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ABSTRACT 

 Naturally self-assembled mesospheres provide a practical route for controlling the 

arrangement of materials on surfaces at the nanoscale. Periodic arrays of well-defined 

nanostructures can be produced with different nanomaterials and interpattern spacings. Results 

presented in this dissertation demonstrate particle lithography methods developed for fabricating 

arrays of organosilane nanostructures. Surfaces were designed for the selective deposition of 

polymers and nanoparticles to produce multicomponent nanopatterns. The approaches for 

surface patterning provide new directions for studying surface chemistry at the molecular-level, 

and have practical application for emerging photovoltaic thin film technologies.  

Atomic force microscopy (AFM) provides unique capabilities for molecular visualization 

and ultrasensitive measurements of surface properties with nanoscale resolution. Organosilane 

nanopatterns bearing different functionalities and chain lengths were characterized using AFM to 

gain insight on molecular organization and surface-assembly processes. Indirect magnetic 

modulation (IMM) is a new instrument configuration for force modulation AFM that was 

developed for investigating mechanical properties of materials. The principle of IMM is based on 

indirect oscillation of soft nonmagnetic cantilevers through the tip holder assembly, which 

contains magnetic materials. Imaging can be performed in either ambient or liquid environments. 

The driving frequency for tip vibration can be selected to enhance contrast in amplitude and 

phase images, which provides information on the elastic response of thin-film materials. Images 

acquired with IMM furnish nanoscale resolution views of the morphology and elastic response of 

organosilane nanostructures. The dampening effect of liquid imaging media on cantilever 

oscillation during IMM was investigated using a liquid sample cell. 



xiii 
 

Organic photovoltaic (OPV) devices are promising alternatives to traditional silicon 

based solar cells. A major challenge for OPVs is the requirement for higher efficiencies, or better 

device performance. The nanoscale morphology and molecular organization of the 

donor/acceptor materials in the organic layer affects the conductivity of OPV devices. To 

improve efficiency, new fabrication methods must be developed that are capable of controlling 

the molecular structure of the donor/acceptor materials. Using particle lithography combined 

with contact printing, billions of periodic and uniform pillar nanostructures of polythiophene can 

be fabricated on the surface. The dimensions and spacing can be selectively tuned by using 

different size latex masks.  
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CHAPTER 1. INTRODUCTION 

 Nanostructures have many uses for applications in sensors,
1-2

 catalysis,
3
 molecular 

separation,
4
 and electronic devices.

5
 The ability to control surface chemistry at the nanoscale 

poses a challenge for the development of emerging technologies such as protein chips or 

molecular junctions. The investigations in this dissertation describe nanofabrication methods 

based on particle lithography developed for generating well-defined nanostructures of 

organosilanes, which can be used as a structural platform for building more complex 

architectures. Molecular-level investigations of the morphology, self-assembly processes, and 

properties of designed nanostructures were accomplished using atomic force microscopy (AFM).  

1.1 Nanoscale Characterizations Using Atomic Force Microscopy  

 

 The capability of AFM for achieving nanoscale resolution enables characterization of 

material properties, as well as fundamental investigations of chemical or biochemical reactions. 

Fundamental studies of surface reactions and material properties at the molecular-level can 

provide essential information for the development of new and advanced technologies in fields 

such as materials engineering,
6-7

 molecular electronics,
8-9

 and medical diagnostics.
10-11

 Chapter 2 

of this dissertation summarizes the background and history of AFM. The basic operating 

principle of the AFM imaging modes used for this research are described, including contact 

mode, lateral force imaging, tapping-mode, and phase imaging. Force-distance spectroscopy and 

force modulation modes of AFM are also reviewed. 

1.2 Controlling the Arrangement of Materials on Surfaces at the Nanoscale with Particle 

Lithography 

 

Development of nanotechnology depends not only on capabilities for synthesis of 

functional nanomaterials and molecules, but also requires the ability to spatially arrange and 

organize materials on surfaces at the nanoscale. Developing new high throughput fabrication 
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techniques with control of the chemical functionality, geometry and spatial organization of 

nanostructures on surfaces can aid in the development of functional materials for electronic, 

sensing, and optical device applications. Particle lithography, also referred to as nanosphere 

lithography, is a versatile, high throughput approach for fabrication that has been used to 

generate 2D and 3D periodic arrays of materials on surfaces.
12-15

 Close packed layers of 

monodisperse mesospheres (latex or colloidal silica) provide a lithographic mask or structural 

template, which can then be used to guide the deposition of materials onto the surface. The 

spherical geometry of the mesoparticles restricts deposition processes. Areas of the surface 

where the mesospheres make contact with the substrate remain protected during steps of material 

or thin film deposition. The surface nanopatterns produced by particle lithography correspond to 

the arrangement and periodicity of the mesospheres used for the mask. Chapter 3, entitled 

“Defining the Chemistry of Surfaces at the Nanoscale using Particle Lithography”, provides a 

comprehensive literature review of contemporary approaches with particle lithography applied 

for patterning self-assembled monolayers (SAMs), proteins, and nanoparticles. 

1.3 Particle Lithography as a Toolkit for Spatially Confining Surface Reactions of 

Organosilanes 

 

Combining particle lithography with molecular self-assembly is a practical approach for 

producing organosilane nanostructures with controlled geometries and designated surface 

coverage. In this nanofabrication approach, the locations of water residues are confined around 

the bases of latex mesospheres and define the sites for vapor deposition of trifunctional 

organosilanes. Particle lithography combined with vapor deposition generates billions of 

periodically arranged nanopatterns with control of the geometry, density, and surface chemistry. 

Chapter 4 (“Particle Lithography Combined with Vapor Deposition: A Toolkit for Studying 

Confined Surface Reactions in Nanoscale Liquid Volumes”) demonstrates examples of 
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organosilane nanopatterns presenting different terminal groups and chain lengths prepared with 

particle lithography.
16

 The self-polymerization reactions of ω-functionalized silanes were 

investigated using high-resolution AFM studies combined with nanolithography. Tapping-mode 

AFM was used to study the effect of the terminal moieties of organosilanes by evaluating 

parameters of the number density, surface coverage and thickness of layers formed. 

1.4 Defining the Site-selectivity of Surfaces Using Organosilane Nanopatterns for the 

Adsorption of Functionalized Nanoparticles 

 

Periodic arrays of organosilane nanostructures prepared with particle lithography provide 

a foundation to spatially define sites for adsorption of nanoparticles. Surfaces can be designed 

with methyl-terminated organosilane nanopatterns to furnish a resist for further chemical steps. 

Uniform patterns of nanosized holes of uncovered silicon substrate were prepared within a 

nanostructured film of octadecylsiloxane using particle lithography combined with vapor 

deposition. Exposed areas of the substrate furnish sites for selectively binding silanol-

functionalized gold nanoparticles, whereas areas with methyl-terminated silane provide an 

effective resist to prevent nonspecific adsorption. By immersing patterned substrates into a 

solution of surface-active gold nanoparticles coated with 3-mercaptopropyltrimethoxysilane 

(MPTMS), architectures of functionalized nanoparticles with uniform geometry and periodic 

spacing were generated on surfaces of glass and silicon wafers. Surface changes throughout the 

steps of particle lithography were investigated using contact mode and tapping-mode AFM. To 

investigate the optical properties of nanopatterned nanoparticles, samples were characterized 

with UV-Vis spectrophotometry. Measurements reveal that a red-shift occurred as a result of 

changes in interparticle distance as the nanoparticles assemble onto spatially confined areas of 

the surface patterns. Studies of nanostructures of silane-functionalized nanoparticles prepared 

within resists of organosilane nanopatterns produced with particle lithography will be described 
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in Chapter 5. This chapter is entitled “Nanostructures of Functionalized Gold Nanoparticles 

Prepared by Particle Lithography with Organosilanes”, and has been submitted for publication in 

Langmuir.  

1.5 A Hybrid Approach Using Particle Lithography for the Fabrication of Periodic 

Nanostructures on Surfaces 

 

A hybrid patterning approach was developed which combines particle lithography with 

contact printing of organosilanes. Arrays of nanopores within an octadecyltrichlorosilane (OTS) 

film are generated by direct transfer of organosilane ink to the substrate using physical 

deposition.  In this hybrid approach for nanopatterning, a block of polydimethylsiloxane (PDMS) 

is used to transfer inks of organosilanes to the substrate through a mesoparticle mask of either 

latex or colloidal silica spheres. Removal of the mask of mesospheres reveals regularly-spaced 

pores or holes within an organosilane film. The interpattern spacing between nanopores is 

determined by the diameters of the mesospheres selected for the mask. The nanopores are areas 

of uncovered substrate (i.e. Si/SiO2, glass, indium tin oxide) and provide selectivity for bottom-

up nanofabrication, forming billions of periodic sites for attaching other nanomaterials or 

molecules. Chemical modification of the pores can be accomplished by immersing the 

nanopatterned samples in a solution containing new molecules. Nanopatterns prepared with 

particle lithography combined with contact printing were characterized with contact mode and 

tapping-mode AFM and will be described in Chapter 6 (“Hybrid Approach for Nanofabrication: 

Particle Lithography Combined with Contact Printing of Organosilanes”; manuscript in 

preparation). 

1.6 Preparation of Nanostructured Conducting Polymer Thin Films 

 

Organic photovoltaic (OPV) devices are promising alternatives to solar cell technologies. 

Compared to traditional silicon solar cells, OPV devices are more cost-effective to fabricate, 
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have a lower production time, can be applied to flexible and plastic substrates, and the 

fabrication process is more environmentally friendly.
17

 Despite these advantages, a major 

challenge exists for improving the power conversion efficiency of OPVs, which is the ratio of 

electrical energy output to energy input. An efficiency of at least ten percent is needed for OPV 

devices to be considered for commercial production. The nanoscale morphology and molecular 

organization within the organic layers and at the donor-acceptor interface can affect the overall 

efficiency and performance of OPV devices.
18-19

 To reach higher efficiencies, new methods must 

be developed that are capable of precisely controlling the nanoscale organization and molecular 

structure of the polymers during device fabrication. Chapter 7 demonstrates a “bottom-up” 

nanopatterning approach for designing a bulk heterojunction OPV device. Particle lithography 

provides a practical route for building complex molecular structures using successive steps of 

surface chemical reactions. Particle lithography combined with contact printing was applied for 

creating nanostructured arrays of organosilane, which furnishes a scaffold for controlling the 

hierarchical and lateral organization of conducting polymers (e.g. polythiophene) during surface-

initiated in situ living polymerization. Well-defined arrays of polythiophene pillars with 

tailorable sizes, geometries and spacing are produced on surfaces of Si(111), ITO, and quartz. 

1.7 Measuring the Elasticity of Organosilane Nanostructures with Indirect Magnetic 

Modulation AFM in Air and Liquid Media 

 

Ring-shaped nanopatterns of organosilanes fabricated via particle lithography combined 

with vapor deposition furnish ideal test platforms for investigating local mechanical properties 

(i.e. elasticity and stiffness) at the nanoscale using force modulation with indirect magnetic 

modulation (IMM) AFM.
20

 For IMM imaging, an AC electromagnetic field is generated by a 

solenoid located beneath the sample plate.  The flux of the external AC field causes indirect 

oscillation of a soft, non-magnetic cantilever (spring constants <1 N/m) within the tip holder 
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assembly, which contains ferromagnetic components.  Different driving frequencies can be 

chosen to drive the cantilever to oscillate. Phase and amplitude images are acquired 

simultaneously with topography frames using IMM and provide a detailed map of the elastic 

response of samples. Resonance driving frequencies were selected from frequency-response 

spectra to drive tip oscillation. Chapter 8 presents results for studies of the elastic response of 

organosilane nanostructures using IMM in air and liquid environments. An advantage of IMM 

compared to other FM-AFM instrument configurations is that indirect actuation of the tip results 

in very low forces (<1 nN) applied to the sample. Therefore, it is a non-destructive approach to 

imaging that is suitable for analyzing the mechanical properties of delicate samples, such as 

polymers and biological species. 

1.8 Dissertation Synopsis 

 

Particle lithography is a versatile toolkit for generating surface nanostructures with 

designed functionalities and tunable geometries. Mesoparticle masks and templates can be 

prepared over large areas and provide a practical route for patterning nanoparticles, organic thin 

films, and polymers on surfaces with nanoscale precision. Chapter 9 presents future work for 

fabricating a complete OPV device with enhanced efficiency. The spaces between polythiophene 

nanopillars can be filled with a suitable acceptor (n-type) material, and a top aluminum electrode 

can be deposited by metal evaporation. Control of the molecular organization of both donor and 

acceptor materials can facilitate carrier transport towards the top and bottom electrodes. Future 

investigations will involve studying the effect of nanoscale morphology on photoelectric 

properties of the polythiophene nanopillars using current sensing AFM (CS-AFM). Local 

measurements of the conductive properties with CS-AFM of polythiophene nanostructures can 

provide insight on the correlation between molecular structure/organization and sample 

conductivity with nanoscale resolution. 
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CHAPTER 2. INSTRUMENTAL METHODS USING ATOMIC FORCE MICROSCOPY 

2.1 Background and Imaging Principle of Atomic Force Microscopy 

 Atomic force microscopy (AFM) was invented by Binnig, Quate, and Gerber in 1986 and 

has become a powerful surface analysis tool capable of achieving unprecedented resolution at the 

atomic and molecular level.
21

 Over the last two and a half decades, AFM has provided a 

fundamental understanding of the role of structure and material properties. An advantage of 

AFM is that experiments can be accomplished in nearly any environment, such as in liquid, 

vacuum, or in ambient air, with capabilities for dynamic studies to monitor changes in surface 

morphology that evolve over time using time-lapse AFM. Both conducting and insulating 

materials can be characterized with AFM without the need for sample pretreatment. The 

ultrasensitive measurement capabilities of AFM have been demonstrated to achieve lateral 

resolution less than 1 nm and vertical resolution of 0.1 nm.
22

 Studies with AFM have been 

applied for characterizing metal nanoparticles,
23-25

 proteins
26-28

 and polymers.
29-30

 

For AFM, also referred to as scanning force microscopy, a sharp probe (tip) affixed to the 

end of a cantilever is scanned across the surface to collect information about sample 

morphology. Depending on the instrument configuration and AFM imaging mode, information 

about tip-surface adhesion, magnetic forces, frictional forces, elastic compliance and sample 

conductance can be obtained.  

The movement of the tip over the sample surface is controlled by a piezoceramic scanner. 

By applying voltages to the piezoscanner, movements of the cantilever over the sample surface 

can be precisely controlled at the nanoscale in the x, y, and z directions. The most commonly 

used AFM tips are ultrasharp silicon (Si) or silicon nitride (Si3N4) probes, which are attached to 

either a V-shaped or rectangular (diving board) cantilever.  The cantilevers typically have lengths 

ranging from 10-200 µm and widths of 20-40 µm. The geometries of the apex of the tips are 
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usually square-based pyramids or cylindrical cones. The backside of the cantilever is coated with 

a reflective coating. A photodiode laser is used to focus a laser beam on the back of the 

cantilever while the tip raster-scans the sample surface in a line-by-line fashion. Changes in the 

vertical bending (deflection) or oscillation amplitude of the tip are monitored and detected using 

a position sensitive photodetector. Changes in deflection or oscillation amplitude are maintained 

to an assigned setpoint value through the use of an electronic feedback loop. Images of the 

sample are digitally constructed by recording the changes in tip-surface interaction as a function 

of tip position.  A three dimensional profile of the surface can be acquired with AFM. 

Information about the material properties can be acquired and mapped simultaneously with 

surface topography.  

Imaging modes of AFM are categorized according to how the AFM tip is operated in 

proximity with the sample surface: contact, non-contact and intermittent-contact. In contact 

mode AFM, the AFM tip remains in direct contact with the sample continuously during imaging, 

whereas in non-contact mode, the tip is maintained at a discrete distance from the sample. For 

intermittent-contact modes, the tip is driven to oscillate at or near its resonance frequency and 

„taps‟ the sample during scanning; intermittent-contact mode is frequently referred to as tapping-

mode AFM. The most common AFM imaging modes are contact and tapping-mode AFM. The 

following sections will provide an overview of specific AFM imaging modes used for the 

research presented in this dissertation. The fundamental principles and basic operation for 

contact mode, frictional force, tapping-mode and phase imaging will be described. 

2.2 Contact Mode and Lateral Force Imaging 

 For contact mode imaging, the AFM tip remains in direct physical contact with the 

surface during imaging. Contact mode and lateral force imaging are accomplished 

simultaneously. For contact mode AFM, a sharp probe at the end of a cantilever is raster-scanned 
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across a surface using a piezoelectric tube scanner. Applying a voltage to the piezoelectric 

material causes it to expand or contract for precise positioning of the tip during scanning. A 

photodiode laser is used to focus light on the backside of the reflective cantilever and deflected 

to a quadrant photodetector (Figure 2.1).  While the tip is scanned in contact with the sample, the 

bending of the cantilever will produce a change in the position, or deflection, of the laser spot 

focused on the photodetector. For contact mode AFM, the deflection is related to the force 

applied to the sample, and is maintained at a constant value (i.e. a setpoint value). To maintain 

the initial deflection setpoint value for the force applied between the tip and sample, the feedback 

loop of the computer controller incrementally adjusts the voltage applied to the piezoscanner. 

Variations in the surface topography will induce cantilever bending and, therefore, result in 

vertical displacement of the laser position in the top and bottom quadrants of the photodetector. 

Figure 2.1 Operating principle of contact mode AFM.  

 

Torsional twisting of the cantilever causes lateral displacement of the position of the laser 

spot. The lateral force mode of imaging is sensitive to differences in chemical composition and 

mechanical (friction) properties of the sample.
31-32

 As the tip is dragged across the surface, 

torsional twisting is caused by frictional forces between the tip and the sample. Torsional 
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twisting of the tip induces changes in the position of laser spot in the left and right quadrants of 

the detector, which are then used to construct digital lateral force images.
33

 Lateral force images 

map the changes in frictional force between the tip and the sample as it is scanned in contact with 

the surface. Frictional force images are acquired by subtracting the trace and retrace lateral force 

images. Lateral force images often show edge features of the surface because tip-surface 

adhesive interactions are quite different at the sides of nanostructures. For contact mode AFM, 

topography and lateral force images are acquired simultaneously.  

A drawback of contact mode AFM is that the shear forces caused by the scanning tip can 

damage delicate and soft samples. To overcome this problem, soft cantilevers with small spring 

constants can be used for contact mode imaging to reduce the amount of force exerted on the 

sample. Alternatively, one can perform contact mode in liquid media. Typical force settings used 

for operating in air can range from 1 to 10 nN, whereas force settings less than 1 nN can be 

applied for imaging in liquid environments. 

Height measurements (z-dimension) reaching sub-Angstrom resolution can be routinely 

achieved with contact mode AFM. However, measurements of the lateral dimensions obtained 

with AFM often are not representative of the true sample topography. The lateral features are 

often broadened and exaggerated as a result of the size and shape of the AFM tip. The effect is 

known as tip-sample convolution, which occurs when the radius of curvature of the tip is greater 

than the size of the feature being imaged on the surface. Blunt tips do not accurately trace the 

shapes of sample features. As the tip is scanned over the sample, the sides of the tip make contact 

before the apex of the tip. Therefore, the final lateral dimensions viewed in the AFM image is 

actually an image of the shape and dimensions of the tip, as depicted in Figure 2.2. The use of a 

sharp probe with a high aspect ratio can alleviate the issue with tip-sample convolution since a 

sharp probe can follow the surface contours more accurately (right of Figure 2.2). Alternatively, 
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the use of tip and sample deconvolution programs can digitally reconstruct the surface profiles to 

provide a better approximation of the true surface features.
34-37 

Figure 2.2 Effect of tip size and shape on mapping lateral dimensions of surface features.  

 

 Atomic force microscopes must be calibrated in the X-Y axis to obtain accurate 

information. The bending and hysteresis of piezotube scanners are not completely linear for X-

Y-Z displacement motions. A method for correcting the non-linearity of X-Y displacement is to 

add calibration sensors to the X-Y piezoelectric scanner to measure the actual piezo 

displacement; this is known as “closed-loop” feedback operation. The Z axis of the piezoelectric 

scanner must also be linear and calibrated to obtain accurate height measurements. Commercially 

available calibration standards are used for micron-level calibration of AFM‟s. Microfabricated 

calibration grids or gratings consist of arrays of uniform structures (e.g., silicon, highly ordered 

pyrolytic graphite or HOPG, aluminum) with accurate step heights, pitch (i.e. distances between 

structures), and lateral dimensions. Open-loop AFM scanners used for this research were 

calibrated at the nanoscale using the step height of flat Au(111) films (2.25 Å) and the periodic 

lattices of mica(0001), HOPG, and Au(111), which have lattice constants of 5.18, 2.46, and 2.88 

Å, respectively. 

2.2.1 AFM Force Spectroscopy 

Forces between the tip and sample form the basis for all measurements with AFM. Forces 

can be measured down to the pN level with AFM force spectroscopy, where the deflection of the 
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cantilever is measured during a sample approach and retract cycle. A force-distance curve is a 

plot of the cantilever deflection as a function of the tip position in the z-direction. Forces 

between the probe and sample are calculated by applying Hooke‟s Law, F = -kz. For this 

relation, F is the force, k is the cantilever spring constant, and z is the distance between the tip 

and sample.  

An example of a force-distance curve acquired in air for nanostructures prepared with 

octadecyltrichlorosilane (OTS) on Si(111) substrates is displayed in Figure 2.3. A force-distance 

curve is acquired during a single approach and retract cycle. Initially, the tip is far away from the 

sample. There are no interactions present between the tip and sample, thus no cantilever 

deflection (region I). As the tip approaches the sample, the tip senses attractive forces with the 

sample. This causes the tip to “snap into contact” with the surface, thus indicating a negative 

(attractive) force (region II). This region of the force-distance curve can be used for measuring 

surface forces such as van der Waals and electrostatic combined forces of attraction. As the tip 

continues approaching the sample, long and short-range repulsive forces cause the cantilever to 

bend, as shown in region III. Once the deflection reaches a maximum, the tip begins to retract 

away from the surface (region IV). Adhesive forces maintain contact between between the tip 

and sample during retraction. When the distance between the tip and sample is large enough to 

overcome long-range attractive interactions, the cantilever “snaps out of contact” (region V) and 

returns to a zero deflection (region VI). This region can be used for approximating surface 

energy or binding forces of materials.   
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Figure 2.3 Force-distance curve acquired in air with a Si3N4 tip for OTS surface nanopatterns 

fabricated on Si(111) substrates. 

 

2.3 Tapping-Mode and Phase Imaging 

 Tapping-mode AFM is an intermittent imaging mode and was developed to address the 

challenges faced with contact mode AFM for characterizing loosely bound or easily damaged 

materials, such as proteins,
38-39

 polymers
40-41

 and nanoparticles.
42-44

 With tapping-mode imaging, 

damage to the tip or sample is minimized since lateral and shear forces exerted on the sample are 

greatly reduced. The general principle of tapping-mode AFM is based on driving the motion of a 

cantilever to oscillate near its natural resonance frequency (Figure 2.4). Typical resonance 

frequencies for tapping-mode tips range from 150 to 300 kHz. Tapping-mode tips are much 

stiffer compared to contact mode tips, with spring constants around 20-50 N/m. Transient 

interfacial bonds between the tip and sample are not formed in tapping-mode because of the 

rapid tip motion. The amplitude of the cantilever oscillation is typically 50 to 100 nm, which is 

sufficient to provide the cantilever with enough energy to overcome adhesion forces.
45-46

 The tip 

is mounted directly on a piezoactuator. To induce tip oscillation, an AC voltage is applied to the 
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piezoactuator within the AFM nosecone. When the tip is scanned across the surface, the 

oscillating cantilever intermittently touches, or „taps‟, the sample. The amplitude of the 

oscillating cantilever is monitored by the photodetector. In tapping-mode, a feedback loop is 

used to maintain a constant amplitude. The measured amplitude (i.e. output signal) is compared 

to the amplitude setpoint value (i.e. driving AC input signal). The difference between the output 

and driving signals is known as the error signal. The feedback loop uses the error signal to 

determine the voltage needed to maintain a constant amplitude.
47

  The incremental changes in 

voltage required to maintain a constant amplitude signal are then translated into digital images of 

the surface topography with nanoscale resolution. 

 Phase images are acquired simultaneously with surface topography with tapping-mode 

operation. Information of surface composition, adhesion, stiffness, and viscoelasticity can be 

obtained with phase imaging.
48-50 A lock-in amplifier is used to measure the phase lag of tip 

oscillation relative to the driving AC input signal as a basis for generating phase images.  The 

phase lag is very sensitive to differences in material properties. 

Figure 2.4 Basic operating principle for tapping-mode AFM.  
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2.4 Force Modulation AFM 

Force modulation is an AFM imaging mode used for probing local mechanical properties 

(e.g., elastic and viscoelastic properties) of surfaces.
51-53

 With force modulation AFM, the 

relative elasticity and stiffness of materials can be characterized and mapped with phase and 

amplitude images.
54-58

 During force modulation, an AFM tip is scanned in direct contact (i.e. in 

contact mode) with the surface and at the same time, a periodic oscillation is applied and 

introduced into the z-direction. The periodic oscillation leads to a modulation of the force 

between the tip and the sample. The magnitude of the tip deflection is detected by the photodiode 

detector and is influenced by the relative elasticity of the sample (i.e., the cantilever deflection is 

inversely proportional to the magnitude of deformation of the sample). Under the same applied 

force, a soft area deforms more than a hard area during scanning, resulting in a reduction in the 

oscillating amplitude of the tip.
51-52

 During imaging, the amplitude and phase response of the 

cantilever are detected by a lock-in-amplifier and recorded as a function of the tip position for 

surface mapping. Differences between the amplitude and phase versus the periodic function of 

the driving AC signal are used to generate digital images of changes in surface elastic properties. 

Force modulation experiments can be accomplished using one of several instrument 

setups, which differ in the way the tip is driven to oscillate. One strategy for inducing tip 

vibration is to apply a periodic AC signal directly to the segment of the piezotube scanner which 

drives the tip to oscillate in the z-direction. Another instrument configuration applies a periodic 

AC signal to a small piezoceramic chip to directly drive the tip to vibrate. In addition, probes 

which contain a thin magnetic coating on the topside can be driven to vibrate with an externally 

applied AC electromagnetic field. This approach is known as magnetic force modulation (MFM). 

Thin magnetic films can be deposited on AFM tips either by heated metal evaporation or by 

gluing microscopically small magnets onto the cantilever.
59

 When an external AC 
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electromagnetic field is applied, the magnetically coated probe is driven to oscillate. A 

disadvantage of MFM is that metal coatings tend to wear off over time when scanning in contact 

mode. Also, the magnetic strength of the coating decreases with time and therefore requires re-

magnetization of the cantilever. A further instrument configuration for force modulation AFM 

was developed for this dissertation research (Chapter 8), which uses indirect magnetic 

modulation (IMM) of non-magnetic probes. 

2.5 AFM Imaging Modes Used for Dissertation Research 

For this dissertation research, imaging and measurement modes of AFM were chosen 

according to the nature of the sample and environmental requirements. Details of the samples, 

sample preparation procedures, and specific operating parameters are presented within each 

chapter. A summary and overview of the imaging modes used for this dissertation is presented in 

Table 2.1. 

Table 2.1 AFM imaging modes used for dissertation research experiments. 

 Sample description Contact 

mode 

Lateral 

force 

mode 

Tapping-

mode 

Phase 

imaging 

IMM 

Chapter 4 Organosilane nanopatterns 

on Si(111) prepared by PL 

  X X  

Chapter 5 Organosilane and 

functionalized Au 

nanoparticles patterned on 

Si(111) prepared by PL 

  X X  

Chapter 6 Organosilane nanopatterns 

on Si(111) prepared by PL 

X X X X  

Chapter 7 OTS and polythiophene 

nanostructures prepared on 

Si(111) and quartz by PL 

and surface initiated living 

polymerization 

X X    

Chapter 8 Organosilane nanopatterns 

on Si(111) prepared by PL 

  X  X 

**PL = particle lithography 
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CHAPTER 3. DEFINING THE CHEMISTRY OF SURFACES AT THE NANOSCALE 

USING PARTICLE LITHOGRAPHY 

3.1 Introduction 

As technology continues to progress, there is a growing demand for more practical and 

effective lithographic methods capable of producing structures at the nanoscale with designed 

functionalities and desirable properties. Considerable research efforts have been invested over 

the years to develop new or improved techniques for fabricating organized arrays of materials 

both at the nanoscale and with high throughput. Particle lithography is a high throughput surface 

patterning approach that allows nanoscale control of the organization of materials and provides a 

generic approach for nanopatterning organic thin films, proteins, and other nanomaterials. 

Materials that have been patterned include polymers,
60-61

 metals,
62-67

 organic thin films,
16, 68-73

 

nanoparticles,
14, 74-75

 and proteins.
15, 76-77

 Particle lithography has been used for patterning on 

surfaces of glass, silicon wafers, mica, ITO, and Au(111). The outcome is a nanofabrication 

approach for defining the arrangement and surface coverage of designed materials using self-

assembly chemistry. This chapter provides an overview of the less conventional approaches for 

patterning nanomaterials that combine chemical approaches with particle lithography to create 

nanostructured surfaces with well-defined selectivity, morphology and reactivity. 

3.2 History and Development of Particle Lithography  

Particle lithography is a materials general method for nanopatterning originally 

developed by Deckman and Dunsmuir in 1982.
78

 In their original work, arrays of silicon posts 

were fabricated by reactive ion milling of 400 nm latex spheres, followed by removing the 

spheres with an oxygen ion beam. Patterns of triangular silver posts on silicon substrates were 

also prepared by evaporating silver over an array of 400 nm latex spheres. Particle lithography 

has also been referred to as colloidal lithography,
79

 nanosphere lithography,
80-81

 evaporative 
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lithography,
14

 or natural lithography.
78

 The natural assembly of spherical particles, such as latex 

or colloidal silica, is used to prepare a surface mask or template. Solutions of size-sorted 

monodisperse spheres naturally self-assemble into periodic lattices on flat surfaces. 

Nanostructures are prepared by depositing materials through the surface masks of mesospheres.  

3.3 Strategies for Nanolithography with Particle Masks  

Several approaches have been reported for preparing arrays of colloidal spheres, such as 

spin-coating,
80, 82-83

 solvent evaporation,
14, 75

 and colloidal self-assembly occuring at an air-liquid 

interface
84

 or in an electric field.
85-86

 The spheres spontaneously self-assemble on the surface to 

form periodic structures with regular geometries and interparticle spacings. In almost all cases, 

self-assembled 2D colloidal mesospheres are hexagonally close-packed (hcp), since hcp is more 

thermodynamically stable.
87

 In addition to hcp, 2D non-close-packed colloidal crystals are also 

possible and can be obtained by etching of ordered 2D colloidal spheres using techniques such as 

isotropic plasma etching,
88

 anisotropic reactive ion etching (RIE),
89

 and electron beam 

irradiation.
90

 However, this chapter will focus primarily on nanopatterns prepared using 2D 

close-packed colloidal spheres. 

 An example mask of close-packed mesospheres with hexagonal symmetry is shown with 

an atomic force microscopy (AFM) image in Figure 3.1. The surface topography of 300 nm 

polystyrene latex discloses the arrangement of mesospheres prepared by drying an aqueous drop 

of monodisperse latex on Si(111) in ambient conditions. The crystalline layer of mesospheres 

furnishes a mask for guiding the deposition of evaporated metals, organic vapors or other 

nanomaterials. Areas where the spherical particles are in contact with the substrate remain 

protected during deposition processes. The mask of mesospheres can be removed by rinsing 

steps, sonication, dissolution, calcination, isotropic plasma etching,
88

 anisotropic reactive ion 

etching,
89

 and electron beam irradiation.
90

 Adhesive tape can also be used to physically strip 
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away the mask.
14

 The surface nanopatterns generated with particle lithography correspond to the 

arrangement, diameter and periodicity of the mesospheres used for the mask. Therefore, the 

interpattern spacings and size can be selected by choosing different diameters of mesospheres. 

Figure 3.1 Close-packed layer of PS mesospheres (diameter 200 nm) on a Si(111) substrate. 

View of a 2 x 2 µm
2
 AFM topograph; inset shown is an FFT analysis of the topography image. 

 

Various shapes, sizes, geometries, and interpattern spacings can be obtained with particle 

lithography depending on the nanofabrication technique, mesosphere deposition method and size 

of mesospheres used for sample preparation. Chemistry approaches for nanofabrication with 

particle lithography include evaporation,
67, 78

 direct deposition,
91

 and etching.
66

 Examples for 

different nanomaterials patterned are summarized in Table 3.1, which have a common strategy of 

using mesoparticles for lithography. Particle lithography was used to generate arrays of rings, 

dots or pillar nanostructures that are comprised of inorganic materials, organic thin films, 

quantum dots, and biomolecules. 
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Table 3.1 Chemical approaches for particle lithography with inorganics, SAMs, nanoparticles, 

and proteins.  

 

Substrate Material and 

Pattern 

Geometry 

Mask/ 

Template 

Sphere 

Diameter 

Patterning 

Method/Approach 

Mask/ 

Template 

Removal 

Ref. 

Inorganics silicon TiO2 nanorods polystyrene 350 nm-      

1 µm 

pulsed laser deposition not removed 92
 

 sapphire  

(Al2O3) 

TiO2 nanobowls latex 505 nm atomic layer 

deposition, ion beam 

milling 

toluene 

etching 

93
 

 Si(100) silicon 

nanopillars 

latex 280-440 nm deposition of Cr 
nanoparticles via 
sputtering followed by 
reactive ion etching 

sonication in 

CH2Cl2 

94
 

 Si(111) Ni, Co 

nanoparticle 

arrays 

latex 100 nm-      

1 µm 

electron beam 

evaporation 

dissolution 

and 

sonication in 

THF 

74
 

 Pt-coated 

silicon 

lead zirconium 

titanate nanorings 

latex 3 µm and 

160 nm 

room temperature 

pulsed laser deposition 

of lead zirconium 

titanate films, followed 

by high angle argon 

ion etching and 

annealing 

thermal 

annealing  in 

air 

95
 

Alkanethiols gold concentric rings 

of ECT, SHA, 

and HDDT 

colloidal 

silica 

1.6 µm printing with a planar 

PDMS stamp 

sonication in 

water 

91
 

 gold rings and porous 

membrane of 

HDT 

colloidal 

silica 

800 nm vapor phase deposition sonication in 

water 

96
 

Organosilanes Si(111), 

mica(0001), 

glass, 

Au(111) 

rings or pores of 

OTS, PEG-silane, 

6-AAPTMS 

latex 100-500 nm chemical vapor 

deposition 

rinsing and 

sonicating  in 

ethanol 

16, 

71-73
 

 Si(100) porous OTS film colloidal 

silica 

200-500 nm solution immersion sonication in 

aqueous 

medium 

69
 

Quantum Dots 

(QD‟s) 

mica(0001) rings or pores of 

cysteine coated 

CdS QD‟s 

latex or 

colloidal 

silica 

200- 800 nm drop deposition of a 

PS/QD solution with 

varying ratios, 

followed by drying 

rinsing with 

ethanol or 

water 

75
 

 glass rings of CdSe 

QD‟s 

latex 200 nm-      

2 µm 

evaporation induced 

assembly 

adhesive tape 14
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Substrate Material and 

Pattern 

Geometry 

Mask/ 

Template 

Sphere 

Diameter 

Patterning 

Method/Approach 

Mask/ 

Template 

Removal 

Ref. 

Proteins glass and 

silicon 

dots of 

fibrinogen, P-

selectin, and BSA 

latex 2-10 µm liquid phase grafting of 

PEG-silane to masked 

substrate, followed by 

removal of mask and 

incubation in protein 

solution 

rinsing with 

water 

97
 

 HOPG and 

glass 

honeycomb rings 

of BSA, 

fibrinogen, and 

antimouse IgG 

latex 0.56-      

5.43 µm 

incubation in protein 

solution 

ultrasound in 

HBSS-Ca2+ 

buffer 

solution 

98
 

 gold dot arrays of 

streptavidin and 

biotinylated 

antibody 

latex 400 nm preparation of well-

controlled mixed 

SAMs of thiol-

derivatives on gold dot 

arrays, followed by 

immersion in protein 

solution 

sonication in 

THF 

99
 

 mica(0001) 

and Au(111) 

arrays of BSA 

and rabbit IgG 

latex 200- 800 nm solvent evaporation of 

mixed solutions of 

latex and protein 

rinsing with 

water 

15
 

 mica(0001) 

and Au(111) 

ring and pore 

arrays of BSA 

and 

staphylococcal 

protein A 

latex 200-500nm solvent evaporation of 

mixed solutions of 

latex and protein 

rinsing with 

water 

76
 

*THF, tetrahydrofuran; SAMs, self-assembled monolayers; PDMS, polydimethylsiloxane; ECT, 

eicosanethiol; SHA, sulfanylhexadecanoic acid;  HDDT, 12 hydroxydodecanethiol; HDT, 

hexadecanethiol; OTS, octadecyltrichlorosilane; PEG-silane, 2-[methoxy-

(polyethyleneoxy)propyl]trichlorosilane; 6-AAPTMS, N-(6-aminohexyl)-3-

aminopropyltrimethoxysilane; HOPG, highly ordered pyrolytic graphite; BSA, bovine serum 

albumin; IgG, immunoglobin 

 

3.4 Applications of Particle Lithography for Patterning Self-Assembled Monolayers 

Nanoscale patterning has been accomplished with self-assembled monolayers (SAMs) of 

organothiols and organosilanes using particle lithography. Combining particle lithography with 

molecular self-assembly is a practical strategy to generate nanostructures with controlled surface 

chemistry and defined geometries. Nanopatterns of SAMs can be used as a surface template for 
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integrating other molecules or materials and have potential applications for sensor surfaces and 

electronic devices.
100

 Due to their stability and well-ordered surface structures, SAMs are an 

ideal platform for studying molecular, protein and cellular binding events and have been used 

extensively for biological research.  

Several methods based on particle lithography have been reported for patterning 

organothiols.
70, 96

 Patterns of thiol SAMs form spontaneously by S-Au chemisorption on surfaces 

of coinage metals. Organothiol nanopatterns with sub-100 nm dimensions were fabricated by a 

particle lithography approach developed by McLellan et al. known as edge-spreading lithography 

(ESL).
70, 91, 101

 With ESL, alkanethiol molecules were transferred from a planar 

polydimethysiloxane (PDMS) stamp onto a gold substrate through a particle mask. A 2D array of 

monodispered silica beads are used as a guide during the deposition of alkanethiols. The 

molecules form a SAM around the circular footprint of each silica bead. With longer contact 

times between the PDMS stamp and masked substrate, the area of the SAM expands laterally by 

reactive spreading.
70, 101

 Arrays of concentric rings of thiolate monolayers with carboxy- (bright), 

hydroxyl- (gray), and methyl-terminal groups patterned on gold substrates are shown in the 

lateral force microscopy (LFM) images in Figure 3.2. The concentric rings in Figure 3.2 were 

obtained by printing sulfanylhexadecanoic acid (SHA), 12-hydroxydodecanethiol (HDDT), and 

eicosanethiol (ECT). The widths of the monolayer rings are dependent on the printing time and 

concentration of the organothiol ink. Additionally, the position of each monolayer within the 

concentric ring pattern can be controlled by changing the printing order. 
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Figure 3.2 Concentric ring nanopatterns of alkanethiolate SAMs on gold prepared by ESL using 

1.6 µm silica particles displayed with LFM images: (A) rings prepared by successive printing of 

SHA, HDDT, and ECT; (B) increase in ring width for HDDT and ECT monolayers is 

accomplished with longer printing times; (C) patterns prepared by successive printing of HDDT, 

SHA and ECT; (D) concentric rings produced by first printing ECT, followed by HDDT and 

SHA. All scale bars are 500 nm. Reproduced with permission from ref
91

, M. Geissler et al., 

Angew. Chem. Int. Ed., 44 (2005). Copyright@ John Wiley & Sons, Inc. 

 

Approaches for particle lithography using organosilane SAMs have been developed and 

applied to various substrates (e.g., silicon oxide, aluminum oxide, germanium oxide, quartz, 

glass, gold, mica
102

). Organosilane SAMs are chemically robust due to the covalent nature of the 

siloxane network formed on surfaces. Post-chemical modification of silane SAMs can be 

accomplished for further binding steps or modifying the surface properties or reactivity without 

destroying the original thin film.  

Vapor deposition steps can be combined with particle lithography to fabricate 

organosilane nanostructures.
16, 71-72

 To form nanopatterns of organosilane SAMs, trace amounts 

of water are necessary to initiate surface hydrolysis of organotrichlorosilanes. The masks of latex 

mesospheres can be used to direct the placement of water residues on surfaces, and organosilanes 

bind selectively at sites of water.
71

 Depending on the drying conditions used to prepare latex 

masks, either ring patterns or films with nanopores can be produced as shown in Figure 3.3. 
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When latex masks are dried briefly, water is distributed homogenously throughout areas of the 

surface (Figure 3.3A). When the partially dried latex mask is exposed to organosilane vapors, 

molecules do not deposit on the areas protected by latex spheres. After removal of the latex mask 

by a rinsing step, an organosilane thin film with uncovered periodic holes is formed on the 

surface, as shown in Figure 3.3B and 3.3C. When latex masks are dried for longer intervals, 

water residues persist only near the base areas of spheres to produce a circular water meniscus 

(Figure 3.3E). After vapor deposition, ring-shaped nanostructures are produced that conform to 

the sites of water residues, as shown in Figures 3.3F and 3.3G.  

Figure 3.3 Nanopatterns of OTS on mica(0001) prepared by particle lithography combined with 

vapor deposition using 500 nm latex masks. (A) Thin film of water is produced on surface for 

briefly dried masks; (B) OTS film with periodic pores of uncovered substrate shown with an 

AFM topograph; (C) zoom-in of B; (D) height profile for the line in C; (E) longer drying of mask 

produces a water meniscus around the bases of spheres; (F) AFM topograph of OTS ring 

patterns; (G) close-up of F; (H) cursor profile for the line in G. Reproduced with permission 

from ref
72

, J.-R. Li et al., ACS Nano, 3 (2009). Copyright@ American Chemical Society. 

 

For the examples of nanopatterns prepared with vapor deposition of 

octadecyltrichlorosilane (OTS) shown in Figure 3.3, the film thickness corresponds to a single 

molecular layer, and the center-to-center distance between nanostructures matches the latex 
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diameter (Figures 3.3D and 3.3H). Particle lithography combined with vapor deposition has also 

been applied for fabricating nanostructures of OTS on Au(111), Si(111), and glass substrates.
71, 

73
 Nanopatterns of organosilanes with different functional groups (e.g. polyethylene glycol, 

amine, vinyl) have also been produced with particle lithography combined with vapor 

deposition.
16, 72

 

3.5 Patterns of Nanoparticles Produced with Particle Lithography 

Particle lithography is a practical route to fabricate nanopatterns of metal nanoparticles 

over large areas, providing exquisite control of the surface arrangement at the nanoscale. 

Lithography methods for metal evaporation through shadow masks of mesospheres typically 

form geometries that are pyrimadal or triangular. The triangular shapes are formed within triple 

hollow sites of hexagonally-packed spheres. Metal evaporation is accomplished using techniques 

such as a magnetron sputtering, electron beam evaporation, or thermal evaporation.
87

 Among the 

reports for lithography accomplished with particle masks, approximately 85% of the articles 

describe studies with nanostructures produced by deposition of heated metal vapors through a 

shadow mask, and is most commonly referred to as natural lithography
78

 or nanosphere 

lithography (NSL).
80

 This practical, high-throughput approach was first developed by Deckman 

and Dunsmuir and has become the convention for studies of photonic phenomena. Exquisitely 

regular, periodic nanostructures are essential for studies of size-dependent photonic properties 

and for measurements with surface enhanced Raman spectroscopy (SERS). Readers are directed 

to contemporary reviews of approaches for NSL to form metal deposits.
87, 103-105

 

Evaporation or sputtering of a metal through a monolayer of colloidal spheres will create 

structures whose shape is determined by shape of the aperture, or interstices, between the 

spheres. The size of the apertures is determined by the size of the spheres in a colloidal 

monolayer. Strategies have been developed to bypass these limitations in an effort to create 
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either smaller features or different shaped nanostructures. Heating has been shown to cause 

deformable latex particles to shrink in size, or to flatten against the substrate to create smaller 

interstitial sites for depositing metals. An approach was developed by Kosiorek et al. to create 

periodic arrays of metal nanoparticles with pattern sizes as small as 30 nm.
67

 For latex masks, the 

size of the apertures between nanospheres can be reduced by heating. Depositing a metal vapor 

through an annealed mask was shown to produce smaller nanostructures on the surface compared 

to nanostructures prepared with masks that were not annealed. An array of cobalt magnetic 

nanoparticles was fabricated on a silicon substrate using latex masks that were annealed by 

microwave heating, shown in Figure 3.4. The diameter of a single cobalt nanostructure measured 

approximately 28 nm, which closely matches the size of the apertures within the latex mask. The 

Co nanoparticle arrays maintain the interparticle spacing and order of the latex mask.  

Figure 3.4 Arrays of Co nanoparticles on silicon substrate prepared by annealing 540 nm latex 

masks, followed by metal evaporation of Co. Reproduced with permission from ref
67

, A. 

Kosiorek et al., Small, 1, (2005). Copyright@ John Wiley & Sons, Inc. 

 

Ring-shaped arrangements of metal nanoparticles were produced by particle lithography 

using solution deposition of metal salts. Metal nanorings composed of copper, gold, and 

platinum nanoparticles were prepared on Si(100) and HOPG substrates using a particle 

lithography strategy developed by Bayati et al.
13

 A surface template of 505 nm latex spheres 

were immersed in a 10 mM solution of metal salts for 2 hr, followed by reduction with NaBH4. 
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The latex template was rinsed away with chloroform to disclose arrays of metal nanorings with 

periodicities corresponding to the diameter of the latex nanospheres. Examples are shown by the 

AFM views in Figures 3.5A, 3.5B and 3.5C for Cu, gold, and Pt nanorings prepared on Si(100) 

substrates, respectively. The average height and diameter of the metal nanorings measured 5.7 + 

0.8 nm and 167.3 + 8.9 nm, respectively. Ring-shaped nanostructures of gold have been shown 

to exhibit tunable surface plasmon resonances in the near infrared region.
106

 

Figure 3.5 Metal ring nanoarrays produced by reducing metal precursor through the interstices 

between PS nanospheres. Topography AFM views of (A) Cu, (B) Au, and (C) Pt nanorings 

formed on Si(100) substrates. Reproduced with permission from ref
13

, M. Bayati et al., 

Langmuir, 26, (2010). Copyright@ American Chemical Society. 

 

A solution-based particle lithography approach known as “two-particle” lithography was 

developed by Lewandowski et al. for controlling the arrangement of cysteine-coated CdS 

quantum dots on surfaces.
75

 Monodisperse latex mesoparticles (or colloidal silica) were mixed 

with cysteine-coated CdS quantum dots in an aqueous solution. Drying the aqueous mixture of 

mesoparticles and nanoparticles spontaneously produces ring arrangements of nanoparticles on 

mica substrates, as shown in Figure 3.6. As water evaporates during the drying step, the liquid 

carries the nanoparticles to form circular arrangements of nanoparticles surrounding the bottom 

area of the mesospheres. The latex template is removed by a rinsing step, and the smaller 

nanoparticles persist and remain attached to the surface. The cysteine-coated CdS rings measure 

140 + 12 nm in diameter, with approximately 10% surface coverage. There are 12 nanostructures 

within the 2 x 2 µm
2
 frame in Figure 3.6B, which scales up to 300 million nanostructures per 1 x 
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1 cm
2
. A cursor profile reveals that the height of the nanostructures is 1.9 + 0.6 nm (Figure 

3.6C), which corresponds to the thickness of a single layer of the nanoparticles. 

Figure 3.6 Ring-shaped nanostructures of cysteine-coated CdS nanoparticles prepared by two-

particle lithography using 500 nm silica spheres: (A) AFM topography image; (B) close-up view 

of A; (C) cursor profile for the line in B. Reproduced with permission from ref
75

, B. R. 

Lewandowski et al., J. Phys. Chem. C, 113, (2009). Copyright@ American Chemical Society. 

 

Two-component patterns of organosilanes prepared by particle lithography furnish a 

spatially-selective platform for binding metal nanoparticles, as demonstrated by Li et al.
72

 Gold 

nanoparticles were selectively attached onto thiol-functionalized organosilane nanopatterns, 

which were prepared by particle lithography combined with vapor deposition.
72

 Nanostructures 

of OTS were first prepared by vapor deposition through 300 nm latex masks. Removal of the 

surface mask generates a thin film of OTS with periodically arranged pores of uncovered Si(111) 

substrate. The uncovered areas were backfilled by immersion in a solution of 3-
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mercaptopropyltrimethoxysilane (MPTMS). Thiol-terminated MPTMS patterns define the sites 

for selectively binding gold nanoparticles via S-Au chemisorption by immersion in a solution of 

gold nanoparticles (Figure 3.7A). Gold nanoparticles bind selectively on areas patterned with 

MPTMS, as shown in Figure 3.7B. The clusters contain around 2-5 gold nanoparticles, as shown 

by the 1 x 1 μm
2
 view in Figure 3.7C. The average height and periodicity of the patterned gold 

clusters measured 13 + 3 nm and 310 + 14 nm, respectively (Figure 3.7D).  

Figure 3.7 Defining spatial selectivity using organosilane nanopatterns for selective 

immobilizaton of gold nanoparticles. (A) Gold nanoparticles selectively attach onto areas with 

MPTMS; (B) 10 x 10 µm
2
 topography view of periodic arrays of gold nanoparticle clusters on 

Si(111) (inset shown is the corresponding FFT image); (C) zoom-in view of B; (D) height profile 

for the line in C. Reproduced with permission from ref
72

, J.-R. Li et al., ACS Nano, 3, (2009). 

Copyright@ American Chemical Society. 

 

3.6 Nanopatterns of Proteins Fabricated by Particle Lithography 

High throughput fabrication methods for nanopatterning proteins are important for the 

development of protein-based biosensors and biochips.
107-109

 Particle lithography has been used 

for generating protein patterns at the nanoscale by evaporative drying of an aqueous mixture of 
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protein and latex.  Ordered arrays of bovine serum albumin (BSA), Immunogobulin G (IgG) and 

staphylococcal protein A (SpA) were fabricated using particle lithography, by Garno et al.
15, 76, 

110
 An example of arrays of BSA nanopatterns produced using 500 nm polystyrene latex as a 

structural template is shown in Figure 3.8, in which proteins are attached directly to mica 

substrates by physical adsorption.
76

 To create the BSA nanopatterns, the protein and latex 

mesospheres were mixed in aqueous solution, deposited on mica, and then dried under ambient 

conditions. As the water evaporates during drying, the mesospheres self-assemble on the surface 

to produce crystalline assemblies. Proteins surround the latex template to form ring or hole 

patterns depending on BSA : latex ratios, as shown in Figure 3.8. The latex mesospheres were 

rinsed from the surface with deionized water. However, the BSA remains attached to the 

substrate to form a single layer of protein nanostructures. Ring nanostructures of ferritin were 

prepared using evaporative particle lithography by Daniels et al., for studies of magnetic 

response of individual ferroproteins at the molecular level.
111

 

Figure 3.8 Periodic arrays of BSA nanostructures on mica(0001) prepared with 500 nm latex 

spheres. (A) AFM topography image and corresponding cursor profile of well-defined pores of 

uncovered substrate within a BSA film prepared with a protein : latex ratio of 61,000 : 1; (B) 

topograph and height profile of ring-shaped BSA nanostructures formed using a ratio of 30,500 : 

1. Reproduced with permission from ref
76

, J.-R. Li, Analyst, 131, (2006). Copyright@ the Royal 

Society of Chemistry. 
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A strategy for preparing lysozyme nanostructures on patterns of organosilanes was 

developed by Cai et al. using particle lithography.
77

 A monolayer film of 

undecenyltrichlorosilane was prepared on a silicon substrate, and then oxidized using a solution 

of KMnO4/NaIO4 to form carboxylic acid headgroups. Polystyrene nanospheres were then 

deposited onto the hydrophilic surface to form a mask for further patterning steps. Vapor phase 

deposition of methyl-terminated OTS was applied to the surface mask. After removal of the 

spheres, periodic nanopatterns of UTSox and OTS were generated to define sites for protein 

adsorption. Lysozyme was selectively deposited onto surface areas with carboxylic acid. 

Reactions with an antibody demonstrated that the bioactivity was preserved for the lysozyme 

patterns, as shown in Figure 3.9.  

Figure 3.9 Adsorption of antibody on lysozyme nanopatterns prepared on silicon wafers using 

particle lithography combined with surface silane chemistry. (A) Topography image of the 

lysozyme nanoarrays after antibody adsorption; (B) cursor profile corresponding to the green line 

in A. Reproduced with permission from ref
77

, Y. Cai et al., Langmuir, 21, (2005). Copyright@ 

American Chemical Society. 
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3.7 Future Prospectus of Particle Lithography 

Particle lithography provides a practical, inexpensive, and materials-general route for 

rapidly producing arrays of nanostructures on surfaces. There is a continuing challenge to press 

the limits for patterning individual proteins and isolated nanoparticles, to enable studies of size-

dependent properties and molecular-level phenomena. The most promising directions for 

lithography with mesoparticles are to develop strategies with nanoscale spatial patterning to 

incorporate innovative schemes of chemical reactions, to enable directed assembly of desired 

functionalities with multiple components and molecular designs. Future directions for patterning 

strategies will likely incorporate more sophisticated reactions for constructing hierarchical 

macromolecular structures, with multifunctionalities. 
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CHAPTER 4. PARTICLE LITHOGRAPHY COMBINED WITH VAPOR DEPOSITION: 

A TOOLKIT FOR STUDYING CONFINED SURFACE REACTIONS IN NANOSCALE 

LIQUID VOLUMES* 

4.1 Introduction 

 For emerging applications in nanotechnology, high throughput methods are needed for 

fabricating nanostructures with tunable properties and sizes for sensors,
1-2

 catalysis,
3
 molecular 

separations
4
 and electronics.

5
 Patterns of organosilane self-assembled monolayers (SAMs) are of 

interest for molecular studies because various head group functionalities and chain lengths can 

be used to tailor the surface properties.
112-113

 Organosilane SAMs are used for sensors,
114-115

 

molecular electronic devices,
116

 lubricants
117

 and semiconductor coatings.
118

 A benefit of 

organosilane SAMs is the suitability for using a range of different substrates, such as silicon 

oxide, metal oxides, quartz, glass, gold and mica.
102

 Organosilane SAMs are chemically robust 

due to covalent bonds to the surface and between the bridges of the siloxane network. As a 

result, functionalized organosilanes have been used as molecular platforms for further chemical 

modification or binding steps.
119-120

  

Monolayers of organosilanes have been prepared on surfaces using either techniques of 

solution immersion
121-122

 or vapor deposition.
123-124

 Studies have shown that the overall quality 

of the SAM that is formed depends intrinsically on the experimental conditions used during film 

preparation, such as the type of solvent used,
120, 125

 nature of the substrate,
121, 126

 reaction 

temperature,
120, 127-128

 precursor concentration
129

 and the size and chemical structure of the 

organosilane.
126, 130

 In particular, the amount of water that is present on the surface has been 

shown to greatly influence the quality of the film.
112, 122, 131

 Surface bound water initiates 

hydrolysis of organotrichlorosilanes to form silanols, which then form siloxane linkages to 

surface silanol (Si–OH) groups or undergo condensation for polymerization of organosilanols. 

*Reproduced with permission from Elsevier. 
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Patterns of organosilanes can be used for integrating various molecules into well-defined 

surfaces. Strategies of lithography for micropatterning organosilanes on surfaces include 

microcontact printing,
132-133

 photolithography
134

 and electron beam lithography
135-136

. 

Nanopatterning of organosilanes has been accomplished using different approaches for scanning 

probe lithography such as dip-pen nanolithography,
137

 bias-induced lithography
138

 and 

nanoshaving.
139

 

Particle lithography provides capabilities for rapidly producing periodic nanopatterns 

over large areas and has been applied for patterning polymers,
60-61

 metals,
62-67

 SAMs
68-70

 and 

proteins.
15, 76-77

 Particle lithography offers a versatile alternative for nanofabrication with the 

benefit of high throughput and has also been referred to as colloidal lithography,
79

 natural 

lithography,
78

 nanosphere lithography,
80-81

 or evaporative lithography.
14

 Monodisperse 

mesospheres of latex or colloidal silica spontaneously assemble on flat surfaces to form close 

packed structures with regular geometries and interparticle spacing.
87

 The 2D arrays of 

mesoparticles furnish an evaporative mask or a structural template for guiding the deposition of 

various materials. The area of contact between the spherical particles and the substrate remains 

protected from chemical modification during the patterning process. 

We have developed a direct method of accomplishing particle lithography using chemical 

vapor deposition to nanopattern organosilanes on different substrates (e.g., silicon wafers, glass, 

mica and gold surfaces).
71-72

 In this report, we demonstrate the applicability of particle 

lithography with vapor deposition for preparing multilayered nanostructures of organosilanes 

with different terminal groups: amine-, PEG- and vinyl-terminated organosilanes. The self-

polymerization reactions of ω-functionalized silanes were investigated using atomic force 

microscopy (AFM) to obtain molecular-level views of ring-shaped nanostructures prepared using 

particle lithography. The influence of the following parameters has been studied as a function of 
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terminal group chemistry and molecular length: the surface density, the thickness of the SAMs, 

the widths of the patterns, periodicity, and overall surface coverage.  

4.2 Experimental Details 

4.2.1 Materials and Reagents 

Boron-doped polished Si(111) wafers were obtained from Virginia Semiconductor Inc. 

(Fredericksburg, VA) and cut into 1×1 cm
2
 squares. Concentrated sulfuric acid (98.0%) and 

hydrogen peroxide (30%) were used as received from Sigma-Aldrich. Size-sorted monodisperse 

polystyrene latex mesospheres (1 wt.% solution) with sulfate surface groups with particle 

diameters of 100, 150, 200, 300 and 500 nm were obtained from Thermo Scientific (Waltham, 

MA) and used as surface masks during vapor deposition of organosilanes. 

Octadecyltrichlorosilane (OTS), N-(6-aminohexyl)-3-aminopropyltrimethoxysilane (6- 

AAPTMS), 2-[methoxy-(polyethyleneoxy)propyl]trichlorosilane (PEG-silane) and 10-

undecenyltrichlorosilane (UTS) were purchased from Gelest (Morrisville, PA) and used without 

further purification. Anhydrous ethanol was purchased from Pharmco (Aaper, TX). 

4.2.2 Substrate Preparation 

Silicon substrates were cleaned by soaking in piranha solution (3:1 v/v ratio of 

concentrated sulfuric acid and 30% hydrogen peroxide) for 1 h. Piranha solution is corrosive and 

should be handled with caution. After cleaning, surfaces were rinsed with copious amounts of 

deionized water purified by a Millipore Milli-Q purification system (18 MΩ cm, Boston, MA) 

and dried in air. 

4.2.3 Basic Steps for Nanofabrication of Organosilane Ring Patterns 

Nanopatterns of organosilanes with different terminal groups were prepared following a 

procedure that was previously described for octadecyltrichlorosilane (OTS).
71

 An overview of 

the procedure for particle lithography with vapor deposition is shown in Figure 4.1. First, latex 
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mesospheres were washed to remove surfactants by three cycles of centrifuging (15 min cycle
−1

) 

at 14,000 rpm. The supernatant was discarded and the latex mesospheres were resuspended in 

deionized water with vortex mixing. A drop (20 μL) of the latex suspension was deposited on a 

clean Si(111) substrate and dried for 12 h in ambient conditions (25 C, relative humidity ~55%).  

Figure 4.1 Fabrication of organosilane nanostructures using particle lithography combined with 

chemical vapor deposition. (A) A crystalline layer of latex mesospheres provides an evaporative 

mask for nanopatterning. The masked substrate is placed in a sealed vessel containing a small 

volume of neat organosilane and then is heated at 70 °C to generate vapors. (B) After the latex 

mask is rinsed away an array of organosilane ring nanopatterns is formed. 

 

As water evaporates during the ambient drying step, the latex spheres are pulled together 

by capillary forces to form close-packed layers on the surface. The dried film of latex provides a 

mask for nanolithography; however nanoscopic amounts of water persist under the spheres at the 

surface to uniformly produce a water meniscus around the base of each sphere. The water 

residues define the locations for organosilanes to bind. The substrates with masks of latex films 

were placed on a platform within a glass container, then a small volume (300 μL) of neat 
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organosilane was added to the bottom of the vessel. The container was sealed and placed into a 

heated oven for 8 h (Figure 4.1A). We have established empirically that it is not necessary to 

heat the samples to the boiling point of the organosilane, sufficient vapor is generated at 70 °C to 

produce nanopatterns. During the heated vapor step, organosilanes bind covalently only on area 

of the surface where a water meniscus is present. Areas of the surface where the latex particles 

make contact with the substrate remain protected from vapor deposition. In the final step, the 

film of latex mesospheres was removed by rinsing and sonicating in deionized water and ethanol 

several times (Figure 4.1B). After removal of the latex mask, covalently bound organosilanes 

persist on the surface to reveal periodic arrays of ring-shaped nanostructures with dimensions 

corresponding to the diameter of the latex masks. 

4.2.4 Atomic Force Microscopy 

Samples were characterized using either a model 5500 or 5600 LS scanning probe 

microscope (Agilent Technologies, Chandler, AZ) with acoustic AC-mode (tapping) AFM. 

Silicon probes with an average resonance frequency of 190 kHz and spring constants ranging 

from 20 to 95 Nm
−1

 (Nanoscience Instruments, Inc., Phoenix, AZ) were used for imaging. 

Digital images were processed with Gwyddion (version 2.9) open source software which is 

supported by the Czech Metrology Institute.
140

 

4.2.5 Quantitative Measurements 

Measurements of surface coverage (θ) were obtained with Image-Tool (UTHSCSA, San 

Antonio, TX).
141

 The percent surface coverage was estimated from AFM images by averaging 

measurements from representative images from different areas of multiple samples. To measure 

the periodicity between nanopatterns, the center-to-center distances between adjacent pores were 

measured for at least 100 nanostructures using cursor line profiles from several AFM topographs 

acquired for different areas of the surface. The average thickness of organosilane nanopatterns 
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was measured with height profiles of AFM topographs acquired for at least 100 rings from 

different areas of the sample, referencing the uncovered areas of the substrate as a baseline. 

4.3 Results and Discussion 

4.3.1 Control of Size and Surface Density of Nanopatterns Prepared from OTS 

Images of methyl-terminated nanopatterns prepared with OTS from different sizes of 

latex masks are shown with successive zoom-in AFM views (Figure 4.2). For ring-shaped 

nanostructures prepared by particle lithography, AFM topographic views show that arrays of 

OTS rings are generated with highly regular geometries. With changes in the diameter of the 

spheres, the density of ring nanopatterns correspondingly changes according to the periodicity of 

the latex mask. Line profiles traced across the nanopatterns reveal that the baselines within the 

pores of the rings are at the same level as the surrounding uncovered areas of the substrate, 

which indicates that OTS did not adsorb within the center of the rings. The absence of adsorbates 

within the pore areas enclosed by the rings demonstrates that latex spheres were effective surface 

masks for chemical vapor deposition. Relatively few defects are observed in the wide area views 

displayed in the first column (Figure 4.2, left images). Successive zoom-in views are shown in 

the second and third columns of Figure 4.2, which show fine details of the size and uniformity of 

the nanostructure geometries. From the cursor line profiles shown in the fourth column of Figure 

4.2, the average periodicity for samples prepared with 495, 200 and 100 nm latex diameters 

measured 502 ± 5, 218 ± 8 and 112 ± 6 nm, respectively. 

Changing the latex diameter provides a toolkit for tuning the surface density and sizes of 

organosilane nanopatterns. The periodicity of the latex mask dictates the center-to-center 

distance between rings; however the organosilane patterns are much smaller than the latex 

particles. Evaporative masks of mesoparticles provide an excellent framework for controlling the 

overall periodicity and long-range order. When combining particle lithography with vapor 
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deposition, ring structures form around the base of each sphere where a water meniscus is 

located. Nanoscopic residues of water are confined around the base of each latex particle, which 

provides reaction sites for the hydrolysis and condensation of organosilanes. Essentially, 

particles are used to pattern water residues on the surface because latex films were dried in a 

humid, ambient environment. The volumes of these meniscus sites are exquisitely regular in 

dimension at the nanoscale to define a 3D nanosized container for silanation to occur. Vapor 

deposition of organosilanes takes place selectively at the locations of water residues, mediated by 

a two-step reaction mechanism of hydrolysis and condensation.
71

 Since organosilanes bind 

covalently to silicon substrates, the organosilane nanostructures produced by particle lithography 

are highly robust to effects of oxidation and heat. 

Figure 4.2 Ring-shaped nanopatterns of OTS prepared on Si(111). Topography images of 

nanopatterns prepared with latex diameters of (A) 495 nm, (B) 200 nm and (C) 100 nm, acquired 

with tapping mode AFM. 
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One would expect that the size of the water meniscus would scale proportionately with 

the diameter of the mesoparticles. A larger latex mesoparticle would have a water meniscus that 

is wider and taller in dimension. Cursor measurements of the ring nanopatterns in Figure 4.2 

provide a means to test this prediction. The widths of the rings changed from 230 ± 6 nm to 170 

± 5 nm to 97 ± 7 nm for latex sizes of 495, 200 and 100 nm, respectively. Interestingly, the 

changes in the heights of the rings also scale with the sizes of the mesoparticles: from 7.2 ± 0.6 

nm to 5.8 ± 0.4 nm to 5.2 ± 0.6 nm correspondingly for latex diameters of 495, 200 and 100 nm. 

The thickness of a monolayer of OTS has been reported to measure within the range of 2.26 and 

2.76 nm.
130, 142-144

 Thus, the thicknesses of the patterned OTS nanostructures correspond roughly 

to a double layer for 100 nm latex, a triple layer for 200 nm latex and four layers with 495 nm 

spheres. Multilayer structures of organosilanes are produced by self-polymerization reactions, 

therefore, a key to producing monolayer films is to carefully control the amount of water present 

during the reaction.
112, 122, 131

 The thickness of OTS patterns is neatly controlled by the height of 

the water meniscus, such that a wider and taller water meniscus is produced for larger spheres of 

latex. 

By changing the size of the latex mesospheres used as masks, the spatial distribution and 

surface density of organosilane nanopatterns can be fine-tuned. The number of nanostructures 

scales predictably from 12 rings (Figure 4.2A) to 64 (Figure 4.2B) and 224 (Figure 4.2C) rings 

within the 2×2 μm
2
 frames shown in the third column of Figure 4.2. This scales up to a surface 

density of 3×10
8
, 2×10

9
 and 6×10

9
 rings per 1×1 cm

2
 for OTS nanopatterns prepared with latex 

diameters of 495, 200 and 100 nm, respectively. Thus, the particle lithography toolkit provides 

an approach for selecting the periodicity of ring nanopatterns, enabling nanoscale control of the 

number density of nanopatterns. 
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4.3.2 Effects of Headgroup Chemistry for the Surface Coverage of Organosilane 

Nanopatterns 

 

Beyond our initial studies of methyl-terminated nanopatterns of OTS, organosilanes with 

different functional groups (e.g., vinyl-, PEG and amine-terminated silanes) were prepared using 

particle lithography combined with vapor deposition. Arrays of ring nanostructures of UTS, 

PEG-silane and 6-AAPTMS prepared with 300 nm latex are demonstrated with tapping mode 

AFM images shown in Figure 4.3A–C, respectively. Discrete changes are observed for ring 

shapes according to the chemical composition of the nanopatterns, even within the larger 8×8 

μm
2
 topographic views (Figure 4.3, left column). Magnified views of the surface areas reveal 

that the hexagonal packing arrangement of the latex mask is preserved for all three cases. 

Geometry changes of the ring widths and heights are apparent for the different organosilane 

moieties. For the examples shown in Figure 4.3, simultaneous samples were prepared with masks 

of 300 nm latex for different terminal moieties. The widths of the rings (FWHM±SDV) 

measured 55 ± 3 nm, 72 ± 4 nm and 61 ± 6 nm for UTS, PEG-silane and 6-AAPTMS, 

respectively. Comparing the means using a paired t-test, these values are significantly different at 

the 99% confidence level (n=50). Thus, changes in the molecular lengths and terminal groups of 

organosilanes produce differences in lateral spreading of the patterns across the surface within 

the confined volume of a water meniscus. 

Multilayered structures were observed for patterns of all three organosilanes of Figure 

4.3, with the tallest heights observed for vinyl terminated UTS. Organosilanes with reactive head 

groups can form multilayers either through head-to-head interactions, head-to-tail assembly, or 

self-polymerization reactions. The shortest nanostructures were obtained with 6-AAPTMS, 

which has a triethoxy end group rather than trichlorosilane. Referencing the uncovered areas of 

silicon substrate as a baseline, a thickness of 9.2 ± 0.4 nm was measured for UTS nanopatterns 
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(Figure 4.3A), which has a theoretical length of 1.6 nm for a single layer.
145

 This would 

correspond to approximately six molecular layers of UTS for fully extended, upright molecules. 

Nanostructures prepared with PEG-silane (Figure 4.3B) measured 7.9 ± 0.6 nm in height which 

corresponds to a thickness of 4–5 molecular layers when compared to the expected thickness of a 

monomolecular PEG layer of 1.0 to 1.7 nm.
146

 The length of a fully extended silane molecule 

with seven PEG units is 3.1 nm.
146

 An average thickness of 4.3 ± 0.4 nm was measured for ring 

nanostructures of 6-AAPTMS (Figure 4.3C), which corresponds to approximately three layers, 

the known thickness of a monolayer of 6-AAPTMS is 1.3 nm.
123

 

Figure 4.3 Periodic arrays of organosilane nanopatterns with different functional groups 

fabricated on Si(111) using 300 nm latex masks. Tapping mode images and height profiles of (A) 

vinyl-terminated UTS nanostructures, (B) PEG-silane rings and (C) amine-terminated 6 

AAPTMS nanopatterns. 
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Trifunctional organosilanes are highly reactive in the presence of water and can both 

oligomerize and polymerize at a surface or in solution, depending on experimental conditions.
147-

148
 For 6-AAPTMS, the amino headgroup can form a hydrogen or ionic bond with the 

methoxysilane group of another AAPTMS molecule or its hydrolyzed form.
123

 Also, the amino 

group can self-catalyze the hydrolysis step to produce multilayers.
149

 Triethoxysilanes were 

reported to be less reactive to water than trichlorosilanes and therefore would be likely to 

produce fewer layers within the ring nanostructures. Since all three systems were prepared 

simultaneously with 300 nm latex, the size and volume of the water meniscus should be 

comparable for the experiments of Figure 4.3. This indicates that the reactivity of the terminal 

group affects the surface assembly into multilayers, with the order of reactivity 

vinyl>>PEG>amine functional groups for the propensity to form multiple layers. 

Well-defined pores are observed at the center of the ring nanopatterns in the 2×2 μm
2
 

zoom-in topographic views and simultaneously acquired phase images, pinpointing the locations 

where the latex spheres were removed. Phase images provide a sensitive map of the surface 

morphology, as well as indicating changes in surface chemistry. The phase images in the third 

column of Figure 4.3 clearly reveal differences in surface chemistry between the organosilane 

rings and surrounding areas of the silicon substrates. Segmented domains of UTS are apparent in 

the phase image shown in Figure 4.3A, which can be an indication of disordered multilayers. 

Small clusters are also present on areas of the surface between UTS ring patterns. The phase 

images acquired for PEG-silane and 6-AAPTMS, however, reveal nanostructures with a 

continuous, smooth morphology without disconnections. The average lateral periodicity for 

UTS, PEG-silane and 6-AAPTMS nanopatterns measured 296 ± 8, 311 ± 6 and 298 ± 5 nm, 

respectively. These values closely match the expected 300 nm diameter of latex mesospheres 

used as masks for particle lithography, within 3% variation. 
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A number of experimental parameters can influence the self-assembly of organosilanes, 

such as the type of solvent used,
120, 125

 the nature of the substrate,
121, 126

 reaction temperature
120, 

127-128
 and water content.

131, 150-151
 The molecular structure and reactivity also influence how the 

molecules self-organize on surfaces in both vertical and lateral directions. An important 

contribution of using particle lithography for studies of organosilane chemistry is that the 

reaction volumes can be spatially confined to take place within a nanoscopic meniscus area. This 

ability to spatially control surface reactions can furnish insight for the chemical mechanisms of 

surface assembly and interchain self-polymerization of organosilanes within confined volumes. 

Quantitative comparisons of the changes in the number density of rings of UTS, PEG-

silane and 6-AAPTMS nanostructures can be made as a function of latex diameter (Figure 4.4). 

The diameter of latex spheres directly defines how many nanostructures will be generated. The 

surface densities were found to be quite consistent for UTS, PEG-silane and 6-AAPTMS ring 

nanopatterns (Figure 4.4). The number of nanostructures ranges from 1 to 12 billion 

nanostructures cm
−2

 depending on the diameter of latex. These results demonstrate the powerful 

advantages of using particle lithography for creating nanostructures; basic steps of chemistry can 

be used to rapidly and predictably generate billions of nanopatterns with exquisitely regular 

geometries and periodicity. 

Figure 4.4 Changes in the surface density for organosilane nanostructures of UTS (green), PEG 

silane (blue) and 6-AAPTMS (red) prepared on Si(111) using different diameters of latex 

spheres. 
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The surface coverage (θ) was evaluated for UTS, PEG-silane and 6-AAPTMS 

nanopatterns using estimates from counting pixels in AFM images (Table 4.1). Overall, the 

percent surface coverage of nanostructures for UTS, PEG-silane and 6-AAPTMS were fairly 

reproducible for specific latex diameters, ranging from 13 to 24% for 300 nm latex and from 34 

to 40% for 150 nm latex diameter. As a generic trend, the results in Table 4.1 indicate that for 

each molecule the overall surface coverage increases with decreasing latex diameters. However, 

for samples prepared with 100 nm latex, the UTS surfaces had a significantly higher coverage of 

75%, which was found to be a reproducible effect for samples prepared on different days. This is 

considerably greater than the values observed for nanopatterns of OTS, PEG-silane and 6-

AAPTMS and is an interesting anomaly which merits further study. 

Table 4.1 Surface coverage estimates for organosilane nanostructures with different terminal 

groups. 

 

4.3.3 Long-Range Order and Periodicity of PEG-Silane Nanopatterns 

The capabilities of particle lithography for patterning of broad areas of the surface are 

demonstrated in Figure 4.5. Nanopatterns of PEG-silanes prepared with 150 nm latex are viewed 

within a 30×30 μm
2
 topography frame. Within this relatively large area of the sample the 

exquisitely regular geometries and arrangement of nanopatterns are apparent. The arrays of PEG-

silane rings span the entire surface and maintain the long-range order of the latex mask, with 

periodicities extending over micron regions. Very few defects (e.g., point defects and misaligned 
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domains) are observed. Missing patterns and line defects in mesosphere masks can be attributed 

to sphere polydispersity, nanoscale defects of the underlying substrate and packing defects from 

shrinkage during the drying step.
152

 A number of approaches have been reported for minimizing 

the density of defects for scale-up to wafer dimensions.
82, 87, 153-155

 The reciprocal space of the 

topography frame is displayed in the inset of Figure 4.5 with 2D fast Fourier transform (FFT) 

analysis, as further confirmation of the well-defined periodicity of the nanopattern array. The 

FFT analysis provides a quantitative picture of the long-range order of the array of PEG-silane 

nanostructures. 

Figure 4.5 The high throughput capabilities of particle lithography are demonstrated with a wide 

view AFM image of PEG-silane ring nanostructures prepared with 150 nm latex. The inset 

shows an FFT spectrum generated from the 30×30 μm
2
 topograph. 

 

Particle lithography provides a versatile toolkit for high throughput nanopatterning of 

covalently attached organosilanes, with the practicality of designing surface reactivity by using 

designated functional groups. These compelling new results with nanoscale particle lithography 
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provide insight about the propensity of reactive moieties to form multilayers and offer new 

possibilities for accomplishing surface reactions within the confined volume of 3D liquid 

meniscus area as determined by the diameter of latex masks. Our results with ω-functionalized 

organosilanes indicate that the most critical factors for surface assembly with particle lithography 

combined with vapor deposition are the nature of the head group, the endgroup of the parent 

molecule, as well as the chain length and the size of the water meniscus. Control of the humidity 

may lead to different thicknesses of the multilayers and studies are in progress to evaluate the 

specific changes in the heights and lateral dimensions of the rings as a function of humidity. 

Overall, the ring geometries, number density and surface coverage are exquisitely reproducible at 

the nanoscale and are primarily determined according to the diameters of the latex masks. 

Different chemical functionalities presented at the interface enable molecular level control of 

surface reactivity for the nanopattern designs. 

4.4 Conclusions 

The procedure for preparing nanostructures using particle lithography and vapor 

deposition of organosilanes requires only a few chemical steps and does not require sophisticated 

equipment or expensive reagents. Billions of high quality nanostructures are rapidly generated 

with basic steps of wet chemistry, with the versatility of using a range of different substrates 

such as silicon, glass, gold or mica. Particle lithography combined with vapor deposition of 

organosilanes offers synthetic flexibility, extending to trialkoxy or trichlorosilane end groups, 

provides advantages of covalent surface linkages and produces exquisitely regular nanostructures 

with tunable surface coverage and density of nanostructures. From a scientific perspective, 

particle lithography enables spatial confinement of silanation reactions within nanoscopic 

volumes of a water meniscus. This provides a way to obtain molecular-level views of the 

products of reactions after surface assembly using AFM analysis. A convenient and practical 
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toolkit is furnished by particle lithography to spatially direct and control surface reactions of 

organosilanes, which will lead to future studies of more complex multi-molecular architectures 

and designs using immersion strategies to backfill nanopatterns. 
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CHAPTER 5. NANOSTRUCTURES OF FUNCTIONALIZED GOLD NANOPARTICLES 

PREPARED BY PARTICLE LITHOGRAPHY WITH ORGANOSILANES* 

 

5.1 Introduction 

Considerable advances have been achieved in developing approaches to synthesize 

functional nanoparticles with designed properties (optical, electronic, catalytic, magnetic, etc.) 

by tailoring the size, composition and shell chemistry of metal nanoparticles. However, the 

development of convenient, high throughput methods for fabricating surface structures of 

nanoparticles presents a further challenge for materials research. Relatively few methods have 

capabilities for placing nanoparticles on surfaces with alignment at scales below 500 nm. High 

throughput patterning of nanoparticles is a requirement for potential nanotechnology applications 

in miniaturized devices and sensor platforms. 

Addition of designed organic ligands to the surface of metal nanoparticles changes the 

nature of the material and imparts new properties for multiple functions, such as fluorescence, 

reactivity or chemical specificity.
156-157

 There is considerable precedent for the synthesis of 

monolayer-protected nanoparticles with different shell chemistries.
158-159

 However, there are few 

reports that present approaches for preparing surface patterns of these nanomaterials at length 

scales below tens of microns. Particle lithography is a versatile, high-throughput approach for 

controlling the organization of nanomaterials on surfaces and has also been referred to as 

colloidal lithography,
79

 natural lithography,
78

 nanosphere lithography
80

 or evaporative 

lithography.
14

 Millions of nanostructures can be generated on surfaces with relatively few defects 

to reproducibly prepare well-defined arrangements. Most articles that have been published (630 

of 846) use the term nanosphere lithography or NSL to refer to evaporation of heated metal films 

through a shadow mask of latex spheres to create single element nanostructures. Metal 

*Reproduced with permission from the American Chemical Society. 
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nanostructures formed with NSL have size-tunable properties for applications as SERS 

substrates or as photonic crystals. Other deposition approaches that have been reported with NSL 

include argon ion milling, reactive ion etching and electrodeposition of metals. Particle 

lithography is a generic approach for creating patterns for a diverse range of materials, such as 

polymers,
60-61

 metals,
62-67, 160

 organic thin films
68-70, 161

 and proteins.
15, 76-77

 With particle 

lithography, films of latex or colloidal silica furnish 2D arrays of mesospheres as a lithographic 

mask or template for guiding the deposition of different materials and organic thin films. 

Monodisperse mesospheres spontaneously self-assemble on flat surfaces when dried, to form 

hexagonal arrays for high-throughput patterning.
87

 The lithographic mask of spherical particles 

protects the surface during chemical treatments, and can be conveniently removed by subsequent 

steps of solvent rinsing, dissolution or sonication. 

A practical strategy for patterning metal nanoparticles is to prepare nanopatterns of self-

assembled monolayers (SAMs), and use the spatial selectivity of functional headgroups of the 

molecules to subsequently define the surface attachment of nanoparticles. Organosilane SAMs 

presenting various terminal chemistries can be prepared with a range of different substrates, such 

as silicon wafers, metal oxides, quartz, glass and mica.
102

 Organosilane SAMs form robust, 

covalent bonds to surfaces, and are widely used as resist films for photolithography. 

Organosilane SAMs provide molecular platforms for further chemical modification steps to 

integrate designed moieties into well-defined surface patterns.
119-120

 Combining particle 

lithography with molecular self-assembly is a practical approach for producing 2D arrays of 

organosilane nanostructures with ring-shaped geometries or nanosized holes within a surface 

film.
71-73

 The organosilane nanostructures are an excellent foundation for building more complex 

nanostructures from the bottom-up, by successive ex situ steps of surface chemical reactions. 

Millions of nanopatterned sites can be produced with vapor deposition of organosilanes and 
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particle lithography to provide exquisite spatial selectivity, such as for deposition of uncoated 

gold nanoparticles.
72

 

Methods for patterning core-shell nanoparticles will facilitate studies of size-dependent 

properties, by providing test platforms with discrete dimensions and surface arrangements of 

nanomaterials. Surface nanopatterns of nanoparticles offer advantages for high resolution studies 

with scanning probe microscopy (SPM),
162

 and are an essential step for incorporating 

nanomaterials in sensors and miniaturized devices.
163

 Strategies for patterning nanoparticles have 

been reported for preparing 1D wires
164

 and 2D arrays
165

 of coated nanoparticles using steps of 

solvent partitioning, self-assembly or evaporation. Ring structures of nanoparticles have been 

produced using evaporative particle lithography.
14, 75

 To further control the dimensions and 

shapes of surface patterns of encapsulated nanoparticles, methods have been reported for 

attaching nanoparticles to patterns of thiol SAMs prepared on gold substrates using electron 

beam lithography
166

 and microcontact printing.
163, 167

 Methods based on microcontact printing 

produced multilayer patterns at size scales of 5-50 microns. Manipulation of single nanoparticles 

has been accomplished using atomic force microscopy (AFM)
163

 and scanning tunneling 

microscopy.
163, 168

 Exquisite precision has been achieved for patterning nanoparticles with SPM-

based nanolithography,
169-171

 however SPM-based methods generate nanopatterns individually 

by a slow serial procedure that is not easily scaled up for high throughput production of billions 

of nanostructures. A challenge is presented for developing high-throughput approaches for 

controlling the arrangement of nanoparticles at ever smaller dimensions. For studies of magnetic, 

optical or electronic properties of coated nanoparticles, additional steps which add chemical 

contaminants should be minimized or eliminated. 

In this report, we introduce a protocol for patterning surface-active nanoparticles within 

uncovered areas of a silane-masked substrate. Modified gold nanoparticles were linked to 
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surfaces of silicon and glass by designing a linking group within the organic shell. 

Functionalized core-shell nanoparticles such as gold monolayer protected clusters consist of a 

gold core that is coated with a thiol organic monolayer, for applications such as biosensing and 

quantum devices.
159, 172-173

 Using particle lithography, substrates with well-defined arrays of 

uncovered nanoholes were formed within a film of methyl-terminated silane SAM, and the 

patterned surfaces were then used as a resist to direct the attachment of coated gold nanoparticles 

within confined areas. Although we have previously patterned bare gold nanoparticles onto pre-

formed backfilled nanopatterns of mercaptosilanes, the nature of surface attachment and 

chemical interactions become more complicated for coated nanoparticles. The chemical scheme 

of thiol-gold chemisorption (using bare nanoparticles) versus robust covalent linkages with 

silanation provides entirely different routes to mediate surface attachment than our previous 

publication.
72

 Approaches with covalent linkages for directing nanoparticles to attach selectively 

to defined regions of the surface by steps of surface self-assembly and designed chemistry opens 

possibilities for chemical patterning of coated nanoparticles to generate functional 

nanostructures.  

5.2 Experimental 

5.2.1 Materials and Reagents 

Boron-doped, double side polished Si(111) wafers (Virginia Semiconductor Inc., 

Fredericksburg, VA) and glass cover slides (Fisher Scientific, Pittsburgh, PA) were used as 

substrates. Concentrated sulfuric acid (98.0%), hydrogen peroxide (30%), NaBH4 (99%), 

tetraoctylammonium bromide (98%), tetrachloroauric(III) acid and anhydrous toluene (99.8%) 

were purchased from Sigma Aldrich (St. Louis, MO). Monodisperse latex mesospheres (1 wt% 

solution) with a particle diameter of 200 nm were obtained from Duke Scientific (Palo Alto, 

CA). Octadecyltrichlorosilane (OTS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were 



53 
 

purchased from Gelest (Morrisville, PA) and used without further purification. Anhydrous 

ethanol was obtained from Pharmco (Aaper, TX). 

5.2.2 Substrate Preparation 

Silicon substrates were cut into 1 × 1 cm
2
 squares and cleaned by soaking in piranha 

solution (3:1 v/v ratio of concentrated sulfuric acid and 30% hydrogen peroxide) for 1 h. Piranha 

solution is corrosive and should be handled with caution. After cleaning, surfaces were rinsed 

with copious amounts of deionized water and dried in air (18 MΩ·cm, Millipore Milli-Q 

purification system, Boston, MA). 

5.2.3 Synthesis of Organosilane Coated Nanoparticles 

Gold nanoparticles with a diameter of 3-5 nm were chemically modified with MPTMS to 

produce nanoparticles with silanol terminal groups. The synthesis of coated nanoparticles 

followed a previously reported protocol.
43, 174-175

 A solution of tetraoctylammonium bromide (35 

mM in toluene, 10 mL) was added to 15 mM tetrachloroauric(III) acid in water (10 mL) as 

shown in Figure 5.1A. After mixing, AuCl4
−
 ions transferred to the top organic layer, as shown 

in Figure 5.1B when the toluene phase became orange-brown. Neat MPTMS (65 mg) was added 

to the toluene phase, and the resulting solution was stirred for 10 min at room temperature. With 

stirring, the orange-brown solution became colorless within 5 min, shown in Figure 5.1C. The 

colorless organic phase was isolated and transferred to a clean vial, and 10 mL of 150 mM 

NaBH4 solution was slowly added to the organic phase to yield nanoparticles. The dark organic 

phase was further stirred at room temperature for 45 min to produce a dark color for the top layer 

containing MPTMS-coated gold nanoparticles, shown in Figure 5.1D. 
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Figure 5.1 Color changes that evolve during synthesis of organosilane coated gold nanoparticles. 

(A) A solution of HAuCl4 was added to toluene; (B) tetraoctylammonium bromide was added to 

the toluene solution and gold (III) cations were transferred to the organic phase; (C) after 

MPTMS was added to the solution the organic phase became colorless; (D) the organic phase 

was transferred to another vial, and a solution of sodium borohydride was added. 

 

5.2.4 Selective Deposition of Nanoparticles on Organosilane Nanopatterns 

 Steps for the overall procedure for preparing nanopatterns of silane coated nanoparticles 

are shown in Figure 5.2. A surface masked with OTS nanopatterns was prepared using vapor 

deposition through mesoparticles, which left exposed sites for deposition of nanoparticles coated 

with MPTMS. Nanopatterns of OTS were prepared as previously described.
71

 First, latex 

mesospheres were washed with deionized water to remove contaminants by three cycles of 

centrifuging (15 min cycle
-1

) at 14000 rpm. The supernatant was discarded and the latex 

mesospheres were resuspended in deionized water with vortex mixing. A small drop (20 µL) of 

the latex suspension was deposited on a clean Si(111) substrate and dried for 20 min in ambient 

conditions (25°C, relative humidity ~50%). As water evaporates during the drying step, capillary 

forces induce the close-packing of spheres to spontaneously form a crystalline layer on the 

surface. A thin film of water persists throughout areas of the surface; however, residues of water 

become trapped near the base of the spheres to form a liquid meniscus ring. The sites where 

water residues are present define the locations for OTS to bind to the surface.  
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Figure 5.2 Procedure for nanopatterning silanol-coated gold nanoparticles. (A) Latex 

mesospheres provide an evaporative mask during vapor deposition of OTS; (B) latex masks are 

rinsed away to generate an array of OTS nanostructures; (C) nanoparticles deposit on areas of 

uncovered substrate after immersion in a solution of surface-active gold nanoparticles. 

 

The dried film of latex furnishes an evaporative mask for patterning, and is placed in a 

sealed chamber containing a small volume of neat OTS (Figure 5.2A). The sample is heated in 
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an oven at 70°C for 8 h to generate vapors of OTS. During this step, organosilanes bind 

covalently at areas of the surface where water is present, forming a network of bridging Si-O 

linkages between adjacent molecules or the substrate. Areas of the surface where the latex 

particles make contact with the substrate remain protected from vapor deposition. The film of 

latex mesospheres is then removed by rinsing and sonicating the sample with deionized water 

and ethanol several times. After removal of the latex mask, nanopatterns of OTS molecules 

persist on the surface to reveal arrays of ring shaped nanostructures (Figure 5.2B). In the final 

step, surfaces patterned with OTS nanostructures are immersed for 12 h in a freshly-prepared 

solution of surface-active nanoparticles (Figure 5.2C). To remove loosely-bound nanoparticles, 

samples were then sonicated in ethanol three times for 15 min and dried in air. 

5.2.5 Characterization of Nanopatterns 

Scanning probe characterizations of samples were obtained in ambient conditions with a 

model 5500 scanning probe microscope (Agilent Technologies, Chandler, AZ). Pyramidal 

silicon probes with an average resonance frequency of 190 kHz and spring constants ranging 

from 20-95 N m
-1

 (Nanoscience Instruments, Inc., Phoenix, AZ) were used for imaging with 

tapping mode AFM. Oxide-sharpened silicon nitride cantilevers with force constants ranging 

from 0.1 to 0.5 N/m were used when imaging in contact mode (Veeco Probes, Santa Barbara, 

CA). Digital images were processed with Gwyddion open source software (version 2.9), which is 

supported by the Czech Metrology Institute.
140

 Measurements of surface coverage were obtained 

with ImageTool (UTHSCSA, San Antonio, TX).
141

 The percent surface coverage was estimated 

using 2D AFM images and averaging the surface coverage of representative images from 

different areas of multiple samples. Ultraviolet-visible (UV-Vis) spectra of the MPTMS-coated 

nanoparticles and nanopatterns were recorded with a Varian Cary 50 UV-Vis spectrophotometer 

(Palo Alto, CA). 
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5.3 Results and Discussion 

Surface masks of organosilane nanopatterns produced using particle lithography provide 

exquisite spatial selectivity to define the adsorption of nanomaterials. For these studies, methyl-

terminated nanopatterns were prepared by vapor deposition of OTS as a surface mask, to 

designate locations for subsequent adsorption of MPTMS-coated nanoparticles. Surface changes 

throughout the steps of particle lithography can be investigated with AFM. A representative 

example is shown in Figure 5.3 for arrays of OTS nanostructures formed on Si(111) substrates 

that were prepared with 200 nm diameter latex masks. The topmost frames are views of the OTS 

patterns after the latex mask was removed, and the lower panels show the changes after 

adsorption of nanoparticles. The ring geometries of the nanopatterns are exquisitely uniform at 

the nanoscale, shown by AFM topography and phase images in Figures 5.3A and 5.3B, 

respectively. The hexagonal packing of the latex mask is transferred to the surface arrangement 

of OTS ring structures, shown in the topography frame in Figure 5.3A. Phase images provide a 

sensitive map of the surface morphology, as well as reflecting differences in adhesion and 

softness of materials. The phase image (Figure 5.3B) and line height profile (Figure 5.3C) reveal 

an interesting irregularity of the surface coating of OTS. A dark black spot at the center of each 

ring in the phase image indicates that the tip-surface interaction is different than the areas 

between the rings. The dark contrast indicates a hard surface, and softer areas have brighter 

contrast. Analysis of the film thickness shows the deeper valleys occur at the centers of the circle 

patterns, pinpointing where latex spheres were displaced. These valleys furnish a baseline of the 

exposed bare substrate for thickness measurements. The film thickness of areas between the 

rings measures 1.3 ± 0.2 nm, which is shorter than the height of a densely-packed OTS 

monolayer. The thickness of a monolayer of OTS has been reported to measure within the range 
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of 2.26 and 2.76 nm, depending on sample preparation conditions.
130, 142-144

 The thickness at the 

immediate areas of the rings measures 4.4 ± 0.4 nm, corresponding to a double layer.  

Figure 5.3 Nanopatterned surfaces before and after depositing nanoparticles. (A) Topography 

and (B) corresponding phase image of OTS nanostructures fabricated using particle lithography 

with 200 nm latex particles; (C) height profile for the line in A; (D) topography image of 

periodic arrays of nanoparticles produced by selective adsorption onto OTS nanopatterned 

surfaces; (E) zoom-in view of the nanostructures; (F) cursor profile for the line in E. 

 

Height measurements of the OTS films suggest that more water was located near the base 

of latex spheres to produce dense packing and self-polymerization within the water meniscus 

sites. The coating of water residues is not entirely uniform throughout the surface, there are 

localized areas where water beads to form thicker residues. Water becomes trapped or pinned at 

meniscus sites near the latex spheres. A hydrolysis step is required for surface binding of OTS; 

therefore, the thickness of the OTS films provides a map of the locations of nanoscopic water 

residues. The areas between the taller OTS rings are less densely packed areas of OTS; however, 

the phase image shows fairly consistent surface coverage of the shorter phase. The deeper pores 

in the centers of the rings are areas of uncovered substrate, which provide sites for attachment of 

MPTMS-coated nanoparticles.  
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After the OTS nanopatterns were immersed in a solution of MPTMS-coated 

nanoparticles, the rings are no longer visible in the bottom panels of Figure 5.3. Instead, a 

periodic array of nanoparticle clusters is disclosed in the topography images (Figures 5.3D and 

5.3E), and approximately 2.5% of the surface is covered with nanoparticles. There are 123 

clusters of nanoparticles within the 4 × 4 μm
2
 frame (Figure 5.3D), which scales to a density of 8 

× 10
8
 nanostructures per cm

2
. The round shape of the nanostructures conforms to the circular 

geometry of the pores confined within the OTS rings. The average height of the nanoparticle 

clusters measures 2.5 ± 0.4 nm above the surrounding OTS film, and the width of the 

nanostructures measures 54 ± 5 nm (FWHM ± standard deviation). A representative height 

profile is shown for three nanostructures in Figure 5.3F. Referencing the 1.3 nm thickness of the 

OTS film surrounding the OTS rings, the estimated height of the nanostructures is approximately 

3.8 ± 0.4 nm, which matches the dimensions of the synthesized MPTMS-coated nanoparticles. 

The regular spacing between nanopatterns measures 333 ± 12 nm, according to the periodicity of 

the OTS ring nanopatterns. Multiple areas of the sample were analyzed, and these images are 

representative of views throughout the sample. 

Films of OTS provide an effective resist layer for further steps of surface treatment 

because OTS presents a methyl group at the surface. For OTS to bind to surfaces, a trace amount 

of water is necessary to initiate surface hydrolysis. The amount of water that is present on the 

surface has been shown to greatly influence the quality of organosilane films.
112, 122, 131

 Surface 

bound water initiates hydrolysis of organotrichlorosilanes to form organosilanols, which then 

either form siloxane linkages to the surface, form free silanol (Si-OH) groups, or undergo self-

polymerization. Trichlorosilanes are highly reactive in the presence of water and can form 

multilayers through self-polymerization either on the surface or in solution, depending on 

experimental conditions.
147-148

 The locations of water residues define the sites for OTS to bind to 
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the surface during vapor deposition, mediated by hydrolysis and condensation reactions. 

Meniscus areas contain trapped residues of water to form dense multilayer ring structures of 

OTS. Changes in ambient humidity and drying intervals for the latex particle masks 

correspondingly produce variations in the size of the nanoscale water meniscus. Recently, we 

reported that the size of the water meniscus can be correspondingly tuned by changing the 

diameter of the latex beads, such that particles with larger diameters produced taller 

nanostructures than those with smaller diameters with self-polymerization of organosilanes.
16

 

Essentially, the water meniscus trapped between latex particles and the substrate furnishes an 

exquisitely regular, nanoscopic reaction volume as a containment area for hydrosilation to occur. 

The small pores at the center of the OTS rings provide well-defined areas of bare substrate for 

further reaction steps. Samples prepared with 200 nm latex spheres generate nanoholes with 

diameters measuring 55 ± 2 nm, and the uncovered hole areas span about 6% of the surface. The 

diameters of the nanoholes produced with particle lithography combined with vapor deposition 

are smaller than the actual size of the latex spheres, since the area of surface contact between 

latex mesospheres and underlying substrate define the dimensions of the nanoholes. Adsorbates 

were not observed within the pores, indicating that latex spheres were effective surface masks for 

vapor deposition. With an immersion step, silane-functionalized nanoparticles attached 

selectively and uniformly within the pore areas surrounded by OTS (Figures 5.3D and 5.3E). 

These results showcase the exquisite spatial selectivity of chemical patterning with particle 

lithography. 

The high throughput capabilities of particle lithography are demonstrated for a larger 

area, for a 10 x 10 µm
2
 topography image (Figure 5.4). Arrays of nanoparticle structures span the 

entire surface and exhibit the long-range order of the latex mask, with periodicities extending 

over micron regions. A few defects (e.g., point defects and misaligned domains) are apparent, 
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which are inherited from mesospheres that did not fully close-pack. Missing patterns and line 

defects in mesosphere masks can be attributed to the polydispersity of the mesospheres as well as 

imperfections of the underlying substrate, which affect the packing arrangement of the latex 

particles during self-assembly.
152

 A 2D fast Fourier transform (FFT) analysis, the reciprocal 

space of the topography frame, is displayed in the inset of Figure 5.4 as confirmation of the 

hexagonal arrangement and well-defined periodicity of the nanopatterns. The FFT analysis 

provides a quantitative picture of the long-range order and periodicity of the array of 

nanostructures. 

Figure 5.4 View of a broad area (10 x 10 μm
2
) of nanostructures fabricated with 200 nm latex 

masks; the inset shows an FFT spectrum generated from the topograph. 

 

To investigate the optical properties of nanopatterned nanoparticles, samples were 

prepared on glass substrates and characterized with UV-Vis spectrophotometry (Figure 5.5). The 

conditions for preparing OTS patterns on Si(111) also works well for glass or mica(0001) 

substrates.
71-72

 As a comparison, UV-Vis spectra were acquired for nanoparticles in solution, as 
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well as for OTS nanopatterns on glass substrates. For nanoparticles in solution, a prominent 

absorption peak is observed around 335 nm (green line). However, no peaks were observed in 

the 300-600 nm UV-Vis region for OTS nanopatterns on glass substrates (blue line), which was 

prepared as a control sample. When nanoparticles were selectively deposited on OTS 

nanopatterns formed on glass substrates, two peaks appear at 415 and 465 nm in the UV-Vis 

spectra (red line). The red-shift observed for gold nanostructures results from changes in 

interparticle distance as the gold nanoparticles assemble onto spatially confined areas of the 

surface patterns. 

Figure 5.5 Comparison of UV-Vis spectra for synthesized silanol-coated gold nanoparticles and 

nanopatterned surfaces; the inset is a photograph of functionalized gold nanoparticles (dark 

brown) in solution. 

 

UV-visible spectroscopy has been widely used for the characterization of metal 

nanoparticles to investigate the size-dependent changes for electronic structures and relative 

optical properties. Larger gold colloids with diameters more than 2 nm display the well-known 

surface plasmon band in the visible region at ca. 520 nm.
176-177

 The intensity of this absorption 

band decreases with a smaller gold cluster size in accordance with theory.
176

 For gold 
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nanoparticles with diameters less than 2 nm, the surface plasmon resonance disappears 

completely, leaving a smooth spectrum with absorbance increasing exponentially from the 

visible to the ultraviolet region.
175, 178-179

 With a further decrease in size, the emergence of 

discrete peaks in the UV-Vis spectra are observed.
175, 178

 

 The long term stability of the nanopatterns was evaluated by examining a sample after 

several years of storage in ambient conditions. Although it is generally known that covalent 

linkages with organosilanes are robust, we examined one of our earlier samples after 39 months 

of storage in a closed plastic container. A sample prepared with 200 nm latex masks was 

characterized with tapping mode AFM (Figure 5.6) for comparison with a freshly-prepared 

sample. A representative view of an “aged” sample is shown in Figure 5.6A and 5.6B, 

demonstrating that the nanostructures have persisted and are clearly apparent in the topography 

and phase images, respectively. The phase image discloses the location of very small 

nanostructures that are hidden in the topography frame. After careful AFM studies, we were 

unable to resolve discrete shapes of individual nanoparticles for the aged sample, whereas the 

zoom views for the sample of Figure 5.3 show morphologies of clusters of nanoparticles. This 

may be caused by close adhesion between adjacent nanoparticles over time. Individual cursor 

measurements of each of the nanostructures in Figure 5.6A show the overall heights of the 

nanostructures range from 2.5 to 7.0 nm, with a mean value of 4.3 nm. The histogram and scatter 

plot of Figures 5.6C and 5.6D were measured directly from the single frame shown in Figure 

5.6A, with 200 data points. The plot in Figure 5.6D shows the correlation between the surface 

area and measured height of individual nanostructures. From height measurements of 

nanostructures, a general trend is evident that nanostructures with larger lateral dimensions have 

taller heights. At the nanoscale, the sizes of the uncovered pores within the OTS film are not 
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perfectly uniform in dimension. Surface sites with smaller areas have fewer nanoparticles 

attached within the nanostructures. 

Figure 5.6 Nanopatterns of silanol-terminated gold nanoparticles persist on a Si(111) substrate 

after long term storage in ambient conditions. The sample was prepared using 200 nm latex 

mesospheres. (A) Topography and (B) corresponding phase image (3.5 x 3.5 µm
2
); (C) height 

histogram for nanostructures; (D) correlation of height with measured surface area. 

 

5.4 Conclusions 

Designed surface structures of OTS prepared with particle lithography can be used for the 

precise positioning of surface-active nanoparticles to produce billions of uniformly shaped 

nanopatterns with designed surface coverage and interpattern spacing. Overall, the geometry, 

number density and surface coverage of the nanostructures are exquisitely reproducible at the 

nanoscale and are mainly determined according to the diameters of the latex masks. 

Organosilane nanostructures prepared by particle lithography furnish well-defined sites for 

spatially directing surface reactions, such as for deposition of nanomaterials with well-defined 
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arrangements. Particle lithography with organosilanes requires only a few basic chemistry steps, 

yet provides generic capabilities for high throughput lithography of exquisitely small and regular 

nanostructures. Our approach for nanopatterning has achieved exquisite control of the placement 

of single layers of coated nanoparticles in well-defined nanoscale arrangements with simple 

chemical steps. The simplicity of particle lithography is a major advantage for producing surface 

test platforms for scanning probe studies, without the need for expensive instrumentation or 

additional surface contaminants. This approach can be applied for preparing well-defined surface 

arrangements of other core-shell nanomaterials with more complex shell chemistries. 
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CHAPTER 6. HYBRID APPROACH FOR NANOFABRICATION: PARTICLE 

LITHOGRAPHY COMBINED WITH CONTACT PRINTING OF ORGANOSILANES 

 

6.1 Introduction 

Microcontact printing of organic thin films was introduced by George Whitesides in 

1994, and has since become an essential commercial tool for patterning microcircuitry, sensor 

platforms, and surface-based microdevices.
180-182

 Although the feasibility of extending 

microprinting capabilities to the nanoscale has been demonstrated with microcontact printing, 

nanoscale dimensions (<100 nm) are difficult to achieve because of the limitation of 

manufacturing masks or molds with very small dimensions. Masters for preparing 

polydimethylsiloxane (PDMS) stamps are manufactured with photolithography. Monodisperse, 

size-sorted latex beads can provide exquisitely regular dimensions for surface masks, to enable 

nanolithography with molecular-level dimensions. Particle lithography provides an alternative 

approach for producing regular arrays of molecular nanostructures with high throughput. Particle 

lithography is an economical approach for generating nanostructures with a few basic steps of 

self-assembly using bench chemistry (i.e. centrifugation, sonication, mixing, drying). In this 

report, we describe a hybrid approach for achieving nanoscale patterning of organosilanes by 

combining contact printing with latex particle lithography. This „hybrid‟ strategy provides a tool 

for chemical patterning of two components for designing nanostructures of organosilane self-

assembled monolayers (SAMs). 

Particle lithography, also referred to as colloidal lithography,
79

 natural lithography,
78

 

evaporative lithography,
14

 or nanosphere lithography,
80

 is a general approach for high-throughput 

nanopatterning and is based on using a mask or template of close-packed spheres. Monodisperse 

latex or colloidal silica beads spontaneously assemble into close-packed crystals when solutions 

of spheres are dried on a flat substrate. Methods of particle lithography have been reported for 
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preparing nanopatterns of polymers,
61

 metals,
62-63

 SAMs,
68-70

 nanoparticles,
14, 75

 and proteins.
15, 

76-77
 Approaches for particle lithography most often are based on thermal or e-beam evaporation 

of heated metals through shadow-masks of spheres.
78, 103

 A strategy with vapor deposition of 

alkanethiols was reported by McLellan et al.
96

 and for certain organosilanes by Li et al.
16, 71-72

 

The vapor deposition of organosilanes is limited to certain small molecules which can be heated 

to produce a vapor, and is not a general approach for all molecular systems. . A potential 

problem with particle lithography can occur for patterning SAMs using immersion steps because 

the mesospheres rapidly detach from the substrate when the masks are submerged in solutions of 

liquids. Also, polystyrene latex dissolves in certain solvents (e.g. chloroform, acetone, toluene). 

On the other hand, this disadvantage provides a convenient route for clean removal of the 

mesoparticle masks. 

The problem of applying a thin film of organic molecules to a substrate through a mask 

of mesospheres can be solved with a hybrid strategy: using contact printing with PDMS stamps. 

A method for printing n-alkanethiols on gold substrates, referred to as edge-spreading 

lithography was previously reported by McLellan et al.
70

 The transfer of thiol inks relies on an 

adsorption mechanism of sulfur-gold affinity and surface chemisorption taking place in ambient 

air. However, the applicability of PDMS stamping for patterning organosilane SAMs with 

particle masks has not yet been advanced. A considerable advantage of using organosilane rather 

than thiol SAMs is the capability for covalent binding of silane films to different types of 

substrate materials, such as silicon oxide, aluminum oxide, germanium oxide, quartz, glass, gold 

and mica.
102

 The nature of surface attachment for organosilanes requires a hydrolysis step; trace 

amounts of water are necessary for silanation reactions. In this study, we test the applicability of 

patterning organosilanes using a hybrid lithography approach, combining contact printing of 

organosilane SAMs with PDMS stamps through surface masks prepared by particle lithography. 
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Molecular level investigations reveal the feasibility of a hybrid lithography strategy, and 

demonstrate that the geometries and quality of organosilane nanostructures inherently depend on 

processes of surface wetting.   

6.2 Approach for Hybrid Nanolithography 

The fabrication steps are outlined in Figure 6.1. First, boron-doped, double-side polished 

Si(111) substrates (Virginia Semiconductor Inc., Fredericksburg, VA) were cleaned by soaking 

in piranha solution for 1 h (piranha solution is a mixture of concentrated sulfuric acid and 30% 

hydrogen peroxide, 3:1 v/v ratio, which is highly corrosive and should be handled with caution). 

Next, silicon substrates were rinsed with copious amounts of deionized water (18 MΩ·cm, 

Millipore Milli-Q plus system, Boston, MA) and dried in ambient conditions (25 ºC, relative 

humidity ~ 55%). Monodisperse latex mesospheres (Thermo Scientific, Waltham, MA) were 

washed with deionized water rinses by centrifuging at 14000 rpm for 15 min to form a pellet and 

resuspending the latex pellet in deionized water (three cycles). A 20 µL drop of the latex 

particles suspension was deposited on the freshly cleaned substrate and dried in air for 2 h. 

During the drying step, capillary forces of evaporating water cause the monodisperse 

mesospheres of latex to form close-packed layers on the substrate (Figure 6.1A), which provides 

a mask for patterning. A 2 x 2 cm
2
 block of PDMS (Sylgard 184, Dow Corning) was used for 

transferring octadecyltrichlorosilane (OTS) (Gelest, Morrisville, PA) molecules to the surface of 

the latex film. A 30 µL volume of a 30% v/v solution of OTS in bicyclohexyl was deposited and 

spread evenly over the PDMS block, then quickly dried in a stream of ultrahigh purity argon. 

The PDMS block coated with OTS was placed on top of the latex masked substrate (Figure 

6.1B). As the OTS solution was transferred from the PDMS block through the latex mask by 

permeation, the surface areas directly underneath the particles are protected from silane 

adsorption. After 1 h of physical contact, the PDMS block was lifted off and the sample was 
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rinsed with copious amounts of deionized water. In the final step, the mask of latex particles was 

cleanly removed by sonicating and rinsing with ethanol (Pharmco, Aaper, Tx) and deionized 

water. After removal of the mask, periodic arrays of Si/SiO2 nanopores within a nanostructured 

film of OTS were generated on the surface (Figure 6.1C). 

Figure 6.1 Fabrication steps for particle lithography combined with contact printing of 

organosilanes. (A) A dried film of latex mesospheres on a Si(111) substrate provides a mask for 

patterning. (B) A PDMS block coated with OTS was placed in contact with the masked surface. 

(C) The PDMS block was removed after 1 h, and the latex mask was rinsed away. A thin 

nanostructured film of OTS with circular areas of bare substrate is printed on the substrate. (D) 

Pillars of 6-AAPTMS were produced by immersing the sample into a solution containing a 

second organosilane. 
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The uncovered areas of the substrate were backfilled with a second organosilane by 

immersing the sample for 6 h in a 1.6 % (v/v) solution of N-(6-aminohexyl)-3-aminopropyl-

trimethoxysilane (6-AAPTMS) (Gelest, Morrisville, PA) in anhydrous toluene (Sigma Aldrich, 

St. Louis, MO). Samples were then rinsed and sonicated with ethanol and water to produce two-

component nanopatterns with discrete columns of 6-AAPTMS multilayers surrounded by a film 

of OTS (Figure 6.1D). 

Samples were characterized using either contact or tapping-mode atomic force 

microscopy (AFM) throughout different steps of lithography (Agilent model 5420 and 5500 

scanning probe microscopes, Agilent Technologies, Chandler, AZ). Oxide-sharpened silicon 

nitride cantilevers with force constants ranging from 0.1 to 0.5 N/m were used for contact mode 

imaging (Veeco Probes, Santa Barbara, CA). Silicon probes with a spring constant of 48 N/m 

and a resonant frequency of 190 kHz were used for tapping-mode AFM studies (Vistaprobes, 

Phoenix, AZ). Digital images were processed with Gwyddion open source software (version 

2.9), which is supported by the Czech Metrology Institute.
140

 Analysis of surface coverage was 

accomplished by manual thresholding of black and white pixel scales, using ImageTool software 

(UTHSCSA, San Antonio, TX).
141

 

6.3 Results and Discussion 

Films of nanostructured OTS produced by particle lithography with contact printing are 

shown in Figure 6.2A and 6.2B. Periodic surface patterns of bare substrate areas with circular 

geometries that were produced within an OTS film using latex diameters of 200 and 300 nm are 

shown in the AFM images of Figures 6.2A and 6.2B, respectively. The nanopatterns exhibit 

exquisitely uniform and regular morphologies and geometries. The topographs in Figures 6.2A 

and 6.2B do not show any OTS adsorbed at the center areas of the nanoholes where the latex 

spheres were previously in contact with the surface. The nanoholes correspond to the 
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arrangement and periodicity of the mask. Lateral force images show changes in frictional forces 

for tip-surface adhesive interactions. Differences in surface chemistry between OTS 

nanostructures and uncovered silicon substrates are apparent in the lateral force images shown in 

Figures 6.2A and 6.2B and furnish a chemical map of the regions of substrate and OTS. The 

uniformity in color contrast of the OTS film surrounding the nanoholes indicates a homogenous 

surface composition. The 2 x 2 µm
2
 zoom-in topography views and simultaneously acquired 

lateral force images of the patterned surfaces in Figure 6.2A and 6.2B reveal that the hexagonal 

pattern of the latex mask is preserved after fabrication. The diameters of the holes measured 108 

± 10 nm for samples prepared with 200 nm latex and 168 ± 10 nm for samples prepared from 

300 nm latex. The sizes of the bare areas results from conformal contact of the deformable latex 

spheres with the substrate. Within the 2 × 2 µm
2
 topography frames in Figures 6.2A and 6.2B, 

there are 61 and 27 nanoholes, respectively, which would correspondingly scale to a surface 

density of 1.5 x 10
9
 and 6.8 x 10

8
 holes per cm

2
.  To estimate the periodicity of the nanopatterns, 

the average distance between the centers of the holes was measured for at least 100 nanoholes 

from several different areas of the surface. The lateral periodicity for nanopatterns prepared with 

200 and 300 nm latex mesospheres measured 222 ± 8 and 329 ± 11 nm, respectively, in close 

agreement with the latex diameter chosen for fabrication. To evaluate the height of the OTS 

nanostructures surrounding the nanoholes, a height profile was extracted from zoom-in 

topography images for each sample. Referencing the areas of uncovered silicon substrate as a 

baseline, the thickness of the OTS films for the sample prepared with 200 nm latex diameter 

measured 0.6 ± 0.1 nm, and 0.5 ± 0.1 nm for 300 nm latex masks. The thickness of the OTS film 

was consistent throughout areas of the surface surrounding the circular patterns of uncovered 

substrate. A densely packed film of OTS with saturation coverage has been reported to measure 
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within the range of 2.26 and 2.76 nm in thickness.
130, 142-144

 Therefore, the nanostructured OTS 

film produced using these conditions in ambient air did not achieve dense-packing. 

A control sample was prepared by following the procedure for particle lithography 

combined with contact printing, without using OTS to coat the PDMS block. In the absence of 

OTS, no patterns were detected in the AFM topography and lateral force images shown in Figure 

6.2C. The cursor profile in Figure 6.2C shows a relatively flat surface, and reveals the 

morphology of the Si(111) substrate. The AFM images for the control sample verify that neither 

PDMS nor latex was transferred to the surface during the steps of contact printing. 

Figure 6.2 Samples prepared by particle lithography combined with contact printing 

characterized with contact mode AFM. Topography views, lateral force images, and height 

profiles of (A) arrays of Si/SiO2 nanoholes within an OTS film prepared with 200 nm latex; (B) 

film of OTS prepared with 300 nm latex; (C) control sample prepared without OTS. 
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A trace amount of water is necessary to initiate hydrolysis of OTS for OTS to bind to 

substrates. When heat is applied to the surface mask, water residues can collect and become 

trapped near the bottom of latex spheres to form a meniscus.
16

 However, with contact printing, 

the latex masks are dried under ambient conditions and residual water persists throughout areas 

of the surface surrounding the latex mask. The latex films were dried for no more than 2 h before 

the contact printing step to ensure that a thin film of water is distributed throughout areas of the 

surface. We have observed that the distribution of water is more homogeneous for hydrophilic 

surfaces such as mica or acid-cleaned silicon substrates. During contact printing, OTS molecules 

covalently bind to unmasked areas of the surface where water is present. The mask of latex 

particles prevents OTS from binding onto areas of the surface directly beneath the mesospheres. 

The results presented in Figures 6.2A and 6.2B show that OTS deposits at the interstitial areas of 

the surface between latex mesospheres during contact printing.  

To evaluate the nanoscale reproducibility of particle lithography with contact printing for 

controlling pattern geometry, samples were prepared using different diameters of latex. The 

changes in surface coverage of OTS were compared for different sizes of mesoparticles (Figure 

6.3). The amount of surface covered by OTS scales according to the size of the latex spheres; 

smaller spheres cover wider areas of the surface ranging from 79 to 95%. 

Figure 6.3 Corresponding changes in surface coverage of OTS for different latex diameters.  
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The density of nanoholes was plotted as a function of latex diameter, as shown in Figure 

6.4. The values were estimated by counting the number of holes within AFM frames, and 

projecting an estimate of the surface density for larger areas. As the size of the latex mesospheres 

increases, the number of nanoholes decreases exponentially. The overall surface density scales 

from 1.3 billion holes per cm
2
 for a 200 nm latex mask to 0.1 billion holes per cm

2
 for patterns 

prepared with a latex diameter of 1 µm. 

Figure 6.4 Changes in the surface density of nanoholes produced using different diameters of 

latex. 

 

A further step of backfilling the nanoholes was accomplished by immersion of samples in 

a second organosilane solution. Methyl-terminated OTS should provide an effective resist for 

further chemical steps to achieve patterning of another component. However, with submonolayer 

surface coverage of OTS, the intercalation of molecular materials could occur. The backfilling 

experiment was used to test the effectiveness of the thin OTS resist for preventing non-specific 

binding of molecules to OTS-protected areas of the substrate. Nanopatterned surfaces prepared 

by particle lithography with contact printing were further chemically modified by backfilling the 

holes of uncovered substrate with 6-AAPTMS, an amine-terminated silane, as shown in Figure 

6.5. The nanostructures viewed in the 10 × 10 µm
2
 topograph (Figure 6.5A) reveal that the 6-

AAPTMS molecules deposited selectively on bare areas of the substrate within the nanoholes 
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and did not cross-contaminate the surrounding areas of OTS. Differences in surface chemistry 

between OTS and 6-AAPTMS nanostructures are clearly distinguished in the phase image 

(Figure 6.5B), shown by differences in contrast; the 6-AAPTMS areas are the bright spots. 

Within the wide-area frames of Figures 6.5A and 6.5B, there are 910 nanostructures of 6-

AAPTMS. A few defects are revealed, which are caused by lines that form between latex spheres 

which shrink in size when dried. A perfect array would pack an estimated 1000 nanostructures 

within the 10 × 10 µm
2 

area, thus the density of defects is approximately 9 %. The reciprocal 

space of the topography frame is shown in Figure 6.5C with a 2D fast Fourier transform (FFT) 

analysis and confirms the well-defined periodicity of the nanopattern array. The FFT analysis 

provides a quantitative picture of the long-range order of the array of 6-AAPTMS 

nanostructures. A 3D topograph of the surface patterns for a 4 x 4 μm
2
 is displayed in Figure 

6.5D. 

A close-up view of nine dot patterns of 6-AAPTMS is shown for a 1 × 1 µm
2
 topography 

frame in Figure 6.5E. The zoom-in view of the surface topography reveals the highly regular 

geometry of the nanodots. The nanodots do not touch neighboring patterns; there is no overlap 

between adjacent nanostructures. A height profile of three nanodots indicates a height of 1.7 ± 

0.2 nm. Considering the thickness of the surrounding OTS film, which measured an average 

height of 0.5 ± 0.1 nm, the total thickness of the 6-AAPTMS measures approximately 2.2 ± 0.2 

nm, which is taller than the theoretical length of 1.48 nm for a single molecule of 6-AAPTMS.
123

 

The height indicates that interchain crosslinking takes place between 6-AAPTMS molecules of 

the nanostructures to form a branched, self-polymerized structure. The amino group of 6-

AAPTMS can form a hydrogen or ionic bond with the methoxysilane group of either another 

aminosilane molecule or its hydrolyzed form.
123

 Also, the amino group can self-catalyze the 

hydrolysis step to produce multilayers.
149
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Figure 6.5 Periodic arrays of nanodots produced after backfilling with 6-AAPTMS. Nanoholes 

within films of OTS were prepared with particle lithography and contact printing using 300 nm 

latex. (A) Topograph of a surface nanopatterned with 6-AAPTMS and OTS; (B) phase image 

simultaneously acquired with A; (C) FFT spectrum generated from the topograph in A; (D) 3D 

view for a 4 x 4 μm
2
 area; (E) zoom-in topographic view; (D) height profile for the cursor line in 

C. 

 

Note that the cursor plot of Figure 6.5F shows the profile of a highly regular angular 

shape for the 6-AAPTMS nanostructures. This is not the true shape of the surface features; the 
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nanodots most likely have a columnar structure which is far smaller than the apex of the AFM 

probe. The line profile actually reveals the shape of the AFM probe rather than the shape of the 

exquisitely tiny molecular structures. The full width half maximum estimate of the width of the 

nanostructures measures 151 + 11 nm. This width is slightly smaller than expected, since the 

diameter of the nanoholes measured 168 nm. Experiments are in progress to evaluate changes in 

dimension observed for silane nanostructures immersed in different solvents, which can account 

for the size discrepancies.  

6.4 Conclusion 

Exquisitely regular control of surface chemistry at the molecular level can be achieved 

with hybrid nanolithography, by combining particle lithography with contact printing. Contact 

printing enables transfer of a thin layer of OTS by physical contact of a PDMS stamp with a 

surface mask of latex spheres. The mask can be removed by rinsing, to generate billions of 

uniformly shaped nanopatterns that are accessible for further steps of chemical patterning. The 

methyl headgroup of OTS provides an effective resist. The surface coverage of OTS, as well as 

the density and periodicity of the nanopatterns can be selected by the latex diameter. Beyond 

introducing a versatile and generic toolkit for nanolithography, these experiments demonstrate 

molecular views of the products of surface self-assembly reactions. The nanoholes provide a 

surface template for scanning probe studies of chemical reactions within confined nanoscopic 

areas. The capabilities for controlling the spatial arrangement of two-component SAMs using 

particle lithography combined with contact printing offers a starting point for further molecular 

level studies with multifunctional surfaces. 

 

 



78 
 

CHAPTER 7. ORGANIC PHOTOVOLTAIC SOLAR CELLS DESIGNED USING 

NANOPATTERNS OF ORGANOSILANES AND POLYTHIOPHENES 

 

7.1 Introduction 

Organic photovoltaic (OPV) devices offer a promising alternative to traditional silicon 

based solar cells since they can be produced at low-cost and high speeds through roll-to-roll 

printing and coating techniques.
183-184

 Also, the fabrication process does not require high 

temperatures or expensive raw materials. Solar cells based on OPVs can be applied to flexible 

and plastic substrates and are, therefore, lightweight materials. Higher power efficiencies are a 

key challenge for commercialization of OPV devices. The efficiency is defined as the ratio of 

electrical energy output to energy input, and is a term used to describe the overall performance of 

the device. The highest efficiency reported to date is 7.4% for OPV prototype solar cells.
185

 For 

OPVs to be considered for commercial widespread use, an efficiency of at least fifteen percent 

will be required.
186

 The nanoscale morphology and molecular structure of the donor and acceptor 

materials in the active layer greatly affects the charge separation and charge transport processes 

that occur after light absorption, thus affecting the efficiency of OPV devices.
187-188

  

Although current state-of-the-art bulk heterojunction OPV devices based on 

semiconducting polymers are moving toward this target, mostly through new materials design, 

reaching this efficiency requires a new paradigm for precisely controlling the nanoscale 

organization and molecular structure of the polymers during device fabrication. Such control will 

help to address two major bottlenecks – increasing the efficiency of exciton dissociation and 

enhancement of carrier mobility towards electrodes. The efficiency of OPV devices intrinsically 

depends on the nanoscale morphology. We are working to develop an alternative, “bottom-up” 

approach to achieve the finest possible control over the organization and morphology of OPV 

materials at the molecular level. We use surface-initiated in situ polymerization with 
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nanostructured surfaces to precisely control vertical and lateral molecular arrangements of 

donor/acceptor molecules in the organization of semiconducting polymer thin films. These films 

will then be converted to functional, complete solar cells. To achieve efficient in situ 

polymerization, simple and effective reactions will be employed, such as metal-catalyzed 

“living” polymerization. To address the challenge for improving the device efficiency of OPVs, 

new fabrication methods need to be developed for controlling the molecular organization and 

orientation of materials with nanoscale precision.  

Organosilane nanopatterned surfaces prepared by particle lithography offer a convenient 

route for spatially confining the orientation of conducting polymers during surface reactions. In 

this chapter, methyl-terminated organosilane thin films with periodically arranged holes of 

uncovered substrate were fabricated using particle lithography combined with contact printing as 

a strategy for directing the 2-D spatial organization of polythiophene nanostructures. The 

nanopatterned surface was used to control the lateral and hierarchical structure of polythiophene 

during surface initiated living polymerization. With particle lithography followed by in situ 

living polymerization of surface immobilized initiator, billions of periodically arranged 

polythiophene nanopillars were produced on surfaces of Si(111) substrates with defined 

geometry and interpattern spacing. Work is in progress to develop wafer-scale prototype solar 

cells with discrete, well-defined nanostructures of polythiophene films using particle 

lithography-based methods.  

7.2 Experimental Approach 

7.2.1 Preparation of Polythiophene Nanopatterns 

 Arrays of polythiophene nanopatterns were prepared using particle lithography combined 

with contact printing. Pieces of boron-doped polished silicon wafers of Si(111) (Virginia 

Semiconductor Inc., Fredericksburg, VA) or quartz slides (Chemglass) were cut into 1 × 1 cm
2
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squares and soaked in piranha solution for 1 h. Piranha solution is a mixture of concentrated 

sulfuric acid and 30% hydrogen peroxide (3:1 v/v ratio), which is highly corrosive and should be 

handled with caution. Next, silicon substrates were rinsed copiously with deionized water (18 

MΩ·cm, Millipore Milli-Q plus system, Boston, MA) and dried in ambient air.  Monodisperse 

latex mesospheres (Thermo Scientific, Waltham, MA) were washed with deionized water to 

remove surfactants by centrifugation. A 300 µL volume of aqueous latex suspension (1 wt%) 

was centrifuged at 14000 rpm for 15 min, and the supernatant was decanted. The pellet of latex 

was resuspended in 300 µL deionized water. A 30 µL drop of the latex suspension was deposited 

on the freshly cleaned substrate and dried in air for 2 h.  As water evaporated during the drying 

step, the monodisperse latex spheres form crystalline layers on the substrate, which provides a 

lithographic mask for patterning organosilanes. Next, a 2 × 2 cm
2
 block of polydimethylsiloxane 

(PDMS) (Sylgard 184, Dow Corning) was prepared for patterning octadecyltrichlorosilane 

(OTS) (Gelest, Morrisville, PA). A 30 µL volume of a 30% v/v solution of OTS in bicyclohexyl 

(Sigma Aldrich, St. Louis, MO) was deposited on the surface of the PDMS block and then dried 

quickly with a stream of nitrogen.  The “inked” PDMS block was placed on top of the masked 

silicon substrate. The areas of contact between the latex mesospheres and substrate are protected 

from deposition of OTS during contact printing.  After 1 h, the PDMS block was removed from 

the sample and the surface was rinsed with deionized water. The mask of latex particles was 

removed completely by rinsing with ethanol (Pharmco, Aaper, Tx) and deionized water several 

times, using sonication. After removal of the latex mask, a layer of OTS persists on the surface 

with periodically arranged circular-shaped holes of uncovered substrate (Figure 7.1A). The holes 

define reactive areas of the surface for immobilizing a nickel-functionalized catalytic initiator 

(Figure 7.1B) using solution immersion protocols. The nanopatterns of covalently attached 

initiator defines the surface selectivity for in situ living polymerization. In situ living 
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polymerization is accomplished by immersing the sample in a solution of Grignard monomer to 

produces nanostructures of polythiophene thin films on the surface (Figure 7.1C).  

Figure 7.1 Procedure for fabricating surface nanopatterns of polythiophene nanopillars within 

thin films of OTS. (A) Periodic arrays of nanoholes of uncovered Si(111) substrate produced by 

particle lithography combined with contact printing; (B) nanoholes define sites for the surface 

immobilization of nickel-functionalized catalytic initiator (L = 1,3-bis(diphenylphoshino)             

propane); (C) in situ living polymerization genenerates periodic nanopillars of polythiophene on 

the surface. 

 

7.2.2 Atomic Force Microscopy 

Samples were characterized with a model 5500 atomic force microscope (AFM) 

equipped with Picoscan v5.3.3 software (Agilent Technologies, Chandler, AZ). Images were 

acquired using contact mode in ambient conditions. Oxide-sharpened silicon nitride cantilevers 

with force constants ranging from 0.1 to 0.5 N/m were used for imaging (Veeco Probes, Santa 

Barbara, CA). Digital images were processed with Gwyddion open source software (version 2.9), 

which is supported by the Czech Metrology Institute.
140
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7.3 Results and Discussion 

The surface morphology of a polythiophene film prepared on a quartz substrate are 

shown in AFM topography frames in Figure 7.2. The successive zoom-in views are 

representative of the morphology observed throughout areas of the entire sample. The 

morphology of the film is fairly smooth and continuous with the overall changes in height 

measuring 11 nm. There are a few line spikes in the images which results from strong tip-surface 

adhesion. The corresponding lateral force image in Figure 7.2B indicates a homogenous 

composition with small round domains arranged throughout the surface. Close-up views of the 

film are shown for a 2 × 2 µm
2
 scan area in the topography and lateral force images in Figures 

7.2C and 7.2D, respectively. The images show irregular globular domains, with an rms 

roughness of 1.5 nm. 

Figure 7.2 Morphology of a polythiophene film prepared on a quartz substrate viewed with 

contact mode AFM images. (A) Wide area view of surface topograph (6 × 6 µm
2
); (B) 

simultaneously acquired lateral force image; (C) close-up topography view (2 × 2 µm
2
); (D) 

corresponding lateral force image. 
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To determine the thickness of the polythiophene film, an AFM tip was used to shave a 

hole in the surface to expose a small area of the underlying quartz substrate (Figure 7.3). The 

AFM-based process of nanoshaving has been used previously to inscribe holes in different thin 

film materials,
189

 such as n-alkanethiol self-assembled monolayers (SAMs),
190

 organosilane 

films,
139, 191

 multilayers of 4,4‟-dimercaptobiphenyl,
192

 sexiothiophene crystals,
193

 porphyrin 

films,
194

 films of molecular micelles,
195

 and different polymers
196-201

. For nanoshaving, a high 

force is applied to the AFM tip during scanning to uncover a small hole in a film to expose the 

underlying substrate. Nanoshaved patterns are generated by scanning over a small area several 

times, while applying a higher force than used for imaging. The local pressure applied to an 

AFM tip at the area of contact produces high shear forces to displace adsorbate molecules during 

rastering. The exposed substrate of the nanoshaved areas provides a baseline for measuring the 

film thickness.  

 
Figure 7.3 Thickness of a polythiophene film prepared by surface initiated living polymerization 

measured by nanoshaving. (A) AFM topograph of a 700 × 700 nm
2
 nanoshaved hole in the film; 

(B) height profile for the line drawn across the pattern in A. 

 

A square region of a polythiophene film prepared on a quartz substrate was nanoshaved 

in air as shown in the AFM topograph of Figure 7.3A. In liquids, the displaced adsorbates can be 

pushed to other areas of the substrate. However, since this experiment was accomplished in air 

the adsorbates piled up at the sides of the nanopattern. The boundaries of the nanoshaved square 

are taller than the surrounding areas of polythiophene; therefore, the cursor line was extended 

 

 



84 
 

past the edges of the pattern to reference the outer areas of the film for measuring the film 

thickness (Figure 7.3B). The cursor profile in Figure 7.3B is a representative example of several 

cursor profiles.  Referencing the nanoshaved areas as a baseline, the thickness of the film 

measured 18 + 2 nm. The flatness of the line shown in the height profile evidences that 

molecules were cleanly removed from within the nanoshaved area. 

A hybrid method of nanolithography which combines particle lithography with contact 

printing of organosilanes was used to prepare nanoholes within an OTS film on the surface of a 

polished silicon wafer, Si(111).
202

 The surface passivated with nanostructures of OTS served as a 

template for bottom-up fabrication of nanopatterns of polythiophene nanopillars prepared by 

surface-initiated living polymerization. An example of nanoholes produced using 300 nm latex 

mesospheres as a surface mask is shown in Figure 7.4. The local roughness of mechanically 

polished silicon wafers prevents us from distinguishing the pore structures in topography views 

(Figure 7.4A). However, the simultaneously acquired lateral force images clearly resolve the 

nanopatterns in Figure 7.4B. The lateral force images show changes in frictional forces and stick-

slip adhesion for tip-surface interactions. The dark circles are areas of uncovered silicon 

substrate that were masked by latex spheres during contact printing whereas the bright areas are 

composed of OTS. The latex films were effective masks for contact printing of OTS since the 

center areas of the nanopores do not show any OTS adsorbates. There are 747 nanoholes within 

the 8 x 8 µm
2 

image of Figure 7.4B, which scales up to a surface density of 1.2 x 10
9
 nanoholes 

per cm
2
. The calculated surface coverage of OTS was 67.4%. A zoom-in view of the surface 

nanopatterns reveals more clearly the circular shapes and hexagonal arrangement of the 

nanoholes (Figure 7.4D). The center-to-center spacing between each nanohole closely matches 

the expected 300 nm diameter of the latex masks, however the actual size of holes is smaller than 

the periodicity. Cursor measurements of 100 nanopatterns from several different areas of the 
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surface reveal a lateral periodicity of 292 + 7 nm, while the edge-to-edge distance of the 

nanopores measured 162 + 8 nm. For OTS nanopatterns prepared by particle lithography 

combined with contact printing, the surface roughness of 1.9 nm prevented accurate 

measurement of the heights of OTS. 

Figure 7.4 By combining particle lithography with contact printing, an array of circular holes of 

uncovered Si/SiO2 substrate was prepared within an OTS film using 300 nm latex masks.  (A) In 

a wide area AFM topograph (8 × 8 µm
2
) the nanoholes cannot be resolved; (B) the 

corresponding lateral force image clearly reveals the periodic array of hole nanostructures; (C) at 

higher magnification (1 × 1 µm
2
), the topography image still does not resolve the nanopatterns; 

(D) the spacing and dimensions of the holes can be clearly viewed in the lateral force frame. 

 

The array of nanoholes of uncovered substrate provides exquisitely regular, well-defined 

sites for the surface immobilization of polythiophene. The interstitial areas between the 

nanoholes are covered with methyl-terminated OTS and provide an effective resist during further 

steps of chemical modification. Nanopillars of polythiophene were successfully prepared using 

the OTS nanostructures as a foundation layer, demonstrated by the contact mode AFM images in 

Figure 7.5. The long-range order of the polythiophene brushes (bright dots in Figure 7.5A) is 

shown with a representative 8 × 8 µm
2
 topograph and lateral force image (Figure 7.5B). The 

 



86 
 

regular arrays of polythiophene nanostructures were displayed throughout areas of the entire 

surface, evidencing the high-throughput capabilities of particle lithography. After backfilling the 

uncovered holes with polythiophene, the approximate surface coverage of OTS measured 66%, 

which matches closely with the 67% surface coverage of OTS before backfilling. A 2-D fast 

Fourier transform (FFT) analysis of the 8 × 8 µm
2
 topography image displays the reciprocal 

space and periodicity of the nanostructures (Figure 7.5C).  The bright features in the FFT image 

exhibit a hexagonal pattern and demonstrate the long-range ordering of the arrays. The 

symmetric arrangement of the brush patterns can be viewed more clearly in the successive zoom-

in views (3 × 3 µm
2
) of topography and simultaneously acquired lateral force images shown in 

Figures 7.5D and 7.5E, respectively. A line profile (Figure 7.5F) across ten polythiophene 

nanostructures shows heights ranging from 16 to 38 nm. The center-to-center spacing between 

nanopatterns measured 289 + 10 nm, closely matching the diameter of the latex mesospheres 

used for the surface mask. With particle lithography combined with contact printing, the 

periodicity and surface coverage can be tuned by using different size latex masks. To obtain 

perfect nanoscale geometries would require an absolutely flat surface at the atomic level and 

perfectly symmetric monodisperse latex spheres. In a natural situation, there are few surfaces 

that are atomically flat and the variation in the sizes of latex spheres ranges from one to five 

percent. These small imperfections lead to different pore sizes, which produced variations in 

height for the nanopillars. The percent variation for 200 nanostructures measured measured 37%. 

The geometries of the polythiophene pillars are more clearly viewed with high resolution 

images of 13 nanostructures in Figures 7.5G and 7.5H. The average width of the polythiophene 

nanopatterns measured 169 + 9 nm (FWHM + SD). The width of the pillars is defined by the 

dimensions of the OTS pores, closely matching the original sizes of the nanopores of Figure 7.4. 

Distinct valleys between the polythiophene pillars are apparent in the topographs, indicating that 
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surface-initiated polymerization did not take place in areas passivated with OTS. A cursor 

measurement across three of the taller patterns indicates heights of 27 + 2 nm (Figure 7.5I).  

Figure 7.5 Arrays of polythiophene nanopillars produced by backfilling nanopores fabricated 

within OTS films using 300 nm latex masks. (A) Wide area topographic view of the 

polythiophene surface patterns obtained with contact mode AFM; (B) corresponding lateral force 

image; (C) 2D FFT spectrum generated from the topograph in A; (D) zoom-in view (3 × 3 µm
2
) 

topograph; (E) corresponding lateral force image for D; (F) cursor plot for the line in D; (G) high 

resolution topograph (1 × 1 µm
2
); (H) lateral force image for G; (I) height profile for the line in 

G. 

 

The results presented in Figure 7.5 demonstrate that the nanopores prepared by particle 

lithography furnished an excellent surface template to define the locations for the covalent 
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immobilization of Ni-functionalized catalytic initiator. The nanopatterns spatially confine the 

growth of the polymer during living polymerization to produce tightly-packed molecules that are 

vertically aligned to the surface. Since in situ polymerization can only occur on locations of the 

surface with initiator, the resulting polythiophene nanostructures retained the initial surface-

patterned geometry to generate circular-shaped, vertically aligned pillars. 

7.4 Summary 

By combining particle lithography with surface initiated living polymerization, 

nanopatterns of semiconducting polymer films with controlled morphology and geometry are 

produced on Si(111). Billions of semiconducting polythiophene nanostructures with discrete 

domains and designed intervals are reproducibly generated. The size and interpattern spacing of 

the nanostructures can be tailored by using different size latex mesospheres. Such control of the 

molecular orientation and nanoscale morphology of conducting polymer materials will facilitate 

carrier transport towards the top and bottom electrodes in thin film photovoltaics and, therefore, 

can potentially enhance the device efficiency. Future work is in progress to apply the described 

nanofabrication method on a transparent ITO electrode, which is suitable for the construction of 

an OPV device.  
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CHAPTER 8. CHARACTERIZATION OF DESIGNED ORGANOSILANE TEST 

PLATFORMS IN AIR AND IN LIQUID ENVIRONMENTS USING ATOMIC FORCE 

MICROSCOPY CONFIGURED WITH INDIRECT MAGNETIC MODULATION OF 

PROBES 

 

8.1 Introduction 

Dynamic characterizations using force modulation atomic force microscopy (FM-AFM) 

have been used for probing local mechanical properties (e.g. elastic and viscoelastic properties) 

of thin films and surfaces with nanoscale resolution.
51-53, 56, 58, 203-204

 The local elasticity or 

stiffness of surface structures can be evaluated with phase and amplitude images.
53, 55-58

 For the 

most common configuration of force modulation, the entire sample is driven to vibrate and the 

tip is held in a fixed position. Sufficient force is applied to the probe to ensure that continuous 

contact with the surface is maintained so that the tip does not break contact with the surface. 

Thus, for studies with FM-AFM, the force applied to the sample is modulated by applying a 

periodic AC waveform signal to a piezoactuated sample stage. The magnitude in which this force 

deforms the sample depends on the viscoelastic properties of the sample.
58

 In this report, we 

investigate the applicability of an alternate instrument configuration for FM-AFM using indirect 

magnetic modulation (IMM) of the AFM tip.
20

 In this situation, the tip is indirectly driven to 

vibrate against the sample surface by magnetic forces of a solenoid stage, rather than using 

piezoactuation. This configuration has advantages for precisely controlling the modulation of the 

probe and is suitable for protocols in either ambient or liquid environments. 

There are several instrument configurations for force modulation using different 

approaches for driving the tip to oscillate. One strategy for inducing tip vibration is to apply a 

periodic AC signal directly to the segment of the piezotube which drives the tip to oscillate in the 

z-direction.
58

 Another setup applies a periodic AC signal to a small piezoceramic chip to directly 

drive the tip to vibrate.
52

 For an approach known as magnetic force modulation, probes which 
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have a magnetic coating on the topside can be driven to vibrate with an external AC 

electromagnetic field. field.
59, 205-207

 Thin magnetic films can be deposited on AFM tips either by 

heated metal evaporation or by gluing small magnets onto the cantilever.
59

 

An alternate instrument configuration for FM-AFM using indirect magnetic modulation 

of soft, non-magnetic cantilevers (spring constants <1 N/m) is evaluated in this report, for sample 

test platforms of designed organosilane nanostructures.  In IMM, an external AC electromagnetic 

field, which is supplied by a wire coil solenoid located beneath the sample plate, is applied to the 

tip holder assembly of the AFM scanner. The tip is driven to vibrate indirectly through the 

motion of the tip holder assembly or nosecone, which contains ferromagnetic components. Three 

channels of data are acquired simultaneously with IMM to generate topography, amplitude, and 

phase images. Phase and amplitude images provide a map of elastic and viscoelastic properties 

of the sample. Different frequencies and field strengths can be chosen to drive the nonmagnetic 

cantilever to oscillate. 

8.2 Experimental Section 

8.2.1 Materials and Reagents 

Double-side polished Si(111) wafers doped with boron were used as a substrates 

(Virginia Semiconductor Inc., Frederickburg, VA). The substrates were cleaned with piranha 

solution (3:1 v/v) containing sulfuric acid (96%, EMD Chemical Inc., Gibbstown, NJ) and 

hydrogen peroxide (30%, Sigma Aldrich). Ethanol (200 proof) was used for sample preparation 

and for AFM imaging media (Aaper Alcohol and Chemical Co., Shelbyville, KY). After acid 

cleaning, silicon substrates were rinsed with deionized water (18 MΩ•cm, Milli-Q, Millipore, 

Bedford, MA). Certified particle size standards of monodisperse polystyrene latex mesospheres 

(100 and 200 nm diameters) were purchased from Duke Scientific (Palo Alto, CA). For IMM 

studies, 2-[methoxy(polyethyleneoxy)propyl]trichlorosilane (PEG-silane) and N-(6-
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aminohexyl)aminopropyltrimethoxysilane (6-AAPTMS) were purchased from Gelest 

(Morrisville, PA) and used to fabricate nanostructures. 

8.2.2 Preparation of Organosilane Nanostructures 

The procedure for preparing ring nanostructures of organosilanes has been previously 

reported.
16, 71-72

 The samples for IMM studies were prepared by particle lithography combined 

with chemical vapor deposition using silicon substrates. Monodisperse latex mesospheres were 

washed several times with deionized water by centrifugation to remove contaminants. A drop of 

aqueous solution containing monodisperse latex particles was deposited on a clean substrate and 

dried in air at room temperature for at least 12 h. The crystalline layer of latex mesospheres 

provided a mask for vapor deposition of organosilanes. Next, the masked substrate was placed in 

a reaction chamber containing 300 L of the neat organosilane. The chamber was sealed and 

placed in an oven at 80 C to generate silane vapors. The organosilane molecules self-assemble 

from the vapor phase onto areas of the substrate where water residues are present. Directly 

beneath the spheres were areas of the substrate that remained masked and protected from 

adsorbing molecules. After at least 8 h of exposure to the organosilane vapors, the sample was 

then cooled to room temperature. In the final step, the latex particles were completely removed 

by rinsing and sonicating with ethanol and deionized water. A representative image of the ring-

shaped nanopatterns of PEG-silane is shown in the 3D topograph acquired with tapping mode 

AFM in Figure 8.1A. The ring patterns were generated using a latex mask of 100 nm, with a 

surface density of 56 rings within the 1 × 1 µm
2
 view.  Referencing the uncovered areas of the 

substrate as a baseline, the height of the PEG-silane nanostructures measures 2.6 ± 0.4 nm 

(Figure 8.1B). 
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Figure 8.1 Nanopatterns of PEG-silane on Si(111) prepared by particle lithography using 100 

nm latex masks. (A) Tapping-mode AFM topograph acquired in air; (B) height profile for the 

cursor line shown in A. 

 

8.2.3 Indirect Magnetic Modulation AFM Imaging 

 A multipurpose scanner was used for IMM investigations with an Agilent 5500 model 

atomic force microscope (Agilent Technologies, Tempe, AZ) equipped with Picoscan v5.3.3 

software. Oxide-sharpened Si3N4 microcantilevers (Veeco, Santa Barbara, CA) with a force 

constant of 0.1 N/m and a resonance frequency of 26 kHz were used for experiments.  Gwyddion 

software was used for image processing, which is supported by the Czech Metrology Institute 

and is available for downloaded at no cost on the internet.
140

 

The instrument setup for IMM AFM uses a magnetic AC mode (MAC-mode) sample 

stage containing a wire coil solenoid located underneath the sample plate.
20

 A magnetic field is 

generated by applying an alternating current to the solenoid. The flux of the electromagnetic 

field induces vibration of the entire nosecone assembly (Figure 8.2); therefore, standard 

nonmagnetic probes can be used for IMM experiments. The AFM tip is driven to vibrate 

indirectly through the motion of the nosecone assembly. For each experiment, frequency sweeps 

are acquired before and after the tip has made contact with the sample surface to obtain 

information about tip resonances. The amplitude and phase response of the tip motion is 
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monitored by a photodiode detector and lock-in detection, using the AC current waveform as a 

reference input signal. 

Figure 8.2 Instrument set-up for IMM using a wire coil solenoid to apply an AC electromagnetic 

field to the sample stage and tip holder assembly. The AFM probe is nonmagnetic and is driven 

to vibrate indirectly by vibration of the tip holder assembly driven by the flux of the 

electromagnetic field. 

 

8.3 Results and Discussion 

Silane nanostructures of defined geometries and designed surface chemistry fabricated 

using particle lithography combined with chemical vapor deposition provide a robust test 

platform for systematic investigations using IMM. Nanopatterns of organosilanes have a 

distinctly different elastic response than to the hard surfaces of Si(111) substrates and will 

provide practical nanostructured morphologies for testing the capabilities and resolution of IMM. 

8.3.1 Force Modulation Spectroscopy Using IMM 

With force modulation imaging, resonances arise directly as a result of tip-surface 

contact.
203

 For experiments with IMM, frequency spectra were acquired while the tip was 

disengaged from the surface and after the tip was placed in contact with PEG-silane nanopatterns 

prepared on a silicon substrate (Figure 8.3). For side-by-side comparisons, the spectrum obtained 
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when the tip was engaged was offset by 0.10 V in the y-direction. Several peaks in the spectrum 

either shift slightly to the left or decrease in amplitude as the tip is brought into contact with the 

sample. The most prominent peaks for tip-surface resonance frequencies are observed at 48, 148, 

and 306 kHz when the tip was engaged with the sample (peaks A, B, and D in Figure 8.3). 

Notice that the peak at 148 kHz (peak B) is not detected in the spectrum when the tip is 

disengaged, which suggests that this resonance arises primarily from tip-sample interactions. For 

evaluation purposes, frequencies where a peak was not present (e.g. 226 and 424 kHz) were 

evaluated for IMM imaging, to assess the dependence of IMM imaging on the driving frequency 

of the tip. 

Figure 8.3 Frequency spectra acquired in ambient conditions for monitoring the response of a 

nonmagnetic AFM probe to IMM.   

 

Since the entire tip-holder assembly is driven to vibrate in response to an applied AC 

field, both the natural resonances of the entire tip-holder assembly and background vibrations of 

the sample stage can be seen in the frequency spectra. Resonance peaks observed when the tip is 

placed in contact with the sample are typically stronger than those from when the tip is out of 

contact; these stronger resonances likely arise from coupling with the inherent mechanical 

vibrations of the tip holder assembly. Peaks which appear only upon contact with the sample, 
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such as the peak at 148 kHz (peak B in Figure 8.3), are attributed to resonances of the tip-sample 

contact. Additional peaks can result from overtones or resonances of the mechanical system.
20

 

8.3.2 Evaluation of the Frequency Dependence for Imaging with IMM  

After obtaining the frequency spectrum, individual images of PEG-silane nanopatterns 

(Figure 8.4) were acquired with IMM in ambient air. To evaluate the frequency dependence of 

IMM, certain driving frequencies ranging from 49 to 424 kHz (Figure 8.3, labeled A-E) were 

chosen for driving the tip to vibrate. The data set presented in Figure 8.4 was obtained during a 

single experiment using the same tip and force setpoint. In addition, approximately the same area 

of the sample was scanned, using the two missing patterns in each image as a frame of reference. 

Ring-shaped nanopatterns of PEG-silane are clearly distinguishable from the bare silicon 

substrate in the images acquired at selected driving frequencies. In the topography frames, the 

brighter areas correspond to the taller features of PEG-silane nanostructures, whereas the darker 

areas correspond to the silicon substrate. Since the topography views reflects the height of the 

surface features detected by the AFM tip, the color scales for differences in height remain 

constant for each topography frame, regardless of the driving frequency used for imaging. 

However, the color contrast in amplitude images depends sensitively on the frequency used for 

driving the tip vibration and reflects changes in the local viscoelastic response of the sample. In 

the amplitude and phase channels, the magnitude of response of the AFM tip scales according to 

different driving frequencies. Less contrast is detected in the phase images for Figures 8.4C and 

8.4E, and the ring patterns are not as clear and distinct as in the phase images for Figures 8.4A, 

8.4B, and 8.4D. The light contrast seen in Figures 8.4C and 8.4E corresponds to the magnitude 

of the frequencies selected to acquire these images, 226 and 424 kHz. In comparing the five 

selected frequencies in Figure 8.3, the smallest peaks are observed at 226 and 424 kHz, which 
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resulted in the weakest amplitude and phase response observed throughout the corresponding 

images. 

Figure 8.4 IMM images acquired in air of PEG-silane nanopatterns obtained at driving 

frequencies of (A) 48, (B) 148, (C) 226, (D) 306, and (E) 424 kHz (frequency spectra is shown in 

Figure 7.3). Images are 2 x 2 µm
2
 scan sizes. 
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The contrast observed in the amplitude images directly corresponds to the response of the 

tip-sample contact of the vibrating tip. When in contact with soft materials (e.g. PEG-silane 

molecules), the cantilever oscillates at reduced amplitudes and changes phase in reference to the 

driving signal. For IMM, the amplitude and phase of the cantilever oscillation depends on 

interactions between the tip and the surface. Therefore, information about surface elasticity can 

be mapped with IMM amplitude and phase images. The amplitude images in Figure 8.4 A-E 

clearly distinguish the locations of the softer PEG-silane molecules and the harder silicon 

substrate. Factors which determine whether surface structures are displayed as being light or dark 

in force modulation amplitude and phase images are the frequency or amplitude chosen for 

driving tip vibration,
46, 208-209

 as well as whether the tip is operating in the attractive or repulsive 

regime.
209-211

 

Results for a dynamic IMM experiment are shown in Figure 8.5 for ring patterns of 6-

AAPTMS characterized at two selected frequencies. Midway through the scan, in Figure 8.5A, 

the top half of the 4 x 4 µm
2
 scanned area of the sample was analyzed using a driving frequency 

of 136 kHz, while the bottom half was acquired at 156 kHz. Data acquisition was not interrupted 

when switching frequencies during imaging. There is a distinct boundary in the phase image that 

points out where the frequencies were switched from 136 to 156 kHz. As for the amplitude 

image, only a faint change in contrast is observed between the two halves of the image. The 

amine-terminated 6-AAPTMS ring nanostructures measured 4.5 + 0.2 nm in height. The 

uncovered areas of the Si(111) surface show matching contrast within the center holes of the 

nanostructures. These small central areas measure 46 + 8 nm in diameter, which demonstrates 

that IMM is exquisitely sensitive to changes in surface chemistry at scales of a few nanometers. 
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Figure 8.5 Dynamic IMM experiments with nanopatterns of 6-AAPTMS (200 nm) analyzed at 

selected frequencies in air. Images captured at (A) low frequencies and (B) high frequencies as 

the frequency was ramped at different points during a single scan. Images are 4 x 4 µm
2
 scans. 

(C) Frequency spectra acquired before (red line) and after (blue line) the tip was placed in 

contact with the sample; the magnetic field remained on during acquisition of both spectra. 
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Higher frequencies were also selected for side-by-side comparison of amplitude and 

phase response within a single image shown in Figure 8.5B. While scanning across a 4 x 4 µm
2 

area, the driving frequency was switched without stopping data acquisition. For images acquired 

in air, the 6-AAPTMS ring patterns exhibit regular circular geometries throughout the entire 

image for the different frequencies. Sharp changes in contrast are immediately detected in the 

amplitude and phase images when the frequency is changed, demonstrating that the tip motion 

instantly changes with the rhythm of the IMM driven oscillation. For the amplitude frames, the 

softer areas of the ring nanopatterns show bright contrast against a dark background for the 

substrate at every selected frequency except at 498 kHz. A contrast flip, where the rings become 

dark and the substrate becomes brighter, is observed for the amplitude frame at 498 kHz (4). The 

amplitude frames are less straightforward to interpret; dark rings on a light background are 

shown for peaks 1, 2, 5, and 6, whereas light rings on a dark background are detected for peaks 3 

and 4. The phase changes for frame 4 show interesting edge effects, with a different contrast for 

the top versus the edges of the ring nanostructures. The contrast reversals for phase images are 

attributable to the complexity of both adhesion and stiffness interactions between the tip and 

sample and do not follow a predictable general scheme. 

8.3.3 Influence of Liquid Media for IMM Imaging 

 One factor to be considered when imaging in ambient conditions is the presence of a thin 

film of water on the surface of samples.
203

 Adsorbed water forms a capillary neck when the tip is 

in contact with the surface and results in a capillary adhesive force.
212

 Measurements made in 

liquid media reflect more accurately the elastic and viscoelastic properties of the sample due to 

the absence of the capillary neck at the tip-sample contact area.
203

 When imaging in air, a 

“forest” of peaks is often observed in the frequency spectrum obtained with FM-AFM. However, 

immersing the tip and sample entirely in a non-reactive liquid eliminates most of the peaks that 
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arise from background noise (electronic and acoustic). Imaging in liquid reduces many of the 

random perturbations of the tip to generate a spectrum displaying a few prominent and well-

defined resonance peaks. 

To evaluate the effects of imaging media on cantilever motion in response to IMM, 

frequency spectra were collected for a single sample in both ambient air and under a liquid 

environment. Analysis of the resonance behavior for a sample containing ring patterns of 6-

AAPTMS nanostructures on a silicon substrate was first performed in ambient air (Figure 8.6A). 

A frequency spectrum was obtained again using the same sample, except under a liquid 

environment by introducing ethanol into the sample cell (Figure 8.6B). For both spectra, the y-

axis for the disengaged tip has been offset by 0.2 V. 

Figure 8.6 Frequency spectra obtained using IMM in (A) air and (B) in ethanol. 
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A prominent resonance peak is observed before the tip makes contact with the surface in 

Figures 8.6A and 8.6B. In both cases (in air and in ethanol), these peaks are dampened when the 

tip engages the surface. In comparing the spectra obtained in the two different environments for 

the engaged tip, the resonance peak is substantially smaller for the experiment in ethanol. This is 

attributable to the surrounding liquid media dampening the motion of the cantilever. 

Topography, amplitude and phase images (2 x 2 m
2
) of the same 6-AAPTMS arrays 

were acquired in ethanol using IMM at selected driving frequencies (Figure 8.7). All of the 

frames were acquired for the same approximate area. The color scale in the topography frames 

remains unchanged regardless of which frequency was chosen. The tallest features are 

approximately 4 nm in height. However, the contrast and magnitude of response observed in the 

amplitude and phase frames changes according to the frequency selected for imaging. Bright 

rings against a darker colored substrate are displayed in all of the amplitude and phase images 

with the exception of the phase image acquired at 619 kHz, Figure 8.7E. This image reveals 

interesting edge effects, with a dark border surrounding the nanorings. Another interesting 

difference observed in liquid media is that for several of the amplitude frames, the center areas of 

the rings are darker than the surrounding substrate areas (Figures 8.7A, 8.7C, 8.7D, and 8.7E). 

This is attributable to fluid pressure and motion of the liquid media within the rings, which has a 

containment effect within the enclosed nanosized space at the centers of the rings. 
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Figure 8.7 Liquid IMM experiments with 6-AAPTMS nanoring patterns (200 nm) acquired in 

ethanol at selected driving frequencies: (A) 23, (B) 69, (C) 433, (D) 462, and (E) 619 kHz. 

Images are 2 x 2 µm
2 
scan areas. 
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The same sample of 6-AAPTMS nanostructures and local area of Figure 8.7 was imaged 

using the same probe in ethanol to evaluate the response of a nonmagnetic tip to an external 

magnetic field by IMM and for dynamic frequency studies, changing frequencies during 

acquisition of IMM scans. The magnetic field was alternately switched off and on during 

scanning without interrupting data acquisition (Figure 8.8A) at a driving frequency of 23 kHz. 

Interesting changes in the sample geometries were readily observed, which suggests that the 

surrounding liquid media is perturbed by the tip motion. The regular circular shapes of the ring 

nanostructures became distorted and appear as elongated ovals due to the changes in tip motion. 

Figure 8.8 Dynamic IMM experiments conducted in liquid media for 6-AAPTMS rings 

(prepared from 200 nm latex). (A) IMM images (2 x 2 µm
2
) obtained in ethanol with the 

magnetic field alternately switched off and on during data acquisition. (B) IMM frames acquired 

when switching frequency parameters during a single scan. 
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Switching the external electromagnetic field on and off during a single scan reveals the 

successive changes in tip oscillation when the periodic motion is interrupted and resumed within 

a single image scan. Clear linear boundaries are observed in the amplitude and phase channels in 

Figure 8.8A when the magnetic field is turned on or off. However, the topography view shows 

distortion of the ring geometry. In the topography image, the contrast between ring patterns and 

substrate remains the same regardless whether the field is on or off, because the topography data 

reflects only the height of the surface features as detected by the AFM tip. However, when the 

field is off, the rings appear to be somewhat elongated and distorted in the topography frame. 

The elongated ring patterns reflect the equilibration of the tip due to perturbation of the 

surrounding liquid media. Liquid media dampens the oscillatory motion of the cantilever during 

scanning, which requires more equilibration time for the wavemotion to subside. Note that when 

the field is turned off during IMM experiments, neither amplitude nor phase response of the tip is 

detected, as evidenced by the immediate loss of contrast for the ring patterns of 6-AAPTMS 

(Figure 8.8A). 

Ramping the driving frequency of the tip from 23 to 619 kHz causes progressive changes 

in the observed geometry of the ring nanostructures, as shown in the topography frame of Figure 

8.8B. The rings became elongated at higher frequencies. Changes in the phase response do not 

correspond to the amplitude frames. The phase images are highly sensitive to surface edge 

structures and the containment area within the center of the nanorings. The dynamic sweeps of 

certain frequencies provide a rapid in situ protocol for selecting imaging conditions for mapping 

surface chemistry with IMM. 

8.4 Conclusion 

An alternate instrument configuration for investigations with FM-AFM was evaluated in 

liquid media using test structures of organosilane ring nanostructures. The modulation of 
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nonmagnetic probes can be accomplished using indirect actuation of the tip holder assembly, and 

can be operated in both ambient air and in liquid media. The response of the cantilever is 

sensitively influenced by liquid media; perturbation is observed when the oscillation is turned on 

and off as detected by changes in apparent sample geometry. The liquid media is perturbed by 

the motion of the tip, particularly in tight spaces confined in the centers of the nanorings. 

Organosilane ring patterns prepared using particle lithography furnished a practical test platform 

for dynamic studies of surface properties, enabling the detection of changes in shapes and 

sensitivity of IMM to surface stiffness apparent at the nanoscale.  
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CHAPTER 9. CONCLUSIONS AND FUTURE PROSPECTUS 

 

New nanofabrication methods combining particle lithography with molecular self-

assembly were developed in this research for designed organosilane nanostructures. 

Monodisperse mesospheres of latex or colloidal silica naturally self-assemble on surfaces to form 

close-packed layers with designed dimensions and interparticle spacing. Colloidal crystals 

furnish a structural mask or template for guiding and controlling the deposition of materials on 

surfaces. The geometries and arrangement of nanostructures is determined primarily by the 

periodicity and dimensions of the mesospheres. The particle lithography methods described in 

this dissertation furnish high throughput approaches for reproducibly generating either ring or 

pore-shaped nanopatterns of organosilanes.  

Nanopatterns of organosilanes with precise geometries and reproducible dimensions 

provide test platforms that are suitable for molecular-level investigations with AFM to gain 

insight on surface self-assembly processes of organosilanes. Characterization of surface 

nanostructures with selected AFM imaging modes (e.g., contact mode, lateral force imaging, 

tapping mode, phase imaging) demonstrate the high resolution capabilities of scanning probe 

measurements for obtaining structural and physical information of materials at the nanoscale. 

Details of silanation reactions and self-polymerization mechanisms were obtained with high 

resolution AFM. The development of indirect magnetic modulation (IMM) provided an alternate 

approach for investigating the elastic compliance of various organosilane nanostructures in 

ambient or liquid environments. 

Particle lithography combined with either vapor deposition or contact printing of 

organosilanes provides a high-throughput tool for tailoring surface chemistry at the nanoscale. 

Nanostructures of organosilanes can be applied for the selective adsorption of nanoparticles, 

proteins or organic molecules. For example, arrays of ring-shaped OTS nanostructures were 
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successfully used for selectively depositing functionalized gold nanoparticles into confined 

regions (Chapter 5). Alternatively, pores of uncovered substrate produced within a thin film of 

OTS have been used for controlling the molecular orientation of polythiophene during surface 

initiated polymerization. Results of this dissertation research provide a solid foundation for 

future experiments. Further work will focus on applying particle lithography to pattern 

organosilane nanostructures, which will provide a scaffold for building more complex molecular 

architectures. Chemical post-modification of terminal functional groups of organosilane 

nanostructures will be applied for introducing active functional groups on the surface 

nanopatterns for selectively binding other molecules or nanomaterials, such as proteins. The 

ability to precisely control the relative position and arrangement of proteins at the nanoscale are 

important for development of advanced biosensor technologies.  

The increasing demand for more advanced and cost-effective green technology has led to 

new developments in solar cell technology, such as organic photovoltaic (OPV) devices. To 

improve device performance of OPVs, ongoing research will continue for fabricating arrays of 

vertical polythiophene pillars within OTS thin films on transparent indium tin oxide (ITO) 

substrates using particle lithography and surface initiated living polymerization. With particle 

lithography combined with contact printing, billions of periodically arranged pillar 

nanostructures of polythiophene can be produced on the surface with relatively few defects. The 

dimensions and interpillar spacing can be selectively tuned by changing the diameter of latex 

mesospheres used for the surface mask. In future work, completion of the device will be 

accomplished in collaboration with Dr. Evgueni Nesterov at LSU. The spaces between 

polythiophene nanopillars will be filled with a suitable acceptor (n-type) material, and a top 

aluminum electrode will be deposited by metal evaporation. Control of the molecular 

organization of both donor and acceptor materials will provide advantages for efficient carrier 
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transport towards the top and bottom electrodes. The high throughput capabilities and 

reproducibility of particle lithography for generating organized arrays of polythiophene 

nanostructures offers a promising nanofabrication route that can potentially aid in the 

development of future OPV devices with improved efficiencies.  

In addition, future studies will involve investigating the effect of nanoscale morphology 

on photoelectric properties of the polythiophene nanopillars using current sensing AFM (CS-

AFM). Local measurements of the conductive properties with CS-AFM of polythiophene 

nanostructures will provide insight on the correlation between molecular structure/organization 

and sample conductivity with nanoscale resolution. Current sensing AFM is an advanced contact 

imaging mode which is useful for the characterization of conductive materials on surfaces. The 

probes used for CS-AFM are coated with a thin layer of a conducting metal (e.g., platinum, 

iridium, gold). For CS-AFM, a bias voltage is applied to a conductive or semi-conductive 

sample, and the current through the conductive material is measured when the AFM tip is placed 

in direct contact with the surface (Figure 9.1). The applied bias voltage between the tip and 

sample generates current flow, which is sensitively measured by the AFM tip using a preamp 

integrated within the nosecone assembly. Current images of the sample are digitally constructed 

by recording the changes in current during scanning. Sample conductivity, topography, and 

lateral force images are acquired simultaneously with CS-AFM. In addition, current voltage (IV) 

plots at a specific location on the sample can be obtained with CS-AFM. Future directions will 

be to use CS-AFM to directly measure and mapping photocurrents that are generated by OPV 

nanostructures at the molecular level. Samples prepared on conductive ITO substates will be 

used for developing these new measurements. 
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Figure 9.1 Operating principle of CS-AFM. 
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APPENDIX A: PROCEDURE FOR PARTICLE LITHOGRAPHY COMBINED WITH 

VAPOR DEPOSITION OF ORGANOSILANES 

 

1. Substrate Preparation. Cut boron-doped double-sided polished silicon(111) wafers into  

1 × 1 cm
2
 pieces to use as substrates for patterning. To remove organic and inorganic 

contaminants, immerse the substrates into piranha solution (3:1 v/v ratio of concentrated H2SO4 

and 30% H2O2) for 1 h. Piranha solution is highly corrosive and should be handled with caution. 

After soaking, rinse the substrates with copious amounts of ultrahigh pure deionized water and 

dry in air. Note: use freshly prepared piranha solution, old solutions are not effective. Do not 

exceed 1 h soaking because the surface will become etched and rough. For indium tin oxide 

(ITO) or glass substrates, soak in piranha solution for 1 h and rinse with copious amounts of 

water. Then place substrate in a sealed container with RCA-1 solution (1:1:5 v/v ratio of H2O2 + 

NH4OH + H2O) and heat for 1 h at 80 °C. After removing from oven and allowing the substrate 

to cool, rinse with copious amounts of water and dry in air. 

2.  Procedure for Washing Latex Spheres. Wash the latex mesospheres (1 wt%) to remove 

surfactants and charge stabilizers by centrifugation.  Place 300 µL of latex solution in a 

microcentrifuge tube. Centrifuge the sample for 15 min at 14,000 rpm. A pellet will form at the 

bottom of the microcentrifuge tube. Discard the supernatant and resuspend the latex mesospheres 

in deionized water with vortex mixing. Repeat the rinsing cycle three times. Resuspend the pellet 

in 300 µL deionized water followed by vortex mixing. 

3. Preparation of Latex Mask. To produce ring-shaped nanopatterns of organosilanes, 

deposit a drop (20 μL) of the latex suspension on a clean Si(111) substrate and dry for 12 h in 

ambient conditions (25 °C, relative humidity ~55%).  
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4.  Vapor Deposition Procedure. Place the sample on a platform in a glass chamber 

containing a small volume (300 μL) of neat organosilane at the bottom of the chamber. Seal the 

container with parafilm and heat in an oven at 70 °C for 8 h to generate vapors of organosilane.  

5.  Removal of Latex Mask. Remove the film of latex mesospheres by rinsing and sonicating 

the sample in deionized water and ethanol several times. After removing the latex mask, dry the 

sample in air. 
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APPENDIX B: PREPARATION OF ORGANOSILANE NANOPATTERNS USING 

PARTICLE LITHOGRAPHY WITH CONTACT PRINTING 

 

1.  Substrate Preparation. Use a glass coverslip, boron-doped double-sided polished Si(111), 

or ITO as a substrate for nanopatterning organosilanes with contact printing. Cut the Si(111) 

wafer into 1 ×1 cm
2
 pieces. Immerse the Si(111) substrate into a piranha solution (3:1 v/v ratio of 

H2SO4 and 30% H2O2) for 1 h followed by rinsing with deionized water. Piranha solution is 

highly corrosive and should be handled with caution. For glass and ITO substrates, clean in 

piranha solution for 1 h, rinse with deionized water, then immerse in RCA-1 solution (1:1:5 v/v 

ratio of H2O2 + NH4OH + H2O) for 1 h at 80 °C. Rinse the substrates with copious amounts of 

deionized water and dry in air. Note: use freshly prepared reagent solutions, old solutions are not 

effective. Do not exceed 1 h soaking because the surface will become etched and rough. 

2.  Procedure for Washing Latex Spheres. Wash latex mesospheres to remove surfactants 

and charge stabilizers by centrifugation. Place 300 µL of latex solution in a microcentrifuge tube. 

Centrifuge the sample for 15 min at 14,000 rpm. A pellet will form at the bottom of the 

microcentrifuge tube. Discard the supernatant and resuspend the latex mesospheres in deionized 

water with vortex mixing. Repeat this three times. Resuspend the pellet in 300 µL deionized 

water followed by vortex mixing. 

3.  Preparation of Latex Mask. To produce pore-shaped nanopatterns of organosilanes, 

deposit a drop (20 μL) of the latex suspension on a clean substrate and dry for 2 h in ambient 

conditions (25 °C, relative humidity ~55%).  

4.  Preparation of PDMS Stamp. In a plastic cup, weigh 10 parts of Sylgard 184 pre-polymer 

and 1 part of curing agent. Dispense the viscous solutions using a disposable plastic syringe. Mix 

well with a spatula and pour into a petri dish. Remove bubbles by letting the mixture sit at room 

temperature for at least 2 h. Place the petri dish in an oven and heat at 70 °C for 1 h to cure the 
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polymer. Remove the sample from oven and let cool to room temperature. Cut PDMS slab into 2 

× 2 cm
2
 pieces and rinse with ethanol. Samples can be stored for several months in ethanol 

before use. 

5.  Inking Procedure for PDMS Stamp. Prepare a 30% solution of OTS in bicyclohexyl (or 

anhydrous toluene). Deposit 30 μL of OTS solution on top of a PDMS block and spread evenly 

with pipette tip. Quickly dry the solution with ultrahigh purity argon. 

6. Ink Transfer Step. Immediately after drying, gently place the PDMS block „inked‟ with 

OTS on top of the latex masked substrate for 1 h. 

7. Removal of Latex Mask. Remove the film of latex mesospheres by rinsing and sonicating 

the sample in deionized water and ethanol several times. After removing the latex mask, dry the 

sample in air. 
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APPENDIX C: SETUP AND OPERATION FOR AFM IMAGING WITH INDIRECT 

MAGNETIC MODULATION 

 

1.  Cable Connections for Indirect Magnetic Modulation AFM. The instrument configuration 

for indirect magnetic modulation (IMM) is displayed in Figure C.1. To setup the AFM 

instrument for IMM imaging, connect cables for the PicoSPM II controller, MAC/AC controller 

and  head electronic box as shown Figure C.1. Connect one cable from the AUX of the Picoplus 

head electronic box to the phase input of the MAC/AC controller. A second cable is connected 

from the amplitude of MAC/AC controller to the AUX IN of the PicoSPM II controller.  

 

2.  Instrument Setup and Sample Installation. A magnetic AC (MAC) sample plate, which 

contains a wire coil solenoid underneath, is used for IMM to drive the oscillation of the nosecone 

assembly during imaging. For IMM, an Agilent 5500 AFM multipurpose scanner with a scan 

area of 10 × 10 µm
2
 is used and operated in contact mode with an AAC nosecone. Insert the 

AAC nosecone into the Agilent 5500 AFM multipurpose scanner. Place the sample onto the 

MAC mode sample plate. NOTE: The IMM mode should not be used for samples or tips 

containing magnetic materials. It is only useful for samples such as polymers, SAMs, proteins, 

etc. that are nonmagnetic. For contact mode imaging with IMM, a soft, non-magnetic tip should 

 

Figure C.1 Cable connections for IMM imaging. 
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be used. For example, a silicon nitride cantilever (MSCT-AUHW, Veeco Probes) with a force 

constant of 0.1 N m
–1

 and a resonance frequency of 26 kHz or a silicon cantilever (SICON, 

NanoScience Instruments) with  a force constant of 0.2 N m
–1

 and a resonance frequency of 12 

kHz can be used for IMM imaging. Install the MAC mode sample plate and the AFM scanner. 

Focus the laser light onto the back of the cantilever to optimize the photodiode signal.  

3.  Software Settings. Launch PicoScan v5.3.3 software. Under „mode‟, select „AFM; under 

„AC mode control‟ panel, select „MAC‟ and „contact‟. Under „View‟, select the „Layout Editor‟ 

option, create eight channels for topography, defection, Aux IN BNC and Aux IN 5 on the top 

and bottom rows. The frames on the top row represent raw data and those on the bottom row 

represent processed data. Aux IN BNC represents IMM amplitude images, and Aux IN 5 

corresponds to IMM phase images. 

4.   Acquisition of Frequency Spectra. Open the AFM AC Mode Frequency Plot window and 

select the frequency range. Choose the MAC/Top MAC option in the AC Mode controls 

window. Uncheck the drive on box to turn the AC electromagnetic field off. Set the force 

setpoint value to „0‟ and click „approach‟ to approach the tip to the surface. Once the tip engages 

the surface, select buffer „A‟ and click „start‟ under the AC Mode frequency plot panel to sweep 

the frequency with the AC electromagnetic field still off. Check the „Drive On‟ box and enter 5% 

for the Drive On and 1X for Gain. Reduce the force setpoint to the lowest value possible to lift 

the tip away from the surface. Click on „sweep‟ to acquire a frequency spectrum while the AC 

electromagnetic field is on and the tip is disengaged. Adjust the Drive On % and frequency range 

(0-600 kHz) accordingly until prominent frequency peaks are observed in the spectrum. Note: 

domains with different composition will have different frequency profiles. It is important to 

identify the different domains (e.g. bare substrate versus organosilane nanostructures) and 

acquire frequency spectra of the different materials. Also, acquire force-distance curves of the 



132 
 

distinct surface domains. Increase the force setpoint slowly until the tip is engaged with the 

surface. Check the „overlay‟ box in the AC mode frequency plot panel and click on the sweep 

button again to acquire a resonance spectrum with the field on with the tip in contact with the 

surface. Adjust the Drive On % and frequency range (0-600 kHz) accordingly until prominent 

frequency peaks are observed in the spectrum. Differences in resonance frequency spectra 

acquired with or without the tip in contact with surfaces should be apparent. After the tip 

engages the surface, the natural resonance frequency slightly shifts. 

5.  IMM Imaging. Select the resonance frequency for operation with IMM imaging by left 

clicking the resonance peak maximum. Select the „Active‟ check box in the AC mode frequency 

plot panel. Click „Start‟ to acquire IMM images and adjust the integral (I) gain, the proportional 

(P) gain and the force setpoint values as if operating under conventional contact mode. 
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