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ABSTRACT 

 Research into the dirhodium tetraphosphine catalyst precursor [rac-Rh2(nbd)2(et,ph-

P4)](BF4)2 shows it is capable of forming a highly active and regioselective hydroformylation 

catalyst in situ when using an acetone or acetone/water solvent.  Hydroformylation experiments 

(using 1-hexene), FT-IR studies, and acid-base studies were performed to better understand the 

various complexes of the dirhodium catalyst cycle.  These studies lead to the newly proposed 

catalyst mechanism when performed in an acetone/water solution, using the monocationic  

[rac-Rh2(µ-CO)2(CO)(H)(et,ph-P4)]
+
 as the proposed active catalyst complex for 

hydroformylation.  For the conversion of 1-hexene to heptanal, it is capable of performing an 

initial rate of 30 turnovers per min, 33:1 linear-to-branched aldehyde regioselectivity, and less 

than 0.5% isomerization/hydrogenation. 

A remarkable new catalytic reaction, termed Aldehyde-Water Shift Catalysis, can occur 

under the proper conditions only when water is added to the acetone solvent.  Under mild 

hydrogen deficient conditions the reaction of aldehyde and water can produce carboxylic acid 

and H2.  The net stoichiometry of hydroformylation combined with this unusual aldehyde-water 

shift catalysis is that of hydrocarboxylation, an extremely difficult reaction to perform selectively 

or under mild conditions. DFT calculations and experimental studies indicate  

[Rh2(µ-CO)2(CO)2(et,ph-P4)]
2+

 as the likely active catalyst for this aldehyde-water shift 

catalysis.  We believe bimetallic cooperativity plays an important role in this catalysis as it does 

in hydroformylation.  Various designs of autoclave reactors were built in order to maintain and 

monitor the new reaction conditions, including pressure, temperature, and gas flow rate.  The 

best tandem catalysis results yielded a rate of 50 turnovers per hour with a regioselectivity of 

60:1 linear-to-branched carboxylic acid, operating at 50 psig (3.4 atm) and 90°C. 
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CHAPTER 1:  BACKGROUND AND INTRODUCTION TO HYDROFORMYLATION 

 Hydroformylation, or oxo synthesis, is the largest homogeneous industrial process for 

converting alkenes, CO, and H2 into aldehydes and associated products which total over fifteen 

billion pounds produced every year.  The generated aldehydes are usually converted to other 

useful chemicals via processes like hydrogenation (forming the corresponding alcohols) and 

oxidation (forming the corresponding carboxylic acids).  Commercial products using these 

chemicals as starting materials include polyvinyl chloride (PVC) plastics, detergents, surfactants, 

solvents, lubricants, and many others.  

 

Figure 1.1.  Hydroformylation process and products diagram. 

The catalysts often used for hydroformylation reactions are usually cobalt or rhodium 

hydrido carbonyl complexes, often modified with phosphine ligands.  These catalysts are used to 

react terminal alkenes with a mixture of CO and H2 gases (also known as synthesis gas or “syn-

gas”) to produce the corresponding aldehyde, as shown in the diagram above.  The 

regioselectivity of the catalyst is determined by the amounts of linear aldehyde (the desired 

product) produced versus the amounts of branched aldehyde (the often undesired byproduct).  
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The catalyst used may also cause undesired side reactions, usually the isomerization of the 

terminal alkene and hydrogenation of the alkene.   

Whether hydroformylation catalysts are designed for academic or industrial research, 

they all use similar terminology to compare results and properties with one another.  The 

turnover number (TON) refers to the number of moles of alkene converted to aldehyde by the 

catalyst.  The turnover frequency (TOF) is the rate of the conversion as calculated by the number 

of turnovers divided by a unit of time (e.g. turnovers per minute).  The selectivity of a 

hydroformylation catalyst can be indicated by its linear aldehyde to branched aldehyde ratio (L:B 

ratio).  In regards to the possible side reactions, the alkene isomerization percentage (I%) and the 

hydrogenation percentage (H%) are often shown to indicate the amount of starting terminal 

alkene consumed by the corresponding side reaction.  An ideal catalyst will be very active (high 

TON and TOF), very selective to the desired product (high L:B ratio and low percentage of side 

reactions), and have a long lifetime. 

 

Figure 1.2.  The accepted general hydroformylation  

mechanism proposed by Heck and Breslow.
1
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The process was discovered by Otto Roelen in 1938, and it is generally accepted 

mechanism was proposed by Heck and Breslow in 1960 and 1961 (Figure 1.2).
1
  Using metallic 

cobalt which dissolved under pressurized H2/CO gas, Roelen generated the active catalyst, 

HCo(CO)4 (1).  The catalytic cycle begins by substituting a carbonyl for a bonded alkene (2).  A 

migratory insertion of the alkene and hydride then forms an alkyl ligand, while the newly opened 

coordination site is filled by an available carbonyl, keeping the complex saturated (3).  A second 

migratory insertion combines the alkyl ligand with a carbonyl to yield an acyl ligand (4).  The 

reaction then branches off into two different paths: the monometallic (favored) and bimetallic 

pathway (disfavored).  The favored monometallic pathway involves an oxidative addition of H2 

and addition of CO, resulting in a saturated Co(III) complex with an octahedral geometry (5).  

The acyl group readily undergoes a reductive elimination, generating the aldehyde product, and 

returns to the original active catalyst.   

The disfavored bimetallic pathway proposed that 4 will react with the original active 

catalyst (1) via an intermolecular hydride transfer to release the aldehyde product and form the 

metal-metal bonded Co2(CO)8 (6).  Upon the breaking of the metal-metal bond, via reaction with 

H2, the original catalyst is generated to begin the cycle again.  This method, named the “High 

Pressure Unmodified Cobalt process”, involved using very high pressures (200-300 bar / 2900-

4350 psi) at temperatures between 150-300°C.  This is in a large part due to the thermal 

instability of the HCo(CO)4 catalyst complex, which precipitates out metallic cobalt if the CO 

partial pressure is not high enough.
2
  

Since then, the only modification to this process has been the incorporation of phosphine 

ligands to the hydridocobalt carbonyl catalyst.  Research conducted at Shell by Slaugh and 

Mullineaux showed that adding a trialkylphosphine ligand to the aforementioned catalyst, now 
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the HCo(CO)3(PR3) complex, caused a dramatic change in the rate and regioselectivity of the 

catalyst.
3
  This is due to the difference in the electron donating/withdrawing effects of each 

ligand.  Replacing one of the complex’s carbonyl ligands (electron withdrawing) with the 

trialkylphosphine ligand (electron donating) causes the metal center to become more electron 

rich, thus strengthening the remaining Co–CO bonds.  This stronger binding of the carbonyl 

ligands means that lower CO partial pressures are required to stabilize the catalyst species.  

However, the stronger CO binding also reduces the activity of the catalyst by hindering the 

necessary dissociation of CO required to open a coordination site for the alkene or H2.  The 

phosphine-modified catalyst, HCo(CO)3(PR3), could perform hydroformylation at only 50-100 

bar pressures instead of the previous 200-300 bar pressures, as well as showing higher thermal 

stability. 

The next major step for hydroformylation research was the usage of rhodium-phosphine 

catalysts.  In 1965, Osborn, Young, and Wilkinson discovered that Rh(I)-PPh3 complexes were 

active hydroformylation catalysts and highly regioselective, even at ambient conditions.
4
  The  

 

Figure 1.3. Rh/PPh3 catalyst hydroformylation mechanism. 
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complex was then modified to HRh(CO)(PPh3)3 due to the halide ligands inhibiting the 

hydroformylation reaction, and the currently accepted mechanism is shown above (Figure 1.3). 

This process was further improved when Pruett (at Union Carbide) and Booth (at Union 

Oil) found that adding an excess of phosphine ligand (0.4 M minimum concentration for a 1 mM 

Rh catalyst system) to the HRh(CO)(PPh3)3 complex created an active, selective, and stable 

catalyst system at 80-150 psig and 90-125°C.
5
  Due to the labile triphenylphosphine ligand, the 

excess allows for the stabilization of the rhodium complex which could otherwise result in 

degradation via the formation of a 14e
-
 complex capable of Rh-induced P-Ph bond cleavage to 

generate inactive phosphide bridged rhodium dimers and clusters.  Dissociation of the PPh3 from 

the rhodium complex can initially generate a more active catalyst, however the downside is 

decreased regioselectivity and increased phosphine fragmentation reactions. 

 

Figure 1.4.  CO vs. PPh3 concentration effects on the Rh/PPh3 catalyst system. 

The excess triphenylphosphine shifts the equilibrium reaction above towards a more 

selective catalyst, but without the presence of a carbonyl ligand, the catalyst is inactive.  

Increasing the partial pressure of the CO gas will increase the activity of the catalyst at the 

expense of selectivity.  When this catalyst system  is used in industry for hydroformylation, too 

high of a H2 partial pressure (or too low of a CO partial pressure) in the syn-gas will increase 
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alkene hydrogenation and isomerization side reactions.  It is truly a balancing act when 

performing catalysis to achieve the optimal reaction conditions. 

 Chelating ligands (especially phosphines) are heavily used for research into 

hydroformylation catalysts.  Since most metal-ligand bonds are weak compared to carbon-carbon 

bonds, they can be more easily broken causing ligand dissociation.  The chelation effect is when 

one ligand is able to coordinate/bind to two or more metal centers.  With chelating ligands, if one 

of the binding sites becomes dissociated, the remainder of the ligand (still attached to the metal 

center) will keep the site near the metal center to promote re-coordination.  Chelating phosphines 

have interesting effects on hydroformylation reactions.  Those with large, bulky phenyl rings 

provide good steric effects and a large bite angle, resulting in a positive effect on catalyst 

stability and activity.  However, most hydroformylation catalyst systems still require an excess 

of the chelating phosphine ligand (or another phosphine like triphenylphosphine) to generate an 

active and selective species.  In the figure below (Figure 1.5), three examples of chelating 

phosphine ligands used for research into hydroformylation catalysts are given. 

                 

Figure 1.5  Commonly used chelating phosphine ligands. 

 Bimetallic complexes being used for catalysis is far less common than monometallic 

complexes, and during the early history of the hydroformylation reaction, the only mention of 

such a system was suggested in the mechanism derived by Heck and Breslow, as mentioned 

earlier.
1a

  After the aldehyde released, the HCo(CO)4 complex can couple together to form 
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Co2(CO)8.  However, it is believed that this dicobalt complex is not capable of performing the 

hydroformylation reaction alone, thus upon breaking the metal-metal bond when reaction with 

H2, the original HCo(CO)4 catalyst complex is reformed to complete the cycle.  Interest in 

bimetallic catalyst systems has grown over the years, due to the potential for multielectron 

transfers and multi-center metal-to-ligand bonds to stabilize or activate catalysts.  Even the 

prospect of using mixed metal systems gives rise to numerous other factors that would affect the 

catalyzed reaction. 

 Hydroformylation catalysts and methods have improved over the last few decades in 

terms of activity, rate, and selectivity.  Phosphine ligands currently play a major role in current 

cobalt and rhodium catalysts.  Nitrogen mono or bidentate ligands can also be used, but 

hydroformylation catalysts much more often use phosphines because nitrogen ligands dissociate 

too easily from rhodium hydride carbonyls. 

One of the best examples of a catalyst complex utilizing bimetallic cooperativity is 

shown by the research of Stanley and coworkers.
6
  They designed the novel binucleating 

tetraphosphine ligand (Et2PCH2CH2)(Ph)(PCH2P)(Ph)(CH2CH2PEt2), (abbreviated as  

“et,ph-P4”), to strongly chelate and bridge to two metal centers, while having a single, 

conformationally flexible methylene bridging group, to study bimetallic cooperativity in 

hydroformylation reactions.  The two internal phosphines are each chiral centers, leading to the 

two diastereomers of the et,ph-P4 ligand as shown below (Figure 1.5).  This tetraphosphine 

ligand was used to form the dirhodium catalyst precursor used for both their research and the 

research described in this dissertation: [rac-Rh2(nbd)(et,ph-P4)](BF4)2  (nbd = norbornadiene). 
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Figure 1.6. racemic and meso diastereomers of the et,ph-P4 ligand 

The active form of this catalyst is generated in situ during reaction, and it is capable of 

highly active and regioselective hydroformylation of terminal alkenes under mild reaction 

conditions to produce the corresponding aldehydes.  The racemic form of this catalyst, as shown 

in the figure below, has been shown to be far more active than the meso form. 

         

Figure 1.7.  The rac-Rh2(P4) catalyst precursor and the proposed active catalyst form,  

[rac-Rh2H2(µ-CO)2(CO)(et,ph-P4)]
2+

, (Et and Ph groups omitted for clarity). 

 

Table 1.1.  Comparison between [rac-Rh2(P4)]
2+

 catalyst and selected  

Rh monometallic catalysts. 

Catalyst (1 mM) Initial TOF (min
-1

) Aldehyde L:B ratio Isomerization % 

[rac-Rh2(P4)]
2+

 20 25 : 1 2.5 % 

[rac-Rh2(P4)]
2+

 

(in 30% H2O / acetone soln) 
30 33 : 1 < 0.5 % 

Rh / PPh3 (1:400) 13 9 : 1 < 0.5 % 

Rh / Bisbi (1:5) 25 70 : 1 < 0.5 % 

Rh / Naphos (1:5) 27 120 : 1 1.5 % 

Rh / Xantphos (1:5) 13 80 : 1 5.0 % 
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Table 1.1 shows the comparison in terms of rate and regioselectivity of the rac-Rh2(P4) catalyst 

vs. some of the best monometallic rhodium catalysts used for hydroformylation. 

 
 

Figure 1.8.  Proposed mechanism for hydroformylation using a racemic 

dirhodium tetraphosphine catalyst. The tetraphosphine ligand is referred to as 

(et,ph-P4). (Note: complexes A,B,C, and D have not been observed 

spectroscopically)
7
  

 

The dirhodium tetraphosphine catalyst (5) was synthesized via methods published by 

Stanley et. al.
6
  The oxidative addition of hydrogen gas followed by the dissociation of a 

carbonyl ligand begins the catalytic cycle (A).  To increase stability this complex undergoes an 

intramolecular hydride transfer from A to 2*.  This transfer is accomplished by forming two 

bridging ligands from a carbonyl ligand from the Rh(I) center and a hydride ligand from the 

Rh(III) center (2*).  The bimetallic complex further stabilizes itself by forming a metal-metal 

bond (dative or covalent), facilitating the intramolecular hydride transfer, which effectively 

balances the oxidation states of the two d
7
 rhodium cations (each at +2).  This bimetallic 
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complex, [Rh2(H)2(µ-CO)2(et,ph-P4)]
2+

 (2), is believed to be the key catalyst species that reacts 

with the alkene.  Ligand substitution of a carbonyl for the alkene (B) is followed by a migratory 

insertion of the equatorial-alkene to the axial-hydride (made possibly due to the previous 

intermolecular hydride transfer), forming an axial-alkyl ligand (C).  The complex rapidly reacts 

with two equivalents of CO to fill the coordination site opened up by the previous migratory 

insertion and to cause another migratory insertion with the alkyl ligand to form an acyl ligand. 

(D)  Finally the aldehyde product is generated by the intramolecular reductive elimination of the 

acyl and hydride ligands, reducing each metal center, now d
8
, to an oxidation state of +1 (6).  

The bimetallic complex then has two possible paths to enter back into the catalytic cycle.  The 

first pathway occurs when reacted with CO, that breaks the CO bridged complex back to the 

open-mode complex (5).  The second pathway occurs due an oxidative addition with molecular 

hydrogen to one metal center, formation of a Rh–Rh bond (dative or covalent), a bridging 

hydride, and shifting one of the two bridging carbonyls to the other metal center (2*). 

The racemic-dirhodium tetraphosphine catalyst (complexes 2 or B) is in a dicationic +2 

charged state, which is an unusual oxidation state for rhodium, but this compensates for the 

alkylated, strongly donating phosphine ligand that would normally deactivate the Rh center for 

hydroformylation.  The fact that we form a highly active, selective catalyst provides evidence for 

the bimetallic cooperativity mechanism proposed above.  The strong σ-donation of the 

tetraphosphine ligand increases the electron density of the rhodium metal centers, thus increasing 

the carbonyl π-backbonding (M-CO bond strength).  This σ-donation is partially counteracted by 

the dicationic charge on the complex, which lowers electron density and M-CO bond strength, 

resulting in a complex with carbonyl ligands labile enough to readily dissociate.  The catalyst 

was found to be highly selective towards linear aldehydes in experimental hydroformylation 
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reactions (33:1 linear:branched ratio using 1-hexene in acetone/water).
8
  The high 

regioselectivity is due to the Rh–Rh bond and bridging carbonyls which result in a highly 

defined square-planar-like bridging site that does not distort when the alkene coordinates to 

make a 5-coordinate complex (similar to a trigonal bipyramidal geometry).  Similar 

monometallic rhodium diphosphine catalysts were essentially inactive for hydroformylation, 

indicating that bimetallic cooperativity plays a critical role in the catalysis. 

 
Figure 1.9.  Monometallic and other bridging analogs of Stanley’s [rac-Rh2(P4)]

2+
 catalyst.

 

Also, FT-IR in situ spectroscopic studies have clearly indicated the importance of dicationic 

bimetallic complexes in the hydroformylation, with the activity of the catalyst directly related to 

the presence and intensity of the bridging carbonyl bands around 1835 cm
-1

 and terminal CO 

bands between 2000 – 2090 cm
-1

 in the IR spectrum.
9
  

The meso-Rh2(nbd)2(et,ph-P4) catalyst, while still superior than similar monometallic 

rhodium phosphine catalysts, was found in past experimental hydroformylation runs to be 

considerably less active and less selective than its racemic counterpart.  The lower selectivity, in 

this case, leads to an increase in alkene isomerization and hydrogenation side reactions.  An 
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explanation for this difference in catalytic performance was derived from SYBYL molecular 

modeling studies of both racemic and meso enantiomers.   

 

Figure 1.10.  Racemic vs. Meso closed-mode catalyst structures as 

derived using SYBYL molecular modeling program. 

 

When beginning the intramolecular hydride transfer process, (8) to (9), the racemic form 

can rotate around the CH2 bridge to make both the carbonyl and hydride bridging ligands.  This 

bridging helps facilitate the formation of a metal-metal bond and the hydride transfer to balance 

out the oxidation states on the two rhodium cations.  However, the meso form has more difficulty 

in rotating around the CH2 bridge and can only form a single hydride or carbonyl bridge.  While 

the metal-metal bond might still form, it is probable that the lack of the two bridging ligands 

hinders the intramolecular hydride transfer, thereby reducing the performance of the catalyst.  

This hindrance results in a higher energy reaction pathway than its racemic enantiomer.
6
 

The Stanley group’s dirhodium tetraphosphine catalyst is still not fully understood, 

despite the advances made so far.  Research is still being conducted to understand its improved 

activity and regioselectivity when using a 30% water-acetone solution, as well as into new 

tetraphosphine ligand designs, synthesis routes, diastereomer separation techniques, and 

fragmentation studies.  It is currently believed that the mechanism for the hydroformylation 
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catalysis using a water/acetone solvent, is very different than when being run using a pure 

acetone solvent.  FT-IR in situ studies show a difference in the rate and frequency of the 

carbonyl stretching bands in the IR spectra when using a water/acetone versus just an acetone 

solvent.  The chemistry occurring behind the scenes is clearly more complicated than originally 

believed.  While the current design results in an amazing hydroformylation catalyst, further work 

is still needed before it is ready for possible commercial applications. 
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CHAPTER 2:  BIPHASIC HYDROFORMYLATION –  

THE EFFECTS OF WATER ON A DIRHODIUM CATALYST 

 

2.1  Biphasic Hydroformylation 

 Novella Bridges and David Aubry began the research into using a biphasic system for the 

hydroformylation of olefins using the dirhodium tetraphosphine catalyst.  It was believed that 

using a polar solvent system would allow for the starting olefin (1-hexene) and the product 

aldehyde (heptanal) to separate out into an organic layer, while the catalyst remained in the polar 

aqueous layer.  Being able to separate out the product is an important issue in industrial 

homogeneous catalytic reactions.   However this concept led to several unexpected results.   

Table 2.1  Addition of water to acetone solvent for hydroformylation  

reactions of 1-hexene (90°C, 90 psig H2:CO).
1
 

 

% H2O TOF (min
-1

) Aldehyde L:B Isomerization % Hydrogenation % 

0 20 25 2.5 3.4 

10 23 30 1.5 0.2 

20 25 26 < 0.5 0.2 

30 30 33 < 0.5 0.1 

40 24 32 < 0.5 0.1 

50 18 33 2.3 0.2 

 

They found that the addition of 30% water (by volume) to the acetone catalyst solution 

improved the activity (an increase from 20 to 30 turnovers/min TOF) and regioselectivity (an 

increase in L:B ratio from 25:1 to 33:1) of the catalyst, while also showing a reduced amount of 

isomerization and hydrogenation side reactions.
2
  Various other water-acetone solution 

percentages were also tested.  The catalytic activity and regioselectivity both increased as the 

water content increased up to 30%, but they both began to decrease as the water content rose 
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above that value.  It is believed that while the stability of the active catalyst increases with higher 

water content, simultaneously the solubility of the olefin in the acetone/water layer decreases.  

The best balance between the two competing factors was found to be at the aforementioned ratio.   

While the olefin reagent and aldehyde product did separate out into a separate organic 

layer as hoped, it turned out that the catalyst was actually more soluble in the organic layer than 

the new aqueous acetone/water layer.  This can be easily seen by the intensity of color in the 

layers due to the dirhodium catalyst’s solubility.  The image below (Figure 2.1) clearly shows the 

biphasic catalyst solution extracted from the autoclave during reaction.  The organic product 

layer on top is significantly darker, indicating a larger quantity of catalyst in solution.   

 

Figure 2.1.  A vial of the hydroformylation reaction solution when using an acetone/water 

solvent, causing the biphasic system. 

 

 When performing hydroformylation in pure acetone, the catalyst system suffered severe 

fragmentation problems.  As mentioned previously, phosphine ligand fragmentation issues were 

a common occurrence when using the monometallic rhodium complexes.  It is believed that 

bimetallic rhodium tetraphosphine complexes fragmented, however, in a different way, as the 

proposed mechanism shows below. 
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Figure 2.2.  The fragmentation mechanism for the bimetallic rhodium  

tetraphosphine catalyst in an acetone solution. 

 The mechanism begins with the proposed active catalyst of the hydroformylation reaction 

in acetone solution.  Fragmentation begins when one arm of the tetraphosphine ligand dissociates 

from a rhodium center and is replaced by a CO ligand, forming complex A.  This complex is 

now more electron deficient and will favor reductive elimination of the two hydrides, producing 

H2.  The hydrides are replaced by two carbonyl ligands, forming complex B.  At this point, the 

single phosphine-coordinated rhodium center is not bound strongly enough, allowing it to 

dissociate.  Once complex C is formed, the catalyst finishes its degradation/fragmentation by 

either forming the monometallic tetraphosphine complex (2) or dimerize to form the double-P4 

ligand dirhodium complex (3).  The exact structure of structure 3 is not certain, but our best 

guess based on many high pressure NMR studies is shown. 

2.2  Acidity of Catalyst Solution 

 Given that the new reaction solution uses a 30% water-acetone composition and because 

the dirhodium tetraphosphine catalyst is dicationic, it was decided that experimentation with the 

effects of acids and bases should be run.  While it was originally believed that the catalyst 

A B 

3 2 C 
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solution could be acidic, it was only recently discovered to be acting more like a strong acid, 

dissociating one proton per equivalent of catalyst added to the water-acetone reaction solution.  

These readings were collected reaction solutions collected via sample ejection from the autoclave 

and also directly from the vessel post-reaction during the disassembly of the autoclave. 

Table 2.2  Acidity/pH of water-acetone dirhodium hydroformylation reaction solutions. 

 

Concentration pH 

1 mM 3.1 

10 mM 2.2 

 

 Much of the recent acid-base experiments on the dirhodium tetraphosphine catalyst used 

for hydroformylation reactions in a 30% water/acetone solution was a collaboration between 

myself and Darina Polakova.
3
  Standard hydroformylation reactions of 1-hexene were performed 

in the Parr modified autoclaves (Mark II design) with the additions of tetrafluoroboric acid 

(HBF4) and triethylamine (NEt3).  These experiments were performed in a similar manner to 

former researcher Spencer Train’s work testing the acid and base effects of the dirhodium 

tetraphosphine catalyst in an acetone solution.
4
  The conditions used for the following acid and 

base effects on hydroformylation reactions of 1-hexene are as follows:  1 mM catalyst, 1 M 1-

hexene, 30% water-acetone solution (with additive), 90°C, 90 psig H2:CO gas, 2 hrs reaction 

time.  The results obtained were compared to those previously collected in order to understand 

the differences between acid-base effects on a 30% water/acetone solvent versus a pure acetone 

solvent. 
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Table 2.3  The Acid-Base Catalyst Effects on the Hydroformylation of 1-hexene in an  

Acetone solution
4
 and in a 30% Water-Acetone solution.

3
 

 

Additive Solvent Initial Rate (min
-1

) Aldehyde L:B Isomerization (%) 

None 

Acetone 

10.6 28 : 1 8% 

2-4 eq HBF4 – 21 : 1 12% 

2 eq NEt3 3.6 > 30 : 1 < 1.5 

None 

30%  

water-acetone 

24 29 : 1 2.7% 

5 eq HBF4 12.5 23 : 1 8.8% 

2 eq NEt3 4.2 15 : 1 1.3% 

 In Table 2.3 shown above, the acid-base addition experiments using a catalyst solution in 

acetone (performed by Spencer Train) are shown in the top section, and those experiments using 

a catalyst in a 30% acetone-water solution (performed by Darina Polakova) are shown in the 

bottom section.  The addition of HBF4 acid caused a significant decrease in performance of the 

catalyst and thus the hydroformylation reaction for both the acetone and water-acetone catalyst 

solutions; the rate of reaction was lowered, the regioselectivity decreased, and the isomerization 

byproducts increased.  The results of the addition of triethyl amine base had even more 

detrimental effect on the rate of the catalyst.  While there seems to be some difference as to its 

effect on the regioselectivity results (an increase is seen for the acetone experiments while a 

decrease is seen in the water-acetone experiments), the isomerization byproducts significantly 

decreased in both cases.  Regardless of the few positive effects, the overall performance of the 

catalyst seems to be affected negatively when either acid or base is added to the reaction mixture. 

2.3  FT-IR Studies 

 Fourier transform infrared spectroscopy (FT-IR) is an very useful tool when studying the 

structure of metal-carbonyl catalysts, such as our dirhodium tetraphosphine catalyst (when 
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activated using H2:CO gas).  Depending on the wavenumbers of the metal-carbonyl (M-CO) 

stretching frequencies (generally found between 1700 cm
-1

 and 2100 cm
-1

)
5
 in a given spectrum, 

information can be obtained regarding the catalyst’s structure, such as the presence of terminal 

and/or bridging carbonyl ligands, as well as indicators of the electron density of the metal centers 

(via the attached carbonyls).  Many researchers have used FT-IR techniques to study the 

structures of metal-carbonyl catalysts, including in-situ cobalt-carbonyls, phosphine modified 

cobalt-carbonyls,
6
 rhodium-carbonyls, phosphine modified rhodium-carbonyls,

7
 and a myriad of 

other phosphorus containing ligands attached to cobalt/rhodium metal centers.
8
  FT-IR has also 

been used to study bimetallic cooperativity on dirhodium complexes with bridging thiolate 

ligands.
9
 

 In the case of our dirhodium tetraphosphine catalyst, FT-IR spectroscopy was used to 

gain insight into the mechanism of the hydroformylation reaction when performed in a 30% 

water-acetone solution.  Please refer to Chapter 3 – Generations of Autoclave Reactor Designs 

for a more thorough explanation of the high pressure FT-IR autoclave reactor designs 

(specifically the ReactIR autoclave design) used to collect the IR spectral data of this section.  

The initial results of the FT-IR studies analyzing IR spectra differences between acetone and 

water-acetone solvent systems were performed by Catherine Alexander.
10

  All current FT-IR 

investigations into the dirhodium catalyst were performed as joint research conducted between 

myself and Darina Polakova. 
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Figure 2.3  [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 activation using H2:CO gas mix,  

as obtained from the dissertation of Catherine Alexander.
10

 

 

 The top two spectra of Figure 2.3 show the catalyst activation in acetone and the other in 

a 30% water-acetone solvent.  Alexander reported that both spectra contain terminal CO bands at 

2094, 2075, and 2035 cm
-1

 (shifted to 2021 cm
-1

 in water-acetone).  The bridging CO bands can 

be seen at 1834 and 1818 cm
-1

 for both spectra.  Past experiments have shown a direct 

relationship between bridging carbonyl bands and catalytic activity for hydroformylation 

catalysis.  She determined that the active dirhodium catalyst species (as indicated by IR spectra) 

are identical in both acetone and water-acetone solvents when using 90 psig H2:CO gas (1:1 

mixture) at 90°C. 

The difference between the IR spectra taken of catalyst (when exposed to CO gas) in 

acetone/water and acetone is that the pure acetone leads to a higher concentration of 

penta/hexacarbonyl dirhodium tetraphosphine complex, [Rh2(CO)5-6(rac-et,ph-P4)]
2+

, which can 
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be seen in spectra as a peak at 2095 cm
-1

 (see Figure 2.3 and also in the activated 90°C spectra of 

Figure 2.4 and Figure 2.5).  The results of past spectra collected by Alexander agree with those 

collected by myself and Polakova.   This is proposed to be the open-mode resting state of the 

catalyst, which is unable to directly perform hydroformylation.  The far lower concentration of 

the penta/hexa carbonyl complex in the water-acetone solvent suggests something radically 

different is occurring in the catalyst equilibria or species being generated.  

 

Figure 2.4  IR Spectra of [rac-Rh2(nbd)2(et,ph-P4)
2+

 catalyst species in acetone solvent. 
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Figure 2.5  IR Spectra of [rac-Rh2(nbd)2(et,ph-P4)]
2+

  

catalyst species in a 30% water-acetone solvent. 

 

 To check the validity of this finding, the catalyst precursor [rac-Rh2(nbd)2(et,ph-

P4)](BF4)2 was dissolved in a 30% water-acetone solution, injected into the ReactIR autoclave 

cell, and exposed to pressurized CO gas (with heating).  The catalyst complex undergoes 

noticeable changes in solution, specifically around 2095 and 2022 cm
-1

.  Over the course of 15 

minutes, the peak intensifies, indicating carbonyl replacement of the norbornadiene ligands.  As 
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the pressure and temperature increase, the peak begins to broaden out, which is more 

characteristic of water-acetone catalyst spectra compared to acetone catalyst spectra (Figure 2.6). 

 

Figure 2.6  Pressure and temperature effects of [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 

exposed to CO gas in acetone solution. Spectra collected by Catherine Alexander.
10

 

 

 

Figure 2.7  Mechanism of carbonyl coordination for the [rac-Rh2(nbd)2(et,ph-P4)]
2+

 complex. 

 In Figure 2.5, the peaks at 2095, 2043, and 2015 cm
-1

 are monitored for changes 

depending on temperature and pressure of CO gas present in the reactor.  The trend seen is that 

over time, the increase in both temperature and CO pressure causes the peaks at 2095 and 2043 

cm
-1

 to increase in intensity, while the peak at 2015 cm
-1

 decreases.  The 2015 cm
-1

 peak has 

been identified as the bis(norbornadiene)dicarbonyl complex.  When looking at the proposed 

mechanism in Figure 2.7, upon further carbonyl coordination, the norbornadiene ligands are 
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readily substituted off forming the tetra-, penta-, and hexacarbonyl dirhodium complexes (which 

are represented by the peaks at 2095 and 2043 cm
-1

).  As stated previously, without the presence 

of hydrogen gas the complex will not form the closed-mode CO-bridging complex capable of 

hydroformylation.   

 

Figure 2.8  Pressure and temperature effects of [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 

exposed to CO gas in 30% water-acetone solution 

 

 When the same conditions for the dirhodium catalyst precursor were run using the 30% 

water-acetone solution, there is a significant change in the IR spectra.  Instead of three peaks, 

only one main peak at 2022 cm
-1

 forms as a result of the pressurized CO gas.  The norbornadiene 

seems to be replaced far slower than in pure acetone solution, most likely due to the hydrophobic 

nature of the organic norbornadiene.  There is a small peak at 2100 cm
-1

 seen on some of the 
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spectra, and this is believed to be the same penta- or hexacarbonyl catalyst complex as the 2095 

cm
-1

 peak in Figure 2.6.  This greatly diminished peak in the water-acetone solution gives 

evidence as to one of the reasons for the higher hydroformylation catalyst activity, as the higher 

carbonyl complex must dissociate carbonyl ligands to perform the oxidative addition of H2 

necessary to form the closed-mode active form.  These results are also validated by the findings 

of the high-pressure NMR studies performed by Darina Polakova.
3
 

 It is believed that the reason for reduced formation of the pentacarbonyl and 

hexacarbonyl species is due to the presence of water hindering the coordination of CO by 

donating electron density to the electron deficient rhodium center(s) (due to the other carbonyl 

ligands), effectively blocking the remaining coordination sites.  Density functional theory (DFT) 

calculations performed by Dr. George Stanley found a lone pair of electrons on the water’s 

oxygen atom has an energy of -8.13 eV, which is lower than a lone pair on acetone’s oxygen 

atom at -6.88 eV.  Thus, acetone is a better donor than water and should coordinate easier to a 

metal center.   

This contradicts our belief that the improved catalytic activity is due to water binding to 

the dirhodium carbonyl complex and blocking coordination sites from further CO additions, 

while not binding so strongly that water dissociation is inhibited.  In theory, acetone should be 

just as capable of blocking coordination sites from CO additions, yet the presence of water 

improves the catalytic activity and regioselectivity.  Other effects have been postulated on 

water’s electronic effects, such as water’s ability to draw electron density from the CO ligands to 

facilitate CO dissociation, but DFT calculations have not been performed for this as of yet.  The 

effect of water on the dirhodium catalyst is still not fully understood, and further investigation is 

needed. 
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2.4  New Proposed Hydroformylation Mechanism in an Acetone/Water Solution 

 When considering the findings by the acidity of the catalyst solution, it becomes clear 

that the dicationic dihydride catalyst acts as a strong acid, releasing an equivalent number of 

protons per dirhodium catalyst complex.  This cannot be explained using the former mechanism 

proposed for the hydroformylation reaction using the [rac-Rh2(nbd)2(et,ph-P4)]
2+

 catalyst 

precursor in an acetone solution.  Taking into consideration the acidity findings along with FT-

IR spectra data on dirhodium carbonyl complexes generated in situ, a new mechanism was 

proposed for the hydroformylation reaction using the [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 catalyst 

precursor in a 30% water/acetone solution. 

 

Figure 2.9  The proposed mechanism for hydroformylation using  

the [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 catalyst precursor. 

 

 The mechanism begins by the catalyst precursor, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2, 

substituting the norbornadiene ligands for CO ligands, then adding the H2 in such a way to 
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coordinate one hydride ligand and generate one H
+
 into the solution (whether via oxidative 

addition or heterolytic cleavage).  These steps described so far happen prior to entering the 

catalytic cycle shown in Figure 2.9.  With the now formed [rac-Rh2(H)(CO)4(et,ph-P4)]
+
 (top-

center position of Figure 2.9), the complex achieves a more stable orientation by switching from 

the open-mode to the closed-mode structure with bridging hydride and carbonyl ligands.  The 

migration of the bridging hydride ligand to a terminal hydride ligand increases the probability of 

migratory insertion to take place upon coordination of the alkene to an adjacent equatorial 

binding site on the same rhodium center.  Migratory insertion of the hydride and alkene ligands 

forms an alkyl ligand, followed by the addition of another CO.  DFT calculations of the 

dicationic catalyst mechanism structures suggest that a similar monocationic tetracarbonyl alkyl 

complex can also “crack open”, forming the open-mode species.  In order to achieve further 

stabilization, the alkyl and an adjacent carbonyl ligand perform a migratory insertion to yield an 

acyl ligand.  An oxidative addition of H2 causes the reformation the more stable closed-mode 

catalyst species, [rac-Rh2(µ-H)(µ-CO)(H)(acyl)(CO)2(et,ph-P4)]
+
.  Similar to the 

hydroformylation mechanism using pure acetone solvent, the acyl and hydride ligands are in 

close proximity together enabling an intermolecular reductive elimination of aldehyde.  Then the 

dirhodium complex reopens, bringing the cycle back to the starting point. 

 One of the primary differences between the proposed hydroformylation mechanism in 

acetone/water versus pure acetone is that the dirhodium species overall has a monocationic 

charge.  The resting state of the catalyst (for this mechanism) is believed to be shifting between 

the two closed-mode carbonyl-hydrido dirhodium complexes (Figure 2.9 top-right and right 

complexes).  However, DFT calculations of the dicationic compounds indicate that the bridging-

hydride ligand is lower in energy and heating is required to shift it into a terminal hydride 
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position.  If the monocationic dirhodium complex behaves similarly, the closed-mode tricarbonyl 

complex with a terminal hydride may actually be the true resting state of this catalyst system.  

Despite the improved hydroformylation activity, regioselectivity, and lifetime of the catalyst in 

an acetone/water solution, calculations suggest the dicationic dirhodium complex (formed in 

pure acetone) is actually more active towards hydroformylation.  However due to the greatly 

increased catalyst stability and lifetime in an acetone/water solution, there is a significantly 

higher concentration of active catalyst present (monocationic dirhodium complex) during 

reaction than when using pure acetone, thus resulting in a higher overall activity. 

 

Figure 2.10  Water, H2, and CO effects on the dirhodium tetraphosphine catalyst 



29 
 

 The presence of water plays a significant role in altering the nature of the dirhodium 

catalyst by promoting proton dissociation.  Figure 2.10 shows several of the reaction 

possibilities, including the ones specific to the newly proposed mechanism for hydroformylation 

in a 30% water/acetone solvent (shown in the shaded/tinted regions).  The proposed active 

catalyst for the aldehyde-water shift catalysis (discussed further in the Aldehyde-Water Shift 

Catalysis chapter) is not shown in the above figure, but it can be formed in two ways.  The first 

possibility is the acidic proton performing an electrophilic attack on the hydride ligand, emitting 

H2 gas and being replaced by CO ligands.  The second possibility is via the intermolecular 

reductive elimination of H2, then being replaced by CO ligands.  The labile nature of the 

tetraphosphine ligand allows for relatively easy dissociation and association of the outer 

phosphines as needed.  The presence of these monocationic species show the versatile 

capabilities of the dirhodium tetraphosphine catalyst, most of which are heavily dependent on the 

conditions being controlled during hydroformylation using the autoclave reactor system.   

There are currently no DFT calculations studies that have been performed on the 

proposed monocationic dirhodium hydroformylation mechanism (Figure 2.9), but investigations 

into the proposed monocationic catalyst complexes and the overall mechanism are planned for 

the near future.  These theoretical models will hopefully yield valuable evidence supporting the 

newly proposed hydroformylation mechanism when using a water-acetone solvent.  Catalyst 

complex stability and energy states are always key when attempting to support or refute a 

catalysis mechanism cycle.  
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CHAPTER 3:  GENERATIONS OF AUTOCLAVE REACTOR DESIGNS 

 

3.1  Introduction 

All reactions being run for the hydroformylation and aldehyde-water shift require both 

high pressure and high temperature conditions.  Our reactions are run in modified 160 mL 

stainless steel Parr high pressure reactors (autoclaves).  The autoclave reactors need to fulfill the 

following minimum requirements for our research: chemically inert/resistant material, easily 

cleaned between reactions, controlled heating, controlled pressure, controlled stirring, able to 

inject reagent while at high pressure/temperature, and the ability to extract samples from the 

reactor without interrupting the reaction.  So far there have been three generations of high 

pressure/temperature autoclave reactors modified for our research over the years. 

3.2  Original Modified Autoclave Design (Mark I) 

 

Figure 3.1.  The original autoclave modified for our hydroformylation reaction studies. 

 



32 
 

Figure 3.1 shows the original modified autoclave reactor (image on the left and diagram 

on the right) for the Stanley research lab’s investigation into hydroformylation catalysts.  The 

diagram to the right of the image depicts the controller, reactor, and gas reservoir system, all 

used when performing and monitoring hydroformylation reactions.  The system featured a 

stainless steel combination gas and olefin injection reservoirs connected to the autoclave using 

1/8” stainless steel tubing.  Thermocouples and pressure transducers were fitted to the autoclave 

and gas reservoirs to monitor temperature and pressure, and the readings were recorded on a 

computer connected to the controller.  A packless, magnetic stirrer was used to stir the reaction 

solution up to 1100 revolutions per minute (RPM).  Heating and stirring were controlled by a 

Parr 4871 process controller which was controlled by a computer.  During the reaction, 

temperature and pressure data were automatically collected from the autoclave and gas reservoirs 

every 30 seconds, then stored in a spreadsheet.  The data was then used to calculate the number 

of turnovers and the turnover frequency of the reaction using the Ideal Gas law.
1
   

 The method used for preparing the autoclave reactor was quite different for the first 

generation of the autoclave design compared to the current method.  The olefin and gas injection 

lines (including all tubing) were connected to a vacuum line for at least 15 minutes to remove 

any air present.  The unassembled autoclave reactor was brought into a nitrogen atmosphere 

glove box to be charged with 80 mL of 1mM catalyst solution and assembled/sealed.  The olefin 

was filtered through neutral alumina and collected in a separate vial and sealed (usually enough 

to result in a 1 M concentration of the reaction solution).  Once removed from the glove box, the 

autoclave reactor was connected to the injection and gas reservoirs, and the olefin was 

transferred via cannula (double ended stainless steel needle).  The injection reservoir featured a 

bypass loop allowing gas to be delivered to the autoclave without passing through the olefin 
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injection reservoir, in order to pressurize the autoclave without injecting the olefin.  The 

autoclave was then purged with syn-gas to remove any air, but also to saturate the reactor’s 

headspace and catalyst solution with H2 and CO gases.  The reactor was pressurized to 45 psig 

and stirred at 1000 rpm, then heated to 90°C over the course of 20 minutes.  This heating and 

stirring of the catalyst solution in the presence of H2 and CO gases is meant to activate the 

catalyst species, and it is known as the “Soaking Period”.  After the soaking period, the pressure 

in the autoclave was vented to 45 psig, and the 90 psig pressure was pushed through the injection 

reservoir and into the reactor vessel, which added the olefin reactant into the catalyst solution.  

The reaction was held at 90 psig pressure, 90°C temperature, and 1000 rpm stirring until the end 

of the reaction/experiment (minimum 2 hrs).
1
  Samples were also analyzed via gas 

chromatography. 

After each run, the autoclave was disassembled and cleaned with acetone.  Acetone was 

also injected into the olefin injection reservoir and tubing to rinse any remaining residue.  The 

autoclaves could also be more thoroughly cleaned by being charged with 100 mL acetone, 

sealed, then heated with stirring for a few hours. 

3.3  Mark II Autoclave Design 

Over time, catalyst activity and selectivity were decreasing, and it was determined to be 

due to contamination from past reactions.  The autoclave reactor and gas/olefin injection system 

were effective but not easily cleaned.  The new design facilitated easier, more thorough cleaning 

of the autoclave system, as well as being able to assemble the reactor outside of the glove box.  

In 2006, Catherine Alexander was responsible for this redesign of the autoclave reactor and gas 

system.  This is most common design of autoclaves currently used in the Stanley research lab. 
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Figure 3.2.  Autoclave Mark II Reactor arms: Olefin Pressure Injection Arm (left),  

Sampling Arm (middle), and Purge Arm with Pressure Transducer (right). 

 

 

Figure 3.3.  Assembled Autoclave Mark II Reactor and Gas Reservoir System 

 The new design of the autoclave was modified from the original 160 mL Parr stainless 

steel autoclave reactor.  Two of the key differences between the old and new designs are the 

three detachable reactor arms and the multi-reservoir gas manifold system.  All of the autoclave 

arms, as well as several connection points in the gas reservoir system use Swagelok quick-

connect adapters equipped with solvent-resistant Markez o-rings to facilitate easier and more 

thorough cleaning in-between reactions.  The olefin pressure injection arm allows for a short, 

direct-path addition of the olefin into the catalyst solution as well as a pathway to inject gas 

directly into the solution.  The Sampling Arm design also allows for the injection of gases 

directly into the reaction solution, similar to the pressure injection arm, but it can also be used to 

pull a sample of reaction solution without stopping the reaction or risking air contamination of 
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the entire reaction solution.  The purge arm contains a valve used both for the addition of catalyst 

solution into the reactor vessel and to vent/purge out pressurized gases.  It also has a pressure 

transducer attached which allows monitoring of the reactor pressure on the computer in real-

time.  Unchanged was the thermocouple probe attached to the autoclave head (to monitor the 

temperature of the reaction solution) and the packless, magnetic stirrer atop the autoclave head 

(Figures 3.2 and 3.3). 

    

Figure 3.4.  New/current gas manifold system. Source gas cylinders (left) 

and the manifold gas reservoirs supplying gas to the autoclave (right). 

 The new gas manifold system allows for faster changing of gas types and easier mixing 

of gases (if needed).  All fittings, gas reservoirs/cylinders, and quick-connect adapters used are 

stainless steel and Swagelok products.  The first section of the manifold can house up to four 

large gas cylinders at one time used as the source for gases used in our chemical reactions.  In the 

image above (Figure 3.4 (left)) the gases shown are hydrogen, argon, carbon monoxide, and syn-

gas (50.00% H2 and 50.00% CO mix).  From here, regulators and valves can be opened to 

fill/pressurize any of the three 300 mL stainless steel gas reservoirs with any mixture of gas 

(pressure rating of up to 1800 psig) from the source gas cylinders.  Each of the four autoclaves 

has its own separate regulator to control the pressure in the corresponding reactor.  The original 
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autoclave reactor system only had one gas reservoir, meaning that if an experiment required 

changing gas feed mixtures, the gas reservoir would have to be closed off, vented, and refilled 

with the new gas mixture.  With the new gas manifold, switching gas feeds into the autoclave 

takes only a few seconds without any risk of air contamination. 

 The procedure for performing hydroformylation reactions using this new design is as 

follows.  The autoclave reactor (including all arms) was assembled and a vacuum line was 

connected for at least 15 minutes.  In a nitrogen atmosphere glove box, 80 mL of a 1mM catalyst 

solution was prepared in a flask and sealed with a septum.  Also in the glove box, the olefin was 

filtered through neutral alumina, collected in a vial, and sealed with a septum (enough to result in 

a 1 M concentration of the reaction solution).  Both the olefin and catalyst solution were 

removed from the glove box.  The olefin was transferred via cannula into the autoclave’s olefin 

pressure inject reservoir arm, and the catalyst solution was transferred via cannula into the 

autoclave reaction vessel.  Using the sampling arm to push gas into the autoclave (similar to the 

previous model’s “bypass loop”), the pressure was increased to 90 psig (the operating pressure), 

then vented to 45 psig.  This was repeated two more times to ensure a pure atmosphere and 

saturate the catalyst solution with H2 and CO gases.  The soaking period was initiated to heat and 

stir the catalyst solution over 20 minutes.  After soaking, the pressure in the autoclave was 

vented to 45 psig, and the 90 psig pressure was pushed through the alkene injection reservoir and 

into the reactor vessel, thus adding the alkene into the catalyst solution.  The reaction was held at 

90 psig pressure, 90°C temperature, and 1000 rpm stirring until the end of the 

reaction/experiment (minimum 2 hrs).
1
  Samples were also analyzed via Gas Chromatography-

Mass Spectrometry (GC-MS). 
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 Some other modification and experimentation was conducted on using protective liners 

for the autoclave vessels.  The hypothesis was that the stainless steel surface of the autoclave 

vessel was somehow promoting the degradation of the dirhodium catalyst and possibly 

increasing the percentage of side reactions when performing hydroformylation reactions.  

Switching to a glass or Teflon lined vessel would allow for a more chemically inert system.  The 

glass liners inserted into the vessels caused issues dealing with reaction solution spilling into the 

gaps between the liner and the stainless steel vessel walls, regardless of how close the liner’s fit 

was to the vessel’s dimensions.  Also, if the glass liner was too close of a fit to the vessel, it was 

found to jam and cause difficulty removing.  Teflon liners were tested next for two reasons.  

First, they provided superior chemical resistance, thus decreasing any effects on the catalyst or 

other reaction components.  Second, the thermal expansion for Teflon (80-300 ppm/°C between 

0-140°C) is significantly higher than that of borosilicate glass (3.25 ppm/°C between 0-300°C).
2
  

This would mean that a Teflon liner closely fitting the autoclave vessel could be used, and the 

heat during reaction might even cause some expansion, further closing the gap between the liner 

and the vessel wall.  This however caused problems when controlling the heating of the reaction 

solution, due to the thickness of the new liner.   

Finally, a Teflon coating was applied to one of the autoclave vessels by Parr, significantly 

thinner than the previous insert liner.  The new Teflon lined autoclave vessel has been 

successfully used in hydroformylation reaction studies, with only a minimal delay/lag-time 

occurring when heating the autoclave.  During testing, side by side hydroformylation reactions in 

both the Teflon lined and bare stainless steel vessels were run using identical catalyst batch, 

olefin, solvents, and reaction conditions.  The hydroformylation reaction using the Teflon lined 

autoclave vessel did in fact reduce the percentage of isomerization and hydrogenation, but only 
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slightly, and there was no indication that the lifetime of the catalyst was extended from the 

average durations.  While the longevity and selectivity of the catalyst was not improved using 

this new autoclave vessel, these experiments did show that prolonged contact with the bare 

stainless steel was not causing significant catalyst degradation and side reactions. 

3.4  Mark III Autoclave Design:  Flow-Control Autoclave Reactor 

 

The research being conducted on the Aldehyde-Water Shift catalysis, both tandem with 

hydroformylation and by itself, required a new design of autoclave reactor.  According to the 

work of past researcher David Aubry, the direct aldehyde-water shift catalysis converting reagent 

aldehyde into the corresponding carboxylic acid would not initiate without a steady flow/purge 

of gas through the reactor.  This was first seen via the accidental reactor gas leak by Novella 

Bridges, which under the right conditions, caused the first aldehyde-water shift reaction 

converting heptanal to heptanoic acid.  The current design of the autoclave reactor is a sealed 

system with the only flow of gas being that amount used up in reaction.  A new design of reactor 

was needed to allow for the usual uptake of syn-gas in a sealed system during a 

hydroformylation reaction, while being able to switch to a system allowing for a controlled flow 

of gas through the reactor without loss of reaction solution and reagents.  In addition, the new 

design also needs to be able to vent off any gas possibly produced in reaction (aldehyde-water 

shift catalysis) while maintaining a constant reactor pressure.  The following design 

modifications were made to Catherine Alexander’s autoclave model (Mark II autoclave design). 
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Figure 3.5.  Flow-control Autoclave Reactor design 

 I designed, assembled, and programmed our Parr 4848 Reaction Controller and 

SpecView software to work with and control all the components.  It involved several additions to 

the overall autoclave system and an additional gas feed line separate from the manifold system. 

These parts include the mass flow controller (MFC), the autoclave’s condenser arm, and the 

current-to-pressure transducer with back pressure regulator combination (I/P-BPR). 

     

Figure 3.6.  The Mass Flow Controller (left) and the I/P–Back Pressure Regulator (right). 

 The Brooks Smart Digital Mass Flow Controller (Model 5800S series) is designed to 

regulate the gas flow in a much more accurate and standardized way than was done in previous 
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experimental trials of the aldehyde-water shift reactions (Figure 3.6).  In the past, the gas flow 

rate was measured in units of psig per minute.  This provided consistent values recorded for gas 

flow rate, since the measurements were taken from the high pressure side of a two-stage 

regulator feeding the autoclave reactor, but if the volume of the gas reservoirs were incorrect or 

ever changed due to modifications, all those values would be off when trying to duplicate the 

experimental results.  The mass flow controller pushes into the autoclave a steady stream of gas 

whose flow rate is measured in units of standardized cubic centimeters per minute (sccm), with 

this model’s flow rate range being 0 – 200 sccm.  The standard volume of the gas reservoir used 

for the Mark II and Mark III autoclave design was 318 cm
3
 (close to the gas reservoir volume 

used in the original Mark I autoclave design), and the conversion of units for the gas flow rate is 

approximately “10 sccm = 0.47 psig/min” when using a 318 cm
3
 volume gas reservoir.   If 

experimental results used this method and units of measurement instead of the previous psig/min, 

the same gas flow rate can be achieved regardless of the volume and pressure of the source gas 

reservoirs or cylinders.  Larger gas reservoirs or even the source gas cylinders could be used 

during reaction while still being able to accurately monitor and control flow rates, meaning that 

reactions can be run for much longer times than before.  This also means that the flow rate can be 

computer controlled, instead of using the needle valve atop the condenser arm.  This new method 

using the mass flow controller allows for higher accuracy and greater ease of reproducing certain 

reaction conditions. 

 It is worth mentioning that this design also requires a bypass loop for the MFC.  If the 

hydroformylation reaction is running, the MFC bypass loop is required, allowing for the 

regulator to directly control the pressure inside the autoclave (the same as the previous design).  

This is because of two reasons.  First, the MFC cannot output a flow rate fast enough to maintain 
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a 90 psig pressure inside the reactor (+200 sccm).  The rac-Rh2(P4) catalyst is the most active 

during the first ~30 minutes of the hydroformylation reaction, and syn-gas is consumed too 

rapidly during that time.  Secondly, because the catalytic activity and rate of reaction for 

hydroformylation keep changing, a constant rate of syn-gas flowed into the autoclave cannot be 

used while maintaining a constant reaction pressure.  The only way that the MFC could be used 

for hydroformylation reactions would be to output a flow rate higher than the syn-gas was being 

consumed (which is not possible using this model of MFC anyways) then control the pressure 

inside the reactor using the I/P-BPR.  This method would not be a closed system, thus the 

turnover number of the hydroformylation reaction could not be determined by pressure drop of 

H2 and CO gases consumed.  Using the bypass loop, the regulator can deliver the syn-gas 

directly into the autoclave in a closed system, so the turnover number can be determined by gas 

reservoir pressure drop (also by GC-MS analysis of the reaction solution).  If the reaction 

conditions needed to be switched to allow a fixed flow or purge of gas through the reaction 

solution, then the bypass loop can be closed off and MFC used to initiate a controlled flow rate. 

 The condenser arm is made of stainless steel, fitted with Swagelok quick-connect fittings 

equipped with chemically resistant Markez O-rings, and a needle valve atop the arm.  It was 

designed so that gas could bubble through the reaction solution via the sampling and pressure 

inject arms, then flow up the condenser and out through the needle valve on top.  The outer 

jacket of the condenser is also stainless steel and is commonly cooled via air or water flow 

(though other liquids could theoretically be used).  The needle valve atop the condenser could be 

slightly opened to vent the gases out into the chemical hood, or when connected to the back 

pressure regulator, the valve can be completely opened, and the flow controlled via the I/P-BPR. 
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 As stated before, the I/P-BPR has two parts to it (Figure 3.6).  The first section is the 

current (I) to pressure (P) transducer (ControlAir AH-500 I/P Transducer).  Using the computer, 

the Parr controller sends a signal (4 – 20 mA current) to the I/P Transducer to output a specific 

pressure of gas from the source.  In this case the source gas is supplied using a separate nitrogen 

gas cylinder (though air or any inert gas could be used since this gas provides the force to control 

the autoclave’s pressure from the outside only).  This separate source gas line had to be specially 

designed and built, as it could not be coupled together with the existing gas manifold system.  

The I/P Transducer continuously vents out gas from its source feed so that it can raise and lower 

its pressure accordingly and at a moment’s notice.  The loss of source gas is large enough, that a 

separate large gas cylinder was needed.  The controlled output of the I/P transducer is what 

power/controls the back pressure regulator.  The second section is the back pressure regulator 

(BPR) which is simply a stainless steel body with a lubricated piston acting as a valve 

opening/closing as a purge for the autoclave reactor. 

 The computer and Parr controller use combination of the mass flow controller, the 

pressure transducer attached to the purge arm, and the I/P-BPR in order to manage the overall 

autoclave pressure, as opposed to using a standard gas regulator.  The MFC is set to output a 

specific flow rate of gas into the autoclave, which bubbles through the reaction solution while 

being heated, stirred, and pressurized.  The pressure builds as the gas flows into the autoclave.  

When the pressure inside the autoclave vessel exceeds the set value for the I/P-BPR on the 

computer, the I/P transducer lowers its output pressure so that the autoclave can vent the excess 

pressure into the chemical hood.  The air (or water) being pushed through the jacket of the 

condenser arm is used to ensure that minimal solvent is lost during the continuous purge of the 

autoclave.  Once the target reactor pressure is reached, the I/P transducer increases its output to 
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maintain a pressurized system.  This balance is maintained throughout the reaction to create a 

stable system allowing for an accurate, controlled flow of gases through the autoclave reactor for 

extended periods of time without loss of reaction solution, while still maintaining the necessary 

pressures and temperatures for hydroformylation and aldehyde-water shift reactions. 

3.5  High Pressure FT-IR Autoclave Reactor Designs 

 The dirhodium catalyst system needed to be studied using infrared (IR) spectroscopy 

techniques.  Given that the reaction conditions require a system to be pressurized and heated, a 

autoclave reactor had to be designed for the purposes of both studying the scans taken from the 

catalyst solution while in reaction while being similar to the standard autoclaves used in the 

hydroformylation reactions performed for our research.  The high pressure in-situ circle reaction 

FT-IR cell was designed previously by SpectraTech, Inc. and modified by both George Stanley 

and myself.  Since then a newer IR autoclave cell was designed by and purchased from Mettler 

Toledo International, Inc., with the autoclave arms/attachments, controllers, and gas manifold all 

designed and assembled by myself.   

           

Figure 3.7  SpectraTech High Pressure In-Situ Circle Reaction FT-IR Cell 
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 The figure above shows both a diagram and an image of the SpectraTech high pressure 

in-situ autoclave FT-IR cell.  The majority of the autoclave is made of 316 stainless steel (similar 

to the all of our autoclaves), with a silicon attenuated total reflectance (Si ATR) crystal fixed 

through the middle of the reaction vessel.  We previously used a ZnSe crystal rod but found that 

it reacted with our catalyst solution and deposited what appeared to be rhodium metal onto the 

ZnSe rod.  The use of the Si ATR crystal has worked much better despite its lower IR 

throughput.  We replaced the somewhat corroded reflection mirrors with a new set, and this has 

significantly boosted the IR intensity at the detector when using the Si ATR rod.  This crystal 

allows for IR monitoring the reaction mixture with the active catalyst.  The autoclave reaction 

cell is placed into a Bruker Tensor 27 fourier transform infrared spectrometer (FT-IR) which 

then transmits and receives the infrared radiation sent through the crystal. 

 Similar to the other autoclaves used in our hydroformylation research, there are a few 

arms and attachments to make the reactions possible.  Nitrogen gas is used to purge the system of 

any air present in the reactor’s arms and headspace.  The catalyst solution can be injected into the 

autoclave vessel through the vent arm, which also has a pressure transducer attached (the vent 

arm is not shown in the diagram of Figure 3.7).  The selected gas (usually CO gas or H2:CO gas 

mix) can be pushed into reactor vessel through the gas inlet arm, thus saturating the catalyst 

solution.  The packless magnetic stirrer is then activated to stir the reaction solution, and through 

the use of both the thermocouple and pressure transducer, the reaction’s temperature and 

pressure can be monitored and recorded for further analysis.  A controlled heater is built into the 

reactor vessel. 
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 The new Mettler Toledo ReactIR high pressure in-situ autoclave reaction FT-IR cell was 

modified to be similar to the current hydroformylation autoclaves currently used in our research 

(designs Mark II and Mark III).   

        

Figure 3.8  High Pressure In-Situ ReactIR Autoclave Design  

This design uses a different interface to connect to the FT-IR instrument.  The ZnSe ATR crystal 

is fused behind a silicon window surrounded by stainless steel.  The IR emitter fires upwards into 

the hollow stainless steel column (continuously purged using a nitrogen gas flow), through the 

ZnSe crystal and Si window, thus coming in contact with the reaction solution touching the Si 

surface, and finally reflected back towards the source where the detector is located.  This method 

of IR signal detection reduces the effect that carbon dioxide gas in the atmosphere has on the 

resulting spectrum, since the pathway from emitter to crystal/solution to detector is entirely 

purged of any water or carbon dioxide gases. 
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 Similar to the previous SpectraTech IR autoclave cell, this model includes a stirrer, 

thermocouple, and a vent port/arm (with attached pressure transducer).  The gas inlet port is 

improved from the SpectraTech design, because it was designed to actually deliver the gas 

directly into the catalyst solution, as well as able to pressure inject an olefin to test the 

hydroformylation reaction conditions much closer than previously able.  When looking at the 

picture taken of the ReactIR autoclave (Figure 3.8), the longer arm on the left side is a similar 

olefin pressure inject reservoir (and valve system) of the mark II and mark III autoclave designs.  

If an olefin is being used in the experiment, during setup a septum can be placed over the 

opening of the valve on top so that the olefin can be injected into the reservoir to await pressure 

injection into the catalyst solution.   

Finally, it is worth mentioning that this autoclave model does not have a sampling arm, as 

does the other hydroformylation autoclave reactors.  This is because of the reduced volume of 

this vessel compared to the other autoclave vessels (20 mL capacity vs. 160 mL).  A standard 

sample taken from the autoclaves using the sampling arm is typically 2-3 mL of reaction 

solution, which is a far larger percentage of the total solution for the ReactIR autoclave (10-15% 

vs. 1-2%).  Regardless, this feature is not necessary since the predominant method of analysis 

will be the scans taken using the ReactIR FT-IR spectrometer instead of the usual GC-MS 

solution analysis. 
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Figure 3.9  The Mettler Toledo ReactIR spectrometer (left), Autoclave FT-IR reactor cell 

(center), gas manifold system (back/right), and temperature/stirring controller (front/right). 

 

 The gas manifold system is shown to the back right of the ReactIR autoclave image 

(Figure 3.9).  The gas source used for this system is a specially designed portable 1L stainless 

steel gas cylinder (all parts used are available from Swagelok Co.), and these cylinders were built 

for the purpose of transporting pressurized gases (pressure rated up to 2500 psig) for research 

use.  These can be detached (via Swagelok quick-connect adapters), pressurized from a large gas 

cylinder, then reattached to the manifold without any other disassembly needed.  These portable 

gas cylinders can also be used to charge the gas reservoirs used by the other autoclave reactors, if 

a specific gas is needed that is not currently one of the four cylinders attached to our main gas 

manifold (see Figure 3.4). 
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 The gas manifold was designed so that there is both a nitrogen gas feed (house nitrogen) 

and a reaction gas feed (portable gas cylinder).  Once the autoclave is assembled (as shown in 

Figure 3.9), a nitrogen gas flow is initiated into the pressure inject arm and out through the vent 

arm.  This is necessary as there is no vacuum pump to evacuate any oxygen present that may 

poison the catalyst in reaction, and the nitrogen purge is left to flow for at least 30 minutes to 

ensure an inert atmosphere.  During this time, the ReactIR spectrometer detector must be cooled 

down using liquid nitrogen, followed by a series of configuration tests and background scans.  

From this point on, IR spectra can be collected during anytime during preparation, soaking, or 

reaction.   

Once purged, the nitrogen is shut off, and the catalyst solution is injected via syringe into 

the reaction IR cell vessel via the vent arm capped off with a septum.  The regulator controlling 

the reaction gas is set to the desired output pressure and opened to pressurize the entire 

autoclave.  The vent arm is slightly opened to allow a slow purge of gas through the reaction 

solution to ensure that the reaction gas has bubbled through and saturated the solution.  The vent 

is closed off, and if an olefin is used in the experiment, this is the time to add it.  This can be 

done by using the valves to close the pressure inject arm off from both the regulator and the 

vessel.  The arm is then vented through the valve on top, capped off with a septum, and charged 

with the olefin via injection using a syringe (top valve closed afterwards).  Finally, the heating 

and stirring are initiated using a Parr 4848 Reaction Controller. 

Many different IR spectra were taken throughout the soaking period in order to monitor 

the changes in spectra corresponding to changes that the dirhodium catalyst was going through 

due solely to the presence of CO and/or H2 gases.  In other experiments, the olefin (usually 1-

hexene) was pressure injected into the ReactIR autoclave, followed by several IR scans taken, in 
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order to monitor similar changes to the dirhodium catalyst throughout the entire 

hydroformylation catalytic cycle.  Spectra could be collected manually, at specific intervals 

throughout the remainder of the experiment (i.e. one spectrum every five minutes), or even at 

varying time intervals in a set profile (i.e. one spectrum every five minutes for the first hour, then 

one every fifteen minutes for the remaining 3 hours).  For these and other similar catalytic 

reactions requiring high pressure and high temperature conditions, the high pressure in-situ 

ReactIR autoclave is a very effective tool for the continuous collection of IR spectra of reaction 

solution while maintaining almost identical conditions to that of larger autoclave reactors. 
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CHAPTER 4:  ALDEHYDE–WATER SHIFT CATALYSIS 

 

4.1  Introduction and Background 

 As mentioned previously, hydroformylation uses a terminal alkene, reacted with H2 and 

CO gases using a hydrido rhodium or cobalt catalyst, to form linear and branched aldehydes.  

Aldehyde-Water Shift catalysis is a new reaction that can be initiated on its own or tandem to a 

hydroformylation reaction.  Using the same dirhodium tetraphosphine catalyst precursor, an 

aldehyde can be reacted with the water from the catalyst solution to form a corresponding 

carboxylic acid and also produce hydrogen gas.  This is currently the only known method of 

producing a carboxylic acid from an aldehyde without the use of oxygen gas while also being 

able to produce hydrogen gas via a water molecule.  When the hydroformylation and aldehyde-

water shift reactions are run tandem, the combined process is results in hydrocarboxylation (also 

known as hydrocarbonylation).  This is the conversion of an alkene, water, and carbon monoxide 

gas into a carboxylic acid. 

 

Figure 4.1  Hydrocarboxylation via tandem catalysis. 
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 Most methods of generating carboxylic acids from aldehydes require the presence of 

oxygen or other oxidizing agents such as H2O2.  This reaction is unique because it is performed 

in oxygen-free conditions, while also being able to produce hydrogen gas.  The catalytic 

activation of water has only been previously accomplished under more extreme reaction 

conditions often with very poor rates and selectivities.  The implications of this for chemical 

hydrogen storage cells could be significant.  If the aldehyde-water shift reaction works with 

formaldehyde, the smallest of the aldehydes, it would be capable of one of the highest H2 storage 

capacity per gram of fuel or starting material (8.3% by weight, just under the 9% goal set by the 

Department of Energy for 2015).  Formaldehyde (in an aqueous solution) would be a cheap 

source of fuel, ideally capable of producing two moles of hydrogen gas per every mole 

consumed.  All products and possible byproducts of this reaction are relatively non-toxic, 

making this process all the more ideal.  The final products would be two equivalents of hydrogen 

gas and one carbon dioxide.  The aldehyde-water shift reaction is essentially without precedent 

and represents a breakthrough in catalysis due to its rate and selectivity, no requirement for 

promoters, and use of water as a source of the hydrogen gas. 

 

Figure 4.2.  The Aldehyde-Water Shift reaction of formaldehyde and water. 

The original discovery of the hydrocarboxylation (the conversion of alkenes to carboxylic 

acids) was due to the work by Walter Reppe.
1
  Using a Ni(CO)4 catalyst precursor, he was able 



52 

 

to generate smaller carboxylic acids, such as propionic acid generated from ethylene as the 

starting olefin.  Simple nickel and cobalt systems like these require high temperatures (200-

300°C), high pressures (200-300 atm / 2925-4394 psig) of CO gas, and a H-X strong acid 

promoter (usually X = iodide) to generate the active HMX(CO)2 catalyst complex.  Even when 

using these extreme reaction conditions, the resulting reactions exhibited poor chemo/regio-

selectivity and low turnover frequency. 

 

Figure 4.3  Heck’s proposed mechanism for hydrocarboxylation using  

 a Ni(CO)4 catalyst precursor.
2
 

 The above image (Figure 4.3) shows Richard Heck’s proposed mechanism for the 

hydrocarboxylation reaction when using Ni(CO)4 as a catalyst precursor (the active catalyst 

being HNiX(CO)2)
2
.  The starting precursor Ni(CO)4 loses a carbonyl ligand to enter the cycle 

shown above.  The active HNiX(CO)2 is then formed by the oxidative addition of the HX acid 

and the loss of another carbonyl ligand.  Now the alkene can be coordinated to the Ni complex, 

involved in a migratory insertion with the hydride, and another migratory insertion with a 

carbonyl, resulting in an acyl ligand.  These steps, so far, to generate the aldehyde from the 
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starting alkene are very similar to Heck’s mechanism for Roelen’s hydroformylation using 

HCo(CO)4, but then things take a different turn.  The halide (X) and acyl ligands perform a 

reductive elimination, forming an acyl halide, which reacts with the water in solution to both 

regenerate the HX acid and to form the carboxylic acid product. 

 The popular Monsanto Acetic Acid Process utilized similar chemistry to produce acetic 

acid via the carbonylation of methanol.  This process uses Rh or Ir catalyst complexes with a HI 

acid promoter, and it operates under reaction conditions of 150-200°C temperatures and 30-60 

atm (426-867 psig) pressures of CO gas. 

 

Figure 4.4  The Monsanto Acetic Acid Process proposed mechanism. 

The mechanism proposes [RhI2(CO)2]
–
 as the active catalyst species.  After the methanol reacts 

with HI to form methyl iodide intermediate, an oxidative addition and migratory insertion take 

place, as well as an association of a carbonyl to hinder back-reaction.  The resulting acyl ligand 

is reductively eliminated with an iodide ligand, reforming the active catalyst and kicking off 

acetyl iodide.  The acetyl iodide reacts with water to produce the product acetic acid and 

regenerate the HI acid needed to continue the cycle. 
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4.2  Discovery of the Aldehyde-Water Shift Catalysis 

 The aldehyde-water shift reaction was discovered by Novella Bridges, a former 

researcher in the Stanley research lab.  An accidental gas leak in the autoclave reactor’s attached 

fittings (original Mark I design) along with a few other unspecified conditions, resulted in the 

formation of heptanoic acid during the hydroformylation of 1-hexene.
3
  This was very 

unexpected, as the typical method for the production of heptanoic acid from heptaldehyde is via 

oxidation using a catalyst in the presence of oxygen gas or other oxidizing agents.  

 

Figure 4.5  Gas chromatograph of Bridges’s accidental production of heptanoic acid. 

The production of carboxylic acids under such mild conditions (90°C, 90 psig H2:CO, 

1000 rpm stirring, 1 M olefin, 1 mM [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 catalyst precursor) is 

unprecedented.  These results sparked an interest in a new direction of research regarding our 

dirhodium tetraphosphine catalyst.  The results needed to be replicated under more controlled 

conditions, but when the gas leak in the autoclave was repaired, there was only hydroformylation 

to produce aldehyde and no production of heptanoic acid.  Even with the leak, contamination of 
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O2 in the autoclave was ruled out, as the pressurized nature of the system would not allow any 

external gases to be introduced into the reaction solution. 

 It is believed that the specific size of the gas leak in the autoclave was crucial in allowing 

the hydrogen deficient gas conditions to develop.  According to Graham’s Law of Effusion, the 

rate of effusion of a gas is inversely proportional to the square root of its molecular weight.
4
  The 

small leak in the reactor would purge out more hydrogen gas, due to its smaller molecular mass, 

than the carbon monoxide.  The rate of gas effusion is approximately 3.7x greater for hydrogen 

gas than that of carbon monoxide. 

       

       
  √

     

      
  √

            

           
          

More syn-gas would be added to maintain the 90 psig reaction pressure, and as this cycle 

continues, the atmosphere inside the reactor becomes hydrogen deficient, while allowing a 

continuous purge of gas through the reactor.   

Once the ideal gas mixture was achieved (either mostly or entirely carbon monoxide), the 

aldehyde-water shift reaction could start.  Le Chatelier’s principle states that if a chemical 

equilibrium is disturbed, then the components of the equilibrium shift in a way to counteract the 

imposed disturbance and a new equilibrium is established.
5
  Thus, purging out hydrogen gas, 

which inhibits the reaction, from the reactor headspace would help drive the aldehyde-water shift 

reaction.  Similarly, the purging of the hydrogen gas via the leak could also prevent any back 

hydrogenation of heptanoic acid to possibly reform heptanal. 

 It is also believed that the presence of too much alkene in the reaction solution also 

hinders the aldehyde-water shift reaction.  For the tandem hydrocarboxylation reaction, alkene is 

necessary for the first phase to produce the aldehyde needed for the second phase.  However, 
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given that an alkene is likely to coordinate stronger to a rhodium center than an aldehyde, the 

available coordination site would be blocked if too much alkene remained.  Thus, both the alkene 

and H2 gas levels need to be reduced to initiate the aldehyde-water shift catalysis. 

4.3  Thermodynamics, Proposed Mechanism, and DFT Calculations 

 The thermodynamics of aldehyde-water shift catalysis was studied, and the reaction is 

favorable.  The enthalpy of reaction is exothermic (ΔHrxn = – 9.6 kJ), entropy is increasing  

(ΔSrxn = +51.9 J/mol*K), and the Gibbs free energy at 90°C is spontaneous (ΔGrxn = –28.4 

kJ/mol).   

 

Aldehyde-Water Shift reaction 
ΔHrxn = –9.6 kJ/mol  (–2.3 kcal/mol) 

ΔSrxn = +51.9 J/mol*K 
ΔGrxn (@ 90°C) = –28.4 kJ/mol  (–6.8 kcal/mol) 

 

Tandem Hydroformylation/Aldehyde-Water Shift (Hydrocarboxylation) 
ΔHrxn = –166.9 kJ/mol  (–39.9 kcal/mol) 

ΔSrxn = –296 J/mol*K 
ΔGrxn (@ 90°C) = –59.3 kJ/mol  (–14.2 kcal/mol) 

Figure 4.6  Thermodynamics of the Aldehyde-Water Shift 

and tandem hydrocarboxylation  reactions.
3
 

 

Each of these values suggest that the aldehyde-water shift catalysis is possible, and the results 

seen
3
 were not just a glitch in the GC-MS software or an oxygen contamination of the reaction 

solution.  When the thermodynamics are viewed for the tandem hydroformylation / aldehyde-

water shift reaction, the enthalpy of reaction is exothermic (ΔHrxn= – 166.9 kJ), entropy is 
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decreasing (ΔSrxn = –296 J/mol*K), and the Gibbs free energy indicates at 90°C it is spontaneous 

(ΔGrxn = –59.3 kJ/mol). 

 The only other chemical reaction that is similar is the well-known water-gas shift 

reaction, hence the reason for naming our reaction the aldehyde-water shift reaction.  The 

process uses a catalyst to react carbon monoxide gas and water forming carbon dioxide and 

hydrogen gases.
6
  Our aldehyde-water shift reaction is still significantly different since it uses an 

aldehyde in place of the carbon monoxide gas, representing a far more difficult reaction. 

 The mechanism for the aldehyde-water shift reaction, proposed by Professor Stanley, is 

shown in the figure below. 

 

Figure 4.6  The proposed mechanism of the Aldehyde-Water Shift catalysis cycle. 

This mechanism shares one dirhodium complex with the hydroformylation mechanism in 

acetone (Figure 1.7), [rac-Rh2(µ-CO)2(CO)2(et,ph-P4)]
2+

.  This will be called the “nexus 

complex”; the point where the hydroformylation catalytic cycle crosses over with the aldehyde-
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water shift catalytic cycle.  From the nexus complex, the aldehyde oxygen is coordinated to one 

of the unsaturated 16e
-
 Rh(+1) centers.  Due to the donation by aldehyde’s oxygen atom to the 

rhodium, the carbon’s electron density is lowered, thus initiating a nucleophilic attack by H2O.  

The loss of a proton from the water molecule causes aldehyde-water ligand to change from 

neutral to anionic (due to forming an alkoxide ligand), thus making the overall complex 

monocationic.  The additional loss of a terminal carbonyl ligand opens up a binding site for a  

β-hydride elimination to occur, which generates the carboxylic acid and terminal hydride ligand 

on the rhodium center.  Rhodium is not oxophilic and will readily dissociate the carboxylic acid.  

The proton (lost during the splitting of the water molecule) can then attack the terminal hydride 

ligand (protonation of a relatively basic ligand), which releases molecular hydrogen regenerating 

the dicationic complex.  Finally, the carbonyl previously lost can recoordinate to the rhodium 

center, reforming the dicationic nexus complex.  The suggested rate determining steps for this 

mechanism are either the coordination of the aldehyde to the dirhodium complex or the 

deprotonation (splitting) of the water molecule, but further study is needed to be certain. 

 Past researcher, Zakiya Wilson, performed Density Functional Theory (DFT) calculations 

using Gaussian 98 on the complex [rac-Rh2(µ-CO)2(CO)2(me,me-P4)]
2+

.  This complex (which 

replaced the ethyl and phenyl groups on the tetraphosphine ligand with methyl groups) was used 

as a theoretical analog for studying the proposed nexus complex for the aldehyde-water shift 

reaction, [rac-Rh2(µ-CO)2(CO)2(et,ph-P4)]
2+

 in order to simplify the calculations while having 

minimal effects on the results.
7
  The lowest unoccupied molecular orbital (LUMO) diagram for 

this complex is shown below (Figure 4.7).  The top and bottom images are two separate views of 

the same complex.   
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Figure 4.7  Gaussian 98 DFT LUMO calculations for [rac-Rh2(µ-CO)2(CO)2(me,me-P4)]
2+

. 

(color coding for stick diagrams: Rh = blue, P = orange, O = red, C = grey, H = white) 

 

The LUMO is composed of an empty Rh pz orbital (the xy plane defined by the terminal CO 

ligands and the two internal phosphines) strongly bonding with the π* molecular orbitals for both 

the terminal and bridging carbonyls.   

    

Figure 4.8  Gaussian 98 DFT LUMO calculations for the open (left) and  

closed (right) modes of the dirhodium tetracarbonyl catalyst complexes. 
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The unification of the four CO p* orbitals (the LUMO regions) is made possible by the bridging 

CO ligands between the two rhodium centers, as shown in Figure 4.8.  The closed mode of this 

complex, [rac-Rh2(µ-CO)2(CO)2(me,me-P4)]
2+

, has a stabilized LUMO that is 0.8 eV lower in 

energy than its opened mode, [rac-Rh2(CO)4(me,me-P4)]
2+

.
8
  

 The combined effects of the cationic rhodium centers and the bonding involvement of the 

carbonyl ligands, bridging and terminal, effectively increase the electron accepting ability of this 

catalyst complex.  This will allow the aldehyde to more easily coordinate to one of the rhodium 

centers.  This electron accepting ability also pulls electron density from the aldehyde to the 

rhodium, thus promoting the electrophilic attack of the water on the aldehyde.  Experimental 

results by David Aubry agree with these findings given that the opened-mode of the 

tetracarbonyl  complex, [rac-Rh2(CO)4(et,ph-P4)]
2+

, was not capable of initiating aldehyde-water 

shift catalysis when placed in a similar 30% water-acetone solution, heated/stirred, then 

pressurized with CO gas.
8
  The use of H2 gas to form the closed-mode of the catalyst structure is 

crucial in the initial phases of the reaction.  But H2 also hinders the aldehyde-water shift 

catalysis, hence the need for the continuous gas purge as mentioned previously. 

 The enhanced electron accepting ability of the closed-mode tetracarbonyl catalyst 

complex also increases the bonding strength of the alkene coordination if there is too much 

remaining in the reaction solution.  This means that the alkene can block coordination of the 

aldehyde to the catalyst.  Similar to the concentration of H2 gas, the alkene needs to be depleted 

in order for the aldehyde bind to the catalyst and initiate the aldehyde-water shift catalysis cycle.  

Given that the hydroformylation process consumes equivalent amounts of alkene and H2 gas, as 

an alternative to the reactor gas leak, it should also be possible to initiate the aldehyde-water shift 

catalysis by starting the hydroformylation process then switching the syn-gas (H2:CO) feed to a 
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pure CO gas feed at a specific time so that the H2 present in the reactor’s headspace and the 

reaction solution is depleted at the same time the alkene is depleted, though getting the timing of 

the switch was rather tricky. 

4.4  Past Aldehyde-Water Shift Experiments 

 David Aubry was responsible for much of the previous work investigating the aldehyde-

water shift catalysis and the conditions necessary to duplicate the results.
8
  To date, the initial 

few accidental heptanoic acid productions (due to the gas leak in the autoclave) have the highest 

turnover numbers and highest turnover frequency, though David Aubry was able to replicate the 

results to some extent.   

 The original discovery of the aldehyde-water shift catalysis involved the accidental 

tandem hydrocarboxylation experiment.  The reaction conditions used were 1000 eq 1-hexene, 

1mM catalyst, 90°C, 90 psig H2:CO, 30% water/acetone catalyst solution, and 1000 rpm stirring 

(Figure 4.9).
3
  The conditions that are somewhat unknown are the length of soaking time, exact 

gas leak rate, and location of the autoclave’s gas leak.   It is currently unknown to what degree 

these last few conditions affected the results, but under these conditions, a gas leak was 

absolutely required to initiate the production of heptanoic acid from the heptanal (produced from 

1-hexene in the same reaction solution). 
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Figure 4.9  The initial tandem hydrocarboxylation reaction by Novella Bridges.
3
 

 Results showed that after 1 hr, the hydroformylation reaction had completed 675 

turnovers, resulting in 325 eq of 1-hexene and 650 eq of heptanal in solution.  By the 3 hr mark, 

150 eq of heptanoic acid had been produced, almost all of the 1-hexene had been depleted, and 

800 eq of heptanal remained.  By the final sample at the 6 hr mark, almost all that remained in 

the reaction solution was 650 eq heptanal and 300 eq of heptanoic acid.  The regioselectivity 

(L:B ratio) of carboxylic acid was actually higher than the L:B ratio of the originally synthesized 

aldehyde product.  This is likely due to the greater difficulty of the branched aldehyde to 

coordinate to the catalyst.  Once the gas leak was detected in the autoclave, it was repaired, but 

this also caused the production of heptanoic acid to cease. 

 Based on Prof. Stanley’s suggestions, Novella Bridges attempted to replicate the 

generation of heptanoic acid in a well-sealed autoclave by switching the feed gas during the 

hydroformylation reaction.  A 30% water/acetone hydroformylation run was started for 10 

minutes, then stopped the H2:CO gas feed, flushed the reservoir with pure CO gas, and opened 
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the CO gas feed to the autoclave.  This successfully allowed the aldehyde-water shift catalysis to 

take place without the presence of a gas leak in the reactor. 

David Aubry’s work sought to continue the investigation into the reaction conditions 

required to initiate the aldehyde-water shift catalysis.  Initially he attempted a similar method to 

Novella Bridges, only switching the reaction feed gas from syn-gas to pure CO at the ideal time, 

which he later determined to be approximately 10 minutes of hydroformylation reaction.  This 

would allow the remaining 1-hexene to react with the remaining H2 in the reaction solution and 

head space, in order for them both to be consumed evenly until completion.  The conditions used 

in the first 10 minutes were identical to those used for hydroformylation reactions.  

 

Figure 4.10  Quantitative GC Analysis of David Aubry’s Hydrocarboxylation Experiment.
8
 

 The reaction was a success.  The results showed that the initial 10 min TOF 

hydroformylation step was approximately 75 min
-1

, as reflected by syn-gas consumption, with a 

regioselectivity of 28:1 L:B ratio.  After the first 10 min of reaction, the gas feed was switched to 

pure CO gas (just as previously done).  The resulting aldehyde-water shift step had an initial rate 

of 28.3 min
-1

 (via GC analysis) with a regioselectivity of 60:1 L:B carboxylic acid ratio. 
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 The tandem hydrocarboxylation reaction was not as reproducible as the standard 

hydroformylation reaction performed by our research group.  While in all cases some of the 

alkene charged in the reactor was converted via hydroformylation to heptanal, approximately 

25% of these reactions (where the gas switch was performed at 10 min) failed to produce any 

heptanoic acid, while the other 75% produced approximately 700 turnovers of heptanoic acid, as 

shown in Figure 4.10.  The inconsistencies indicated that the conditions being used were not yet 

optimized, but this does not explain why reactions only showed either high turnover values or 

almost no turnovers without any intermediate results.  Regardless, it is still believed that the 

conditions necessary for this reaction to be initiated are very specific. 

 David Aubry also attempted the aldehyde-water shift catalysis as the direct aldehyde to 

carboxylic acid, in order to further investigate the conditions necessary to initiate and optimize 

the mysterious reaction.  The dirhodium catalyst precursor, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2, was 

soaked under 1:1 H2/CO at 90°C with stirring (assumed 20 min soaking time but unknown) to 

generate the active catalyst.  Then, the feed gas was switched to pure CO gas, and a needle valve 

was attached to the reactor to employ a continuous purge of the reaction vessel.  A purge rate of 

4-5 psig/min was able to initiate the aldehyde-water shift catalysis and resulted in a conversion 

of 75% of the heptanal reagent into heptanoic acid with a TOF of 16.7 min
-1

 and undetectable 

side products.  The direct aldehyde-water shift reaction is extremely sensitive to the reaction 

conditions, timing, and purge rates. 

 Since 2004, a few researchers have attempted to replicate these results, however no one 

has been able to yield any production of heptanoic acid using either 1-hexene (via tandem 

hydrocarboxylation) or heptanal (using direct aldehyde-water shift) until my results described in 

the following sections.   
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4.5  Controlled Conditions for Aldehyde-Water Shift Experiments 

 The difficulty in getting the aldehyde-water shift catalysis to work is most likely tied into 

very specific reaction conditions needed.  Both Aubry and Bridges found that running the initial 

hydroformylation reaction for 5 min or 15 min would not produce any carboxylic acid.  Since 

that time, the design of the autoclave has greatly changed (Mark II autoclave design) as well as 

the gas manifold design.  Through extensive testing, it has been determined that the new 

autoclave design has performed equal to or better than the previous design in hydroformylation 

test runs, so the issue must lie in the exact conditions to which the reaction solution is subjected.  

All reactions run in the autoclaves control/record (via computer controller) the reactor pressure, 

reactor temperature, gas reservoir pressure, gas reservoir pressure, and stirring speed, and if 

using the Mark III autoclave design, the conditions of gas flow rate into the reactor and from the 

reactor can also be controlled.   

Using a combination of these recorded values and GC-MS data collected via reaction 

solution sampling, the tandem hydrocarboxylation reactions (hydroformylation reaction then 

switched to aldehyde-water shift conditions during reaction) were monitored/tested on the 

following conditions: hydroformylation reaction results (including number of turnovers, initial 

turnover frequency, and reaction time), catalyst solution soaking, reactor vessel purge, reaction 

gas feed (gas composition and flow rate), controlled reactor vent/purge rate, olefin concentration 

remaining during reaction switch, catalyst batch, reactor number, additives, and aldehyde-water 

shift reaction results (number of turnovers, turnover frequency, and reaction time).  During the 

performance of the straight aldehyde-water shift reaction (using reagent aldehyde to produce 

carboxylic acid and hydrogen gas) the same reaction conditions above were used, though 
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conditions such as hydroformylation reaction results and remaining olefin concentration were not 

applicable. 

 The hydroformylation reaction results are very important to consider when performing 

the tandem hydrocarboxylation reactions.  The timing of the syn-gas feed being switched to pure 

CO gas was crucial in being able to achieve the ideal amounts of remaining hydrogen gas and 

olefin so that they deplete each other evenly and completely.  The amount of hydroformylation is 

also critical for determining when the reaction gas switch happens.  The number of turnovers is 

important because, similar to controlling the moment of gas switch using time, it is often a more 

consistent method of ensuring the proper amount of remaining alkene in the reaction solution.  

Since the turnover frequency may vary between catalyst samples, switching times may need to 

be adjusted to achieve optimum results for aldehyde-water shift catalysis. 

 The catalyst solution soaking, as previously mentioned, is the 20 minute time span where 

the 30% water-acetone catalyst solution is heated and stirred under pressurized H2:CO gas in 

order to generate the active form of the catalyst species in situ.  Without any H2 gas, the catalyst 

precursor, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2, will not activate, and none of the reactions 

performed will work.  Upon exposure to H2:CO gas, almost immediately the catalyst precursor 

begins to displace the norbornadiene ligands in favor of CO ligands, followed by the formation 

of the closed-mode dirhodium catalyst species.  However, heating is required to shift the 

bridging hydride into the terminal position, which is then capable of reacting with the alkene 

upon pressure injection into the catalyst solution.  The 20 min span is stretched out to ensure the 

autoclave temperature stabilizes properly (at 90°C).  For almost all reactions soaking was 

performed, although there were a few times it was not, in order to show that it was a necessary 
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process for the straight aldehyde-water shift reaction, since the reaction does not use H2 gas, but 

it is required for the catalyst to activate. 

 In all cases, the arms and attached hoses of the autoclave reactor were purged during the 

gas switch to better replicate the conditions experienced by the original Mark I autoclave which 

had no reactor arms and therefore, less headspace.  This additional space filled with pressurized 

H2:CO would not have been a factor in the previous results, and so to have the reaction 

conditions as identical as possible using the Mark II and Mark III autoclave designs, the reactor 

arms and attached hoses needed to be purged.  In some experiments, the reactor vessel was 

purged for some experiments between the soaking process and initiating the controlled gas 

flow/purge (the start of the aldehyde-water shift reaction step).  If this was not done, then the 

reactor vessel was left to remove the remaining hydrogen gas via hydroformylation with the 

remaining olefin or to continuously purge during reaction (if a gas flow was initiated).  Each 

option was explored during these investigations. 

 The reaction gas composition and flow rate is the most important variable set that was 

tested during all the experiments on the aldehyde-water shift catalysis.  Several different kinds of 

gases and mixtures were used to pressurize the reactor and flow through the reaction solution.  

The most common gases tested were pure and mixture compositions of CO, H2, and/or Ar.  

Experiments using reaction conditions at 90 psig and 50 psig were also used, in the hopes that a 

reduced pressure would promote the production of H2 gas during the aldehyde-water shift 

catalysis.  Given that all of the previous successful attempts at the aldehyde-water shift reaction 

(both as a standalone reaction and as part of a tandem reaction) utilized standard 

hydroformylation reaction conditions, most of the experimental conditions that will be tested are 

modifications of those conditions.  One significant difference used for gas flow rates is the use of 



68 

 

standardized units.  Bridges and Aubry used the units of “psig per minute” to record the flow rate 

of gases through their reaction solution.  Using the new mass flow controller and the I/P-BPR, 

the new flow rates are recorded as units of standard cubic centimeters per minute (sccm).  The 

problem with using non-standardized units (psig/min) is that if the volume of the source gas 

reservoir is ever changed (whether using a different gas manifold or using a large gas cylinder 

for the source) then the psig/min values are not transferrable or consistent.  Using sccm units to 

record the flow rate of the gases keeps the values constant and accurate regardless of the gas 

reservoir or cylinder’s volume.  For our autoclave setup, the volume of the gas reservoir used for 

the Mark III flow control autoclave was 318 cm
3
 (close to the volume used in the original Mark I 

autoclave design).  The conversion of units for the gas flow rate is approximately “10 sccm = 

0.47 psig/min”.  This would be extremely valuable when published, and if there was any hope in 

trying to duplicate these results using a different autoclave system setup. 

 The remaining alkene concentration in the reaction solution at the time of the reaction gas 

switch (the start of the aldehyde-water shift step) is an important variable to know, and it is 

similarly tied in with the number of hydroformylation turnovers calculated via pressure drop.  

This is just another way to determine the exact point when the gas switch should happen.  If the 

amount of alkene in the reactor is too high at the point of the gas switch from syn-gas to pure CO 

gas, then it will inhibit coordination of the aldehyde to the catalyst.  If there is no continuous 

flow/purge of pure CO through the reactor, then the reaction will also not work due to hydrogen 

gas still being present even after all the alkene is consumed.   With a continuous gas purge 

through the reactor, it may be possible for the reaction to succeed if the olefin concentration is 

equal to or lower than the H2 present in the system capable of performing hydroformylation.  We 

know the gas switch should happen under hydrogen deficient conditions, but it is currently 
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unknown what amount of hydrogen gas remaining (if any) is ideal to initiate the aldehyde-water 

shift catalysis. 

 The catalyst batch and reactor number are just two conditions monitored in the event that 

a contamination could possibly be affecting the results of the catalytic runs.  If a specific set of 

reaction conditions were able to successfully run one time and not on another, these two 

variables could be checked for any differences or chances.  Considerations like this may have 

been unnecessary, but given the difficulty in the past of reproducing the aldehyde-water shift 

catalysis, every angle was considered when recording these aldehyde-water shift investigations.  

The additives variable was just in case any extra chemicals were included in an experimental 

trial to see if it promoted or diminished the success of the aldehyde-water shift catalysis. The use 

of an additive in our work is very uncommon, and most of those times the “additive” was 

heptanoic acid, to see what effect it had on the catalytic solution prior to the injection of 1-

hexene or heptanal reagents. 

 Finally, the results for the aldehyde-water shift reaction, including the number of 

turnovers, turnover frequency, and reaction time, were recorded to determine the success or 

failure of the tested set of conditions.  Ideally, we would like to get the number of turnovers and 

the turnover frequency as high as possible, while limiting the reaction time to only a few hours.  

Experimental trial reaction times ranged from 3 hrs to 18 hrs, while most reaction times were 

approximately 6 hrs.  In all cases, the Mark III autoclave reactor design was used to allow for a 

controlled purge of gas through the reaction vessel. 

4.6  Aldehyde-Water Shift Catalysis Experiments 

 The experiments run on the aldehyde-water shift reaction (both as a tandem 

hydrocarboxylation reaction and as a direct aldehyde to carboxylic acid) mostly focused on 
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altering gas switching times, reactor pressure, reaction gas composition, and gas flow rate.  In all 

cases the reagent used (whether 1-hexene or heptanal) was always 1000:1 equivalents to the 

catalyst precursor used, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2.  All reactions used the Mark II or Mark 

III autoclave designs to pressurize the catalyst solution (in 30% water/acetone solution) while 

heating to 90°C and stirring at 1000 rpms.  The experiments were deemed successful if ≥ 0.02 M 

heptanoic acid concentration (greater than 22.5 turnovers for the aldehyde-water shift catalysis) 

was detected in the reaction solution via GC-MS sample analysis.  This amount was selected 

after exposing the reaction solution to a 3:1 CO/O2 gas mixture for 15 minutes, which resulted in 

the production of ≤ 0.02 M heptanoic acid (a high estimate for the possible oxygen 

contamination effects during sampling). 

4.6.1  Activation of catalyst precursor using CO gas 

 A few experiments were performed to attempt an unlikely activation of the catalyst 

precursor, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2, using pure CO gas and H2O.  In no case was any 

hydroformylation or aldehyde-water shift activity seen via GC-MS analysis.  This agrees with 

past research that indicated H2 gas is necessary for the catalyst to form the closed-mode species, 

and CO gas alone is not enough.  However, high-pressure NMR experiments by Darina Polakova 

have indicated that some activated catalyst species is formed under exposure to pure CO gas and 

water.
9
  This has been attributed to a small amount of H2 gas being formed via the water-gas shift 

reaction (CO gas and H2O reacting to form H2 and CO2 gases).  While spectroscopically some of 

the activated catalyst species is formed, the amount is far too low to perform much 

hydroformylation or any aldehyde-water shift catalysis.  The overall result determined that in all 

reactions involving the aldehyde-water shift catalysis, prior soaking of the catalyst solution using 

syn-gas (H2:CO) with heating and stirring is necessary. 
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4.6.2  Tandem hydrocarboxylation experiments using 90 psig CO gas 

 The following series of experiments were attempted performing the aldehyde-water shift 

catalysis as tandem to the hydroformylation reaction.  After the soaking of the catalyst solution, 

1-hexene was pressure injected, initiating the hydroformylation catalysis.  The reaction time used 

for the hydroformylation step was varied between 10 minutes and 65 minutes (5 minute 

intervals), thus altering the concentrations of produced heptanal and remaining 1-hexene in the 

solution.  The gas feed was then switched to 90 psig CO in order to allow the remaining H2 gas 

in the reaction vessel to be consumed along with the remaining 1-hexene in solution, while still 

maintaining a pressurized atmosphere.  After the gas switch, a continuous purging of the reactor 

was initiated (in some experiments) with flow rates ranging between 0 – 50 sccm (10 sccm 

intervals), at 100 sccm, at 150 sccm, and at 200 sccm. Some of these reaction conditions would 

hopefully initiate the aldehyde-water shift catalysis.  

 Aubry’s reaction conditions were attempted several times (gas switch to pure CO after 10 

min hydroformylation reaction time), however no heptanoic acid was ever produced.  While 

there is some controversy as to the TOF achieved by Aubry’s experiments, as his tandem 

hydrocarboxylation data shows, for the hydroformylation step, an initial TOF of 75 min
-1

 (Figure 

4.10 shows an initial TOF) while his other hydroformylation experiments show an initial TOF of 

30 min
-1

 (Table 2.1, which is more similar to the frequency seen during reaction runs by 

Alexander, Polakova and myself).  Due to this uncertainty, a series of experiments tested several 

gas switch times between 10 min and 65 min (using 5 minute intervals).  The conditions yielding 

some heptanoic acid production was the gas switch at 45 and 50 minutes (only resulting in ~35 

turnovers), which happened to be approximately 800 turnovers of conversion to aldehyde, 
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similar to Aubry’s findings if the gas-switch point is determined by TON instead of reaction 

time.   

 When attempting using a continuous gas purge to initiate the aldehyde-water shift 

catalysis, the experiments ran the hydroformylation step between 40 – 120 min reaction times 

(10 and 15 minute intervals) of completion before a CO gas purge was initiated with flow rates 

of 10 – 50 sccm (10 sccm intervals), at 100 sccm, at 150 sccm, and at 200 sccm.  It is believed 

that gas-switch times after the 45 – 50 min mark (more importantly after 800 turnovers), the 

remaining 1-hexene is too low in concentration to deplete the remaining H2 to a level low enough 

to initiate the aldehyde-water shift catalysis.  However, initiating a controlled CO gas purge 

would maintain the autoclave pressure while removing any H2 present in the vessel and any that 

may be produced by the aldehyde-water shift reaction.  Successful purge rates by past 

researchers during the accidental reactor leak of syn-gas are ~0.17 psig/min (equivalent to ~5 

sccm), a syn-gas purge of 2 – 5 psig/min (equivalent to 43 – 106 sccm), and for a direct aldehyde 

to carboxylic acid conversion, a CO gas purge of 4 – 5 psig/min (equivalent to 85 – 106 sccm) 

following catalyst solution soaking.
3, 8

 

 Despite several attempts using the various gas-switch times and purge rates, the most 

successful experiments used a 35 sccm CO gas flow rate initiated after ~950 turnovers 

hydroformylation (120 min reaction time), resulting in 45 turnovers of heptanoic acid after 4 hrs.  

The high conversion rates of heptanal previously achieved were not seen.  The only reaction 

conditions that produced heptanoic acid used a gas flow rate almost 3 times lower than Aubry’s 

flow rate for CO gas. 

In the case that some of the previous catalytic runs truly experienced an initial TOF of 75 

min
-1

, it would be possible that a small amount of catalyst degradation could be hindering the 
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initiation of the aldehyde-water shift step due to the longer successful gas-switch times (40 min 

vs. 10 min).  A few experiments, a 1-hexene/heptanal mixtures were used as reagents (50/950 eq, 

150/850 eq, and 200/800 eq) in an attempt to perform a small amount of hydroformylation (thus 

ensuring all the same catalyst complexes formed for the hydroformylation reaction), then be able 

to perform the gas-switch to pure CO at the original 10 min mark with similar amounts of  

1-hexene remaining in solution.  In most cases, the gas was simply switched to pure CO, but in a 

few cases, a controlled CO gas purge was used. Unfortunately, all of the 1-hexene/hepanal mix 

reagent experiments failed to perform any aldehyde-water shift catalysis. 

4.6.3  Direct aldehyde-water shift experiments using 90 psig CO gas 

 Based on previous work, it is also possible to perform the aldehyde-water shift reaction 

as the direct conversion of aldehyde (heptanal) to carboxylic acid (heptanoic acid).
8
  The catalyst 

solution underwent the soaking process using syn-gas while heating and stirring.  In previous 

experiments, it is unclear as to whether or not the heptanal was added to the pressure inject 

reservoir (added after catalyst soaking) or added to the reaction vessel prior to soaking, so both 

scenarios were tested.  After soaking, the heptanal reagent was added to the catalyst solution (if 

not already done so), and the reaction gas feed was switched to 90 psig CO gas with a controlled 

purge rates ranging between 0-60 sccm (10 sccm intervals), 100 sccm, 150 sccm, and 200 sccm. 

 None of these reaction conditions tests successfully produced any heptanoic acid.  This 

furthered our belief that there were more factors affecting the initiation and success of the 

aldehyde-water shift catalysis than previously believed. 

4.6.4  Direct aldehyde-water shift experiments using 50 psig CO gas 

 Experimentation continued to attempt optimization of the reaction conditions.  Due to the 

aldehyde-water shift catalysis generating an equivalent amount of heptanoic acid and H2 gas 
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from heptanal and water, lowering the pressure inside the reactor should favor the products in the 

reaction equilibrium and increase the number of turnovers.  High pressure is more important for 

hydroformylation since it consumes gases, but this reaction should not require high pressures to 

force gas into the solution.  Although the Mark III autoclave design has a high pressure 

condenser attached, the reaction solution should not be allowed to boil, thus ensuring a constant 

water/acetone ratio.  The boiling point of the catalyst solution was found to be approximately the 

boiling point of its main component, acetone.  Using the vapor-pressure curve for acetone,
10

 it 

was determined that at 90°C the catalyst solution would begin to boil if the pressure dropped to 

42 psig.  For these experimental reaction runs, 50 psig was used to maximize the pressure 

lowering effect while safely keeping the solution in the liquid phase.  Similar conditions to the 

previous aldehyde-water shift experiments were tested using an autoclave pressure of 50 psig CO 

after venting to the operating pressure from the soaking process. 

 The lowering of the autoclave pressure did successfully produce some heptanoic acid for 

the experiments where a 20 sccm flow rate using 50 psig CO was initiated following the catalyst 

solution soaking.  The tests where the aldehyde was added directly to the reaction solution prior 

to soaking yielded more turnovers (45 TON) than if pressure injected (33 TON), so these 

conditions are certainly a step in the right direction.  This gas flow rate is far lower than those 

used by Aubry (4 – 5 times lower), but when similar flow rates were used, no increase in 

heptanoic acid concentration could be detected.  Due to the positive results seen for these 

experimental aldehyde-water shift conditions, the lower reaction pressure was then applied to the 

tandem hydrocarboxylation reaction. 
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4.6.5  Tandem hydrocarboxylation experiments using 50 psig CO gas 

 Based on all the past successful reaction conditions for the tandem hydrocarboxylation 

and direct aldehyde-water shift reactions, the conditions showing any detectable increase in 

heptanoic acid concentration were retested using 50 psig CO atmosphere for the aldehyde-water 

shift step of the tandem reaction.  In all cases, the catalyst solution would be activated using the 

soaking process, followed by the pressure injection of the olefin (1-hexene).  The 

hydroformylation step would continue until the desired amount of 1-hexene was consumed 

(ranging between 750 – 900 turnovers), then the reactor was vented to 50 psig and the feed gas 

switched to 50 psig CO (in the cases where a continuous gas purge was used, the flow rate was 

20 sccm). 

 The experiments utilizing a 50 psig pressure for tandem hydrocarboxylation reactions 

yielded the highest production values of heptanoic acid (150 turnovers) since the results obtained 

by Aubry and Bridges (700 turnovers).  Over half of the experiments performed, where the gas 

was switched to 50 psig CO after most of the 1-hexene was consumed and using no continuous 

gas purge, successfully generated heptanoic acid.  The experiments with the gas-switch 

performed at 850 and 950 turnovers for the hydroformylation reaction produced between 80 – 

150 turnovers of heptanoic acid.  In this case, just like all other reaction results, only the linear 

carboxylic acid (heptanoic acid) was produced with no detectable amount of branched carboxylic 

acid (2-methylhexanoic acid).  Unfortunately no tandem hydrocarboxylation reaction attempt 

using 20 sccm continuous purge of 50 psig CO gas was able to successfully perform any 

aldehyde-water shift catalysis. 
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4.6.6  Aldehyde-water shift experiments using argon gas 

 In Chapter 2 it was discussed that too high of a CO gas pressure could result in the 

deactivation and degradation of the catalyst complex (Figure 2.2).  The nexus complex,  

[rac-Rh2(µ-CO)2(CO)2(et,ph-P4)]
2+

, is proposed to be the active catalyst for aldehyde-water 

shift, and DFT calculations indicate that the coordination of another carbonyl ligand can crack 

open the closed-mode species.  Since this catalysis does not consume any net amount CO gas, 

the reaction may be improved by the use of an inert gas (pure or mixed with CO gas) to initiate 

the production of heptanoic acid and H2.   

A series of experiments were conducted for the direct aldehyde-water shift reaction.  

Following the soaking of the catalyst solution, the heptanal reagent was pressure injected into the 

activated catalyst solution, followed by a continuous 50 psig Ar gas purge at flow rates ranging 

between 0 – 60 sccm.  Unfortunately, these conditions yielded only minimal success.  The only 

successful reaction conditions used a 20 sccm gas flow and only performed 22 turnovers after 5 

hrs of reaction time.  The argon gas flow experiments also caused the unexpected side effect of 

darkening the reaction solution color from a rich orange-red to a dark red-brown color.  For 

lower flow rates (0 – 30 sccm), the color darkening would happen around between 60 – 120 min 

of reaction, while for the higher flow rates (40 – 60 sccm), the color darkening happened at or 

before 30 min of reaction.  No detectable amount of heptanoic acid was seen produced after the 

solution’s color change.  It is believed that this color change is due to the formation of a new 

catalyst degradation rhodium complex caused by the removal of CO gas from the autoclave thus 

destabilizing the tetracarbonyl nexus complex.  Attempts to grow/collect crystals from the 

organic layer (for x-ray crystallography analysis) of the post-reaction catalyst complexes failed.  
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Attempts using FT-IR spectroscopy via the ReactIR autoclave to gain insight into the new 

degradation complex also failed due to the significant loss of solvent during purging. 

Due to this new catalyst deactivation issue, the previous argon gas flow experiments were 

repeated using argon/CO gas mixtures (2:1 and 9:1 ratios) were used for direct aldehyde-water 

shift reactions.  The small amount of CO gas present throughout the reaction should prevent the 

deactivation seen from the previous argon gas flow, and the argon gas keeps the overall reactor 

pressure higher without having to risk the possible degradation from excess CO.  While the 

argon/CO gas mixtures did succeed in preventing the dark color change seen previously, none of 

the experiments produced any detectable amounts of heptanoic acid.  Overall, since only one of 

the argon gas experiments was capable of producing a small amount of heptanoic acid under 

aldehyde-water shift conditions, it is not being considered as a viable route to optimizing this 

catalysis. 

4.6.7  Tandem hydrocarboxylation experiments using a syn-gas (H2:CO) purge 

The discovery of the aldehyde-water shift catalysis was due to an accidental gas leak in 

the autoclave reactor, resulting in the slow purge of syn-gas.  It was believed that due to 

Graham’s law of effusion, the lighter H2 gas was leaving the reactor faster than the heavier CO 

gas, and as the gas feed continued to inject a 1:1 mixture of H2:CO, the resulting atmosphere 

inside the reactor vessel was almost pure CO gas.  As mentioned previously (Chapter 4.6.2), the 

only reported successful syn-gas purge rates to initiate the tandem hydrocarboxylation reaction 

(without using a gas-switch) are Bridges’s accidental reactor leak of syn-gas ~0.17 psig/min 

(equivalent to ~5 sccm) and Aubry’s syn-gas purge of 2 – 5 psig/min (equivalent to 43 – 106 

sccm).  
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These reaction conditions were tested several times using either the digital MFC or a 

needle valve atop the condenser arm (ensuring a continuous purge despite the changing rate of 

syn-gas consumption) to control the purge rates.  Syn-gas purge rates were tested ranging from 

~0.45 psig/min (10 sccm) up to ~4.0 psig/min (85 sccm) while maintaining a 90 psig pressure 

inside the autoclave.  In no case so far has any heptanoic acid been produced using a continuous 

purge of H2:CO gas.   

4.6.8  Overall aldehyde-water shift experimental results 

 For the first time in 8 years, since Aubry reported his findings in his dissertation,
8
 the 

aldehyde-water shift catalysis (both direct and tandem reactions) was successfully performed 

using controlled reaction conditions.  Replication of past results have been made more difficult 

due to autoclave and gas manifold design modifications, process controller upgrades, and lack of 

detailed raw experimental data from previous work.  Despite the lower number of turnovers and 

turnover frequency of these results, they represent the first reproducible, successful attempts at 

the aldehyde-water shift catalysis using our current generation of the autoclave reactors. 

 In all cases, the catalyst must be activated in situ by placing the catalyst precursor 

solution ([rac-Rh2(nbd)2(et,ph-P4)](BF4)2 dissolved in a 30% water-acetone solution) in the 

autoclave reaction vessel, then pressurizing it with H2:CO gas with heating (90°C) and stirring 

for 20 minutes.  For the tandem hydrocarboxylation reactions, the best results were achieved by 

proceeding with the hydroformylation reaction until 75 – 90% of the 1-hexene has been 

consumed, then followed by the venting of the autoclave to 50 psig and switching the gas feed to 

50 psig CO.  After allowing the reaction to continue for 8 hrs, 150 turnovers (~0.13 M 

concentration) of heptanoic acid were detected via GC-MS, with no detectable amounts of the 

branched carboxylic acid side product.  For the direct aldehyde-water shift reaction, the best 
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results were achieved by maintaining a 50 psig autoclave pressure using pure CO gas and 

initiating a 20 sccm gas immediately following the catalyst soaking process.  These conditions 

yielded 45 turnovers (0.04 M concentration) of heptanoic acid, as detected via GC-MS, after a 

reaction time of 6 hrs.  

4.7  Conclusions 

While the results of this research into the aldehyde-water shift catalysis are far from 

matching the number of turnovers and turnover frequency seen by Bridges and Aubry, the 

reproducibility and plethora of variables controlled/monitored are of key importance to finally 

understanding and optimizing this extremely valuable catalytic process.  Given the high number 

of reaction condition variables controlled and monitored for these experiments, the number of 

possible combinations is vast.  But given its unprecedented nature and the possible applications 

for this process, the optimization of reaction conditions for the aldehyde-water shift catalysis is 

definitely a goal worth pursuing. 
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CHAPTER 5:  EXPERIMENTAL 

5.1  Synthesis of Phenylphosphine 

In a 500 mL Schlenk flask, dichlorophenylphosphine (55.5 mL, 409 mmol) and 302 mL of t-

glyme were added to yield a colorless solution.  To a second 1000 mL Schlenk flask, lithium 

aluminum hydride (19.93 mL, 478 mmol) (aka: LAH) and 517 mL of t-glyme were added to 

yield a grey solution.  Both flasks were cooled to -5°C and maintained at that temperature for at 

least 30 minutes.  The dichlorophenylphosphine solution was then added slowly to the LAH 

mixture via a large bore cannula at a rate of ~1 drop per second while the temperature maintained 

below 0°C the entire time.  Upon completion of the addition, the reaction mixture is allowed to 

warm to room temperature and stir at least 1 hour.  The phenylphosphine product is removed via 

a trap-to-trap distillation.  Isolated Yield: 80%.  
31

P NMR: -121 ppm. 

 

5.2  Synthesis of Bis(phenylphosphino)methane (aka: Bridge) 

A 500 mL Schlenk flask with a stir bar was charged with phenylphosphine (20.0 g, 182 mmol), 

dichloromethane (5.91 mL, 92 mmol), and DMF (133 mL) to give a colorless solution (solution 

A).  The solution was placed in an ice bath and allowed to stir for at least 30 min.  A potassium 

hydroxide solution (35.8 g, 638 mmol) (solution B) was then slowly added dropwise to solution 

A over a 30 min period (minimum) to give an orange/yellow solution with a ppt.  The solution 

was allowed to stir under nitrogen at room temperature until it became colorless with a white ppt.  

Distilled water (~50 mL) was then added to the solution to dissolve any solid KCl.  The product 

was extracted with pentane (3 x 150 mL) via cannula into a clean Schlenk flask.  The 

pentane/product solution was then heated to 80°C in a water bath under reduced pressure to 
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remove pentane and impurities, yielding a viscous, slightly yellow product.  Isolated Yield: 50%.  

31
P NMR: -53 ppm (racemic), -54 ppm (meso) 

 

5.3  Synthesis of Chlorodiethylphosphine 

A 1000 mL Schlenk flask with a stirbar was charged with Phosphorous trichloride (100.0 g, 730 

mmol) and t-glyme (double the volume of PCl3) to give a colorless solution.  A 500 mL Schlenk 

flask was charged with Diethylzinc (99.3 g, 804 mmol) and t-glyme (double the volume of 

ZnEt2) to give a colorless solution.  Both flasks were then placed in ice baths for ~30 min.  With 

vigorous stirring, the diethylzinc solution was slowly added dropwise via cannula to the PCl3 

solution.  After addition, the reaction mixture was allowed to stir at room temperature for 1 hour.  

The product was then collected via trap-to-trap distillation with heating into a clean pre-weighed 

Schlenk flask.  Yield: ~70%. 
31

P NMR: 112 ppm (PEt2Cl product), 66 ppm (PCl2Et, acceptable 

in small amounts) 

 

5.4  Synthesis of Diethylvinylphosphine 

A 500 mL Schlenk flask with a stir bar is charged with vinylmagnesium bromide (226 mL, 226 

mmol) in THF and t-glyme (200 mL) to give a brown solution with a white ppt.  A second 500 

mL Schlenk flask is charged with chlorodiethylphosphine (25.55 g, 205 mmol) and  

t-glyme (225 mL) to give a colorless solution.  At least 95% of the THF is removed under 

reduced pressure with heating and stirring.  Both flasks are then placed in an ice bath for at least 

30 min.  The chlorodiethylphosphine solution is then added dropwise via cannula to the 

vinylmagnesium bromide solution with stirring.  The reaction turns light yellow with a white ppt.  
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The solution is heated to 90°C, and the product is collected into a clean, pre-weighed Schlenk 

flask via trap-to-trap distillation.  Yield: ~85%.  
31

P NMR: -18 ppm 

 

5.5  Synthesis of et,ph-P4 ligand (mixed racemic and meso) 

A small Schlenk flask with a stir bar  is charged with bis(phenylphosphino)methane (1.0 mol eq) 

(aka: "Bridge") and vinyldiethylphosphine (2.2 mol eq).  The solution is then exposed to UV 

light with stirring for at least 8 hours (generally overnight).  The reaction mixture becomes 

vicous as the reaction occurs.  The flask is then placed under reduced pressure with heating 

(~90°C hot water bath) to remove the excess vinyldiethylphosphine.  Yield (mixed rac/meso): 

>85%.   31P NMR: -17 ppm (arms), -25 ppm (racemic), -26 ppm (meso) 

 

5.6  Hexane Separation of racemic and meso et,ph-P4 ligands 

Add hexane to the mixed rac/meso-et,ph-P4 product, then place in the freezer for at least 6 hours 

or overnight.  The meso product will crystallize out with hexane while the racemic product 

remains in solution with hexane.  The solution layer is transferred into a separate Schlenk flask, 

leaving behind the meso-product/hexane frozen mixture.  The hexane can be removed under 

reduced pressure.  This process is repeated until the product mixture is ≤ 80% racemic. 

 

5.7  Racemization of et,ph-P4 ligand 

This procedure can be used to racemize pure meso or racemic et,ph-P4 ligand and return it to the 

original diastereomer mixture (~52% racemic / 48% meso).  The ligand is placed in a Schlenk 

flask under nitrogen atmosphere.  The flask is then heated in an oil bath at 120°C with stirring 

for 12 hrs or overnight.  See Appendix A.14. 
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5.8  Synthesis of mixed Ni2Cl4(et,ph-P4) 

The ligand solution, in ethanol, was added dropwise to a rapidly stirring solution of NiCl2 in 

ethanol and allowed to at least 12 hours or overnight.  This mixture was then filtered to remove 

the orange precipitate, mainly meso-Ni2Cl4(et,ph-P4).  This precipitate was then rinsed three 

times with ethanol (30 mL portions).  The filtrate was then concentrated under vacuum to yield a 

dark tarry amorphous solid, mainly rac-Ni2Cl4(et,ph-P4). 

 

5.9  Cyanolysis of Filtrate Residue 

A Schlenk flask containing rac-Ni2Cl4(et,ph-P4) (4.2 g, 6.26 mmol) was charged with 40.83 g 

NaCN (0.833 mol, 133 equiv.) in 250 mL of water and 100 mL methanol.  The solution was 

allowed to slowly stir for approximately three hours while the solution turned from orange to red.  

The solution was then charged with 46.1 g (0.94 mol, 150 equiv.) of NaCN, then stirred slowly 

until all the NaCN dissolves (~30 minutes).  The free ligand was then extracted in three 100 mL 

aliquots of benzene, yielding a light yellow solution.  The solution was then passed through a 

neutral alumina column and the solvent removed to yield 2.00 g of 70% pure rac-et,ph-P4. 

 

5.10  Cyanolysis of meso-Ni2Cl4(et,ph-P4) 

Meso-Ni2Cl4(et,ph-P4) (6.9 g) was added to a Schlenk flask with 140 mL degassed deionized 

water and allowed to stir for 2 hours to yield a dark red solution.  A solution of 2.4 g NaCN in 69 

mL of water was then added dropwise very slowly (1 drop per 5 seconds) with slow stirring.  

Following, 138 mL of methanol was then added followed by 24.2 g NaCN and allowed to stir 

rapidly causing a bright red solution.  The free ligand was then extracted with four 100 mL 
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aliquots of benzene, yielding a bright red solution.  The red color is removed by passing the 

solution through two 12 inch fritted columns of neutral alumina, and the benzene is removed 

yielding 1.0 g of free ligand, in a 3:1 ratio of racemic to meso. 

 

5.11  Synthesis of Rh(CO)2(acac) 

A 250 mL Schlenk flask is charged with Rh(CO)2(acac) (3.00 g, 11.54 mmol) and norbornadiene 

(85 mL, 836 mmol) forming a dark green solution.  The solution is refluxed at 90°C overnight 

forming a yellow solution.  The solution is filtered, and excess nbd is removed under pressure 

yielding a yellow solid.  The product is then recrystallized by adding THF and hexane and 

placing the mixture in the freezer overnight.  Isolated yield: ~90%.  
1
H NMR: 1.2-2.0 ppm (CH2 

of nbd, CH3 of acac), 3.8-4.0 ppm (CH of nbd), 5.3 ppm (CO-CH-CO of acac), 6.2 and 6.7 ppm 

(olefinic CH of nbd). 

 

5.12  Synthesis of [Rh(nbd)2](BF4) 

Rh(nbd)(acac) (1 equiv) is dissolved in THF forming a yellow solution, and cooled to -20°C. 

HBF4*OEt2 (2 equiv) is added dropwise with stirring producing a dark red solution.  This 

addition is then followed by the dropwise addition of norbornadiene (4.5 equiv) which produces 

an orange precipitate.  The flask is placed in the freezer for 1 hr 45 min
†
, and the precipitate is 

collected by filtration.  The product is washed with ~150 mL of hexane.  Isolated Yield: ~90%.  

1
H NMR: 1.7 ppm (CH2 of nbd), 4.3 ppm (CH of nbd), 5.3 and 5.6 ppm (olefinic CH of nbd). 

†
Note: Cool flask 105 min (1 hr 45 min) exactly.  Reaction will not complete properly if not left 

in freezer long enough, however the product may polymerize if left longer than 2 hours. 
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5.13  Synthesis of [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 

5.13.1  (method #1) 

[Rh(nbd)](BF4) (2 equiv) and >80% rac-et,ph-P4 (1 equiv) are dissolved separately in CH2Cl2 

(~20mL each) and placed in separate Schlenk flasks.  The rac-et,ph-P4 solution is added 

dropwise to the rhodium complex solution with stirring.  The CH2Cl2 is removed under reduced 

pressure.  Acetone is then added to the solid allowing the pure racemic product to recrystallize.  

Any meso product will not recrystallize in acetone, and will remain in solution.  Isolated Yield: 

~85%.   

 

5.13.2  (method #2) 

[Rh(nbd)](BF4) (2 equiv) and >80% rac-et,ph-P4 (1 equiv) are placed in separate 50 mL 

Erlenmeyer flasks and are dissolved in CH2Cl2 (~10mL each). In the glovebox under nitrogen 

atmosphere, the rac-et,ph-P4 solution is added dropwise to the rhodium complex solution while 

continuously swirling the flask.  The reaction mixture is then added dropwise to ~150 mL diethyl 

ether while continuously swirling the ether flask.  The contents are immediately filtered and 

dried.  Just enough acetone is then added to dissolve the solid, and then left in the freezer 

overnight to recrystallize out the racemic product (leaving any meso product in solution).  The 

product was filtered and dried via vacuum.  Isolated Yield: ~80%. 
31

P NMR: 58.7 ppm (doublet) 

and 46.9 ppm (doublet). 
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5.14  Hydroformylation Reactions 

*Note:  Unless otherwise stated, this are the standard reaction conditions used for all 

hydroformylation reactions performed for this research. 

Reactions were performed in modified Parr stainless steel autoclaves, each equipped with a 

packless magnetic stirrer, thermocouple (temperature monitoring), and electronic pressure 

transducer (pressure monitoring).  The reactor is assembled and evacuated via vacuum for at 

least 15 minutes.  Under glove box inert atmosphere, [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 (90 mg, 

0.08 mmol) was added to an Erlenmeyer flask, along with 80 mL of 30% water/acetone solution 

(including 2 mL of toluene as a GC internal standard), then sealed with a  septum.  In a finger 

vial, 1-hexene is passed through an alumina column and collected in a finger vial (6.73 g, 10 mL, 

80 mmol) sealed with a septum.  Via separate cannulas, the 1-hexene was transferred into the 

reactor’s pressure inject reservoir and the catalyst solution was transferred into the main reactor 

vessel.  The autoclave was pressurized to 90 psig with H2:CO gas mixture (“syn-gas”), then 

vented to 45 psig.  The autoclave is then heated to 90°C with 1000 rpm stirring over a total of 20 

minutes (this is known as the Soaking process).  Finally, the pressure is vented to 45 psig, and 

the 1-hexene is pressure injected to the operating pressure of 90 psig.  The reaction progress is 

monitored by syn-gas consumption and GC-MS analysis of reaction solution samples. 

 

5.15  Aldehyde-Water Shift Reactions / Tandem Hydrocarboxylation Reactions 

See Chapter 4.6: Aldehyde-Water Shift Catalysis Experiments 
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APPENDIX 

A.1 Mark II Autoclave Reactor Diagram 
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A.2 Mark III Flow-Control Autoclave Reactor Diagram 
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A.3 Mark III Flow-Control Autoclave Reactor Design  

with Volume Measurements 
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A.4 Proposed Tandem Hydroformylation / Aldehyde-Water Shift Dual Cycle  

(using the previous dicationic hydroformylation mechanism) 
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A.5 Proposed Tandem Hydroformylation / Aldehyde-Water Shift Dual Cycle  

(using the new monocationic hydroformylation mechanism) 
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A.6 Phenylphosphine (
31

PNMR spectrum) 
 

 
 

A.7 Bis(phenylphosphino)methane (aka: “bridge”)  (
31

PNMR spectrum)  
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A.8 Chlorodiethylphosphine (
31

PNMR spectrum) 
 

 
 

 

A.9 Diethylvinylphosphine (
31

PNMR spectrum)  
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A.10 et,ph-P4 ligand (mixed racemic/meso diastereomers) (
31

PNMR spectrum)  
 

 
 

 

A.11 Rh(nbd)(acac)    (
1
HNMR spectrum) 

 

 



  

96 

 

A.12 [Rh(nbd)2](BF4)  (
1
HNMR spectrum) 

 

 
 

 

A.13 [rac-Rh2(nbd)2(et,ph-P4)](BF4)2 catalyst precursor   (
31

PNMR spectrum)  
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A.14 Racemization of meso-et,ph-P4 ligand 

 

Time [hr] % Racemic % Meso 

0 25.7% 74.3% 

1 30.4% 69.6% 

2 33.0% 67.0% 

3 35.6% 64.4% 

4 40.8% 59.2% 

5 43.8% 56.2% 

6 46.2% 53.8% 

7 47.5% 52.5% 

8 48.2% 51.8% 

9 50.0% 50.0% 

10 50.5% 49.5% 

11 52.0% 48.0% 
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