between ozone and NO2 is suggested by assuming an 

interaction of these components with soot constituents in PM2.5.  For simplicity, the rates of NO2 

addition to conjugated butadiene were compared to O3 addition according to reaction 1 and 

reaction 2 

NO2 + CH2=CH-CH=CH2  Products    reaction 1 

  O3 + CH2=CH-CH=CH2  Products    reaction 2 

using known rate constants of k1= 1.87x10
4
 cm

3 
/ mol•s [50] and k2 = 4.0x10

6
 cm

3 
/ mol•s [50] 

at room temperature in addition to concentrations of [NO2] ~ 100 torr, [O3] =  2.76x10
-6

 torr.  

The ratio of the rate expression for reactions 1 and 2, R1/R2, was ~ 300.  This indicated the 
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formation rate from NO2 exposure will be dominant over the ozone exposure because of the 

large concentration difference. 

5.6    •OH Generation after Exposure of PM2.5 to NO/NO2 

In all cases, NO/NO2 exposed PM2.5 demonstrated a lower affinity to generate •OH, 

Figure 5.7.  At first, this fact appears to contradict previous results [1].  In this study, a direct 

dependence was observed between EPFR concentration and the •OH generation ability of PM2.5 

samples.  Nevertheless, oxidants like ozone as well as NOx drastically change the PM2.5 

environment (for example Figures 5.1 and 5.5, respectively), and this is observed here as a 

change in the pH of extracted PM2.5 solutions.  All NO2 exposed PM2.5 suspensions were 

observed to be more acidic than the control; the control maintained a constant pH of 7.0 - 7.5, 

while the pH for the NO2 exposed PM2.5 samples was dependent on the NO2 concentration.  For 

 
Figure 5.7 Effect of NO2 exposure on •OH generation from PM2.5 powder collected from 

3/14/12. 
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example, when exposed to 354 torr NO2, the resulting pH was 4.5, but when exposed to 36 torr 

for the same amount of time, the pH was 6.5.   This might result from formation of nitric acid as 

a result of introducing NO2 exposed PM2.5 to an aqueous solution.  Consequently, as the pH 

between the exposed sample and control were more closely matched, the generation of •OH 

would converge to the same adduct intensity. 

The proposed catalytic cycle for •OH formation from EPFRs, as well as previous 

research [51], illustrates the importance of the solution pH [52-54].  In acidic solutions, there is 

diminished deprotonation from the surface bound EPFR (Figure 5.8), thus reducing formation of 

the superoxide anion and consequently •OH [52-54].  This behavior could explain why there 

were no increased health effects from exposures of NO2 and PM [55, 56]. 
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CHAPTER VI.  SIMULATED SOLAR IRRADIATION OF EPFRs in PM2.5 

With an understanding of how oxygen, ozone, and NOx can affect the EPFRs in PM2.5, 

there is still one major contributor to common atmospheric processes, solar radiation.  Therefore, 

the fourth objective was to investigate how simulated solar radiation affects EPFRs in PM2.5 and 

the subsequent ability to generate hydroxyl radicals.  These experiments were performed with the 

use of a Xenon lamp and an AM1.5 filter simulating the solar spectrum when the sun is 48° from 

zenith (directly above). 

6.1    Initial EPR Measurements of PM2.5 

The initial EPR examination of all PM2.5 powder after extraction from the filter displayed 

a single, unstructured organic peak exhibiting an average ΔHp-p of 6 - 7 Gauss [1, 2].  The 

relatively wide peak in addition to a lack of hyperfine splitting implied multiple organic species 

of the same radical family present or broadening by organic-metal interactions [3-6].  These 

signals displayed initial g-factors of 2.0038 – 2.0043, suggesting a group of semiquinone radicals 

or more oxygenated radicals in a complex matrix [3-5, 7-12].  In addition to an organic peak, the 

presence of Fe
3+

 was detected at an approximate g-factor of 2.1 and attributed to Fe
3+

 distributed 

in clusters [13, 14].  The presence of Mn(I=5/2) was also noticed.  These peaks were not 

observed to be effected from the irradiation.  

The two PM2.5 powders’ (collected on binder free glass fiber filters for six weeks each) 

initial radical concentration is given in Table 6.1; however, this radical concentration did not 

remain constant before each simulated solar exposure.  This is due to EPFRs in PM2.5 decaying 

from exposure to air [1].  Between illumination experiments, the PM2.5 powder was maintained 

in a sealed vial at -20 °C to slow this decay.  Immediately before irradiation, all PM2.5 exhibited 
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an average initial radical concentration of 6.27 x10
16

 radicals/g resulting from 5 - 8 mg of PM2.5 

powder used for each irradiation. 

6.2    Effect of Simulated Solar Exposure on the PM2.5 EPFR Signal 

The effect of simulated solar exposure, 45 minutes at 950 W/m
2
, on the organic radical 

signal from freshly extracted PM2.5 powder (loaded in an EPR tissue cell) is displayed in Figure 

6.1.  There was an average 4x increase in the organic radical signal after irradiation 

demonstrating the importance of solar radiation on forming new EPFRs.  This resulted from an 

escalation in the relative intensity and an average broadening of the ΔHp-p by 1.02 Gauss.  The g-

factor increased by an average of 0.0002 implying photo-oxidation of the sample during 

irradiation in ambient air [1].  Exposure beyond 45 min affected the signal little (c.f. Figures 6.2 

and 6.4). 

UV radiation is suggested to effect metal oxide surfaces by forming radical species which 

recombine to form more complex species [15].  Furthermore, irradiation of metal oxides, sand, 

ash, and sea salt generate radicals on the PM surface with various terpenes, hydrocarbons, and 

halocarbons [16].  This is in addition to enhancing the chemisorption of volatile organic 

compounds [16, 17].  In the case of aromatic hydrocarbons on metal oxides, these were observed 

to bind incomplete oxidation and degraded products to the metal oxide surface.  These species 

Table 6.1. Initial radical concentration for the two powdered PM2.5 collected  

Collection 

Period 

Initial Radical 

Concentration 

(radicals/g) 

April/May 2012 1.85x10
17

 

June/July 2012 1.54x10
17
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were not identified until desorption from the surface at elevated temperatures [18], and this 

suggests irradiation forms very stable species on the surface of metal oxides in PM. 

Polycyclic aromatic hydrocarbons (PAHs) are well documented to absorb sunlight in the 

visible and UV regions due to delocalized electrons in conjugated π systems [19, 20], and they 

undergo photolysis at the solid-air interface by a charge transfer mechanism [21].  In 

atmospheric conditions, photo-oxidized PAHs can subsequently degrade other organic 

compounds [19, 20].  This was confirmed from the photo-degradation of aliphatic hydrocarbons 

on oxidized PAHs [20].  In soot, photolysis decreased PAH concentrations [22, 23].  When 

exposing fresh soot to O2 as well as simulated sunlight, formation of oxygen containing species, 

such as aromatic aldehydes, ketones, or quinones, was observed [19, 20, 24-27], and when the  

 
Figure 6.1.  Effect of simulated solar irradiation on the organic radical signal from PM2.5 

powder collected from June/July of 2012.  In the displayed case, the radical concentration 

increased three fold from 1.54 x10
17

 radicals/g to 4.54 x10
17

 radicals/g. 
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organic carbon was removed, there was a drastic decrease in photolysis activity [27].  This 

indicated the organic carbon fraction as a major contributor to photochemical aging [27]. 

  In addition to metal oxides and PAHs, previous studies on the photochemistry of 4-

chlorophenol supported on cellulose revealed the organic fraction absorbed photons upon 

irradiation [28].  After irradiation, there was a slow chemical decomposition resulting in the 

formation of the 4-chorophenoxy radical based on the product distribution. The same experiment 

on silica revealed benzoquinone and hydroquinone were the two major photo-degradation 

products [28]. 

Based on the above, we postulate the metal as well as organic fraction (hydroquinones, 

semiquinone, quinones, hydroxylated organics, etc.) in PM2.5 will follow similar radical-

mediated, photochemical pathways and form additional radicals (EPFRs) on the surface.  The 

UV region is chemically active as the wavelengths match normal bond energies [29], and 

photolysis reactions can generate radical species by bond breaking [20].  The amount of metals, 

or generally the mineral fraction, in PM samples was suggested to determine the photochemical 

activity [30, 31], and PM2.5 previously collected by us was demonstrated to contain a wide 

variety and concentration of metals [1, 2].  PM2.5 is also well documented to contain quinones 

and aromatic carbonyls which, under irradiation, will oxidize and degrade PAHs in addition to 

other species adsorbed on the PM [20, 32, 33].  Given both metals and quinones as well as 

aromatic carbonyls are present in PM2.5, this further strengthens the hypothesis of EPFRs 

forming on the surface of PM2.5 due to irradiation. 
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6.3    Comparison of Simulated Solar Exposure Between the Collected Samples   

The two PM2.5 powders were irradiated after extraction and compared for trends, Figure 

6.2.  As displayed, both samples at this point in their decay demonstrated similar affinity towards 

simulated irradiation.  The April/May and June/July increased from their initial (before 

exposure) organic radical concentration by 3.20 and 3.25, respectively.  The appearance of the 

April/May sample accumulating additional radicals results from a slightly larger initial radical 

concentration. 

6.4    Decay of Irradiated EPFRs 

To determine the persistence of these newly formed EPFRs, the PM2.5 powder was 

allowed to age in ambient air after 1 hr of irradiation.  This decay was monitored until 

approximately reaching the radical concentration before irradiation, and the resulting decay, 

 
Figure 6.2. Comparison of simulated solar irradiation between the two PM2.5 powders 

collected.  
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relative to the initial radical concentration, is plotted in Figure 6.3.  The first decay, designated as 

the “solar” decay, demonstrated a decay rate of 0.002 min
-1

 (0.12 hr
-1

) corresponding to a 1/e 

half-life of 8 hours, while the second decay, designated as the “slower” decay, exhibited a decay 

rate of 0.00008 min
-1

 (0.00480 hr
-1

) corresponding to a 1/e half-life of 9 days.  Although the 

second decay is designated as the “slower” decay, it is much faster than the previously reported 

slow decay rate (0.0028 - 0.0005 hr
-1

 corresponding to an average 1/e half-life of 214 – 402 

days) of non-irradiated PM2.5 [1]. 

In the previous decay study, samples were collected for 24 hours from 9AM.  The 

irradiation for this study corresponds to midday solar radiation levels.  Therefore, this allowed 

 
Figure 6.3. Decay of EPFRs after irradiation for PM2.5 powder collected in June/July of 

2012.  All half-lives displayed are 1/e half-lives.  The radical concentration before exposure 

was 4.95x10
16

 radicals/g. 
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the radicals generated from the solar irradiation ample time to decay before an initial radical 

measurement was acquired the next morning.  Diurnal sample collection was attempted at the 

time of the first decay study, but due to small PM2.5 collection, on the order of 200 μg, an 

accurate quantitative radical concentration was not established after the first 2 - 3 days. 

6.5    Multiple Exposures on the Same Sample 

Since PM2.5 stays airborne for extended periods of time, multiple exposures from 

sunlight, although at longer times and lower average intensities, will occur.  Thus, to mimic 

natural conditions, the same portion of the PM2.5 powder was irradiated and allowed to decay in 

air until the next morning (~18 hours).  After the first exposure, an additional exposure was 

performed and the procedure repeated.  The first exposure displayed normal behavior with a 5.8x 

increase in the organic radical concentration from the initial value (Figure 6.4) and a shift in the 

g-factor from 2.0040 to 2.0043.  When initially investigated the next day, the irradiated radical 

concentration dropped by 72% in this powder portion and the g-value decreased to 2.0041.  

When irradiated for the second time, the radical concentration increased by only 3.0x, a much 

lesser amount than the previous day, and the g-value shifted to 2.0043 again.  This became even 

more reduced by the third exposure, demonstrating 62% reduction from the previous day’s 

irradiation and a reduction of the g-value to 2.0041.  This was followed by a 2.4x increase in the 

organic radical concentration and an increase in the g-value from 2.0041 to 2.0043 upon further 

irradiation. 

The subsequent exposures’ initial measurement not maintaining the initial radical 

concentration before exposure is explained by the radical decay.  Considering the 1/e half-life for 

the longer decay is 9 days, 18 hours is not enough time for the irradiated radical concentration to 
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decay to its original unexposed concentration.  This suggests PM2.5 will increase its baseline 

radical concentration everyday it is exposed to high levels of solar radiation.   

The species responsible for radical concentration increasing after subsequent exposure is 

suggested to be quinones or other aromatic carbonyls present in PM [20, 32, 33], as they are 

documented photosensitizers [32, 33].  These species are also demonstrated as extremely 

persistent in an oxygen environment [1, 34] thereby allowing multiple photo-absorptions.  There 

might be other multiple mechanisms, but due to the complexity of PM2.5 and a lack of literature 

investigating these effects, they are not currently elucidated. 

6.6    •OH Generation from Simulated Solar Irradiation  

A comparison of •OH generations between an irradiated PM2.5 sample to an unexposed 

sample is displayed in Figure 6.5.  As observed in the figure, the irradiated sample generated 

 
Figure 6.4  Demonstration of multiple simulated solar exposures on the same PM2.5 powder 

portion collected from April/May of 2012.  Subsequent exposures did not reach the radical 

concentration of the initial irradiation nor the initial concentration before exposure.  
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more •OH than the unexposed sample.  This increase may be due to the increased concentration 

of radicals participating in red-ox cycling thoroughly described in CHAPTER IV on page 68.  

These radicals represent organic radicals initially existing in PM2.5 as well as the new radicals 

formed from the organic carbon [19, 20, 24-27] by solar irradiation.  However, simulated solar 

irradiation may also drastically change the PM2.5 surface environment.  For example, a change 

might occur in the oxidation states of some transition metals, therefore permitting them to be 

Fenton active in generating •OH.  There is also the possibility a change in both the radicals from 

organic carbon and metal fraction could augment the formation of •OH.  Despite an uncertainty 

in the mechanisms dominant in •OH generation, this data suggests there are more adverse health 

effects gained from inhaling PM2.5 in the afternoon hours during summer due to solar radiation.   

 

Figure 6.5.  Generation of DMPO-OH adduct from an irradiated and control (non-irradiated) 

sample collected from April/May of 2012.  The irradiated sample corresponded to a radical 

concentration of 2.53x10
17

 radicals/g.  The control sample radical concentration was  

1.23x10
17

 radicals/g. 
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CHAPTER VII.  SUMMARY AND CONCLUSION 

7.1    EPFRs and Their Half-Lives in PM2.5 

This study demonstrated the concentrations of EPFRs from a complex variety of point 

sources in an industrial corridor, and their decay followed pseudo-first order kinetics.  A slight 

average increase of the g-factor by 0.0002 implied the EPFRs were oxidized during decay or an 

elimination of carbon centered radicals.  Four patterns of decay were observed from the samples 

collected.  The majority of the decays (47%) exhibited two consecutive decays with a fast decay 

displaying an average 1/e half-life of 7 days followed by a slow decay with an average half-life 

of 402 days.  The second most abundant decay (24%) was a single slow decay exhibiting an 

average 1/e half-life of 214 days.  The last two types of decays were no decay (18%) and a fast 

decay accompanied by no decay (11%) where the average 1/e half-life for the fast decay was 6.  

However, one of the decay categories may not actually be present, due to long residence times in 

the atmosphere eliminating radicals associated with the fast decay before analysis.  Therefore, 

only 3 decays may exist, a fast decay, a slow decay, or no decay. 

The two decays are implicated to result from the decay of two different radical species.  

The fast decay was suggested to result from decay of the phenoxyl radical. This was 

corroborated from other analysis where phenol was observed present in PM2.5 and correlated 

well with the fast decay (p=0.60 n=7). The slow decay was attributed to decomposition of 

semiquinone type radicals to phenoxyl radicals[1]. The no decay pattern was explained by 

radicals entrapped in the bulk of PM2.5 (or internal radicals) restricted in a solid matrix with the 

unpaired electrons delocalized over many conjugated or aromatic bonds[2-7]. 
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Although there were no strong correlations with the metal data, a few interesting 

associations with the meteorological data were found.  Correlations with photochemical 

processes (ozone, solar radiation, and UV radiation) were found to significantly correlate 

(p=0.28, p=0.14, p=0.12, respectively) with initial radical concentration and fast decay.  Since 

the photochemical processes increased the radical concentration, their presence would slow 

down the fast decay rate as they are forming new radicals. 

In order to assess the potentially negative health consequences of PM2.5 in an easily 

understandable way, the EPFRs in cigarette tar were compared to those in airborne PM2.5.  Based 

on initial radical concentrations, a resident of the U.S. inhales enough radicals in PM2.5 to be 

equivalent to smoking 0.3-0.9 cigarettes a day. 

7.2     Hydroxyl Radical Generation from EPFRs in PM2.5 

Freshly captured PM2.5 was demonstrated to generate hydroxyl radical without the need 

to add H2O2.  The generation of hydroxyl radicals is believed to arise from a catalytic cycle 

involving EPFRs attached to a reduced metal species on the surface of PM2.5.  This cycle 

depends on the presence of oxygen, which is reduced by EPFRs to form the superoxide anion, 

H2O2, and ultimately form hydroxyl radicals. 

Due to drastically different metal concentrations, the variation in hydroxyl radical 

formation could not be tested between samples.  Instead, the suspended PM2.5 was allowed to 

decay over time and a decrease in the hydroxyl radical formation was observed from when it was 

fresh.  This decrease was attributed to a reduced presence of the organic radical.  Other 

experiments demonstrated hydroxyl radical generation was dependent on the suspended particle 
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concentration where higher particle concentrations exhibited increased generation of hydroxyl 

radicals. 

The other steps in the cycle were confirmed in experiments where the suspension reduced 

formation of hydroxyl radicals by purging dissolved oxygen from solution with nitrogen; 

however, some PM2.5 samples did not generate altered levels of hydroxyl radicals under the 

aforementioned conditions.  This was believed due to the radicals being internal, rather than 

surface associated.  Remaining internal, they are not accessible to react with O2 or DMPO and 

thus unable to generate hydroxyl radicals. 

7.3    Effects of NOx and O3 on EPFRs in PM2.5 and Their Ability to Generate Hydroxyl 

Radicals 

Collected PM2.5 was extracted from a filter and the radical signal was observed to change 

after the extraction.  This resulted in a significant reduction of the Fe
3+

 peak at the g-factor of 

4.2950, from Fe
3+

 in a strong rhombic distorted tetrahedral or octahedral position[8-13].  There 

was also a partial elimination of the organic radical either from dissolved oxygen in solution or 

losing some PM fraction in the extraction process.  When the extracted PM2.5 powder was 

exposed to ozone, there was no effect on the organic radical signal or concomitant hydroxyl 

radical generation.  This was believed to result from a reduced presence of soot in PM2.5 as 

others observed exposed ozone to change the organic radical concentration for soot and carbon 

black[14, 15] as well as generate greater oxidant yields for DEP[16, 17] which has an inherently 

large amount of soot present.  Ozone did, however, impact the transition metal environment by 

creating a new peak at a g-value of 2.9995.  Even though this peak was not empirically 

elucidated, the presence of Fe in a complex matrix was suggested[18].   
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There was no effect from exposure to NO, and thus, no effect on the ability of the PM2.5 

to generate altered levels of hydroxyl radicals.  This is suggested to result from the radical’s 

internal nature in these particular samples.  However, the exposure to NO2 displayed a significant 

effect on the radical signal.  After exposure to NO2, there was a significant decrease in the ΔHp-p 

and an immense growth in the organic radical concentration.  This might arise from the 

formation of alkoxyl or alkyl radicals[19].  The diminished activity of ozone compared to NO2 

was explained by high concentrations of NO2 (up to hundreds of torr) vs. 2.760 x10
-6

 torr of 

ozone.  When suspending the NO2 exposed PM2.5 in solution, the pH was found to become acidic 

from the formation of an acid and therefore diminished the ability of the PM2.5 to generate 

hydroxyl radicals.  This behavior was supported from the proposed catalytic cycle where acidic 

solutions diminish the deprotonation of the surface bound EPFR, thus reducing the formation of 

the superoxide anion and consequently the hydroxyl radical. 

7.4    Simulated Solar Exposure of EPFRs in PM2.5 

The extracted PM2.5 powder was exposed at an insolation of 950 W/m
2
 corresponding to 

the maximum solar radiation Baton Rouge receives during midday in June.  After 45 min 

exposure in ambient air, the organic radical concentration was observed to increase by three to 

four times the original radical concentration.  Further irradiation demonstrated the radical 

concentration to remain relatively constant.  Corresponding with the increase of the organic 

radical concentration was an average increase of the g-factor by 0.0002 implying photo-

oxidation of the PM2.5.  We proposed the formation of new radicals on the surface derives from a 

combination of metal and organic factors inducing a radical-mediated photochemical pathway.   
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The newly formed radicals exhibited a two stage decay, a faster solar decay of 8 hr and a 

slower decay of 9 days.  The slower decay here correlated well with the previously observed 

decay studies of EPFRs in PM2.5.  Multiple simulated solar exposures on the same portion of 

PM2.5 was found to consistently generate more radicals but at reduced quantities for subsequent 

exposures.  Spin trapping experiments demonstrated the irradiated sample to generate more 

hydroxyl radicals than the unexposed sample.  Therefore, solar irradiation might be an important 

pathway for adverse health effects from EFPRs in PM2.5. 

7.5    Conclusion 

 These results demonstrate EPFRs were found in all collected PM2.5, and subsequently, 

they can undergo important atmospheric and toxicological reactions.  The long half-lives 

observed indicate EPFRs in ambient PM2.5 are extremely stable to oxygen and follow similar 

behavior as previous studies on the model EPFR system.  The spin trapping experiment 

demonstrates EPFRs in PM2.5 can generate ROS, and this further strengthens the EPFR 

mechanism for PM2.5’s toxicity.  Reactions with ozone and NO demonstrate them, at least for 

these particular samples, to not impact the organic radical concentration or the altered generation 

of hydroxyl radicals.  Exposure to NO2 exhibited a large increase in the EPFR concentration but 

a drastic decrease in the formation of hydroxyl radicals.  This observation might support some of 

the previous medical exposure studies of NO2 and PM.  In these studies, either minor differences 

or a slight antagonism between the two were observed[20, 21].  The simulated solar exposure 

consistently generated an increased concentration of EPFRs in PM2.5 and confers an important 

pathway for EPFR formation in the atmosphere.  This ROS generation after exposure implies 

any heavy exertion, such as running or biking, during midday in the summer may exacerbate any 

adverse health effects from inhaling PM2.5. 
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7.6    Recommendations for Future Research 

 Based on the results of this investigation, the author suggests future research on EPFRs in 

ambient PM2.5.  Perhaps the most important is a more accurate analysis of PM2.5’s organic 

fraction before and after different simulated atmospheric exposures.  Due to the small masses 

used in these experiments, an accurate GC/MS analysis was quite difficult, because the quantities 

of the organics were in the detection limit region for the present instrumentation.  If a specialized 

method for organic extraction of the PM2.5 is not developed for the present instrumentation, then 

other methods should be explored, such as a time-of-flight mass spectrometer. 

In regards to the simulated solar exposure, there are many studies to perform.  Initial 

studies should confirm if photo-oxidation increases the organic carbon fraction in PM2.5, and 

consequently, if this increase in organic carbon is the cause of a greater hydroxyl radical 

accumulation.  Other intensities closely matching winter insolation should also be explored and 

compared to the impact from summer.  In addition to these studies, a simpler exposure system 

should develop to only use single gases, such as O2 or N2, during irradiation. 

There is also the need to understand how simultaneous atmospheric exposures, such as 

ozone and NOx or NOx and simulated solar irradiation, will affect PM2.5.  After simple 

combinations, the end result should culminate to a system where ozone, NOx, and simulated 

sunlight are exposed at the same time.  From there, simple VOCs, such as formaldehyde, are 

added into the system to observe if any additional radical generation results from uptake of the 

irradiated VOCs onto the PM2.5 surface.  Additionally, the resulting generation of hydroxyl 

radicals from these combined, simple or otherwise, exposures must be performed to understand 

if these exposures result in any additional adverse health effects.   
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APPENDIX 1.  SUPPORTING INFORMATION FOR EPFRS AND THEIR HALF-LIVES 

IN PM2.5 

A1.1    Complete List of Samples’ Decay   

Displayed below is a list of all samples according to their decay behavior in order from 

most abundant to least abundant.  Samples displaying a fast decay followed by slow decay are 

given in Table A1.1; samples demonstrating a single slow decay in Table A1.2; samples with no 

decay in Table A1.3; samples exhibiting a fast decay followed by no decay are given in Table 

A1.4.  Included at the end of each table are the averages, standard deviations, and number of 

samples for that category. 

Table A1.1 Samples exhibiting a fast decay followed by a slow decay 

Sample 

Date 

Initial Radical 

Concentration 

(radicals/g 

*10
17

) 

Fast 

Decay 

Rate 

τ(1/e) Fast 

Decay 

(in 

Days) 

Slow 

Decay Rate 

τ(1/e) 

Slow 

Decay 

 (in 

Days) 

11/3/2008 2.79 -0.07 0.60 -0.002 20.83 

7/11/2009 2.26 -0.002 20.83 -0.0004 104.17 

7/12/2009 0.366 -0.012 3.47 -0.0003 138.89 

7/13/2009 9.22 -0.014 2.98 -0.0001 416.67 

7/14/2009 0.232 -0.019 2.19 -0.0002 208.33 

7/15/2009 4.23 -0.029 1.44 -0.0003 138.89 

7/16/2009 2.15 -0.016 2.60 -0.00004 1041.67 

7/17/2009 3.92 -0.047 0.89 -0.0005 83.33 

7/20/2009 1.69 -0.007 5.95 -0.0008 52.08 

7/21/2009 8.71 -0.016 2.60 -0.0008 52.08 

7/22/2009 0.262 -0.031 1.34 -0.0009 46.30 

7/26/2009 0.415 -0.006 6.94 -0.0004 104.17 

7/27/2009 8.19 -0.013 3.21 -0.0002 208.33 

7/31/2009 1.27 -0.006 6.94 -0.0005 83.33 

8/1/2009 0.260 -0.008 5.21 -0.0007 59.52 

8/2/2009 1.55 -0.017 2.45 -0.0001 416.67 

8/4/2009 0.818 -0.003 13.89 -0.0008 52.08 

8/5/2009 1.51 -0.014 2.98 -0.001 41.67 

8/12/2009 2.18 -0.004 10.42 -0.0003 138.89 
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Table A1.1 continued 

Date 

Initial Radical 

Concentration 

(radicals/g 

*10
17

) 

Fast 

Decay 

Rate 

τ(1/e) Fast 

Decay 

 (in 

Days) 

Slow 

Decay Rate 

τ(1/e) 

Slow 

Decay 

 (in 

Days) 

8/13/2009 3.72 -0.006 6.94 -0.0003 138.89 

8/15/2009 0.743 -0.014 2.98 -0.0001 416.67 

8/18/2009 5.70 -0.004 10.42 -0.0005 83.33 

8/19/2009 2.17 -0.018 2.31 -0.0008 52.08 

8/21/2009 1.17 -0.018 2.31 -0.0006 69.44 

8/22/2009 0.584 -0.002 20.83 -0.0002 208.33 

8/24/2009 34.8 -0.004 10.42 -0.0004 104.17 

8/25/2009 2.40 -0.014 2.98 -0.0005 83.33 

8/26/2009 2.12 -0.015 2.78 -0.0003 138.89 

8/27/2009 1.83 -0.008 5.21 -0.0009 46.30 

8/28/2009 1.35 -0.014 2.98 -0.0009 46.30 

8/30/2009 1.32 -0.008 5.21 -0.0007 59.52 

8/31/2009 1.18 -0.004 10.42 -0.001 41.67 

3/6/2010 0.620 -0.008 5.21 -0.00005 833.33 

3/7/2010 7.12 -0.012 3.47 -0.00004 1041.67 

3/8/2010 6.50 -0.007 5.95 -0.00005 833.33 

3/9/2010 4.40 -0.01 4.17 -0.0005 83.33 

3/10/2010 11.8 -0.004 10.42 -0.0006 69.44 

3/14/2010 10.9 -0.004 10.42 -0.00003 1388.89 

3/29/2010 10.5 -0.01 4.17 -0.000008 5208.33 

3/30/2010 10.4 -0.012 3.47 -0.0001 416.67 

4/4/2010 2.07 -0.032 1.30 -0.0008 52.08 

4/9/2010 3.06 -0.002 20.83 -0.0001 416.67 

4/29/2010 23.8 -0.051 0.82 -0.002 20.83 

5/1/2010 2.07 -0.003 13.89 -0.0002 208.33 

5/7/2010 2.05 -0.005 8.33 -0.0007 59.52 

5/8/2010 7.04 -0.025 1.67 -0.001 41.67 

5/14/2010 2.75 -0.002 20.83 -0.0002 208.33 

5/2/2011 5.82 -0.017 2.45 -0.00009 462.96 

5/5/2011 25.4 -0.016 2.60 -0.0001 416.67 

5/24/2011 4.62 -0.002 20.83 -0.00001 4166.67 

7/18/2011 3.25 -0.002 20.83 -0.0001 416.67 

7/26/2011 6.68 -0.003 13.89 -0.0006 69.44 

8/2/2011 5.20 -0.005 8.33 -0.0002 208.33 

9/3/2011 3.94 -0.003 13.89 -0.0002 208.33 
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Table A1.1 continued 

# Samples: 54 

Average 5.02 0.0129 7.05 0.00047 402.38 

Standard 

Deviation 
6.51 0.0132 6.14 0.00043 902.63 

Table A1.2 Samples demonstrating a slow decay 

Date 

Initial Radical 

Concentration 

(radicals/g 

*10
17

) 

Slow 

Decay 

Rate 

τ(1/e) Slow 

Decay 

 (in Days) 

11/2/2008 0.898 -0.0009 46.30 

11/4/2008 0.765 -0.002 20.83 

11/6/2008 1.28 -0.002 20.83 

11/8/2008 1.38 -0.004 10.42 

11/11/2008 0.223 -0.003 13.89 

11/12/2008 2.37 -0.005 8.33 

11/13/2008 2.40 -0.006 6.94 

11/14/2008 1.69 -0.01 4.17 

11/16/2008 1.01 -0.004 10.42 

11/17/2008 1.06 -0.001 41.67 

11/18/2008 0.246 -0.009 4.63 

11/19/2008 3.23 -0.011 3.79 

7/28/2009 0.377 -0.0009 46.30 

7/29/2009 0.295 -0.009 4.63 

8/6/2009 0.753 -0.0002 208.33 

8/7/2009 0.413 -0.0001 416.67 

8/9/2009 0.202 -0.0001 416.67 

8/21/2009 3.57 -0.004 10.42 

8/23/2009 0.447 -0.0005 83.33 

3/13/2010 6.90 -0.0001 416.67 

5/3/2010 4.00 -0.001 41.67 

5/15/2010 13.4 -0.002 20.83 

5/4/2011 10.5 -0.00002 2083.33 

7/17/2011 2.82 -0.00005 833.33 

7/25/2011 4.04 -0.00007 595.24 

8/9/2011 1.31 -0.0002 208.33 

9/2/2011 2.99 -0.0002 208.33 

# Samples: 27 

Average 2.54 0.00283 214.31 

Standard 

Deviation 
3.16 0.00340 430.42 
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A1.2    Metals Analysis and Correlation   

A list of metals found in PM2.5 is given in Table A1.5.  Samples were analyzed for Al, 

As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Si, and Zn after decays were 

measured.  The listed metals were found in most samples with notable exceptions for As 

Table A1.3 Samples with no 

decay 

Date 

Initial Radical 

Concentration 

(radicals/g 

*10
17

) 

11/1/2008 0.508 

11/5/2008 0.343 

11/7/2008 0.592 

11/21/2008 0.347 

11/22/2008 0.265 

11/23/2008 0.338 

8/8/2009 0.408 

3/11/2010 11.7 

4/1/2010 2.24 

4/3/2010 1.48 

4/5/2010 0.626 

4/6/2010 0.597 

4/7/2010 1.42 

4/8/2010 2.24 

4/10/2010 0.755 

4/30/2010 1.94 

5/5/2010 4.53 

5/13/2010 1.43 

5/13/2010 2.77 

8/1/2011 5.54 

8/8/2011 1.42 

# Samples:  21 

Average 1.98 

Standard 

Deviation 
2.63 

 

Table A1.4 Samples exhibiting a fast decay 

accompanied by no decay 

Date 

Initial Radical 

Concentration 

(radicals/g 

*10
17

) 

Fast 

Decay 

Rate 

τ(1/e) Fast 

Decay 

 (in 

Days) 

7/23/2009 5.05 -0.009 4.63 

7/24/2009 2.30 -0.005 8.33 

7/25/2009 0.785 -0.022 1.89 

7/30/2009 1.90 -0.015 2.78 

8/3/2009 0.687 -0.014 2.98 

8/11/2009 6.67 -0.008 5.21 

8/17/2009 1.73 -0.006 6.94 

8/29/2009 0.592 -0.005 8.33 

3/12/2010 7.07 -0.007 5.95 

5/2/2010 1.27 -0.002 20.83 

5/10/2010 6.90 -0.007 5.95 

5/3/2011 19.9 -0.159 0.26 

# Samples:  12 

Average 4.57 0.0216 6.17 

Standard 

Deviation 
5.46 0.0436 5.25 
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(observed in 7 of the 24 samples), B (observed in 4 of the 24 samples), and Cd (observed in 14 of 

the 24 samples).  The most abundant metals averaged from all the samples were Si (133.28 ± 

184.22 ppm), Na (122.34 ± 163.34 ppm), Ca (113.46 ± 114.15 ppm), Fe (65.38 ± 74.58 ppm), 

and Al (87.48 ± 133.33 ppm).  This demonstrates a wide range of metal concentrations found in 

ambient PM2.5 from day to day in Baton Rouge.  Considering the large industrial activity in and 

around Baton Rouge, as well as being downwind from major industrial and manufacturing point 

sources in Houston, such deviations are expected. 

To understand the role of metals in reference to the current study, correlations were 

calculated with the metal data against the initial radical concentration and the fast/slow decay 

rates for trends, Table A1.6.  Boron was not correlated due to a lack of data points obtained from 

the metal analysis.  The metal with the best correlation for all 3 factors was As, although this 

metal had the least amount of data points used for the correlation.  Therefore, As might not have 

as strong a correlation as displayed.   

Correlations of metals with the initial radical concentration conferred the strongest 

associations of the three parameters.  The two strongest positive correlations, even though weak 

overall, came from Cr and Cu with a correlation factor of 0.153 and 0.162, respectively.  The 

strongest negative correlations came from Na and Mg with a correlation factor of -0,372 and -

0.309, respectively.  Surprisingly, there was a negative correlation with Fe and Zn.  Previous 

research performed in this laboratory has demonstrated EPFRs to form on the surface of Fe2O3 

and ZnO, so it was expected for these metals to have an overall positive correlation [1, 2].  

Overall, there were no strong correlations between the metal data and the initial radical 

concentration. 
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    Table A1.5 List of metals found in PM2.5 samples (in ppm) from ICP-AE analysis. 
Collection Date Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Zn 

7/15/2009 499.89 0.000 0.00 9.86 541.39 0.000 0.000 0.13 5.65 251.52 137.28 119.77 6.45 0.0 2.52 3.54 0.00 11.86 

8/15/2009 0.000 0.000 0.00 1.743 109.45 0.000 0.000 0.000 4.086 253.037 0.00 29.30 0.286 0.0 2.886 2.366 0.000 0.000 

3/6/2010 19.605 0.000 2.05 2.430 66.3 0.044 0.024 0.080 2.912 25.089 51.52 7.6 0.660 28.8 0.222 0.754 52.469 8.995 

3/7/2010 27.453 0.000 0.00 2.105 13.8 0.034 0.015 0.160 2.340 24.631 13.57 19.0 0.748 118.3 0.360 0.799 68.654 4.045 

3/9/2010 10.943 0.097 0.00 1.173 69.641 0.000 0.003 0.061 1.516 9.789 21.773 4.540 0.349 1.988 1.038 0.161 30.417 2.009 

3/11/2010 54.260 0.000 0.00 2.503 77.282 0.019 0.036 0.372 2.346 54.462 29.518 19.528 1.177 81.889 0.604 1.228 118.903 17.610 

3/14/2010 21.755 0.059 0.00 2.489 80.397 0.033 0.022 0.087 3.187 27.298 23.199 6.627 0.709 10.209 0.204 0.562 52.626 8.919 

3/29/2010 32.939 0.212 0.00 3.885 95.450 0.062 0.031 0.207 5.039 41.076 22.773 11.687 1.087 8.877 0.434 1.375 77.622 9.565 

3/30/2010 29.207 0.063 0.00 1.677 86.571 0.036 0.025 0.173 2.219 27.125 34.267 11.596 0.955 16.491 0.400 0.756 76.470 9.652 

4/13/2010 94.389 0.000 0.00 2.34 120.562 0.024 0.039 0.182 4.67 67.88 45.367 31.755 1.234 120.22 0.85 0.623 129.87 7.233 

4/30/2010 230.68 0.000 0.00 1.80 56.1 0.00 0.0540 0.225 0.596 103.75 77.84 68.2 2.034 390.3 0.436 0.296 407.60 3.93 

5/1/2010 458.189 0.000 1.583 3.494 127.576 0.00 0.169 0.468 1.022 229.344 114.570 142.436 5.270 609.323 0.433 0.264 874.227 3.498 

5/2/2010 137.396 0.114 0.00 1.533 41.284 0.009 0.053 0.156 1.245 73.628 38.879 36.986 1.601 137.560 0.407 0.150 263.180 5.037 

5/3/2010 42.379 0.212 2.573 2.306 92.152 0.027 0.027 0.109 2.620 36.075 21.719 18.300 1.276 39.784 0.201 0.683 90.797 9.853 

5/5/2010 36.836 0.050 0.502 2.319 130.758 0.025 0.032 0.174 2.996 34.464 17.017 17.216 1.265 20.734 0.341 0.616 86.244 5.625 

5/7/2010 87.41 0.000 0.00 1.74 150.7 0.0084 0.1020 0.182 3.844 45.24 60.38 35.7 1.299 160.2 0.447 0.285 170.51 6.33 

5/10/2010 45.14 0.000 0.00 2.38 87.1 0.0062 0.0135 0.105 0.543 26.74 19.84 15.7 1.181 41.6 0.344 0.292 92.97 3.24 

5/13/2010 36.20 0.000 0.00 1.20 89.1 0.000 0.0228 0.096 0.842 24.43 28.88 41.4 0.887 289.2 0.360 0.259 85.53 2.56 

5/14/2010 36.215 0.000 0.00 1.018 69.7 0.000 0.013 0.097 0.647 23.324 19.93 37.8 0.681 231.6 0.668 0.228 93.468 2.622 

5/2/2011 28.586 0.000 0.00 1.209 64.3 0.000 0.002 0.049 27.527 17.709 19.64 28.7 0.563 179.2 0.561 0.147 68.577 1.774 

5/3/2011 16.861 0.000 0.00 1.189 22.0 0.000 0.003 0.113 4.874 15.652 6.37 5.1 0.627 7.7 0.398 0.462 36.632 4.149 

5/4/2011 23.874 0.000 0.00 1.969 69.6 0.026 0.006 0.159 3.285 25.436 15.66 9.7 0.996 12.3 0.036 1.446 53.672 3.546 

5/5/2011 35.15 0.000 0.00 2.95 112.0 0.0342 0.0457 0.254 5.886 49.82 18.20 12.9 2.594 18.2 0.509 0.873 83.22 8.71 

5/24/2011 101.01 0.000 0.00 4.77 356.9 0.0944 0.0783 0.379 7.318 84.09 157.52 73.6 3.990 409.4 1.271 1.732 181.59 17.39 

 
Table A1.6 Correlations of metal data with the initial radicals/g, fast decay, and slow decay.   

  Al As Ba Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Pb Si Zn  

Initial radicals/g -0.214 0.183 0.068 -0.081 0.054 -0.195 0.153 0.162 -0.239 -0.219 -0.309 -0.008 -0.372 -0.168 0.071 -0.259 -0.072  

# samples 24 7 24 24 14 22 23 24 24 24 24 24 22 24 24 22 23  

fast decay -0.077 0.797 -0.069 -0.104 0.015 -0.271 -0.178 0.086 -0.096 -0.207 -0.161 -0.099 -0.246 0.008 0.028 -0.192 0.073  

# samples 16 5 16 16 10 15 16 16 16 16 16 16 15 16 16 15 16  

slow decay 0.064 0.628 -0.065 -0.005 -0.466 0.129 -0.186 -0.184 0.020 -0.072 0.051 -0.025 -0.012 0.042 -0.156 0.019 0.067  

# samples 15 5 15 15 10 14 15 15 15 15 15 15 14 15 15 14 15  

Range of metal 

(ppm) 

10.94-

499.89 

0.050-

0.212 

1.02-

9.86 

13.8-

541 

0.006-

0.094 

0.002-

0.078 

0.061-

0.379 

0.596-

27.53 

9.79-

253.04 

6.37-

157.52 

5.1-

142.44 

0.29-

6.45 

7.7-

609.3 

0.036-

1.271 

0.147-

3.54 

30.42-

874.227 

1.77-

17.61 
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Correlation with the slow and fast decay rates also exhibited weak or no correlations 

except for a strong negative correlation of Cd with the slow decay rate.  This suggests the 

presence of organics bound to Cd lengthen the slow decay rate.   

A1.3    Meteorological and Atmospheric Pollutant Correlations   

Correlations of meteorological conditions and other pollutant information were 

performed from data obtained at the same DEQ ambient monitoring station as the sampler with 

the exception of solar and UV radiation data which came from a monitoring station one mile 

away, Table A1.7.  This data was averaged over the 24 hours for which the samples were 

Table A1.7 Pearson correlations of meteorological data with initial radicals/g, fast decay, and 

slow decay for samples collected between 7/12/09 to 8/31/09 

 

Solar 

radiation 

UV 

Radiation 
Temperature 

% 

Relative 

Humidity 

SO2 
Total 

Hydrocarbons 

Initial 

radicals/g 
0.139 0.119 -0.001 -0.198 -0.047 0.131 

# Samples 46 46 46 46 46 46 

Fast Decay -0.446 -0.417 -0.454 0.448 -0.235 -0.169 

# Samples 39 39 39 39 39 39 

Slow Decay 0.113 0.134 -0.170 -0.003 -0.060 -0.062 

# Samples 37 37 37 37 37 37 

       

 
Ozone NO NO2 NOx Methane 

Non-methane 

organic 

carbon 

Initial 

radicals/g 
0.278 0.223 0.191 0.236 0.156 0.039 

# Samples 41 42 42 42 46 46 

Fast Decay -0.103 0.042 -0.072 -0.067 -0.200 0.000 

# Samples 35 36 36 36 39 39 

Slow Decay -0.040 0.237 0.148 0.228 -0.033 -0.099 

# Samples 33 34 34 34 37 37 
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collected (9AM to 9AM), Table A1.8, and used to correlate samples collected from 7/12/09 to 

8/31/09 to determine if the collected conditions had any bearing on the radical properties.   

The strongest correlation for the initial radical concentration resulted from ozone 

suggesting the importance of photochemical processes for EPFR formation in the atmosphere 

and supported by positive correlations with both solar and UV radiation.  NOx, NO, and NO2 

demonstrated positive correlations suggesting formation of EPFRs while PM2.5 is suspended in 

the atmosphere.  Methane and total hydrocarbons had weaker positive correlations yet significant 

when compared to the non-methane organic carbon.  This is surprising and it was expected for 

the non-methane organic carbon to have a significant positive correlation as previous research 

has demonstrated non-methane organic carbon compounds form EPFRs when bound to a 

transition metal [1-4]. The only significant negative correlation observed was with relative 

humidity. 

The correlation of the fast decay with relative humidity displayed the largest positive 

correlation. The correlations with the fast decay indicate the presence of ozone as well as solar 

and UV radiation to decrease the fast decay rate.  Since the previous set of correlations 

demonstrated the ability of all three to increase radical concentration, their presence would also 

slow down the fast decay rate as they are forming new radicals.  This explanation can also be 

applied with the negative correlations seen with NO2 and NOx.  There were significant negative 

correlations with SO2, methane, and total hydrocarbons.   

The correlations with the slow decay are the weakest overall and less clear.  The negative 

correlations from SO2, non-methane organic carbon, and total hydrocarbons suggest these to 

decrease the slow decay rate but very subtly.  Correlations with solar/UV radiation, NO, NO2, 
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and NOx all demonstrate an increase the slow decay rate in complete contrast to the other 

correlations.  This appears to advocate other pathways for the slow decay. 

Table  A1.8 Averaged meteorological and pollutant data for listed collection dates from 9AM 

to 9AM the following day. 

Date 

Solar 

(W/M2) 

UV 

(W/M2) 

Temp 

(°C) 

RH 

(%) 

SO2  

(ppb) 

THC  

(ppm) 

Ozone 

(ppb) 

NO 

(ppb) 

NO2 

(ppb) 

NOX 

(ppb) 

Methane 

(ppmc) 

NMOC 

(PPMC) 

7/12/2009 238.17 12.08 25.46 86.04 0.10 2.34 32.43 3.13 8.21 10.29 2.25 0.10 

7/13/2009 316.29 15.79 25.50 76.13 0.10 2.24 30.22 3.46 7.46 9.79 2.17 0.08 

7/14/2009 220.67 11.83 23.79 77.46 0.13 2.32 23.00 4.13 15.21 17.83 2.18 0.15 

7/15/2009 227.71 11.79 23.38 88.13 0.14 2.15 21.13 2.21 5.54 6.88 2.09 0.07 

7/16/2009 212.58 11.67 22.96 86.42 0.10 2.23 14.79 3.25 9.21 11.25 2.11 0.14 

7/17/2009 105.92 5.96 23.00 94.46 0.11 2.08 36.29 1.24 6.19 6.76 1.99 0.10 

7/20/2009 287.54 15.17 24.50 70.67 0.93 2.10 36.08 2.36 7.45 8.73 2.06 0.05 

7/21/2009 210.88 11.88 23.50 77.00 0.15 1.93 16.50 3.88 11.08 13.71 1.88 0.06 

7/22/2009 110.29 6.13 23.83 89.29 0.20 1.37 24.67 3.96 14.79 17.21 1.37 0.02 

7/23/2009 228.17 12.08 23.21 79.13 2.30 2.75 31.67 7.08 18.25 23.63 2.56 0.21 

7/24/2009 314.29 15.79 22.63 64.50 1.97 2.13 42.33 1.64 6.41 7.05 2.06 0.09 

7/25/2009 313.46 15.63 23.00 65.08 0.67 2.17 20.61 2.54 7.50 9.21 2.09 0.09 

7/26/2009 217.13 11.29 23.38 83.46 0.34 2.19 13.79 3.63 9.38 11.92 2.09 0.11 

7/27/2009 186.13 9.96 23.33 89.71 0.38 2.12 10.21 4.05 6.41 9.64 2.05 0.08 

7/28/2009 169.04 9.46 23.29 86.67 0.40 2.10 11.50 3.46 5.38 8.04 2.03 0.08 

7/29/2009 273.50 13.88 23.96 80.50 0.23 2.10 * * * * 2.04 0.08 

7/30/2009 200.54 10.88 26.79 85.71 0.30 2.05 * * * * 1.97 0.09 

7/31/2009 260.17 13.54 27.38 81.17 0.29 1.93 * * * * 1.90 0.05 

8/1/2009 257.79 13.29 27.25 77.96 0.29 2.22 * * * * 2.13 0.10 

8/2/2009 128.17 7.04 27.46 88.38 0.33 1.96 * 1.78 6.67 6.67 1.89 0.08 

8/4/2009 274.13 13.96 25.92 73.67 0.48 2.18 17.17 3.08 11.00 13.50 2.04 0.15 

8/5/2009 254.67 12.58 26.00 75.42 0.73 2.23 19.25 6.79 10.71 17.04 2.08 0.17 

8/6/2009 269.88 13.29 25.88 81.96 0.17 2.22 47.46 0.38 10.83 10.75 2.09 0.14 

8/7/2009 240.17 11.79 26.08 73.63 0.15 2.04 28.50 0.77 6.18 6.59 1.97 0.08 

8/9/2009 213.75 11.04 26.17 89.75 0.12 2.29 16.39 2.83 8.83 11.21 1.89 0.24 

8/8/2009 281.38 14.25 25.92 80.04 0.18 2.09 20.75 3.79 10.50 13.92 2.03 0.07 

8/11/2009 232.79 11.92 26.21 81.17 0.14 2.03 33.78 1.00 8.71 9.42 1.98 0.06 

8/12/2009 272.50 13.29 25.96 78.08 0.49 2.12 33.88 0.71 9.75 9.96 2.08 0.05 

8/13/2009 215.13 11.08 25.96 75.21 0.16 2.12 33.25 1.29 10.75 11.58 2.03 0.10 

8/15/2009 238.33 12.04 26.33 79.46 0.10 2.06 19.87 2.96 10.21 12.63 2.03 0.05 

8/16/2009 170.96 8.79 26.57 86.63 0.10 2.02 20.22 2.65 8.96 11.30 1.97 0.06 

8/17/2009 158.21 8.08 27.08 84.29 0.11 2.03 14.29 4.05 9.71 13.52 1.96 0.09 

8/18/2009 186.50 9.54 26.67 84.46 0.18 2.07 17.57 2.79 8.17 10.58 2.00 0.07 

8/19/2009 199.04 10.38 27.00 80.83 0.12 2.10 5.71 5.86 9.90 15.29 2.00 0.11 

8/21/2009 102.33 5.58 26.75 92.92 0.15 2.03 31.13 1.18 8.64 9.27 1.96 0.08 

8/22/2009 297.04 13.79 26.79 63.71 4.24 1.98 29.17 1.79 8.13 9.46 1.94 0.06 

8/23/2009 301.54 14.21 26.54 59.71 0.60 2.01 29.25 2.29 9.71 11.42 1.95 0.07 

8/24/2009 298.42 14.00 26.63 62.04 0.44 2.22 49.75 4.59 13.41 17.55 2.12 0.11 

8/25/2009 265.13 12.13 25.92 65.88 2.83 2.30 48.61 5.95 14.45 19.73 2.18 0.14 

8/26/2009 247.29 11.04 25.63 67.96 2.26 2.21 41.83 1.00 10.29 10.71 2.10 0.12 

8/27/2009 253.67 11.67 26.42 65.83 1.21 2.35 30.58 2.67 14.25 16.25 2.23 0.14 

8/28/2009 181.75 9.00 26.71 80.96 0.47 2.06 34.67 1.33 6.48 7.52 1.97 0.09 

8/29/2009 215.42 10.88 26.63 80.46 0.31 1.95 34.74 1.21 5.79 6.50 1.92 0.05 

8/30/2009 242.13 11.67 26.79 76.54 1.35 1.93 33.29 1.17 6.33 6.96 1.90 0.05 

8/31/2009 208.83 10.46 26.67 65.63 0.52 1.96 38.25 1.23 9.09 9.77 1.91 0.06 

* no average was performed due to missing data points for that day 

Solar is total solar radiation 

UV is only UV radiation 

RH is relative humidity 

THC is total hydrocarbons 

NMOC is nonmethane organic carbon 



129 

 

A1.4    References 

1. Vejerano, E., S. Lomnicki, and B. Dellinger, Formation and Stabilization of Combustion-

Generated Environmentally Persistent Free Radicals on an Fe(III)2O3/Silica Surface. 

Environ. Sci. Technol., 2011. 45: p. 589-594. 

 

2. Vejerano, E., S. Lomnicki, and B. Dellinger, Lifetime of combustion-generated 

environmentally persistent free radicals on Zn(II)O and other transition metal oxides. J. 

Environ. Monit., 2012. 14: p. 2803-2806. 

 

3. Lomnicki, S., et al., Copper Oxide-Based Model of Persistent Free Radical Formation on 

Combustion-Derived Particulate Matter. Environ. Sci. Technol., 2008. 42: p. 4982-4988. 

 

4. Vejerano, E., S.M. Lomnicki, and B. Dellinger, Formation and Stabilization of 

Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a 

Silica Surface. Environ. Sci. Technol., 2012. 46: p. 9406-9411. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 

 

APPENDIX 2.  SUPPORTING INFORMATION FOR HYDROXYL RADICAL 

GENERATION FROM EPFRs IN PM2.5 

A2.1    Chelex Treatment of PM2.5 Samples   

In an attempt to more closely match previous studies[1-4], Chelex was utilized for 

elimination of any trace metals present in the ultrahigh purity (UP) H2O.  The manufacturer 

batch method for preparation was adjusted to accommodate the smaller volume employed.  This 

involved adding approximately 1.3 g of Chelex resin to 10 mL PBS solution and mixing 

rigorously for 1 hour.  The PBS solutions with resin were left overnight before use and filtered 

from solution using a Fisherbrand P5 filter paper.   

After multiple attempts, the Chelex treatment did not reduce the DMPO-OH signal as 

expected[2-6].  Instead, the DMPO-OH signals increased by an average of 140%.  Similar 

phenomena was previously observed suggesting another pathway where Chelex participates in 

the reaction[1].  To avoid any extra confounding factors, Chelex was not used in this study. 

A2.2    Effect of Chelating Agents   

Using a 0.1 mM solution of DFO corresponded to a 72% reduction of the DMPO-OH 

signal from the PM2.5 suspension and this suggests an important role for Fe in the catalysis of 

H2O2 to 
●
OH.  Previous studies, regardless of assay type, had conflicting results from DFO.  

Some reports observed a substantial or nearly complete elimination of the ROS signal[7-9].  

These studies used samples stored for long periods of time (from months to years) or were 

completely relying on the generation of 
●
OH from H2O2.  Therefore, these investigations were 

biased in favor of DFO to completely eliminate the signal by metal complexation. 

Other reports only reduced the signal suggesting other pathways[10-15].  Recognizing 

DFO is very selective towards iron leaves the possibility of the other redox metals in the PM2.5 to 
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catalyze an exogenous Fenton reaction.   Although the amount of the other redox active metals is 

minor when compared to iron, they are still present on the surface to catalyze the exogenous 

Fenton reaction.   

Accompanying the complexation of metals, DFO was observed to scavenge the 

tetrachlorosemiquinone anion radical[16].  Such elimination would suggest a role in scavenging 

for other semiquinone type radicals.  Either from metal complexation or eliminating the 

semiquinone radicals, the addition of DFO reduced the adduct intensity in these experiments. 

DETAPAC exhibited unpredictable behavior in PM2.5 solutions. Particularly, using 

DETAPAC in this work reduced the 
●
OH signal intensity by 53% while, in contrast, a previous 

study exhibited a higher 
●
OH signal[17]. 

Based on these observations, the above reagents were not included in the spin trapping 

experiments for PM2.5.  Instead, a comparative method[18, 19], where the same sample was 

utilized under different conditions (air vs. N2 purging, fresh vs. aged), was chosen to monitor the 

●
OH generating capacity of ambient PM2.5 particles collected from Louisiana industrial corridor. 

A2.3    Metal Dependence  

Previous studies report a metal association for ROS generation in PM, such as As[20], 

Ba[21], Cd[20], Co[5, 6, 22], Cr[6, 21, 22], Cu[9, 15, 21-27], Fe[5-7, 22-25, 28, 29], Mn[6, 22, 

30], Ni[5, 20], V[20, 30], Zn[23, 30, 31], and Zr[21].  Most of the studies listed above included 

the presence of reducing agents or H2O2 thereby favoring the metal mediated generation of 
●
OH.  

In addition to total metals, correlations suggested associations with soluble Fe[7, 8, 31, 32].  

Soluble transition metals from PM are suggested important due to their bioavailability[3, 6, 14, 

30].  The soluble Fe oxidation state in PM2.5 also displayed no significant changes over 40 
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days[33].  However, particle bound transition metals (or the particle itself) also demonstrated 

increased ROS generation when compared to the soluble metals present[26, 34].  

Straightforward dependencies between metal content and DMPO-OH concentration were 

not observed in this study; although, only the total metals from a nitric acid digestion were 

studied.  There was no investigation into the soluble metals.  Using only the “active” samples, 

there was no correlation between the DMPO-OH intensity and individual, Figure S1, or total 

metals (not presented but similar behavior as Figure S1).  When applying the “passive” samples 

as well, there were still no correlations from the metals data (data not shown). 

 

Figure A2.1 Demonstration of no correlation between DMPO-OH intensity and metal 

concentration from some “active” samples (the metals are shown on the graph). 
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