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ABSTRACT 

Porphyrins and their derivatives are often used as photosensitizers in photodynamic therapy 

(PDT), which is a noninvasive antitumor treatment. The photochemical process for PDT involves 

exciting a photosensitizing agent with visible light, which induces cytotoxicity in the presence of 

oxygen as a result of forming reactive oxygen species (ROS). The ROS are the responsible 

components for invoking cell death and destruction of tumors. Although this mechanism is an 

effective cancer therapeutic, it still has many shortcomings. One major challenge of PDT 

concerns improving the tumor selectivity and specificity of photosensitizers because porphyrins 

have nonspecific affinity to tumor cells. The discussed research introduces a potential drug 

delivery vehicle to enhance the efficacy of cancer therapeutics and overcome the aforementioned 

issues. Specifically, hybrid composite particles composed of superparamagnetic polypeptide-

coated silica nanoparticles conjugated to porphyrins were designed to improve the mechanism of 

tumor cell destruction via controlled assembly and transport.  

Along the path of developing these nanocomposites, porphyrin self-assembly was explored to 

understand the dynamics of porphyrins alone.  A series of complementary experiments and 

analytical methods were used, including UV-Vis and fluorescence spectroscopy measurements, 

small angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM) 

and freeze-fracture transmission electron microscopy (FF-TEM). Whereas UV-Vis and 

fluorescence techniques enabled us to determine the type of aggregates formed, AUC and SAXS 

provided complementary details and information about the size of the assemblies in solution. 

Cryo-TEM and FF-TEM provided direct visualization of the aggregates.  
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Research Goals & Overview 

The primary goal of this research is to develop a drug delivery vehicle to enhance the 

efficacy of cancer therapeutics. Specifically, hybrid composite particles composed of 

superparamagnetic polypeptide-coated silica nanoparticles conjugated to porphyrins will be used 

to improve the mechanism of tumor cell destruction via controlled assembly and transport.  

Currently, the two common cancer treatment methods which utilize porphyrins include: 

boron-neutron capture therapy
1
 (BNCT) and photodynamic therapy

2-4
 (PDT). The research 

discussed in this dissertation focuses on enhancing the latter application, where porphyrins act as 

photosensitizers. The photochemical process for PDT involves exciting a photosensitizing agent 

with visible light, which induces cytotoxicity in the presence of oxygen as a result of forming 

reactive oxygen species (ROS). The ROS are the responsible components for invoking cell death 

and destruction of tumors.
5
 (See Figure 1-1)

6
 

A hematoporphyrin derivative (HpD), commercially known as Photofrin
®
, was the first PDT 

drug to receive approval from the United States Food and Drug Administration (FDA). Although 

Photofrin
®

 is now well established as an effective cancer therapeutic, it still has many 

undesirable properties. For instance, it is not prepared in pure form; instead, it is administered as 

a complex mixture of oligomers. Also, Photofrin
®
 is not rapidly cleared from normal tissue after 

treatment. Patients typically remain photosensitive for prolong periods (up to several weeks, 

depending on the treated condition) following administration of the drug.    

Since the clinical debut of Photofrin
®
, a vast number of porphyrin-based photosensitizers 

have been reported, but there are still ongoing challenges to overcome. One major challenge 

involves improving the tumor selectivity and specificity of photosensitizers because porphyrins 
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have nonspecific affinity to tumor cells. In an attempt to address this issue, researchers have tried 

to direct photosensitizers to cellular targets by conjugation to ligands that are tumor-specific.
3,7-9

 

A series of porphyrin-peptide conjugates have been reported
10-12

 by Vicente and coworkers. Each 

of the designed conjugates exhibited low dark toxicity and were efficiently taken up by human 

carcinoma HEp2 cells. Overall, the cellular uptake, intracellular localization, and cytotoxity were 

dependent of the nature and sequence of the amino acid residues, as well as the hydrophobic 

character of the conjugate.  

 

 

Figure 1-1 Representation of the photodynamic therapy process. Adapted from reference 6.  
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Aggregation is another factor to consider when developing an effective photosensitizer for 

PDT.  Most molecules used as photosensitizers are hydrophobic and easily aggregate in aqueous 

media. When intracellular porphyrin aggregation occurs, the efficiency of ROS production is 

limited due to self-quenching effects.
13

 On the other hand, aggregation facilitates the collective 

transport of photosensitizers to local tumor sites, minimizing incidental uptake and destruction of 

healthy cells. Depending on the chemical kinetics of the photosensitizing agent, the site of 

localization may vary, resulting in a complex array of cellular effects.
3
 New approaches for 

counteracting these concerns include nanotechnology, which is an interdisciplinary field with 

applications in chemistry, material science, electronics, defense, energy and medicine.
14

 

Nanotechnology can also be defined as the study of the control of matter on the molecular and 

atomic scale. Generally, it involves structures within the limits of 100 nm and the development 

of materials or devices within the same size range.
3
 Current nanotechnologies encompass 

buckyballs,
15

 nanoparticles,
16

 nanowires
17

 and nanorods
18

.  

The use of platforms, such as nanoparticles, offers several significant benefits for PDT: (1) 

large payloads of photosensitizer can be added to the nanoparticles, and the particle surface can 

be modified to achieve the desired hydrophilicity for optimal plasma pharmacokinetics. (2) The 

attachment of targeting moieties onto the nanoparticle surface may permit increased selective 

delivery of the photosensitizers. (3) High levels of imaging agents can easily be combined with 

photosensitizers in the nanoparticles, providing an enhanced ―see and treat‖ approach, where the 

placement of optical fibers is fluorescence image-guided to direct photoactivating light to 

subsurface tumors or to early nonclinically evident diseased tissue.
3
 Moreover, the development 

of nanoparticles engineered for PDT can overcome many of the shortcomings of classic 

photosensitizers.
19-21
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Currently, various types of nanoparticles are being studied for their potential use as delivery 

vehicles for photosensitizers. These particles are generally categorized as biodegradable or non-

biodegradable systems. For the purposes of PDT, non-biodegradable nanoparticles offer more 

advantages than biodegradable nanoparticles. For example, there is no time requirement for 

biodegradation, the photosensitizer can be protected from the environment, the particles can act 

as multifunctional platforms and can also be of smaller size.
21

 A number of these multifunctional 

features, as well as many others, are illustrated in Figure 1-2.  

 

Figure 1-2 Afforded features of an ideal multifunctional nanoplatform. Abbreviations: FRET, 

fluorescence resonance energy transfer; MRI, magnetic resonance imaging; PUNP, photon 

upconverting nanoparticle. Adapted from Reference 21. 
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The main forms of non-degradable particles which have attracted interest are composed of 

gold, polyacrylamide and organically modified silica (ORMOSIL). Although polyacrylamide-

based polymers can be used for the synthesis of these particles, most non-degradable systems are 

typically silica-based or metallic. Tang et al.
22

 reported a comparative study on the encapsulation 

of methylene blue into three different types of sub-200 nm nanoparticles: one polyacrylamide- 

based and two silica-based particles. Of the two silica-based systems, one was composed of 

phenyltrimethoxysilane/methyltrimethoxysilane (PTMS/MTMS), whereas the other was 

composed of tetraethylorthosilicate (TEOS). According to their findings, polyacrylamide-based 

nanoparticles are small and possess a lower loading capacity than silica-based nanoparticles. 

Also, TEOS platforms exhibited the highest 
1
O2 delivery per milligram of particle, which was 

threefold higher than that of polyacrylamide. The next highest level of 
1
O2 delivery was 

displayed by PTMS/MTMS nanoparticles; approximately twofold higher than polyacrylamide. 

 Recently, Prasad et al.
19

 developed a stable formulation of ORMOSIL nanoparticles for the 

encapsulation of 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide (HPPH), a hydrophobic 

photosensitizer which is currently undergoing clinical trials for esophageal cancer. The 

formulation was prepared by performing a controlled hydrolysis of triethylvinylsilane in micellar  

media. Based on in vitro experiments, the encapsulated photosensitizers showed significant 

levels of cell death upon photoactivation as a result of the free diffusion of molecular oxygen 

across the ORMOSIL matrix. However, due to the mesoporosity of these particles, a partial 

release of HPPH was observed during systematic circulation.
3
 To overcome this issue, Prasad 

and coworkers later prepared a new formulation with the photosensitizers covalently-linked to 

the silica matrix. This modified system was obtained via the reaction of triethoxysilylaniline with 

the carboxylic acid-functionalized photosensitizer, followed by co-precipitation of the 
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ORMOSIL precursor, vinyltriethoxysilane (VTES), with the photosensitizer in a Tween 80/water 

micro-emulsion. Covalent attachment of the photosensitizer did not offset the photophysical 

properties of the system and singlet oxygen production was preserved.  

In a study by Wieder and coworkers,
20

 silica- and gold-based nanoparticles were compared 

for their potential use in PDT applications. They presumed that photosensitizers bound to the 

surface of gold might offer more advantages than encapsulated photosensitizers with regards to 

the diffusion of singlet oxygen species. In 2008, Burda et al.
23

 reported the synthesis of 

PEGylated gold nanoparticles conjugated to phthalocyanine. Typically, it takes at least two days 

for the studied phthalocyanine to exhibit maximum accumulation in tumors; however, when 

conjugated to gold nanoparticles, maximum uptake occurred in less than two hours. Although 

these particles hold promise to be efficient delivery platforms, no in vitro/in vivo results have 

been reported with respect to PDT efficacy.   

The rationale for the primary research goals and objectives is established on the basis of 

recent advances in nanotechnology and ongoing challenges of PDT. Provided the insight, as well 

as limitations of the previously described studies, a new hybrid nanoparticle was constructed 

with enhanced therapeutic capabilities. The use of porphyrins conjugated to superparamagnetic 

polypeptide-coated silica nanoparticles may provide the necessary features to overcome the 

current drawbacks of PDT.   

Overall, the aim is the development of a controllable ―on/off‖ switch for porphyrin 

aggregation. In theory, this capability will simultaneously optimize the transport and PDT 

efficacy of porphyrins under both, extra- and intracellular conditions, respectively. During 

guidance to the tumor site, porphyrin aggregation would be switched ―on‖, minimizing 

interactions with healthy cells. Once directed to the site of interest, aggregation would be 
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switched ―off‖ to enhance photoactivation. This will decrease the occurrence of self-quenching 

effects which results from aggregation. In addition, improved reactivity of the photosensitizers 

will decrease the required dosage for efficient 
1
O2 production.  

The feasibility of these nanoparticles to serve as drug delivery systems and biomedical 

devices is constituted by their biocompatibility, stability, and versatility.
24

 Using polypeptide-

functionalized silica particles as platforms promote these characteristics. Other potential 

applications for these composite nanoparticles include: responsive materials, chiral separations,
25

 

colloidal crystallization,
26

 catalysis,
27

 and biomimetic membrane supports.
28

 Depending on the 

properties of the attached polypeptide, the particles can exhibit solubility in water or organic 

solvents. In addition, the polypeptide coilhelix transition is a useful feature for modifying the 

surface configuration and particle-particle interactions. In the discussed work, the objective is to 

coat the surface of silica cores with a biocompatible polypeptide shell, which will enhance 

particle solubility in a physiological environment. Such features are useful to exploit these 

versatile hybrids as drug delivery platforms for photosensitizers. 

The inclusion of a magnetic moiety (i.e. iron oxide, which is FDA-approved) within the silica 

core provides an additional dimension for controlling drug transportation. In the presence of a 

remotely controlled high frequency magnetic field, magnetic colloidal particles assemble.
29

 Upon 

removal of the magnetic field, the particles are capable of readily dispersing.
30

 Exploiting these 

features can increase the reactivity of photosensitizers and minimize the required dosage. Also, 

magnetic guidance of the particles to target tissues (e.g., a tumor) will reduce the chance of 

destroying healthy tissues and eliminate associated side effects.
31

 Yoon et al. reported similar 

core-shell particles for drug and gene delivery applications. In their study, magnetic 
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nanoparticles were coated with a shell of amorphous silica, which contained luminescent organic 

dye; biocompatible poly(ethylene glycol) was attached to the surface.  

Liu et al.
32

 described a procedure for the preparation of magnetic nanocomposite-bonded 

metalloporphyrins for biomimetic catalysis. In their approach, the metalloporphyrins were 

synthesized via a silanation reaction between 3-aminopropyltriethoxysilane (APTES) 

functionalized metalloporphyrins and silica-coated Fe3O4 nanoparticles. The target porphyrin 

species was prepared by amidation of its acyl chloride group with APTES. Herein, a facile 

approach
33

 using ―click‖ chemistry is introduced as an improved method of porphyrin 

immobilization to the surface of silica particles. 

Before engineering our porphyrin-functionalized delivery vehicle, it was important to gain an 

understanding of the self-assembly and structural properties of porphyrins alone. In Chapter 2, a 

review of useful instrumentation and techniques used in the study of self-assembly in situ is 

provided. The results and data shown in that chapter comprise side projects, which also focused 

on the study of self-assembling systems; Chapter 3 describes findings for the aggregation of 

meso-tetra(4-sulfonatophenyl)porphyrin in aqueous solutions, which were determined using the 

techniques highlighted in Chapter 2. In Chapter 4, the synthesis and characterization of magnetic 

hybrid particles designed for controlled porphyrin assembly/transport is discussed.  

1.2 Photodynamic Therapy (PDT) 

PDT is a noninvasive clinical treatment for various diseases, including cancer and superficial 

tumors (e.g., lung, bladder, esophagus, melanoma). Treatment involves intravenous injection of a 

photosensitive drug which accumulates in the neoplastic tissues. Once the photosensitizer is 

excited, tumor necrosis is initiated due to the production of highly toxic singlet oxygen. 
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The simplified Jablonski diagram shown in Scheme 1-1 illustrates the photophysics of ROS 

generation during PDT sensitization. Once exposed to a particular wavelength of visible light 

(635-760 nm), the photosensitizer (porphyrin) transitions from a singlet ground state (P
0
) to the 

first excited (
1
P*) singlet state (1). The excited molecule can either return to its singlet ground 

state via fluorescence (2), or undergo intersystem crossing (3) to its excited triplet state (
3
P*). 

The lifetime of the photosensitizer in the 
3
P* state (μs) is longer than that of the 

1
P* state (ns), 

which favors the interaction of this excited state with surrounding molecules. In the case where 

the photosensitizer follows the first pathway (2), the tumor will fluoresce and become visible.  

 

1
P* 

 

 

 

 

 

Scheme 1-1 Simplified Jablonski representation of PDT sensitization mechanism.  

However, if the photosensitizer follows the second pathway (3), it will subsequently undergo 

phosphorescence (4). Cytotoxic species are generated from molecular oxygen in one of two 

potential ways, classified as Type I and Type II mechanisms. The Type I mechanism (5) involves 

the transfer of hydrogen atoms or electron-transfer between the excited photosensitizer and 

molecular oxygen, resulting in the production of ions or free radical species (peroxide anions and 

super oxide). In contrast, the Type II mechanism (6) involves the transfer of a hydrogen radical 

or an electron from the photosensitizer to molecular oxygen, which is considered the main 

process that occurs in PDT. The interaction of the 
3
P* state sensitizer with the triplet ground state 

3 
3
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3
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of molecular oxygen (
3
O2) yields highly cytotoxic singlet-state oxygen species (

1
O2) that is used 

in therapeutic treatment.
34

  

Chemical sensitization with light was first observed by Raab in 1900, using acridine as the 

sensitizing agent for the irradiation of paramecium.
35

 This reaction process was termed 

―photodynamic action‖ to distinguish it from the sensitization of photographic plates by dyes.
36

 

The potential of porphyrins to serve as anti-tumor agents in cancer therapeutics was recognized 

in the 1960s. The development of HpD provided detection and selective localization in malignant 

tissues.
37

 In 1975, Dougherty et al. demonstrated the selective destruction of tumors with HpD 

upon irradiation.
38

 Following this discovery, a more pure form of HpD was developed in 1983 

and is commercially known today as Photofrin
®
 (porfimer sodium). In 1995, Photofrin

®
 received 

FDA approval in the United States and is now approved for use in more than 40 other countries.  

1.3 Porphyrins 

1.3.1 Fundamental Properties of Porphyrins 

Porphyrins are tetrapyrrolic macrocycles conjoined by four methine (meso) carbons and 

possesses 22-π electrons; 18 of which are incorporated in any one delocalization pathway
39

 (see 

Figure 1-3). Based on Hückel’s (4n+2) rule, porphyrins are considered highly aromatic. These 

aromatic properties contribute to many of their useful applications, particularly in the field of 

medicine. For instance, products such as Photofrin
®
 utilize the photochemical capabilities of 

porphyrins in photodynamic therapy (PDT) for the treatment of malignant tumors.
40  

Porphyrins are considered amphoteric, possessing acidic and basic properties as a result of 

the inner pyrrolic nitrogens. A strong base, such as alkoxide, is capable of removing the protons 

(pKa ~16) from the nitrogen atoms, rendering a dianion porphyrin species. Conversely, the free 

pyrrolenine nitrogen atoms (pKb ~9) can be protonated with acids, such as trifluoroacetic acid 
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(TFA), to form the dication species.
41

 Sometimes when the tetrapyrrole is protonated or 

deprotonated, a color change is observed and confirms reaction. In addition, the inner protons 

can be replaced with various types of metals (e.g., Cu, Ni, Sn, Zn) via insertion into the 

macrocycle cavity using metal salts.
42-44

 In contrast, metalloporphyrins can undergo demetalation 

upon treatment with acids. Depending on the type of metal, specific acids may be required for 

successful removal.
45

 

 

 

Figure 1-3 Fundamental porphyrin with 18-π electrons incorporated in six different delocalized 

pathways.  

 

Excited state properties of porphyrins are the basis of their unique photochemistry. The 

prominent electronic transition for porphyrins is      transitions which are associated with 

the macrocycle ring.
39

 The aromatic ring current exhibits an anisotropic effect,
46

 causing the 

shielded inner pyrrolic protons to shift upfield (-2 to -4 ppm) in the 
1
H-NMR spectrum. In 
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contrast, the peripheral beta-pyrrolic and meso protons are deshielded and appear downfield (8-

10 ppm).
47

 

Typically, porphyrins exhibit a strong UV-Vis absorption band at ~420 nm, known as the 

Soret band.
48

 Another characteristic includes four additional absorption bands, referred to as Q-

bands, which are less intense and appear between 500-700 nm. Depending on the substituents 

and their location on the porphyrin, a shift in the bands may be observed.
49

 For instance, 

substituents at the meso-positions of the macrocycle or at the beta-positions of the pyrroles will 

slightly shift the Soret and Q-bands.
39

 As a result of protonation and self-aggregation, the 

compounds adopt new photochemical characteristics that are different from their monomeric 

properties. Spectroscopic techniques, such as UV-Vis and fluorescence spectroscopy, can be 

used to monitor the aggregation process by examining the changes in the photophysical 

properties (see Chapter 3 for further details).  

1.3.2 A Brief History of Porphyrins 

The physical properties and potential applications of porphyrins have attracted immense 

interest since the early 19
th

 century. In 1818, Pelletier and Caventou were the first to isolate the 

green pigment of leaves and named it chlorophyll 1.1.
50

 This compound is a reduced form of 

porphyrin and is essential for the process of photosynthesis in plants and organisms. In 1844, 

Verdeil
51

 recognized the relationship between chlorophyll and heme 1.2 when he observed the 

chemical conversion of chlorophyll to a red pigment.  

Around 1867, Thudichum isolated the first porphyrin by treating cruorin (now referred to as 

hemoglobin) with sulfuric acid and performed an extraction using alcohol.
52

 He described it as a 

―purple substance that fluoresced with a splendid blood-red colour.‖
53

 Cruentine was the name 

given to this isolated species; however, it is well-known today as hematoporphyrin 1.3 (Figure 1-
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4). In 1884, Nencki
54

 successfully isolated the first pure porphyrin, hematoporphyrin 

hydrochloride, directly from heme.  

 

 

Figure 1-4 Chemical structures of naturally occurring porphyrins. 

Spectroscopic evidence of porphyrin was originally reported in 1883 when Soret
48

 observed a 

strong electronic absorption band (420 nm) in the UV-Vis spectra of hemogloblin. A few 

decades later, the structure of porphyrin as four pyrrole groups linked by four methine bridges 

was proposed by Küster
55

 in 1912; however, it was not widely accepted by the scientific 

Hematoporphyrin 1.3 

Heme 1.2 Chlorophyll-a 1.1 
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community.  In 1913, the debate regarding this structure continued when Willstätter
56

 proposed 

porphyrin as a tetrapyrrylethylene entity. In 1926, Fischer
57

 reported the synthesis of 

octamethylporphyrin and type I, II, and III isomers of etioporphyrin, which confirmed the 

structure proposed by Küster was, indeed, correct.  

1.3.3 Porphyrin Syntheses 

1.3.3.1 Rothemund Method 

Preparing specific porphyrin motifs requires the synthesis of porphyrin derivatives which 

possess functional groups at the periphery of the macrocycle.
58

 In 1936, Rothemund and Menotti 

 

Scheme 1-2 Synthesis of TPP via Rothemund method. 

were the first to synthesize such a porphyrin, known as tetraphenylporphyrin (TPP) (Scheme 1-

2).
59

 The compound was obtained by reacting pyrrole (1.4) and benzaldehyde (1.5) in pyridine, 

while in a sealed tube at 150 °C for 24 hours, followed by oxidation of the resulting porphyrinogen.
60

 This 

method produced relatively low yields (~10%) and due to the harsh reaction conditions, the range of 

1.6 

1.5 

1.4 
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feasible substituted benzaldehydes was very limited. When the reaction was performed in the presence of 

Zn(OAc)2 at high pressure, an improved yield was observed. 

1.3.3.2 Alder-Longo Method 

The Rothemund method was later modified by Adler and Longo under relatively milder 

reaction conditions. A wider range of substituents became attainable as a result of the conditions 

being less harsh. This new method of synthesizing TPP was also simpler than the original 

method. In fact, reaction rates were faster and the resulting yields were higher (20 ± 3 %).
61

 

(Scheme 1-3) 

 

Scheme 1-3 Synthesis of TPP via Adler-Longo method.  

 The reaction modifications involved refluxing pyrrole (1.4) and benzaldehyde (1.5) in propionic 

acid for 30 minutes at 141 °C. Although the Adler–Longo method provides a higher yield of TPP 

under comparatively milder reaction conditions, there are still some associated drawbacks. For 

instance, a high degree of tar is produced during the reaction which makes purification very 

1.6 

1.5 

1.4 
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difficult.
62

 Regardless of this issue, the Adler-Longo method is still one of the most efficient in 

the synthesis of TPP 1.6, assuming the target porphyrin can be easily isolated. 

1.3.3.3  Lindsey Method 

In 1987, Lindsey et al. determined that TPP could actually be produced under equilibrium 

conditions. This synthetic strategy permits the formation of substituted porphyrins which were 

once unattainable using alternate routes.
62 

The Lindsey method generates a colorless 

porphyrinogen product, and these intermediates are converted irreversibly to aromatic porphyrins 

upon oxidation. The procedure was developed based on pyrrole (1.4) and benzaldehyde (1.5) 

reacting to form the thermodynamically favored product, tetraphenylporphyrinogen (1.7), in a 

dilute solution (10
-2

 M) of dichloromethane (DCM) (Scheme 1-4).  

 

 

Scheme 1-4 Synthesis of pyrrole (1.4) and benzaldehyde (1.5) to form thermodynamically 

favored tetraphenylporphyrinogen (1.7) at room temperature.  

 

The Lindsey method has several factors that contribute to improved porphyrin yields. For 

instance, the selection of acid catalyst and oxidant, starting material concentrations, reaction 

time, and presence of water in the solvent can all influence the reaction.
63

 The synthesis involved 

reacting pyrrole (1.4), benzaldehyde (1.5), and triethyl orthoacetate in a dilute solution of 

anhydrous DCM at equimolar concentrations (10
-2

 M) (Scheme 1-5). An aliquot of a Lewis acid 

1.7 

1.5 

1.4 
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catalyst, such as BF3Et2O or TFA (10
-3

 M), is added to the reaction mixture and allowed to sit at 

room temperature for ~1 h. Once the reaction has reached equilibrium, the oxidant can then be 

added to convert the porphyrinogen intermediate to porphyrin. DDQ and p-chloranil are both  

 

 

 

 

 

 

 

 

 

 

useful oxidants for this conversion. Adding DDQ yields an immediate conversion of the 

intermediate, whereas, p-chloranil is a milder oxidant and requires at least an hour to completely 

react. Though the reaction time when using p-chloranil is longer, it produces a higher yield of 

porphyrin than DDQ. Also, similar to benzene chemistry, the nucleophilicity of the pyrrole group 

depends on the attached functional group. For instance, if the pyrrole ring has an electron-

donating group (e.g., alkyl group) present, it will more readily participate in electrophilic 

substitution reactions. In the case of an electron-withdrawing group (e.g., ester group) being 

attached to the pyrrole ring, a decrease in the reactivity will occur. Being mindful of the 

aforementioned factors, Lindsey strategically optimized the reaction conditions by monitoring 

1.4 

1.5 

1.6 

Scheme 1-5. Synthesis of TPP via Lindsey 

method. 

Scheme 1-5 Synthesis of TPP via Lindsey method. 



18 
 

the yields of product at various reaction times via UV-Vis spectroscopy. As a result, the final 

TPP product can be obtained in much higher yields (50-55%) and more substituents are 

tolerated, which is a major improvement with respect to previous methods. 

1.3.3.4 Asymmetrical Porphyrins from Symmetrical Porphyrins 

 

Figure 1-5 Molecular structure of mono-nitrophenylporphyrin. 

Asymmetrical porphyrins can be prepared via mixed aldehyde condensation or selective 

functionalization of symmetrical porphyrins. The work described in this dissertation utilizes the 

latter method and will be the topic of discussion in this section. One of the earliest 

demonstrations of this procedure occurred in 1989, when Kruper et al.
64

 synthesized mono-

nitroporphyrin using fuming nitric acid to directly nitrate TPP (see Figure 1-5). The yields 

obtained using this method were moderate (46~56%), yet a vast improvement compared to 

previously reported studies.
65-67

 Meng et al. later reported a method for obtaining relatively 

higher yields (~74%) under milder reaction conditions.  Luguya et al.
68

 devised a synthetic route 

using sodium nitrite in TFA, which enhanced the yield, as well as regioselectivity. The 

concentration of sodium nitrate and permitted reaction time are key factors which determined the 
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major products among various potential mixtures (e.g., mono-, di-, tri-, tetra-substituted TPP) in 

this reaction. Due to the absence of other tetrapyrrole byproducts, the mixtures are easily 

separated.   

Similar to the work to be described in chapter 4, many studies exploit the single functional 

site as a mode for conjugating porphyrins to various peptides
7,69-73

, proteins
74-76

, DNA
77-79

, 

surfaces
80-81

, and other substrates. Kajiwara et al. reported the attachment of porphyrin moieties 

to the side chains of polyacrylamide with the aim of preparing functional polymers, which mimic 

a living system.
82

 In our group, Sibrian-Vazquez et al.
7
 developed a reaction well-suited for 

conjugating porphyrins to peptides. This method is utilized for the purposes of the discussed 

studies. 

1.4 Colloidal Silica-Coated Superparamagnetic Particles 

1.4.1 Colloidal Silica 

Colloidal silica is a suspension of fine amorphous, nonporous, and typically spherical silica 

particles in the size range of ~1 nm to 1 μm.
83

 Similar to atoms and molecules, these particles 

diffuse due to thermal motion. In comparison to other inorganic materials, silica and silicon 

compounds offer more beneficial properties. For instance, silica particles are easily surface-

functionalized, which presents a wide range of options for chemical grafting. Also, the synthesis 

of these particles can yield monodispersed spheres with controllable size. In combination, 

colloidal silica spheres can serve as great platforms for hybrid structures.  

In 1956, silica synthesis was discovered by Kolbe,
84

 however, scientific interest in these 

nanoparticles did not flourish until the work of Stöber et al. was reported in 1968.
85

 The Stöber 

synthesis produces well-defined monodispersed silica particles via hydrolysis of tetraethyl 

orthosilicate (TEOS) monomer, using ammonia as a catalyst. Generally, the solvent system for 
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this reaction mixture is a linear alcohol, such as ethanol, and water. Due to the partial positive 

charge of the silicon atom in TEOS, the Si-OEt bonds become hydrolyzed in the presence of 

water. A new silanol (Si-OH) bond is produced while an EtOH group is loss as a result of 

nucleophilic substitution. The silanol group of this molecule can then react with another TEOS 

monomer to form a Si-O-Si bond, yielding a dimer. As the polymerization proceeds, the 

hydrolyzed intermediates undergo condensation to form colloidal silica (Scheme 1-6).  

 

 

Scheme 1-6 Schematic representation of the synthesis of colloidal silica via the Stöber method. 

To control the particle size, several factors can be adjusted in the reaction conditions. 

Typically, larger particles are produced when the concentration of water or ammonia is 

increased. Using alcohols of higher molecular weight can also yield larger particles, but with a 

broad size distribution.
86-88

 An increase in temperature leads to the opposite effect and produces 

smaller particles. Another method used to control particle size and monodispersity involves 
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microemulsions.
89

 A microemulsion is a thermodynamically stable dispersion which consists of 

two immiscible fluids (e.g., water-in-oil); surfactants are added to stabilize this system. The 

surfactants generate aggregates known as reverse (or inverted) micelles upon thermodynamically 

driven self-assembly. Among the different types of micelles, spherical reverse micelles are the 

most common. The central cores of these micelles act as capsules to ionic or polar molecules 

when added.
90

 Due to the dynamic nature of the system, micelles frequently collide via Brownian 

motion, and then coalesce to form dimers. The dimerized micelles may exchange contents and 

break apart again, which results in a chemical reaction (see Figure 1-6). Because of this 

phenomenon, spherical reverse micelles are often exploited as ―nanoreactors‖, providing an 

environment suitable for controlled nucleation and growth.
91

 

 

 

Figure 1-6 Representation of the content exchange process via the collision between spherical 

reverse micelles. 

 

Magnetic inclusions within the core of silica nanoparticles can be added to provide a means 

of manipulating the assembly and transport of the colloidal particles. Interest in this feature is 

driven by the vast number of potential applications.
92-94

 In terms of magnetically guided drug 

delivery vehicles, the most often used biocompatible material is iron oxide magnetite (Fe3O4).
31

 

It is minimally toxic and has been approved by the FDA as a magnetic resonance imaging (MRI) 

contrast agent.
95-97

 The following section describes the properties of these particles in greater 

detail.  
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1.4.2 Fundamentals Properties of Magnetic Nanoparticles  

Generally, magnetic particles are either composed of cobalt, iron, or nickel, as well as their 

oxidized derivatives. The nomenclature of these particles is based on the magnetic ordering of 

spins within the material.
98

 In pure metal form, cobalt, iron, and nickel are referred to as 

ferromagnets, whereas their oxidized forms are ferrimagnets. Despite the naming difference, 

these materials show many common magnetic properties. For instance, both classes of particles 

are capable of storing magnetization upon removal/absence of an external magnetic field (i.e, 

remanence). Also, ferro- and ferrimagnetic materials have the ability to ―remember‖ the 

magnetic history and retain ordering. This memory phenomenon is called hysteresis, defined as 

the inability of the magnetic material to relax back to zero magnetization, even after field 

removal.
99

  

The Curie temperature of ferro/ferrimagnetic indicates the amount of energy needed to 

disrupt the long-range ordering in the material.
100

 When heated above the Curie temperature, the 

spin-spin coupling within materials no longer can overcome thermal fluctuation energy, resulting 

in paramagnetism. A characteristic feature of paramagnetic materials is the lack of remanence 

and hysteresis. Therefore, in the presence and absence of an external field, paramagnetic 

particles can magnetize and demagnetize, respectively.  

Information about the magnetic properties of a material is revealed via its hysteresis loop, 

which shows the correlation between the induced magnetic flux density (B) and magnetizing 

force (H).
99

 Figure 1-7 depicts the dynamics of a classic hysteresis loop for ferromagnetic 

material. The starting point of magnetization ―s‖ is noted at the origin of the plot, and the curve 

migrates to point ―a‖ as a function of H. At the saturation point ―a‖, all of the magnetic domains 

in the material are aligned. When the magnetic field H is reduced to zero (point ―b‖), the curve 
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reaches the point of retentivity, which indicates the remanence or level of remaining magnetism 

in the material. As the magnetic field H is reversed, the curve shifts to the point of coercivity 

(point ―c‖). At this point, enough of the domains within the material have flipped, resulting in a 

net magnetic flux density of zero. The material again becomes magnetically saturated at point 

―d‖, but in the opposite direction. As the reversed magnetic force reduces to zero (point ―e‖), the 

material displays residual magnetization equal to that of point ―b‖ in the opposite direction. 

When the magnetization force is increased again in the positive direction, the curve moves to 

point ―f‖ and the material exhibits a net flux density of zero. Lastly, the curve travels a different 

path as it returns back to the point of saturation ―a‖.  

A class of very small (<10 nm) metal or metal-oxide particles which display a remarkably 

large paramagnetic response to an external magnetic field are known as superparamagnetic 

nanoparticles. Regardless of whether above or below the Curie temperature, these nanoparticles 

maintain their paramagnetic response. This magnetic property is mainly attributed to the small 

size of superparamagnetic nanoparticles. The energy required to change the direction of 

magnetization of a particle is called the crystalline anisotropy energy and it depends on both the 

material properties and size. As the particle size decreases, so does the crystalline anisotropy 

energy, resulting in a decrease in the temperature at which the material becomes 

superparamagnetic.
101

 

Similar to various biomedical applications (e.g., targeted drug delivery and MRI contrast 

enhancement), the work in this dissertation takes advantage of the highly responsive, remanence-

free properties of superparamagnetic nanoparticles. These characteristics are ideal for controlled 

particle assembly/disassembly and serves as the driving force for enhanced photodynamic 

therapy. 
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Figure 1-7 Hysteresis loop for ferromagnetic material. Magnetiziation of the particles increases 

as a function of applied field until saturation magnetization is reached.   

 

1.4.3 Surface Modification & Characterization 

1.4.3.1 Particle Surface Modification 

Various studies have demonstrated techniques and syntheses for modifying the surface of 

silica,
102-109

 which enhances the versatility of this nanoplatform. As a consequence, colloidal 

suspensions have a widespread use in applications ranging from advanced materials
110-112

 to drug 

delivery
113-116,117

 These applications also require the addition of powerful stabilizers that control 

the dispersion of particles in liquids.
118

 Gellermann et al.
119

 successfully modified the surface of 

spheres by silylation with silane coupling agents in efforts of improving dispersibility in organic 

media. Other methods of surface modification include polymer adsorption
120

 and graft 

polymerization
121

. With respect to graft polymerization techniques, controlled radical 

polymerization (CRP) strategies such as atom transfer radical polymerization (ATRP),
122-124
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nitroxide-mediated polymerization (NMP),
125-126

 and reversible addition-fragmentation chain 

transfer (RAFT)
127-128

 are most commonly used for coating silica particles. Each of these 

approaches afford well-defined polymers with controlled molecular weight, low polydispersity, 

and variable functionality.
129

  

1.5 Polypeptides  

1.5.1 Polypeptide-Coated Particles 

Due to their outstanding properties such as self-assembly and formation of liquid 

crystals
130

, biodegradability and biocompatibility, polypeptides and their copolymers are very 

useful materials.
131

 In addition, polypeptides have well-defined secondary structures (helices, 

sheets, turns) that are responsive to changes in temperature, pH, or salt.
132

 Recently, Deming 

published work describing initiators and methods that permit polypeptide synthesis with good 

control of chain length, chain length distribution, and chain-end functionality.
133

 These 

advantageous features make polypeptides excellent candidates for potential utility in 

nanodevices, biosensors, tissue engineering, bioseperation, biomaterials, and drug delivery.
134

  

 

 

Scheme 1-7 NCA ring-opening polymerization. 

In 1974, Dietz et al.
135

 were among the first
136

 to synthesize polypeptide-coated particles 

(PCPs). In our research group, Fong and Russo reported the preparation and characterization of 

colloidal silica coated with poly(γ-benzyl-α,L-glutamate), PBLG, a helical homopolypeptide.
137

 

Contrary to the aforementioned pioneers, Fong and Russo described the synthesis of silica-

Polypeptide NCA 
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polypeptide composite particles with latex-like uniformity. A few years later, Fong et al.
26

 

demonstrated a study on PCPs coated with poly(ɛ-carbobenzyloxy-L-lysine), PCBL, which 

displayed crystalline order not yet observed for PBLG-coated composite particles.  

1.5.2 “Click” Chemistry of Polypeptides 

The term ―’click’ chemistry‖ was coined by Sharpless et al.
138

 to describe the Cu(I)-catalyzed 

cycloaddition reaction between alkyne and azide groups to form a very stable 1,2,3-triazole. This 

synthetic strategy gives very high yields, generate only inoffensive byproducts that can be 

removed by nonchromatographic methods, and is stereoselective.
139

 In addition, click chemistry 

tolerates a variety of functional groups, and is a very rapid reaction. The reaction mechanism has 

a high thermodynamic driving force which contributes to its high efficiency. Overall, this 

synthetic approach is very practical and can be performed in various solvents, including water.     

Several reports demonstrate the use of click chemistry to couple preformed polymers or 

biomolecules to other polymers, nucleic acids, peptides, sugars, proteins, viruses or cells. A few 

reports even demonstrate the use of click chemistry to produce block copolymers or 

homopolypeptides. However, very few reports describe the use of this reaction to couple 

polymers to silica nanoparticles. Recently, in our group Balamurugan et al.
33

 applied click 

reactions to attach PSLG homopolypeptides to silica nanoparticles. In another study, Lin and 

coworkers
140

 demonstrated the coupling of alkyne-functionalized proteins to azido-

functionalized, silica-coated magnetic particles using click chemistry. Compared to random 

amide formation, this approach showed site-specific immobilization, as well as higher binding 

activity. The discussed work also utilizes this strategy to covalently attach alkyne-functionalized 

polypeptides to the surface of azide-functionalized, silica-coated magnetic nanoparticles. 
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CHAPTER 2 CURRENT METHODS AND THEIR APPLICATIONS FOR 

CHARACTERIZATION OF IN SITU SELF-ASSEMBLING SYSTEMS 

2.1 Introduction and General Principles  

Self-assembled colloidal systems, such as micelles and liposomes, are extensively being 

investigated for carrier/delivery purposes to improve upon the pharmacological properties of 

conventional (―free‖) drugs. Delivery vehicles are useful in new routes of administration for 

poorly water-soluble substances. Also, the carrier devices may protect drugs from degradation in 

biological fluids, which enhances their pharmacokinetics
1
. General properties of colloidal 

formulations which influence their functionality include: particle size, size distribution, 

composition and morphology. The development of effective colloids requires the evaluation of 

these properties under relevant solvent conditions. Recent advances in methodology, technology 

and instrumentation offer the necessary tools for the analysis of colloidal dispersions and self-

assembled structures with nanoscopic dimensions.  

This chapter describes some of the current methods and instrumentations for characterization 

of solution-borne structures in their native state. The discussed techniques consist of the 

following: analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), dynamic 

light scattering (DLS), freeze-fracture and cryogenic transmission electron microscopy (FF- and 

cryo-TEM). In addition, selected side projects from collaborative work are discussed to 

demonstrate the versatility and capabilities of these techniques; the investigated systems range 

from aqueous solutions of small micellar aggregates to complex gel-like materials.  

2.1.1 Analytical Ultracentrifugation 

Analytical Ultracentrifugation (AUC) is a powerful technique used to characterize 

macromolecules in solution. It can provide a wide range of information about the thermodynamic 

and hydrodynamic properties of solutes in the native state, and directly measures their molecular 
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weights.
2
 AUC data is determined by sedimentation analysis which is based on thermodynamics. 

The thermodynamic parameters in equations that describe sedimentation behavior can all be 

acquired experimentally.
3
     

When Nobel Prize Laureate Theodore Svedberg and co-workers developed the idea for the 

ultracentrifuge in 1923, it was solely intended for investigating colloidal systems.
4 

However, 

AUC became most popular in the fields of biology and biochemistry. It was the first instrument 

to yield dependable molar mass values for biopolymers.
5 

 As technology advanced, new methods 

such as dynamic light scattering (DLS), size exclusion chromatography (SEC), and electron 

microscopy (EM) forced the AUC into extinction. In 1991, Beckman redesigned the AUC and 

introduced it as the Optima XL-A.
6
 The new model influenced the rebirth of analytical 

ultracentrifugation, but the versatility of this method of characterization is seldomly exploited. 

AUC is a great tool for analyzing associating systems and was essential in the study of porphyrin 

aggregation in aqueous solution, discussed in Chapter 3.  

The two basic types of AUC experiments are sedimentation velocity and sedimentation 

equilibrium. In principle, sedimentation equilibrium (SE) experiments are capable of providing 

information about the size of the individual molecules which form complexes, the size of the 

complex, the strength of subunit interactions and the thermodynamic nonideality of the solution.
3 

Sedimentation velocity (SV) experiments can be used to study the molar mass, size distribution, 

and shape of macromolecules.
7
 SE and SV experiments can present complementary information 

and most studies require the application of both techniques to obtain useful data.  For the 

purposes of the studies herein, only SE experiments were performed and will be further 

discussed. 
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2.1.1.1 Instrumentation and Experimental Applications  

Ultracentrifugation is based on the application of a centrifugal field, ω
2
r, where ω represents 

the angular velocity and r is the distance to the axis of rotation. The angular velocity ω (s
-1

) is 

2π/60 multiplied by the number of revolution per minute (rpm), and the maximal speed is 60,000 

rpm in the XLA. The radial distance r in the conventional cell is typically in the range of 5.8-7.2 

cm (see Figure 2-1). Ultracentrifuge cells are sector-shaped with the walls parallel to the radii of 

the rotor to minimize convection and prevent sedimenting particles from colliding with the walls 

(wall effects). It is also important for the cells to be durable and withstand the stresses of 

exceptionally high gravitational fields. A centrifugal force of up to 300,000 g can be achieved by 

the rotor system; g is the acceleration due to gravity, 9.81 m∙s
-2

. Macromolecules that are 

exposed to such a great force will redistribute in solution.
8 
    

 

 

Figure 2-1 Schematic of a sector-shaped ultracentrifuge cell and its radial positions with respect 

to the axis of rotation corresponding to its position in the rotor.  

 

An analytical ultracentrifuge is identical to a classic preparative ultracentrifuge with respect 

to their appearance. In fact, the only key component that distinguishes these instruments from 

one another is the optical system. An analytical device permits the measurement of particle 

distribution as a function of time via the determination of radial position during 
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ultracentrifugation.
8
 The two types of optical systems used for AU are the Optima XL-A which 

measures absorption, and XL-I which has supplementary Rayleigh interference optics. The 

addition of the Rayleigh interference system affords more sensitive optical detection of 

concentration distributions without the requirement of chromophores.
9
  

The Optima XL-A analytical ultracentrifuge uses a xenon flash lamp as the light source, 

which supplies a wavelength range of 190-800 nm. However, single-wavelength light is selected 

by a toroidally-curved diffraction grating. Light of other wavelengths are blocked and stray light 

is minimized by a series of absorbing filters. To account for the fluctuations in light intensity 

from pulse to pulse, a small amount of incident light from the diffraction grating is normalized 

by being reflected onto a detector located at an implicit focal point.  

 

 

Figure 2-2 Diagram of the Beckman Optima XL-A system. Adapted from reference 10.  
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As the sample cell passes over the detector, monochromatic light is transmitted through the 

sector (sample or solvent) of interest. Regulation of the synchronized timing of the light flash 

(pulse) and rotor precessions is monitored by a reference magnet located in the base of the rotor. 

The maximum pulse rate is 100 flashes per second; one flash per ten revolutions at 60,000 rpm. 

The intensity of the transmitted light through the sample sector is measured with reference to the 

solvent by a photomultiplier tube located beneath the rotor. A lens-slit assembly travels as a unit 

to provide radial scans of the sectors (see Figure 2-2).
10

 

2.1.1.2 Fundamental Principles  

The foundation for understanding the theory of sedimentation processes in the ultracentrifuge 

begins with the derivation of flow (or flux) equations. These equations describe the isothermal 

mass transport of thermodynamic components in a centrifugal field. A simple kinetic theory 

approach can be applied to derive a useful flow equation for a system consisting of a 

homogenous solute and a solvent (binary solution). Such an approach suggests that transport of 

solute molecules through the solvent is the result of a centrifugal force, a buoyant force, and a 

diffusion force.
11

 On the contrary, as the concept developed, it was noted that the kinetic theory 

had to be replaced by nonequilibrium (irreversible) thermodynamics in order to obtain the 

general and rigorous derivation of flow equations for the ultracentrifuge.
12

 The simpler 

mechanical point of view will be described within the scope of this review. 

According to Van Holde, most phenomena such as sedimentation and diffusion share a 

common feature: A system not in equilibrium migrates towards equilibrium. In route to 

equilibrium, it is inevitable for flow to occur. For instance, a molecule moving with a velocity Δv 

in time Δt across a surface s in an ultracentrifuge cell will travel a distance       . As a 

result, every solute molecule within a slab of the cell returning to this distance from the surface s 
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will pass through s in Δt sec. The amount of molecules passing is the concentration times the 

slab volume,        , which can also be written as          (see Figure 2.3). Hence, 

flow is defined as         .
13

 Because of this relation between flow and molecular velocity, 

the definition of flow can be expressed in simpler terms as 

                  Equation 2-1 

where flow Ji is the uniform concentration Ci of component i crossing 1 cm
2
 of surface in 1 sec 

with a velocity vi.  

 

Figure 2-3 Illustration of flow and molecular transport velocity, and their relativity in an 

ultracentrifuge cell.  

The concept of transport processes, with respect to sedimentation, is based on three forces 

acting on the solute molecules; centrifugal force, buoyant force, and frictional force (see Figure 

2-4). For instance, a molecule in solution spinning inside a rapidly spinning rotor with an angular 

velocity ω, is subjected to a centrifugal force Fc. This force experienced by the molecule is 

proportional to its mass (m) and distance (r) from the axis of rotation. Therefore, the centrifugal 

force can be defined as        . Concurrently, a counter force is produced as a result of the 
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molecule displacing some solution, inducing a buoyant force             ; where    is the 

mass of the displaced solution. Lastly, as the molecule flows with a velocity v as a result of the 

previously mentioned forces, it incurs a viscous drag from the solvent. The drag causes the 

molecule to resist its flow through solution. This resistance is the frictional force Fd and is 

expressed as       , where   is the frictional coefficient.
13

 

 

Figure 2-4 Illustration of the forces experienced by a particle inside a sector-shaped cell during 

subjection to a centrifugal field.  

 

Sedimentation equilibrium experiments use an angular velocity comparable to the forces of 

diffusion which prevents the macromolecules from completely sedimenting to the cell bottom. 

This approach distributes the molecules in a stable concentration gradient along the radial 

dimension of the cell. Knowledge of the thermodynamic terms involved in the sedimentation 

transport process can be used to derive information about the molecular weights, states of 

aggregation, and association constants of macromolecules in solution.
14
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2.1.1.3 Determination of Average Molecular Weight 

Most techniques used for obtaining molecular weights of polymeric materials are not capable 

of yielding accurate values when detecting heterogeneity. However, the analytical ultracentrifuge 

is able to overcome such a limitation. In fact, the AU is most renowned for its ability to combine 

measurements of sedimentation and diffusion coefficients for the determination of molecular 

weights. When sedimentation and diffusion reaches a state of equilibrium, in theory, apparent 

movement of the solute no longer occurs; it is maintained as long as the rotor speed and 

temperature are held constant. Based on the Lamm equation, the equilibrium concentration 

distribution (cr) is a function of the buoyant molecular weight,         ; angular velocity,   ; 

and temperature, T in Kelvin.
15

  

     
      

   
          

   
    Equation 2-2 

where M is the monomer molar mass,    is the partial specific volume, ρ is the density of the 

solvent, and R is the gas constant. As a result of the concentration distribution being dependent 

on the buoyant molecular weight, accurate values of the    and ρ are imperative for determining 

the molecular weight using the SE method. 

For an ideal system, a ln(cr) vs r
2
 plot yields a straight line with a slope proportional to M 

(see Figure 2-5). In the case of an associating system, such as the self-assembly of porphyrin 

aggregates, the plot is not capable of yielding a straight line; requires more intense analysis. The  

plot tends to curve upward when the sample material undergoes aggregation. This same 

curvature can also occur when there is a mixture of materials of varying molecular weights or the 

sample experiences degradation.
16

 When the plot curves downward, it indicates the solution 

being non-ideal. The tangents to the curve of a nonlinear ln(cr) vs r
2
 plot yields the weight-

average molecular weight for the varying species at each radial position.
15
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2.1.2 Small Angle X-ray Scattering (SAXS) 

The aim of scattering experiments is to determine the structure and organization of 

―particles‖ dispersed in solution. In this case, the generic term ―particle‖ refers to dispersed 

matter, such as colloids, macromolecules, micelles or aggregates in a solvent.
17

 Small angle 

scattering (SAS) is a common technique for examining structures in the range of 10 Å or 

larger.
18

 This method can render structural information directly from systems possessing density 

inhomogeneities. Moreover, the ability to analyze the inner structure of disordered systems is the 

most captivating feature of the SAS method.  

B 

A 

C 

Plot of ln (c) vs r
2

 

 ln(c) 

 r
2

 

Figure 2-5 Plot of ln(c) vs r
2 
showing curves from an (A) ideal solution (homogeneous); (B) 

polydispersed (heterogeneous) solution; and (C) non-ideal solution.   
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 The sources of radiation that can be used for SAS include light, x-rays, and neutrons. Each 

source has advantages and disadvantages, depending on the sample. For instance, particles in the 

size range of 5 to 300 Å can be explored by small angle X-ray or neutron scattering experiments, 

whereas light scattering is useful for particles in the range of 100 to 3000 Å.
17

 However, light 

scattering is not capable of examining optically opaque samples and x-ray scattering exhibits 

difficulties in studying thick samples. Neutrons are electrically neutral particles, and therefore is 

capable of penetrating anything but can induce energy transfer effects due to neutrons interacting 

with the nucleus itself. Although these scattering techniques offer different features, each one 

essentially provide complementary information.
3
  

X-rays are electromagnetic radiation which interacts with electric charges in matter.
4 

The 

occupied wavelength of x-rays range from approximately 10
-2

 to 10
2
 Å. The electromagnetic 

radiation of X-rays used to study materials occupies the range of 0.5-2.5 Å in wavelength. This 

angular range contains information about the shape and size of macromolecules, characteristic 

distances of partially ordered materials, pore sizes, and other data.
5 
  

2.1.2.1 Fundamental Principles 

 

Figure 2-6 Schematic of general scattering experiment measuring the variations in intensity as a 

function of θ (scattering angle). 

Scattering experiments involve emitting well-collimated radiation of wavelength λ through a 

sample and measuring the variations of the intensity as a function of the scattering angle θ.
1
 (See 
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Figure 2-6) Upon interaction, coherent scattering patterns are generated from electron density 

inhomogeneities within the particle system.  

The scattering vector, q, is the parameter that characterizes the scattering geometry and is 

written as  

        
  

 
   

 

 
                                           Equation 2-3 

where λ is the wavelength of the radiation source. The magnitude of q is related to the scattering 

angle θ, which is the angle between the incident beam and detector. The unit for q is inverse 

wavelength (Å
-1

).  

Scattering processes are based on a law of reciprocity. A scattering curve I(q) can be 

produced for a particle of any shape by Fourier inversion of the pair-distance distribution 

function, p(r), where r is the distance between two scattering centers inside the particle.
19

 In 

relation to the equation q = 2π/d, scattering vector q corresponds to reciprocal space and is 

inversely proportional to the distance d between scattering pairs in real space. By exploiting 

these parameters, a plethora of structural detail and information can be obtained from the 

scattering curve using various plots for analysis.  

2.1.2.2 Scattering of Dilute Particulate System 

In the dilute particulate system, individual particles of one material are uniformly dispersed 

in a matrix of a second material. For adequately dilute concentrations, the individual particles are 

positioned far apart from each other and as a result, are uncorrelated. The scattered waves from 

these different particles will be incoherent. Due to the lack of phase coherence, the overall 

intensity is basically the sum of the intensities of independently scattered rays from individual 

particles.
4 
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The SAXS intensity, I(q), provides information about the size and shape of the particles and 

can be represented by 

I(q) = k Np P(q) S(q) ,                            Equation 2-4 

where k is the calibration factor, Np is the scattering particle number density,  P(q) is the particle 

form factor, and S(q) is the structure factor. For dilute systems, the structure factor is negligible 

(S(q) ≈ 1) and the measured scattering cross section only depends on the particle form factor 

P(q).
6
 

When studying dilute solutions via SAXS, it is advantageous to use a strong synchrotron 

source. A synchrotron is capable of accelerating a beam of electrons to virtually the speed of 

light. The flux of x-rays emitted is far greater than that obtained with conventional x-ray tubes, 

which minimizes the acquisition time for any single measurement.
4  

2.1.2.3 Determination of Radius of Gyration 

In terms of dilute polymer solutions, small angle x-ray scattering can be expressed as 

                                                                
  

      
 

 

  
   

     
  

 
                      Equation 2-5 

where K is the instrument constant related to the electron density; C is the concentration of the 

polymer in solution; A2 is the second virial coefficient; and    
         is the radius of 

gyration. If K is known, the scattering data can be analyzed using a Zimm plot to determine Rg 

and A2 by a simultaneous extrapolation to q = 0 and C = 0, respectively.
7 

 

The radius of gyration of a scattering body can also be estimated simply from the slope of the 

linear region of the Guinier plot [ln (I(q)) vs. q
2
]; the initial slope gives   

   . Even if the shape 

of the particle is unknown or irregular, the scattering function still obeys the expression 

       
         

 

 
    

                                             Equation 2-6 
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where I(q) is the independent scattering intensity by a particle; ρo is the average scattering length 

density in the particle; and υ is the particle volume. Equation 2-6 is referred to as the Guinier 

law. The validity of the Guinier approximation is limited to scattering angles where q is 

sufficiently smaller than     . In addition, the system must be dilute to observe independent 

scattering from the particles and the solvent has to be of constant density. 

2.1.3 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS), also referred to as quasi-elastic light scattering (QELS) and 

photon correlation spectroscopy (PCS), is a non-invasive technique for measuring the size and 

size distribution of particles or molecules typically in the submicron range. The latest technology 

(e.g., faster detectors) permits the size characterization of molecules smaller than 1 nanometer.  

DLS measures the light that is scattered by emulsions, dissolved (macro)molecules or 

colloidal dispersions; a continuous wave laser is the most common used light source. Due to the 

exhibited Brownian motion of suspensions, fluctuations of the scattering intensity can be 

observed. This random movement of particles occurs as a result of their bombardment by 

surrounding solvent molecules. Consequently, the constant changing particle positions cause the 

total scattered electric field at the detector to fluctuate in time. Implicit information regarding the 

structure and dynamics (e.g., position and orientation) of the molecules is found within these 

fluctuations. For instance, the rate at which the intensity of the scattered light fluctuates is 

dependent upon the size of the particles (see Figure 2-7). The Brownian motion of larger 

particles is slower than that of smaller particles. Therefore, the velocity of particle motion 

corresponds to their translational diffusion coefficient Dt. This relationship still remains 

ambiguous until a correlator is incorporated for the extraction of meaningful information.    
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Figure 2-7 Hypothetical intensity fluctuations for (a) large and (b) small particles exhibiting 

Brownian motion.   

A correlator is used to generate quantitative information from the aforementioned scattering 

intensity fluctuations. The correlation function provides a concise method for expressing the 

degree to which two intensity fluctuations, I(t’) and I(t’+ t), are correlated over a period of time 

t. In other words, it approximates how long a given signals stays the same. The autocorrelation 

function of the scattered light intensity is expressed as: 

                         
 

  
      

 

  
                     Equation 2-7 

Here, the capital G is an indication that the data are not normalized and the 
(2)

 superscript 

indicates that G
(2) 

is a second-order autocorrelation function. Assuming the scattering is a 

random Gaussian process and homodyne (―self-beating‖ technique), the Siegert equation relates 

a) 

b) 
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the second-order autocorrelation function with the electric field autocorrelation function         

as follows: 

                   
 
                                  Equation 2-8 

where B and  are experimental parameters. Specifically, the parameter   is a baseline, which is 

proportional to the square of the average scattering intensity. The component   is the coherence 

parameter (0< <1) and it is chosen at the beginning of the experiment by adjusting optical 

settings (e.g., change pinhole or aperture size).    

2.1.3.1 Determination of Hydrodynamic Radius 

Using the following equations, one can calculate the hydrodynamic radii (Rh), as well as the 

mutual diffusion coefficient Dm of particles. The electric field autocorrelation function g
(1)

(t), 

contains information from its distribution of the relaxation rate which can give details about 

molecular size. In many cases, the decay is that of a single exponential and can be expressed as: 

                                  Equation 2-9 

where   is the decay rate. The decay rate is related to the apparent mutual diffusion coefficient 

by: 

     
 

                                                     Equation 2-10 

where q is the scattering vector,                   , n is the refractive index of the solution 

and the scattering angle is   . For simple translational diffusion, the apparent mutual diffusion 

coefficient    is used to reveal the apparent hydrodynamic radius,        via the Stokes-

Einstein equation: 

       
  

      
                         Equation 2-11 
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where   is Boltzmann’s constant, 1.38×10
-16

 g∙cm
2
∙s

-2
∙K

-1
, T is the temperature in Kelvin, and    

is the solvent viscosity. The calculated hydrodynamic radius of a particle is the effective radius 

of an irregular shaped particle or molecule in a fluid. For a spherical object, the hydrodynamic 

radius is equal to the actual radius of the sphere (    ) (see Figure 2-8). In contrast, a non-

spherical object, such as a polymer chain,    is the radius of a hypothetical sphere with the same 

diffusion coefficient. 

 

Figure 2-8 Illustration of the hydrodynamic radius Rh and diameter Dh of a polymer-coated 

sphere and a bare solid sphere.   

2.1.3.2 Analysis of Polydispersed Systems 

In many cases, samples are typically polydispersed, which requires the analysis of a 

distribution of   values. The previously discussed method of size characterization is not suitable 

for such systems. Two useful methods for the evaluation of polydispersed samples involve 

cumulant expansion and CONTIN analysis. 

Cumulant expansion assumes a Guassian-like distribution of the particles, which is centered 

about the mean. The treatment below follows the development of Jirun Sun. From the 

normalized distribution function     , one can determine the integral sum of decay curves with 

the following expression: 

Rh 

Dh Dh 

Rh 
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                                Equation 2-12 

and          
 

 
 ; therefore, the sum of exponential decay functions can be re-written as a 

power series expansion:  

                                          
 

 

 

 
               Equation 2-13 

                             
  

  
     

 

 
                 Equation 2-14 

where the mean Γ is represented by 

            
 

 
                                           Equation 2-15 

The moments of the distribution are defined by 

                 
 

 
                                     Equation 2-16 

                  
  

  
   

  

  
   

  

  
                                 Equation 2-17 

Using the Taylor series expansion: 

          
  

 
 

  

 
 

  

 
                                          Equation 2-18 

Substitution of the corresponding x terms yields the following expression:  

                 
  

  
   

  

  
                               Equation 2-19 

Here, the coefficients represent the cumulants which describe some of the Γ distribution 

properties. This quantity can also be used to determine the polydispersity index (PDI) with the 

dimensionless quotient      
 . A monodisperse sample has a PDI of zero. If the parameter 

     
  is greater than 0.3, the sample is considered polydispersed and require another method for 

data analysis. 

The software program CONTIN
20

 offers an alternate method of analyzing data for 

polydispersed samples. This Fortran-based program, written in the 1980’s by Stephen 

Provencher, performs automated inverse Laplace transforms to fit data. Using three types of 
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strategies, the program seeks the optimal fit. The strategies include: 1.) limit information (i.e., be 

content with the mean value); 2.) impose inequality constraints by prior knowledge (i.e., non-

negative     ; 3.) parsimony or regularization (i.e., acquire the smoothest or simplest solution). 

The advantages and limitations of this application are demonstrated later in the chapter.   

2.1.4 Transmission Electron Microscopy (TEM) 

The rapidly growing areas of nanotechnology and (macro)-molecular self-assembly have led 

to a strong interest and continuous demand for nanoscopic imaging techniques. Scanning-probe 

techniques, such as atomic force microscopy (AFM) and scanning tunneling microscopy (STM), 

are important tools for imaging surface-associated structural details.
21

 For the visual analysis of 

nanostructures in situ, transmission electron microscopy (TEM) is a preferred technique. 

Depending on the details of interest, one can choose specific sample preparation methods for 

TEM. For instance, the negative staining method is a procedure which uses a salt solution 

containing strongly electron scattering heavy metal salts (e.g. uranyl acetate) to stain the sample 

for enhanced contrast in the electron microscope. Once the stained sample has dried on the EM 

grid, it can be viewed. Due to the simplicity and minimal time-consumption of this preparation, it 

is the most commonly used technique. Although negative staining is the easiest routine for visual 

structure analyses, high resolution images are typically unattainable.
22

 Also, staining as well as 

drying, may alter the structure and morphology of the sample. The drying of suspensions exposes 

structures to the surface tension of the solvent, and the retracting liquid surface tends to sweep 

them into clusters or agglomerates.
21

 Therefore, extreme caution should be taken in the 

interpretation of the electron micrographs. Figure 2-9, shows TEM images of curcumin–

rubusoside nanoparticles (see Section 2.3), prepared using the negative staining method.  
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Figure 2-9 TEM images of curcumin– rubusoside nanoparticles in 10% rubusoside-solubilized 

curcumin water solution, negatively stained with uranyl acetate. Images were captured at (a) 

direct magnification 120,000×; and (b) direct magnification 400,000×. The arrow indicates one 

of the nanoparticles from the 10% rubusoside-solubilized curcumin water solution. Adapted from 

ref 22. 

The following sections of this review highlights cryofixation techniques often used for the 

imaging of aqueous systems. The two distinct methods include freeze-fracture electron 

microscopy (FF-EM) and cryo- electron microscopy (cryo-EM), which are both powerful for 

observing the structural features of solvent-borne samples in their native environment.    

2.1.4.1 Freeze-Fracture TEM 

In 1950, Hall
23

 and Meryman
24

 introduced the combination of freezing and etching 

(sublimation of ice to reveal surface structures). The practice of fracturing frozen specimen was 

later used by Meryman and Kafig
25

 in 1955. This newly developed technique attracted general 

interest in the 1960s, particularly when Moor et al.
26

 reported remarkable TEM images of freeze-

fractured yeast cells.
27

 In 1961, Moor and coworkers
28

 improved the freeze-fracture procedure 

via the use of a vacuum evaporator with a precision microtome for fracturing. The first 

commercially available freeze-fracture equipment was manufactured by Balzer AG Liechtenstein 

in 1965; this apparatus was modeled after the design of Moor.  
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The freeze-fracture technique is a useful method for imaging structures in solution. It is most 

often performed for aqueous systems; however, freeze-fracture is also applicable for other 

systems, assuming the solvent can be vitrified (rapidly frozen). The process only requires a drop 

of sample, applied to a gold planchette (stub), followed by vitrification. Under vacuum and 

cryogenic temperatures, the vitrified samples are fractured across a horizontal plane with a cold 

knife. Increasing the internal temperature of the vacuum chamber promotes etching of the 

fractured sample. The etching process enhances contrast as a result of more sample exposure 

when a small amount of the supporting matrix (vitrified solvent) is removed. The deposition of 

platinum (Pt), along with a reinforcement layer of carbon yields a replica of the sample that can 

be viewed via TEM. The Pt is typically deposited at a 45° angle to create a dark shadow, which 

provides the necessary contrast for image interpretation. In Figure 2-10a, the cross-section of a 

hypothetical frozen suspension of particles is fractured. The etched sample undergoes Pt-C 

deposition, as depicted in b) and forms the resulting replica c) of the fractured surface. In the 

TEM, areas of the replica with the most Pt deposited will block the most electrons, which cause 

it to appear darkest. The lighter areas have less Pt due to the protruding structures blocking the Pt 

during deposition, which casts a white ―shadow‖. Distinct topographical details are revealed 

through these variations along the fractured plane. 

 
Figure 2-10 Schematic depiction of sample replication during the freeze-fracture process. a) The 

vitrified sample is fractured with a microtome knife, and then b) Pt-C is deposited at an angle θ 

of 45˚ after etching. c) The resulting sample replica is viewed in the electron microscope after 

washing.    

a) b) 

Knife 

c) Pt-C Deposition 

Resulting Replica 
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The acquired replica may exhibit different types of fracture outcomes depending on the 

proximity of the microtome knife, with respect to the vitrified structures during fracturing. These 

possible outcomes include: concave fracture, convex fracture, and cross-fracture. Concave 

fractured objects usually appear light to dark in contrast and the shadow remains within the 

structure cavity. Convex fractured objects are dark to light, where the shadow often extends 

outside the boundaries of the structure. Cross‐fractured objects are uniform in contrast and 

display practically no shadowing. When evaluating such replicas, it is important to know the 

composition and expected structure of the sample to accurately interpret the TEM image.  

 
 

Figure 2-11 FF-TEM image of yeast cells. The two cells at the top were cross‐fractured through 
the yeast cell while the bottom two were convex fractured through the cell wall. Adapted from 

reference 29.  

Cross-fractured 

Convex Fractured 
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Figure 2-11 shows an FF-TEM image of yeast cells which illustrates, both, convex and cross-

fractures. Two of the cells are cross‐fractured, exposing the intercellular components, and the 

bottom two cells are convex fractured. Clearly visible in the upper left cell is the nucleus, several 

vacuoles, and the cell wall of the yeast. The bottom two cells show the inner structures of the cell 

wall with rod‐like indentions in the protoplasm face.
29

 This type of intricate detail provides 

valuable information and is often complemented by techniques such as cryogenic-TEM. 

2.1.4.2  Cryogenic TEM 

Cryogenic transmission electron microscopy (cryo-TEM) specimens are prepared without 

chemical treatment and permits direct visualization of the sample without replication. In 

comparison to FF-EM, Cryo-EM has a slightly higher resolution (~2nm for periodical structures) 

and permits the analysis of the inner volume of various specimens.
30

 Generally, a microliter drop 

of sample is applied to a holey carbon-coated TEM grid, blotted with filter paper and plunged 

quickly into liquid ethane at -183 ˚C. Blotting reduces the sample about 5000 times in volume, 

yielding a thin film with a thickness of approximately 100 nm. Similar to freeze-fracture, the 

solution (usually aqueous) is vitrified due to the fast cooling rates which occur during plunge 

freezing. Vitrification preserves supramolecular structures such as micelles and liposomes 

because the rearrangement of water molecules during ice crystal formation is mostly prevented.
31

 

Contrary to the freeze-fracture process during freezing, the nanostructures of interest instantly 

become embedded in an electron-transparent film of amorphous ice. The use of phase-

contrasting imaging eliminates the need for staining agents and the aqueous specimens can be 

observed in their near-native hydrated state.  

Cryo-TEM also permits the imaging of non-aqueous solutions; however, compared to 

aqueous solutions, the conditions for sample preparation and image collection are more critical.
21
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With this technique, the vitrified specimen is subsequently observed via electron microscopy at 

temperatures low enough to prevent recrystallization of the amorphous film. Figure 2-12 shows 

the specialized equipment which makes the process feasible. Using pre-cooled tools while under  

 

 

Figure 2-12 Sketch of a sample holder with integrated supplementary functions for use in cryo-

TEM investigations. The photograph shows the tip of an Oxford CT-3500 cryo-holder for a Zeiss 

Leo 922 Omega TEM with open shutter and inserted grid. Adapted from reference 30. 

cooling conditions, the TEM grid with the vitrified sample is removed from the liquid ethane 

storage container and immediately transferred into a cold cryo-holder inside liquid nitrogen.  

Subsequently, the cooled holder is quickly transferred and inserted into the electron microscope.    

Collectively, sample vitrification, insertion of the sample into the holder and transfer of the 

holder into the microscope should be done within a few minutes to avoid contamination with 

cubic ice or variations in temperature.
30

 

The projection images of cryo-TEM can yield information about the shape and internal 

structure/content of a specimen. Consequently, self-assembled carrier systems (e.g., liposomes) 

are often investigated using this technique. Liposomes are promising drug delivery vehicles and 
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attractive membrane models to study transport processes
32

. Shown in Figure 2-13, is a cryo-TEM 

image of rhodamine dye-encapsulated liposomes. Due to the relatively high contrast of the  

 

Figure 2-13 Cryo-TEM image of rodhamine dye-encapsulated liposomes. The image suggests a 

low loading effiency and broad size distribution. A bilamellar vesicle is indicated with an arrow. 

The liposome formulation was prepared by Loice Ojwang.  

phospholipid bilayer, liposomes appear as characteristic ring-like structures. Therefore, the 

lamellarity of liposomes can be determined by cryo-TEM. For instance, preparation methods 

such as extrusion usually results in unilamellar vesicles, but sometimes bi- or oligolamellar 

vesicles are observed.
30

  The arrow in Figure 2-13 indicates a bilamellar vesicle in the mixture. 

Similar to the studied liposomes, cryo-TEM plays a major role in the elucidation of many other 

in situ self-assembled structures, as will be seen in the following chapter.   
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2.2 Experimental 

2.2.1 Materials and General Considerations 

Acetonitrile, methanol, and water were of HPLC grade (Mallinckrodt Baker Inc., 

Phillipsburg, NJ). Formic acid (98%) was of HPLC grade (Sigma-Aldrich Co., St. Louis, MO). 

Normal saline solution was purchased from Phyto Technology Laboratories (Shawnee Mission, 

KS). Simulated gastric fluid and simulated intestinal fluid were purchased from RICCA 

Chemical Co. (Arlington, TX). Curcumin with purity of 96.4% was purchased from Chromadex 

Inc. (Irvine, CA) and with approximately 90% purity from Cayman Chemical (Ann Arbor, MI). 

Rubusoside was isolated from Rubus suavissimus S. Lee (Rosaceae) in our own laboratory and 

structurally elucidated by NMR and MS analyses. The purity of rubusoside was determined to be 

> 98% by HPLC-UV. Uranyl acetate was purchased from TED PELLA Inc. (Redding, CA). 

DMSO was of analytical grade (Fisher Scientific Inc., Fair Lawn NJ). 3-(4, 5-Dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) solution and 

phenazine methosulfate were purchased from Promega Co. (Madison, WI). 

2.2.2 Sample Preparation 

2.2.2.1 Preparation of Curcumin Formulation 

Appropriate amounts of rubusoside and curcumin (Cayman Chemical) were weighed into a 

200-mL glass bottle in three replicates. Then, 20 mL of water was added to each bottle and 

vortexed slightly to form a suspension solution. The suspension was homogenized at 8,000 rpm 

for 10 minutes on a homogenizer (Virtis Sentry microprocessor homogenizer, Virtis Co., 

Gardiner, NY) to form an emulsion. The emulsion was subjected to an autoclave at 250 °F for 60 

min (Tuttnauer 3870M manual autoclave, Heidolph Brinkmann LLC., EIK Grove Village, IL). 

All samples were kept in an incubator at 25 °C for 24 hrs. Subsequently, each was subjected to a 
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final step of filtration with a 0.45 μM nylon filter. All solution samples were protected from light 

by aluminum foil and kept at room temperature prior to HPLC and pH (pH meter, Fisher 

Scientific Inc., Pittsburgh, PA) analyses. The concentrations of curcumin were determined using 

a serial of curcumin standard solutions in methanol between 10 and 3000 μg/mL. The 

concentrations of rubusoside were determined using a serial of rubusoside standard solutions in 

water between 10 and 100 mg/mL. 

2.2.2.2 Preparation of Multivalent Protein Droplets 

For titrations monitored by dynamic light scattering, samples contained 170 µM SH35 (850 

µM module concentration) plus PRM proteins at concentrations affording PRM:SH3 module 

ratios between 0 and 5.  Droplets were formed in all relevant samples by centrifugation (16,000 

g, 10 minutes) before analysis.  For analyses of the SH35+PRM(N-WASP)8 and SH35+PRM5 

droplets, DLS data were collected using a flat-bottom sample cell. 

2.2.3 Dynamic Light Scattering 

Particle size measurements were performed using a custom-built apparatus (Paul S. Russo 

and Mark Delong, Louisiana State University) equipped with a Coherent Innova 90 argon (400-

800 nm) laser set to 568.2 nm. A Pacific Precision Instruments wide-range photometer/ 

preamplifier/ discriminator drives an ALV pulse shaper, which feeds an ALV-5000 digital 

autocorrelator. The samples were transferred into clean cells via 0.22 µm Durapore Membrane 

filters. The temperature was controlled at 25.0ºC by a circulating water bath. Each sample was 

run 5 times at 90º scattering angle with durations of 180s. The averaged data was analyzed with 

one-exponential and third-order cumulant algorithms to determine the apparent hydrodynamic 

diameter, Dh.  



66 
 

2.2.4 Transmission Electron Microscopy 

2.2.4.1 Negative Staining Method 

The surface morphology of the structure between curcumin and rubusoside was studied using 

transmission electron microscopy (TEM). An aliquot (2 μL) of 10% w/v rubusoside water 

solution was placed on a 400 mesh carbon-coated copper grid. The sample was allowed to stand 

for 15-30 sec and removed of excess solution by blotting. The samples were then negatively 

stained with 5% (w/v) uranyl acetate for 4 min and allowed to dry. The samples were visualized 

under a TEM (JEOL 100-CX, JEOL Inc., Peabody, MA) operated at 80 kV. 

2.2.4.2 Freeze-Fracture TEM (FF-TEM) 

Freeze-fracture replicas were prepared by first depositing a drop of sample onto a copper 

planchette (purchased from BAL-TEC). The sample was frozen by rapid immersion into a liquid 

Freon (SHUR/Freeze
TM

 Cryogen Spray, purchased from Triangle Biomedical Sciences) bath, 

then plunged in liquid nitrogen. The vitrified sample was transferred to the sample stage, which 

was submerged in liquid nitrogen. After transferring the sample stage into the freeze-etching 

chamber of the Balzers BAF-400 apparatus, the samples were fractured at a temperature of -110 

°C. Once the fractured sample was allowed to etch for ~1 min., Pt–C was deposited at a 45° 

angle with respect to the sample surface followed by deposition of C at a 90° angle for 

reinforcement. The resulting replicas were washed twice in distilled water to remove the actual 

sample. The replicas were collected on 400 mesh Formvar-coated grids (purchased from 

Electron Microscopy Sciences) and allowed to dry overnight. TEM observations were performed 

with a JEOL JEM-100CX transmission electron microscope operated at 80 kV. 
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2.2.4.3 Cryogenic TEM (Cryo-TEM) 

A drop (2-5 µL) of sample was deposited onto a holey carbon grid. The droplet of sample 

was blotted to make a thin film (<200 nm) across the grid holes and then vitrified by quickly 

plunging the grid in liquid ethane (~ -170 ºC). Liquid ethane was prepared by supplying a flow 

of ethane gas into a liquid nitrogen bath. Once in an amorphous state, the sample was then 

transferred to a cold stage (Oxford Instruments CT3500J) to preserve the microstructures. Using 

phase contrast microscopy, the prepared samples were observed on a JEOL 1200EX 

transmission electron microscope. 

2.3 Characterization of Micelle Self-Assembly: A Novel Solubility-enhanced Curcumin 

Formulation for Anti-Cancer Treatment
1
 

2.3.1 Background and Rationale  

Curcumin (CUR; Figure 2-14) is a natural compound found in the root of Curcuma longa L. 

(Zingiberaceae), which has been widely used as a yellow pigment, a spice in the food industry, 

and a traditional medicine in Asia. Mounting scientific evidence indicates that CUR is a versatile 

bioactive compound possessing antioxidant,
33

 anti-inflammatory,
34

 antihyperlipidemic,
35

 liver 

antifibrotic,
36

 antiangiogenic,
37

 antineoplastic, and chemoprotective properties.
38

 The diverse 

bioactivities displayed by this single natural compound have made CUR a subject of intense and 

broad investigations for potential functional and medicinal foods as well as drug development for 

the prevention and treatment of various diseases such as colon cancer,
39

 cystic fibrosis,
40

 

inflammatory bowel disease,
41

 and HIV-infection.
42

  

Although currently under investigation in human clinical trials, low bioavailability has 

hampered the desired therapeutic use of CUR.
43

 Studies have shown that poor oral absorption 

                                                             
1
 Reprinted with permission from Zhang, F.; Koh, G. Y.; Jeansonne, D. P.; Hollingsworth, J.; 

Russo, P.S.; Vicente, G.; Stout, R. W.; Liu, Z. J. Pharm. Sci. 2011, 100, 2778-2789. Copyright © 
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due to its low aqueous solubility and instability in the gastrointestinal tract may be responsible 

for the low bioavailability of CUR.
44,45

 The development of a delivery system that can enable the 

administration of stable CUR in an aqueous gastrointestinal environment will significantly 

increase its potential for therapeutic use. Many approaches have been undertaken to improve the 

bioavailability of CUR. Existing pharmaceutical formulation techniques have been employed for 

CUR, including nanoparticle-based delivery systems,
46

 liposomal delivery systems,
47

 self-

microemulsifying drug delivery systems,
48

 gastroretentive floating drug delivery systems,
49

 

micelles, and phospholipid complexes.
50,51

 Although each has made advancements, fundamental 

and practically significant improvement of oral bioavailability remains an elusive goal.  

 

 

 
Figure 2-14 Chemical structures of curcumin and rubusoside. 
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properties. RUB (Figure 2-14), in particular, showed solubility enhancement for a wide spectrum 

of active natural and synthetic compounds. RUB is a commonly known natural sweetening agent 

and its major use is seen in food and beverage products. In this study, we developed a novel 

CUR formulation, in which RUB acted as a solubilizer. The RUB-solubilized CUR formulation 

was characterized for its solubility enhancement, loading efficiency, and resulting particle size; 

however, the scope of this discussion is strictly limited to the particle size determination. 

2.3.2 Results and Discussion 

 

Figure 2-15 Curcumin (CUR) water solutions in the presence of 0%, 1%, 2.5%, 5%, and 

10%(w/v) rubusoside (RUB) (from left). 

In the presence of 1% RUB (w/v), CUR was solubilized to 61 µg/mL. When the RUB 

concentration reached 10% w/v (the highest in this study), CUR was solubilized in water to 2318 

µg/mL, the highest concentration achieved in this study. Visually, the RUB-solubilized CUR 

water solutions displayed an apparent difference in the intensity of yellow color, resulting 

primarily from the yellow CUR rather than from the colorless RUB (Figure 2-15). As the 

concentration of RUB increased and more CUR dissolved into the solution, the yellow color 

became more intense. Although this preliminary evidence suggested the effectiveness of the 

solubilizing agent, it was necessary to acquire quantitative details regarding the structural 

properties of the system. DLS was instrumental in providing this particular information. 
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Based on the linear behavior of the semilogarithmic plot shown in Figure 2-16, the particles 

are confirmed as monodispersed. The measured apparent Dh for the 10% CUR was 7.64 ± 0.4 

nm. Although conclusive evidence about the size and dispersity of the solution was obtained 

from the semilogarithmic plot of the autocorrelation function, further distribution analyses 

(CONTIN) reaffirmed these findings (see Figure 2-17). 

 

Figure 2-16 Semilogarithmic plot of normalized first-order autocorrelation function for 10% 

CUR solution. 

 

 The solubilization of hydrophobic curcumin by RUB was apparently driven by the formation 

of water-soluble nanoparticles between the two compounds, as observed and determined by 

TEM and DLS. RUB is an amphiphilic compound possessing both lipophilic steviol unit and 

hydrophilic glucose units. This property may point the formed nanoparticles to be nanomicelles 

because it is capable of forming micelles in water. The RUB molecule has the shape of a 

bolaform amphiphile—hydrophobic rings in the center with identical hydroxyl groups on each 

end. It is not unreasonable to suspect that the molecules can self-associate to minimize the 
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exposure of their central groups to water, as in other bolaform amphiphiles.
52

 Because of this 

property, it is reasonable to suspect that CUR is encapsulated in the self-associated RUB 

micelles in water to avoid aqueous environments. The TEM (see Section 2.1.4) and DLS results 

provide only a suggestive spherical shape. 

 

Figure 2-17 Particle size distribution of the 10% CUR solution. The narrow distribution 

confirms the monodispersity of the sample. 

2.4 Characterization of Gel-like Systems: Sol-Gel Transition in the Assembly of 

Multivalent Signaling Proteins
2
 

2.4.1 Background and Rationale 

Covalent and non-covalent interactions between multivalent small molecules are central 

elements of classical polymer chemistry/physics and supramolecular chemistry
53-55

. These fields 

have produced theories and experimental demonstrations of sharp transitions between small 

                                                             
2
 Reprinted with permission from Li, P.; Banjade, S.; Cheng, H. C.; Kim, S.; Chen, B.; Guo, L.; 

Llaguno, M.; Hollingsworth, J. V.; King, D. S.; Banani, S. F.; Russo, P. S.; Jiang, Q. X.; Nixon, 

B. T.; Rosen, M. K.; Nature 2012, 483, 336-340. Copyright © 2012, Nature Publishing Group. 
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assemblies and macroscopic polymer gels (known as sol-gel transitions) as the degree of bonding 

increases. The transition point (critical point) depends on physical properties of the monomeric 

species, including valency and affinity. The polymer can have a variety of physical forms, 

ranging from phase-separated liquid to crystalline solid.  For non-covalent systems, phase 

separation can strongly influence the sol-gel transition by altering the degree of bonding
56-57

. In 

biology, interactions between multivalent entities are found in diverse processes, including 

extracellular carbohydrate-lectin binding, intracellular signaling, RNA metabolism and 

chromatin organization in the nucleus
58-61

. Biological multivalency has been studied most 

extensively in the context of extracellular ligands binding to cell surface receptors, where 

antibody-receptor
62

 and carbohydrate-lectin
58

 systems can assemble into crosslinked networks. 

These networks are typically precipitates
62-63

, but liquid-like gels have also been described
64

. 

Multivalency has been much less studied in the context of intracellular molecules, which often 

share characteristics of high valency, modest affinity, and long, flexible connections between 

binding elements
65

.  Here we asked whether these systems also undergo sharp transitions to 

polymers, and if so, what the macroscopic properties of the polymers are and how such 

transitions could be regulated and affect function.  

The initial studies focus on the interactions between the SRC homology 3 (SH3) domain and 

its proline-rich motif (PRM) ligand, two widely observed modules that often appear in tandem 

arrays in signaling proteins
59,65

. Two classes of engineered proteins were generated: one 

composed of repeats of a single SH3 domain (SH3m, where m = 1-5), and the other composed of 

repeats of a PRM ligand (PRMn, where n = 1-5). When mixed, these proteins form into spherical 

liquid droplets (see Figure 2-18). Dynamic light scattering (DLS) was used to monitor the phase 

transitions of the multivalent proteins upon assembly.  
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Figure 2-18 Liquid droplets observed by differential interference contrast microscopy when 300 

μM SH34 and 300 μM PRM4 were mixed. Scale bars, 20 μm. Adapted from reference 66. 

2.4.2 Results and Discussion  

DLS analyses of the droplet phases created by mixing SH35 and PRMn showed multiphase 

intensity autocorrelation curves with a complex distribution of relaxation times (spanning 0.2-20 

msec or longer) which were evaluated using CONTIN (see Figure 2-19). The decay rates and 

amplitudes from the CONTIN analyses were further investigated as a function of scattering angle 

(Figure 2-20). Some of these relaxation times nonlinearly scale with the square of scattering 

angle (q
2
).  The wide range of timescales, the presence of long-timescale processes and the q

2
-

independence of some of these processes are typical of polymer solutions in the semi-dilute 

range but are highly atypical of discrete molecular species
67

. These findings, as well as results 

from other techniques (SAXS, cryo-TEM, optical and fluorescence microscopy) in this study, 
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indicated that the observed phase separation was driven by the assembly of the multivalent 

proteins into large species.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-19 Decay time 

distribution of the autocorrelation function at 90˚ scattering angle for multimodal droplet phase. 

 

Figure 2-20 The Γ values given by CONTIN at each scattering angle for the complex droplet 

phase. Several modes are present, corresponding to the multiple decay modes. 
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2.5 Conclusions 

Characterization techniques, including AUC, SAXS, DLS, FF-TEM and cryo-TEM permit 

the evaluation of solution-borne colloidal particles and self-assembled structures in their native 

solvated state. As a result, a vast number of potential drug delivery systems, (e.g., liposomes, 

lipid emulsions, micelles, etc.) can be developed or improved upon. Each technique provides 

different but complementary information about the physical properties of (macro-)molecules in 

solution.  

In the presented reports, the versatile capabilities of DLS were demonstrated in the analysis 

of two distinct sample types, which included micellar aggregates and gel-like protein assemblies. 

The determined particle size and size-distribution of the RUB-solubilized CUR formulation 

confirmed solubility enhancement. The measured particle size was in agreement with the 

acquired TEM micrographs that suggest the particles are micelles. In the study concerning 

multivalent protein assembly, DLS was used to monitor the resulting phase transitions. The 

observed scattering behavior, determined via CONTIN analysis, was typical of polymer 

solutions in the semi-dilute range. These results indicated the phase separation was driven by the 

assembly of the multivalent proteins into large species.  

In the next chapter, the previously discussed characterization techniques are employed to 

understand the self-assembly of porphyrins in aqueous solution. This preliminary exercise is an 

important segue into the development of porphyrins conjugated to colloidal particles for 

controlled assembly.  
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CHAPTER 3 CHARACTERIZATION OF THE SELF-ASSEMBLY OF MESO-

TETRA(4-SULFONATOPHENYL)PORPHYRIN (H2TPPS
4-

) IN AQUEOUS 

SOLUTIONS
3
 

 

3.1 Introduction 

Self-assembly is a prominent, naturally occurring phenomenon which involves the automatic 

formation of dimers and higher oligomers of various and often complex structures. Interest in 

understanding assembly processes has grown enormously over the past decade as a result of the 

important potential applications in various nanomaterials, such as molecular switches, 

fluorescent sensors, photonic wires and catalysts.
1-3

 Furthermore, self-assembly is exhibited in 

multiple ways within living cells; thus, knowledge of the driving mechanism or mechanisms and 

properties may provide insight into the nature of life.
4
 Characterizing aggregates and their self-

associative behavior serves as the basis for resolving many of the intricacies of the assembly 

process.  

 

Scheme 3-1 Molecular structure of meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS
4-

) and its 

di-anionic species, H4TPPS
2-

, upon protonation of the nitrogen atoms (pKa ≈ 4.8) at the 

macrocycle core. 

Several water-soluble porphyrins have been considered model systems for indigenous porphyrin 

derivatives in the physiological state.
5
 Such macrocycles can self-assemble spontaneously into 

                                                             
3
 Reprinted with permission from Hollingsworth, J.V.; Richard, A.J.; Vicente, M.G.H.; Russo, 

P.S. Biomacromolecules 2012, 13(1) 60-72. Copyright © 2012, American Chemical Society. 
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aggregates through non-covalent interactions (e.g. hydrogen-bonding, hydrophobic and 

electrostatic), depending on their electronic and steric properties. As a result, and also due to 

their rich photochemical, spectroscopic and electrochemical properties, the self-assembly of 

porphyrinoids, mainly porphyrins, chlorins and phthalocyanines, has been widely investigated.
6-

13
 Meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS

4-
) is among the most commonly studied 

porphyrins due to its water solubility and commercial availability. H2TPPS
4-

 is a tetra-anionic 

porphyrin that forms the di-anionic species, H4TPPS
2-

, upon protonation of the nitrogen atoms 

(pKa ≈ 4.8) within the macrocycle core (Scheme 3-1). The formation of highly ordered 

aggregates of H4TPPS
2-

 at low pH values has been previously observed,
11-12

 and may be thought 

of as the result of the intermolecular electrostatic attractions between the positively charged core 

and the negatively charged periphery. Specific types of aggregates may form as a result of this 

ionic self-assembly, the main two being H- and J-type (Figure 3-1). H-aggregates, so named 

because of their spectral band blueshift (hypsochromic) with respect to the absorption band of 

the monomer, correspond to the face-to-face stacking of the monomeric species. In contrast, J-

aggregates (named after their discoverer, Scheibe Jelly) are edge-by-edge or side-to-side 

assemblies that produce bathochromic (red) shifts.
13

 Metal-free porphyrins, such as H2TPPS
4-

, 

are known to form aggregates in aqueous solutions, but despite several studies,
14-19

 the 

characterization type, number of monomers involved, aggregate size and morphology remain 

controversial and are not fully understood across a variety of external conditions and solution 

preparation protocols. Porphyrin self-assembly remains an active area of research because the 

structure and photophysical properties of aggregates ultimately determine their usefulness and 

applications, for example as organic semiconductors for nanometer-scale photovoltaic cells, 

artificial light-harvesting systems, nonlinear optic materials and in photodynamic therapy 
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(PDT).
5,20-22

 The development of quantitative analytical and imaging techniques has facilitated 

the characterization of aggregation phenomena; in turn, this should make it easier to understand 

and eventually manipulate porphyrin assembly. A variety of factors are known to influence 

porphyrin aggregation in aqueous solutions, including concentration, temperature, pH, ionic 

strength, metal ions and their counter anions. In addition, porphyrin aggregation has been studied 

in the presence of polypeptides,
23

 proteins,
24

 nucleic acids,
25

 surfactants,
26

 PAMAM 

dendrimers,
27

 cyclodextrins,
28

 carbon
29

 and noncarbon
30

 nanotubes, ionic liquids
31

, and other 

media, as well as in organic solvents.
32

 The characterization of the resulting materials using a 

variety of complementary analytical techniques is beneficial to this area of research; for example, 

in the optimization of the topical delivery of H2TPPS
4-

 for enhanced skin penetration and PDT, 

which has been investigated as a function of pH and ionic strength.
33

 

 

 

Figure 3-1 Structural models for (a) H- and (b, c) J-type aggregates. 

In the present study, we investigated the self-associative behavior and morphology of 

H2TPPS
4-

 aggregates in aqueous solutions at µM concentrations as functions of solution 

preparation protocol, pH, time, and ionic strength. The net result of previous studies is that 

H4TPPS
2-

 forms tube-like structures, although not much is known about the mechanism of this 

occurrence. Two open questions are: when does the process begin and what specific conditions 

are necessary? In the present work, analytical ultracentrifugation (AUC) provides, for the first 

time, information about the self-assembly at µM concentration. In order to connect these results 
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to previous studies, a series of complementary experiments and analytical methods were used, 

including UV-Vis and fluorescence spectroscopy measurements, small angle X-ray scattering 

(SAXS), cryogenic transmission electron microscopy (cryo-TEM) and freeze-fracture 

transmission electron microscopy (FF-TEM). Whereas UV-Vis and fluorescence techniques 

enabled us to determine the type of aggregates formed—either J or H—AUC and SAXS 

provided complementary details and information about the size of the assemblies in solution. 

Cryo-TEM and FF-TEM provided direct visualization of the aggregates. Furthermore, we 

modeled the main aggregate species formed at low pH using DAMMIF,
34

 a computational 

program that performs ab initio shape determination using SAXS data. Porphyrin aggregation 

has not been previously studied using all the above techniques in a single investigation. In 

particular, AUC is a staple method of physical biochemistry commonly used to study protein 

complexes
35

 but which has also been applied in the investigation of synthetic systems.
36-38

 A 

wide range of information about the thermodynamic and hydrodynamic properties of solutes in 

the native state can be attained via AUC, along with absolute measurements of their molecular 

weights. The aim of the present study was to characterize the morphology and self-associative 

properties of H2TPPS
4-

 aggregates in aqueous solutions, in such a way as to permit a comparison 

with previously published reports, while providing new insight and findings.  

3.2 Experimental 

3.2.1 Materials and General Considerations  

Meso-tetra(4-sulfonatophenyl) porphyrin (H2TPPS
4-

) was obtained as the tetra sodium salt 

from Frontier Scientific. All other solvents and reagents were obtained from Sigma-Aldrich and 

used without further purification. The pH of the buffer solutions was measured with a Fisher 

Scientific AR10 pH meter. The stock phosphate buffer solution (PB) was prepared by mixing 
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Na2HPO4 in deionized water to yield 0.1 M solution, followed by drop-wise addition of H3PO4 

while monitoring with a pH meter to obtain targeted levels.  

3.2.2 Sample Preparation  

Because solution preparation protocol is important in studies of self-assembling systems, four 

distinct methods of sample preparation were used to optimize the various measurements. Many 

of the applied analytical techniques require low concentrations, and the very dilute (micromolar) 

concentration regime has special importance in this study. Methods 1, 2 and 3 are designed to 

prepare dilute solutions. Method 1 refers to the direct addition of porphyrin to the buffer. 

Micromolar solutions of H2TPPS
4-

 were prepared directly by dissolving the appropriate amount 

of solid in PB (0.1 M) at the desired low concentration. Direct addition was also used for the 

ionic strength-dependent studies, which used relatively low-NaCl concentrations (0 mM – 200 

mM). Method 2 refers to the preparation of solutions at a relatively high porphyrin concentration 

(2 mM)  followed, after a period of 24 h, by dilution to the µM range. The 24-h incubation time 

induces further aggregation compared to Method 1, aiding in the investigation of concentration-

dependent species. Method 3 was necessary for the high-ionic strength (1 M–10 M NaCl) studies 

and refers to the pre-dissolution of porphyrin (3 mM) in DMSO, followed by dilution (2 mM) in 

NaCl (35 mM–10 M)/PB (0.1 M) at pH 4. DMSO was used to ensure complete solubilization at 

high-NaCl concentrations; this is important to combat precipitation. The mixture was allowed 24 

h to aggregate and was then further diluted to 2.5 µM concentration using stock NaCl/PB 

solution. Lastly, preparation method 4 refers to the direct addition of porphyrin at high (mM) 

concentration and was only used for the small angle X-ray scattering studies. Unless otherwise 

stated, method 1 was used. 
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3.2.3 UV-Vis and Fluorescence  

UV-Vis spectra were collected by means of a Pharmacia Biotech Ultrospec 4000 

spectrophotometer in the range of 350-700 nm at room temperature with a 1.0 cm  1.0 cm 

quartz cuvette. 0.1 M PB was used to prepare the porphyrin solutions and the pH values were 

achieved by adding ortho-phosphoric acid 85% and measuring the pH with a Fisher Scientific 

AR10 pH meter. Fluorescence spectra were acquired with a Horiba Fluorolog 

Spectrofluorometer at room temperature in the emission range of 400-850 nm using an excitation 

wavelength matching the absorption maxima of 420 nm (preparation method 1) or 490 nm 

(preparation methods 2 and 3).  

3.2.4 Analytical Ultracentrifugation (AUC)  

Sedimentation equilibrium experiments were conducted using a Beckman Optima XL-A 

analytical ultracentrifuge. Epon charcoal-filled double-sector cells were assembled then loaded 

with 125 μl of solvent (0.1 M PB) in reference sector and 110 μl of 3.0 μM porphyrin in PB 

solution at pH 4 and 9 in the sample sector. The cell assembly was inserted into a four-hole rotor 

and the temperature inside the chamber was allowed to equilibrate at 20 °C while under vacuum. 

The most strongly absorbed wavelength from the preliminary wavelength scan of the samples 

was 424 nm. Sedimentation equilibrium was attained at 45,000 rpm over a time span of 24 h. 

The partial specific volume was acquired using the ab initio calculation method of Durchschlag 

and Zipper.
39

 All data were analyzed using the Origin Equilibrium software program provided by 

Beckman. 

3.2.5 Small Angle X-ray Scattering (SAXS)  

SAXS experiments were performed on synchrotron beamline 6a at the Louisiana State 

University Center for Advanced Microstructures and Devices (CAMD), Baton Rouge, Louisiana. 
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Radiation generated at 8.00 keV (1.550 Ǻ) illuminated porphyrin samples held at room 

temperature. Diffraction from silver behenate was used to establish the sample-to-detector 

distance. Samples (5-20 mM H2TPPS
4-

 in 0.1 M PB at pH 4 and 9—i.e., 5% to 20% by weight) 

were injected and sealed in 1.0 mm capillaries (purchased from Charles Supper Co., special glass 

10-SG). Azimuthally averaged data from the two-dimensional multiwire proportional counter 

(Molecular Metronics) were normalized for average transmitted intensity and corrected for 

buffer background using the SAXSGUI program (available from Rigaku) and analyzed using 

Irena 2 package
40

 (Jan Ilavsky, Advanced Photon Source, Argonne National Laboratory) written 

for the IGOR Pro software program (WaveMetrics, Inc.). The proposed aggregate models were 

constructed based on the SAXS curves of the porphyrin at pH 4, which were fitted using Irena 2 

to determine the pair distance distribution function, P(r). The P(r) data can also be obtained 

using the data manipulation program, Primus,
41

 which is available in the ATSAS software 

package (http://www.embl-hamburg.de/biosaxs/software.html). The GNOM output of these data 

was used in the DAMMIF program (Franke and Svergun, European Molecular Biology 

Laboratory) to perform an ab initio shape determination. Default settings and parameters were 

applied for all computed models, and 12 independent reconstructions were averaged using the 

DAMAVER program
42

 (Svergun and Petoukhov, European Molecular Biology Laboratory, and 

Institute of Crystallography) to achieve the most persistent shape features of the bead models. 

The many parameters for operation of these programs are described further in the Results and 

Discussion section, because information derived from simpler fitting procedures is used.  

3.2.6 Freeze-Fracture Transmission Electron Microscopy (FF-TEM)  

Freeze-fracture samples were prepared by first depositing a drop of sample (1 mM H2TPPS
4-

 

at pH 4, 48 hrs after solution preparation) onto a copper planchette (purchased from BAL-TEC). 
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The sample was frozen by rapid immersion into a liquid Freon (SHUR/Freeze
TM

 Cryogen Spray, 

purchased from Triangle Biomedical Sciences) bath, then stored in liquid nitrogen. The vitrified 

sample was transferred to the sample stage, which was submerged in liquid nitrogen. After 

transferring the sample stage into the freeze-etching chamber of the Balzers BAF-400 apparatus, 

the samples were fractured at a temperature of -110 °C. Once the fractured sample was allowed 

to etch for ~1 min., Pt–C was deposited at a 45° angle with respect to the sample surface 

followed by deposition of C at a 90° angle for reinforcement. The resulting replicas were washed 

in water repeatedly to remove the actual sample. The replicas were collected on 300 mesh 

Formvar-coated grids (purchased from Electron Microscopy Sciences) and allowed to dry 

overnight. TEM observations were performed with a JEOL JEM-100CX transmission electron 

microscope operated at 80 kV. 

3.2.7 Cryogenic Transmission Electron Microscopy (Cryo-TEM)  

This work was performed at Tulane University. A drop (2-5 µL) of 1 mM H4TPPS
2-

 in 0.1 M 

PB at pH 4 was deposited onto a holey carbon grid. The droplet of sample was blotted to make a 

thin film (<200 nm) across the grid holes and then vitrified by quickly plunging the grid in liquid 

ethane (~ -170 ºC). Liquid ethane was prepared by supplying a flow of ethane gas into a liquid 

nitrogen bath. Once in an amorphous state, the sample was then transferred to a cold stage 

(Oxford Instruments CT3500J) to preserve the microstructures. Using phase contrast 

microscopy, the prepared samples were observed on a JEOL 1200EX transmission electron 

microscope. 
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3.3 Results and Discussion 

3.3.1 UV-Vis and Fluorescence 

Porphyrins have characteristic UV-Vis and fluorescence spectra; changes in the absorption 

and emission bands indicate changes in the porphyrin chromophore and/or its environment. UV-

Vis and fluorescence spectroscopic measurements were used to determine the type of porphyrin 

aggregates formed in aqueous solutions, as a function of time (up to 1 month), pH (4-9) and ionic 

strength (0-10 M NaCl). We investigated changes in the absorption and emission bands of 

H2TPPS
4-

 solutions at M concentrations, within the pH range 4 to 9, which includes the 

reported pKa for H2TPPS
4-

 (4.8) and biologically relevant pH values. The results are shown in 

Figure 3-2. Only two distinct Soret bands were observed in the absorption spectra, at 418 nm 

(neutral and basic solutions) and 440 nm (pH 4 solution) within 30 min after solution 

preparation. At pH 5, both these absorptions were present, indicating the presence of at least two 

distinct species (Figure 3-2d). A shoulder at ~412 nm was also detected; this band corresponds to 

the absorption of the monomeric free-base species, as previously reported.
43

 H-aggregates 

exhibit a spectral band blueshift (hypsochromic) with respect to the absorption band of the 

monomer, corresponding to the face-to-face stacking of the monomeric species. It is postulated 

that the shoulder at 406 nm is due to H-dimers of the free-base species, H2TPPS
4-

, while the band 

at 424 nm corresponds to H-dimers of the diacid species, H4TPPS.
2-44

 In contrast, J-aggregates 

are edge-by-edge or side-to-side assemblies that produce bathochromic (red) shifts. The 

bathochromic shifts observed for the Soret bands, along with the observed decrease of their 

extinction coefficients with time (Figure 3-2e), suggest the formation of J-type aggregates that 

were present 30 min after solution preparation (Figure 3-2d). In solutions at pH < 4.8 (i.e. at pH 

4), the porphyrin exists in its diacid form, H4TPPS
2-

, due to protonation of the core nitrogens (see 
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Scheme 3-1). This is known
44

 to cause a red shift of the Soret band and deep changes in the etio-

type Q bands of the porphyrin monomer due to the change in symmetry, to long wavelengths and 

relatively broad bands at > 530 nm.  

The results indicate that unprotonated porphyrin H2TPPS
4- 

aggregates in aqueous solutions; 

i.e. the molecules overcome electrostatic repulsion, presumably via attractive hydrogen bonding 

and hydrophobic interactions. On the other hand, the zwitterionic nature of the diacid H4TPPS
2-

 

species (positively-charged core and negative charge at the macrocycle periphery) potentially 

forms larger and more stable J-aggregates via strong electrostatic interactions, in addition to 

hydrogen bonding and hydrophobic forces. Aggregation typically causes quenching of the 

porphyrin fluorescence, as well as a decrease of the Soret extinction coefficient, as observed in 

Figure 3-2b,e. The emission intensity for all porphyrin solutions at each pH value investigated 

decreased as time increased, indicating self-quenching effects due to aggregate formation.  

The specific sample preparation protocol also defines the observed self-assembly phenomena 

and variations in spectral features. In the previously mentioned spectra (Figure 3-2a,b,d,e) the 

samples were made as low-concentration (µm) solutions directly (preparation Method 1). For the 

data shown in Figure 3-2c,f and 3-3b,d, stock porphyrin solutions at their respective pH level 

were prepared at a higher concentration (2 mM), incubated for 24 h and  diluted to µM 

concentrations (preparation Method 2). The reasoning for this procedure was to further induce 

self-assembly, which is evident in the UV-Vis spectra via the emergence of an absorption band at 

490 nm for pH 4 solutions. Previous studies
45

 which report observing this band attribute it to J-

aggregation of H4TPPS
2-

. Further details about this species are discussed later.  
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Figure 3-2 Fluorescence (left) and absorption (right) spectra of (a,d) 3.0 µM H2TPPS
4-

 in 0.1 M 

PB at pH 4 (–),5 (–), 6 (–), 7 (–),8 (–), and 9 (–) acquired within 30 minutes after preparation, 

(b,e) 7.2 μM H2TPPS
4-

 in 0.1 M PB at pH 4 (–),5 (–), 6 (–), 7 (–),8 (–), and 9 (–) acquired 1 hr 

(solid lines) and 3 week (dashed lines), respectively, after preparation (Note: in panel e, the 

absorption data are offset along the y-axis for clarity); and (c,f) 2.5 µM H2TPPS
4-

 in 0.1 M PB at 

pH 4 (–),5 (–), 6 (–), 7 (–),8 (–), and 9 (–) acquired within 10 minutes after preparation. The 

arrow notes the new absorption band at 490 nm, resulting from preparation method 2. 
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Figure 3-3 Fluorescence (left) and absorption (right) spectra of (a,c) 3.2 µM H4TPPS
2-

 in 0.1 M 

PB at pH 4 with 0 mM (–),35 mM (–),75 mM (–), and 200 mM (–) NaCl using preparation 

Method 1; (b,d) 2.5 µM H4TPPS
2-

 in 0.1 M PB at pH 4 with 0 M (–), 1 M (–), and 10 M (–) NaCl 

using preparation Method 3.  

Using similar sample preparation variations, ionic strength studies were performed to note 

the effect on the aggregation process at pH 4. The intensity of the fluorescence emission and 

Soret band decreased significantly upon addition of NaCl, and this effect was more pronounced 

with increasing concentration of NaCl (Figure 3-3); for high-ionic strength (1 M to 10 M NaCl), 

H2TPPS
4-

 was pre-dissolved in DMSO to ensure complete solubilization (preparation Method 3). 

These results suggest that addition of NaCl induces further self-assembly with formation of 

micron-sized aggregates, eventually leading to precipitation, which was clearly visible in the 
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porphyrin solutions prepared in 10 M NaCl/PB at pH 4. Previous studies suggest that the 

addition of NaCl induces aggregation 
46-49

 and our results support the notion. 

3.3.2 Small Angle X-ray Scattering (SAXS) 

Earlier workers have suggested an extended cylindrical structure for the aggregates.
45,50-52

 

The use of scattering methods to characterize large fibrillar structures is fraught with challenges. 

One might begin with dynamic and static light scattering (DLS/SLS), owing to the precision of 

these methods. Such experiments were indeed attempted, but were significantly influenced by 

the porphyrin fluorescence. SAXS was selected in lieu of resonance light scattering experiments 

applied by others to ameliorate this problem for porphyrin macrocycles.
47-49,53-55

 This decision 

was also motivated by the fact that DLS of extended structures at finite concentrations is not a 

trivial problem, even in the absence of the fluorescence, due to thermodynamic and 

hydrodynamic interactions which begin at very low concentrations for extended objects.
56

 As 

noted by others,
57-59

 SAXS measurements provide a good way forward, but perhaps even 

ultrasmall-angle X-ray scattering would prove insufficient to characterize the largest sizes 

present in fully formed aggregates. Our SAXS experiments were conducted at moderate spatial 

frequencies, 0.003 Å
-1

 < q < 0.160 Å
-1

, where q = 4πsin(θ/2)/λ and θ is the scattering angle, in 

order to ascertain the nanometer-scale structural features of the aggregates reported in the only 

other SAXS study of the independent self-assembly of meso-tetra(4-sulfonatophenyl) 

porphyrin.
52

 The use of high porphyrin concentrations (5-20 mM) is justified in this limit, which 

is fortuitous because SAXS does not enjoy the high sensitivity of UV-Vis and fluorescence 

spectroscopy. In addition to providing a point of contact with Ref. 52, scattering envelopes were 

evaluated for the effect of concentration, pH, time and ionic strength on aggregate formation.  
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The analysis begins with qualitative inspection of the scattering envelopes (Figure 3-4a). 

Oscillations within the scattering curves of the porphyrin solution at pH 4 are present at both 5 

mM and 20 mM, as seen in Figure 3-4a. The only significant difference was in the scattering 

intensity. According to these results, the structure of the aggregates formed at pH 4 appears to be 

independent of the solution concentration. For the pH 9 solutions, there are no scattering features 

regardless of concentration, further suggesting the inhibition of large aggregate formation at high 

pH levels, and its independence of concentration.  

The scattering envelopes evolve over time. Shown in Figure 3-4b are SAXS curves of the 

porphyrin solutions at pH 4 and 9, acquired 1, 3, and 4 days after solution preparation. The 

oscillation peaks became better defined gradually with time for the porphyrin solution at pH 4, 

while the curves remained almost unchanged for the solution at pH 9. These results suggest the 

diacid porphyrin species (i.e.
 
H4TPPS

2-
) which exists at pH 4 diffuses and anneals into larger 

aggregates. To test whether this was indeed the case, SAXS envelopes for the porphyrin solution 

at pH 4 acquired either at 24 h or 2 weeks after preparation were obtained (Figure 3-5).  

With time, the oscillations in the scattering curves become more defined and sharper, which 

indicates either a gain of order within the aggregate architecture, an increase in the size of the 

aggregates, or both. It lies beyond the scope of the present study to distinguish between these 

possibilities. The sharpening seems to occur at the expense of high-q amorphous scattering (q > 

~0.1 Å
-1

), as if free, small molecules are becoming incorporated into the larger structure. The 

close match of data in the range 0.01 < q/Å
-1

 < 0.03 would seem to suggest refinement of 

structures at constant size, but we do not have data (e.g., from static light scattering or ultra-small 

angle X-ray scattering) at still lower q values appropriate for the large structures observed in the 

next section. Earlier in the self-assembly process (less than 24 h), a mixture of different growing 
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aggregates and monomeric porphyrin units may account for the observed disorder; gradually, 

these form better-defined structures. Formation of the stabilized micron-sized and highly ordered 

aggregated species becomes more apparent as time passes.  

 

 

 

 

 

 

 

 

 

Figure 3-4 SAXS data of (a) 5 mM H4TPPS
2-

 at pH 4 and H2TPPS
4-

 at pH 9, and 20 mM 

H2TPPS at pH 4 and pH 9 acquired 1 day after preparation. Similarities within the profiles of the 

scattering curves of each respective pH, as a function of concentration, suggest the structural 

features of the aggregates to be independent of concentration. (b) SAXS data of 20 mM 

H4TPPS
2-

 at pH 4 acquired 1 day, 3 days, and 4 days after preparation. The amplitude and 

definition of two oscillation peaks increase as a function of time for pH 4 but the curves 

practically remain unchanged for pH 9 solution. 
 

The oscillation peaks within the q-range of interest diminish as a function of increasing ionic 

strength, as shown in Figure 3-6. At high ionic strengths, the scattering curves for the pH 4 

solution appear featureless, similar to those obtained for the pH 9 solutions, due to formation of 

large, randomly ordered porphyrin aggregates.
60

 In contrast, at low ionic strength and pH 4, the 

porphyrins still form ordered aggregates.  
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Figure 3-5 SAXS data of 20 mM H4TPPS
2-

 at pH 4.0 acquired 24 hrs (∆) and 2 weeks (○) after 

preparation using Method 4. 

 

 

Figure 3-6 SAXS data for 10 mM H4TPPS
2-

 at pH 4 with 0 mM, 1.7 mM, 17 mM, and 170 mM 

NaCl acquired 24 hrs after preparation using Method 4. 
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The quantitative evaluation of the SAXS results begins with traditional linearization 

schemes. The apparent Rg for the porphyrin aggregates according to the Guinier plot (Figure 3-

7a) analysis is 130 ± 3 Å, which is consistent with the value reported by Gandini et al.
52

 Due to 

the very large size of the aggregates and the chosen q-range, this value may under-represent the 

true size of aged fibrils. Because fibrillar structures are suspected, it is appropriate to consider a 

2-D Guinier law,
61

 which states that for long rods, the intensity is expected to obey I(q) = I(q=0) 

 q
-1 2/22

gcRq
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 where Rgc is the cross-sectional radius of gyration:  
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.                      Equation 3-1 

In this expression,  (s) is the mass/area density in the cross-section. For a uniform disk of radius 

R, Rgc = R/2 while for a thin ring of radius R, Rgc = R. As revealed by the semilogarithmic 

representation of Figure 3-7b, a porphyrin sample at pH 4 does obey this relation at sufficiently 

high values of q, and Rgc  = 97 ± 4 Å. Also shown as an inset is a Casassa-Holtzer representation, 

q·I(q) vs q.
62-63

 This type of plot is often used to estimate the persistence length of semiflexible 

filaments as 2/qmax, where qmax is the peak maximum.
64

 In the present case, a persistence length 

of ~500 Å is estimated. This value is regarded as tentative, for two reasons. First, the porphyrin 

aggregates are not uniform in length; and, second, additional data at lower q would be desirable.  
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Figure 3-7 (a) Low-q Data of Figure 3-5 plotted in Guinier representation q for 20 mM 

H4TPPS
2-

 at pH 4.0 24 hrs (∆) and 2 weeks (○). The linear fit of the data corresponds to Rg = 130 

± 3 Å; (b) a two-dimensional Guinier representation yields a cross-sectional radius of gyration of 

Rgc of ~97 ± 4 Å. The inset is a Casassa-Holtzer representation (qI(q) vs q) for the same SAXS 

data; see text. 

 

The simple analysis afforded by traditional linearization schemes is broadly consistent with 

slightly extended, small assemblies of modest stiffness. For more detailed information about the 

shape of the aggregates at pH 4, the pair distance distribution function P(r) was determined using 

the Irena 2 program.
40

 The P(r) data were then imported into the simulated annealing program 

DAMMIF, which applies the ab initio bead modeling method; see Figure 3-8a. For data in the 

measured q-range, it is expected that length polydispersity of the aggregates will have little effect 

on the outcome of the simulated annealing model. Two distinct sets of run commands were used 

for the DAMMIF program. In the first, bead models were generated using strictly default 

settings, assuming the structure is unknown. For the second set, known parameters near those 

obtained from the 2-D Guinier and Casassa-Holtzer plot analyses were used for a cylindrical 

search volume; see Figure 3-9. These results are combined with the following parameters as 

input to the program DAMMIF: inner radius = 70Å; outer radius = 120Å; height = 500Å; 

number of dummy atoms = 100,000; looseness penalty weight = 0; and, all other parameters set 
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to default. Both sets provided a hollow structure. The geometry obtained from the averaged 

simulations (Figure 3-8b) are consistent with the aggregate model proposed by Gandini et al.
52

 in 

which 26 porphyrin macrocycles are arranged in a flat ring, then stacked to make a tube. The 

ring occupy number n = 26 can be obtained by solving  

n  19 Å  tube circumference  π  160 Å                          Equation 3-2 

where 19Å is the long dimension of a porphyrin macrocycle and 160Å is a fair estimate of the 

distance between the centers of two macrocycles located directly across from each other in the 

tube, taken as the maximum in the pair distance function (Figure 8a). The turning angle along the 

ring (i.e., the angle subtended by each macrocycle) is 360°/26 = 14°. The first (left) 

approximation in Eq. 2 is justified by the small difference between the sum of n chord lengths 

and the true circumference for such a small angle. The selection of 160 Å is somewhat arbitrary; 

if the diameter from 2D Guinier analysis, 194  8Å, were used instead, then n  32. Also, if 

partial macrocycle overlap occurs, as in the staircase model shown in Figure 1b, n would 

increase. Further discussion of partial overlap is deferred to Sec. 3.5 in connection with a 

possible model for the dilute solution aggregates.  

The loss of scattering features as salt is added (Figure 3-6), along with SAXS results for the 

data acquired 24 h and 2 weeks after solution preparation by Method 4 (Figure 3-5), provide 

further insight about the structural properties. Together, these findings suggest that the cylinders 

can perfect their structures over time to a degree that depends on added salt, in agreement with 

the UV-Vis and fluorescence results above (Figure 3-3) and with previous investigations.
47

 At 

sufficiently high concentrations, salt, aging, or both can lead to amorphous clusters that 

precipitate from solution. Indeed, this technique has been used for many years in porphyrin 
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extractions from aqueous media (brine) into organic phases by decreasing macrocycle solubility 

in the aqueous layer. 

 

 

Figure 3-8 (a) Pair distance distribution function of 20 mM H4TPPS
2-

, generated from fitted 

small angle scattering data. (b) Simulated bead model of aggregates using the DAMMIF 

program. The indicated shape is a hollow cylinder.     

 

Figure 3-9 DAMMIF model derived using specified parameters. 
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After analyzing the data acquired from CAMD, more SAXS studies were conducted on 

synchrotron beamline 1-4 at the Stanford Synchrotron Radiation Research Lightsource (SRRL). 

As a result of the high flux of X-rays produced by this system, aggregation from lower porphyrin 

concentrations were detected. Figure 3-10 shows the scattering profile of 4 mM and 2 mM 

H4TPPS
2-

, which exhibits the same oscillations as the previous SAXS results. In an attempt to 

observe the limits of aggregate formation, a 9 μM solution of  H4TPPS
2 

at pH 4 was studied (see 

Figure 3-11). The dilute sample showed almost no scattering features. In the low-q regime, the 

scattering intensity from the buffer appeared higher than the sample. This occurrence may 

indicate the off-centering of the sample or inconsistencies in the sample cell thickness in 

comparison to that of the solvent cell.        

 

Figure 3-10 SAXS data for 2 mM (—) and 4 mM (—) H4TPPS
2-

 at pH 4, acquired 24 hrs after 

preparation using Method 4. 
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Figure 3-11 SAXS data for 9 μM H4TPPS
2-

 at pH 4 (—) and buffer solution (—), acquired 24 

hrs after preparation using Method 4. 

3.3.3  Analytical Ultracentrifugation (AUC) 

The UV-Vis, fluorescence, and SAXS results are largely in agreement with earlier reports, so 

it is appropriate to examine the details about the aggregate size at lower concentrations by AUC 

sedimentation equilibrium experiments. The absorbance vs. radius plot (equilibrium gradient) 

was transformed into a Mw,app vs. concentration plot. This plot gives the slope (Mw,app) of a 

segment of data points (typically 10-40) in a ln(c) vs. r
2
 plot across the radial path one data point 

at a time. Data obtained from this transformation provide information concerning the associative 

order of the system. For an associating system, the plot curves upward as the concentration 

increases. In addition, patterns in the residuals from the best-fit curves provide insight into the 

associative behavior. Residual patterns also confirmed the initial assumptions gathered from the 

Mw,app vs. concentration plots.  
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Figure 3-12 Representative sedimentation equilibrium data for pH 4 solution of 5.0 μM 

H4TPPS
2-

. The rotor speed was 45,000 RPM. Similar experiments were performed for H2TPPS
4-

 

in solution at pH 9. 

According to the best fit model (Ideal 2 in the Beckman software), the average molecular 

weights for the H4TPPS
2-

 aggregates formed at 3.0 μM and pH 4, one week after solution 

preparation, were Mw1=25,400 ± 3,150 g∙mol
-1

 and Mw2=3,000 ± 75 g∙mol
-1 

for components 1 

and 2, respectively (Figure 3-12). The molar mass of a meso-tetra(4-sulfonatophenyl) porphyrin 

unit is 1022.9 g·mol
-1

. Component 1 is therefore attributed to the formation of large aggregates 

containing ~25 ± 3 monomers, whereas component 2 suggests the co-existence of porphyrin 

trimers in this solution. In addition, the molecular weight of the aggregates (Mw1=25,400 ± 3,150 

g∙mol
-1

)
 
obtained by AUC is consistent with the SAXS results yielding the proposed aggregate 

structure bearing 26 porphyrin units in the cross-section. The existence at low concentrations of 

discrete structures with a mass that matches one layer of the ―stacked ring‖ structure suggested 

by SAXS is intriguing and possibly coincidental, but the SAXS data (whether ours or those of 
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Gandini et al.) could as easily be explained by a helical array of units, as in tobacco mosaic 

virus.
52,65

 Before the ring model is accepted on the basis of AUC and SAXS data, it should be 

mentioned that neither technique has the ability to rule out a ―split washer‖ structure, in which 

one end of a broken ring lies a bit higher or lower than the opposite end. Such a structure, when 

stacked, yields a helix. Although these analytical techniques provided the same self-consistent 

picture, their required concentration for detection is very different (µm vs. mM), emphasizing the 

sensitivity of analytical ultracentrifugation with absorption detection. More importantly, this 

observation reveals the existence of 26-membered porphyrin units, even at dilute concentrations 

where the 490 nm absorption band is not present. Thus, relatively small J-aggregates exhibiting a 

very slight bathochromic shift exist among dimers and trimers which collectively account for the 

broad absorption band at ~430 nm (see section 3.2). Pasternack and co-workers reported
50

 these 

species by resonance light scattering, and determined that the absorption band at 430 nm was due 

to either a monomer or a small aggregate. Our results reaffirm their findings, but also provide 

more quantitative details about the observed species.  

Data obtained at pH 9 fit well to a model that assumed single component behavior (Ideal 1). 

Due to the weaker intermolecular interactions at pH 9 (consisting mainly of hydrogen bonding 

and hydrophobic forces), mostly small dimers were identified using this technique. The 

calculated average molecular weight of the dimers was Mw = 2,700 ± 50 g∙mol
-1

. A plot of Mw,app 

vs. concentration was generated to test for the presence of a single specie (Figure 3-13). For 

materials exhibiting single particle, ideal solute behavior, Mw,app does not vary with 

concentration, however, the obtained plot systematically varies. This observation suggests that 

self-assembly is indeed occurring at pH 9, which could not be diagnosed using UV-Vis and 

fluorescence emission data. Previous reports assume that this porphyrin exists mainly in the 



107 
 

monomeric form at neutral and basic pH values. Our results show for the first time that even at 

high pH values water-soluble porphyrins can exist as dimers rather than monomers, in order to 

maximize hydrophobic and hydrogen bond interactions which overcome the electrostatic 

repulsion between the negatively charged groups at the porphyrin periphery. Indeed, we have 

recently reported 
66

 that an octa-anionic boronated porphyrin has strong tendency for aggregation 

in aqueous solutions at neutral pH, in the absence of NaCl.  

 

Figure 3-13 Mw,app vs concentration plots of (a) H2TPPS
4-

 in pH 4 solution and (b) H2TPPS
2-

 in 

pH 9 solution. The self-association behavior is denoted by the curve of the ln(c) vs. r
2
 and Mw,app 

vs. concentration plots. 

The species which absorbs at 490 nm was also studied using AUC. Samples were prepared 

by dilution of a high concentration (2 mM) stock solution of H4TPPS
2-

, and several attempts 

were made to determine the self-associative behavior and molecular weight. After observing the 

complete sedimentation of this species, even at the lowest rotor speed (1000 RPM), it was 

confirmed that the entities were too large to characterize using the available instrumentation. 
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Based on this, it was concluded that the species exhibiting 490 nm absorption is a long (micron-

sized) cylindrical J-aggregate.
45,50

 

3.3.4 Cryo and Freeze-Fracture Transmission Electron Microscopy 

      

Figure 3-14 (a) Cryo- TEM and (b) FF-TEM image of rod-shaped aggregates of H4TPPS
2-

 

at pH 4. 

Further examination of the size and shape of the porphyrin aggregates in their native 

environment at pH 4 was performed by TEM. Figure 3-14a shows a typical cryo-TEM image, 

which reveals and confirms the formation of rod-shaped aggregates, as previously observed by 

Vlaming et al. using cryo-electron microscopy.
67

 Multiple rods are shown in the image, and the 

diameters all appear consistent in size. The average measured diameter of 62 rod-shaped 

aggregates was 190 ± 20Å. This is remarkably close to the cross-sectional diameter determined 

by 2D Guinier analysis of the SAXS data, 2  97Å = 194Å, as would be expected for a ring-

shaped cross-section where most of the scattering elements are at the edge. The contour length of 

the filamentous structures varied from nanometers to the micrometers. Figure 3-14b shows a 

TEM image of the replicas of two hollow, cylindrical aggregates prepared by the freeze-fracture-

etch method. Some variation in diameters is expected for hollow cylinders, as the fracture plane 

may be tilted with respect to the cylindrical axis. The replication process may alter dimensions, 



109 
 

too, but these images do confirm the presence of stiff cylinders. The linearity of the objects in 

cryo-TEM and their replicas in FF-TEM suggests that estimated persistence length from SAXS 

should be regarded as a lower bound. In combination with the molecular weight obtained by 

AUC, these observations suggest the formation of hollow cylindrical (tubular) aggregates 

containing 25-26 macrocycles in diameter, as a result of their stacking.  

3.3.5 Plausible Aggregate Architectures 

Based on the cyro-TEM and FF-TEM results, as well as the fluorescence, AUC and SAXS 

data, we drew plausible representations of porphyrin J-aggregates in tubular form (Figure 15) 

and prior to tube formation (Figure 16). Figure 13 for tubes resembles the flat ring model of 

Gandini et al.;
52

 in which the macrocycles lie flat to create one layer of the tube. In our simplified 

representation, it is easy to see how macrocycles can experience zwitterionic and stacking 

interactions with molecules in adjacent layers, which is consistent with the fluorescence 

spectroscopy. Our results cannot distinguish this model from that of Vlaming et al.
67

 These 

authors proposed partial overlap of the porphyrin molecules in two dimensions, resulting in a 

planar sheet. As a result of the overlap, which provides the stabilizing interactions without 

actually stacking layers, each macrocycle is tilted out of the plane by a small angle, θ ~20°. To 

account for cylinder formation, the authors propose that the planar sheet is rolled; thus, the 

macrocycle lies on the surface of the cylinder. By contrast, in the model of Gandini et al., the 

plane of each macrocycle lies parallel to the cross-section of the cylinder. It is also not possible 

to rule out a hybrid of the two models in which macrocycles join to form a ring, but with tilting 

and partial overlap. This is effectively the staircase model (Figure 1b) wrapped into a ring (or 

split washer). Stacking these rings (washers) could still yield a tube (helical tube). The ring 

occupancy number would then be obtained by solving  
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n  f  19 Å  tube circumference  π  160 Å                          Equation 3-3 

where f is a parameter (0 < f < 1) reflecting the degree to which one macrocycle overlaps 

another. Figure 1b is drawn with f  0.5, meaning that a negatively charged sulfate group on one 

porphyrin group is located near the tetrapyrrole center of a neighboring macrocycle. Overlap 

profoundly affects the ring occupancy number; for example, n  50 if f  0.5.  

The situation is even less certain for the dilute solution aggregates. Equilibrium AUC 

provides vital information on the mass of the assemblies, but not their shape. Micali et al.,
68

 who 

studied porphyrin aggregation by light scattering while taking care to exclude fluorescent light, 

reported a transition from fractal aggregates to rods. At pH 4, our AUC results instead show 

assemblies made from 25  3 macrocycles. A single flat ring such as shown at the top of Figure 

13 could account for the mass, but not for the fluorescence spectroscopy results, which demand 

J-type stacking. The tilted ring hybrid model described in the preceding paragraph is consistent 

with all our data, but structures of lower symmetry are easily imagined. In dilute solutions, the 

ring motif is merely a suggestion from the SAXS observations at higher concentrations. Placing 

26 macrocycles into that ring is consistent with the AUC result (25  3) but choosing 26 instead 

of another number in the experimental range again borrows from the nominal SAXS value at 

higher concentrations. If a 26-member ring is correct, and if an overlap parameter f  0.5 is 

selected on the basis that such values enhance zwitterionic and stacking interactions, then a 

circumference of ~250Å is expected, corresponding to a predicted diameter of ~80Å. 

Measurement of such a particle at the concentrations required is non-trivial.  
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Figure 3-15 Stacked flat ring model of proposed structure of rod-like tubules formed at pH ≤ 4. 
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Figure 3-16 One possible model (of many) for the elemental aggregate species in dilute 

solutions for H4TPPS
2-

 at pH ≤ 4. The porphyrin rings are tilted out of the plane of the ring and 

partially overlap with their immediate neighbors. 

3.4 Conclusions 

A series of complementary experiments and analytical methods was used to characterize 

porphyrin aggregates in aqueous solutions, as functions of concentration, solution pH, time, and 

ionic strength. UV-Vis and fluorescence spectra showed that H2TPPS
4-

 forms J-type aggregates 

in dilute aqueous solutions, mainly dimers and trimers at neutral and basic solutions, and larger 

aggregates with 25 ± 3 porphyrin units at low pH values (pH 4), based on AUC data. The 

aggregate mass from AUC is consistent with a 26-member ring in which the macrocycles are 

tilted with respect to the plane of the ring, but other structures permitting stacking interactions 

are not excluded.  The porphyrin is able to overcome electrostatic repulsion, even at high pH, 

forming aggregates as a result of electrostatic, hydrogen bonding and hydrophobic interactions.  
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  In the absence of added NaCl (or at low ionic strength) and at low pH, the main aggregate 

species in aqueous solution is a particularly stable 26-unit structure. As the concentration is 

raised, the porphyrin molecules form hollow cylinders, as visualized by FF-TEM and modeled 

using DAMMIF for the SAXS data. Our results for tubular structures are consistent with those of 

Gandini et al., but we are unable to distinguish between that structure and the one suggested by 

Vlaming et al. It is not yet possible to rigorously exclude helix formation. With time and/or at 

high NaCl concentration, the aggregates grow, forming amorphous clusters that precipitate out of 

solution. Indeed, this technique has been used for many years in porphyrin extractions from 

aqueous media (using brine) and into organic phases, by decreasing their solubility in the 

aqueous layer. This study provides the basis for improved understanding of the self-assembly 

process of water-soluble porphyrins, and a foundation for investigation of more complex but 

related systems for specific applications, such as cancer therapeutics. Especially appealing 

avenues for further investigation include simulation to address the degree of overlap among the 

porphyrin molecules and possible helix formation, and high-sensitivity, low-noise methods for 

structure determination at very low concentrations.  
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CHAPTER 4 SYNTHESIS AND CHARACTERIZATION OF PORPHYRINS 

CONJUGATED TO SILICA-COATED SUPERPARAMAGNETIC IRON OXIDE 

NANOPARTICLES 

 

4.1 Introduction 

Porphyrins and some of their derivatives are often used as photosensitizers in photodynamic 

therapy (PDT), which is a well-established noninvasive antitumor treatment. Since the clinical 

debut of Photofrin
®
, a vast number of porphyrin-based photosensitizers have been reported, but 

there are still ongoing challenges to overcome. One major challenge involves improving the 

tumor selectivity and specificity of photosensitizers because tumor cells have nonspecific affinity 

to porphyrins. In an effort to address this issue, researchers have tried to direct photosensitizers 

to cellular targets by conjugation to ligands that are tumor-specific.
1-4

 Another recent approach 

includes nanotechnology, which is an interdisciplinary field with applications in chemistry, 

material science, electronics, defense, energy and medicine.
5
 The use of platforms, such as 

nanoparticles, offers several significant benefits for PDT: (1) large payloads of photosensitizer 

can be added to the nanoparticles, and the particle surface can be modified to achieve the desired 

hydrophilicity for optimal plasma pharmacokinetics. (2) The attachment of targeting moieties 

onto the nanoparticle surface may permit increased selective delivery of the photosensitizers. (3) 

High levels of imaging agents can easily be combined with photosensitizers in the nanoparticles, 

providing an enhanced ―see and treat‖ approach, where the placement of optical fibers is 

fluorescence image-guided to direct photoactivating light to subsurface tumors or to early 

nonclinically evident diseased tissue.
1
 Moreover, the development of nanoparticles engineered 

for PDT can overcome many of the shortcomings of conventional photosensitizers.
6-8

  

Overall, the photochemical process for PDT involves exciting a photosensitizing agent with 

visible light, which induces cytotoxicity in the presence of tissue oxygen as a result of producing 
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reactive oxygen species (ROS). The ROS are the responsible components for invoking cell death 

and destruction of tumors.
9
  Efficiency of these species depends on the photosensitizer 

undergoing intersystem crossing to the excited triplet state upon activation. When intracellular 

porphyrin aggregation occurs, the efficiency of the aforementioned process is limited due to self-

quenching effects. On the other hand, aggregation facilitates the collective transport of 

photosensitizers to local tumor sites, minimizing incidental destruction of healthy cells. The 

development of a controllable ―on/off‖ switch for aggregation would simultaneously optimize 

the transport and efficacy of porphyrins under both, extra- and intracellular conditions, 

respectively. Using polypeptide-functionalized silica particles as platforms may offer the 

necessary features to promote the aforementioned research goal. The inclusion of a magnetic 

moiety (i.e. iron oxide, which is FDA-approved) within the silica core provides an additional 

dimension for controlling drug transportation. In the presence of a remotely controlled high 

frequency magnetic field, superparamagnetic colloidal particles assemble.
10

 Upon removal of the 

magnetic field, the particles are capable of readily dispersing.
11

 Exploiting these features may 

increase the reactivity of photosensitizers and minimize the required dosage.
12

  

In this chapter, hybrid nanocomposites composed of superparamagnetic silica-coated 

magnetite (Fe3O4@SiO2) are covalently attached to polypeptide-porphyrin conjugates using 

Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition, also known as click chemistry. This grafting 

mechanism is a rapid chemoselective approach that takes advantage of the alkyne/azide 

functional groups by forming a very stable 1,2,3-triazole between the alkyne-terminated PCBL 

and azido-functionalized Fe3@SiO2 composite. In general, the grafted homopolypeptide, alkyne-

terminated poly(Nε-carbobenzyoxy-ʟ-lysine) (PCBL), inherently provides a hydrophilic poly-ʟ-

lysine shell after undergoing debenzylation. Such practical features constitute the 
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biocompatibility and versatility of these potential drug delivery systems.
13

 serve as drug delivery 

systems and biomedical devices A few other potential applications for this composite include: 

responsive materials, chiral separations,
14

 colloidal crystallization,
15

 catalysis,
16

 and biomimetic 

membrane supports.
17

 Depending on the properties of the attached polypeptide, the particles can 

exhibit solubility in water or organic solvents. In addition, the polypeptide coilhelix transition 

is a useful characteristic for modifying the surface configuration and particle-particle 

interactions.   

The present work also introduces an approach for efficiently attaching porphyrins directly to 

Fe3O4@SiO2 nanoparticles without the mediated assistance of an alkyne-terminated polypeptide 

conjugate. In a similar report, Liu et al.
18

 described a procedure for preparing magnetic 

nanocomposite-bonded metalloporphyrins for biomimetic catalysis. In their approach, 

metalloporphyrins were synthesized via a silanation reaction between 3-

aminopropyltriethoxysilane (APTES) functionalized metalloporphyrins and Fe3O4@SiO2 

nanoparticles. The target porphyrin species was prepared by amidation of its acyl chloride group 

with APTES. In contrast, the studies herein demonstrate the attachment of alkyne-functionalized 

porphyrin to azido-functionalized Fe3O4@SiO2 by click chemistry.  

4.2 Experimental 

4.2.1 Materials  

Nε-carbobenzyoxy-ʟ-lysine (CBL) (99%), tert-butanol (99.5%), triethylamine (99.5%), 

triphosgene (98%), anhydrous dichloromethane, propargylamine (98%), dimethylformamide 

(DMF), dimethyl sulfoxide (DMSO), hydrogen bromide (HBr, 33% solution on acetic acid), 

trifluoroacetic acid (TFA), trisodium citrate, tetraethylorthosilicate (TEOS), benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), CuBr (99%), N,N-
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diisopropylethylamine (DIEA), N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) (99%), 

dry tetrahydrofuran (THF). 1,2-hexadecanediol (97%), oleic acid (90%), oleylamine (>70%), and 

polyethylenimine (anhydrous, average Mw ca. 25,000) were purchased from Aldrich. Iron(III) 

acetylacetonate was purchased from Strem Chemicals, Inc. (3-bromopropyl)trichlorosilane was 

purchased from Gelest. All other reagent grade chemicals were used as is without further 

purification. 

4.2.2 Sample Preparation 

Two distinct methods were used for the preparation and silica-coating of Fe3O4 nanoparticles 

to determine the ideal procedure for the targeted biomedical application. These methods include 

the traditional coprecipitation of Fe
2+

/Fe
3+

 salts and thermal decomposition. In general, the 

resulting Fe3O4 particles were also coated with silica by two different approaches. The first 

approach involved the well-established Stöber method, which consist of hydrolysis and 

polycondensation of tetraethoxysilane under alkaline conditions in ethanol. The second approach 

is based on microemulsion synthesis, where micelles (or reverse micelles) are used as 

nanoreactors to control the particles size and silica coating of the Fe3O4 nanoparticles. The 

surface modifications for each set of particles were the same.   

4.2.3 Synthesis of Fe3O4 Nanoparticles 

4.2.3.1 Coprecipitation Method 

To prepare the Fe3O4 nanoparticles, ammonium hydroxide was added to a solution of 

FeCl3∙6H2O and FeCl2∙4H2O at a molar ratio of 2:1. In a 500 mL 3-neck round-bottom flask, 

7.05 g of FeCl3∙6H2O and 2.58 g of FeCl2∙4H2O were dissolved in 120 mL of degassed deionized 

water. The round-bottom flask was equipped with a mechanical overhead stirrer, water 

condenser, and nitrogen inlet. Inside an oil bath, the reaction mixture was stirred vigorously and 
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heated to 80˚C. A syringe was used to inject 15 mL of NH4OH to the solution, followed by 30 

minutes of further heating. Next, 50 mL of 0.3 M trisodium citrate was added and the 

temperature was increased to 90 ˚C. After an additional 90 min of stirring, the solution was 

allowed to cool to room temperature and the Fe3O4 nanoparticles were precipitated in a large 

amount of acetone. Precipitation of the particles in acetone was repeated twice, and then a strong 

permanent magnet was used to recover the particles. The recovered Fe3O4 nanoparticles were 

washed with degassed deionized H2O several times. Lastly, the particles were dialyzed using a 

12-14 KD molecular weight cutoff membrane inside of degassed deionized H2O. 

4.2.3.2 Thermal Decomposition Method 

A mixture of Fe(acac)3 (2 mmol), 1,2-hexadecanediol (10 mmol), oleic acid (6 mmol), 

oleylamine (6 mmol), and phenyl ether (20 mL) was prepared and magnetically stirred under 

argon. This solution was heated to 200 °C for 2 h, followed by reflux (~260 °C) for 1 h. The 

resulting black mixture was allowed to cool to room temperature. While under ambient 

conditions, ethanol (40 mL) was added to the reaction mixture, forming a black precipitate which 

was separated via centrifugation. The precipitate was dissolved in a mixture of hexane, oleic acid 

(0.05 mL), and oleylamine (0.05 mL). Next, centrifugation (6000 rpm, 10 min) was used for 

removal of any non-dispersed material. Lastly, the product was precipitated with ethanol, 

centrifuged (6000 rpm, 10 min) to remove the supernatant, and then redispersed in hexane. A 

black-brown hexane dispersion of Fe3O4 nanoparticles was obtained.  

4.2.4 Preparation of Silica-Coated Fe3O4 Nanoparticles (Fe3O4@SiO2) 

4.2.4.1 Stöber Method  

The Fe3O4@SiO2 nanoparticles were prepared from the synthesized Fe3O4 nanoparticles. In a 

500 mL 3-neck round-bottom flask, a solution of Fe3O4 nanoparticles (5 g, 3.2 wt%) was added. 
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To this solution, H2O (40 mL) and ethanol (160 mL) were also added under nitrogen and was 

then vigorously stirred. Aqueous ammonium hydroxide (30 wt%, 0.5 mL) and 0.5 mL of 

tetraethyl orthosilicate (TEOS) were injected into the flask and the reaction was allowed to 

continue overnight. The final product was collected via magnetic extraction and was cleaned by 

centrifugation using H2O and EtOH. 

4.2.4.2 Microemulsion Method 

As an alternative procedure, Fe3O4@SiO2 nanoparticles were prepared using a 

microemulsion synthesis.  Polyoxyethylene(5)nonylphenyl ether (Igepal CO-520, 1 mmol) was 

added to cyclohexane (9 mL), and was probe sonicated for 10 min. A dispersion of oleic acid-

stabilized Fe3O4 nanoparticles in cyclohexane (1 mg/mL) was added to a 3-neck round-bottom 

flask, along with the Igepal CO-520 mixture. An overhead stirrer was used to stir this brown 

transparent mixture for 2 h, followed by the addition of ammonium hydroxide (35%, 80 μL). 

After adding tetraethyl orthosilicate (60 μL), the reaction was allowed to continue for 48 h at 

room temperature. The resulting Fe3O4@SiO2 nanoparticles were collected by magnetic 

separation and centrifugation after the surfactant was removed with methanol. The particles were 

then washed for times with ethanol. Lastly, the prepared particles were re-dispersed in ethanol.         

4.2.5 Azido-Functionalized Silica-Coated Fe3O4 Nanoparticles (Azido- Fe3O4@SiO2) 

A dispersion of Fe3O4@SiO2 nanoparticles (0.25 g) in toluene was bromofunctionalized 

using (3-bromopropyl)trichlorosilane. The nanoparticles were then isolated with a strong 

permanent magnet and redispersed in toluene twice. Following a third isolation, the particles 

were redispersed in DMF, then NaN3 (0.16 g) and tetrabutylammonium iodide (4.2 mg) were 

added to the solution. This mixture was heated to 80 ˚C and was allowed 24 h to react while 

stirring. With a strong permanent magnet, the azido-Fe3O4@SiO2 nanoparticles were isolated and 

redispersed in ethanol.   



127 
 

4.2.6 Synthesis of N-Carboxyanhydride (NCA)  

Using the procedure of Daly and Poché
19

, Nε-carbobenzyloxy-L-lysine N-carboxyanhydride 

(CBL-NCA) was prepared. In general, 5 g of the respective protected amino acid was dissolved 

in 150 mL of anhydrous ethyl acetate inside a flame-dried 250 mL round-bottom flask. The flask 

included a magnetic stir bar, condenser, and nitrogen bubbler in-line to maintain an inert 

atmosphere. Using a silicon oil bath, the reaction flask was heated to 60 ˚C and then 1.26 g 

(0.00425 mol) of triphosgene was added. This mixture was allowed 1 h to stir, where completion 

was indicated by the solution exhibiting a clear appearance. The clear solution was concentrated 

to 1/3 of its volume and a white precipitate was formed after adding 100 mL of cold hexane. To 

promote crystallization, the reaction flask was placed in the freezer overnight. The final product 

was filtered via vacuum filtration and washed with cold hexane. Note: Triphosgene is toxic and 

should be handled and weighed inside a hood. In addition, the reaction should be conducted in a 

hood, where the HCl/triphosgene from the nitrogen bubbler is allowed to pass through a solution 

of ammonium hydroxide. All filtrations were done inside a glovebag, under nitrogen. Final yield 

of 85%.  

4.2.7 Synthesis of Polypeptides 

4.2.7.1 Alkyne-Terminated Poly(Nε-carbobenzyloxy-L-lysine) (Alkyne-PCBL)  

With propargylamine as an initiator, the ring-opening polymerization of Nε-carbobenzyloxy-

L-lysine N-carboxyanhydride (CBL-NCA) yielded alkyne-terminated poly(Nε-carbobenzyloxy-

L-lysine) (Alkyne-PCBL). CBL-NCA (1.7 g, 0.0055 mol) was weighed inside a flame-dried 50 

mL round-bottom flask, which was capped with a rubber septum connected to an argon line with 

a syringe needle. Dry THF (25 mL) was injected into the reaction mixture, and the solution was 

stirred and heated to 30 ˚C. After propargylamine (38 μL, 0.0221 mol) in dichloromethane was 

added via injection, the reaction was continued for 3 days. Once complete, the solution was 
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concentrated and the polypeptides were precipitated in acetone. The final product was filtered 

and dried in a vacuum oven, with a yield of 75%. 

4.2.8 Porphyrin Synthesis 

4.2.8.1 Porphyrin 4-2 

A solution composed of tetra(4-hydroxyphenyl)porphyrin 4-1 (0.17 g, 0.25 mmol) and 

Cs2CO3 (0.650 g, 2 mmol) in 40 mL of anhydrous DMSO was prepared and heated to 50 ˚C in an 

oil bath. While under argon, the solution was stirred for 1 h with a magnetic stir bar. Next, tert-

butyl bromoacetate (38.4 μL, 0.26 mmol) was added to the solution and was refluxed overnight. 

The mixture was allowed to cool to room temperature and was then poured into 200 mL of brine. 

After purifying the product by extraction with ethyl acetate, it was dried over anhydrous Na2SO4. 

The solvent was evaporated under vacuum and the target compound was isolated via flash 

chromatography on silica gel column, using ethyl acetate/chloroform (50:50) as the eluent. The 

product was dried under vacuum, with a final yield of 30%. MALDI-TOF-MS for C46H32N4O6, 

calculated 736.77 [M+H
+
]. 

4.2.8.2 Porphyrin 4-4 

Porphyrin 4-3 ( 0.1 g, 0.159 mmol) was reacted with a solution of glutaric anhydride (0.54 g, 

0.477 mmol) in 2 mL of dry DMF for 48 h at room temperature. Upon completion, distilled 

water (10 mL) was added 10 mL of EtOAc. After separation of the two phases, the organic phase 

was washed with distilled water (3 × 10 mL) and dried with anhydrous Na2SO4. The prepared 

tert-butyl protected porphyrin (0.120 g, 0.102 mmol) was dissolved in a 4 mL mixture composed 

of glacial acetic acid and ethanol (3:1). Pd/C (10%, 0.12 mg) was added after the solution was 

flushed with H2 using a balloon. The flushing process was repeated while the solution stirred at 

room temperature for 4 h. To remove the Pd catalyst, the reaction mixture was filtered through 
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Celite. The resulting solid residue was washed with a mixture of chloroform and methanol (2:1). 

Under vacuum, the filtrate was evaporated and the remaining residue was dissolved in 

chloroform (50 mL), and then washed with distilled H2O (3×50 mL) to remove any traces of 

acid. Lastly, the organic phase was dried over anhydrous Na2SO4, and the solvent was 

evaporated under vacuum. The target porphyrin was purified via flash chromatography on a 

silica gel using a chloroform/methanol (9:1) solvent system for elution. 
1
H-NMR (d6-DMSO, 

400 MHz):  8.8 (s, 7H), 8.43 (s, 7H), 7.71 (S, 2H), 7.60 (s, 10H), 2.63 (t, 4H, CH2), 2.21 (p, 

2H), -2.79 (s, 2H). 
13

C-NMR (d6-DMSO, 62.5 MHz): 171.93, 168.38, 156.13, 141.22, 138.42, 

136.28, 134.69, 134.22, 131.41, 131.01, 128.09, 127.10, 119.99, 117.94, 70.69, 68.30. MALDI-

TOF MS m/z 744.33 (M + H
+
), calculated for C49H38N5O3 744.2896. 

The above compound was dissolved in DCM (5 ml), and Zn(OAc)2 (5 ml) was added and 

stirred at room temperature for 24 hours. The mixture is poured into 100 ml water and extracted 

with ethyl acetate. The organic layer is evaporated to give quantitative yield 96%. MALDI-TOF 

MS m/z 805.252 [M + H
+
], calculated for C49H35N5O3Zn 805.203. 

4.2.8.3 Porphyrin 4-6 

A solution of commercially available tetra (4-hyroxyphenyl) porphyrin 4-1 (340 mg, 0.5 

mmol) in DMSO (60 ml) was mixed with K2CO3 (560 mg, 4 mmol) and the reaction mixture was 

heated at 50 ˚C for 15 min under argon. Propargyl bromide (0.046 ml, 0.52 mmol) was then 

added and heating was continued at 50 ˚C overnight. The mixture was allowed to cool to room 

temperature and was then poured into 200 mL of brine. After purifying the product by extraction 

with ethyl acetate, it was dried over anhydrous Na2SO4. The solvent was evaporated under 

vacuum and the target compound was isolated via flash chromatography on a silica gel column, 

using ethyl acetate/dichloromethane (30:70) as the eluent. The product was dried under vacuum, 
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with a final yield of 32%. 
1
H-NMR (Acetone-d6, 400 MHz):  8.93 (s, 6H, -H), 8.83 (s, 2H, -

H), 8.02-8.06 (m, 8H), 7.26-7.28 (m, 8H), 4.93 (s, 2H, CH2), 3.19 (s, 1H, CH), -2.64 (s, 2H, 

NH). 
13

C-NMR (CDCl3, 62.5 MHz): 157.78, 157.49, 150.80, 150.75, 150.53, 136.92, 135.84, 

135.66, 134.93, 131.90, 131.83, 131.60, 121.02, 120.94, 120.11, 114.25, 113.83, 113.22, 79.50, 

76.80, 56.15, 13.97. MALDI-TOF-MS m/z 717.182 [M+H
+
] for C47H32N4O4, calculated 717.251 

[M+H
+
]. 

To the above compound in acetone (5 ml), saturated Zn(OAc)2/MeOH (5 ml) was added and 

mixed at room temperature for 24 h. The mixture was poured into water (100 ml) and extracted 

with ethyl acetate. The organic layer was evaporated to give quantitative yield 98%. 
1
H-NMR 

(Acetone-d6, 400 MHz):  8.93 (s, 6H, -H), 8.88 (s, 2H, -H), 8.11 (d, J= 8.4, 2H), 8.03 (d, J= 

8.12, 6H) 7.35 (d, J=8.44,2H), 7.25 (d, J=8.04, 6H), 5.02 (s, 2H, CH2), 3.21 (s, 1H, CH). 

MALDI-TOF-MS 778.188 [M] for C47H30N4O4Zn, calculated 778.168 [M]. 

4.2.9 General Porphyrin-Polypeptide Conjugation 

A solution of Zn-porphyrin (53 mg, 0.0658 mmol) in DMF (0.5 ml) was mixed with DIEA 

(0.102 ml, 0.0987 mmol) and stirred at room temperature under argon for 30 min. PyBOP (51.36 

mg, 0.0987 mmol) was then added and the reaction continued stirring for an additional 30 min. 

Finally, PCBL-Alkyne (217.14 mg, 0.0658 mmol) was added and was allowed to stir for 4 days.  

4.2.10 General Grafting of Alkyne-Moieties to Azido-Functionalized Fe3O4@SiO2 

Nanoparticles via Click Reaction    

Azido-functionalized Fe3O4@SiO2 (.005 g) was dispersed in dry toluene (2 mL) inside a 3-

neck round-bottom flask, which was connected to a condenser and nitrogen inlet. The prepared 

dispersion was degassed for 10 min, and then a degassed solution of alkyne-terminated Zn-

porphyrin moiety (0.1 g) in toluene (2 mL) was added to the mixture. In a different vial, CuBr 

(0.0092 g) was weighed and dissolved in toluene (2 mL), and was capped with a rubber septum. 
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PMDETA (0.03 mL) was injected into the CuBr solution with a syringe. After stirring and 

degassing this solution for 10 min, it was injected into the 3-neck reaction which contained the 

azido-functionalized Fe3O4@SiO2 composites and alkyne-porphyrin moiety. First, this mixture 

was heated at 60 ˚C while stirring for 1 h, and then heated at 40 ˚C for 24 h. Once the reaction 

mixture was cooled to room temperature, the nanocomposite particles were recovered by magnet 

and centrifugation. To remove any unreacted porphyrins, the particles were redispersed in 

toluene and recovered three more times. After the final purification, the particles were dispersed 

in chloroform and extracted with distilled H2O, then repeated with a solution of the sodium salt 

of EDTA, and again with H2O to remove traces of copper. The composites were recovered with a 

magnet and centrifuged, and redispersed in chloroform three times. TFA was used to remove the 

zinc from the final Fe3O4@SiO2-click-porphyrins, yielding the free-base form.          

4.2.11 Characterization Methods 

Gel permeation chromatography (GPC) was used to determine the molecular weight of the 

alkyne-terminated polypeptides. The measurements were conducted using an Agilent 1200 

system (Agilent 1200 series solvent degasser, isocratic pump, auto sampler and column heater), 

which was equipped with three Phenomenex 5 μm, 300 × 7.8 mm guard columns. For detection, 

a Wyatt DAWN EOS multiangle light scattering (MALS) detector, with a GaAs 30 mW laser (λ 

= 690 nm), Wyatt ViscoStar viscosity (VISC) detector, and Wyatt Optilab rEX differential 

refractive index (DRI) detector with a 690 nm light source were used. The eluent was DMF 

which contained 0.1 M LiBr with a flow rate of 0.5 mL∙min
-1

. Data analyses were performed 

using Astra V 5.3 software (Wyatt). All matrix-assisted laser desorption/ionization-time-of-flight 

(MALDI-TOF) spectra were recorded on a Bruker PROFLEX III MALDI-TOF mass 

spectrometer. Fourier transform infrared (FTIR) spectra were collected using a Bruker Tensor 27 
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FT-IR spectrometer with a Pike Miracle single-bounce attenuated total reflectance (ATR) cell 

equipped with a ZnSe single crystal. Thermogravimetric analysis (TGA) was conducted using a 

TA Instruments TGA Q50 under nitrogen flow with a heating rate of 10 ˚C min
-1

. To monitor the 

surface composition of the nanoparticles upon chemical modification, a Kratos Analytical Axis 

165 X-ray photoelectron spectrometer (XPS) with Al Kα X-ray radiation 1486.6 eV and 90˚ 

takeoff angle. Particle size distribution analyses were conducted using a custom-built dynamic 

light scattering (DLS) apparatus, equipped with a Coherent Innova 90 argon (400-800 nm) laser. 

The device also has a Pacific Precision Instruments (Irvine, California) wide-range 

photometer/preamplifier/discriminator which drives an ALV pulse shaper, and is responsible for 

feeding an ALV-5000 digital autocorrelator. The nanoparticles were transferred into clean cells 

with 0.22 μm Durapore membrane filters (Millipore Co., Billerica, Massachusetts). To control 

the temperature, a circulating water bath was used at a setting of 25 ˚C. Each sample was 

measured three times at several scattering angle with durations of 180 s. The apparent 

hydrodynamic diameter, Dh, was determined by analyses of the averaged data using one-

exponential and third-order cumulant algorithms. 

4.3 Results and Discussion 

4.3.1 Synthesis and Characterization of Fe3O4  

Magnetite (Fe3O4) nanoparticles were prepared by two distinct methods. The first approach 

involved coprecipitation of ferric chloride (FeCl3) and ferrous chloride (FeCl2) with a molecular 

ratio of 1:2, respectively, in aqueous solution. Overall, the reaction may be expressed as follows: 

Fe
2+

 + 2Fe
3+

 + 8 OH
-
 → Fe3O4 + 4H2O                           Equation 4-1 

The size of the Fe3O4 particles was controlled by varying the concentration and amount of NaOH 

in the reaction mixture. Due to the inherent agglomeration of the Fe3O4 nanoparticles, it was 
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difficult to accurately determine their average diameter and size distribution using DLS. Figure 

4-1 shows a TEM image of these bare particles, depicting the exhibited aggregation. Generally, 

the coprecipitation method was suitable for mass production of Fe3O4 nanoparticles. However, 

the particles were highly polydispersed in size and shape according to TEM images. These 

irregularities are attributed to the nucleation and subsequent growth of Fe3O4 particles in an 

uncontrolled manner while in the bulk aqueous phase. Such features make this method 

unfavorable for the preparation of nanoparticles where size homogeneity and stability are 

important. An alternative approach was explored to address each of these concerns.  

 

Figure 4-1 TEM image of Fe3O4 nanoparticles prepared via the coprecipitation method. 

Monodisperse Fe3O4 nanoparticles were synthesized using the thermal decomposition 

method (see Scheme 4-1). The reaction of ferric acetylacetonate precursor, Fe-(acac)3, with 

surfactants at high temperature produced stable nanoparticles, which were easily separated from 

reaction byproducts. Phenyl ether was the chosen solvent because of its high boiling point (259 

˚C). In a previous comparative study
20

, the use of phenyl ether as the solvent typically resulted in 

4 nm Fe3O4 nanoparticles, whereas benzyl ether (b.p., 298 °C) led to 6 nm Fe3O4. Although this 
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trend indicates that high reaction temperatures contribute to the production of larger particles, 

monodispersity is only achieved when the reaction mixture is heated to 200 °C for 2h prior to 

refluxing. Initiating reflux directly from room temperature broadens the particle size distribution 

(4-15 nm). This phenomenon suggests the Fe3O4 nucleation and nuclei growth process is slow 

under these reaction conditions.
21

  

The reducing agent, 1,2-hexadecanediol, reacted well with the Fe(acac)3 precursor to produce 

high quality Fe3O4 nanocrystals. However, particle quality, as well as the final yield, tends to 

diminish when long-chain monoalcohols (e.g., stearyl alcohol) are utilized as reductants. The 

combination of oleic acid and oleylamine was also essential for high yields of particles. The 

presence of these ligands enhances the solubility of complexes in organic solvents (e.g., hexane 

and chloroform).
20

 In general, oleylamine stabilizes maghemite, γ-Fe2O3, nanocrystals via the 

coordination of –NH2 with Fe
3+

 on the particle surface (see scheme 4-1). However, solely using 

oleylamine in the reaction provides a low yield of Fe3O4 nanoparticles.
20,22

 In contrast, the 

exclusive use of oleic acid in the reaction results in a viscous product that is difficult to purify 

and characterize.  

 

Scheme 4-1 Illustration of the thermal decomposition method.  

A TEM image of monodisperse Fe3O4 nanoparticles prepared by thermal decomposition is 

shown in Figure 4-2. Unlike the coprecipitation method, agglomeration was prevented due to the 

presence of surfactants at the interface. Also, the obtained particles have a narrow size-
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distribution and appear in a self-ordered arrangement. According to DLS data, the average 

diameter of the Fe3O4 was found to be 7.8 ±1.3 nm. Magnetic materials of this size are 

considered to be within the superparamagnetic regime (1-10 nm).  

Generally, X-ray diffraction (XRD) is useful for acquiring information about the crystallinity 

of nanoparticles.  Figure 4-3 shows XRD measurements which confirmed the synthesis of 

magnetite. The XRD spectra of Fe3O4 prepared by coprecipitation and thermal decomposition 

exhibited patterns which were in agreement with those of standard Fe3O4 particles. The known 

standard Fe3O4 diffraction are indexed to (220), (311), (400), (422), (511) and (440) planes of a 

cubic unit cell, corresponding to the reflections of the inverse spinel structure of magnetite 

(JCPDS card no. 19-0629). It should be noted that the standard XRD patterns of magnetite and 

maghemite (γ-Fe2O3; JCPDS no. 39-1346) are practically identical. Complementary techniques, 

such as X-ray photoelectron spectroscopy (XPS), were performed to reaffirm the XRD results 

(see Section 4.3.2).  

 

  

 

Figure 4-2 TEM images of a monolayer of Fe3O4 nanoparticles prepared via the thermal  

decomposition method.  
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The superparamagnetism of the Fe3O4 nanocrystals was measured using a superconducting 

quantum interference device (SQUID). Figure 4-4 shows the hysteresis loop of the particles at 

room temperature. Characteristic of superparamagnetic nanocrystals, the Fe3O4 particles 

exhibited no hysteresis; both, the remanence and coercivity were zero. These properties are 

pertinent to the ―on/off‖ response of the particles for controlled assembly and transport in the 

targeted therapeutic application.      

 

 

Figure 4-3 XRD pattern of Fe3O4 nanoparticles prepared by coprecipitation (—) and thermal 

decomposition (—). 
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Figure 4-4 Hystersis loop of Fe3O4 nanoparticles at room temperature. The magnetization (M) vs 

applied field (H) of Fe3O4 shows no remanence magnetization.  

4.3.2 Synthesis and Characterization of Silica-Coated Fe3O4 Nanoparticles  

Superparamagnetic Fe3O4 nanoparticles were coated with a layer of silica by two different 

strategies. The first approach was the Stöber method, which involved the hydrolysis and 

polycondensation of tetraethoxysilane (TEOS) under alkaline conditions in ethanol. The second 

method was based on microemulsion synthesis, where reverse-micelles were exploited as 

nanoreactors to control the size and monodispersity of the core-shell particles (see Scheme 4-2).  

 

Scheme 4-2 Synthesis of silica-coated Fe3O4 nanoparticles via the microemulsion procedure. 

These micellar aggregates were composed of surfactants (Igepal CO-520) dispersed in 

cyclohexane, which was important for connecting oleic acid-stabilized Fe3O4 and the aqueous 
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solution from NH4OH. Consequently, a shell of water forms along the interface of the Fe3O4-

Igepal CO-520 composites.
23

 In these water regions of the reverse micelles, silica shells were 

formed on the surfaces of the Fe3O4 nanoparticles by hydrolysis and polymerization of TEOS.  

Varying the concentration of NH4OH and TEOS provided control of the silica shell thickness 

for both methods (i.e., shell thickness decreases when the concentration of these reagents are 

decreased). In the microemulsion process, the ratio of of Igepal CO-520 to NH4OH was used to 

control the micelle size. This feature was essential for limiting the number of embedded Fe3O4 

particles strictly to one per micelle. However, the probability of encapsulating multiple magnetic 

cores in a single composite increased as a function of silica shell thickness. Shells that are too 

thick also tend to dissipate the magnetic properties of the particles. As a simple test for this 

occurrence, a strong permanent magnet was held next to the prepared Fe3O4@SiO2 nanoparticles 

to observe their response to an external field (see Figure 4-5). The displayed particle behavior 

indicated the preservation of the magnetic properties.   

 

Figure 4-5  Demonstration of the magnetic response of the prepared Fe3O4@SiO2 

nanocomposites in the absence (left) and presence (right) of a strong permanent magnet. 

TEM images of the synthesized Fe3O4@SiO2 nanoparticles are shown in Figure 4-6. In 

comparison to the Stöber method, the microemulsion approach produced smaller and more 

uniform composites. Figure 4-6a shows a TEM image of Stöber prepared nanoparticles, which is 

representative of the potential irregularities in particle size and shape when using this approach. 
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Composites prepared via the microemulsion synthesis had a narrow size distribution (20-25 nm). 

The average composite diameter was 23 ± 1.8 nm and the silica shell thickness was ~6 nm. 

 

 
 

Figure 4-6 TEM of Fe3O4@SiO2 nanoparticles prepared using the (a) Stöber method and (b) 

microemulsion method.  

 

Figure 4-7  XRD spectra of bare Fe3O4 (—) and Fe3O4@SiO2 (—) nanoparticles. 

(b) 
(a) (b) 
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Although the silica shell was clearly visible in the TEM images, it was confirmed using 

XRD. The measured diffraction peaks of the Fe3O4@SiO2 nanocomposites agreed with those of 

standard Fe3O4.  However, unlike the XRD pattern of bare Fe3O4, the spectrum of Fe3O4@SiO2 

has a distinct broad peak that indicates the presence of the silica shell (see Figure 4-7).  

4.3.3 Superparamagnetic Azido-Functionalized Fe3O4@SiO2 Nanoparticles  

In the preparation of azido-functionalized silica-coated superparamagnetic iron oxide 

nanoparticles (SPIONs), a series of surface modifications were performed (see Scheme 4-3). 

Prior to functionalizing the Fe3O4@SiO2 particles with azide groups, the particles were bromo-

functionalized via condensation of (3-bromopropyl)trichlorosilane onto the nanocomposites. 

Bromo-functionalization of the particle surface was confirmed using XPS (see Figure 4-8). In 

combination with peaks corresponding to silica-coated Fe3O4 (i.e., Si 2s, Si 2p, C 1s, O 1s, and 

Fe2p), the presence of bromine groups was indicated by a Br 3p peak at 188 eV and a less 

intense Br 3d peak at 70 eV.
24

  

 

Scheme 4-3 Schematic representation of the preparation and azido-funtionalization of 

Fe3O4@SiO2 nanoparticles.  

The bromo-functionalized nanoparticles were azido-functionalized via nucleophilic 

substitution of the bromine groups using NaN3 in DMF. In this reaction, tetrabutylammonium 

iodide was used as a catalyst. Following the reaction, XPS was used to confirm the presence of 

azide groups on the particle surface. The disappearance of the Br 3d peak and emergence of a N 
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1s peak at ~400 eV suggest the bromine/azide substitution occurred (see expanded spectra in 

Figure 4-8b). However, the Br 3p peak was still slightly visible, which was evidence that perhaps 

traces of bromine remained. In such a case, the concentration of NaN3 should be increased to 

ensure optimal substitution.  

 

 

Figure 4-8 XPS survey scans of (a) Fe3O4@SiO2 (—), bromo-functionalized Fe3O4@SiO2 (—), 

and azide-functionalized Fe3O4@SiO2 (—) nanocomposites, where the (b) expanded region 

shows the N 1s peak at ~400 eV, indicating the presence of azide groups. Spectra are offset for 

clarity. 

In effort to better resolve the XPS results, additional information was obtained from the FTIR 

spectra of azide-functionalized Fe3O4@SiO2 versus unmodified Fe3O4@SiO2 nanoparticles (see 

Figure 4-9). The characteristic absorption peaks at 441, 585, and 632 cm
-1

 are attributed to the 

Fe-O structure. For the silica shell, absorption peaks corresponding to Si-O-Si stretching, Si-OH 

stretching, Si-O bending, and Si-O-Si bending, are displayed at 1095, 945, 802, and 461 cm
-1

, 

respectively.
25

 The spectrum of the azide-functionalized Fe3O4@SiO2 composites showed a 
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distinct absorption peak at 2100 cm
-1

 corresponding to the presence of azide groups.
24

 Further 

evidence of azide-functionalization was revealed by the disappearance of the Si-OH peak at 945 

cm
-1

.    

 

Figure 4-9 FTIR spectra of Fe3O4@SiO2 (—) and Fe3O4@SiO2-azide (—) nanoparticles. Spectra 

are offset for clarity. 

4.3.4 Preparation of Alkyne-Terminated PCBL   

Alkyne-terminated PCBL (Alkyne-PCBL) was synthesized by the ring-opening 

polymerization of ε-carbobenzoxy-ʟ-lysine N-carboxyanhydride (CBL-NCA) monomers in 

anhydrous DCM with propargylamine as the initiator. The CBL-NCA monomers were prepared 

by the procedure of Daly and Poché
19

, which exploits the cyclization of amino acids with 

triphosgene. To confirm the cyclization occurred, an FTIR spectrum of CBL-NCA was obtained 

(see Figure 4-10). It shows the characteristic NCA carbonyl peaks of the anhydride at 1786 cm
-1

 

and 1857 cm
-1

, suggesting the target compound was achieved.  

-N3 
Si-O-Si 

Si-O-Si Si-OH 

Fe-O 

Fe-O 

Si-O-Si 
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Figure 4-10  FTIR spectrum of CBL-NCA. The arrows indicate the NCA carbonyl peaks of the 

anhydride at 1786 cm
-1

 and 1857 cm
-1

.  

The primary amine of propargylamine effectively activated the ring-opening of the cyclized 

CBL-NCA monomers via the mechanism shown in Scheme 4-4.  Initially, a degree of 

polymerization (DP) of 10 was chosen for the reaction. Based on this DP, the expected Mw of the 

resulting alkyne-PCBL was ~3 kDa. GPC analysis of the PCBL in THF (.1% solution) indicated 

a bimodal distribution corresponding to weight-average molecular weights of 3.3 kDa and 110 

kDa (see Figure 4-11). These data suggest that the expected alkyne-PCBL Mw was obtained, 

however, a second larger species was also present. A plausible explanation for this behavior 

takes aggregation of the alkyne-PCBL into account. Another possible suggestion is that some 

initiators were inactive or quickly led to dead chains.
24

 Several attempts were also made in 

preparing shorter alkyne-terminated PCBL with a DP <10 by decreasing the monomer-to-

initiator ratio. In each attempt, the measured Mw exceeded the expected values, which 

demonstrated the limitations of the polymerization.    
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Scheme 4-4 Reaction scheme of the ring-opening polymerization of CBL-NCA to form alkyne-

terminated PCBL.  

 

 

Figure 4-11 GPC chromatogram of alkyne-terminated PCBL [LiBr (0.1 M)/DMF].   

~110 kDa 

~3.3 kDa 
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4.3.5 Porphyrin Functionalization  

The target mono-carboxylic acid porphyrins were designed specifically for covalent linkage 

to the amine end-group of alkyne-terminated PCBL. These compounds were synthesized using 

two different approaches. The first approach used tetra(4-hydroxyphenyl)porphyrin 4-1 as the 

starting material (see Scheme 4-5). One of the four hydroxyl groups of this porphyrin derivative 

was protected with tert-butyl bromoacetate via the Williamson alkylation reaction. Due to the 

inevitable substitution of multiple hydroxyl groups, it was important to systematically optimize 

the reaction conditions. The specific ratio of tetra(4-hydroxyphenyl)porphyrin 4-1, Cs2CO3, and 

tert-butyl bromoacetate was 1:2:2, respectively. This mixture was heated to 60 ˚C and was then 

allowed 24 h to react. After the isolated mono-ether porphyrin was obtained in 30% yield, its 

benzyl protecting group was removed by catalytic hydrogenation using TFA to give carboxylic 

acid porphyrin 4-2. Although the yields from this reaction were relatively low (~30%), the 

advantage of this method was the commercial availability of the starting compound 4-1.  

 

Scheme 4-5 Reaction conditions for the synthesis of carboxylic acid porphyrin 4-2 from tetra(4-

hydroxyphenyl)porphyrin 4-1. 

Scheme 4-6 shows an alternative synthetic route which provided quantitative yields by using 

mono-amino TPP 4-3 as the starting material. The reaction mechanism converts the amino group 

4-1 4-2 
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into the carboxylic acid functionality via ring-opening of glutaric anhydride in DMF. The final 

porphyrin product 4-4 was confirmed by the molecular ion peak at 744.3 in the MALDI-TOF 

spectrum shown in Figure 4-12. Compared to the previous procedure, the obtained percent yield 

was a significant improvement. However, the drawbacks of this reaction are that the starting 

compound 4-3 is not commercially available and its synthesis presents many challenges.  

 

 

Scheme 4-6 Reaction conditions for the synthesis of carboxylic acid functionalized porphyrin 4-

4 derived from mono-amino TPP 4-3.  

 

 

Figure 4-12  MALDI-TOF MS spectrum of carboxylic acid porphyrin 4-4. 

4-3 4-4 
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In general, the conjugation of the carboxylic acid-functionalized porphyrins to the of alkyne-

PCBL involved the use of peptide-coupling reagents PyBOP and DIEA. The intermediate 

porphyrin derivative, as the hydroxybenzotriazole ester, was coupled to the free amino terminus 

of alkyne-PCBL. As a result of this linkage, an amide bond was formed between the porphyrin 

and polypeptide, as shown in Scheme 4-7.  

 

 

Scheme 4-7 General coupling reaction conditions for the conjugation of alkyne-polypeptides to 

carboxylic acid porphyrin 4-2. 

The previously discussed porphyrin derivatives were indirectly designed for ―click 

chemistry‖ reactions via their conjugation to alkyne-terminated polypeptides. However, to avoid 

the need for an alkyne-functionalized polypeptide, porphyrin 4-6 was directly prepared to bear an 

alkyne group (see Figure 4-13); this compound was synthesized by N.V.S. Dinesh Bhupathiraju. 

The reaction involved the mono-alkylation of commercially available porphyrin 4-1 using 

K2CO3 as the base in DMSO, followed by o-alkylation with propargyl bromide. In addition to 

being a useful tool for a novel approach for preparing superparamagnetic silica-porphyrin 

nanocomposites, porphyrin 4-6 is also important for elucidating the effects and benefits of 

porphyrin-polypeptide conjugation.  

4-5 4-2 
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Figure 4-13  Reaction conditions for the synthesis of propargyl-terminated porphyrin 4-6. 

 

Scheme 4-8 General reaction conditions for zinc insertion into free base porphyrin.  

In preparation for the click reaction, it was important to take precautionary steps with each of 

the previously prepared porphyrins. A former research colleague
26

 noticed the failure of copper-

catalyzed Huisgen 1,3-dipolar cycloaddition with free base porphyrin derivatives, which was 

assumed to be due to copper insertion. Inherently, free base porphyrins are capable of binding to 

metal ions to form metalloporphyrin complexes (e.g., heme and chlorophyll). The preventative 

strategy involved metalating the porphyrins with zinc prior to performing the alkyne-azide 

4-6 4-1 
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reaction (see Scheme 4-8). This approach has been shown to enhance the reactivity of the click 

porphyrin click chemistry and inhibit copper insertion. Upon completion of the azide-alkyne 

coupling, the zinc ions are easily removed from the porphyrins using TFA. 

4.4 Conclusions 

Hybrid nanoparticles composed of porphyrins conjugated to polypeptide-coated Fe3O4@SiO2 

composites were successfully prepared using a new click chemistry-based approach. The thermal 

decomposition method produce monodisperse, oleic-acid stabilized Fe3O4 nanoparticles, which 

exhibit superparamagnetic properties. This method can also be extended to the synthesis of other 

MFe2O4 nanoparticles (i.e., M = Co, Ni, Mn, Mg, etc.) by simply adding a different metal 

acetylacetonate precursor to the reaction mixture. The magnetic particles can be silica-coated in a 

controlled fashion with the microemulsion synthesis, which produces monodisperse core-shell 

nanoparticles. The propargylamine-initiated polymerization of CBL-NCA yields alkyne-

terminated PCBL and is useful for other amino-acid NCAs. The resulting Mw of the polypeptide 

can be pre-determined by adjusting the monomer-to-initiator ratio, however, control is loss for 

DPs <10.  

4.5 Future Work and Directions 

Attachment of the Zn-porphyrin derivatives to superparamagnetic composites was performed 

by reacting azido-functionalized Fe3O4@SiO2 with alkyne-conjugated porphyrins using copper-

catalyzed Huisgen 1,3-dipolar cycloaddition (―click‖) (see Scheme 4-9). CuBr/PMDETA 

constituted the catalyst system, where PMDETA served as a ligand to increase the rate of 

copper-catalyzed azide-alkyne cycloaddition in organic media.
24

 Upon completion, all traces of 

copper were removed via extraction using an aqueous solution of the sodium salt of EDTA. The 

resulting Fe3O4@SiO2-click-Zn-porphyrin nanoparticles were reacted with TFA to yield 
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Fe3O4@SiO2-click-porphyrin. Characterization techniques, such as FTIR, XPS, TEM, TGA and 

DLS will be used to confirm that the final product was indeed achieved.    

Currently, the coupling of alkyne-PCBL-porphyin to azido-Fe3O4@SiO2 is underway and 

follows the same procedure as the previously mentioned nanoparticles. In contrast, an additional 

step must be taken to obtain the target composite. For the purposes of enhancing the water-

solubility of the system, PCBL will be debenzylated to achieve hydrophilic poly-ʟ-lysine, which 

is necessary for the anticipated PDT application.    

 

Scheme 4-9 Schematic representation of the click reaction between azido-Fe3O4@SiO2 and 

alkyne-porphyrin. 

A key challenge of PDT involves the delivery of therapeutic amounts of photosensitizers to 

targeted tumor sites and minimizing their toxic effects on healthy tissue.  The use of magnetic 

particles is a promising strategy for addressing these concerns. However, the hybrid composites 

presented in this work may introduce a new avenue for enhanced PDT. In addition to controlled 

transport to tumor sites within the body, this response feature may also afford control over the 

assembly and disassembly of particles. Such a capability would be useful for minimizing self-

quenching, which occurs due to the aggregation of the photosensitizers. Although these hybrid 

composites possess many promising characteristics, their effectiveness in enhancing PDT 

remains unknown. A series of in vitro biological evaluations will provide insight about the 

phototoxicity and cellular uptake of the porphyrin-conjugated nanocomposites. Depending on the 
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outcome of these studies, the necessary particle modifications can be made in route to ideal 

conditions. For instance, developing a library of polypeptides or peptide sequences may lead to 

the discovery of nanocomposites with optimal solubility. Beyond the envisioned PDT 

application, these particles are also feasible candidates for other clinical devices. Simply 

attaching a different photosensitizer (e.g., phthalocyanine, BODIPY, etc.) may provide new 

modes for early-stage cancer detection.  
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