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ABSTRACT 
 

 Liposomes have had a long and fruitful application of drug delivery devices in the 

treatment of select tumors and cancer types.  Third-generation liposomes possess endogenous 

triggering methods that hold the ability for site-specific unloading of liposomal contents, thus 

providing necessary temporal and spatial control over contents release that can be tuned to match 

the drug efficacy for decreased side effects during treatment.  Of these new endogenous triggers, 

redox-active liposomes that can be triggered to unload contents via two-electron reduction by 

enzymes or chemical means have demonstrated promise for the encapsulation and delivery of 

cargo.   

 The research project undertaken involved the study in the mechanisms responsible for the 

unloading of contents from redox-active, trimethyl-locked, quinone-capped DOPE (Q3-DOPE) 

liposomes.  It is envisioned that the local environment surrounding the liposomes is responsible 

for the phase behavior and rate of contents unloading due to the influence of the phase 

conversion of DOPE.  Once the capping quinone headgroup is removed via lactone formation, 

lamellar phase DOPE liposomes are expected to come into close approach, aggregate, and 

release their contents by phase conversion to non-lamellar inverted hexagonal phase DOPE.  To 

that end, the research here involved measurement of the rate of phase conversion through (1) 

study of the experimental temperature differences on the phase conversion temperature to drive 

contents unloading and (2) the effects of Hofmeister anion salts on the rate of contents 

unloading.  Study of both of these lead to the hypothesis that the interfacial water layer is critical 

in the close approach and aggregation rate of lamellar DOPE liposomes and the presence of the 

Hofmeister anions assists in regulation of the water layer.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Research Goals and Aims 
 

The goal of this research is to investigate the kinetics of release following the stimuli-

responsive reduction of a redox-active liposomal system.  In particular, the question of how to 

control the temporal and spatial guest release through the manipulation of the phase transition 

behavior of phosphatidylethanolamine (PE) lipids by temperature, salt concentration, and anions 

of the Hofmeister series will be investigated. 

Ever since the observations of A. D. Banghamn in 1965 that dispersions of phospholipids 

in aqueous medium spontaneously form closed bilayer structures,1 liposomes have advanced to 

be major components of biophysical research and a diverse collection of commercial applications 

including pharmaceutical carriers.  Liposome-based therapeutics have had a significant impact 

on the treatment of select cancers, fungal infections, and even as a delivery device for influenza 

vaccines.2  As of 2007, more than 150 companies have been actively researching liposome-based 

therapeutics, yielding 11 clinically-approved, liposome-encapsulated pharmaceutical 

formulations.3  In analytical sciences, liposomes are being developed as components in new 

analytical systems, such as liposome-based immunoassays and nanoscale-scale analytical devices 

for reagent delivery or isolated reaction sites for sensitive reactions.4  Regardless of this 

considerable interest in liposomes and their applications, there are still a number of novel 

methods that can be applied to liposomal systems to study the underlying biophysical effects that 

the lipid subunits have on the behavior of the system.  

Currently, the clinical utility of most conventional liposome-based therapeutics is limited 

either by the inability to actively deliver appropriate therapeutic drug concentrations to the target 

tissues or by severe and harmful toxic effects on normal, healthy organs and tissues.  In order to 
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circumvent these issues, “selective” delivery of liposome-based therapeutics to target only those 

organs, tissues, or cells affected by disease needs to be developed.  By using environmental 

triggers that are present at the desired delivery site, liposome-based therapeutics can be directed 

to diseased sites and actively unload their contents rather than relying on the passive diffusion 

delivery method of conventional liposomes.5  Through active delivery, liposomal carriers can be 

developed that have a tunability over the release profile to adapt it to match the therapeutic 

profile to the drug being delivered.  The McCarley research group has previously developed a 

redox-triggerable lipid capable of forming liposomes and encapsulating cargo.  However, the 

redox-lipid remains unexplored for the kinetic release profile in different salt concentrations, salt 

components, and temperature.   

The first aim of this research is to establish the standard behavior and mechanism of 

release of the redox-active quinone capped phosphatidylethanolamine (PE) lipid, known as Q3-

DOPE.  Pure Q3-DOPE liposomes were prepared using a standard buffer of pH 7.4 50 mM 

phosphate and 75 mM KCl.  Quenched, non-fluorescent concentrations of calcein dye were used 

as a probe to assess the encapsulation ability and stability of the liposomes.  Leakage that leads 

to dequenching of the calcein was followed by fluorescence spectroscopy after introduction of a 

chemical reducing agent, sodium dithionite (Na2S2O4), to reduce and remove the capping 

headgroup via a trimethyl lock-facilitated lactonization reaction.  Dynamic light scattering 

(DLS), zeta potential, and UV-vis spectroscopy were used to further characterize the Q3-DOPE 

liposomes to establish its hosting and the mechanism and kinetics of guest release upon 

reduction. 

The second aim of this research is to investigate environmental changes to the Q3-DOPE 

liposomes in order to influence the kinetics and rate of content release.  In addition, the key 

interest of the second aim was the observation of the release kinetics following a Hofmeister salt 
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series with a common K+.  The hypothesis in the use of Hofmeister salts is to influence the phase 

transition temperature (TH) of the DOPE lipid, either favoring or disfavoring the fusion of DOPE 

liposomes and the release of the quenched calcein probe.    In addition, the role of temperature 

was first probed due to the low TH of the DOPE lipid, reported to be between − 4 and 16 °C.6  

Based on the results of the temperature study, a second lipid, DLiPE with a TH = − 15 °C,7 was 

prepared with the capping quinone headgroup for Q3-DLiPE. 

The third goal of this research is to investigate the differences in quinone structure of the 

capping headgroup.  The geminal methyls in the trimethyl lock were found to be important in the 

rate for which the lactone is released from the lipid.  Without the gem-methyls, the Q1-DOPE 

experiences an exceptionally slow rate of probe release due to the slow release rate of the lactone 

from the headgroup.  Further removal of all methyl groups on the quinone for Q0-DOPE results 

in no observable release of any contents over a period of over 24 hrs.   

Ultimately, Q3-DOPE liposomes will be used as drug or reagent delivery vehicles that 

operate by reductive activation, either enzymatically or chemically, to unload an encapsulated 

cargo.  The findings here allow for development of an understanding of the underlying behavior 

of the DOPE that contributes to the release kinetics of the Q3-DOPE system and to further 

influence the kinetics by careful selection of environmental factors and the type of lipid used in 

the redox-active liposome system for content delivery.    

1.2 Review of Liposomes and Responsive Systems for Delivery 
 
1.2.1 Challenges for Drug Delivery 
 

For liposomes to fulfill requirements as drug carriers and delivery agents, they must meet 

two criteria.  First, the encapsulated cargo must remain inside the liposome and not prematurely 

leak.  Early leakage hampers the inherit benefits of lowering the drug toxicity by liposomal 

encapsulation, as well as decreasing the concentration of the drug available at the target site.  
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Secondly, as the most common introduction of liposomal carriers into the body is through 

intravenous injection into the vascular system, the liposomes must avoid components of the 

mononuclear phagocyte system (MPS)8 (previously known as the reticulo-endothelial system or 

RES)2 that is responsible for the capture and removal of foreign objects from circulating blood.9  

While the behavior of the MPS can be exploited for delivery of antiparasitic and antimicrobial 

drugs to treat localized infections of the MPS, longer blood circulation times are required to take 

advantage of the leaky tumor vasculature and poor lymphatic drainage of tumors.10,11  The leaky 

tumor vasculature and poor lymphatic system of cancerous tumors, known as the enhanced 

permeability and retention (EPR) effect, results in accumulation of particles and objects on the 

order of 100 nm in the interstitial area of tumors, permitting the accumulation of liposomes.12  

Once the liposomes reach their target site, the contained drug must be unloaded into the region.  

This can be done by either passive diffusion of the drug or by an active trigger designed to 

disrupt or destroy the lipid bilayer, resulting in rapid release of the drug. 

1.2.2 Liposome-Based Delivery Systems 
 

The clinical utility of the majority of conventional chemotherapeutics is limited by either 

the inability of drugs to reach target tissues in sufficient therapeutic concentrations, or the drugs 

themselves have severe to toxic effects on normal, healthy organs and tissues.  Thus, the full 

therapeutic potential of many drugs cannot be completely exploited.  Many different methods 

have been developed to overcome these problems, one of which focuses on sequestering the drug 

inside a biocompatible container that can then be selectively delivered to target organs, tissues, 

or cells affected by disease.  Liposomes, by design, are biocompatible due to the lipid 

composition of the barrier separating the interior from the exterior of the container.  The lipid 

bilayer allows hydrophobic drugs to reside within the hydrophobic region of the lipid layers 

while water-soluble drugs can be encapsulated completely inside the liposome interior.  
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Conventional liposomes or first-generation liposomes, upon intravenous administration, 

are rapidly (<6 hours) recognized by components of the MPS; opsonins are bound to the 

liposome surface and these opsonin-liposome complexes are removed from blood circulation via 

the liver and lymph nodes.2  Interestingly, their capture by the MPS can be used to effectively 

deliver antimicrobial and antiparasitic drugs to treat infections of the MPS.  Early methods to 

prevent opsonination involved manipulation of the bilayer fluidity, as the incorporation of 

cholesterol into the bilayer along with careful selection of lipids containing saturated acyl chains 

was observed to yield liposomes with an increased stability in blood when compared to non-

cholesterol-containing bilayers or bilayers containing unsaturated acyl chain lipids.13  It was also 

noted that the size and lamellarity of liposomes had influence over the rate of clearance from the 

blood as larger liposomes were eliminated from the blood more rapidly than were smaller 

liposomes.2  Finally, the surface charge of the liposome can be varied through the incorporation 

of positively or negatively charged lipids. However, the addition of charge to the liposome 

surface had consequences, as clearance times of both negatively and positively charged 

liposomes were faster than those of neutral liposomes.4  

As of 2007, there were five approved conventional liposomal drug delivery systems 

based on lipid cholesterol formulations.8  The most widely known is Doxil (liposome 

Doxorubicin) for the treatment of Kaposi’s sarcoma and Myocet (Doxorubicin) for the treatment 

of breast cancer.  Another formulation, called Depocyt, is for the treatment of lymphomatous 

meningitis, and Liposomal-Annamycin for treatment of fungal infections in immuno-

compromised patients.  There are 14 different conventional liposome formulations in clinical 

trials, with the main focus on the treatment of various cancers.8  

In order to overcome or slow opsonin binding to the liposome surface, second-generation 

liposomes were developed based on the work of T.M. Allen and D. Papahadjopoulos.  Water-
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soluble poly(ethylene glycol), PEG, groups were anchored to a cross-liked lipid and incorporated 

into liposome surfaces.14  These second-generation liposomes are called sterically stabilized or 

“stealth” liposomes and experience significantly improved blood circulation times (up to 24 

hours).15  Longer-circulating liposomes can passively accumulate inside tumor tissues by taking 

advantage of the enhanced permeability and retention (EPR) effect.10   The EPR effect results 

from the porous endothelial vasculature and poor lymphatic drainage of the tumor that draws 

blood and leads to concentration of small (100–200 nm in diameter) objects, such as liposomes, 

into the tumor region.12    PEGylated cationic liposomes have also been found to slow or inhibit 

the MPS response and have become a major cornerstone in the development of non-viral DNA 

delivery;16 and have recently been investigated for the liposome-mediated delivery of small 

interfering RNA (siRNA).17  Alternatives to PEG, such as protective polymers,18 biodegradable 

polymers19 and even amino acids,20 are being investigated as possible next-generation, long-

circulating liposomes that have a modifiable degradation time, permitting further applications of 

this type of liposome. 

The first approved PEG liposome is DOXIL/Caelyx (liposomal Doxorubicin) for the 

treatment of Kaposi’s sarcoma and recurrent ovarian cancer.8  Nearly all of the cardiotoxic side-

effects from conventional Doxorubicin have decreased occurrence with the use of Doxorubicin 

PEG liposomes.  Further applications of DOXIL/Caelyx are currently in progress to study 

treatment of myeloma, breast cancer and recurrent high-grade glioma.  Several other PEG 

liposome-based formulations are in clinical trials for the treatment of neck and lung cancer, acute 

myeloid leukemia, multiple sclerosis and prostate cancer.8,21   

While passive release of drugs from liposome systems has had significant impact on the 

treatment of cancers, the current first- and second-generation liposomes do not come without 

side effects, with the most common being hand-foot syndrome associated with liposomal 
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treatment.22  There also remains the question of the kinetics of release of the drug from the 

liposome through passive diffusion routes, as it is difficult to determine the ratio between free 

and encapsulated drug residing in the extracellular fluid of tumors.23  Matching toxic drugs to an 

effective dosing model for passive diffusion is limited at best, providing severe side effects, such 

as bone-marrow and other organ toxicities.5  Recent efforts in liposomal research address both of 

these issues by focusing on stimuli-responsive liposomes with a programmed self-destructive 

pathway to actively unload their contents after reaching a specific site.  Stimuli-responsive 

liposomes offer the ability to tune the rate of drug release to match the efficacy profile of the 

drug to improve the effectiveness of treatment.24   

1.2.3 Triggered Release 
 

Triggered or stimuli-responsive systems rely on the stimulus to be present or to reach the 

target site at sufficient concentrations or intensities to result in the triggering of the system to 

begin its self-programmed destruction path.  Ideally, the stimulus is not present at other locations 

so as to prevent premature or unwanted opening of the liposome and delivery of the 

pharmaceutical agents to non-diseased tissues.  Upon the occurrence of the stimulus event, the 

liposomes can be designed to either fuse with other liposomes and lipid bilayers to unload the 

interior cargo or for the lipid bilayer of the liposome to become permeable to its contents.  

Previous stimuli-responsive systems have exploited both external (exogenous) triggers, such as 

temperature25,26 or radiation,27,28 or internal (endogenous) triggers, such as pH29,30 or enzyme 

activity.31,32 

The simplest approach for temperature-sensitive liposomes takes advantage of lipids with 

different phase transition temperatures (TH) or different chain melting temperatures (TM) by 

either selecting lipids with various chain lengths or chain saturation.33  Heating a lipid beyond its 

TH induces a change in the phase of the lipid, causing them to undergo a phase transition from a 



 8 

lamellar to a non-lamellar form, thereby disrupting the lipid bilayer and causing content release 

to occur. Lipids can be selected with different TM values, creating a liposome that can have 

permeable regions at elevated temperatures, permitting the drug to diffuse outside of the 

liposome.34,35  Also, temperature-sensitive polymers, such as poly(organophosphazenes), change 

conformation at temperatures from 32 to 44 °C and have previously been incorporated into 

liposomes for successful release of liposome contents at elevated temperatures.36 

Light-sensitive liposomes have had two primary different development pathways, one 

focused on the use of light to cleave a photoresponsive headgroup from the lipid, while the other 

has focused on light-driven polymerization of functional groups on the acyl hydrocarbon chains.  

For the photoresponsive headgroup, Zhang and Smith attached 6-nitroveratryl-oxycarbonyl 

chloride (NVOC-Cl) to DOPE and upon exposure to 300–nm light, released the headgroup and 

CO2 from the DOPE.28  The DOPE liposomes then have to undergo membrane fusion and release 

their contents via lipid phase transition.  A 20–minute exposure with 300 nm light from a 150 W 

lamp, resulted in release of approximately 50% of the contents after 40 minutes (pH 5 and 37 

°C).28  Alternatively, liposomes can be made permeable by polymerizable lipids, as in the case 

with lipids containing a photosensitive group, 10-(2’,4’-hexadienoyloxy)decanoyl attached to the 

lipid hydrocarbon chains of PC lipids.37  Photopolymerization of the acyl hydrocarbon chains 

was achieved with 1–2 min exposure to 258–nm light, demonstrating approximately 40% release 

of contents after 30 seconds after the termination of light exposure (pH 7 and 37 °C).38     

The utility of exogenous triggers is limited by the ability of the stimulus to reach the 

responsive liposomes at a significant amount as to trigger the content unloading mechanism of 

the liposomes.  For example, with light-sensitive liposomes, the activation of the liposome is 

limited by the distance light can penetrate into the skin.  Studies have demonstrated that on 

average, approximately half low wavelength light can reach the epidermis layer, which has an 
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average depth of 0.05 mm.39  Thus, light responsive liposomes are limited to sites near the 

surface of skin and require the use of wavelengths and intensities of light that are potentially 

harmful to the outer epidermis.  Complex medical engineering is required for the application of 

light to regions of the body deeper than the epidermis layer of skin.  Temperature sensitive 

liposomes require less engineering to deliver the stimulus to the site, as it can be as simple as 

selectively heating a region of the body that contains the site of delivery.  Like light penetration 

into the skin, the question arises of how far temperature can penetrate into the body and be 

comfortably maintained for the period of time required to trigger and unload the liposomal 

contents.  For example, heating the interior of a limb to a constant 40 °C for several hours may 

not be the most comfortable form of treatment, especially considering that the exterior 

temperature may be significantly higher. 

With endogenous triggers, such as pH or enzymatic activity, the stimulus is already 

present at the target site; stimuli-responsive liposomes would only have to be administered while 

the design of the system would facilitate delivery and release of the drug from the liposome.  An 

endogenous trigger would not be limited to a region where the applied stimulus could reach, 

permitting the delivery of drugs to sites within the body that would otherwise be inaccessible to 

light or elevated temperature.   

A number of pH-triggered liposomes have been developed over the past thirty years.40,41  

This interest comes from the observed decrease in pH in many of the physiological and 

pathological processes that occur in liposome uptake and delivery, such as endosome 

trafficking,42 tumor growth,43 and inflammation.44  Mechanisms for pH-triggered liposomes 

include lamellar to non-lamellar phase states from protonation of negatively charged lipids, 

protonation of negative peptides or polymers, hydrolysis of bilayer-stabilizing lipids to 

destabilizing lipids, and pH-sensitive surfactants.45  The difficulty in developing pH-responsive 
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liposomes stems from the small pH changes, usually 0.4 to 0.8 units more acidic than 

physiological pH, in inflammatory and tumor tissues.   

Another form of endogenous trigger resides in the form of redox-sensitive liposomes 

through the inclusion of a redox-active group attached to the lipids of bilayer membranes.  

Moieties such as ferrocene have been incorporated into surfactants to create micelles that can be 

broken up into monomers upon addition of a reducing agent.46  Ferrocene and chelated transition 

metal complexes can be incorporated into multilamellar liposomes that are destroyed upon 

exposure to a reducing agent.47-49  Finally, ferrocene coupled with cationic lipids for a form of a 

redox-active liposome has been demonstrated as a viable method for transferring DNA across 

cell membranes.50  

Aside from exploiting environmental differences to trigger liposomal destruction, other 

groups have demonstrated the use of antibodies and enzymes as a method to direct liposomes to 

a therapeutic region of the body for site-specific drug delivery.  Antibodies can be directly 

attached to the lipid headgroup or to the terminal end of a poly(ethylene glycol) chain to create 

immunoliposomes that can be tuned to target antigen molecules expressed on the membranes of 

tumor cells.2  Peptide sequences have also been integrated into liposome surfaces that are 

targeted toward blood vessels found in tumors.2 

The overexpression or the involvement of enzymes at tumor sites has been another venue 

for endogenous triggering that has recently experienced interest for a number of different 

research groups.  Elastase, an enzyme involved in the inflammatory response and tumor sites, 

has been used to target DOPE liposomes capped with a simple peptide sequence.51  The peptide 

sequence-DOPE lipids operate in a similar manner to the light-sensitive DOPE liposomes, where 

the peptides are used to stabilize the DOPE lipids until removal from the lipid headgroup via 

enzymatic cleavage.  Rather than using DOPE fusion pathways, elevated activities of 
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phospholipase A2 (PLA2) in inflammatory and tumor tissues can be used to trigger PEG-

liposomes due to observations of enhanced hydrolysis of the liposomes by PLA2.52  PLA2 

interacts with liposomes and catalyzes the hydrolysis of the lipids at the sn-2 position, releasing 

fatty acids and non-bilayer single-tailed lysolipids, completely disrupting the liposomal bilayer 

by the destruction of the lipids themselves.24,53  Other enzymes for triggering liposomal systems 

include alkaline phosphatase,54 phospholipase C,32 and matrix metalloproteinases MMP255 and 

MMP9.56  Due to the upregulation of certain enzymes in tumor tissues and the ability of those 

enzymes to recognize specific substrates, they make an attractive and interesting endogenous 

trigger for payload delivery of liposomes. 

1.2.4 Engineering Liposomes for Triggered Release 
 

Ideally, an applied stimulus at a specific location triggers the onset of cargo unloading by 

either inducing a phase change in the lipids or through destabilizing the membrane bilayer.  

There exists a number of different systems in the literature that already exploit a number of 

different triggers with only a small fraction of those systems being enzyme responsive.  

However, one fundamental problem across most systems is the inattention to the environmental 

conditions that are used for the release assays.  There is no single standard buffer system, pH, or 

temperature across the assays, making it difficult at best to compare release kinetics and abilities 

of each system.  In the following sections, the nature of lipids and the impacts of different 

environmental conditions on their behavior will be discussed.   

1.3 Nature of Lipids 
 
1.3.1 Lipid Structure and Phase Behavior 
 

Phospholipids consist of a wide range of amphiphilic compounds that consist of a 

nonpolar (hydrocarbon) and a polar (headgroup) region.  In a membrane, phospholipids are 

densely packed with the polar headgroup region oriented toward the bulk aqueous layer, while 
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the more hydrophobic acyl hydrocarbon chains are oriented toward the interior of the bilayer.  

Phosphatidylcholine (PC) lipids (Scheme 1), consisting of a nitrogen headgroup with three 

methyl groups, are one of the most common lipids in biological membranes.  This is due to the 

ability of PC lipids to align into planar bilayer sheets that minimize unfavorable interactions 

between the surrounding bulk aqueous environment and the hydrophobic hydrocarbon acyl 

chains.57  In simple geometrical terms, the PC lipids are roughly cylindrical with a roughly equal 

head:tail volume ratio.58  In terms of structural parameters, P, as determined by the steric effects 

of surfactant molecules is defined as:59 

! 

P =
v
al

     Equation 1.1 

 
Where v is the volume of the lipid, a is the cross-sectional area of the lipid headgroup and l is the 

length of the acyl hydrocarbon chain.  When P = 1, lamellar bilayers are the most favored 

structure, whereas with values of P > 1 and P < 1, inverted hexagonal phase structures and 

micellular structures, respectively, are preferred.60  

  

 
 
 
 
 
Figure 1.1: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), otherwise known as 18:1 (Δ9-
Cis) PC with estimated volume of P = 1, giving a cylindrical geometry with an equal head:tail 
volume. 

 
Phosphatidylethanolamines (PE), Figure 1.2, at pH values greater than 9 have three 

protons bound to the nitrogen headgroup rather than the three methyl groups for PC lipids.  The 

smaller headgroup, with a cross-sectional area less than the width of the acyl hydrocarbon 

chains, results in the observation of several different phase behaviors, differences in hydration 
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and hydrogen bonding, and pH-dependent charge that are not observed in PC lipids.  By 

geometrical parameters, PE lipids can be envisioned as conical in shape, due to a low head-to-tail 

ratio, thus giving values for P > 1 and preference for inverted hexagonal phase structures.59  PEs 

can make up to 40% of cellular membranes, depending on the location and function of the cell; 

most of the PE lipids are typically found in the interior leaflet due to packing differences in the 

lipids from the smaller cross-sectional area of the headgroup.57  Changes in the amount of PE in 

bilayers are believed to alter the functionality of the bilayer,61 as demonstrated with rhodopsin, a 

chromophoric reporter group that undergoes a conformational change that has been linked to the 

amount of PE in the surrounding lipid bilayer.62  Typically referred to as non-bilayer lipids, PE 

lipids are believed to be a major player in the fusion process of biological cells and other 

membrane-bound biological systems.63    

 

 
 
 
 
Figure 1.2: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), otherwise known as 18:1 
(Δ9-Cis) PE. An estimated volume of P > 1, giving a conical geometry with a low head:tail 
volume. 

In Figure 1.3 are shown the three basic phases accessible to lipids.  Several other phases 

exist or are postulated to exist, but their role in lipid phase behavior is thought to not be 

significant.  In the Lβ gel phase, the lipid exhibits slow lateral diffusion, and the acyl chains are 

often referred to as “frozen”, creating a rigid bilayer structure.  As the temperature is increased, 

the acyl chains melt at a specific temperature and undergo a high enthalpy transition, TM as the 

lipids undergo a phase transition to the Lα or liquid-crystalline phase.65  The lipids in the Lα 

have fast lateral diffusion.  This is the most common phase state of biological membranes, 
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serving as the initial state for liposome fusion studies.  Upon further heating, only a certain 

subset of lipids, namely PEs and phosphatidylserine (PS), undergo a low enthalpy, higher 

temperature phase transition at inverted hexagonal type-II or TH.65  The inverted hexagonal, HII is 

considered to be non-bilayer in water due to the inverted micellular structure having the lipid 

headgroups curling around a water core and the acyl hydrocarbon chains splayed outward to 

interact with other inverted hexagonal phase lipid tubes.  The values for TM and TH refer to the 

temperature for the onset of the phase transition, as measured by calorimetry, X-Ray diffraction, 

or 31P NMR. 

 
Figure 1.3: Cross-sectional schematic depicting the three basic lipid phases and the structural 
parameter terms used for each phase.  Lβ refers to the gel phase, Lα refers to the liquid-
crystalline phase, and HII refers to the inverted hexagonal phase.  TM is the temperature where the 
acyl hydrocarbon chains melt for the Lβ to the Lα transition.  TH is the temperature where certain 
lipids will undergo an additional phase transition from Lα to HII.  Adapted from Bentz (1988).64 

  
The polymorphic or phase preference behavior of a lipid can be estimated by the head-to-

tail ratio using Equation 1.  More specifically, the phase behavior of a lipid is directed by a 

balance between four geometry-dependent forces so as to achieve the lowest total free energy of 

a favored phase.  Once the energy exceeds a favorable state, the lipid will undergo the phase 
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transition to the lower energy state, e.g. the transition of a PE bilayer from Lα to HII at TH.  The 

four geometry-dependent forces that need to be considered are the electrostatic forces in the 

headgroup region, the lipid curvature (monolayer elasticity), the packing and van der Waals 

forces of the acyl hydrocarbon chains, and the hydration forces in both the headgroup and acyl 

hydrocarbon chains.66   

Electrostatic forces in lipid assemblies have been probed through the observation of 

changes in the dipole moment of lipids, in addition to the surface charge of the liposomes 

themselves.67  Any influence of the electrostatic forces of a lipid is limited to the headgroup 

region.  The polarization of the headgroup has been found to shift depending on the phase state 

of the bilayer and whether or not ions bind or interact with the headgroups.68  Thus, the 

orientation and conformation of a lipid headgroup is never constant and is easily influenced by 

the binding or adsorption of ions, hydrophobic ions, or by mixing with differently charged ions.69  

In PC lipids, the headgroup has a large dipole moment and measurements show that the dipole of 

the phosphate-choline group lies nearly parallel to the plane of the lamellar membrane.70  

However, any addition of negative surface charge decreases the size of the dipole interaction of 

the headgroup, resulting in the dipole being “pulled back” into the interior of the bilayer.69  Even 

in PE lipids, there are further electrostatic interactions in the headgroups in the form of hydrogen 

bonding between the amine headgroups and the phosphate groups.  Studies using deuterium-

labeled hydrocarbon chains have demonstrated a very small influence on their structure as a 

result of electrostatics.69   

Lipid curvature takes into consideration the geometrical arguments for the preference in 

the lipid phases.71  A smaller headgroup cross sectional area lowers the head-to-tail ratio, 

resulting in a lipid with a negative curvature value that will energetically prefer a concave 

geometry and to curl around water.  Lipids with a positive curvature value will bow outward into 
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water and adopt a convex structure such as that of a micelle.  Closely related to the values and 

estimations of the lipid curvature is the contribution of the acyl hydrocarbon chains. Any factors 

that act to widen the splay of the acyl hydrocarbon chains to create a larger tail volume, such as 

temperature, chain length or unsaturation, will decrease the radius of curvature of a lipid due to a 

change in the head-to-tail ratio.  Thus, as a PE lipid has its temperature move through its TH, the 

acyl hydrocarbon chains splay outward and increase the volume area of the chains, thus causing 

changes in the packing parameters.  This is also why TH values are not observed in PC lipids, as 

the increase in the acyl hydrocarbon chain volume is small enough that the lipid remains in the 

Lα phase well above reported temperatures for similar PE lipids.   

The acyl chain length, saturation, position of any points of unsaturation (double bonds) 

and their conformation all have an influence on the values of TM and TH.   For example, in 

unsaturated PEs, decreasing the chain length tends to increase both the TM and TH, as going from 

an 18-carbon acyl chain in DOPE to a 16 carbon acyl chain in 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (DPPE) increases the TM from − 16 °C to 63 °C and the TH from 10 °C to 

118 °C.72  The degree of unsaturation in PE lipids also contributes to differences in the phase 

transition temperatures, as the TH of fully saturated lipids, such as 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine (DSPE), known as 18:0 PE, is 100 °C.72  When comparing the temperature 

values of DSPE to DOPE, the DOPE contains a single cis double-bond in each of the acyl chains 

which lowers the TH to a range of 8 to 16 °C.  Changing the cis-isomer of DOPE to the trans-

isomer (1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine or DEPE), known as 18:1 (Δ9-Trans) 

PE, results in a larger acyl hydrocarbon volume that strongly influences the values of the TH 

value due to the structure of the Lα phase being more commensurate with the HII phase.73  The 

result is an increase in both the TM (38 °C) and TH (64 °C) for DEPE.72   
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Finally, the hydration of a lipid can impact its phase behavior, as easily noted when 

discussed in the concept of lipid curvature.  The hydration of lipids will be further discussed in 

the next section, but as related to the concept of lipid curvature for the specific case of a PE lipid, 

limited amounts of water at the PE headgroup tends to impede the Lα → HII phase transition due 

to the inability of the lipid cylinders to expand via repulsive forces.71  However, increased 

hydration of a lipid promotes electrostatic repulsion of lipid headgroups, thus lowering the 

overall free energy of the phase and resulting in favoring the HII over the Lα. 

1.3.2 Water Structure 
 

Lipids residing at the water interface of lipid bilayer assemblies encounter a thin aqueous 

layer that is subject to strong, short-range (< 50 Å) forces from the bilayer surface.74  Any 

change in the lipid hydration level or the presence of ions will have a strong influence on the net 

free energy of the lipid, which leads to a preference for a specific phase for non-bilayer-forming 

lipids.  The extent of hydration surrounding a lipid headgroup depends on the effective size of 

the headgroup and the overall lipid geometry.75  The hydration level of the headgroup influences 

the packing density of the lipids, as van der Waals interactions between adjacent lipids are 

weakened which results in the loosening of packing parameters.76 

The ordering of water molecules at a bilayer surface results in unfavorable entropy in the 

interaction between the bilayer and the aqueous phase.77  This change in entropy may be partially 

off-set by the favorable chance in enthalpy, arising from the binding of water to the lipid 

headgroups.  In fully hydrated choline headgroups, the enthalpy compensation is achieved 

through binding of an estimated 14–30 water molecules, with the number of bound water 

molecules being a function of the acyl hydrocarbon chain heterogeneity and unsaturation.78  The 

majority of the water is clustered within 5 Å of the headgroup with a small number of water 

molecules penetrating as far into the lipid as the phosphate, according to theoretical 
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calculations.74  The ordered water around the headgroup induces a conformational change in the 

dipole of the phosphate-choline group from one that is coplanar with respect to the bilayer plane 

to one that is nearly perpendicular to the bilayer plane.69  This change in the dipole serves to 

decrease the mean bilayer thickness that results from expansion of the area of the acyl 

hydrocarbon chains.   

PE headgroups bind less water than PC headgroups due to decreased surface interactions 

with the aqueous phase by the smaller amine headgroup79 and because of the presence of 

hydrogen bonding between adjacent amine headgroups.  A fully hydrated ethanolamine 

headgroup in the Lα phase is estimated to have between 10–12 water molecules surrounding it,77 

while there are approximately seven water molecules surrounding the headgroup for DOPE in 

the HII phase.80   In addition, there is significant headgroup hydrogen bonding between the 

ammonium, the surrounding water, and between the oxygen atoms of neighboring phosphate and 

ammonium groups, which serves to reduce the polarity of the headgroup and align it coplanar to 

the bilayer plane.70  In PE, the enthalpy compensation from the unfavorable entropy from the 

ordering of water molecules is less effective than in PCs due to the fewer water molecules 

surrounding the headgroup.77   

1.3.3 Altering Phase Behavior 
 

The lamellar to inverted hexagonal phase transition (Lα → HII) in PE lipids is a very low 

entropy event and can be triggered by weak energetic influences of ions, hydration, temperature, 

and pH.  The chain length of the lipid itself has a very small contribution to the overall phase 

behavior; the values of enthalpy and entropy for the Lα → HII transition experience a very small 

increase with increasing chain lengths in an approximately linear fashion.81  Various 

environmental conditions, such as the hydration level of the lipids, and aqueous bulk conditions, 

e.g. temperature, pH and salt concentration have observable effects on the phase behavior.   
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As discussed in Section 1.3.2, the lipid hydration level has an influence on the phase 

behavior of the lipid; for example by dehydrating a lipid (e.g. there is less water available to 

hydrate the lipid headgroup), the value of the TM increases while decreasing the value of TH.81  

PE lipids have been previously observed to form stable lamellar phases and liposomes at pH 

values above 9 resulting from protonation of the amine headgroup.82  A significant issue in the 

literature concerning the study of pH effects on PE lipids is the buffers used to control the pH, as 

certain buffers, for example phosphate buffer, is valid over pH values of 5.7 to 8.0.  Changing 

buffer systems to reach pHs below 5, for example from phosphate to acetate, changes the 

behavior of the lipids which may exhibit an altered phase behavior in one buffer compared to 

another buffer. Thus, it is difficult to establish the exact relationship between pH and phase 

behavior of PE lipids, as alterations to the components of the buffer system used to change the 

pH can impact both TM and TH values.   

For salts, such as NaCl, it has been observed that increasing the salt concentration serves 

to increase TM while decreasing TH in PE lipids.  The magnitude of the salt-induced transition 

temperature shifts depends on the acyl hydrocarbon chain lengths of the lipids, as greater 

increases in the TH with changes in salt concentration are observed in lipids with shorter chain 

lengths.81   

Modification of the PE headgroup also changes the phase behavior of PE lipids, 

previously observed in the methylation of DOPE headgroups to give DOPE-Me.  The overall 

effect of increasing the area of the headgroup upon headgroup methylation is decreased values of 

TM and increased values of TH.81  In general, any modifications that increase the headgroup 

volume area relative to the acyl hydrocarbon chains will favor the lamellar gel phase over the 

hexagonal phase.   
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1.3.4 Hofmeister Salts 
 

The Hofmeister series, described over a 100 years ago by Franz Hofmeister, is an ordered 

series of salt cations and anions, whose order is dictated by their ability to significantly modify 

the solubility of proteins in the aqueous electrolyte solution.83  Salt ions in this series were 

ordered according to their ability to precipitate proteins (salt out) or increase the solubility of the 

protein (salt in).  The ions that encourage salting out of proteins are called kosmotropes, and the 

ions that increased protein solubility are referred to as chaotropes.  Chloride anion is traditionally 

considered to be at the center of the series, acting as a dividing line between kosmotropic and 

chaotropic behavior, as determined by column elution and protein solutions.84  For lipids and 

especially phosphatidylethanolamine lipids, the inversion point between kosmotropic and 

chaotropic behavior is found to occur between Br– and I–.85  Hofmeister effects become 

important at moderate concentrations, in the range of 0.01 to 1.0 M, and tend to increase with 

increasing ion concentration.84  While different measurement techniques may give slight 

variations in the ordering of the ions, the series typically exhibits a similar and characteristic 

ordering with overall behavior of the ions remaining the same.   

The typical order for the anion series with a common cation is as follows: 
 

CO3
2– > SO4

2– > S2O3
2– > H2PO4

– > F– > Cl– > Br– ≈ NO3
– > I– > ClO4

– > SCN– 
 
The Hofmeister series also applies to cations with a common anion, although the effects are 

dominated by the anion series.  The typical Hofmesiter cation series can be ordered as follows: 

NH4
+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ 

 
Hofmeister effects have been observed in a variety or processes and systems, ranging 

from the early observations of effects on the tension of the air-water interface,86 to later 

observations of effects on protein folding, enzymatic activity, protein-protein interactions, 

protein crystallization, bacterial growth and even stabilities of macromolecules and lipids.  In 
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recent years, there has been an explosion of papers related to the Hofmeister series, yet a full and 

proper molecular-level mechanism of the actions of the Hofmeister salts in the series still 

remains elusive.87 

The physical behavior of the Hofmeister series was originally attributed to the making or 

breaking of water structure.84   Thus, the origin of the names for the behavior of the ions: 

kosmotropes are strongly hydrated ions and were believed to be ‘water structure makers’ by 

strengthening the hydrogen-bonding network of bulk water.  Chaotropes are weakly hydrated 

ions and were believed to be ‘water structure breakers’ by weakening the hydrogen-bonding 

network of bulk water.   

Recent work by Cremer,88 Bakker,89,90 and Pielak91 have cast serious doubts on the notion 

of bulk water changes caused by Hofmeister ions.  It is becoming apparent that kosmotropic and 

chaotropic anions function through separate mechanisms, as kosmotropes have little to no 

interaction with the surface of molecules whereas chaotopics demonstrate a preference for the 

interfacial region, especially in fatty amine films.88  The preferred explanation is the size of the 

hydrated anions is directly related to the hydration free energy of the ion.  Chaotropic anions 

have a lower hydration free energy and are able to shed their hydration shells without a 

significant energetic penalty to interact with binding sites on a charged surface. 

  Additionally, more polarizable chaotropic anions, such as SCN–, have a stronger ability 

to partition into the molecule/aqueous interfacial region so as to decrease the overall surface 

tension and inhibit the formation of the molecular aggregate phase while stabilizing the hydrated 

phase.  The partitioning of the chaotropic anions may also influence the ability of a molecule to 

form hydrogen bonds; however, this has not been observed in a study of urea with proteins, 

where the urea was not found to significantly influence the hydrogen bonding network.  Urea, 

while not a typical charged anion in the Hofmeister series, is classified as a chaotrope, as it has 
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been observed to enlarge the interfacial area of lipids.65 It has also been observed that chaotropic 

ions, especially ClO4
– and SCN– increase the magnitude of negative surface potential 

zwitterionic lipid bilayers.92   

Kosmotropic anions, such as SO4
2–, will yield the opposite effects, as they have a higher 

hydration free energy and are unable to shed their hydration shells without a significant energetic 

penalty upon their interaction with binding sites on a charged or neutral surface. As a result of 

the kosmotrope binding, the overall surface tension of the molecule/aqueous interface will 

increase, preferring the formation of the molecular aggregate phase to the hydrated phase.  In 

recent work by O’Brien and Williams, they studied the patterning of water molecules around 

SO4
2– surrounded by 14 water molecules, where each water near the SO4

2– donates two hydrogen 

bonds to a sulfate ion or the oxygen atom of a neighboring water molecule.93  As the number of 

water molecules surrounding the SO4
2– ion increased, they observed an increase in free-OH 

species associated with water, indicating that water outside of the first solvation shell of the ion 

was influenced by the ion and actually favored, as it was observed that additional water 

molecules added additional structure to the hydrated ion of up to 80 waters.93    If the 

observations of O’Brien and Williams hold for the entire Hofmeister series, then on the 

chaotropic side, it is predicted that the ions are less hydrated and influence fewer water 

molecules outside of their first hydration shell.  This hypothesis fits with the current theory 

predicted by Cremer that has at its heart, the ability of the ion to partition into an interfacial 

region is dictated by its hydration free energy.  That is, ions with low free energies of hydration 

tend to incorporate partially into the interfacial region with suspected facile binding to the 

surface.  The opposite would hold for kosmotropic with high free energies of hydration.   

In general, kosmotropes will favor molecular conformation having reduced surface areas, 

whereas chaotropes will favor molecular conformations with increased surface areas.65  This 
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observation can be used to understand the phase stability of lipids, especially non-lamellar phase 

forming lipids such as PEs, as their phase properties are strongly influenced by the presence of 

kosmotropic and chaotropic salts and agents.  The two main transitions observed in PE lipids 

consist of a high enthalpy and low temperature endotherm, TM, that corresponds to the lamellar 

gel (Lβ) to lamellar liquid-crystalline (Lα) transition and a low enthalpy and high temperature 

endotherm that corresponds to the Lα to inverted hexagonal (HII) transition (TH).65  The presence 

of Hofmeister salts will favor certain phases of lipid depending on the nature of the salt.  It has 

been shown for PEs that kosmotropic salts promote the formation of the aggregated phase of 

lipid (HII) but destabilize the more hydrated (Lα) phase; this event for PE lipids causes a 

decrease in the temperature of the Lα → HII transition (TH) and a smaller increase for the Lβ → 

Lα transition (TM).  Chaotropic salts have the opposite effect on PE lipids, as they provide a 

solution enviroment that favors the Lα phase while destabilizing the HII phase, thus increasing TH 

and decreasing TM.  DSC measurements have been performed on PE lipids that have 

demonstrated that kosmotropic salts lead to an increase in the temperature as well as an increase 

in the entropy and enthalpy for the Lα → HII phase transition while chaotropic salts lower the 

temperature, entropy, and enthalpy for the Lβ → Lα phase transition.65  The thermodynamics of 

the Lα → HII phase change supports the previously discussed theory of interfacial water and  ion 

hydration levels, as increases in the entropy and enthalpy of the HII phase are greater in the 

presence of kosmotropes, indicating that the amount of ordered water increases around reduced 

interfacial area of the headgroups to balance the increase in entropy and enthalpy.  In the case of 

PEs, the higher sensitivity of the TH to the presence of Hofmeister anions is dominated by the 

decreased amount of water surrounding the phosphoethanolamine headgroup in the HII phase 

versus the Lα phase.  There is little change in the conformational order of the acyl chains when 
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moving from the Lα to the HII phase, and so the slight amount of thermodynamic price that is 

paid for this conformational change is more than offset by the energetics of the hydration change.   

1.3.5 Liposome Fusion, Lipid Mixing and Contents Mixing 
 

While membrane fusion is a vital component of biological processes and cellular 

function, a complete understanding of the underlying forces that are necessary to bring together 

and mix the lipids of two apposing lipid bilayers remains incomplete.  Regardless of the 

mechanisms and forces driving the molecular rearrangement of the lipids in apposing bilayer 

membranes, the final step of the fusion process is a single unified membrane.  After the fusion of 

two apposing membranes, the unified structure can – depending on the lipid composition of the 

membrane – either remain stable, become permeable to the interior cargo, or destabilize via lysis 

of the entire structure.   

Liposome fusion occurs in bilayer membrane systems where there exists a tendency for a 

portion of the lipid composition to form non-bilayer inverted hexagonal phases.  The tendency of 

the bilayer to fuse is increased by heating the system toward the lamellar/inverted hexagonal 

phase transition temperature (TH), by adding lipids that lower the transition temperature, by 

changing the pH of the bulk solution, or by adding certain charge screening or dehydrating 

species to the system.  Regardless of the factors present to induce fusion between two bilayer 

membranes, several stages from model liposomal systems have been identified in the overall 

process:64 

1) Aggregation of apposing membranes to overcome electrostatic and hydration 

repulsion forces that prevent close approach; 

2) Close approach of membranes to establish a zone of contact; 

3) Interaction between apposing membranes by formation of intermediate structures; 

4) Rearrangement of molecular packing of lipids to form a single, unified membrane; 
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5) If T > TH, assembly into inverted hexagonal structures followed by rupture and 

leakage of contents from liposomes occurs; 

6) If T < TH, intermixing of membrane components and internal aqueous contents occurs 

with reduced content leakage. 

The destabilization process of membranes is imparted by the balance between average 

surface forces that direct the formation of intermediate structures and eventually lysis of the two 

bilayers. Thus, membrane fusion of two liposomes can be considered at two levels: (1) kinetic, 

where the overall fusion process is rate limiting under a particular environmental condition and 

(2) structural where the interactions between molecular packing constraints of the lipids and the 

formation of intermediate structures determine the pathway of destabilization of fusion or lysis.64   

From a kinetic point of view, the following equation can be used to describe the fusion 

between two similar apposing membrane bilayers: 

 
   Equation 2 

 
 
where V1 denotes single liposome vesicles, V2 is an aggregated intermediate of the two single 

liposomes, and F2 is the final fused structure.  C11, D11, and f11 are rate constants, where C11 is 

affected by the energy of attractive interaction between the two liposome monomers, while D11 is 

controlled by the energy of repulsion of the two liposomes, and f11 is the rate of destabilization of 

the aggregated intermediate to the final fusion product.64  The most common environmental 

conditions that will prevent the kinetic fusion from occurring are the ability to remove the 

interfacial water from the approaching, apposed bilayers, hydration layer repulsion, electrostatic 

interactions and van der Waals attractions.  To fully establish the kinetic parameters, use of both 

liposome aqueous content mixing and liposome lipid mixing assays (step five from above) are 
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required as it is difficult to differentiate fusion from contact-mediated lysis (step six from above) 

solely depending on the outcome from liposome content release assays. 

 
Figure 1.4: Diagram and pathways for liposome fusion and destabilization for liposomes 
composed of polymorphic lipids.  Adapted from Bentz (1988)64 and Siegel (1984).94 

  
Determination of the structural contributions to the fusion process is significantly more 

difficult due to the size of interlamellar intermediates (IMIs) and the rate at which the fusion 

process occurs.  Siegel and Epand have published a number of informative and thorough studies 

using time-resolved cryotransmission electron microscopy (TRC-TEM), 31P NMR, and 

differential scanning calorimetry that have provided ample evidence to advance the theory of the 

formation of interlamellar intermediates known as stalks, but they have not been able to 

successfully provide clear microscopic evidence for the formation of stalk intermediates.95-97  It 

has been proposed by others that individual connections between apposing bilayers elongate 

directly into structures that correspond to fragments of HII phase structures that assemble 

sideways into full HII phase tubes.98,99  



 27 

The proposed model, as depicted in Figure 1.4, involves the close approach of two 

liposomes containing fusogenic lipids above their TH, and thus they are ready to undergo 

conversion to the HII phase.  The first step is proposed to be the formation of small (~ 10 nm or 

less in diameter) connections referred to as interlamellar intermediates (IMIs).95  If the area of 

contact between the two liposomes is large enough, further stalks will form and continue the 

conversion of fusogenic lipids to the HII state, resulting in the leakage of any encapsulated 

contents and further rapid conversion of the bilayer to HII.  Tension will develop in the liposome 

bilayers, eventually becoming significant enough to rupture the liposomes and collapse the entire 

structure into non-bilayer structures.96  

Thus, by exploiting the ability of PE lipids to undergo the Lα → HII phase change when 

temperature is above the TH, liposomes can be programmed to respond to various environmental 

conditions that determine the rate and completeness of the phase transition and ultimately the 

amount of the internal contents released.  By attaching a cleavable headgroup that can be 

triggered by the presence of an endogeneous stimulus, DOPE can be forced into the Lα phase 

due to the presence of a larger headgroup volume and increased hydration around the headgroup.  

The removal of the capping headgroup will revert the conditions around the lipid headgroup to 

the ones preferred by the lipid, thus creating an environment favorable for close approach of 

apposing bilayer surfaces with subsequent bilayer fusion, phase transition of the lipids into the 

HII, and contents release. 

1.4 Stimuli-Responsive (Redox-Active) Liposomes 
 
1.4.1 Trimethyl-locked Quinone Headgroup 
 

Enzyme-responsive liposomes have evolved out of research on bioactivated drugs and 

small-molecule prodrugs as a method to protect the drug or molecule from degradation until it 

reaches a specific site.  The molecule or drug enters the body in a deactivated form due to the 
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covalent attachment of an organic protecting group that is removed via enzymatic action at a 

target site, rendering a therapeutically active drug.  

 
Scheme 1.1: Reductive lactonization of 1 Q3 produces 3 HQ3 lactone and lipid; 

 R1 = R2 = R3 = R4 = R5 = CH3. 
In order to design a redox-sensitive organic protecting group for covalent attachment to 

lipids, a suitable substrate with activity toward upregulated enzymes in the specific location for 

delivery is required.  Quinone reductases have been reported to be upregulated in many tumor 

and cancer tissues, making them ideal to function as a trigger group that uses the reduction of the 

quinone to a hydroquinone to drive the removal of the protecting group.  Furthermore, quinone-

propionic acid (“trimethyl-lock”)100 protecting groups have been previously attached to drugs,101 

and our group has attached them to the exterior of dendrimers102,103 for release of payloads.  The 

release of the quinone propionic acid capping group is driven by a two-electron reduction of the 
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quinone to trigger a intramolecular cyclization reaction104 that results in a lactone that self 

releases from the parent molecule, as shown in Scheme 1.1. 

 
Figure 1.5 Redox-active, trimethyl-locked quione capped DOPE (Q3-DOPE) 
 
1.4.2 Effects of Substitution: Gem-methyl and Ring Substitution 
 

The rate of lactonization of the Q3 trimethyl lock is facilitated through the composition of 

the geminal groups (R1 and R2) on the C-5 carbon and the R3 group on the quinone ring.105  If all 

three are methyl groups, e.g. Q3, then the “trimethyl lock” has a strong accelerating effect on the 

rate of lactonization, resulting in an approximate 103 increase in lactonization rates.106  One 

hypothesis for the acceleration is that the presence of the gem-methyl groups serve to introduce 

distortional strain into the quinone ring that serves to bring the quinone carbonyl group into a 

more favorable angle for attack for the lactonization reaction.107,108  Removal of the gem-methyls 

by substitution with hydrogens results in a reduction in the lactonization rate as the strain on the 

quinone is relived and the quinone carbonyl group is in a less favorable position for the 

lactonization reaction to occur.  The methyls on the quinone can also be removed (for Q0, R1-R5 

= H on Scheme 1.1) for further adjustment of the lactonization rates, as now the electrochemical 

potential of the quinone is influenced by the absence of electron withdrawing or donating groups. 

1.4.3 NQO1 
 

NAD(P)H:quinone oxidoreductase type 1 (NQO1) was initially discovered in the late 

1950s by Ernster109 and is a homodimeric flavin enzyme that catalyzes the two-electron 

reduction of quinones and quinoid compounds via hydride transfer from the 1,5-dihydro-flavin 

adenine dinucleotide (FADH2) site in each monomer.110,111  NADH or NADPH are used as the 
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electron source for the reduction catalysis, the overall pathway following a ping-pong 

mechanism.  Elevated levels of expressed NQO1 have been reported in a broad range of human 

tumors, including breast, colon, pancreatic, and lung.112 NQO1 has previously been described for 

bioactivation of prodrugs113 and other bioactivatable drugs,114,115 yet it remains unreported for 

the activation of quinone-based liposomal systems. 

1.4.4 Challenges of Redox Environment 
 

The use of chemical reducing agents limits the use of certain buffers and a number of 

traditional fluorescence assays that have previously been used to study liposome fusion, aqueous 

content mixing, guest release, and lipid mixing.  Sodium dithionite has a reduction potential on 

the order of -0.66 V vs. SCE, sufficient to reduce the various quinone headgroups studied to date 

in our group.116  Due to the low reduction potential of S2O4
2- , careful selection of organic buffers 

and fluorescent probes is required; this includes any compounds containing aryl-nitro, diazo-, C- 

and N-nitroso, and carbonyl groups that are easily reduced by sodium dithionite.117  The 

breakdown of dithionite is accelerated in solutions with pH values below 7.5, as it is estimated 

that dithionite breaks down at a rate of 2% per minute at pH 6.5 and this rate increases with 

lower pH values.118    

Membrane fusion is traditionally monitored through the quenching of 1-

aminonaphthalene-3,6,8-trisulfonic acid, ANTS, fluorescence by the collisional quencher N, N’-

p-xylylenebis-(pyridinium bromide) (DPX).  The ANTS and DPX pair can be co-encapsulated in 

a liposome to study the rate of content leakage, as the pair is released into the bulk aqueous 

media, the ANTS is released from the DPX, creating an increase in the fluorescence intensity 

that can be related to the amount of probe released from the liposome.  Alternatively, ANTS and 

DPX can be encapsulated into separate liposomes and membrane fusion with content mixing will 

cause the two to come into contact and quench the ANTS fluorescence.82,119  This assay, despite 
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its popularity and ability to determine contents mixing was avoided due to the concern over 

reduction of ANTS upon introduction of sodium dithionite.  Another liposome contents mixing 

assay, terbium (Tb3+) and dipicolinic acid (DPA), relies on the interaction of Tb3+ with DPA 

initially encapsulated in two separate liposome populations.119  Upon contents mixing from 

membrane fusion, the Tb3+ complexes with the DPA, creating an increase in the fluorescence 

intensity.  Alternatively, the Tb3+/DPA complex can be co-encapsulated in a liposome and the 

fluorescence signal would be lost upon competitive chelation with divalent cations and EDTA in 

the medium.  The concern over Tb3+, which must be complexed with citrate to prevent 

interaction with the negatively charged lipids, results in the destabilization of PE liposomes via 

premature inverted hexagonal phase transitions. 

 The final contents leakage assay available is the encapsulation of carboxyfluorescein or 

calcein, both of which undergo self-quenching at concentrations above 25 mM.120  Release of the 

calcein into the bulk aqueous medium relaxes the self-quenching and the fluorescence signal 

increases.  Calcein, fortunately, is relatively insensitive to sodium dithionite and does not 

experience any reduction in fluorescence intensity upon exposure to the reducing agent.    

For fusion assays studying the mixing of lipids, the most popular assays involve Forster 

energy transfer from 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) to rhodamine (Rh), which 

decreases as the lipids are diluted during the fusion process.119  Both NBD and Rh are sensitive 

to sodium dithionite, undergoing reduction to non-fluorescencent species.  NBD-labeled lipids 

have previously been used to study the flip-flop times of lipids in a bilayer, as the exterior NBD-

labeled lipids can be reduced by sodium dithionite, leaving only the interior NBD-labeled lipids 

to exchange with the exterior leaflet.121   
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CHAPTER 2 
 

EXPERIMENTAL 
 

2.1 Buffer Preparation 
 

All buffer components were purchased from Sigma Aldrich and were of Bioultra (>99%) 

grade or better; they were used without further purification.  All buffer salts were used with the 

counter ion of potassium whenever available.  The standard buffer system in all experiments was 

composed of pH 7.4 50 mM phosphate buffer with 75 mM KCl.  For higher salt measurements, 

the 50 mM phosphate buffer was maintained with the required concentration of the specific salt 

added and the solution brought up to pH 7.4 with KOH.  For applications requiring non-

phosphate buffers, pH 7.4 10 mM 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino] 

ethanesulfonic acid (TES) with the appropriate concentration of KCl was used.  All buffers were 

filtered through a 0.1–µm pore size polycarbonate track-etched membrane prior to storage in 

glass bottles in a refrigerator until required for experimental use.  Prior to use, all buffers were 

allowed to come to room temperature while under nitrogen purge to degas the buffers. 

2.2 Liposome Preparation 
 

2–3 mg of the desired lipid was dissolved in a minimal amount of CHCl3 (approximately 

1 mL) in a 10 mL (14/20) ground joint test tube.  The CHCl3 was removed under a gentle flow of 

ultra-high purity (UHP) argon to create a thin lipid film on the bottom of the tube.  The lipid film 

was further dried overnight under high vacuum.  Lipids were hydrated in the appropriate amount 

of the desired buffer to create a 1 mg mL-1 solution.  The solution was aged for an hour on a 

rotary mixer and vortexed every 20 minutes for 10–15 seconds.  The hydrated lipids were then 

cycled through six freeze-thaw cycles using a dry ice/acetone bath and a warm water bath.  The 

solution was allowed to come into equilibrium with the ambient temperature for 20 min before it 

was extruded.  Extrusion was performed 20 times at ambient temperature through one 100-nm 
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pore Whatman Nuclepore polycarbonate track-etched membrane using a Mini-Extruder (Avanti 

Polar Lipids, Alabaster, AL).  Lipids were stored in an amber glass vial and shielded from light 

and used immediately for experiments.  

For calcein-loaded liposomes, the same procedure as above was followed except that the 

buffered solution contained calcein (40 mM).  Calcein (Sigma Aldrich, St. Lewis, MO) was used 

without further purification, and solutions were prepared fresh for each experiment in 5 mL 

aliquots.  Briefly, a small amount of KOH (30–40 mg) was dissolved in 1 mL of buffer, followed 

by the addition of calcein and an additional 3.8 mL of buffer.  The solution was sonicated to 

dissolve the calcein to yield a transparent orange-colored solution prior to titrating the pH back 

to 7.4 using KOH to yield an opaque reddish-brown solution.  After the pH adjustment, the total 

volume was brought up to 5 mL and the buffered calcein solution stored in the dark.  Following 

the extrusion, the calcein-loaded liposomes were separated from the non-encapsulated calcein 

through size-exclusion chromatography on a 20 cm × 10 cm Sephadex G-75 resin column.  0.5 

mL of the solution was loaded onto the column each time and approximately 1 mL (12 drops) of 

the leading band collected in amber glass vials.  No significant loss of calcein was observed after 

three days at ambient temperatures and conditions while liposomes stored under argon and low 

temperatures (8 °C) were stable for up to seven days.   

2.3 Size Exclusion Chromatography 
 

Sephadex G-75 from GE Healthsciences was used as the separation medium.  The overall 

column length was 20 cm with an internal diameter of 10 cm.  Total column volume was 20 mL 

according to the bed volume parameters provided by GE Healthcare (12–15 mL swelled per g 

dry).  Sephadex G-75 was prepared according to the literature provided by GE Healthcare: 1.67 g 

of Sephadex into 26 mL of buffer and allowed to swell at room temperature for 24 hrs.  The 

buffer used for the swelling of the Sephadex G-75 was always the same as the one to be used in 
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the calcein-loaded liposome separation, thus for different salt buffers, a new column would be 

prepared for that specific buffer system.  After 24 hrs, any remaining buffer was decanted and an 

additional 35 mL of buffer was added to make a 75% suspension.  The suspended Sephadex G-

75 was degassed for 20 minutes in a sonicator prior to gravity packing the column.  Freshly 

packed columns were washed several times with the buffer system prior to conditioning with 

non-calcein containing liposomes.  Prior to the first separation, each column was conditioned by 

the addition of unloaded liposomes, which is believed to prevent non-specific adsorption of 

during the actual separation of liposomes from calcein to the Sephadex G-75 beads.1  

2.3.1 Size Exclusion Chromatography Procedures 
 

Approximately 0.75 mL of calcein-loaded liposomes were added dropwise to the top of 

the column bed, allowing each drop to be absorbed into the Sephadex G-75 before the next drop 

was introduced.  The elution buffer was the same as the buffer used to prepare the calcein 

liposome solution.  Once the entire fraction of calcein-loaded liposomes was added to the 

column, 2 mL of buffer was slowly introduced along the sides of the column to wash any 

remaining calcein on the sides of the column walls.  The first wash was allowed to be absorbed 

into the column bed prior to adding a second 2 mL buffer wash to begin eluting the bands.  After 

the second wash was absorbed into the column bed, 7 mL of buffer was slowly added to the 

column so as to not disturb the column bed for elution.  The 7 mL of buffer was maintained 

during the entire separation procedure.  The calcein-liposome solution splits into two distinct 

bands after passing through approximately 5 cm of the column with the fast moving leading band 

containing calcein-loaded liposomes and the slower moving second band containing only free 

calcein.  The first band typically has a yellow-brown color that gradually becomes more yellow 

before eluting from the column.  Twelve drops of the leading band is collected for each fraction 

and is stored in a 4 mL amber glass vial that is further shielded from light until the second 
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separation is complete.  Once the calcein-loaded liposomes have eluted, the column is flushed 

with buffer until no discernable color from the calcein remains in the Sephadex G-75.  After 

fully washing the column, the second fraction of the calcein and liposome solution is added and 

the same procedure as above repeated.  After the two separation procedures, the column was 

maintained with 7 mL of buffer to keep the Sephadex G-75 fully hydrated during storage.  The 

columns were capped with a rubber septum and wrapped with Parafilm.  On average, a column 

would be suitable for regular use and multiple separations for up to a month before discoloration 

from excess calcein or poor separation performance required that a new column be prepared with 

fresh Sephadex G-75.       

2.4 Calcein Release Experiments 
 

Calcein-encapsulated liposomes were diluted with the appropriate buffer using adsorption 

values at λ = 265 nm and diluting to a value of 0.55, which corresponds to a 0.1 mM lipid 

concentration based on ε265 = 5500 M-1 cm-1 for the Q3 headgroup.  Alternatively, ε272 = 10330 

M-1 cm-1 was used for the Q1 headgroup and ε240 = 7030 M-1 cm−
1 for the Q0 headgroup.  3 mL of 

the diluted liposomes were transferred to a sealable quartz fluorescence cell (Hellma, Plainview, 

NY) and purged with a gentle flow of UHP argon for five min.  All fluorescence experiments 

were performed on a PerkinElmer LS-55 luminescence spectrophotometer equipped with a PTP-

1 fluorescence peltier system coupled to a PCB1500 water peltier system (PerkinElmer, 

Waltham, MA) capable of maintaining temperatures within ± 0.5 °C across the cell.  

Temperatures were maintained at 25 °C unless otherwise noted.  λex = 490 nm, slit = 2.5 mm and 

λem = 520 nm, slit = 3.5 mm.  Time based measurements were performed with a time interval of 

1 min per data point up to 1500 minutes with a 0.1 second integration time.  In order to bring the 

fluorescence intensity level of the calcein down below the detector saturation limit of 1000 

counts, the detector voltage was reduced to 770 V in addition to placing two stacked neutral 
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density filters (Omega Optics, Brattleboro, VT) in the emission path to reduce the total 

transmission to 16% of the original intensity.  For samples with a higher calcein intensity, a 

neutral density filter reducing the total transmission intensity to 8% was used.  The neutral 

density filters had no observable impact on the appearance of the fluorescence release traces for 

calcein dequenching fluorescence, only serving to reduce the overall intensity of the dequenched 

calcein to a level below the detector saturation level.   

For chemical reduction and calcein release from the liposomes, 2–3 mg of solid Na2S2O4 

(85%, Acros, New Jersey, NJ) was measured out into a 2 mL snap-top vial and purged with a 

gentle flow of UHP argon.  1 mL of UHP argon purged buffer was slowly added to the vial, 

mixed, and immediately used for reduction experiments.  Na2S2O4 was freshly prepared for each 

experiment.  An appropriate amount of the Na2S2O4 buffer solution was injected into the argon-

purged fluorescence cuvette with a 50 µL Gastight syringe (Hamilton, Reno, NV) for a 1:1 molar 

equivalent of Na2S2O4:Q-DOPE according to the dilution equation.  The fluorescence cuvette 

was inverted several times before being replaced in the instrument prior to the next measurement 

point taken.  The time was noted as t0.  The reduction of the capping quinone headgroup and the 

subsequent release and dequenching of the calcein was allowed to proceed without interruption 

until the final intensity value was no longer increasing.  To set the 100% calcein (F100) release 

value, 15 µL of 15% (v/v) Triton X-100 (Sigma-Aldrich, St. Lewis, MO) was added to the 

cuvette to yield a 0.1% Trition concentration.  After Trition addition, an additional fifteen 

minutes of fluorescence intensity was recorded prior to the end of the experiment.   

The percentage of calcein leakage was calculated as follows:  
 

! 

%Leakage =
(Ft " F0)
(F100 " F0)

*100    Equation 2.1 
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F0 was set as 0% leakage and was the average of the first four points prior to the Na2S2O4 

addition at t0.  F100 was taken as the 100% leakage and was the average of the four points after 

the Trition X-100 addition.  Ft corresponds to the fluorescence intensity observed at the point in 

time.   

2.5 Liposome Characterization 
 

Dynamic light scattering measurements were obtained from back scatter intensities (173°, 

633-nm red laser) obtained at 25 °C on a Zetasizer Nano ZS (Malvern Instruments, 

Worcestershire, UK) particle size analyzer.  Both calcein-free and calcein-loaded liposomes were 

observed with no significant diameter differences.  Zeta potentials were obtained at 25 °C in a 

folded capillary zeta potential cell using a Smoluchowski model with F(Ka) = 1.5.   

2.6 Differential Scanning Calorimetry 
 

A VP-DSC (Microcal, Piscataway, NJ) with 0.52-mL capillary cells was used for all 

thermal measurements of lipid samples.  Baseline responses of all buffers were obtained by 

continuous scanning from 1 °C to 40 °C at 40 °C/hour for a minimum of 12 hours.  Both the 

reference cell and the sample cell were completely filled with buffer (0.52 mL) and the top 

sealed to a minimum of 20 PSI.  Once a repeatable baseline was achieved, the instrument was 

brought to 1 °C for 20 min prior to quickly loading the hydrated DOPE into the sample cell.  

Prior to loading, the DOPE was vortexed for 20 seconds to suspend the DOPE liposomes.  The 

DOPE was allowed to come into thermal equilibrium at 1 °C for 20 minutes before the 

temperature was ramped up to a final temperature of 40 °C at 40 °C hr-1.   

2.6.1 DOPE Preparation for DSC 
 

1 mL of a 10 mg mL-1 DOPE (Avanti Polar Lipids, Alabaster, AL) in CHCl3 solution was 

transferred to a pre-weighed 5 mL round bottom tube.  The CHCl3 was removed via a gentle 

flow of UHP argon for one hour followed by high vacuum.  The tube was weighed again and the 
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difference used to find the mass of dry DOPE lipid.  An appropriate amount of buffer was added 

to bring the lipid concentration to 14 mg mL−
1 (18.8 mM).  The DOPE was allowed to age at 

room temperature for 20 min on a rotary shaker before being subjected to six cycles of 

freeze/thaw in liquid nitrogen (10 min) and 1:1 ethylene glycol:water bath at 0 °C (20 min).  The 

lipids were vigorously vortexed between each cycle to completely suspend the lipids in the 

buffer. The fully hydrated lipids were stored overnight at – 1 °C.   

Prior to loading the hydrated DOPE into the DSC, the 1:1 ethylene glycol:water bath was 

brought to – 5 °C for 30 min to bring the lipids well below the TH.  The DOPE was quickly 

transported to the pre-equilibrated instrument at 1.5 °C in an ice/water bath and loaded as quickly 

as possible to avoid warming the sample.   

2.7 Q1-DOPE Synthesis 
 

The synthesis of Q1-DOPE was performed following the synthesis pathway of Rohde2 

and Ong3 with the following modifications: 

2.7.1 Q1-Lactone (a) 
 

 
Scheme 2.1: Reaction for Q1-lactone (3). 
 

5 grams (32.8 mmol) of (1) 2,3,5-trimethylhydroquinone was mixed with (2) 2.6 grams 

(36.3 mmol) acrylic acid and methanesulfonic acid (MeSO3) (40 mL).  The mixture was stirred 

at 85 °C under argon for 3 hours then cooled to room temperature.  100 mL of ice water was 

added to the mixture with stirring, yielding a dark red precipitate.  The precipitate was extracted 
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with four washes of 50 mL ethyl acetate.  The combined organic layer was further washed with 

two 100 mL water washes followed by two washings with saturated NaHCO3.  The organic layer 

was dried over MgSO4 and the ethyl acetate removed by rotary evaporation.  Dark red-brown 

crystals were left to dry overnight under high vacuum.  The crystals were washed with cold n-

hexanes:chloroform (70:30 v/v) and allowed to dry under high vacuum overnight to give 1.8 g 

(36 %) of the desired product (3) as a red-brown crystals.  Yield: 36%; 1H NMR 400 MHz 

(CDCl3) δ 5.33 (s, 1H), 4.59 (s, 1H), 3.65 (s, 1H), 2.40 (s, 2H), 2.31 (s, 2H), 1.82 (s, 9H). 

2.7.2 Q1-PA (b) 
 

 
Scheme 2.2: Reaction for Q1-proponic acid (5). 

 
Q1-lactone (3) (2 g, mmol) was added to a solution of 45 mL acetonitrile and 9 mL of 

water.  (4) N-bromosuccinimide (1.86 g, mmol) was combined with 15 mL acetonirile and added 

dropwise over an hour to the Q1-lactone mixture with stirring at room temperature.  The reaction 

was allowed to continue for 1.5 hours.  Rotary evaporation was used to remove the acetonitrile 

before adding 40 mL of water.  The solution was extracted with CH2Cl2 (4 x 40 mL).  The 

combined organic layers were washed with saturated NaCl (2 x 40 mL) and dried over MgSO4.  

The CH2Cl2 was removed by rotary evaporation to yield an oily yellow-brown product (5).  

Yield: 87%; 1H NMR 400 MHz (CDCl3) δ 2.80 (t, 2H), 2.53 (t, 2H), 2.05 (s, 3H), 2.02 (s, 6H). 
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2.7.3 Q1-NHS (c) 
 

 
Scheme 2.3: Reaction for Q1-NHS (7). 
 

Q1-PA (5) (0.5g, mmol) was added to (6) NHS (0.25g, mmol) and 20 mL dry THF with 

stirring, under argon, and cooled to 0 °C.  Only after the mixture was at 0 °C, N,N’-

dicyclohexylcarbodiimide (DCC) (0.5g, mmol) was added and the reaction was allowed to 

proceed for 20 hours.  The products were filtered to remove urea and washed with ethyl acetate 

(3 x 5 mL), yielding a yellow filtrate.  Ethyl acetate was removed from the filtrate by rotary 

evaporation to yield a yellow solid.  The product was recrystallized in hot ether and stored in the 

freezer overnight.  Pure yellow crystals of the product (7) were collected and dried.  Yield: 72%  

1H NMR 400 MHz (CDCl3) δ 2.90 (m, 2H), 2.82 (m, 6H), 2.50 (t, 2H), 2.07 (s, 3H), 2.02 (s, 

6H). 

2.7.4 Q1-DOPE (d) 
 

 
Scheme 2.4: Reaction for Q1-DOPE (9). 

 
Fresh (8) DOPE in powder form was weighed in the vial, dissolved in minimal dry 

CH2Cl2, transferred to a 100 mL three-neck round bottom flash.  An additional 5 mL of dry 
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CH2Cl2 was added to the round bottom and the mixture cooled to 0 °C while under Ar.  The 

DOPE was used to calculate the desired ratio of components: Q1-NHS:DOPE:TEA (1.06:1:5).  

Once the lipid mixture reached 0°C, the appropriate amount of TEA was added with stirring.  

Following the TEA addition, the appropriate amount of (7) Q1-NHS was added and the mixture 

was covered and allowed to react for two hours in the ice bath.  After 2 hrs, the ice bath was 

removed and the reaction allowed to continue for an additional 2 hrs, covered, at room 

temperature.  The reaction was stopped by the addition of 50 mL CH2Cl2.  A 50 mL 5% sodium 

bicarbonate extraction was performed and the CH2Cl2 layer collected.  The CH2Cl2 products 

mixture was dried over Na2SO4, and the CH2Cl2 was removed via rotary evaporation.  

Remaining solvent was further removed by high vacuum for several hours to yield a waxy 

yellow film.  Purification of the products was performed using a 10 gram column on a 

Flashmaster.  The column was prepared with CH2Cl2:ethyl acetate (1:1) and the products were 

introduced onto the column with the same solvent mixture. CH2Cl2:ethyl acetate (1:1) was used 

to remove the pale yellow band of unreacted materials. CH2Cl2:MeOH:n-hexanes (3:1:2) was 

used to move the Q1-DOPE band through the column and was collected into a 100 mL round 

bottom flask.  The CH2Cl2:MeOH:n-hexanes was removed by rotary evaporation to yield a thin 

yellow waxy film.  The pure (9) Q1-DOPE was transferred to a 15 mL round bottom flask via a 

minimal amount of CHCl3, which was removed by a gentle argon flow followed by high 

vacuum.  Yield: 88%; 1H NMR (CDCl3, 400 MHz) δ 7.40 (bs, 1H), 5.32 (m, 4H), 5.21 (m, 1H), 

4.37 (m, 1H), 4.16 (m, 1H), 3.96 (m, 4H), 3.48 (m, 2H), 2.76 (t, 2H), 2.31 (t, 2H), 2.27 (m, 4H), 

2.02-1.94 (m, 17H), 1.55 (m, 4H), 1.24 (m, 4OH), 0.89 (t, 6H). 
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CHAPTER 3 
 

MODULATION OF DOPE PHASE BEHAVIOR WITH HOFMEISTER SALTS 
 
3.1  Introduction 
 

Liposomes as delivery containers continue to attract considerable interest, especially in 

the realm of drug and reagent delivery.  The presence of endogenous triggers at a desired site of 

delivery has driven research to develop stimuli-responsive liposomes that exploit the site-specific 

phenomena to remotely activate liposomes to unload encapsulated cargo.  The ability to exert 

control over the location of release brings to fruition the ability to influence the rates of 

unloading from the liposomes as to match drug efficacy profiles for increased therapeutic impact. 

Q3-DOPE was developed as a redox-active lipid that can be reduced upon exposure to 

reductive chemicals or quinone reductase enzymes.1  Initial stability and release studies 

demonstrated the ability of this novel system to encapsulate and release contents upon demand.  

Like many stimuli-responsive liposomes, DOPE was used as the base lipid due to its preference 

to form non-lamellar phases at room or physiological temperatures.  However, upon careful 

examination of the Q3-DOPE system, it was discovered that the rates of release could be 

influenced by buffer composition.  The buffer influence was traced to the rich and interesting 

chemistry of DOPE that allows for tuning of the rates of content release from the system through 

manipulation of the phase transition process.  The effects of temperature, salt concentration and 

salt type are well described in the literature for lipid behavior and liposome fusion, but their 

impact on contents release were largely unknown or unreported prior to the work described here.  

Thus, it should be possible to exert an additional level of control over the rate of content release 

by manipulating the kinetic and thermodynamic parameters that govern the phase transition of 

DOPE lipids. 
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Here I report on efforts to unravel how the rate of contents release, from Q3-DOPE 

liposomes relates to the modulation of the phase transition temperature of DOPE lipids by the 

presence of Hofmeister salts.  To the best of our knowledge, this is the first time that the graded 

response of lipid Lα → HII transition temperature, TH, to Hofmeister salts has been observed and 

conducted with contents release rates. The ability of Q3-DOPE to adopt stable lamellar liposome 

structures opens the possibility of performing rapid changes in the headgroup chemistry through 

reductive action.  Once the capping quinone headgroup is removed, liposomes composed of 

lamellar phase DOPE lipids are able to readily approach and aggregate with an apposing DOPE-

rich liposome that converts the apposing liposomes into non-bilayer structures and releases any 

encapsulated contents.  DOPE was selected as the lipid due to its reported TH values of 

approximately 10 °C, thus at room temperature and under neutral pH conditions, it has a 

preference for the non-bilayer phase.  By carefully manipulating the ambient temperature and 

buffer composition, I demonstrate that the rates of release observed in calcein unloading 

experiments correlate inversely with the values of TH obtained from DSC measurements.  A 

discussion of Hofmeister salt interactions with lipid bilayers and its effects on lipid phase 

behavior is presented as a possible explanation for the observed rate changes for contents release 

in Q3-DOPE liposomes.   

3.2 Experimental Section 
 
3.2.1 Materials 
 

Q3-DOPE liposomes were prepared as described in Chapter 2, Section 2.2.  Unless 

otherwise noted, a standard pH 7.4 buffer composed of 50 mM phosphate and 75 mM KCl at 25 

°C was used.  For the Hofmeister salt series, at pH 7.4 50 mM phosphate buffer was used for the 

various salts. 
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3.2.2 UV-Vis Measurements and Reduction of Q3 Headgroup 
 

The molar coefficient for Q3-DOPE was determined by a standard series of dilutions 

from a known stock solution of the lipid in 0.5 mM phosphate buffer with 75 mM KCl at pH 7.4.  

To determine the reduction behavior of and times for reduction of the Q3 headgroup, a solution 

of 0.1 mM Q3-DOPE was introduced into a septum sealed quartz cuvette and then purged with 

argon.  A 21 mM solution of sodium dithionite (Na2S2O4) was prepared in argon-purged buffer 

and stored in a sealed vial prior to its being injected (14 µL) into the Q3-DOPE solution so as to 

yield a 1:1 molar ratio of Q3-DOPE:Na2S2O4.  The low concentration of Na2S2O4 was required to 

prevent a large absorbance peak at 315 nm from the Na2S2O4 that obscures all lower absorbance 

peaks. 

3.2.3 Q3-DOPE 
 

Q3-DOPE was prepared as previously described.1  Q3-DOPE liposomes, calcein-loaded 

Q3-DOPE liposomes, and buffers were all prepared as described in Chapter 2. For fluorescence 

dye-dequenching studies, 40 mM calcein was encapsulated inside Q3-DOPE liposomes, and the 

final liposome concentration was set to 0.1 mM based on UV-vis absorbance measurements 

using ε265 nm = 5500 cm-1 for the quinone headgroup.  Na2S2O4 solutions were always prepared 

using argon purged buffers, maintained under argon in septum-sealed vials, and used 

immediately upon preparation.  A 1:1 molar ratio of Na2S2O4:Q3-DOPE was used to reduce the 

quinone headgroup and drive the lactonization reaction. A 0.1% (v/v) solution of Triton X-100 

was used to lyse the liposomes and fully liberate any remaining encapsulated calcein; the 

observed fluorescence value was used as that for 100% liposome contents release. The values of 

% calcein release were calculated as described in Chapter 2.4 
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3.2.4 Q3-DLiPE 
 

Q3-DLiPE (Q3-capped 1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine, 18:2 PE, 

DLiPE) was prepared by Nichole Hollabaugh Carrier.2  The same procedures for calcein 

encapsulation and fluorescence studies were followed as described for Q3-DOPE. 

 
Figure 3.1.  Redox-active, trimethyl-locked, quinone-capped 1,2-dilinoleoyl-sn-glycero-3-
phosphoethanolamine (Q3-DLiPE) with two cis-double bonds per hydrocarbon chain (18:2) PE.   
 
3.3 Results 
 
3.3.1 UV-Vis Observation of Q3 Headgroup Reduction 
 

In Figure 3.2 is shown a typical absorbance spectrum of Q3-DOPE liposomes in pH 7.4 

50 mM phosphate buffer with 75 mM KCl.  The π → π∗ peak of the quinone at λ = 265 nm can 

clearly be seen, providing a spectroscopic handle for which the concentration of Q3-DOPE 

liposomes can be calculated.  In Figure 3.3 is shown the reduction of the Q3 headgroup upon 

introduction of one molar equivalent of Na2S2O4 with each line representing successive one-

minute scan of the process.  Na2S2O4 has an absorbance peak at 315 nm, thus requiring careful 

addition of the reducing agent so as to create interference with the near-by Q3 absorbance peak.  

According to the absorbance measurements, the majority of the reduction of the Q3 headgroup is 

complete within 15 min, however, this may not be an accurate measure of the actual reduction 

time, as the lactone has an absorbance peak around 280 nm that begins to appear within 2 min as 

the reduction proceeds.  In order to properly observe the reduction of the Q3 headgroup, a 

reducing agent that does not have an absorbance peak near the peak of interest or the product 

needs to be used.  The lactone product near the peak for the Q3 headgroup also provides an issue 

with properly observing the complete reduction and conversion between the two peaks.   
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Figure 3.2.  UV-vis absorbance of Q3-DOPE liposomes in pH 7.4 50 mM phosphate buffer with 
75 mM KCl at 25 °C showing λmax = 265 nm. 

 

 
Figure 3.3.  UV-vis absorbance traces for the reduction of Q3-DOPE upon the introduction of 1 
molar equivalent Na2S2O4.  In a) the absorbance contributions of both the Q3 headgroup and the 
Na2S2O4 are shown, with each trace obtained at one minute subsequent to the after introduction 
of the reducing agent while b) shows the decreasing absorbance values of the Q3 headgroup as it 
is reduced as the lactone.   
 
3.3.2 Calcein Release from Q3-DOPE Upon Chemical Reduction 
 

In Figure 3.4 is shown the stability over a period of 20 hrs of 0.1 mM Q3-DOPE 

liposomes with 40 mM calcein encapsulated in pH 7.4 50 mM phosphate buffer with 75 mM 

KCl at 25 °C.  The Q3-DOPE liposomes are stable, as fluorescence emission of the calcein is 

essentially unchanged over long time periods, indicating that little to no leakage from the 

liposomes occurs.  Addition of 0.1 % (v/v) Triton X-100 at 1223 minutes to lyse the liposomes 

and liberate the calcein into the bulk aqueous medium, resuls in a rapid increase in fluorescence 

emission.  The percent calcein release was calculated as discussed in Chapter 2.  The slow 
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decline in the calcein fluorescence intensity after the addition of Triton X-100 is presumed to be 

due to the presence of the surfactant itself, which causes slight quenching of the calcein 

fluorescence.3 

 
Figure 3.4.  Stability of Q3-DOPE liposomes with 40 mM calcein encapsulated.  No leakage of 
the calcein was observed as noted by the lack of increase in fluorescence intensity with time.  
0.1% (v/v) of Triton X-100 was added at 1223 minutes () to lyse the liposomes and liberate the 
calcein, accounting for the sudden increase in fluorescence intensity of the free and unquenched 
calcein. 

 
Previous stability studies indicated that the Q3-DOPE liposomes are stable for three days 

when stored on the bench open to the air and exposed to light.  Storage under Ar, shielded from 

light, and at 4 °C extends the lifetime of the calcein-encapsulated liposomes to at least seven 

days.   

Dynamic light scattering has yielded, on average, Q3-DOPE liposomes with diameters 

between 100 and 120 nm and PDIs less than 0.1, indicating monodisperse samples.  Zeta 

potentials have been measured to be – 55 mV in pH 7.4 50 mM phosphate buffer with 75 mM 

KCl at 25 °C. 
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Figure 3.5.  Demonstration that the addition of a non-redox active salt, NaHSO3 at the addition 
of 1:1 molar ratio of NaHSO3:Q3-DOPE has no effect on the liposome stability, noted by the 
black triangle ().  The Q3-DOPE liposomes were lysed with an aliquot of 0.1 % (v/v) Triton X-
100 at 271 minutes (), dequenching the encapsulated calcein and causing a rapid increase in 
fluorescence intensity.   

 
Figure 3.5 establishes that the addition of a 1:1 molar ratio (salt:Q3-DOPE) of a non-

redox active salt, the same ratio used in the addition of the chemical reducing agent Na2S2O4, has 

no appreciable effect on the stability of Q3-DOPE liposomes.  Had an ionic shock event 

occurred, there would have been a change in the fluorescence emission intensity of the calcein 

caused by perturbation of the liposome bilayer after 92 min.  The liposomes were lysed by an 

addition of 0.1 % (v/v) Triton X-100 at 271 min, completely releasing the encapsulated calcein 

from the liposomes. 

A standard calcein release curve is shown in Figure 3.6 after introduction of  Na2S2O4.  

Several features can be observed in the release trace: a “lag” phase where the Q3 headgroup is 

reduced and released from the DOPE during the first 18 minutes.  Following the lag phase, the 

fluorescence intensity decreases in a contraction phase where it is believed that the liposomes are 
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contracting due to water transport as the bilayer settles into the Lα configuration that is free of 

the capping quinone headgroup.4  The contraction phase reaches a minimum at 22 minutes where 

the liposomes begin to approach, aggregate, and then fuse so as to form HII phase DOPE that 

results in the release and dequenching of the encapsulated calcein.  At 47 minutes, 50% of the 

calcein is released followed by a final 94% release at 67 minutes. 

 
Figure 3.6.  A standard calcein release curve from Q3-DOPE in pH 7.4 50 mM phosphate buffer 
with 75 mM KCl at 25 °C.  40 mM calcein was encapsulated in the liposomes and released via 
addition of a 1:1 molar ratio of Na2S2O4:Q3-DOPE at t = 0. 

 
3.3.3 Mass Action Kinetics 
 

The rate of contents release from a liposome can be used to determine the type of leakage 

occurring in the system, such as if individual liposomes are leaking their contents or that the 

contents release depends on contact between liposomes.  It is possible to study this by observing 

the kinetics of liposome aggregation or mass action kinetics.5,6  Briefly, the initial steps of 

liposome contact and aggregation involve the close approach of two apposing liposomes that 

results in liposome aggregation.  Next, the two liposome bilayers, if under favorable conditions, 
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will fuse and cause local bilayer destabilization that can further result in release of aqueous 

contents or mixing of the aqueous contents.  The mass action model employed is represented by: 

 
   Equation 3.1 

 
The approach and aggregation of two liposomes, V1, is governed by the kinetic rate constant for 

dimerization, C11.  It is possible for the liposomes to dissociate, e.g. if close approach and 

dimerization are not energetically favorable, represented by the dissociation constant D11.  In the 

case of dissociation, contents leakage from aggregation will not occur; any absent contents 

would indicate release from individual liposomes that experience self-destabilization and 

leakage.  If leakage does not depend on liposome contact and aggregation, then the contents 

release curves will be independent of liposome concentration: 

! 

V1
l1" # " F1     Equation 3.2 

 
Where V1 is an isolated liposome experiencing a rate of contents leakage, l1, as it converts to the 

leaky or open liposome F1.  In the case of individual liposomes leaking, then as the concentration 

of the liposomes is increased, there will be no observed change in the rate of release. 

In Figure 3.7, it is observed that as Q3-DOPE liposome concentration is decreased from 

0.2 mM to 0.02 mM, the rate of contents release declines.  This observation suggests that in 

order to release the internal aqueous contents, the DOPE liposomes must come into contact and 

aggregate after reduction of Q3-DOPE liposomes and release of the capping quinone headgroup 

by lactonization. Even at low concentrations, the liposomes must come into close approach and 

aggregate in order for content release to occur and there is no to minimal lone leakage of 

individual liposomes.  If individual liposomes were leaking, then increasing the concentration of 

liposomes would not change the rate of content release and each concentration of liposome 

would lie on the same line.  The data in Figure 3.7 combined with the initial stability studies in 
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Figure 3.4 and results in Chapter 4 show that in order for content release from the Q3-DOPE 

liposomes to occur, they must a) be reduced, b) release their quinone capping trimethyl-locked 

quinone headgroup as a lactone to reveal the DOPE lipids, and c) approach each other so as to 

allow for bilayer contact between DOPE liposomes. 

 
Figure 3.7.  Fluorescence release traces for Q3-DOPE liposomes as a function of liposome 
concentration.  Increasing concentrations of Q3-DOPE were used with the same buffer of 50 mM 
phosphate with 75 mM KCl, pH 7.5 and 25 °C.  As the concentration of the liposomes was 
increased, so was the rate of fusion, suggesting that bilayer contact and liposome aggregation are 
required in order to release any encapsulated contents. 
 
3.3.4 Variation of Buffer Components 
 

The rationale for initially studying the effects of salt concentration calcein release rate 

was that the Q3-DOPE system was originally studied in 0.1 M phosphate buffer with 0.1 M KCl.1 

The reason behind this was from observations from papers by Amsberry7 and Milstien,8 both of 

whom noted phosophate buffer catalysis of the lactionization of their simple  trimethyl-lock 

systems.  Thus, the initial hypothesis of this work was based on probing the effects of phosphate 

buffer concentration on the rate of calcein release for Q3-DOPE liposomes.  For this initial study, 
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two different sets of buffer were prepared: one phosphate based with KCl and one 2-[(2-

hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid (TES) based with KCl. 

 
Figure 3.8.  Comparison of release using two buffer systems; red traces represent TES buffer at 
0.01 and 0.1 M concentrations and various KCl concentrations.  Blue traces represent phosphate 
buffer at 0.01 and 0.1 M concentrations with various KCl concentrations.  The greatest change in 
release rate is from the increase in salt concentration, from 0.1 M to 0.28 M with maintaining 
0.01 M buffer. 0.1 mM Q3-DOPE liposomes were used in each experiment. 

 
The combined results are shown in Figure 3.8.  Comparing the release rates of the 

phosphate buffer versus the TES buffer, there appears to be little difference in the times and rates 

for the two buffers.  However, the more interesting observation from Figure 3.8 is that the 

concentration of salt has a significant influence on the rate of calcein release.  As the buffer 

concentration is held constant at 0.01 M and the salt varied from 0.1 M to 0.28 M, the four 

parameters for the lag phase, the burst phase, the 50% release point, and completion of the 

calcein release times all decrease.  Increasing the buffer concentration to 0.1 M serves to further 

decrease the time in which the calcein is released from the system.  These observations pointed 
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to a relation between salt concentration and calcein content release rather than the concentration 

of the buffer having an influence on calcein release.  

3.3.5 Variation of KCl Concentration 
 

Differences in rates of Q3-DOPE contents release due to the concentration of salt present 

were observed in the previous section as noted in the experiments with variations in KCl 

concentration.  To further probe this effect, calcein release studies were undertaken wherein the 

phoshpahte buffer concentration was held at a constant 50 mM while the concentration of the salt 

was varied.  50 mM phosphate buffer was selected as a concentration between the two previous 

phosphate concentrations used in the previous section as it would be capable of providing ample 

buffering capacity.  With a constant lipid concentration of 0.1 mM, the salt concentration was 

increased from 75 mM to 0.5 M, as shown in Figure 3.9. 

 
Figure 3.9.  Calcein release curves for Q3-DOPE liposomes as a function of KCl concentration.  
50 mM phosphate buffer with increasing KCl concentrations, pH 7.5 and 25 °C. Q3-DOPE 
liposome concentrations were maintained at 0.1 mM and a 1:1 Na2S2O4:Q3-DOPE injection was 
maintained for each salt concentration.  Insert shows the t50% release for each concentration of KCl. 
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Table 3.1.  Summary of the four events: end of the lag phase, end of the contraction phase, 50% 
calcein release, and completion of release for increasing concentrations of KCl in Figure 3.9. 

KCl (M) Lag Phase End 
(min) 

Contraction End 
(min) 

50% Opening 
(min) 

Max. Release 
(min) 

0.5  6 11 16 20 
0.2 12 18 27 35 
0.1 15 21 43 68 
0.075 16 21 47 68 

 
As summarized in Table 3.1, increasing the salt concentration has a significant influence 

on calcein release kinetics.  With a constant lipid concentration at 0.1 mM, there should be no 

difference in approach and fusion rates of the liposomes.  Observations from UV-vis 

spectroscopy, as shown in Figure 3.10, allows one to conclude that the concentration of the salt 

has no significant influence on the reduction of the Q3 headgroup. With increasing salt 

concentration, it is expected to decrease the TH of DOPE and an observed increase in phase 

conversion from Lα to HII.9 

 
Figure 3.10.  Absorbance traces at λ265 nm for the reduction of the Q3 headgroup in Q3-DOPE 
liposomes as a function of KCl concentration.  0.1 mM Q3-DOPE from the same preparations as 
in Figure 3.9 were used.  pH 7.4 50 mM phosphate buffer with 75 mM KCl, 25 °C.  Reduction 
performed by addition of 1:1 molar ratio of Na2S2O4 in a argon-purged, septum-sealed quartz 
cuvette.   
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3.3.6 Variation of Salt Cation 
 

Another concern that arose during the optimization process for the study of Q3-DOPE 

was the composition of the buffer components.  Previous experiments with Q3-DOPE were 

performed with phosphate-buffered sodium salts and KCl.1  Once the entire system was switched 

to K+, the rates of calcein release were observed to have changed in appearance (data not shown).  

Two separate 50 mM phosphate buffers with 75 mM salt were prepared, each one containing 

only Na+ or K+ counter ions.   

 
Figure 3.11.  Calcein release curves for 0.1 mM Q3-DOPE liposomesin two different salt 
solutions.  The blue curve represents all phosphate components with Na+ cations and 75 mM 
NaCl.  The red curve represents all phosphate components K+ cations and 75 mM KCl.  Both 
buffers were at pH 7.4, and the experiments were performed at 25 °C. 

 
Table 3.2.  Comparison of Na+ and K+ salts on the rate of calcein release after reduction of Q3-
DOPE liposomes. 

 
 

 

 

75 mM Cation Lag Phase End 
(min) 

Contraction 
End (min) 

50% Opening 
(min) 

Max. Release 
(min) 

K+ 18 26 38 54 
Na+ 23 30 48 58 
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In Figure 3.11 are shown the effects counter cations have on the rate of calcein release 

from Q3-DOPE liposomes upon reduction.  K+ experiences both the end of the contraction phase 

at 26 min and 50% opening at 38 min sooner than compared to Na+.  Na+ requires an additional 4 

minutes before the contraction phase ends at 30 minutes and the content release enters the burst 

phase, releasing 50% of the liposomal contents at 48 min.  

The difference between the Na+ and K+ buffers demonstrates that careful selection of the 

buffer components is required, as mixing Na+ phosphate buffer with KCl will influence the rate 

of content release.  The explanation for the observed differences between the two cations comes 

from Chapter 1, Section 1.3.4 where Hofmeister salts are discussed.  While the emphasis of the 

section was on the anion series, cations have been demonstrated to have a weaker Hofmesiter 

effect on protein and lipid phases from kosmotropic cations and chaotropic cations.  Hofmeister 

cations have an influence on the phase preference of PE lipids, although the effect not as strong 

as the anion series, it is worth taking note in the Q3-DOPE system.  According to the order 

presented in Chapter 1, Section 1.3.4: 

NH4
+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ 

Where K+ will have more kosmotropic character than Na+, which serves to favor the HII 

phase at the expense of the Lα, resulting in a faster rate of phase conversion of the DOPE lipids 

and a faster rate of calcein release from the liposomes.  Other cations in the series were 

unavailable for study due to pH (NH4
+), availability (Li+, only Li3PO4 and LiH2PO4 are 

available) or being divalent (Mg2+, Ca2+) and disruptive to the Lα DOPE liposomes.  Divalent 

cations have been used to drive destabilization of PE by rapid aggregate formation aggregation 

and contents release, even at pH 9.5.10,11 

Another possible impact centered on alkali metal cations can have on lipids is their 

interactions and possible binding with lipid bilayers.12  Gurtovenko and Vattulainen observed 
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through force field simulations that in PC bilayers, Na+ has the strongest interaction with the 

carbonyl region of the lipid, resulting in compression of the membrane bilayer.12  K+ was found 

to have a much weaker influence on the PC bilayers due to the size and the hypothesis that it 

experiences a very weak binding with the surface.  In PE bilayers, it was found that there was 

less influence by the monovalent salts, with an observed weak binding of Na+ and almost no 

binding for K+.  The lesser influence in PE bilayers was associated with the presence of the 

intramolecular hydrogen bonds between lipids that assist in preventing cation binding with the 

surface. 

3.3.7 Temperature Studies 
 

In addition to its relevance with regards to liposome opening in the human body at 37 °C, 

it was important to study how temperature affected the Lα → HII transition.  All previous calcein 

release traces were recorded at a constant value 25 °C during the course of the experiment.  With 

reported values of TH for DOPE phase transition from Lα → HII ranging between − 4 °C and 16 

°C, 25 °C was estimated to be a suitable starting temperature for the initial studies of content 

release behavior from Q3-DOPE liposomes. 

At 25 °C, the typical behavior of the Q3-DOPE reduction and calcein dequenching is 

observed, achieving maximum contents release after 60 minutes.  Increasing the temperature of 

the cuvette to 35 °C results in an increased rate of release of the calcein and fusion rates of the 

liposomes; maximum contents release was achieved in 31 minutes, significantly ahead of the 

50% opening of the same liposome 25 °C.   The increased rates of release are expected at higher 

temperature values for two reasons – Arrhenius behavior for the lactonization reaction and the 

temperature dependent Lα → HII  transition.13  In an activated process, the rate of a reaction will 

increase with increased temperature.  For the lactonization reaction, it has been shown or can be 

calculated, that the rate constant increases by approximately 7x for the 25 °C to 35 °C increase in 
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temperature.  Thus, it is anticipated that the 10 °C increase from 25 °C to 35 °C would decrease 

the time for calcein release by 85%.  Furthermore, it has been shown that the Lα → HII transition 

rates follows |Texp − TH|;13 the increased experimental temperature will impact the rate of the Lα 

→ HII phase transition.  The further the experimental temperature is increased above TH, the 

faster the phase conversion will occur.  

 
Figure 3.12.  Temperature effect on calcein release rates from Q3-DOPE liposomes. Conditions: 
0.1 mM Q3-DOPE in 50 mM phosphate buffer with 75 mM KCl, pH 7.4.  
 

Table 3.3.  Summary of temperature on the rate of release from Q3-DOPE liposomes 

Temperature Lag Phase End 
(min) 

Contraction End 
(min) 

50% Opening 
(min) 

Max. Release 
(min) 

10 °C 60 120 Not observed Not observed 
25 °C 15 26 40 60 
35 °C 7 9 12 31 
 

Lowering the temperature to values approaching the TH of the lipid serves to decrease the 

rate of lactonization and the Lα → HII phase transition.  The lower trace in Figure 3.12 at 10 °C 

demonstrates the slowing of the calcein release rates; at 10 °C the Lα will be favored over the HII 
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phase.  Such slowing of the Lα → HII transition has been previously observed in temperature 

jump experiments, where lipids held very close to their TH value experienced a very slow phase 

conversion that took up to several weeks to go to completion.14  

At 10 °C, the lag phase takes 60 minutes before the release enters the contraction region.  

The contraction is over at 120 minutes and a very slow release of calcein begins to occur, 

reaching a maximum release of 12% at 272 minutes.  As explained in Chapter 1, Figure 1.4, the 

pathway of liposome destabilization has changed, as Texp is now on the order of TH, placing the 

pathway on the right side of the figure.  Q3-DOPE liposomes will still aggregate at 10 °C; 

however, instead of a rapid collapse into the HII phase through interlamellar intermediate 

formation, a much slower process of liposome fusion and contents mixing occurs with a slow 

release of encapsulated contents over long periods of time. Another interesting feature on the 10 

°C release curve is that the lag and contraction phases are still present.  The width of the 

contraction region has increased, supporting the hypothesis of slower lactonization rate due to 

the low experimental temperature.   

3.3.8 Q3-DLiPE 
 

Initial directions of how the value of the TH affects the rate of  liposomal contents release 

was investigated with Q3-DLiPE, as DLiPE has a reported TH between −10 °C and − 16 °C.15  

The rationale was that the lower TH value versus DOPE with a TH of ~ 10 °C would result in an 

increase in the rate of contents release at 25 °C, similar to the observed increase in the rate of 

release with Q3-DOPE at 35 °C versus 25 °C as in Figure 3.12. 

In Figure 3.13 are shown the calcein release curves for Q3-DLiPE and Q3-DOPE 

liposomes at 25 °C upon reductive activation by a molar equivalent of Na2S2O4.  One major 

feature to note is the slower and less complete calcein release with Q3-DLiPE liposomes versus 

that for Q3-DOPE liposomes.  Upon introduction of Na2S2O4, both lipids experience a 21-minute 
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“lag” phase; however the conclusion of the contraction region and the onset of the burst phase 

for the DLiPE begins at 24 minutes.  The contraction for DLiPE is smaller in magnitude at − 4% 

and the rate of release was observed to slow after 50 minutes.   Q3-DOPE experiences a larger 

contraction at −15%, reaching the minima of the process at 26 minutes, afterwards the burst 

phase of the release begins.  52 minutes are required to achieve 50% contents release for Q3-

DLiPE, whereas Q3-DOPE liposomes release 50% of their contents in 36 minutes.  After 50% 

release, Q3-DLiPE never fully achieves the level of release observed for Q3-DOPE liposomes (≥ 

85%), even after an extended period of time of up to four hours (data not shown).     

 
Figure 3.13.  Comparison of release rates from 0.1 mM Q3-DOPE and 0.01 mM Q3-DLiPE 
liposomes in 50 mM phosphate buffer with 75 mM KCl, pH 7.4 at 25 °C.   

 
The slower release rates observed in Q3-DLiPE appear to result from a slower transition 

of the DLiPE lipids from the Lα phase to the HII phase.   The rationale behind this is two-fold: 

one addresses the volume differences that acyl hydrocarbon chains have when they contain more 

than one double bond and the second addresses the crystal structure differences between the Lα 

and the HII phases.  The presence of two double bonds in the acyl hydrocarbon chain will cause 
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the chains to occupy a larger volume, preventing the chains from packing as densely as in an acyl 

hydrocarbon chain containing a single double bond giving rise to a splaying of the acyl chains in 

the DLiPE lipid.16  With the splaying of the acyl hydrocarbon chains, the rate of conversion from 

the Lα phase to the HII phase is slowed due to the non-commensurate nature of the two phases.14  

The closer Lα and the HII structures are to being commensurate, the faster the transition will 

occur, whereas deviations in the structures – such as increased swelling by hydration – will slow 

the rate of conversion between the phases.  Similar behavior has been observed in lipids 

containing cis-(DOPE) and trans-(DEPE) isomers of a single double bond.14  The Lα and HII 

phase structures of DEPE are more commensurate, whereas DOPE is not as commensurate 

compared to DEPE, as it has small deviations in lattice structures in its Lα and HII phases due to 

the kink introduced in the acyl hydrocarbon chain from the cis-isomer of the double bond.  The 

difference in the conformation and occupied volume of acyl hydrocarbon chains in DOPE is 

enough to slow both the rate of transition and the degree of completion of the transition, as small 

shoulders of residual Lα phase DOPE lipids have been reported in X-Ray diffraction patterns in 

temperature jump experiments after the majority of the lipids have converted to HII.14 

3.3.9 Hofmester Anion Series 
 

The noted differences between in calcein release from Q3-DOPE liposomes with Na+ and 

K+ phosphate buffers led me to further study the effects of salt anions on the release rates.  Initial 

studies were performed with the standard pH 7.4 50 mM phosphate buffer while the 

concentration of the various salts were at 75 mM, using KCl as the initial point to establish 

trends in rates of calcein release from the liposomes.  Following the Hofmeister series with K+ as 

the common cation, the following anions were studied, starting with the kosmotropes on the left 

and moving to the chaotropes on the right: 

SO4
2– > Cl– > NO3

– > ClO4
– > SCN– 
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In Figure 3.14 are shown the calcein release curves for the different Hofmeister salt 

anions at 75 mM.  In general, the kosmotropes cause an increase in the rates of release, while the 

chaotropes cause a decrease in the rate of release.  The differences in rates of release are, in 

general, expected to be due to the stabilization of the Lα phase at the expense of the HII phase of 

DOPE in the case of the chaotropes, while the opposite is true for the kosmotropes.9  Thus, this 

will lead to a faster rate of release in the presence of kosmotropic salts due to faster conversion 

of the DOPE lipids to the HII phase, while the chaotropes will slow the rate of conversion to the 

HII phase. However, due to the low salt concentrations at 75 mM, the expected order of the  

kosmotropes is not strictly followed, as SO4
2– has the earliest times for the beginning of each 

point in the calcein release.  Unexpectedly, NO3
– leads to release curves with behavior very close 

to that for SO4
2-, followed by Cl–.  Based on the Hofmeister series, the Cl– should, in general, be 

more kosmotropic than NO3
–; the difference in the 75 mM salts may be a function of the salt 

concentration not being sufficiently high to fully separate and sort the series into the proper 

order.  Sanderson and Williams have observed decreased Hofmeister activity previously in their 

studies of POPE lipids, requiring at least 0.5 M salt for the effects to become observable.9   

ClO4
– and SCN– both significantly slowed the rates of calcein release, requiring roughly 

28 minutes to reach the end of the contraction phase before the occurrence of liposome fusion.  

The contraction regions of the chaotropic salts were vastly different from the regions of the 

kosmotropes, requiring a longer time to reach the inflection point and begin the burst phase of 

liposome fusion and rapid rates of release of calcein unloading.  By the appearances of the 

calcein release traces, the rates for the two chaotropic ions were significantly slowed, the SCN– 

to the point where it never achieved complete release, even after six hrs. It was not possible to 

study the effects of ClO4
– at higher concentrations than 0.1 M due to limited solubility of KClO4 

in water at 25 °C. 
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Figure 3.14. Calcein dequenching release curves from reduced Q3-DOPE liposomes in response 
to the presence of the different K+ Hofmeister salt anions.  pH 7.4 50 mM phosphate buffer with 
75 mM Hofmeister salt and 0.1 mM Q3-DOPE liposomes, 25 °C. 

 

Table 3.4.  Summary of the time of release events after the reductive activation of Q3-DOPE 
liposomes in response to the presence of 0.075 M Hofmeister salts. 

Salt 
(75 mM) 

Lag Phase 
End (min) 

Contraction 
End (min) 

50% Opening 
(min) 

Max. Release 
(min) 

Initial Rate of 
Release (min %C-1) 

K2SO4 12 15 36 53 9.4 
KNO3 13 19 36 58 8.0 
KCl 22 26 42 60 8.0 
KClO4 12 17 83 Not observed 1.8 
KSCN 24 28 104 Not observed 1.1 
No Salt 22 30 76 ~ 142 3.3 
 

The differences in rates of calcein release due to changing the values of TH for DOPE 

from the presence of Hofmeister ions has, to the best of our knowledge, never been observed or 

reported before.  All previous studies have been concerned solely with studying the effects of 

Hofmeister salts on the values of TM and TH for various PE lipids or the effects on the value of 

TM for PC lipids with all of those studies utilizing DSC, X-Ray diffraction, or NMR to obtain the 

transition temperatures with the various salt anions of the Hofmeister series being present. 
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Figure 3.15.  Calcein release curves from reduced Q3-DOPE liposomes in response to the 
presence of 0.5 M Hofmeister salts.  [Q3-DOPE] = 0.1 mM in 50 mM phosphate buffer with 0.5 
M Hofmeister salt at pH 7.4, 25 °C. 

 
Table 3.5.  Summary of the time of release events after the reductive activation of Q3-DOPE 
liposomes in response to the presence of 0.5 M Hofmeister salts. 

Salt 
(0.5 M) 

Lag Phase 
End (min) 

Contraction 
End (min) 

50% Opening 
(min) 

Max. Release 
(min) 

Initial Rate of 
Release (min %C-1) 

K2SO4 7 9 14 19 26.5 
KCl 7 11 16 20 22.5 
KBr 8 12 18 25 22.5 
KNO3 9 14 20 26 23.2 
KSCN 10 15 37 Not observed 4.6 
 

The impact of 0.5 M Hofmeister salts on the calcein release rate from the DOPE 

liposomes clearly demonstrates the kosmotropic and chaotropic nature of the salt used for Figure 

3.15.  75 mM salt concentrations were enough to establish that there is indeed an effect on the 

rates of calcein release from the presence of Hofmeister salts.  However, with certain salt anions 

that have small differences in their effects, such as the Cl– and NO3
–, higher concentrations are 

required for the Hofmeister effects to be clearly defined in the lipid behaviors.  In Figure 3.15 are 

shown calcein release curves for the 0.5 M Hofmeister salt series.  Further increases in salt 
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concentrations will serve to further increase or decrease the rates of release.  However, higher 

salt concentrations, as in the case of Cl– can have effects such as suppressing the TM,17 which can 

result in unknown changes to the behavior of the Q3-DOPE lipids upon reductive activation. 

Comparing the calcein release behavior for Cl–, Br–, and NO3
–, it is clear they all fall 

within the suggested Hofmeister series, showing increasing chaotropic character as the salts 

move to the right of the series.  The contraction region of each salt also increases as expected 

with the hypothesis of hydration levels surrounding the headgroups.  As the ions become less 

hydrated, more water will be available to interact with the headgroups, which in turn results in 

more water to be removed before the close approach and fusion of apposing liposomes can 

occur.  As the salts become more chaotropic, they will begin to favor the Lα phase at the expense 

of the HII phase.  This can be estimated with the values of TH for DOPE, as with more chaotropic 

ions, the TH is expected to increase, pushing it closer to the experimental temperature of 25 °C, 

which results in a slowing of the phase transition. With increasing chaotropic behavior, the 

chance of interacting with the bilayer surface also increases, due to smaller energetic penalties 

for the ions to shed their hydration shells.  There have been no reports of any of these three ions 

interacting with bilayer surfaces, but a closer approach is possible when compared to the SO4
2– 

due to size considerations alone.   

SCN– is the most chaotropic ion studied in the 0.5 M Hofmeister anion series.  As 

expected, there is a significant change not only in the contraction region but also in the calcein 

release rate, as well as the observation that the system never achieves complete release even after 

6 hrs.  The stabilization of the Lα phase is reflected in this slow release, as the HII is no longer as 

favored for formation.  Additionally, the hydration of the SCN– is low and the energetic penalties 

for shedding its hydration layer are also low.19  There are several studies that provide evidence 

for the approach and interaction of SCN– with the lipid bilayers.  There is no evidence for this in 
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the calcein release experiments, but it is plausible that the SCN– is able to interact with the 

DOPE bilayer in such a way as to insert itself between the headgroups, providing some hydrogen 

bonding interaction with the amine headgroups, which will provide a small increase in the 

effective area of each headgroup.  This small increase in headgroup area may be enough to 

provide some stabilization for the Lα phase, accounting for the slow rates of calcein release from 

the liposomes. 

3.3.10 DSC of DOPE with Hofmeister Salts 
 

The hypothesis regarding the effects of salts on calcein release rate for Q3-DOPE 

liposomes required additional studies to provide evidence that the rate changes were a result of 

changes in the TH of DOPE lipids.  Changes in the TH, as previously observed in the temperature 

studies, tend to affect the rates of phase conversion in DOPE lipids.14  Additionally, it must be 

taken into consideration that the presence of the Hofmeister salts may affect the rate of Lα → HII 

phase conversion because of differences in their impact on lipid hydration.   

By symmetry arguments, the Lα → HII transition in DOPE lipids is expected to be first 

order.13  The value of TH, therefore, is expected to be well-defined when measured under 

constant pressure.  This, however, is not the case in reported literature TH values for DOPE, 

ranging from − 4 to 16 °C.  In Table 3.6 are summarized the reported TH values and the 

instrumental technique, and the solvent used to determine the TH.  The large range of reported TH 

values is a result of the kinetically hindered nature of the phase transition, as the conversion is 

influenced by rate-limiting processes such as nucleation, intermediate formation, domain growth, 

or hindrance in bulk water transport.13  For example with DSC, even slow temperature scan rates 

will contribute to variability in TH.  In addition, fast scan rates of over 100 °C hr-1 will cause a 

shift in the TH to artificially higher values.20   



 77 

Table 3.6.  Summary of reported literature values for the TH of DOPE with the solvent type and 
the instrumental method used to determine the value.  

Reference Solvent/Buffer Method TH (°C) 
Epand, 198520 20 mM PIPES +  

150 mM NaCl 
DSC (ΔT/Δt = 44 °C hr-1) 
DSC (11 °C hr-1) 

14 
8 

Wistrom, 198921 water DSC (20 °C hr-1) 8 
Sanderson, 199315 water DSC (± 300 °C hr-1) − 4 to 16 
Kirk, 198522 water XRD 7.5 
Gruner, 198823 water XRD 7.5 
Toombes, 200213 water XRD 3.3 
Fenske, 1992 water NMR 11.5 
Gawrisch, 199224 D2O NMR − 1.5 to 6 
Osman, 199425 water 31P NMR 0.5 to 6.5 

 
In order to determine an appropriate scan rate for the DSC experiments on hydrated 

DOPE bilayers, two different scan rates were used, as shown in Figure 3.16.  The scan rates were 

chosen based on previous work by Epand.20  DOPE was hydrated and prepared according to the 

procedures outlined in Chapter 2, Section 2.6.  The slower scan rate of 15 °C hr-1 was thought to 

yield a result that is closer to the true TH for the DOPE in the buffer system used; however, the 

two peaks in the DSC may be from a slow conversion between the Lα and the HII phase.  The 

higher temperature shoulder is still present, but not as pronounced, when the scan rate was 

increased to 40 °C hr-1.  It was decided that the TH value obtained at a scan rate of 40 °C hr-1 

would be suitable for further study of the effects of Hofmeister salts on the TH of DOPE.  The 

results of the two scan rates are summarized in Figure 3.16 and Table 3.7. 
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Figure 3.16. Differential scanning calorimetry traces of 14 mg mL-1 DOPE in pH 7.4 50 mM 
phosphate buffer with 75 mM KCl, pH 7.4.  Upper trace, scan rate 40 °C hr-1, lower trace, 15 40 
°C hr-1. 

 
Table 3.7.  Summary of the effect of scan rate on the value of TH for DOPE in 50 mM phosphate 
buffer with 75 mM KCl, pH 7.4. 

Scan Rate (°C Hr-1) TH (°C) 
15 10.3/14.4 
40 12.8 

 
In Figure 3.17 is shown how the TH of DOPE is influenced by the addition of increasing 

concentrations of KCl.  To begin, a reference TH value for DOPE was established using 50 mM 

phosphate buffer only (no added salt), yielding a TH of 13.1 °C.  The value of TH begins to 

decrease with increasing salt concentrations.  As with previous studies into the effects of 

Hofmeister salts and the values of TH, this result was not unexpected, as with other PE lipids, 

changes in the values of TH have been reported to increase or decrease at low salt concentrations 

depending on the Hofmeister character of the salt.17  The response of the TH of DOPE to KCl 

also demonstrates that Cl-, in the case of DOPE, is not the center of the Hofmeister series as it 

does have some kosmotropic behavior.  The center point is likely to be between Br– and I–, as 
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suggested by Koynova and Tenchov.17  In Figure 3.18 is shown a similar trend of decreased TH 

with increased concentrations of salt, in this case K2SO4. 

 

 
Figure 3.17. Differential scanning calorimetry traces of 14 mg mL-1 DOPE in pH 7.4 50 mM 
phosphate buffer with increasing KCl concentration.  Scan rates of 40 °C hr-1 were used for all 
traces. 

 
 
 
 

Table 3.8.  Summary of KCl concentration on the value of TH of DOPE. 

Salt Type (M) TH (°C) 
KCl (0.5) 9.8 
KCl (0.3) 12.2 
KCl (0.15) 13.4 
KCl (0.075) 12.8 
PB Only (No Salt) 13.1 
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Figure 3.18. Differential scanning calorimetry traces of 14 mg mL-1 DOPE in pH 7.4 50 mM 
phosphate buffer with (upper curve) 0.5 M K2SO4 and (lower curve) 0.15 M K2SO4.  Scan rates 
of 40 °C hr-1 were used for all experiments. 

 
Table 3.9.  Summary of the concentration effects from K2SO4 on the value of TH for DOPE.   

K2SO4 (M) TH (°C) 
0.15 10.2 
0.5 9.4 

 
The TH of DOPE is clearly affected by the type of Hofmeister salt anion present as noted 

in the DSC traces for a variety of potassium salts in Figure 3.19.  As anticipated, based on 

previous TH salt studies of other PE lipids and from the fluorescence studies on calcein release 

rates in this dissertation, at 0.5 M concentrations, the values of the TH for DOPE trend with the 

nature of the Hofmeister salt used.  For kosmotropes, the TH is lower than the value of 13.1 °C 

recorded in 50 mM phosphate buffer only.  With more chaotropic salts, the TH is increased, as 

shown for KNO3 and KSCN.  The observed TH for the most chaotropic ion, SCN-
, was a 

surprising 36.7 °C, which supports the slow calcein release rate from the reduced Q3-DOPE 

liposomes in Figure 3.15 and Table 3.5.  
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Figure 3.19.  Differential scanning calorimetry traces of 14 mg mL-1. DOPE in pH 7.4 50 mM 
phosphate buffer with 0.5 M Hofmeister salts.  Scan rates of 40 °C hr-1 were used for all 
experiments.   

 
Table 3.10.  Summary of TH values for DOPE in response to a 0.5 M Hofmeister salt series.  The 
kosmotropic anions lowers TH while chaotropic anions increase TH.   

Salt Type (0.5 M) TH (°C) 
K2SO4 8.8 
KCl 9.8 
KBr 13.3 
KNO3 15.6 
KSCN 36.7 
PB Only (No Salt) 13.1 

 
From the DSC measurements on the TH of DOPE in various Hofmeister salts, it can be 

clearly seen that the type of salt present has an effect on the value of the phase transition.  As 

expected, kosmotropic salts will decrease the TH by favoring the HII over the Lα phase while 

chaotropic salts increase the TH by favoring the Lα over the HII. 
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3.4 Discussion 
 
3.4.1 Q3-DOPE Reduction, Contents Release, and Phase Transition Behavior 
 

The presence of the quinone trimethyl lock capping headgroup serves to increase the 

cross-sectional area of the DOPE lipid headgroup and increases the level of hydration 

surrounding the headgroup, resulting in lipid phase behavior that favors the Lα phase at the 

expense of the HII phase.  This is evident by cryo-TEM images of lamellar vesicles of Q3-DOPE1 

and the stability of Q3-DOPE liposomes from Figures 3.4 and 3.5. Similar observations have 

been made with single methylated DOPE (DOPE-Me), in that the single methyl substitution on 

the amine headgroup is sufficient enough to change not only the lipid cross-sectional area26 but 

also the hydration level of the headgroup; the latter has been measured to be on the order of 24 

water molecules, similar to DOPC hydration levels.27  DOPE has a hydration level of the 

headgroup of 7-9 waters in the HII phase28 and 14 waters in the Lα phase.29  The increased 

headgroup size and hydration of Q3-DOPE serves to favor the Lα phase.  

Upon reduction, the cross-sectional area of the headgroup will rapidly change due to the 

cleavage of the lactone to yield DOPE.  As a result, the hydration level of the lipid will change.  

Loss of the quinone and movement of water out of the headgroup region both result in decreased 

lipid size and thus packing, this is expected to cause a contraction in the liposome diameter that 

occurs as the DOPE lipid establishes an Lα phase.   During this process, intramolecular hydrogen 

bonding between the amine headgroups must be established and will cause additional 

rearrangement of the lipids within the bilayer.  With the concentration of calcein at 40 mM, 

where it is not fully quenched, the change in liposome diameter can be observed as a decrease in 

the fluorescence emission of the calcein.  Control experiments with Qx-DOPE lipids whose 

capping quinone groups do not readily lactonize do not exhibit such a phenomenon upon 

reduction by Na2S2O4, see Chapter 4. Dynamic light scattering measurements were carried out 
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(data not shown) in an attempt to observe this possible contraction of the liposomes; small 

changes in the hydrodynamic diameter of the liposomes were noted, but the instrumentation is 

such that it may not be sensitive to the changes in liposome diameter.  This is most likely the 

result of the commercial DLS instrument recording a bulk average of liposome diameters, 

rendering it blind to the initial contraction of the liposomes, as the methods the instrument 

employs are biased toward larger liposomes.   

3.4.2 Hofmeister Salt Effects on Kinetics of Contents Release from Liposomes 
 

There are two main contributions for the observed differences in the rates of content 

release from DOPE liposomes while in the presence of a Hofmeister salt series: 1) driving force 

(thermodynamic), where the change in the energy between phase states is a result of changes in 

the TH with regards to the experimental temperature, Texp and 2) kinetic behavior, where 

alterations of the energy barrier between the two phases changes is the result of lipid structural 

changes.  Both of these lead to changes in the rate of Lα → HII transition.   

In general for driving force arguments, the observed changes in TH and rates of release in 

the presence of Hofmeister salts are based on the stabilization or destabilization of a lipid phase 

as a result of salt presence.  With kosmotropics anion, the HII phase will be favored over the Lα 

due to destabilization in the Lα, which results in a decrease in the TH of DOPE.  Alternatively, in 

the presence of a chaotropic anion, the Lα phase will be favored over the HII, leading to an 

increase in the TH.  Thus, the main driving force for the phase transition is based on ΔT between 

the fixed experimental temperature, Texp, and the variable Lα → HII transition temperature, TH.  

The relationship between driving force and release rate was observed when then value of Texp 

was increased from 25 °C to 35 °C, Figure 3.12.  As expected, increasing ΔT to larger values 

provides a higher driving force for the phase transition that results in a faster rate of contents 

release.  The opposite occurs as ΔT is decreased, as in the case of Texp of 10 °C, which has a 
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lower driving force and a slower rate of content release; however, at 10 °C, there is also most 

likely a change in the mechanism from fusion and contents release to fusion with contents 

mixing and contents release, vide infra.    The same driving force influence (ΔT) is evident in the 

rate of contents release with the 0.5 M Hofmeister salt series and can be attributed to different TH 

values as demonstrated by the DSC experiments, Figure 3.17.  The presence of a kosmotropic 

salt will decrease the TH for DOPE, which will result in an increased ΔT and a faster transition 

while a chaotopic salt will increase the TH for DOPE, lowering the ΔT and causing a slower 

transition.   

However, if Texp ≤ TH, the nature of the liposome contents release is different than when 

Texp > TH.  When Texp is TH or below, the mechanism of liposome destabilization will be 

significantly different than when Texp > TH, as described in Figure 1.4 from Chapter 1. When Texp 

is above TH, intermediate structures as a result of lipid mixing that leads to high stress in the 

bilayer, thereby leading to contents release without contents mixing.  Lowering the temperature 

below TH causes the liposome destabilization process to slow and requires contents mixing to 

occur before the liposome aggregate structures form a critical density and eventually collapse, 

thereby releasing their contents.  Considering that the Lα → HII phase transition is not in 

equilibrium during the conversion process, it is possible to have a coexistence of two phases at 

temperatures below TH and it might be possible to observe some contents mixing between fusing 

liposomes.14,30  Due to the concerns regarding the traditional contents mixing assays being 

sensitive to reducing agents, these experiments were not performed.  

How can the presence of Hofmeister salts provide stabilization or destabilization of either 

Lα or HII phase?  That is, how is the TH influenced by the presence of the salts?  The hypothesis 

posed here is the amount of water available to the PE lipid headgroup dictates its TH, and that 

available water content is controlled by the nature of the ions in solution.  Kosmotropic ions bind 
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water tightly, providing high solvation entropy, while chaotropic ions are less hydrated and 

provide low hydration entropy;19 thus, the amount of water available to a PE lipid will be 

determined by the nature of the ions present and their concentration, in a manner similar to that 

for lipids in the presence of poly(ethylene glycol).   

The free energy of a PE lipid in a given phase state, Lα or HII , is significantly influenced 

by the amount of water available to the lipid.31  From the study by Kirk et al., it is known that at 

low water concentrations for PE lipids, such as DOPE, the HII phase is energetically favored 

while at higher water concentrations, the Lα is preferred.  This is demonstrated by the water-

content-dependent TH values observed in didodecylphatidylethanolamine (DDPE) in a study by 

Seddon et al.; they demonstrated that the TH value was extremely sensitive to the number of 

water molecules per lipid molecule, with the TH changing roughly 7 °C for every water molecule 

added or removed per lipid molecule (40 °C decrease in TH when moving from 9 waters to 3 

waters)!32  Thus, removal of lipid interfacial water by kosmotropic ions will cause a decrease in 

TH while chaotropic ions that are not highly solvated will yield higher TH values.   

I now turn to the second contribution to the observed differences in rate of contents 

release from the liposomes in the presence of different salt ions, namely energy barrier effects.  It 

is posited here that the presence of the different Hofmeister anions causes changes in the DOPE 

intermediate structures in the Lα → HII transition such that the activation barrier is either raised 

or lowered.  This hypothesis is supported by literature reports concerning the structural 

rearrangements that occur during the Lα → HII transition in PE systems, and X-ray data on the d-

spacings of PE lipids in their lamellar liquid crystal (Lα) and inverted micelle (HII) states in the 

presence of Hofmeister salts. 

It has been proposed by Gruner that the Lα → HII phase transition of PE lipids occurs by 

a commensurate mechanism wherein the HII phase forms with the PE lipids adopting an 
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interlipid spacing that is identical to that of the precursor Lα phase, followed by HII lattice 

“correction” to the equilibrium state as the result of water transport into and out of the water 

tubes of the HII phase.14  Thus, he proposed that there are two kinetic barriers to the Lα → HII 

phase transition, namely the high energetic cost of exposing the lipid hydrocarbon chains to the 

aqueous milieu as the interface undergoes the conversion, and that for the rearrangement of the 

lipids and lattice transport of water so as to achieve equilibrium crystallographic scenario of the 

HII phase.  Gruner and coworkers supported this hypothesis by their observations that DOPE, 

with a larger mismatch in the equilibrium lattice parameters between the Lα and HII phases, 

exhibits a much slower Lα → HII phase transition than does 1,2-dielaidoyl-sn-glycero-3-

phosphoethanolamine (DEPE), a 18:1 trans-PE lipid possessing a more commensurate Lα and 

HII lattice parameter.14  I first address the kinetic barrier associated with the rearrangement of 

lipids and transport of water so as to achieve the equilibrium HII phase structure.   

Based on work by Sanderson9 and that of Gruner,14 I hypothesize that as the lattice 

spacing (d-spacing) of the two phases become more or less equal with added Hofmeister salts, 

the kinetic barrier is altered for the process of PE lipid rearrangement so as to achieve the 

equilibrium crystallographic scenario of the HII phase.  Sanderson et al. have shown that the X-

ray parameters of POPE lipids in the Lα and HII phase states are sensitive to the presence and 

concentration of Hofmeister anions.9  In that work, the effects of NaCl and NaI on the d-spacing 

of POPE phases in aqueous media were briefly mentioned, but their work did not focus on the 

possible relationship between the kinetics of the Lα → HII phase transition and the d-spacing of 

the two phases.  Increasing the concentration of NaCl in aqueous media containing POPE lipids 

caused the lattice d-spacing of the HII phase to decrease somewhat (~6 nm to 5.6 nm for [NaCl] 

change of 0 to 5 M) and that of the Lα phase to increased (~5.2 nm to 6 nm).  Near 3 M NaCl, 

the lattice spacing was found to be virtually identical for the two phases.  Thus, based on 
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Sanderson’s work and that of Gruner concerning the commensurate Lα → HII phase transition 

mechanism, I hypothesize that as the lattice spacing of the two phases become more equal, the 

kinetic barrier is decreased for the rearrangement of PE lipids so as to achieve the equilibrium 

crystallographic scenario of the HII phase.  This should then cause the kinetics of the transition to 

occur more quickly.  The opposite kinetic effect is predicted for chaotropes, as Sanderson found 

that the d-spacing of POPE in the Lα phase increased in the presence of higher concentrations of 

the chaotrope NaI.   

Now I turn to the second kinetic barrier to the Lα → HII phase transition, namely that 

associated with the higher energetic cost of exposing the lipid hydrocarbon chains to the aqueous 

milieu as the interface undergoes the Lα → HII phase conversion.  During the phase transition, 

the interamolecular forces operating within the lamellae must be interrupted and in the process of 

transforming the bilayer into an inverted micelle hexagonal tube, some of the hydrocarbon chains 

will be exposed to water.14  Any momentary exposure of the hydrophobic lipid chains to the 

water is expected to produce a sudden increase in the energy barrier between the phases.  This is 

why a cooperative transition model has been proposed with the formation of high-energy 

intermediate structures or interlamellar intermediates (IMIs) that form bridges between the 

apposing bilayers and act as regions in which the phase change can occur.14,29  The height of the 

energy barrier for the intermediates depends on the magnitude of the |Texp − TH| barrier height 

changes with ΔT in addition to the volume that the hydrocarbon chains occupy.  In the case of 

the Q3-DLiPE, the hydrocarbon chains occupy a larger volume compared to the hydrocarbon 

chains of DOPE.  Thus, a slower transition to the HII phase is observed, even though the ΔT is in 

an energetically favorable position, as the TH is between − 10 and − 16 °C.  If a lipid, such as the 

trans-isomer of DOPE, DEPE, were used that had an even smaller hydrocarbon volume, then the 

transition to the HII will occur at a faster rate.14  
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As the Lα PE transitions to the HII, it must transport water away from the headgroup as 

7–9 waters per lipid headgroup have been observed.32  If bulk transport of water does not occur, 

as observed by Kirk and co-workers,31 then the free energy per lipid molecule in the HII phase 

begins to increase while the free energy per lipid molecule in the Lα begins to decrease; thus, 

water transport and dehydration of the PE lipid headgroups must take place in order for the phase 

transition to become favorable. The propensity of the Lα phase of PEs to dehydrate increases 

with increasing temperature and also the amount of water surrounding the lipids can be 

controlled through temperature such that a specific phase can be given stability preference due to 

the energetics associated with the water content.33 

Thus, in the presence of a kosmotropic anion, less water will be available to the 

interfacial region of the lipid hydration layer due to the formation of large hydration shells 

around the kosmotrope.  It is conceivable that as two apposing bilayers approach while in the 

presence of a kosmotrope, the highly hydrated ions are excluded from the interfacial region  as 

the lipid surfaces approach each other.  However, in the case of chaotropes, the ions have a 

smaller hydration shell and can interact with the lipid bilayer by inserting themselves into the 

headgroup region of the bilayer as suggested by recent reports.34  This action would slow the Lα 

→ HII transition due to the high amount of interfacial water between the apposing lipid bilayers 

and the increased headgroup spacing, both of which will slow the transition.  An additional 

barrier to slow the Lα → HII phase transition may come from the association of the chaotropic 

ions with the bilayer surface, as the ions themselves may need to be removed from the lipid 

headgroup regions in order for the phase transition to occur.  There is no evidence for the 

association of chaotropic anions with HII phase PE lipids, therefore it is unknown whether or not 

the anions are present in the headgroup regions of the HII phase.  The association of SCN- with 
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lamellar bilayer surfaces has been previously observed, and the ion has a tendency to insert itself 

into the headgroup region of lipid bilayers.34 

Figure 3.20.  The overall proposed pathway for the reduction and contents release from Q3-
DOPE liposomes.  Step A involves the reductive activation of the Lα Q3-DOPE liposomes by the 
chemical reducing agent, Na2S2O4.  Step B involves the cyclization and closure of the trimethyl-
(Figure 3.20 cont’d) lock that leads to the release of the capping headgroup via formation of the 
lactone.  The reduced liposomes now contain mostly uncapped DOPE lipids and therefore are 
able to undergo close approach with an apposing DOPE-rich liposome, as seen in step C.  Upon 
favorable approach conditions, the DOPE lipids undergo fusion and phase conversion from Lα to 
HII through the formation of interlamellar intermediates (IMI)s, step D.  Finally, step E shows 
that the HII phase DOPE will reach a critical concentration and the remaining liposome will 
burst, rapidly releasing the majority of the encapsulated contents as the conversion of the DOPE 
into the HII phase goes to near completion.   
 
3.5 Conclusions 
 

The rate of contents release from Q3-DOPE liposomes depends on the experimental 

temperature, the concentration of salt and the type of salt used.  Applying salts from the 
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Hofmeister series results in a graded response of release rates due to changes in TH for DOPE.  

This behavior was found in both content release rates and in DSC measurements of TH.  

Kosmotropic anions lower the TH, increasing the contents release rate whereas chaotropic anions 

raise the TH, slowing the contents release rate.  The Hofmeister salts are hypothesized to work 

through a combination of changing the kinetic and thermodynamic properties that influence the 

phase preference for DOPE lipids.  As a consequence, the value of TH for the lipid appears to be 

influenced through the hydration level of the lipid headgroup.  As demonstrated in the release 

rates of Q3-DLiPE, the volume and saturation of the hydrocarbon chains needs to be taken into 

consideration, as altering the TH alone is not sufficient to accelerate the content release rates.  

The results presented here demonstrate that careful selection and consideration needs to be made 

when selecting buffer components for use in future liposome release studies, as salt 

concentration and composition can have a significant influence on rates of release and can create 

difficulty in comparing different DOPE-liposome based systems.  The results also demonstrate 

that with careful selection of the non-bilayer lipid, liposomal delivery systems can be made with 

graded rates of contents release.  While the salt concentration, typically NaCl and KCl in cancer 

and tumor regions is elevated, on the order of 0.3 M for Na+, 0.2 M for Cl– and 0.01 M for K+ 

that will have some influence on the contents release rate.35   

3.6 References 
 
(1) Ong, W.; Yang, Y. M.; Cruciano, A. C.; McCarley, R. L. Redox-Triggered Contents 

Release from Liposomes. J. Am. Chem. Soc. 2008, 130 (44), 14739-14744. 

(2) Carrier, N. H. Redox-Active Liposome Delivery Agents with Highly Controllable 
Stimuli-Responsive Behavior. Ph.D., Louisiana State University, Baton Rouge, 2011. 

(3) Memoli, A.; Palermiti, L. G.; Travagli, V.; Alhaique, F. Effects of Surfactants on the 
Spectral Behaviour of Calcein. J. Pharm. Biomed. Anal. 1994, 12 (3), 307-312. 



 91 

(4) Yeagle, P. L.; Sen, A. Hydration and the Lamellar to Hexagonal-Ii Phase-Transition of 
Phosphatidylethanolamine. Biochemistry 1986, 25 (23), 7518-7522. 

(5) Bentz, J.; Nir, S.; Wilschut, J. Mass-Action Kinetics of Phospholipid Vesicle Fusion and 
Aggregation. Biophys. J. 1982, 37 (2), A25-A25. 

(6) Bentz, J.; Nir, S.; Wilschut, J. Mass-Action Kinetics of Vesicle Aggregation and Fusion. 
Colloids Surf. 1983, 6 (4), 333-363. 

(7) Amsberry, K. L.; Borchardt, R. T. The Lactonization of 2'-Hydroxyhydrocinnamic Acid 
Amides: A Potential Prodrug for Amines. The Journal of Organic Chemistry 1990, 55 
(23), 5867-5877. 

(8) Milstien, S.; Cohen, L. A. Stereopopulation Control. I. Rate Enhancement in the 
Lactonizations of 0-Hydroxyhydrocinnamic Acids. J. Am. Chem. Soc. 1972, 94 (26), 
9158-9165. 

(9) Sanderson, P. W.; Lis, L. J.; Quinn, P. J.; Williams, W. P. The Hofmeister Effect in 
Relation to Membrane Lipid Phase-Stability. Biochim. Biophys. Acta 1991, 1067 (1), 43-
50. 

(10) Ellens, H.; Bentz, J.; Szoka, F. C. Destabilization of Phosphatidylethanolamine 
Liposomes at the Hexagonal Phase-Transition Temperature. Biochemistry 1986, 25 (2), 
285-294. 

(11) Bentz, J.; Ellens, H.; Szoka, F. C. Destabilization of Phosphatidylethanolamine-
Containing Liposomes - Hexagonal Phase and Asymmetric Membranes. Biochemistry 
1987, 26 (8), 2105-2116. 

(12) Gurtovenko, A. A.; Vattulainen, I. Effect of Nacl and Kcl on Phosphatidylcholine and 
Phosphatidylethanolamine Lipid Membranes: Insight from Atomic-Scale Simulations for 
Understanding Salt-Induced Effects in the Plasma Membrane. J. Phys. Chem. B 2008, 
112 (7), 1953-1962. 

(13) Toombes, G. E. S.; Finnefrock, A. C.; Tate, M. W.; Gruner, S. M. Determination of L-
Alpha-H-II Phase Transition Temperature for 1,2-Dioleoyl-Sn-Glycero-3-
Phosphatidylethanolamine. Biophys. J. 2002, 82 (5), 2504-2510. 



 92 

(14) Tate, M. W.; Shyamsunder, E.; Gruner, S. M.; Damico, K. L. Kinetics of the Lamellar 
Inverse Hexagonal Phase-Transition Determined by Time-Resolved X-Ray-Diffraction. 
Biochemistry 1992, 31 (4), 1081-1092. 

(15) Sanderson, P. W.; Williams, W. P.; Cunningham, B. A.; Wolfe, D. H.; Lis, L. J. The 
Effect of Ice on Membrane Lipid Phase-Behavior. Biochim. Biophys. Acta 1993, 1148 
(2), 278-284. 

(16) Kanicky, J. R.; Shah, D. O. Effect of Degree, Type, and Position of Unsaturation on the 
pKa of Long-Chain Fatty Acids. J. Colloid Interface Sci. 2002, 256 (1), 201-207. 

(17) Koynova, R.; Brankov, J.; Tenchov, B. Modulation of Lipid Phase Behavior by 
Kosmotropic and Chaotropic Solutes - Experiment and Thermodynamic Theory. Eur. 
Biophys. J. Biophy. 1997, 25 (4), 261-274. 

(18) O'Brien, J. T.; Prell, J. S.; Bush, M. F.; Williams, E. R. Sulfate Ion Patterns Water at 
Long Distance. J. Am. Chem. Soc. 2010, 132 (24), 8248-8249. 

(19) Gurau, M. C.; Lim, S. M.; Castellana, E. T.; Albertorio, F.; Kataoka, S.; Cremer, P. S. On 
the Mechanism of the Hofmeister Effect. J. Am. Chem. Soc. 2004, 126 (34), 10522-
10523. 

(20) Epand, R. M. High-Sensitivity Differential Scanning Calorimetry of the Bilayer to 
Hexagonal Phase-Transitions of Diacylphosphatidylethanolamines. Chem. Phys. Lipids 
1985, 36 (4), 387-393. 

(21) Aurell Wistrom, C.; Rand, R. P.; Growe, L. M.; Spargo, B. J.; Crowe, J. H. Direct 
Transition of Dioleoylphosphatidylethanolamine from Lamellar Gel to Inverted 
Hexagonal Phase Caused by Trehalose. Biochim. Biophys. Acta 1989, 984 (2), 238-242. 

(22) Kirk, G. L.; Gruner, S. M. Lyotropic Effects of Alkanes and Headgroup Composition on 
the L-Alpha-H-II Lipid Liquid-Crystal Phase-Transition - Hydrocarbon Packing Versus 
Intrinsic Curvature. J. Phys. 1985, 46 (5), 761-769. 

(23) Gruner, S. M.; Tate, M. W.; Kirk, G. L.; So, P. T.; Turner, D. C.; Keane, D. T.; Tilcock, 
C. P.; Cullis, P. R. X-Ray Diffraction Study of the Polymorphic Behavior of N-
Methylated Dioleoylphosphatidylethanolamine. Biochemistry 1988, 27 (8), 2853-2866. 

 



 93 

(24) Gawrisch, K.; Parsegian, V. A.; Hajduk, D. A.; Tate, M. W.; Gruner, S. M.; Fuller, N. L.; 
Rand, R. P. Energetics of a Hexagonal-Lamellar-Hexagonal-Phase Transition Sequence 
in Dioleoylphosphatidylethanolamine Membranes. Biochemistry 1992, 31 (11), 2856-
2864. 

(25) Osman, P.; Cornell, B. The Effect of Pulsed Electric Fields on the Phosphorus-31 Spectra 
of Lipid Bilayers. Biochim. Biophys. Acta 1994, 1195 (2), 197-204. 

(26) Hamai, C.; Yang, T. L.; Kataoka, S.; Cremer, P. S.; Musser, S. M. Effect of Average 
Phospholipid Curvature on Supported Bilayer Formation on Glass by Vesicle Fusion. 
Biophys. J. 2006, 90 (4), 1241-1248. 

(27) Gruner, S. M.; Tate, M. W.; Kirk, G. L.; So, P. T. C.; Turner, D. C.; Keane, D. T.; 
Tilcock, C. P. S.; Cullis, P. R. X-Ray-Diffraction Study of the Polymorphic Behavior of 
N-Methylated Dioleoylphosphatidylethanolamine. Biochemistry 1988, 27 (8), 2853-2866. 

(28) Sen, A.; Hui, S. W.; Yeagle, P. L. Membrane Hydration and Its Influence on Membrane-
Properties. Biophys. J. 1986, 49 (2), A434-A434. 

(29) Rappolt, M.; Hickel, A.; Bringezu, F.; Lohner, K. Mechanism of the Lamellar/Inverse 
Hexagonal Phase Transition Examined by High Resolution X-Ray Diffraction. Biophys. 
J. 2003, 84 (5), 3111-3122. 

(30) Bentz, J.; Ellens, H. Membrane-Fusion - Kinetics and Mechanisms. Colloids Surf. 1988, 
30 (1-2), 65-112. 

(31) Kirk, G. L.; Gruner, S. M.; Stein, D. L. A Thermodynamic Model of the Lamellar to 
Inverse Hexagonal Phase-Transition of Lipid-Membrane Water-Systems. Biochemistry 
1984, 23 (6), 1093-1102. 

(32) Seddon, J. M.; Cevc, G.; Marsh, D. Calorimetric Studies of the Gel-Fluid (L-Beta-L-
Alpha) and Lamellar-Inverted Hexagonal (L-Alpha-H-II) Phase-Transitions in Dialkyl 
and Diacylphosphatidylethanolamines. Biochemistry 1983, 22 (5), 1280-1289. 

(33) Katsaras, J.; Jeffrey, K. R.; Yang, D. S. C.; Epand, R. M. Direct Evidence for the Partial 
Dehydration of Phosphatidylethanolamine Bilayers on Approaching the Hexagonal 
Phase. Biochemistry 1993, 32 (40), 10700-10707. 



 94 

(34) Aroti, A.; Leontidis, E.; Maltseva, E.; Brezesinski, G. Effects of Hofmeister Anions on 
DPPC Langmuir Monolayers at the Air-Water Interface. J. Phys. Chem. B 2004, 108 
(39), 15238-15245. 

(35) Gullino, P. M.; Clark, S. H.; Grantham, F. H. The Interstitial Fluid of Solid Tumors. 
Cancer Res 1964, 24, 780-794. 

 



 95 

CHAPTER 4 
 

HEADGROUP MODIFICATIONS TO STUDY LAMELLAR STABILITY 
 

4.1 Introduction 
 

Accessing the effects of headgroup reduction on lamellar stability of redox-active 

liposomes can be made through variations in the capping quinone headgroup.  Modifications of 

the trimethyl-lock in the Q3 headgroup can be made that alter the cyclization rates of the lactone 

through gem-disubstituent effects1 and conformational restriction of the quinone ring.2  

Removing the geminal methyl groups of the trimethyl-lock side-chain serves to relieve distortion 

of the quinone ring,3 which leads to a significantly slower (order of 103 times) lactonization rate.4  

Thus, the non-geminal methyl configuration of the lock on the propionic acid side chain, is 

referred to as Q1 due to the presence of the single remaining methyl on the quinone ring, as 

shown in Figure 4.1.  Q1 capping headgroups do not meet the requirements for fast lactonization 

and headgroup release from DOPE within the experimental time frame of dye-liberation 

experiments,5 thus providing a method to examine the effects of reduction on the stability of the 

lamellar structure of the liposome. 

Virtually all lactonization activity of the capping quinone can be removed by substituting 

the remaining methyls on the quinone with hydrogen to give a headgroup configuration referred 

to as Q0.  With Q0 as the headgroup, the quinone can be reduced, but the lactonization rate is so 

slow that the release of the Q0 capping headgroup from the lipid monomer effectively does not 

occur.  Figure 4.1 summarizes the structural differences between Q1 and Q0 headgroups.  

Combining the observations of Q1- and Q0-DOPE with those from Q3-DOPE will provide 

the opportunity to probe the stability of the lamellar structure of the liposomes after reduction.  

Upon exposure of Q3-DOPE liposomes to Na2S2O4 several events are triggered that are 

observable in dye-dequenching experiments from minimal initial release, regions of contraction, 
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and regions where rapid uploading of the liposomes occurs.  However, it is difficult to determine 

the initial actions that the reduction has on the stability of the lamellar structure of the liposome 

due to the rapid influx of protons that may lead to a large local flux in the pH surrounding the 

headgroups.  This sudden protonation to H2Q may create instability in the lamellar bilayer that 

can result in observable release or contractions in the fluorescence emission of the encapsulated 

calcein.   

 
Figure 4.1.  The structure of the two redox-active quinone capping headgroups for DOPE.  Q1-
DOPE has a single methyl present in the lock region, which relieves the ring contortion and 
slows the rate of lactonization by a factor of 103.  Removing all methyl groups from the capping 
headgroup gives Q0-DOPE, a species that is readily reduced but does not lead to any significant 
release from the DOPE lipid monomer.   
 
4.2 Experimental Section 
 
4.2.1 Materials 
 

50 mM phosphate buffer with 75 mM KCl at pH 7.4, 25 °C was used for all experiments.  

Liposome concentrations were to set to 0.1 mM and contained 40 mM calcein as the self-

quenched encapsulated probe.  All cuvettes and Na2S2O4 solutions were purged with argon.  

Reduction of the headgroup was initiated by the injection of 1:1 Na2S2O4:Qx-DOPE. 
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4.2.2 Preparation of Q1-DOPE Liposomes 
 

Q1-DOPE was synthetically prepared as described in Chapter 2.  Liposomes of Q1-DOPE 

were prepared following the procedure for Q3-DOPE with the modification of using ε272 nm = 

10300 M-1 cm-1 to set the liposome concentrations to 0.1 mM via absorbance measurements. 

4.2.3 Preparation of Q0-DOPE Liposomes 
 

Q0-DOPE was prepared by Rasika Ranatunga Nawimanage of the McCarley research 

group; all characterizations provided satisfactory results. Q0-DOPE liposomes were prepared as 

described in Chapter 2 following the procedure for Q3-DOPE with the modification of using ε240 

nm = 7000 M-1 cm-1 to set the liposome concentrations to 0.1 mM via absorbance measurements.  

4.3 Results and Discussion 
 
4.3.1 Q1-DOPE 
 

Q1-DOPE liposomes were triggered by the addition of 1:1 molar ratio of Na2S2O4 at the 

triangle marker in Figure 4.2.  As expected, the Q1-DOPE liposomes were reduced, but there was 

no release of the capping quinone headgroup due to the absence of the trimethyl-lock 

requirement.  After 1297 minutes, only 3% of the calcein was observed to have been released 

from Q1-DOPE liposomes, which is on order of observed calcein release from stability studies of 

Q3-DOPE liposomes that involved no reduction, as shown in the blue trace in Figure 4.2.  The 

gradual release is attributed to the slow closure of the monomethyl-lock compared to the 

timeframe of the experiment.  Significantly longer experiment times, up to a week or more, are 

likely to be required in order to observe any additional calcein releases.  However, within such 

an experimental timeframe, the calcein itself would eventually become photobleached due to 

constant measurements along with the lipids themselves slowly oxidizing due to exposure to 

temperatures above lipid TH, oxygen, and light.  To further investigate the effects of the 
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reduction on the stability of the liposome system, a system devoid of lactone formation is 

required.   

 
Figure 4.2.  Comparison of Q1-DOPE with Q3-DOPE. Emission intensities (I) of calcein loaded 
liposomes at 520 nm with λex = 490 nm under argon and 25 °C.  0.1 mM liposome 
concentrations used in both examples.  The lower red as for the reductive activation of Q1-DOPE 
at the black triangle marker by 1:1 Na2S2O4:Q1-DOPE.  The upper blue trance is a representative 
stability emission observation of Q3-DOPE with no Na2S2O4 added.  Both liposome systems 
were lysed with 0.1 % (v/v) Trition X-100 at the black square, resulting in the release and 
dequenching of calcein.   
 
4.3.2 Q0-DOPE 
 

Q0-DOPE serves to completely remove any influence of a slow closure of the 

monomethyl-lock that Q1-DOPE posseses.  With no lock present, the effects of quinone 

headgroup reduction on the stability of the liposomes can be easily observed.  It is possible that 

upon reduction, the buffer capacity could be exceeded, thus leading to a local pH changes in the 

headgroup region that may cause changes in the bilayer stability or influence the diameter of the 

liposome.  The latter issue is important in assessing the proposed contraction of the Q3-DOPE 

liposomes after reduction.   
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Figure 4.3. Comparison of Q0-DOPE with Q3-DOPE. Emission intensities (I) of calcein loaded 
liposomes at 520 nm with λex = 490 nm under argon and 25 °C.  0.1 mM liposome 
concentrations were used in both liposomes.  The lower red trace is for the reductive activation 
of Q0-DOPE at the black triangle marker by 1:1 Na2S2O4:Q0-DOPE.  The upper blue trance is a 
representative stability emission observation of Q3-DOPE with no Na2S2O4 added.  Both 
liposomes systems were lysed with 0.1 % (v/v) Trition X-100 at the black square, resulting in the 
release and dequenching of calcein.   
 

The reduction of both Q1- and Q0- headgroups on DOPE lipids demonstrates that there is 

no significant impact on the stability of the liposome structure from the formation of the reduced 

H2Q.  For example, if the rapid influx of protons to the reduced quinone had a significant 

influence on the local pH, then that instability would be observed in the leakage of calcein from 

the liposome interior.  Additionally, as previously observed with the Q3 headgroup, a decrease in 

the liposome diameter would also be apparent due to regions where a decrease in the emission 

intensity of calcein would be observable.   

These results, combined with the observations of NaHSO3 addition to Q3-DOPE in the 

discussion of Figure 3.5, demonstrate that the addition of Na2S2O4 does not cause a sudden shock 

to the system that would have result in non-fusion-related contents release.  In addition, the 
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proposed contraction of Q3-DOPE liposomes must certinaly occur and is due to the loss of the 

lactone headgroup.  Thus, as confirmed with the mass action kinetic experiments with varying 

concentrations of Q3-DOPE liposomes, contact between apposing lipid bilayers is required for 

the liposomes to release any contents.   

4.4 Conclusions 
 

By removing the strain induced on the quinone by the presence of the trimethyl-lock, the 

rate of lock closure and headgroup release from DOPE can be adjusted.  In Q1-DOPE, the two 

geminal methyls responsible for the main operation of the lock are replaced with hydrogen, 

causing a rate of lock closure and lactonization on the order of 103 times slower.4  In the time 

frame of the experiments, this creates a situation where the quinone is reduced but is still 

attached to the lipid headgroup.  From this, any fluctuations in the fluorescence intensity 

attributed to instability induced by rapid protonation of the quinone or pH changes that would 

affect the stability of the lipid bilayer would be observable.  With Q0-DOPE, the ability of the 

headgroup to undergo lactonization is completely removed by the substitution of hydrogens 

surrounding the quinone ring.   

In both Q1- and Q0-DOPE, the addition of Na2S2O4 to reduce the headgroups has no 

effect on the stability of the liposomes.  These conclusions are inferred through observations of 

no changes in the fluorescence emission intensity of the encapsulated calcein immediately 

following the addition of Na2S2O4.  Q1-DOPE is found to experience a gradual leakage due to the 

reduced rate of lactone formation; however, the total leakage is not observable on the 

experimental time frame.  These results indicate that the initial changes in emission intensities in 

Q3-DOPE liposomes are a direct consequence of the formation and release of the lactone. 
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CHAPTER 5 
 

CONCLUSIONS AND OUTLOOK 
 

5.1 Summary 
 

The main goal of the research is to investigate the kinetics of content release following 

the simuli-responsive reduction of a redox-active liposomal system.  Of particular interest is to 

demonstrate the ability to exert control over the temporal and spatial guest release through the 

manipulation of the phase transition behavior of phosphatidylethanolamine (PE) lipids.  The 

effects of temperature, salt concentration, and anions of the Hofmeister series were investigated 

to determine the influence on the rate of encapsulated dye release from redox-active liposomes. 

From dye-dequenching fluorescence experiments, it was found that after reduction, the 

Q3-DOPE liposomes must come into contact and aggregate with apposing liposomes in order for 

content release to occur.  The apposing contact and aggregation results in Lα DOPE lipids to 

undergo phase conversion to non-bilayer HII phase, thereby disrupting the lamellar structures of 

the liposomes and releasing any encapsulated contents.   In pH 7.4 50 mM phosphate buffer with 

75 mM KCland at 25 °C, it was found that on average, 94% of the calcein could be released from 

the liposomes within 70 minutes after reduction by Na2S2O4.  Increasing the experimental 

temperature created a favorable condition for faster release, as the ΔT between Texp and TH was 

larger and therefore more energetically favorable for the conversion of DOPE lipids into HII.  

Lowering Texp to near TH resulted in the rate of release slowing to the point where no significant 

content release was occurring over an extended period of time due to energetic differences 

between phases that favored the stability of the Lα phase and encouraged a different 

destabilization pathway involving contents mixing and slow contents leakage.   

Differences in the buffer composition were investigated, as initial speculation into the 

acceleration into the rate of lactonization could occur through catalysis by phosphate buffers.  
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Comparing TES and phosphate buffer, no differences between the two components were 

observed.  However, the variation of KCl concentration appeared to have a stronger effect on the 

rates of release.  Further investigation revealed that concentration of KCl had similar effects as 

the temperature on the rate of content release, as higher salt concentrations increased the rate of 

calcein release.   

To further investigate the salt effects, the Hofmeister series was observed to determine 

changes in the rate of release and to elucidate an explanation for the differences in rates of 

release.   In dye dequenching experiments, 75 mM Hofmesiter salt concentrations were found to 

have an effect on the rates of release, especially in the chaotropic salts.  The kosmotropic salts 

had a smaller response when compared to the chaotropes and the order of the salts was difficult 

to determine.  Increasing the salt concentrations to 0.5 M revealed a marked response to the type 

of salt anion present, with kosmotropic salts generating a faster rate of release while chaotropes 

salts generated a slower rate of release.   In an effort to correlate the observe changes in release 

rate, the TH of DOPE was measured with DSC against 50 mM phosphate buffer containing 0.5 M 

Hofmesiter salts.  The value of TH was observed to increase, in accordance with the expected 

effects of the Hofmesiter salts and through the observed changes in rates of release in dye-

dequenching experiments.  Based on careful literature evaluation, the Hofmeister salts work on 

the phase conversion of PE lipids via both kinetic and thermodynamic pathways, creating 

stability and instability in the phase structures according to the type of salt present.    

To address some of the kinetic differences related to the phase transition, the type of PE 

lipid was varied, with the selection DLiPE that has a lower TH value than DOPE.  DLiPE 

possesses two cis-double bonds in its acyl hydrocarbon chain structure, resulting in a lower value 

of TH bur a larger volume occupied by the chains.  Comparing the rates of release from Q3-

DOPE and Q3-DLiPE at 25 °C demonstrated that the Q3-DLiPE had a significantly slower 
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release rate, despite a favorable ΔT.  The differences were attributed to the commensurate nature 

of the lattice structures between the Lα and HII phases of each lipid.   The closer to 

commensurate lattices in the phases, the faster the transition will occur.  Thus, TH alone cannot 

predict accelerations or decelerations in content release rates without consideration of the lattice 

structures of each phase of the lipid.   

Finally, comparing different Qx headgroups demonstrated that the reduction and rapid 

protonation of the H2Q does not have any observable effect on the stability of the liposome or on 

the local pH.  Q1-DOPE has the requirement of the trimethyl-lock removed and showed a very 

slow content release rate in the experimental timeframe.  Q0-DOPE contains no lock structure 

and the only action on the local chemistry is through the reduction of the quinone.  Within the 

time frame of the experiment, no release of detectable calcein was observed in Q0-DOPE 

liposomes. 

5.2 Conclusions 
 
The results presented here demonstrate that changes in TH of DOPE lipids can be 

observed through both DSC and dye-dequenching studies due to the presence of the redox-active 

capping quinone headgroup.  By increasing the area of the PE headgroup with the quinone, the 

lipid can be effectively trapped in an Lα phase until the headgroup is removed through chemical 

or enzymatic reduction.  After the headgroup is cleaved from the lipid headgroup, the lipids are 

then able to undergo phase transition to HII through the aggregation and fusion of apposing PE 

bilayers.  The rate of conversion between the two phases can be influenced by the experimental 

temperature, salt concentration and salt type, thus providing a unique opportunity to further study 

rates of phase conversions in PE lipids without X-ray diffraction.     

Additionally, the results demonstrate that liposomal systems based on the fusion of 

DOPE lipids to generate content release require careful consideration of the buffer system used 
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in experiments.  Many of the stimuli-responsive liposomes described in literature are based 

around the concept of trapping DOPE in the Lα through various means and using its phase 

transition into the HII to create the instability to drive unloading of the liposomes.  However, 

each system has its own experimental temperature, pHs and buffer compositions, each of which 

creates a unique rate of content release for the described system.  The inconsistency in buffer and 

pH selection make it difficult to compare the effectiveness of various systems, especially in the 

realm of content release.  

5.3 Outlook 
 

Liposmal-based delivery systems will continue to have considerable interest and 

applications in drug and reagent delivery.  It is therefore highly desirable to carefully consider 

the experimental conditions that can influence the rate of content release from the liposomal 

systems.  By exploiting present conditions at a delivery site, a stimuli-responsive liposome can 

have another degree of control over the rate of drug release in order to match the drug efficacy 

profile, generating a more effective and less toxic treatment. 

Aside from the drug delivery aspect of the redox-active liposomes describe here, the 

other interesting result comes in the form of the Hofmeister salt effects on the phase transition of 

PE lipids.  While the literature remains sparse, offering few details and several hints as to 

possible mechanisms, Q3-DOPE liposomes offer a very unique way to study this effect through 

the hydration differences of the lipid bilayers.  With Q3-DOPE and other lipid variants, such as 

the trans-isomer of DOPE, DEPE, it will be possible to further study the hydrocarbon volume 

differences in the lipids and the effects on the rates of content release.  Further study of the phase 

behavior of pure DOPE is also required to ascertain the full hydration effects of the Hofmeister 

series.  Such experiments can be performed with careful X-ray scattering to measure the d-

spacing between lamellar bilayers in the presence of various salts and concentrations of salts to 
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determine the changes in the water layer.  Vibrational sum frequency spectroscopy, as described 

by Cremer1 also has potential for measuring the water content of the lipid bilayers, which may 

provide additional evidence when coupled with the X-ray data, as described by Tate and Gruner2, 

as to the nature of the Hofmeister effects on the phase transitions of PE lipids.  
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APPENDIX: LIPID NAMES, STRUCTURES, AND THERMODYNAMIC DATA 
 
All values for TM and  TH from Avanti Polar Lipids.1 
 
DOPC  18:1 (Δ9-Cis) PC 1,2-dioleoyl-sn-glycero-3-phosphocholine 

 
  TM = − 20 °C 
  TH = not observed 

 
DOPE  18:1 (Δ9-Cis) PE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

 
  TM = − 16 °C 
  TH = 10 °C 
 
DSPE  18:0 PE  1,2-distearoyl-sn-glycero-3-phosphoethanolamine 

 
  TM = 74 °C 
  TH = 100 °C 
 
DPPE  16:0 PE  1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

 
  TM = 63 °C 
  TH = 118 °C 
 
DEPE  18:1 (Δ9-Trans) PE 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine 

 
  TM = 38 °C 
  TH = 64 °C 
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DLiPE  18:2 PE  1,2-dilinoleoyl-sn-glycero-3-phosphoethanolamine 

 
  TM = − 40 °C 
  TH = − 15 °C 
 
DOPE-Me 18:1 Monomethyl PE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- 

methyl 

  
 

Q3-DOPE    trimethyl-locked, quinone capped, DOPE 

 
    
Q3-DLiPE    trimethyl-locked, quinone capped, DLiPE 

 
   
Q1-DOPE    monomethyl-locked, quinone capped, DOPE 

 
  
Q0-DOPE    quinone capped DOPE 

 
 
   
(1) Avanti Polar Lipids. http://www.avantilipids.com (accessed May 2011). 
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