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ABSTRACT 

Porphyrins are of exceptional importance in nature, science and technology: for instance, 

as ligands for metals in supramolecular synthesis, as photosensitizers in photodynamic therapy 

(PDT), and as building blocks for electronic devices. In addition to their application in cancer 

therapy, porphyrin species also exhibit antiviral activity. New meso-tetraarylporphyrins (TArP, 

Ar = -C6H4-) of the general formula, T(R1R2NSO2Ar)P, with R1 = N-py-n-CH2 (n = 2, 3 or 4) or 

SO3
- and R2 = H or CH3 were synthesized. These groups were linked to the 4-position of the 

phenylene group of the porphyrin by a secondary (SO2NHR) or tertiary (SO2NR2) sulfonamide 

group. The sulfonamide group was found to be a versatile way of expanding the porphyrin. The 

presence of a tertiary sulfonamide group instead of a dissociable proton improved the solubility 

of the new class of porphyrin compounds synthesized. 

Adducts having four methylcobaloxime units (CH3Co(DH)2) bound to the pyridyl 

nitrogens of T(N-py-4-CH2(CH3)NSO2Ar)P or TpyP(4) were synthesized for the first time and 

their solution properties studied by 1H NMR spectroscopy. The 1H NMR signal of the axial 

methyl of CH3Co(DH)2L complexes shifts upfield with increasing L basicity, but the signal of 

the equatorial methyl is insensitive to L basicity. The axial methyl signal was used to examine 

the effect of coordination of the CH3Co(DH)2 moiety to the N-pyridyl group of the TpyP(4) and 

of the newly synthesized porphyrin, T(N-py-4-CH2(CH3)NSO2Ar)P.  

A new class of water-soluble porphyrins meso-tetraarylporphyrins and some metal 

derivatives were synthesized from the above class of compounds by simple alkylation and 

metallation with copper and zinc salt. Interactions of selected porphyrins and metalloporphyrins 

(Cu(II), Zn(II)) with calf thymus DNA were investigated by visible circular dichroism, 

absorption, and fluorescence spectroscopies. The main aim of studying this class of compounds 



 xiv

was to assess whether N-methylpyridinium (N-Mepy) groups must be directly attached to the 

porphyrin core in order for intercalative binding to DNA to occur. 

 Porphyrins have been known for some years to show antiviral activity against human 

immunodeficiency virus (HIV) infection in assays that measured inhibition of virus replication. 

One promising approach receiving increasing attention is the development of microbicides 

which, when applied topically, can prevent viral infection. These compounds could directly 

interact with HIV virions to decrease or prevent infectivity, thus providing a defense against 

sexual transmission of the virus. Sulfonated derivatives of tetraarylporphyrin have also been 

shown to exhibit activity HIV. A new class of porphyrins containing sulfonamide links was 

synthesized and characterized by 1H NMR spectroscopy and mass spectrometry. 
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CHAPTER 1. INTRODUCTION 

 
Porphyrins are a class of macrocyclic compounds, which contain four pyrrole rings linked 

by four methine bridges and their parent molecule is known as porphine (Figure 1.1). 

Substitution of some or all of the hydrogens on the pyrrole rings or at the methine bridge of the 

porphine results in β-substituted and meso-substituted (Figure 1.1) porphyrins.1 Porphyrins and 

related compounds are the basic chromophores for a large number of biologically important 

natural products such as cytochromes, haemoproteins, chlorophylls and bacteriophylls.2 

Porphyrins are being studied widely because of their intriguing physical, chemical and biological 

properties.1 

 

Figure 1.1. Structures of porphine, β-substitued and meso-subsituted porphyrins. 

Porphyrins and their derivatives are highly colored and absorb strongly in the visible region 

near 400 nm (molar extinction coefficients are about 105 mol-1L), characteristic of the 

macrocyclic conjugation and several weaker absorption bands (Q bands) between 450-700 nm.3 

The main intense absorption band is known as the Soret band, named after the biochemist who 

first observed it in hemoglobin.4 The Soret band is a major characteristic of the optical spectrum 

of the porphyrin macrocycle as it disappears with the disruption of the macrocycle.3 The 

intensity and wavelength of the absorption bands changes with variations in the peripheral 
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positions of the porphyrin macrocycle. Protonation of two of the inner nitrogen atoms or 

insertion of a metal into the porphyrin cavity changes the visible absorption spectrum.3 The 1H 

NMR spectrum of the aromatic porphyrin ring shows anisotropic effects.5-7 The highly shielded 

NH protons in the porphyrins appear at very high field (-2 to -4 ppm), whereas the outer meso 

protons (shielded by the aromatic ring current) appear at very low field (8 to 10 ppm).8,9  

The porphyrin macrocycle is very stable to concentrated acids (e.g. sulfuric acid ), and can 

exhibit characteristics of both acids and bases.2 The nitrogen atoms at the centre of the porphyrin 

core are responsible for this interesting characteristic.2 In the free-base porphyrins, the central 

nitrogen atoms are free and the NHs (pKb~ 9) can be protonated easily with acids such as 

trifluoroacetic acid.1 Strong base such as alkoxides can remove the protons (pKa~16) from the 

inner nitrogen atoms of the porphyrin to form a dianion.1 The inner protons can also be replaced 

by a metal. Various types of metals (e.g., Zn, Cu, Ni, Sn etc) can be inserted into the porphyrin 

cavity by using various metal salts.10 Removal of the metal can be achieved by treatment of the 

metallated porphyrins with acids, and different types of acids are required for the removal of the 

different metals. 

1.1 Meso-tetra(4-pyridyl)porphyrin (TpyP(4)) 
 

The development of new multiporphyrin assemblies is a subject of current research because 

of their potential applications in material science, reaction catalysis and energy transfer 

molecular devices for advanced technological tasks. 11-14 Porphyrins offer a variety of appealing 

features: rigid, planar geometries, high stability, intense electronic absorption bands in the visible 

region, a relatively long fluorescence decay time, facile tunability of their physicochemical 

properties by metallation or functionalization of the peripheral substituents.15 
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The metal-driven construction of multi-porphyrin assemblies exploits the formation of 

coordination bonds between peripheral basic site(s) on the porphyrins and metal centers. This has 

recently allowed the design and preparation of sophisticated supramolecular architectures.12 

Particularly attractive porphyrin arrays are those based on TpyP(4) (Figure 1.2). The electronic 

properties and solubility of TpyP(4) can be tuned by functionalization of the phenyl rings or the 

β-pyrrolic positions.16 TpyP(4) or related compounds can provide geometrically well-defined 

connections to as many as four metal centers by the coordinating ability of the peripheral pyridyl 

groups.17,18 4-meso pyridyl groups can be coordinated to metal-containing fragments of various 

coordination numbers and geometries.19 Adducts obtained by peripheral coordination of 

pyridylporphyrins to singly unsaturated metal centers have shown new, interesting photophysical 

properties.20,21 Similarly, when polyunsaturated metal fragments are used to bridge two or more 

TpyP(4) units, supramolecular species of considerable structural and photophysical interest are 

obtained.18 

 

Figure 1.2. Meso-tetra(4-pyridyl)porphyrin. 
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1.2 Cationic Porphyrins 

Most derivatives of cationic meso-tetraphenylporphyrins (TPPs) are based either on the 

pyridine or aniline structures, TpyP(4) and TMAP (Figure 1.3). The interaction of cationic 

porphyrins with DNA is of considerable interest due to their potential applications in medicine. 

The special properties of porphyrins such as high optical absorption, relatively high quantum 

yields of triplet state and fluorescence, or paramagnetism of some metal complexes provide the 

use of porphyrins in medicine, for instance, as active compounds in radiological therapy,22,23 and 

magnetic resonance imaging of cancer detection24 and as photosenstizers in photodynamic 

therapy (PDT) of cancer.22,23,25  

 

 

Figure 1.3. Structures of cationic porphyrins mentioned in this study. 



 5

Other work has demonstrated that cationic porphyrins can exhibit PDT against psoriasis 

atheromatous plaque, antiviral and antibacterial activity or act as artificial nucleases.26-31 

Porphyrins have been found to selectively accumulate in cancer cells more than in normal 

cells.32-34 The ability of porphyrins to selectively accumulate in tumors, in addition to the 

characteristic red fluorescence has led to use of porphyrins in tumor diagnosis.35 Interest in 

porphyrins and metalloporphyrins as photosensitizers and the need to understand their effect on 

DNA has led to extensive studies of porphyrin-DNA binding. From early studies of meso-tetra(4-

N-methylpyridiniumyl)porphyrin(TMpyP(4)) and several of its derivatives, Fiel et al. proposed 

three major binding modes for the classification of porphyrin-DNA interactions: intercalation, 

outside binding with self-stacking of the porphyrin and simple outside binding (Figure 1.4).36 

The interaction of cationic porphyrins with synthetic or natural DNA has been widely studied 

using visible and fluorescence37spectroscopy, circular dichroism (CD)36,38-40, Raman,41-43 

Nuclear Magnetic Resonance (NMR),31,41,42 Electron Spin Resonance (ESR),44 viscometry,42,45 

footprinting,46 kinetic methods47 and X-ray crystallography.48 

One motivation for these spectroscopic investigations has been to establish reliable criteria 

for differentiating between intercalative and outside binding modes of porphyrins with various 

synthetic and natural DNAs. A thorough investigation conducted in Pasternak’s laboratory 

showed that intercalating porphyrins are characterized by: (i) large red (Δλ ≥ 15 nm) and 

hypochromic (%H ≥ 35) shifts of their Soret maxima, (ii) negative induced CD activity in the 

Soret region, and (iii) high selectivity for the GC-rich DNA regions.40 In contrast outside binding 

porphyrins displayed: (i) much smaller red shifts (Δλ ≥ 8 nm) and little hypochromicity (%H ≤ 

10) and sometimes hyperchromicity) of their Soret maxima, (ii) positive induced CD bands in 

the Soret region, and (iii) a distinct selectivity for AT-rich DNA regions.40 
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The binding mode or modes of a specific porphyrin-DNA system are highly dependent on 

the location of the substituent groups of the porphyrin, the nature of the metal ion, and the type 

of DNA. In order to achieve intercalation, it has been proposed that the porphyrin must have a 

limited effective thickness. For example, the four planar N-methylpyridinium substituents of 

TMpyP(4) (Figure 1.3) allow intercalative binding,36,45,49,50 whereas a similar porphyrin, TMAP, 

with non-planar N-trimethylammonium substituents, is an outside binder.36,49 Metalloporphyrin 

derivatives of TMpyP(4) (MTMpyP(4)) having no axial ligands such as Au(III), Ni(II), Pt(II) 

and Cu(II) are also known to intercalate with calf thymus DNA (CT DNA) and poly(dG-dC)-

poly(dG-dC) (abbreviated as [poly(dG-dC)]2).40,45,51-55 In contrast, MTMpyP(4) that maintain 

axial ligands (Zn(II), Co(III), Fe(III), and Mn(III) do not intercalate but bind preferentially to 

poly(dA-dT)-poly(dA-dT) (abbreviated as [poly(dA-dT)]2) over poly [poly(dG-dC)]2.56-60 It’s 

believed that intercalation does not occur because the axial ligands sterically prevent the 

insertion of the porphyrin ring between DNA base pairs. Interestingly, none of the 

metalloporphyin derivatives of TMpyP(4), regardless of ligation, intercalate into [poly(dA-dT)]2. 

This finding has led to the conclusion that porphyrins selectively intercalate in regions of DNA 

with a high percentage of GC base pairs and undergo outside binding in regions high in AT base 

pairs.31,59,61  

Fiel and co-workers presented a systematic study of position isomers of TMpyP(4), 

including meso-tetra(3-N-methylpyridiniumyl)porphyrin (TMpyP(3), TMpyP(2).36,62 The 

absorbance, circular dichroism, and viscometric results indicated that TMpyP(3) could 

intercalate into CT DNA but that TMpyP(2) could not. 36 The metal-free porphyrin, meso-

tetra(2-N-methylpyridiniumyl)porphyrin (TMpyP(2)), in which the rotation of the N-methyl 

pyridyl group is prevented because of steric hindrance does not intercalate, but rather binds 
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externally to DNA and shows high specificity for AT-rich regions of DNA.36,40A comprehensive 

study of the DNA binding characteristics of 33 porphyrins by Sari et al. has evaluated the effect 

of the number of charges and their position on the porphyrin.37 All porphyrins were of the 

formula [meso-[N-methyl-4(or 3 or 2)-pyridiniuml]n(aryl)4-nPorphyrin]. From competitive 

binding assays with ethidium bromide, apparent binding constants were calculated for each of 

the porphyrins with CT DNA. The binding affinity was found to increase linearly with the 

increase in number of positive charges on the porphyrin.37 In addition, it was determined that the 

minimum requirement for intercalation was two freely rotating groups in a cis position. This 

result suggested that only half of the porphyrin needs to be in a planar conformation inorder to 

intercalate.37  

Over the years multiple steric issues have come to light in the quest to understand the 

DNA-binding interactions of the TMpyP (4) and its related compounds. Recent studies have 

shown that intercalation versus outside binding may also be influenced by charge on the 

porphyrin core63,64 and the ionic strength of the medium, which affects self association of the 

porphyrin.65,66 For instance, when the n-butyl group is attached to the periphery of the 

pyridinium ring, the porphyrin intercalates between the DNA base pairs,67 but when replaced by 

the tri-methyl group, the porphyrin exhibits an outside self-stacking binding mode,45 therefore 

indicating the importance of the steric effect of the periphery of the pyridinium ring. Fiel et al. 

found that TMAP binds to CT DNA in a self-stacking manner, characterized by a conservative 

induced CD signal.36 Pasternack and Gibbs et al. discovered extensive self-stacking of cis-bis(4-

N-methylpyridyl)diphenylporphyrin (cis-P(4) (Figure 1.3) and trans-bis(4-N-

methylpyridyl)diphenylporphyrin (trans-P(4) (Figure 1.3) along the DNA backbone.51,66,68 Our 

laboratory has studied the interaction of three tentacle porphyrins; (meso-tetra[2,3,5,6-
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tetrafluoro-4-(2-trimethylammoniumethylamine)phenyl]porphyrin (TθF4TAP), meso-tetra[4-[3-

trimethylammoniumpropyl)oxy]phenyl]porphyrin (TθOPP), meso-tetra[4-N-(3-

(trimethylammonio)-propyl)pyridyl]porphyrin (TθpyP) (Figure 1.3) with natural and synthetic 

DNA. These tentacle porphyrins all have similar size and shape but differ in electronic 

properties. The electron-withdrawing fluoro substituents on the aromatic rings make the 

porphyrin ring of TθF4TAP more electron deficient than that of TθOPP (electron-donating 

ability of the phenoxy aromatic substituents of TθOPP makes it more electron rich) and more 

like that of TθpyP which is electron deficient owing to the electron-withdrawing effect of the 

pyridinium groups.64 Spectroscopic and viscometric studies indicated that TθpyP (Figure 1.3) is 

an intercalator, whereas TθOPP and TθF4TAP are outside binders with self stacking along the 

backbone of CT DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2 DNA.38,69,70 The electron-richness of 

the core of TθOPP may act to stabilize the self-stacked, outside bound DNA adduct, disfavoring 

intercalation.38 Sterically less demanding porphyrins 5-15-di(N-methylpyridinium-4-yl)porphyrin 

(D4) and 5-15-di(N-methylpyridinium-3-yl)porphyrin (D3) (Figure 1.4) have been synthesized 

by the McMillin group and the interaction of these porphyrins with DNA indicated that both 

porphyrins bind as intercalators, regardless of the base composition of the DNA host.71 

Many porphyrins form dimers and higher order aggregates in aqueous solution. Generally, 

anionic porphyrins (carboxy- and sulfonato-porphyrins) have shown a stronger tendency to self-

stack than cationic porphyrins. This behavior may be the result of a greater localized electron 

density in the core region, which would promote stronger van der Waals interactions in a face-

face dimer.72 Similarly, electron-donating substituents on cationic porphyrins, which produce 

relatively electron rich cores, also tend to promote the formation of dimers and higher order 

aggregates.73 For example, TMAP is electron rich, as indicated by the relatively high pKa values 
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of its pyrrolic nitrogens, and it aggregates in aqueous solution;74 TθOPP also has an electronic 

rich core due to the electron-donating ability of the phenoxy aromatic substituents (pKa = 4.6)64 

and exhibits aggregation properties similar to those of TMAP.64 Aggregation of these porphyrins 

is promoted at high salt concentrations, where repulsions of like charges are reduced. 

Cationic porphyrins aggregate quite readily in aqueous solution. Pasternack et al. first 

proposed72 the idea that TMpyP(4) exists only as a monomer in aqueous solution. The original 

conclusion was based on a straight-line Beer’s law plot over the concentration range 1-60 mM.72 

However, Kano et al., using mainly fluorescence techniques, argued that TMpyP(4) dimerizes 

very strongly even at concentrations below 0.1 μM.75 They observed unresolved fluorescence 

bands which tended to separate upon dilution and with increasing temperature.75 In 1H NMR 

studies, a broad singlet corresponding to the pyrrole protons of TMpyP(4) was interpreted as 

evidence for face-to face dimer.76 In contrast, other tetracationic porphyrins such as TMAP, 

TOpyP(4) (meso-tetra(4-N-octylpyridinium)porphyrin) aggregate spontaneously in aqueous 

solution in both the presence and absence of NaCl.74 Moreover two dicationic porphyrin 

derivatives (cis-P(4) and trans-P(4)) are known to form self aggregates.66,74 In particular, trans-

P(4) readily forms large aggregate assemblies. McMillin and co-workers have synthesized less 

sterically demanding porphyrin having less bulk at the periphery (tMe2D4) (Figure 1.3).71 The 

tMe2D4 system makes an interesting contrast with trans-P(4), tMe2D4 is a less hydrophobic 

porphyrin and generally is less prone to aggregation than trans-P(4).71 tMe2D4 (Figure 1.3) was 

found to intercalate into DNA, in contrast to reports on trans-P(4), which binds externally, 

forming long-range stacked structures.51,66,71  

The aggregation behavior of a porphyrin has a direct effect on its DNA-binding mode; 

porphyrins which aggregate strongly have a greater tendency to undergo outside binding with 
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self-stacking. Several porphyrins have been recognized as binding to DNA in this manner. 

TMAP binds to DNA in an outside binding with self-stacking mode and forms aggregates on 

DNA under higher ionic strength that differs from those that are formed under low ionic 

strength.77 Fe(II) form of TMAP outside bind to DNA under low ionic strength but at higher 

ionic strength the binding mode is outside binding with self-stacking.77 Other porphyrins which 

bind to DNA by this mode include cis-and trans-P(4), two dicationic porphyrins that exhibit 

intense conservative CD signals with CT DNA.51,66 Cu(II)TMpyP(4) is an outside binder with 

self-stacking with [poly(dA-dT)]2 at high porphyrin/DNA ratios, even though it can also 

intercalate at GC sites.78 TθOPP has positive charges on the side chains off the TPP.38,69 TθOPP 

bind to CT DNA with stacking of the porphyrin along the exterior of the DNA.38,69 

1.3 Porphyrins Containing Sulfonamide Links 

In this dissertation, the synthesis and applications of porphyrins containing sulfonamide 

groups (Figure 1.5) will be discussed. Part one of this dissertation presents the synthesis of new 

porphyrin derivatives of meso-tetraarylporphyrins (TArP) of the general formula 

T(R1R2NSO2Ar)P with R1 = N-py-CH2, in which n = 2 or 4 and R2 = H or CH3. These porphyrins 

are neutral, bearing pyridy groups linked to the 4-position of the phenylene group of the 

porphyrin by secondary (-SO2NHR) or tertiary (-SO2NR2) sulfonamide groups. The reaction of 

T(N-py-4-CH2(CH)3NSO2Ar)P and its model porphyrin, meso-tetra(4-pyridyl)porphyrin 

(TpyP(4)), with methylcobaloxime (CH3Co(DH)2H2O will be discussed. The newly synthesized 

porphyrin (T(N-py-4-CH2(CH)3NSO2Ar)P) contain a 4-pyridyl group attached to the aryl group 

of the porphyrin at the meso position through a sulfonamide link, and a methine group links the 

sulfonamide group and the pyridyl group; as a result, the pyridyl group is insulated from the 

porphyrin core. The effect of coordination of the methylcobaloxime (CH3Co(DH)2) to the N-
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pyridyl moeity of TpyP(4) and of the newly synthesized porphyrin (T(N-py-4-

CH2(CH3)NSO2Ar)P) has been examined by 1H NMR, visible, and fluorescence spectroscopic 

techniques.  

In part two of this dissertation, the synthesis, solution properties and the DNA-binding 

characteristics of the alkylated derivatives of the porphyrin with the general formula 

[MT(R2R1NSO2Ar)P]X4/8 are presented (where M = 2H, Cu(II) or Zn(II); R1 = CH3 or H and R2 

= N-Mepy-n-CH2- (N-Mepy = N-methylpyridinium group and n = 2, 3 or 4) or R1 = R2 = 

Et3NCH2CH2; and Ar = 4-C6H4-). The DNA binding modes of both the free base and the selected 

metalloporphyrins derivatives have been evaluated by absorbance, circular dichroism, and 

fluorescence spectroscopy for the metal-free derivatives. The main goal of the second part of this 

dissertation was to assess if N-Mepy groups must be directly attached to the porphyrin core in 

order for intercalative binding of porphyrins to DNA to take place. 

 

 

Figure 1.4. Three modes of porphyrin-DNA binding. Edge-on view of the porphyrin is 
represented as the dark rectangle, while the face on view is the pyrrole-shaped figure in 
the center. 
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Figure 1.5. General structure of the newly synthesized porphyrins. 
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CHAPTER 2. NEW PORPHYRINS BEARING PYRIDYL PERIPHERAL GROUPS 
LINKED BY SECONDARY OR TERTIARY SULFONAMIDE GROUPS: SYNTHESIS 

AND STRUCTURAL CHARACTERIZATION 
 

2.1 Introduction 

The special characteristics of porphyrins have led to numerous studies and applications both by 

nature and by mankind.1-3 Pyridylporphyrins (PyPs) in which the pyridine ring is directly 

attached to the porphyrin core have been used in supramolecular systems, usually with metal 

centers providing the linking group.4-6 A number of complexes with different coordination 

numbers involving ruthenium, rhenium and platinum have been coordinated symmetrically to N 

atoms of the peripheral pyridyl groups of meso-tetrapyridylporphyrins (TpyPs).5,7-10 Most studies 

have involved the meso-tetra(4-pyridyl)porphyrin (TpyP(4)) isomer, Chart 2.1. It has been shown 

that coordination of the different metal fragments to N atoms of the peripheral pyridyl groups not 

only solubilizes the porphyrin but also introduces useful functionalities into the system.6 For 

example, Alessio and co-workers recently reported adducts between a TpyP(4) pyridyl group and 

either one or four Re(I) bipyridine tricarbonyl units, and they have compared their photophysical 

properties to those of the parent TpyP(4).11  

A second type of application for PyPs, such as TpyP(4), is to convert them into water-soluble 

N-alkylpyridinium derivatives. These compounds have been shown to possess interesting 

biomedical properties such as antiviral activity, anticancer activity, etc. and to interact with DNA 

by a variety of binding modes.12-16 In many cases, metals bound to the center of the porphyrin 

influence the DNA binding mode.17-21 Organometallic complexes such as areneruthenium(II) 

compounds (e.g., [Ru(η6-C6H5CH3)(μ-Cl)Cl]2) have been coordinated to the pyridyl groups of 

TpyP(4) in order to combine the photodynamic action of the porphyrin with the cytotoxicity 

effect of the areneruthenium complexes.22 These PyPs are generally relatively rigid, a property 
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that may be helpful in constructing supramolecular systems,23,24 but it would be interesting to 

examine less rigid systems, particularly after the pyridines are converted to N-alkyl pyridinium 

groups. As a first step in this direction, we wanted to overcome some of the problems in 

constructing suitable porphyrins, chiefly the low-yield syntheses that hamper porphyrin 

chemistry and the poor solubility of such PyPs as TpyP(4). PyPs reported here were prepared 

from the simple meso-tetraphenylporphyrin (TPP). TPP can be modified by connecting to it 

different peripheral substituents, changing the central metal, or expanding the size of the 

macrocycle. In this initial report, we describe a very useful strategy to meet our goals of finding 

a versatile synthetic approach to preparing soluble PyPs. Good solubility allows facile addition 

of the metal to either the inner core of the porphyrin or to a peripheral pyridyl group.  

Furthermore, we report a method of making poorly soluble porphyrins (e.g., TpyP(4)) more 

soluble by using a dissociable metal-protecting group such as an organocobaloxime moiety, 

RCo(DH)2 (DH = the monoanion of dimethylglyoxime).  

Organocobaloximes (RCo(DH)2L), in which L is an N-donor ligand such as pyridine, have 

been used extensively to understand the fundamental chemistry related to the organocobalt B12 

coenzymes.25-31 In this work we exploit the lability and the well-understood NMR properties to 

explore the new porphyrins we have prepared. In particular, we describe the synthesis of new 

pyridyl porphyrins containing sulfonamide groups of the general formula, MT(R1R2NSO2Ar)P. 

Using 1H NMR, visible absorption and fluorescence spectroscopic techniques, we have 

examined the effect of coordination of the methylcobaloxime (CH3Co(DH)2) moiety to the N-

pyridyl group of TpyP(4) and of the newly synthesized porphyrin, T(N-py-4-

CH2(CH3)NSO2Ar)P. 
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2.2 Experimental Section 

2.2.1 Materials and Methods. 4-Cyanopyridine (4-CNpy), pyridine (py), 3,5-lutidine (3,5-

lut), 4-dimethylaminopyridine (4-Me2Npy), n-pyridylcarboxaldehyde (n = 2 or 4), n-

pyridylmethylamine (n = 2 or 4),Methyl sulfonyl chloride (CH3SO2Cl), methylamine (CH3NH2), 

meso-tetra(4-pyridyl)porphyrin (TpyP(4)), and all solvents were obtained from Sigma-Aldrich. 

5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (TClSO2PP (1), Scheme 2.1) was synthesized 

by a known method, and the 1H NMR chemical shifts in CDCl3 matched the reported values. 32 

CH3Co(DH)2H2O was prepared as previously reported.30 

All 1H NMR spectra were recorded on a 400 MHz Bruker NMR spectrometer. Peak positions 

are relative to TMS or solvent residual peak, with TMS as reference. Visible absorption spectra 

were recorded with a Cary 3 spectrophotometer. Excitation and fluorescence spectra of 5.0 μM 

porphyrin solutions (CH2Cl2) were recorded on a Fluorolog-3 spectrofluorimeter (Horiba Jobin 

Yvon) at room temperature. 

2.2.2 X-ray Data Collection and Structure Determination. All single crystals suitable for X-

ray crystallography were obtained by slow diffusion of methanol into dichloromethane solution. 

Single crystals were placed in a cooled nitrogen gas stream at 90 K on a Nonius Kappa CCD 

diffractometer fitted with an Oxford Cryostream cooler with graphite-monochromated Mo Kα (λ 

= 0.71073 Å) radiation. Data reduction included absorption corrections by the multi-scan 

method, with HKL SCALEPACK.33 All X-ray structures were determined by direct methods and 

difference Fourier techniques and refined by full-matrix least squares, using SHELXL97.34 All 

hydrogen atoms were visible in difference maps, but were placed in idealized positions. A 

torsional parameter was refined for each methyl group.  
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Scheme 2.1. Synthesis of porphyrin ligands and PMMS.  

2.2.3 Synthesis of T(N-py-2-CH2(H)NSO2Ar)P (2) and T(N-py-4-CH2(H)NSO2Ar)P (3). A 

suspension of 1 (0.1 g, 0.1 mmol) in acetonitrile (15 mL) was treated with a solution of the 

respective amine in acetonitrile (0.5 mmol in 5 mL) at RT overnight. The suspension was 

filtered, and the purplish solid collected on the filter was washed with water several times (3 × 15 

mL), followed by diethyl ether, and then air-dried.  

T(N-py-2-CH2(H)NSO2Ar)P (2). Treatment of 1 (0.1 g, 0.1 mmol) with 2-

pyridylmethylamine (50 μL, 0.5 mmol) as described above afforded porphyrin 2 as a purple 

powder (0.128 g, 83% yield). 1H NMR (ppm) in DMSO-d6: 8.80 (8H, s, β-pyrrole), 8.54 (4H, br, 
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NH-sulfonamide), 8.36 (8H, d, ArH), 8.18 (8H, d, ArH), 7.86 (4H, t, pyH), 7.52 (4H, d, pyH), 

7.35 (4H, t, pyH), 8.17-8.13 (4H, t, pyH), 4.45 (8H, d, CH2), -2.99 (2H, br, NH).  

T(N-py-4-CH2(H)NSO2Ar)P (3) Treatment of 1 (0.1 g, 0.1 mmol) with 4-pyridylmethylamine 

(50 μL, 0.5 mmol) as described above afforded porphyrin 3 as a purple powder (0.11 g, 76% 

yield). 1H NMR (ppm) in DMSO-d6: 8.76 (12H, s, β-pyrrole and NH-sulfonamide), 8.60 (8H, d, 

pyH), 8.36 (8H, d, ArH), 8.19 (8H, d, ArH), 7.43 (8H, d, pyH), 4.42 (8H, d, CH2), -3.01 (2H, br, 

NH).  

2.2.4 Synthesis of T(N-py-n-CH2(CH3)NSO2Ar)P Porphyrins (n = 2 or 4). Porphyrins 4 and 

5 (below) were synthesized from secondary amines, prepared by a slight modification of a 

published procedure.35 A solution of 1.0 g (9.34 mmol) of n-pyridylcarboxaldehyde (n = 2 or 4) 

in water (5 mL) was saturated with methylamine gas until the solution was cloudy. The resulting 

solution was stirred at RT for 2 h. Solvent removal under vacuum left a pale yellow oil of the 

Schiff base (~1.0 g); Schiff base formation was confirmed by a characteristic 1H NMR imine 

signal (N-(4-pyridylmethylene)methylamine at 8.16 ppm, N-(2-pyridylmethylene)methylamine at 

8.35 ppm). The yellow oil (9.34 mmol) was dissolved in 10 mL of methanol, 0.472 g of NaBH4 

was added, and the reaction mixture then left stirring at RT for 30 min. The solvent was 

evaporated under vacuum; the residue was dissolved in water (10 mL) and extracted into CH2Cl2 

(3 × 10 mL). The organic phase was dried over anhydrous Na2SO4 and the solvent evaporated 

under vacuum to yield pale yellow oils that were characterized by 1H NMR spectroscopy. These 

oils were used to synthesize porphyrins 4 and 5 as follows: a solution of 1 (0.2 g, 0.198 mmol) in 

CH2Cl2 (20 mL) was treated with 0.11 g (0.89 mmol) of N-methyl-N-(n-pyridylmethyl)amine (n 

= 2 or 4) in CH2Cl2 (5 mL). The reaction mixture was stirred at RT overnight, and the precipitate 

that formed was removed by filtration. The filtrate was washed with water (3 × 15 mL), dried 
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over anhydrous Na2SO4, and the solvent removed under vacuum. The residue was recrystallized 

from CH2Cl2/methanol. 

T(N-py-2-CH2(CH3)NSO2Ar)P (4). The general method described above, starting with 2-

pyridylcarboxaldehyde (9.34 mmol, 1 g) and CH3NH2, yielded N-methyl-N-(2-

pyridylmethyl)amine as a pale yellow oil (0.89 g, 76% yield). 1H NMR (ppm) in CDCl3: 8.53 

(1H, d, ArH), 7.66 (1H, t, ArH), 7.28 (1H, d, ArH), 7.16 (1H, s, ArH), 3.83 (2H, s, CH2), 2.50 

(3H, s, CH3).1.86 (1H, br, NH). GC-MS(m/z): M+ = 123.2. Calcd for M+ = 123.17. Treatment of 

1 (0.2 g, 0.198 mmol) with N-methyl-N-(2-pyridylmethyl)amine (0.11g, 0.89 mmol) as described 

above afforded porphyrin 4 as a purple powder (0.16 g, 59% yield). 1H NMR (ppm) in DMSO-

d6: 8.90 (8H, s, β-pyrrole), 8.59 (4H, d, pyH), 8.47 (8H, d, ArH), 8.25 (8H, d, ArH), 7.90 (4H, m, 

pyH), 7.56 (4H, d, pyH), 7.39 (4H, m, pyH), 4.60 (8H, s, CH2), 2.99 (12H, CH3), -2.94 (2H, br, 

NH). ESI-MS(m/z): [M + H]+ = 1351.4077, [M + 2H]+2 = 676.2076, [M + 3H]+3 = 451.1437. 

Calcd for [M + H]+ = 1351.3775, [M + 2H]+2 = 676.1926, [M + 3H]+3 = 451.1310. 

T(N-py-4-CH2(CH3)NSO2Ar)P (5). The general method described above, starting with 4-

pyridylcarboxaldehyde (9.34 mmol, 1 g) and CH3NH2, yielded N-methyl-N-(4-

pyridylmethyl)amine as a pale yellow oil (0.94 g, 83% yield). The 1H NMR spectrum in CDCl3 

matches that reported in the literature.36 1H NMR (ppm) in CDCl3: 8.53 (2H, d, ArH), 7.24 (2H, 

d, ArH), 3.77 (2H, s, CH2), 2.46 (3H, s, CH3), 1.98 (1H, br, NH). GC-MS(m/z): M+ = 123.0. 

Calcd for M+ = 123.17. Treatment of 1 (0.2 g, 0.198 mmol) with N-methyl-N-(4-

pyridylmethyl)amine (0.11g, 0.89 mmol) as described above afforded porphyrin 5 as a purple 

powder (0.15 g, 55% yield). 1H NMR (ppm) in DMSO-d6: 8.92 (8H, s, β-pyrrole), 8.65 (8H, d, 

pyH), 8.51 (8H, d, ArH), 8.30 (8H, d, ArH), 7.46 (8H, d, pyH), 4.54 (8H, s, CH2), 2.93 (12H, s, 

CH3), -2.92 (2H, br, NH). ESI-MS(m/z): [M + H]+ = 1351.4107, [M + 2H]+2 = 676.2096, [M + 
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3H]+3 = 451.1451. Calcd for [M + H]+ = 1351.3775, [M + 2H]+2 = 676.1926, [M + 3H]+3 = 

451.1310. 

Table 2.1. Characteristic Absorption and Emission Maxima of Methylcobaloxime–Porphyrin 
Adducts and of the Porphyrin Models in CH2Cl2 

compound absorption (λmax/nm) emission 

 Soret band  Q bands  λem (nm)a 

T(N-py-4-CH2(CH3)NSO2Ar)P (5) 420 514, 548, 

589, 644 

650 714 

Cu(II)5 416 540   

Zn(II)5 424 550, 596 603 649 

[CH3Co(DH)2]4Por5 (6) 420 514, 548 

589, 644 

650 714 

[CH3Co(DH)2]4Cu(II)5 (7) 416 540   

[CH3Co(DH)2]4Zn(II)5 (8) 424 550, 596 599 648 

TpyP(4) 416 510, 544,  

587, 642 

649 712 

Cu(II)TpyP(4) 418 538   

Zn(II)TpyP(4) 424 550, 596 602 652 

[CH3Co(DH)2]4TpyP(4) (9) 422 515, 550, 590, 
646 

652 714 

[CH3Co(DH)2]4Cu(II)TpyP(4) (10) 418 540   

[CH3Co(DH)2]4Zn(II)TpyP(4) (11) 424 551, 594 603 646 

a λexc = 420 nm. 

Cu(II)T(N-py-4-CH2(CH3)NSO2Ar)P (Cu(II)5). A solution of 5 (50 mg, 0.037 mmol) in 

CH2Cl2 (10 mL) was treated with copper(II) acetate (6.4 mg, 0.037 mmol) in methanol (5 mL). 

The solution was left stirring at RT for about 1 h. Completion of the reaction was indicated by 



 24

the collapse of the four Q bands of the free base to one Q band (Table 2.1). The reaction mixture 

was reduced in volume to about 1 mL, and acetone was added to precipitate Cu(II)5 as a red 

powder. (48 mg, 92% yield). 1H NMR (ppm) in CDCl3: 8.74 (8H, br, pyH), 8.05 (8H, br ArH), 

7.49 (8H, d, pyH), 4.46 (8H, br, CH2), 2.92 (12H, br, CH3).  

Zn(II)T(N-py-4-CH2(CH3)NSO2Ar)P (Zn(II)5). A solution of 5 (50 mg, 0.037 mmol) in 

CH2Cl2 (10 mL) was treated with zinc(II) acetate (40 mg, 0.19 mmol) in methanol (2 mL). The 

solution was left stirring at RT for 2 h, after which an aliquot of the reaction mixture was 

analyzed by using visible spectroscopy. The metal insertion was complete, as indicated by the 

collapse of the four Q bands to two Q bands (Table 2.1). After the CH2Cl2 was removed by 

rotary evaporation, the purple precipitate that formed was collected on a filter and washed with 

methanol to remove the excess of zinc acetate and air dried to afford Zn(II)5 (30 mg, 58% yield). 

1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole), 8.64 (8H, d, pyH), 8.46 (8H, d, ArH), 8.28 

(8H, d, ArH), 7.46 (8H, d, pyH), 4.55 (8H, d, CH2), 2.93 (12H, s, CH3). 

2.2.5 Synthesis of ([CH3Co(DH)2])4T(N-py-4-CH2(CH3)NSO2Ar)P (6). CH3Co(DH)2H2O 

(95 mg, 0.30 mmol) was added to a solution of 5 (0.1 g, 0.074 mmol) in CH2Cl2 (20 mL) and 

stirred until a clear solution resulted (~5 min). The solution was filtered and treated with 5 mL of 

ethyl acetate. After partial evaporation of the solution, a brownish precipitate was collected on a 

filter, washed with diethyl ether, and vacuum dried to afford 6 (Chart 2.1) as a brown precipitate 

(0.17 g, 92% yield). 1H NMR (ppm) in CDCl3: 18.34 (8H, s, OH), 8.85 (8H, s, β-pyrrole), 8.67 

(8H, d, pyH), 8.44 (8H, d, ArH), 8.26 (8H, d, ArH), 7.44 (8H, d, pyH), 4.54 (8H, d, CH2), 3.00 

(12H, CH3), 2.15 (48H, s, CH3), 0.82 (12H, d, Co-CH3), -2.79 (2H, br, NH).  
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Chart 2.1 

 

[CH3Co(DH)2]4Cu(II)T(N-py-4-CH2(CH3)NSO2Ar)P (7). The general method described 

above with CH3Co(DH)2H2O (45 mg, 0.14 mmol) and Cu(II)5 (50 mg, 0.035 mmol) afforded 7 

(Chart 2.1) as a red precipitate (65 mg, 69% yield). 1H NMR (ppm) in CDCl3: 18.30, (8H, s, 

OH), 8.62 (8H, br, pyH), 8.02 (8H, br ArH), 7.38 (8H, d, pyH), 4.44 (8H, d, CH2), 2.90 (12H, 

CH3), 2.14 (48H, s, CH3), 0.81 (12H, d, Co-CH3).  

[CH3Co(DH)2]4Zn(II)T(N-py-4-CH2(CH3)NSO2Ar)P (8). The general method described 

above with CH3Co(DH)2H2O (45 mg, 0.14 mmol) and Zn(II)5 (50 mg, 0.035 mmol) afforded 8 
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(Chart 2.1) as a purple precipitate (50 mg, 53% yield). 1H NMR (ppm) in CDCl3: 18.18 (8H, s, 

OH), 8.94 (8H, s, β-pyrrole), 8.63 (8H, d, ArH), 8.44 (8H, d, ArH), 8.24 (8H, d, ArH), 7.41 (8H, 

d, pyH), 4.54 (8H, d, CH2), 3.01 (12H, CH3), 2.12 (48H, s, CH3), 0.77 (12H, d, Co-CH3).  

[CH3Co(DH)2]4TpyP(4) (9). CH3Co(DH)2H2O (0.21 g, 0.64 mmol) was added to a suspension 

of TpyP(4) (0.1 g, 0.16 mmol) in CH2Cl2 (10 mL). After stirring (~5 min), the suspension 

became a solution, which was then filtered and 5 mL of ethyl acetate was added. After partial 

evaporation of the solution, a reddish precipitate was collected on a filter, washed with diethyl 

ether, and vacuum dried to afford 9 (Chart 2.1, 0.28 g, 94% yield). 1H NMR (ppm) in CDCl3: 

18.53 (8H, s, OH), 9.03 (8H, d, pyH), 8.75 (8H, s, β-pyrrole), 8.15 (8H, d, pyH), 2.33 (48H, s, 

CH3), 1.03 (12H, s, Co-CH3), -3.04 (2H, br, NH).  

[CH3Co(DH)2]4Cu(II)TpyP(4) (10). A solution of 9 (50 mg, 0.027 mmol) in CH2Cl2 (10 mL) 

was treated with a methanol solution (5 mL) of Cu(II) acetate (8.2 mg, 0.041 mmol). The 

solution was stirred at RT for 2 h, then filtered and left standing at RT overnight. The precipitate 

that formed was collected on a filter and vacuum dried, affording 10 (Chart 2.1) as a red 

precipitate (43 mg, 85%). 1H NMR (ppm) in CDCl3: 18.23 (8H, s, OH), 8.79 (8H, br, pyH), 2.26 

(48H, s, CH3), 0.96 (12H, s, Co-CH3).  

[CH3Co(DH)2]4Zn(II)TpyP(4) (11). Treatment of a solution of 9 (50 mg, 0.027 mmol) with a 

methanol solution (5 mL) of Zn(II) acetate (8.9 mg, 0.041 mmol) as described for 10 above 

afforded 11 (Chart 2.1) as a purple precipitate (39 mg, 77% yield). 1H NMR (ppm) in CDCl3: 

18.42(8H, s, OH), 8.97 (8H, d, pyH), 8.82 (8H, s, β-pyrrole), 8.13 (8H, d, pyH), 2.29 (48H, s, 

CH3), 0.97 (12H, s, Co-CH3).  

N-Methyl-N-(4-pyridylmethyl)methanesulfonamide (PMMS). A solution of 0.57 g (5 

mmol) of CH3SO2Cl in CH2Cl2 (50 mL) was added dropwise over the course of ~0.5 h to a 
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solution of 1.12 g of N-methyl-N-(4-pyridylmethyl)amine (10 mmol) in of CH2Cl2 (50 mL). The 

reaction mixture was stirred at RT overnight.  The reaction mixture was filtered and washed with 

water (3 × 50 mL). The CH2Cl2 was dried over anhydrous Na2SO4 and the solvent evaporated 

under vacuum to yield a pale yellow oil (0.76 g, 68% yield). 1H NMR (ppm) in CDCl3: 8.60 (1H, 

d, ArH), 7.29 (1H, d, ArH), 4.32 (2H, s, CH2), 2.89 (3H, s, CH3), 2.80 (3H, s, CH3). 

Synthesis of [CH3Co(DH)2]PMMS. CH3Co(DH)2H2O (100 mg, 0.31 mmol) was added to a 

solution of PMMS (62 mg, 0.31 mmol) in CH2Cl2 (20 mL) and stirred until a clear solution 

resulted (~5 min). The solution was filtered and treated with 5 mL of ethyl acetate. After partial 

evaporation of the solution, an orange precipitate was collected on a filter, washed with diethyl 

ether, and vacuum dried to afford [CH3Co(DH)2]PMMS as an orange precipitate (0.14 g, 90% 

yield). 1H NMR (ppm) in CDCl3: 18.29, (8H, s, OH), 8.59 (8H, d, pyH), 7.31 (8H, d, pyH), 4.32 

(8H, d, CH2), 2.91 (3H, CH3), 2.84 (3H, s, CH3), 2.13 (12H, s, CH3), 0.83 (12H, d, Co-CH3).  

2.3 Results and Discussion  

2.3.1 Crystal Structures of T(N-py-4-CH2(CH3)NSO2Ar)P (5) and Cu(II)T(N-py-4-

CH2(CH3)NSO2Ar)P (Cu(II)5). X-ray quality crystals of porphyrin 5 and its copper complex 

were obtained by slow diffusion of methanol into a dichloromethane solution of the respective 

compound. Crystal data and structural refinement details are summarized in Table 2.2. ORTEP 

drawings of 5 and Cu(II)5 are shown in Figure 2.1; 5 and Cu(II)5 lie on an inversion center. The 

24-atom core of 5 is planar. The two distances (2.018 and 2.091 Å) from the centroid (Ct) of the 

pyrrole nitrogens to Npyrrole and NHpyrrole, respectively, in 5 are comparable to the respective 

values of 2.026 and 2.099 Å for TPP.37 The phenyl rings of 5 are almost perpendicular to the 

plane of the porphyrin, with dihedral angles of 84.9(2)° and 73.3(2)°. Two of the pyridyl rings of 

5 are almost in the plane of the porphyrin, with a dihedral angle of 4.6(3)° and the other two 
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pyridyl rings are slightly out of the plane of the porphyrin with a dihedral angle of 36.1(3)°.The 

coordination about the copper atom of Cu(II)5 is square planar (Figure 2.1). The two Cu-N 

distances are 2.001(5) and 2.002(6) Å, which are comparable to that for Cu(II)TPP (1.995(2) 

Å).38 The phenyl rings of Cu(II)5 are almost perpendicular to the plane of the porphyrin with 

dihedral angles of 83.5(3)° and 84.0(3)°. Two of the pyridyl rings of Cu(II)5 are almost in the 

plane of the porphyrin with a dihedral angle of 3.7(4)°, while the dihedral angle for the other two 

pyridyl rings is 31.2(5)°.  

 

 

Figure 2.1. ORTEP drawings of T(N-py-4-CH2(CH3)NSO2Ar)P (5) and Cu(II)5 with 50% 
ellipsoids. 
 
The overlay of the porphyrin core of Cu(II)TPP and Cu(II)5 gave an RMS value of 0.0136 Å. 

This good fit implies that having substituents at the periphery of the porphyrin does not affect the 

planarity of the core. Preliminary X-ray results also confirmed the synthesis of 4 (Figure A1). 
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Table 2.2. Crystal Data and Structure Refinement for T(N-py-4-CH2(CH3)NSO2Ar)P (5), 
Cu(II)5, and [CH3Co(DH)2]4TpyP(4) (9) 

 5 Cu(II)5 9 

formula C72H62N12O8S4•4CH3OH C72H60CuN12O8S4•4CH3OH C76H94Co4N24O16•12CHCl3 

fw 

color 

1479.74 

red 

1541.27 

orange 

3267.89 

orange 

cryst syst 

space group 

monoclinic 

P21/c 

monoclinic 

P21/c 

triclinic 

1P  

unit cell dimensions 

a (Å) 

b (Å) 

c (Å) 

13.879(5) 

12.776(4) 

21.131(8) 

13.530(4) 

12.967(4) 

21.020(7) 

13.356(2) 

13.893(2) 

19.974(4) 

α (deg) 

β (deg) 

γ (deg) 

90 

99.184(15),  

90 

90 

97.227(14) 

90 

72.830(9) 

73.905(7) 

75.270(9) 

V (Å3) 3699(2) 3659(2) 3341.7(10) 

Z 2 2 1 

T (K) 90 90 90 

ρcalc (mg m–3) 1.329 1.399 1.624 

abs coeff (mm–1) 0.20 0.48 1.27 

2�max (deg) 46.0 46.0 46.0 

R indicesa 

wR2 = [I > 2σ(I)]b 

0.090  

0.247 

0.096  

0.280 

0.051 

 0.136  

data/params 5081 / 471  5066 / 477 9107 / 795 

aR = (∑||Fο| - |Fc||)/∑|Fο|.  bwR2 = [∑[w(Fο
2 – Fc

2)2]/∑[w(Fο
2)2]]1/2. 

2.3.2 Crystal Structure of [CH3Co(DH)2]4TpyP(4) (9). Crystals of porphyrin 9 were 

obtained by layering hexane in a chloroform solution of 9. The crystals permitted the first X-ray 
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structural determination of the TpyP(4) molecule with four CH3Co(DH)2 units, each bound to a 

pyridyl nitrogen (Table 2.2, Figure 2.2). In the crystal, the porphyrin has an inversion center. The 

planes of the pyridyl groups make dihedral angles of 78.1(2)° and 64.1(2)° with the plane of the 

porphyrin. The equatorial plane of the pseudo-octahedral methylcobaloxime units is nearly 

perpendicular to the plane of the porphyrin, with dihedral angles of 89.6(1)° and 81.4(1)°. The 

Co–Neq bond distances range from 1.882(4)–1.892(5) Å (Table A1), which is close to the range 

reported for CH3Co(DH)2py (1.877(2)–1.905(5) Å).39 The Co−N(axial) distances of 9 are 

2.055(4) and 2.079(4) Å (Table A1), in good agreement with the value reported for 

CH3Co(DH)2py (2.068(3) Å).39 The Co−CH3 bond lengths of 9 (1.999(5) and 2.002(5) Å) are 

very close to the value reported for CH3Co(DH)2py (1.998(5) Å).39 

 

Figure 2.2. ORTEP drawing of [CH3Co(DH)2]4TpyP(4) (9) with 50% ellipsoids. 
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2.3.3 Synthesis of the Porphyrins, Porphyrin-Cobaloxime Adducts, and Their Metal 

Complexes. Treatment of 1 (TClSO2PP, Scheme 2.1) with primary amines such as 2- or 4-

pyridylmethylamine generated porphyrins containing secondary sulfonamide groups (2 and 3). 

Metallation of such porphyrins resulted in an insoluble material, possibly because the metal 

coordinates to the sulfonamide group through both the sulfonyl oxygen and the deprotonated 

sulfonamide nitrogen.40-42 The potential for secondary sulfonamides to coordinate to metals led 

us to investigate the synthesis of porphyrins containing only tertiary sulfonamide groups. The 

presence of an N-Me group in place of the dissociable NH group allowed us to prepare 

porphyrins (4 and 5) that are very soluble in organic solvents; these were characterized by mass 

spectrometry and 1H NMR spectroscopy. Cu(II) and Zn(II) complexes of porphyrin 5 were also 

prepared.  

Methylcobaloxime complexes (CH3Co(DH)2L) are generally synthesized from 

CH3Co(DH)2H2O by substitution of water in the presence of an excess of L in methanol 

solution30 or in a CH2Cl2 suspension.29 Addition in a 4:1 ratio of CH3Co(DH)2H2O to L (L = 

T(N-py-4-CH2(CH3)NSO2Ar)P and TpyP(4)) in dichloromethane produced  [CH3Co(DH)2]4L 

adducts. The related metalloporphyrin adducts can be prepared by reaction of the 

metalloporphyrin with CH3Co(DH)2H2O or by insertion of the metal ion into the isolated 

[CH3Co(DH)2]4L adducts. Both methods were efficient and afforded the corresponding zinc and 

copper complexes in good yield. Because TpyP(4) is not very soluble in chloroform or 

dichloromethane and the adduct is soluble, metal insertion into the [CH3Co(DH)2]4TpyP(4) 

adduct (9) is the preferred method. Insertion of Zn(II) into ([CH3Co(DH)2]4T(N-py-4-

CH2(CH3)NSO2Ar)P) (6) and 9 led to two Q bands instead of four and a 2 nm red shift of the 
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Soret band, while insertion of Cu(II) led to one Q band and a 4 nm blue shift of the Soret band; 

these changes are similar to those found upon metallation of other porphyrins by these metals.43  

2.3.4 Solution Studies. Porphyrins 2 to 5 were characterized by 1H NMR spectroscopy in 

CDCl3 and DMSO-d6 (Tables 2.2 and A2). As a result of shielding by the porphyrin ring current, 

the β-pyrrole proton signals are downfield (~ 8.8 ppm) and the NH signals appear upfield (~-2.9 

to -3.0 ppm).  

The 1H NMR spectra of T(N-py-4-CH2(CH3)NSO2Ar)P (5) and [CH3Co(DH)2]4T(N-py-4-

CH2(CH3)NSO2Ar)P (6) are compared in Figure 2.3. The 1H NMR shifts of the β-pyrrole, H2,6, 

and H3,5 signals of 6 in CDCl3 are slightly upfield (by (0.02-0.03 ppm) to those of 5 (Table 2.3).  

 
Table 2.3. Selected 1H NMR Shifts (ppm) of Porphyrin and [CH3Co(DH)2]4–Porphyrin  
Signalsa  
compound O–H…O Hβb H3,5 (py) H2,6 (py) dmgH CH3–Co -NH 

T(N-py-4-CH2(CH3)NSO2Ar)P (5)  8.87 7.42 8.70   -2.79 

[CH3Co(DH)2]4Por5 (6) 18.34 8.85 7.44 8.67 2.15 0.82 -2.79 

[CH3Co(DH)2]4Cu(II)5 (7) 18.30  7.38 8.62 2.14 0.80  

[CH3Co(DH)2]4Zn(II)5 (8) 18.18 8.94 7.41 8.63 2.12 0.77  

TpyP(4)  8.87 8.16 9.06   -2.92 

[CH3Co(DH)2]4TpyP(4) (9) 18.53 8.75 8.15 9.03 2.33 1.03 -3.04 

[CH3Co(DH)2]4Cu(II)TpyP(4) (10) 18.23   8.79 2.26 0.96  

[CH3Co(DH)2]4Zn(II)TpyP(4) (11) 18.42 8.82 8.13 8.97 2.29 0.98  

py   7.29 8.61    

CH3Co(DH)2py 18.32  7.33 8.61 2.13 0.83  
a 5 mM in CDCl3. b β -pyrrole.  
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Figure 2.3. Comparison of the 1H NMR spectra of T(N-py-4-CH2(CH3)NSO2Ar)P (5) (bottom) 
and [CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P (6) (top) in CDCl3. 
 
Normally coordination of a metal would cause downfield shifts of such signals. The upfield shift 

of H2,6 arises from the anisotropic shielding by Co,27,28 which more than counteracts the 

deshielding typically resulting from the inductive effect of a metal. The sharp singlet for the 

equatorial DH methyls and the broad signal of the oxime O–H–O bridge of the CH3Co(DH)2 

moieties for 6 have shifts of 2.15 ppm and 18.34 ppm, respectively. These shifts are similar to 

the 2.13 ppm and 18.32 ppm values observed for CH3Co(DH)2py,27 as expected. For the axial 

methyls, a singlet was observed at 0.82 ppm for 6. Insertion of Cu(II) and Zn(II) into porphyrin 6 

resulted in a general upfield shift for the axial methyl signal (Table 2.4). The H3,5 and H2,6 1H 

NMR signals of TpyP(4) and [CH3Co(DH)2]4TpyP(4) (9) (shown in CDCl3 in Figure 2.4) are 

respectively ~0.7 and 0.35 downfield from those of 5 and 6. Such downfield shifts for TpyP(4) 

and 9, as well as the greater downfield shift of H3,5 vs. H2,6, could be explained either by an 

inductive or by an anisotropic effect of the porphyrin core.  
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Table 2.4. 1H NMR Chemical Shifts (ppm) for CH3Co(DH)2L Complexes in CDCl3  
L pKa CH3–Co DH methyls 

4-CNpya 1.9 0.90 2.13 

pya 5.9 0.83 2.13 

3,5-luta 6.2 0.77 2.13 

4-Me2Npya 9.7 0.72 2.13 

a Values from reference 27.  

 

Figure 2.4. Comparison of the 1H NMR spectra of TpyP(4) (bottom) and 
[CH3Co(DH)2]4TpyP(4) (9) (Top) in CDCl3. 
 

When compared to the shifts of the parent TpyP(4), several signals of 9 (Table 2.3) are 

moderately or slightly upfield (the β-pyrrole proton signal by 0.12 ppm, the pyridyl H2,6 signal 

by 0.03 ppm, and the H3,5 signal by 0.01 ppm). The upfield shifts of the pyridyl signals arise 

from the anisotropy of Co.27,28 In a previous study,5 coordination of four cis,cis,cis-

RuCl2(dimethylsulfoxide)2CO units to the pyridyl groups of TpyP(4) was found to cause 

downfield shifts of the β-pyrrole (0.07 ppm), H2,6 (0.45 ppm) and H3,5 (0.06 ppm) signals.5 
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This result is in contrast to the upfield-shifted porphyrin signals we have observed with 

[CH3Co(DH)2]4TpyP(4) (9). The NH signal of 9 (-3.04 ppm) is shifted upfield by 0.12 ppm, as 

compared to that of TpyP(4) (-2.92 ppm) (Table 2.3).  

Sharp singlets observed at 2.33 ppm and at 1.03 ppm for the equatorial and axial methyl 

protons of [CH3Co(DH)2]4TpyP(4) (9) are shifted downfield by 0.20 ppm when compared to the 

corresponding signals for CH3Co(DH)2py.27 The axial methyl signal of CH3Co(DH)2L shifts 

upfield with increasing L basicity;28 thus, the downfield shift of the axial methyl observed with L 

= TpyP(4) indicates either that TpyP(4) peripheral pyridyls are much less basic than pyridine or 

that the signal is shifted by porphyrin anisotropy. Unlike the axial methyl signal, the equatorial 

methyl signal of CH3Co(DH)2L compounds is insensitive to L basicity and tends not to vary 

much from compound to compound unless L is anisotropic.25 The usual value is ~2.15 ppm; the 

much further downfield signal for [CH3Co(DH)2]4TpyP(4) (9) indicates that anisotropy, not 

basicity, is responsible. Insertion of a metal into 9 to form the Cu(II) (10) and Zn(II) (11) 

derivatives resulted in a general upfield shift of the signals of the CH3Co(DH)2 and pyridyl 

moieties (Table 2.3). Previous studies have shown that insertion of Zn(II) into TpyP(4) increases 

the basicity of the pyridyl nitrogen.44-46 This increased basicity is confirmed by the more upfield 

shift of the axial methyl signal of 11 compared to 9. Nevertheless, the downfield shift position of 

the axial methyl signal of 9, 10, and 11 indicates either low pyridyl basicity or a porphyrin 

anisotropic effect extending out to this long distance. More basic L form more stable 

CH3Co(DH)2L compounds, and thus we assessed relative binding ability. 

A CDCl3 solution initially 10 mM in 3,5-lut and 5 mM in [CH3Co(DH)2]4TpyP(4) (9) gave a 

1H NMR spectrum (Figure 2.5) with signals for CH3Co(DH)2(3,5-lut), indicating some 
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displacement of the CH3Co(DH)2 moiety from 9. In addition to the NH signal for 9 at -3.04 ppm, 

NH signals for new species were observed at -3.01, -2.97, -2.94 and -2.92 ppm (Figure 2.5).  

 

 

Figure 2.5. Inner NH signals of the 1H NMR spectra of TpyP(4) (a); [CH3Co(DH)2]4TpyP(4) 
(b); [CH3Co(DH)2]4TpyP(4) : 3,5-lut = 1:2 (c); [CH3Co(DH)2]4TpyP(4) : 3,5-lut = 1:4 (d); 
[CH3Co(DH)2]4TpyP(4) : 3,5-lut = 1:8 (e) in CDCl3. 
 

In a similar study performed with 40 mM 3,5-lut, the relative size of the NH signals changed. 

This change and the relative shift trend (the NH signal shifted downfield as the number of 

CH3Co(DH)2 moieties displaced increased) allowed assignment of the NH signal to the different 

adducts. The distribution of the TpyP(4) adducts differing in the number of CH3Co(DH)2 

moieties is summarized in Table 2.5. The shifts for the NH and other signals are given in Table 

A3. 



 37

Table 2.5. Distributiona (%) of Various [CH3Co(DH)2] Adducts after Addition of Pyridines to a 
CDCl3 Solution of [CH3Co(DH)2]4TpyP(4) (9) 
9 : pyridine ratio number of coordinated [CH3Co(DH)2] units 

 0 1 2 3 4 

9 : 4-CNPy (1:2) 0 6 21 42 31 

9 : 4-CNPy (1:8) 6 22 37 27 8 

9 : 3,5-lut (1:2) 4 16 35 32 13 

9 : 3,5-lut (1:8) 49 36 12 3 0 

a Distribution determined from NH signals. 
 

Addition of a 40 mM solution of 3,5-lut led to considerable displacement of the porphyrin 

ligand, with 49% of the porphyrin completely lacking a CH3Co(DH)2 moiety (Table 2.5). Two 

DH methyl peaks were observed. One peak of the signal is for CH3Co(DH)2(3,5-lut) (2.13 ppm), 

a value similar to that observed previously.27,28 The second peak (2.33 ppm) is broad and arises 

from overlapping signals of [CH3Co(DH)2]nTpyP(4) adducts (n = 1, 2, 3 and 4). In solutions of 9 

containing 3,5-lut, two signals were observed for the axial methyls. The signal at 0.77 ppm 

matches that of CH3Co(DH)2(3,5-lut), while the other signal (1.03 ppm) is broad and matches 

that of the [CH3Co(DH)2]nTpyP(4) adducts (where n = 1, 2, 3 and 4). By integration of the axial 

methyl signals, the percentage of CH3Co(DH)2 moiety bound in TpyP(4) adducts and the 

percentage in CH3Co(DH)2(3,5-lut) could be determined (Table 2.6). In the experiment with 10 

mM 3,5-lut (9:3,5-lut = 1:2), 51% of the CH3Co(DH)2 was bound to 3,5-lut, while 49% was still 

bound to the porphyrin (Table 2.6); however, in the presence of 40 mM 3,5-lut (9:3,5-lut = 1:8), 

these values were 79% and 21%, respectively (Table 2.6). 

A procedure similar to that described above was used to assign the different adducts of 4-CNpy 

and 9. When 4-CNpy (40 mM) was added to a solution of 9 (5 mM) several TpyP(4) adducts 
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were observed. Only 6% of the porphyrin lacked a CH3Co(DH)2 moiety (Table 2.5). In the 9:4-

CNpy = 1:2 experiment, only 28% of the 4-CNpy was bound to CH3Co(DH)2 (Table 2.6).  

The pyridyl group is not directly linked to the porphyrin in [CH3Co(DH)2]Por5 (6); 

consequently, the NH signal of 6 is not shifted relative to that of 5. Also, the aromatic signals 

overlap. Hence, the distribution of the various [CH3Co(DH)2]nPor5 adducts after addition of 

pyridine ligands could not be assessed. By using the axial methyl signal the percent distribution 

of the CH3Co(DH)2 moiety between the porphyrin adduct and the CH3Co(DH)2(pyridine ligand) 

complex could be determined, and the results are summarized in Table 2.6. The distribution of 

the pyridine ligands between CH3Co(DH)2(pyridine ligand) and the [CH3Co(DH)2]nPor adducts 

is very similar for  Por = 5 or TpyP(4). Thus, these two porphyrins have similar basicity. 

The 1H NMR chemical shifts for the axial methyl group of CH3Co(DH)2(pyridine ligand)27 are 

summarized in Table 2.4. As mentioned, the axial methyl signal shifts upfield with greater 4-

substituted pyridine ligand basicity. The shifts when L = 5, TpyP(4), 4-CNpy, 3,5-lut and 4-

Me2Npy are given in Figure 2.6 and Table 2.4. When L = 5, the axial methyl shift at 0.82 ppm 

matches that of CH3Co(DH)2py. These results suggest that the basicity of the pyridyl groups of 5 

is close to that of pyridine. The similarity of the adduct distribution in Table 2.6 thus confirms 

that TpyP(4) has comparable basicity to 5. Without doubt the porphyrin ring anisotropy and not 

low porphyrin basicity is responsible for the downfield position of the signals in 

[CH3Co(DH)2]nTpyP(4) (9). 

2.3.5 Visible Absorption Spectra. Soret and Q bands for 5 and TpyP(4) and their respective 

methylcobaloxime adducts (6 and 9) were measured in CH2Cl2 (Table 2.1). The Q and Soret 

bands correspond respectively to the first and second excited singlet states of the porphyrins.47-49 

The change in the number of Q bands to two or one observed upon insertion of metals (zinc and 
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copper) into the porphyrin results from the increased molecular symmetry (C4v and D4h, 

respectively), and is typical of patterns observed for metalloporphyrins with the respective 

metals.47 The lower symmetry of the Zn porphyrin is attributable to one axial ligand, and X-ray 

results (although of crystals with less than desirable diffraction intensity) confirmed that an axial 

water is coordinated in [CH3Co(DH)2]4Zn(II)TpyP(4) (Figure A2). 

 

Figure 2.6. 1H NMR spectra (Co-CH3) region of CH3Co(DH)2L with L = T(N-py-4-
CH2(CH3)NSO2Ar)P (a); TpyP(4) (b); 4-CNpy (c); py (d); 3,5-lut (e) and 4-Me2Npy (f) in 
CDCl3. 
 

 Compared to the bands of the parent porphyrin (TpyP(4)), the Soret and Q bands of 9 show 6 

nm and ~4 nm red shifts, respectively (Table 2.1). The spectrum of 6 retains the characteristic 

Soret and Q bands of the parent porphyrin 5, with no shifts (Table 2.1). The red shift of the Soret 

band observed with the [CH3Co(DH)2]4TpyP(4) adduct (9) and its Cu and Zn complexes (Table 

2.1) suggests that there is a reduction of the electron density as a result of cobalt coordination to 

the pyridyl groups. In contrast, the lack of a shift for the [CH3Co(DH)2]4T(N-py-4-
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CH2(CH3)NSO2Ar)P adduct (6) is expected because the pyridyl groups are not directly linked to 

the porphyrin core. The blue shift (4 nm) of the Soret band and of one Q band (540 nm) observed 

for copper complexes 7 and 10 (Table 2.1) are consistent with observations reported for other 

copper porphyrins.50,51 In copper porphyrins the delocalized π bonding decreases the average 

electron density, which increases the energy needed for electronic transitions, and thus a blue 

shift of the Soret band is observed.52 Complexes 8 and of 11 show a red shift (< 10 nm) of the 

Soret band and two Q bands (550, 596 nm), as observed previously with other zinc porphyrins.51 

For zinc porphyrins the delocalized π bonding increases the average electron density of the 

porphyrin, thus lowering the energy for electronic transition and leading to a red shift of the 

Soret band.52  

2.3.6 Emission Spectra. The emission of T(N-py-4-CH2(CH3)NSO2Ar)P (5) and of TpyP(4) 

in dichloromethane is compared to that of the CH3Co(DH)2adducts (Table 2.1). The fluorescence 

intensity of 5 is comparable to that of TpyP(4) upon selective excitation at the Soret band (420 

nm) (Figure 2.7). The adducts ([CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P (6) and 

[CH3Co(DH)2]4TpyP(4) (9)) show typical porphyrin-based intense fluorescence spectra (Figure 

2.7) characterized by two bands at ~650 and ~714 nm (λexc = 420 or 515 nm).43 A small red shift 

(~3 nm) of the emission bands of 9 was observed with respect to the parent porphyrin (TpyP(4)). 

Insertion of zinc (8 and 11) changed the general shape of the emission spectra and led to a blue 

shift (50 nm, λexc = 420 nm) of the emission bands (~600 and 650 nm) (Table 2.1) compared to 

those of the metal-free porphyrins (6 and 9). The intensity of spectra obtained on optically 

matched (λexc = 420 nm) solutions showed that the emission of 6 is slightly lower (25-35%) for 

both bands (650 and 714 nm) than that of 5. The fluorescence intensity of 9 (λexc = 420 nm) is 

generally much lower (90%, for both bands 652, 714 nm) than that of TpyP(4) (Figure 2.7).  
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Figure 2.7. Emission spectra of TpyP(4), T(N-py-4-CH2(CH3)NSO2Ar)P (5), 
[CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P (6) and [CH3Co(DH)2]4TpyP(4) (9) in       
CH2Cl2. 
 
The much greater effect of adduct formation on 9 than on 6 is attributable to the direct and 

indirect attachment of the pyridyl group to TpyP(4) and T(N-py-4-CH2(CH3)NSO2Ar)P, 

respectively, resulting from a much shorter distance of the methylcobaloxime moieties to the 

porphyrin in 9 than in 6. The quenching of the emission of 9 is attributed to the cobalt heavy 

atom effect. Heavy atoms enhance spin-orbit coupling of a formally spin-forbidden deactivation 

process of the singlet state of the porphyrin.11  

The titrations of 4-CNpy, 3,5-lut and 4-Me2Npy into 5 μM solutions of adducts 6 and 9 in 

dichloromethane were monitored by fluorescence spectroscopy; results for 4-CNpy and 4-

Me2Npy are shown for 6 and 9 in Figures A3, A4, 2.8. When a solution of 9 was titrated with 

these pyridine ligands, fluorescence intensity restoration was observed. Upon addition of 4-

Me2Npy (80 μM) (Figure 2.8), the restored fluorescence intensity at 650 nm was 12 times that of 
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the original solution of 9; the values obtained with 3,5-lut and 4-CNpy (80 μM) (Figure A4) 

were 11 and 5 times the original fluorescence, respectively. 

 

 

Figure 2.8. Emission spectra of [CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P (6) (left) and 
[CH3Co(DH)2]4TpyP(4) (9) (right) (5.0 μM) in CH2Cl2 with increasing amounts (6/9 : pyridine 
ratio) of 4-Me2Npy. 
 
The titration of TpyP(4) with 4-Me2Npy resulted in an intensity ~1.2 times that of the original 

value of TpyP(4). These results support the conclusion that restoration of fluorescence intensity 

upon addition of the different pyridine ligands is caused by the displacement of the CH3Co(DH)2 

moieties, releasing the TpyP(4).  

The fluorescence intensity of 6 increased by 1.5 times upon the addition of 4-CNpy (Figure 

A3), 3,5-lut, or 4-Me2Npy (Figure 2.8) (80 μM). The titration of 5 with 4-Me2Npy led to a ~1.2 

times increase of the original fluorescence intensity. This higher intensity is similar to that 

observed upon titrating 6 with the different pyridine derivatives; as a result, we conclude that the 

increase in fluorescence intensity of solutions of 6 arises from a combined effect of the pyridine 



 43

ligands, which displace the CH3Co(DH)2 moieties and which then interact weakly with the 

displaced porphyrin.  

 
2.4 Conclusions 

The synthetic scheme developed in this work is useful and versatile for preparing 

metalloporphyrins having sulfonamides. However, it is necessary to employ a tertiary 

sulfonamide because otherwise intractable species are formed. New pyridyl-containing 

porphyrins with a sulfonamide linker have been synthesized and characterized by 1H NMR 

spectroscopy and mass spectrometry. Adducts with four methylcobaloxime units bound to 

pyridylporphyrins (TpyP(4) and T(N-py-4-CH2(CH3)NSO2Ar)P) have been synthesized and their 

photophysical properties investigated and compared to those of the parent porphyrin. Upon 

excitation of the porphyrin core, the typical porphyrin fluorescence is partially quenched for the 

([CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P adduct, whereas the fluorescence of the 

[CH3Co(DH)2]4TpyP(4) adduct is strongly quenched. These observations suggest that the 

porphyrin core of T(N-py-4-CH2(CH3)NSO2Ar)P is insulated from the pyridyl group, and 

consequently coordination of the methylcobaloxime moiety to the pyridyl group does not 

modulate greatly the photophysical properties of the porphyrin. A comparison of the 1H NMR 

signal of the axial methyl of the T(N-py-4-CH2(CH3)NSO2Ar)P and the TpyP(4) 

methylcobaloxime adducts with those of the other methylcobaloxime compounds with different 

pyridine ligands allows us to estimate the pKa of the pyridyl groups of T(N-py-4-

CH2(CH3)NSO2Ar)P) and of TpyP(4) to be close to that of pyridine.  

In summary, the additional linker insulates the porphyrin core from any effects of coordination 

of metals to the peripheral groups. Likewise, the linker extends the distance of the peripherally 

coordinated metals from the porphyrin core and this core does not affect the properties of the 
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peripheral metal. In contrast the core and the peripheral metals have mutual effects upon each 

other when adducts are prepared with the prototypical porphyrin, TpyP(4) . 
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CHAPTER 3. NEW PORPHYRINS BEARING POSITIVELY CHARGED PERIPHERAL 
GROUPS LINKED BY A SULFONAMIDE GROUP TO MESO-

TETRAPHENYLPORPHYRIN: INTERACTIONS WITH CALF THYMUS DNA 
 

3.1 Introduction 

The ability of cationic porphyrins to associate with DNA and RNA has prompted studies of 

medical and biological applications of porphyrins.1-3 Pioneering work by Fiel and co-workers 

demonstrating that TMpyP (meso-tetra(N-Mepy)porphyrin tetracation, N-Mepy = N-

methylpyridinium group, Figure 3.1) has a strong affinity for DNA3 stimulated many subsequent 

studies.4-8 TMpyP(4) (having the 4-Mepy group with the pyridinium moiety linked through the 

4- position) and its derivatives exhibit activity against human immunodeficiency virus, the virus 

responsible for AIDS.9 TMpyP(4) has also been used in various therapeutic applications, e.g., as 

photo-sensitizers in photodynamic therapy,2,3,10-13 inhibitors of telomerase DNA cleavage,14-16 

and anticancer agents.17,18 

 

Figure 3.1. Structures of porphyrins mentioned in this study. 
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Several types of noncovalent interactions of cationic porphyrins with DNA have been found, 

including intercalative binding, simple outside binding, and outside binding with self-stacking 

(Figure 3.2).5-7,19,20 The preferred binding mode and the distribution between modes are both 

highly dependent on the type of DNA and on the peripheral substituent groups on the 

porphyrin.21,22 In order to achieve intercalation, the porphyrin core must have a limited 

thickness.4,5,23 The metal-free porphyrin, TMpyP(4) (Figure 3.1), and its metal complexes 

constitute the porphyrin series most extensively studied for DNA binding; MTMpyP(4) with no 

axial ligands, such as Cu(II)TMpyP(4), generally intercalate into GC-rich DNA regions.1,19,24 

NMR spectral changes accompanying the binding of TMpyP(4) to oligodeoxyribonucleotides 

showed preferential insertion at the 5′-CG-3′ site.25 An X-ray structure shows Cu(II)TMpyP(4) 

bound to [d(CGATCG)]2 by intercalation between the C and the G of 5′-TCG-3′ accompanied by 

extrusion of the C of 5′-CGA-3′.26 Metalloporphyrins possessing axial ligands, such as 

MTMpyP(4), with M = Fe(III), Co(III), and Zn(II), do not intercalate.1,27 In general, these 

species bind preferentially to AT-rich DNA regions.27 Water-soluble cobalt porphyrins 

containing a covalent axial methyl ligand synthesized in our laboratory were also found to be 

outside-binders with AT selectivity.28  

In contrast to this clear understanding of how axial ligands influence intercalative vs. outside 

binding, the influences of the properties of the peripheral group and of the electronic properties 

of porphyrins with a thin core were not so well understood. Porphyrins that self-stack in aqueous 

solution (e.g., TMAP and cis- and trans-P4, Figure 3.1) are preferentially outside 

binders,4,5,20,29,30 and porphyrins that have a low propensity to self-stack (such as TMpyP(4), 

Figure 3.1) are intercalators.3,31 
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Figure 3.2. Binding modes of cationic porphyrins (represented by black bars in most cases). For 
outside binding without stacking, two subtypes are shown in the middle drawing. The upper left 
of this drawing illustrates how a tumbling porphyrin (shown side-on) such as TMpyP(2) might 
bind while its porphyrin core is maintained relatively far from the DNA. The other more 
commonly found subtype, shown both face-on (bottom) and side-on (upper right), allows the 
porphyrin core to approach the DNA more closely. 

 
Thus, the electron-richness of the core could possibly stabilize the self-stacked, outside-bound 

porphyrin-DNA adduct, disfavoring intercalation.32 To probe the influence of porphyrin 

properties on the DNA binding modes, we previously investigated the tentacle porphyrins 

depicted and defined in Figure 3.1. These studies revealed that only porphyrins possessing N-

alkylated pyridinium groups, such as TθpyP, intercalate into GC-rich regions of DNA.31 In 

contrast, TθF4TAP and TθOPP, which are similar in size and shape to TθpyP but with no N-

alkylated pyridinium groups, self-stacked along the DNA backbone and did not intercalate into 

DNA.31-34 The studies with tentacle porphyrins thus indicated that, while the influence of 

porphyrin electron richness on the binding mode of relatively thin porphyrins was not important, 

pyridinium groups appear to be necessary for intercalation. Furthermore, bulk and thickness of 

the N-alkyl groups attached to the pyridinium groups but projecting away from the porphyrin 

core do not appear to prevent intercalation.  
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Taking a different tack, McMillin et al. have been synthesizing less sterically demanding 

porphyrins having less bulk at the periphery; these investigators have found that relatively small 

porphyrins such as D4 and D3 (Figure 3.1) intercalate into B-form DNA, regardless of the base 

composition.35,36 In another study from the McMillin laboratory, the newly synthesized tMe2D4 

(Figure 3.1) was found to intercalate into DNA, in contrast to reports on trans-P(4), which binds 

externally, forming long-range stacked structures.29,30,37 In a recent study of the binding modes of 

two tricationic porphyrins having different steric size, McMillin et al. found that triD4 (Figure 

3.1) intercalates into [poly(dA-dT)]2 ((poly dA-dT)-(poly dA-dT)), whereas the larger MetriD4 

(Figure 3.1) binds externally, indicating that the presence of a fourth substituent destabilizes the 

intercalated form.38 In summary, the size of porphyrins with N-alkylpyridinium groups 

influences the extent of intercalation in GC and AT regions.  

In typical porphyrin intercalators, the N-alkylpyridinium group is attached to the porphyrin 

core, creating a common structural unit. This direct attachment allows the positive charges to 

delocalize onto the porphyrin ring39 and also restricts the distances between the pyridinium 

groups. We now take an approach different from that of McMillin et al. and also from that we 

used previously. In particular, we expand the size of the pyridinium-containing porphyrins by 

placing a linking group between the porphyrin core and the pyridinium group. The larger but 

flexible porphyrins used here can assume conformations such that the separations between the 

charge-bearing nitrogens of the N-Mepy groups encompass the distances [~11 Å (cis) and ~16 Å 

(trans)] between these nitrogens in known intercalators. Specifically, we describe here the 

synthesis of new porphyrins ([T(R2R1NSO2Ar)P]X4/8) and metalloporphyrins 

([MT(R2R1NSO2Ar)P]X4/8) bearing positively charged, peripheral N-Mepy or quaternary 

ammonium groups. These groups are linked to the 4-position of the phenylene group of the 
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porphyrin by secondary (-SO2NHR) or tertiary (-SO2NR2) sulfonamide groups (Figure 3.3).40 

These porphyrins were designed for us to determine whether the new porphyrins containing N-

Mepy groups would be intercalators and whether the new porphyrins lacking N-Mepy groups 

would allow us to gain some insight into factors that might influence outside binding 

interactions. The latter type of new porphyrins also serves as appropriate controls for comparison 

to the new porphyrins containing N-Mepy groups. We investigated the calf thymus (CT) DNA 

binding interactions of selected porphyrins by visible CD and other spectroscopic methods. We 

also assessed DNA binding of several new metalloporphyrins ([MT(R2R1NSO2Ar)P]X4/8) by 

viscometric methods.  

 
Figure 3.3. Structures of new porphyrins: (a) [MT(R2R1NSO2Ar)P]X4/8 (in 1 to 3, M = 2H and 
R1 = H and R2 = N-Mepy-n-CH2, with n = 2, 3 or 4, respectively; in 4, M = 2H and R1 = H and 
R2 = Me3NCH2CH2; 5 differs from 1 in that R1 = CH3; in 7 and Cu(II)7, R1 = R2 = Et3NCH2CH2 
and M = 2H and Cu(II), respectively; and (b) [MT(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (in 6, M 
= 2H; in Cu(II)6, M = Cu(II); and in Zn(II)6, M = Zn(II)). 

 
3.2 Experimental Section 

3.2.1 Materials and Methods. All compounds and reagents used in the synthetic chemistry 

were purchased from Aldrich. The chloride salts of Cu(II)TMpyP(4) and Cu(II)TMAP were 

obtained from MidCentury. The syntheses of the non-alkylated porphyrin precursors are 
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described elsewhere.40 The mean length of the DNA was ~5000 bp, established by gel 

electrophoresis on 1% agarose gel.41 All CT DNA solutions were stored at -20 °C and were 

allowed to warm to RT before sample preparation. Stock solutions of CT DNA (GE Amersham) 

were prepared in 10 and 100 mM NaCl at pH 7.0. The CT DNA concentration in base pairs was 

determined by UV spectroscopy by using ε260 = 1.32 × 104 M-1cm-1.42 The porphyrin 

concentration was 7.5 µM in titration studies employing visible absorption, fluorescence, and CD 

spectroscopies. 

All 1H NMR spectra were recorded on either a 300 MHz or 400 MHz Bruker NMR 

spectrometer. Peak positions are relative to TMS or solvent residual peak, with TMS as 

reference. Visible absorption experiments were performed with a Cary 3 UV-visible 

spectrophotometer. CD spectra and titrations were recorded at 25 °C with a Jasco 710 

spectrophotometer. Fluorescence studies were performed on a Fluorolog-3 spectrofluorimeter 

(Horiba Jobin Yvon) at 25 °C. Excitation wavelengths were 412 nm in the absence of DNA and 

422 nm in the presence of DNA. Mass spectra for samples dissolved in methanol were obtained 

at the Mass Spectrometry Facility at LSU on a Hitachi MS-8000 3DQ LC-ion trap ESI mass 

spectrometer. 

Solutions for visible spectroscopy were prepared by diluting a 25 μL aliquot of 1.5 mM 

porphyrin stock solution in 5.0 mL of a 10 or 100 mM NaCl solution. An aliquot of CT DNA 

was then added to such dilute porphyrin solutions to obtain the desired value of R 

([porphyrin]/[DNA base pairs]). The pH of the solution was measured and readjusted to 7.0 with 

0.01 M NaOH or 0.01 M HCl before recording spectra. 

3.2.2 Viscosity Studies. Viscosity titrations were performed by using a Cannon-Ubbelohde 

semimicrodilution capillary viscometer in a circulating water bath maintained at 30.5 °C. Buffer 
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(1.0 mL of 100 mM NaCl at pH 7.0) was added to the viscometer, and the flow time was 

measured. Solution viscosity was determined by adding a small aliquot of CT DNA stock 

solution to a vial containing the buffer (~1 mL) to make the final concentration 75 μM in base 

pairs, and the pH was adjusted to 7.0. The flow time of the DNA solution was then obtained. An 

aliquot of the porphyrin stock solution (75 μM dissolved in CT DNA 75 μM) was then added to 

the viscometer in increments of 25 μL to give the desired value of R, while keeping the DNA 

concentration constant. Flow time measurements, obtained with a timer accurate to ±0.01 s, were 

recorded until three consecutive readings differed by less than ±0.1 s. The solution reduced 

viscosity (SRV) was presented as η/η0 versus R, where η/η0 = tc−t0/tD−t0 and t0 is the flow time 

of the buffer, tD is the flow time of the DNA in buffer, and tc is the flow time of the DNA 

solution containing porphyrin.43  

3.2.3 Competitive Binding Experiments. Solutions of Cu(II)TMpyP(4) (75 µM) and Cu(II)6 

(75 µM, Figure 3.3), both dissolved in 75 µM CT DNA, were prepared separately. Equal 

volumes of the two solutions were mixed and allowed to equilibrate for 1 h at room temperature. 

Aliquots of this 1:1 mixture were used as described above for viscosity measurements at 

different R values (where the porphyrin concentration equals the sum of the concentrations of the 

two Cu(II) porphyrins).  

3.2.4 Sodium Dodecyl Sulfate (SDS) Studies. SDS solutions were prepared by adding 

surfactant in water (e.g., for 1 M SDS (2.89 g) in 10 mL) and stirring for 15 min, when the 

solution became clear. An aliquot of the desired porphyrin stock solution (1.5 mM) was added to 

make a 7.5 μM solution, the pH was adjusted to 7.0, and the visible spectral changes were 

monitored with time. In one experiment, an aliquot of the porphyrin stock solution was diluted 

with water to 15 µM. After ~10 min this solution was added to an equal volume of a 2 M SDS 
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solution such that the final concentrations were 1 M SDS and 7.5 μM porphyrin. The pH was 

quickly readjusted to 7.0 and the visible spectrum recorded.  

3.2.5 General Synthesis for Alkylated [T(R2R1NSO2Ar)P]X4 Porphyrins 1 to 6. Alkylation 

was carried out by suspending the parent porphyrin in an excess of CH3I (10 mL) in a sealed 

flask and allowing the mixture to stir at RT overnight. The CH3I that did not react was allowed to 

evaporate; the residue was dried under vacuum for 3 h to yield the iodide salt of the product 

porphyrin. To prepare the chloride salt of porphyrins 1 to 6, a Dowex-1 (chloride form) anion-

exchange resin column was prewashed with 0.1 N HCl and then washed with water until the 

eluate was at pH 7.0; a slurry of the compound in water was made with the resin and loaded onto 

a short column, and then eluted with water. The water was removed by rotary evaporation and 

the purplish solid residue dried under vacuum. The product was obtained as a purple powder by 

dissolving it in methanol and adding ethyl acetate. All compounds were isolated as chloride salts 

and analyzed by 1H NMR spectroscopy and mass spectrometry.  

[T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4 (1). The general methylation method applied to the non-

alkylated parent porphyrin (0.12 g, 0.092 mmol) afforded 1 as a brown precipitate (0.115 g, 84% 

yield). 1H NMR (ppm) in DMSO-d6: 8.90 (8H, s, β-pyrrole), 9.36 (4H, br, NH-sulfonamide), 

9.12 (4H, d, pyH), 8.71 (4H, t, pyH), 8.49 (8H, d, ArH), 8.36 (8H, d, ArH), 8.31 (4H, d, pyH), 

8.14 (4H, t, pyH), 4.87 (8H, d, CH2), 4.44 (12H, s, CH3) -2.95 (2H, br, NH). UV-vis (methanol) 

λmax (ε) [nm (M-1cm-1)]: 416 (296,100), 512 (13,600), 546 (5300), 588 (4100), 642 (2300). ESI-

MS(m/z): [M+3H]3+ = 451.1344, [M+4H]4+ = 338.6032, calcd. for [M+3H]3+ = 451.1466, 

[M+4H]4+ = 338.5996. 

[T(N-Mepy-3-CH2(H)NSO2Ar)P]Cl4 (2). The general method using the non-alkylated parent 

(0.12 g, 0.092 mmol) afforded 2 as a brown precipitate (0.13 g, 96% yield). 1H NMR (ppm) in 
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DMSO-d6: 8.87 (8H, s, β-pyrrole), 9.46 (4H, t, NH-sulfonamide), 9.30 (4H, s, pyH), 9.08 (4H, t, 

pyH), 8.72 (4H, d, pyH), 8.45 (8H, d, ArH), 8.32 (8H, d, ArH), 8.24 (4H, t, pyH), 4.57 (8H, d, 

CH2), 4.42 (12H, s, CH3) -2.96 (2H, br, NH). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 416 

(292,800), 512 (14,000), 546 (5800), 588 (4400), 642 (2300). ESI-MS(m/z): [M+2H]2+ = 

676.7088, [M+3H]3+ = 451.1423, [M+4H]4+ = 338.6103, calcd. for [M+2H]2+ = 677.1994, 

[M+3H]3+ = 451.1466, [M+4H]4+ = 338.5996. 

[T(N-Mepy-4-CH2(H)NSO2Ar)P]Cl4 (3). The general method using the non-alkylated parent 

(0.12 g, 0.092 mmol) afforded 3 as a brown precipitate (0.12 g, 89% yield). 1H NMR (ppm) in 

DMSO-d6: 8.89 (8H, s, β-pyrrole), 9.20 (4H, br, NH-sulfonamide), 9.02 (8H, d, pyH), 8.49 (8H, 

d, ArH), 8.32 (8H, d, ArH), 8.20 (8H, d, pyH), 4.68 (8H, d, CH2), 4.35 (12H, s, CH3) -2.94 (2H, 

br, NH). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)], 416 (312,200), 512 (13,500), 546 (5200), 

588 (4000), 642 (1700). ESI-MS(m/z): [M+H]+ = 1354.4043, [M+2H]2+ = 676.2131, [M+3H]3+ 

= 451.14, [M+4H]4+ = 338.6097, calcd. for [M+H]+ = 1354.3987, [M+2H]2+ = 677.1994, 

[M+3H]3+ = 451.1466, [M+4H]4+ = 338.5996. 

[T(Me3NCH2CH2(H)NSO2Ar)P]Cl4 (4). The general method using the non-alkylated parent 

(0.12 g, 0.099 mmol) afforded 4 as a reddish precipitate (0.095 g, 69% yield). 1H NMR (ppm) in 

DMSO-d6: 8.88 (8H, s, β-pyrrole), 8.69 (4H, t, NH-sulfonamide), 8.48 (8H, d, ArH), 8.32 (8H, d, 

ArH), 3.63 (8H, d, CH2), 3.58 (8H, t, CH2), 3.23 (36H, s, CH3), -2.94 (2H, br, NH). UV-vis 

(methanol) λmax (ε) [nm (M-1cm-1)]: 416 (266,000), 512 (12,100), 546 (5000), 588 (3800), 642 

(1800). ESI-MS(m/z): [M+4H]4+ = 318.6365; calcd for [M+4H]4+ = 318.6309. 

[T(N-Mepy-2-CH2(CH3)NSO2Ar)P]Cl4 (5). The general method using the non-alkylated 

parent (0.116 g, 0.086 mmol) afforded 5 as a brown precipitate (0.125 g, 93% yield). 1H NMR 

(ppm) in DMSO-d6: 8.98 (8H, s, β-pyrrole), 9.18 (4H, d, pyH), 8.58 (8H, d, ArH), 8.42 (8H, d, 
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ArH), 8.74 (4H, t, pyH), 8.31 (4H, d, pyH), 8.16 (4H, t, pyH), 5.14 (8H, s, CH2), 4.46 (12H, s, 

CH3), 3.08 (12H, s CH3), -2.81 (2H, br, NH). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 416 

(359,600), 512 (16,700), 546 (6900), 588 (6400), 642 (2500). ESI-MS(m/z): [M + 4H]4+ = 

352.6276; calcd for [M+4H]4+ = 352.6177. 

[T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (6). The general method using the non-alkylated 

parent (0.108 g, 0.079 mmol) afforded 6 as a brown precipitate (0.11 g, 88% yield). 1H NMR 

(ppm) in DMSO-d6: 8.88 (8H, s, β-pyrrole, 9.04 (8H, d, pyH), 8.56 (8H, d, ArH), 8.36 (8H, d, 

ArH), 8.19 (8H, d, pyH), 4.87 (8H, s, CH2), 4.38 (12H, s, CH3), 3.04 (12H, s, CH3), -2.93 (2H, 

br, NH). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 416 (302,100), 512 (14,500), 546 (6000), 

588 (4400), 642 (2400). ESI-MS(m/z): [M + 4H]+4 = 352.6199; calcd for [M+4H]4+ = 352.6177. 

[T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (7). Porphyrin 7 was synthesized from its non-alkylated 

precursor (synthesized by treating a suspension of TPPSO2Cl (0.22 g, 0.22 mmol) in acetonitrile 

(20 mL) with N,N,N'',N''-Et4-dien (0.199 g, 0.93 mmol) in acetonitrile (10 mL) at RT). The 

resulting suspension became a solution when stirred overnight, and the solvent was then removed 

by rotary evaporation. The residue was recrystallized from dichloromethane and hexane as 

purple crystals (0.35 g, 93% yield). 1H NMR (ppm) in CDCl3: 8.79 (8H, s, β-pyrrole), 8.36 (8H, 

d, ArH), 8.28 (8H, d, ArH), 3.55 (16H, t, CH2), 2.84 (16H, t, CH2), 2.67 (32H, m. CH2), 1.12 

(48H, m, CH3), -2.84 (2H, br, NH). The non-alkylated precursor (0.13 g) was alkylated by using 

iodoethane (5 mL) instead of iodomethane in the procedure above, and 7 was obtained as the 

chloride salt (0.115 g, 89% yield) as described above. 1H NMR (ppm) in DMSO-d6: 8.95 (8H, s, 

β-pyrrole), 8.51 (16H, d, ArH), 4.0 (16H, t, CH2), 3.68 (16H, t, CH2), 3.48 (48H, s. CH2), 1.32 

(72H, m, CH3), -2.84 (2H, br, NH). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 416 (320,000), 
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512 (15,500), 546 (6600), 588 (5100), 642 (2700). ESI-MS(m/z): [M + 4H]+4 = 492.7939; calcd 

for [M+4H]4+ = 492.8223. 

[Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6). A solution of 6 (0.05 g, 0.032 

mmol) in methanol (10 mL) was treated with copper(II) acetate (0.64 mg, 0.032 mmol) in MeOH 

(5 mL). The solution was allowed to stir at RT for about 1 h. Completion of the reaction was 

indicated by UV/vis spectroscopy, with the four Q bands of the free base (λ = 512, 546, 588, 642 

nm) collapsing to one peak (λ = 538 nm). The volume of the reaction mixture was reduced to ~1 

mL, and acetone was added to precipitate the compound as a red powder (0.045 g, 88% yield). 

1H NMR (ppm) in DMSO-d6: 8.99 (8H, br, pyH), 8.12 (8H, br, pyH), 4.80 (8H, br, CH2), 4.35 

(12H, s, CH3), 2.95 (12H, br, CH3). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 414 (364,400), 

538 (1740). 

[Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7). This compound was synthesized and 

isolated as for Cu(II)6 above from (0.05 g, 0.022 mmol) of 7; yield = 0.039 g (76%), UV-vis 

(methanol) λmax (ε) [nm (M-1cm-1)]: 414 (449,000), 538 (21,600).  

[Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6). A solution of porphyrin 6 (0.05 g, 

0.032 mmol) in dichloromethane (10 mL) was treated with a solution of zinc acetate (0.035 g, 

0.16 mmol in methanol, 2 mL). The solution was stirred at RT for 2 h, after which a small 

sample of the reaction mixture that was analyzed by visible spectroscopy indicated that the metal 

insertion was complete, with the four Q bands of the free base (λ = 514, 549, 590, 643 nm) 

collapsing to two peaks (λ = 556, 596 nm). The dichloromethane was removed by rotary 

evaporation, and the purple precipitate that formed was collected on a filter and washed with 

methanol to remove the excess of zinc acetate, affording the zinc complex of the precursor of 

porphyrin 6 (0.033 g, 63% yield). 1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole, 8.64 (8H, 
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d, pyH), 8.46 (8H, d, ArH), 8.28 (8H, d, ArH), 7.46 (8H, d, pyH), 4.55 (8H, d, CH2), 2.93 (12H, 

s, CH3). The general method of alkylation described above afforded Zn(II)6 as a purple powder 

(0.035 g, 93% yield). 1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole, 9.03 (8H, d, pyH), 

8.50 (8H, d, ArH), 8.33 (8H, d, ArH), 8.20 (8H, d, pyH), 4.87 (8H, d, CH2), 4.38 (12H, d, CH3), 

2.94 (12H, s, CH3). UV-vis (methanol) λmax (ε) [nm (M-1cm-1)]: 424 (388,100), 556 (14,600), 

596 (5,900). 

3.3 Results  

3.3.1 Synthesis. The use of various metal salts to metallate porphyrins containing a secondary 

sulfonamide generally produced insoluble materials. The fact that sulfonamides are known to 

coordinate to metal ions through both the sulfonyl oxygen and the deprotonated sulfonamide 

nitrogen44,45 led us to investigate the synthesis of the porphyrins containing a tertiary 

sulfonamide group. Utilizing the N-Me group in place of the dissociable NH group allowed us to 

prepare porphyrins that are very soluble in organic solvents; this property permitted successful 

alkylation and metallation of the porphyrins. The cationic porphyrins ([T(R2R1NSO2Ar)P]X4/8) 

(Figure 3.3) were characterized by mass spectrometry (ESI), UV-vis (methanol), and 1H NMR 

spectra (in DMSO-d6). 

The Cu(II) complexes of the cationic porphyrins (Figure 3.3) were characterized by visible 

spectroscopy, and the Zn(II) complexes were characterized by both 1H NMR and visible 

spectroscopy. Upon Cu(II) insertion into [T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (6) to form 

[Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6), the Soret band maximum (λSo) was blue 

shifted by 3 nm for 6 and the number of Q bands decreased from four to one, results consistent 

with reported observations for other copper porphyrins, such as CuTMAP.46,47 Zn(II) insertion 

into 6 to form [Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6) produced a 10 nm red shift 
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of λSo, and the number of Q bands decreased from four to two; both features have been observed 

previously with other zinc porphyrins.47,48 

3.3.2 Solution Studies with No DNA Present. Values of λSo and molar absorptivity at that 

wavelength (εSo) are summarized for several new porphyrins and for Cu(II)TMAP in Table 3.1. 

All solution studies employed 7.5 µM porphyrin and pH 7.0, unless stated otherwise. Compared 

to the λSo at 410 nm of an aqueous red solution of Cu(II)6 (no added salt), λSo was shifted 

slightly to 406 nm and 403 nm in 10 and 100 mM NaCl solutions, respectively, and εSo decreased 

(Table 3.1). A similar comparison of aqueous Zn(II)6 showed decreases in εSo, but λSo did not 

change with salt concentration (Table 3.1). The molar absorptivity of 6, Cu(II)6 and Zn(II)6 in 

10 mM NaCl increased with added methanol at least up to 50% methanol. This absorbance 

increase is attributable to the dissociation of porphyrin aggregates.  

Table 3.1. Visible Spectroscopic Data for [T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (6), Cu(II)6, 

Zn(II)6, and Cu(II)TMAP 

porphyrin a λSo
b (10-5 × εSo)c 

 in H2O 

λSo
b (10-5 × εSo)c 

 in 10 mM NaCl 

λSo
b (10-5 × εSo)c 

in 100 mM NaCl 

λSo
b (10-5 × εSo)c 

 in methanol 

6 413 (1.5) 412 (1.1) 404 (0.9) 415 (3.0) 

Cu(II)6 410 (2.0) 406 (1.6) 403 (1.1) 414 (3.6) 

Zn(II)6 423 (2.9) 423 (1.8) 423 (1.5) 424 (3.9) 

Cu(II)7 414 (3.1) 414 (2.3) 409 (2.2) 414 (4.4) 

Cu(II)TMAP 411 (2.8) 411 (2.8) 411 (2.6) 412 (2.9) 
a 7.5 μM porphyrin. b nm. c M-1 cm-1. 

 
The greater width and lower molar absorptivity of the Soret band of Cu(II)6 compared to that 

of Cu(II)TMAP [Cu(II)6: 410 nm, full width at half-maximum (fwhm) = 22 nm, εSo = 2.0 × 105 

M-1cm-1 vs. Cu(II)TMAP: 411 nm, fwhm = 16 nm, εSo = 2.8 × 105 M-1cm-1] in aqueous solution 
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indicate that Cu(II)6 aggregates significantly. Likewise, Zn(II)6 has fwhm = 14 nm and εSo = 2.9 

× 105 M-1cm-1, suggesting that the axial water on Zn as well as other effects of a five-coordinate 

geometry on the porphyrin structure disfavor stacking. These results suggest that the new 

cationic porphyrins, even at 7.5 µM, undergo appreciable aggregation and that the aggregated 

(stacked) Cu(II) porphyrins have relatively blue-shifted Soret bands. 

3.3.3 SDS Studies. The λSo and εSo values of Cu(II)6 in the presence and absence of SDS 

(Figure 3.4) are summarized in Table 3.2. During the first hour after a 1.5 mM stock solution of 

Cu(II)6 was added to 1 M SDS to make a 7.5 µM solution, the spectra recorded with time 

(Figure 3.4) indicated that two forms of the porphyrin were present initially: one form with a 

blue-shifted λSo at 399 nm and the other form with a red-shifted λSo at 416 nm (when compared 

to λSo at 410 nm in water). The facts that the 399 nm Soret band converted completely to the 416 

nm Soret band after 12 h and that the intensity of this 416 nm band was high (Figure 3.4) 

indicate that Cu(II)6 is stacked in water and slowly destacks in 1 M SDS.  

To test this interpretation, the concentrated stock solution of Cu(II)6 was diluted to 15 µM. 

Equal volumes of this dilute solution and a 2 M SDS solution were mixed, producing final 

concentrations of 1 M SDS and 7.5 µM Cu(II)6. The absorption spectrum recorded immediately 

shows only the red-shifted 416 nm band (Figure 3.4). This intense band is very similar to the 

band observed in the experiment described in the previous paragraph. These observations are 

consistent with a high degree of aggregation of Cu(II)6 in water, especially at high 

concentrations, and with SDS causing disaggregation of Cu(II)6. (When the Cu(II)6 is less 

stacked, the Soret band is red shifted.) 
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Table 3.2. Visible Spectroscopic Data for [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 

(Cu(II)6) in H2O and 1 M SDS at pH 7.0a 

time  
λSo

b (10-5 × εSo)c 

H2O 

λSo
b (10-5 × εSo)c 

1 M SDS 

5 min 410 (2.0) 416 (1.6), 399 (1.0) 

10 min  416 (2.1), 399 (1.1) 

30 min  416 (2.4), 399 (1.0) 

1 h  416 (2.5), 399 (1.0) 

12 h  416 (3.8) 

a 7.5 μM porphyrin. b nm. c M-1 cm-1.  

 

Figure 3.4. Visible spectrum monitored with time of 7.5 µM [Cu(II)T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6) in 1 M SDS. Also shown are the spectrum in water and that in 
1 M SDS but prepared with a dilute solution of the porphyrin (spectrum a, red dashed line). 

 
When a 1.5 mM stock solution of Cu(II)6 was added to 0.1 M SDS to make a 7.5 µM solution, 

the spectrum recorded with time (Supporting Information, Figure B.11) indicated that both the 

399 nm and 416 nm bands were present, suggesting coexistence of two forms. The two bands 
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remained even after 12 h. This fact suggests that, in contrast to 1 M SDS, 0.1 M SDS does not 

cause complete disaggregation of the stacked positively charged porphyrin cation. SDS has 

negative charge, favoring stacking (aggregation) and hydrophobic character, favoring de-

stacking. Evidently, the hydrophobic capacity of 0.1 M SDS is not sufficient to offset the effect 

of the negative charge. 

3.3.4 DNA-Binding Studies. Several methods were used to evaluate DNA binding. We 

assessed how the Soret band position and intensity changed on DNA addition. Hypochromicity 

(%H) is defined here as [(Ao – As)/Ao] × 100%, where Ao and As are the absorbance values at λSo 

in the absence and presence of CT DNA, respectively (a negative %H indicates 

hyperchromicity). Because both CT DNA and the free porphyrin have no CD band in the visible 

region, the only CD signal observed in this region is the induced CD signal of the bound 

porphyrins. Viscosity measurements are also useful because intercalation of a cation into DNA 

has a measurable effect on solution flow properties.20 A fixed concentration (75 µM) of 

sonicated CT DNA was maintained as the concentration of several porphyrins in 100 mM NaCl 

was increased (Figure 3.5). The SRV increased with addition of the intercalating 

Cu(II)TMPyP(4). For Cu(II)TMAP the SRV first increased slightly at low R, but leveled off after 

R = 0.15. The addition of Cu(II)6, Zn(II)6, or Cu(II)7 to CT DNA caused changes in SRV 

similar to those observed for the non-intercalating Cu(II)TMAP (Figures 3.5 and B.1). Viscosity 

experiments were used to determine if Cu(II)6 binds DNA competitively with Cu(II)TMpyP(4). 

At different R values (0.025, 0.1, 0.2 and 0.3) with equimolar amounts of the two porphyrins, the 

SRV values found (1.08, 1.12, 1.25 and 1.35) were smaller than the respective values (1.16, 1.46, 

1.62 and 1.74) for Cu(II)TMpyP(4) alone, Figures 3.5 and B.1. 
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Figure 3.5. Plot of SRV vs. R for the addition of metalloporphyrins to solutions of CT DNA (75 

µM, 100 mM NaCl, pH 7.0). 

 
DNA Binding of [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6). The Cu(II)6–CT 

DNA visible studies are summarized in Table 3.3. After addition of CT DNA, the spectrum of 

Cu(II)6 exhibited two Soret components. The red-shifted component (at 420 nm) in both 10 mM 

and 100 mM NaCl solutions (Table 3.3 and Figures 3.6 and B.2) is indicative of an unstacked 

bound form. As more CT DNA was added (as R changed from 0.25 to 0.005), the intensity of the 

long-wavelength component increased at the expense of the shorter-wavelength component. 

Hyperchromicity of the Soret band indicates unstacking of Cu(II)6. 

The overall shape of the CD spectrum of Cu(II)6 was independent of NaCl concentration. The 

binding of Cu(II)6 to CT DNA for all R values induced a CD spectrum with a positive feature at 

~415 nm (+exc) and a weak negative feature (-s) at ~433 nm (Table 3.4 and Figures 3.7 and 

B.3). The intensity of the positive band increased with increasing CT DNA concentration 

(decreasing R), while that of the negative feature decreased. At R = 0.005 in 10 mM NaCl the 

CD signal of Cu(II)6 with CT DNA reached its maximum value (molar ellipticity ([Θ]) = 4.9 × 
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104 deg cm2 dmol-1). These results and similar data for 100 mM NaCl are consistent with non-

stacking or weakly stacking outside binding. 

 

Figure 3.6. Effect of CT DNA on the visible spectrum of [Cu(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 

 
Table 3.3. Visible Spectroscopic Data for [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 
(Cu(II)6) in the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λSo
b 10-5 × εSo

c Δλb (%H) λSo
b 10-5 × εSo

c Δλb (%H) 

0 406 1.6  403 1.1  

0.25 404 1.2 -2 (25) 403 1.0 0 (9) 

 420 1.3 14 (19) 420 1.2 17 (-9) 

0.05 404 1.1 -2 (31)    

 420 1.6 14 (0) 420 1.4 17 (-27) 

0.01 404 1.0 -2 (38)    

 420 1.6 14 (0) 420 2.2 17 (-100) 

0.005 404 1.0 -2 (38)    

 420 1.8 14 (-13) 420 2.4 17 (-118) 

a 7.5 μM porphyrin. b nm. c M-1 cm-1. 
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Table 3.4. Effect of NaCl Concentration on the CD Spectrum of [Cu(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6) in the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λ+exc
b 10-4×[Θ]+exc

c λ-s
b 10-4×[Θ]-s

c λ+exc
b 10-4×[Θ]+exc

c λs
b 10-4×[Θ]-s

c 

0.25 413 2.3 433 –1.2 412 1.9 433 –0.5 

0.05 414 3.2 433 –0.7 416 3.8 434 –0.2 

0.01 415 3.6 433 –0.6 417 4.3 434 –0.5 

0.005 416 4.9 433 –0.3 414 2.3 434 –0.2 
a 7.5 μM porphyrin. b nm. c deg cm2 dmol-1. 

 

Figure 3.7. CT DNA-induced CD spectra of [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 

(Cu(II)6, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 

 
DNA Binding of [Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6). Addition of CT 

DNA to a solution of Zn(II)6 in 10 mM and 100 mM NaCl solutions caused a 3 nm red shift in 

λSo at all R values (Table B.1). At the lowest DNA concentration, only small changes in Soret 

band intensity in both 10 mM and 100 mM NaCl solutions were observed (Table B.1 and Figures 
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B.6 and B.7). At the highest DNA concentration (R = 0.005), significant hyperchromicity was 

observed in 10 mM (%H = -61) and 100 mM (%H = -87) NaCl solutions (Table B.1 and Figures 

B.4 and B.5). At low R values, an induced CD signal (+exc at ~420 nm) was observed (Table 

B.2 and Figures B.6 and B.7). As for Cu(II)6, these results are consistent with non-stacking or 

weakly stacking outside binding. 

DNA Binding of [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7). Addition of CT DNA to 

Cu(II)7 caused 7 and 11 nm red shifts of λSo in 10 mM and 100 mM NaCl solutions, respectively 

(Table 3.5). At the highest concentration of DNA (R = 0.005), hyperchromicity was observed 

(Table 3.5 and Figures B.8 and B.8). An induced CD signal (+exc at ~415 nm, -s at ~430 nm) 

was observed upon addition of CT DNA (Table 3.6). The intensity of these features generally 

decreased with an increase in DNA concentration (Table 3.6 and Figures 3.9 and B.9). As for 

Cu(II)6, these results are consistent with non-stacking or weakly stacking outside binding. 

 

Table 3 5. Visible Spectroscopic Data for [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7) in 
the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λSo
b 10-5 × εSo

c Δλb (%H) λSo
b 10-5 × εSo

c Δλb (%H)

0 414 2.3  409 2.2  

0.25 421 2.0 7 (13) 420 2.4 11 (-9) 

0.05 421 2.2 7 (4) 420 2.8 11 (-27) 

0.01 421 2.4 7 (-4) 420 3.0 11 (-36) 

0.005 421 2.7 7 (-17) 420 3.2 11 (-46) 

a 7.5 μM porphyrin. b nm. c M-1 cm-1. 
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Figure 3.8. Effect of CT DNA on the visible spectrum of [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 
(Cu(II)7, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 
 
Table 3.6. Effect of NaCl Concentration on the CD Spectrum of 
[Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7) in the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λ+exc
b 10-4 × 

 [Θ]+exc 

λ-s
b 10-4 × 

 [Θ]-s
c 

λ+exc
b 10-4 × 

 [Θ]+exc 

λs
b

  10-4 × 

 [Θ]-s
c 

0.25 414 3.9 428 –3.0 414 2.1 430 –1.5 

0.05 415 2.6 430 –0.7 414 1.2 430 –0.7 

0.01 415 1.8 429 –0.9 414 1.5 430 –0.5 

0.005 415 1.6 429 –0.8 419 0.8 436 –0.5 
a 7.5 μM porphyrin. b nm. c deg cm2 dmol-1. 

 
DNA-Binding Studies of Porphyrins with Different Peripheral Groups. The λSo of 

solutions of both 1 ([T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4) and 5 ([T(N-Mepy-2-

CH2(CH3)NSO2Ar)P]Cl4) in 10 mM NaCl was at 414 nm (Table B.3). The addition of CT DNA 

at a low DNA concentration (R = 0.25) to 1 and 5 led to red-shifted and blue-shifted (5 nm) 

bands and hypochromicity. At the higher DNA concentration (R = 0.005), the same two bands 

were observed (%H = 52 and 7 for 1 and %H = 54 and 15 for 5, Table B.3). The binding of CT 
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DNA to both porphyrins induced a positive CD feature (Table B.4). As more CT DNA was 

added (as R changed from 0.25 to 0.005), the intensity of these positive features increased (Table 

B.4). Visible and CD spectral changes for 4 ([T(Me3NCH2CH2(H)NSO2Ar)P]Cl4) in 10 mM 

NaCl (Tables B.3 and B.4) were similar to those for 1 and 5. The spectral features of the 

porphyrins described in this subsection are consistent with a combination of weakly stacked and 

unstacked outside binding rather than with intercalation. 

 

 

Figure 3.9. CT DNA-induced CD spectra of [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7, 
7.5 µM) at various R values (10 mM NaCl, pH 7.0). 

3.3.5 Fluorescence Spectroscopy. The fluorescence spectrum of the metal-free porphyrin, 

[T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (6), in 10 mM NaCl shows two emission maxima at 656 

nm [Q(0,0) band] and at ~700 nm [Q(0,1) band] (Figure 3.10); the band assignment follows that 

used for other porphyrins.49 The two bands shifted (656 nm band slightly, ~700 nm band 

significantly), and the intensity decreased significantly (by 34% and ~60%, respectively, Figure 

3.10) upon the addition of a small amount of DNA (R = 0.25). The decrease in fluorescence 
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intensity of 6 is attributed to the proximity of the neighboring porphyrins, which are self-stacked 

when bound to DNA.50 Further addition of CT DNA led to increases in intensity. The final value 

(R = 0.005) was ~1.2 times those found before DNA addition. We attribute these changes to 

conversion of the unbound porphyrin aggregates initially present first to bound aggregates 

(Figure 3.2, right) and then to the bound monomer form at high DNA concentration (Figure 3.2, 

middle).50  

 

Figure 3.10. Effect of CT DNA on the fluorescence spectrum of [T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (6, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 

 

3.4 Discussion  

Our primary interests were to determine how the new water-soluble cationic porphyrins and 

metalloporphyrins prepared in this work bound to DNA, either as intercalators or outside-

binders, and to use the results to gain further insight into important features that favor 

intercalation of cationic porphyrins. Experimental evidence useful for determining if a porphyrin 

intercalates and our evidence establishing that the new porphyrins do not intercalate will be 

discussed first. Next we discuss the factors that our work indicates are important for intercalation 
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of known porphyrin intercalators. Finally, we shall discuss briefly the nature of the DNA outside 

binding of the new porphyrins.  

3.4.1 Experimental Criteria for Porphyrin Intercalation into DNA. Experimental 

observations indicating intercalative binding include changes in the Soret region of spectra, 

namely, a large red shift (~15 nm), a large hypochromicity (~30%) and a negative induced CD 

signal. These spectroscopic parameters tend to vary over a narrower range than those found for 

outside binders (see below). Perhaps the most characteristic spectral feature is the negative 

induced CD signal; typical magnitudes found are about -5 × 104 (deg cm2/dmole).5,31,37,38,51 

However, perhaps the best procedure to assess DNA binding mode is to measure solution 

reduced viscosity (SRV). Porphyrins known to intercalate (e.g., Cu(II)TMpyP(4)52) increase the 

SRV of DNA solutions.31  

3.4.2 Evidence That New Porphyrins Are Not Intercalators. No increase in DNA solution 

viscosity was observed for Cu(II)6, Zn(II)6, and Cu(II)7 (Figures 3.5 and B.1). The SRV values 

of Cu(II)6, Zn(II)6, and Cu(II)7 were comparable to that of Cu(II)TMAP, a non-intercalator.53 

The absence of an increase in SRV demonstrates that these new porphyrins are outside binders. 

At the same ratio of total Cu(II) porphyrin to DNA, lower SRV values were found in the 

presence of both [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 and Cu(II)TMpyP(4) than in the 

presence of Cu(II)TMpyP(4) alone (Figure 3.5). This finding indicates that [Cu(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 competes for DNA with Cu(II)TMpyP(4), which has a DNA binding 

constant of ~107 M-1.54 Therefore, because all the new porphyrins are similar, we expect that all 

are tight outside binders to DNA, and we turn our attention to comparing the features of the new 

porphyrins vs intercalating porphyrins in order to identify important features for intercalation. 
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3.4.3 Properties of Porphyrins Favoring Intercalation. On the basis of our past work and 

that of others,1,19-21,29,52,55,56 we can conclude, as mentioned above, that the porphyrin peripheral 

groups should be N-alkyl pyridinium groups and that the porphyrin core of the 

metalloporphyrins with these groups need to lack axial ligands (e.g., Cu(II)TMpyP(4)) or have 

dissociable axial ligands (e.g., Ni(II)TMpyP(4)).1,19,22,56 In general, the length of the N-alkyl 

group does not appear to be important;22,31-34,57,58 however, the N-alkylpyridinium group must 

link to the porphyrin core via the 4- or 3- position of the pyridyl ring (not via the 2- position). 

This latter requirement has three implications: First, and most important, this requirement 

indictates that a relatively planar structural unit involving the pyridinium group and the adjacent 

portion of the porphyrin ring must be achieved. Second, the overall electronic nature of the 

directly attached pyridinium group and the porphyrin core appear to be important. Third, and less 

obvious, the separation between the charged nitrogens of the pyridinium groups may need to fall 

within a required range. These distances can be shorter (~6.5 Å) for TMpyP(2). The latter two 

aspects can be assessed with the results from our current work.  

A recent paper contained a comparison of TMpyP(4) and its analogue with a 4-phenylene 

group inserted between the N-methylpyridinium group and the porphyrin core (B-TMpyP(4), 

Figure 3.1).59 The latter compound does not intercalate. In TMpyP(4) the distances between the 

N’s of the N-Mepy groups are 11 Å (cis) and 16 Å (trans), whereas for B-TMpyP(4) these 

distances between the N’s of the 4-C6H4–N-Mepy groups are 19 Å (cis) and 27 Å (trans). This 

comparison suggests both that the separation between the charged nitrogens needs to be smaller 

and that, as mentioned above, the pyridinium group needs to be directly attached to the porphyrin 

core. The recent work of the McMillin laboratory showing that triD4 (Figure 3.1) intercalates 

indicates that a separation of 16 Å allows intercalation. This separation corresponds somewhat to 
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the cis distance in B-TMpyP(4). McMillin et al. showed that when bulk is present cis to the 

pyridinium groups (MetriD4), such larger porphyrins do not intercalate as well the original 

smaller porphyrin.38 The 4-C6H4–N-Mepy group is large and projects out in a rigid manner. 

Other relatively large pyridinium porphyrins that intercalate have cis pyridinium groups with 

flexible N-alkyl substituents,22,31 and this flexibility might allow the alkyl group to adopt an 

orientation that does not inhibit intercalation. In contrast, we believe that the rigid 4-C6H4–N-

Mepy groups of B-TMpyP(4) do not allow the meso peripheral groups to avoid the steric clashes. 

Unlike B-TMpyP(4), the [T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 porphyrins studied here are 

quite conformationally flexible. The various conformations can place the pyridinium groups in 

positions covering a range of distances from 9 Å (cis) to 25 Å (trans). These distances 

encompass those in pyridinium porphyrins for which intercalation has been found. However, the 

new porphyrins do not intercalate. This finding refines further the requirements for a porphyrin 

to be an intercalator and indicates that direct attachment of the pyridinium group to the porphyrin 

core is a very favorable and probably necessary feature for intercalation to occur. We believe the 

steric and electronic features of the combined pyridinium group and adjacent portions of the 

porphyrin core facilitate intercalation. 

3.4.4 Stacking of Cationic Porphyrins under Aqueous Conditions. In the absence of DNA, 

many porphyrins undergo self-stacking in water.39,60-64 The Soret bands of the face-to-face (H) 

and edge-to-edge (J) type stacked porphyrins are respectively blue shifted and red shifted.60,63 

The H-type stacking involves considerable overlap of the porphyrin cores, whereas J-type 

stacking can be viewed as a slippage of the porphyrin cores so that there is less overlap.60 The 

electronic spectra are also influenced by the way the porphyrins align with respect to each other 

because alignment influences the relative orientation of the transition moments.63 It was not our 
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objective to analyze in depth this very complicated stacking process. Rather, our goal was to 

determine qualitatively the relative importance of stacking for the unbound porphyrin because 

stacking influences the electronic spectra, and understanding this influence is useful in assessing 

spectral changes accompanying binding.  

For types of cationic porphyrins usually studied, self-stacking upon DNA binding is normally 

accompanied by hypochromicity, broadening, and/or a shift in λSo.4-7,20,29,33 Self-aggregation of 

cationic porphyrins is believed to be responsible for the large hypochromicities (50-65%) 

observed in high salt concentrations.29,33,39 From data in previous studies29,61 the spectral changes 

indicate that TMAP and trans-P(4) in the presence of salt exist as H- and J-type aggregates, 

respectively.  

3.4.5 Properties of the New Cationic Porphyrins in the Absence of DNA. We investigated 

the behavior of selected new porphyrins under aqueous conditions. The addition of NaCl to a 

solution of [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6) affected the Soret band, 

causing a blue shift, a broadening, and a decrease in the intensity (%H = 70 at 3.0 M NaCl, 

Figure B.10). These changes in the visible spectrum indicate that Cu(II)6 undergoes substantial 

self-stacking and that the aggregates are of the H-type. Even in water, Cu(II)6 gives evidence for 

stacking and the stacking increases under the low salt conditions used here. The literature 

indicates TMpyP(4) exists as the monomer in water even in the presence of inorganic salts.24,65 

Indeed, we compared aqueous and 200 mM NaCl solutions of TMpyP(4) and found that the 

Soret band (421 nm) did not shift and there was little change in intensity (%H = 3). In the same 

type of experiment but with Cu(II)6 the Soret band showed a blue shift (9 nm) and %H = 45. 

Thus, Cu(II)6 has a greater propensity to stack than TMpyP(4). 
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Addition of SDS to a solution of Cu(II)6 produced a visible spectrum with two Soret bands at 

399 nm and 416 nm. At low SDS concentration (0.1 M) the two bands were observed even after 

12 h (Figure B.11). After 12 h in a 1 M solution of SDS the blue-shifted Soret band at 399 nm 

converted completely to the 416 nm band (red-shifted by 4 nm, an indication of a J-type 

aggregate). The intensity of this band increased with time (%H = -90 after 12 h, Figure 3.4). For 

TMpyP(4) at neutral pH, SDS produced no spectral shifts and thus the aggregate type could not 

be assigned as H- or J-type.62  

The Soret band of octacationic [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7) in water (λSo 

= 414 nm) was much sharper than that of Cu(II)6, indicating that Cu(II)7 is less aggregated than 

Cu(II)6 in water. Upon addition of salt, the Soret band of Cu(II)7 became less intense and 

broader, and these effects increased with increasing salt (Figure B.12). These characteristics 

indicate that Cu(II)7 undergoes self-stacking with an increase in salt concentration. At 3.0 M 

NaCl, the %H value of 57 is less than that of Cu(II)6. All results indicate that (because of its high 

charge) stacking of Cu(II)7 is lower than that of  Cu(II)6. 

In aqueous 10 and 100 mM NaCl, the solution conditions used here for DNA binding studies, 

the Soret band of Cu(II)6, Cu(II)7 and also Zn(II)6 (Figure 3.3) gave evidence for aggregation 

(Table 3.1). Upon DNA addition (see below), the Soret bands of these porphyrins shifted to the 

red and sharpened. The significant hyperchromicity and the red shift of the Soret bands are 

indicative of porphyrin binding to DNA as non-self-stacking outside binders.21,28,31,66 Such 

changes must be assessed in the context of the degree of aggregation with stacking of the 

unbound porphyrin.  For example, the extent of the hyperchromicity on DNA binding is less for 

Cu(II)7 than for Cu(II)6 because Cu(II)7 is already less self-stacked than Cu(II)6 prior to DNA 

binding. Thus, the DNA-bound Cu(II)7 is not stacked (see below). 
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3.4.6 Outside Binding to DNA by Porphyrins. Porphyrins that induce no increase in the SRV 

of linear DNA are outside binders. The type of outside binding can be evaluated by observation 

of features of the induced CD signal. In addition, the Soret region of the visible spectrum 

undergoes changes. Because outside binding depends on a number of variables such as salt, ratio 

of porphyrin to the DNA, DNA base pair composition, etc., and because there can be 

combinations of co-existing outside binding modes, simple spectral signatures are difficult to 

define and categorize. In addition, because self-stacking often occurs and the self-stacking can 

itself change with the various conditions, it is not a simple matter to define precisely the binding. 

To illustrate the effects on CD and Soret spectra on porphyrin outside binding to DNA, we 

consider three limiting cases (Figure 3.2, middle and right), namely no self-stacking with the 

porphyrin core close to the DNA, no self-stacking with the core somewhat further and tumbling 

anisotropically, and extensive self-stacking. 

Each of the three cases gives a distinct induced CD signal. A relatively unstacked outside-

bound porphyrin will typically have a non-conservative positive CD signal with an intensity for 

[Θ] = ~1 × 105 deg cm2 dmol-1.21,31 One system with this type of binding is TMpyP(4)–[poly(dA-

dT)]2.21,31 We believe that TMpyP(2) is an example of a porphyrin that exhibits tumbling 

anisotropically. No appreciable induced CD signal was observed.21 Conservative CD signals (in 

some cases strong) are indicative of outside binding with self-stacking.4,5,30,33,35-37,67 Although the 

negative and positive features for the conservative signal detected are often not much stronger 

than the single prominent feature of an unstacked porphyrin, porphyrins with tentacle arms (e.g., 

TθOPP) offer an example of extensive self-stacking on DNA with both positive and negative 

features [Θ] having an absolute magnitude ten times greater than normal, with values of ~106 deg 

cm2 dmol-1.33  
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The Soret band is also useful for assessing stacking. As mentioned above, hyperchromicity is 

most reliably indicative of outside-bound unstacked porphyrins. Previously studied porphyrins 

(Mn(III)TMpyP(4) and Co(III)TMpyP(4)) showed small red shifts (5 nm) of the Soret band and 

significant hyperchromicity with CT DNA (-30% and -27%, respectively).21 Outside binding 

with porphyrin stacking produces variable effects on the Soret band. A moderate (9 nm) red shift 

of λSo, along with less than 30% hypochromicity4,5 has been observed, but a large (25-30 nm) red 

shift29 with large (~60%) hypochromicity  has also been observed.29,30,33,34,67  

[Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6) and [Zn(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6). Visible and CD spectroscopic results for Cu(II)6 and 

Zn(II)6 are consistent with both being non-stacking outside binders. After addition of CT DNA 

to Cu(II)6 and Zn(II)6, a red-shifted Soret band component was evident.  Large 

hyperchromicities (Table 3.3) of up to -118% for Cu(II)6 were observed. At all R values, a 

positive induced CD band (Figures 3.7 and B.3) for Cu(II)6 was observed at ~416 nm, indicative 

of outside binding. Likewise, Zn(II)6 exhibited a positive CD band (Figures 3.6 and 3.7), a red 

shift (3 nm) and hyperchromicity (%H as large as -87) of the Soret band (Table 3.1). We 

conclude that both Cu(II)6 and Zn(II)6 are non-stacking outside binders. 

Another method for assessing binding mode is fluorescence. Porphyrins exhibit reduced 

fluorescence intensity at high R followed by increase in fluorescence intensity as R decreases. 

However, Cu(II)6 does not have usable fluorescence intensity. Because the metal-free porphyrin, 

[T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (6), exhibits spectral features on addition of CT DNA 

similar to those found for Cu(II)6, we studied 6. The fluorescence intensity of 6 first decreased 

and then increased as R decreased (Figure 3.10), another finding indicating that non-stacking 

outside binding at low R.33,50 In view of the similar structures and visible spectral behavior of 6 
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and Cu(II)6, the fluorescence data support the other results indicating that Cu(II)6 is a non-self-

stacking outside binder. 

[Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7). Cu(II)7 is also a non-stacking outside 

binder as evidenced a small red shift (7–11 nm) and (except at high R and low salt) 

hyperchromicity of the Soret band (Table 3.5 and Figures 3.8 and B.8). The highest 

hyperchromicity observed for Cu(II)7 (%H = -46) was much lower than that of Cu(II)6 and 

Zn(II)6 because the unbound Cu(II)7 is not significantly self-stacked. For the Cu(II)7-DNA 

adduct at R = 0.005 (100 mM), the magnitude of εSo (3.2 × 105 M-1 cm-1) is typical of a non-

stacking outside binder.  

Other Porphyrins. [T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4 (1) and [T(N-Mepy-2-

CH2(CH3)NSO2Ar)P]Cl4 (5) have N-Mepy groups similar to those in TMpyP(2), but unlike 

TMpyP(2), their interaction with CT DNA led to a red shift (8 nm) of the Soret band, 

hyperchromicity, and a positive CD feature  (Tables B.3 and B.4). These results indicate that 1 

and 5 are non-stacking outside binders. The Soret band of TMpyP(2) was unaffected by 

interaction with CT DNA, and no hyperchromicity or CD signal was observed.21 Because the N-

Mepy groups of TMpyP(2) are close to the porphyrin core, steric hindrance between the N-Me 

group and the pyrrole protons prevents the pyridinium group from rotating to become coplanar 

with the porphyrin core, thus hindering intercalation.21 However, we suggest that another effect 

of the N-Mepy groups linked via the 2- position in TMpyP(2) is to keep the porphyrin core from 

interacting tightly with DNA. In this situation, we believe that the porphyrin is tumbling 

anisotropically (Figure 3.2). Compared to TMpyP(2), the N-Mepy groups of [T(N-Mepy-2-

CH2(H)NSO2Ar)P]Cl4 and [T(N-Mepy-2-CH2(CH3)NSO2Ar)P]Cl4 are far from the porphyrin 
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core and thus do not inhibit the porphyrin core from approaching the DNA closely. We propose 

proximity is needed for a CD signal to be induced.  

3.5 Conclusions 

[Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6), [Zn(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6), and [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7) are 

non-stacking outside binders with CT DNA, as shown by viscometric studies and by the positive 

induced CD band and hyperchromicity in the Soret region. The decrease in SRV in the 

competitive viscosity studies reveals that [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 competes 

with CuTMpyP(4) in DNA binding. In general, the outside-binding mode is similar in both 10 

and 100 mM NaCl. Furthermore, the metal does not influence binding mode, and 6 binds to CT 

DNA in a similar fashion as Cu(II)6.  

Most of these new porphyrins contain the same 4-substituted N-Mepy group as in TMpyP(4) 

and in several other known intercalating porphyrins. However, the N-Mepy group in the new 

porphyrins is not directly attached to the porphyrin ring. The lack of such direct attachment 

means that the porphyrin ring is more electron rich than that of TMpyP(4), but studies with 

TθF4TAP have shown that electron-poor porphyrin rings do not lead to intercalation.32 Our 

results on new porphyrins having 4-substituted N-Mepy groups that can have separations similar 

to those in intercalating porphyrins indicate that spacing is not the deciding factor. This finding, 

along with results on porphyrins with N-Mepy groups linked at the 2-position, let us conclude 

that direct attachment of the N-alkylpyridinium groups to the porphyrin ring in such a way that 

the N-alkylpyridinium group can become nearly coplanar with the porphyrin ring is necessary for 

intercalation to occur. 
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Our current results with [T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 and its derivatives showing 

that these are outside binders without self-stacking indicate that their behavior is unlike that of 

TθOPP (another porphyrin with an electron-rich core). TθOPP is an outside binder to DNA 

exhibiting substantial self stacking.33 We attribute the difference in stacking propensity (which 

we view as a matter of degree, differing in the relative abundance of stacked vs unstacked bound 

porphyrin) to subtle differences involving the interaction of the charged groups with the DNA 

and also perhaps other interactions such as hydrogen bonding. We note, however, that the new 

porphyrins with secondary and tertiary sulfonamide groups bind to DNA in a similar manner. 

Thus, any role of the sulfonamide in hydrogen bonding would be as an H-bond acceptor by the 

sulfonamide oxygen atoms.  

These new porphyrins have various charged groups, but the differences do not affect binding 

mode. When TMpyP(4) interacts with AT rich regions of DNA as an a non-stacking outside 

binder, its fluorescence behavior (decrease at high R and increase at low R) is similar to that of 6. 

Thus the porphyrin rings of these two rather different porphyrins probably are positioned relative 

to DNA in a very similar manner. 

The same characteristic binding and spectral changes found for new porphyrins with 4-

substituted N-Mepy groups were also found for [T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4 and [T(N-

Mepy-2-CH2(CH3)NSO2Ar)P]Cl4. These latter contain N-Mepy groups attached at the 2-position 

as in TMpyP(2), a porphyrin that does not exhibit spectral changes upon DNA binding.21 Our 

findings indicate that the porphyrin ring of the new porphyrins is close to the DNA when bound 

in a non-stacking manner, as shown in Figure 3.2. In turn, we conclude that TMpyP(2) tumbles 

anisotropically, with the porphyrin ring on average farther from the DNA than the porphyrin ring 

of other porphyrins when these bind outside of DNA (Figure 3.2). 
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CHAPTER 4. NEW PORPHYRINS BEARING NEGATIVELY CHARGED 
PERIPHERAL GROUPS LINKED BY SULFONAMIDE BOND TO THE PHENYL 
GROUP OF TETRA PHENYL PORPHYRIN CORE FOR VIRUCIDAL ACTIVITY 

 

4.1 Introduction 

The human immunodeficiency virus (HIV) epidemic continues to have enormous human 

health consequences. Every 6 seconds, a new person is infected by the virus and every 10 

seconds another person dies as a result of AIDS or associated opportunistic infection. 1 Recent 

studies toward vaccine development have yielded promising results, but a vaccine capable of 

preventing HIV-1 and HIV- 2 infections is not yet available. The complexity inherent to the viral 

life cycle and the added problem of a high mutation rate, which leads to the development of 

resistance to antiviral drugs, warrant a greater effort toward the discovery and development of 

alternative methods to prevent HIV transmission. Sexual transmission plays a predominant role 

in the spread of HIV infection, and approaches to prevent such transmission are urgently needed.  

One promising approach receiving increasing attention is the development of 

microbicides which, when applied topically, can prevent viral infection. These compounds could 

directly interact with HIV virions to decrease or prevent infectivity, thus providing a defense 

against sexual transmission of the virus. Current clinical trials with the most promising anti-HIV 

microbicides employ mostly polymeric sulfonates.2 A number of retroviral agents are already on 

the market, but these are expensive and studies have shown the virus is resistant to them and 

have toxic effect. 3 These factors prompted our research group to focus on small molecules that 

will inhibit entry of the virus into the cell. There have been a number of reports on the antiviral 

activity of phthalocyanines (1) against HIV.4,5 The photoinactivation of viruses by diamagnetic 

porphyrins and phthalocyanines has been studied by Horowitz.6 Photoactivation involves 



 85

absorption of light by a compound with resulting production of free radicals and singlet oxygen. 

Porphyrins and metalloporphyrins have also been shown to have antiviral activity against HIV. 

 

Previous studies indicated that some porphyrins inhibit the interaction between the virus 

envelope protein and its receptors.2 We have shown4,7 also that porphyrins block infection by 

HIV-1 and that this activity appears to be a result of an interaction with the envelope protein. 

Most of these compounds that were active in blocking HIV-1 were sulfonated. In other studies8 

sulfonated porphyrins (2) and some natural porphyrins (3) were found to be active against pox 

virus. The sulfonamide –SO2NH– group occurs in numerous biologically active compounds, 

which include antimicrobial drugs, saluretics, carbonic anhydrase inhibitors, insulin-releasing 

sulfonamides, antithyroid agents and a number of other agents with biological activities.9 
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Amprenavir is an example of a sulfonamide compound that was introduced in the market in 1999 

as an HIV protease inhibitor, in spite of the success of this drug it has some shortcomings, 

including gastrointestinal side effects and long term metabolic disturbances.10 The aim of my 

research is to introduce one or more sulfonamide group into different porphyrin derivatives. 

 

 

5,10,15,20-tetraphenylporphyrin (H2TPP) 

Porphyrins are readily synthesized from pyrrole and aromatic aldehyde derivatives. This 

porphyrin H2TPP (4) have aromatic groups at the meso position, hydrogen substituents on the 

pyrrole rings, the central N have NH and are organic soluble. Water- soluble porphyrins based in 

sulphonic groups have been prepared by direct sulfonation with strong sulfuric acid 11,12 

Formation of the sulfonic acid derivative limits us from adding other groups to these porphyrins 

because the only way to form the sulfonamide is by first making the sulfonyl chloride of the 

porphyrin. Recently Gonsalves et al.13 synthesized a 5,10,15,20-tetra(4-

chlorosulfonylphenyl)porphyrin (5) from the parent compound 5,10, 15,20-tetraphenylporphyrin 

(4) by using chlorosulfonic acid. The chlorosulfonyl compound 5 may be converted into 

derivatives with a variety of nucleophiles so as to give, for example, the free sulfonic acid, a 

sulfonamide, or a sulfonate ester.14 The work described here involves preparation of the 
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chlorosulfonyl porphyrins 5 and 7, and condensation of different amines with 5 to form 

sulfonamide derivatives of the porphyrin and some metal complexes. 

 

4.2 Experimental Section 

4.2.1 Materials and Methods. All compounds used in the synthetic chemistry were 

purchased from Aldrich. 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (TClSO2PP, 5) was 

synthesized by a known method, and the chemical shifts of the NMR spectrum in CDCl3 

matched the reported values.13  

 All 1H NMR spectra were recorded on either a 300 MHz or a 400 MHz Bruker NMR 

spectrometer. Peak positions are relative to TMS or solvent residual peak, with TMS as 

reference. Mass spectra for samples dissolved in methanol were obtained at the Mass 

Spectrometry Facility at LSU on a Hitachi MS-8000 3DQ LC-ion trap ESI mass spectrometer. 

Electronic absorption spectra were recorded with a Cary 3 spectrophotometer.  1H NMR 

spectra were recorded for DMSO-d6 and CDCl3 solutions on a Bruker 300 MHz or 400 MHz 
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spectrometer.  Peak positions are relative to TMS. All NMR data were processed using the 

XWINNMR and Mestre-C softwares. 

4.2.2 Sulfonation of the Benzylamine Derivatives. (a) Benzylamine (0.046 mmol, 5 

mL) was placed into a 250 mL round-bottomed flask; the flask was placed in an ice bath, and 

fuming H2SO4 (12.5 mL, 0.242 mmol) was added very slowly.12  The mixture was left stirring 

for 6 h in a steam water bath, then removed and left stirring at room temperature overnight. 

HPLC water (50 mL) was added cautiously to the reaction mixture, and immediately a white 

precipitate formed, which was vacuum filtered and washed several times with absolute alcohol 

and dried under vacuum to yield 4-(aminomethyl)benzenesulfonic acid (15); yield, 87.5 mg, ~ 

90%.  The purity of the compound was checked by NMR spectroscopy.  1H NMR (ppm) in D2O: 

7.8 (2H, d, ArH); 7.64 (2H, d, ArH); 4.20 (2H, s, CH2). 

(b) Trifluoroacetic acid anhydride (TFAA) (30 mL, 0.21mol) was added to conc. H2SO4 

(10 g, 0.1 mol) with cooling (ice water) in a dry atmosphere and stirred for 3 h, after which 

complete dissolution of H2SO4 was achieved; the solution was light brown. 3-iodobenzylamine 

(0.1 mol, 23.3g) was added dropwise to the cooled solution, and this solution was heated at 

reflux for 10 min.15 Water was added dropwise with cooling (ice water).The yellowish 

precipitate was washed with absolute ethanol several times to remove trifluoroacetic acid 

(TFA),filtered and dried under vacuum to yield 4-(aminomethyl)-2-iodobenzenesulfonic acid 

(16) yield, 45 mg, ~ 62%.  The purity of the compound was checked by NMR spectroscopy. 1H 

NMR (ppm) in DMSO-d6: 8.99 (8H, s, β-pyrrole), 8.56 (8H, d, ArH);  8.37 (8H, d, ArH); 7.72 

(8H, d, ArH; 7.48 (8H, d, ArH); 4.40 (8H, s, CH2); -2.87 (s, 2H, NH). 

5,10,15,20-tetra(4-sulfonamidophenyl)porphyrin (8): Ammonia (conc. 35% w/V; 25 

mL) was added to 5; (100 mg, 0.099 mmol) in dichloromethane (25 mL) and stirred for 1 h at 
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room temperature The precipitate formed was collected by filtration to give the crude 

sulfonamide. This solid was washed with dichloromethane, crystallized from 

acetone/dichloromethane (1:1) and dried under vacuum to give the solid 5,10,15,20-tetra(4-

sulfonamidophenyl)porphyrin (8), yield 45 mg, 48.8%. The purity of 8 was checked by NMR 

spectroscopy.  1H NMR (ppm) in DMSO-d6): δ 8.83 (8H, s,β-pyrrole), 8.41 (8H, d, ArH); 8.27 

(8H, d, ArH); 7.51 (4H, br, NH); -2.97 (s, 2H, NH).  

5,10,15,20-tetra(4-isopropylsulfonamidophenyl)porphyrin (9): Isopropylamine (28.96 

mg, 0.49mmol) was added to 5 (100 mg, 0.099 mmol) in chloroform (25 mL); the mixture was 

left stirring at room temperature for 48 h. The solution was evaporated to dryness and the 

compound was recrystallized from CHCl3/MeOH (90:10); yield, 65 mg, 60%.  The purity of 

5,10,15,20-tetra(4-isopropylsulfonamidophenyl)porphyrin (9) was checked by NMR 

spectroscopy. 1H NMR (ppm) in DMSO-d6: 8.804 (8H, s,β-pyrrole), 8.42 (8H, d J = 8.1 Hz, 

ArH); 8.22 (8H, d J = 8.4 Hz, ArH); 3.56(4H, m CH); 1.14(24H, d, J = 6.6Hz, CH3); -2.97 (s 2H, 

NH).  

5,10,15,20-tetra(4-phenylsulfonamidophenyl)porphyrin (10): Aniline (46.09 mg, 

0.495mmol) was added 5 (100 mg, 0.099 mmol) in chloroform (25 mL)  The reaction mixture 

was left stirring at room temperature for 4 h and was then concentrated by rotary evaporation. 

With dichloromethane as the eluent, the resulting solid was passed through a silica gel column. 

The collected fraction was concentrated and the solution treated with n-hexane to induce 

recrystallization; yield, 37 mg, 30%. The purity of 5,10,15,20-tetra(4-

phenylsulfonamidophenyl)porphyrin (10) was checked by NMR spectroscopy. 1H NMR (ppm) 

in DMSO-d6: 10.50 (4H,br,NH); 8.65 (8H, s, β-pyrrole), 8.35 (8H, d, ArH), 8.14 (8H, d, ArH), 

7.44 (20H, m, ArH), -3.09 (s, 2H, NH). 
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5,10,15,20-tetra(4-toluinylsulfonamidophenyl)porphyrin (11): p-toluidine (158 mg, 

1.47 mmol) was added to 5 (100 mg, 0.099 mmol) in chloroform (25 mL), pyridine (10 mL) was 

also added and the resulting solution heated at reflux for 24 h. After it had cooled to room 

temperature, the solution was washed with 10% HCl.  The organic layer was separated and 

washed with cold distilled water until the pH of the washing water was neutral. The organic 

phase was dried over anhydrous sodium sulfate and evaporated to dryness. The final product that 

precipitated from chloroform, was vacuum filtered and vacuum dried; Yield, 30mg, ~24% The 

purity of 5,10,15,20-tetra(4-toluinylsulfonamidophenyl)porphyrin (11) was checked by NMR 

spectroscopy.  1H NMR (ppm) in CDCl3: 8.63 (8H, s, β-pyrrole), 8.19 (8H, d, ArH), 8.13 (8H, d, 

ArH), 7.27 (8H, d, ArH), 7.16 (8H, d, ArH), -2.97 (s, 2H, NH). 

5,10,15,20-tetra(4-{3'-iodobenzyl}sulfonylamidophenyl)porphyrin (12): 3-

Iodobenzylamine (230.64 mg, 0.99 mmol) was added to 5 (100 mg, 0.099 mmol) in dry 

acetonitrile (25 mL).  The reaction mixture was left stirring at room temperature for 4h. The 

suspension was filtered, and the residue was washed several times (3 x 15 mL) with ethyl acetate 

and left in the filter to dry; yield, 120 mg, 67%. The purity of the compound 5,10,15,20-tetra(4-

{3′-iodobenzyl}sulfonylamidophenyl)porphyrin (12) was checked by NMR spectroscopy. 1H 

NMR (ppm) in DMSO-d6: 8.65 (8H, s, β-pyrrole), 8.63 (4H,b,NH), 8.40 (8H, d, ArH), 8.21 (8H, 

d, ArH), 7.81 (4H, s, ArH), 7.72 (4H, d, ArH), 7.45(4H, d, ArH), 7.23 (4H, m, ArH), 4.34 (8H, s, 

CH2), -2.98 (s, 2H, NH).  

5,10,15,20-tetra(4-{3'-fluorobenzyl}sulfonylamidophenyl)porphyrin (13): 3-

Fluorobenzylamine (227.7 mg, 0.99 mmol) was added to 5 (100 mg, 0.099 mmol) in dry 

acetonitrile (25 mL). The reaction mixture was left stirring at room temperature for 4 h. There 

were some precipitate at the end of the reaction which was filtered, washed with ethyl acetate 
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and the residue was left in the filter to dry; yield, 95 mg, 71%.  The purity of 5,10,15,20-tetra(4-

{3′-fluorobenzyl}sulfonylamidophenyl)porphyrin (13) was checked by NMR spectroscopy.  1H 

NMR (ppm) in DMSO-d6: δ 8.79 (8H, s β-pyrrole), 8.65 (4H, b, NH), 8.38 (8H, d, ArH), 8.19 

(8H, d, ArH), 7.44 (4H, d, ArH), 7.26(12H, m, ArH), 4.40 (8H, s, CH2), -3.0 (s, 2H, NH). 

5,10,15,20-tetra(4-benzylsulfonamidophenyl)porphyrin (14): Benzylamine (42.4 mg, 

0.395 mmol) was added to 5 (50 mg, 0.049 mmol) in dry acetonitrile (25 mL). The reaction 

mixture was left stirring at room temperature for 4 h. The reaction mixture was filtered, and the 

residue washed with ethyl acetate. The filtrate was evaporated to dryness; yield, 38 mg, 76%.  

The purity of 14 was checked by NMR spectroscopy. 1H NMR (ppm) in DMSO-d6: 8.81 (8H, s, 

β-pyrrole), 8.63 (4H, br, NH), 8.37 (8H, d, ArH), 8.19 (8H, d, ArH), 7.40 (20H, m, ArH), 4.35 

(8H, s, CH2), -3.00 (s, 2H, NH). 

5,10,15,20-tetra(4-{p-sulfonbenzyl}sulfonylamidophenyl)porphyrin (15): 4-

(aminomethyl)benzenesulfonic acid (65.5 mg, 0.35 mmol) was added to 5 (70 mg, 0.069 mmol) 

in dry acetonitrile (5 mL), and anhydrous K2CO3 (70 mg, 0.5 mmol) Anhydrous methanol (1 

mL) was also added, and the mixture was sealed and left stirring at room temperature for 12 h. 

The reaction mixture was filtered to give a reddish powder. The red powder was left to dry on 

the filter paper before purifying as follows: small amount of the residue was dissolved in a 

minimal volume of HPLC water and passed through a Sephadex LH20 column. With methanol 

as an eluant, a red fraction was collected, concentrated and acetone added to recrystallize; Yield, 

45 mg, 62%. The purity of 5,10,15,20-tetra(4-{p-sulfonbenzyl}sulfonylamidophenyl)porphyrin 

(15) was checked by NMR spectroscopy.  1H NMR (DMSO-d6): δ 8.91 (8H, s, β-pyrrole), 8.48 

(8H, d, ArH); 8.29 (8H, d, ArH); 7.64 (8H, d, ArH; 7.40 (8H, d, ArH); 4.32 (8H, s, CH2); -2.87 

(s, 2H, NH). ESI-MS(m/z): [M-4H]4- = 401.53. Calcd for [M - H]4- = 401.94. 
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5,10,15,20-tetra(4-{3′-iodosulfonbenzyl}sulfonylamidophenyl)porphyrin 16: 4-

(aminomethyl)-3-iodobenzenesulfonic acid (82.1 mg, 0.245 mmol) was added to 5 (50 mg, 0.049 

mmol) in dry acetonitrile (5 mL), and anhydrous K2CO3 (33.8 mg, 0.245 mmol). Anhydrous 

methanol (1 mL) was also added and the mixture was sealed and left stirring at room temperature 

for 12 h. The reaction mixture was filtered and the residue was left to dry on the filter paper and 

then further purification of the residue was carried out as follows: 

A small amount of the residue was dissolved in a minimal volume of HPLC water and 

passed through a Sephadex LH20 column.  With methanol as an eluant, the red fraction was 

collected, concentrated, and treated with acetone to induce crystallization; yield, 71.6 mg, 67%. 

The purity of 5,10,15,20-tetra(4-{3′-iodosulfonbenzyl}sulfonylamidophenyl)porphyrin 16 was 

checked by NMR spectroscopy and 1H NMR (ppm) in DMSO-d6: 8.82 (8H, s, β-pyrrole), 8.38 

(12H, d, ArH and NH), 8.17 (8H, d, ArH), 7.83 (4H, s, ArH), 7.75 (4H, d, ArH), 7.59 (4H, d, 

ArH), 4.79 (8H, s, CH2), -2.98 (s, 2H, NH). 

5,10,15,20-tetra(4-{3′-fluorosulfonbenzyl}sulfonylamidophenyl)porphyrin 17: 4-

(aminomethyl)-3′-fluorobenzenesulfonic acid (55.6 mg, 0.245 mmol) was added to 5 (50 mg, 

0.049 mmol) in dry acetonitrile (5 mL), and anhydrous K2CO3 (33.8 mg, 0.245 mmol). 

Anhydrous methanol (1 mL) was also added and the mixture was sealed and left stirring at room 

temperature for 12 h. The reaction mixture was filtered and the residue was left to dry on the 

filter paper and then further purification of the residue was carried out as follows: 

A small amount of the residue was dissolved in a minimal volume of HPLC water and 

passed through a Sephadex LH20 column.  With methanol as an eluant, the red fraction was 

collected, concentrated, and treated with acetone to induce crystallization; yield, 51.2 mg, 61%. 

The purity of 5,10,15,20-tetra(4-{3′-fluorosulfonbenzyl}sulfonylamidophenyl)porphyrin 17 was 
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checked by NMR spectroscopy and 1H NMR (ppm) in DMSO-d6): δ 8.79 (8H, s, β-pyrrole), 

8.50(4H, t, NH), 8.47 (8H, d, ArH), 8.18 (8H, d, ArH), 7.24 (4H, s, ArH), 7.17(4H, m, ArH), 

4.82 (8H, s, CH2), -2.98 (s, 2H, NH). ESI-MS(m/z): [M-4H]4- = 419.52. Calcd for [M - H]4- = 

419.93. 

5,10,15,20-tetra(4-{1′sulfonaphthalene-N-5′-amino-

ethyl}sulfonamidophenyl)porphyrin (18): 5-(2-aminoethylaminonaphthalene sulfonic acid 

(148.2 mg, 0.49 mmol) was added to 5 (100 mg, 0.098 mmol) in dry acetonitrile (5 mL), and 

anhydrous K2CO3 (68 mg, 0.49 mmol) Anhydrous methanol (1 mL) was also added and the 

mixture was sealed in a pressure proof flask and left stirring at room temperature for 12 h. The 

reaction mixture was filtered to give a brown solid that was dried before purifying. The brown 

residue was dissolved in a minimal volume of HPLC water and passed through a Sephadex 

LH20 column. With methanol as an eluant, the red fraction was collected, concentrated and 

treated with acetone to induce recrystallization; yield, 73 mg, ~ 70%. The purity of 5,10,15,20-

tetra(4-{1′sulfonaphthalene-N-5′-amino-ethyl}sulfonamidophenyl)porphyrin (17) was checked 

by NMR spectroscopy. 1H NMR (ppm) in DMSO-d6: 8.82 (8H, s, β -pyrrole), 8.46 (8H, ArH), 

8.31 (8H, d, ArH), 8.26 (4H,b,NH), 8.20 (8H, dd, ArH), 7.94 (4H, d, ArH), 7.32 (8H, dd, ArH), 

6.56 (4H, d, ArH), 6.16 (s, 2H, NH), 3.40 (16H, s, CH2), -2.99 (s, 2H, NH). ESI-MS(m/z): [M-

4H]4- = 480.58. Calcd for [M - H]4- = 480.04. 

Cu(II)-5,10,15,20-tetra(4-{p-sulfonylbenzyl}sulfonylamidophenyl)porphyrin: 

5,10,15,20-tetra(4-{p-sulfonylbenzyl}sulfonylamidophenyl)porphyrin (15) (100 mg, 0.058 

mmol) was dissolved in water (5 mL) and treated with 0.11 mmol of CuO; the reaction mixture 

was left stirring at room temperature for 12 h.  The reaction was followed b y UV-vis 

spectroscopy and stopped after the Q band had shifted from 515 nm to 539 nm.(Figure 3.6) The 
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solution was filtered through 20 μm filter and the filtrate concentrated by rotary evaporation and 

passed through a cationic exchange column (Na+ form to remove excess copper). The fraction 

collected was evaporated to dryness and the compound dried under vacuum. 

5,10,15,20-tetra(4-{p-sulfonbenzyl}sulfonamidophenyl)porphyrinPd(II): 5,10,15,20-

tetra(4-{p-sulfonbenzyl}sulfonamidophenyl)porphyrin (15)(50 mg, 0.029 mmol) was suspended 

in an acetate buffer (pH 4 – 5) solution containing potassium tetrachloropalladate ( 47.33 mg, 

0.145 mmol) and the solution was heated at reflux for 1 to 2 h until the green solution changed 

color to orange. The solution was concentrated using a rotary evaporator. Ethanol was added and 

the solution was filtered to remove sodium acetate. The solution was evaporated to dryness and a 

small amount of water added to dissolve the residue; this solution was then passed through a 

cationic exchange column (Na+) to exchange the potassium ions with sodium ions. The solution 

was evaporated to dryness to yield the Pd2+ derivative of porphyrin. UV-vis spectroscopy in 

water (Soret band at 408 nm and Q-band at 523 nm). The purity of the Pd(II) 5,10,15,20-tetra(4-

{p-sulfonbenzyl}sulfonamidophenyl) porphyrin was checked by NMR spectroscopy. 1H NMR 

(ppm) in DMSO-d6: 8.86 (8H, s, β-pyrrole), 8.43 (8H, d, ArH), 8.27 (8H, ArH), 7.64 (8H, ArH), 

7.40 (8H, d, ArH), 4.32 (8H, s, CH2). 

4.3 Results and Discussion 

Chlorosulfonic acid in Scheme 4.1 readily protonates the porphyrin ring of 5,10,15,20-

tetraphenylporphyrin (4), thereby deactivating the pyrrolic positions and directing electrophilic 

substitution to any meso aryl groups which may be present. The advantage of chlorosulfonation 

over sulfonation using concentrated sulfuric acid is that the initially formed chlorosulfonyl 

compounds are easily isolated from the reaction medium because they are insoluble in water but 

soluble in organic solvents. The chlorosulfonyl group can easily be hydrolyzed to its water 
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soluble by-product by heating 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (5) at reflux in 

water for 12 h.  

 

Scheme 4.1. Chlorosulfonation of 5,10,15,20-tetraphenylporphyrin (4) and 5,10,15,20-

tetrabiphenylporphyrin (6). 

 

The 1H NMR spectrum of the parent compound 4 in DMSO-d6 (Figure 4.1) has four 

peaks assigned to the pyrrolic protons, the m-, p-, and o- protons and the inner NH protons. 

There was a downfield shift of the chlorosulfonyl phenyl group  compared to the signals in the 

parent compound 4 (~0.19ppm) and an upfield shift of the m-proton.(~0.05ppm) In addition, the 

p-H signal was missing, as expected from chlorosulfonation at the para position of the parent 4. 

1H NMR spectroscopy of 5 (Figure 4.2) in DMSO-d6 showed clearly that the compound was 

successfully synthesized. Because the porphyrin is symmetric, it should have only three peaks, a 
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singlet assigned to eight pyrrolic protons and two doublets, each assigned to the meso aryl group 

eight ortho protons and eight meta protons. 

 

Figure 4.1. 1H NMR spectrum for 5,10,15,20-tetraphenylporphyrin (4). 

 

 

Figure 4 .2. 1H NMR, spectrum for 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (5). 

 

The chlorosulfonyl compound 5 was reacted with a series of amines, to give the 

sulfonamide derivative of the porphyrin. Scheme 4.2 depicts the porphyrin sulfonamide 

derivatives synthesized.  
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Scheme 4.2. porphyrin sulfonamide derivatives synthesized 

 

The products of the reaction of the chlorosulfonyl compound 5 with amines (Scheme 4.2) 

were assessed by 1H NMR spectra in different solvents. The reaction of 5 with aqueous ammonia 

hydroxide (35%) was used as a model for the synthesis of the rest of the sulfonamides. The 

reaction was successful and it yielded~90% of the 5,10,15,20-tetra(4-

sulfonamidophenyl)porphyrin (15) and ~10% of the hydrolyzed derivative of compound (5). 

This was confirmed by 1H NMR spectra (Figure 4.3) of the product in DMSO-d6, which had a 

set of two peaks for the phenyl protons corresponding to the two compounds formed. The 

chemical shift of the pyrrolic protons was not affected by the sulfonamide group, but there was a 

downfield shift (~0.24ppm) of the phenyl signal (o- and m-) due the electron-withdrawing effect 

of the sulfonamide group compared to the phenyl signals of compound 5 (Figure 4.3).  



 98

 

Figure 4.3. 1H NMR, spectrum for 5,10,15,20-tetra(4-sulfonamidophenyl)porphyrin (15). 

For all the compounds synthesized the porphyrin peaks and the NH signal of the 

sulfonamide had approximately the same chemical shifts (pyrrolic signals ~8.82 ppm, phenyl 

signals ~8.40 ppm and 8.21 ppm and the sulfonamide NH signal at ~8.63 ppm) which were 

characteristic and aided in confirming the synthesis of the sulfonamide compound. 

Attempts to chlorosulfonate the sulfonamide derivative 14 at different temperatures (-10 

to 10 oC) failed and led to cleavage of the sulfonamide bond.16 

Reaction of compound 5 with amines with electron-withdrawing groups was not 

successful and resulted mainly in hydrolysis of the porphyrin to its sulfonic acid derivative. The 

electron-withdrawing groups especially at the o- and p- position of the aryl amines decrease the 

basicity of the amine. However, the conditions of the reaction of the chlorosulfonyl compound, 

5, with benzylamine derivatives with sulfonic acid groups were optimized. In particular, 4-

(aminomethyl)benzenesulfonic acid and 5 reacted to give the 5,10,15,20-tetra(4-{p-

sulfobenzyl}sulfonylamidophenyl)porphyrin. (15) Figure 4.4 shows the 1H NMR spectrum of the 

compound. 
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Figure 4.4. 1H NMR, spectra for 5,10,15,20-tetra(4-{p-
sulfobenzyl}sulfonylamidophenyl)porphyrin. 
 

Metallation of the 5,10,15,20-tetra(4-{p-sulfobenzyl}sulfonylamidophenyl) porphyrin 

(15) with potassium tetrachloropalladate was confirmed by both NMR spectroscopy and UV-vis 

spectroscopy. 1H NMR spectra showed that the inner NH signals of the porphyrin were missing, 

as the NH’s were replaced by the metal ion (Figure 4.5); UV-vis spectra showed that the Soret 

414 nm band of 15 had shifted to 408 nm, while the Q-bands typical of free base porphyrin (515 

nm, 530 nm, 582 nm, 637 nm) had collapsed to one band at 523 nm(Figure 4.6). 

 

 

Figure 4.5. 1H NMR, spectra for 5,10,15,20-tetra(4-{p-
sulfobenzyl}sulfonylamidophenyl)porphyrin Pd(II). 
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Figure 4.6. Absorption spectrum of 5,10,15,20-tetra(4-{p-
sulfobenzyl}sulfonylamidophenyl)porphyrin Free base (green), Pd(II) (blue) and Cu(II) (pink), 
derivative. 

 
Also, copper metallation was successfully carried under the same conditions Figure 4.6 

shows the UV-spectrum of the 5,10,15,20-tetra(4-{p-

sulfobenzyl}sulfonylamidophenyl)porphyrin Cu(II). Also the tetra(4-

sulfonatobiphenyl)porphyrin was metallated to its copper (II) compound. Figure 4.7 shows the 

UV-spectrum of the Cu(II) compound.  
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Figure 4.7. Absorption spectra of tetra(4-sulfonatobiphenyl)porphyrin (TBPS4) and its copper 
derivative, showing both the Soret band and the Q-bands. 

 
The antiviral activity against Equine Herpesvirus Type 1 of 5,10,15,20-tetra(4-{p-

sulfobenzyl}sulfonylamidophenyl) porphyrin Cu(II) is under study. 

 

Figure 4 8. Structures of porphyrins studied and porphyrin synthesized. 
 

Previous studies have shown that certain porphyrins show antiviral activity against HIV 

and in some cases virucidal activity. Among these porphyrins the natural porphyrin (Protophyrin, 

hematoporphyrin) and metallloporphyrins have been shown to have acitivity aginst HIV in the 

micromolar range in such antiviral assays. Also other synthetic porphyrins namely the sulfonated 

derivatives of the tetraphenylporphyrin have also been shown to be active against HIV-1, HSV-1 

and HSV-2. In other studies the metalloderivatives without axial ligands (TPPS4 and its Cu 
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chelate) had the highest activity against HIV-1 (Figure 4.8). Sulfonated derivatives of TPP with 

halogen groups at different position (2, 6-difluoro-meso-tetraphenylporphine and its copper 

chelate, and sulfonated porphyrin with one chloro at the fourth position were shown to inhibit the 

HIV virus. Sulfonated tetranaphthyl porphyrin (TNaPS) and tetra-anthracenyl porphyrin 

(TAnthPS) were also found to be very active against HIV-1 virus. TNaPS (Figure 4.8) was 

showed higher activity against pox virus and HIV-1 virus.8,7 This suggests that modified 

porphyrins with extended structure would be more active against the different viruses.Another 

class of compounds which is related to the porphyrins are the sulfonated pthalocyanines and its 

copper chelate which previously have shown activity against HIV-1.4,7  

For virucidal activity one important characteristic is that the agent should be not 

phototoxic. Previous studies have shown that the different porphyrins with paramagnetic metals 

[Cu(II), Fe(III)] in its core had the highest activity against HIV-1. Porphyrins synthesized in this 

proposal are expected to have better virucidal activity against HIV-1 and other related viruses 

since they are related structurally to the already studied porphyrin compounds. The porphyrin 

synthesized has more advantages over the already studied ones since it has a sulfonamide group 

in addition to the sulfonic acid groups which is found in numerous biologically active 

compounds, which includes antimicrobial drugs and also its an extended molecule.. Amprenavir 

is an example of a sulfonamide compound that was introduced in the market in 1999 as a HIV 

protease inhibitor.10 

4.4 Conclusion 

Reaction of the 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (5) with a series of 

amines was successful and confirmed by 1H NMR spectroscopy. From 1H NMR spectra of all the 

compounds synthesized it was observed that at least 90% of the target compounds were present 
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while 10% was the product of hydrolysis of compound 5. Attempts to separate the hydrolysis 

compound from the target compound failed. Conditions for coupling amines with sulfonic acid 

groups at different positions were optimized. Metallation of the sulfonamide porphyrin 

derivatives with Cu2+, Pd2+ was successful and afforded excellent yields. 

4.5 Current and Future Work 
 

Current work involves the purification of the sulfonamide porphyrin derivatives since 

from the 1H NMR spectroscopy the compound contains 10% of the hydrolyzed compound. More 

reactions of 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin (5) with amines with different 

substituents especially electron withdrawing groups preferably halogenated groups at different 

positions will be carried. Also conjugation of 5,10,15,20-tetra(4-

chlorosulfonylbiphenyl)porphyrin (7) with different amines will be done. Other porphyrins such 

as acyl chloride derivative of 5,10,15,20-tetraphenylporphyrin will be synthesized and its 

conjugations with different amines studied. All the compounds synthesized will be provided to 

virologist for testing against several viruses.  
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CHAPTER 5. SYNTHESIS OF PORPHYRIN DERIVATIVES WITH APPENDED 
PLATINUM MOIETIES 

 

5.1 Introduction 

Cis-dichlorodiammineplatinum(II) (cisplatin) remains one of the most widely used 

anticancer drugs for treatment of testicular and ovarian cancer.1 Platinum drugs, such as cisplatin 

and carboplatin, nonselectively penetrate fast-growing tissues, leading to severe side effects (e.g. 

nausea, myelosuppression, nephrotoxicity and ototoxicity) that limit the dose that can be applied 

to patients.2,3 These strong side effects may be reduced by selective delivery of cisplatin in the 

tumor tissue compared to the normal tissue.4 It is also known that the effectiveness of Pt(II) 

antitumor drugs can be improved by linking the reactive platinum functionality to DNA binding 

agents, such as acridine,5-8 anthraquinones,9,10 and other intercalators.11-13 

Selective delivery of the anti-tumor drug to the tumor tissue may be achieved by 

incorporating a carrier group that can target tumor cells with high specificity. Porphyrins are 

known to have the ability to localize selectively in a wide variety of tumors.14,15 Porphyrin-based 

compounds possess good photochemical, photophysical, and biological properties that make 

them highly desirable for medical applications.16 Porphyrins have also been used widely for 

photodynamic therapy and fluorescence imaging, which are based on the preferential uptake and 

retention of the porphyrins by tumor tissues.17-21 Promising results have been published by 

Brunner et al., who synthesized porphyrin-platinum conjugates by utilizing carboxylic acid 

groups on the natural porphyrin as ligands for the platinum moiety. The antitumor activity of 

these compounds revealed a double therapeutic effect on inhibition of cell growth by the 

cytotoxic platinum effect and the phototoxic porphyrin effect.22-26  
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Conjugating a platinum moiety onto a porphyrin can possibly lead to selective delivery of 

the drug into tumor tissues. Furthermore, the photoactivity of the porphyrin can be applied as in 

photodynamic therapy. Studies have identified a cationic 5,10,15-tri(N-methyl-4-

pyridiniumyl)porphyrin-platinum conjugate with greater antitumor activity than cisplatin and 

with a greater tumor-localizing effect (tumor/muscle ratio > 2) than carboplatin.27 

Simple dinuclear compounds that are cationic and which can exist as both cis and trans 

isomers have displayed anti-tumor activity.28 Farrell and co-workers have reported that dinuclear 

cationic trans complexes (which utilize as linkers the naturally available polyamines, spermine 

and spermidine) are very active substances that overcome cisplatin resistance in L1210 murine 

leukemia cells in vitro.29 The additional positive charges assure a high affinity for DNA. A 

trinuclear platinum complex, BBR 3464, is in phase II clinical trials as a chemotherapeutic drug 

for treatment of ovarian and lung cancer.30,31 Recently, five tetrapyridylporphyrin 

areneruthenium (II) derivatives and a p-cymeneosmium and two 

pentamethylcyclopentadienyliridium and rhodium analogues were analyzed as potential 

photosensitizing chemotherapeutic agents by Schmitt and co-workers.32 The ruthenium 

analogues were found to exhibit excellent phototoxicity towards melanoma cells when exposed 

to laser light.32 Cellular uptake and localization microsocopy studies revealed that the ruthenium 

and the rhodium analogues accumulated in the melanoma cell cytoplasm in granular structures 

different from lysosomes.32 

We describe here the synthesis of a new family of Pt(II) complexes of 

tetraphenylporphyrin derivatives bearing polyamine ligands linked to the para position of the 

phenyl group through a sulfonamide group to bind Pt(II) moiety. The porphyrin ligands used 

(Scheme 5.1) in this study are 5,10,15,20-tetra(4-
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[aminoethylaminoethylsulfonamidophenyl])porphyrin (Porphyrin-4(SO2NHdien)) and 

5,10,15,20-tetra(4-[diaminodiethylaminoethylsulfonamidophenyl])porphyrin (Porphyrin-

4(SO2NHtren). Porphyrin-4(SO2NHdien) afforded 5,10,15,20-tetra(4-

[dichloroPt(II)aminoethylaminoethyl)sulfonamidophenyl])porphyrin (Porphyrin-

4((SO2NHdien)Pt(II)Cl2), complex whereas Porphyrin-4(SO2NHtren) gave 5,10,15,20-tetra(4-

[chloroPt(II)diaminodiethylaminoethyl)sulfonamidophenyl])porphyrin Chloride ([Porphyrin-

4((SO2NHtren)Pt(II)Cl)]4Cl) (Figures 5.1 and 5.2). 

Scheme 5.1. Synthesis of [2-(2-amino-ethylamino)ethyl]carbamic acid tert-butyl ester 

(dien mono Boc) and {2-[(2-aminoethyl)-(2-tert-butoxycarbonylaminoethyl)amino]ethyl}-

carbamic acid tert-butyl ester (tren bis Boc) 

 

5.2 Experimental Section  

5.2.1 Materials and Methods. Diethylenetriamine (dien), tris(2-aminoethyl)amine (tren) 

and Di-tert-butyl dicarbonate (Boc2O) were obtained from Aldrich (Scheme 5.1). 5,10,15,20-

tetra(4-chlorosulfonylphenyl)porphyrin (TPPSO2Cl (1), Scheme 5.2) was synthesized by a 

known method and the chemical shift of the 1H NMR spectrum in CDCl3 matched the reported 

value.33 Cis-Pt(Me2SO)2Cl2 was prepared as described in the literature.34 
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All 1H NMR spectra were recorded on either a 300 MHz or a 400 MHz Bruker NMR 

spectrometer. Peak positions are relative to TMS or solvent residual peak, with TMS as 

reference. All NMR data were processed with Mestre-C software. 

Mass spectra were obtained at the Mass Spectrometry Facility at Louisiana State 

University, Baton Rouge, LA, on a Bruker ProFlex III MALDI-TOF and Hitach M8000 ESI 

mass spectrometer. The compounds were dissolved in dichloromethane or chloroform using 

dithranol as the matrix and in methanol for ESI MS. 

5.2.2 Synthesis of [2-(2-Aminoethylamino)ethyl]carbamic Acid tert-Butyl Ester 

(dien mono Boc) and {2-[(2-Aminoethyl)-(2-tert-butoxycarbonylaminoethyl)amino]ethyl}-

carbamic Acid tert-Butyl Ester (tren bis Boc). Dien mono Boc and tren bis Boc were 

synthesized by a slight modification of Krapcho’s method (Scheme 5.1).35 A solution of Boc2O 

(5 mmol, 50 mL of dioxane) was added dropwise over the course of about 2 h to a solution of 

dien or tren (20 mmol, 50 mL of dioxane). The reaction mixture was stirred at RT for 24 h. The 

dioxane was completely removed under vacuum, and water (50 mL) was added. The product was 

extracted into CH2Cl2 (3 × 50 mL), and the solvent was removed under rotary evaporation.  

[2-(2-Aminoethylamino)ethyl]carbamic Acid tert-Butyl Ester (dien mono Boc). The 

general method described above with dien (2.1 g, 20 mmol) yielded dien mono Boc (3.9 g, 56%). 

1H NMR (ppm) in CDCl3: 4.48 (1H, br, NHBoc), 3.35 (2H, d, CH2), 2.18-3.28 (6H, m, CH2), 

1.43 (9H, s, t-butyl). 

{2-[(2-Aminoethyl)-(2-tert-butoxycarbonylaminoethyl)amino]ethyl}-carbamic Acid 

tert-Butyl Ester (tren bis Boc). The general method described above with tren (2.9 g, 20 mmol) 

yielded tren bis Boc (1.75 g, 43%).1H NMR (ppm) in CDCl3: 5.28 (2H, br, NHBoc), 3.18 (2H, d, 

CH2), 2.73 (2H, t, CH2), 2.46-2.58 (6H, m, CH2), 1.45 (18H, s, t-butyl). 
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The oils thus obtained were used to synthesis the porphyrin ligands as in Scheme 5.2. 

Scheme 5.2. Porphyrin ligands synthesized in this study  

 

 

5.2.3 Synthesis of 5,10,15,20-tetra(4-[N-tert-

butyloxycarbonyldiethylenetriaminylsulfonamido]phenyl)porphyrin (2) and 5,10,15,20-

tetra(4-[N-bistert-

butyloxycarbonyldiaminodiethylaminoethylsulfonamidophenyl]porphyrin (3). To a solution 

of porphyrin 1 (Scheme 5.2, 0.1 g, 0.1 mmol) in anhydrous dichloromethane (20 mL) was added 

a solution of dien mono Boc or tren bis Boc (0.5 mmol, 10 mL of dichloromethane). The reaction 

mixture was stirred at room temperature for 12 h. The reaction mixture was washed with water 
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(3 × 10 mL) to remove the unreacted amine. The organic phase was dried over anhydrous 

Na2SO4 and the solvent was removed under vacuum. The final compounds were precipitated 

from dichloromethane/hexane.  

5,10,15,20-tetra(4-[N-tert-

butyloxycarbonyldiethylenetriaminylsulfonamido]phenyl)porphyrin (2): The general 

method described in Scheme 5.2 with dien mono Boc (0.1 g) produced porphyrin 2 (0.18 g, 

81%). 1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole), 8.45 (8H, d, ArH), 8.24 (8H, d, 

ArH), 6.75 (8H, br, NHBoc), 3.12 (8H, t, CH2), 3.01 (8H, q, CH2), 2.70 (8H, t, CH2), 2.57 (8H, 

q, CH2), 1.31 (36H, s, t-butyl), -2.96 (2H, br, NH). 

5,10,15,20-tetra(4-[N-bistert-

butyloxycarbonyldiaminodiethylaminoethylsulfonamidophenyl])porphyrin (3): The general 

method described above with tren bis Boc (0.17 g) yielded porphyrin 3, Scheme 5.2 (0.16 g, 

95%) 1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole), 8.44 (8H, d, ArH), 8.26 (8H, d, 

ArH), 7.83 (4H, br, NH-sulfonamide), 6.79(8H, br, NHBoc), 3.15 (8H, t, CH2), 2.96 (16H, q, 

CH2), 2.59 (8H, t, CH2), 2.50 (8H, t, CH2), 1.32(72H, s, t-butyl), -2.96 (2H, br, NH). 

5.2.4 General Procedure for Removal of the Boc-protecting Group  

Method A: Following a published procedure,36 TFA (2 mL) was added to porphyrin 2 or 

3 and the final solution was stirred at room temperature for 5 min. TFA was evaporated under 

reduced pressure; the residue was triturated and washed with ethyl acetate (3 × 5 mL) to give a 

green powder. 

Method B: A suspension of porphyrin 2 or 3 in HCl/dioxane (4 M, 5 mL) was stirred at 

room temperature for 30 min. The reaction mixture was dried under vacuum. The residue (green 

solid) was then washed with diethyl ether, collected on a filter paper and dried under vacuum. 
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5,10,15,20-tetra(4-[aminoethylaminoethylsulfonamidophenyl])porphyrin (2a): 

Method B with 0.05 g of porphyrin 2 yielded a green precipitate of porphyrin 2a, Scheme 5.2 

(0.068 g, 88% yield). 1H NMR (ppm) in DMSO-d6: 8.85 (8H, s, β-pyrrole), 8.45 (8H, d, ArH), 

8.25 (8H, d, ArH), 7.97 (4H, br, NH-sulfonamide), 7.79 (24H, br, NH3
+), 3.32 (8H, t, CH2), 2.94 

(16H, t, CH2), 2.73 (24H, t, CH2), -2.95 (2H, br, NH). 

5,10,15,20-tetra(4-[diaminodiethylaminoethylsulfonamidophenyl])porphyrin (3a): 

Method B with 0.05 g of porphyrin 3 yielded a green precipitate of porphyrin 3a, Scheme 5.2 

(0.041 g, 87% yield). 1H NMR (ppm) in DMSO-d6: 8.89 (8H, s, β-pyrrole), 8.49 (8H, d, ArH), 

8.41 (4H, br, NH-sulfonamide), 8.29 (20H, ArH and NH3
+) 3.34 (16H, t, CH2), 3.29 (16H, t, 

CH2), -2.97 (2H, br, NH). 

5.2.5 Synthesis of Porphyrin-Platinum(II) Complexes 

Synthesis of Porphyrin-4((SO2NHdien)Pt(II)Cl2) (4, Figure 5.1): A suspension of cis-

Pt(Me2SO)2Cl2 (0.148 g, 0.352 mmol) in methanol (10 mL) was treated with porphyrin 2a (0.11 

g, 0.070 mmol) in methanol (10 mL), and the reaction mixture was stirred at 50 oC overnight. 

The brown solid that precipitated was collected on a filter, washed with diethyl ether and dried 

under vacuum; yield, 0.05 g, (31%). 1H NMR (ppm) in DMSO-d6: 8.87 (8H, s, β-pyrrole), 8.47 

(8H, d, ArH), 8.27 (12H, d, ArH and NH), 7.11(4H, br, NH), 6.17 (8H, br, NH2), 3.3 (32H, br, 

CH2), -2.97 (2H, br, NH). 

Synthesis of [Porphyrin-4((SO2NHtren)Pt(II)Cl)]4Cl (5, Figure 5.2): A suspension of 

cis-Pt(Me2SO)2Cl2 (0.06 g, 0.144 mmol) in methanol (10 mL) was treated with porphyrin 3a 

(0.05 g, 0.029 mmol) in methanol (10 mL), and the reaction mixture was stirred at 50 oC 

overnight. The brown solid that precipitated was collected on a filter, washed with diethyl ether 

and dried under vacuum; yield, 0.045 g (62.5%). 1H NMR (ppm) in DMSO-d6: 8.88 (8H, s, β-
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pyrrole), 8.48 (8H, d, ArH), 8.41(4H, t, NH-sulfonamide), 8.32 (8H, d, ArH), 5.75 (8H, br, NH2), 

5.47 (8H, br, NH2), 3.69(8H, t, CH2), 3.43 (8H, t, CH2), 3.31 (16H, br, CH2), 2.96 (8H, t, CH2), -

2.96 (2H, br, NH). 

 

Figure 5.1. Porphyrin-4((SO2NHdien)Pt(II)Cl2) (4). 

5.3 Results and Discussion 

Starting from the easily synthesized 5,10,15,20-tetra(4-chlorosulfonylphenyl)porphyrin33 

and reaction of different polyamines that were Boc-protected (Scheme 5.1), new porphyrins 
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containing sulfonamide groups with multidentate ligands (Scheme 5.2) were synthesized. The 

Boc-protected amines were obtained following previously published procedures35 (Scheme 5.1), 

and their 1H NMR spectra in CDCl3 are shown in Figures 5.3 and 5.4.  

 

 

Figure 5.2. [Porphyrin-4((SO2NHtren)Pt(II)Cl)]4Cl (5). 

 



 114

 

Figure 5.3. 1H NMR spectrum of dien mono Boc in CDCl3. 

 

 

Figure 5.4. 1H NMR spectrum of tren bis Boc in CDCl3. 

 
The porphyrin Boc-protected compounds synthesized (2 and 3, Scheme 5.2) are soluble 

in organic solvents (chloroform, dichloromethane) and the Boc groups are easily cleaved in 

quantitative yield by using TFA at room temperature.36 The deprotected porphyrin conjugates, 2a 

and 3a, were soluble in water, methanol and DMSO. The porphyrin-ligands were analyzed by 1H 

NMR spectroscopy in DMSO-d6 (Figures 5.5 and 5.6). The 1H NMR spectra of the protected 

porphyrin-ligand showed the resonance of the sulfonamide NH protons (7-8.5 ppm) and of the 
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amide NH of the Boc-protected groups at ~6.8 ppm (Figures 5.5 and 5.6). The signal of the 

methyl groups of the tert-butyl group observed at ~1.3 ppm confirmed the synthesis of the 

protected porphyrin ligands. Removal of the protecting group of 2 and 3 was confirmed by 1H 

NMR spectroscopy; the disappearance of the methyl signal of the tert-butyl group and 

appearance of a broad peak at ~7.5 ppm for the protonated primary amine groups confirmed the 

cleavage of the tert-butyl groups. Further confirmation was obtained by addition of D2O to the 

NMR sample of the deprotected porphyrin ligands, whereupon the broad signal of the primary 

amines disappeared because of exchange with D2O. 

5.3.1 1H NMR Characterization of Porphyrin-Pt(II) Complexes 

Porphyrin-Pt(II) conjugates (Figures 5.1 and 5.2) were prepared by treating the 

deprotected porphyrin ligands (Porphyrin-4(SO2NHdien) and Porphyrin-4(SO2NHtren)) 

dissolved in methanol with cis-Pt(Me2SO)2Cl2 at 50 °C for 12 h. The porphyrin-Pt(II) conjugates 

precipitated, and the precipitate was washed with methanol to remove the excess of cis-

Pt(Me2SO)2Cl2 and the unchanged porphyrin ligand. All the porphyrin-Pt(II) conjugates were 

soluble only in DMSO and were analyzed by 1H NMR spectroscopy in DMSO-d6 (Figures 5.5 

and 5.6). 

Porphyrin-4((SO2NHdien)Pt(II)Cl2) (4). Soon after Porphyrin-

4((SO2NHdien)Pt(II)Cl2) (Figure 5.1) was dissolved in DMSO-d6, one major and one minor set 

of NH signals were observed, and only one set of the porphyrin signals was observed. The minor 

set of signals (upfield) disappeared after ~5 min. One set of the NH signals (upfield) belongs to 

Porphyrin-4((SO2NHdien)Pt(II)Cl2) while the major set (downfield) belongs to the solvated 

species [Porphyrin-(4((SO2NHdien)Pt(II)(Me2SO)Cl]4+. The minor set did not appear upon 

addition of [Et4N]Cl. Similar results were observed with Pt(DNSH-dienH)Cl2 (DNSH-dienH = 
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N-(2-((2-aminoethyl)amino)ethyl)-5-(dimethylamino)naphthalene-1-sulfonamide).37 The 1H 

NMR signals of 4 compared to those of the deprotected porphyrin derivative (2a) are not 

significantly affected upon platinum binding to the Porphyrin-4(SO2NHdien (2a), indicating that 

the porphyrin moiety is far from the platinum. The presence of the sulfonamide N3H signal 

(Figure 5.5) is an indication that N1 and N2 participate in the binding to Pt(II) but N3 does not.  

 

Figure 5.5. Selected region of the 1H NMR spectrum of the protected porphyrin-ligand (2) 
(bottom) and of Porphyrin-4((SO2NHdien)Pt(II)Cl2) (4) (top) in DMSO-d6.  

 
The presence of the sulfonamide N3 signal in the 1H NMR spectrum of 4 is an indication 

that the Porphyrin-4(SO2NHdien) ligand acts as a bidentate ligand (central N2 and terminal N1) 

(Figure 5.1). There are two signals of the terminal amino groups (N1H) of 4 (5.36-5.47 ppm), 

and they are comparable to the shifts of Pt(DNSH-dienH)Cl2  (5.23-5.34 ppm) observed 

previously.37 The shift (6.57 ppm) of N2H in 4 is comparable to that of Pt(DNSH-dienH)Cl2 

(6.27 ppm) reported previously.37 The sulfonamide N3H signal of 4 (8.26 ppm) is comparable 

(8.22 ppm) to that of Pt(DNSH-dienH)Cl2.37 In general all the NH signals were slightly 

downfield (~ 0.05 ppm) as compared to the NH shifts of the previously reported (Pt(DNSH-

dienH)Cl2)37 arising from the electron-withdrawing effect of the porphyrin.  
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[Porphyrin-4((SO2NHtren)Pt(II)Cl)]4Cl (5). [Porphyrin-4((SO2NHtren)Pt(II)Cl)]4Cl 

(Figure 5.2) was prepared by treating cis-Pt(Me2SO)2Cl2 with porphyrin 3a. In DMSO-d6 the 1H 

NMR signals of the porphyrin are not significantly affected by Pt binding (Figure 5.6). Upon 

dissolution of 5 in DMSO-d6 one major and one minor set of NH signals were observed (Figure 

5.6). The minor set of the NH signals (downfield shifted) was for the solvated species 

[Porphyrin-4((SO2NHtren)Pt(II)(Me2SO-d6)]8+ and only 10% of this solvated species was 

formed; the major set arises from the unsolvated species ([Porphyrin-

4((SO2NHtren)Pt(II)Cl)]4Cl). The presence of the sulfonamide N3H signal confirmed that the 

desired structure formed. Similar results were observed with [Pt(DNSH-tren)Cl]Cl, which can be 

used as a model of 5.37 Previous studies from our laboratory revealed that the presence of the 

alkyl group on the central N2 decreases DMSO solvolysis. 

 

Figure 5.6. Selected region of the 1H NMR spectrum of the protected porphyrin-ligand (3) 
bottom) and [Porphyrin-4((SO2NHtren)Pt(II)Cl)]4Cl (5) (top) in DMSO-d6. 

 

5.4 Conclusions and Future Work 

The Porphyrin-4(SO2NHdien) and Porphyrin-4(SO2NHtren) ligands act as bidentate and 

tridentate ligands for platinum (II) complexes, respectively. The sulfonamide NH signal was 

found to be diagnostic in confirming the synthesis of the porphyrin-platinum conjugates. The 
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synthesized compounds will be submitted for testing for anticancer activity. Derivatives of the 

compounds can be prepared in order to improve their solubility in water. 
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CHAPTER 6. SYNTHESIS OF PROTOPORPHYRIN IX POLYAMINE CONJUGATES 
APPENDED WITH PLATINUM MOIETIES 

 

6.1 Introduction 

Cis-dichlorodiammineplatinum(II) (cisplatin), as one of the leading metal-based drugs, is 

widely used in the treatment of various forms of cancer.1 However, its clinical usefulness has 

been limited by severe side effects, such as nephrotoxicity, gastrointenstinal toxicity, ototoxicity 

and neurotoxicity.2,3 Extensive efforts have been made to overcome the drawbacks of cisplatin to 

develop cisplatin analogues having equivalent or better antitumor activity and less toxicity. One 

of the strategies for designing new platinum antitumor compounds is to combine the 

chemotherapeutic agent (platinum compounds) with proper carrier groups that target selectively 

the tumor cells. 

Porphyrins have been used effectively in the photodynamic treatment of tumors over a 

decade and play an important role in fluorescence imaging, both based on the preferential uptake 

and retention of the porphyrins in tumor tissues.4-7 Porphyrins are known to accumulate 

selectively in tumor tissues, while platinum complexes such as cisplatin and carboplatin 

penetrate unselectively into all fast-growing tissues, giving rise to the known side effects.8,9 

Studies dealing with the combination of the useful properties of the platinum containing 

preparations and porphyrins resulted in the synthesis of a number of compounds representing 

platinum complexes (covalent conjugates) with protoporphyrin, hematoporphyrin, tetraphenyl 

porphyrin derivatives and with zinc phthalocyanines.10-18 A study of the effect of the conjugates 

to the living cells showed an additive effect of the porphyrin photodynamic activity and platinum 

cytotoxic acitivity.10,19,20 Porphyrin platinum conjugates already synthesized are of the natural 

porphyrin (hematoporphyrin), in which the platinum(II) moiety is attached to the propionic acid 
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side chains out of the porphyrin macrocycle. In previous studies involving conjugation of the 

carboxylic acid side chains of hematoporphyrin with the platinum compounds, only one platinum 

compound per porphyrin was synthesized. Herein, we describe a different approach to the 

synthesis of Pt(II) complexes. In this study the carboxylic acid groups of protoporphyrin (IX) 

were conjugated with different amines, which acted as ligands for platinum(II) compounds. As a 

result, in our system each protoporphyrin ligand synthesized contains two platinum compounds. 

6.2 Experimental Section 

6.2.1 Materials and Methods. 2,18-dipropionic-3,8,13,17-tetramethyl-7,12-

divinylporphyrin (PP, 1) (Frontier), 1–hydroxybenzonitrile (HOBt), 2-(1H-benzonitriazole-1-yl)-

1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), N,N-diisopropylethylamine (DIEA) and 

N,N– dimethylformide (DMF) from Aldrich, [2-(2-Amino-ethylamino)-ethyl]-carbamic acid tert-

butyl ester (dien mono Boc) and {2-[(2-Amino-ethyl)-(2-tert-butoxycarbonylamino-ethyl)-

amino]-ethyl}-carbamic acid tert-butyl ester (tren bis Boc) were synthesized as described in 

Chapter 4, and the chemical shifts of the 1H NMR spectra in CDCl3 matched the reported values. 

cis-Pt(Me2SO)2Cl2 was prepared as described in the literature.  

All 1H NMR spectra were recorded on either a 300 MHz or a 400 MHz Bruker NMR 

spectrometer. Peak positions are relative to TMS or solvent residual peak, with TMS as 

reference. All NMR data were processed with Mestre-C software. 

Mass spectra were obtained at the Mass Spectrometry Facility at Louisiana State 

University, Baton Rouge, LA, on a Bruker ProFlex III MALDI-TOF and Hitach M8000 ESI 

mass spectrometer. The compounds were dissolved in dichloromethane or chloroform using 

dithranol as the matrix and in methanol for ESI MS. 
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Scheme 6.1. Synthesis of polyamine PPIX conjugatesa 

 
a Reagents and conditions: (i) PP (1.1 equiv), polyamine (2.2 equiv), TBTU (2.2), HOBt 

(2.2 equiv), DIEA (7.7 equiv), DMF, RT, 24 h; (ii) CF3COOH, RT, 30 min.  

 

6.2.2 General Synthesis of Porphyrin Conjugates. A solution of 1 (0.1g, 0.36 mmol) in 

2.0 mL dry DMF was treated with DIEA (0.28g, 2.18 mmol), TBTU (0.23g, 0.72 mmol) and 

HOBt (0.098g, 0.36 mmol), followed by 0.64 mmol of the respective amine in 0.5 mL of DMF. 

The reaction mixture was stirred at RT for 24 h, diluted with 10 mL of ethyl acetate, and washed 

with water (5 × 10 mL). The organic layer was collected and dried over anhydrous Na2SO4, 

filtered, and the solvent evaporated under vacuum. The porphyrin conjugates were isolated by 

column chromatography on silica gel by eluting with CHCl3/EtOH, 90:10 + 5% TEA. 

2,18-Bis[tertbutoxycarbonyldiethlenetriaminyl-N-amidoethyl]-3,8,13,17-

tetramethyl-7,12-divinylporphyrin (2): The general method described above with PP (0.1 g) 

and dien mono Boc (0.13 g) yielded porphyrin 2 (0.12 g, 35%), 1H NMR (ppm) in DMSO-d6: 
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10.30, 10.23 (4H, s, meso-H), 8.49 (2H, dd, CH-vinyl), 7.86 (2H, br, -NHCO), 6.50 (2H, d, CH2-

vinyl), 6.42 (2H, br, NHBoc), 6.22 (2H, d, CH2-vinyl), 4.33 (4H, br, COCH2), 3.72 (6H, d, CH3-

β-pyrrole), 3.62 (6H, d, CH3-β-pyrrole), 3.06(10H, s, CH2-proto and CH2-dien), 2.76 (2H, s, NH-

dien), 2.35 (8H, d, CH2-dien), 1.30 (18H, CH3-Boc), -3.95 (2H, s, NH-pyrrole). MS (MALDI) 

m/z: [M + H]+ = 933.708, calcd for [M + H]+ = 933.563. 

2,18-Bis[di-tertbutoxycarbonyldiaminodiethylaminoethyl-N-amidoethyl]-3,8,13,17-

tetramethyl-7,12-divinylporphyrin (3): The general method described above with PP (0.1 g) 

and tren bis Boc (0.22 g) yielded porphyrin 3 (0.28 g, 65%). 1H NMR (ppm) in DMSO-d6: 10.29, 

10.24, 10.23, 10.21 (4H, s, meso-H), 8.49 (2H, dd, CH-vinyl), 7.85 (2H, br, -NHCO), 6.48 (2H, 

d, CH2-vinyl), 6.42 (2H, br, NHBoc), 6.22 (2H, d, CH2-vinyl), 4.33 (4H, br, COCH2), 4.03 (6H, 

d, CH3-β-pyrrole), 3.72 (6H, d, CH3-β-pyrrole), 3.04(8H, s, CH2-proto and CH2-tren), 2.69 (12H, 

s, CH2-tren), 2.18 (8H, d, CH2-tren), 1.26 (36H, CH3-Boc), -3.94 (2H, s, NH-pyrrole). MS 

(MALDI) m/z: [M + H]+ = 1220.527, calcd for [M + H]+ = 1220.579. 

Deprotection was accomplished in quantitative yield by using trifluoroacetic acid (TFA) 

(2 mL) at RT for 30 min, followed by evaporation of TFA and washings with diethyl ether. 

Porphyrins 2a and 3a were obtained as green powders.  

2,18-Bis[aminoethylaminoethyl-N-amidoethyl]-3,8,13,17-tetramethyl-7,12-

divinylporphyrin (PP-2(CONHdien), 2a): 1H NMR (ppm) in DMSO-d6: 1H NMR (ppm) in 

DMSO-d6: 10.34, 10.31, 10.28 (4H, s, meso-H), 9.46 (2H, s, NH-dien), 8.49 (2H, dd, CH-vinyl), 

8.43 (2H, br, NHCO),8.31 (6H, br, NH3), 6.47 (2H, d, CH2-vinyl), 6.24 (2H, d, CH2-vinyl),4.41 

(4H, br, COCH2), 3.66 (12H, d, CH3 β-pyrrole), 3.49(6H, d, CH2-proto and CH2-dien), 3.36 

(10H, m, CH2-proto and CH2-dien ), 3.16 (6H, d, CH2-dien), -3.95 (2H, s, NH-pyrrole). ESI-

MS(m/z): M+ = 732.4669, calcd for M+ = 732.4586. 
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2,18-Bis[diaminodiethylaminoethyl-N-amidoethyl]-3,8,13,17-tetramethyl-7,12-

divinylporphyrin (PP-2(CONHtren), 3a): 1H NMR (ppm) in DMSO-d6: 10.37, 10.29, 10.26 

(4H, s, meso-H), 8.53 (2H, dd, CH-vinyl), 7.92 (2H, br, NHCO), 7.62 (12H, br, NH3), 6.47 (2H, 

d, CH2-vinyl), 6.24 (2H, d, CH2-vinyl), 4.36 (4H, br, COCH2), 3.75 (6H, d, CH3 β-pyrrole), 3.64 

(6H, d, CH3 β-pyrrole), 3.06 (12H, s, CH2-proto and CH2-tren), 2.58 (8H, s, CH2-tren), 2.35 (8H, 

s, CH2-tren), -3.95 (2H, s, NH-pyrrole). ESI-MS(m/z): M+ = 818.5310, calcd for M+ = 818.5431.  

 

6.2.3 Synthesis of the Platinum Complexes of the Porphyrin Polyamine Conjugates. 

A suspension of cis-Pt(Me2SO)2Cl2 (43.7 mg, 0.1 mmol) in methanol (20 mL) was treated with 

the polyamine PP conjugates 2a and 3a, (0.025 mmol), and the reaction mixture was heated at 50 

oC overnight. The product precipitated in the course of the reaction; the brown suspension was 

concentrated to 5 mL and the product removed by filtration and washed with water, diethyl ether 

and dried under vacuum to yield the desired platinum complexes PP-2((CONHdien)Pt(II)Cl2) 

and [PP-2((CONHtren)PtCl)]2Cl, which were characterized by 1H NMR spectroscopy. 

PP-2((CONHdien)Pt(II)Cl2) (4). The general method described above with 2a (20 mg) 

afforded 4 (Figure 6.1) as a purple solid (15 mg, 47% yield). 1H NMR (ppm) in DMSO-d6: 

10.36, 10.27, 10.24 (4H, s, meso-H), 8.57 (2H, dd, CH-vinyl), 8.20 (2H, s, NHCO), 6.70 (2H, br, 

NH-dien), 6.49 (2H, d, CH2-vinyl), 6.26 (2H, d, CH2-vinyl), 5.92 (4H, br, NH2), 4.39 (4H, br, 

COCH2), 3.79 (6H, d, CH3 β pyrrole), 3.67 (6H, d, CH3 β pyrrole), 3.12 (4H, t, CH2-Proto), 2.86 

(4H, CH2-dien), 2.65 (4H, CH2-dien), 2.26 (8H, CH2-dien), -3.79 (2H, s, NH-pyrrole).  

[PP-2((CONHtren)PtCl)]2Cl (5). The general method described above with 3a (25 mg) 

afforded 5 (Figure 6.1) as a brown solid (22 mg, 69% yield). 1H NMR (ppm) in DMSO-d6: 

10.39, 10.31, 10.25 (4H, s, meso-H), 8.58 (2H, dd, CH-vinyl), 8.27 (2H, s, NHCO), 6.47 (2H, d, 

CH2-vinyl), 6.24 (2H, d, CH2-vinyl), 5.52 (4H, br, NH), 5.16 (4H, br, NH), 4.35 (4H, br, 
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COCH2), 3.76 (6H, d, CH3 β pyrrole), 3.65 (6H, d, CH3 β pyrrole), 3.24 (12H, t, CH2-proto and 

CH2-diene), 3.10 (8H, t, CH2-tren), 2.97 (4H, t, CH2-tren), 2.85 (8H, m CH2-tren), -3.82 (2H, s, 

NH-pyrrole).  

 

 

Figure 6.1. PP-Pt(II) complexes synthesized in this study. 

 
6.3 Results and Discussion 

Polyamines with Boc-protected groups (Scheme 6.1) were selectively synthesized by 

following Krapcho’s method. The Boc-protecting group can be removed easily by treating with 

TFA or a solution of 4 M HCl/dioxane. The synthesis of PP-polyamine conjugates 2 and 3 was 

carried out by reaction of the carboxylic acid groups of PP with the primary amine group of dien 

mono boc or tren bis Boc in the presence of DIEA, TBTU and HOBt in DMF. After purification 

by silica column chromatography (eluent: CHCl3/EtOH, 90:10 + 5% TEA), protected polyamine 

PP conjugates 2 and 3 were obtained in 35% and 48% yields, respectively. 1H NMR spectra of 2 
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and 3 in DMSO-d6 confirmed the synthesis of the PP-polyamine conjugates (2 and 3), as the 

signal of the hydroxyl group at ~12.0 ppm was missing and additional peaks of the amide 

(NHCO) protons were observed (Figures 6.2 and 6.3). PP-polyamine conjugates (2 and 3) were 

further confirmed by MS MALDI (Figures 6.4 and 6.5), which gave the expected peaks. After 

cleavage of protecting groups (Boc), the expected compounds 2a and 3a were obtained in 

quantitative yields and confirmed by 1H NMR spectroscopy and mass spectrometry. Treatment 

of the crude deprotected polyamine PP conjugates with cis-Pt(Me2SO)2Cl2 in methanol afforded 

the PP-platinum complexes (Figure 6.1).  

 

 

Figure 6.2. 1H NMR region of PPIX (a), 2 (b) and 4 (c) in DMSO-d6. 

 

PP polyamine conjugates and their platinum complexes were characterized by 1H NMR 

spectroscopy in DMSO-d6, and their chemical shifts compared to those of PP in the same solvent 

(Figures 6.2 and 6.3). The 1H NMR spectra of the porphyrin diacid showed the resonance of two 

inner pyrrole protons at -4.18 ppm as a singlet. The resonance of the meso protons appeared at 
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10.4 – 10.2 ppm as three singlets in a 2:1:1 ratio. Upon conjugation of the polyamines to the PP 

diacid groups, the OH peak at 12.30 ppm disappeared, and the amide NH was observed between 

7.85 – 8.0 ppm for the two PP-polyamine conjugates (2 and 3). The presence of the methyl 

groups of the tert-butyl groups at ~1.3 ppm confirmed successful conjugation of the polyamines 

to the PP diacid groups. 

 

 

Figure 6.3. 1H NMR region of of PPIX (a), 3 (d) and 5 (e) in DMSO-d6. 

 

There was a general downfield shift of the PP proton signals of the PP-polyamine 

conjugates as compared to the parent porphyrin PP diacid. Removal of the Boc-protecting groups 

was confirmed by 1H NMR spectroscopy (disappearance of the methyl signals of the tert-butyl 

group and the appearance of the protonated amine groups of the ligands) and ESI-MS, which 

gave one parent peak of the expected mass (see Experimental Section). 
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Figure 6.4. MS MALDI spectrum for 2,18-bis[tertbutoxycarbonyldiethlenetriaminyl-N-

amidoethyl]-3,8,13,17-tetramethyl-7,12-divinylporphyrin (2). 

 

Cis-Pt(Me2SO)2Cl2 was treated with the PP-polyamine conjugate (2a and 3a) (Scheme 1) 

dissolved in methanol at 50 °C for 12 h. The PP-platinum complexes (4 and 5) precipitated and 

were collected by filtration and then washed with methanol to remove the excess of cis-

Pt(Me2SO)2Cl2 and any unreacted ligand. All the PP-platinum complexes synthesized were 

soluble only in DMSO.  

6.3.1 1H NMR Characterization of PP-Pt(II) Complexes 

PP-2((CONHdien)Pt(II)Cl2) (4). Under the conditions used cis-Pt(Me2SO)2Cl2 and PP-

2(CONHdien) formed PP-(dien-Pt)22Cl2 , with PP-2(CONHdien) acting as a bidentate ligand 

(central N2 and terminal N1) (Figure 6.1). Evidence of this conclusion is the presence of an 

amide signal N3H in the 1H NMR signal (Figure 6.2) at a shift close to that of the free PP-
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2(CONHdien). Soon after dissolving 4 in DMSO-d6, one major and one minor set of NH signals 

were observed. The extra set of signals disappeared after ~5 min. Based on a previous study by 

Christoforou et al.,21 the minor set of signals was assigned to the dichloride complex and the 

other set assigned to the monosolvated species, in which only one chloride ligand is replaced by 

DMSO. 

 

 

Figure 6.5. MS MALDI spectrum for 2,18-Bis[ditertbutoxycarbonyldiaminodiethylaminoethyl-

N-amidoethyl]-3,8,13,17-tetramethyl-7,12-divinylporphyrin (3). 

 

[PP-2((CONHtren)PtCl)]2Cl (5). Similarly, under the conditions used, the reaction of 

cis-Pt(Me2SO)2Cl2 and PP-2(CONHtren) formed [PP-2((CONHtren)PtCl)]2Cl, with PP-

2(CONHtren) acting as a tridentate ligand (central N2 and two terminal N1) (Figure 6.1). The 

presence of the amide N3H signal (8.5 ppm) confirmed formation of the desired compound 
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(Figure 6.3). The primary amine N2H signals had shifts close to those of related compounds 

studied previously.21 Unlike for PP-2((CONHdien)Pt(II)Cl2), upon dissolving [PP-

2((CONHtren)PtCl)]2Cl in DMSO, no solvolysis species were observed. This unusual behavior 

was also observed in a related compound, [Pt(DNSH-tren)Cl]Cl, in which only 10% of the 

solvolysis species was observed; the explanation given was that the presence of an alkyl group 

on the central N decreases DMSO solvolysis.21  

6.4 Conclusion and Future Work 

We synthesized protoporphyrin IX containing polyamine ligands (PP-2(CONHdien) and 

PP-2(CONHtren)) that acted as bidentate and tridentate ligands towards platinum (II) complexes, 

respectively. The synthetic method developed in this work is useful and versatile for conjugating 

other useful ligands to the protoporphyrin IX. This in turn will provide protoporphyrin IX 

ligands that can bind different metal fragments with medicinal application.  
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CHAPTER 7. CONCLUSIONS 
 

Novel synthetic methodology for preparing porphyrins and their metal derivatives having 

sulfonamide link was developed. In general the sulfonamide group provided a versatile way to 

expand porphyrin utility. However, it was necessary to employ a tertiary sulfonamide because 

otherwise intractable species would be formed. The sulfonamide link can also be used in 

bioconjugation of useful molecules to the porphyrin.  

We achieved the synthesis of pyridyl porphyrins that contained either a secondary or 

tertiary sulfonamide group. Since sulfonamide groups are known to bind metals, replacing the 

dissociable proton of the sulfonamide group with a methyl group simplified the synthesis of the 

metalloporphyrin. Coordinating the pyridyl group with methylcobaloxime unit allowed us to 

estimate the pKa of the pyridyl groups of T(N-py-4-CH2(CH3)NSO2Ar)P) and of TpyP(4) to be 

close to that of pyridine. 

We were able to convert sulfonamide expanded porphyrins bearing pyridyl groups to 

cationic porphyrins. Most of these new porphyrins contain the same 4-substituted N-

methylpyridinium group (N-Mepy) as in TMpyP(4) and in several other known intercalating 

porphyrins. However, the N-Mepy group in the new porphyrins is not directly attached to the 

porphyrin ring. The interaction studies of these cationic porphyrins with calf thymus DNA 

showed that they are outside binders without self stacking in contrast to what is observed with 

TMpyP(4) which is a known intercalator. Our results on new porphyrins having 4-substituted N-

Mepy groups that can have separations similar to those in intercalating porphyrins indicate that 

spacing is not the deciding factor for intercalation into CT DNA. This finding, along with results 

on porphyrins with N-Mepy groups linked at the 2-position, leads us to conclude that direct 

attachment of the N-alkylpyridinium groups to the porphyrin ring in such a way that the N-
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alkylpyridinium group can become nearly coplanar with the porphyrin ring is necessary in order 

for intercalation to occur. 
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

Table A.1. Selected Bond Distances (Å), Angles (deg) of the Methylcobaloxime moieties in 
[CH3Co(DH)2]4TpyP(4) (9) 

[CH3Co(DH)2]4TpyP(4) (9) 

Co(1)–Neq 1.883(4) Co(2)–Neq 1.882(4) 

Co(1)–Neq 1.883(4) Co(2)–Neq 1.883(4) 

Co(1)–Neq 1.885(4) Co(2)–Neq 1.887(5) 

Co(1)–Neq 1.887(4) Co(2)–Neq 1.892(5) 

Co(1)–Nax 2.055(4) Co(2)–Nax 2.079(4) 

Co(1)–C(29) 2.002(5) Co(2)–C(38) 1.999(5) 

N(4)–Co(1)–C(29) 177.5(2) N(4)–Co(2)–C(3) 179.4(2) 

 
Table A.2. 1H NMR Shifts (ppm) of Porphyrina Signals 

compound Hβb m-H o-H H3,5 (py) H2,6 (py) NCH3 -NH 

T(N-py-2-CH2(H)NSO2Ar)P (2) 8.80 8.36 8.18    -2.99

T(N-py-4-CH2(H)NSO2Ar)P (3) 8.76 8.36 8.19 7.43 8.60  -3.01

T(N-py-2-CH2(CH3)NSO2Ar)P (4) 8.90 8.47 8.25   2.99 -2.94

T(N-py-4-CH2(CH3)NSO2Ar)P (5) 8.92 8.51 8.30 7.46 8.65 2.93 -2.92

a 5 mM in DMSO-d6. b β -pyrrole. 

 
Table A.3. Selected 1H NMR Shifts (ppm) of [CH3Co(DH)2]4TpyP(4) (9) 

signals observed after addition of 3,5-luta 

Compound Hβb -NH 

[CH3Co(DH)2]4TpyP(4) 8.87, 8.77, 8.76 -3.04, -3.01, -2.97, 
-2.94, -2.92 

a 5 mM in CDCl3. b β -pyrrole 
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Figure A.1. ORTEP drawing of T(N-py-2-CH2(CH3)NSO2Ar)P (4) with 50% ellipsoids. 
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Figure A.2. ORTEP drawing of [CH3Co(DH)2]4Zn(II)TpyP(4) (11) with 50% ellipsoids. 
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Figure A.3. Emission spectra of [CH3Co(DH)2]4T(N-py-4-CH2(CH3)NSO2Ar)P (6) (5.0 μM) in 
CH2Cl2 with increasing amounts (6 : pyridine ratio)  
of 4-CNpy (excitation wavelength 420 nm). 
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Figure A.4. Emission spectra of [CH3Co(DH)2]4TpyP(4) (9) (5.0 μM) in CH2Cl2 with increasing 
amounts (9 : pyridine ratio) of 4-CNpy (excitation wavelength 420 nm). 
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APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

Figure B.1. Plot of SRV vs. R for the addition of metalloporphyrins to solutions of CT DNA (75 

µM, 100 mM NaCl, pH 7.0). 

 
Figure B.2. Effect of CT DNA on the visible spectrum of [Cu(II)T(N-Mepy-4-

CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6, 7.5 µM) at various R values (100 mM NaCl, pH 7.0). 
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Figure B.3. CT DNA-induced CD spectra of [Cu(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4  
(Cu(II)6, 7.5 µM) at various R values (100 mM NaCl, pH 7.0). 

 

 

Figure B.4. Effect of CT DNA on the visible spectrum of [Zn(II)T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 

 



 142

 

Figure B.5. Effect of CT DNA on the visible spectrum of [Zn(II)T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6, 7.5 µM) at various R values (100 mM NaCl, pH 7.0). 

 
 

 

Figure B.6. CT DNA-induced CD spectra of [Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 
(Zn(II)6, 7.5 µM) at various R values (10 mM NaCl, pH 7.0). 
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Figure B.7. CT DNA-induced CD spectra of [Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 
(Zn(II)6, 7.5 µM) at various R values (100 mM NaCl, pH 7.0). 

 

 

Figure B.8. Effect of CT DNA on the visible spectrum of 
[Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7, 7.5 µM) at various R values (100 mM NaCl, 
pH 7.0). 
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Figure B.9. CT DNA-induced CD spectra of [Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7, 
7.5 µM) at various R values (100 mM NaCl, pH 7.0). 

 
 

 

Figure B.10. Effect of NaCl concentration on the visible absorption spectrum of [Cu(II)T(N-
Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6, 7.5 µM in water). 
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Figure B.11. Visible spectrum monitored with time of [Cu(II)T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (Cu(II)6, 7.5 µM) in 0.1 M SDS. The spectrum in water (dark blue) is 
also shown. 

 

 

Figure B.12. Effect of NaCl concentration on the visible absorption spectrum of 
[Cu(II)T(Et3NCH2CH2)2NSO2Ar)P]Cl8 (Cu(II)7, 7.5 µM in water). 
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Table B.1. Visible Spectroscopic Data for [Zn(II)T(N-Mepy-4-CH2(CH3)NSO2Ar)P]Cl4 
(Zn(II)6) in the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λSo
b 10-5 × εSo

c Δλb (%H) λSo
b 10-5 × εSo

c Δλb (%H)

0 423 1.8  423 1.5  

0.25 426 1.7 3 (6) 426 1.7 3 (-13) 

0.05 426 2.0 3 (-11) 426 2.0 3 (-33) 

0.01 426 2.5 3 (-39) 426 2.3 3 (-53) 

0.005 426 2.9 3 (-61) 426 2.8 3 (-87) 
a 7.5 µM porphyrin. b nm. c M-1 cm-1. 

 
 
Table B.2. Effect of NaCl Concentration on the CD Spectrum of [Zn(II)T(N-Mepy-4-
CH2(CH3)NSO2Ar)P]Cl4 (Zn(II)6) in the Presence of CT DNA at pH 7.0a 

10 mM NaCl 100 mM NaCl 

R λ+exc 
b 10-4× [Θ]+exc

c λ-s
b 10-4 ×[Θ]-s

c λ+exc
b 10-5×[Θ]+exc

c λs
b 10-4 ×[Θ]-s

c 

0.25 415 2.2 430 -1.2 415 2.2 430 -0.8 

0.05 420 2.7 434 -0.5 412 0.9   

0.01 420 2.4 437 -0.03 420 1.3   

0.005 420 1.7   421 1.4   
a 7.5 µM porphyrin. b nm. c deg cm2 dmol-1. 
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Table B.3. Visible Spectroscopic Data for [T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4 (1), 
[T(Me3NCH2CH2(H)NSO2Ar)P]Cl4 (4), and [T(N-Mepy-2-CH2(CH3)NSO2Ar)P]Cl4 (5) in the 
Presence of CT DNA at pH 7.0a 

 1 4 5 

R λSo
b (10-5 × εSo)c Δλb (%H) λSo

b  (10-5 × εSo)c Δλb (%H) λSo
b (10-5 × εSo)c Δλb (%H)

0 414 (2.7)  414 (2.8)  414 (2.6)  

0.25 409 (1.2) -5 (56) 408 (1.2) -6 (57) 409 (1.3) -5 (50) 

 422 (1.4) 8 (48) 422 (1.1) 8 (61) 422 (1.5) 8 (42) 

0.005 409 (1.3) -5 (52) 408 (1.1) -6 (61) 409 (1.2) -5 (54) 

 422 (2.5) 8 (7) 422 (2.4) 8 (14) 422 (2.2) 8 (15) 
a 7.5 µM porphyrin, 10 mM NaCl. b nm. c M-1 cm-1. 

 

Table B.4. CD Spectral Data for [T(N-Mepy-2-CH2(H)NSO2Ar)P]Cl4 (1), 

[T(Me3NCH2CH2(H)NSO2Ar)P]Cl4 (4), and [T(N-Mepy-2-CH2(CH3)NSO2Ar)P]Cl4 (5) in the 

Presence of CT DNA at pH 7.0a 

 1 4 5 

R λ+exc 
b 10-4 × [Θ]+exc

c λ+exc 
b 10-4 × [Θ]+exc

c λ+exc 
b 10-4 × [Θ]+exc

c 

0.25 422 1.5 424 1.8 418 2.6 

0.005 422 4.7 418 3.6 418 4.9 
a 7.5 µM porphyrin, 10 mM NaCl. b nm. c deg cm2 dmol-1. 
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