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ABSTRACT  

 

Particle lithography and scanning probe lithography were applied to study the kinetics 

and mechanisms of surface self-assembly processes. Organothiols on Au(111) and organosilane 

on Si(111) were chosen as model systems for investigations at the nanoscale using atomic force 

microscopy (AFM). Fundamental insight of structure/property interrelationships and 

understanding the properties of novel materials are critical for developments with molecular 

devices. 

Methods using an AFM probe for nanofabrication have been applied successfully to 

prepare sophisticated molecular architectures with high reproducibility and spatial precision. The 

established capabilities of AFM-based nanografting were reviewed for inscribing patterns of 

diverse composition, to generate complicated surface designs with well-defined chemistries. 

Nanografting provides a versatile tool for generating nanostructures of organic and biological 

molecules, as well as nanoparticles. Protocols of nanografting are accomplished in liquid media, 

providing a mechanism for introducing new reagents for successive in situ steps for 3-D 

fabrication of designed nanopatterns. Because so many chemical reactions can be accomplished 

in solution, there are rich possibilities for chemists to design studies of other surface reactions.  

Surface assembly and self-polymerization of chloromethylphenyltrichlorosilane (CMPS) 

were investigated using test platforms of organosilanes fabricated with particle lithography. A 

thin film of octadecyltrichlorosilane (OTS) with well-defined nanopores was prepared on Si(111) 

to spatially confine the surface assembly of CMPS within nanopores of OTS. Time-dependent 

changes during the self-polymerization of CMPS were visualized ex situ using AFM. Molecular-

level details of CMPS nanostructures were obtained from high resolution AFM images to track 



xiii 

the growth of organosilanes on Si(111). Measurements of the heights and diameters of CMPS 

nanostructures provided quantitative information of the kinetics of CMPS self-polymerization.  

Scanning probe-based methods of nanolithography were applied to investigate the self-

assembly of a tridentate organothiol, 1,1,1-tris(mercaptomethyl)heptadecane (TMMH). 

Multidentate adsorbates can address problems with long-term stability to oxidation observed 

with monothiolated n-alkylthiols. Multidentate thiol ligands demonstrate improved resistance to 

oxidation, thermal desorption and UV exposure. Progressive changes in surface morphology for 

TMMH assembly onto Au(111) was studied in situ with time-lapse AFM, monitoring changes in 

surface coverage at different time intervals. Nanoshaving and nanografting were used as 

molecular rulers to evaluate the thickness of films of TMMH.  
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CHAPTER 1. INTRODUCTION 

 

The capability to investigate surface reactions and properties of materials at the nanoscale 

using scanning probe microscopy (SPM) offers rich opportunities for scientific research and 

discovery. Self-assembled monolayers (SAMs) of organothiols and organosilanes have become 

important building blocks for nanofabrication and provide excellent test platforms for surface 

studies. In basic science, questions can be addressed regarding topics such as how molecules 

arrange and interact with surfaces. The objectives of this dissertation were to achieve new 

fundamental insight about self-assembly processes on surfaces and to obtain useful information 

regarding chemical kinetics and mechanisms at the molecular level. 

The experiments described in this dissertation applied nanolithography and SPM-based 

surface fabrication with SAMs combined with nontraditional approaches for surface 

characterizations at the nanoscale. There were several main goals for the research. First, test 

platforms of organothiol and organosilane were fabricated using nanolithography methods to 

provide well-defined test platforms for studies of surface reactions. Second, molecules of interest 

were investigated using the designed test platforms and the process of surface assembly was 

monitored by time-lapse AFM. Third, high resolution AFM images enabled measurements and 

analysis of the target molecules and provided insight at the molecular level for studies of surface 

reactions. A critical subject for the field of supramolecular chemistry is the study of 

intermolecular interactions and molecular self-assembly. Experiments were designed to acquire 

structural, functional and spectral information of designed organothiol films (e.g., adsorbates 

with multiple surface binding moieties) and supramolecular structures constructed from surface 

templates of nanopatterned thin films.  
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Numerous methods of nanoscale lithography have been developed to fabricate test 

platforms for investigations of chemical and biochemical surface reactions.
1-3

 The scope of this 

dissertation encompasses studies with selected organothiols and organosilanes that were 

patterned using approaches with scanning probe-based nanolithography and particle lithography. 

Among the patterning techniques with organic thin films, particle lithography provides 

unprecedented capabilities for high throughput patterning, and scanning probe lithography (SPL) 

offers exquisite resolution. A detailed description and comparison of particle lithography and 

SPL approaches used in this dissertation is provided in Chapter 2. Approaches for surface 

characterization using atomic force microscopy imaging modes used for the experiments of this 

dissertation are reviewed and described in Chapter 2. Test platforms of organosilanes and 

organothiols prepared using nanolithography tools of particle lithography and scanning probe 

lithography were used as model surfaces for studies of surface self-assembly reactions. 

A contemporary review of nanografting is provided in Chapter 3, a technique that is also 

used to study multidentate adsorbates in Chapter 5. Nanografting is a scanning probe-based 

technique which uses localized tip-surface contact to rapidly and reproducibly inscribe arrays of 

nanopatterns of thiol SAMs and other nanomaterials with nanometer-scale resolution. Scanning 

probe-based approaches for lithography such as nanografting with SAMs extend beyond simple 

fabrication of nanostructures to enable nanoscale control of the surface composition and 

chemical reactivity from the bottom-up. Commercial scanning probe instruments typically 

provide software to control the length, direction, speed and applied force of the scanning motion 

of a tip, analogous to a pen-plotter. Nanografting is accomplished by force-induced displacement 

of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-

alkanethiol ink molecules from solution. Desired surface chemistries can be patterned by 
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choosing SAMs of different lengths and terminal groups. By combining nanografting and 

designed spatial selectivity of n alkanethiols, in situ AFM protocols provide new capabilities for 

studies of nanoscale surface reactions with proteins, nanoparticles or chemical assembly. 

Methods to precisely arrange molecules on surfaces will contribute to development of molecular 

device architectures for future nanotechnologies. 

A new approach for studying surface self-assembly reaction using test platforms of 

organosilanes nanostructures fabricated with particle lithography is described in Chapter 4. The 

self-polymerization of chloromethylphenyltrichlorosilane (CMPS) was chosen for studies 

because benzyl halide surfaces are ideal for nucleophilic substitution reactions. Particle 

lithography is a practical and highly reproducible method for nanoscale fabrication. Well-defined 

nanopores within a thin film of octadecyltrichlorosilane (OTS) was prepared to form a surface 

layer on Si(111). For these experiments, the surface assembly of CMPS was spatially confined 

within nanofabricated pores of OTS. Molecular-level details and growth of the nanostructures 

after steps of self-polymerization were obtained by high resolution AFM. The nanodots patterns 

of CMPS produced within bare areas of the surface formed pillars with different heights and 

diameters. Analysis of AFM images after progressive chemical exposure provided quantitative 

information for studying the kinetics and mechanisms of the surface reaction. The heights of 

CMPS nanostructures indicate multilayers have spontaneously formed by self-polymerization, 

with taller columns produced by longer immersion times. The diameter of the CMPS 

nanostructures corresponds to the initial sizes of the confined areas of Si(111). These 

investigations demonstrate intriguing new capabilities as a generic approach for nanoscale 

studies with ever more complex molecular architectures. 
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The self-assembly of multidentate organothiols onto Au(111) was studied using time-

lapse AFM in Chapter 5. The way in which an adsorbate is bound to the surface, either through 

single or multiple thiolate attachments, or an alternative bonding mechanism, can impact the 

characteristics of the overlying thin film and its performance in coatings and/or nanoscale 

devices. Chemisorptive surface linkages of thiol SAMs are subject to damage from UV 

exposure, thermal desorption, and oxidation. The thickness, surface density, length of the alkyl 

chain, and composition of the surface films influence the rate of UV-induced damage of the 

coatings.
4
 Multidentate thiols are shown to dramatically improve the etch selectivity and resist 

qualities of surface films. In comparison to SAMs derived from simple n-alkanethiols, studies 

with multidentate thiolated adsorbates have shown that films derived from multidentate thiol 

adsorbates benefit from the entropy-driven chelate effect, exhibiting improvements in thermal 

stability both in air and in the presence of a contacting solvent. In Chapter 5, progressive changes 

in surface coverage were disclosed as time progressed with time-lapse imaging of 1,1,1-

tris(mercaptomethyl)heptadecane (TMMH). For regular n-alkanethiols, densely-packed 

monolayers typically are formed from dilute solutions within an hour or less; however, SAMs of 

bulkier multidentate thiols were found to assemble more slowly. A clean gold substrate was first 

imaged in ethanolic media. Next, a solution of multidentate thiol was injected into the liquid cell. 

As time progressed, molecular-level details of the surface changes at different time intervals 

were revealed by high resolution SPM images. Nanoshaving and nanografting protocols were 

used to investigate the orientation of adsorbed molecules. Since the dimensions of n-alkanethiols 

have been well-studied, the thickness of the multidentate thiol film was evaluated by referencing 

the known heights of n-alkanethiols as an in situ molecular ruler. Multidentate adsorbates attach 

to gold surfaces through multiple linkers which should provide greater stability and shelf-life for 
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prepared films as compared to monothiolated SAMs. Multidentate molecules provide a model 

surface that resists self-exchange and surface migration, to enable further steps of chemical 

reactions with high fidelity. 

A summary and future prospectus of this research direction is provided in Chapter 6 of 

the dissertation. One may anticipate that controlling the selectivity and dimensions of surface 

sites for subsequently assembling supramolecular structures will provide information to elucidate 

mechanistic roles of intermolecular forces such as hydrogen bonding, van der Waals interactions, 

solvent effects as well as sulfur-metal chemisorption. From an applications perspective, 

generating interfaces of well-defined structure and composition are critical for emerging 

nanotechnologies based on molecularly thin organic films. To realize the full potential of 

patterning surfaces for iterative manufacturing processes to produce chemical, supramolecular, 

and biomolecular nanostructures on surfaces, challenges need to be addressed for designing 

surface coatings that resist damage and maximize edge resolution and patterning reproducibility. 

As an integral component of these investigations, new nanoscale protocols were developed with 

cutting-edge scientific instrumentation to achieve fundamental information of designed 

molecules. 
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CHAPTER 2. EXPERIMENTAL APPROACH: 

IMAGING PRINCIPLES AND MODES OF SCANNING PROBE MICROSCOPY (SPM) 

 

 

2.1 Background and History of Atomic Force Microscopy 

Scanning probe microscopy (SPM) represents a family of imaging and measurement 

techniques that provide unprecedented resolution for molecular level studies. Unlike optical 

microscopes, SPM measurements use a probe to “feel” and “view” the surface to provide 

molecular details of parameters such as topography, frictional forces, tip-sample adhesion, elastic 

properties and conductance. Therefore, the resolution of SPM is not limited by the wavelength of 

light. True atomic imaging has been achieved with SPM, providing real space images of the 

lattice arrangement, atomic vacancies and adatoms.
5, 6

  

The first mode of SPM that was introduced is scanning tunneling microscopy (STM) 

invented in 1981 by Binnig and Rohrer.
7
 The invention of STM earned the Nobel Prize in 

physics in 1986. The imaging principle of STM is based on electrons tunneling between the 

probe and sample over a short distance, less than one nanometer. Using STM, the electronic 

structure of surfaces can be viewed with atomic resolution for conductive or semi-conductive 

surfaces. The atomic force microscope (AFM) was invented in 1986 by Binnig, Quate and 

Gerber, which can be used for measurements with insulating surfaces.
8
 The operating principle 

of AFM is based on atomic forces (e.g. attractive, repulsive) between the tip and sample, thus 

AFM is also commonly referred to as scanning force microscopy (SFM). 

Over the past 27 years, AFM has been applied for fundamental studies of surface 

properties, chemical structures, and nanoscale patterning. Materials that have been studied by 

AFM include self-assembled monolayers (SAMs),
9
 polymers,

10
 metals,

11
 nanoparticles,

12
 

quantum dots
13

 and biological samples.
14

 As a characterization tool, AFM has also been widely 
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used in applied research such as medical devices,
15, 16

 molecular electronics
17, 18

 and drug 

delivery.
19

  

Table 2.1 Summary of several common modes of SPM imaging.  

SPM imaging 

mode 

Mode What is 

measured 

Type of tip Feedback Description Ref. 

Contact mode contact topography Si/Si3N4 changes in tip 

deflection 

the tip remains in 

contact with the 

surface 

8 

Force 

modulation 

AFM 

contact elasticity Si/Si3N4 changes in tip 

deflection 

measures the 

attractive/repulsive 

force of the tip 

20
 

Lateral force 

microscopy 

(LFM) 

contact frictional 

forces 

Si/Si3N4 changes in tip 

deflection 

measures the 

torsion and twist of 

the tip  

20
 

Tapping mode intermittent 

contact 

topography Si/Si3N4 amplitude 

changes of  tip 

oscillation 

tip oscillates and 

periodically 

touches the surface 

21
 

Magnetic AC 

mode (MAC)  

intermittent 

contact 

topography magnetically 

coated 

cantilever 

amplitude 

changes of  tip 

oscillation 

tip is driven by 

magnetic field 

22
 

Non-contact 

mode 

non-contact topography Si/Si3N4 changes in tip 

deflection 

tip keeps a distance 

with the surface 

23
 

Magnetic force 

microscopy 

(MFM) 

interleave magnetic 

dipoles 

magnetically 

coated tip 

changes in tip 

deflection 

two pass technique 

where tip is lifted 

on 2
nd

 pass 

24
 

Conductive 

probe AFM 

(CP-AFM) 

contact topography, 

conductivity 

conductive 

tip 

changes in tip 

deflection 

a voltage is applied 

between tip and 

sample  

25
 

Electrostatic 

force AFM 

contact electrostatic 

force 

conductive 

tip 

changes in tip 

deflection 

a voltage is applied 

between tip and 

sample 

26
 

Kelvin probe 

AFM 

non-contact electronic state conductive 

tip 

scan the 

surface at a 

constant height 

tip scans at a 

constant height  

27
 

Magnetic 

sample 

modulation 

(MSM) 

contact topography,  

vibrational 

response to 

magnetic field 

Si/Si3N4 non-

magnetic tip 

changes in tip 

deflection 

AC magnetic field 

drives sample 

actuation 

28
 

 

Experiments with AFM can be accomplished in air, in liquid or in vacuum, for either 

conductive or insulating surfaces.
29

 Samples do not require pretreatment, metal stains or coatings 

for AFM studies, however, the surface should be sufficiently flat to enable imaging at the scale 

of nanometers. Based on the nature of the samples and forces to be measured, a number of 
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operating modes have been introduced. Information such as elasticity, adhesion, sample 

conductance, magnetic forces and electronic properties can be acquired depending on the modes. 

A summary of AFM modes and brief description is presented in Table 2.1. The AFM imaging 

modes used primarily for investigations of this dissertation are contact mode, tapping-mode and 

SPM-based nanofabrication. 

2.2 Basic Operating Principle of Contact Mode AFM 

Various forces between the AFM probe and the surface can be measured with AFM.
8
 The 

interactions between the tip and sample are detected and mapped point-by-point to form digital 

images. Surface morphology can be characterized at a scale from microns down to angstroms. 

To acquire AFM images with the most commonly used deflection configuration, a laser 

beam is focused onto the back of a reflective cantilever and deflected to a position sensitive 

photodetector (PSD), as shown in Figure 2.1. The attractive or repulsive forces between the tip 

and different surfaces will cause the cantilever to bend, thus the position of the reflected laser 

beam on the PSD will change accordingly. This change will be compensated to maintain a user 

assigned setpoint by applying a voltage to the piezo scanner to adjust the position of the tip. The 

voltage changes are monitored in real time as the tip is raster scanned across the surface and 

translated into pixels to form a digital image. A true three-dimensional surface topography image 

can be generated with AFM. Other information such as lateral force and phase images can be 

obtained simultaneously in different channels with the topography images. 

Tips for AFM, as shown in Figure 2.1, are commonly made of silicon or silicon nitride 

(Si3N4), and may be coated with magnetic or conductive metals for different operating modes. 

Tips can also be made of metals
30

 or carbon nanotubes
31

 to meet the needs of specific protocols. 

The apex of the tip is usually cone-shaped, with a diameter of 10-50 nm. Depending on the 
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sharpness of the tip, molecular resolution can be achieved with 0.1 nm in lateral dimension and 

0.01 nm vertically for contact mode AFM. The tip is attached to the free end of a rectangular 

cantilever and which is affixed to the piezoceramic scanner. The cantilevers typically are either 

rectangular or V-shaped, with a reflective coating on the back. The movement of the cantilever is 

controlled by a piezoceramic scanner. Voltages can be applied to the piezoceramic scanner to 

precisely control the position of the cantilever in x, y and z directions. 

 

Figure 2.1 Basic operating principle of contact mode AFM. 

 

 

Contact mode was the first imaging mode demonstrated for AFM.
8
 Surface topography, 

deflection and lateral force images can be obtained simultaneously in different channels. An 

example is shown in Figure 2.2 for contact-mode images of a gold thin film deposited on a mica 

substrate. The topography frame (Figure 2.2A) is a map of heights of the surface, where brighter 

colors represent taller structures and correspondingly darker color indicates shorter features. The 

deflection image shows the raw data in volts that compensates for the changes of laser position 

controlled with the feedback loop, an example is shown in Figure 2.2B. Deflection images are 

particularly sensitive to revealing the edges of surface features but do not correlate with a 

physical property. The lateral force image (Figure 2.2C) provides useful information for 
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identifying difference in surface chemistry as well as edges of defined domains.
32

 By subtracting 

left and right traces of lateral force images, measurements of frictional forces can be acquired.  

 

Figure 2.2 Examples of contact mode AFM images of a gold thin film formed on mica, acquired 

in ambient air. [A] Topography; [B] deflection; [C] lateral force frame.  

 

Hysteresis refers to the directional difference between trace and retrace images due to the 

asymmetry of the AFM probe. As the tip scans the surface in a raster pattern, the “fast direction” 

refers to horizontal line scans and the “slow direction” refers to vertical motion between the line 

scans. The horizontal scans are sorted by directions to form trace (left to right) and retrace (right 

to left) images. In the absence of hysteresis, molecular friction measurements can be obtained by 

subtracting trace and retrace images.  

As the tip is raster scanned across the surface, the interaction between tip and sample 

causes the cantilever to bend. Vertical changes resulting from the height differences of the 

surface structures will be processed to form topography images. Accordingly, horizontal changes 

from the torsion and twist of the tip will be converted to lateral force images. Voltages applied 

through the feedback loop to compensate both vertical and horizontal changes are referred to as 

“error signals” and are used to generate images.  
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There are two types of positional feedback mechanisms for contact mode: constant force 

and constant height. For constant force mode, the force between the tip and sample is held 

constant at a user assigned value. A voltage is applied through the feedback loop to maintain the 

deflection of the tip at a constant value. The main function of the feedback loop is to adjust the 

deflection of the tip according to the change between the initial force setpoint and the detected 

force. For constant height mode, the distance between the tip and sample is held constant and the 

force changes will be sensed. Constant height mode is not widely used because it requires the 

surface to be ultraflat at the scale of angstroms. 

With time-lapse AFM, surface reactions can be monitored in real time by comparing the 

height difference in topography images before and after surface reactions. Lateral force images 

provide useful maps of local chemical differences of the surface, as the twisting of the tip over 

different terminal groups can be distinguished with high sensitivity. 

2.3 Tapping-mode AFM 

The AFM tip can be operated in contact, intermittent contact and non-contact 

configurations. In contact mode, the tip remains in continuous contact with the surface under a 

small pressure or setpoint force. Intermittent-contact mode, also referred to as tapping mode, 

describes a configuration where the tip oscillates and rapidly taps the surface. For non-contact 

mode, the tip is scanned over the surface at a certain distance and does not touch the sample. For 

conventional non-contact mode, Van der Waals’ forces between the tip and sample can be 

detected and experiments are usually accomplished in vacuum.
33

 Non-contact mode is also used 

for measurements of magnetic and electrostatic forces.
34

 

A potential drawback of contact mode AFM is that the dragging force may damage or 

alter soft samples such as proteins or DNA. Tapping-mode was invented to reduce the shearing 
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forces between the AFM probe and the sample.
21

 For tapping-mode, the cantilever is driven to 

oscillate and intermittently touch the surface instead of remaining in contact with the surface. 

Tapping-mode effectively eliminates frictional force and reduces the damage. Also the tip is 

drive to oscillate at high frequency. Information such as topography and phase images can be 

obtained concurrently with tapping-mode. Example images acquired with tapping-mode AFM in 

air are shown in Figure 2.3. 

 

Figure 2.3 Tapping-mode images of nanoholes within a thin film of OTS on Si(111). [A] 

Topography; [B] amplitude, and [C] phase frames that were simultaneously acquired. 

 

The feedback mechanism of tapping mode that is used for driving the tip position is quite 

different than that used for contact mode. As the tip oscillates, a voltage is applied to maintain 

constant amplitude through the feedback loop. The error signals resulting from the difference 

between amplitude setpoint and the detected value will be reconstructed to form an image. The 

phase image is obtained from the phase lag between the wave function of input AC and actual 

detected output of cantilever oscillation. Therefore, phase images provide sensitive maps of 

surface chemistry. Tapping mode has been widely used for AFM studies, especially soft samples. 

Table 2.2 provides examples of surfaces that have been characterized using tapping-mode AFM.  
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Table 2.2 Example samples characterized with tapping-mode AFM.  

Sample Substrate Ref. 

holoferritin highly oriented pyrolytic graphite 

(HOPG)  

35
 

ω-amine alkanethiols gold 
36

 

single-walled carbon nanotubes 

(SWCNTs) 

gold 
37

 

fetal bovine serum proteins hard inorganic diamond substrates 
38

 

lysozyme alkanethiol SAMs on gold 
39

 

tungsten oxide nanoparticles mica and graphite 
40

 

PtZn Nanoparticles glassy carbon 
41

 

Ag nanoparticles Nb-doped conductive rutile TiO(100) 

single crystal 

42
 

Au nanoparticles Silicon 
43

 

polyaniline (PAni) silica, indium doped tin oxide (ITO) 
44

 

silica nanoparticles silicon 
45

 

iron oxide (Fe2O3) nanoparticles silicon 
46

 

Au–Ag bimetallic layers glass 
47

 

Au/Pt/Pd germanium 
48

 

Zn gold-coated quartz crystal 
49

 

Guanosine (G) mica 
50

 

DNA wrapped multiwall carbon 

nanotube (MWCNTs) 

HOPG 
51

 

Hybrid nanostructure of polyamidoamine 

dendrimers and oligonucleotides 

mica 
52

 

DNA Rutile(001) and beta-gallia rutile (BGR) 
53

 

 

  2.4 Chemistry of Self-Assembled Monolayers  

Self-assembled monolayers (SAMs) are organized assemblies of molecules that formed 

on surfaces by spontaneous adsorption. In this dissertation, both organothiols and organosilanes 

were used for studies. A range of applications require SAMs, including surface modification,
54

 

fabrication of molecular devices,
55

 biosensing,
56

 lubrication,
57

 and corrosion inhibition.
58

 The 

properties of surfaces such as structure, adhesion, acidity and wetting can be exquisitely 

controlled by designs of the backbone, linker and terminal groups of SAMs.
61-63

 The thickness of 

films can be tuned by choosing different chain lengths of SAMs. 
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2.4.1 Characteristics of Organothiol SAMs 

The structure and surface arrangements of SAMs of n-alkanethiols have been studied and 

reviewed previously.
59-61

 Well-ordered SAMs of alkanethiols are easy to prepare with high 

reproducibility by immersing gold substrates into dilute thiol solutions (typically 0.1 - 1.0 mM). 

Close-packed SAMs of n-alkanethiols form a commensurate (√3x√3)R30° lattice on Au(111) 

surface with a tilted chain oriented approximately 30° from surface normal, as shown 

representatively in Figure 2.4. The anchoring groups, sulfur atoms are considered to bind at the 

triple hollow sites of gold atoms, and both sulfur and gold atoms are hexagonally close-packed. 

  

 

Figure 2.4 Model of n-alkanethiols SAMs. [A] Side-view; [B] top-view of the commensurate 

surface structure formed on Au(111). 

 

Studies of the kinetics of the self-assembly of n-alkanethiols SAMs on gold from solution 

have been reported previously.
62

 At first, alkanethiol molecules assemble on a gold surface with 

a parallel orientation in a “lying-down” configuration. As time proceeds, the molecules rearrange 

to “stand up” to form a dense monolayer with the backbone tilted 30° from surface normal. 

Natural defects can be observed from high resolution AFM and STM images of n-alkanethiols 

SAMs, such as domain boundaries, etch pits, pinholes, missing atoms, dislocations and gold 

steps, provided atomic resolution has been achieved.
63

 The height of gold steps is 0.25 nm, 

which can be used for instrument z calibration. 
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  Well-ordered structures of n-alkanethiol SAMs provide controllable surface chemistry 

with diverse functionality of terminal groups such as alkyls, hydroxyl, carboxyl, amides, esters, 

etc. Headgroups that provide active sites for protein binding can be selected according to 

requirements for binding specific protein molecules for biosensing applications, whereas the 

surrounding matrix SAMs provide a resist to minimize nonspecific adsorption. Nanografting is 

the primary AFM-based fabrication method used with alkanethiol SAMs in this dissertation, 

which will be described in detail in Chapter 3. 

2.4.2 Thin Films of Organosilanes  

The self-assembly process of organosilane SAMs is more complicated than for n-

alkanethiol SAMs. Silane molecules consist of a silicon tetrahedron bond and can bind to the 

surfaces (such as silicon oxide, mica, glass, etc.) as well as adjacent molecules through Si-O 

covalent bonds. Ideally, n-alkylsilane can form a monolayer with the backbones almost 

perpendicular to surface normal, as shown in Figure 2.5. However, self-polymerization occurs 

and multilayers are often formed with reactive head groups. The quality of the films of 

organosilane SAMs depends on parameters such as the amount of water, the type of alkylsilane 

molecules, temperature, solvent, substrate and reaction time. Therefore, careful control of the 

reaction conditions is needed for reproducibility.  

 
Figure 2.5 Idealized model of the structure of n-alkylsilane SAMs. 
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The nanostructure of organosilane reflects local interactions of silanol groups, substrates 

and trace amount of water. Since discovered by Sagiv
64

 in 1980 that nanoscopic water is needed 

to initiate the surface assembly reaction for octadecyltrichlorosilane (OTS), the mechanism of 

the self-assembly process of tricholorosilane is still under investigation. Due to the nature of 

covalent bonds between silane and substrates, particle lithography has been widely used to 

generate nanostructures of organosilanes, such as rings, pores and dots.
65

 Nanoshaving has also 

been applied to shave SAMs of octadecyldimethylmonochlorosilane (C18 DMS)
66

 and 1-

alkenes
67

 on silicon substrates. 

2.5 Nanofabrication Techniques: Nanografting and Particle Lithography 

Lithography methods that can regulate the distribution of functional groups on surfaces 

have potential applications towards nanoscience and nanotechnology.
68

 Evaluations of 

lithography methods at the nanoscale include resolution, reliability, reproducibility, throughput, 

cost, speed and ease of operation. A comparison of the two methods used in this dissertation is 

shown in Table 2.3. 

Table 2.3 Comparison of SPL and particle lithography. 

 SPL Particle Lithgraphy 

Resolution achievable 0.1 nm 100 nm 

Throughput Low, patterns are written 

individually in serial process 

High, billions of patterns are 

generated simultaneously 

Speed minutes a few hours 

Ease of protocols An SPM tip is used to 

inscribe patterns 

Conventional bench chemistry 

(mixing, rinsing, drying) 

Geometry of patterns exquisitely controlled Pores, rings, dots 

 

An SPM tip is used as the tool for fabrication with SPL. The tip is analogous to a pen for 

writing nanopatterns, whereas the surface is serves as a piece of “paper” for SPL. A key 
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advantage of SPL is that the shape, size, spacing and arrangement of the patterns can be 

exquisitely controlled through computer automation.  

Particle lithography has also been referred to as nanosphere lithography
69, 70

 and colloidal 

lithography.
71, 72

 Particle lithography was originally developed in 1982 by Deckman and 

Dunsmuir.
73

 For particle lithography, mesospheres are used as a template to direct the self-

assembly of nanomaterials such as SAMs,
74

 polymers,
75

 metals
76

 and inorganic materials.
77

 The 

close-packed arrangement of mesospheres provides a well-ordered mask to guide the adsorption 

of various materials. The center-to-center spacing between the patterns corresponds to the 

diameter of the particles used. A key advantage of particle lithography is high throughput, 

billions of nanostructures can be fabricated simultaneously within a few hours.  

2.6 Experimental Design: Molecular-level Studies of Chemical Reactions with AFM 

Test platforms of organothiol and organosilane SAMs can be fabricated for fundamental 

studies of surface assembly and surface reactions using SPL and particle lithography.
78, 79

 Time-

lapse AFM enabled surface reactions to be monitored at the molecular level. High resolution 

images provide valuable information for understanding the kinetics and mechanisms of 

molecular self-assembly processes on surfaces.
80, 81

 

Particle lithography combined with immersion was applied to fabricate nanopores within 

a thin film of octadecyltrichlorosilane (OTS).
82, 83

 The nanopatterns offer spatial confinement for 

the deposition of other trichlorosilane molecules because the methyl terminal group of OTS 

provides an effective resist. The second silane molecules grow selectively inside the nanopores 

and self-polymerize to form taller and wider nanostructures over time.  

Nanografting, an SPL method, was used to study the surface self-assembly of organothiol 

SAMs on gold.
84

 Methyl-terminated n-alkanethiols were used as matrix to furnish a molecular 
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ruler for determining the height and orientation of the multidentate organothiol adsorbates. The 

multidentate SAMs can address the stability issues of monothiol SAMs such as oxidation and 

desorption from UV exposure and high temperature. Therefore, multidentate adsorbates provide 

a more robust thin film through multiple surface-binding linkers. 

Nanografting experiments were accomplished in liquid media using a liquid cell, as 

shown in Figure 2.5. A gasket between the sample plate and liquid cell prevents leaking. The 

liquid environment enabled in situ investigations of surface reactions; new reactants can be 

introduced through plastic tubing connected to the liquid cell. The solvent is replenished during 

the experiment as it evaporates. Improved resolution of AFM liquid imaging can be achieved due 

to greatly reduced or eliminated capillary force between the tip and sample.
85

 Less imaging force 

(≤ 1 nN) can be applied in liquid environments compared to regular force of 1 to 10 nN when 

imaging in air. Liquid imaging was used in kinetics studies of multidentate thiols in Chapter 5. 

 

Figure 2.6 Components of the liquid cell used for nanografting experiments and AFM imaging. 

 

  

scanner 

liquid cell 

sample 
plate 

gasket 

metal clip 

screw 
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CHAPTER 3. NANOGRAFTING: A METHOD FOR BOTTOM-UP FABRICATION OF 

DESIGNED NANOSTRUCTURES
84

 

 

 

3.1 Introduction 

Scanning probe lithography (SPL) enables bottom-up fabrication of nanostructures on 

surfaces for producing features with nanoscale dimensions. Methods using the probe of an 

atomic force microscope (AFM) have been used to fabricate sophisticated architectures at the 

molecular level with high spatial precision.  A number of AFM-based approaches for SPL have 

been developed such as nanoshaving,
86-90

 nanografting,
79, 91-93

 dip-pen nanolithography (DPN),
17, 

94
 NanoPen Reader and Writer (NPRW), 

95-97
 catalytic probe lithography,

98-100
 and bias-induced 

nanolithography.
101, 102

 This chapter will focus specifically on the capabilities of nanografting for 

inscribing patterns of diverse composition from the bottom-up, to produce complicated surface 

designs with well-defined chemistries. Nanografting provides a versatile tool for generating 

nanostructures of organic and biological molecules, as well as nanoparticles. Protocols of 

nanografting are accomplished in liquid media, providing a mechanism for introducing new 

reagents for successive in situ steps for 3-D fabrication of complex nanostructures.  

Nanografting was first introduced in 1997 by Xu, et al. and is accomplished by applying 

mechanical force to an AFM probe to generate nanostructures within a matrix film.
93

 The 

molecules to be patterned are dissolved in the imaging media, and the substrates are precoated 

with a protective layer to prevent nonspecific adsorption of molecules throughout areas of the 

surface. When the tip is operated in liquid media under low force (less than 1 nN), high 

resolution characterizations of surfaces can be acquired in situ. When the force applied to the 

probe is increased to a certain displacement threshold the tip becomes a tool for surface 

fabrication  

*Reproduced with permission from Springer. 
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fabrication. The exquisite resolution achieved with nanografting is mainly attributable to liquid 

imaging. When AFM experiments are conducted in liquid media, very low force can be used to 

accomplish imaging or nanofabrication. The geometry of the apex of the probe is preserved by 

operating at low forces, because liquid media serves to minimize the strong capillary forces of 

attraction that cause adhesion between the tip and sample.
103, 104

 

3.1.1 General Procedure for Nanografting  

The basic steps for nanografting are presented in Figure 3.1. In the first step, the surface 

of a self-assembled monolayer (SAM) prepared on a Au(111) substrate is imaged using low 

force in liquid media that contains the molecule or nanomaterial to be patterned. When the tip is 

operated at low force the surface is not damaged or altered by the scanning probe (Figure 3.1A).  

 

 

Figure 3.1 Steps for producing patterns of n-alkanethiols with nanografting by changing the 

mechanical force applied to the AFM probe. The process is accomplished under liquid imaging 

media containing the molecules to be patterned. [A] Characterization is accomplished when the 

tip is operated at low force; [B] patterns are nanografted when the force is increased to a certain 

displacement threshold; [C] returning to low force, the patterns are characterized in situ. [D] 

Model of an n-alkanethiol self-assembled monolayer. 
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A suitable flat area can be selected for inscribing patterns that has few defects or contaminants. 

Next, the tip is raster scanned across the surface using higher force to sweep away selected 

regions of the matrix SAM. During the fabrication step (Figure 3.1B), fresh molecules from 

solution bind to the exposed areas of the substrate immediately following the pathway of the 

scanning probe to produce nanopatterns. Finally, the pattern that was grafted can be 

characterized in situ by returning to a low force for nondestructive imaging (Figure 3.1C). 

Patterning and imaging are accomplished in situ with the same AFM tip, within a few minutes or 

less. The entire process can be automated to reproducibly write multiple patterns.
105, 106

 

A key requirement for nanografting is to determine the necessary amount of force for 

cleanly removing local areas of the matrix monolayer without damaging the tip. To find the 

appropriate force, one can monitor surface changes in situ while successively increasing the load 

applied to the tip. As the force is gradually increased at small increments, images will clearly 

show changes in surface morphology at a certain threshold.  The optimum force must be derived 

for each experiment for several reasons.  At the nanoscale, the actual geometry of tips is never 

identical and thus the sharpness will vary from probe to probe. Also, different amounts of force 

are necessary for matrix layers of different thicknesses or compositions. The requisite force 

needed for imaging in various liquid media will change according to dissolution parameters, for 

example the forces required for nanografting in aqueous media are not the same as for ethanolic 

media. For each system, the amount of force to be applied for fabrication must be determined 

experimentally.  

3.1.2 Applicability of Nanografting for In Situ Studies 

Nanografting can achieve high spatial resolution. The length, size and shape of patterns 

can be controlled precisely, achieving an edge resolution of 1 nm and line widths of 10 nm or 
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less, depending on the dimensions of the probe. The head groups of grafted structures can be 

selected by choosing different molecules, such as aldehydes, carboxylates, thiols, amines, and 

others. The thickness of the patterns can be designed by choosing the carbon backbone of the 

matrix and nanografted molecules. Nanografting enables in situ reactions to be studied locally 

under dilute conditions.
107

 Time-lapse AFM images can be acquired at selected intervals to view 

reaction kinetics for conditions that occur over time scales of minutes to hours. A range of 

different molecules and nanomaterials have been patterned with nanografting, examples will be 

described in this chapter for n-alkanethiol SAMs,
97, 108

 metals,
11

 nanoparticles,
109

 porphyrins,
110

 

proteins
111-114

 and DNA.
115

    

Among the most significant contributions of scanning probe studies with nanografting are 

the possibilities for studying step-wise surface reactions in real time with a molecular-level view. 

Imaging in liquid media provides a means for exchanging liquids to introduce new reagents in 

successive steps to build nanostructures from the bottom-up. To date, the primary examples that 

have been reported demonstrate nanografted patterns of n-alkanethiol SAMs, often as a 

foundation for attaching other molecules and nanomaterials. Further chemistries for nanografting 

experiments are likely to be extended to other types of surface binding motifs, such as 

phosphonic acids on metal substrates;
116

 siloxane binding, pyridyl-
110

  or thiol- 
117

 functionalized 

porphyrins, thiolated proteins,
118, 119

 thiolated DNA
115

 or peptides and other types of surface 

linkers.  

3.2 Patterning n-Alkanethiol Self-Assembled Monolayers (SAMs) by Nanografting 

As a starting point, SAMs of n-alkanethiols prepared on gold substrates provide a model 

system for nanografting experiments. Thiol end groups furnish a functional handle for surface 

attachment, mediated by sulfur-gold chemisorption. The self-assembly process and surface 
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structures of n-alkanethiols on Au(111) have been previously described.
120, 121

 The carbon 

backbones of the molecules consist of tilted alkane chains (Figure 3.1D), the lengths of which 

can be designed to define the thickness of the matrix areas and nanografted patterns. For n-

alkanethiol SAMs, chain lengths ranging from 2 to 37 carbons have been nanografted 

successfully. The head groups of n-alkanethiols provide a way to attach other molecules and 

nanomaterials with spatial selectivity; for example, experiments can be designed to define 

patterned sites for specific adsorption of proteins, nanoparticles or DNA, within a matrix 

monolayer that resists binding of molecules or nanomaterials.  

Nanopatterns of octadecanethiol (18 carbon backbone or C18) were nanografted side-by-

side within a matrix SAM of decanethiol (10-carbon backbone or C10) as shown in Figure 3.2A. 

93
 The square patterns measured 0.88 nm taller than the matrix. The dimensions of the smaller 

feature are 3 nm × 5 nm, in which approximately 60 thiol molecules were grafted. The size of the 

larger nanopattern is 50 × 50 nm
2
.  Zoom-in views of both the nanografted pattern of C18 and 

the C10 matrix are shown by in situ AFM topography images in Figures 3.2B, C, respectively. 

The molecularly resolved images show that molecules within the nanopatterns display a periodic 

(√3 × √3) R30° lattice, thus the packing arrangement of thiols is preserved for alkanethiol 

nanostructures produced by nanografting.  
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Figure 3.2 Patterns of n-octadecanethiol were nanografted within a matrix monolayer of 

decanethiol. [A] AFM topography view (130 × 130 nm
2
); [B] zoom-in view of the pattern 

surface (5 × 5 nm
2
); [C] Zoom view from an area of the C10 matrix (5 × 5 nm

2
). (Reprinted with 

permission from Ref.[
93

]. Copyright © American Chemical Society.) 

 

Nanografted structures can be erased and rewritten in situ by exchanging the imaging 

media with different molecular adsorbates for patterning. Results for writing two parallel line 

patterns of octadecanethiol within a decanethiol matrix with a distance of 20 nm between 

patterns were shown by Xu and others.
79

 One of the lines was erased by replacing the liquid 

imaging media with a solution of decanethiol and scanning at high force over one of the C18 

patterns to replace the previous nanostructure with C10 molecules. After the line pattern was 

“erased” the imaging media was exchanged again to introduce a fresh solution of C18SH 

molecules to graft a line pattern spaced 65 nm from the previous pattern. Accomplishing this 

experiment required a scanning probe microscope with high stability, however this clearly 

demonstrates the flexibility for introducing and exchanging reagent solutions for multiple 

synthetic steps when imaging with AFM in liquids.  

 

 

Figure 3.3 Nanografted letters of 3-mercaptopropionic acid written within a decanethiol matrix 

SAM. [A] Topographic image (600 × 600 nm
2
); [B] concurrent lateral force image of the same 

area 
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Different shapes and molecular components can be patterned by nanografting. Several 

letter patterns that spell the acronym “AFM” are shown in Figure 3.3 that are terminated with 

carboxyl head groups. The line widths of the letter patterns are less than 10 nm, indicating that 

the very sharp AFM probe was not damaged by the physical process of scanning with the tip 

under high force. Although the AFM images of the patterns were captured after the writing 

process, we can still resolve the ultra-fine distinctive features of the matrix monolayer of 

decanethiol, resolving the characteristic details of an alkanethiol SAM landscape such as 

pinholes, scars, molecular island vacancies
122

 and overlapping gold terrace steps. The patterns 

are composed of 3-mercaptopropionic acid written within a decanethiol matrix.  The difference 

in terminal chemistry is clearly distinguishable in the simultaneously acquired lateral force AFM 

image of Figure 3.3B. Lateral force images do not show changes in height, instead the image 

contrast reveals nanoscopic differences in frictional and adhesive forces between the tip and 

surface. In this example, the tip-surface interactions are markedly different for the dark areas of 

the nanografted letters which are terminated with thiol head groups, as compared to the brighter 

areas of the surrounding methyl-terminated matrix SAM.  

The simplicity of SAM preparation is another benefit of nanografting protocols. A matrix 

monolayer can be prepared by simply immersing a clean substrate into a dilute solution of n-

alkanethiol in ethanol or sec-butanol for one or more hours. After a SAM film is formed on the 

metal substrate, the sample can be stored for several weeks in a solution of clean solvent, and 

often can be recycled and used for several experiments. Nanografted patterns can be engineered 

to incorporate diverse head group chemistries, such as methyl, alcohol, glycol, aldehyde, amide 

and carboxylate. Table 3.1 lists examples of thiol self-assembled monolayers which have been 

patterned using nanografting. Methyl-terminated SAMs of decanethiol or octadecanethiol have 
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been commonly used as matrix monolayers for nanografting.  Either ethanol or 2-butanol are 

most frequently used as solvents for liquid imaging. Patterns of diverse shapes, such as squares, 

rectangles and rings have been reported ranging up to 500 nm in size, with the dimensions of the 

smallest pattern measuring 3 nm  5 nm.  

 

Table 3.1 Examples of thiol SAMs that have been successfully nanografted 

Nanografted molecule Pattern dimensions Matrix film Liquid media References 

1-hexanethiol 5.2 nm × 5.2 nm 
Thiolated biotin 

SAMs 
Ethanol [

114
] 

1-octadecanethiol 
3 nm × 5 nm  

50 nm × 60 nm 
1-decanethiol 2-butanol [

93
] 

1-decanedithiol 100 nm × 100 nm 1-decanethiol 2-butanol [
123

] 

Dodecanethiol 300 nm × 300 nm 1,9-nonanedithiol Ethanol [
124

] 

1-octadecanethiol  

Docosanethiol  

2-mercaptoethanol  

16-mercapto-hexadecanoic acid 

20 nm × 60 nm  

25 nm × 60 nm  

75 nm × 100 nm  

70 nm × 300 nm 

1-decanethiol or 

1-octadecanethiol 
2-butanol [

79
] 

3-mercapto- 

1-propanoic acid 
400 nm × 400 nm C11(EG)6  Water [

125
] 

11-mercapto- 

1-undecanal 

50 nm × 50 nm  

100 nm × 100 nm 
1-octadecanethiol 

Decahydro-

naphthalene 
[

78
] 

11-mercapto-undecanoic acid 
Rings with diameter of 

100 nm 
1-octadecanethiol Ethanol [

126
] 

1,8-octanedithiol 500 nm × 500 nm Hexanethiol Ethanol [
124

] 

6-mercaptohexan-1-ol 400 nm × 400 nm C11(EG)6  Water [
125

] 

Biphenyl 4,4’-dithiol 100 nm × 100 nm 1-decanethiol 2-butanol [
123

] 

Mixed-n-alkanethiols 200 nm × 200 nm 

1-decanethiol:  

1-octadecanethiol 

=10:1 

Ethanol or 

2-butanol 
[

127
] 

10:1 ODT:decanethiol 

CF3(CF2)9(CH2)2SH 

200 nm × 200 nm  

15 nm × 15 nm  

300 nm × 300 nm 

Hexanethiol 

Dodecanol Mixed 

SAM matrices 

Ethanol, 

2-butanol or 

poly-α-olefin oil 

[
127

] 

1-octadecanethiol 

70 nm × 50 nm  

175 nm × 225 nm  

20, 50, 100, 200 nm 

Decanethiol Mixed 

SAMs 

Ethanol, 

2-butanol or 

hexadecane 

[
128

] 

 

3.2.1 Automated Nanografting 

Beyond simple patterns of lines or rectangles, nanografting can be used to fabricate 

complicated designs with modern computer automation. The William Blake quotation “What is 
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now proved was once only imagined” was nanografted with mercaptohexadecanoic acid by 

Cruchon-Dupeyrat, et al., using computer-assisted manufacturing (CAM) software.
106

 The entire 

quotation was written in less than 20 seconds, inscribed within a 1.85 × 0.9 µm
2
 area. Arrays of 

circles, squares, lines and even mouse ear designs were produced by automated nanografting of 

different functionalized alkanethiols by Ngunjiri and others.
105

 A sophisticated example was 

demonstrated by Maozi Liu, et al. for nanografting the design of the University of California at 

Davis’ seal with a 10 nm line resolution using an aldehyde terminated alkanethiol within a 

decanethiol SAM.
108

 The design was patterned inside an 8 × 8 µm
2
 area and was completed in 10 

minutes.  

The speed and ease of nanografting for AFM experiments has been greatly improved by 

advances in software for commercial instruments. Louisiana State University implemented 

nanografting experiments in physical chemistry laboratories starting in 2005 to teach and 

showcase the concepts of chemistry and nanoscience to undergraduate students.
129

 Nanografted 

patterns can be produced within a few minutes and thus are an excellent venue for providing 

hands-on training for students. At present, scanning probe-based lithography is primarily used 

for laboratory research rather than as a tool for industry. Knowledge and experience in modern 

methods of surface measurements and analysis will be pivotal to the eventual transfer of the 

technology gained with academic nanoscience research to benefit industry. The latest advances 

in automation of scanning probe instruments enable new possibilities for educational modules for 

engaging students with modern and compelling course activities, such as with nanografting 

studies. 

3.2.2 Evaluating the Tip Geometry with Nanografting 
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For both imaging and nanofabrication with an AFM probe, the shape of the apex of the 

tip is critical for high resolution. Nanografting provides a way to evaluate the shape of an AFM 

tip, to help discern if images show artifacts or represent the true shape of surface structures.
130

  

Line patterns of alkanethiol SAMs are first fabricated using nanografting with a single scan, and 

then imaged using the same tip.  The tip size and tip-surface contact area can be derived from the 

cursor profile in the AFM topography viewsThe shape of the apex of the tip can be reconstructed 

by imaging small surface features of nanografted SAMs with known dimensions.When the tip is 

engaged for a sweeping a single line pattern, the width of the trench or pattern provides a reliable 

estimate of the tip-surface contact area. Tips with multiple asperities produce multiple 

nanopatterns. This approach is especially helpful for identifying tips with multiple asperities that 

are difficult to characterize by other techniques.  

3.2.3 Nanografted Patterns of n-Alkanethiols Furnish a Molecular Ruler 

Since the dimensions of methyl-terminated n-alkanethiols have been well-established, the 

height and orientation of other molecules can be evaluated by nanografting experiments, by 

referencing the thickness of n-alkanethiols as an in situ molecular ruler. Methyl-terminated n-

alkanethiols can be prepared reproducibly with predictable, well-defined surface structures, thus 

nanografted patterns furnish a reliable height reference for nanoscale measurements of film 

thickness. Self–assembled monolayers of n-alkanethiols spontaneously form hexagonally-packed 

crystalline layers upon adsorption to metal surfaces, with an intermolecular spacing of ~ 0.5 

nm.
131

 The well-ordered packing of n-alkanethiol SAMs results from a strong affinity to the 

substrate through chemisorptive binding to produce a commensurate structure, and also from 

intermolecular chain-chain interactions of Van der Waals forces between the carbon backbones. 

Methyl-terminated n-alkanethiols form SAMs with a single thiol end group chemisorbed to 
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Au(111) oriented in an upright configuration, with all-trans carbon chains. Studies conducted 

using IR, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and grazing 

incidence X-ray diffraction (GIXD) indicate that the alkyl chains of SAMs are tilted ∼30
o
 with 

respect to surface normal.
132-135

 The consistency for preparing reproducible molecular structures 

of n-alkanethiols provides predictable dimensions as a means to study structures of other 

patterned molecules using side-by-side local measurements of height differences with AFM-

based nanografting protocols.
95, 136, 137

  

By labeling the DNA 3' end with a fluorophore and immobilizing it onto a gold surface 

through thiol modification of the 5' end, a pH-driven DNA nanoswitch can be reversibly 

actuated. By cycling the solution pH between 4.5 and 9, a conformational change is produced 

between a four-stranded and a double-stranded DNA structure which either elongates or shortens 

the separation distance between the 5' and 3' ends of the DNA. The nanoscale motion of the 

DNA produces mechanical work to lift up and bring down the fluorophore from the gold surface 

by at least 2.5 nm and transduces this motion into an optical “on-and-off” nanoswitch. 

Nanografting was used to measure the thickness of the monolayers of thiolated “motor” DNA 

under changing pH conditions by Dongsheng Liu, et al.
138

 Before nanografting, a DNA SAM 

prepared on template-stripped gold surface was first imaged under low force (0.2-0.5 nN) in 

phosphate buffered saline (pH 4.5) containing 1 mM of 2-mercaptoethanol. The area for 

nanografting was repeatedly scanned at 4-5 Hz under higher forces (~30 nN) to scratch away the 

DNA SAM, creating a freshly exposed gold surface that was immediately grafted with a SAM of 

2-mercaptoethanol. After nanografting, a wider scan area was characterized under low force. 

Changes in the thickness of the DNA film measured at pH 4.5 and 9 were attributed to 

differences in the electrostatic interactions between the tip and the DNA layer.  
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3.2.4 Evaluating Properties such as Friction, Elastic Compliance or Conductivity of 

Nanografted Pattern 

 

Friction mapping can be accomplished with AFM to provide useful information about the 

composition and chemical properties of a surface with nanoscale sensitivity. A systematic study 

of differences in molecular friction was accomplished in situ for nanografted patterns of different 

ω-functionalized n-alkanethiols by Joost te Riet et al.
32, 139

 Trace and retrace lateral force images 

were subtracted to reveal the net frictional forces to obtain quantitative frictional force 

measurements at the nanoscale. Images of nanografted patterns with fluorocarbon-, hydroxyl-, 

thiol-, amine- and acid- terminated head groups were obtained in 2-butanol under common 

conditions of load force and scan speed. The same cantilever was used for nanografting patterns 

and acquiring in situ images in liquid media. In each case, they observed that the friction of the 

nanografted patches was lower than that of the surrounding matrix SAM. However, nanografted 

patterns with functional head groups showed statistically higher friction values than nanografted 

patterns with methyl groups. These observations were attributed to differences in topographical 

roughness of the nanografted patches, the amount of disorder and defects within the patterns, as 

well as surface composition.  

Changes in molecular-level packing, molecule chain lengths, domain boundaries, and 

surface chemical functionalities in nanografted SAM nanopatterns can be sensitively 

characterized using force modulation imaging.
140

 Size-dependent changes in elasticity were 

detected for test platforms of nanografted SAM patterns by Price, et al.
141

 Surface patterns of 

octadecanethiol (ODT) of designed sizes and shapes were nanografted into n-alkanethiol SAMs 

for studies of the local mechanical properties using force modulation imaging. Certain surface 

features such as the edges of the domains and nanostructures or desired chemical functionalities 

can be selectively enhanced in the amplitude images when the driving frequency of sample 
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modulation is tuned to the resonance frequency of the tip-surface contact.
140

 By means of tuning 

the driving frequency of sample modulation to the certain frequencies, the resonances at the tip-

surface contact are activated to sensitively reveal characteristic contrast for surface changes in 

molecular-level packing, molecule chain lengths, domain boundaries, and surface chemical 

functionalities of SAM nanopatterns. These studies demonstrated that the resonance frequency of 

the tip surface contact varied according to dimensions of the nanostructures. Frequency spectra 

of the tip surface contacts were acquired for nanografted ODT structures, from which Young’s 

modulus was calculated using continuum mechanics models.  

An approach to study metal-molecule-metal junctions based on combining approaches for 

nanografting and conductive probe AFM was demonstrated by Scaini, et al.
142

 Patterns of 

alkanethiol molecules were nanografted within a SAM of alkanethiol molecules of different 

chain lengths for local measurements of charge transport at the molecular level. The approach 

enables relative determination of the differential resistance between two molecular layers in 

ambient conditions; however absolute transport measurements also depend on the nature of the 

AFM tip-molecule contact. The tunneling decay constants of alkanethiols were measured as a 

function of chain lengths for octanethiol, nonanethiol and decanethiol nanopatterns relative to a 

matrix SAM of octadecanethiol/Au(111). 

3.3 Spatially Confined Self-Assembly Mechanism of Nanografting 

Both the assembly mechanism and kinetics of certain surface reactions can be sterically 

changed by spatial confinement with nanografting. Nanografted patterns  of n-alkanethiols 

exhibit higher coverage and two-dimensional crystallinity than the matrix SAMs.
143

 During the 

process of nanografting, thiolated molecules self-assemble within a spatially confined 

environment. A transient nanoscopic area of the surface is exposed by the scanning probe, which 
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is confined by the surrounding matrix and the probe. During the nanografting process, thiol 

molecules present in the solution rapidly assemble onto the exposed nanometer-size area of gold 

substrate that is confined by the scanning tip and surrounding matrix SAM. Spatial confinement 

is considered to alter the pathway for the self-assembly process causing the initially adsorbed 

thiols to adopt a standing-up configuration directly within a nano-sized environment. The 

mechanism for conventional solution self-assembly occurs through a two-step process when bare 

gold substrates are immersed in thiol solutions, because the assembly of thiols takes place in 

unconstrained conditions. Initially a “lying-down” phase is spontaneously formed which 

subsequently transitions over time by rearrangement to a standing-up orientation.
120

 In contrast, 

with nanografting the “lying-down” configuration is not possible because the area of the surface 

exposed is smaller than the molecular length, therefore the molecules assemble directly into an 

upright or standing orientation.
144

 Self-assembly within the constrained areas proceeds with a 

faster reaction rate because the time lapse for a phase transition from lying-down to an upright 

configuration is bypassed. Thus, the kinetics of SAMs formed with nanografting occur more 

rapidly than during natural growth on unconstrained surfaces. The spatially confined 

environment was found to reduce the amount of disorder present in the resulting nanografted 

patterns, to produce SAMs which exhibit fewer scars or defects.
139, 143

 

3.3.1 Studies with Binary Mixtures of SAMs 

A nanoengineering approach to regulate the lateral heterogeneity of mixed self-assembled 

monolayers was reported using nanografting and self-assembly chemistry.
32

 Formation of 

segregated domains in mixed SAMs results from the interplay between reaction kinetics and 

thermodynamics. Considerable effort has been directed to investigate the impact of either 

reacting agents or surface reaction conditions such as concentration, temperature, thiol species 
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and molar ratio of mixed components for achieving control of the resulting local domain 

structures. For example, kinetics-driven products for mixed SAMs with a near molecular-level 

mixing were favored during coadsorption of thiol mixtures at high concentration with elevated 

temperature.
145

 Thermodynamics-driven layers of large segregated domains were observed after 

long immersion in dilute solutions and/or when the adsorbate chain length and termini were 

sufficiently different.
146

  Nanografting provides additional control of the reaction mechanism for 

thiol self-assembly on gold, and thus affects the local domain structures that are produced from 

solutions of mixed SAMs.   

The heterogeneity of mixed solutions of SAMs can be regulated by changing the speed of 

nanografting.
144

 This was demonstrated both theoretically
147

 and experimentally.
148

 Monte Carlo 

simulations of nanografting were found to reproduce experimental observations concerning the 

variation of SAM heterogeneity with the speed of an AFM tip. Simulations by Ryu, et al. 

demonstrated that the faster the AFM tip displaced adsorbed molecules in a monolayer, the 

monolayers formed behind the tip became more heterogeneous, according to the amount of space 

and time available for the formation of phase-segregated domains. By varying fabrication 

parameters of nanografting, the lateral heterogeneity can be adjusted to produce near molecular 

mixing or to form segregated domains ranging from several to tens of nanometers.
32

 

3.4 In Situ Studies of Polymerization Reactions via Nanografting 

Beyond preparing monolayer patterns of ω-functionalized n-alkanethiols, multilayer 

nanostructures can also be generated by nanografting. Depending on the concentration of thiols 

in the imaging media, patterns with the thickness of a bilayer were shown to form spontaneously 

by nanografting SAMs of certain head group chemistries.
95, 149

 This is mediated by self-

polymerization of molecules which have reactive groups through coupling of headgroups. Under 
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certain conditions of high concentration, the intermolecular interactions between molecules in 

solution predominate, to direct the vertical self-assembly of certain α,ω-alkanedithiols to produce 

bilayer patterns. For SAM patterns with methyl, hydroxyl, thiol, or carboxylic acid head groups, 

monolayer patterns were generated when nanografting in dilute ethanol or aqueous solutions. 

However, as the solution concentration was increased beyond a certain threshold, nanografted 

patterns were formed with thicknesses corresponding to a double layer for molecules with 

carboxylic acid head groups or with α,ω-alkanedithiols, as reported by Kelley, et al.
95

 

Nanografted patterns with methyl or hydroxyl head groups were observed to exclusively form 

monolayer structures for a fairly wide range of concentrations that were tested.  

Designed functional groups of n-alkanethiols were used to attach additional organic 

molecules to enable site-selective surface reactions for studies of polymerization reactions at the 

nanoscale.
78

 In the first step, nanografting was used to produce 2D nanopatterns of methyl head 

groups in a matrix SAM with hydroxyl head groups. The nanopatterns were then used to further 

construct 3D nanostructures by successive steps of an in situ reaction with organosilanes. Jun-Fu 

Liu et al. demonstrated transfer of 2D nanopatterns to chemically distinct 3D nanostructures with 

different head groups. The scheme and results for pattern transfer are shown in Figure 3.4. A 

nanografted rectangular frame of octadecanethiol was inscribed within a matrix SAM of 

mercaptoundecanol on a gold substrate. The pattern of a frame in Figure 3.4b measured 0.7±0.2 

nm taller than the matrix monolayer, in agreement with the expected theoretical dimensions. 

After nanografting, the AFM liquid cell was rinsed three times with decahydronaphthalene to 

remove any residual thiols, then a solution of octadecyltrichlorosilane (CH3(CH2)17SiCl3 or OTS) 

was injected into the cell for several minutes. The trichlorosilanes from the liquid media reacted 

with the hydroxyl terminal groups of the surrounding matrix SAM of mercaptoundecanol to form 
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a thicker layer. However, the frame patterns did not react with OTS since the nanografted pattern 

with methyl head groups provided an effective resist, as shown in Figure 3.4c. After reaction 

with OTS the nanografted frame is shorter than the surrounding matrix film. The height changes 

at each step of the in situ reaction are shown with representative cursor profiles in Figure 3.4d. 

The process was completed within a few minutes and the time duration for immersion in OTS 

was found to influence the height of siloxane structures.   

 

Figure 3.4 Snapshots showing bottom-up assembly accomplished in situ with a polymerization 

reaction for attaching organosilanes to a hydroxyl-terminated SAM. [A] Initial view of a 

mercaptoundecanol monolayer formed on Au(111); [B] Nanografted frame of ODT; [C] Pattern 

is shorter than the matrix SAM after reaction with OTS; [D] representative cursor profile for 

lines in [B] and [C]. (Reprinted with permission from Ref. [
78

]. Copyright © American Chemical 

Society) 
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Nanografting enables a critical first step for developing further protocols for designed 

surface reactions to construct hierarchical nanostructures with desired spacer lengths, 

composition and functionalities. The 2D patterns produced by nanografting provide a surface 

template for spatially directing the selective adsorption or binding of other molecules or 

nanomaterials in subsequent steps. Further examples will be presented in the next sections. The 

desired interfacial properties, such as lubricity, protein adhesion or resistance, and electron 

transfer, may be designed from the bottom-up by selection of various functional groups and 

designated architectures of the nanografted structures of metals, nanoparticles, protein or DNA. 

3.5 Generating Patterns of Metals and Nanoparticles with Nanografting 

Certain systems of metals and nanoparticles have been patterned successfully with AFM-

based lithography. Nanopatterns of thiol-coated gold nanoparticles were prepared within a 

decanethiol SAM on Au(111) by scanning probe lithography
109

 To attach nanoparticles to gold 

surfaces via sulfur-gold chemisorption, surface-active gold nanoparticles were prepared with a 

shell of a mixed monolayer comprised of alkanethiol and alkanedithiol molecules. Local regions 

of a decanethiol SAM were shaved using an AFM tip under high force to expose the substrate in 

a solution containing nanoparticles. Unlike nanografting where surface assembly is immediate, 

the kinetics of larger nanomaterials such as gold nanoparticles were found to be slower and took 

place over longer time scales. Depending on the concentration, thiolated nanoparticles adsorbed 

onto the exposed areas uncovered by the AFM tip after several hours, and particles were not 

observed to bind to the surrounding matrix areas of the methyl-terminated decanethiol SAM. 

Gold nanoparticles attached to the gold substrate via sulfur-gold chemisorption. The outer shell 

of the nanoparticles was encapsulated with mixed thiol groups of hexanethiol and hexanedithiol 

molecules. Cursor measurements of the nanoparticles revealed sizes ranged from 3 to 5 nm in 
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diameter, and patterns were formed with a single layer of nanoparticles.  The slower adsorption 

of the nanoparticles on shaved areas of the substrate compared to nanografting of molecular 

patterns was attributable to differences in mobility and concentration.   

3.5.1 Electroless Deposition of Metals on Nanografted SAM Pattern 

Site specific reactions for electroless deposition of metals were accomplished using 

nanografting. Copper nanostructures formed selectively on carboxylic acid terminated SAM 

patterns that were nanografted within a hydroxyl-terminated resist monolayer, using electroless 

plating without a catalyst.
11

 To accomplish in situ studies, the AFM cantilevers were coated with 

silane to prevent copper deposition on the probe. An example showing selective growth of 

copper nanostructures on nanografted patterns of 16-mercaptohexadecanoic acid (16-MHA) is 

displayed in Figure 3.5.  A computer script was designed to automate the nanografting process to 

generate patterns of different line densities within a matrix SAM of 11-mercaptoundecanol (11-

MUD), which resists copper deposition. The parameters of the tip trajectory during nanografting 

can be used to define the thickness of copper according to the density of grafted molecules. 

Lower density of carboxylic acid groups resulted in differences along the gradients for 

deposition of copper. Changes in the surface density of 16-MHA were systematically varied by 

designing the probe trajectory to advance either at the edges or centers of the patterns. The 

difference in the molecular gradients of 16-MHA nanopatterns was evaluated by introducing a 

copper solution. Metal ions (Cu
2+

) deposited selectively in the reduced form as Cu
0
 via an 

autocatalytic reaction on regions patterned with 16-MHA. For patterns written with lower 

density, less copper was observed to deposit. When the probe was traced only once (top rows) 

less copper deposition occurred compared to the bottom rows where the tip was swept twice 

along a linescan.  
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Figure 3.5 Nanografted patterns of carboxylic acid terminated SAMs were generated with 

different densities for electroless deposition of copper. [A] View of copper nanopatterns grown 

on nanografted patterns written with different line densities; [B] cursor plot for copper structures 

of the bottom row. (Reprinted with permission from Ref. [
11

]. Copyright © American Chemical 

Society) 

 

Systematically engineering the writing parameters for arrays of nanopatterns generated 

by automated nanografting offers a further useful strategy for controlling reaction conditions for 

bottom-up surface assembly.  Essentially, the surface density of reactive moieties can be defined 

to further control spatial parameters of surface reactions. In addition, the writing path itself was 

shown to influence the initial stages of metal deposition. The general approach for patterning 

metals with electroless deposition could readily be extended to other metals such as platinum or 

nickel for construction of a range of metal structures and nanoscale metal junctions. 
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3.6 Nanografting with Porphyrins 

 An obstacle for producing patterns with nanografting has been the limitation of using 

thiol-based chemistries. New directions are being developed for expanding beyond preliminary 

model systems of chemisorbed n-alkanethiols on gold substrates to other chemical linkers. 

Porphyrins and metalloporphyrins have a macrocyclic tetrapyrrole structure, which may be 

functionalized with various substituents. The choice of focusing research efforts on model 

systems of porphyrins is highly practical, because of the associated electrical, optical and 

chemical properties of this functional class of molecules. More complex surface structures could 

be achieved with nanografting by using porphryins with thiolated substituents
117

 or pyridyl 

functional groups.
110

 Modifications of the macrocycle, peripheral groups or bound metal ions can 

generate a range of electrical, photoemissive or magnetic properties. The orientation of 

porphyrins on surfaces is determined by factors such as the nature of the peripheral substituents 

and their position on the macrocycle. The resulting surface structures influence the photonic and 

electronic properties of the systems. Also, different properties result when different metals are 

coordinated to the macrocycle. Porphyrin and metalloporphyrin systems are excellent materials 

for surface studies, due to their diverse structural motifs and associated electrical, optical and 

chemical properties, and thermal stability.
150, 151

 The rigid planar structures and π-conjugated 

backbone of porphyrins convey robust electrical properties for potential molecular electronic 

devices. 

 Scanning probe studies of nanografted patterns of dipyridyl porphyrins were used to 

provide insight for the molecular orientation and surface assembly of porphyrins from mixed 

solvent media, with studies by LeJeune, et al.
152

 In-situ AFM furnished local views of the 

assembly of porphryins with pyridyl-substituents on surfaces of Au(111).  Experiments were 
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accomplished for nanografting n-alkanethiols within a matrix film of 5,10-diphenyl-15,20-di-

pyridin-4-yl-porphyrin (DPP) as well as for nanografting patterns of DPP within different matrix 

SAMs of n-alkanethiols. The solubility of porphyrins in ethanol, butanol or water are 

problematic for accomplishing in situ AFM studies, therefore a solvent mixture was used for 

nanografting. First the porphyrin was dissolved in a parent solution of dichloromethane, and then 

further diluted 100-fold in ethanol.  Examples of nanografted porphyrin patterns are displayed in 

Figure 3.6. Dodecanethiol (C12) was used as a matrix SAM for writing nanostructures of DPP in 

a solution containing 1% dichloromethane in ethanol. The overall final concentration of DPP 

used for nanografting was 1 micromolar.   

  A mosaic design of 20 oval patterns was produced by nanografting DPP within a C12 

SAM, as shown in the AFM topograph of Figure 3.6A. The patterns were produced by tracing 

the probe in a circular trajectory four times, so that the centers of the rings were not disturbed.  

The patterns were produced within 5 minutes using a scan speed of 0.1 µm/s. The dimensions of 

the oval structures of DPP measure 77 ± 3 nm from side to side, and 99 ± 6 nm from top to 

bottom. The dodecanethiol islands in the middle of the rings that are surrounded by a ring of 

DPP have an average diameter of 58 ±10 nm and furnish a convenient height reference for 

evaluating the depth of the DPP patterns. The distance between patterns ranged between 53 and 

115 nm in the vertical direction and between 44 to 200 nm horizontally. A force of 2.3 nN was 

applied to write patterns of porphyrins within dodecanethiol while imaging in liquid media of 

mixed solvents. Characteristics of the underlying Au(111) substrate such as etch pits and scar 

defects are apparent in the 700 × 700 nm
2
 topograph, indicating that after nanografting multiple 

patterns the probe still maintains a sharp geometry for accomplishing high-resolution imaging. 

The lateral force image (Figure 3.6B) exhibits distinct contrast because of the different head 
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groups of the C12 matrix and DPP nanopatterns. A zoom-in view of six ring nanopatterns is 

presented in Figure 3.6C showing the fine details of the pattern shapes and height differences.  

The difference in height for the matrix dodecanethiol and DPP measures 0.5 ± 0.2 nm  as shown 

by a representative line profile in Figure 3.6D.  This height difference corresponds to an upright 

configuration of DPP for a perpendicular orientation on Au(111) as shown by the molecular 

model of Figure 3.6E. 

 

Figure 3.6 Nanopatterns of diphenyl-dipyridyl porphyrin nanografted within dodecanethiol [A] 

Mosaic design of 20 ring nanostructures viewed by an AFM topograph; [B] simultaneously 

acquired lateral force image; [C] magnified view; [D] cursor profile across one of the patterns 

traced in [C]; [E] height model 
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For nanografted patterns of DPP, the heights measured from cursor profiles indicate that 

molecules assemble with an upright configuration with the porphyrin macrocycle oriented 

perpendicular to the substrate. As previously shown for nanografted molecules of n-alkanethiols 

which have a rod-like shape, planar macrocycles of DPP likewise are confined during 

nanografting. Constrained conditions prevent molecules of DPP from adopting a coplanar 

orientation on the surface to directly generate an upright configuration. The mechanical process 

of nanografting alters the assembly pathway providing a means to control molecular orientation 

of nanopatterned porphyrins on surfaces. 

3.7 Nanografted Pattern of Proteins  

Methods for nanoscale fabrication are becoming important for biochemical 

investigations, supplying tools for basic research concerning protein-protein interactions and 

protein function. Protein patterning is essential for the integration of biological molecules into 

miniature bioelectronic and sensing devices.  Often, fabrication of functional nanodevices for 

biochemical assays requires that biomolecules be attached to surfaces with retention of structure 

and function. Nanoscale studies can facilitate the development of new and better approaches for 

immobilization and bioconjugation chemistries, which are key technologies in manufacturing 

surface platforms for biosensors. Nanografting provides a way to spatially control the deposition 

of proteins on well-defined, local areas of patterned surfaces for accomplishing in situ studies of 

biochemical reactions. The ability to define the chemical functionalities of nanografted patterns 

at nanometer length scales offers new possibilities for studies of biochemical reactions in 

controlled environments. Capturing AFM images in situ throughout the progressive steps of 

nanografting and surface patterning can disclose reaction details at a molecular level, providing 

direct visualization of biochemical reactions. 



43 

An overview of the different proteins that have been patterned with nanografting is 

summarized in Table 3.2, with spatial dimensions reaching the level of single molecule detection 

with protein monolayers. Spatially well-defined regions of surfaces can be nanografted with 

reactive or adhesive terminal groups for the attachment of biomolecules.  The dimensions of 

many proteins are on the order of tens to hundreds of nanometers, therefore nanografting 

provides a way to generate patterns with appropriate sizes for defining the placement of 

individual proteins on surfaces. The terminal moieties of SAMs mediate the nature of protein 

binding, such as through electrostatic interactions, covalent binding, molecular recognition or 

through specific interactions such as streptavidin-biotin recognition. The chemistry of SAM 

surfaces can be engineered to avoid non-specific protein adsorption for surrounding matrix 

monolayers, yet make specific interactions with selected proteins to be immobilized on 

nanografted patterns. Very few surfaces resist protein adsorption, and efforts have been directed 

to understand the mechanisms that contribute to protein resistance or adhesion to surfaces. 

Systematic studies of functionalized SAMs have been reported which evaluated the molecular 

characteristics that impart resistance to protein adsorption.
153-158

 Depending on the protein of 

interest and buffer conditions, methyl-, hydroxyl- or glycol-terminated SAMs have been used 

effectively as matrices that resist non-specific protein adsorption. 

The typical general steps of an in situ protein binding experiment with nanografting are to 

first graft nanopatterns of adhesive n-alkanethiols within a resistive matrix, then rinse the liquid 

cell and inject a solution of proteins to bind to the SAM nanopatterns. In a final step, the activity 

of the immobilized proteins can be tested by introducing an antibody or protein which binds 

specifically to the surface-bound protein. With nanografting the same tips that are used to 

produce patterns are also used to characterize the morphology of nanopatterns after successive 
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steps of protein adsorption. Unlike electron microscopy methods which require high vacuum 

chambers and conductive coatings for specimens, in situ AFM experiments can be accomplished 

under near-physiological conditions in aqueous buffered environments.  

 

Table 3.2 Protein studies accomplished in situ with nanografted patterns of SAMs 

Biomolecule 
Nanografted 

molecule 
Pattern dimensions Matrix SAM 

Liquid 

media 
Binding motifs References 

Antibiotin IgG 1-hexanethiol 5.2 nm × 5.2 nm 
Thiolated biotin 

SAMs 
Ethanol 

Specific 

biotinylation 
[114] 

Gal Thiolated Gal 130 nm × 110 nm Octanethiol Ethanol 
S-Au carbohydrate 

ligand 
[81] 

GalCer Thiolated GalCer 150 nm × 150 nm 1-decanethiol Ethanol 
S-Au carbohydrate 

ligand 
[81] 

De novo 4-helix 

bundle protein 

S-824-C 

S-824-C protein 
100 nm × 100 nm 

200 nm × 200 nm 
Octadecanethiol 

Mixed 

aqueous 

buffer 

S-Au single 

cysteine thiol 
[159] 

De novo 

maltose binding 

protein (MBP) 

MBP 
50 nm × 100 nm 

100 nm × 200 nm 

Undecanethiol 

triethylene glycol 

Mixed 

aqueous 

buffer 

S-Au double 

cysteine residues at 

C terminus 

[160] 

Lysozyme HS(CH2)2COOH 
10 nm × 150 nm 

100 nm × 150 nm 
Decanethiol 2-butanol Electrostatic [81] 

Staphylococcal 

protein A (SpA) 

Mercapto-

hexadecanoic acid 
100 nm × 100 nm Octadecanethiol 

Ethanol 

water 

EDC/NHS 

Covalent activation 

chemistry 
[126] 

Bovine carbonic 

anhydrase 

3-mercapto- 

1-propanoic acid  

6-mercaptohexanol 

400 nm × 400 nm C11(EG)6  Water Electrostatic [125] 

Rabbit IgG 
11-mercapto-

undecanoic acid 
5,000 nm × 5,000 nm Octanethiol Buffer Covalent [161] 

Bovine serum 

albumin 

3-mercapto- 

1-propanal 
200 nm × 250 nm Hexanethiol Buffer Covalent [162] 

Rabbit IgG 

mouse anti-

rabbit IgG 

11-mercapto-

undecanal 
300 nm × 300 nm Octadecanethiol Buffer Covalent [163] 

Acetylcholine 

esterase (AChE) 

HS(CH2)11-

(OCH2CH2)3OH 
～150 nm × 150 nm 

HS(CH2)11(OCH2

CH2)6O(CH2)11-

CH(OH)CH2OH 

Ethanol Covalent [164] 

Insulin 
HS(CH2)11-

(OCH2CH2)3OH 
～150 nm × 150 nm 

HS(CH2)11(OCH2

CH2)6O(CH2)11-

CH(OH)CH2OH 

Ethanol Covalent [164] 

Anti-mouse IgG Mouse IgG 400 nm × 400 nm Octadecanethiol Ethanol 
Antigen-antibody 

recognition 
[165] 

Three-helix 

bundle 

metalloproteins 

C-terminal 

thiolated protein 
NA Octadecanethiol 

Trifluoro- 

ethanol 
S-Au [160] 

Maltose binding 

protein (MBP) 

MBP with a double 

cysteine 
NA 

Undecanethiol 

triethylene glycol 
Buffer 

S-Au double 

cysteine thiol 
[166] 
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With in situ nanografting, the protein patterns are not exposed to air or dried, and remain in a 

carefully controlled liquid environment by rinsing and exchanging solutions within the liquid 

cell.  Sequential real time AFM images can disclose reaction details at a molecular level, 

revealing information about the adsorption kinetics and configurations of protein binding.   

The first studies using nanografting to immobilize proteins were conducted in 1999 by 

Gang-Yu Liu and co-workers using protocols with either electrostatic or covalent interactions to 

immobilize lysozyme, rabbit immunoglobulin G (IgG) and bovine serum albumin (BSA) on 

SAM nanopatterns.
113

 In these initial investigations, functionalized alkanethiol SAMs of 

carboxylic acid head groups or aldehydes were nanografted to mediate either electrostatic or 

covalent binding of IgG and lysozyme. Proteins were sustained on patterns despite steps of 

washing with buffer and surfactant solutions and were stable for at least 40 hours of AFM 

imaging. The smallest protein feature yet produced by nanografting is a 10 × 150 nm
2
 line 

pattern containing three proteins.
113

   

3.7.1 Studies with Antigen-Antibody Binding Accomplished with Nanografting 

The first successful AFM experiment reported that applied nanografting to study antigen-

antibody binding in situ was conducted by Wadu-Mesthrige, et al.
112

  The activity of rabbit IgG 

immobilized covalently on an aldehyde-terminated pattern produced by nanografting was tested 

for reactivity toward monoclonal mouse anti-rabbit IgG. Six aldehyde-terminated nanopatterns 

of different sizes and arrangement were first grafted within a dodecanethiol SAM matrix (Figure 

3.7A).  After injecting rabbit IgG and rinsing with a surfactant solution, selective adsorption of 

IgG was observed on all six nanopatterns (Figure 3.7B). In the next step, mouse anti-rabbit IgG 

was introduced (Figure 3.7C) revealing further increases in the heights of patterns. The changes 

in the height of nanopatterns before and after secondary IgG binding could be monitored in situ 



46 

(cursor profiles, Figures 3.7D-F), exhibiting thicknesses which correspond to the different 

surface configurations of IgG (Figure 3.7G).  

 

 

Figure 3.7 The steps of protein binding and molecular recognition with nanografted patterns 

captured by AFM topographic images. [A] Five nanopatterns of 3-mercapto-1-propanal were 

written in a dodecanethiol SAM. [B] The image contrast changed after rabbit IgG bound 

covalently to the aldehyde-terminated nanopatterns. [C] After introducing mouse anti-rabbit IgG, 

the patterns display further height changes, indicating the antibody binds specifically to the 

protein nanopatterns. Cursor traces across pattern a2 indicate the height changes [D] after 

nanografting; [E] after injecting IgG; [F] after introducing anti-rabbit IgG. [G] Map for 

understanding the evolution of molecular height changes during the steps of this in situ 

experiment. (Reprinted with permission from Ref. [
162

]) 

 

Changes in pattern heights were used to assess whether the immobilization chemistry resulted in 

a side-on or an end-on orientation for IgG molecules. The reactivity and stability of protein 
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nanopatterns was studied in further reports, with investigations of the retention of specific 

activity of the immobilized proteins for binding antibodies.
112, 167

 

3.7.2 Protein Binding on Activated SAM Patterns  

Chemical activation of carboxylic acid terminated SAMs was accomplished for 

nanografted patterns of staphylococcal protein A (SpA) through covalent linkage by Ngunjiri, et 

al.
111

 The carboxylic acid head groups of SAMs were activated using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

coupling chemistries.
168

 The activation of carboxylic acid groups of nanografted patterns of 11-

mercaptoundecanoic acid (11-MUA) was accomplished by immersing the substrate in an 

aqueous 1:1 mixture of NHS/EDC for 30 min to generate an activated complex with a stable 

reactive intermediate (N-succinimidyl ester). The resulting NHS ester interacts by a nucleophilic 

substitution reaction with accessible α-amine groups present on the N-termini of proteins or with 

ε-amines on lysine residues. The proteins bind covalently to nanografted patterns by forming a 

Schiff’s base linkage to make complexes with the carboxylic acid groups of 11-MUA. For the in 

situ protein patterning experiment with SpA, 16 square nanopatterns (100 × 100 nm
2
) of 11-

MUA were written within a matrix octadecanethiol (ODT) SAM arranged in a 4 × 4 array 

(Figures 3.8a-c). The nanopatterns were spaced 50 nm apart within each row, and the rows were 

spaced at 100 nm intervals. After nanografting, a 1:1 aqueous solution of 0.2 M EDC and 0.05 M 

NHS was introduced into the AFM cell to react for 30 min. The cell was then rinsed twice with 

phosphate-buffered saline, and a solution of 0.05 mg/mL SpA solution was introduced and 

incubated for 30 min. Finally, the cell was rinsed with water and ethanol to completely remove 

any unreacted protein. After chemical activation and protein immobilization, the same array of 

nanostructures was imaged in ethanol with AFM (Figures 3.8d-f). All of the steps of 
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nanografting, NHS/EDC activation of carboxylate groups, and protein adsorption were 

accomplished in situ with the same tip, and the entire experiment was completed in ~3 hours. 

The SpA molecules were shown to bind selectively to the 11-MUA nanopatterns, forming a 

single layer of protein attached to nanopatterns of 11-MUA.  

 

Figure 3.8 Nanoscale protein assay of the adsorption of SpA on nanografted patterns. [A] An 

array of 11-MUA squares written in an ODT matrix SAM, [B] cursor plot along the white line; 

[C] corresponding lateral force image for [A]; [D] same area after EDC/NHS activation and 

subsequent adsorption of SpA; [E] cursor plot along the white line in [D]; [F] simultaneously 

acquired lateral force image for [D]. (Reprinted with permission from Ref. [
126

], Copyright © 

American Chemical Society) 

 

For in situ studies of biochemical reactions using nanografting, the most suitable 

immobilization chemistries for nanoscale experiments should proceed under aqueous conditions 

to preserve protein activity. Also, investigations should be completed using very dilute protein 

and reagent solutions to slow the reaction rate so that the reaction transpires over time intervals 

of 20–30 minutes. A potential technical detail is that the motion and force of the scanning tip can 

sweep away adsorbates or perturb the reaction environment. To address this concern, the 
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immobilization chemistry selected for patterning must be sufficiently robust to enable continuous 

imaging and scanning by the tip. Imaging in liquids enables using small imaging forces (0.005–

0.2 nN) because the adhesive interactions between the tip and sample are minimized. An intrinsic 

advantage for these protocols is that small forces in the range of piconewtons to nanonewtons 

can be precisely controlled with AFM instruments. 

3.7.3 In Situ Studies of Protein Adsorption on Nanografted Patterns 

Nanografting has been applied by several investigators to write nanopatterns for studies 

of protein immobilization and reactivity. Zhou et al. evaluated protein adsorption at the 

nanoscale by comparing differently functionalized SAMs side-by-side using nanografting.
88, 125

 

Protein adsorption on three differently charged linkers nanografted within a hexa(ethylene 

glycol) terminated alkanethiol resist SAM, was monitored in situ by AFM at different pH 

conditions. The adsorption of proteins onto nanografted patches of 6-mercaptohexan-1-ol 

(MCH), n-(6-mercapto hexyl) pyridinium bromide (MHP), and 3-mercaptopropionic acid 

(MPA), was studied with lysozyme, IgG and carbonic anhydrase II.  They concluded that the 

overall charge of protein molecules as well as the charge of local domains of the proteins plays a 

role in immobilization. In the same report, nanografting was applied to assemble multilayered 

protein G/IgG/anti-IgG nanostructures through electrostatic interactions, as an approach to orient 

IgG molecules for antibody-based biosensor surfaces. 

Using SPL methods of nanografting and nanoshaving, Kenseth, et al. compared three 

approaches for protein patterning.
161

 Nanografting was successfully combined with 

immobilization of IgG through EDC activation of 11-MUA acid and also through chemisorption 

of a disulfide coupling agent, dithiobis(succinimidyl undecanoate).  Insulin and acetylcholinase 

esterase were immobilized on nanografted 1,2-diols which were activated by sodium periodate to 
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produce aldehyde groups, reported by Jang, et al.
169

 Retention of catalytic activity was 

demonstrated for nanografted patterns of enzymes.   

3.7.4 Direct Nanografting of Proteins Modified with Thiol Residues 

Nanografting was applied to directly pattern designed metalloproteins by Au-S 

chemisorption by Case, et al.
118

  A 3-helix bundle protein structure with a 78 amino acid iron(II) 

complex was nanografted into an ethylene glycol-terminated SAM. The protein was designed to 

present the C-termini of three helices, terminated with D-cysteine residues for attachment to gold 

surfaces. The heights of nanografted patterns of this protein measured 5.3 nm, in good agreement 

with the dimensions predicted theoretically for the de novo protein to assemble in a upright 

orientation normal to the Au(111) substrate. A de novo 4-helix bundle protein was nanografted 

within an ODT matrix through a single cysteine thiol by Hu, et al.
119

 The protein used for these 

studies was engineered to have a glycine-glycine-cysteine tag at its C-terminus for attachment to 

the gold surface through a single cysteine thiol. 

Maltose Binding Protein (MBP) was successfully patterned using nanografting by Staii, 

et al.
170

 The MBP protein was engineered to terminate with a double-cysteine residue for 

chemisorptive binding to gold surfaces. The biochemical activity of the substrate immobilized 

proteins was verified in situ, demonstrating that MBP function is not altered by either the 

immobilization process, the spatial confinement associated with the surrounding proteins, or 

protein-substrate interactions. The dependence of the frictional force upon the maltose 

concentration was used to extract the dissociation constant: kd =1 ± 0.04 µM for this system, 

detecting maltose at the level of tens of attograms.  
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3.7.5 Reversal Nanografting 

An approach for “reversal” nanografting was introduced for regulating surface 

heterogeneity to control protein binding.
114

  As with nanografting, the reversal method also has 

three main steps of imaging, shaving-and-replacement, and imaging again. However, rather than 

directly nanografting desired termini for protein binding, the matrix SAMs are made of the 

binding termini, and nanografted thiols are used to isolate and separate well- defined areas of the 

matrix SAMs to generate ultra-small domains of protein binding sites. By controlling the shaving 

size and the spacing between the shaving lines, broad areas of arrays of regular nanostructures 

were rapidly fabricated, achieving dimensions of 5 to 30 nm for nanografted patterns. Reversal 

nanografting was demonstrated with an array of thiolated biotin nanostructures which were 

reacted with antibiotin IgG. Within a single experiment, reversal nanografting produced 1089 

biotin nanostructures measuring with 5.2 nm × 5.2 nm; 288 nanostructures with dimension of 

12.7 nm × 12.7 nm; and 144 nanopatterns with dimensions of 10.3 nm × 31.9 nm.  Thus, by 

changing the dimension and separation of each element of nanografted arrays the coverage and 

orientation of protein molecules can be regulated at the molecular level. 

Although not yet practical for high throughput applications and manufacturing, 

combining the in situ steps of nanografting with protein immobilization enables new approaches 

for directly investigating changes that occur on surfaces during biochemical reactions from the 

bottom-up.  In situ AFM investigations of protein reactions are valuable for studying antigen-

antibody binding at the nanometer scale, for assessing the specificity of protein-protein binding, 

and for evaluating the orientation of immobilized proteins and the corresponding accessibility of 

ligands for binding.   
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3.8 Patterns of DNA Produced by Nanografting 

Surface platforms of arrays of DNA patterns are used for studies with gene mapping, 

drug discovery, DNA sequencing and disease diagnosis. Scanning probe-based experiments offer 

compelling advantages and opportunities for high sensitivity, label-free detection with studies of 

molecular-level phenomena. Initial studies have been advanced using nanografting to prepare 

patterns of DNA with successive steps of enzyme digestion,
115, 171

 hybridization studies 
172-174

, as 

well as DNA-mediated binding of proteins.
175

 A comparison of the different DNA systems and 

pattern dimensions produced by nanografting is provided in Table 3. 

Table 3.3 Studies reported with nanografted patterns of DNA 

System Pattern sizes Matrix film Liquid media Year References 

DNA-derivatized gold 

nanoparticles 
100 nm × 50 μm 

lines 
Octadecanethiol 

Buffer: 1 M NaCl, 

10 mM phosphate, pH 7 
2001 [173] 

Single stranded DNA 

(ssDNA) 

5'-HS (CH2)6- 

CTAGCTCTAATCTGCTAG 

5'-HS (CH2)6- 

AGAAGGCCTAGA 

Dimensions in nm: 

115 × 135;  

190 × 255; 

20 × 170;  

15 × 150; 

25 × 160 

1-hexanethiol 

1-decanethiol 

Mixed solvent of 2-

butanol/ water/ ethanol 

6:1:1 (v/v/v) containing 

40 μM ssDNA. 

2002 [176] 

Single stranded DNA 

5'-HS-(CH2)6(T)15  

3'-HS-(CH2)6(T)25  

5'-HS-(CH2)6(T)35  

5'-HS(CH2)6  

ACTGCACATGGCGTG 

TTGCGGTGATT 

CGCGTTGGT 

Dimensions in nm:  

120 × 200; 100 × 380;  

100 × 200; 250 × 250 

80 × 220; 100 × 400; 

180 × 250; 40 × 250; 

150 × 75 

1-decanethiol 

Mixed solvent 

of water saturated with 2-

butanol and ethanol (6:1) 

2005 [177] 

Nanografted patterns of 

mercaptoethanol were used to 

evaluate thickness of DNA 

SAMs 

300 × 300 nm squares 

of 2-mercaptoethanol 

HSC6H12-5'-CCCT 

AACCCTAACCCTAA 

CCC-3'-rhodamine gree 

5'-GTGTTAGGT 

TTAGGGTTAGTG-3' 

Phosphate buffered saline 

(pH 4.5) 
2006 [178] 

λ-DNA adsorbed to 

octadecyldimethylmonochloro

-silane (C18DMS) 

100 nm × 3 μm lines 

of (C18DMS) 

Octadecyldimethyl 

monochlorosilane 

Nanografted patterns 

were incubated with λ-

DNA in TE buffer (pH 

7.2) 

2007 [66] 

Thiolated ssDNA 
300 nm × 300 nm to 

1 μm × 1 μm 

Oligo-ethyleneglycol 

modified thiols 

1:1 mixture of buffer and 

ethanol 
2008 [179] 

ssDNA with 44 base pairs 1 μm × 1 μm 

Top-oligo ethylene-

glycol (EG) HS-

(CH2)11-(EG)3-OH 

Thiol-DNA containing 

3:2 mixtures (v/v) of 1 M 

buffer and ethanol 

2008 [180] 
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Table 3.3 continued 

System Pattern sizes Matrix film Liquid media Year References 

ssDNA-mediated binding of 

proteins thiol modified 

oligonucleotides 

200 nm × 200 nm to 

1 μm × 1 μm 

Ethylene glycol- 

terminated alkylthiols 

1:1 mixture of buffer and 

ethanol 
2009 [181] 

94 basepair thiolated double 

stranded DNA attached to 

nanografted patterns 

50 nm × 50 nm Octadecanethiol 

Mixture of 11-

aminoundecane thiol with 

DNA (10,000:1) in Tris 

acetate EDTA (TAE) 

2010 [182] 

Thiol derivatized single-

stranded oligonucleotide HS-

C6H12-5'-AGA TCA GTG 

CGT CTG TAC TAG CAC 

A-3' and complementary 

sequence 

0.5–1 μm 6-mercapto-1-hexanol 

10 μM probe 

DNA in a 1:1 mixture 

(v/v) of STE-buffer and 

absolute ethanol 

2010 [183] 

 

Individual DNA molecules can be localized within mixed patterns by diluting DNA with 

another alkanethiol molecule. To achieve single-molecule precision, Josephs et al., nanografted 

thiolated double-stranded DNA (dsDNA) with 94 base pairs from a solution containing a 

∼10000:1 mixture of aminoundecanethiol and dsDNA.
184

 By diluting DNA molecules with 

another alkanethiol molecule, DNA can be positioned on a chemically well-defined, atomically 

flat surface and be imaged in situ. One to four dsDNA molecules were localized confined within 

a nanografted area to provide high precision for positioning individual DNA molecules within 

biochemical structures. 

3.8.1 In Situ Studies of Hybridization with Nanografted Patterns of DNA  

Nanostructures of single stranded oligonucleotides or single stranded DNA (ssDNA) 

have been produced with nanografting for molecular-level studies of DNA hybridization.
171-174, 

176
 Label-free hybridization of ssDNA nanostructures was accomplished for nanografted patterns 

of ssDNA incubated with complementary segments of designed sequences.
172

 To mediate 

attachment to gold surfaces for nanografting, the DNA molecules were designed to contain a 

short thiol linker at either the 3' or 5' end. These investigations provide information about the 
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specificity, kinetics and selectivity of surface-bound ssDNA for hybridization with 

complementary strands.  

Label-free hybridization of nanostructures has proven to be highly selective and 

sensitive; as few as 50 molecules can be detected by in situ AFM studies.
172

 The efficiency of the 

hybridization reaction at the nanometer scale depends sensitively on the packing density of DNA 

within the nanostructures.
171, 172, 174

 The density of ssDNA molecules within nanografted patterns 

can be regulated by changing certain experimental parameters such as written line density and 

concentration. The structure of nanografted patterns and the relative surface orientation of the 

ssDNA molecules have been determined in situ using AFM to show that molecules of ssDNA 

adopt a standing upright orientation.  

Nanopatterns of thiolated ssDNA were produced using nanografting by Maozi Liu, et 

al.
176

 Thiolated ssDNA molecules adsorb chemically onto exposed areas of gold through the 

sulfur-gold chemisorption. The ssDNA molecules within nanopatterns adopt an upright, standing 

orientation on gold surfaces which were found to be accessible by enzymes. A ssDNA pattern 

(115×135 nm
2
) of an 18-nucleotide oligomer (5'-HS-(CH2)6-CTAGCTCTAATCTGCTAG) was 

nanografted into a hexanethiol matrix, as shown in Figure 3.9A. Nanografting and imaging of the 

patterns were conducted in a mixed solvent of 2-butanol/water/ethanol with a (v/v/v) ratio of 

6:1:1containing 40 µM ssDNA. The heights of the nanografted patterns were found to match 

well with the theoretical dimensions of an upright configuration of DNA, shown with cursor 

profiles. In Figure 3.9C, a second 12-mer ssDNA (5'-HS-(CH2)6-AGAAGGCCTAGA) was 

grafted into a dodecanethiol SAM. Line patterns of ssDNA as narrow as 10 nm were produced, 

as shown in Figure 3.9E. Three lines of the 12-nucleotide oligomer were nanografted within 

decanethiol.  
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Unlike natural, unconfined solution adsorption of thiolated DNA on gold surfaces, in 

which DNA oligomers tend to assemble with the backbone parallel to the substrate in a lying 

down configuration, nanografted patterns of ssDNA form a standing conformation, confined by 

the surrounding matrix monolayer to generate a fairly dense, close-packed structure of upright 

strands.
172, 176

 The alkanethiol matrix SAM guides the adsorption of DNA to define the geometry 

and packing of grafted ssDNA molecules. Upright ssDNA molecules within the nanografted 

structures maintain their reactivity, as demonstrated by hybridization reactions with 

complementary DNA in solution. The hybridization and corresponding control experiments 

indicate that nanografted patterns of ssDNA exhibit high specificity and selectivity towards 

complementary strands. 

3.8.2 Reactions with Restriction Enzymes Studied Using Nanografted Patterns of DNA 

Time-dependent AFM images were acquired in situ for a nanografted pattern of the 18-

nucleotide oligomer during digestion by the enzyme shown in Figure 3.9A. The RQ1 DNase I 

enzyme endonucleotically degrades DNA to produce oligonucleotide fragments at the 3' end 

with a hydroxyl terminal group. After nanografting steps, the ssDNA patterns were rinsed and 

the solvent was then replaced sequentially by ethanol, water, and finally buffer solution. Next, 

RQ1 DNase I was introduced and surface changes were captured in situ with high-resolution 

AFM images. The liquid cell experiment establishes that upright, densely-packed strands of 

DNA within nanografted patterns are accessible to enzyme digestion. 

Studies with the cutting action of restriction enzymes were accomplished by Castronovo. 

et al. to better understand enzyme/DNA interactions.
171

 An enzymatic reaction (DpnII restriction 

digestion) with DNA nanopatterns of variable density (surface coverage) was investigated to 
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understand the effect of molecular crowding on the accessibility of the DNA molecules to the 

restriction enzyme.  

 

Figure 3.9 Patterns of single-stranded DNA were nanografted into an alkanethiol SAM matrix. 

[A] Topograph of an 18-nucleotide ssDNA nanografted into a hexanethiol SAM (115 × 135 

nm2); [B] corresponding profile for the line in [A]. [C] Nanografted rectangle (190 × 255 nm2) 

of ssDNA with 12 nucleotides inscribed within a dodecanethiol matrix; [D] cursor profile for 

[C]. [E] Line patterns of the ssDNA 12-mer nanografted into decanethiol; [F] profile for [E]. The 

18-mer and 12-mer ssDNA strands are 5'-HS-(CH2)6-CTAGCTCTAATCTGCTAG and 5'-HS-

(CH2)6- AGAAGGCCTAGA, respectively. (Reproduced with permission from reference [
176

], 

Copyright © American Chemical Society) 

 

 

Single-stranded DNA molecules containing 44 base pairs (bps) with a 4 base pair recognition 

sequence (specific to the DpnII restriction enzyme) in the middle were patterned by 

nanografting. The resulting nanostructures were then hybridized with a complementary ssDNA 

sequence of the same length to yield patterns of restriction-ready double stranded DNA. The 

surface density of the DNA nanostructures produced by nanografting can be tuned by changing 

the writing parameters or by changing the concentration of the DNA when grafting. The study 

demonstrates that the DpnII restriction enzyme is sensitive to the DNA packing density; the 
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enzymatic reaction is inhibited when the DNA density is higher than a certain threshold density 

within nanografted patterns. 

3.8.3 Binding of Proteins to Nanografted Patterns of DNA 

Hybrid nanostructures of DNA-protein conjugates can be produced for nanografted 

patterns of DNA oligomers with site-specific DNA-directed immobilization of proteins, as 

reported by Bano, et al.
175

 In the first step, nanografted patches of thiolated ssDNA were 

generated within a monolayer of ethylene glycol-terminated alkylthiols (HS-(CH2)11-

(OCH2CH2)3-OH) on Au(111) substrates. In subsequent reaction steps, proteins covalently 

modified with cDNA sequences were immobilized onto the 1 × 1 μm
2
 nanografted patterns. A 

covalent conjugate of streptavidin tethered with a DNA oligomer was found to bind to the 

nanografted ssDNA pattern by sequence-specific DNA hybridization. The surface was carefully 

rinsed with phosphate buffered saline to remove any physically adsorbed molecules and imaged 

with AFM between successive biochemical reaction steps. Changes in heights of the patterns 

enabled label-free detection of protein binding between each step of the reactions, which were 

likewise accomplished in multiplex experiments with control samples of streptavidin that did not 

have the complementary DNA tethers. The nanopatterns of DNA-protein conjugates were then 

used for further studies of selected protein-protein interactions with an anti-streptavidin 

immunoglobulin G as well as with the biomedically relevant matrix of human serum. The 

fabrication of nanografted arrays of multiple proteins in this study demonstrates that the 

interactions of biomolecular recognition mediated by DNA-protein recognition are highly 

specific and that bound proteins retain activity for further selective binding of proteins. 
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3.8.4 Using Nanografted Patterns to Mediate Binding of DNA  

Nanografted patterns of an aminopropyldiethoxysilane (APDES) SAM were used as sites 

for selective adsorption of DNA within matrices of octyldimethylmonochlorosilane (C8DMS) 

monolayers by Lee et al.
185

 Line patterns of APDES that were 100 nm wide were nanografted in 

a C8DMS monolayer prepared on silicon dioxide substrates. After incubation in a 10 ng/µL 

solution of λ-DNA in buffer (pH 7.2) the heights of the nanopatterns was increased and revealed 

the shapes of individual DNA strands. The negatively charged DNA deposited on the positively 

charged amine-functionalized line patterns of aminosilanes. The negatively charged DNA 

molecules bound to nanografted patterns via electrostatic interactions with the positively charged 

amine groups of APDES, but did not bind to matrix areas terminated with methyl headgroups. 

These investigations provide a fundamental step toward sensitive DNA detection and 

construction of complex DNA architectures on surfaces. 

Nanografting provides a useful protocol towards sensitive DNA detection and likely 

attains the most sensitive detection levels yet achievable for label-free assays. The DNA 

nanopatterning methodology provides a unique opportunity for engineering biostructures with 

nanometer precision, which benefits the advancement of technologies for DNA biosensors and 

biochips.   

3.9 Limitations of AFM-Based Nanografting 

Thus far, the capabilities of nanografting for molecular manipulation by nanografting 

have primarily been a tool for academic research. However one may anticipate that nanografting 

will eventually provide commercial value for chemical or biochemical sensing or for 

nanotechnology.  A potential disadvantage for nanografting is that over time, molecular 

exchange reactions take place between solution molecules and the matrix SAM for certain 
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systems of alkanethiol matrices. Natural processes of self-exchange become an issue specifically 

when nanografting longer chain alkanethiols into a shorter chain matrix layer, thus it is important 

to use dilute (< 0.1 µM) solutions for nanografting.  Depending on the nature and age of the 

matrix SAM, exchange reactions can be detected within 2-4 hours when molecules from solution 

adsorb onto defect sites and at step edges. Software addresses this problem by enabling rapid 

automation of the nanofabrication process. Hundreds of exquisitely regular patterns can be 

produced within an hour or less, leaving sufficient time to progress to further in situ steps of 

reactions before exchange reactions have occurred.  

The serial nature of nanografting with a single probe may be a problem for applications 

that require higher throughput, such as at scales of millions of nanostructures. Prototype arrays of 

1024 and 55,000 AFM probes have been developed for high-throughput nanopatterning.
186, 187

 At 

this time, nanoscale studies with AFM enable new approaches to refine and optimize parameters 

used to link and organize proteins and other nanomaterials on surfaces. With in situ AFM 

characterizations, the orientation, reactivity, and stability of molecules adsorbed on SAM 

nanostructures can be monitored with successive time-lapse images using liquid AFM. These 

investigations provide the groundwork for advancing nanotechnology toward the nanoscale and 

furnish molecular-level information through the visualization of surface reactions. 

3.10 Future Prospectus 

Nanografting provides a practical tool to precisely control the arrangement of molecules 

on surfaces to enable bottom-up nanofabrication of structures through successive chemical 

reactions. In situ AFM studies with nanografting furnish opportunities for visualization, physical 

measurements and precise manipulation molecules at the nanometer scale. There are multiple 

advantages for nanografting, particularly because experiments are accomplished using liquid 
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media. Advantages are the ability to precisely produce nanometer-sized patterns of metals, 

polymers, proteins and DNA with the advantages of successively imaging and accomplishing 

fabrication within well-controlled environments. Because so many chemical reactions can be 

accomplished in solution, there are rich possibilities for studying other surface reactions, in 

ambient, cooled or heated conditions. The capabilities for capturing real time images throughout 

sequential steps of reactions offer intriguing possibilities for new studies, with directly viewing 

the role of temperature, reagents and solvents. Nanografting protocols provide an additional 

unique capability for defining spatial parameters for controlling surface coverage and confining 

reactions within defined boundaries. The challenge for future research directions will be to 

achieve greater complexity for experiments for building ever more sophisticated 3D architectures 

from the bottom-up.  
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CHAPTER 4. SURFACE-DIRECTED SELF-POLYMERIZATION OF 4-

(CHLOROMETHYL) PHENYLTRICHLOROSILANE: SELF-ASSEMBLY WITHIN 

SPATIALLY-CONFINED SITES OF SI(111) VIEWED BY  

ATOMIC FORCE MICROSCOPY 

 

 

4.1 Introduction 

Model systems of n-alkanethiols have been well-studied, including the surface self-

assembly mechanisms,
121

 structures and growth.
188

 Organosilane self-assembled monolayers 

(SAMs) were first introduced by Sagiv in 1980,
189

 which offer the advantage of not requiring 

substrates comprised of expensive precious metals. In particular, organosilane SAMs can be 

formed on glass and transparent surfaces for sensing applications. The surface assembly of 

organosilanes is more complicated than n-alkanethiols and remains a target for investigation.
190

 

Organosilanes attach to oxidized surfaces mediated by steps of hydrolysis and condensation to 

form cross-linked films. Competitive reactions with adjacent molecules are difficult to control, 

generating multilayer films. From an applications perspective, generating interfaces of well-

defined structure and composition is critical for emerging technologies based on molecularly thin 

organic films.  

Aromatic organosilanes have previously been studied as surface layers for lithography 

protocols with deep UV photo irradiation,
191-194

 near field scanning optical microscopy,
195

 

microcontact printing,
196

 scanning tunneling microscopy reactive ion etching,
197

 electron beam 

lithography
198

 and x-ray lithography,
199

 The benzyl halide surfaces of 4-

chloromethylphenyltrichlorosilane (CMPS) furnish sites for nucleophilic substitution 

reactions,
200

 furnishing ligands for binding DNA,
195

  polymers,
201

 peptide synthesis,
202

 

fluorescent binding assays
203

 and chromophores.
204
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There are only a few methods of positioning molecules at a local scale of nanometers that 

will enable studies with AFM at the molecular-level. Methods of scanning probe–based 

lithography that have been used to create patterns of organosilanes include bias-induced 

lithography,
205

 nanoshaving,
67

 nanografting,
206

 Dip-Pen nanolithography
207

 and constructive 

nanolithography.
208

 Although the size, shape and terminal group of the patterns can be 

exquisitely controlled with the scanning probe, each pattern is created or inscribed individually 

by a relatively slow, serial writing process. To scale up to produce millions of nanopatterns with 

high density, particle lithography methods have been developed. Particle lithography has also 

been referred to as nanosphere lithography
209

 or colloidal lithography.
72

   

Particle lithography has been used to pattern proteins,
210

 metals,
211

 polymers,
212

 

nanoparticles
213

 and other inorganic materials.
214

 For particle lithography, mesospheres are used 

as a surface mask to control the deposition of molecules or nanomaterials. Innovative protocols 

with particle lithography have recently been developed to pattern thiol
215-218

 and organosilane
219, 

220
 SAMs, which enables exquisite control of the chemical functionalities presented at interfaces. 

The periodicity and density of SAM patterns can be precisely controlled by the diameters of 

mesospheres used for patterning.
221

 By combining particle lithography with different deposition 

methods, patterns such as rings, pores or dot nanostructures can be produced.
222

  

In this report, a protocol for particle lithography using immersion was applied to study 

the surface self-assembly of 4-(chloromethyl)phenyltrichlorosilane (CMPS) from solution. Over 

time, CMPS spontaneously forms multilayered surface structures through hydrolysis of Si-Cl 

bonds to form trisilanols which bridge into crosslinked Si-O-Si networks. Designed surface 

platforms with well-defined sizes of enclosed reaction sites enabled AFM characterizations of 

surface changes at the nanoscale for samples prepared ex situ. Typically, mesospheres detach 
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upon immersion in liquids. To address this problem, a strategy of annealing the masks of silica 

mesoparticles was developed to prepare nano-containers within a film of octadecyltrichlorosilane 

(OTS). The natural variations in the sizes of the containers provide a snapshot of the reaction 

progress at defined intervals up to 20 h after CMPS immersion, with fixed conditions of 

temperature, humidity and concentration. Controlling the selectivity and dimensions of surface 

sites for subsequently assembling supramolecular structures will provide information to elucidate 

mechanisms and kinetics of surface reactions. 

4.2 Experimental Section 

4.2.1 Atomic Force Microscopy (AFM)  

Scanning probe microscope models 5500 and 5420 (Agilent Technologies, Chandler, AZ) 

were used for characterizing samples. The AFM images in Figures 2, 4, 5, and 6 were acquired 

with tapping mode in air using silicon nitride tips with a spring constant of 48 N/m and average 

resonant frequency of 176 kHz (Nanoscience Instruments, Phoenix, AZ). Figure 3 was obtained 

using contact mode imaging with silicon nitride tips with an average spring constant of 0.5 N/m 

(MSCT, Veeco Metrology, Santa Barbara, CA). Images were processed using Gwyddion.
223

  

4.2.2 Nanoshaving  

For nanoshaving, a higher force was applied to the AFM tip (ranging from 2 to 10 nN) to 

push the probe through the matrix film to make contact with the substrate. A nanoshaved pattern 

was generated by scanning over a small area several times, while applying a higher force than 

used for imaging. The local pressure at the area of contact produced sufficient shearing force to 

displace adsorbates during scanning, the area was swept 10 times in a raster pattern. 

Nanoshaving was accomplished in ethanol which enabled displaced molecules to be dissolved in 
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the surrounding liquid media. Afterwards, the same AFM probe was used to characterize the 

nanoshaved areas in situ by returning to a lower force setting.  

4.2.3 Immersion Particle Lithography  

The general procedure for particle lithography is outlined in Figure 1. Silicon wafers 

(Virginia Semiconductor, Frederickburg, VA) were cut into small pieces (1 × 1 cm
2
) for use as 

substrates. Surfaces were cleaned by immersion in piranha solution for 30 min. Piranha is a 

mixture of sulfuric acid and hydrogen peroxide at a (v/v) ratio of 3:1. Caution: Piranha solution 

is highly corrosive and should be handled carefully.  First, a drop of monodisperse silica 

mesospheres was deposited on Si(111) and dried (Figure 4.1A). To enable sustained immersion 

in solvent solutions with mesoparticle masks, a heating step was developed to solder the beads to 

the substrate. The samples were heated briefly to anneal the mesospheres to the surface (100°C 

for 15 min), before immersion into OTS solutions. The annealed films of mesospheres were used 

as masks for surface patterning. The samples were cooled to room temperature (25 °C), then 

immersed into 0.1% octadecyltrichlorosilane (Gelest, Morrisville, PA) in anhydrous toluene for 

12 h. Silane molecules assembled on the substrate except in the areas where mesospheres were 

attached to the surface. Next, the samples were rinsed copiously with deionized water and 

sonicated with ethanol to remove the silica mesospheres (Figure 4.1B). The center-to-center 

spacing between the nanopores corresponds to the diameter of the mesosphere masks. In the final 

step, the nanopatterned samples were submerged into a 0.006 M solution of 4-

chloromethylphenyltrichlorosilane (Gelest, Morrisville, PA) in anhydrous toluene (Figure 4.1C). 

Samples were removed at successive intervals to evaluate surface changes over time (30 min, 1 

h, 20 h, 24 h). Samples were rinsed with acetone and chloroform with sonication and dried under 
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argon. The uncovered areas of Si(111) that had been masked by mesospheres provided well-

defined surface sites for directing the subsequent attachment and growth of CMPS. 

 

Figure 4.1 General steps for immersion particle lithography. [A] A mask of silica mesospheres 

was deposited on the surface of Si(111); [B] After rinsing away the mesospheres, a porous film 

of OTS was formed on the substrate; [C] The nanopores were backfilled with CMPS by an 

immersion step. 

 

4.3 Results and Discussion 

Studies of molecular self-assembly and intermolecular interactions are critical in the field 

of supramolecular chemistry. Our experimental strategy combines the local spatial resolution of 

particle lithography with molecular self-assembly to prepare arrays of nanostructures with 

designated periodicity. Millions of nearly regular nanopatterns can be generated using basic steps 

of particle lithography (mixing, rinsing, drying, heating, centrifuging and sonication) to enable 

exquisite nanoscale control of the geometry, density, and interfacial chemistry of surfaces. For 
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this study, nanopore structures produced within a film of OTS were used as nano-containers to 

designate sites for the growth of CMPS. Of course, at the nanoscale there are small variations in 

the geometry and sizes of the nano-containers that are produced. This provides an opportunity to 

evaluate the size-dependent spatial effects of confinement as a function of exposed surface area. 

4.3.1 Confined Nano-Containers  

Views of the nano-containers are shown in Figure 2. Nanopores or holes within an OTS 

thin film were generated on Si(111) using particle lithography combined with solution 

immersion. Within an area of 2×2 µm
2
 there are 48 holes, measuring 1.2 ± 0.2 nm in depth 

(Figure 4.2A), with an average surface area of 0.003 ± 0.001 µm
2
. The holes are the sites where 

the silica mesospheres were displaced from surface. The grooves in the background are due to 

the natural roughness of polished silicon wafers. The imperfections of the substrate influence the 

order and periodicity of the mesosphere masks, as well as the uniformity of the pore geometries. 

The simultaneously-acquired phase image (Figure 4.2B) more clearly defines the shape of the 

sites of uncovered substrate. A close-up view of three nanostructures (Figure 4.2C) reveals that 

the shapes of the nanoholes are not always circular. The center-to-center spacing of the holes 

measures 250 nm, which matches the diameter of the silica mesospheres used as a patterning 

mask. The shapes of the nano-containers are smaller in the phase image (Figure 4.2D) compared 

to the corresponding topography frame because the height images do not distinguish defined 

edges of the nanopatterns as clearly and measurements include convolution effects of the tip 

shape. Using the topography images, the surface coverage of uncovered sites measures 2.7%; 

whereas the lateral force image reveals that the area of the nanopores measures 1% of the 

surface. Cursor profiles across two of the nanopores indicate the local thickness of the OTS film 
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ranges from 1.5 to 1.7 nm (Figure 4.2E). A view of a single nanohole is presented in Figure 4.2F, 

revealing the surface texture of the surrounding OTS domains. 

 

Figure 4.2 Nanopores within a film of OTS viewed by AFM. [A] Topography frame, 2×2 µm
2
; 

[B] corresponding phase image; [C] higher magnification topograph, 0.5×0.5 µm
2
; [D] phase 

image; [E] cursor profile across two patterns traced in C; [F] view of a single nanopore. 

To further evaluate the thickness of the OTS film, a protocol known as “nanoshaving” 

was accomplished by applying high mechanical force to the AFM tip to sweep away the OTS 

film from a selected area.
224

 A square pattern was produced by nanoshaving in air as shown in 

Figure 4.3A. The pattern measures 500×500 nm
2
 and has a depth that is similar to that of the 

nanopores, ~ 1.2 ± 0.2 nm, which is shorter than the value expected for a densely packed SAM 

of OTS. The depth of the pattern and holes are compared side-by-side with the cursor profile in 

Figure 4.3B. 
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Figure 4.3 Square pattern nanoshaved within the OTS film with nanopores. [A] Topography, 

2.5×2.5 µm
2
; [B] cursor profile across the nanopores and nanoshaved area. 

The thickness of OTS films from ellipsometry measurements have been reported to range 

from to 2.25 to 2.81 nm for densely-packed monolayers formed on silicon substrates.
225-227

 In a 

dense arrangement, the alkyl chains of OTS adopt an all-trans configuration with tilt angles that 

range from 0 to 17°. The range of measured values can be attributed to changes in surface 

coverage as well as differences for the methods of sample preparation for OTS. Immersion of a 

substrate in solvents is the most common approach for preparing films of organothiols, and has 

produced the most consistent thickness of a monolayer.   

4.3.2 Backfilling Nano-sized Containers with CMPS  

By backfilling nanopores produced with particle lithography, exquisitely tiny spatially 

confined surface sites can be used for studying successive changes after further reaction steps. 

The combination of chemical synthesis combined with surface engineering likewise provides a 

unique opportunity for studying spatial confinement effects for surface-based chemical reactions 

at the molecular level within well-defined nanoscopic areas. Surface patterns of organic thin 

films can be used as confined nano-containers for building supramolecular structures through 
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sequential chemical reactions. Successive changes of the surface topography can be viewed after 

each reaction step.  

The progressive surface changes during the growth of CMPS nanostructures were 

characterized with high-resolution AFM at different intervals of time to reveal molecular-level 

details of the surface assembly and self-polymerization of CMPS. The sample with nanopores 

within an OTS film on Si(111) was immersed in CMPS/toluene solution and removed after 30 

min (Figure 4.4). The nanostructures of CMPS initially form small islands within the central 

areas of the nanopores and have a boundary surrounding the edges near the inner walls of OTS. 

Nearly all of the pores evidence growth of CMPS nanostructures (Figures 4.4A-C). After 30 min, 

the CMPS has not completely filled the nanopores; however the height of the CMPS structures 

corresponds to a multilayer which is taller than the initial height of the surrounding OTS film. 

The Si(111) substrate can no longer be distinguished to reference as a baseline for height 

measurements, therefore the OTS matrix is used as a height ruler. A representative cursor 

measurement across two CMPS nanostructures reveals the heights and lateral dimensions of 

backfilled CMPS (Figure 4.4D). The nanostructures are approximately 0.5 ± 0.2 nm taller than 

the OTS matrix; therefore the overall thickness would measure 2.1 ± 0.2 nm. Since the 

theoretical length of CMPS is 0.75 nm this corresponds to a trilayer of CMPS formed after 30 

min.   
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Figure 4.4 Nanostructures of CMPS after 30 min immersion. [A] Topography frame, 2.5×2.5 

µm
2
; [B] corresponding phase image; [C] Zoom-in view of CMPS nanostructures, 0.6×0.6 µm

2
; 

[D] cursor profile for the line in C. 

 

After longer immersion, the nanostructures increased in height and width, as shown in 

Figure 4.5. A representative topography image (Figure 4.5A) after 1 h immersion reveals the 

periodic arrangement of 14 nanostructures of CMPS formed on Si(111) inside the OTS nano-

containers. The heights of the nanostructures are not consistent, smaller nanopores appear to 

have formed smaller nanostructures. Details are more clearly viewed in Figure 4.5B for a single 

nanostructure of CMPS. There is a dark ring surrounding the CMPS nanostructure, indicating 

that the CMPS did not fully fill the nanoholes and avoided growth at the edges near OTS 

sidewalls. There are multiple tips at the apex of the nanostructure, resulting from additional 
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nucleation sites being formed during growth. A view of three nanostructures is presented in 

Figure 5C. The cursor profile (Figure 4.5D) discloses heights measuring 3 nm and 8 nm above 

the OTS matrix, corresponding to 4-10 layers of CMPS. The nanostructures became taller and 

wider in dimension, according to the initial size of surface sites.  

 

Figure 4.5 Surface changes after 1 h immersion in CMPS. [A] AFM topograph, 1×1 µm
2
; [B] 

view of a single structure, 200×200 nm
2
; [B]  Topograph, 400×400 nm

2
; [D] cursor profile 

across two patterns traced in C. 

To assess whether the self-polymerization of reactive chloro groups of CMPS continued 

with extended immersion, later timepoints were evaluated. After 20 h immersion in CMPS, the 

nanostructures were observed to increase further in length and width as shown in Figure 4.6. 

Larger cluster-shaped nanostructures are observed throughout the sample within the OTS 

nanopores. A representative topograph is presented in Figure 4.6A showing 14 nanostructures. 
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The growth of CMPS remains confined within the sites of the nanopores, and adsorption is not 

detected on surrounding matrix areas passivated with OTS. A single CMPS nanostructure is 

shown in Figure 4.6C, revealing that multiple nucleation sites were formed over time. The edges 

of the OTS can be clearly resolved, indicating that CMPS growth is directed in the vertical 

direction without branching in lateral directions beyond the borders of the nanopores. A view of 

three nanostructures in Figure 4.6C reveals that the structures have grown taller and slightly 

wider, to mostly fill the OTS nanopores. The heights of two of the nanostructures measure 18 

and 20 nm (Figure 4.6D) which corresponds to 24-28 multilayers of CMPS.  

 

Figure 4.6 Spatially-contained nanostructures of CMPS formed after 20 h immersion. [A] 

Topograph, 1×1 µm
2
; [B] close-up view of a single nanostructure; [C] topograph, 0.5×0.5 µm

2
 

[D] cursor profile across two patterns traced in C. 
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4.3.3 Analysis of Size Changes for CMPS Nanostructures  

Initially, CMPS molecules started to grow at nucleation sites near the center of the 

nanoholes, and a cross-linking reaction produced multilayers over time in a vertical direction. An 

approximate model of the self-polymerization scheme is shown in Figure 4.7, as previously 

proposed by Brandow, et al.
228

 The CMPS nanostructures grow through hydrolysis of the Si-Cl 

groups to form silanols to produce a cross-linked network. A trace amount of water is needed to 

convert the chloro groups to hydroxyl groups. Our samples were prepared using anhydrous 

toluene to minimize the amount of water to that produced by ambient humidity.  

 

Figure 4.7 Model of the self-assembly of CMPS. 

Measurements of the heights and surface area of CMPS nanostructures after different 

intervals of immersion are summarized in Table 4.1. Both the height and surface area increase as 

time progressed, however any polymer branching was constrained by the sides of the nano-

containers. The heights indicate multilayers were formed over time, with taller structures 
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produced by longer immersion. Therefore, CMPS primarily increased in a vertical growth mode, 

and larger surface sites produced structures with wider diameters. 

Table 4.1 Surface changes after different intervals of immersion in CMPS.  

Immersion 

time (h)  

Height (nm) Height range 

(nm) 

Average surface area 

(µm
2
) 

Surface area range 

(µm
2
) 

0.5  3.6 ± 1.1 1.9 – 5.1 0.0005 ± 0.0002 0.0004 – 0.001 

1  7.4 ± 2.2 2.8 – 11 0.006 ± 0.002 0.001 – 0.008 

10  10 ± 2.1 6.3 – 16 0.008 ± 0.001 0.001 – 0.01 

20  20 ±  3.8 12 – 33 0.01 ±  0.002 0.007 –0.02 

 

The correspondence of the nanostructure growth to the initial sizes of nanopores is shown 

more quantitatively in Figure 4.8. The maximum heights of CMPS nanostructures versus the 

surface area of the nanopores were plotted for immersion times of 1 h and 20 h. The trends 

indicate that larger surface sites produce taller structures, and correspondingly the growth of 

shorter structures was observed for smaller surface sites. As time progressed, CMPS 

nanostructures filled the areas within the holes but did not spread out beyond the edges of the 

OTS nano-containers. The methyl-terminated headgroups of OTS provided an effective surface 

mask to prevent non-specific adsorption of CMPS.   

 

Figure 4.8 Correlation of the heights of CMPS nanostructures versus the surface area of OTS 

nanopores. 
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It is well-known that chemisorption of trichlorosilanes from solution onto oxide surfaces 

is influenced by factors such as the nature of the solvent and substrate, temperature, humidity, 

concentration and adsorption time.
219, 228, 229

 For this study, the ex situ experiments primarily 

evaluated surface changes as a function of immersion time using fixed conditions of solvent, 

humidity, temperature and concentration.  

4.4 Conclusion 

An approach based on particle lithography was tested for nanoscale studies of CMPS 

surface reactions, using test platforms of well-defined nano-containers within a passivating OTS 

resist. Details of the surface assembly and subsequent self-polymerization of CMPS within 

confined, nanoscopic areas were studied ex situ using AFM. As time progressed, the heights of 

CMPS nanostructures increased according to the initial sizes of the surface sites of OTS 

nanoholes. Multilayers formed over time intervals of 0.5 to 20 h. Further directions for this 

research will be to study the assembly of different designs of organosilane molecules, to gain 

insight for the dynamics and mechanisms of self-assembly reactions on silicon surfaces. 
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CHAPTER 5. SURFACE ASSEMBLY OF 1,1,1-TRIS(MERCAPTOMETHYL)-

HEPTADECANE ONTO AU(111) VIEWED WITH TIME-LAPSE AFM 

 

 

5.1 Introduction 

Multidentate adsorbates attach to gold surfaces through multiple linkers which provide 

greater stability compared to monothiolated self-assembled monolayers (SAMs) of n-

alkanethiols. Although detailed investigations of monothiolated SAMs have been reported, 

relatively few studies have been accomplished for bidentate or tridentate thiol adsorbates. One 

may predict that bulkier geometries of multidentate SAMs would exhibit distinct changes for the 

kinetics, stability and surface organization in comparison to equivalent geometries of 

monothiolated n-alkanethiol SAMs. The synthesis of multidentate thiol-based adsorbates offers 

opportunities for generating interfaces of well-defined structure and composition designed to 

have either bidentate or tridentate thiol groups, a crosslinked junction, and tailgroups of tunable 

chemical composition. The nature of the headgroup, junctions, hydrocarbon backbone, and 

tailgroups enable designs of complex architectures for applications with surface patterns.  

From an applications perspective, generating interfaces of well-defined structure and 

composition are critical for emerging nanotechnologies based on molecularly thin organic films. 

The stability of organosulfur-based adsorbates on noble metal surfaces is a consideration for 

applications of self-assembled monolayers (SAMs), which impacts the reliability and durability 

of the related products.
230-240

 To realize the full potential of patterning surfaces for manufacturing 

processes, challenges need to be addressed for designing robust surface coatings that resist 

damage. Multidentate molecules provide a model surface that will resist self-exchange and 

surface migration, and enable further steps of chemical reactions with high fidelity. Degradation 

of alkanethiol SAMs on metal surfaces is caused by UV exposure, thermal desorption, and 
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oxidation. It has been reported that SAMs designed with longer chain lengths are more thermally 

stable than those with shorter chains.
241-244

 Multidentate thiols have been investigated as a means 

to improve the overall stability of alkanethiol SAMs, by forming multiple bonds between a 

molecule and the surface.
245, 246

 Several new classes of multidentate alkanethiols have been 

synthesized which have two or three legs and a binding group at each end of the legs.
238, 245, 247-

249
 By appropriate design of the anchoring point, multidentate alkanethiols bind to multiple sites 

on a noble metal surface. The trend in thermal stability is tridentate alkanethiol > bidentate 

alkanethiol > n-alkanethiol.
238

 Multidentate adsorbates form stable films that resist desorption 

and exchange and also resist diffusion across the surface of gold, offering opportunities to 

generate robust surface nanopatterns.  

Details of the surface self-assembly of tridentate alkanethiols on Au(111) have not yet 

been reported. Bulkier multidentate SAMs will exhibit differences for the kinetics, stability and 

surface organization in comparison to n-alkanethiols. Within a liquid environment studies of 

surface reactions can be accomplished using time-lapse atomic force microscopy (AFM) 

imaging. To better understand the surface structure and self-assembly process for multidentate 

thiols, we designed an in situ AFM study of a tridentate molecule, 1,1,1-tris(mercaptomethyl)- 

heptadecane (TMMH). The orientation of TMMH on the surface was investigated using 

approaches with liquid imaging and scanning probe lithography. Using a liquid sample cell, fresh 

reagents can be introduced to the system and step-wise changes of surfaces before and after 

nanofabrication can be captured in situ. Side-by-side comparisons of the surface structures of 

multidentate adsorbates versus n-alkanethiol SAMs were accomplished to give a local 

measurement of film thickness, referencing the well-known dimensions of n-alkanethiols as a 

baseline. 
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5.2 Experimental Section 

5.2.1 Materials and Reagents  

Octadecanethiol and dodecanethiol were purchased from Sigma Aldrich (St. Louis, MO) 

and used as received. The tridentate molecule 1,1,1-tris(mercaptomethyl) heptadecane (TMMH) 

was synthesized at the University of Houston, in Dr. T. Randall Lee’s laboratory. Ethanol (200 

proof) was obtained from AAper Alcohol and Chemical Co. (Shelbyville, KY). Flame-annealed 

gold films on mica substrates (150 nm thickness) were obtained from Agilent Technologies 

(Phoenix, AZ). Template-stripped gold films were prepared on glass slides using Epotek 377, as 

previously described by Wagner et al.
250

 

5.2.2 Atomic Force Microscopy (AFM)  

Either a model 5500 or 5420 scanning probe microscopes (Agilent Technologies, 

Chandler, AZ) equipped with PicoView v1.8 software were used for the AFM characterizations 

and scanning probe lithography. Images were acquired using contact mode in a liquid cell which 

can hold up to 1 mL of solution. Imaging and fabrication were accomplished with silicon nitride 

tips which had an average spring constant of 0.5 N/m (Bruker Instruments, Camarillo, CA). 

Digital images were processed and analyzed with Gwyddion v.2.25 software.
251

 Analysis of 

surface coverage was accomplished by manually selecting a threshold value to convert images to 

black and white data sets, and counting pixels using the UTHSCSA ImageTool program 

(developed at the University of Texas Health Science Center at San Antonio, Texas and available 

from the Internet by anonymous FTP from maxrad6.uthscsa.edu). 

5.2.3 AFM Study of the Self-Assembly of TMMH from Solution  

A piece of template-stripped gold on glass was placed in the liquid cell and imaged 

continuously. Initially, the sample was imaged in ethanolic media to obtain a representative view 
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of the gold substrate. Next, a solution of TMMH (0.01 mM) in ethanol was injected into liquid 

cell to monitor the growth of TMMH in situ. After introducing TMMH solution into the sample 

cell, images were acquired every 15 min for 3 h for the same area. After 3 h, the tip was moved 

to image a new area to minimize the effects of perturbing the surface by the scanning probe and 

images were taken every 30 min. 

5.2.4 Scanning Probe Lithography (Nanoshaving and Nanografting)  

Nanoshaving experiments were accomplished by applying a high force (2-5 nN) to sweep 

a selected area ten times at 256 lines/frame in ethanol. The nanoshaved patterns could be imaged 

in situ using the same probe by returning to low force. Nanografting experiments were 

accomplished by sweeping an area under high force in a liquid cell containing an ethanolic 

solution of the molecule to be patterned. Solutions of either octadecanethiol or dodecanethiol 

solutions were prepared at a concentration of 1 mM for nanografting. A dodecanethiol SAM was 

prepared by immersing a piece of template stripped gold in a 1 mM ethanolic solution for 12 h.  

A monolayer film of TMMH  was prepared by immersing a piece of template stripped gold in a 

0.01 mM ethanolic solution for 72 h.  

5.3 Results and Discussion 

Liquid environments expand the capabilities for scanning probe protocols to provide 

insight for dynamic processes at the nanoscale. Liquid AFM imaging has advantages for studies, 

particularly for conducting in situ investigations of chemical or biochemical reactions.
252

 Liquid 

media has benefits for improving resolution, since the amount of force applied between the tip 

and sample can be reduced.
253

 Surface changes after immersion in different liquids can be 

investigated using time-lapse AFM imaging. Investigations of surface changes throughout the 

course of chemical self-assembly reactions have been monitored with AFM in liquid media.
254
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Further, by injecting new molecules into the sample cell, AFM-based nanofabrication can be 

accomplished using protocols of nanoshaving and nanografting.
79, 255

 Of course, the solvents 

chosen for AFM liquid experiments should be optically transparent, and must have a relatively 

slow rate of evaporation, e.g. water, ethanol, butanol or hexadecane.  

5.3.1 Surface Self-Assembly of TMMH  

A liquid AFM study was accomplished using time-lapse imaging to investigate surface 

changes during the self-assembly of TMMH molecules on template-stripped gold (Figure 5.1).  

The surface was imaged in ethanol before injecting the TMMH solution (Figure 5.1A). The 

image reveals relatively flat domains bordered by several cracks and scars, the sites of the 

defects furnish reference landmarks for in situ imaging.  After injecting a solution of TMMH in 

ethanol (0.01 mM) into the liquid cell, small changes were observed during the first hour. At this 

concentration, few adsorbates became apparent after 1 h (Figure 5.1B). Increases in surface 

coverage were readily detected as time progressed, time-lapse images after 2, 2.5 and 3 h are 

presented in Figures 5.1C-5.1E with a distinct arrangement of surface landmarks to anchor the 

location for acquiring successive images. However, as the surface coverage of TMMH increased 

the landmarks became indistinguishable. To continue the experiment, a square region was shaved 

clean to provide a reference location for further time points (Supplemental Figures 1 and 2). For 

nanoshaving, a higher force was applied to the AFM tip during scans to sweep away TMMH 

molecules from the gold surface (Figure 5.1E). The experiment was terminated after 6 h before 

the surface reached saturation coverage (Figure 5.1F).  



81 

 

Figure 5.1 Solution self-assembly of TMMH on Au(111) viewed by time-lapse AFM. 

Topography images taken at [A] 0 h; [B] 2 h; [C] 2.5 h; [D] 3 h; [E] 6 h after injection of TMMH 

solution. 

With higher magnification, the thickness of the adsorbates can be measured (Figure 5.2). 

The initial bright structures (Figure 5.2) appear to attach preferentially to the edges of gold 

terraces; however at this magnification it is difficult to be certain. Unfortunately, there are 

multiple overlapping terraces throughout the areas of the substrate, so the evidence is not 

conclusive. Several heights are apparent for the adsorbates ranging from 0.5 to 2.2 nm. The 

shortest structures correspond approximately to the thickness of an alkane chain, with a side-on 

orientation. This concurs with the height expected for a physisorbed phase, and is evidence that 

there is a phase transition from lying-down to an upright orientation. The tallest heights 



82 

measured are 2.2 nm, and this value corresponds to a standing upright configuration of the 

TMMH which has a theoretical length of 2.3 nm. However there seems to be rearrangement of 

the standing phase at later timepoints during the course of self-assembly to form a condensed 

film of shorter heights. 

 
 

Figure 5.2 Representative cursor profiles of the side-on and standing phases of TMMH 

measured at 2.5 h.  

 

Kinetic trends for the surface-assembly of the taller phase of TMMH are plotted in Figure 

5.3. The binding of TMMH is relatively slow at this concentration as compared to regular n-

alkanethiols, which evidence adsorption within minutes and typically form a monolayer within 

an hour or less. As shown by the surface coverage estimates in Figure 5.3, after 2 h, the rate of 

surface adsorption of TMMH increased. This suggests that intermolecular interactions influence 

the rate of surface attachment. After TMMH has bound to surface sites, molecules begin to 

associate and attach to the surface more quickly. These preliminary results achieved at a fixed 

low concentration corroborate our observations that greater time is required to form complete 

monolayer films of TMMH. Incomplete monolayers were observed for brief immersion steps, 

and mature SAMs required at least 24 h immersion. The initial studies with tridentate TMMH 

molecules evidence slower adsorption kinetics (> 6 h), in comparison to monothiolated SAMs, 

which typically form dense monolayers within an hour. 
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Figure 5.3 Gradual increase in surface coverage of the taller phase of TMMH as time 

progressed. 

 

 

5.3.2 Nanoshaving of TMMH Film on Gold 

A convenient way to locally measure the thickness of an organothiol film with liquid 

AFM is to shave away a small area of the surface by applying higher force to the AFM probe and 

sweeping. A nanoshaving example is shown in Figure 5.4 for a 200 × 200 nm
2
 area of gold that 

was uncovered by the AFM tip. Some of the molecules are deposited at the left and right sides of 

the nanopattern, evidenced by the bright edges. However, most of the molecules dissolve in the 

liquid media or are swept away by the scanning action of the AFM tip. A possible concern when 

increasing force to the AFM tip is that the probe might become dull or break. However, the tip 

retains its sharpness because you can so clearly resolve the pinhole defects and contours of the 

step edges of the underlying gold beneath the SAM of TMMH (Figure 5.4A). In comparison to 

the example of nanoshaving in Figure 5.1, the SAM is more densely packed after 30 h immersion 

in TMMH for The example in Figure 5.4. The thickness of the SAM is 1 ± 0.2 nm measured at 
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the right edge of the nanopattern. The left side has a hill of adsorbate from the material scraped 

to the side by the nanoshaving process and is not as reliable for measurement of thickness. 

 

Figure 5.4 Nanoshaved square within a SAM of TMMH. [A] Topography image acquired in 

ethanol; [B] Line profile across the square pattern. 

 

 5.3.3 Nanografting of n-Alkanethiols within TMMH  

By injecting new molecules into the sample cell, AFM-based nanofabrication can be 

accomplished using nanoshaving and nanografting protocols.
79, 255

 Approaches with 

nanolithography enable side-by-side comparisons of the surface structures of multidentate 

adsorbates versus n-alkanethiol monolayers (i.e. film thickness, periodicity). Our experimental 

strategies rely on using a liquid sample cell for AFM studies, since fresh reagents can be 

introduced to the system and step-wise surface changes before and after nanofabrication can be 

monitored in situ. For experiments in liquid media, the method of surface nanografting 

developed by Xu, et al. was used to inscribe nanopatterns.
79

 For these experiments n-alkanethiol 

SAMs provided an internal calibration tool. Essentially, the well-known dimensions of n-

alkanethiol monolayers serve as a molecular ruler for local in situ measurements of the thickness 

of molecular films.
256-258

  

Our protocols for nanografting used either dodecanethiol or TMMH as matrix SAMs 

which were prepared by immersion in ethanolic solutions. Areas of the matrix were selected for 
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nanoshaving or nanografting of patterns to enable a side-by-side comparison of molecular 

thickness. Experiments with nanoshaving and nanografting in liquid media provide advantages 

for in situ investigations, since the steps of characterization and writing are accomplished 

sequentially without the need for exchanging AFM tips. The successive changes of the surface 

topography can be viewed after each step: inscribing SAM patterns, rinsing, and introducing ink 

solutions. 

A square pattern of octadecanethiol (ODT) was nanografted into a matrix of TMMH, as 

shown in Figure 5.5. The bright square consists of densely-packed alkanethiolates with methyl-

terminated headgroups (Figure 5.5A). A darker contrast for the nanografted pattern compared to 

the matrix is revealed in the lateral force image of Figure 5.5B, even though TMMH and ODT 

are both terminated with methyl groups. This could be caused by differences in packing density:  

the nanografted pattern appears to be more densely-packed than the surrounding SAM of 

TMMH. The surrounding areas of the TMMH matrix are shorter than ODT. The expected 

thickness of an octadecanethiol SAM on gold is 2.2 nm, and octadecanethiol square is 

approximately 1 nm taller the TMMH matrix (Figure 5.5C). Thus the thickness of TMMH 

measures 1.2 ± 0.2 nm for this example. 

 
Figure 5.5 Nanografting of octadecanethiol within a densely-packed TMMH matrix. [A] 

Topography image acquired in contact mode; [B] corresponding lateral force image. [C] Height 

profile taken across the square pattern in A. 
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To obtain further thickness measurements of TMMH, nanopatterns of 11-

mercaptoundecanoic acid (MUA) were grafted within a matrix of TMMH (Figure 5.6A). Each of 

the patterns were inscribed by multiple sweeps across the same regions, which has been shown to 

produce a double layer for nanografting of carboxylic acid terminated SAMs.
95

 The square 

nanopattern of MUA on the left side of the topography frame measures 200×200 nm
2
, and 

reveals a two-tier design with single and double layers. Cursor lines were drawn across the top 

and bottom areas of the MUA nanopatterns (Figure 5.6B) measuring 0.5±0.2 and 2.0±0.2 nm 

above the TMMH matrix for the single and double layers, respectively. The profile across the 

monolayer region of the pattern (Figure 5.6B black line) measuring ~0.5 nm above the matrix 

indicates that TMMH is ~1 nm in thickness.  The areas of the pattern with a double layer (Figure 

5.6B red line) are 2±0.2 nm taller than the TMMH matrix. Since a double layer of MUA would 

be 3.0 nm thick, this likewise indicates a height of ~1 nm for TMMH. 

 

Figure 5.6 Nanografting of 11-mercaptoundecanoic acid within a matrix of TMMH. [A] 

Topography view of multiple nanografted patterns within a 800 ×800 nm
2
 region. [B] Cursor 

profiles across the terraced square of A. 

 

Experiments were accomplished for grafting TMMH nanopatterns within a methyl-

terminated dodecanethiol SAM (Figure 5.7). The expected thickness of a dodecanethiol SAM is 

1.5 nm, which provides a reference measurement for evaluating the thickness of TMMH 
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nanostructures. Four patterns were written within the methyl-terminated SAM (Figures 5.7A-

5.7B). The height of the TMMH squares is shorter than the surrounding matrix SAM of 

dodecanethiol. The difference in thickness ranges from 0.6-0.9 nm, which corresponds to a 

thickness of 0.7±0.3 nm for nanografted patterns of TMMH (Figure 5.7C). 

 
 

Figure 5.7 Nanografted patterns of TMMH within a dodecanethiol SAM. [A] Topograph of 

squares of TMMH (1.5 × 1.5 µm
2
); [B] lateral force image for A; [C] height profile across two 

TMMH nanopatterns in A.  

 

When nanografting n-alkanethiols, the molecules attach to gold surfaces directly in a 

standing-up configuration due to the effects of spatial confinement.
143

 However, for tridentate 

molecules of TMMH, the molecules have a larger endgroup or foot. The packing density is 

influenced by the larger endgroup, and there are also differences in the overall molecular tilt of 

TMMH SAMs. The thickness values derived from each of the different AFM experiments are 

summarized in Table 1, and are in reasonable agreement for nanoscale measurements.  

Table 5.1 Thickness measurements of TMMH on gold substrates.* 

AFM Protocol TMMH 

thickness 

Example  

Time-lapse AFM study, upright adsorbates on gold 1.0 ± 0.2 nm Figure 2 

Nanoshaving of mature SAM of TMMH  1.0 ± 0.2 nm Figure 4 

Nanografted ODT within TMMH matrix SAM 1.2 ± 0.2 nm Figure 5 

Nanografted MUA within TMMH matrix SAM 1.0 ± 0.2 nm Figure 6 

Nanografted TMMH within dodecanethiol SAM 0.7 ± 0.3 nm Figure 7 

*The error is estimated to be at least 0.2 nm from the thickness of a gold step. 
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Unlike our previous observations that several hours were required for TMMH to bind to 

gold surfaces to form a SAM, nanografting experiments reveal that TMMH attached 

immediately following the scanning track of the AFM tip (Figure 7). However, the shorter height 

suggests a less-dense packing arrangement for the nanografted patterns of TMMH with the 

bigger foot. Using the value of 1.0-1.2 nm as the thickness of a mature TMMH SAM, the 

heptadecane backbone would measure 59-64 degrees, compared to the well-known 30
o
 tilt of n-

alkanethiol SAMs. Since tridentate TMMH binds to multiple sites on a gold surface, the 

intramolecular spacing would be greater which results in differences for the surface density and 

packing arrangement compared to monothiol SAMs. 

5.4 Conclusion  

 Analysis of the changes in surface coverage with time-lapse AFM indicates that TMMH 

binds to surfaces more slowly (hours) compared to n-alkanethiols (minutes). Protocols of 

nanografting and nanoshaving were used to compare the heights of TMMH with n-alkanethiol 

SAMs with side-by-side AFM views. Differences in the packing density and tilt angle were 

observed for tridentate TMMH. Future directions for studies with TMMH will investigate the 

stability of multidentate films with exposure to oxidation, UV-irradiation and solvents. 
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CHAPTER 6. SUMMARY AND FUTURE PROSPECTUS 

 

Results presented in this dissertation demonstrate the capabilities of scanning probe 

studies for monitoring surface reactions at the molecular level and builds a foundation for future 

research with engineering surface composition and reactivity. Visualization of the self-assembly 

process was demonstrated for model systems using both organosilanes and organothiols. Studies 

with high resolution atomic force microscopy (AFM) show promise for development of 

analytical methods for real-time measurements with even more complex molecular designs.  

Molecular details of the surface assembly and self-polymerization of 4-

chloromethylphenyltrichlorosilane (CMPS) within spatially-confined nanoholes on Si(111) were 

obtained ex situ from high resolution AFM images (Chapter 4). Progressive exposure of the 

nanoholes to solutions of CMPS provided quantitative information and details of the surface 

reaction. Further directions will be to study the self-assembly of other systems, such as 

organosilanes, porphyrins or multidentate adsorbates to gain insight for understanding the 

dynamics and mechanisms of self-assembly reactions on surfaces. 

The solution self-assembly of 1,1,1-tris(mercaptomethyl)heptadecane (TMMH) was 

viewed by time-lapse AFM (Chapter 5). Side-by-side comparison of the surface structures of 

TMMH versus traditional n-alkanethiol monolayers were accomplished by scanning probe 

lithography procedures of nanoshaving and nanografting. Although monodentate n-alkanethiols 

have been widely investigated, thin films derived from bidentate or tridentate thiol adsorbates 

have not been studied in detail. Studies of multidentate adsorbates will provide benefits for 

applications of surface coatings because of the robust nature of films that attach to surfaces 

through multiple linkers. Future directions will be to investigate surface structures and properties 

of other multidentate adsorbates of organothiols or organosilanes. Experimental conditions (e.g. 
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changing concentration, pH or immersion time) will be optimized to improve the quality of the 

films. Studies of the stability of the films can be designed by aging samples or exposing 

patterned surfaces to UV irradiation or ozone.   

Nanolithography enables fabrication of well-defined test platforms for molecular level 

investigations of surface reactions. Approaches with scanning probe lithography (SPL) provide 

exquisite control of the size, shape and surface chemistry of nanopatterns and fabrication can be 

accomplished within minutes using computer automation. Particle lithography offers high 

throughput capabilities to generate billions of reproducible nanopatterns simultaneously (Chapter 

4). The choice of lithography methods can be tailored to achieve specific research goals.  

To study the properties of thin film materials, the exceptional selectivity and sensitivity 

of SPL can provide rich information about molecular dimensions, molecular orientation, 

intermolecular interactions and surface chemistry. The spatial confinement of small areas 

surrounding an AFM probe achieved with nanografting affects the surface assembly of 

organothiol SAMs compared to natural solution self-assembly and therefore influences the 

molecular orientation. Molecules assemble on surfaces directly in an upright configuration with 

nanografting, whereas without spatial constraint n-alkanethiols assemble through a lying-down 

to standing phase transition.
80

 By referencing well-studied model system of n-alkanethiol SAMs, 

the heights of other molecular systems can be measured in situ with liquid AFM for determining 

surface conformations.   

To obtain quantitative measurements towards understanding the kinetics and mechanisms 

of molecular self-assembly, particle lithography enables fabrication of billions of nanostructures 

on the surface with exquisite control of periodicity.
65

 Arrays of nano-containers used for 

studying surface reactions can be generated with traditional bench chemistry steps with high 
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reproducibility, as described in Chapter 4. The protocol of using nano-containers prepared by 

particle lithography is a first step for designing molecular-level studies of the processes of 

building supramolecular assemblies with more complex designs. 

Nanofabrication methods are becoming indispensable not only for fundamental research, 

but also for commercial applications. Future innovations of nanolithography will very likely 

contribute to applications in technology for solar cells, molecular electronics, biosensors and 

material engineering. Development of inexpensive lithography methods for fabricating robust 

nanostructures on surfaces is essential for future applications of thin films in chemical and 

biological sensors. Understanding and controlling molecule arrangement at the nanoscale is a 

key step for surface engineering. Strategies demonstrated in this dissertation for surface 

investigations are a new direction for potential studies with other molecules.  

  The capability of investigating properties of molecules at the nanoscale is one of the 

greatest advantages for scanning probe microscopy (SPM). Beyond the protocols used in this 

dissertation, studies of surface properties such as conductance and magnetism using designed 

surface test platforms can be achieved using other SPM imaging modes. Future directions of 

SPM-based studies will continue to disclose mysteries of the “nano” frontier, and provide new 

insight of size-dependent phenomena that were previously inaccessible. 
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APPENDIX A. CLEANING PROCEDURE TO GOLD SUBSTRATES 

Cleaning procedure for FTIR studies  

1. Rinse the gold surfaces with deionized water.  

2. Place the gold substrates into the UV-ozone generator for 30 min.  

 

Preparing Template-Stripped Ultraflat Gold from Recycled Substrates  

1. Rinse the gold substrates (on Mica) and glass slides with deionized water.  

2. Place the gold substrates and circular (1 cm) glass cover slides into the UV-ozone generator 

for 30 min.  

3. Mix Epoxy (EPO-TEK, Billerica, MA) kit part A and B (1:1) in a small weigh boat using a 

metal spatula.  

4. Add 1-2 μL mixed Epoxy to each glass slide.  

5. Place the glass slide onto the gold substrate so that the epoxy spreads out between the gold 

layer and glass slide without any air bubbles. The amount of glue should barely fill the space 

between the glass and gold, without spilling of between the edges.  

6. Heat samples in oven at 150 °C for 2 h to anneal the epoxy.  

7. Remove the samples and cool to room temperature. Samples can be stored for 6 months before 

using, provided that the mica is not stripped.  

8. To prepare SAMs, carefully peel the mica and glass pieces apart using tweezers and 

immediately submerge the surface in SAM solutions.  
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APPENDIX B: LETTER OF PERMISSION 
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APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

 

Supplemental Figure 1 Later timepoints during solution self-assembly of TMMH for areas of 

gold with nanoshaved reference sites.  Contact mode AFM topographs acquired after [A] 4 h; 

and [B] 5 h of immersion in a 0.01 mM solution of TMMH in ethanol.  
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Supplemental Figure 2 Early snapshots of the gold surface after introducing TMMH solution. 

(0.01 mM TMMH in ethanol) [A] Topography at 0 min [B] 10 min; [C] 20 min; [D] 30 min; [E] 

40 min of exposure to TMMH solution. 
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