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ABSTRACT 

The objective of this research was to investigate amine-catalyzed thiol-acrylate 

chemistry for various novel applications that could fully utilize the untapped potential of 

this useful and robust chemistry. The use of this chemistry in each application solved a 

problem, improved on a disadvantage of current technologies, and decreased the level 

of complexity in association with required time, cost, and/or preparation conditions. The 

first novel application conceived, applied, and analyzed was in the field of 

microencapsulation.  A novel approach for the preparation of microparticles via a 

dispersion polymerization using the primary amine-catalyzed addition of a trithiol to a 

triacrylate was realized and investigated. Various core materials were 

microencapsulated via this technique and introduced into appropriate systems to 

improve the desired characteristics of the given system. In a specific case, 

microparticles containing a borontrichloride-amine complex were observed to prevent 

the interaction between the Lewis acid initiator and fumed silica, hence improving the 

rheological properties of an epoxy system containing the initiator while maintaining the 

strength of the resulting polymer.  Another application involved a novel approach to 

prepare stable hydrophilic microfluidic devices. Hydrophilic thiol-acrylate materials were 

fabricated with native stable water contact angles of ~60˚ via a two-pot soft lithography 

technique at room temperature, very rapidly, and with little equipment.  The material 

hydrophilicity was modified from 10-85˚ via bulk- or post-modification techniques. These 

materials were prepared via the Michael addition of a secondary amine to a 

multifunctional acrylate, producing a nonvolatile tertiary amine utilized in the catalysis of 

the Michael addition of a multifunctional thiol to the multifunctional acrylate. Because the 



 ix

final chip was self-adhered via a chemical process utilizing the same chemistry, and it 

was naturally hydrophilic, there was no need for expensive equipment or methods to 

“activate” the surface. Also, due to the pre-synthesized monomer/catalyst molecule 

serving as the in situ catalyst, there was no need for post-processing removal of the 

catalyst as it was incorporated into the polymer network. Both novel applications 

facilitated great improvements by exploiting the major advantages of thiol-acrylate 

chemistry. The fabrication, analysis, application, and characterization of these novel 

amine-catalyzed thiol-acrylate microparticles and microfluidic devices are described.  
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CHAPTER 1. INTRODUCTION 

1.1 Thiol-Ene Chemistry 

The first recorded reaction of sulfur with nonactivated carbon-carbon double 

bonds came in 1844 with Charles Goodyear’s patent on the vulcanization of natural 

rubber, poly(cis-isoprene). [1] More than half a century later, in 1905, Theodor Posner 

reported the addition of thiols to olefins and was given credit for discovering thiol-ene 

chemistry.[2] Since that time, a multitude of data has been collected that greatly 

explains the reaction mechanisms, kinetics, thermodynamics, and various uses of thiol-

ene chemistry and its many branches.   

A resurgence of thiol-ene based chemistry has been observed in recent years, 

with the majority of the research directed at the photopolymerization of such thiol-ene 

systems.[3-12] The photoinitiated polymerization of thiol-ene systems has been 

extensively studied, including the kinetics and the mechanical and physical 

properties.[4, 5, 11-14]  There are many advantages to using photoinitiated thiol-ene 

systems.  Many of the desired properties of acrylic photopolymerizations are exhibited 

by thiol-ene photopolymerizations.  For example, like acrylic systems, thiol-ene 

photopolymerized products do not require solvent for processing and posses highly 

desired and useful optical and mechanical properties. [6, 15-17] Thiol-ene 

photopolymerized systems also add some unique and desirable properties that acrylic 

systems lack.  Unlike acrylic photopolymerization processes, thiol-ene systems can be 

rapidly photopolymerized in the presence of oxygen, as peroxy radicals do not inhibit 

their mechanism. [6, 7, 11] The acidic proton of the thiol group effectively eliminates the 

terminating peroxy radicals. (Scheme 1-2) They can also undergo rapid photoinitiation 
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in the presence or absence of a photoinitiator due to the formation of a thiyl free radical. 

[5, 7, 10 , 11] In addition, thiol-ene photopolymerization systems exhibit delayed 

gelation due to the lack of the Trommsdorff effect [18], show very low shrinkage [4], 

illustrate high conversion [5], demonstrate uniform crosslink densities [11], and facilitate 

the free-radical photopolymerization of a wide assortment of thiol and vinyl functional 

groups. [6, 15, 19]  The products of these photopolymerized thiol-ene reactions can also 

be very versatile and robust. Woods et al. [16] reported essentially no weight loss for 

films held at 200˚C in air for 40 minutes illustrating a resistance to water absorption and 

good oxidative stability.  These thiol-ene materials are extremely stable in air due to the 

thioether group formed by the addition of a thiol group across an ene double bond, and 

thioether groups are well known to serve as antioxidant stabilizers. [20-22]  The thermal 

decomposition of these thiol-ene products has been reported to be greater than 250˚C 

at a heating rate of 10˚C per minute.[16] In terms of long-term stability, literature from 

Norland Optical [23] has shown that some photopolymerizable thiol-ene electronic 

adhesives and optical materials experienced very little discoloration or loss in 

performance even when exposed to 50˚C conditions for 3 years, which would 

correspond to greater than 20 years at room temperature.  Norland Optical [23] also 

noted that photopolymerizable thiol-ene networks were relatively stable in the presence 

of a wide range of chemicals, with only aqueous sodium hydroxide exposure resulting in 

film degradation after the 1 hour analysis period. 

It is well known that thiol-ene photopolymerizations proceed via a free radical 

step-growth mechanism as shown in Scheme 1-1. [4, 6, 10, 11, 15, 24] This scheme 

illustrates initiation via the ultraviolet-induced production of a thiyl free radical in the 
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presence or absence of a photoinitiator. The initiation is followed by a two-step 

propagation regime, first involving the addition of a thiyl radical across a carbon-carbon 

double bond and then a subsequent hydrogen extraction from another acidic thiol group 

resulting in the regeneration of a free radical. [10] The mechanism is terminated by 

normal free radical recombination techniques. 

    

Scheme 1-1. General thiol-ene photoinitiated free-radical step growth mechanism. 
 

This thiol-ene reaction could also be considered a chain growth mechanism with 

a continuous chain transfer (propagation 2) step following the free radical addition 

(propagation 1).[4] The chain transfer step has been found to be the rate-determining 

step.  In this aspect, the thiol-ene mechanism operates in a chain growth manner with 
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first order kinetics governing the reaction, only depending on the thiol concentration [10] 

This differs from normal step growth mechanisms which are normally governed by 

second order kinetics with respect to both reactant concentrations such as with a simple 

condensation reaction.  In terms of linear, branched, and network polymer formation, 

the thiol-ene photopolymerization systems proceed in a step growth fashion.  

Monofunctional monomers will not produce a polymer but only adducts, difunctional 

monomers lead to the formation of linear polymers, and the formation of polymer 

networks requires the use of a system with an average functionality greater than two. 

[10]  

 

Scheme 1-2. Oxygen inhibition in normal free radical acrylic polymerization (a) and the 
lack of oxygen inhibition in free radical thiol-ene polymerization.  
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There have been many useful applications of photoinitiated thiol-ene chemistry in 

various areas including coatings, dental, optical, and photolithographic applications. 

Thiol-ene photopolymerizable coating applications extend back to the work of Morgan, 

Ketley, and coworkers [15, 17, 25] in the mid 1970’s at W. R. Grace that lead to the 

fabrication of relief printing plates and conformal coatings on electronics.  This work 

then lead a collaborator, Armstrong, to develop wear layers for floor tiles based on thiol-

ene photopolymerization. Since the mid 1970s there have been many attempts at 

commercializing thiol-ene photoinitiated systems, notably Norland Products has 

produced and marketed thiol-ene based photopolymerizable electronic and optical 

adhesives for many years. [23] In more recent thiol-ene photoinitiated applications, the 

focus has shifted toward click-type reactions. [5] Easy surface modifications can be 

accomplished via thiol-ene photochemistry both in a grafting-from approach [26-28] and 

a grafting-to approach [29, 30].  Due to its many useful properties and lack of- or 

disproved disadvantages, photopolymerized thiol-ene systems have been and will 

continue to be used in critical, high performance applications.   

1.2 Thiol-Acrylate Photoinitiated Chemistry  

Extremely useful properties can be realized when acrylates are incorporated into 

a photoinitiated thiol-ene copolymer as the ene portion, however some mechanistic 

complexities are added as are shown in Scheme 1-3. The thiol-acrylate 

photopolymerization mechanism involves a dual process comprised of the thiol 

copolymerizing with the acrylate upon the hydrogen abstraction from the thiol followed 

by the addition of the thiyl across the double bond of the acrylate and the 

homopolymerization of the acrylate.[17] This homopolymerization occurs only when 
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electron deficient enes such as acrylates are used, as normal electron-rich enes cannot 

homopolymerize.  

 

Scheme 1-3. Photoinitiated free radical polymerization of a thiol-acrylate system 
illustrating the dual process including a) thiol-acrylate copolymerization and b) acrylate 
homopolymerization.  
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allows for the manipulation of both the physical and mechanical properties of a 

photopolymerized acrylate system by the addition of multifunctional thiols.[4] While 

preparing thiol-methacrylate dendrimer networks, Nilsson et al. demonstrated the use of 
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excess thiol to obtain 100% conversion of methacrylate groups with residual thiol 

content available for further surface modification.  This allowed for the production of 

highly functional dendrimer films with adjustable physical properties.[31]  A collaborative 

study done by Koo et al. reported that radical thiol-ene chemistry is not a straightforward 

method for polymer-polymer conjugation.  The two groups concluded that head-to-head 

coupling interrupted the propagation cycle of the radical thiol-ene process. [32]   

There is an inherent shelf life issue associated with all thiol-acrylate systems.  

Base impurities can cause the Michael Addition of thiols to acrylic carbon-carbon double 

bonds (discussed later). Spontaneous free radical impurities can cause the premature 

polymerization of thiol-acrylate systems.  As discussed previously, the presence of 

hydroperoxides (peroxy radicals) can cause a hydrogen abstraction and subsequent 

initiation of thiol-acrylate polymerization. The shelf-life stability of an acrylate thiol 

mixture is inversely proportional to the average functionality.  Therefore multifunctional 

thiol-acrylate systems are much more likely to undergo spontaneous premature 

polymerization. It has been reported that as little as 5 pph trithiol can reduce the shelf 

life of an acrylate monomer system from more than 30 days to about 12 hours. [4, 33]  

1.3 Amine-Catalyzed Thiol-Acrylate Chemistry 

A thiol-ene system can undergo an ionic Michael addition polymerization 

mechanism utilizing a base catalyst, however this type of reaction is limited to electron-

deficient unsaturated enes, such as acrylates (Scheme 1-4). [3, 5, 34, 35] Although 

thiols are nucleophilic (generally more nucleophilic than amines), bases are used to 

deprotonate them because of their relatively high acidity.  The thiolate anion is the 

active species formed by the thiol deprotonation that subsequently adds to an activated 
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olefin such as an acrylate. [36] The rate of the thiol Michael addition increases with pH 

due to an increase in the thiolate anion concentration [37] The rate is also dependent on 

the pKa of the thiol with a more acidic thiol being more favorable. These acid-base 

reactions are thermodynamically controlled reactions that can occur spontaneously and 

can proceed to high conversation with an appropriate choice of thiol and catalyst. [38] 

Hu et al. used the predictable rise in pH facilitated by the formaldehyde-sulfite clock 

reaction to trigger the time-lapse Michael addition of a trithiol to a triacrylate. [39] 

 

 
Scheme 1-4. Base catalyzed thiol-acrylate reaction scheme.   
 

Thiol-acrylate systems can be catalyzed using tertiary amines, which function as 

base catalysts (Scheme 1-5). The tertiary amine functions to deprotonate the thiol, 

forming thiolate anions that can add across acrylate double bonds to form the thiol-ene 

bond.  However, these tertiary amine catalysts are relatively inefficient in the formation 

of such thiolate anions. [3, 40] 
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Scheme 1-5. Tertiary amine catalyzed thiol-acrylate reaction scheme.   
 

Much more effective and efficient catalysts for the reaction between thiols and 

electron-deficient enes include primary amines[3, 40], secondary amines[40-46], or 

nucleophilic alkyl phosphine catalysts.[43, 45] Lee et al. used a secondary amine to 
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monomers for photopolymerization kinetic studies.[41] Matsushima et al. produced 
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producing a 1:1 reaction of thiol and acrylate to >95% conversion in less than 3 minutes 

in the presence of <2% primary or secondary amine.[3]  Akzo Nobel reported in a series 

of patents that a primary amine catalyzed the Michael addition of a thiol faster than did a 

tertiary amine.[48] While attaching acrylate groups to a thiol-containing surface, Khire et 
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ethylenediamine (almost instantaneously) compared to triethylamine (several hours) or 

diethylamine (a few minutes).[40] Chan et al. has recently examined the major 

properties and kinetics of the primary amine-catalyzed Michael reaction with various 

multifunctional thiols and acrylates.[3]  

 

Scheme 1-6. General primary amine-initiated thiol-acrylate anionic mechanism.   
 

The primary amine initiated thiol-acrylate anionic chain reaction is shown in 

Scheme 1-6. The reaction proceeds by the addition of the catalyst to the electron-

deficient ene and the successive abstraction of the thiol proton to form a thiolate anion 

allowing for the Michael addition across the acrylate double bond. Unlike the free-radical 

thiol-ene mechanism, once initiated, termination is not facilitated by the combination of 

two growing chains.  Unlike tertiary amine base catalysts, the use of these nucleophilic 

catalysts produces systems that reach high conversion at room temperature in minutes 

or even seconds.[5] This fast reaction time has been reported from multiple sources[3, 

5, 40, 48, 49] and makes this process extremely useful for many applications that have 

not been previously explored. 
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CHAPTER 2. CORE-CONTAINING THIOL-ACRYLATE MICROPARTICLES* 

2.1 Chapter Summary 

This chapter encompasses a novel approach to prepare microparticles via a dispersion 

polymerization using the primary amine-catalyzed addition of a trithiol to a triacrylate.  

Unlike most microcapsules that have a thin shell containing a liquid core, these 

microparticles were composed of a solid matrix enveloping pockets of core material.  

This method of microencapsulation has multiple advantages over other methods of 

microencapsulation using various materials, as these microparticles were prepared with 

a minimum number of components in less than one hour at room temperature and at 

ambient pressure.  The chemistry used to prepare these microparticles is very versatile 

in that a multitude of different monomers can be incorporated to prepare microparticles 

with varying properties.  Also, the reaction used to prepare these microparticles can be 

initiated using various sources, which allows for variations if necessary. Microparticles 

loaded with various core materials were produced and applied in various systems to 

improve the desired characteristics of the given system.  It was determined that this 

type of microparticles could be used as either a stimulated release or controlled release 

mechanism depending on core material.  

* Portions of this chapter originally appeared in: Bounds, C. O., R. Goetter, et al.   

   (2012). "Preparation and Application of Microparticles Prepared Via the Primary  

   Amine-catalyzed Michael Addition of a Trithiol to a Triacrylate." J. Polym. Sci. Part A:   

   Polym. Chem. 50: 409–422. Reprinted via a limited license agreement. 
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The preparation and application of microparticles containing one initiator in 

particular, a boron trichloride-amine complex, was extensively studied. These 

microparticles were observed to prevent the interaction between the Lewis acid initiator 

and fumed silica by separating the two components, hence improving the rheological 

properties of an epoxy system containing the initiator while maintaining the strength of 

the resulting polymer.  Benzoyl peroxide, Dimethyl-para-toluidine, a boron trifluoride-

amine complex, and carbon nanotubes were also microencapsulated using this primary 

amine-catalyzed thiol-acrylate method and analyzed in various capacities.   

2.2 Introduction/Background 

Microencapsulation is a process in which a substance is enclosed in a material 

that affects its transfer to the surroundings.[50, 51] Microencapsulation is used in many 

applications such as pesticides,[52, 53] medications[54] and scratch-n-sniff 

materials.[55, 56] Some of the other common applications in which it is used include 

cosmetics[57], as food preservatives[58], and in carbonless copy paper, where ink 

contained in microcapsules is released when pressure is applied.[59] 

Microencapsulation is often used to achieve the controlled release of a 

substance.  This controlled release can be brought about in several different ways, 

depending on the type of microcapsules used and the application.  For example, many 

prescription and non-prescription medications that are taken orally are described as 

“time-released”.  The medication does not release from the carrier until a certain time, 

usually when the carrier reaches the stomach.[54] In other cases, it is desirable to keep 

a constant concentration of drug in the system, which can be achieved with a 
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biodegradable encapsulation material or by diffusion of the drug through an interfacial 

barrier.[60] 

An example of a different controlled release mechanism is that of self-healing 

polymer composites, in which microcapsules are ruptured mechanically when the 

material cracks.[61-63]   Dicyclopentadiene is normally the core material that is released 

when a crack reaches the capsules, and it polymerizes upon contact with Grubbs 

catalyst in the matrix, repairing the crack. 

There are a multitude of encapsulation methods that employ different polymer 

shell materials such as complex coacervation using gum arabic and gelatin[59], 

interfacial polymerization using polyurea[64-69], polyurethane[70], polyurea-

polyurethane dual shells[71], and in situ polymerization producing poly (urea 

formaldehyde).[72] Porous methacrylate microparticles have been produced via the 

copolymerization of 2,3-epoxypropoxybenene and trimethylolpropane trimethacrylate. 

[73] Berkel et al. prepared composite polymer-metal nanoparticles via the miniemulsion 

polymerization of AIBN-initiated divinylbenzene.  The surfaces of the resulting 

nanoparticles were post modified via thiol-ene chemistry facilitated by excess surface 

divinylbenzene.[74] Highly bioactive microparticles were produced by Gu et al. via 

AIBN-initiated free radical polymerization of a diacrylate followed by thiol-ene surface 

modification.[75] Costoyas et al. prepared core-shell hybrid silica/polystyrene composite 

nanoparticles via potassium persulfate initiated miniemulsion polymerization of styrene. 

[76] Each of these methods have disadvantages, including the need for a multitude of 

components, the necessity for elevated temperatures, non-ambient conditions, and 

lengthy reaction times.  We sought to produce the same quality microparticles with 
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minimum complexities using a primary amine-catalyzed Michael addition of a thiol to an 

electron-deficient ene.  The procedure used in this research only requires a small 

number of components, can be done in less than 1 hour and proceeds at room 

temperature and ambient pressure.  

2.3 Primary-Amine Catalyzed Thiol Acrylate Reaction Scheme  

 

Scheme 2-1. Reaction scheme for the primary amine-catalyzed Michael addition of 
trimethylolpropane tris (3-mercaptopropionate) to trimethylolpropane triacrylate.  This 
reaction is used to produce the microparticle matrix material. 
 

The primary-amine catalyzed thiol acrylate reaction is illustrated in Scheme 2-1.  

The reaction proceeded via a pre-initiation step involving the nucleophilic addition of the 

primary octylamine catalyst to the electron-deficient ene.  The resulting carbanion 
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abstracted an acidic thiol proton to form a thiolate anion, resulting in the initiation of an 

anionic step-growth polymerization mechanism.  Two separate propagation steps then 

followed. The first propagation step involved the Michael Addition of the deprotonated 

thiyl anion to the electron-deficient ene group.  Next, a hydrogen transfer occurred 

between another thiol and the newly formed carbon anion.  This second propagation 

step resulted in a chain transfer and another deprotonated thiol that was activated for 

another Michael Addition.  This dual propagation mechanism is why this reaction is 

considered to be a step growth polymerization, however it is essentially a chain growth 

mechanism with a continuously sequential chain transfer step (propagation 2). 

2.4 Generic Procedure 

Scheme 2-2 illustrates a generic procedure used in the formation of the thiol-

acrylate microparticles. The procedure was a modified interfacial polymerization method 

where a core organic solution was dispersed in an immiscible aqueous solution and 

polymerized via a molecule containing a hydrophilic amino head and a hydrophobic 

hydrocarbon tail.  

The general procedure consisted of the dispersion of a solution containing a core 

material dissolved in a stoichiometrically equivalent solution of trimethylolpropane 

triacrylate and trimethylolpropane tris(3-mercaptopropionate) in a 1.28% poly(vinyl 

alcohol) aqueous solution. This core solution was dispersed using various amounts and 

sources of energy depending on the size of microparticles (or nanoparticles) desired.  

Once the droplet size was adequate, ~3% by volume of octyl amine was added to the 

dispersion to catalyze the thiol-acrylate reaction.  The microparticles were harvested via 

vacuum filtration and dried overnight under ambient conditions.  Depending on the 
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contained core material, various solvents were used to wash the excess core material 

from the exterior of the microparticles prior to their testing and incorporation into a given 

system. 

 

Scheme 2-2. Basic process for encapsulating a core material in a thiol-acrylate matrix.  
Small deviations from this process are needed in a few cases. 
resins. 
 
2.4.1 Materials 

 All materials were used as received without further purification.  Borontrichloride-

amine (BCl3-amine) was obtained from Huntsman under the name Accelerator DY9577.  

Borontrifluoride-amine (BF3-amine) was obtained from Leepoxy Plastics, Inc under the 

name Leepoxy leecure B-612.  Tert-butyl peroxybenzoate was obtained from Ashland 

with 98% reported purity.  Trimethylolpropane triacrylate (TMTPA) technical grade, 

trimethylolpropane tris(3-mercaptopropionate) (TMPTMP), octylamine 99%, poly(vinyl 

alcohol) (PVA) 87-89% hydrolyzed, N,N-Dimethyl-p-toluidine 99%, Trimethylolpropane 

triglycidyl ether (TMPTGE), and Bisphenol A diglycidyl ether (BADGE) (epoxy 
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equivalent weight of 172-176) were obtained from Sigma-Aldrich.  Fumed silica ≥99.8% 

was obtained from US composites under the name of Aerosil-Cabosil or Aerosil® 200 

with a specific surface area  (BET) of 200±25 m2/g and an average primary particle size 

of 12 nm.  Structures for notable chemicals are illustrated in Figure 2-1. 

 

 
 

Figure 2-1:  Notable structures of shell forming monomers, core materials, and epoxies 
  
2.4.2 Equipment  

The agitation reactor used for dispersing the mobile phase consisted of an IKA 

RW 20 DS1 digital overhead stirrer equipped with a 3-blade low shear propeller with a 
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diameter of 54 cm. The sonicator used was a Branson Sonifier 450 with a maximum 

output of 400 Watts.  All rheological measurements were obtained from a TA AR1000 

equipped with parallel plates.  All strength data were obtained using a 3-point bending 

method with an INSTRON 5582 and Bluehill software.  Optical microscopy was 

performed using a phase contrast Nikon ECLIPSE 50i microscope equipped with a 

Nikon Digital Sight DS-Fi1 camera.  The optical microscopy measurements were made 

using calibrated NIS-Elements BR 3.0 software. The differential scanning calorimetry 

data were obtained using a TA Instruments 2920 modulated DSC.  

2.5 Size Analysis of Control/Blank Microparticles   

 Microparticles containing no core material were prepared at different stir rates 

to determine the ease of manipulation of the microparticle size.  The relative sizes of the 

microparticles were determined via optical microscopy and size analysis software.  The 

particle size distributions at different stir rates are illustrated in Figure 2-2, 2-3, and 2-4.  

Figure 2-5 and Table 2-1 illustrate the collected average particle size at different stir 

rates using the data from Figures 2-2, 2-3, and 2-4. 

 Figure 2-2 illustrates the particle size distribution data for control microparticles 

containing no core material stirred at 500 RPM.  These data indicate that the average 

particle size was 267.8±109.9 µm when agitated at 500 RPM for 1 hour.  The maximum 

and minimum microparticle diameters were measured at 583.4 µm and 34.3 µm, 

respectively at this low stir rate.  These data demonstrate a nearly symmetrical bell-type 

distribution with 83% of the microparticles measuring between 100-400 µm. 
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Figure 2-2:  Particle size distribution data for solid microparticles (no core component) 
at 500 RPM. All particle size data were collected via optical microscopy and particle size 
analysis software. 
 

 

Figure 2-3:  Particle size distribution data for solid microparticles (no core component) 
at 1000 RPM. All particle size data were collected via optical microscopy and particle 
size analysis software.  
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Figure 2-3 shows the particle size distribution data for control microparticles 

containing no core material agitated at 1000 RPM.  These data indicate that the 

average particle size was 125.1±62.8 µm at a stir rate of 1000 RPM.  The maximum 

microparticle size was found to be 369.8 µm, while the minimum microparticle diameter 

was measured at 122.4 µm at this medium stir rate.  These data illustrated a less 

symmetrical distribution, semi-weighted to the smaller particle size, with 76.4% of the 

microparticle diameters measured in the range of 50-200 µm.  

 

Figure 2-4:  Particle size distribution data for solid microparticles (no core component) 
at 1500 RPM.  All particle size data were collected via optical microscopy and particle 
size analysis software.  
 

 Figure 2-4 illustrates the particle size distribution data for control 

microparticles containing no core material stirred at 1500 RPM.  These data indicate a 

much smaller average particle size of 54.5±6.0 µm when agitated at 1500 RPM for 1 

hour.  The maximum and minimum microparticle diameters were measured at 171.3 µm 

and 6.0 µm, respectively at this relatively high stir rate. These data demonstrated an 
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unsymmetrical distribution, weighted heavily to the smaller particle size, with 88.4% of 

the microparticles being 20-80 µm in diameter. 

 Figure 2-5 and Table 2-1 condense all of the data from the particle size 

distribution analysis for the control microparticles containing no core material.  As can 

be observed in Figure 2-5 and Table 2-1, as the stir rate was increased from 500 RPM 

to 1000 RPM to 1500 RPM, the mean particle diameter decreased.  Also, as more 

energy was applied, the distribution became narrower, as was proven by the decrease 

in the values of standard deviation.  Both the maximum and the minimum measured 

microparticle diameters were also observed to decrease as a function of increasing stir 

rate. Because these particles in were prepared with no core component, the exact size 

values could not necessarily be used to forecast the average particle diameter of any 

given system. However, the trend could be applied to any system containing any core 

material.    

 
Figure 2-5:  Particle size distribution for solid microparticles (no core component) as a 
function of stir rate. All particle size data were collected via optical microscopy and 
particle size analysis software.  
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Table 2-1. Control (empty) thiol-acrylate microparticles statistics as a function of stir 
rate. 

RPM Mean  
Diameter (um) 

Standard 
Deviation (um) 

Maximum 
Diameter (um) 

Minimum 
Diameter (um) 

500 267.8 109.9 583.4 34.3 
1000 125.1 62.8 369.8 12.4 
1500 54.5 26.8 171.3 6.0 

Figure 2-6 illustrates the microparticles via SEM microscopy.  This figure 

provides some visual conformation for the difference in the size of the microparticles at 

different stir rates.  The images shown are both at the same magnification and it is 

obvious that the microparticles in the left image (stirred at 500 RPM) are visibly much 

larger than the microparticles on the right (stirred at 1000 RPM). 

Figure 2-6:  Scanning electron microscopy images showing visual difference in control 
microparticles containing no core component agitated at 500 RPM (left) and 1000 RPM 
(right). These images were taken at X50 magnification.  

2.6 Dimethyl-para-Toluidine Microparticles 

2.6.1 Introduction and Rationale for Microencapsulation 

Dimethyl-para-toluidine (DMpT) is a tertiary aromatic amine that accelerates the 

decomposition of organic peroxides such as benzoyl peroxide (BPO) at room 

temperature.[77, 78] Tertiary amines like dimethylaniline (DMA) (differing in structure 
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from DMpT only by the absence of a para methyl group) have been used in various 

accounts in the presence of benzoyl peroxide as redox initiating systems to polymerize 

vinyl monomers such as vinyl chloride [79] styrene [80, 81], and methyl methacrylate 

[80, 82]. Imoto and Takemoto reported the solution polymerization of acrylonitrile via a 

substituted benzoyl peroxide-dimethylaniline redox initiator system. [83]  O’Driscoll and 

McArdle reported the bulk polymerization of styrene at various temperatures via a 

benzoyl peroxide-dimethylaniline redox initiation system [84, 85] and the bulk 

polymerization of styrene using substituted diethylaniline and benzoyl peroxide as redox 

initiators. [86] The decomposition of acyl peroxides (like BPO) is much more rapid in the 

presence of amines as opposed to thermal decomposition. [87] Walling and Indictor 

reported an apparent rate constant of 2.3 x 10-4 sec-1 for a system containing benzoyl 

peroxide and dimethylaniline in styrene or chloroform at 0˚C. [80] The high reactivity of 

these tertiary amine-acyl peroxide systems are very useful for the room temperature 

curing of vinyl monomers and widely utilized unsaturated polyester resins.  Although 

these monomer and prepolymer systems can be cured in the absence of tertiary amine 

accelerators such as DMpT via thermal decomposition, it is desirable from an 

economical viewpoint to cure these systems at room temperature.  However, there lies 

an inherent tradeoff between room temperature curing and pot life. In order to achieve 

room temperature curing, the pot life of the system much be sacrificed due to an 

increase in reactivity. [88] Here, it was hypothesized that the tertiary amine accelerator 

(DMpT) could be separated from the acyl peroxide initiator (BPO) via 

microencapsulation of the DMpT in a thiol-acrylate matrix.  If separated by this matrix,  
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the pot life of a system could be greatly increased by the production of a highly stable 

latent accelerator system for vinyl monomers and unsaturated polyester resins.   

2.6.2 Experimental Procedure 

 Microparticles containing dimethy-para-toluidine (DMpT) as the core 

component were prepared with a matrix comprised of trimethylolpropane triacrylate 

(TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by 

octylamine.  A solution of stoichiometrically equivalent TMPTMP and TMPTA was 

prepared containing 15.94 grams and 11.85 grams, respectively.  The core DMpT (20 g) 

was dissolved in the trithiol/triacrylate solution.  This solution was then emulsified in 500 

mL of a 1.28% poly(vinyl alcohol) aqueous solution with a stir motor equipped with a 3-

bladed propeller.  The mixture was agitated for 30 minutes at 2100 RPM.  Once the 

desired droplet size range was achieved, 3% by volume (~0.9 mL) of octylamine was 

added to the mixture to catalyze the polymerization, and the stir rate was decreased to 

1700 RPM.  The mixture was allowed to react for 1 hour at room temperature and 

ambient temperature with continuous mixing at 1700 RPM.  The microparticles were 

recovered by vacuum filtration and dried overnight.  Any unencapsulated material was 

washed from the exterior of the shells using cyclohexane or hexane before the 

microparticles were used. 

2.6.3 Scanning Electron Microscopy Analysis 

 Dimethyl-para-toluidine (DMpT) was microencapsulated in a thiol-acrylate 

matrix and SEM images were obtained (figures 2-7a and b).  From these SEM images, 

it can be observed that most of these microparticles are symmetrical spheres with 
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diameters of less than 50 microns. Also, a significant amount of unencapsulated core

DMpT could be observed on the exterior of the microparticles. 

Figure 2-7:  SEM images of microparticles containing dimethyl-para-toluidine (DMpT).  
a) X500 magnification b) X1000 magnification.   

 
2.6.4 Particle Size Analysis 

Particle size analysis was performed on the resulting DMpT-containing thiol-

acrylate microparticles. The microparticle sizes were determined via optical microscopy 

and size analysis software.  The microparticle size distribution data are illustrated in 

Figure 2-8. A 2005 microparticle population was used to collect these data. These 

microparticles were agitated initially at 2100 RPM for 30 minutes and then 1700 RPM 

after the octyl amine was added to the reaction vessel. These data illustrate that the 

average particle size was 28.3±11.8µm. Figure 2-8 also shows a relatively narrow 

distribution where the smallest measured microparticle was 2.7µm and the largest 

measured microparticle was 75.5µm.  These data agreed well with the SEM images as 

96.7% of the microparticles were found to be <50 microns using the microparticle size 

distribution analysis. 
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Figure 2-8:  Particle size distribution data for DMpT-containing thiol-acrylate 
microparticles stirred initially at 2100 RPM and then1700 RPM after catalyst addition.  
All particle size data were collected via optical microscopy and particle size analysis 
software. 
 
2.6.5 Conclusions and Discussion 

 As was shown by the SEM analysis (Figure 2-7), there was a large amount of 

unencapsulated DMpT surrounding the exterior of the microparticles.  This 

unencapsulated core material caused the particles to agglomerate and be inefficient as 

a mechanism for separating the core material from its surroundings.  This excess core 

material could be washed away via a cyclohexane-washing step; however, the DMpT 

would eventually diffuse through the matrix material and again be present on the 

surface of the microparticles. Because of this leaching problem this was found to be an 

inefficient method for microencapsulating this particular tertiary aromatic amine.  

However, this result did provide some potential new pathways for the use of thiol-

acrylate microparticles as control release vessels with the ability to release core 
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material slowly and constantly over time as would be necessary to maintain a constant 

level of core material in the surroundings.   

2.7 Benzoyl Peroxide Microencapsulation 

2.7.1 Introduction and Rationale for Microencapsulation 

 Benzoyl peroxide (BPO) is an organic acyl peroxide with a multitude of uses.   It 

is widely used as thermal initiator for free-radical polymerizations. [89-91] Benzoyl 

peroxide is also commonly used in cosmetic applications such as an acne treatment 

because of its antimicrobial properties that can destroy surface and ductal bacterial 

organisms and yeasts. [92-94] Due both to its many uses and unstable nature [94, 95], 

the microencapsulation of benzoyl peroxide provides enormous benefits.  Benzoyl 

peroxide has been successfully microencapsulated using various techniques.  

Jelvehgari et al. produced and analyzed benzoyl peroxide microparticles via an 

emulsion solvent diffusion method. [96, 97] Fuchigami et al. microencapsulated benzoyl 

peroxide (BPO) with polyethyl methacrylate (PEMA) via a drying-in-liquid method with 

an efficiency of over 90%. [98] Wilson et al. prepared benzoyl peroxide microcapsules 

for a self-healing bone cement application via a urea-formaldehyde technique. [99] 

Although these references illustrate the availability of valid techniques for the 

microencapsulation of benzoyl peroxide, many of them still suffer from potentially 

solvable disadvantages.  In order to address these disadvantages, benzoyl peroxide 

microparticles were prepared using this thiol-acrylate technique via a relatively 

inexpensive dispersion technique in less than one hour at room temperature and under 

ambient conditions.     
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2.7.2 Neat Microencapsulation 

2.7.2a Experimental Procedure 

Microparticles containing benzoyl peroxide (BPO) as the core component were 

prepared with a matrix comprised of trimethylolpropane triacrylate (TMPTA) and 

trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by octyl amine.  A 

solution of stoichiometrically equivalent TMPTMP and TMPTA was prepared containing 

11.98 grams and 9.33 grams, respectively.  The BPO (5 g) was dissolved in the 

trithiol/triacrylate solution.  This solution was then emulsified in 250 mL of a 1.28% 

poly(vinyl alcohol) aqueous solution with a stir motor equipped with a 3-bladed 

propeller.  The mixture was agitated for 30 minutes at 2000 RPM.  Once the desired 

droplet size range was achieved (determined via optical microscopy), ~3mL of 

octylamine was added to the mixture to catalyze the polymerization.  The mixture was 

allowed to react for 1 hour at room temperature and ambient pressure with continuous 

mixing at 1700 RPM.  The microparticles were recovered by vacuum filtration and dried. 

2.7.2b Scanning electron microscopy 

 
 

Figure 2-9:  Scanning electron microscopy of neat BPO microparticles at X60 
magnification (left) and X160 magnification (right).  
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 Benzoyl peroxide was microencapsulated in a thiol-acrylate matrix and SEM 

images were obtained (Figure 2-9).  The microparticles produced using this neat 

technique were observed to have a caved doughnut appearance as shown by the SEM 

images. This morphology could not completely be explained, however it was likely 

linked to the phase separation and precipitation of the BPO from the thiol acrylate matrix 

upon polymerization of the shell material.  Nonetheless, this artifact generated the 

illusion if not the fact that these microparticles were empty and contained no core 

material, perhaps caused by some interaction between the thiol-acrylate 

copolymerization mechanism and the free radical initiator, resulting in the incorporation 

of the core material into the thiol-acrylate network.   

2.7.2c Particle Size Distribution 

 

Figure 2-10: Particle size distribution data for neat benzoyl peroxide microparticles 
agitated at 2000 RPM. 
 

Particle size analysis was performed on the resulting neat BPO thiol-acrylate 

microparticles via optical microscopy and size analysis software.  The microparticle size 
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distribution data are illustrated in Figure 2-10.  A 1011 microparticle population was 

used to collect these data. These microparticles were agitated at 2000 RPM throughout 

the entire microencapsulation process. These data illustrate that the average particle 

size was 85.83±52.08µm. A relatively broad distribution was observed where the 

smallest measured microparticle was 13.5 µm and the largest measured microparticle 

was 349 µm. 

2.7.2d Core Loading Percent 

It was vital to know the percentage of core material contained within the 

microparticle matrix, as this would determine its usefulness as a potential initiator or 

cosmetic antimicrobial. Due to the low solubility of benzoyl peroxide in the thiol-acrylate 

monomers, a large core loading percent was not expected using this neat technique. 

The following formula was used to estimate the core loading percentage.  

 

In this formula, the Core, Monomer 1, and Monomer 2 values corresponded to 

the amount of BPO, TMPTMP, and TMPTA in grams, respectively.  Using this equation, 

the theoretical core loading percent for the neat BPO microparticles was calculated to 

be 19%.  Because the above formula technically provides only the theoretical core 

loading if all of the components in the system were completely immiscible in water, 

thermal gravitational analysis was performed on microparticles containing BPO (Figure 

2-11) to validate this method of estimating the core loading percent. 

From the TGA data in Figure 2-11a, the core loading percent was found to be 

~3.5% when the material was heated at a rate of 10˚C/min.  The decomposition of the 

benzoyl peroxide began at ~150˚C and the weight decreased by 3.5% after which it 

Core Loading % =  
Core

Core +  Monomer 1 +  Monomer 2
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remained constant until ~325˚C at which point the thiol-acrylate matrix began to 

degrade.  To determine the weight loss under isothermal conditions, another TGA 

analysis was performed where the neat microparticles were heated to 150˚C and held 

for >1hr (Figure 2-11b). 

 

Figure 2-11: Thermal gravimetric analysis of neat BPO microparticles a) ramped at 10 
˚C/min to 600˚C b) ramp and hold at 150˚C for 1 hr. 
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Figure 2-11b illustrates the weight loss information in more detail.  During the 

ramp to 150˚C, 1.8% of the weight was loss which could be attributed not only to the 

loss of BPO but also to the loss of water at ~100˚C.  After reaching 150˚C, the 

remaining weight loss of 1.3% was observed after about 45 minutes.  From this TGA 

data, it was determined that the theoretical formula for determining the core loading 

percent of these neat BPO microparticles was not an accurate method for estimating 

the value.  This indicated that there was a loss in the core BPO at some time during the 

microparticle synthesis process.  This was likely due to the consumption of the BPO in 

the form of a free radical initiator for the polymerization of the acrylate monomer during 

the thiol-acrylate matrix forming mechanism.  

2.7.3 Solvent Microencapsulation 

2.7.3a BPO in Toluene 

Experimental Procedure 

 Microparticles containing benzoyl peroxide (BPO) dissolved in toluene as the 

core component were prepared with a matrix comprised of trimethylolpropane triacrylate 

(TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by 

octyl amine.  A solution of stoichiometrically equivalent TMPTMP and TMPTA was 

prepared containing 11.98 grams and 9.33 grams, respectively.  The core BPO (5 g) 

was dissolved in 40 grams of toluene.  The trithiol/triacrylate solution was then dissolved 

in the BPO/toluene solution. This core/matrix solution was then emulsified in 250 mL of 

a 1.28% poly(vinyl alcohol) aqueous solution with a stir motor equipped with a 3-bladed 

propeller.  The mixture was agitated for 30 minutes at 1700 RPM.  Once the desired 

droplet size range was achieved, ~3mL of octylamine was added to the mixture to 
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catalyze the polymerization.  The mixture was allowed to react for 1 hour at room 

temperature and ambient pressure with continuous mixing at 1700 RPM.  The 

microparticles were recovered by vacuum filtration and dried. 

Scanning Electron Microscopy 

 

Figure 2-12:  Scanning electron microscopy of microparticles containing BPO dissolved 
in toluene shown at X250 magnification (left) and X1000 magnification (right).  
 

Benzoyl peroxide was dissolved in toluene, microencapsulated in a thiol-acrylate 

matrix, and SEM images were obtained (Figure 2-12).  The SEM images illustrate that 

the microparticles formed were symmetrical in shape forming nearly flawless spheres as 

opposed to the doughnut, concave motif that was observed with the neat BPO 

microparticles. The microparticles produced using this toluene technique were very 

small relative to the microparticles prepared in a neat fashion as shown by the SEM 

images. The image on the left illustrates the microparticles at X250 with a 100µm scale 

bar, which does not give a good representation of the size of the particles and visual 

particle size distribution.  These aspects were much more obvious at higher 

magnification of X1000 (right image). The majority of these microparticles were found to 



 

34 

be <10 microns and a they possessed a relatively narrow visual particle size distribution 

as can be seen in Figure 2-12.  

Particle Size Distribution 

Optical microscopy and size analysis software was used to determine the particle 

size distribution of the resulting thiol-acrylate microparticles containing benzoyl peroxide 

dissolved in toluene.  The microparticle size distribution data are illustrated in Figure 2-

13. A 2015 microparticle population was used to collect these data. These 

microparticles were agitated at 1700 RPM throughout the entire microencapsulation 

process. These data illustrate that the average particle size was 5.5±2.0µm. A relatively 

narrow distribution was observed where the smallest measured microparticle was 

1.6µm and the largest measured microparticle was 16.3µm. 

 

Figure 2-13: Particle size distribution data for microparticles containing benzoyl 
dissolved in toluene and agitated at 1700 RPM. 
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Core Loading Percentage 

As stated earlier, it was vital to know the percentage of core material contained 

within the microparticle matrix.  Again, due to low solubility, a large core loading percent 

was not expected using this solvent technique.  The theoretical core loading 

percentages were calculated, and it was found that theoretically the entire system, 

including the solvent, was composed of 7.5% BPO. There was a calculated 68% by 

weight of solvent + BPO relative to the entire system.  If it was assumed that all of the 

solvent was lost during the microencapsulation process, then the calculated BPO weight 

percent relative only to the polymer matrix was 19%. Again to determine the real or 

experimental core loading percent, TGA analysis was performed. (Figure 2-14) 

From the TGA data in Figure 2-14a, the core loading percent was found to be 

18% when the material was heated at a rate of 10˚C/min showing some similarities 

between the theoretical core loading and the experimental core loading.  The 

decomposition of the benzoyl peroxide and potentially the loss of solvent was evident 

near ~100˚C at the onset of weight loss. At ~320˚C the thiol-acrylate matrix began to 

degrade.  To determine the weight loss under isothermal conditions, another TGA 

analysis was performed where the microparticles were heated to 150˚C and held for >1 

hr (Figure 2-14b).  

Figure 2-14b illustrates the weight loss information in more detail.  During the 

ramp to 150˚C, 7.5% of the weight was loss, which could be attributed not only to the 

loss of BPO but also to the loss of toluene at 110˚C.  After reaching 150˚C, a weight 

loss of 5.2% was observed.  The slow loss in weight after the immediate loss during 

ramp is indicative of the loss of core BPO, as it was more difficult for it to escape from 
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the thiol-acrylate matrix due to its solid form as opposed to the liquid toluene.  As with 

the neat microparticles, some of the core BPO was likely lost in the form of a free 

radical initiator for the homopolymerization of the acrylate used during to form the matrix 

material.  

 

Figure 2-14: Thermal gravimetric analysis for microparticles containing BPO dissolved 
in toluene a) ramped at 10 ˚C/min to 600˚C b) ramp and hold at 150˚C for 1 hr. 
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2.7.3b BPO in Benzene 

Experimental Procedure 

 Microparticles containing benzoyl peroxide (BPO) dissolved in benzene as the 

core component were prepared with a matrix comprised of trimethylolpropane triacrylate 

(TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by 

octyl amine.  A solution of stoichiometrically equivalent TMPTMP and TMPTA was 

prepared containing 11.98 grams and 9.33 grams, respectively.  The core BPO (5 g) 

was dissolved in 30 grams of benzene.  The trithiol/triacrylate solution was then 

dissolved in the BPO/toluene solution. This core/matrix solution was then emulsified in 

250 mL of a 1.28% poly(vinyl alcohol) aqueous solution with a stir motor equipped with 

a 3-bladed propeller.  The mixture was agitated for 30 minutes at 1700 RPM.  Once the 

desired droplet size range was achieved, ~3mL of octylamine was added to the mixture 

to catalyze the polymerization.  The mixture was allowed to react for 1 hour at room 

temperature and ambient pressure with continuous mixing at 1500 RPM.  The 

microparticles were recovered by vacuum filtration and dried. 

Scanning Electron Microscopy Analysis 

Benzoyl Peroxide was dissolved in benzene, microencapsulated in a thiol-

acrylate matrix, and SEM images were obtained (Figure 2-15).  As with the toluene/BPO 

microparticles, the SEM images illustrate that the microparticles formed were 

symmetrical in shape forming nearly flawless.  Also like the toluene/BPO particles, 

these microparticles were very small as shown by the SEM images. The image on the 

left illustrates the microparticles at X500 with a 50µm scale bar, which does not give a 

good representation of the size of the particles and visual particle size distribution.  
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These aspects were much more obvious at higher magnification of X1000 (right image). 

The majority of these microparticles were found to be <10 microns as with the toluene 

method. These microparticles were observed to have a relatively narrow visual particle 

size distribution compared to that of the neat microparticles.   

 

Figure 2-15:  Scanning electron microscopy of microparticles containing BPO dissolved 
in benzene shown at X500 magnification (left) and X1000 magnification (right).  
 
Core Loading Percentage of BPO in Benzene 

The calculated solvent+BPO core loading percent was found to be 62% by 

weight.  The BPO weight percent of 9% relative to everything else was calculated to be 

a little higher than the toluene/BPO microparticles as less solvent was used in this 

benzene technique.  Because the BPO core-loading relative only to the polymer matrix 

was independent of the solvent content, that theoretical weight percent remained the 

same at 19%, again if it was assumed that all of the solvent was lost during the 

microencapsulation process.  The experimental core loading percent data were 

determined using TGA, and these data are illustrated in Figure 2-16.  
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Figure 2-16: Thermal gravimetric analysis for microparticles containing BPO dissolved 
in benzene a) ramped at 10 ˚C/min to 600˚C b) ramp and hold at 150˚C for 1 hr. 
 

The TGA ramp data are shown in Figure 2-16a.  The core loading percentage 

was found to be 24% when the material was heated at a rate of 10˚C/min implying that 

there was a higher overall core loading for these microparticles compared to both the 
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neat BPO microparticles and the BPO/toluene microparticles.  Again, at ~325˚C the 

thiol-acrylate matrix began to degrade.  To determine the weight loss under isothermal 

conditions, another TGA analysis was performed where the microparticles were heated 

to 150˚C and held for >1 hr (Figure 2-16b).  

Figure 2-16b illustrates the weight loss information in more detail.  During the 

ramp to 150˚C, 6.6% of the weight was loss, which could be attributed not only to the 

loss of BPO but also to the loss of benzene at 80˚C.  After reaching 150˚C, a weight 

loss of 11.2% was observed.  The increase in the weight loss for the isothermal plot 

after 150˚C for the benzene/BPO microparticles compared to the toluene/BPO 

microparticles, implies once more that the BPO concentration was higher in these 

microparticles because the slow loss in weight after the immediate loss during ramp is 

indicative of the loss of core BPO. 

2.7.4 Conclusions and Discussion 

For all three of these BPO methods, the thiol-acrylate matrix was observed to 

separate the core material from its surroundings and increase the pot life of an acrylate 

system containing the microparticles and a small amount of the accelerator DMpT.   

However, the polymerization of an acrylic monomer was not attained using these 

microparticles with or without an accelerator. There could have been very little or no 

benzoyl peroxide encapsulated within the polymer matrix. All of the BPO core could 

have been consumed via a free radical homopolymerization mechanism.  Another 

possibility could be that the microparticles did contain encapsulated BPO, but the BPO 

was trapped into the matrix material in such low concentrations or the release was too 

slow to allow for the polymerization of an acrylic monomer system.   
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The experimental core loading percent, determined via TGA, was much higher 

when a solvent method was utilized; however, this increase in core loading did not 

cause an increase in the reactivity or usefulness of the microparticles.  This implies that 

the majority of the core material was simply the solvent or a solvent solution containing 

a very low concentration of BPO.  

2.8 Caron Nanotubes Microparticles 

2.8.1 Introduction and Rationale for Microencapsulation  

Carbon nanotubes have the potential to improve many properties of composite 

materials including mechanical [100, 101] and electrical [102-104] properties.  A normal 

problem associated with the use of carbon nanotubes is that unmodified CNTs 

aggregate due to van der Waals interactions among the nanotubes.[105, 106] This thiol-

acrylate matrix could be useful in preventing CNTs from agglomerating when dispersed 

in a medium. These were the first thiol-acrylate microparticles (or nanoparticles) to be 

prepared using this method via ultrasonication. 

2.8.2 Experimental Procedure 

 Microparticles containing 1% carbon nanotubes (CNTs) as the core component 

were prepared with a matrix comprised of trimethylolpropane triacrylate (TMPTA) and 

trimethylolpropane tris(3-mercaptopropionate) (TT1) catalyzed by octyl amine.  A 

solution of stoichiometrically equivalent TT1 and TMPTA was prepared containing 0.81 

grams and 0.60 grams respectively.  The core, CNTs (0.0140 grams), was dispersed in 

the trithiol/triacrylate solution via a magnetic stirrer for 20 minutes.  This solution was 

then emulsified in 25 mL of a 1.28% poly(vinyl alcohol) aqueous solution in an ice bath 

(to keep the temperature low) with a Branson sonifier 450 at constant 45% output.  The 
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mixture was emulsified for 30 minutes with this constant sonification.  Once the mixture 

was efficiently emulsified, ~3% by volume (0.05 mL) of octylamine was added to the 

mixture to catalyze the polymerization.  The mixture was allowed to react for 1 hour at 

room temperature with continuous sonication.  The micro/nanoparticles were recovered 

by vacuum filtration and dried overnight. 

2.8.3 Scanning Electron Microscopy Analysis 

Microparticles containing carbon nanotubes (CNTs) were prepared using the 

general thiol-acrylate microencapsulation procedure with a few small deviations, and 

SEM analysis was performed (Figures 2-17a and b).  These particles were prepared 

with a smaller average particle size via the use of ultrasonication during the dispersion 

and polymerization process.  The particles were observed to have a large particle size 

distribution ranging from 120 µm (Figure 2-17a) to <75 nm (Figure 2-17b).  

 

Figure 2-17:  SEM images of microparticles containing carbon nanotubes.  The majority 
of the particles were observed to be <1 micron (figure b) but a few of the particles were 
relatively large (figure b). 
 
2.8.4 Results and Discussion 

 These results illustrated the capacity to produce very small microparticles and 

even nanoparticles using this thiol-acrylate encapsulation method coupled with 
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ultrasonification.  Although very small particles were produced containing carbon 

nanotubes, they were observed to agglomerate inside the particles. Optical microscopy 

analysis (Figure 2-18) illustrates dark agglomerates inside the transparent 

microparticles.  This optical microscopy analysis does provide evidence of the 

encapsulation of the CNTs.  However, the agglomeration would still inhibit an adequate 

distribution of the carbon nanotubes in a composite material, as the thiol acrylate matrix 

would only separate large agglomerations of CNTs and not individual nanotubes.  It 

would be necessary to adequately disperse the CNTs in the thiol-acrylate monomer 

system prior to the addition of the catalyst in order to solve this agglomeration problem.  

Although these results indicate the lack of success in separating carbon nanotubes in a 

composite material via microencapsulation, this indicates the potential for the production 

of much smaller thiol-acrylate particles, even nanoparticles via ultrasonification. 

 

Figure 2-18: Optical microscopy image of thiol-acrylate microparticles containing 
carbon nanotubes. 
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2.9 Boron Trifluoride-Amine Microparticles 

2.9.1 Rationale for Microencapsulation  

 
Scheme 2-3:  Basic Lewis acid initiated epoxy reaction scheme including the activated 
chain end (ACE) and activated monomer (AM) propagation mechanisms.  X represents 
either Cl or F, and R’ indicates the pendent group (Upper: BADGE and lower TMPTGE). 
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Epoxy resins can be cationically polymerized via Lewis acid initiators.[107, 108] 

Lewis acids complex with amines allowing for low reactivity at room temperature but 

rapid curing at elevated temperatures because the acid – base complex dissociates at 

high temperatures.[109] Depending on the basicity of the associated amine, the 

reactivities of these complexes can vary.[110] At elevated temperatures, Lewis acid 

complexes dissociate into RNH3
+ and BX4

- (X being either Cl or F halogens), which 

activate an epoxy monomer by forming an oxonium ion.  The propagation of this 

cationic polymerization proceeds by two competing mechanisms, the activated chain 

end (ACE) and the activated monomer (AM) mechanisms. The Lewis-acid-initiated 

epoxy reaction scheme, including the ACE and AM mechanisms is shown in Scheme 2-

3.[111] The ACE mechanism predominates at the beginning of the reaction until a 

sufficient number of polymer chains are formed, causing an increase in hydroxyl groups 

due to the polymer chain ends at which time the AM mechanism begins to become 

more favorable.[111]  

Borontriflouride-amine Lewis acid initiators can cause the polymerization of 

epoxy reins in as little as 20 seconds at room temperature. The rapid pot lives of these 

BF3-amine/Epoxy systems were found in literature [112] and confirmed experimentally.  

Figure 2-19 illustrates the pot life as a function of various commercially available BF3-

amine complexes given in literature, analyzed using a difunctional epoxy resin 

(diglycidyl either of bisphenol A (BADGE)) and analyzed using a trifunctional epoxy 

resin  (trimethylolpropane triglycidyl ether (TMPTGE)).  The pot life data did not 

precisely match the data found in literature, and there was some variations depending 

on the functionality of the epoxy, however the trend between the various types of BF3-
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amine complexes remained constant regardless of the epoxy used.  The average pot 

lives, combining the literature, BADGE systems, and TMPTGE systems, were found to 

be ~18 min, ~9 min, ~2 min, and ~15 sec for Leepoxy Resins B-1310, B-614, B-612, B-

610, respectively. (Figure 2-19) 

A highly reactive Lewis acid complex initiator was sought; therefore, B-612 was 

selected for the microencapsulation experiments based on the data in Figure 2-19. The 

microencapsulation of this Lewis acid initiator (BF3-amine complex) would facilitate its 

separation from the epoxy resin until acted upon by an external force (e.g. elevated 

temperature), resulting in a highly reactive latent initiator for epoxy resins.  This would 

be especially useful in a frontally-polymerizable system because high reactivity and heat 

release are necessary to sustain a front of polymerization. 

 

Figure 2-19: Pot life as a function of borontrifluoride-amine complex type found in 
literature and experimentally tested in BADGE and TMPTGE.  
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2.9.2 Experimental Procedure 

Microparticles containing borontrifluoride-amine (BF3) complex as the core 

component were prepared with a matrix comprised of trimethylolpropane triacrylate 

(TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by 

octyl amine.  A solution of core material was prepared by dissolving 40 mL of a 

borontrifloride-amine complex (612) in a stoichiometrically equivalent solution of 

trimethylolpropane triacrylate (11.85 g) and trimethylolpropane tris(3-

mercaptoproionate) (15.94g).   Approximately 10% relative to the BF3-amine complex of 

tert-butyl peroxybenzoate was added to the core material as a rupturing component.  

The core solution was then emulsified using a stir motor equipped with a three-blade 

propeller in 500 mL of a 0.4% Span 80 mineral oil solution contained in a water bath at 

50˚C (heat necessary only to keep the viscosity of oil relatively low).  The mixture was 

agitated for 10 minutes at 2000 RPM.  Once the desired droplet size range was 

achieved, 2 mL of octyl amine (~7% relative to the trithiol/triacrylate content) was added, 

and the stir rate was decreased to 1700 RPM.  The mixture was allowed to react for 1 

hour at 50 °C with continuous mixing at 1700 RPM.   After 1 hour, the microcapsules 

were recovered by vacuum filtration.  In order to remove the remaining viscous mineral 

oil from the system, the microcapsules were washed with cyclohexane.  

2.9.3. Scanning Electron Microscopy Analysis  

Boron trifluoride-amine 612 is a highly reactive Lewis acid-amine complex 

capable of initiating the polymerization of a bisphenol A difunctional epoxy resin in ~2 

minutes at room temperature with only 8-12 phr of the initiator present.[112]  This Lewis 

acid initiator was microencapsulated using a thiol-acrylate matrix via an oil-in-oil 
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dispersion polymerization and SEM analysis was preformed on the resulting 

microparticles (Figures 2-20a and b). 

Figure 2-20:  SEM images of microparticles containing boron trifluoride amine complex. 
a) X100 magnification b) X300 magnification 

These microparticles had an overall agglomerated, sponge-like consistency

that could be a result of multiple factors associated with the process. Figure 2-20a (low 

magnification) illustrates this overall agglomerated appearance; however, upon higher 

magnification (Figure 2-20b), it can be observed that small particles can be 

distinguished from the agglomeration. They were simply fixed together by some material 

between each particle.  

2.9.4 Results and Discussion 

The limiting factor for the success of the BF3-amine thiol acrylate microparticles 

was agglomeration of the microparticles. There are a few possible causes for this high 

level of agglomeration.  Because these microparticles were prepared via an oil-in-oil 

dispersion as opposed to an oil-in-water dispersion, an adequate and stable dispersion 

of the droplets could have been more difficult as a result of the higher interfacial tension 
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within the system, the more viscous continuous oil phase, and the large density 

difference between the continuous phase and mobile phase.   

 Another possible problem could be associated with the use of the thermal 

initiator, tert-butyl peroxybenzoate (TBP), as a rupturing agent.  The TMPTMP (trithiol) 

could act as an accelerator to decompose the TBP causing the homopolymerization of 

the TMPTA (triacrylate) via a free-radical chain growth mechanism. This could leave 

excess, unreacted, viscous TMPTMP causing a high level of agglomeration.  There are 

a few possible solutions to these agglomeration issues. The viscosity of the continuous 

mineral oil phase could be decreased by the addition of a less viscous oil such as 

cyclohexane. The microparticles could be prepared using an alternate rupturing agent 

or possibly no rupturing agent, and the density of the continuous phase could be 

increased.  Another complication of the process was the miscibility of the amine catalyst 

in the mineral oil continuous phase.  This forced the use of excess amine that could 

undergo an exchange reaction with the BF3-amine complex, changing the associated 

amine thereby changing the reactivity of the initiator. One approach to preventing this 

problem and possibly achieving microparticles with different properties could include 

utilizing a true thiol-ene reaction instead of the thiol-acrylate reaction.  A multifunctional 

electron-rich ene such as 2,4,6-triallyloxy-1,3,5-triazine or 1,3,5-triallyl-1,3,5-trazine-

2,4,6-trione could be photopolymerized with the TMPTMP producing a copolymer 

composed of the simple ene rather that the acrylate.[5] Alternatively, this reaction could 

also be initiated by the TBP since it can be decomposed at room temperature in the 

presence of a thiol, and the electron-rich ene could not homopolymerize. This would 
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produce microparticles with similar properties while reducing the problems associated 

with catalyst miscibility.  

 The application of these microparticles indicated limited and some level of 

somewhat inexplicable success. Due to the high agglomeration of the product, the BF3-

amine microparticles were very difficult to disperse in an epoxy system.  In some cases 

the microparticles were observed to greatly increase the pot-life of the highly reactive 

BF3-amine/epoxy system and still be somewhat reactive upon heating the system.  The 

true cause of the increase in the pot-life of the system is still not completely understood.  

There was a possibility as mentioned above that the Lewis acid initiator underwent an 

exchange reaction with the amine catalyst used to produce the microparticles, thereby 

reducing the reactivity of the initiator and causing an increase in pot life. 

2.10 Boron Trichloride-Amine Microparticles 

2.10.1 Rationale for Microencapsulation 

 The boron Trichloride amine (BCl3-amine) complex used here was a latent, 

heat-activated initiator for epoxy systems with a nearly infinite pot life.[109] This Lewis 

acid initiator proceeds via the same mechanism as was illustrated for the BF3-amine 

initiator (Scheme 2-3) In batch applications, a borontrichloride-amine Lewis acid initiator 

can be used to produce systems with a longer pot life at elevated temperatures, shorter 

full cure times, and a product that is much less brittle compared to BF3-amine 

initiators.[109] Also, BCl3-amine complexes show much better hydrolytic stability.[109] 

In some applications, BCl3-amine complexes interfere with the desirable thixotropic 

properties of an epoxy system. The purpose for microencapsulating this initiator was 

unlike the other research performed in this work.   The goal was to microencapsulate 
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the BCl3-amine complex in a sphere or shell from which it could be released at the 

desired curing temperature of 170 ˚C.  There was some interaction between BCl3-amine 

and fumed silica, which is normally added to epoxy systems as a thixotropic agent.  This 

interaction caused an undesirable loss in the rheological properties of the epoxy 

monomer solution.  By microencapsulating this initiator, the matrix material was 

observed to prevent this unwanted interaction by separating the initiator from the silica 

until heated, allowing the rheological properties to be preserved until the desired 

reaction took place.   

2.10.2 Experimental Procedure 

 Microparticles containing borontrichloride-amine (BCl3) complex as the core 

component were prepared with a matrix comprised of trimethylolpropane triacrylate 

(TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) catalyzed by 

octyl amine.  A solution of stoichiometrically equivalent TMPTMP and TMPTA was 

prepared containing 15.94 grams and 11.85 grams, respectively.  The core BCl3-amine 

(60 g) was dissolved in the trithiol/triacrylate solution.  This solution was then emulsified 

in 500 mL of a 1.28% poly(vinyl alcohol) aqueous solution with a stir motor equipped 

with a 3-bladed propeller.  The mixture was agitated for 30 minutes at 2000 RPM.  Once 

the desired droplet size range was achieved, 3% by volume (~0.9 mL) of octylamine 

was added to the mixture to catalyze the polymerization, and the stir rate was 

decreased to 1700 RPM.  The mixture was allowed to react for 1 hour at room 

temperature and ambient pressure with continuous mixing at 1700 RPM.  The 

microparticles were recovered by vacuum filtration and dried overnight.  
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2.10.3. Scanning Electron Microscopy Analysis 

Figure 2-21:  SEM images of BCl3-amine microparticles.  a) X100 magnification b) 
X500 magnification 

Another Lewis acid-amine complex, boron trichloride-amine (BCl3-amine) was 

microencapsulated using a thiol-acrylate matrix and SEM analysis was preformed on 

the resulting microparticles (Figures 2-21a and b). From these SEM images, it can be 

observed that these microparticles were symmetrical in shape, free of agglomeration, 

did not contain any unencapsulated material around the exterior of the shells, and had a 

relatively narrow particle size distribution.  For these and other reasons, these 

microparticles were the main focus of the research, and more extensive results were 

obtained regarding these microparticles relative to the other particles prepared.   

2.10.4 Size Analysis 

Particle size analysis was performed on the resulting BCl3-amine thiol-acrylate 

microparticles. The microparticle size distribution data were collected via optical 

microscopy and size analysis software.  The size distribution data are illustrated in 

Figure 2-22 and tabulated in Table 2-1. A 1059 microparticle population and a 1562 
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microparticle population was used to collect the data for the microparticles initially 

stirred at 2000 RPM and the microparticles initially stirred at 900 RPM, respectively. 

 

  
Figure 2-22:  Particle size distribution for solid BCl3-amine microparticles at a) 900 RPM 
and b) 2000 RPM. All particle size data were collected via optical microscopy and 
particle size analysis software.  
 

Figure 2-22a illustrates the particle size distribution data for BCl3-amine 

microparticles stirred initially at 900 RPM. These data illustrate that the average particle 
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size was 268.3±98.2µm for this stir rate. Figure 2-22a also shows a relatively broad and 

sporadic distribution where the smallest measured microparticle was 57.7µm and the 

largest measured microparticle was 646 µm.  These data indicated that 89% of the 

microparticles were between 100-400 µm when agitated at initially at 900 RPM.  

Figure 2-22b illustrates the particle size distribution data for BCl3-amine 

microparticles stirred initially at 2000 RPM. These data illustrate that the average 

particle size was 62.4±31.5µm for this stir rate. Figure 2-22a also shows a somewhat 

weighted distribution where the smallest measured microparticle was 13.0µm and the 

largest measured microparticle was 179.2µm.  These data showed that 83% of the 

microparticles were between 200-100 µm when agitated at initially at 2000 RPM.  

Table 2-1. BCl3-amine thiol-acrylate microparticles statistics as a function of stir rate. 
 

RPM 
 

Mean Diameter 
(um) 

Standard 
Deviation (um) 

Maximum 
Diameter (um) 

Minimum 
Diameter (um) 

900 268.3 98.2 645.5 57.7 
2000 62.4 31.5 179.2 13.0 

Figure 2-23 compares the BCl3-amine microparticle size distribution data to the 

control (empty) microparticles size data. The average particle size data for the BCl3-

amine microparticles did not fall into the size range indicated by the data for the empty 

microparticles; however, the same trends regarding the stir rate, mean diameter, and 

standard deviation were observed.  As the stir rate was increased, regardless of core 

component, the average particle size decreased as well as the corresponding standard 

deviation. Control microparticles with an average particle size near 250µm could be 

prepared with a stir rate of 500 RPM, whereas a higher energy input (900 RPM) was 

required to obtain BCl3-amine microparticles with the same average diameter (Figure 2-

23). Depending on the core component used, different amounts of applied energy 
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resulted in different average particle sizes and standard deviations due to the 

differences in the interfacial tensions between the continuous phase and the mobile 

phase of the given dispersion polymerization.  

 

Figure 2-23: The BCl3-amine microparticles were agitated at 2000 RPM initially and 
reduced to 1700 RPM once the primary amine catalyst was added. 
 
2.10.5 Core-Loading Percentage 

It was vital to know the percentage of core material contained within the 

microparticle matrix before a valid comparison to be made between systems containing 

the core in either the dissolved or microencapsulated form.  The following formula was 

used to estimate the core loading percentage.  

 

 
In this formula, for the BCl3-amine system, the Core, Monomer 1, and Monomer 2 

values corresponded to the amount of BCl3-amine, TMPTMP, and TMPTA in grams, 

Core Loading % =  
Core

Core +  Monomer 1 +  Monomer 2
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respectively.  Using this equation, the core loading percent for the BCl3-amine 

microparticles was calculated to be 68%. 

 

Figure 2-24:  Thermal Gravitational Analysis data for BCl3-amine thiol-acrylate 
microparticles.  a) Encapsulated BCl3-amine (eBCl3-amine) and pure BCl3-amine heated 
at a rate of 10˚C/min with initial weights of 3.403 mg and 7.776 mg, respectively.  b) 
Encapsulated BCl3-amine (eBCl3-amine) and pure BCl3-amine heated at a rate of 
10˚C/min and held at 120˚C for one hour and again at 170˚C for one hour with initial 
weights of 7.497 mg and 7.595 mg, respectively.  The heating rate is also added to 
show correlation between the heat and the weight loss. 



 

57 

The theoretical formula was assumed to be reliable if all of the components used 

in the process were immiscible in the continuous aqueous phase because any excess 

materials, either unencapsulated core or unreacted monomer, would be easily observed 

due to the formation of a separate layer from the filtered aqueous phase in which they 

would be immiscible.  The fact that the thiol-acrylate reaction is known to reach high 

conversion, as explained above, also adds confidence to this method of estimating the 

core loading percentage.  However, because the above formula technically provides 

only the theoretical core loading if all of the components in the system were completely 

immiscible in water, thermal gravitational analysis was performed on microparticles 

containing BCl3-amine (Figure 2-24) to validate this method of estimating the core 

loading percent. 

From the TGA data in Figure 2-24, the core loading percent appeared to be  

~50%.  This indicated that the theoretical equation was reasonably close to the 

experimental result.  The lower core loading percent indicated by the TGA could be 

attributed to the slow release of the core component over time.  Some of the core BCl3-

amine could have been trapped within the polymer matrix preventing its volatilization 

even at the elevated temperature.  In order to confirm that the weight loss can be 

attributed only to the loss of the core material, the TGA data in figure 2-24b illustrate 

both the pure and microencapsulated BCl3-amine heated and held at both 120˚C and 

170˚C for 1 hour each.  These temperatures were chosen to insure that the 

microparticles were free of water and because BCl3-amine complex completely 

dissociates below 170˚C.[113] At the 170˚C point it can be observed that there was a 

steady loss of weight followed by relatively no weight loss until about 350 ˚C at which 
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time the polymer matrix began to decompose.  Both the data received from the TGA 

and the theoretical equation were considered when determining the core loading 

percent, and from these data, it was concluded that the core loading percent for the 

BCl3-amine microparticles was ~60%. 

2.10.6 Improvement of Rheological Properties 

Once the core loading percentage was determined, the BCl3-amine 

microparticles were applied to two epoxy systems in an attempt to improve the 

rheological properties of the resulting systems prior to polymerization.  The rheological 

data obtained can be observed in Figures 2-25 and 2-26.  In can be deduced from these 

figures that the microencapsulation of the BCl3-amine complex in a thiol-acrylate matrix 

was successful. 

2.10.6a Trimethylolpropane Triglycidyl Ether 

Preparation of TMPTGE Samples for Rheology Testing 

Trimethylolpropane triglycidyl ether samples containing silica and dissolved BCl3-amine, 

microencapsulated BCl3-amine or no BCl3-amine were prepared to examine the 

rheological benefit associated with separating the silica and BCl3-amine via 

microencapsulation.  Initially, 10 grams of TMPTGE was placed in a vial and heated in a 

water bath at 50°C for 20 minutes to decrease the viscosity.  Next, 7.5 phr (parts per 

hundred resin) silica (Aerosil 200) was dispersed in the TMPTGE.   The mixture was 

then returned to the water bath for an additional 10 minutes, periodically removing and 

stirring.  The mixture was then removed and 10 phr BCl3-amine was dissolved or 

dispersed (1 g dissolved or 1.54 g microparticles to compensate for matrix material). 

The vials were then capped and stored for varying periods of time.  Viscosity as a 
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function shear rate was determined at a constant temperature of 25°C with the 

rheometer gap set at 500 μm. 

TMPTGE Rheological Properties 

Depending on the concentration of the fumed silica in a given system, different 

rheological properties (shear thickening, shear thinning or even thixotropic) can be 

observed.  High concentrations of fumed silica can cause shear thickening to 

occur.[114] In the case illustrated in Figure 2-25 where trimethylolpropane triglycidyl 

ether (TMPTGE) was the epoxy resin used, a higher concentration of fumed silica was 

used than would normally be incorporated into a commercial formulation.  This was 

done in order to amplify the effect of the interaction between the BCl3-amine and the 

fumed silica.  The curves in Figure 2-25a therefore present a shear thickening effect. 

 It can be noted in Figure 2-25 that the curves corresponding to the system 

containing encapsulated BCl3-amine were much more similar to the control system (no 

BCl3-amine) than those corresponding to the systems containing the dissolved BCl3-

amine.  As the rotational velocity was increased on the control systems (no BCl3-

amine), the viscosity was observed to display a shear thickening effect after ~3 RPM.  

The systems containing the microencapsulated BCl3-amine followed a very similar 

shear thickening trend with a less intense increase in the viscosity after ~3 RPM of 

rotational velocity.  The systems containing the dissolved BCl3-amine were observed to 

act initially with a similar trend until ~3 RPM.  At this point, instead of the shear 

thickening effect, the system stabilized with a constant viscosity well below that of the 

control or microparticle systems.  The lack of the shear thickening effect of the system 

containing dissolved BCl3-amine was caused by the interaction between the fumed 
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silica and the BCl3-amine.  This interaction rendered the silica useless as an agent to 

improve the rheological properties of the system.   

 

Figure 2-25:  Rheology data for TMPTGE systems containing BCl3-amine complex and 
fumed silica.  Each TMPTGE sample contained 7.5 phr fumed silica and either no BCl3-
amine, 10 phr dissolved BCl3-amine, or 10 phr microencapsulated BCl3-amine 
(calculated based on core-loading). Figure a) illustrates the raw rheometer data of 
viscosity (Pa s) as a function of rotational velocity (converted to RPM) for different 
samples over a period of 9 days.  Figure b) illustrates the ratio of low viscosity to high 
viscosity as a function of time for three different types of samples. 
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 The large difference in the rheological properties of the system containing the 

dissolved BCl3-amine and the system containing the microencapsulated BCl3-amine, as 

well as the similarities between the properties of the latter and the control system 

indicated that the polymeric matrix prevented the interaction of the BCl3-amine complex 

with the fumed silica, allowing for the preservation of the rheological properties of the 

monomer solution.  

2.10.6b Bisphenol A Diglycidyl Ether 

Preparation of BADGE Samples for Rheology Testing 

Bisphenol A diglycidyl ether samples containing Polygloss 90 (kaolin clay), silica 

and dissolved BCl3-amine, microencapsulated BCl3-amine or no BCl3-amine were 

prepared to examine the rheological benefit associated with separating the silica and 

BCl3-amine via microencapsulation.  Initially, 10 grams of BADGE was placed in a vial 

and heated in a water bath at 50°C for 20 minutes to decrease the viscosity.  Next, 1.5 

phr silica (Aerosil 200) and 1.5 phr Polygloss 90 were dispersed in the BADGE.   The 

mixture was then returned to the water bath for an additional 10 minutes, periodically 

removing and stirring.  The mixture was then removed and 3 phr BCl3-amine was 

dissolved or dispersed (0.3 g dissolved or 0.5 g microparticles to compensate for matrix 

material). The vials were then capped and stored for varying periods of time.  Viscosity 

as a function shear rate was determined at a constant temperature of 25°C with the 

rheometer gap set at 750 μm. 

BADGE Rheological Properties 

In order to test the effectiveness of these microparticles in a real world setting, 

the rheology of a commercially useful bisphenol A diglycidyl ether (BADGE) system was 
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studied.  In this system kaolin clay was also incorporated as additional filler, along with 

fumed silica (functioned mainly as a thixotropic agent).  

 

Figure 2-26:  Rheology data for BADGE systems containing BCl3-amine complex, 
fumed silica, and kayolin clay.  Each BADGE sample contained 1.5 phr fumed silica, 1.5 
phr Polygloss 90.   and either no BCl3-amine, 10 phr dissolved BCl3-amine, or 10 phr 
microencapsulated BCl3-amine (calculated based on core-loading). Figure a) illustrates 
the raw rheometer data of viscosity (Pa s) as a function of rotational velocity (converted 
to RPM) for different samples over a period of 20 days.  Figure b) illustrates a 
comparison of the decrease in viscosity from 1 to 20 RPM as a function of time for the 
three different types of samples.  
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Figure 2-26 illustrates the results obtained from this study, and further proves the 

success of the microparticle systems. Both the control systems (no BCl3-amine) and the 

systems containing the microencapsulated BCl3-amine exhibit a shear thinning effect as 

a function of rotational velocity and follow almost identical trends (Figure 2-26a).  The 

systems containing the dissolved BCl3-amine that was available to interact with the 

fumed silica displayed no signs of a shear thinning effect.  Figure 2-26b further proves 

this point by illustrating the decrease in viscosity from 1 RPM to 20 RPM rotational 

velocity as a function of time.  It can be noted from the curve corresponding to the 

dissolved BCl3-amine system in Figure 8b that the interaction became more prominent 

with time from 5 to 20 days as the percent decrease approached zero.  From these 

studies of the rheology of the two epoxy systems, it was concluded that the thiol-

acrylate matrix was successful in separating the core BCl3-amine from the fumed silica, 

preventing the undesirable loss in the rheological properties of the monomer systems. 

2.10.7 Mechanical Analysis of Epoxy Samples 

2.10.7a Preparation of TMPTGE Samples for Instron Testing 

Trimethylolpropane triglycidyl ether (TMPTGE) samples containing dissolved BCl3-

amine or microencapsulated BCl3-amine were prepared to test the relative strength of 

the sample if BCl3-amine microparticles were used instead of dissolved BCl3-amine.  

The epoxy bars were 7.5 x 2.3 x 1.0 cm.  Initially, 20 grams of trimethylolpropane 

triglycidyl ether (TMPTGE) was placed in an 80 mL beaker and heated in a water bath 

at 50°C for 20 minutes to decrease the viscosity.  After the viscosity was acceptable, 2.5 

phr (parts per hundred resin) fumed silica (Cabosil) was dispersed in the TMPTGE.   

The mixture was then returned to the water bath for an additional 10 minutes, 
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periodically removing and stirring.  The mixture was then removed and 5 phr BCl3-

amine was dissolved or dispersed (1g dissolved or 1.54 g microparticles to compensate 

for shell material).  The mixture was then placed under vacuum to remove the air 

introduced when stirred.   Once the majority of the air had been removed, the mixture 

was poured into a poly(tetrafluoroethylene) mold and cured in an oven at 170 °C for 1 

hour. The epoxy bars were then subjected to Instron strength testing.  

2.10.7b Strength Testing of TMPTGE Systems 

 After determining that the rheological properties of an epoxy system could be 

maintained via microencapsulation, it was vital to determine if comparable strength data 

could be obtained using the microparticle systems.  The strength of two TMPTGE 

systems differencing only in the method by which the BCl3-amine initiator was 

introduced into the system (ether microencapsulated or dissolved) were compared.  

Mechanical analysis was performed on epoxy block samples with the same dimensions 

utilizing the different types of introduction methods.  The resulting data are plotted in 

figure 2-27.  In both of the plots in figure 2-27, the systems containing the 

microencapsulated BCl3-amine complex on average demonstrated an increase in the 

respective measurement.  The maximum flexure of the systems containing the 

microencapsulated BCl3-amine was observed to increase by 23%, and the Young’s 

modulus increased by 16%.  The increase in the strength of the samples when BCl3-

amine microparticles were used as opposed to the sample containing the dissolved 

initiator could be due in part to the matrix material of the microparticles strengthening 

the material.  In order to obtain a substantial increase in the strength of the material, a  
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Figure 2-27:  Strength data for TMPTGE systems containing BCl3-amine complex and 
fumed silica.  Each TMPTGE sample contained 2.5 phr fumed silica and 5 phr dissolved 
BCl3-amine (dBCl3), or 5 phr (calculated based on core-loading) microencapsulated 
BCl3-amine (eBCl3). The figures illustrate (a) the maximum flexure in Newtons and (b) 
the Young’s modulus (MPa) . 
 
sufficiently strong interaction between the microparticles (filler material) and the epoxy 

matrix would needs to be present[115].  The free thiol groups present on the surface of 



 

66 

the crosslinked polymer matrix due to steric hindrance preventing full conversion could 

explain this strong interaction. Thiols are known to react with epoxy resins via either a 

nucleophilic displacement or base-catalyzed addition reaction.[116] If this interaction 

was occurring, then the microparticles served a dual purpose in separating the initiator 

from the monomer, thereby preventing undesirable rheological effects, and acting as a 

strengthening agent to produce a composite material with a thiol-acrylate matrix 

material as filler.  From these data, it was determined that the strength of the epoxy 

polymer was not negatively affected by the incorporation of the BCl3-amine in the 

microparticle form. 

2.11 Conclusions 

A novel approach to prepare microparticles via a dispersion polymerization using 

the primary amine-catalyzed addition of a trithiol to a triacrylate has been reported here.  

Unlike most microcapsules composed of a thin shell containing a liquid core, these 

microparticles were composed of a solid matrix enveloping pockets of core material.  

There are many advantages to using nucleophilic primary amine-catalyzed thiol-acrylate 

chemistry as a microencapsulation method.  First, the thiol-acrylate reaction is not 

affected by oxygen entrained into the system via mixing [5].  Secondly, because the 

primary-amine catalyzes the Michael addition of a thiol to an acrylate very rapidly[40], 

this process has an advantage over many other types of microencapsulation techniques 

as it can be completed in less than one hour, as opposed to many hours or even days.  

Thirdly, this method can proceed at room temperature[5] as opposed to other 

microencapsulation techniques that require a reaction temperature of 50 ˚C or higher.  

Fourthly, as with other microencapsulation procedures and general dispersion 
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polymerizations, the size of the droplets (mobile phase) can be easily manipulated by 

the surfactant concentration or agitation rate.  Also, the chemistry used to prepare these 

microparticles is very versatile in that a multitude of different monomers could be 

incorporated to prepare microparticles with various tunable properties. Finally, the 

reaction used to prepare these microparticles can be initiated using various sources, 

which allows for variations in initiation techniques if necessary.  

The size of these microparticles was easily manipulated depending on the 

amount of energy applied to the system. It was determined that this type of 

microparticles could be used as either a stimulated release or controlled release 

mechanism depending on core material.  These thiol-acrylate microparticles have been 

prepared containing different initiators and activators including dimethyl-para-toluidine, 

benzoyl peroxide, a borontrifluoride-amine complex, a borontrichloride-amine complex, 

and carbon nanotubes.  Scanning electron microscopy analysis was preformed on the 

microparticles containing different core materials to determine the effectiveness of the 

microencapsulation technique relative to the core material.  It was concluded that the 

DMPT microparticles were insufficient due to the leaching of the core material from the 

microparticle matrix.  The BPO microparticles suffered from a lack of sufficient core 

material or from a lack of effective release of trapped core material.  The BF3-amine 

microparticles were observed to increase the stability of a highly reactive epoxy-Lewis 

acid system, however a high level of agglomeration prevented an even dispersion of the 

microparticles in an epoxy resin. The thiol-acrylate micro- or nanoparticles containing 

carbon nanotubes require further investigation in order to determine the full benefit of 

using this method of encapsulation with this particular core.  The preparation and 
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application of microparticles containing one initiator in particular, a borontrichloride-

amine complex, was extensively studied. These microparticles were observed to 

prevent the interaction between the Lewis acid initiator and fumed silica by separating 

the two components, hence improving the rheological properties of an epoxy system 

containing the initiator while maintaining the strength of the resulting polymer product.  
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CHAPTER 3. THIOL-ACRYLATE STABLE HYDROPHILIC MICROFLUIDIC DEVICES 

3.1 Chapter Summary 

This portion of the document will focus mainly on a novel approach to prepare 

stable hydrophilic surfaces for possible microfluidic applications where low water 

contact angles are desirable. Hydrophilic polymer films have been produced with native 

water contact angles ranging from 10-85˚.  The hydrophilicities of these films were 

tuned depending on the formulation of the sample.  These films were prepared via the 

Michael addition of a secondary amine to a multifunctional acrylate producing a 

nonvolatile tertiary amine utilized in the catalysis of the Michael addition of a 

multifunctional thiol to the multifunctional acrylate. There are many advantages of using 

amine-catalyzed thiol-acrylate chemistry as a method of microfluidic device fabrication.  

These thiol-acrylate materials can be prepared via a soft lithography method at room 

temperature, very rapidly, and with little equipment. As discussed previously, thiol-

acrylate chemistry is useful because of the wide array of molecules that can easily be 

attached to- or incorporated into the material to change final properties of the material. 

This allows for a plethora of post- and bulk-modifications of the material to alter the 

surface chemistry, including the hydrophilicity. The native thiol-acrylate material is much 

more hydrophilic than the normally employed PDMS thermoset material, and the 

surface energy is very stable compared to PMDS. [117, 118] Because the final chip can 

be self-adhered via a chemical process utilizing the same chemistry, and it is naturally 

hydrophilic, there is also no need for an expensive oxygen plasma generator or any 

other equipment or methods to “activate” the surface.  Finally, due to the pre-

synthesized monomer/catalyst molecule serving as the in situ catalyst, there is no need 
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for post-processing removal of the catalyst as it is incorporated into the polymer 

network.  The material can be prepared using a two-pot system that is easily mixed to 

prepare the final solution, has a controllable gel time as low as 20 minutes, and tunable 

mechanical properties. 

3.2 Introduction/Background  

 Microfluidics is a science associated with the processing and manipulation of 

small amounts of fluids via channels that range from tens to hundreds of micrometers. 

[119] Entire analytical protocols that have conventionally been executed in full-scale 

laboratories can be accomplished via miniaturized microfluidic systems. [120] 

Microfluidic devices, also referred to as micro total analysis systems (µTAS) or labs-on-

a-chip (LOC), have recently found applications in areas such as DNA analysis [121-

123], protein assays [124, 125], air and water quality evaluations [126], and clinical 

diagnostics [127, 128].  Some of the obvious benefits of using microfluidic devices are 

their abilities to use microliter amounts of sample and reagents, their short reaction 

times, their minuscule analytical footprints, and their small, portable nature which all 

contribute to their high cost efficiency. [119, 129]  Other less obvious characteristics 

associated with µTAS include their high resolution and sensitivity, better reliability and 

functionality, a reduced risk of contamination, lower power consumption, laminar flow, 

and their capabilities of controlling concentrations of molecular species in both space 

and time. [119, 120] Current technologies allow for a multitude of functions such as 

pretreatment, sample and reagent transport, reaction, separation, detection, and 

product collections to be implemented on a single µTAS. [120]  
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Microfluidic devices are typically prepared using silicon, glass, or polymeric 

materials. Each of these materials has its advantages and disadvantages.  Due to its 

long history in the semiconductor industry, the highly evolved silicon fabrication 

technology allows for the production for virtually any geometrical microstructure with 

high precision and the physical and chemical properties of silicon are well 

characterized.  Silicon microfluidic devices have their limitations, however, due to the 

poor optical properties of silicon.  Silicon is not optically transparent in the UV/visible 

region, which severely limits its functionality as most bioanalyses are performed in this 

wavelength range. The commercialization of silicon is also hindered due to the costly 

fabrication of silicon microchips. [130] Glass improves on the optical properties of 

silicon, as glass has excellent optical properties in the biomolecule detection range.  

However, the fabrication of glass microchips via isotropic wet etching is also extremely 

expensive. [130] Polymers are extremely beneficial microfluidic device materials as 

many of the chemical, physical, electrical, and optical properties can be manipulated 

depending on the specific type of material employed.  In terms of relative fabrication 

costs, time, and labor, polymers have become very attractive for use in µTAS. In terms 

of technological pathways of fabrication, polymeric materials used for microfabrication 

can be divided into 3 main classes. Thermoset materials are three-dimensional 

chemically-crosslinked polymer networks. [89] The most discernable aspects of 

thermosets with respect to microfluidic device fabrication are that thermoset materials 

do not formally melt but instead burn at elevated temperatures and typically have high 

glass transition temperatures near the decomposition temperature of the material. Once 

a thermoset device or material is heated and crosslinked, the materials can no longer 
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be reshaped upon heating, differentiating them from other microfluidic device 

materials.[131] Typical thermoset materials used in microfluidic device fabrication are 

polyesters [132, 133], polyimides [134, 135], and various types of photoresist materials 

[136]. The second type of microfluidic device material is thermoplastics.  Thermoplastic 

materials are not chemically crosslinked and typically consist of long polymer chain 

entanglements of amorphous portions and crystalline portions. [89] Unlike thermosets, 

thermoplastics can be melted and reshaped at elevated temperatures. Thermoplastics 

show significant and distinct softening at their glass transition temperatures allowing 

them to be processed near this temperature. Their glass transition temperatures are 

typically far from their decomposition temperatures allowing for a large processing 

temperature range. [137] Thermoplastics are likely the most diverse family of materials 

used for microfluidic device fabrication. Typical thermoplastic materials used in 

microchip fabrication include poly(propylene)[138], poly(vinyl chloride) [139] 

poly(styrene) [138], poly(carbonate) [138, 140, 141], poly(methyl methacrylate) [140, 

142-147], and cycloolefin polymers/copolymers [148, 149].  The third class of 

microfluidic polymeric materials is elastomers. Elastomers could be classified in the 

thermoset microfluidic material category as they are typically crosslinked and cannot be 

reshaped via temperature treatments. [137] They are in a different class due to their 

physical and mechanical properties. Elastomers are used above their glass transition 

temperatures (Tg below room temperature) and demonstrate a viscoelastic property, 

typically with a low Young’s modulus and high yield strain. [89] If an external force acts 

upon an elastomer, it will deform due to the disentanglement of the polymer chains and 

reform once the external force is removed demonstrating an elastic-type motion. [137] 
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The most widely used elastomeric microfluidic material is poly(dimethylsiloxane) [117, 

150-156]. Elastomers have become the most common materials used for low-volume 

manufacturing of microfluidic devices due to their low cost and ease of handing. [137] 

Like the traditional glass and quartz substrates, the original fabrication 

techniques employed to produce microfluidic devices were borrowed from the 

microelectronics field. [137] Techniques such isotropic wet etching [157, 158], plasma 

etching [159-161], and laser ablation [162-164] can be extremely expensive especially 

when coupled with the relatively high cost of substrates such as glass or quartz. Mass 

production and disposability are therefore not conceivable using these traditional glass 

or silicon substrate-fabrication technique combinations. Inexpensive polymer substrates 

and their inexpensive fabrication requirements have become the solution to this high-

cost microfluidic device challenge. Photodefinable polymer technologies are commonly 

used in the fabrication of polymeric microfluidic devices. [137] These processes involve 

a constructive or destructive reaction of a polymer with light. Photolithography entails a 

constructive reaction via photopolymerization of a liquid resin in the presence of a 

photomask resulting in a crosslinked solid thermoset polymer network containing 

microchannels where the photomask obstructed the UV light from initiating 

polymerization. [165, 166] One of the most commonly used photolithography materials, 

SU-8 [167-172], is a liquid photoresist composed of eight epoxy groups that can 

undergo photoinitiated cationic crosslinking. Limitations of this technique include low 

structural heights due to physical parameters such as viscosity and limited device 

throughput due to long preparation times of the resin and other process steps involved. 

[137] Laser ablation is a form of destructive photodefinable polymer fabrication where a 
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high-intensity laser beam is used to evaporate material at a focal point.  Movement of 

either the laser beam or the substrate in the x and y direction or the use of a photomask 

produces the desired microchannel geometry. [162, 173-175]  The most economically 

feasible and broadest microfluidic device fabrication methodology is based on 

replication methods. [137] The basis for these methods revolves around the replication 

of a master mold or structure, which is the geometrical inverse of the desired structure. 

[176] There are a many different methods readily available for the production of a 

master mold, including silicon etching or photoresist polymerization followed by 

electroplating [172, 177] and ultraprecision-machined stainless steel masters [172, 178].  

Regardless of the technique chosen to prepare the master mold, certain aspects of the 

mold are necessary as the geometry of the microfluidic device can only be as good as 

the geometry of the master mold. The mold must be constructed from a material that 

can be easily removed from the replication material, the surface of the master must be 

as smooth as possible, and there must be no surface chemistries or exchanges taking 

place between the mold and the material being replicated. [137] Hot embossing [179-

184] is one of the most common replication fabrication techniques used in both 

academia and industrial applications. Hot embossing involves the heating of both the 

master mold and the polymer substrate under vacuum to a temperature slightly above 

the glass transition temperature of the polymer material.  The master mold structure is 

pressed into the polymer substrate with high force at the elevated temperature, and the 

master and replicated substrate are cooled isothermally to slightly below the glass 

transition temperature and separated. [179] The process results in the replication of the 

microstructures from the master mold to the polymer substrate.  Microthermoforming 
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[185-189] is another type of microchannel replication in a polymer substrate.  The 

process involves clamping and sealing of a thin polymer film (usually less than 50 µm 

thick) into a mold with the microstructures on one side.  The film is heated to 10˚C 

above its glass transition temperature followed by the introduction of compressed gas 

into the sealed container, forcing the thin polymer film into the master microstructures.  

The polymer is then cooled to 20˚C below the glass transition temperature and 

removed, resulting in the replication of the master microstructures onto the polymer 

substrate film. [190] Another method that is likely the most widespread commercial 

fabrication process for polymer microfluidic devices is injection molding [156, 191-196].  

Because this process requires a comparatively high level of equipment and a 

complicated process, injection molding is rather limited in the academic world. [192] 

Granulated polymer material is fed into a hopper that leads to a heated screw 

transporter where the material is melted and injected under high pressure into a mold 

containing the microstructures.   The mold is then cooled and opened resulting in the 

rapid replication of the master mold onto the polymer substrate. [192] The injection 

molding process has the capacity to provide three-dimensional structures, which allow 

for microartifacts such as fluidic interconnects or through-holes. [156, 197, 198]  

Injection molding is limited due to the process complexity and the necessity for 

mechanically complicated molding tools with high-temperature and high mechanical 

precision capabilities. [137] Casting of elastomeric materials [137, 156, 199, 200] is 

perhaps the simplest way of replicating microstructures from a mold onto a polymer 

substrate.  This technique, commonly referred to as soft lithography [201-207], is most 

relevant as the work presented here utilizes this technique.  Soft lithography involves 
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the pouring of a monomer solution (usually an elastomeric-forming monomer and a 

crosslinker) over a master mold, degassing he solution, polymerizing (curing) at 

elevated temperatures, peeling the material from the mold, activating the surface, and 

adhering it to a flat surface, resulting in the final replicated microfluidic device. [137] This 

method can be used to prepare three-dimensional structures such as mixers [208], 

valves [209], and pumps [210, 211]. This technique has many advantages including 

method simplicity, low cost, and replication accuracy.  All of the aforementioned 

techniques are very useful and prominent in the microfluidic fabrication technological 

field.  In terms of industrially pertinent methods, hot embossing and injection molding 

are the frontrunners, while in academics, elastomer casting (soft lithography) is the 

principal method. [137] 

 Soft lithography of PDMS is likely the dominant polymeric material-fabrication 

technique combination in the field of microfluidics. [212] This is due in part to the many 

useful properties of PDMS including its elastomeric nature, biocompatibility, gas 

permeability, optical transparency (down to 230 nm), moldability to submicrometer 

features, ability to be bonded to itself or glass, chemical inertness, and low cost of 

manufacturing. [120, 213, 214]  Although PDMS has many advantages, it has a natively 

hydrophobic surface that expresses a water contact angle of ~105˚. [118] This 

hydrophobicity leads to many limitations especially in the field of biology where the 

majority of microfluidics is targeted.  Cells avoid the hydrophobic surface of PDMS 

making it very difficult to analyze cellular phenomenon. [215] Proteins adsorb to the 

surface in a non-specific manner making the native PDMS useless as a method of 

biomolecular separation assays. [216-218] From an obvious and practical standpoint, 
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the hydrophobic surface of a PMDS also makes the introduction of aqueous solutions 

into small microchannels extremely difficult. [212] PMDS, again due to its 

hydrophobicity, has a tendency to swell in some organic solvents causing difficulty in 

the analysis of various organic materials. [219] The surface of PDMS can be activated 

(oxidized) by oxygen plasma or ultraviolet treatments converting the hydrophobic silane-

methyl groups to hydrophilic silane-hydroxyl groups.  This hydrophilicity is only 

transient, however, as hydrophobic recovery is observed in as little as a few hours or 

days.[117, 118] Improvements to the surface of PMDS have recently been realized via a 

multitude of surface modification techniques [220-227] resulting in stable hydrophilic 

surfaces.  However, a natively hydrophilic material with similar properties to that of 

PDMS that could be used in a simple and inexpensive soft lithography process could be 

very useful as no modifications would be necessary to obtain the high energy surfaces 

achieved via modified PDMS materials.  

 The need and benefits of thiol-ene chemistry have been realized in the field of 

microfluidics but have been limited only to photopolymerizable systems. The unique 

aspects of the thiol-ene step-growth reaction make it superlative for photolithography 

and microfluidic device fabrication. More distinct photolithographic features can be 

obtained due to the delay in gel point associated with thiol-ene chemistry.  The network 

uniformity as well as the low shrinkage and shrinkage stress add some homogeneity 

and thus reproducibility to the final product. The lack of oxygen inhibition facilitated by 

the thiol provides a less complex procedure where ambient conditions are acceptable. 

[5] Photoinitiated thiol-ene systems have been used to fabricate microfluidic devices 

[228-233], modify the surface of microdevices [30], and control the material properties of 
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microfluidic devices [234, 235]. Good et al used photoinitiated thiol-ene chemistry to 

prepare a flexible membrane removable lid for a gas tight microfluidic device to 

separate an effervescent reaction from a sample. [232] Ashley et al prepared 

microfluidic devices with a range of shapes and aspect ratios via a soft lithography 

process using photoinitiated thiol-ene and thiol-acrylate chemistries. [233] To prevent 

the normal instabilities of microfluidic devices in aliphatic and aromatic organic solvents, 

Cygan et al fabricated organic solvent-resistant microfluidic devices using thiol-ene 

based resins via a rapid prototyping photolithography technique and quantified and 

explained their solvent resistance. [229] Natalie et al prepared multilayer thiol-ene 

microfluidic devices by direct photolithographic patterning and transfer lamination 

avoiding the necessity for intermediate master molds and stamps. [230] For the work 

described here, a method of using thiol-ene chemistry is described where all of the 

advantages associated with photoinduced thiol-ene chemistry were maintained, but the 

necessity for UV initiation was eliminated.  A catalyst/commoner molecule was initially 

formed via the Michael addition of a secondary amine to a trifunctional acrylate.  This 

resulting molecule was used as an in situ tertiary amine catalyst for the Michael addition 

of a multifunctional thiol to a multifunctional acrylate.  By using this in situ catalyst 

pathway, further advantages were added to the already highly advantageous thiol-ene 

chemistry, especially in terms of biological systems and thus microfluidics.  Amine 

catalyzed thiol-acrylate chemistry was used to prepare stable hydrophilic microfluidic 

devices in a simple fashion, in less time, and with out the need for expensive materials 

or instrumentation. 
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3.3 Materials and Structures 

 
 
Scheme 3-1:  Notable chemical structures for microfluidic device fabrication 
 
 All materials were used as received without further purification. Pentaerythritol 

triacrylate (PETA) was obtained from Sartomer and Sigma Aldrich. The urethane 
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acrylate (UA) utilized was obtained from Sartomer under the trade name CN929. 

Trimethylolpropane tris(3-mercaptopropionate) (TMPTMP), diethylamine (DEA), 

triethylamine (TEA), trimethylolpropane ethoxylated triacrylate 692 (TMPeTA 692), 

trimethylolpropane ethoxylated triacrylate 912 (TMPeTA 912), poly(ethylene glycol) 

methyl ether acrylate (PEGMEA), lauryl acrylate (LA), dodecafluoroheptyl acrylate 

(DFHA), and hexafluoroisopropyl acrylate (HFIPA) were obtained from Sigma-Aldrich.  

Polydimethylsiloxane was obtained from Dow Corning under the trade name Sylard 

184.  Structures for notable chemicals are illustrated in Scheme 3-1.  

3.4 Generic Soft Lithography Fabrication Process 

 
Scheme 3-2:  Basic process for soft lithography production of PETA-co-TMPTMP 
Boundless microfluidic device 
 

Scheme 3-2 illustrates the soft lithography fabrication method used to prepare 

the thiol-acrylate Boundless microfluidic devices. Also shown here is a diagram for the 

soft lithography fabrication of a polydimethylsiloxane (PDMS) microfluidic device for 

comparison purposes [137, 200].  As with PDMS soft lithography, the T-A method is 

initiated by pouring the liquid thiol-acrylate/catalyst solution onto a poly(methyl 

methacrylate) (PMMA) positive mold.  Unlike the PDMS method that must be heated to 
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achieve rapid curing (1 hour), the thiol-acrylate method gels in less than 1 hour at room 

temperature.  Next, both the PDMS and the T-A material can be peeled from the PMMA 

mold to yield a polymer negative.  The surface of the PDMS material must then be 

modified via oxygen plasma for the adhering step and to produce a hydrophilic surface.  

The Boundless T-A material does not require any further surface modifications due to its 

native hydrophilicity and its ability to be adhered via the thiol-acrylate polymerization at 

the interface of the two materials. 

3.5 PETA-co-TMPTMP 

3.5.1 Experimental Procedures 

In Situ Catalyst/Comonomer Preparation 

 The comonomer/in situ tertiary amine catalyst molecule was prepared via the 

addition of diethylamine (DEA) to Pentaerythritol triacrylate (PETA) in a glass jar or vial 

containing a stir bar.  The jar was then capped, inverted multiple times in a rapid 

manner, and vigorously stirred on a magnetic stir plate for at least 3 hours prior to use. 

Sample Preparation for Contact Angle Measurements 

 Thiol-acrylate thick film polymer samples were prepared via an in-situ base-

catalyzed Michael addition of a multifunctional thiol to a multifunctional acrylate.  The 

comonomer/catalyst was added to a stoichiometrically equivalent amount of 

trimethylolpropane tris(3-mercaptopropionate), taking into account the loss of acrylate 

functional groups from the initial reaction of the secondary amine and the triacrylate.   

The mixture was then lightly stirred with a glass stir rod as to not introduce any air 

bubbles. Once completely mixed to form one homogeneous solution, 5 grams of the 

solution was poured into a 60 x 15 mm polystyrene petri dish.  The system was allowed 
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to react for 24 hours at room temperature.  Once fully reacted, the films were peeled 

from the petri dishes and the contact angles measured. A 1 µL drop of nanopure water 

was allowed to equilibrate on the surface for 1 minute prior to measuring the contact 

angle.  Three contact angle measurements at different places on the surface were 

measured per sample per day to insure homogeneity of the surface and statistical 

precision.  After the measurement, the material was placed back in the petri dish and 

stored in a lab cabinet.  

Sample Preparation for Experimental Gel Time as a Function of Amine 
Concentration 
 

To determine the gel time as a function of amine concentration, 

comonomer/catalyst solutions were prepared with varying amounts of DEA.  The 

comonomer/catalyst was then added to a vial containing a stoichiometrically equivalent 

amount of trimethylolpropane tris(3-mercaptopropionate), taking into account the loss of 

acrylate functional groups from the initial reaction of the secondary amine and the 

triacrylate.  The mixture was shaken or stirred vigorously for 1 minute.  The 

homogeneous solution was then placed in an inverted syringe attached to anther 

syringe, which was connected to an air source.  Air was bubbled through the solution at 

a slow rate, and the gel time was determined and documented as the time at which a 

bubble could no longer travel through the solution (i.e. in the gel state).   

Sample Preparation for Experimental Gel Time as a Function of Amine/Acrylate 
Reaction Time 
 
 To determine the gel time as a function of DEA/PETA reaction time, a 

comonomer/catalyst solution was prepared with a given amount of DEA and vigorously 

shaken and allowed to stir undisturbed constantly.  Periodically, an aliquot was removed 
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and added to a vial containing a stoichiometrically equivalent amount of thiol, again 

taking into account the loss of acrylate functional groups.  The mixture was shaken or 

stirred vigorously for 1 minute.  The homogeneous solution was then placed in an 

inverted syringe attached to anther syringe, which was connected to an air source.  Air 

was bubbled through the solution at a slow rate, and the gel time was determined and 

documented as the time at which a bubble could no longer travel through the solution 

(i.e. in the gel state).   

Sample Preparation for Post-modification 

 Thiol-acrylate thick film polymer samples were prepared containing a 

calculated and known excess amount of thiol (e.g. 50% excess thiol) via an in-situ base-

catalyzed Michael addition of a multifunctional thiol to a multifunctional acrylate.  The 

comonomer/catalyst was added to the calculated amount of trimethylolpropane tris(3-

mercaptopropionate) to result in the excess thiol, taking into account the loss of acrylate 

functional groups from the initial reaction of the secondary amine and the triacrylate.   

The mixture was then lightly stirred with a glass stir rod as to not introduce any air 

bubbles. Once completely mixed to form one homogeneous solution, the solution was 

poured into a mold or petri dish and allowed to react for 24 hours at room temperature. 

Once prepared, the films were weighed and then fully submerged in a liquid 

monofunctional acrylate solution containing 1.96 wt% triethylamine. The films remained 

in the solution for various amounts of time depending on desired result and analysis.  

After a given amount of time the films were removed, dabbed dry with a clean cloth, and 

weighed.  Further analysis was then applied to the post-modified films. 
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Sample Preparation for Bulk Modification 

 Various amounts of monofunctional modifier were added to a vial containing 

stoichiometrically equivalent amounts of trimethylolpropane tris(3-mercaptopropionate), 

taking into account the loss of acrylate functional groups from the initial reaction of the 

secondary amine and the triacrylate as well as the amount of acrylate present from the 

monofunctional acrylate modifier. The percent of monofunctional small molecule 

modifier added and documented was calculated based solely on the acrylate content 

(by functionality).   The TMPTMP and monofunctional acrylate were lightly stirred with a 

glass stir rod until a homogeneous solution resulted. The acrylate comonomer/catalyst 

was then added at the end and again stirred with a glass stir rod until a homogeneous 

solution resulted, taking care not to introduce any air bubbles into the sample.  The 

sample was poured into a mold or petri dish and allowed to polymerize for ~24 hours 

prior to analysis.  

Sample Preparation for 3-point Bending 

 The comonomer/catalyst was added to a stoichiometrically equivalent amount 

of trimethylolpropane tris(3-mercaptopropionate), taking into account the loss of acrylate 

functional groups from the initial reaction of the secondary amine and the triacrylate.   

The mixture was then lightly stirred with a glass stir rod as to not introduce any air 

bubbles. Once completely mixed to form one homogeneous solution, the solution was 

poured into a 4 cm x 16.5 cm x 0.55 cm collapsible mold constructed using wood, wax 

paper, PMMA blocks, and metal screws. The strengths of the samples were then 

analyzed via a 3-point bending method obtaining the flexure strength and modulus of 

elasticity. 
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Sample Preparation for Orthogonal Force Delamination Analysis  

 Two thiol-acrylate thick film polymer samples were prepared, one containing a 

calculated and known excess amount of thiol and the other containing a the same 

known and calculated excess amount of acrylate (e.g. 50% excess thiol or acrylate).  

The comonomer/catalyst was added to the calculated amount of trimethylolpropane 

tris(3-mercaptopropionate) to result in the appropriate amounts of excess thiol or 

acrylate, taking into account the loss of acrylate functional groups from the initial 

reaction of the secondary amine and the triacrylate. The mixture was then lightly stirred 

with a glass stir rod as to not introduce any air bubbles. Once completely mixed to form 

one homogeneous solution, the solution was poured into a 60 x 15 mm polystyrene petri 

dish and allowed to react for 1 hour at room temperature. After one hour the two films 

were removed from their respective petri dishes, cut into 2 cm circular disks using a 

cork borer, and immediately pressed together.  A 6 lb weight was applied on top of the 

adhered samples and remained atop the samples for 24 hours. Once prepared, the 

adhered samples were fixed between two metal plates via a 5-minute epoxy adhesive.  

The metal plates were then attached to an instron, and a force was applied at a 90˚ 

angle to the adhered surface.  The stress required for delamination of the adhered thiol-

acrylate films was determined.  

Sample Preparation for Real-Time Fourier Transform Infrared Spectroscopy 

 Thiol-acrylate samples containing various concentrations of amine were 

prepared via the addition of the catalyst/comonomer to a vial containing a 

stoichiometrically equivalent amount of trimethylolpropane tris(3-mercaptopropionate). 

The mixture was shaken vigorously for 2 minutes.  An aliquot of the homogeneous 
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solution was then pipetted between two 25 mm x 2 mm Potassium Bromide salt plates 

and placed in the FTIR sample holder.  The instrument was programmed to run a scan 

at given time intervals (e.g. scan every 2 minutes) until at least 24 hours of reaction time 

had passed.  

3.5.2 Material Dependence on Urethane Acrylate Component 

 A multifunctional acrylate system was desired for the hydrophilic films and 

ultimately the microfluidic devices because a product of comparable strength to the 

presently available products would be essential.  Pentaerythritol triacrylate was chosen 

as the major acrylate monomer because it was hydrophilic enough to produce a 

hydrophilic product, but not hydrophilic enough to result in a high-swelling hydrogel-type 

product.   Trimethylolpropane tris(3-mercaptopropionate) was chosen because the 

Michael addition using this trithiol was well investigated by the Pojman Research Team 

[39, 236, 237] as well as other groups [4, 5, 238, 239].  Also, this trithiol was known to 

be mostly insoluble in water further preventing the swelling of the resulting product.  A 

trifunctional aliphatic polyester urethane acrylate (CN929) was also incorporated into 

the initial formulations.   This monomer was added originally in an attempt to improve 

the strength and flexibility of the of the resulting polymer product via the urethane 

linkage as the PETA product was assumed to be too brittle. The urethane acrylate being 

used (CN929) was a proprietary compound, thus the true molecular weight was not 

known from literature.  This lack of known molecular weight made it nearly impossible to 

facilitate the 1:1 molar ratio of acrylate functional groups to thiol functional groups, 

which was a very important aspect for the success of this chemistry, especially for this 

particular microfluidic application. Also, the urethane acrylate was highly viscous, 
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causing problems with mixing as well as with the removal of air from the samples before 

the gel time, trapping bubbles within the polymer.  Because of the associated problems 

with the urethane acrylate, the true dependence of the hydrophilic polymer materials on 

the urethane acrylate component was investigated.     

 The first dependence studied was that of the hydrophilicity of the polymer 

surfaces.  Samples were prepared containing different concentrations of urethane 

acrylate, including a control sample containing no urethane acrylate.  The water contact 

angles were determined for each of the corresponding samples and the data are 

illustrated in Figure 3-1. 

 
 

Figure 3-1:  Water contact angle as a function of urethane acrylate concentration.  
 
 There was no real change in the water contact angle as the concentration of the 

urethan acrylate component was increased from no urethane acruylate to as much as 

17 mol% urethane acrylate.  The average water contact angle of the neat PETA-co-

TMPTMP material (no urethane acrylate) was found to be 59.7±1.99˚. The material with 
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the highest studied urethane acrylate concentration (~17 mol%) had an average water 

contact angle of 59.4±0.60˚.  The aveage water contact angles were observed to vary 

less than 1˚ amoung the 4 different urethane acrylate concentrations analyzed.  This 

result indicated that the urethane acrylate had no affect on the hydrophilicity of the 

polymer surfaces.  

 Next, the strength of the thiol-acrylate samples (the original reason for adding 

urethane acrylate) was tested as a function of urethane acrylate.  This was done by 

preparing samples with varying concentrations of urethane acrylate, and preforming 

tensile strength analysis. The results of this analysis are shown in Figures 3-2 through 

3-4. 

 

Figure 3-2:  Stress strain curve as a function of urethane acrylate molar concentration.  

 Figure 3-2 illustrates the stress-strain curves for the different samples contianing 

various amounts of urethane acrylate.  At first glance, the sample containing no 

urethane acrylate appeared to be the strongest as it could handle a higher stress and 
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appeared to strain comparibly well to the sample containing 3.1 mol% urethane 

acrylate.  However, to confirm this, the actual values for the maximum stress and 

maximum strain at the breaking point as well as the modulus of elasticity were 

compared as shown in Figures 3-3 and 3-4.   

 

Figure 3-3:  The maximum tensile stress at the breaking point as a function of urethane 
acrylate molar concentration.  
 
 Figure 3-3 illustrates the amount of stress that the samples could endure before 

failure.  The samples containing no urethane acrylate were observed to be the strongest 

in terms of maximum stress.  In fact, the maximum stress was observed to be indirectly 

related to the urethane acrylate concentration.  The average tensile stress at break for 

the neat samples containing no urethane acrylate was found to be 1150±156 kPa.  The 

materials containing 6.1 mol% UA were found to have an average tensile stress at 

break of 896±51.7.  As the urethane acrylate molar concentration was increased, the 

maximum stress at the breaking point was observed to decrease.    
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 The next  comparison involved the modulus of elasticity.  As can be observed in 

Figure 3-4, both of the samples containing urethane acrylate boasted average moduli of 

elasticity less than that of the sample containging only PETA.  The neat PETA-co-

TMPTMP samples containing no UA had a measured average tensile modulus of 

16000±310 kPa.  The samples containing 3.1 mol% UA and 6.1 mol% UA were found to 

have average tensile moduli of 12500±425 kPa and 12700±1330 kPa, respectively.  

 

Figure 3-4:  Modulus of Elasticity as a function of urethane acrylate molar 
concentration.  
 

Although the urethane acrylate did reduce the stiffness of the materials to some 

degree, this was only a small benefit and not enough to justify its use when compared to 

the larger problematic issues associated with the urethane acrylate.  From the strength 

data, it was concluded that the materials were all very similar in terms of their strengths, 

and not enough structural benefit was found to justify the use urethane acrylate in the 

formulation.   
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 The next aspect that was observed in association with the use of urethane 

acrylate was its effect on the unstirred experimental gel times.  The unstirred 

experimental gel times associated with samples contianing urethane acrylate and 

samples containing only PETA were compared.  The data are illustrated in Figure 3-5. 

 

Figure 3-5:  A comparison of the gel times as a function of DEA/Acrylate Reaction time 
for sample with and without urethane acrylte. Both systems contained 15 PHR 
diethylamine. 
 
 The same gel time trend was observed for both systems with or without the 

urethane acrylate component.  The gel time increased as the reaction between the 

DEA/acrylate approached completion. Also, at this given concentration (15 phr), the 

final reaction times (after the completion of the intial reaction) for both samples were 

similar.  The final constant reaction times differed by less than 4 minutes.  This indicated 

that the urethane acrylate did not significantly alter the gel time, again showing the lack 

of necessity for the troublesome component.  
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 Finally, the glass transition temperatures were determined as a function of the 

urethane acrylate concentration.  Figure 3-6 illustrates these data.   

 

Figure 3-6:  DSC showing the major Tg as a function of urethane acrylate.   

 The glass transition temperatures for the polymer materials were found to all be 

near zero and differ only by ~6˚C.  This result shows that the glass transition 

temperature did not significantly depend on the composition of the sample with respect 

to the urethane acrylate component.  This DSC data also provide the working 

temperatures associated with the use of thess polymer materials.  These materials 

could be used at any temperature above 3˚C without performing as a glass.  

 The high viscosity and the proprietary nature of the urethane acrylate component 

caused very difficult handling, additional degassing steps, and potentially low 

conversion products due to stoichiometric issues.  The tensile strength analysis 

illustrated that the urethane acrylate component slightly increased the flexibility of the 

final product as was expected.  However, all other comparative analyses done here and 
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discussed above showed no benefits in the addition of the urethane acrylate 

component.  From the hydrophilicity analysis, the strength analysis, the gel time 

analysis, and the thermal analysis, it was concluded that the complexity added by the 

urethane acrylate component outweighed the small benefits associated with the 

flexibility of the final product.  

3.5.3 Michael Addition to Produce In Situ Bound Catalyst 

It was concluded that the complexity added by the urethane acrylate component 

outweighed the small benefits associated with the flexibility of the final product. It was 

ideal for the applications of this polymeric material that it be easily produced under 

ambient conditions.  Original samples were prepared using the simple tertiary amine, 

triethylamine.  It was known and well studied [3] that tertiary amines such as 

triethylamine could act as a base catalyst for the thiol-acrylate reaction as shown in 

Scheme 1-5.  However, original thiol-acrylate film samples prepared using this highly 

volatile triethylamine had tacky surfaces when allowed to react open to the environment.  

It was hypothesized that the tacky nature was caused by the evaporation of the small 

molecular weight and highly volatile triethylamine resulting in low conversion at the 

surface of the film.  To eliminate this problem, a less volatile tertiary amine that would 

not affect the hydrophilic nature of the product was sought.  A secondary amine can act 

as a strong nucleophile in a Michael Addition reaction with an electron-deficient 

acrylate. [36] Thus, a secondary amine, diethylamine, was attached to the high 

molecular weight acrylate (PETA) via a Michael addition resulting in a molecule that 

could function both as a nonvolatile catalyst and a comonomer containing available 
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functionality to be crosslinked with the trithiol.   Scheme 3-3 illustrates the simple 

Michael addition reaction scheme.  

 

Scheme 3-3: Formation of in situ comonomer/catalyst molecule via the Michael addition 
of a secondary amine to a trifunctional acrylate.  
 

It was important to note that each addition of the secondary amine (DEA) to the 

trifunctional acrylate (PETA) caused a decrease in the average functionality of the 

comonomer thiol-acrylate system.  With each addition, a trifunctional acrylate molecule 

became a difunctional acrylate molecule.  Because this reaction proceeds via a step-

growth mechanism, an average functionality greater than two was required to achieve a 

crosslinked network. It was therefore imperative that he DEA concentration not reach an 

upper limit that would result in the decrease of the average monomer functionality to 

below two.   

In order to confirm this reaction and determine the simple reaction kinetics, the 

reaction conversion was studied as a function of time.  The decrease in the acrylate 

peak of PETA was monitored via NMR analysis.  The results are shown in Figure 3-7. 

Figure 3-7a illustrates the NMR spectrum of PETA alone, while Figure 3-7b shows the 

spectrum of a mixture of PETA and 20 mol% DEA after 3 hours.  The peaks 

corresponding to the acrylate groups (boxed in Figure 3-7) decreased by ~20% upon 

the reaction of PETA and DEA for 3 hours.  This suggested quantitative conversion of 

the secondary amine to a tertiary amine catalyst/comonomer molecule via the Michael 
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addition of diethylamine to the electron deficient acrylate. Virtually all of the secondary 

amine was converted to a tertiary amine in 3 hours.  Because of this result, the 

diethylamine and PETA were allowed to react for at least 3 hours prior the addition of 

the trithiol (TMPTMP) and the completion of the final product.  

 

Figure 3-7:  NMR spectra showing the loss of acrylate functional groups after 3 hours of 
reaction time.  Spectrum a) represents PETA alone (t0) and spectrum b) represents 
PETA containing 19.3 mol% after 3 hours (t3hr) of reaction time.  The boxed peaks, 
corresponding to the acrylate functional groups, decreased by ~20% from spectrum a) 
to spectrum b). 

3.5.4 Addition of the Comonomer/Catalyst to the Multifunctional Thiol 

Once the in situ catalyst was produced, it was added to the trithiol (TMPTMP) in 

a stoichiometric 1:1 molar ratio of thiol to acrylate functional groups.   This molar ratio 

accounted for the amount of acrylate groups consumed during the initial Michael 

reaction with the secondary amine.  Thus, the final amount of thiol added to the reaction 

mixture was not based on the initial amount of acrylate groups incorporated, and the 

amine concentrations are all given with respect only to the acrylate functional groups 

and not to the total mixture.   
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Scheme 3-4: Reaction scheme illustrating the production of the comonomer/catalyst 
molecule followed by the initiation and two propagation steps of the thiol-acrylate 
Michael addition.    
 

Scheme 3-4 illustrates the suspected reaction from the initial Michael reaction 

producing the high molecular weight, non-volatile tertiary amine catalyst to the initiation 

and propagation of the thiol-acrylate polymerization.  The tertiary amine catalyst 

functioned as a strong base to deprotonate the thiol, resulting in the initiation of the 

anionic step-growth polymerization mechanism.  Two separate propagation steps then 

followed.  The first propagation step involved the Michael Addition of the deprotonated 

thiyl anion to the electron-deficient ene group.  Next, a hydrogen transfer occurred 

between another thiol and the newly formed carbon anion.  This second propagation 
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step resulted in a chain transfer and another deprotonated thiol that was activated for 

another Michael Addition.  This dual propagation mechanism is the reason that this 

reaction is considered a step growth polymerization, however it is essentially a chain 

growth mechanism with a continuously sequential chain transfer step (propagation 2). 

3.5.5 Gel Times as a Function of DEA-PETA Reaction Time 

The thiol-acrylate experimental gel times were determined as a function of 

DEA/PETA reaction time.  This was necessary to determine the time required to reach 

high conversion of the nonvolatile tertiary amine prior to the addition of the trithiol.  The 

experimental gel times were in agreement with the NMR data. Figure 3-8 illustrates the 

gel time curve.   

 

Figure 3-8:  Thiol-acrylate gel time as a function of DEA/PETA reaction time.  The 
reaction contained 16.1 mol% DEA relative the PETA functional groups.  
 

Figure 3-8 illustrates the experimental gel time for the thiol-acrylate Boundless 

material as a function of the elapsed reaction time associated with the initial amine-

acrylate Michael addition.  The experimental gel time was defined as the point at which 
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an air bubble could no longer travel through the material via buoyancy-driven force.  

The gel time increased as a function of the amine-acrylate reaction time until a point 

after which the gel time stabilized. The increase in the gel time as a function of 

DEA/PETA reaction time is due to the differences in the catalytic abilities of tertiary and 

secondary amines [42].  Chan et al have shown that a primary amine or a secondary 

amine can function as a nucleophilic- and more efficient catalyst for the thiol-acrylate 

reaction as opposed to a tertiary amine base catalyst.[3] The increase in the thiol-

acrylate gel time as a function of time is indicative of a conversion of a secondary amine 

to a tertiary amine.  As the secondary amine was converted to a tertiary amine, the 

catalyst mechanism shifted from a nucleophilic catalysis to a less efficient base 

catalysis. Once the gel time reached a steady state, all of the nucleophilic secondary 

amine had been converted to a tertiary amine base catalyst.  According to the 

experimental gel times, the DEA/PETA reaction was complete in ~2 hours as indicated 

by the constant gel times reached beyond 2 hours. This further proved, along with NMR 

data in Figure 3-7, that the initial amine-acrylate Michael reaction did occur, and 

reached completion in 2-3 hours. Because of the experimental gel time data and the 

NMR data, each DEA/PETA reaction was allowed to proceed for at least 3 hours under 

constant stirring prior to the addition of the trithiol.   

3.5.6 Manipulation of Gel Times 

The thiol-acrylate gel time could be manipulated by varying the concentration of 

DEA incorporated into the initial Michael reaction.  Figure 3-9 illustrates the gel time as 

a function of initial amine concentration. The manipulated gel times ranged from ~2 

hours to <20 minutes within the amine concentration array examined in this study. 
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Figure 3-9:  Experimental gel time as a function of diethyl amine concentration.  DEA 
concentrations are with respect to the acrylate functional groups only. 
 

The left half of Figure 3-9 conforms to the normally accepted catalyst 

concentration trend.  As the concentration of catalyst was increased, the reaction rate 

increased causing a decrease in the gel time.  However, beyond ~17 mol% DEA, the 

gel time began to increase, which would apparently indicate an uncommon decrease in 

the rate of polymerization with an increase in catalyst concentration.  It could be argued 

that this was simply due to a dilution effect; declaring that at some point the catalyst 

diluted the acrylate and thiol functional groups causing a decrease in the rate of 

polymerization.  It could also be argued that the loss of acrylate functional groups 

associated with the first Michael addition caused a decrease in the rate of 

polymerization with an increase in the amine concentration.  When the decrease in 

monomer concentration outweighed the increase in the rate constant caused by an 

increase in catalyst concentration, the overall rate of polymerization decreased.  
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However, both of these arguments were falsified via FTIR analysis, and the conversion 

kinetics of this in situ thiol-acrylate polymerization reaction were determined.   

3.5.7 Thiol-Acrylate Reaction Conversion and Kinetics 

 

Figure 3-10:  The loss in peak area as a function of time for the thiol peak (a) at 2572 
nm and the loss in peak areas as a function of time for the acrylate peaks (b) at 1635 
and 1619 nm.  This system contained 16.1 mol% DEA relative only to acrylate 
functional groups.  
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Figure 3-11:  Conversion as a function of time for both the thiol (2572 nm) and the 
acrylate (1635 and 1619 nm) functional groups.  a) 16.1 mol% b) 2.8 mol% relative to 
the acrylate functional groups.  
 

The percent conversion and polymerization kinetics associated with the second 

Michael addition reaction (thiol to acrylate) were determined via FTIR analysis as a 

function of real time.  Two distinct peaks were monitored as a function of time.  The 

peak at 2572 nm [40, 240] was associated with the thiol functional groups, and the 



 

102 

peaks at 1635 and 1619 nm [40, 240] corresponded to the acrylate functional groups.  

The decrease in these peak areas as a function of time is shown in Figure 3-10. 

The loss in both peaks as a function of time is obvious from Figure 3-10.  The 

percent conversions of the thiol and acrylate groups were determined by monitoring the 

loss in the peak areas as a function of real time. The thiol-acrylate reaction was allowed 

to proceed between two salt plates fitted in an FTIR sample receptacle.  A spectrum 

was obtained periodically (~2 min) during the polymerization, and the losses in peak 

areas were used to calculate the percent conversion.  Figure 3-11 illustrates sample 

conversion data. 

When 16.1 mol% DEA was used (Figure 3-11a), both the acrylate and thiol 

functional groups reached high conversion (>90%) in less than 24 hours.  Although 

more time was required, the system containing only 2.8 mol% DEA (Figure 3-11b) also 

reached >90% conversion. The actual conversion was likely higher than indicated by 

Figure 3-11 as a “true” initial peak areas could not be adequately determined due to the 

time lost from mixing the thiol and acrylate and preparing the sample between the salt 

plates prior to the first scan. High conversion is a typical and very important property of 

these cationic thiol-acrylate reactions due in part to the lack of a termination step.

This high conversion is useful for any biological application (such as microfluidics) as 

there is no need to remove excess and potentially harmful monomer impurities from the 

final product. 

3.5.8 Gel Time Analysis Via FTIR 

To address the unusual gel time observation as a function of DEA concentration 

previously addressed (Figure 3-9), the thiol-acrylate kinetics were studied as a function 
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of amine catalyst concentration. Thus, FTIR studies were performed as a function of 

real time using systems with various concentrations of amine catalyst.  Figure 3-12a 

illustrates these data. 

 
Figure 3-12:  Conversion data as a function of amine concentration.  Figure a) 
illustrates the real-time conversion of acrylate functional groups monitored via FTIR as a 
function of amine catalyst concentration.  Figure b) illustrates the theoretical critical 
conversion value as a function of the fraction of acrylate groups previously reaction 
(DEA concentration) using both the Flory and Stockmayer estimation and the Carothers 
estimation.    
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The data in Figure 3-12a show that the rate of polymerization increased as a 

function of DEA concentration disproving the arguments discussed previously. 

Therefore, a different explanation was hypothesized where the average functionality of 

the monomer/catalyst molecule was the determining factor of the unusual gel times. The 

critical conversion required to reach gelation (ρc) can be estimated based on two 

different theories, the Carothers theory and the Flory and Stockmayer theory, both 

equations shown below:    

ρc=2/ƒavg   (Carothers) [89] 

ρc=1/(1+ƒ-2)1/2  (Flory and Stockmayer) [89] 

These theories assume equal reactivity of all functional groups of the same type 

regardless of the size of the molecule and that there are no intramolecular reactions 

between functional groups on the same molecule. [89] Because of this assumption, the 

theoretical numbers may not exactly match the experimental data, but the overall trend 

should.  As shown in Figure 3-12a, the rate (Rp) of loss of monomer increased with an 

increase in the concentration of amine, however the gel time (Figure 3-9) increased with 

an increase in the concentration of amine.  In this case, the increase in the gel time with 

extremely high amine concentration was associated with a change in the critical percent 

conversion (ρc).  As the concentration of the amine was increased, the functionality of 

the acrylate was decreased due to the initial Michael reaction, causing ρc to increase 

greatly thereby preventing gelation until later in the reaction.  This was the cause of the 

decrease in the gel time as a function of the increase in catalyst concentration at high 

concentration and the parabola-type curve shown in Figure 3-9.  This resulted in the 

illusion of a decrease in the rate of polymerization.  The physical gel times of these 
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particular thiol-acrylate reactions could be manipulated to a point, but a lower limit did 

exist due to the use of an in situ catalyst that inherently caused a decrease in the 

average functionality of the system. 

3.5.9 Glass Transition Measurements 

Differential scanning calorimetry was performed on these thiol-acrylate 

Boundless materials to determine their glass transition temperatures.  Figure 3-13 

illustrates the glass transition temperatures at different amine catalyst concentrations.  

Figure 3-13a shows the raw DSC data of heat flow as a function of temperature.  The 

second-order transition temperatures are easily observed where the heat flow 

decreased at a given temperature without recovering back to the original baseline.  

Figure 3-13b illustrates the measured glass transition temperature as function of amine 

concentration. The DSC data provided the working temperatures associated with these 

thiol-acrylate materials via the determination of the glass transition temperatures (Tg).  

These materials can be used at a wide range of temperatures without performing as 

glass-like materials.  Furthermore, the useable-temperature of the material could be 

manipulated based on the concentration of the in situ amine catalyst. All of the 

combinations observed in Figure 3-13 showed glass transition temperatures of less than 

0˚C. The change in the glass transition temperature as a function of DEA concentration 

(Figure 3-13b) was attributed to the decrease in the crosslink density with an increase in 

the DEA concentration.  An increase in the DEA concentration resulted in a decrease in 

the average functionality of the system by decreasing the functionality of the acrylate 

monomer.  This decrease in the functionality led to a decrease in the material cross-link 

density, allowing for an increase in segmental mobility of the network thus causing a 
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decrease in the glass transition temperature.  From a microfluidic standpoint, the 

natively low and manipulatable Tg of these materials is advantageous as it allows for a 

wide analyte temperature range to be employed during analysis. 

 

Figure 3-13: Differential scanning calorimetry data showing glass transition 
temperatures (Tg) for Boundless materials.   Figure a) illustrates the heat flow as a 
function of temperature at varying DEA concentrations.  Figure b) illustrates the glass 
transition temperature as a function of DEA concentration.  
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3.5.10 Flexure Strength 

 

Figure 3-14:  3-point bending analysis results. a) Stress strain curve as a function of 
DEA concentration, b) fracture flexure strength and flexure modulus as a function of 
DEA concentration.  All samples were tested after 24 hours.   
 

The flexure strengths of these thiol-acrylate materials were determined using a 3-

point bending method.  Samples containing various amine concentrations were 
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analyzed and their mechanical aspects compared along with PDMS. The mechanical 

properties of the material were manipulated as shown in Figure 3-14.  Beyond 16.1 

mol% DEA, the flexure strength of the material (Figure 3-14b) decreased and the 

flexibility (Figure 3-14b) increased with an increase in the DEA concentration.  The 

increase in flexibility and the decrease in flexure strength originated from the decrease 

in the crosslink density facilitated by the increase in the concentration of the amine.  

Again, due to the first Michael addition, an increase in the amine concentration caused 

a decrease in the functionality of the trifunctional acrylate, resulting in a decrease in the 

overall functionality and thus the crosslink opportunities.  The material with the highest 

flexure strength and modulus was that containing 16.1 mol% DEA.  Since there was a 

slight decrease in the flexure strength and modulus of materials containing less than 

16.1 mol% DEA, the reaction conversion also likely played a role in the strength of the 

material.  All of the samples used in the analysis were allowed to react for 24 hours prior 

to being tested.  The material with the highest strength and modulus was also the 

material with the fastest gel time (gel time figure 3-9).  This potentially implied that the 

polymerization kinetics played a role in the strength of the final material.   

As a comparison tool, PDMS samples of the same dimensions were also 

analyzed using this 3-point bending technique.  The data for these silicone samples are 

shown in Figure 3-14.  The PDMS materials were found to have much higher flexure 

fracture strength.  Because the 3-point bending technique employed was not successful 

in fracturing the samples, Figure 3-14a illustrates the continuation of the stress strain 

curve infinitely along the x-axis, and Figure 3-14b illustrates the continuation of the 

corresponding strength data bar beyond the scope of the measurement along the y-
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axis.  The PDMS samples also boasted a very low flexure modulus only attainable via a 

PETA-co-TMPTMP sample with very low flexure strength. These data indicated that, in 

terms of material strength, PDMS was much stronger and much more flexible than the 

PETA-co-TMPTMP samples.  This material weakness compared to PDMS was not a 

strong disadvantage however, as the field of microfluidics does not require extremely 

tough and rugged materials for biological assays.  The many advantages associated 

with the use of these novel thiol-acrylate materials greatly overpowered the small 

sacrifice in material strength.    

 

Figure 3-15:  3-point bending analysis results illustrating the flexure modulus and the 
flexure strength as a function of elapsed time after polymerization.   
 

To determine if there was a kinetic aspect in correlation with the mechanical 

strength of the material, the mechanical properties were analyzed as a function of 

elapsed time beyond polymerization. These data are shown in Figure 3-15.  Both the 

strength and stiffness of the material increased as a function of elapsed time from 1 to 

24 hours.  Beyond 24 hours the strength and flexibility of the material remained 
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constant, indicating that the full strength of the material could be obtained after 24 hours 

of reaction time.  This was in full agreement with the kinetic data (Figure 3-11), as the 

reaction was observed to reach >95% conversion after a 24 hour time period.  

3.5.11 Annealing Via Partial Polymerization/Excess Monomer Technique 

 Two thiol-acrylate films could be annealed using the same chemistry without the 

need for surface activation, which required expensive instrumentation.   This eliminated 

a costly and time-consuming step in the final production of the microfluidic device.  The 

adhesion was facilitated via a partial polymerization method involving excess functional 

groups on opposing surfaces.  Scheme 3-4 illustrates the Bondless microfluidic device 

annealing mechanism. 

 
Scheme 3-4: Annealing of thiol acrylate microfluidic device via a partial polymerization 
and excess monomer method. 
 

The adhesion between the two surfaces was attributed to the extremely high 

conversion associated with thiol-acrylate chemistry as well as the use of a step growth 

mechanism where the gel time was rapid, but the full conversion was relatively slow.  

The excess acrylate on one surface and excess thiol on the other resulted in a net 1:1 

molar ratio of thiol to acrylate functional groups between the two surfaces.  This then 
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allowed for the same Michael addition of thiol to acrylate, again catalyzed by the in situ 

tertiary amine previously incorporated into the network.  The covalent thiol-carbon bond 

produced a strong adhesion between the surfaces resulting in sealed microfluidic 

channels down which water could confidently be pumped.  

In order to determine the strength of the bond formed using this partial 

polymerization method, the orthogonal delamination force necessary to delaminate the 

annealed surfaces was determined.  These data are shown in Figure 3-16.   

 

Figure 3-16:  Adhesive bond strength as a function of excess monomer (thiol and 
acrylate) compared to the adhesive bond strength of oxygen plasma activated PDMS. 
 

Flat samples were employed here for ease of comparison.  Samples containing 

various amounts of excess monomers on opposing sides were analyzed using an 

orthogonal delamination analysis method.  Figure 3-16 illustrates an increase in the 

average required delamination force as a function of increasing excess monomer 

concentration from 20% excess monomer to 40% excess monomer.  There was little 

difference in the average strength of the annealing bond above 40% excess monomer.  



112

This was attributed to the different types of failures experienced by the polymer 

samples.  Two annealed samples could be delaminated at the surface of the material 

via an adhesive failure (Scheme 3-5a) where the strength of the bond was dependent 

on the strength of the adherence at the interface of the two materials.  Samples could 

also fail in a cohesive manner (Scheme 3-5b) where the adhesive surface bond was 

stronger than the material being adhered.  

Scheme 3-5: Graphical illustrations of potential orthogonal delamination failure types, a) 
adhesive failure and b) cohesive failure. 

The samples containing only 20% excess monomer (Figure 3-17a) suffered adhesive 

failure, while both the samples containing 40% (Figure 3-17b) and 60% excess 

monomer (Figure 3-17c) experienced cohesive failure.   

 

Figure 3-17: Photographic illustrations of experimental orthogonal delamination failure 
results, a) 20% excess monomer, b) 40% excess monomer, and c) 60% excess 
monomer.  

At excess monomer concentrations below 40% the fewer number of covalent 

bonds between the two films limited the strength of the annealing process.  Beyond 
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40% excess monomer, the strength of the annealing process was limited only by the 

mechanical strength of the material, thus no change in the average stress was observed 

from 40% to 60% excess monomer.  There was, however, an apparent increase in the 

reliability of the annealing bond at 60% excess monomer, as the standard deviation was 

lower when 60% excess monomer was utilized (Figure 3-16).   

Again for comparison purposes, annealed PDMS samples were exploited via the 

same orthogonal delamination analysis.  Both PDMS pieces were first exposed to an 

oxygen plasma generator for 30 seconds to activate the surface for annealing.  The 

PDMS materials were then pressed together and placed in an incubator oven for 24 

hours at 37˚C. The average annealing strength of the thiol-acrylate materials containing 

40% and 60% excess monomer were comparable to that of two PDMS materials 

annealed using the expensive oxygen plasma treatment. Therefore, a thiol-acrylate 

microfluidic device could be prepared with the same annealing integrity as that of a 

PDMS device without the need for expensive instrumentation such as an oxygen 

plasma generator.  

3.5.12 Native Contact Angles 

One of the most useful properties of this copolymer material in terms of 

microfluidic applications is its stable hydrophilic surface.  Hydrophilicity is a very useful 

and sometimes necessary property of microfluidic devices for a multitude of 

reasons[212, 215-218].  One obvious advantage is the wetability of the surface.  A 

hydrophilic surface allows for the passage of aqueous materials down small 

microchannels (or nanochannels) with little force as opposed to small hydrophobic 

channels.[212] Some polymer materials used in microfluidics can be modified to allow 
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for lower contact angles, such as oxygen plasma treatment to PDMS [117], which 

results in drastic decreases in the water contact angle.  However, the surface of these 

oxygen plasma treated samples are not stable beyond a few days and eventually 

resume back to their hydrophobic state. [117] Therefore, a stable microfluidic device is a 

highly desirable novelty, as this would facilitate a prolonged shelf life. The water contact 

angles of these native thiol-acrylate copolymers were observed to range from ~60-65˚ 

regardless of the time elapsed after polymerization or the trithiol concentration. Figure 

3-18a and 3-18b visually illustrate a water droplet on a native PDMS surface and on a 

native PETA-co-TMPTMP surface, respectively.  

 

Figure 3-18: Photographic illustrations of water contact angles on polymer substrates, 
a) Native PDMS and b) Native PETA-co-TMPTMP.  

It was obvious from these optical microscopy images that the thiol-acrylate 

surface was much more hydrophilic (wetable) compared to the PDMS substrate.  The 
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native PDMS surface had a hydrophobic water contact angle of ~115˚ as opposed to 

the hydrophilic thiol-acrylate native contact angle of ~60˚.  Figure 3-19 illustrates the 

water contact angles of native PDMS, oxygen plasma treated PDMS, and PETA-co-

TMPTMP as a function of recovery time.  Native PDMS had a hydrophobic surface with 

a water contact angle of  ~115˚ that remained constant for 2 weeks (Figure 3-19a).  A 

PDMS sample exposed to oxygen plasma for 30 seconds showed initial hydrophilicity, 

having a water contact angle of <20˚ immediately following the oxygen plasma 

treatment.  This hydrophilicity was only transient, however, as the surface quickly 

recovered back to its hydrophobic state with a contact angle of ~70˚ after 1 day, >90˚ 

after 2 days, >100˚ after 1 week, and >107˚ after two weeks (Figure 3-19a).  The PETA-

co-TMPTMP sample, on the other hand, boasted a stable hydrophilic surface with an 

initial water contact angle of ~60˚ that remained constant within 6˚ over the same two 

week time period (Figure 3-19a).  This result illustrated a significant increase in the 

surface stability of the thiol-acrylate material as opposed to the transient nature of the 

oxygen plasma-treated PDMS in maintaining a hydrophilic surface.  

The surface of the native PETA-co-TMPTMP material was monitored for ~2.5 

months to determine the longevity of its stable surface (Figure 3-19b).  Throughout the 

extended study, the water contact angle remained constant within 6˚ for 2.5 months.  

The initial average water contact angle on day 1 was 61.23˚ and the final average water 

contact angle on day 77 was 60.07˚.  Therefore, it was proven that this native thiol-

acrylate microfluidic material could have a shelf life of at least 2.5 months, and there 

was little reason to expect any variations in the surface for even longer periods of time. 
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Figure 3-19:  Water contact angle as a function of time for a) 2 weeks illustrating native 
PETA-co-TMPTMP, native PDMS, and PDMS exposed to oxygen plasma for 30 
seconds and b) 2.5 months showing only native PETA-co-TMPTMP 
 

The native water contact angles were also determined as a function of monomer 

concentration.  This was a crucial factor in correlation with the annealing of the material.  

Because the materials were annealed using an excess monomer method, in was 
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important to know the effect of the monomer concentration on the surface properties of 

the material.  Figure 3-20 shows that the contact angle is independent of the 

concentration of trithiol incorporated. This proved that the method used to anneal the 

two surfaces did not negatively affect the surface properties of the material in terms of 

hydrophilicity. 

 

Figure 3-20:  Water contact angle as a function of Trimethylolpropane tris(3-
mercaptopropionate molar concentration. 
 
3.5.13 Water Mass Uptake of Native PETA-co-TMPTMP Materials 

Due to the hydrophilic nature of these native thiol-acrylate materials, some water 

mass uptake was expected over time.  It was important to determine the water mass 

uptake as this could alter the size of the microchannels over time using this material.  

This “swelling” could also be very beneficial as smaller dimensions could be obtained 

via shrinkage of the microchannels to produce even nanodimensions via a post-

processing swelling technique. The water mass uptake at various time intervals and 

different amine catalyst concentrations are illustrated in Figure 3-21. The native thiol-
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acrylate samples were completely submerged in distilled water, removed and weighed 

periodically, and again submerged repeatedly for a lengthy 4-month study. For samples 

containing 1.35 mol% DEA, after 30 minutes of water exposure time, an average mass 

increase was documented at 0.19%.  From there, the percent mass uptake increased 

over time to 0.80%, 1.0%, 1.5%, and 3.1% after 1 day, 2 days, 12 days, and 4 months, 

respectively when 1.35 mol% DEA was used.  Because normal microfluidic applications 

involve only short transient interactions with aqueous solutions, only the water mass 

uptake at relatively low water exposure times were relevant.  It was concluded that the 

water mass increases associated with these native thiol-acrylate materials were 

negligible as the material absorbs ≤1% of its mass after 2 days fully submerged in an 

aqueous environment.  

 
Figure 3-21:  Water mass increase as a function of water submersion time. 
 

There was a correlation between the water mass uptake and the concentration of 

the amine catalyst at long submersion times. No change in the mass uptake was 

observed, within the standard deviation, of samples containing different concentrations 
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of amine when submerged in water for 2 days or less.  However, at submersion times 

≥12 days, there was an increase in the water mass uptake with an increase in the 

amine concentration.  The average mass uptake for samples containing 2.65 mol% 

DEA was 2.1% after 12 days and 6.0% after 4 months.  This was expected as an 

increase in the concentration of the amine caused a decrease in the average 

functionality of the system and thus a decrease in the cross-link density of the material. 

Because the hydrophilic material was less cross-linked at higher amine concentrations, 

more water could interpenetrate the network causing an increase in the mass uptake 

over time.  Even at the higher concentration of amine there was still very little mass 

increase at submersion times of ≤2 days.  After 2 days of full submersion time, the 

material containing 2.65 mol% DEA experienced a mass increase of only 1.2%.  

Regardless of the amine concentration, there was little, if any, substantial water mass 

increase over the time period of interest for microfluidic applications using this native 

thiol-acrylate material.  

3.5.14 Post Modification 

In an attempt to alter the surface properties of the polymer product, specifically 

the contact angle, different surface modification methods were employed.  The first 

method attempted was the modification of the surface of a previously prepared polymer 

sample.  The premise behind this approach was to prepare a sample containing an 

excess of one of the two monomers (thiol or acrylate), and once polymerized, click on 

monofunctional surface modifiers containing the opposite functional group and some 

desired surface-altering side groups. The theory is illustrated in Scheme 3-6. 
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Scheme 3-6:  Schematic illustrating the employed post-modification technique.  
 

In this case, polymer samples were prepared containing 50% excess thiol by 

mole and functional group. The native contact angle did not depend on the thiol 

concentration as was shown in Figure 3-20 previously.  Once the polymer samples were 

prepared containing excess thiol groups, the resulting films were submerged in a 

solution containing a triethylamine catalyst dissolved in a hydrophilic monofunctional 

surface modifier, poly(ethylene glycol) methyl ether acrylate, for various amounts of 

time. This resulted in the Michael addition of the excess thiol groups to the newly 

introduced monofunctional acrylate groups catalyzed by the triethylamine catalyst.  

Different samples were allowed to remain in the TEA/PEGMEA modifying solution for 

different amounts of time before being removed, washed and their contact angles 

determined.  Figure 3-22 illustrates the contact angle for the post modification of the 

thiol-acrylate polymer films as a function of the excess thiol-containing sample’s 

exposure time in the TEA/PEGMEA solution.  The average contact angles decreased 

with an increase in the reaction time of the thiol-rich surface with the monofunctional 

surface modifying solution.  This would be expected, as more time would correlate to a 

higher conversion of thiol and acrylate groups and thereby the attachment of more 

polyethylene glycol molecules causing the surface to be more hydrophilic.  The surface 

was successfully altered using this post modification technique.   It was concluded from 
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these data that a desired contact angle could be achieved by simply controlling the post 

modification reaction time.   

 

Figure 3-22: Post modification contact angles as a function of sample exposure time to 
PEGMEA/TEA solution.  Both the angles for the surface exposed to air and the surface 
exposed to the polystyrene petri dish are shown. 
 

Figure 3-22 also illustrates some differences in the contact angles of the surfaces 

that were exposed to air during initial polymerization and those surfaces that were 

exposed to the polystyrene petri dish during initial polymerization.  Regardless of the 

post modification reaction time, the surfaces allowed to polymerize open to the 

atmosphere demonstrated lower contact angles.  This can be attributed to the oxidation 

of the surface during and after polymerization causing the contact angle to be lower.  

Because the final application of these polymeric materials would be to prepare 

microfluidic chips, it is most beneficial to concentrate on the surfaces that were in 

contact with the petri dish and not exposed to air, as this would be the case when the 

monomer solution was poured onto a mold for a soft lithography process.  
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Figure 3-23: Post modification contact angles as a function of time after reaction.  Both 
the angles for the surface exposed to air and the surface exposed to the polystyrene 
petri dish are shown. 
 

Figure 3-23 illustrates the stability of the modified surface as a function of time.  

On average, a surface energy recovery was observed in association with these post-

modified hydrophilic thiol-acrylate surfaces. The water contact angle was initially as low 

as ~13˚ but recovered back to ~50˚ after 1 week.  This implied that the volatile 

monofunctional monomers were potentially not covalently bound via a Michael addition 

as was expected and that they were simply evaporating away over time, causing an 

increase in the average water contact angle as a function of time.   

The mass uptake of these materials was monitored as a function of sample 

exposure time to the post-modification solution.  The materials were weighed prior to 

being placed in the modifying solution and again once removed from the solution and 

dried.   These data are illustrated in Figure 3-24.  
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Figure 3-24:  Mass increase of PETA-co-TMPTMP polymer as a function of sample 
exposure time to PEGMEA solution.  
 

There was an average increase in the mass uptake as a function of exposure 

time. This increase in the mass can be attributed to two aspects of the process.  As the 

monolayer is added to the surface of the material, an increase in the weight must 

physically occur due to an increase in the thickness of the layer. This would be 

expected, as there would be a correlation between the sample exposure time and the 

density of the added monofunctional modifier.  As the density of the monolayer 

increased, the weight of the material increased.  Secondly, there was likely some 

absorption/swelling of the material caused by the diffusion of the monofunctional 

acrylate into the similar trifunctional acrylate-containing sample.   

Because of the irreproducibility (high standard deviations) and transient nature of 

these post-modified materials as shown in Figure 3-22 and 3-23, respectively, this 

method of modifying the surface was deemed rough and vague at best.  Although, the 

surface of these thiol-acrylate materials could be modified using this technique to some 
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degree, other methods of surface modifications were explored in search of a more 

reliable technique.  

3.5.15 Bulk Modification 

 

Scheme 3-7:  Schematic illustration of the employed bulk-modification technique.  
 

This technique involved the modification of the entire network as opposed to 

simply modifying the surface of the material via post modification.  The theory behind 

this method was the covalent attachment of monofunctional modifying molecules within 

the network of the polymer during the initial reaction using the in situ amine catalyst.  

This provided more confidence in terms of the true covalent linkage of the modifying 

molecule.  Scheme 3-7 illustrates this bulk modification technique.  A monofunctional 

acrylate monomer molecule functionalized with the desired modifying functional group 

(either hydrophobic or hydrophilic) was incorporated into the original mixture in varying 

amounts.  In this manner, the thiol anion had a choice to add to either the 

multifunctional acrylate molecule as usual or to the monofunctional molecule containing 

the modifying functional group.  The monofunctional monomer was added in amounts 

that retained the 1:1 molar ratio of acrylate to thiol functional groups.  Because of this 

stoichiometry and the high conversion associated with these thiol-acrylate reactions, the 

monofunctional acrylate containing the modifying molecule was well incorporated into 
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the polymer network regardless of the reactivity differences between the two competing 

acrylate molecules (mono- or multifunctional).  

3.5.15a PEGMEA Bulk Modification 
 

The first modifying molecule to be incorporated into the thiol-acrylate network via 

a bulk modification process was poly(ethylene glycol) methyl ether acrylate.  The 

poly(ethylene glycol) pendant groups were used to introduce hydrophilicity into the 

material by producing a PEGylated surface.  This modification attempt was thus fueled 

by the need for stable hydrophilic surfaces in the field of microfluidics. Various amounts 

of PEGMEA were added to the reaction mixture and the contact angles of these 

mixtures were determined.  Figure 3-25 illustrates the contact angle as a function of 

PEGMEA concentration at day one and after two weeks.  The contact angle was 

observed to decrease with an increase in the PEGMEA concentration.  This was 

expected as an increase in the concentration of the monofunctional monomer caused 

an increase in the density of the pendant PEG groups throughout the network and thus 

the surface of the material. The water contact angles deviated very little from the native 

angles at low concentrations of PEGMEA but steadily decreased with an increase in 

PEGMEA concentration and reached a low of 11.2˚ at PEGMEA concentrations of 30 

mol% by functionality (Figure 3-25). There was little hydrophobic recovery observed at 

relatively low concentrations of PEGMEA over a 14 day time period, however some 

deviation was observed at PEGMEA concentrations >20 mol% by functionality (Figure 

3-25). 
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Figure 3-25: Contact angle as a function of poly(ethylene glycol) methyl ether acrylate 
molar concentration at 1 and 14 days. 

 
This increase in the hydrophobic recovery at high PEGMEA concentrations is 

illustrated in Figure 3-26 showing the standard deviations of the average contact angles 

and the percent increase in the average water contact angles, both over a 14 day time 

period, as a function of PEGMEA molar concentration.  An increase in the standard 

deviations of the average contact angles indicated an overall instability in the surface 

energy at high concentrations of PEGMEA.  At PEGMEA concentrations of ≤20 mol% 

by functionality, the standard deviations over the 14-day time period were ≤2.1˚, while at 

PEGMEA molar concentrations of 25% and 30% the standard deviations over the 14-

day time period were 5.1˚ and 8.6˚, respectively (Figure 3-26).  At extremely high 

PEGMEA concentrations of ≥25 mol% by functionality, more variability was observed in 

terms of surface energy, mostly due to hydrophobic recovery.  An increase in the 

percent increase of the water contact angle over the 14-day time period confirmed this 

hydrophobic recovery effect (Figure 3-26). At PEGMEA concentrations of ≤20 mol% by 
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functionality, the percent increases over the 14-day time period were ≤4.2%, while at 

PEGMEA molar concentrations of 25% and 30% the percent increases over the 14-day 

time period were 45.7% and 232.8%, respectively (Figure 3-26).  At extremely high 

PEGMEA concentrations of ≥25 mol% by functionality, the high percent increase in the 

water contact angle over a 2-week time period illustrated the hydrophobic recovery of 

the materials. This recovery effect is likely caused by the lack of full incorporation of the 

monofunctional, modifying molecule into the polymer network allowing for the 

evaporation and natural removal of the small molecular weight and highly volatile 

PEGMEA molecule from the material.  Nonetheless, moderately high PEGMEA 

concentrations were incorporated into the thiol-acrylate materials to produce low water 

contact angles with high levels of stability. Water contact angles as low as ~35˚ were 

obtained by bulk modification using PEGMEA and remained stable for at least 14 days.  

 
 

Figure 3-26: Standard deviations of average contact angles collected over a 14 day 
time period and the percent increase in the water contact angle over a 14 day time 
period, both as a function of PEGMEA molar concentration.  
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A more in-depth study of the contact angles as a function of the 14-day recovery 

time is illustrated in Figure 3-27 for samples containing ≤20 mol% by functional group 

PEGMEA modifier.  Various hydrophilic contact angles can be achieved based on the 

concentration of the PEGMEA incorporated into the network via a bulk modification 

process. Average water contact angles of 68.1±1.5˚, 56.7±1.8˚, 43.7±2.0˚, and 

35.6±2.1˚ were prepared by bulk modification of the thiol-acrylate materials with 

PEGMEA molar functionality concentrations of 5%, 10%, 15%, and 20%, respectively 

(Figure 3-27). Thus, thiol-acrylate materials can be prepared with stable hydrophilic 

water contact angles differing on average by only 10.8˚ using PEGMEA as a bulk 

modifier.   

 
 

Figure 3-27: Contact angles as a function of time containing 5, 10, 15, and 20 mol% by 
functionality PEGMEA introduced via bulk modification. 
 

The water mass increase as a function of PEGMEA mol% was determined at 

different time intervals and these data are illustrated in Figure 3-28.  The average water 
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uptake percentage of the polymer materials increased with an increase in the PEGMEA 

molar concentration and with an increase in water exposure time. After 1 hour of water 

submersion time the mass uptake ranged from 0.33% at 10 mol% PEGMEA to 1.2% at 

34 mol% PEGMEA.  After 1 day of submersion time, the mass uptake ranged from 1.1% 

at 10 mol% PEGMEA to 6.7% at 34 mol% PEGMEA. After 3 days, the uptake ranged 

from 1.6% at 10 mol% PEGMEA to 8.6% at 34 mol% PEGMEA. Therefore, there was a 

correlation between the water contact angle and the water mass uptake as would be 

expected.  A water mass uptake sacrifice is necessary to achieve lower water contact 

angles.  Beyond 3 days, the mass stabilized or decreased indicating full saturation with 

water or degradation via hydrolysis, respectively.  These results show that these bulk-

modified thiol-acrylate materials, although hydrophilic in nature, do not swell 

excessively, especially at moderate concentrations of PEGMEA and shorter water 

submersion times. 

 

Figure 3-28: Water mass increase as a function of PEGMEA mol% for samples 
prepared via bulk modification. 
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3.5.15b Lauryl Acrylate Bulk Modification 

 
 

Figure 3-29: Contact angle as a function of lauryl acrylate molar concentration at 1 and 
21 days introduced via bulk modification. 

 
Hydrocarbons are known to be very hydrophobic in nature due in part to their 

negative entropies of aqueous solvation at room temperature. [241] In order to introduce 

a hydrophobic aspect to these versatile polymer materials, a monofunctional modifying 

acrylate functionalized with a long 12-member hydrocarbon chain was incorporated into 

the network.  Various amounts of lauryl acrylate were added to the reaction mixture and 

the contact angles of these mixtures were determined.  Figure 3-29 illustrates the 

contact angle as a function of LA molar concentration at day one and after three weeks.  

The presence of as little as 10 mol% LA increased the hydrophobicity of the surface to 

feature a water contact angle of ~75˚. There was no further increase in the contact 

angle with additional surplus of LA beyond 10 mol%, indicating that the density of the 

12-membered carbon chains on the surface of the material did not play a major role in 

the surface energy.  Beyond the critical amount, the excess chains were not a sufficient 
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enough source to further increase the hydrophobicity. The samples containing only 5 

mol% LA were observed to remain stable throughout the 21 day time period, however 

samples containing >5 mol% LA were observed to increase in hydrophobicity during the 

3 week time period (Figure 3-29). 

A study was conducted on the water contact angles of samples containing 5 

mol% LA as a function of a 14-day recovery time. These data are illustrated in Figure 3-

30.  Samples featuring an average water contact angle of 79.0±1.1 were prepared by 

bulk modification of the thiol-acrylate material with 5 mol% lauryl acrylate (Figure 3-30).  

These samples were found to be extremely stable over the 14-day recovery time.  

 
 

Figure 3-30: Contact angle as a function of time for samples containing 5 mol% lauryl 
acrylate introduced via bulk modification. 
 

Optical clarity plays a critical role in the field of microfluidics as various types of 

microscopy are employed during microfluidic device analysis.  The optical clarity of 

these lauryl acrylate bulk-modified thin films was subjectively investigated via the naked 

eye.  Images are provided in Figure 3-32 for the reader’s visual inspection.   
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Figure 3-31:  Optical clearity of the films containing various concentrations of Lauryl 
Acrylate.  From left to right and then top to bottom the lauryl acrylate concentration was 
8.6, 16.5, 23.0, 28.6, 33.0, and 37.7 mol%.  
 

The optical clarity of the polymer film was inversely related to the concentration 

of the lauryl acrylate.  As the concentration of lauryl acrylate was increased, the film 

became more opaque until ~29 mol% LA at which point the opaqueness remained 

nearly constant. The opaque nature of this modified material at high concentrations of 

LA was attributed to the phase separation of the long hydrocarbon chain from the 

dissimilar hydrophilic native PETA-co-TMPTMP. This opaque feature of the material did 

not eliminate the use of LA as a modifying molecule as the optical clarity was affected 

only at high concentrations of LA, and high concentrations of LA were not required to 

cause a change in the surface energy of the material.  Thus, low concentrations of LA 

were successful in the bulk modification of these thiol-acrylate materials, capable of 

increasing the water contact angle of the native material by ~10˚ and remaining 

constant for at least 14 days.  

 
3.5.15c HFIPA Bulk Modification 
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Like hydrocarbons and potentially even to a larger extent, fluorinated compounds 

are very hydrophobic, again due partially to their negative entropies of solvation in 

aqueous solutions at room temperature. [241] In an attempt to harness the substantial 

hydrophobic potential of fluorinated compounds as modifying molecules, a 

monofunctional fluorinated acrylate molecule, hexafluoroisopropyl acrylate (HFIPA), 

was incorporated into the thiol-acrylate network via bulk modification. Various amounts 

of HFIPA were added to the reaction mixture and the contact angles of these mixtures 

were determined.  Figure 3-32 illustrates the contact angle as a function of HFIPA 

concentration at day one and after two weeks.   

 
 

Figure 3-32: Contact angle as a function of hexafluoroisopropyl acrylate molar 
concentration at 1 and 14 days introduced via bulk modification. 
 

The presence of as little as 5 mol% HFIPA resulted in an increase in the 

hydrophobicity of the surface to feature a water contact angle >80˚. There was a slight 

increase in the contact angle as a function of increasing HFIPA concentration.  A water 
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contact angle near 85˚ was obtained when 40 mol% DEA was incorporated into the 

network.  However, as with the lauryl acrylate, the density of the fluorinated pendant 

groups on the surface of the material did not play a significant role in the hydrophobicity 

of the material, increasing only ~5˚ with an increase in the HFIPA molar concentration 

from 5 mol% to 40 mol%.  Unlike the lauryl acrylate-modified samples, an increase in 

the concentration of the HFIPA did not result in a loss in the optical clarity of the 

samples.  

 
 

Figure 3-33: Contact angle as a function of time for samples containing 40 mol% 
hexafluoroisopropyl acrylate introduced via bulk modification. 
 

An independent, detailed, collective study was conducted on the water contact 

angles of samples containing 40 mol% HFIPA as a function of a 14-day recovery time. 

These data are illustrated in Figure 3-33.  These samples featured a sporadic average 

water contact angle of ~70˚ (Figure 3-33). The samples were found to be less stable 

than other samples containing other modifying molecules.  The standard deviation of 

the average water contact angles was 2.5˚. The standard deviations for each individual 
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point indicated some irreproducibility in this fluorination method. The average standard 

deviation for individual points was ~6.5˚.  Because of the high standard deviations and 

the irreproducibility of these samples, other fluorinated molecules were investigated as 

modifying molecules.   

3.5.15d DFHA Bulk Modification 
 

In an attempt to produce a more stable and reproducible fluorinated thiol-acrylate 

surface, a different fluorine-functionalized monofunctional acrylate was incorporated into 

the polymer network, 2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl acrylate (DFHA).  This 

material was chosen because it possessed multiple hydrophobic features, a 6-

membered hydrocarbon chain and 12 pendant fluorine groups.  As was predicted based 

on previous hydrophobic bulk modification experiments, there was basically no change 

in the hydrophobicity with an increase in the density of the modifying layer on the 

surface.  The average water contact angle increased by only 0.1˚ with a 10 mol% 

increase in the DFHA concentration. Regardless of the hydrophobic modifier being 

incorporated, there was an upper limit where no more hydrophobicity could be obtained 

using this chemical modification technique.  To introduce more hydrophobicity onto the 

surface, the physical morphology would likely need to be altered.  

Figure 3-34 illustrates the narrowly distributed (lower standard deviations) water 

contact angles produced via the bulk modification of the thiol-acrylate materials using 10 

mol% DFHA over a 14 day time period.  The average water contact angle during this 

14-day time period was 76.3˚. The standard deviation of the average water contact 

angles over the 2 week period was <1˚ indicating a high level of stability.  The average 

standard deviation for the individual data points was <3˚ indicating a high level of 
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reproducibility. The use of DFHA was, therefore, successful in increasing the 

hydrophobicity of the thiol-acrylate copolymer materials, producing highly stable 

hydrophobic surfaces that could easily be reproduced. 

 
Figure 3-34: Contact angle as a function of time for samples containing 10mol% 
dodecafluoroheptyl acrylate introduced via bulk modification. 
 
3.5.16 Construction of a Water Contact Angle Library 

Using bulk modification to incorporate various monomers into the thiol-acrylate 

matrix, a stable water contact angle library was constructed.  This library included bulk 

modifications utilizing both hydrophilic and hydrophobic modifying molecules.  Figure 3-

35 illustrates the average water contact angles as a function of recovery time for various 

native and modified materials.  Native PDMS and PDMS samples exposed to oxygen 

plasma for 30 seconds are illustrated for comparison purposes.  Native PDMS had a 

stable hydrophobic (undesirable for microfluidics) water contact angle of 116.1±1.5˚ and 

on average differed by 0.87˚ during the 2 week time period. The oxidized PDMS sample 

had a very transient hydrophilic water contact angle, initially of 17.2±3.4˚.  After 1 day 
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the oxidized PDMS sample suffered a hydrophobic recovery to a contact angle of 

70.6±4.1˚.  After 1 week, the water contact angle of the oxidized PDMS sample 

recovered even more to 98.1±2.5˚. After the full 14 days, the water contact angle of the 

oxidized PDMS sample was 105.5±0.97˚, indicating a nearly full hydrophobic recovery.  

All of the PETA-co-TMPTMP samples illustrated a high level of stability in terms of their 

contact angles.   Thiol-acrylate samples bulk modified with 10 mol% DFHA had an 

average water contact angle of 76.3±0.98˚ and differed on average by 2.9˚ during the 

14 day time period.  Thiol-acrylate samples bulk modified with 5 mol% PEGMEA had an 

average water contact angle of 68.1±1.5˚ and differed on average by 3.0˚ during the 14 

day study. Thiol-acrylate samples bulk modified with 10 mol% PEGMEA had an 

average water contact angle of 56.9±1.8˚ and on average differed 4.2˚ during the 14 

day time period. Thiol-acrylate samples bulk modified with 15 mol% PEGMEA had an 

average water contact angle of 43.7±2.0˚ and differed on average by 4.7˚ during the 14 

day time period. Thiol-acrylate samples bulk modified with 20 mol% PEGMEA had an 

average water contact angle of 35.6±2.1˚ and on average differed by 5.7˚ during the 14 

day time period.  Overall, the thiol-acrylate materials were much more stable over the 2 

week study compared to the transient nature of the activated PDMS. This was very 

important as stable hydrophilicity could be introduced into a microfluidic surface. The 

stability of these samples allowed for a substantial increase in the shelf life of 

microfluidic devices. Using this Boundless resin a microfluidic device could be prepared 

and confidently used at least fourteen days after production, having the same surface 

properties as it did on day one.  The ease of modification also allowed for more specific 

binding of molecules.  For example, a personalized microfluidic device could be 
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prepared for a consumer in need of analyzing a molecule that was known to interact 

most efficiently and effectively with a surface possessing a water contact angle near 45˚ 

by bulk modification of the material with 15 mol% PEGMEA. This simple bulk 

modification technique and thereby these easily modifiable surfaces allow for the 

production of a plethora of specifically personalized microfluidic devices. 

 
Figure 3-35: Stable water contact angle library showing native PDMS, PDMS exposed 
to an oxygen plasma generator for 30 seconds, and PETA-co-TMPTMP materials 
containing DFHA and various concentrations of PEGMEA as a function of recovery 
time.  
 
3.5.17 Replication of Molds Via Soft Lithography 

 The accurate replication of a positive mold via a soft lithography technique was 

vital for the successful production of a stable hydrophilic thiol-acrylate microfluidic 

device.  Poly (methyl methacrylate) (PMMA) positive molds were prepared via a hot 

embossing technique[179, 180, 184] with a copper plate micromilled[172, 178] to 

contain the desired microchannel patterns. The positive PMMA molds were used to 

prepare the thiol-acrylate microchannels via a simple soft lithography method.  Figure 3-
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36 illustrates the replication of the microchannels using this process where the positive 

PMMA mold microchannel had a measured channel width of 248.24 µm (Figure 3-36a) 

and the PETA-co-TMPTMP replica had a measured channel width of 247.82 µm. The 

replication process was very successful, showing that microstructures could easily be 

duplicated with a high level of certainty into a thiol acrylate material using a soft 

lithography technique.   

 

Figure 3-36: Optical microscopy illustrating the replication of a positive mold via a thiol-
acrylate soft lithography process. a) PMMA positive mold with a measured 
microchannel width of 248.24 µm; b) replicated PETA-co-TMPTMP microchannel 
measuring 247.82 µm.  The scale bar represents 100 µm.  

The replication of smaller and more complex dimensions was also observed via 

the thiol-acrylate soft lithography method.  Figure 3-37a illustrates small ring artifacts 

present on the PMMA positive mold introduced via micromilling and copied during the 

hot embossing process.  These small ring dimensions were well reproduced into the 

thiol-acrylate material as shown in Figure 3-37b.  This result denoted the potential for 

the introduction of microchannels with small dimensions, smaller than utilized for this 

research, into the thiol-acrylate material via soft lithography. 
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Figure 3-37: Optical microscopy illustrating the fine replication of a positive mold via a 
thiol-acrylate soft lithography process. a) PMMA positive mold ring artifacts within the 
channels; b) replicated PETA-co-TMPTMP microchannel also illustrating the ring 
structures. 

3.5.18 Final, Annealed PETA-co-TMPTMP Microfluidic Devices 

Multiple final microfluidic devices were prepared using the soft lithography 

technique coupled with the partial polymerization/excess monomer annealing technique.  

Some of these final devices are shown in Figure 3-38.  Prior to the annealing process, 

holes were drilled in specific, predestined places on the half of the device containing the 

microchannels via a drill press and a small drill bit.  This drilling step produced holes 

used to attach capillaries by which the fluid would be introduced to the microfluidic 

device.  Blunt needles bent at 90˚ angles, over which rubber tubing was stretched, were 

inserted into the wholes, and a rapidly curing, two-part epoxy was used to append the

needles and capillary tubing to the microfluidic device (Figure 3-38 top right).  These 

capillaries were used to push aqueous fluids easily through the small hydrophilic 

microchannels.  In some cases, polyether ether ketone (PEEK) flexible, thermoplastic 

tubing with an outside diameter (OD) approximately equal to the internal diameter (ID) 

of the predrilled holes was inserted directly, without the support of a blunt needle and 
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requiring no epoxy to append the tubing to the device (Figure 3-38 bottom).  An 

aqueous methyl orange solution was easily flowed through these hydrophilic 

microchannels.  Both the epoxy-bound rubber/blunt needle capillary microfluidic device 

and the PEEK tubing device showed no signs of leakage, which would be obvious 

around the perimeter of the microchannels or at the inlet junctions due to the use of a 

colored solution. These images in Figure 3-38 illustrate the successful production and 

application of proven, stable, hydrophilic thiol-acrylate microfluidic devices capable of 

flowing aqueous materials down small microchannels with no leakage of the aqueous 

solution from the microfluidic device. 

Figure 3-38: Photographic images of final, annealed PETA-co-TMPTMP microfluidic 
devices attached to inlet capillaries (top left and top right) and a aqueous methyl orange 
solution being pumped through a final, annealed PETA-co-TMPTMP microfluidic device 
(bottom left and bottom right). 
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3.5.19 Fluorescence Microscopy Potential and Capabilities  

As fluorescence microscopy is an important tool in the field of microfluidics

it was nearly imperative that the thiol-acrylate materials have the potential to be 

used in such fluorescence experimentation.  To prove their capabilities, an aqueous 

fluorescein isothiocyanate (FITC) solution was flowed through the microfluidic device 

and observed using simple photography and a fluorescence microscope. 

Figure 3-39: Fluorescent images of PETA-co-TMPTMP microfluidic devices containing 
an aqeous fluorescein isothiocyanate (FITC) solution. Photographic images of 
microchannels containing the FITC solution are shown on top and bottom left and top 
right, and a fluorescent microscopy image is shown on the bottom right.  

Figure 3-39 illustrates multiple photographic images (top and bottom-left and top-

right) of the microchannels fluorescing under the light source causing the green coloring

effect. The bottom right picture in Figure 3-39 illustrates a fluorescent microscope image 
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showing the microchannel fluorescing on a microscopic scale.  This indicates that 

fluorescence microscopy could be used to analyze aqueous specimens when flowed 

through these thiol-acrylate microfluidic devices. 

3.6 TMPeTA-co-TMPTA 

 Other acrylic monomers were used to prepare novel thiol-acrylate 

materials with potential applications in the field of microfluidics.  Specifically, a relatively 

large molecular weight, ethoxylated, and presumably hydrophilic trifunctional acrylate, 

trimethylolpropane ethoxylate triacrylate (TMPeTA), was employed along with DEA and 

TMPTMP in the same manner as discussed for the PETA.  Two different TMPeTA 

monomers were exploited and studied, one with a typical Mn of 912 g/mol (TMPeTA 

912) and the other with a typical Mn of 692 g/mol (TMPeTA 692).   The increase in the 

molecular weight was due to additional ethoxylate groups incorporated between the 

trimethylolpropane moieties and the acrylate functional groups.  The TMPeTA 692 thus 

typically had 7 ethoxylate groups per molecule, where as the TMPeTA 912 typically had 

14 ethoxylate groups per molecule. It was hypothesized that the decrease in cross-link 

density facilitated by the increase in the length of the linkers between the acrylate 

functional groups would result in a more flexible material.  Figure 3-40 illustrates the 

flexibility of the TMPeTA 912-co-TMPTMP (right) relative to the less flexible PETA-co-

TMPTMP (left) on the microscopic level.  The materials shown in Figure 3-40 were 

punctured using a hand-held biopsy punch, and the resulting holes were examined 

microscopically to determine the different effects on the materials. The PETA-co-

TMPTMP (left) experienced a “spidering” effect when the biopsy bunch was forced 

through the material.  The microscopic cracking indicated that the material had some 
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brittle properties.  The TMPeTA 912-co-TMPTMP material, on the other hand, showed 

no signs of cracking or “spidering”, therefore the material with the relatively large 

molecular weight showed some improvements in terms of material flexibility. 

 

Figure 3-40: Optical microscopy images of holes punctured in PETA-co-TMPTMP 
material (left) and TMPeTA 912-co-TMPTMP material (right) using a biopsy punch. 
 
3.6.1 TMPeTA 912 Gel Time Manipulation 

 The first ethoxylated triacrylate to be incorporated into a thiol-acrylate copolymer 

and studied was TMPeTA 912.  As with its PETA competitor, the gel time was easily 

manipulated by changing the concentration of the diethylamine.  Figure 3-41 illustrates 

the experimental gel time as a function of the DEA molar concentration. The 

manipulated gel times ranged from ~3 hours to <45 minutes within the amine 

concentration array examined in this study. As with PETA-co-TMPTMP, a parabola 

curve was again observed in associating with the gel time and amine concentration.  

The first half of this curve where the gel time decreased as a function of increasing 

amine concentration was attributed to the increase in the rate constant associated with 

an increase in the catalyst concentration as would normally be expected.  The increase 

in the gel time at high amine concentrations shown in the second half of the curve was 
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accredited to the decrease in the crosslink density causing an increase in the critical 

conversion required for gelation of the copolymer material as shown by the 

Carothers[89] and Flory and Stockmeyer[89] gel time estimations discussed earlier.[89]  

 

Figure 3-41: Gel time for TMPeTA 912 as a function of DEA mol% relative to acrylate 
functional groups. 
 
3.6.2 TMPeTA 912 Water Contact Angles 

 The contact angles of the native TMPeTA 912-co-TMPTMP materials were 

determined as a function of time and the data are illustrated in Figure 3-42.  These 

materials were found to be extremely hydrophilic and stable having an average water 

contact angle of 36.1±1.7˚ and differed on average by 1.9˚ during the 10-day study. As 

would be expected, the presence of the ethoxylate groups caused the material to be 

natively more hydrophilic than the PETA-co-TMPTMP material.  This would be a 

beneficial property of the material in terms of a microfluidic application.  
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Figure 3-42: Water contact angle for TMPeTA 912 as a function of time. Showing data 
exposed to polystyrene petri dish. 
 
3.6.3 TMPeTA 912 Water Mass Uptake 

Due to the extremely hydrophilic nature of the TMPeTA 912-co-TMPTMP 

material and the relatively low crosslink density, it was expected to absorb water.  This 

water uptake could be a negative property for a microfluidic application due to the likely 

chance that the material would swell causing a change in the dimensions of the 

microchannels.  To determine the material bulk interactions with an aqueous 

environment, the water mass increase was determined as a function of amine 

concentration and time. These data are illustrated in Figures 3-43 and 3-44. The weight 

of the hydrophilic TMPeTA 912-co-TMPTMP copolymeric material was observed to 

increase as a function of DEA concentration when exposed to an aqueous environment.  

This was anticipated as an increase in the DEA concentration caused a decrease in the 

crosslink density and more void space in which the water could occupy.  At a low amine 
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concentration of 3 mol% the weight of the material increased by only 1.2% after 20 

minutes of being fully submerged in water and 3.3% after 2 hours, but at a high amine 

concentration of 34 mol% the material weight increased by 16.6% after 20 minutes and 

55.8% after 2 hours. (Figure 3-43)   

 

Figure 3-43: TMPeTA 912-co-TMPTMP water mass uptake as a function of 
diethylamine concentration illustrating the mass uptake as a function of a large range of 
DEA concentrations at 20 minutes and 2 hours. 
 
 The water mass uptake also increased as a function of time as would be 

expected. Figure 3-44 illustrates the water mass increase as a function of selected 

amine concentrations at various increments of time.  At every amine concentration 

shown in Figure 3-44 the water mass uptake increased nearly linearly over the 2 hour 

time period. For example, a material containing a moderate concentration of DEA, 14.2 

mol%, was observed to increase in mass by 7.4±2.2% after 20 minutes of full water 

submersion, 11.9±3.3% after 40 minutes, 14.3±3.2% after 60 minutes, 16.7±3.2% after 

80 minutes, 19.5±3.7after 100 minutes, and 21.1±3.8% after 120 minutes. (Figure 3-44) 
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Even at moderate amine concentrations, this material experienced a high level of water 

mass increase when submerged in an aqueous environment. After 2 hours, an 

equilibrium water uptake had not been obtained implying that this material could 

potentially uptake even more water at longer submersion times.  Due to this high level 

of water mass uptake and the high potential for swelling, this material could be limited in 

the areas of microfluidics that require precise, stable microchannel dimensions.  

However, there are some potential areas of microfluidics where water swelling could be 

beneficial.  For example, these materials could be used to produce nanochannels using 

a swelling technique resulting in a decrease in the channel dimensions from the easily 

obtainable micro-size to the much more difficult nano-size using a simple soft 

lithography method.  

 

Figure 3-44: TMPeTA 912-co-TMPTMP water mass uptake as a function of 
diethylamine concentration illustrating selected concentrations at times ranging from 20 
to 120 minutes. 
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3.6.4 TMPeTA 692 Gel Times 

 In an attempt to decrease the water uptake of the material but maintain the high 

flexibility, another TMPeTA material was investigated as the trifunctional acrylic 

monomer component.  TMPeTA with an average Mn of 692 (TMPeTA 692) was used to 

prepare a highly hydrophilic compolymeric material in the same manner as discussed 

above.  The gel times as a function of amine concentration for these TMPeTA 692-co-

TMPTMP materials were determined.  These data are shown in Figure 3-45. The 

manipulated gel times ranged from ~3.5 hours to <50 minutes within the amine 

concentration array examined in this study. 

 

Figure 3-45: Gel time as a function of diethylamine mol% relative to acrylate functional 
groups. 
 
 Again, as with the other thiol-acrylate analogs, a parabola curve resulted when 

the gel times were plotted against the amine catalyst concentration. Figure 3-45 

illustrates this parabola-type curve.  The parabola produced by the data for TMPeTA 

692-co-TMPTMP was not as symmetrical as that of the materials incorporating PETA or 
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TMPeTA 912 monomers, but the same trend held true. As would be expected, the gel 

time decreased from as a function of amine concentration at low amine concentration 

less than ~27 mol%. Beyond ~33 mol% DEA, the gel time was observed to sharply 

increase as a function of amine concentration which was explained again by the 

decrease in the crosslink density with an increase in amine concentration resulting in a 

increase in the critical conversion required fro gelation as described by the 

Carothers[89] and Flory and Stockmeyer[89] estimations.  

 The gel time was also monitored as a function of TMPeTA 692 and DEA reaction 

time.  These data are shown in Figures 3-46 and 3-47.  As with all of the thiol-acrylate 

systems studied here, the acrylate and amine were normally allowed to react for at least 

24 hours prior to being utilized in the soft lithography process.   

 

Figure 3-46: Gel time as a function of DEA-TMPeTA 692 reaction time for 24 hours. 
 

The systems containing PETA were observed to reach a stable gel time after 

only 2 hours of PETA/DEA reaction time (Figure 3-8) implying the full conversion of the 
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secondary diethylamine to a large molecular weight tertiary amine/comonomer 

molecule. However as is seen in Figure 3-46, the gel time for the TMPeTA 692-

containing systems had not reached equilibrium even after 24 hours, regardless of the 

amine concentration.  For samples containing 22.8 mol% DEA the gel time ranged from 

~10 seconds after 30 minutes of acrylate-amine reaction time to ~11 minutes after 24 

hours of reaction time. (Figure 3-46)  

 When monitored for a longer period of time, up to 45 hours of TMPeTA 692-DEA 

reaction time, the gel time still had not reached a steady state. Figure 3-47 illustrates 

these data. For samples containing 22.8 mol% DEA, the gel time reached a high of 116 

minutes after 45 hours of reaction time. These data indicated that much more time was 

required to convert the secondary amine to a tertiary amine when using TMPeTA 692 

as the trifunctional acrylic comonomer component as opposed to PETA. 

 
 

Figure 3-47: Gel time as a function of DEA-TMPeTA 692 reaction time for 50 hours. 
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3.6.5 TMPeTA 692 Water Contact Angles 

The water contact angles of the native TMPeTA 692-co-TMPTMP materials were 

determined as a function of time and the data are illustrated in Figure 3-48.  These 

native materials were found to be extremely hydrophilic having an initial water contact 

angle of 29.4±2.5˚. After the 14 day time period studied, the native water contact angle 

was observed to increase by ~10˚ (~40%) to 40.9±6.4, indicating that the surface of the 

material was only moderately stable.  The average standard deviation during the 2 week 

studies was found to be ~4.1˚ demonstrating moderate reproducibility.  

 

Figure 3-48: Water contact angle for native TMPeTA 692-co-TMPTMP as a function of 
time. 
 
3.6.6 TMPeTA 692 Bulk Modifications 

The TMPeTA 692-co-TMPTMP materials were bulk modified with various 

modifying molecules to determine the ease of manipulation of their surface energies. 

Figure 3-49 illustrates the initial water contact angles as a function of bulk modifier type.  

Unlike the PETA analogous systems, the contact angles of the TMPeTA 692 materials 
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were not greatly affected by the incorporation of small monofunctional modifying 

molecules. The contact angle was unchanged within the standard deviation when 5% 

lauryl acrylate or 10% hexafluoroisopropyl acrylate was incorporated into the network as 

a bulk-modifying molecule. This lack of surface energy manipulation demonstrated the 

difficulty of producing a hydrophobic surface using the extremely hydrophilic ethoxylated 

comonomer, TMPeTA 692.  In an attempt to further decrease the water contact angle of 

the TMPeTA 692 material, polyethylene glycol methyl ether acrylate (PEGMEA) was 

incorporated into the network as a bulk-modifying molecule.  The presence of 5 mol% 

PEGMEA caused a decrease in the initial water contact angle to 14.6±2.5˚, showing 

some potential for the hydrophilic bulk modification of these TMPeTA 692-co-TMPTMP 

materials.  

 

Figure 3-49: Water contact angle for TMPeTA 692-co-TMPTMP as a function various 
bulk modifiers. 
 

The water contact angles were monitored as a function of time for TMPeTA 692-

co-TMPTMP samples bulk modified with 5 mol% PEGMEA to determine the stability of 
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the material over a two week period of time.  Figure 3-50 illustrates these data.  The 

hydrophilic bulk modified materials were observed to suffer a hydrophobic recovery with 

the average water contact angles more than tripling during the 14-day study.  The 

average water contact angle increased from 14.6±2.5˚ initially to 23.5±5.7˚ after 1 week 

and up to 46.1±16.9˚ after 2 weeks.  The standard deviations of the contact angles were 

also observed to be very high, indicating reproducibility limitations. The average water 

contact angle standard deviation for the materials studied over 14 days was 5.6˚.  

Although an extremely low water contact angle could be achieved via the hydrophilic 

bulk modification of an already hydrophilic, ethoxylated triacrylate-containing material, 

the material was not stable, resulting in an increase in the water contact angle beyond 

that of even the native copolymer, and the results were not easily reproducible. 

 

Figure 3-50: Water contact angle for TMPeTA 692-co-TMPTMP material containing 5 
mol% diethylemaine relative to acrylate functional groups as a function of a 14 day time 
period.  
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3.6.7 TMPeTA 692 Water Mass Uptake 

Like the previously studied materials containing TMPeTA 912, the TMPeTA 692-

co-TMPTMP materials were expected to absorb water due to their extremely hydrophilic 

nature and relatively low crosslink density.  In was hypothesized that these materials 

would uptake less water mass compared to the TMPeTA 912 materials as the TMPeTA 

692 materials contained fewer hydrophilic ethoxylate groups and shorter linker groups, 

causing an increase the crosslink density and thereby a decrease the void space that 

could be occupied by water molecules.  The water mass increase was determined as a 

function of amine concentration and time to determine the material bulk interactions in 

an aqueous environment. These data are illustrated in Figures 3-51 and 3-52.  

 

Figure 3-51: TMPeTA 692-co-TMPTMP water mass uptake as a function of 
diethylamine concentration illustrating the mass uptake as a function of a large range of 
DEA concentrations at 20 minutes, 2 hours and 24 hours.  
 

Although somewhat sporadic, the weight of the hydrophilic TMPeTA 692-co-

TMPTMP copolymeric material was observed to increase as a function of DEA 
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concentration.  This was expected as an increase in the DEA concentration caused a 

decrease in the crosslink density and more void space in which the water could occupy.  

At a low amine concentration of 3 mol% the weight of the material increased by only 

0.44% after 20 minutes of being fully submerged in water, 0.89% after 2 hours, and 

3.8% in 24 hours.  At a high amine concentration of 33 mol% the material weight 

increased by 2.1% after 20 minutes, 10.9% after 2 hours, and 74.11% after 24 hours. 

(Figure 3-51) For comparison purposes, the water mass uptake for the TMPeTA 912 

materials containing 3 mol% and 34 mol% DEA were 3.3% after 2 hours and 55.8% 

after 2 hours, respectively.   

 

Figure 3-52: TMPeTA 692-co-TMPTMP water mass uptake as a function of 
diethylamine concentration illustrating selected concentrations at times ranging from 20 
minutes to 24 hours. 
 

The water mass uptake for the TMPeTA 692 materials also increased as a 

function of time. Figure 3-52 illustrates the water mass increase as a function of 

selected amine concentrations at various increments of time.  At moderately low amine 
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concentrations, these materials were not observed to uptake an unacceptably large 

amount of water even after 24 hours. At a moderately low amine concentration of 10 

mol%, the mass of the material was observed to increase by 0.24% after 20 minutes of 

full water submersion, 0.53% after 40 minutes, 0.82% after 60 minutes, 1.4% after 80 

and 100 minutes, 2.4 after 2 hours, 3.2% after 9 hours, and 4.5% after 24 hours. (Figure 

3-52) The use of this trifunctional acrylic monomer with shorter ethoxylated chains (692) 

was a great improvement over the longer TMPeTA 912 monomer in terms of water 

mass uptake.  

 Although these relatively long-chain, high-molecular weight TMPeTA trifunctional 

monomer components greatly increased the flexibility and initial contact angle of the 

thiol-acrylate microfluidic material, the limitations were not suitable for the application 

sought here.  The combination of their extremely high aqueous uptakes and more 

volatile contact angles compared to those of PETA-co-TMPTMP proved these materials 

less useful in the production of simple, cost-efficient, stable hydrophilic microfluidic 

devices.  These TMPeTA-co-TMPTMP materials could serve other purposes in the field 

of microfluidics in terms of “shrinking” easily reproducible microstructures to more 

difficult nanostructures. 

3.7 Thiol-Acrylate Microfluidic Material Potential Forecast 

As shown earlier, these PETA-co-TMPTMP surfaces can be successfully 

modified with small modifying molecules ranging from very hydrophilic molecules such 

as PEGylated acrylates (Figure 3-25) to very hydrophobic molecules such as those 

containing long hydrocarbon chains (Figure 3-30) or fluorinated compounds (Figures 3-

32 and 3-34).  The fact that these surfaces can be easily and robustly modified opens a 
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plethora of opportunities for further applications in the field of microfluidics even beyond 

the highly desirable stable hydrophilic nature of the material.  Utilizing specific modifying 

molecules, these materials have the potential for bulk modification to produce a 

consumer-manipulatable microfluidic device via avidin-biotin interactions.  Biotin is a 

critical vitamin found in all living cells that is used in a multitude of biological processes. 

[247] Avidin, a glycoprotein, specifically and stoichiometrically binds biotin with high 

affinity. [248] The avidin-biotin complex is one of the strongest non-covalent interactions 

known, boasting an equilibrium dissociation constant of 10-15 M. [248]  Avidin molecules, 

including streptavidin, have four binding sites, therefore one avidin molecule can bind 

up to 4 independent biotin molecules. [249] A biotin molecule functionalized with a 

monofunctional acrylate component could be bound to the surface of these PETA-co-

TMPTMP microfluidic devices via the bulk modification techniques described earlier. 

This biotinylated surface produced via bulk modification could then be used to bind 

functionalized avidin molecules resulting in a 2nd-tier, consumer-controlled modification.  

A final consumer could attach specific active group molecules required for their unique 

analysis to biotin molecules and bind them in a stoichiometric fashion to avidin 

molecules, leaving one binding site open per avidin molecule.  These then 

functionalized avidin molecules could be flowed in an aqueous solution down the 

previously prepared biotinylated microfluidic device, resulting in the attachment of the 

functionalized avidin molecules to biotin molecules covalently linked to the surface of 

the PETA-co-TMPTMP material.  The premise for this potential forecasted technique is 

illustrated in Scheme 3-8.  The realization of this 2-tier modification technique could be 

highly beneficial in the field of microfluidics. Multiple active groups could be attached o a 
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single avidin molecule and attached to the biotinylated microfluidic surface. This one 

device then could be used to separate multiple components, as each active group 

would have an affinity for a different molecule. Also, one type of biotinylated microfluidic 

device could be prepared and serve a multitude of specific final consumers as each 

surface could be manipulated depending on the individual needs of the final consumer.   

 

Scheme 3-8:  Schematic illustration of a 2-tier consumer-modifiable microfluidic device.  
 
3.8 Conclusions 

Novel, cost-efficient thiol-acrylate microfluidic devices with native stable 

hydrophilic surfaces were prepared via a soft lithography technique in less than 24 

hours at room temperature and ambient pressure with no complex or expensive 
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instrumentation. This research was fueled by the strong need for stable hydrophilic 

surfaces in a field of microfluidics that is dominated by other complicated and expensive 

techniques that require modification to achieve only transient surface energies. The 

chemistry employed to produce these polymeric materials involved two consecutive 

Michael additions.  An in situ tertiary amine catalyst molecule was first prepared via the 

Michael addition of a secondary amine to a trifunctional acrylate.  This molecule was 

then used as both a catalyst and a comonomer in an amine catalyzed thiol-acrylate 

Michael reaction.  Because the catalyst molecule was incorporated into the polymer 

network, there was no need to remove it in the final steps of the reaction, making this 

reaction very beneficial for biological analysis. The kinetics of these reactions illustrated 

that the gel time of the systems could be manipulated depending on the amine 

concentration but only to a certain extent.  The gel times for these materials ranged 

from 2 hours to <20 minutes.  The kinetic studies provided here also proved that these 

reactions proceeded to extremely high conversion, which is a normal aspect of amine-

catalyzed thiol-acrylate reactions.  This high conversion is another beneficial facet of the 

reaction in terms of biological assays as high conversion translates into less small-

molecular weight free monomer molecules capable of escaping and disrupting biological 

processes. It was found in this study that many of the properties of the material could be 

manipulated via a simple change in the amine concentration.  Due to the in situ nature 

of the catalyst used in this system, an increase in the amine concentration resulted in a 

decrease in the crosslink density.  The crosslink density affected many of the material 

properties such as strength, flexibility, and glass transition temperature.  The strength 

and flexibility of the materials were found to be adequate, and the glass transition 
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temperatures indicated an applicable temperature range for microfluidic assays. These 

novel thiol-acrylate microfluidic materials were annealed via a partial polymerization 

technique utilizing excess monomers on opposing sides and the same versatile thiol-

acrylate chemistry and in situ tertiary amine.  This added another advantage, as other 

techniques require expensive equipment for annealing of microfluidic devices. The 

strength of annealing was investigated via orthogonal delamination analysis, and it was 

concluded that 40% excess monomer on either surface was adequate to produce a 

bond strength comparable to that of PDMS surfaces bound by a traditional oxygen 

plasma surface activation technique. These Hydrophilic PETA-co-TMPTMP microfluidic 

devices boasted native water contact angles between 60-65˚.  These native high-energy 

surfaces were found to be extremely stable for at least 2.5 months.  This is extremely 

beneficial for microfluidic applications as it allows for microfluidic devices with long shelf 

lives. The surface energies of these devices were also modified via both post- and a 

bulk-modification using various small molecule acrylic modifiers ranging from hydrophilic 

PEGylated acrylates to hydrophobic acrylates functionalized with long hydrocarbon 

chains or fluorinated compounds.  It was concluded that the surface could be 

manipulated to have stable water contact angles ranging from very hydrophilic (<30˚) to 

mildly hydrophobic (>85˚) depending on the surface chemistry.  From these modification 

results, a water contact angle library was generated illustrating the ability to formulate a 

material based on a desired level of hydrophilicity.  The replication efficiency of these 

materials via soft lithography was found to be extremely high with capabilities of 

reaching structures even smaller that utilized in this study. Final devices were prepared 

and observed via fluorescence microscopy. It was concluded that these devices perform 
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very well when fluorescent dyes are flowed though the microchannels, and they are 

capable of being used in fluorescence microscopy studies, which are useful in the field 

of microfluidics. Other acrylic monomers were incorporated into the thiol-acrylate matrix 

as replacements for the PETA comonomer. TMPeTA monomers with longer intra-

acrylate chains were incorporated to improve the flexibility of the final material.  The 

flexibility of the material was improved, but the high level of water mass uptake and the 

inadequate surface modifications experienced by the material made it less appeasing in 

terms of a microfluidic device application. These thiol-acrylate microfluidic devices, 

specifically those prepared using the PETA-co-TMPTMP material, have high potential in 

the microfluidic industry.  Future applications could involve the production of a specific 

biotinylated consumer-manipulatable microfluidic device exploiting a strong avidin-biotin 

interaction.  These materials, coupled with a soft lithography technique, will certainly be 

beneficial as a simple, fast, tunable, and cost efficient method of producing a stable 

natively hydrophilic microfluidic device.    
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CHAPTER 4. CONCLUSIONS 

 The use of the very versatile and robust amine-catalyzed thiol-acrylate chemistry 

for novel applications was proven highly successful via the research provided here.  

Two completely new applications arose from this research, both fully utilizing the 

multitude of advantages associated with amine-catalyzed thiol-acrylate chemistry.  

Some of these advantages included low cost, simplicity of the reaction, high network 

uniformity, lack of oxygen inhibition, versatility in terms of monomers and catalysts, 

ease of modification, high strength, and the ability to reach extremely high conversion at 

room temperature and ambient pressure. These advantages were exploited in the 

preparation of novel core-containing microparticles and stable hydrophilic microfluidic 

devices.  Various core materials were microencapsulated via the primary amine-

catalyzed Michael addition of a trifunctional thiol to a trifunctional acrylate. The use of 

this chemistry facilitated the preparation of these microparticles via a simple dispersion 

polymerization using a minimum number of components, in less than one hour, at room 

temperature, and ambient pressure.  These beneficial procedural aspects made this 

method of microencapsulation highly advantageous over typical methods of 

microencapsulation. It was determined that the size of these microparticles could be 

easily tuned via variations in energy input into the system via agitation.  These 

microparticles could serve as either stimulated release or controlled release vesicles 

depending on core material incorporated.  Benzoyl peroxide, Dimethyl-para-toluidine, a 

borontrifluoride-amine complex, a borontrichloride-amine complex, and carbon 

nanotubes were microencapsulated using this primary amine-catalyzed thiol-acrylate 

method and analyzed in various capacities, all showing some level of success. 
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Microparticles containing one particular initiator, a borontrichloride-amine complex, were 

extensively characterized and further analyzed in two multifunctional epoxy systems. 

These microparticles were observed to prevent the undesirable interaction between the 

Lewis acid initiator and fumed silica by separating the two components, hence 

improving the rheological properties of an epoxy system containing the initiator while 

maintaining the strength of the resulting polymer.    

This versatile amine-catalyzed thiol-acrylate chemistry was also utilized in the 

preparation of novel hydrophilic microfluidic devices.  Again, due to the multitude of 

advantages associated with this chemistry, these microfluidic devices were prepared via 

a simple, inexpensive soft-lithography technique in less than 24 hours at room 

temperature and ambient pressure with no complex or expensive instrumentation. An in 

situ tertiary amine catalyst/comonomer was prepared via an initial Michael addition of a 

secondary amine to a trifunctional hydrophilic acrylate.  This hybrid molecule was then 

added to a trifunctional thiol where the tertiary amine portion functioned as a catalyst for 

the Michael addition of the trithiol to the remaining acrylate functional groups.  A kinetic 

study illustrated that extremely high monomer conversions could be attained at room 

temperature in less than 24 hours, and the polymer gel times could be manipulated 

depending on the amine concentration to a lower limit of ~17 minutes.  The 

concentration of the amine catalyst was found to play an enormous role in the 

manipulation of the material properties including gel times, flexibility, flexure strength, 

and glass transition temperatures.  Due to the in situ nature of the catalyst, an increase 

in the amine concentration resulted in a decrease in the acrylate functionality and 

thereby a decrease in the average functionality of the system.  The decrease in average 
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functionality caused an increase in the critical extent of conversion resulting in a gel-

time parabola effect. This functionality decrease also caused a decrease in the crosslink 

density, which caused an increase in the flexibility of the material and a decrease in the 

flexure strength.  The decrease in crosslink density caused an increase in the 

segmental mobility, which caused a decrease in the glass transition temperature.  The 

annealing processed employed here utilized the step-growth nature of the thiol-acrylate 

reaction via a partial polymerization, excess monomer technique resulting in an 

annealing strength comparable to that of annealed PDMS.  These novel microfluidic 

devices were produced with native contact angles of ~60˚ that were stable for at least 

2.5 months. The surfaces of these materials were post- and bulk-modified with small 

monofunctional acrylate molecules containing modifying (hydrophilic or hydrophobic) 

functional groups.  From these modifications, a water contact angle library was 

generated that could allow for the production of a microfluidic device based on a desired 

hydrophilicity. These materials were found to have astounding replication capabilities 

and high potential for fluorescence microscopy analysis.  Various acrylic monomers 

were incorporated and observed to improve the mechanical properties of the polymer, 

but high levels of water uptake limited the use of these monomers.  Future applications 

for these microfluidic devices could include the production of a fully consumer/non-

scientist-manipulatable device, which could revolutionize the microfluidics industry.  This 

thiol-acrylate chemistry allowed for the production of two novel products that have great 

advantages over current technologies.  In both cases these products were observed to 

improve multiple aspects of the applications to which they were targeted.  They 

decreased the cost of production, decreased the time required to complete the task, 
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simplified the process, eliminated the need for expensive instrumentation, allowed for 

production under ambient conditions, and solved at least one of the obvious problems 

associated with each respected application.  These applications were examples of the 

large, untapped potential of the simple, highly useful, inexpensive, versatile, and robust 

amine-catalyzed thiol-acrylate chemistry, and there will certainly be many other 

applications utilizing this phenomenal chemistry in the near future as its potential 

unfolds.  
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