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ABSTRACT 
 
 

Biologically damaging semiquinone-type radicals have been reported in cigarette 

smoke, their likely origin being hydroquinone (HQ) and catechol (CT) molecular precursors 

contained by the tobacco.  Since other biomass contains HQ and CT-type species, it is likely 

that combustion of other biomass will also form semiquinone-type radicals.  All hydrocarbon 

fuels will form phenol and substituted phenol that can form substituted phenoxyl radicals.  

Because each of these radicals has the potential to be environmentally persistent and 

biologically active, their formation and stabilization from various molecular precursors was 

studied with the focus on surface-bound radicals formed in association with combustion-

generated fly-ash particles.   

Comprehensive product yield determinations from the high-temperature, gas-phase 

degradation of HQ and CT revealed the formation of dibenzofuran, dibenzo-p-dioxin, 

benzoquinone, phenol, benzene, phenylethyne, styrene, indene, naphthalene and biphenylene.  

The formation of semiquinone, phenoxyl, and cyclopentadienyl radical is strongly implied 

because of the observation of benzoquinone, phenol, and naphthalene, respectively during the 

thermal decomposition of HQ and CT process. 

Radicals were generated and stabilized on the surface of 5% copper (II) oxide/silica 

dioxide (CuO/SiO2) particles, which was used as a surrogate for combustion-generated fly-

ashes.  These radicals were generated from the following precursors through chemisorption 

and electrons transfer between the matrix and the adsorbed molecules:  monochlorobenzene 

(MCBz), 1,2-dichlorobenzene (1,2-DCBz), phenol (P), 2-monochlorophenol (2-MCP), HQ 

and CT.  Electron paramagnetic resonance (EPR) was used to investigate the characteristic of 

radicals. Gas chromatography-mass spectroscopy (GC-MS) was used to identify molecular 
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species formed during solvent extraction using polar solvents; methyl alcohol, isopropyl 

alcohol, and dichloromethane; and non-polar solvents; toluene, and tert-butylbenzene. 

All of precursors generated surface-associated radicals with maximum yields between 

200oC - 230oC and were very persistent in the air.  Polar solvents extracted more free radicals 

than non-polar solvents.  GC/MS analysis identified many molecular dimer species in solution 

indicating radical-radical reaction in the extract solution.   

These studies indicate that CuO/SiO2 surface mediates the formation and stabilization 

of substituted phenol-type surface-associated radicals that can be environmentally persistent.  

Solvent extraction converts these radicals to molecular species that may result in their 

misidentification in the literature as molecules rather than radicals. 
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CHAPTER 1:  INTRODUCTION 

  

A persistent free radical (PFR) is defined as a radical that is sufficiently stable 

towards decomposition and resistant to further reaction that it can exist for long period of 

time in the atmosphere.   These radicals  that potentially include semiquinone-type and 

phenoxyl-type radicals are highly resonance stabilized that can be formed in combustion 

systems or thermal processes such as burning of cigarette, biomass fuels, fossil fuels, coal, 

and hazardous materials 1-3.   

Recently, many studies have been reported that semiquinone and phenoxyl radicals 

are persistent when they are associated with combustion generated fly-ash such they can 

exist very long time and transport over considerable atmospheric distances 4-8.  Semiquinone 

radicals are highly active in oxidative stress that can lead to cancer, mutations, and alter 

DNA 9-11. Phenoxyl radicals can also combine to form polychlorinated dibenzo-p-dioxin/ 

dibenzofuran (PCDD/F) which is the most toxic known environmental pollutant 12.  Due to 

the structural similarity of semiquinone and phenoxyl radicals; hydroquinone, catechol, 

chlorinated benzenes, phenol, and chlorinated phenols are chosen to be precursors for 

studying the formation and stabilization of corresponding persistent free radicals. 

1.1 Occurrence, Use and Health Impacts of Phenol, Hydroquinone and Catechol 

Phenol occurs naturally in animal waste and by decomposition of organic wastes 13 

or even in hardwood 14, 15.  Phenol was detected in the water of lakes, rivers and in fish 

tissue 16.  In contrast, hydroquinone (HQ) and catechol (CT) are found in a variety of forms 

as natural products from plants and animals.  HQ and CT have been identified in roasted 

coffee beans 17 and in the leaves of blueberry, cranberry, cowberry and bearberry plants 18; 
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however, tea is prepared from these leaves that have been reported to contain HQ at some 

concentration up to 1% of total ingredients 19.  The hazardous substances data bank (HSDB) 

in 1993 reported CT is found in onions, apples, and even in the leaves or branches of oak 

and willow trees.  HQ was observed in the tissue cultures of Antennaria-microphylla and 

Euphorbia-esula 20, 21.  HQ is also found in the explosion chamber of beetle 22, 23 that is 

ready to shoot toward the enemy in the form of  hot quinone cloud. 

Phenol is used in a variety of indoor products including mouth washes, shave 

creams, and throat lozenges 24 or in the manufacture of plastics, fibers, adhesives, resins, and 

rubber (HSDB, 1991).  HQ and CT are used in many fields including graphic arts, 

photographic developers, antioxidants, polymerization inhibitors, and pharmaceuticals.  

They are used in cosmetics and medical skin preparations as de-pigmenting agent to lighten 

small areas of hyper-pigmented skin 18 or in ingredient of permanent hair dyes and color 

preparations 25, 26.  HQ and CT are used in medical and industrial X-ray films 27 as well as 

developer in black-and-white photography or related graphic arts such as lithography and 

rotogravure 18, 27-29.  They are widely used in the manufacture of rubber antioxidants, 

monomer inhibitors, and food antioxidants to prevent deterioration in many oxidizable 

products 18, 30. Application of a CT antioxidant protocatechuic acid on 12-O-

tetradecanoylphorbol-13-acetate induces inflammatory responses in mouse skin 31.  An 

abietic acid-derived CT scavenges hypochlorous acid, a powerful pro-inflammatory oxidant 

produced by activated neutrophils, to protect liposomes against iron-ascorbate-induced 

oxidation 32.  Phenol, HQ and CT are very useful in our life; on the other hand, they are also 

very harmful if we misuse them.   
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Cigarette smoking is the leading cause of preventable death in the United States, 

claiming more than 400,000 lives per year (clinnimmune-immunotoxicology report, 2003).  

A typical smoker receives more than 100 µg of HQ or CT per cigarette 33 and ~280 µg of 

phenol per cigarette 34.    Environmental Protection Agency (EPA) database in U.S. (revised 

in January 2000) reported vapor pressure of phenol and CT are 0.357 mmHg and 0.03 

mmHg, respectively at 20oC while HQ exhibits as much lower vapor pressure of 1.9 x 10-5 

mmHg at 25oC.  However, they can be oxidized in the presence of moisture to form quinone, 

which is more volatile.  Inhalation of phenol, HQ or CT has been shown to induce coughing, 

burning sensations, labored breathing in humans 35-38  as well as reduced bone marrow and 

corneal damage in mice 38-42.   

The use of phenol in the surgical procedure of skin peeling may produce cardiac 

arrhythmias 43.  Concentration of HQ or CT as low as 10µM inhibits ribo-nucleotide 

reductase that causes an immediate cessation of DNA synthesis in proliferating lymphocytes 

44, 45 .  Even worse, 50µM of HQ or CT will instantaneously blocks more than 90% DNA 

synthesis 46.  The major concern is HQ and CT may exist as semiquinone radical form 

causing cancer, mutations, and many health symptoms in our life. 

Semiquinone radical has been reported in cigarette smoke 4, 10 and demonstrated to 

be highly redox active toward producing reactive oxygen species (ROS) in biological 

systems 10, 47, 48.  ROS induces oxidative stress in living organisms which is currently 

considered to be a significant causes of the health impacts of airborne fine particulate matter 

4, 11, 47, 49, 50.  Cigarette smoke enhances tumor cell invasions and metastasis, which increase 

the spread of cancer in the body 51.  The study of the effect of cigarette smoking on oxidative 

stress in lung tissues from 14 smokers and non-smokers has shown that oxidative DNA 
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damage is induced in lung DNA by cigarette smoke related to semiquinone radicals and 

reactive oxygen species (ROS) 52-55.  Semiquinone radical also has reported in wood smoke 

and other combustion sources.  A study of wood burning indicates the generation of radicals 

and ROS that break cellular DNA strands in cultured RAW 264.7 mouse macrophage cells 

56.  Although the initial DNA cell is damaged, our immune system has the ability to repair it.  

However, a study of 22 patients with systematic lupus erythematosus and 16 healthy people 

has demonstrated that radicals in the blood cell is the main cause of the decrease in DNA-

repair capability and suggested that ROS damages the enzymes responsible for DNA repair 

57.   

Phenol may exist in form of phenoxyl radicals and may also have a major impact on 

human health effects as well as semiquinone radicals.  However, it is not clear if this type of 

radicals is highly reactive with oxygen or other molecular species to produce superoxide or 

hydroxyl radicals.  Furthermore, phenoxyl radicals tend to undergo radical-radical 

recombination process to form PCDD/Fs or poly-aromatic hydrocarbon (PAH) at high 

temperature in post-flame region of the combustion process 12.  Semiquinone and phnoxyl 

radicals are being formed in gas-phase or on the surface of combustion-generated particles 

that contribute to ambient air pollution.  

Ambient air pollution is a complex mixture of volatiles and particulates from various 

sources including vehicle exhaust pipes, flaring of hydrocarbons at refineries sites, coal 

burning at power plants, burning trash or crops after harvest that still happen in many 

developed countries 50.  The size and composition distribution of fine particulate matter from 

motor vehicles, wood burning, and cigarette smoke 58-62 contribute a significant impact in 

our health. 
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  Particles with the sizes greater than 10 µm can pass through nose and mouth to 

penetrate on the larynx.  Those particles with the sizes between 10 µm and 2.5 µm, can 

follow air stream through the larynx and enter the trachea and the bronchial regions of the 

lung.  However, those particles with sizes less than 2.5 µm deposit deep into the alveolar 

regions of the lung and even diffuse directly into the blood stream.  Research suggested that 

fine particulate matters produces an acute cardiovascular malfunction indirectly through the 

induction and perpetuation of inflammatory responses in the lung 50. Other review suggests 

that particles with the sizes 0.1 µm can penetrate deep into the lower respiratory tract and 

diffuse into the blood stream then circulate to the heart whereas they may cause many 

symptoms related to heart diseases including the influences of the cardiac myocytes and 

cardiovascular functioning 63-65. 

Exposure to fine particulate matter causes an acute inflammatory response 66, asthma 

and chronic obstructive pulmonary disease 67.  The number of deaths due to respiratory viral 

infections is increased on high concentration of ambient air pollution days 68.  Some studies 

have shown cardiac myocyte degeneration 69 and changes in heart rate 70 when exposed to 

environmental pollutant for even a short period of time. 

 Significant contribution to ambient air pollution is anthropogenic combustion 

sources including cigarette smoke.  The government and EPA have set the limit of 

environmental exposure to hazardous compounds for producers to protect our environment 

concerning human health.  

1.2 Combustion Sources and Environmental Exposure 

Combustion sources are a process of burning hydrocarbon fuel including burning 

coal in many power plants, burning wood in firestones or bonfire for heating and cooking, 
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burning gasoline in internal combustion engine found in motor vehicles, lawnmowers, air 

planes, open burning biomass in agricultures.  Phenol, HQ, and CT are thought to originate 

from thermal degradation of lignin and other polymeric plant materials that usually contain 

aryl ether and aryl alcohol linkages 71-74.  They can be a significant decomposition product in 

burning of other biomass 73-79 and some coals 80-82.  Wood and biomass fuels are still the 

major source of energy for cooking and space heating in the world.  Field burning of the 

post-harvest residuals in urban also contributes to their source.   

Their derivative including quinones of PAHs have been reported in both atmospheric 

aerosols and combustion-generated particulate matter (PM).  They have been reported in 

concentrations of 5.0-730 µg/m3 in atmospheric total suspended particulate (TSP) 83.  The 

emissions of HQ and CT from wood-burning fireplaces were reported to be 0.3-10 mg/g  

and 1.7-9.8 mg/g of organic carbon, respectively 78, 84.  The emissions of CT from open 

burning of agricultural biomass were reported to be 0.060-1.2 mg/g of organic carbon and 

0.11-4.0 mg/g for other quinones 75.  Methoxyhydroquinones and methoxyphenols (e.g. 

syringols) are frequently reported in biomass combustion emissions as partial decomposition 

products of lignin 71. They have been reported to be 0.50-3.0 % of total biomass burned 85.  

Methoxyphenol concentrations were reported in airborne PM at concentrations of 0.10-22 

ng/m3 86.  Burning wood and biomass release a huge amount of methoxyphenol in the range 

900-4200 mg/kg of fuel in vapor and particle-phase 87-89.   

Phenol, HQ, and CT are also found as one of a major organic components of 

combustion of tobacco44, 90-96.  Despite cancer and other symptoms caused by cigarette 

smoke, people do not want to quit smoke.  The United State and other countries have limited 
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cigarette smoke by not allowing people smoke at work or restaurants; however, more young 

people become regular smoker everyday.   

Along with refinery site and power plant, motor vehicles contribute significantly to 

their sources.  Although both motor vehicle designs and gasoline formulations have changed 

to reduce the emissions of air pollution, they are still a major concern.  The emissions of 

quinone for catalyst-equipped gasoline-powered motor vehicle are reported 0.849 µg/km 

versus 25.4 µg/km for noncatalyst-equipped gasoline-powered motor vehicle 97.  Also, The 

emissions of quinones were reported to be 15-140 µg/g in gasoline exhaust particles 98 and 

7.90-40.4 µg/g in diesel exhaust particles 83.  Light-duty gasoline vehicles technology 

classes reported the emission of benzoquinone in low emission vehicles (LEV), three-way 

catalyst equipped vehicles (TWC), and smoking vehicles to be 2.0 µg/L, 85 µg/L, 3200 µg/L 

of fuel consumed respectively in gas-phase and 1.8 µg/L, 46 µg/L, 1500 µg/L of fuel 

consumed respectively in particle-phase 99.  Significant reduction of benzoquinone emission 

level of heavy-duty diesel vehicles in the year of 1999 versus 1995 from 28000 µg/L to 510 

µg/L of fuel consumed in gas-phase and from 1600 µg/L to 230 µg/L of fuel consumed in 

particle-phase 99. 

These data indicate a wide variety of related compounds are formed that contribute 

to environmental ambient air pollution.  Table 1 presents a review of the literature (1998-

2006) concerning the emission of phenol, HQ, CT, and their derivative from combustion 

sources.  In combustion, chain reaction of radicals is a major reaction.  Free radicals in 

general, and particularly semiquinone-type and phenoxyl-type radicals, play a very 

important role and may have a significant impact on our environmental health.  However, 

how do they form?  The next section will explain their formation.  
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Table 1.1:  Summary of the Key Finding of the Emission of Phenol, HQ, CT, and Their Derivative from combustion sources 

(Year), Authors, and Journal Title Key Finding of Phenol, HQ, CT, and Their 
Derivative 

(2006) Valavanidis, A; Fiotakis, K; 
Vlahogianni T.; Papadimitriou, V.; 
Pantikaki, V.; Environmental 
Chemistry 

Determination of Selective 
Quinones and Quinoid Radicals in 
Airborne Particulate Matter and 
Vehicular Exhaust Particles 

The average concentrations of individual target 
quinones ranged of 15-140 ng/mg in diesel and 
gasoline exhaust particles, ranged of 1.5-60 ng/mg or 
150-1100 pg/m3 in airborne particulate matter 

(2006) Jakober, Chris A.; Charles, J.; 
Kleeman, M.; Green, P; Analytical 
Chemistry 

LC-MS Analysis of Carbonyl 
Compounds and Their Occurrence 
in Diesel Emission 

Heavy-duty diesel vehicle emissions were collected in 
Riverside, CA containing 1,4-benzoquinone at a rate of 
150 ± 7  µg/km (gas-phase), 1,4-naphthoquinone at a 
rate of 70 ± 3 µg/km (gas-phase) and 2.1 ± 0.1 µg/km 
(particle-phase). 

(2005) Simpson, C.; Paulsen, M.; 
Dills, R.; Liu, S.; Kalman, D.; 
Environmental Science & Technology 

Determination of Methoxyphenols 
in Ambient Atmospheric 
Particulate Matter:  Tracers for 
Wood Combustion 

Particle-bound methoxyphenol concentrations in the 
range of 0.1-22 ng/m3 were observed and the 
methoxyphenols were almost exclusively in the fine 
particle size fraction 

(2005) Hays, M.; Fine, P.; Geron, C.; 
Kleeman, M.; Gullett, B; 
Atmospheric Environment 

Open Burning of Agricultural 
Biomass:  Physical and Chemical 
Properties of Particle-Phase 
Emissions 

The emission (mg/g of organic carbon) from open 
burning of agricultural biomass rice straw and wheat 
straw for CT (1.179; 0.060), methyl benzenediol 
(0.710; 0.104), methoxybenzenediol (0.371; 0.095), 
and anthracene-9,10-dione (ND; 0.033). 

(2004) Cho, A.; Stefano, E.; You, Y.; 
Rodriguez, C.; Schmitz, D.; Kumagai, 
Y.; Miguel, A.; Eiguren-Fernandez, A.; 
Kobayashi, T.; Avol, E.; Froines, J.; 
Aerosol Science and Technology 

Determination of Four Quinones 
in Diesel Exhaust Particles, SRM 
1649a, an Atmospheric PM2.5 

Mean concentration of individual target quinones 
ranged from 7.9-40.4 µg /g in the diesel exhaust 
particles, and from 5-730 pg/m3 in the PM2.5 samples. 

 

(Table con’d) 
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(Year), Authors, and Journal Title Key Finding of Phenol, HQ, CT, and Their 
Derivative 

(2002) Fine, P.; Cass, G.; Simoneit, 
B.; Environmental Science & 
Technology 

Chemical Characterization of Fine 
Particle Emissions from the 
Fireplace Combustion of Woods 
Grown in the Southern United 
States 

The concentration emitted from southern U.S. wood:  
yellow poplar, white ash, sweet-gum, mochemut 
hickory, loblolly pine, and slash pine for HQ (7.609, 
1.621, 1.435, 10.119, 0.763, and 0.295 mg/g of organic 
carbon) and CT (4.127, 1.741, 1.383, 9.865, 2.600, and 
1.711 mg/g of organic carbon), respectively. 

(2002) Schauer, J.; Kleeman, M.; 
Cass, G.; Simoneit, B.; 
Environmental Science & Technology 

Measurement of Emissions from 
Air Pollution Sources. 5. C1-C32 
Organic Compounds from 
Gasoline-Powered Motor Vehicles 

Emission of anthracene-9,10-dione were 0.849 µg/km 
for catalyst-equipped gasoline-powered motor vehicle 
and 25.4 µg/km for noncatalyst- equipped gasoline-
powered motor vehicle 

(2002) Zheng, M.; Cass, G.; Schauer, 
J.; Edgerton, E.; Environmental 
Science & Technology 

Source Apportionment of PM2.5 
in the Southeastern United States 
Using Solvent-extractable Organic 
Compounds as Tracers 

The concentration was calculated from Centreville, 
North Birmingham, Jefferson, and Pensacola for 
anthracene-9,10-dione (0.12, 0.51, 0.32, and 0.15) 
ng/m3 and benz[a]anthracene-7-12-dione (0.02, 0.26, 
0.05, and 0.01) ng/m3, respectively.  

(2002) Hays, M.; Geron, C.; Linna, 
K.; Smith, D.; Environmental Science 
& Technology 

Speciation of Gas-Phase and Fine 
Particle Emissions from Burning 
of Foliar Fuels 

Gas-phase emissions from open burning of six fine 
fuels common to U.S. ecosystems were invested that 
containing methoxyphenol ranged 0.5-3% of total 
PM2.5 mass. 

(2001) Fine, P.; Cass, G.; Simoneit; 
B.; Environmental Science & 
Technology 

Chemical Characterization of Fine 
Particle Emissions from Fireplace 
Combustion of Woods Grown in 
the Northeastern United State 

The concentration emitted from northeastern U.S. 
wood:  red maple,  northern red oak, paper birch, 
eastern white pine, eastern hemlock, and balsam fir for 
HQ (0.625, 5.570, 0.919, 0.356, 1.146, and 4.793 mg/g 
of organic carbon) and CT (0.799, 5.434, 1.110, 1.512, 
0.952, and 7.114 mg/g of organic carbon), respectively. 

 

(Table con’d) 
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(Year), Authors, and Journal Title Key Finding of Phenol, HQ, CT, and Their 
Derivative 

(2001) Nolte, C.; Schauer, J.; Cass, 
G.; Simoneit, B.; Environmental 
Science & Technology 

Highly Polar Organic Compounds 
Present in Wood Smoke and in the 
Ambient Atmosphere 

The emission (µg /g of wood burned) of lignin 
breakdown substituted phenol products in wood smoke 
of the San Joaquin Valley, California for oak (0.3-68), 
eucalyptus (0.1-106), and pine (0.1-125), respectively. 

(2000) Fraser, M.; Kleeman, M.; 
Schauer, J.; Cass, G.; Environmental 
Science & Technology 

Modeling the Atmospheric 
Concentrations of Individual Gas-
Phase and Particle-Phase Organic 
Compound 

A formal evaluation of model performance has shown 
that  primary emission sources of anthracene-9,10-
dione were from catalyst and noncatalyst-equipped 
gasoline-powered vehicles or natural gas combustion 
with the concentration of 0.3 ± 0.2 ng/m3    

(1999) Fine, P.; Cass, G.; 
Environmental Science & Technology 

Characterization of Fine Particle 
Emissions from Burning Church 
Candles 

The concentration emitted from unburned wax and 
candle smoke for anthracenedione (paraffin:  0.09 and 
0.04 mg/g of wax; beeswax:  0.07 and 0.05 mg/g of 
wax) and benz[a]anthracene-7-12-dione (paraffin:  
0.002 and 0.007 mg/g of wax; beeswax:  0.002 and 
0.02 mg/g of wax) 

(1998) Trenholm, A.; Waste 
Management 

Identification of PICs in hazardous 
waste combustion emission 

Benzoquinone, 1,4-naphthaquinone, and phenol were 
identified by EPA method for semivolatile compound 
(MM5-SV with GC/MS).  The concentration of 
benzoquinone and 1,4-naphthaquinone from 1-5 
µg/cm3 and phenol from 5-25 µg/cm3. 

(1998) Fraser, M.; Cass, G.; 
Simoneit, B.; Environmental Science 
& Technology 

Gas-Phase and Particle-Phase 
Organic Compounds Emitted from 
Motor Vehicle Traffic in a Los 
Angeles Roadway Tunnel 

The concentration emitted from motor vehicle traffic in 
a Los Angeles roadway tunnel for anthracene-9,10-
dione (14.7 µg/L vapor-phase and 9.8  µg/L particle-
phase) and benz[a]anthracene-7-12-dione (3.3 µg/L 
particle-phase). 
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1.3 Formation of Semiquinone and Phenoxyl Radicals  

HQ and CT are isomers, and the only difference in structure between them is the 

position of hydroxyl groups on the benzene ring, which is para position for HQ versus ortho 

position for CT.  Figure 1.1 presents the formula structure of HQ and CT molecular as well 

as p-semiquinone and o-semiquinone radical.   

 

 

Figure 1.1: Hydroquinone, Catechol, and Semiquinone Radicals 

 

In the gas-phase, endothermic dissociation of semiquinone-hydrogen bond from HQ 

or CT forms semiquinone radical or abstraction of semiquinone-hydrogen from HQ or CT in 

the presence of high concentration of initiated radicals also forms semiquinone radical 100, 

101.  Scheme 1.1 displays possible routers of formation of semiquinone radical form HQ and 

CT molecules in gas-phase. 
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Scheme 1.1:  General Formation of Semiquinone Radical in Gas-Phase 

 

Semiquinone radicals may also form on the surface of combustion generated fly-ash 

through the elimination of water and electron transfer to the metal surface in chemisorption 

process 5, 102, 103.  Scheme 1.2 depicts possible routes of formation of semiquinone radical 

from HQ and CT on the metal surface. 

 

 

Scheme 1.2:  Semiquinone Radical Formation on the Metal Surface from HQ or CT 

 

2-Monochlorophenol (2-MCP) and 1,2-dichlorobenzene (1,2-DCBz) may form 2-

chlorophenoxyl radical and may also form semiquinone radicals while phenol (P) and  

Monochlorobenzene (MCBz) may form phenoxyl radical when chemisorb on the particle. 
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Figure 1.2 presents the formula structure of MCBz, 1,2-DCBz, 2-MCP, Phenol, phenoxyl 

radical, and 2-chlorophenoxyl radical. 

 

 
 

Figure 1.2:  Precursors of Phenoxyl Radical and Chlronated Phenoxyl Radical 

 

Similar to semiquinone radical formation, phenoxyl radical can be generated in gas-

phase through unimolecular endothermic decomposition 104 or abstraction of phenoxyl-

hydrogen from phenol in the presence of high concentration of initiated radical 105-107 due to 

the phenoxyl-hydrogen bond being weak (81-86kcal/mol) 101.  Scheme 1.3 displays possible 

routers of formation of phenoxyl radical form phenol molecules in gas-phase. 

 

 

Scheme 1.3:  General Formation of Phenoxyl Radical in Gas-Phase 
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Phenol may also eliminate water to bind to the surface of combustion generated fly-

ash and form phenoxyl radicals through electron transfer in chemisorption process.  

Chlorinated benzenes such as MCBz and 1,2-DCBz may bind to the surface of particulate 

mater and form phenoxyl radical or chlorinated phenoxyl radical through hydrogen chloride 

elimination and electron transfer 6, 102 as shown in scheme 1.4. 

 

Scheme 1.4:  Formation of Phenoxyl Radical and Chlorinated Phenoxyl Radical on the 
Metal Surface from Chlorinated Benzene 

 

Radicals exhibit very short lifetime in the gas-phase or in solution 108-110; however, 

they can be stabilized and exist for a very long period of time when they associate with 

surface of some particulate matter that contain transition metals 5-8, 11.  Fine particles of fly-

ash are normally generated from combustion sources that contain transition metals and 

persistent radicals 1-3, 60, 111.  The interaction between phenoxyl-type radicals may result in 

the formation of (PCDD/F) 12 that has more detail in the next section.  

1.4 Formation of PCDD/Fs 

PCDD/Fs are common trace products from many combustion and other thermal 

processes; they are also found in fish, sediment, and soil 112.  PCDD/Fs are the target of 

research through many decades because of their extremely toxicity.  The most toxic among 

PCDD/F is the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) that causes birth defects, 
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cancer, skin disorder, liver damage, and others suppression of the immune system even with 

very small dose concentration 113.  

In combustion processes, radical-radical interaction of phenoxyl and/or chloro-

phenoxyl radicals is the main mechanism pathway of the formation of PCDD/Fs 114-117.  

Scheme 1.5 presents the general formation of PCDD/F.  

 

Scheme 1.5:  Formation of PCDD/F from radical-radical interaction pathway 

 

Other researchers have suggested that phenoxyl or chlorinated phenoxyl radicals 

react with molecular aromatic chlorinated phenol to form PCDD/F 115, 118-120.  Scheme 1.6 

displays the general formation of PCDD/F form the radical-molecule interaction pathway. 

 

Scheme 1.6:  Formation of PCDD/F from radical-molecule interaction pathway 
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Gas-phase formation of PCDD/F only accounts for 30% of dioxins emission 121 

while surface-mediated processes with transition metal plays important role in dioxins 

formation that accounts for 70% of dioxins emission 5, 122.  In fact, most of reactions in 

combustion process deal with radicals, and these radicals with very short lifetime tend to 

react with high concentration molecules (oxygen and water vapor).  However, some radicals 

may be stabilized and extend their lifetime when they associate with fly-ashes containing 

transition metal which also were generated by combustion.  Many studies have shown 

transition metals are present in combustion generated fly-ashes and airborne particulate 

mater 1-3, 123.  Recently, researchers have proven that metal-mediated PCDD/F formation on 

the surface of fly-ashes 5, 124-127 results in significantly increased PCDD/F formation.  

Scheme 1.7 displays the general mechanism of dioxin formation on the surface of fly-ashes. 

 

Scheme 1.6:  Formation of PCDD/F on Metal Surface of Fly-ashes 

 

In the gas-phase thermal degradation of chlorinated phenol, dioxins products form 

above 600oC under pyrolytic condition and above 400oC under oxidative condition 120, 128, 
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129.  Thus, oxygen enhances PCDD/F formation at low temperature due to formation of 

phenoxyl radicals 117, 130 and many studies have strongly suggested that phenoxy radicals are 

the key intermediates of the formation of PCDD/F 116, 117, 119.  Normally, the initial step of 

PCDD/F formation is the dissociation of hydroxyl hydrogen bond of phenol or chlorinated 

phenol to form phenoxyl radicals following chlorine displacement or radical-radical 

combination.  

In general, chlorinated benzene or chlorinated phenol adsorbed on the surface of fly-

ash through water or hydrogen chloride elimination at surface oxide and hydroxyl sites leads 

to the formation of surface chlorophenolate.  Electron transfer occurs between the 

chlorophenolate electron donors to the metal cation site through chemisorption that results in 

bound chlorophenoxyl radicals on the surface.  Interaction between phenoxyl or 

chlorophenoxyl radicals on the surface of fly-ash assists the formation of PCDD/F. 

Hazardous wastes contain chlorinated hydrocarbons (CHCs), form chlorinated 

phenols and chlorinated phenoxyl radicals that are isoelectronic with semiquinone radicals.  

Because each of these radicals has the potential to be environmentally persistent and 

biologically active, their formation and stabilization from various molecular precursors was 

studied with the focus on surface-bound radicals formed in association with combustion-

generated fly-ash particles.   

1.5 Approach to the Current Study of Semiquinone and Phenoxyl Radicals  

Evaluation of PCDD/Fs from combustion sources has been a major environmental 

issue for many years.  Phenol, chlorinated benzene and chlorinated phenols are the 

precursors for the formation of PCDD/Fs through phenoxyl radicals intermediates 116, 117, 119.  

HQ and CT have been identified significantly as the product in combustion sources 73-82 and 
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a major organic components in mainstream cigarette smoke 44, 90-94.  They structurally 

similar to phenol with an extra hydroxyl group and are suspected to form semi-quinone and 

phenoxyl type radicals which in turn further form dioxin-type products.  Thus, there is 

ample justification for the study of semiquinone-type and phenoxyl-type radicals in gas-

phase and on the metal surface. 

The study of the thermal degradation of HQ and CT helps to identify which 

persistent radical is formed during the thermal process.  It also helps to understand the 

mechanism of dioxin formation as well as other poly aromatic hydrocarbon (PAH) products.  

This study reports the comprehensive products yield determination from the high 

temperature, gas-phase thermal degradation of HQ and CT under pyrolytic and oxidative 

condition.   

If phenoxyl radicals are intermediate in PCDD/F formation on surface, they are 

probably bound-radicals on the surface of fly-ash.  In order to investigate this hypothesis, six 

precursors including HQ, CT, P, 2-MCP, MCBz, and 1,2-DCBz were chemisorbed on the 

5% copper oxide supported silica dioxide (CuO/SiO2) surface by using vacuum and 

thermoelectric furnace system.  Typical 5% CuO/SiO2 surface was used as a surrogate of 

combustion generated fly-ash.  Copper was chosen as the transition metal because it is easy 

to reduce to copper (I) and oxidize back to copper (II).  Supported silicon dioxide with 

surface area of 500m2/g is similar to typical fly-ash combustion generated particles in any 

combustion system.  After chemisorption of molecular precursors onto the CuO/SiO2 

surface, the samples were subjected to Electrons Paramagnetic Resonance (EPR) analysis to 

determine the nature and concentration of surface bound radicals.  Samples were also 
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prepared for the toxicological testing on human epithelial cells by Dr. Stephania Cormier in 

the LSU Department of Biological Science. 

Once bound-radicals bind on the surface, they may persist without being destroyed 6, 

11; however, they may be removable from the surface by some type of solvent extraction for.  

Various polar and non-polar solvents such as methyl alcohol (MEA), isopropyl alcohol 

(IPA), dichloromethane (DCM), toluene (TOL), and tert-butylbenzene (TBB) were used to 

investigate the extractability of surface-bound radicals.  After extraction, the extracts and 

residues were separated and analyzed by EPR to determine any bound-radicals were still on 

the surface of the residue or that had been extracted into solvents.  Lifetimes of radicals in 

the solution are very short, and they tend to react with molecular oxygen or hydrogen in the 

solution to convert into more stable molecules or they interact with each other to build up a 

bigger molecule.  In order to identify the products of radical-radical interaction, the extracts 

were introduced immediately into a Gas Chromatograph Mass Spectrometer (GCMS) for 

chemical analysis. 
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CHAPTER 2: EXPERIMENTAL 

 

2.1  System for Thermal Diagnostic Studies 

2.1.1 Description 

The System for Thermal Diagnostic Studies (STDS) is a high-temperature, flow 

reactor analytical system that provides flexibility and versatility for conducting a broad 

range of thermal related studies 1-3.  This system is ideal for the study of thermal 

decomposition analysis of various organic materials from hazardous waste incineration.  

There are four main component units:  the control instrumentation console, a thermal reactor 

compartment, a cryogenic trapping, analysis equipments for effluent analyzes that make up 

the whole STDS as shown in figure 2.1. 

 

 

Figure 2.1:  System for Thermal Diagnostic Studies 
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 The STDS consists of a high temperature fused silica flow reactor placed inside a 

high temperature furnace that is controlled by a separate temperature controller with 

maximum operating temperature of 1200oC (c.f. Figure 2.2).  This furnace is housed inside 

the thermal reactor compartment that is a gas chromatograph (GC) oven (Varian, CP 3800).  

Basically, this GC is just an oven and it is designed to act as a temperature control that 

maintain the temperature of all connection and the lines coming from the injection port to 

the reactor and the line going from the reactor to the heated transfer line.  The temperature 

inside this thermal reactor compartment was controlled at constant temperature of 200oC to 

facilitate transport of gas-phase reactants and products. 

 

 

Figure 2.2:   High Temperature Furnace 
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The flow reactor is made of quartz that is stable at very high temperature up to 

1200oC and typically is designed for the purpose of studying the thermal decomposition of 

organic material (c.f. Figure 2.3).  It has a length of 35 cm and 1 cm inside diameter and is 

helically shaped in order to maximize the distance for gas-phase sample traveling in a short 

length of the furnace.  The volume of this flow reactor is 2.7 x 10-5 m3.  

 

 

Figure 2.3:  Quartz Flow-Reactor 

 

All of the connections to the quartz flow-reactor are composed of fused silica to 

maintain an inert atmosphere.  Helium is the gas carrier for pyrolytic condition while the 

mixture of helium-oxygen is the gas carrier for oxidative condition.  The gas carrier was 

controlled by a digital mass flow controller (McMillan, model 80D) to maintain a constant 

residence time inside the reactor. A Chromatoprobe® (Varian) was also used to introduce 
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solid samples into the system. A Chromatoprobe® is a solid phase vaporizer that is inserted 

into injection port of the thermal reactor compartment reactor.  It has a precisely 

programmable temperature controller to maintain constant concentration of vapors from 

solid samples. Pure solid samples were placed into the quartz micro-vial at the bottom of the 

chromatoprobe shaft. The temperature of injection in the chormatoprobe was programmed in 

order to maintain a constant gas-phase concentration of sample inside the flow-reactor.   

A digital syringe pump (Kd Scientific, model 100) was used to maintain a constant 

rate flow of liquid sample into injection port of the thermal reactor compartment that help to 

maintain a constant initial concentration of sample inside the flow-reactor. The injection port 

contained a quartz tube to maintain an inert atmosphere inside the STDS.  This injection port 

has the temperature controller to vaporize all of liquid sample before entering the flow-

reactor. 

The flow-reactor effluent is transported through a heated, temperature-controlled 

transfer line (deactivated silica lined stainless steel tube) where it is trapped cryogenically at 

the head of the capillary column of Gas Chromatograph Mass Spectrometer (GC-MS) 

system (Varian, Saturn 2000). The temperature controller in the transfer line maintains a 

reasonable temperature to ensure transport of gas-phase products without thermal 

degradation.   Additionally, there is a splitter in the transfer line to delivery only small 

amount of sample to the GC-MS system without damage to the detector.  Also, the splitter 

helps to maintain the constant pressure around 1.0 atm inside the flow-reactor.  This splitter 

is controlled by a needle valve and pressure gauge.  The effluent of the splitter flowed 

through a charcoal trap and out to a fume hood.   
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Liquid nitrogen is used to cryogenically trap gas-phase products at the head of the 

30m long, 0.25mm id., 0.25µm film thickness capillary column (Restek, Rtx®-5MS) inside 

GC (Varian, CP 3800).  Initially, all the products were trapped in the head of capillary 

column at the temperature of -60oC, followed by temperature programmed ramping of the 

column from –60oC to 300oC at 15oC/min. Separated products with molecular weights from 

40 to 650amu were analyzed with a Mass Spectrometer (MS) operating in the full-scan 

mode. The mass-spectral library (NIST 98 version 1.6d) was used to identify the products.  

2.1.2 Experimental Set-Up 

A 2.0 seconds gas residence time 4 was designed to use for all experiments.  

Equation 14 was used to calculate the rate of the main flow need to maintain the residence 

time of 2.0 seconds inside the flow-reactor; where rt  (seconds) is the mean residence time 

distribution for gas-phase molecules passing through a flow-reactor; oT  (Kelvin, K) is 

ambient temperature; eT  (Kelvin, K)  is average exposure temperature within the flow-

reactor; EV  (m3) is effective volume of the flow-reactor; oF  (m3/s) is volumetric flow rate; 

oP  (atm) is ambient pressure; dP  (atm) is positive differential pressure relative to oP  within 

the flow-reactor.  Table 2.1 shows the main flow rate base on the equation 1.  Pure helium 

gas was used as a gas carrier for pyrolytic conditions and the mixture 80% of helium and 

20% of oxygen was used as a gas carrier for oxidative conditions for all thermal degradation 

of HQ and CT. 
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Table 2.1 Total Flow Rate Vary with Temperature inside the Furnace 

Temperature 
(oC) 

Temperature 
(oK) 

Flow Rate 
(mL/min) 

200 473 586.9 
250 523 530.8 
300 573 484.4 
350 623 445.6 
400 673 412.5 
450 723 383.9 
500 773 359.1 
550 823 337.3 
600 873 318.0 
650 923 300.7 
700 973 285.3 
725 998 278.1 
750 1023 271.3 
775 1048 264.9 
800 1073 258.7 
825 1098 252.8 
850 1123 247.2 
875 1148 241.8 
900 1173 236.6 
925 1198 231.7 
950 1223 227.0 
975 1248 222.4 

1000 1273 218.1 
 

HQ and CT are polar solids; therefore, isopropyl alcohol was chosen as the solvent.  

The molarity of the solution was 1.0 M and the volume of sample HQ or CT that injected 

into the STDS was chosen to be 1.0 µL.  The density of isopropyl alcohol is 0.781 g/mL that 

means in 1.0 µL of 1.0 M solution, there are 0.781 mg of isopropyl alcohol and 0.110 mg of 

HQ or CT.  As the result, the sample contains 12% HQ or CT by mass in the solution.  The 

concentration of the solution in gas-phase inside the reactor was selected to be 500 ppm; 

thus the concentration of HQ or CT is 60 ppm and isopropyl alcohol is 440 ppm.   

In order to maintain a constant concentration of sample inside the reactor, a syringe 

pump was used to control the flow rate of the sample injection into the STDS.   The 
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injection rate for the sample was determined based on the main flow rate of the gas carrier 

through the flow-reactor.  The concentration of the solution is 500 ppm (gas-phase), thus the 

ratio of the injection flow rate (Finj) in gas-phase to the helium flow rate (Fo) should be 500 

ppm for all temperature inside the furnace.  From the volume of sample injection, the time 

and the injection flow-rate can be obtained from table 2.2.  The injection port was operated 

at the temperature of 180oC to vaporize all of liquid sample before entering the flow-reactor. 

 
Table 2.2 Time and Injection Rate Vary with Temperature inside the Furnace 
 

Temperature 
(oC) 

Temperature 
(oK) 

Injection 
Time (min) 

Injection 
Rate (µL/hr) 

200 473 1.0 60.5 
250 523 1.1 54.7 
300 573 1.2 49.9 
350 623 1.3 45.9 
400 673 1.4 42.5 
450 723 1.5 39.6 
500 773 1.6 37.0 
550 823 1.7 34.7 
600 873 1.8 32.8 
650 923 1.9 31.0 
700 973 2.0 29.4 
725 998 2.1 28.7 
750 1023 2.1 28.0 
775 1048 2.2 27.3 
800 1073 2.3 26.7 
825 1098 2.3 26.0 
850 1123 2.4 25.5 
875 1148 2.4 24.9 
900 1173 2.5 24.4 
925 1198 2.5 23.9 
950 1223 2.6 23.4 
975 1248 2.6 22.9 
1000 1273 2.7 22.5 

  

The vaporizer chormatoprobe was used to introduce pure HQ or CT into STDS.  The 

main flow rate of helium carrier gas was operated varying with temperature inside the 
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furnace in table 1 to maintain a residence time of 2 seconds inside the flow-reactor.  The 

injection port was operated at the temperature of 90oC for HQ and 80oC for CT to maintain a 

constant concentration of 35ppm inside the flow-reactor.  This concentration was obtained 

from the ratio of sample vapor pressure to total pressure inside the flow-reactor.   

The STDS system was baked out at high temperature over night prior to use and the 

blank test was run before and after each trial to ensure a high quality of products.  The 

syringe was submerged in isopropyl solvent and the new thermal septa were changed 

everyday to eliminate the contamination.  Leak tests were performed at all connections using 

a leak detector to ensure that the sample was quantitatively transported. 

2.1.3 Detailed Procedure 

a. Dissolve HQ or CT in isopropyl alcohol at the concentration of 1.0 mole per 
litter 

 
b. Set the infection port temperature at 180oC to vaporize all of liquid sample 

before entering the flow-reactor. 
 

c. Set the thermal reactor compartment oven and the transfer line at 200oC 
facilitate transport of gas-phase reactants and products. 

 
d. Set the furnace temperature to desired temperature for each trial of 

experiment.  
 

e. Set the helium flow rate to desired flow rate as table 1 for each trial of 
experiment from the mass flow controller. 

 
f. Measure the effluent flow rate from the transfer line and the splitter.  Set the 

flow rate from the transfer line around 70 mL/min by controlling the needle 
nose valve to delivery only small amount of sample to the GC-MS system 
without damage the detector. 

 
g. Record the flow rate from the splitter and the transfer line. 
 
h. Program the GC/MS run from -60oC (hold for 5 minutes) to 300oC (hold for 

1 minute) at the rate of 15oC/min.  The total time will be 30 minutes. 
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i. Open the liquid nitrogen valve to help the GC oven initial temperature reach -
60oC in order to trap the products.   

 
j. Program the MS for the full scan mode from 10 amu to 650 amu for 30 

minutes.  Turn on the detector after 9 minutes to eliminate a huge solvent 
peak. 

 
k. Set the injection rate to the desire rate as table 2 for each trial of experiment 

from the syringe pump. If using vaporizer chormatoprobe, go to step o-q. 
 

l. When all of the temperatures are stabilized and the system is ready, insert the 
transfer line into the injection port of the GC/MS system.  

 
m. Draw 1.0 µL of sample HQ or CT into syringe and place syringe in the 

syringe pump.   
 

n. Insert syringe needle into the injection port of the thermal reactor 
compartment and start the syringe pump as well as the GC/MS system.  

 
o. Measure 5.0 mg of HQ or CT and place into the quartz micro-vial at the 

bottom of the chromatoprobe shaft. 
 

p. Insert chromatoprobe into the injection port of the thermal reactor 
compartment and set the temperature of the injection port at 90oC for HQ and 
80oC for CT. 

 
q. When all of the temperatures are stabilized and the system is ready, insert the 

transfer line into the injection port of the GC/MS system and start the trial 
immediately.  

 
r. Remove the syringe pump and transfer line from the injection ports after 5.0 

minutes of cryogenic trapping.  
 

s. Set the new desired temperature for the furnace to be ready for the next trial.  
t. When the trial is complete, analyze the peaks and repeat the steps for the next 

trial. 
 

2.1.4 GC-MS Analysis and Calculation of Product Yields 

The mass-spectral library (NIST 98 version 1.6d) was used for helping to identify the 

products from the mass spectrum and gas chromatogram that were generated by the MS. 

Quantization of reactants and products was performed based on the calibration curves using 
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analytical standards (Sigma-Aldrich). Calibration was based on the area counts of the peaks 

on the chromatogram. Multiple trials were performed for each temperature to eliminate the 

error.  The yields of the products were calculated using a following formula:  

100×=
OP

P
Y      (Equation 2) 

 

Where: Y (%) is percent yield, P (moles) is the total mole of the particular product 

formed, and Po (moles) is the initial mole of HQ or CT sample injected into the system.   

2.2  Vacuum and Thermoelectric Furnace System 

2.2.1 System Description 

The vacuum and thermoelectric furnace system was custom designed for studying 

the surface-induced formation and stabilization of combustion generated persistent free 

radical.  This custom designed system can be used as multiple tools such as adsorption, 

extraction, and electron paramagnetic resonance (EPR) measurement. There are four main 

components in this system:  high power vacuum pumps, a high temperature thermoelectric 

ceramic heater, a vacuum exposure chamber, and an EPR-extraction cell as shown in Figure 

2.4. 

The pumping system consists of a vacuum pump (Edwards, model E2MO.7) and a 

high power turbo-molecular pump (Edwards, model EXT70). The vacuum pump is on all 

the time during the experiment while the turbo pump is turned on only after adsorption to 

remove excess and physisorbed molecules. This turbo pump is a high power vacuum pump 

and it can evacuate to lower pressure down to 10-6 torr.  The outlet from the vacuum pump is 

connected to a carbon capsule filter (Pall, model 12011) and vented to a fume. 
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Figure 2.4: Vacuum and Thermoelectric Furnace System Apparatus 

 

The vacuum exposure glass chamber is separated from the pumps by a vacuum 

valve.   Rope heaters (Omegalux®, model FGR) and aluminum foil are wrapped around this 

glass chamber to prevent adsorption on the wall of chamber.  These rope heaters are 

connected to the variable AC transformer (Electrothermal, model MC240X1) that controls 

the temperature surround the chamber.  The digital pressure gauge (Varian, eyesys 

convectorr) monitors the pressure inside the system.  The dosing port with a high vacuum 

valve is connected to the vacuum exposure chamber and is easily removed for cleaning.  
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Two custom-designed EPR-extraction cells (c.f. Figure 2.5) are hooked up to the 

vacuum exposure chamber through a quarter inch stainless steel adapter. Again, these EPR-

extraction cells are very simple to dissemble from the vacuum exposure chamber.  This 

specially designed cell is a 12 inches quartz tube composed of a 9 inches suprasil EPR side 

arm and a 1.5 inches diameter quartz bulb.  The side arm has a diameter of 3mm and is made 

of suprasil necessary for EPR measurements.  The quartz bulb contains the surface matrix 

that is used for adsorption and extraction experiments. This special design is ideal for non-

diffusion limited interaction of the gas-phase molecules with the surface matrix as well as 

transferring the matrix to EPR tubes under vacuum condition.  

 

Figure 2.5:  Custom-Designed EPR-Extraction Cells 
 
  

The two bulbs, part of the custom-designed EPR-extraction cells, are housed inside a 

high-temperature cylindrical ceramic heater (Omegalux®, model CRFC) with the maximum 

operating temperature of 950oC.  The temperature inside the heater is controlled by the relay 

9 inches EPR side arm 

High vacuum valve 
12 inches 
quartz cell 

1.5 inches ID bulb 

Surface matrix 
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temperature controller (Omegalux®, model SSRL240DC25).  In order to keep the 

temperature constant inside the heater, both ends of the cylinder are covered with thermal 

insulation.  

2.2.2 Bound Radical Matrix Preparation 

In this study, 5% of copper oxide (CuO) on supported silica oxide (SiO2) 5-7was used 

as a matrix for adsorption.  CuO is supported on SiO2 (Sigma Aldrich) by the method of 

incipient wetness, with a copper loading of 5%, on a mass basis.  

ü The first step in this preparation is determination of the amount of water 
needed to achieve incipient wetness for a given amount of silica gel powder.  
This silica powder is a very small size (200 mesh), and the surface area is 
500m2/g.  Incipient wetness is the term used when the water added to the 
silica is either contained within the pore structure and/or bound to adsorption 
sites on the surface, i.e. no bulk water is present.  

 
ü Once the correct volume of water has been determined, the necessary amount 

of copper (II) nitrate hemipenta-hydrate (Cu(NO3)2·2.5 H2O from Sigma 
Aldrich) needed to yield 5% Cu in the CuO/SiO2 substrate was calculated.  
For example, there are 5g of Cu(II)O and 95g of SiO2 for every 100g of 
CuO/SiO2 to make up the yield of 5% Cu in the CuO/SiO2 substrate. In order 
to obtain 5g of Cu(II)O, 15g of Cu(NO3)2·2.5 H2O was added.  

 
ü Dissolve the calculated amount of Cu(NO3)2·2.5 H2O in the correct volume 

of water that is needed for incipient wetness.  
 

ü Pour this aqueous solution of Cu(NO3)2 into the correct amount of silica gel 
powder and stir to mix well.  

 
ü Allow the resulting gel to stand for 2 hours with occasional stirring at room 

temperature. 
 

ü Dry for 6 hours at 120 °C in the oven.  

ü Calcinate the blue-green powder at 450 °C in the furnace for 12 hours to 
convert all Cu(NO3)2 to CuO.  

 
ü Thoroughly grind the resulting green-black powder with a mortar and pestle. 

 
ü Sieve the powder to small size and store in the valve to use. 
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2.2.3 Detailed Surface-Bound Radical Adsorption Procedure 

In this experiment, six precursors of phenoxyl radicals and semiquinone type radicals 

were chosen to study on temperature dependence of EPR g-value and concentrate of radicals 

in the range of 50oC to 300oC.  Using a vacuum system and thermoelectric furnace, HQ, CT, 

monochlorobenzene (MCBz), 1,2-dichlorobenzene (1,2-DCBz), phenol (P) and 2-

monochlorophenol (2-MCP) were chemisorbed at various temperatures onto 5% copper 

oxide supported on silica oxide (5% CuO/SiO2) that was used as a surrogate for combustion 

generated particulate matter. 

• Measure 100mg of 5% CuO/SiO2 sample and place inside a customize design 
EPR-extraction cell.   

 
• Hook up two EPR-extraction cells to the vacuum exposure chamber and level 

the bulbs in the middle of cylinder ceramic heater. 
 

• Load the radical precursor in a dosing port and connect to the vacuum 
exposure chamber with the valve close. 

 
• Turn on the vacuum pump while the turbo-molecular pump remains off.  

• Slowly open the vacuum valve to evacuate samples until the catalyst is stable 
and slowly heat the matrix sample to the desired temperature of 120oC under 
vacuum to evaporate all of water out of system for 10min, and then close the 
vacuum valve.   

 
• Open and remove the valve of EPR-extraction cells completely to expose the 

matrix sample to the air and dry it at the temperature of 400oC for 1 hour to 
remove all organic impurities on the matrix sample surface.  

 
• Close the valve of EPR-extraction cells to the air, but keep the matrix sample 

air-to-vacuum feed through the vacuum exposure chamber. 
 

• Set the temperature of ceramic heater to desired adsorption temperature and 
slowly open the vacuum valve. 

 
• Open the water line and turn on the turbo-molecular pump when the pressure 

inside the system around 0.1 torr. 
 

• Turn on the variable AC transformer to warm the vacuum exposure chamber. 
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• Evacuate the system down to 10-4 torr and close the EPR-extraction cell 

valves to get ready for adsorption.  
 

• Slowly open the dosing port valve to remove all of the air inside, and then 
close the vacuum valve. 

 
• Open the EPR-extraction cell valves to adsorb radical precursors onto a 

surface matrix sample for 5min while warm the rest or glass parts that not 
cover with rope heaters using a heat gun in order to prevent condensation.  

 
• Close the dosing valve and open the vacuum valve to evacuate all of the 

excess and physisorbed molecules out of the system at 10-4 torr for 2 hours.  
This should leave only chemisorbed molecules bound on the matrix surface. 

 
• Switch off the transformer and lower the temperature of the ceramic heater to 

room temperature to cool down the sample. 
 

• Close the EPR-extraction cell and vacuum valves.  Disassemble the EPR-
extraction cells from the exposure chamber. 

 
• Tilt EPR-extraction cell to transfer the matrix sample into the suprasil EPR 

side arm tube and perform EPR analysis. 
 

2.2.4 Persistence of Surface Bound Radicals 

 When surface bound-radicals associate with metal surface, they can exist for 

significant time periods without being destroyed. In this experiment, the same six precursors 

MCBz, 1,2-DCBz, P, 2-MCP, HQ, and CT were adsorbed on 5% CuO/SiO2 surface 

following the above steps.  After performing EPR analysis for the intensity and g-value of 

surface bound-radicals, the matrix sample was transferred to a clean weighing boat in order 

to expose them to the air at room temperature for 30min.  The matrix sample was transferred 

back to the EPR-extraction cell and evacuated down to the pressure of 10-2 torr before take 

EPR measurement again.  The exposure was repeated in 30 min interval, until the EPR 

signal of bound-radicals completely disappeared. 
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2.3  Extraction of Chemisorbed Bound-Radicals 

 Once the precursors adsorb on the surface, they can be removed from that surface by 

extraction with some solvents.  Several polar and non-polar solvents such as methyl alcohol 

(MEA), isopropyl alcohol (IPA), dichloromethane (DCM), toluene (TOL), and tert-

butylbenzene (TBB) were chosen to extract surface-bound radicals from the above six 

precursors.   

• Perform chemisorption of a precursor on 5% CuO/SiO2 using the above 
procedures. 

 
• Analyze EPR properties on surface bound- radicals. 

• Tilt the EPR-extraction cell to transfer all of sample back into the bulb. 

• Introduce 1.5mL for one of above solvents into EPR-extraction cell. 

• Close EPR-extraction cell valve and place inside the sonicator (Fisher 
Scientific, model FS20).  

 
• Sonicate the sample for 1 hour to extract surface bound-radicals into solvent.  

 
• Pour the extract into a 1.5mL micro-valve and centrifuge to separate any of 

trace residues in the extract.  
 

• Decant the extract into two clean 1.5mL micro-valves for GC/MS and EPR 
analysis. 

 
• Connect the EPR-extraction cell back to vacuum exposure chamber for 

evacuation then take EPR measurement on residue sample. 
 
• For GC/MS analysis, draw 1.0µL of the extract and load it in the GC (Agilent 

Technologies, model 6890N) equipped with the 30 m long, 0.25 mm id., 0.25 
µm film thickness capillary column (HP-5MS) to separate products then 
analyze in the full scan mode 20amu to 600aum in MS (Agilent 
Technologies, model 9873). 

 
2.4 EPR Analysis 

EPR is the spectroscopic technique that uses to detect species having one or more 

unpaired electrons.  When an external magnetic field is applied, the paramagnetic electrons 
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can either orient in a direction parallel or anti-parallel to the direction of the magnetic field.  

This phenomenon creates two different energy levels for the unpaired electrons and making 

it possible for absorption of electron-magnetic radiation to occur when electrons are driven 

between the two energy levels.  The condition where the magnetic field and the microwave 

frequency are “just right” to produce an absorption is known as the resonance condition (c.f. 

figure 2.6).  The g-value is one characteristic of EPR analysis, and is a dimensionless 

constant or the proportionality constant between the frequency and the field at resonance 

condition (equation 3). 

 

 

 

 

 
 

 

 

Figure 2.6:  Resonance Condition 

 

h? = g µo B    (equation 3) 

 

Where: h is a Planck’s constant value (h = 6.63 x 10-34 J s); ? (hz) is the frequency of 

the radio waves; µo is Bohr magneton constant value (µo = 9.27 x 10-24 J T-1); B (T, tesla) is 

magnetic field. 
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2.4.1 EPR Parameters 

All of samples were analyzed on a Bruker model EMX 10/2.7 EPR spectrometer 

(Bruker Instruments, Billerica, MA) with dual cavities.  The parameters for all solid samples 

spectra were microwave frequency of 9.67 GHz, microwave power of 2.02mW, center field 

of 3250 G, sweep width of 2000 G, resolution of 2048 points, receiver gain 1.0 x 104, 

modulation frequency of 100 kHz, modulation amplitude of 4.0 G, time constant of 163.84 

ms, and sweep time of 167.77 seconds.   

However, due to the low concentration of radicals in the extract, the EPR parameter 

for the liquid samples were quite difference from EPR parameters for the solid samples.  

The microwave frequency was 9.71 GHz, while the microwave power was 20.19mW which 

is 10 times greater than solid samples parameters in order to detect a weak signal from liquid 

sample.  Other parameters were center field of 3462 G, sweep width of 100 G, resolution of 

2048 points, receiver gain 4.0 x 105, modulation frequency of 100 kHz, modulation 

amplitude of 4.0 G, time constant of 10.24 ms, and sweep time of 20.97 seconds. 

2.4.2 Analysis and Calculation 

Values of the g-factor were calculated using Bruker’s WINEPR software for all 

liquid samples and Origin 7.0 software for all solid samples.  The concentrations of free 

radicals in the samples (Equation 4) were calculated using the double integration method of 

the first derivative signal and comparison with a standard sample of 2,2-di(4-tert-

octylphenyl)-1-picrylhydrazyl (DPPH)8, 9.   

 

mRGA
RGASpins

C
DPPH

DPPH

××
××

=    (Equation 4)  
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Where: C (spins/g) is concentration of radicals in the sample, A is the area count of 

sample; RG is received gain of sample; m (grams) is the mass of sample; ADPPH is the area 

count of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and RGDPPH is received gain of DPPH.  

In order to investigate the persistence to radicals, the Equation 5, and Equation 6 

were used to calculate the lifetime of radicals.  Where C is the concentration of sample; k 

(min-1) is the first order kinetic rate constant; and t  (min) is the lifetime of radicals.  
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The automated mass spectral deconvolution and identification system (AMSDIS 97 

version 1.1) and mass-spectral library (NIST/EPA/NIH 98 version 1.6) were used to identify 

the extracted products from the mass spectrum and gas chromatogram that were generated 

by the MS. 
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CHAPTER 3: RESULTS 
 

 STDS, EPR and GC-MS instrumentation were used to obtain all of the data in this 

work.  The STDS is a flow reactor analytical system that was used to study the thermal 

degradation of HQ and CT.  EPR is a spectroscopic technique that was used to detect bound 

radicals from chemisorption of the six precursors including HQ, CT, MCBz, 1,2-DCBz, P, 

2-MCP as well as measure g-value and the intensity of radicals.  GC-MS was used to 

separate and identify the extraction products. 

3.1 Thermal Degradation of HQ and CT Using STDS 

Comprehensive product yields were determined from the thermal degradation of HQ 

and CT at a reaction time of 2.0 seconds.  Both pyrolytic and oxidative conditions, which 

described in previous chapter, were performed in thermal degradation of the precursors 

using STDS.  

3.1.1 Hydroquinone 

3.1.1.1 Gas-Phase Pyrolysis of Hydroquione 

Gas-phase pyrolysis of hydroquinone was performed in the temperature range of 

250oC to 1000oC for the reaction time of 2.0 seconds.  However, HQ was pyrolyzed in two 

reaction modes:  

• HQ in the presence of isopropyl alcohol (hydrogen-rich source) in a helium gas 

carrier. 

•  Pure HQ (hydrogen-lean source) in a helium gas carrier.   

3.1.1.1.1 Hydrogen-Rich Conditions  

The thermal degradation behavior and the yields of product formation from the 

pyrolysis of HQ in the presence of isopropyl alcohol (hydrogen-rich condition) are presented 
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in Figure 3.1 and Table 3.1.  In this case, the thermal degradation of HQ was initiated at 

250oC and gradually increases with temperature. The thermal degradation of HQ under the 

hydrogen-rich condition increased rapidly at 700oC and HQ was completely degraded 

around 750oC. 

 

Figure 3.1: Percent Yield of Products from the Gas-phase Pyrolysis of HQ 
under Hydrogen-Rich Conditions 

 
 

p-Benzoquinone formation occurred immediately upon degradation of HQ at 250oC 

with a maximum yield of 33% at 550oC persisting until 750oC. p-Benzoquinone and phenol 

were the only observable products at low temperature below 650oC while many products 

were detected above 650oC .  Phenol was formed from 550oC to 900oC with a maximum 

yield of 1.5% at 700oC and benzene was observed around 650oC with a maximum yield of 

9.4% at 900oC. At 700oC, substituted aromatic by-products were formed such as styrene, 
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indene, naphthalene, biphenylene and phenylethyne with the maximum yield of 15% at 

850oC, 2.4% at 850oC, 2.1% at 920oC, 6.1% at 900oC, 1.6% at 950oC respectively.  

Dibenzofuran was detected in the narrow temperature range from 800oC to 900oC with 

maximum yield of 0.18% at 850oC.   

3.1.1.1.2 Hydrogen-Lean Conditions 

The temperature dependence and the percent yields of product formation from the 

pyrolysis of pure HQ (hydrogen-lean condition, without isopropyl alcohol) are presented in 

Figure 3.2 and Table 3.2.  Under these conditions, thermal degradation of HQ is again 

initiated at 250oC and slowly increases with temperature. The thermal degradation of HQ in 

the hydrogen-rich conditions was complete by 750oC, while decomposition of HQ in the 

hydrogen-lean conditions was not complete until 820oC.  Other differences in the product 

distribution were also observed. 

The formation of p-benzoquinone was observed at 250oC with a maximum yield of 

15% at 500oC and was completely decomposed at 750oC. Also, p-benzoquinone was the 

only observable product below 700oC.  The highest percent yield of phenol was 6.3% at 

775oC and was detected in the range of 700oC to 950oC. Significant yield of dibenzofuran 

was detected from 725oC to 1000oC under hydrogen-lean condition with maximum yield of 

1.1% at 775oC.  Coincidently, dibenzo-p-dioxin achieved a maximum yield of 0.39% also at 

775oC and was observed only for the hydrogen-lean condition over the temperature range of 

725oC to 950oC.  Benzene (maximum yield of 0.15% at 900oC) and substituted aromatic by-

products (maximum yields of styrene, 0.36% at 900oC; indene, 0.14% at 850oC; 

naphthalene, 0.082% at 900oC; biphenylene, 0.18% at 850oC and phenylethyne, 0.043% at 

900oC) were observed above 650oC under hydrogen-lean conditions. 
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Figure 3.2: Percent Yield of Products from the Gas-phase Pyrolysis of HQ under 
Hydrogen-Lean Conditions 
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Table 3.1 Percent Yield of Products from the Gas-phase Pyrolysis of HQ under Hydrogen-Rich Conditions 

 

Temperature 
oC 

Hydro-
quinone 

p-Benzo-
quinone Phenol Benzene Phenylethyne Styrene Indene Naphthalene Biphenylene Dibenzo-

furan 

250 94 0.24         
300 78 5.6         
350 73 6.4         
400 48 17         
450 46 28         
500 38 28         
550 35 33 0.051        
600 26 27 0.39        
650 29 19 0.82        
680 28 12 1.5 0.38       
700 22 7.6 1.5 0.58       
725 0.51 7.2 1.3 1.7  0.38 0.061 0.026   
750  1.2 0.86 3.4  1.1 0.21 0.067   
800   0.68 6.2  2.4 0.44 0.35 0.18  
825   0.27 7.5 0.23 9.7 1.8 0.81 0.87 0.042 
850   0.26 7.7 0.48 14 2.4 1.1 1.5 0.18 
875    9.1 1.2 12 1.9 1.5 3.9 0.15 
900    9.5 1.6 14 1.7 2.1 6.1 0.11 
925    9.5 1.5 7.2 0.99 2.2 5.5  
950    9.1 1.6 4.2 0.38 1.9 5.1  
1000    7.9 1.2 2.1 0.21 1.1 4.4  
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Table 3.2 Percent Yield of Products from the Gas-phase Pyrolysis of HQ under Hydrogen-Lean Conditions 

Temperature 
oC 

Hydro-
quinone 

p-Benzo-
quinone Phenol Benzene Dibenzo-

furan 
Dibenzo-
p-dioxin 

Biphe-
nylene Indene Phenyl-

ethyne 
Naph-
thalene Styrene 

250 86 5.0          
300 88 12          
350 87 13          
400 85 14          
450 82 14          
500 77 15          
550 68 13          
600 65 12          
650 64 11          
700 62 5.3          
725 58  0.14  0.076 0.048      
750 59  3.6 0.026 0.81 0.32      
775 55  6.3 0.046 1.1 0.39 0.066  0.011   
800 45  4.8 0.058 0.85 0.24 0.13 0.034 0.024   
850   2.1 0.11 0.65 0.14 0.18 0.14 0.029 0.052 0.071 
900   0.12 0.15 0.41 0.065 0.16 0.11 0.043 0.082 0.36 
950   0.011 0.12 0.12 0.031 0.091  0.042 0.034 0.19 
1000    0.027 0.033      0.054 
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3.1.1.2 Gas-Phase Oxidation of Hydroquinone 

A mixture of 80% helium and 20% oxygen was used as a gas carrier for this 

experiment.  The percent yields of product formation and temperature dependence of the 

oxidative thermal degradation of HQ are presented in figure 3.3 and table 3.3.  The 

reaction time was maintained at 2.0 seconds inside the flow-reactor for all operational 

temperature range of 200oC to 1000oC.   

HQ was rapidly decomposed above 200oC and completely degraded around 550oC. 

Instantaneously, p-benzoquinone was observed upon degradation of HQ at 200oC 

achieving a maximum yield of 36% at 250oC.   The formation of p-benzoquinone was 

decreased with increasing temperature and it was the only major product observed over the 

wide temperature range of 200oC to 700oC   Phenol was not observed under this condition,  

but benzene was detected at low temperature of 250oC and achieved a maximum yield of 

1.2% at 350oC in the range of temperature between 250oC and 550oC.  Fewer products 

were observed under oxidative condition than under pyrolytic condition.  No dioxin 

products were formed at any experimental temperatures.  Above 400oC, other products 

such as 4,4’-dihydroxydiphenyl ether and 4,4’-dihydroxybiphenyl were detected with a 

maximum yield of 0.031% at 450oC and 0.44% at 450oC respectively.   
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Figure 3.3: Percent Yield of Products from the Gas-phase Oxidation of Pure HQ 
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Table 3.3 Percent Yield of Products from the Gas-phase Oxidation of Pure HQ 

Temperature 
oC Hydroquinone p-Benzo-

quinone Benzene 4,4’-dihydroxy-
diphenyl ether 

4,4’-dihydroxy-
biphenyl 

200 61 31    
250 33 36 0.031   
300 15 27 0.76   
350 3.9 26 1.2   
400 1.8 18 0.68 0.024 0.032 
450 0.36 16 0.41 0.031 0.44 
500 0.032 4.4 0.13 0.029 0.28 
550  1.8 0.031 0.019 0.082 
600  1.3   0.031 
650  0.26    
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3.2.1 Catechol 

3.2.1.1 Pyrolysis of Catechol 

Gas-phase pyrolysis of CT was performed in the temperature range of 250oC to 

1000oC for a reaction time of 2.0 seconds for two reaction conditions:  

• CT in the presence of isopropyl alcohol (hydrogen-rich source) in helium gas 

carrier. 

•  Pure CT (hydrogen-lean source) in helium gas carrier.   

3.2.1.1.1 Hydrogen-Rich Conditions 

Figure 3.4 and table 3.4 present the temperature dependence and the percent yields 

of products formation from gas-phase pyrolysis of CT in the present of isopropyl alcohol 

(hydrogen-rich condition).  The thermal degradation of CT was observed at 250oC and 

rapidly increased at 550oC. Around 750oC, CT decomposed to below the limit detectable 

concentration.  In pyrolysis of HQ, a significant amount of HQ was converted into p-

benzoquinone at low temperature and similar behavior was expected for CT; however, o-

benzoquinone was not observed during the pyrolysis of CT. 

Phenol was not detected until 600oC and achieved the maximum yield of 1.8% at 

750oC and was observed in the temperature range of 600oC to 900oC.  Benzene was formed 

in a wide temperature range between 650oC and 1000oC with a relatively constant high 

yield of 6.5% from 850oC to 950oC.  At 650oC, dioxin-type products started to form.  

Dibenzo-p-dioxin was observed in the temperature range between 650oC and 800oC with a 

maximum yield of 0.65% at 700oC while dibenzofuran was detected in a wide temperature 

range from 650oC to 1000oC with a highest yield of 3.5% at 750oC. 



61 
 

Above 650oC, polycyclic aromatic hydrocarbons (PAHs) and substituted aromatic 

products were detected that are the result of fragmentation of CT into C2 and C4 products, 

followed by molecular growth.  These by-products were styrene, indene, naphthalene, 

biphenylene and phenylethyne with the maximum yield of 8.2% at 900oC, 1.2% at 850oC, 

1.4% at 950oC, 3.2% at 950oC, and 0.79% at 950oC, respectively.  

 

Figure 3.4: Percent Yield of Products from the Gas-phase Pyrolysis of CT 
under Hydrogen-Rich Condition 

 
 
3.2.1.1.2 Hydrogen-Lean Conditions 

The percent yields of products formation and temperature dependence of the 

pyrolysis of CT without the present of isopropyl alcohol (hydrogen-lean condition) are 

presented in Figure 3.5 and Table 3.5.  The decomposition of CT was initiated at 250oC 

and increased slightly with temperature until 800oC where it rapidly decomposed to below 
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detectable levels at 850oC.  Similar to hydrogen-rich conditions, o-benzoquinone was not 

observed for the entire of temperature profile from the pyrolysis of CT under hydrogen-

lean conditions. 

The only observable product below 750oC was phenol and it achieved a maximum 

yield of 0.18% at 700oC.  Dibenzofuran was the only observable dioxin-type product with 

maximum yield of 0.33% at 900oC.  Benzene was not detected until 900oC with a 

maximum yield of 0.27% at 950oC.  Aromatic products were detected at high temperature 

above 800oC including anthracene, naphthalene, biphenylene and phenylethyne achieved a 

maximum yield of 0.63% at 900oC, 1.6% at 950oC, 1.2% at 950oC, and 0.18% at 950oC, 

respectively. 

 

Figure 3.5: Percent Yield of Products from the Gas-phase Pyrolysis of CT 
under Hydrogen-lean Condition.  
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Table 3.4:  Percent Yield of Products from the Gas-phase Pyrolysis of CT under Hydrogen-Rich Conditions 

Temperature 
oC Catechol Phenol Benzene Dibenzo-

dioxin 
Dibenzo-

furan Styrene Indene Phenylethyne Naphthalene Biphenylene 

250 93          
300 99          
350 92          
400 96          
450 95          
500 98          
550 91          
600 63 0.28         
650 26 0.48 0.056 0.18 0.11      
700 5.6 1.4 0.23 0.65 1.7 0.18     
750  1.8 1.1 0.41 3.5 1.4 0.17  0.068  
800  1.1 4.4 0.28 2.9 2.9 0.57 0.049 0.21 0.11 
850  0.21 6.1  3.1 7.1 1.2 0.24 0.71 0.61 
900   6.1  2.4 8.2 1.6 0.42 1.3 1.9 
950   6.8  1.1 6.1 0.82 0.79 1.4 3.2 
1000   3.5  0.25 2.1 0.28 0.27 0.81 3.2 
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Table 3.5:  Percent Yield of Products from the Gas-phase Pyrolysis of CT under Hydrogen-lean Conditions 

Temperature 
oC Catechol Phenol Dibenzo-

furan Anthracene Napthalene Biphenylene Benzene Phenylethyne 

250 95        
300 94        
350 96        
400 97        
450 94        
500 93        
550 91        
600 89 0.078       
650 823 0.12       
700 64 0.18       
750 63 0.16       
800 48 0.13 0.17      
850  0.062 0.24 0.37 0.076    
900   0.33 0.63 0.28 1.2 0.078 0.12 
950   0.17 0.12 1.6 1.3 0.27 0.17 
1000   0.11 0.036 0.36 0.76 0.19 0.083 
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3.2.1.2 Gas-Phase Oxidation of Catechol.  

The gas carrier for this experiment was a mixture of 80% of helium gas and 20% of 

oxygen gas.  The reaction time was maintained at 2.0 seconds inside the flow-reactor for 

the entire operational temperature range between 200oC and 1000oC.  The temperature 

dependence and percent yields of product formation of the oxidative thermal degradation of 

CT are presented in Figure 3.6 and Table 3.6.  The decomposition of CT was initiated as 

low as 200oC and rapidly degraded when the temperature increased.  CT totally 

decomposed to below the limit detectable concentration around 600oC.  

Fewer products were observed under oxidative conditions. However, the formation 

of o-benzoquinone was detected instantaneously upon degradation of CT at 200oC.  

Between 200oC and 450oC, o-benzoquinone achieved a maximum yield of 6.5% and 

decreased rapidly above 500oC.  From 400oC to 750oC, 2,2’-dihydroxydiphenyl ether was 

observed with a maximum yield of 0.46% at 450oC.  1,8-Dihydroxy-naphthalene was 

detected from 450oC to 700oC and achieved a maximum yield of 0.056% at 550oC. 

 
Figure 3.6: Percent Yield of Products from the Gas-phase Oxidation of Pure CT 
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Table 3.6 Percent Yield of Products from the Gas-phase Oxidation of Pure CT 

Temperature 
oC Catechol o-Benzoquinone 2,2’-dihydroxyl-

diphenyl ether 
1,8-Dihydroxy-

naphthalene 

200 88 4.5   
250 69 4.8   
300 44 7.4   
350 29 5.6   
400 18 6.2 0.031  
450 11 5.3 0.46  
500 4.2 4.7 0.25 0.032 
550 2.2 1.9 0.12 0.056 
600 0.36 0.83 0.066 0.043 
650  0.47 0.042 0.032 
700  0.18 0.033  
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3.2 Surface-Bound Radicals 

Surface-bound radicals were formed during the adsorption of precursor organic 

molecules on metal oxides.  Five percent copper oxide supported on silica oxide 

(CuO/SiO2) was used as a surrogate for combustion-generated particulate matter.  

Precursors of phenoxyl and semiquinone type radicals were adsorbed on 5% CuO/SiO2 and 

characterized using electron paramagnetic resonance (EPR) and gas chromatograph mass 

spectrometer (GC-MS) technique. 

3.2.1 Formation and Stabilization of Surface-Bound Radicals 

 Using a vacuum system and thermoelectric furnace, six precursors of phenoxyl and 

semiquinone type radicals including monochlorobenzene (MCBz), 1,2-dichlorobenzene 

(1,2-DCBz), phenol (P), 2-monochlorophenol (2-MCP), hydroquinone (HQ), and catechol 

(CT) were adsorbed onto the 5% CuO/SiO2 surface.  Figure 3.7 depicts the EPR spectra of 

the above precursors dosed onto CuO/SiO2 surface at 200oC.  

 

Figure 3.7:  EPR Spectra of the Precursors Dosed onto CuO/SiO2 Surface at 200oC 
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The best fit line of temperature dependence of EPR g-value for the surface-bound 

radicals from the precursors in the temperature range between 50oC and 300oC is presented 

in figure 3.8.  Surface-bound radicals from HQ and CT formed as low as 50oC to 100oC 

and had nearly constant g-value when the temperature increased to 300oC.  HQ exhibited a 

g-value in the range of 2.0061 - 2.0068 while CT exhibited a g-value in the range of 2.0054 

- 2.0064.  In contrast to HQ and CT, the other four precursors, MCBz, 1,2-DCBz, P, and 2-

MCP did not form radicals until 150oC. 

The behavior of the surface-bound radicals from MCBz, 1,2-DCBz, P, and 2-MCP 

fell into two different groups.  The first group includes MCBz and 1,2-DCBz that generated 

bound-radicals with a high g-value at 150oC then decreased when the temperature 

increased.  MCBz exhibited a g-value in the range of 2.0053 - 2.0071 and 1,2-DCBz 

exhibited a g-value in the range between 2.0052 - 2.0070.  The second group contained P 

and 2-MCP and initially exhibited low g-values at 150oC that slightly increased as the 

temperature was raised to 300oC.  The range of g-values for P and 2-MCP were 2.0033 - 

2.0037 and 2.0047 - 2.0055, respectively.  Figure 3.8 presents the temperature dependence 

of EPR g-value of surface bound radicals generated from the precursors.   

The yield of surface-bound radicals was also studied in the temperature range of 

50oC-300oC.  CT generated surface-bound radicals at relatively low concentration 

throughout the studied temperature range and achieved a maximum yield of 1.18 x 1018 

spins/g of CuO/SiO2 surface for adsorption at 200oC.  Similar to CT, surface-bound 

radicals from HQ displayed very low yields at 50oC and slightly increased to 1.93 x 1018 

spins/g of CuO/SiO2 surface at 230oC. 
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Figure 3.8: Temperature Dependence of EPR g-Value of Surface-Bound 
Radicals Generated from the Precursors 

  

P and 2-MCP achieved a maximum yield of radicals at the same temperature of 

230oC with a concentration of 5.70 x 1018 spins/g and 8.12 x 1018 spins/g of CuO/SiO2 

surface respectively.  Bound-radicals from both P and 2-MCP precursors were initially 

formed at relatively low yields at 150oC and rapidly increased to the maximum yields at 

230oC.  MCBz generated bound-radicals achieved to the maximum yield of 3.70 x 1019 

spins/g of surface fly-ash at 200oC and gradually decreased as the temperature increased.  

1,2-DCBz achieved its maximum yield of radicals at of 6.72 x 1018 spins/g at 230oC of 

CuO/SiO2 surface.  Figure 3.9 and Table 3.7 display the concentration of surface-bound 

radicals from chemisorption of the precursors on 5% CuO/SiO2 surface in the studied 

temperature range of 50oC - 300oC. 
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Figure 3.9 Temperature Dependence of Concentration of Surface-Bound 
Radicals Generated from the Precursors 
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Table 3.7:  Temperature Dependence of Concentration (spins/g.torr) of Surface-Bound Radicals Generated from the Precursors 

Temperature 
oC Catechol Hydroquinone Mono-

chlorobenzene 
1,2-Dichloro-

benzene Phenol 2-Mono-
chlorophenol 

50  2.45E+17     
100 4.55E+17 3.51E+17     
150 6.78E+17 8.14E+17 5.96E+18 3.46E+18 6.19E+17 1.99E+18 
180 7.96E+17 7.98E+17 9.40E+18 7.40E+18 2.74E+18 4.52E+18 
200 1.45E+18 1.75E+18 3.70E+19 4.23E+19 3.53E+18 3.48E+18 
230 1.18E+18 1.93E+18 2.64E+19 6.72E+19 5.70E+18 8.12E+18 
250 1.01E+18 1.10E+18 1.19E+19 1.33E+19 2.57E+18 6.87E+18 
300 1.20E+18 1.06E+18 4.33E+18 5.47E+18 9.04E+17 7.75E+18 
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3.2.2 Persistence of the Surface-Bound Radicals 

The surface-bound radicals from the six precursors achieved their highest yields 

from 200oC - 230oC (c.f. Figure 3.9).  Accordingly, these surface bound-radicals were 

generated at 230oC and their persistence was studied upon exposure to air.  Figure 3.10 

presents the time dependence of EPR spectra of surface-bound radicals during exposure to 

the air for 2-MCP. 

 

Figure 3.10: EPR Spectra of Bound Radicals from 2-Monochlorophenol 
Exposed to the Air in 30 Minute Time Intervals 

 
 
 
 
Surface bound-radical decays fit first order decay kinetic when exposed to air.  

Figure 3.11 displays the concentration of bound-radical versus time on a semi-logarithmic 
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scale.  Bound-radicals from HQ decayed fastest with a lifetime of t = 27 min.   The decay 

rate of bound-radical from CT was slightly lower than HQ with a lifetime of t = 36 min.  

The longest lifetime belonged to bound-radicals from P with a lifetime of t = 74 min.  

Radicals produced from 1,2-DCBz, MCBz, and 2-MCP also exhibited long lifetimes with t 

of 43 min, 56 min, and 64 min, respectively. 

 

 
 

Figure 3.11: First Order Kinetic Decay of Surface-Bound Radicals 

 

3.2.3 Extraction and Chemical Analysis of Surface-Bound Radicals 

Surface bound-radicals were generated at 230oC from the six precursors then 

extracted from the matrix using several polar and non-polar solvents.  Methyl alcohol 

(MEA) and isopropyl alcohol (IPA) were chosen as polar solvents while toluene (TOL) and 
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tert-butyl benzene (TBB) were chosen as non-polar solvents.   Dichloromethane (DCM) was 

used as a solvent that had characteristic between polar and non-polar solvent. 

Figure 3.12 illustrates the EPR radical signals from adsorbed phenol on 5% 

CuO/SiO2 surface before and after extraction with IPA, polar solvent.  A strong EPR signal 

(blue line) was observed before radical extraction (after adsorption of phenol molecule on 

the matrix) and a weak EPR signal (red line) was observed after radical extraction with IPA 

solvent.  Both signals exhibit a g-value of 2.004.  Before extraction, the EPR signal achieved 

a relative intensity peak-to-peak line-height of 2649 unit counts and the line-width of 6.2G.  

However, this EPR signal was reduced significantly to the relative intensity peak-to-peak 

line-height of 173 unit counts and line-width of 5.8G. 

The EPR radical signals of the extract (using IPA as a solvent) from the adsorbed 

phenol matrix are presented in Figure 3.13.  A weak EPR signal (red line) is exhibited in the 

original extract using isopropyl alcohol solvent and a strong signal (blue line) was exhibited 

with the addition of a few drops dilute sodium hydroxide (NaOH).  The EPR radical signal 

intensity of the original extract achieved a relative peak-to-peak line-height of 46,000 unit 

counts and line-width of 3.0G.  After adding a few drops of NaOH, this signal increases to 

the relative intensity peak-to-peak line-height of 89,000 unit counts with the same line-

width.  These signals exhibited a g-value of 2.005. 
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Figure 3.12: EPR Radical Signal of Residue from Chemisorbed Phenol on the 

Surface before and after Extraction Using Isopropyl Alcohol 
 

 
Figure 3.13: EPR Radical Signal of the Extract from Chemisorbed Phenol 

Matrix Using Isopropyl Alcohol as a Solvent 
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The EPR radical signals of the residue from the adsorbed phenol on the CuO/SiO2 

surface before and after extraction with toluene, non-polar solvent are presented in figure 

3.14.  These signals display a g-value of 2.004 and the line-width peak-to-peak of 5.1G.  The 

EPR signal of bound radical before extraction exhibits the relative intensity peak-to-peak 

line-height of 14500 unit counts.  After extraction with toluene, this signal only reduces by 

12% to the relative intensity line-height of 12700 unit counts. 

 
Figure 3.14: EPR Radical Signals of Residue from Chemisorbed Phenol on the 

Surface before and after Extraction with Toluene  
 

The EPR spectra of the extract (using TOL as a solvent) from the adsorbed phenol 

matrix are presented in Figure 3.15.  No EPR signal was observed in the original extract or 

after addition of a few drops dilutes NaOH.  This observation was agreed with a previous 

observation of radical signals of the residue (c.f. Figure 3.14).  Indeed, TOL did not extract 

radicals off the residue; therefore, no EPR signal was observed in the extract.  
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Figure 3.15: EPR Radical Signal of the Extract from Chemisorbed Phenol 

Matrix Using Toluene as a Solvent 
 

Other precursors behaved similar to phenol that polar solvents (IPA and MEA) 

extracted more surface-bound radicals than non-polar solvents (TOL and TBB).  In fact, 

EPR signal was reduced significantly after extraction with polar solvents and partially after 

extraction with non-polar solvents.  Additionally, EPR signal was appeared in the extract 

polar solvents but not in the extract non-polar solvents.   

Appendix 1 exhibits the EPR radical signal on the surface before and after extraction 

with different solvents and the EPR radical signal of the extract from other precursors 

including 2-MCP, MCBz, 1,2-DCBz, CT, and HQ.  Table 3.8 displays the summary the 

detection of EPR signal following solvent extraction from different precursors.  Table 3.9 

summarizes the dielectric constants and pKa’s of the solvents used in this study.  Figure 
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3.16 presents dielectric constants versus percent reduction of EPR signal on the particle 

residue. 

Table 3.8:  Percent Reduction of EPR signal Following Solvent Extraction 

Solvents Phenol 2-MCP MCBz 1,2-DCBz CT HQ 
%R Ext %R Ext %R Ext %R Ext %R Ext %R Ext 

IPA 93 + 92 + 90 + 97 + 85 + 98 + 
MEA 92 + 96 + 99 + 98 + 68 + 97 + 
DCM 18 - 25 - 42 - 47 - 56 + 53 - 
TOL 12 - 17 - 21 - 43 - 27 - 32 - 
TBB 15 - 9 - 11 - 28 - 14 - 12 - 

 

Where: %R is the percent reduction of EPR radical signal detected on the surface of 

residue after extraction, Ext (+) is EPR signal was detected in the extract, and Ext(-) is EPR 

signal was not detected in the extract.  

 

 

Figure 3.16:  Solvents Dielectric Constants versus Radical Extractability 
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Table 3.9:  Solvent Dielectric Constants and pKa’s 

Solvents Dielectric Constant pKa 
TOL 2.4 40 
TBB 2.3 >43a 
MEA 33 16 
IPA 18 19 
DCM 9.9 ~ 56b 

a. From comparison with benzene (pKa = 43).  
b. From comparison with methane (pKa = 56). 

After injection of the original extract of chemisorbated phenol into GC-MS, many 

products were observed as shown in the Table 3.10.  Only phenol was observed in non-polar 

solvents, while other products including dimer-type species were formed in polar solvents.  

Table 4.10 also shows molecular products identify in solvent extracts from other precursors 

of 2-MCP, MCBz, DCBz, HQ, and CT. 

Table 3.10:  Observable Molecular Products in Solvent Extracts from Precursors 

Absorbate TOL TBB MEA  IPA DCM 
Phenol Phenol  

(trace) 
Phenol 
 (trace) 

Phenol, dibenzofuran, 
2-phenoxyphenol 

Phenol, dibenzofuran,  
2-phenoxyphenol,  
dibenzo-p-dioxin  

Phenol,  
dibenzofuran 

2-MCP 2-MCP 
(trace) 

2-MCP 
(trace) 

Phenol, 2-MCP,  
dibenzo-p-dioxin,  
2-chlorodibenzo-p-
dioxin  

2-MCP, phenol,  
dibenzo-p-dioxin,  
2-chlorodibenzo-p-dioxin, 
2,8-dichloro-dibenzofuran, 
2,4’-dichloro-5-
hydroxydiphenyl ether,  
1,2-DCBz.  

2-MCP 

MCBz None None 1,2-DCBz, MCBz,  
2-MCP, phenol,  
2-chloro-diphenyl ether 

MCBz  
2-chloro-diphenyl ether,  

MCBz,  
1,2-DCBz, 
dibenzofuran 

1,2-DCBz 1,2-
DCBz 
(trace) 

None MCBz,  
2-MCP,  
1,2-DCBz 

MCBz, 1,2-DCBz 1, 2-DCBz, 2-MCP, 
1-chloro-
naphthalene, CT 

CT CT 
(trace) 

None o-Benzoquinone, CT, 
phenol, 1, 2-DCBz,  
2-phenoxyphenol 

CT, phenol,  
2- dibenzofuran, 
2-phenoxyphenol 

Phenol, CT 

HQ None None p-Benzoquinone  p-Benzoquinone  p-Benzoquinone  

 

Figure 3.17 and Figure 3.18 exhibit the products after extraction bound-radical 

generated from chemisorbed phenol molecule using non-polar and polar solvents 

respectively.  Products after extraction with DCM solvent, which has characteristic between 
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polar and non-polar solvents, are presented in Figure 3.19. No dimers were observed after 

extraction with the non-polar TOL solvent; however, dibenzofuran was observed after 

extraction with DCM solvent.  Dibenzofuran, 2-phenoxyphenol, and dibenzo-p-dioxin were 

also detected in the IPA extract.  

 

 

Figure 3.17: GC-MS Spectra of Product of Phenol after Extraction by Using TOL 

 

 

Figure 3.18: GC-MS Spectra of Products of Phenol after Extraction by Using IPA 

 

Similar to phenol, many molecular products including dimer-type species were 

detected in the polar solvent extract and a few in non-polar extract from other adsorbated 

precursors.  Appendix 1 displays the GC-MS analysis products of extracts of other 
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precursors including 2-MCP, MCBz, 1,2-DCBz, CT, and HQ.  Appendix 2 exhibits the 

chromatogram of the extracts of precursors. 

 

 

Figure 3.19: GC-MS Spectra of Products of Phenol after Extraction by Using DCM 

 

3.2.4 Toxicology 

 Samples of radical-particle systems were prepared for Dr. Stephania Comier studied 

their toxicology toward human bronchia epithelial cells.  Methyl cellulose was used as a 

media and a positive control while saponin was used as a negative control.  Figure 3.20 

exhibited the percent of survival cells after exposure to bound-radical from adsorbate 2-

MCP on 5% CuO/SiO2 surface for 24 hours.  300µg of particles resulted in only 80% cell 

viability while 3000µg of particles resulted in less than 10% cell viability. 

OH

O
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Figure 3.20: Percent of Viability of Cells after Exposure to Particle Containing 
Surface-Bound Radicals 
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CHAPTER 4:  DISCUSSION 
  

4.1 Thermal Degradation of Hydroquinone and Catechol in Gas-Phase 

The study of the degradation of hydroquinone (HQ) and catechol (CT) helps to 

identify which persistent radical is formed during the thermal process.  Although structurally 

similar, HQ and CT displayed different reaction pathways because of significant differences 

in their product distribution from thermal decomposition.  Oxidation versus pyrolysis of HQ 

and CT also resulted in unusual changes in the product distribution. 

4.1.1 Hydroquinone  

In thermal degradation of HQ, the dominant product is para-benzoquinone (p-

benzoquinone) at low temperature. At high temperatures above 650oC other products such as 

phenol, benzene, styrene, indene, naphthalene, biphenylene, phenylethyne, dibenzofuran 

(DF), and dibenzo-p-doxin (DD) are formed during pyrolytic condition.  Under oxidative 

condition, benzene, 4,4’-dihydroxybiphenyl, 4,4’-dihydroxydiphenyl ether, and 

cinnamaldehyde were formed in addition to the major product p-benzoquinone.  Hydrogen-

rich conditions initially inhibited HQ decomposition (below 500oC) but promoted product 

formation at higher temperatures. The decomposition process apparently proceeds via 

formation of a resonance stabilized p-semiquinone radical. 

4.1.1.2 Pyrolysis of HQ 

Comprehensive product yield determinations from the high-temperature, gas-phase 

pyrolysis of hydroquinone in two operational modes (hydrogen rich and lean conditions) are 

studied at a reaction time of 2.0 seconds over a temperature range of 250oC to 1000oC.  The 
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presence of an additional source of hydrogen had a significant impact on the pyrolysis of 

hydroquinone. Indeed, substantial differences in thermal stability of HQ at moderate 

temperatures (250oC - 550oC) are readily apparent. Over this temperature range, p-

benzoquinone is the principal product of thermal degradation of HQ under both hydrogen 

rich and lean conditions.   

Under hydrogen-lean conditions, the yield of p-benzoquinone remained constant at 

the level of 15% (c.f. Figure 3.2) while the presence of excess hydrogen seems to initially 

inhibit this process (below 1% yield at 250oC – c.f. Figure 3.1) with a gradual increase of 

the yield to 32% at 550oC.  As demonstrated in the mechanistic discussion presented below, 

the addition of a hydrogen source promotes the back reaction of the initially-formed 

semiquinone radicals to convert back to molecular HQ. 

 

 
 

Scheme 4.1:   Formation of p-Semiquinone Radical and p-Benzoquinone 

 

p-Benzoquinone formation is initiated through the endothermic dissociation (∆Hrxn = 

80.8 kcal/mol) 1 of a phenoxyl-hydrogen bond to form p-semiquinone radical (rxn 1, 

Scheme 4.1).  Dissociation of the second phenoxyl-hydrogen bond forms the observed p-

benzoquinone.  The presence of excess hydrogen from the solvent facilitates the reverse 

reaction through hydrogen addition, resulting in the obvious inhibition of semiquinone 

radical formation. However, as the temperature is increased, p-benzoquinone yield increases 
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in the presence of the excess of hydrogen atoms indicating of abstraction of the second 

phenoxyl hydrogen by hydrogen atom (rxn 2, Scheme 4.1). 

The concentration of hydrogen atoms also impacts the phenol yield (c.f. Figure 3.1 

and figure 3.2).  Phenol appears at 550oC under the hydrogen-rich condition while did not 

observe until 700oC under hydrogen-lean condition.  This is attributable to the displacement 

of hydroxyl radical from HQ by hydrogen atoms (c.f. Scheme 4.2).  Subsequent loss of the 

phenoxyl-hydrogen in phenol by unimolecular decomposition (? Hrxn = 86 kcal/mol) 2 or 

abstraction (∆Hrxn = 40 kcal/mol) 3  by hydrogen atoms forms phenoxyl radical (c.f. Scheme 

4.2). 

 

Scheme 4.2:  Formation of Phenol and Phenoxyl Radical 

  

The formation of dibenzo-p-dioxin (DD) and dibenzofuran (DF) are significantly 

affected by the presence of a hydrogen source.  Under hydrogen-lean conditions, the 

appearance of the DF and DD coincide with phenol formation.  This is in contrast to 

hydrogen-rich conditions, where only trace quantities of DF were detected above 800oC and 

DD was not detected at all (c.f. Figure 3.1 and Figure 3.2).   
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The formation of polychlorinated dibenzo-p-dioxin/dibenzofuran PCDD/F in gas-

phase 3-5 as well as on the surface6-8 from chlorinated phenols have been studied extensively.  

It has been suggested that PCDD/F formation is mainly due to radical-radical reactions.  

Schemes 4.3 and Scheme 4.4 are proposed as the DF and DD formation pathways involving 

phenoxyl radical-radical recombination and phenoxyl-phenol radical-molecule reactions.  In 

the radical-radical pathway of DF formation, two phenoxyl radicals in their keto-form 

recombine to form a dimer intermediate (? Hrxn = -13.8 kcal/mol) 9.  The latter intermediate 

can either tautomerize to 2,2-dihydroxybiphenyl (? Hrx = 18.3 kcal/mol) 9 followed by an 

intra-molecular water elimination process to form DF (? Hrxn  = 64.7 kcal/mol) 9 (upper 

pathway in scheme 4.3) or undergo a hydrogen abstraction followed by intra-molecular 

inter-ring displacement of hydroxyl radical to form DF (lower pathway in Scheme 4.3).  

 

Scheme 4.3:  Formation of DF from Radical-Radical Recombination Reactions 10 

 

The enol form of the phenoxyl radical displaces a ring hydrogen of the phenol 

molecule to form a hydroxy-biphenyl ether intermediate which is followed by a ring closure 

process via intra-molecular inter-ring displacement of hydrogen. Non-chlorinated phenoxyl 

radicals have been studied and  DF formation is preferred over DD formation through the 

radical-radical pathway 3. 
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Scheme 4.4:   DD formation from the radical-molecule reactions 
 

Increases in benzene concentration correspond to the reduction of DD and DF yields 

under hydrogen-rich conditions.  The mechanism for benzene formation via displacement of 

hydroxyl by a hydrogen atom in phenol is presented in Scheme 4.5 ( ? Hrxn = 4.0 kcal/mol) 

10.  Both DD or DF formation and benzene formation require phenol or phenoxyl radicals as 

a reactant; thus they compete for phenol.  The reduction of DD and DF yields in the 

presence of a hydrogen-rich source is attributable to an increase in the rate of benzene 

formation.  Consequently, the increase in benzene yield results in reducing the concentration 

of phenoxyl radicals that is required for the formation of DD and DF. 

 

Scheme 4.5: Benzene formation from phenol 
 
 

The substituted aromatic species such as styrene, indene, naphthalene, biphenylene, 

and phenylethyne do not form until above 700oC.  They correspond to the complete 

destruction of HQ into smaller C2, C3, and C4 fragments that can undergo molecular growth 
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to form the observed species.  These types of products are consistently observed from 

pyrolysis of hydrocarbon species and their mechanisms of formation are well established 11-

13.  However, HQ may promote formation of substituted aromatic species through formation 

of cyclopentadienyl radical by elimination of CO from phenoxyl radical 11, 14 (c.f. Scheme 

4.6).  

 

Scheme 4.6:  Cyclopentadienyl Radical Formation 

 

The activation energy for this unimolecular decomposition reaction is about 52 

kcal/mol  which is significantly higher than its enthalpy, ? H = 20 kcal/mol 15, 16, but still low 

enough to result in significant product formation. Homogeneous radical-radical 

recombination of cyclopentadienyl radicals is known to form naphthalene as depicted in 

Scheme 4.7 17. 

 
 

Scheme 4.7:  Naphthalene Formation 
 
 

Although not directly observable in this study, pyrolysis of HQ forms persistent free 

radicals including p-semiquinone, phenoxyl, and cyclopentadienyl that are strongly reducing 
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agents and suspect causative agents of cancer, heart disease and lung disease 18-28. The 

formation of p-semiquinone radical is strongly implied because of the observation of p-

benzoquinone as the only molecular product over the temperature range of 250oC to 700oC.  

Formation of phenoxyl is implied by the detection of molecular phenol over the temperature 

range of 550oC to 900oC.  Also, formation of cyclopentadienyl is implied by the formation 

of naphthalene above the temperature of 700oC. 

4.1.1.2 Oxidation of HQ 

From oxidation of HQ, p-benzoquinone was a major product at all temperature; 

however, phenol was not observed.  Under oxidative conditions, hydroxyl radical abstracted 

a hydrogen atom from hydroxyl group in HQ to form p-semiquinone radical (c.f. Scheme 

4.8).  Subsequent loss of the second hydroxyl-hydrogen from semiquinone radical results in 

p-benzoquinone formation (c.f. Scheme 4.8). 

 

Scheme 4.8:  p-Semiquinone Radical and p-Benzoquinone Formation 

 

Difference from pyrolysis, oxygen enhances the rate of thermal decomposition of 

HQ under oxidation extensively.  The formation of 4,4’-hydroxybiphenyl can be readily 

accounted for by the recombination reaction of two p-hydroxy-phenyl radicals or the 

radical-molecule reaction of p-hydroxy-phenyl radical with HQ as depicted in Scheme 4.9.   

Their formation could be attributed to the tautomerization of phenoxyl radicals formed from 
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phenol as was observed in the pyrolysis of HQ.  However, phenol was not observed in the 

oxidation studies. 

 

 

Scheme 4.9:  Formation of 4,4’ hydroxylbiphenyl 

 

However, purely gas-phase pathways to p-hydroxy-phenyl radicals appear 

improbable, and a surface-assisted pathway is suspected.  Substituted phenols may 

chemisorb to silica to form surface-associated phenolates as depicted in Scheme 4.10.  

Subsequent rupture of the phenyl-oxygen bond results in the formation of the p-hydroxy-

phenyl radical which then reacts via the gas-phase reactions depicted in Scheme 4.9. 

 

Scheme 4.10:  Silica Surface-Mediated Formation of p-Hydroxy-Phenyl Radical 

 

Conversion of HQ to benzene would appear to involve displacement of two hydroxyl 

groups which should form phenol as an intermediate.  Although phenol was observed during 
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pyrolysis studies, it was not observed under oxidation conditions; therefore, the gas-phase 

pathway appears improbable.  Scheme 4.11 is proposed a surface-mediated loss of both 

hydroxyl substituents from HQ.  The resulting phenyl diradical can abstract phenoxyl-

hydrogens from HQ to form benzene and p-BQ if a single HQ is involved (or p-SQ if two 

HQ are involved). 

 

 

Scheme 4.11:  The formation of benzene via a surface-mediated reaction of HQ 

 

Over the same temperature range, traces of 4,4’-dihydroxydiphenyl ether begins to 

form as well as 4,4’ hydroxylbiphenyl.  The proposed mechanism is presented in Scheme 

4.12.  The oxygen-centered radical or enol-form of semiquinone radical displaces one 

hydroxyl group of hydroquinone to form 4,4’-dihydroxydiphenyl ether.  This agrees with the 

reduction of both hydroquinone and p-benzoquinone over the same temperature range that 

4,4’-dihydroxydiphenyl ether is formed. 
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Scheme 4.12:  4,4’-Dihydroxydiphenyl Ether Formation from Semiquinone Radical 

   

The formation of p-semiquinone radical is strongly implied because of the 

observation of p-benzoquinone over a wide temperature range of 200oC to 700oC under 

oxidative condition.  The significant difference in the oxidation and pyrolysis of HQ is the 

presence of hydroxyl radicals that can readily abstract hydroxyl-hydrogen of HQ under 

oxidative condition.  Consequently, this increases the yield of p-semiquinone radicals as 

evidenced by the formation of p-benzoquinone.  This difference in oxidative and pyrolytic 

degradation behavior is even more apparent for CT. 

4.1.2 Catechol 

Thermal degradation of CT yielded a variety of products similar to thermal 

degradation of HQ.  However, ortho-benzoquinone (o-benzoquinone) was not observed in 

pyrolysis of CT.  Other products from pyrolysis of CT are phenol, benzene, dibenzofuran 

(DF), dibenzo-p-dioxin (DD), phenylethyne, styrene, indene, anthracene, naphthalene, and 

biphenylene. The absence of o-benzoquinone in the products of pyrolysis of CT is a result of 

an intra-molecular water elimination reaction between two ortho hydroxyl groups in CT 

molecule.  In contrast to pyrolytic condition, o-benzoquinone was detected instantaneously 

upon degradation of CT under oxidative conditions because oxygen facilitated hydrogen 

abstraction at low temperature before water elimination was eventually feasible.  Fewer 
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products were observed from the oxidation of CT; however, the additional products 

including 2,2’-dihydroxydiphenyl ether and 1,2-dihydroxy-naphthalene were observed 

above 400oC. 

4.1.2.1 Pyrolysis of CT 

CT and HQ are both dihydroxyl benzenes, with the hydroxyl groups located in ortho 

and para positions, respectively.  Based on their structural similarities, similar products of 

their thermal degradation were expected.  However, the lack of o-benzoquinone in the 

products of CT thermal degradation was unexpected and led to a conclusion that the 

mechanisms of initial decomposition of CT and HQ are very different despite to the 

structural similarities.  The hydroxyl bond dissociation energy is required ∆Hrxn = 79.3 

kcal/mol for CT and ∆Hrxn = 80.8 kcal/mol for hydroquinone 1.  However, the close 

proximity of the two otho-hydroxyl groups in CT enables an intra-molecular water 

elimination process that is thermodynamically much for favorable (∆Hrxn  = 22.5-38.5 

kcal/mol) 29, even though concerted processes can have activation energies considerably 

higher than their endothermicity.  Scheme 4.13 presents the intra-molecular elimination of 

water in CT that result in the formation of an epoxide.  Epoxides are difficult to detect by 

GC because they readily react with the column stationary phase. 

 

 

Scheme 4.13:  Internal Water Elimination Reaction in CT Pyrolysis 
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Phenol was the first observable product at 600oC.  The epoxy-benzene (or alternate 

diradical form) reacts rapidly with hydrogen atom (probably via extraction from CT or the 

isopropyl alcohol with some contribution from recombination with hydrogen atoms) to form 

phenol.  Indeed, the percent yield of phenol in hydrogen-rich condition is 10 times higher 

than the percent yield of phenol under hydrogen-lean condition.  Scheme 4.14 presents the 

phenol formation through a hydrogen addition to epoxy-benzene.  This reaction is 

exothermic with the enthalpy in the range of ∆H = -46.6 to -51.9 kcal/mol 29.  As the 

temperature increases, the yield of phenol increases with increasing CT decomposition (and 

probably increasing epoxy-benzene formation as an intermediate). 

Benzene was detected at higher temperatures than phenol and appeared as phenol 

decomposed, indicating it is formed by displacement of the hydroxyl group by hydrogen 

atom in phenol molecule (c.f. Scheme 4.5).  Benzene is formed at much higher yield and in 

wider range of temperatures under hydrogen-rich conditions than under hydrogen-lean 

condition confirming the role of hydrogen atoms in its formation.  

 

 

Scheme 4.14:  Phenol Formation from Di-Radical 

 

The majority of products are formed above the temperature of 700oC under 

hydrogen-rich and 800oC under hydrogen lean conditions (c.f. Figure 3.4 and Figure 3.5). 

Much higher yields of the poly-aromatic products were observed under hydrogen-rich 
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conditions which are attributable to formation of the molecular poly-aromatic by 

recombination of the analogous radical with hydrogen atoms. 

Elimination of CO from phenoxyl radical yields cyclopentadienyl radical (c.f. 

Scheme 4.6), and cyclopentadienyl radicals have been strongly implicated in the formation 

of naphthalene (c.f. Scheme 4.7).   The formation of anthracene is believed from the 

combination of three cyclopentadienyl radicals according to its structure formula is similar 

to naphthalene (c.f. Scheme 4.15).   

 

 

Scheme 4.15:  Anthracene Formation 

 

During thermal degradation of CT under hydrogen-rich conditions, significant levels 

of Dibenzofuran (DF) and dibenzo-p-dioxin (DD) were detected. However, only low levels 

of DF and no DD were formed under hydrogen-lean conditions.  The formation of DF and 

DD is most likely a result of reactions involving the epoxy species that can exist as 

relatively stable diradical resonance form.  Interaction of the epoxy-benzene with a 

molecular CT results in DF formation (c.f. Scheme 4.16).  In the di-radical resonance form, 

the oxygen-centered radial displaces one of hydroxyl groups from CT to form hydroxyl-

biphenyl ether intermediate followed by the ring closure via the displacement of hydroxyl by 

the carbon-centered radical to form DF (c.f. Scheme 4.16). 
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Scheme 4.16:  DF Formation from Epoxy-benzene 

 

Recombination of two epoxy-benzenes or diradicals forms DD as prososed in 

Scheme 4.17.    The higher yield of DF compared to DD is consistent with the low 

concentration of epoxide or diradicals that favors the DF radical-molecule formation 

pathway over the radical-radical recombination pathway that leads to DD. 

 

Scheme 4.17:  DD Formation from Recombination of Two Epoxy-benzenes 

 

Under hydrogen-rich conditions, complete decomposition of CT shifts about 100oC 

lower than under hydrogen-lean conditions. This phenomenon suggests involvement of 

hydrogen atoms in the formation of phenol.  The yield of phenol increases drastically from 

600oC to 800oC when excess hydrogen source is available in the reaction feed (c.f. Scheme 

4.14).  The formation of phenoxyl radical is in the intermediate steps of phenol formation.  

In fact, addition of one hydrogen atom to epoxy-benzene or diradical species yields 

phenoxyl radicals (c.f. Scheme 4.18). 

 
Scheme 4.18:  Phenoxyl Radical Formation 
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The formation of phenoxyl radical significantly contributes to DD and DF formation. 

The combination of two keto form of phenoxyl radicals yields DF (c.f. Scheme 4.3) and the 

interaction of enol form of phenoxyl radicals with molecular phenol yields DD (c.f. Scheme 

4.4).  Also, keto form of phenoxyl radicals interacts with epoxy-benzene will yields DF as 

proposing in Scheme 4.19 bellow. 

 

 

Scheme 4.19:  DF Formation from Phenoxyl Radical and Epoxy-Benzene 

 

The keto form of phenoxyl radical displaces a hydroxyl-hydrogen of phenol to form 

dimer radical intermediate and followed by the ring closure process through intra-molecular 

inter-ring displacement of hydrogen to form DD.  Scheme 4.20 presents the formation of 

DD from phenoxyl radical and phenol. 

 

 

Scheme 4.20:  DD Formation from Phenoxyl Radical and Phenol 

 

The lack of o-benzoquinone formation in the products of pyrolysis of CT led to a 

conclusion that CT initially decomposed through intra-molecular elimination of water due to 

the close proximity of the two hydroxyl group in CT.  Detection of molecular phenol over 

the temperature range of 550oC to 900oC indirectly infers of diradical and phenoxyl radcial 
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formation.  The formation of cyclopentadienyl is implied by the formation of naphthalene 

above the temperature of 750oC. 

4.1.2.2 Oxidation of CT 

In contrast to pyrolysis of CT, the formation of o-benzoquinone was detected 

instantaneously upon degradation of CT at 200oC for oxidation of CT.    Under oxidative 

condition, the presence of hydroxyl radical in the system increases the rate of reaction of CT 

at lower temperatures through promotion of the abstraction of the phenolic hydrogens in CT.   

Under pyrolytic conditions, the principal decomposition pathway for CT was the 

elimination of water from the ortho-hydroxy groups to form the epoxide.  This pathway was 

not available in HQ, which instead formed p-benzoquinone.  Under pyrolytic conditions, 

formation of either o- benzoquinone or p- benzoquinone from CT or HQ, respectively, 

would require the abstraction of a hydroxyl-hydrogen by hydrogen atom.  This reaction 

cannot compete with the more rapid elimination of water for CT under pyrolytic conditions.  

However, under oxidative conditions, hydroxyl radicals are now present in sufficient 

concentration for hydrogen abstraction to occur that results in the formation of an o-

semiquinone radical.   

o-Semiquinone radical may decompose by unimolecular decomposition of the 

second oxygen-hydrogen bond to form o-BQ.  Abstraction of the second hydroxyl hydrogen 

by hydroxyl radical may also contribute because of the possibly unusually high 

concentration of o-semiquinone due to its reported stability and resistance to reaction with 

oxygen 30, 31.  Scheme 4.21 displays the formation of o-semiquinone and o-benzoquinone 

from decomposition of CT. 
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Scheme 4.21:  o-Semiquinone and o-Benzoquinone Formation 

 

CT rapidly degraded as the temperature increased and completely decomposed at 

600oC while o-benzoquinone was still observed until 700oC.  Decomposition of CT 

produced 1, 8-dihydroxynaphthalene below 700 C in trace quantities.  Naphthalene is known 

to be formed by recombination of cyclopentadienyl radicals that formed by the elimination 

of CO from phenoxyl radical (c.f. Scheme 4.6 and Scheme 4.7).  Hydroxy- 

cyclopentadienyl radicals can be formed by elimination of CO from o-semiquinone.  

Recombination of two hydroxy- cyclopentadienyl radicals result in the formation of the 1, 8-

dihydroxynaphthalene by a mechanism analogous to that of formation of naphthalene from 

cyclopentadienyl.  Scheme 4.21 displays the formation of 1, 8-dihydroxynaphthalene from 

o-semiquinone radical.  Hydroxy-naphthalenes likely do not form from the thermal 

oxidation of HQ (vide infra) because of the high rate of the conversion of the intermediate p-

semiquinone radical to p-benzoquinone rather than hydroxy- cyclopentadienyl. 

 

 

Scheme 4.21: 1,8-Dihydroxynaphalene Formation from o-semiquinone radical 
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The yield of CT and o-benzoquinone drastically decreased as the yield of 2,2’-

dihydroxydiphenyl ether increased.  The enol form of o-semiquinone displaces one of 

hydroxyl groups of CT to form 2,2’-dihydroxydiphenyl ether.  Scheme 4.22 presents the 

formation of 2,2’-dihydroxydiphenyl ether. 

 

Scheme 4.22: 2,2’-Dihydroxydiphenyl Ether Formation 

 

Formation of semiquinone-type radical is implied due to observation of o-

benzoquinone under oxidative condition.  Although oxygen facilitated the decomposition of 

CT as well as the products, o-benzoquinone still existed over a wide range of temperature 

and interacted with CT to form dimers.  Hydroxy- cyclopentadienyl radicals may also imply 

because of the formation of 1,8- dihydroxynaphalene.  Phenoxyl-type radical may not 

implied under oxidative condition; however, phenol was detected under pyrolytic condition 

that suggests possible formation of semiquinone-type and phenoxyl-type radicals over some 

reactive surfaces 

4.2 Surface-Bound Radicals 

Our group and other researchers have previously suggested that surface-bound 

radicals are formed during the adsorption of organic molecules on metal oxides6, 32-37. This is 

hypothesis to be theory chemisorption of organic molecules onto a metal surface followed 

by reduction of the metal to form surface-bound radicals.   Figure 4.1 presents the general 

formation of surface-bound radicals from interaction of organic molecules and metal 
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surface.  In order to prove this hypothesis, the nature of semiquinone-type and phenoxyl-

type radicals was studied by using transition metal copper oxide supported on silica as a 

surrogate of combustion generated fly-ash.  

 

 

Figure 4.1:  Formation of Surface-Bound Radicals 

 

4.2.1 Formation and Stabilization of Surface-Bound Radicals 

HQ and CT are chosen as potential precursors for semiquinone radicals due to their 

molecular structures are very similar to semiquinone radicals; 2-MCP may also form 

semiquinone radical.  MCBz and phenol are chosen as potential precursors for phenoxyl 

radicals; 1,2-DCBz and 2-MCP are chosen as potential precursors for 2-chlorophenoxyl 

radicals.  MCBz and 1,2-DCBz may chemisorb with the surface and form surface- bound 

radicals through the elimination of hydrogen chloride (c.f. Scheme 4.23a and Scheme 

4.23b).   

 

Scheme 4.23a:  Surface-Bound Radical Formation from MCBz  
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Scheme 4.23b:  Surface-Bound Radical Formation from 1,2-DCBz 

 

Chlorinated benzene binds to the surface at chlorine site and induces hydrogen to 

release hydrogen chloride due to weak bond between chlorine and benzene ring.  Electrons 

transfer and reduction of the copper in chemisorption result in formation of surface-bound 

radicals. 

HQ, CT, and P form surface-bound radicals through water elimination when they 

associate with CuO/SiO2 surface (c.f. Scheme 4.24a and Scheme 4.24b).  Hydroxylated 

benzenes bind to the surface at hydroxyl site and interact with hydroxyl group from the 

surface to release water.  Again, electrons transfer and reduction of the copper in 

chemisorption from the surface generate surface-bound radicals.  

 

Scheme 4.24a:  Surface-Bound Radical Formation from HQ 
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Scheme 4.24b:  Surface-Bound Radical Formation from CT 

 

However, 2-MCP can form radicals initially through either hydrogen chloride or 

water elimination route because it contains both chlorine and hydroxyl substitutents.  

Scheme 4.25 displays the formation of bound-radical from 2-MCP. 

 

 

Scheme 4.25:  Surface-Bound Radical Formation from 2-MCP 
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Semiquinone-type and phenoxyl-type radicals have been proven that they form on 

the surface of particles containing copper oxide.  The next study will investigate their 

characteristic as surface-bound radicals. 

4.2.2 Temperature Dependence of EPR g-Value and Concentration of Surface-
Bound Radicals on CuO/SiO2 Surface 

 
Surface-bound radicals of chemisorbed precursors on the copper oxide surface 

exhibited absorption spectra with two peaks that were assigned to the two EPR g-values g1 

and g2 (c.f. Figure 4.2).  The first peak was always at the same place for any precursor or 

chemisorbed temperature while the second peak was vary with precursor or chemisorbed 

temperature.  The first peak had a low EPR g-value associate with an unpaired electron 

transferred from the chemisorbed precursor and trapped in the metal oxide matrix.  This is 

the point defect or oxygen vacancy which is often called F-center due to its specific optical 

absorption 38-40.  The dotted line displays an EPR g-value of g1= 2.0016 for the first peak of 

all precursors, which is in the range of the formation of F-center (g=2.001-2.002).  The 

second peak had a high EPR g-value and was the actual EPR signal for an unpaired electron 

of surface-bound radicals. 

 
Figure 4.2:  F-Center of Precursor Absorption Spectra at 230oC 
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The Origin 7.0 software with peak fitting was used to calculate the g-value of all 

surface-bound radicals using gaussian peak type with very small deviation range of +/- 

0.0002.  Figure 4.3 displays derivative spectra or EPR spectra (left) and absorption spectra 

(right) of MCBz at 200oC.  This demonstrates a perfect match of the overall peak fitting and 

the original EPR spectra of a precursor, MCBz.  

 

Figure 4.3:  Derivative (left) and Absorption (right) Spectra of MCBz at 200oC 

 

It appears that the rate of surface-bound radicals’ formation correlates with the rate 

of chemisorption of the precursors.  Based on the yield of radicals (c.f. Figure 3.9), the 

hydroxyl subtituent-containing precursors HQ, CT, 2-MCP, and phenol exhibited lower 

yields of radical formation than chlorine subtituent-containing precursors MCBz and 1,2-

DCBz.  The reason for this phenomenon may be the strong hydrogen bonding inhibits 

chemisorption process.  In fact that HQ, CT, 2-MCP, and phenol generated surface-bound 

radicals through water elimination pathway, which involves hydrogen bonding.  On the 

other hand, MCBz and 1,2-DCBz generated surface-bound radicals through hydrogen 

chloride elimination, which involves weaker hydrogen bonding.  2-MCP displayed an 
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intermediate radical yield between chlorinated benzene and hydroxylated benzene groups 

because it has both chlorine and hydroxyl substitution.  HQ and CT generated nearly 

constant low yield throughout the temperatures studies while substituted benzenes such as 

MCBz and 1,2-DCBz increased significantly at 200oC and rapidly reduced in yield with 

increasing the temperature.  This is due to the fact that these precursors de-chlorinated with 

increasing temperature and they cannot chemisorb onto the surface through hydrogen 

chloride elimination.   

  Chlorinated benzenes exhibit a higher g-value than non-chlorinated benzene 

precursors 41.  MCBz and 1,2-DCBz initially generated radicals with high g-value at low 

temperature around 150oC and gradually decreased g-value as increasing temperature.  This 

is due to the fact that these molecules de-chlorinated with increasing temperature 7.  Phenol 

generated radical with constant low g-value; however, 2-MCP generated radicals with 

higher g-value than phenol due to chlorine substitution.  At low temperature, the hydrogen 

chloride elimination pathway is favored while water elimination pathway is favored at high 

temperature.  Therefore, one observes g-value of 2-MCP slightly increased with increasing 

temperature.  Similarly, HQ and CT exhibited a constant g-value, but they have higher g-

value than phenol because they have an extra hydroxyl group causing high resonance 

stabilized.  These radicals localize on the oxygen atom which increases spin-orbit coupling; 

consequently, they have higher g-value. 

4.2.3 Persistence of Surface-Bound Radicals 

Most radicals have very short lifetimes of pico-mili-seconds 42-45.  Only a few 

radicals are known to have lifetimes longer that is 10 seconds46, 47. Lifetime of phenoxyl 
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radical achieves in 10 ns in solution48 while the lifetime of semiquinone radical is from 0.2-

10 ms 49-51.  

Radicals exhibit longer-lived on surfaces than in solution 52 and particularly they can 

exist for very long period of time on silica surface 53.  In fact, phenoxyl and semiquinone-

type radicals are very stable on CuO/SiO2 surface because they still were detected after 2 to 

3 hours exposure to the air (c.f. Figure 3.11).  The reason for this phenomenon due to the 

unpaired electron is associated with the surface of the particle or metal, and it is apparently 

protected from reaction with oxygen in the air causing the radicals being environmentally 

persistent.  Experimentally, the decay of bound-radicals followed first order kinetic because 

the plot of concentration of radicals with respect to the air exposure time formed more 

straight line in logarithmic scale than the plot of inverse concentration of radicals with 

respect to air exposure time.   

Normally, radicals are very active in gas-phase or in solution because they are easily 

converted into molecular species or reacted to other radicals to form new products.   Phenol 

generated bound-radicals, which is the most persist among six precursors that has the 

lifetime t around 74min.  Semiquinone-type radicals are less stable on the surface than 

phynoxyl radical due to semiquinone radicals are more reactive with oxygen in the air than 

phenoxyl radicals.  Figure 4.4 presents the relative persistence of the radicals. 

 

Figure 4.4: Relative Persistence of Surface-Bound Radical 
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This order follows the general trend observed for calculated reactivity of gas-phase 

radical with oxygen 54.  Semiquinone-type and phenoxyl-type radical persist on CuO/SiO2 

surface; however, can they be extracted off the surface by some types of solvent? 

4.2.4 Mechanism of Products Formation  in the Extract 

In order to test the extractability of the bound-radical on the surface, several polar 

and non-polar solvents were used as the extract.  Phenol generated very strong radical signal 

on the CuO/SiO2 surface through chemisorption; however, this signal was reduced by 93% 

after extraction with polar solvent such as methyl alcohol (MEA) or isopropyl alcohol (IPA) 

for one hour (c.f. Figure 3.12).  Accordingly, polar solvents have ability to extract radicals 

well.   

As a result of the lifetime of radical being very short in the solution, the extract was 

subjected to EPR measurement immediately after separation of residue and the extract.  The 

EPR radical signal was observed at the g-value of 2.005; however, this signal was increased 

significantly after introduction of a few drops of dilute sodium hydroxide into the original 

extract (c.f. Figure 3.13).  This phenomenon is due to the fact that basic solution converts 

molecular species to radical anion 55, 56.  Scheme 4.26 is presents p-semiquinone radical 

converts to radical anion.  

 

 

Scheme 4.26:  Conversion of Molecular Species to Anion Radical 
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In the extract, semiquinone radicals scavenge a hydrogen atom and quickly convert 

to molecular species.  On the other hand, HQ or CT molecular may form anion radical in the 

presence of base.  The study of pulse radiolysis suggested that in alkaline solutions, phenol 

interacts with negative ion hydroxide to form semiquinone anion radical 57-60.  Neta and 

Fessenden proposed the following mechanism of HQ and CT formation from phenoxyl 

radical (c.f. Scheme 4.27) 

 

 
 

Scheme 4.27:  HQ and CT formation from phenoxyl radical 

 

Non-polar solvents did not extract or hardly extracted radicals from the surface.  The 

radical signal on the residue was reduced only around 12% after extraction of adsorbed 

phenol bound-radical using non-polar toluene solvent (c.f. Figure 3.14).  No EPR signal was 

detected from the original extract and the mixture of the original extract with addition of 

dilute sodium hydroxide (NaOH) (c.f. Figure 3.15) that also proved toluene did not extract 

radicals.  

The polar, alcoholic solvents, MEA and IPA, have a high dielectric constant, contain 

slightly acidic hydrogen, and efficiently extract the radicals. The non-polar, hydrocarbon 

solvents, TOL and TBB, have a low dielectric constant no measurable acidity, and poorly 
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extract the radicals.  DCM with a moderately high dielectric constant and no acidic 

hydrogen extracts radicals with modest efficiency (c.f. Table 3.9 and Figure 3.16). 

Three extraction scenarios can be envisioned:  1) the chemisorbed species is 

extracted as a radical via the solvated forces of the solvent as expressed by the solvent 

dielectric constant (c.f. Scheme 4.27a),  2) the chemisorbed species is extracted as an anion 

and possibly  stabilized by hydrogen-bonding as well as the dispersion forces of the solvent 

as expressed by both the dielectric constant and the pKa of the solvent (c.f. Scheme 4.27b), 

and 3) the chemisorbed species is extracted as molecular species via donation of an acidic 

hydrogen from the solvent as expressed by the pKa of the solvent (c.f. Scheme 4.27c). 

 

Scheme 4.27:  a) Extraction of the chemisorbed species as a radical due to simple solvated 
effects, b) extraction as an anion assisted by H-bonding with the solvent, and c) extraction as a 
molecular species using the solvent as a proton donor.  
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It is not clear which extraction scheme is dominant. The detection of a weak radical 

signal in solution indicates that pathway a proceeds to some extent.   The presence of the 

parent molecular species of the adsorbate suggests that either pathway c is occurring or the 

extracted radical/anion is reacting with the solvent to abstract a hydrogen atom or a proton 

as illustrated in second reactions in pathways b and c.   Pathway c is attractive in that it 

readily explains the increased extraction efficiency of the alcohol solvents, IPA and MEA, 

by their providing a proton to facilitate formation of a stable molecular species upon 

extraction.  However, the molecular products observed in the extract are the result of 

reactions of extracted radicals in solution.   

 

 

Scheme 4.28:  Products of Radicals Interaction of Chemisorbed Phenol 
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Parallel to EPR analysis of the extract, GC-MS was used to identify the products of 

radical-radical interaction if radicals were in the extract.  Indeed, GC-MS detected dioxin 

products in the extract include dibenzofuran, 2-phenoxyphenol, and dibenzo-p-dioxin (c.f. 

Table 3.10) in the extract using polar solvents.  Only small amounts of phenol were 

observed in the extract using non-polar solvents due to very small amount of radical being 

extracted into the solvent and quickly converted to phenol.  Scheme 4.28 proposes possible 

mechanism of product formation from the interaction of adsorbed phenoxyl bound-radicals 

Abstraction of a solvent hydrogen by phenoxyl forms phenol.  The Enol-form of the 

phenoxyl radical displaces a ring hydrogen atom of another enol-form of phenoxyl radical 

followed by ring closure to form DD.  Additionally, the enol-form of the phenoxyl radical 

displaces an ortho-hydrogen of phenol to form 2-phenoxylphenol.  Two keto-form of 

phenoxyl radical combine through elimination of water to form DF. 

Many dimers were observed from GC-MS analysis of the extract of adsorbed 2-MCP 

including dibenzo-p-dioxin, 2-chlorodibenzo-p-dioxin, 2,8-dichlorodibenzofuran, 2,4’-

dichloro-5-hydroxydiphenyl ether.  The proposed mechanism of the products formation 

from the radical-radical interaction in the extract of adsorbed 2-MCP is presented in 

following Scheme 4.29. 

Two keto-form of 2-chlorophenoxyl radicals combine through elimination of water 

to form 2,8-dibenzofuran while two enol-form of 2-chlorophenoxyl radical combine through 

elimination of hydrogen chloride to form 2-chlorodibenzo-p-dioxin.  The enol-form of 2-

chlorophenoxyl radical displaces chlorine of the keto-form of phenoxyl radical followed by 

ring closure to form DD formation, or it may displace a ring hydrogen of 2-chlorophenol to 

form 2,4’-dichloro-5-hydroxydiphenyl ether. 
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Scheme 4.29:  Products of Radicals Interaction of Chemisorbed 2-MCP 

 

MCBz reacts with the particle surface to form primarily chemisorbed phenoxyl 

radicals that form most of the same products observed from phenol.  Surface-mediated 

chlorination, followed by phenoxyl-surface or phenoxyl-oxygen bond scission (with 

subsequent abstraction of a solvent hydrogen) form 2-MCP and 1,2-DCBz, respectively.  

Scheme 4.30 display possible mechanism of products formation from radical-radical 

interaction in the extract of chemisorbed MCBz.  
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Scheme 4.30:  Products of Radicals Interaction of Chemisorbed MCBz 

 

Chemisorption of 1,2 DCBz forms both 2-monochlorophenoxyl radical (via 

chemisorption at one site by HCl elimination) and a doubly-surface –bound o-benzoquinone 

radical (via chemisorption at two sites by double HCl elimination).  CT and 2-MCP are 

formed by hydrogen abstraction from the solvent by the o-semiquinone radical and 2-

chlorophenoxyl radical, respectively.  Chloronaphthalene is formed from recombination and 

rearrangement of chlorocyclopentadienyl radicals (formed by expulsion of CO from the 2-

chlorophenoxyl radicals) in a pathway analogous to the gas-phase formation of naphthalene 

from recombination of cyclopentadienyl radicals 10, 17.  MCBz is formed by phenyl-oxygen 

bond scission and abstraction of hydrogen from the solvent.  Scheme 4.31 displays products 

of solution reaction of radicals extracted from chemisorbed 1,2-DCBz 
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Scheme 4.31:  Products of Radicals Interaction of Chemisorbed 1,2-DCBz 

 

Similarly to 1,2-DCBz, CT can also chemisorb at one or two sites via elimination 

of one or two H2O’s, respectively.  In the case of CT, the chemisorpion is primarily via the 

doubly-bonded species and solvent extraction of the surface associated o-benzoquinone 

radical is expectedly difficult, resulting in a very low yield of o-benzoquinone.  CT is again 

formed from the extracted o-semiquinone radical via abstraction of a solvent hydrogen.  

Phenol is formed via an epoxide, formed be scission of one phenyl-oxygen bond and one 

oxygen-surface bond and hydrogen abstraction from the solvent.  The singly-bound o-

semiquinone extracted radical reacts with phenol to form hydroxydiphenyl ether.  Product 

formation is proposed in the following Scheme 4.32. 
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Scheme 4.32:  Products of Radicals Interaction of Chemisorbed CT 

 

HQ chemisorbs via elimination of H2O to form a surface-associated p-semiquinone 

radical.  Upon extraction, it loses the second hydroxyl hydrogen to form exclusively p-

benzoquinone.  Because of its rapid conversion to p-benzoquinone, dimerization products 

were not observed as was the case for the other extracted radicals.  Scheme 4.33 summarizes 

possible path-way of products formation.  

 

Scheme 4.32:  Products of Radicals Interaction of Chemisorbed HQ 
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Surface-bound radicals are extractable in polar alcoholic solvent that can serve as a 

hydrogen donor.  Aging of the samples may result in loss or decomposition of the more 

labile radicals.  This study suggests that once extracted into solution, radicals that were 

environmentally persistent when associated with particulate matter will form molecular 

products in solution.  The radical-radical interaction in the extract results in the formation of 

molecular dimers species. Solvent extraction converts semiquinone-type and phenoxyl-type 

radicals to molecular species that may result in misidentification in the literature as 

molecules rather than radicals. 
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CHAPTER 5: SUMMARY 
 

 
 Persistent free radicals (PFR) including semiquinone and phenoxyl radicals are 

highly resonance stabilized that can be formed in any combustion system or thermal 

processes.  On the other hand, hydroquinone (HQ) and catechol (CT) are well documented 

products of combustion of many type of biomass including tobacco1-3; thus, HQ and CT are 

suspected biologically damaging semiquinone-type radicals.  Semiquinone radicals are 

extremely active in oxidative stress that can lead to cancer, mutations, and alter DNA 4-6.  

All hydrocarbon fuels will form phenol and substituted phenol that can form substituted 

phenoxyl radicals.  Phenoxyl radicals may combine to form polychlorinated dibenzo-p-

dioxin/ dibenzofuran (PCDD/F) which is the most toxic known environmental pollutant 7.  

They are persistent when associate with combustion generated fly-ash that they can exist 

very long period of time and transport over considerable atmospheric distances 8-12.  This 

work is focused on the study of the nature and origin of PFR associated with combustion 

generated fine particles. 

5.1 Thermal Degradation of Hydroquinone and Catechol in Gas-Phase  
  

The study of thermal degradation of HQ and CT helps to identify which persistent 

radicals are formed and which conditions that radicals are formed during the decomposition 

processing.  It also helps to understand the mechanism of dioxins products as well as other 

polycyclic aromatic hydrocarbon (PAH) products. 

5.1.1 Products Formation from Gas-Phase Pyrolysis of HQ and CT 

Since both HQ and CT are isomers, the only structural difference between those two 

is a position of the second hydroxyl group, that is para or ortho position, respectively.  p-
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Benzoquinone was formed instantly upon the degradation of HQ at 250oC due to the 

dissociation of a hydroxyl-hydrogen bond followed by the abstraction of a second hydroxyl-

hydrogen by hydrogen atom.  However, the lack of o-benzoquinone in the products of 

pyrolysis of CT was unexpected and led to a conclusion that an intra-molecular elimination 

of water is occurred for the initial step of CT decomposition because of the close proximity 

of the two hydroxyl groups in CT.  This results in the formation of epoxy-benzene that may 

also exist as a diradical intermediate. 

 

 

Figure 5.1:  The Maximum Yield of Product Formation from Pyrolysis of HQ 

  

The presence of an additional source of hydrogen had a significant impact on the 

pyrolysis of HQ and CT.  Although in typical combustion or pyrolysis processes, hydrogen 

is in abundance, comparison between the reaction with and without additional hydrogen can 
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provide critical mechanistic information on the high-temperature chemistry of HQ and CT.  

Under hydrogen-rich conditions, the formation of products from pyrolysis of HQ and CT 

were formed at lower temperature and higher yield than under hydrogen-lean conditions.  

The differences in the maximum product yields from pyrolysis of HQ and CT were also 

observed as shown in Figure 5.1 and Figure 5.2. 

 

 

Figure 5.2:  The Maximum Yield of Product Formation from Pyrolysis of CT 

 

The formation of p-semiquinone radical is strongly implied because of the 

observation of p-benzoquinone as the only major molecular product in pyrolysis of HQ.  

Phenoxyl and cyclopentadienyl radical is also implied due to the observation of phenol, 

naphthalene and polycyclic aromatic hydrocarbon during the thermal decomposition of HQ 
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process.  The interaction of phenoxyl radicals results in DD and DF formation while the 

reaction of other radicals and fragments yield substituted benzene and PAH product.  

Scheme 5.1 displays overall mechanism of products formation from pyrolysis thermal 

degradation of HQ. 

 

Scheme 5.1:  Overall Product Formation from Pyrolysis of HQ 

 

Although not directly observable in this study, the decomposition behavior of CT 

suggests the formation of persistent free radicals.  The formation of epoxy-benzene from 

internal water elimination of CT as well as the detection of molecular phenol indirectly 

infers of diradical and phenoxyl radcial formation.  The formation of cyclopentadienyl 

radical is implied by the formation of naphthalene product.  The formation of DF and DD is 

most likely a result of reactions involving the epoxy-benzene that can exist as relatively 

stable diradical.  Interaction of the epoxy-benzene with a molecular CT results in DF 

formation while recombination of two epoxy-benzene or diradicals forms DD.  Scheme 5.2 

exhibits the overall product formation of pyrolysis of CT. 
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Scheme  5.2:  Overall Product Formation from pyrolysis of CT 

 

5.1.2 Products Formation from Gas Phase Oxidation of HQ and CT 

Pyrolysis of HQ yielded p-benzoquinone, but o- benzoquinone was not observed in 

the pyrolysis of CT.  In contrast, oxidation of HQ and CT yielded p-benzoquinone and o-

benzoquinone, respectively as major products at all temperatures.  There was fewer products 

formation under oxidative conditions than pyrolystic conditions.  Figure 5.3 displays the 

maximum yield of product formation from oxidation of HQ and CT.   

Under pyrolytic conditions, the principal decomposition pathway for CT was the 

elimination of water to form epoxy-benzene.  However, under oxidative conditions, 

hydrogen abstraction pathway to form o- benzoquinone favored over the internal water 

elimination because hydroxyl radical abstracts hydroxyl-hydrogen atoms  from HQ or CT 

much more efficiently than hydrogen.  Scheme 5.3 and Scheme 5.4 depict the overall 

product formation of oxidation of HQ and CT, respectively. 
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Figure 5.3:  The Maximum Yield of Product Formation from Oxidation of HQ and CT 

 

 

Scheme 5.3:  Overall Product Formation from Oxidation of HQ 
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Oxygen facilitated the decomposition of HQ and CT as well as the products, but p-

benzoquinone and o-benzoquinone still existed in a wide range of temperature.  

Additionally, the thermal oxidation behavior of HQ and CT suggests the formation of 

persistent free radicals although they are not directly observable in this study.  Formation of 

biological damaging semiquinone-type radical is implied due to observation of p-

benzoquinone and o-benzoquinone from 200oC to 700oC. 

 

 

Scheme 5.4:  Overall Product Formation from Oxidation of CT 

 

The study of the thermal degradation of HQ and CT indirectly suggests the formation 

of semiquinone-type and phenoxyl-type radicals in the gas-phase.  They may also exist on 

the surface of particles containing transition metal that is summarized in the next study.  

5.2 Metal Mediated Formation of Persistent Free Radicals  

Semiquinone-type and phenoxyl-type radicals have potential to be environmentally 

persistent and biologically active toward the concern of human health.  Consequently, their 

formation and stabilization from various molecular precursors were studied with the focus 
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on metal mediated surface-bound radicals formed in association with combustion-generated 

particles.  We have characterized these radicals by investigating the EPR g-value, intensity, 

lifetime, and formative conditions.  HQ and CT are suggested primary precursors for 

semiquinone-type radicals while phenol (P), 2-chlorophenol (2-MCP), mono-chlorobenzene 

(MCBz), 1,2-dichlorobenzene (1,2-DCBz) are suggested as precursors for phenoxyl-type 

radicals.   

5.2.1 Formation of Surface-Bound Radicals on CuO/SiO2 Particles 

Copper was chosen as a metal mediated surface because it is easy to reduce to copper 

(I) and oxidize back to copper (II).  Hydroxylated benzenes (HQ, CT and P) bind to the 

metal surface particles, (5% copper oxide supported on silica dioxide CuO/SiO2) at hydroxyl 

site and interact with hydroxyl group from the surface to release water.   Electrons transfer 

and reduction of the copper in chemisorption from the surface generate surface-bound 

radicals.  Scheme 5.5 is presented the surface-bound radicals formation from phenol through 

water elimination pathway.  

 

 

Scheme 5.5:  Radicals Formation through Water Elimination Pathway 
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Chlorinated benzene (MCBz and 1,2-DCBz) binds to the metal surface at chlorine 

site and induces hydrogen to release hydrogen chloride due to a weak bond between chlorine 

and benzene ring.  Again, electrons transfer and reduction of the copper in chemisorption 

process lead to the formation of surface-bound radicals.  Scheme 5.6 is exhibited the radical 

formation from chemisorption of MCBz through hydrogen chloride elimination pathway.  

 

 

Scheme 5.6:  Radicals Formation through Hydrogen Chloride Elimination Pathway 

 

2-MCP contains both chlorine and hydroxyl substitutents; therefore, it can generate 

surface-bound radicals through either hydrogen chloride or water elimination route.  In 

general, semiquinone-type and phenoxyl-type radicals all exist on the surface of particles, so 

what are their characteristics and which conditions that help them persist in the 

environment?  The next study will explain these questions. 

5.2.2 Temperature Dependence of EPR g-Value and Concentration of 
Surface-Bound Radicals on CuO/SiO2 Surface 

 
In this study, the precursors of phenoxyl radicals and semiquinone-type radicals 

chemisorbed onto CuO/SiO2 surface at vary temperature range of 50oC to 300oC to 

investigate the temperature dependence of EPR g-value and concentration of surface-bound 
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radicals.  The rate of surface-bound radicals’ formation correlates with the rate of 

chemisorption of the precursors.  All of precursors generate bound-radicals display the 

maximum yield in the temperature range between 200oC and 230oC.  Figure 5.4 and Figure 

5.5 are exhibited the radical maximum yield of precursors and the EPR g-value of precursors 

at that maximum yield. 

 

 

Figure 5.4:  Surface-Bound Radical Maximum Yield of Precursors 

 

The hydroxyl substituent containing precursors HQ, CT, 2-CP, and P exhibited lower 

yield of radical formation than chlorine substituent containing precursors MCBz and 1,2-

DCBz because they have strong hydrogen bonding that inhibits chemisorption process.  The 

g-value of aromatic radicals containing halogen atoms is higher than the g-value of aromatic 
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radical that contain only C, H, and O 13.  In fact, MCBz and 1,2-DCBz initially generated 

radicals with high g-value at low temperature; however they gradually decreased g-value as 

increasing temperature because these molecules de-chlorinated with increasing temperature.  

At low temperature, hydrogen chloride elimination pathway is favor while water elimination 

path way is favor at high temperature.  Thus, g-value of bound radicals from the adsorbed 2-

MCP molecule slightly increases with rising temperature.  HQ and CT have higher g-value 

than P because they have an extra hydroxyl group causing high resonance stabilized.  These 

radicals localize on the oxygen atom which increase spin-orbit coupling; consequently, they 

have higher g-value. 

 

 

Figure 5.5:  EPR g-Value of Surface-Bound Radical at Temperature of Maximum Yield 
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5.2.3 Persistence of Surface-Bound Radicals 

Radicals have very short lifetime in solution or in gas-phase 14-16. They may stabilize 

and extend their lifetime when they associate with fine particle containing transition metal 6, 

9-12.  In fact, phenoxyl-type radicals have the lifetime t in the range of 43 to74 minutes while 

semiquinone-type radicals have the lifetime t in the range of 27 to 36 minutes when they 

chemisorbed on to CuO/SiO2 surface at 230oC.  Lifetime of surface-bound radical from the 

precursors is presented in Figure 5.6. 

 

 

Figure 5.6:  Lifetime of Surface-Bound Radicals from Precursors 

 

The reason for this phenomenon due to the unpaired electron is associated with the 

surface of the particle or metal, and it is apparently protected from reaction with oxygen in 
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the air causing the radicals being environmentally persistent.  Phenoxyl-type radicals appear 

to be more stable compared to semiquinone-type radicals in the air when they associated 

with CuO/SiO2 surface may be that semiquinone-type radicals are more reactive with 

oxygen in the air than phenoxyl-type radicals.  Precursor’s bound-radicals form on the 

surface of CuO/SiO2 particle and persist for more than a day.  However, they may be 

removable from the surface by some type of solvent extraction for. 

5.2.4 Chemical analysis and extractability of chemisorbed radicals  

Several polar and non-polar solvents including methyl alcohol (MEA), isopropyl 

alcohol (IPA), dichloromethane (DCM), toluene (TOL), and tert-butylbenzene (TBB) were 

chosen to study the extractability of surface-bound radicals on CuO/SiO2 surface from the 

above six precursors.  Figure 5.7 is displayed the percent reduction of EPR signal after 

extraction with variety of solvents. 

 

 

Figure 5.7:  Percent Reduction of ERP Signal after Extraction with Solvents  
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Polar solvent (MEA and IPA) with a high dielectric constant and contain slightly 

acidic hydrogen extracted more bound-radicals than non-polar (TOL and TBB) and mildly 

polar solvents (DCM).  The presence of dimers and PCDD/F as products of extraction using 

polar solvent indicated there are radical-radical interactions in the solvent.  Combination of 

the keto-forms of phenoxyl radicals yields DF while interaction of enol-forms of phenoxyl 

radicals forms DD.  This study suggests that once extracted into solution, radicals that were 

environmentally persistent when associated with particulate matter will also form molecular 

products in solution.   Formation of molecular products in the extract solution may result in 

misidentification of surface-bound radicals as molecular species by researchers. 

The entire of studies have proved that semiquinone-type and phenoxyl-type radicals 

exist in gas-phase and persist on the surface of combustion generated particles that they are 

highly redox active and can induce oxidative stress in exposed individual.  Collaborations 

with health effects researchers strongly suggest the radical-particle systems are biologically 

active in lung, heart, and liver tissue.  More research on the origin, nature of stabilization 

and redox activity of their “persistent free radicals” is clearly justified. 
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APPENDIX 1:  EPR SPECTRA AND GC-MS 
CHROMATOGRAMS OF SAMPLES 

 
 

 
Figure A1.1:  EPR Radical Signal of Residue from Chemisorbed 2-MCP on 

the Surface before and after Extraction with Methyl Alcohol 
 

 
Figure A1.2 EPR Radical Signal of Residue from Chemisorbed 2-MCP on 

the Surface before and after Extraction with DCM 
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Figure A1.3:  EPR Radical Signal of the Extract from Chemisorbed 2-MCP 

Matrix Using Methyl Alcohol as a Solvent 
 
 
 

 
Figure A1.4:   EPR Radical Signal of the Extract from Chemisorbed 2-MCP 

Matrix Using DCM as a Solvent 
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Figure A1.5: EPR Radical Signal of the Extract from Chemisorbed 2-MCP 

Matrix Using IPA as a Solvent 
 
 

 

 

Figure A1.6: GC-MS Spectra of Products of 2-MCP after Extraction by Using MEA-1 
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Figure A1.7: GC-MS Spectra of Products of 2-MCP after Extraction by Using MEA-2 

 

 

Figure A1.8: GC-MS Spectra of Products of 2-MCP after Extraction by Using IPA  

 

 

Figure A1.9: GC-MS Spectra of Products of 2-MCP after Extraction by Using DCM 
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Figure A1.10: EPR Radical Signal of Residue from Chemisorbed MCBz on 

the Surface before and after Extraction with Isopropyl Alcohol 
 
 
 

 
Figure A1.11:  EPR Radical Signal of Residue from Chemisorbed MCBz on 

the Surface before and after Extraction with DCM 
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Figure A1.12:  EPR Radical Signal of the Extract from Adsorbed MCBz 

Matrix Using DCM as a Solvent 
 

 
Figure A1.13:  EPR Radical Signal of the Extract from Adsorbed MCBz Matrix 

Using Isopropyl Alcohol as a Solvent 
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Figure A1.14:  EPR Radical Signal of the Extract from Adsorbed MCBz 

Matrix Using Methyl Alcohol as a Solvent  
 

 
 

 

Figure A1.15:  GC-MS Spectra of Products of MCBz after Extraction by Using IPA 
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Figure A1.16: GC-MS Spectra of Products of MCBz after Extraction by Using MEA 

 

 

 

Figure A1.17: GC-MS Spectra of Products of MCBz after Extraction by Using DCM 

 

 

Figure A1.18: GC-MS Spectra of Products of MCBz after Extraction by Using TOL 
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Figure A1.19:  EPR Radical Signal of Residue from Chemisorbed 1,2-DCBz 

on the Surface before and after Extraction with Methyl Alcohol 
 
 

 
Figure A1.20:  EPR Radical Signal of Residue from Chemisorbed 1,2-DCBz 

on the Surface before and after Extraction with DCM 
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Figure A1.21:   EPR Radical Signal of the Extract from Adsorbed 1,2-DCBz 

Matrix Using Methyl Alcohol as a Solvent 
 
 

 

 
Figure A1.22:  GC-MS Spectra of Products of 1,2-DCBz after Extraction by Using IPA 

 

 

Cl

Cl
Cl

O

O



 149

 
Figure A1.23: GC-MS Spectra of Products of 1,2-DCBz after Extraction by Using MEA 

 

 

 
Figure A1.24:   EPR Radical Signal of Residue from Chemisorbed CT on the 

Surface before and after Extraction with Isopropyl Alcohol 
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Figure A1.25:   EPR Radical Signal of Residue from Chemisorbed CT on the 

Surface before and after Extraction with DCM 
 
 

 
Figure A1.26:   EPR Radical Signal of Residue from Chemisorbed CT on the 

Surface before and after Extraction with Toluene  
 



 151

 
 

Figure A1.27:   EPR Radical Signal of the Extract from Chemisorbed CT 
Matrix Using Isopropyl Alcohol as a Solvent 

 
 

 
Figure A1.28:   EPR Radical Signal of the Extract from Chemisorbed CT 

Matrix Using DCM as a Solvent 
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Figure A1.29: GC-MS Spectra of Products of CT after Extraction by Using IPA 

 

 

Figure A1.30: GC-MS Spectra of Products of CT after Extraction by Using MEA 

 

 

Figure A1.31: GC-MS Spectra of Products of CT after Extraction by Using DCM 
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Figure A1.32:   EPR Radical Signal of Residue from Chemisorbed HQ on 

the Surface before and after Extraction with Isopropyl Alcohol 
 
 

 
Figure A1.33:   EPR Radical Signal of Residue from Chemisorbed HQ on 

the Surface before and after Extraction with DCM 
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Figure A1.34:  EPR Radical Signal of the Extract from Chemisorbed HQ 

Matrix Using Isopropyl Alcohol as a Solvent 

 
Figure A1.35:   EPR Radical Signal of the Extract from Chemisorbed HQ 

Matrix Using DCM as a Solvent 
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Figure A1.36: GC-MS Spectra of Products of HQ after Extraction by Using IPA 

 

 

Figure A1.37: GC-MS Spectra of Products of HQ after Extraction by Using MEA 

 

 

Figure A1.38: GC-MS Spectra of Products of HQ after Extraction by Using DCM 
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