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ABSTRACT 

Useful mechanistic studies to date concerning sugar detection by arylboronic acid 

chemosensors have mainly involved the elucidation of equilibrium constants and the role 

of boron-nitrogen interactions in signal transduction.  However, several discreet sugar-

boronate complexes exist in solution.  This is due to the complex equilibria between 

isomeric species of even the simplest monosaccharides.  Relatively few reports have been 

devoted to a systematic study of the structures of each of the corresponding individual 

sugar-boronate complexes.  We have investigated some of the precise regio- and 

stereochemical features of the various equilibrating sugar isomers that induce selective 

signal transduction.  As a result of this study, one may be better able to predict selective 

spectrophotometric responses of a monosaccharide in a natural matrix.  Additionally, our 

findings are potentially applicable to selective analyses of more complex compounds via 

their terminal sugar residue structures.  Additionally, during the course of this work, a 

unique example of a chemosensor (3.1) that is selective for ribose, adenosine, 

nucleotides, nucleosides and congeners was discovered.  The combined use of 

chemosensors exhibiting complementary reactivities was shown to obtain enhanced 

selectivity for ribose and rare saccharides.  A structurally-related xanthene chemosensor 

(4.6) that is selective for the sulfur-containing amino acids cysteine and homocysteine is 

also described herein.  

 



CHAPTER 1 
 

 INTRODUCTION 
 

1.1 History of Resorcinarenes 
 

Calix[4]resorcinarenes  or resorcinol-derived calix[4]arenes were first synthesized 

by Adolf von Baeyer1.1 (Figure 1.1) in 1872.  He was attempting to synthesize new dyes 

to build on his discovery of fluorescein.  The cyclic tetrameric product is colorless; 

however, our group recently discovered that xanthene dyes are also present in 

resorcinarene-containing solutions. 
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Figure 1.1.  Structures of the crystalline compound obtained from Baeyer’s synthesis 
proposed by Michael (1.1), Nierdel and Vogel (1.2), R = aliphatic. 
 

Most resorcinarenes can be derived from condensation reactions between 

resorcinol and an aliphatic or aromatic aldehyde. Lewis acids are normally used as 

 1



catalysts in this reaction.1.2, 1.3, 1.4 Usually, cyclotetramer isomers precipitate from the 

reaction mixtures. The addition of water, in some cases, is required to isolate the 

condensation product.1.5, 1.6 An unsubstituted resorcinol (1,3 dihydroxybenzene) is 

normally used in the synthesis of resorcinarenes, however,  the use of pyrogallol (1,2,3-

trihydroxybenzene) or some 2-substituted resorcinols, such as 2-methylresorcinol are also 

reported to yield isolable amounts of tetrameric products.1.7, 1.8 Products typically are not 

formed if the hydroxyl groups are partially alkylated1.9 or when the resorcinol derivatives 

bear electron-withdrawing substituents such as NO2 or Br1.5 at the 2-position. Exceptions 

also include aliphatic aldehydes possessing functionality proximal to the reaction center, 

such as ClCH2CHO or glucose,1.5 or very sterically crowded aldehydes, such as 2,4,6-

trimethylbezaldehyde.1.9  

The mechanism of the condensation reaction for the formation of resorcinarenes 

via acid-catalization is shown in Figure 1.2.1.9  Under acidic conditions, resorcinol serves 

as the initial nucleophile which attacks the protonated aldehyde.  Subsequent protonation 

of alcoholic hydroxyl of the resulted adduct generates a mole of water.  A carbocation 

intermediate, formed by removal of water, undergoes a second nucleophilic addition with 

another resorcinol molecule to afford a dimer.  Further analogous addition reactions with 

resorcinol units result in trimer, tetramer and higher oligomers containing more than four 

monomers.  Most of the larger oligomers present disappear towards the end of the 

reaction since the condensation reaction is reversible under acidic conditions except for 

the last step in which the linear tetramers cyclize rapidly to form resorcinarenes once they 

are formed.  The linear tetramers are not isolable due to the fast cyclization reaction.  

Little conformational strain as well as charged hydrogen bonds between the phenolic 
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hydroxyl groups of adjacent resorcinol favor a cyclized ccc product (Figure 1.3) in many 

cases.  
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Figure 1.2.  Mechanism of the acid-catalyzed synthesis of resorcinarenes. 
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Figure 1.3.  Relative configuration of the substituents at methylene bridges. 
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The stereochemistry of resorcinarenes is generally defined according to the 

relative configuration of the substitutes at the methylene bridges.  Four resorcinarene 

stereoisomers, i.e. all-cis (ccc), cis-cis-trans (cct), cis-trans-trans (ctt) and trans-cis-trans 

(tct), are given in Figure 1.3.1.5   

1.2 Complexation of Polar Organic Molecules by Resorcinarenes  

Over a decade ago, Aoyama et al. found that resorcinarenes can complex organic 

molecules containing polar substituents.  Their tetrameric phenolic moieties groups at the 

upper rim resulted in a variety of binding modes which he extensively studied.1.10, 1.11  

The complexation behavior of resorcinarenes for a variety of guest molecules such as 

triethylamine, sugars, steroids,1.12, 1.13, 1.14 amino acids1.15 and [2,2,2] cryptand1.16 has been 

investigated.  

Having studied the complexation of several cyclohexanediols with resorcinarenes, 

Aoyama recognized that, among all possible isomers, cis-1,4-cyclohexanediol was the 

most tightly bound.  It binds eight times stronger than that of the corresponding trans 

isomer.1.17   This cis/trans selectivity favors the geometry in which the related cis-isomer 

contains one equatorial hydroxyl and one axial hydroxyl moiety.  The rule of 1,4-cis 

selectivity was also extended to carbohydrate complexation.1.12  D-ribose was found to be 

readily extracted into concentrated resorcinarenes solution in CCl4 although it is 

essentially insoluble in pure CCl4.  NMR studies indicated that resorcinarenes complex 

D-ribose only in its α-pyranose form,1.12b which has cis oriented -OH groups at C-1 

through C-4 (Figure 1.4).  2-Deoxyribose and fucose were more readily extractable than 

ribose, while xylose could not be extracted at all, although its configuration only differs 

at the C-3 position.  This suggests that, to form stable complexes, the OH at C-2 should 
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be absent to avoid disfavored exposure to the apolar solvent or else exist in a cis 

relationship with the C-1 and C-4 OHs.  Since trans 3-OH gave unfavorable steric 

interactions with one of the aryl rings involved in the binding, it was concluded that it is 

very important for the 3-OH to be cis to the C-1 and C-4 hydroxys also.  Hydrophobic  

substituents on C-5 are preferred because they can interact favorably with the apolar 

solvent. 
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Figure 1.4.  Structures of three selected monosaccharides and the complex between a 
resorcinarene and D-ribose. 

 

Hydrogen bonding has been reported by Aoyama and his co-workers to be the 

major force for binding to the four pair of hydroxyl groups of the resorcinarenes in apolar 

organic solvents.  Moreover, the interaction between the electron-rich aromatic rings in 

the host and an aliphatic moiety at the guest (CH-π interactions) also contributes to the 

binding.1.13, 1.18   
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In aqueous systems,1.15, 1.19 H2O prevents hydrogen bonding from serving as a 

driving force for guest complexation. The affinity of resorcinarenes for polar guests is 

mainly determined by hydrophobic interactions.  If the guest molecules are hydrophobic, 

CH-π interactions play an enhanced role in the binding.1.18

1.3  Complexation of Boronic Acids to Saccharides  

Boronic acids have been known since 1880, when Michaelis and Becker first 

synthesized phenylboronic acid.1.20 Although borates have been important for over a 

century in organic synthesis and were known for polyhydroxyl binding,1.21 it wasn’t until 

1954 that first extensive quantitative binding studies of diols with boronic acids were 

published.1.22   

It is well accepted now that, under neutral nonaqueous or alkaline aqueous 

conditions, boronic acids form covalent bonds with 1,2- or 1,3-diols to give five- or six-

membered ring cyclic esters (Figure 1.5).  Compared to acyclic diols such as ethylene 

glycol, saccharides have been reported to form more stable cyclic esters due to their rigid, 

cyclic cis diol structures, in solution.   

Detailed conformational studies of the complexes formed between boronic acids 

and saccharides were performed by Norrild and later by Nicholls, using 1H and 13C NMR 

spectroscopy.1.23  One can better evaluate the saccharide selectivity of a boronic acid-

based sensor with a careful study of the complexes involved, due to the complicated 

equilibria between saccharides and arylboronic acids.  Complexes of p-tolylboronic acid 

and glucose or fructose, as assigned by Norrild are shown in Figure 1.6 and Figure 1.7, 

respectively. 1.23(a,b) 
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Figure 1.5.  Boronate ester formation with phenylboronic acid in alkaline aqueous 
solution (top) and aprotic media (bottom).  Examples of sp3 and sp2 complexes between 
phenyl boronic acid and fructose are included (right). 
 

 

 

 

Figure 1.6.  Structures of selected complexes between p-tolylboronic acid and glucose. 
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Figure 1.7. Structures between p-tolylboronic acid and fructose. 
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1.4  Significance in Saccharides Detection  

Sugar monitoring is vital in diagnosing, understanding and treating disease.  A 

better understanding of glycosylation products and protein-carbohydrate interactions are 

current goals of biomedical research.1.24  Carbohydrates are, however, relatively difficult 

to analyze.  They exhibit a great variety of similar, naturally-occurring structures.  They 

are transparent in the visible spectral region.  Several isomeric forms of a specific 

monosaccharide may be present in equilibrium in solution.  Challenges are compounded 

when studying oligo- and polysaccharides.  Glycolipids, glycoproteins and related 

biomolecules can contain a variety of sugar residues and linkage patterns. 

The detection of sugars via arylboronic acid-appended chromophores and 

fluorophores has shown great promise for monitoring saccharides.1.25  A major goal is the 

determination of specific sugars in natural media.  Glucose detection, for example, has 

been a main focus to date.  However, boronic acids are well-known to exhibit relatively 

high affinity for fructose.1.25  In fact, boronic acids sensing agents can, both in principle 

and practice, bind and signal the presence of most vicinal cis-diol-containg sugars; i.e., 

those which readily form 5-membered ring cyclic boronate ester complexes.1.25  Novel 

methods have been devised to achieve the selective binding and signaling of the presence 

of specific sugars.1.26  Among the most well-known are compounds that contain 

appropriately spaced chelating bis-boronic acids, typically assisted via an interaction with 

a neighboring amino moiety.1.27-1.33  The majority of the synthetic bis-boronic acids that 

are glucose-selective bind the α-furanose conformer.1.28  This chelation mechanism is 

notable, since the α-furanose anomer is present in H2O only at levels of 0.14 %.1.23(b), 1.34  
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A bis-boronic acid fluorescent receptor has also been designed for the selective detection 

of the glucose α-pyranose isomer.1.36 

There is a complicated equilibrium between even the simplest monosaccharides 

and aryl boronic acids.1.23(b)  Most of the recent mechanistic studies on boronate-based 

chemosensing have focused on elucidating equilibrium constants and the putative role of 

boron-nitrogen interactions in signal transduction.1.25,1.27-1.33   

The investigation of the relationship between the various equilibrating isomers of 

sugars and their corresponding boronate complexes is needed in order to fully understand 

selective signal transduction (vide supra).  A comparison of the detailed structures of the 

specific bound complexes has been addressed in relatively few studies.1.23  An 

investigation of the specific regio- and stereochemical patterns of discreet saccharide 

isomers that result in selective signal transduction in boronic acid chromophores and 

fluorophores is needed.  It would be useful towards predicting and understanding 

chemoselective signal transduction.  The next chapter describes my use of arylboronic 

acid-appended resorcinarene-derived materials in addressing these issues. 
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CHAPTER 2 

MECHANISTIC STUDIES AND THE SELECTIVE  
SPECTROPHOTOMETRIC DETECTION OF SACCHARIDES  

WITH A RESORCINARENE BORONIC ACID* 
 

2.1   Background of Resorcinarene Color Formation 
 
 The spectrophotometric properties of resorcinarenes in the visible region have 

been rarely investigated since its initial synthesis by Baeyer.  Condensation of 

commercially available 4-formylphenyl boronic acid and resorcinol gives rise to the 

resorcinarene boronic acid stereroisomers 2.1 and 2.2a (Figure 2.1) in one step in a 

combined 90% yield.2.1 
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Figure 2.1. Chair (2.1) and crown (2.2a) stereoisomers of tetraarlboronnic acid 
resorcinarenes. 

 

 
*Reprinted in part with permission from Journal of the American Chemical Society, 
2006, Volume 128, pages 12221-12228; Shan Jiang, Jorge O. Escobedo, Kyu Kwang 
Kim, Onur Alpturk, George K. Samoei, Sayo O. Fakayode, Isiah M. Warner, Oleksandr 
Rusin, and Robert M. Strongin; Stereochemical and Regiochemical Trends in the 
Selective Detection of Saccharides. Copyright 2006 American Chemical Society. 

 14



It was reported by our research group that solutions containing resorcinarene 

macrocycles develop color upon heating or standing.  Pinkish-purple color is developed 

upon heating the colorless DMSO solutions of freshly crystallized 2.1 or 2.2a at 90 °C for 

1 min, (5.2 mM), or standing for several hours.2.2  The solution color formation was 

monitored via UV-vis spectroscopy.  Strong evidence has been amassed to prove that the 

color formation is primarily due to xanthene formation via macrocycle ring opening and 

oxidation. 

Extensive experiments were conducted by Dr. Strongin’s group in order to 

understand the origin of the solution color.2.2  Upon heating solutions of 2.1 in the dark or 

in O2 degassed conditions, relatively diminished solution color was observed, as evidence 

by both visual inspection and UV-vis spectroscopy.2.3  On the other hand, when a solution 

of acylated 2.1 (at the phenolic hydroxyls) was heated to reflux, the solution remained 

colorless.2.2  Solutions of phenylboronic acid or resorcinol were also tested by heating as 

an equimolar mixture or separately using the above mentioned conditions and 

concentrations, with and without added monosaccharides.  Only very faint colors in 

solution were visually observed in these cases,2.3 showing that a methine-bridged 

resorcinol/aldehyde architectural framework may be needed for effective chromophore 

formation.  Methine-bridged condensation products of resorcinarene and aldehyde 

substructures, such as compounds 2.3a-c listed in Figure 2.2, were noted as reaction 

intermediates in standard xanthene dye syntheses (e.g., the transformation of 2.5 to 2.6, 

n=m=0, Figure 2.3) in older work.2.4   It was concluded from all of these initial studies 

that the chromophore arises via oxidation of a resorcinol moiety to a quinone2.3, 2.5 (Figure 

2.3). 
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Figure 2.2.  Resorcinarene substructures of methine-bridged condensation products (2.3) 
and some xanthene dyes (2.4).  
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Figure 2.3.  Dehydration and oxidation of methine-bridged resorcinol oligomers leading 
to xanthenes. 

            

Xanthenes, such as 2.4a, 2.4b and 2.4c (Figure 2.2) are some of the oldest known 

synthetic dyes. The colorimetric properties of xanthenes are derived from the ionization 

state of the C-6 OH moiety.2.6  They typically exhibit two absorbance maxima in the 

visible region, i.e. λmax at 530 nm and a less intense λmax at 500 nm in 9:1 DMSO:H2O. 2.6  

The absorption spectrum of 2.4b (5.0 x 10-6 M) in 9:1 DMSO:H2O is shown in Figure 

2.4.  The spectral features and λmax absorbance values are similar to those observed for 

DMSO solutions of 2.1 as previously reported.2.5  
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Figure 2.4.  2.2a (1.0 mg) and 2.3a (1.0 mg) each in 0.9 mL DMSO were heated to 
gentle reflux over two minutes and cooled to room temperature before 0.1 mL H2O was 
added to each solution.  The final concentrations of 2.2a and 2.3a in 9:1 DMSO:H2O are 
1.03 × 10-3 M and 1.96 × 10-3 M respectively.  A solution of 2.4b (5.0 × 10-6 M) was 
prepared at rt in 9:1 DMSO:H2O. 

 
Incorporation of a planar xanthene moiety within a cyclic resorcinarene via the 

transformation shown in Figure 2.3 would result in a dramatic strain energy increase.  

Simulations (Sybil 6.6) showed that to form a xanthene substructure within 2.2b will lead 

to a 34.2 kcal/mol strain energy increase.  This result is in accordance with the prior 

reported studies of the structure related calixarenes (macrocycles formally derived from 

phenol/formaldehyde condensations).2.7

Ring opening to acyclic oligomers would therefore be a prerequisite for formation 

of xanthene from resorcinarenes.  It has been proven that the condensation between 

resorcinol and aldehyde to produce resorcinarene is reversible under acidic conditions 

due to the detailed mechanism studies of macrocycle genesis by Weinelt and  

Schneider.2.8, 2.9  They found that 2.2b and its stereoisomers interconverted through the 

ring opening and re-closing processes in MeOH in the presence of anhydrous HCl. 

Evidence from NMR, HPLC and especially X-ray crystallography, indicates the 
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formation of (CH3)3S+CH3SO3
- under the conditions used to develop resorcinarene 

chromophores.2.10   This compound was produced from a thermolysis reaction of 2.2b in 

DMSO.  It is known that (CH3)3S+CH3SO3
- forms along with acids CH3SO3H, CH3SO2H, 

CH3SOH and several other products via the decomposition of DMSO.2.11  Apparently 

these acids catalyze the ring opening process which leads to the eventual chromophore 

formation. 

The thermolysis of a 2.2b DMSO solution produces stereoisomer 2.7 (Figure 2.5) 

which requires breaking and re-forming of two covalent bonds starting from 2.2b.2.2  This 

is evidence for the formation of 2.5.  

 

 
2.7 

 

Figure 2.5.  Compound 2.7 and Oak Ridge Thermal Ellipsoid Plot (ORTEP). 
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Experimental evidence for the formation of various xanthene dye derivatives from 

the thermolysis of 2.2b is also provided by the Strongin group.   Table 2.1 shows mass 

spectrometric data for the presence of higher homologues of 2.5 (entries 1 and 2) and 

xanthene materials 2.6 (entries 4-6).2.9  Consequently, the acyclic xanthene oligomers 

form during an acid-catalyzed reverse condensation reaction of resorcinarene 

macrocycles (Figure 2.3).  

 

Table 2.1. MALDI MS of acyclic oxidized and unoxidized products from the thermolysis 
of 2.2b. 

 
Entry Structure TLC 

RF

(m/z) 
calcd 

(m/z) 
obsd 

1 2.5, R=Me, m=1, n=0 0.29 382.41 381.89 

2 2.5, R=Me, m=3, n=2 0.44 926.36 926.28 

3 2.4ª 0.44 226.23 225.61 

4 2.6, R=Me, m+n=4 0.26 906.01 906.33 

5 2.6, R=Me, m+n=3 0.84 770.79 770.82 

6 2.6, R=Me, n=1, m=0 0.79 362.51 361.38 

 
       

Solutions containing millimolar concentrations of compound 2.8 develop 

micromolar levels of chromophore 2.9 in situ have been reported (Scheme 2.1).2.2  The 

colored material 2.9 enabled saccharide detection via UV-Vis or fluorescence 

spectroscopy.  Further spectroscopic studies proved that the formation of anionic sugar-

boronate complexes of 2.9 result in the sugar-induced spectral changes as boron becomes 

a charged sigma bond donating group to the chromophore moiety.2.2 
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Scheme 2.1.  The in situ ring opening of resorcinarene boronic acid macrocycle 2.8 
affords acyclic oligomers (2.9) containing xanthene chromophores.   

 
 

The selective colorimetric detection of fructose in neutral media at rt was later 

studied.  Under the conditions used, it was concluded that concurrent fructose and 

glucose signaling may be achieved via dual wavelength monitoring when a large (100-

fold) excess of glucose:fructose is present in solution.  Additionally, fluorescence 

emission for glucose and fructose was discovered.  In the fluorescence measurements, 

glucose solution emission was moderately enhanced compared that of to fructose-

containing solutions.  The emission intensity enhancement was ascribed to structural 

rigidification of 2.9 via bis-boronate chelation of glucose.2.13 

Having already proven (i) the origin of the chromophore 2.9 and (ii) the general 

signal transduction mechanism promoted by sugar binding, the main goal of the work 
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described herein is to clearly define the stereo- and regiochemical requirements for 

attaining selectivity induced by specific saccharides.  Towards this end I tested two 

hypotheses. 

The first hypothesis is that the very high degree of fructose selectivity previously 

reported by our group is due to a synergy between colorless 2.8 and colored 2.9.  I have 

examined cooperative binding interaction between 2.8, 2.9 and the sugar in detail.  

Clearly understanding structure-activity relationships is very important for us to 

formulate hypotheses about sensing methods in natural media.  I demonstrate a 

potentially practical application via the selective detection of fructose in a commercial 

honey sample.  I also show that the mechanistic findings can be applied towards the 

selective detection of bioactive disaccharides for which there are currently no comparable 

assays. 

The second hypothesis is that receptor mixtures may be designed for improved 

detection of specific analytes based on complementary chemosensor absorptions and 

selectivities for saccharide mutarotational isomeric forms.  Progress is described, using 

ribose and the rare bioactive sugar allose as target analytes.  A boronic acid-based sensor 

selective for ribose and allose functioning with no interference from fructose and other 

commonly encountered monosaccharides has not been previously described. Detailed 

information for ribose and its derivatives’ selectivity is described in Chapter 3.  

2.2   Results and Discussion 

Aryl monoboronic acid compounds are well-known to exhibit relatively very high 

affinity for fructose as compared to other monosaccharides.  Recent examples of 

monoboronic acid-containing chemosensors reveal that relative affinities towards other 
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specific saccharides may vary based on receptor structure and conditions.2.15  Solutions of 

resorcinarene boronic acids can exhibit color changes that are highly selective for 

fructose at room temperature.2.22  In the present study, a unique degree of colorimetric 

selectivity for fructose is attained as compared to several other sugars initially dissolved 

in neutral buffered media.  Many of the analytes investigated include those which are 

major components in honey (Figure 2.6).2.25  The lack of significant colorimetric response 

to potentially interfering saccharides offers promise towards developing a non-enzymatic 

fructose assay (vide infra).   

Colored solutions (60 mM phosphate buffer, pH 7.4, 1:9 H2O:DMSO) of 2.8 and 

trace 2.9 display observable color changes (light red to yellow) not only in the presence 

of D-fructose, but also with D-galactose, D-arabinose and D-altrose (which are not 

present in honey, Figure 2.7).  Under our current conditions involving buffered media, 

the UV-Vis absorbance changes are monitored at both 355 nm (previous work in aqueous 

DMSO entailed measurements at 460 nm2.2, 2.13) and 535 nm.  No significant color 

changes are observed in response to D-glucose, D-ribose and D-allose.   

 

 

 
 

Figure 2.6.  A selective solution color change is observed for D-fructose when added to 
colored solutions of 2.8 and 2.9: (a) D-fructose, (b) D-glucose, (c) D-psicose, (d) D-allose, 
(e) D-ribose, (f) D-xylose, (g) D-trehalose, (h) melezitose, (i) D-turanose, (j) D-maltose, 
(k) sucrose, (l) D-raffinose. Sugars in vials labeled a, b and g-l are found in honey. 
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Table 2.2. Selectivity of arylboronic acid chemosensors to various monosaccharides. 

 
Compound Selectivity Conditions Method Ref 

B(OH)2

 

 
 
D-fructose > D-tagatose > 
L-arabinose > D-ribose > 
D-galactose > D-xylose > 
D-mannose > D-glucose > 
maltose > lactose > sucrose 
 
 

phosphate buffer 
pH 7.4 UV-Vis 2.17 

 
OH

O2N B(OH)2

NO2  

 
 
 
D-fructose > D-glucose > 
D-galactose 
 
 
 

phosphate buffer 
pH 7.4. UV-Vis 2.18 

N B(OH)2

 

 
 
 
D-fructose > D-allose > D-
galactose > D-glucose 
 
 
 

MeOH:H2O 
medium (1:2) fluoresence 2.19 

N

O

O

B(OH)2

H2N  

 
 
 
D-galactose > D-glucose > 
D-fructose 
 
 
 

DMSO-
phosphate buffer 

pH 4.0 
Fluorescence 2.20 
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Figure 2.7.  Plots of relative absorbance changes vs. concentration of various sugars in 
solutions comprised of phosphate buffer (0.1 mL, 60 mM, pH = 7.4) added to 2.8 in 
DMSO (3.4 mM, 0.9 mL) at 355 (A) nm and (B) 535 nm.   
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Figure 2.8.  Pyranose forms of sugars used in the study shown in Figure 2.7.  Only those 
compounds containing pairs of vicinal cis-diols on opposite faces of the pyranose ring 
(i.e., ribose, altrose, galactose and fructose) afford colorimetric responses. 

 

D-Glucose, D-ribose and D-allose, however, should readily form cyclic boronate 

esters and thus are expected to induce spectrophotometric changes.2.15  For example, the 

reported stability constants of model arylboronate complexes of ribose and arabinose are 

1.38 and 1.40, respectively.2.16  The degree of complexation of ribose and arabinose is 65 

% and 74 %.2.16  Based on these facts alone, one would predict ribose to afford a 

spectrophotometric response similar to that of arabinose.  In fact, all seven 

monosaccharides shown in Figure 2.8 should promote significant colorimetric signaling, 

based on their known affinities to model arylboronic acids.2.15, 2.16  Moreover, the relative 

selectivities I observe in Figure 2.7 for the specific sugars studied does not correspond to 

known related chemosensing agents (for example, compare to Table 2.2).2.15, 2.16  The 

mechanism of signal transduction in colored solutions of 2.8 and 2.9 thus merited further 

examination.   

Analysis of Pyranose Structures.  A comparison of the pyranose forms of each 

of the sugars used in the studies reveals that each saccharide affording a colorimetric 

response possesses two distinct pairs of vicinal cis-diols, each of which resides on 
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opposite faces of the monosaccharide ring.  In contrast, α-ribopyranose and α-

allopyranose possess contiguous cis-tetrol configurations but do not promote absorbance 

responses.  The α-glucopyranose structure also exhibits a single vicinal cis-diol pair for 

cyclic boronate formation.  However, glucose is not readily detectable under our current 

conditions.  Interestingly, our research group previously determined the apparent 

equilibrium constant (Kexp(app)) to be 65.0 in colored DMSO:H2O solutions of 2.8 and 

glucose in buffered media at room temperature.2.2 

O

O
O

O
O

B

B
OH

2.10  
 

 
Table 2.3. Proportions (%)[*] of fructose p-tolyboronic acid complexes and free 

fructose isomers in (CD3)2SO. Equilibrium mixtures at different boronic acid:fructose 
ratios.2.21 

 

Boronic acid : fructose ratio 1:1 2:1 4:1

β-D-fructose 2,3:4,5-bis(p-tolylboronate) (2.10) 6 33 67 

β-D-fructose 2,3 (p-tolylboronate) 46 47 28 

α-D-fructose 1,3 (p-tolylboronate) 5 5 2 

β-D-fructose 1,2 (p-tolylboronate) 8 5 2 

α-D-fructose 1,3 (p-tolylboronate) 4 3 1 

β-D-fructopyranose 7  -  - 

β-D-fructofuranose 11 2 -  

α-D-fructofuranose 5 -   - 

[*] relative to total amount of complexes and free fructose. 
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The observed pattern of structure and signaling might be rationalizable in the 

context of earlier NMR-based studies by Norrild and Eggert2.21  and more recent findings 

by Nicholls.2.16  Norrild reported that the abundance of complex 2.10 in DMSO solutions 

is a function of the ratio of arylboronic acid moieties:fructose (Table 2.3).2.21  

Importantly, the analogous bis-boronic acid-fructose complex was also assigned (as well 

as several other complexes, vide infra) via 13C NMR (peak at C-2 resonating at 105.0 

ppm) in our laboratory during prior extensive studies of the interactions between 2.8 and 

fructose in 1:9 D2O:(CD3)2SO solutions.2.2   

In order to afford a visual signal, chromophore 2.9 must be involved in the 

binding process.  An intermolecular ternary bis-boronate complex between two 

molecules of chromophore 2.9 and fructose may form.  However, colorless 2.8 is present 

in very large excess compared to 2.9.2.2  A predominant chromophoric complex 

responsible for fructose-promoted signal transduction would thus embody a ternary 

complex 2.11 (Figure 2.9), formed from colorless 2.8, fructose and chromophore 2.9. 

Recently, Nicholls reported that certain saccharides, such as fructopyranose and 

galactopyranose, can adopt twist conformations upon boron complexation.2.16  This 

reduces the C-O torsion angles in the O-C-C-O bonds in each of the two pairs of boronic 

acid-binding vicinal cis-hydroxyls (Figure 2.9).  In other words, it allows each binding 

vicinal hydroxyl pair to assume a more eclipsed conformation.  This aids in 5-membered 

ring cyclic boronate ester formation.2.16   

Our molecular simulations of 2.11 are in excellent agreement with those findings 

reported employing other arylboronates.2.16 Figure 2.9 shows fructose bound to 2.8 and 

2.9.  The AM-1 calculated structure shows β-fructopyranose in a twist conformation. 
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Figure 2.9.  Left:  Representation of the complete structure of complex 2.11.  Right:  
Expansion showing the fructopyranose region of the AM-1 simulated structure of one 
isomeric bis-boronate complex 2.11, showing fructose in a twist conformation.   

 

Formation of a sterically unencumbered, colored ternary bis-boronate complex via 

the binding of two receptors is favored only in cases where the second cis-diol pair of the 

sugar resides on the opposite face of the pyranose ring.  For instance, ternary complex 

formation involving ribopyranose, containing a contiguous cis-tetrol (Figure 2.8), would 

be too sterically hindered.  Thus, on the basis of this analysis, no colorimetric response 

should be observed for ribose and related monosaccharides such as allose.  
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Glucopyranose contains only one vicinal cis-diol.  According to this analysis, it should 

bind colorless 2.8 but not have an available cis-diol for chromophore binding. 

Di- and Trisaccharides.  Since two pairs of properly spaced vicinal cis- diols are 

needed to promote signal changes, I expected that the analogous oligosaccharide-induced 

signaling should occur in cases where each terminal sugar residue possesses a vicinal cis-

diol.  For example, lactulose (Figure 2.10) possessing a pair of vicinal cis-diols on each 

residue can be readily detected.  However, this analysis does not appear to be valid since 

lactose, which contains available vicinal cis-diols on each residue, does not afford an 

appreciable signal change under our conditions.  Furthermore, maltulose, which 

possesses a cis-diol only on one terminus, also promotes significant signaling (Figures 

2.11 and Figure 2.12).  Fluorescence spectra give the same trend as produced from UV-

Vis. (Figure 2.13). Hence, hypothesis one may not be applicable to all cases.  

Analysis of Furanose Structures.  Tridentate complexation can involve addition 

of a fourth ligand to boron deriving from the sugar moiety.  It is well-known that the 

hybridization change from an sp2 neutral boronate (sugar binds via two hydroxyls) to an 

sp3 anionic boronate (sugar binds via three hydroxyls, or two hydroxyls with a water or 

hydroxide molecule serving as the fourth ligand to boron) results in signal transduction in 

conjugated systems.2.2, 2.15  Cyclic boronate ester formation leads to the enhanced Lewis 

acidity of boron, due to its constraint in a ring structure, thereby heightening its reactivity 

and inter- or intramolecular addition of a nucleophile.  In the case of 2.9, boronate anion 

formation produces a solution color change via σ-bond electron donation which alters the 

ionization state of the dye.2.2 

 29



O
OH

HO
OH

OH

O

O OH
OH

OH

HO

lactulose

OHO
HO OH

OH

O

OHO
HO

OH

HO

maltulose

OHO
HO OH

OH

HO

O OH

OH

HO
O

palatinose

OHO
HO OH

OH

HO

O O

OH

HOHO

sucrose

OHO
HO OH

O

HO

O O

OH

HO
HO

O
OH

HO
OH

OH

raffinose

OHO
HO

OH

OH

O

OH
OH

HO

OHO
HO

OH
HO

O

O

 melizitose

O
HO

HO
O

OH

OH

O

HO
OH

OH

OH

maltose

O
OH

HO
OH

O

OH

O
HO

OH
OH

OH

lactose

OHO
HO

O
OH

OH

O OH
OH

HO

OHtrehalose

O
HO

HO
O

OH

OH

O
HO

OH
OH

OH

cellobiose

 turanose

O

HO
HO

OH

OH

HO

O

OH

O

OH

OH

O
HO

HO
OH

O

OH

O
HO

HO
OH

OH
gentiobiose

 

Figure 2.10.  Di-and trisaccharides studied. 

 
 
 
 
 

 30



(A) 

0.60

0.70

0.80

0.90

0.0 1.0 2.0

Sugar concentration (mM)

Ab
so

rb
an

ce
 (A

U
) lactulose

maltulose

maltose

lactose

 
 

(B) 

0.6

0.7

0.8

0.9

0.0 0.5 1.0 1.5 2.0

sugar concentration (mM)

A
bs

or
ba

nc
e 

(A
U

)

palatinose
sucrose
raffinose
melezitose
trehalose
cellobiose
turanose
gentiobiose

 
 

Figure 2.11. (A) Concentration vs. absorbance spectral responses at 355 nm of four of 
the disaccharides shown in Figure 2.10. (B) Concentration vs. absorbance spectral 
responses at 355 nm of eight of the disaccharides shown in Figure 2.10.  The largest 
spectral responses of all of the sugars in Figure 2.10 are observed for lactulose and 
maltulose solutions.  The UV-Vis spectra of the remaining di- and trisaccharides shown 
in Figure 2.10 exhibit no significant spectral responses at 355 nm or 535 nm (see also 
Figure E1 of Appendix E). 
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Figure 2.12.UV-Vis spectra responses of a solution of 2.9 (1 × 10-3 M) and 2.8 with 
added di- and trisaccharides (5 × 10-3 M), all in 9:1 DMSO:phosphate buffer (0.06 M, pH 
7.4) of the disaccharides shown in Figure 2.10. 
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Figure 2.13.  Fluorescence emission spectra of a solution of 2.8 (1 × 10-3 M) and 2.8 with 
added di- and trisaccharides (1.85 × 10-3 M), all in 9:1 DMSO:phosphate buffer (0.05 M, 
pH 7.4) excited at 535 nm. This result shows the selectivity for lactulose and maltulose.  
The other di- and tri saccharides tested afford no detectable signal.  Only lactulose and 
maltulose can adapt the proper terminal residue configurational preference. 
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Figure 2.14.  Anionic fructofuranose-boronate ester structures. 

 
Previously our research group reported 13C NMR evidence for the occurrence of a 

distinct intramolecular tridentate fructose complex (2.12, Figure 2.14) in D2O/DMSO 

solutions.2.2  The analogous tridentate structure also occurs in significant proportions 

compared to other complexes in aqueous alkaline solutions of fructose and model 

arylboronic acids.2.21  The use of the neutral buffer 9:1 DMSO:H2O solvent system in the 

current study diminishes the formal intermolecular addition of solution-derived 

hydroxide to the sugar-boronate complex (resulting, for instance in 2.13 and 2.14, after 

subsequent deprotonation), as our research group have clearly demonstrated previously in 

related systems2.22 by limiting the availability and reactivity of the external hydroxide 

nucleophile. 

Thus, in more basic solutions, any sugars possessing at least one vicinal cis-diol 

should more readily produce a signal due to intermolecular hydroxide addition.  

Selectivity should be diminished due to the increased levels of hydroxide. Glucose, allose 

and ribose indeed afford significant spectral responses in 9:1 DMSO:H2O wherein the 

aqueous portion is adjusted to pH 10 (Figure 2.15, compare to Figure 2.7, A).   
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Figure 2.15.  Plots of relative absorbance changes at 355 nm vs. the concentration of 
various sugars in solutions comprised of carbonate buffer (0.1 mL, 40 mM, pH = 10.0) 
added to 2.8 in DMSO (3.4 mM, 0.9 mL) at 355 nm.  Analogous trends in absorbance 
changes vs. concentration are also observed at 535 nm. 
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The ability of fructose to form tridentate structures should be favored due to the 

well-known reactivity of the anomeric (and adjacent) hydroxyl.  Additionally, the 

relatively nucleophilic primary hydroxyl of β-fructofuranose is suitably positioned to also 

react with boron (Figure 2.14, 2.12).  Importantly, galactose, arabinose and altrose, which 

also promote spectral responses under neutral conditions (Figure 2.8) possess a furanose 

structure similar to that of β-fructofuranose, wherein the same three binding OH-groups 

(anomeric and adjacent as well as the primary hydroxyl) have analogous relative 

configurations (Figure 2.16).  The saccharides that possess other configurations of these 

three specific hydroxyls in their furanose forms do not afford significant signal changes.  

To test this hypothesis, I also examined lyxose, mannose and tagatose.  Each of these 

sugars may adopt furanose structures wherein the three binding hydroxyls (on the 1,2 and 

5 carbons in the case of aldoses and on the 2,3 and 6 carbons for ketoses) are all on the 

same face of the furanose ring for cooperative binding to boron.  As expected, each of 

these sugars induced signaling that was selective over psicose, xylose, ribose, glucose 

and allose (Figure 2.17) which cannot adopt the requisite furanose structures.   

I therefore attribute the selective detection of lactulose and maltulose to the 

configurations of their terminal fructose residues which can embody furanoses with a 

favorable orientation of their three key hydroxyls.  Three hydroxyl groups that can 

participate in cooperative binding to form an anionic boronate complex must be 

positioned on the same face of the monosaccharide to induce signaling, according to 

furanose structure analysis.  Lactulose and maltulose are important disaccharides as a 

prebiotic oligosaccharide in milk2.23 and as a marker of digestive disorders in infants,2.24 

respectively.  This finding may help serve as the basis of analyses derived from specific 
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linkage patterns as well as the precise stereo- and regiochemistry of terminal sugar 

residues of oligosaccharides. 
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furanose ring exhibit signal transduction (Figure 2.17).  
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Thus, based on the experimental evidence shown above, sugars which can form 

boronic acid-furanose tridentate complexes with specific configurations is the cause of 

the signal transduction under my experimental conditions.  
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Figure 2.18. (A)UV-Vis spectra of solutions of 2.8 with fructose, glucose or their 
mixture in 9:1 DMSO:phosphate buffer (60 mM pH 7.4).  (B) UV-Vis spectra of 
solutions of 2.8 with different concentrations of fructose ( [Fruc] ) in 9:1 
DMSO:phosphate buffer (60 mM pH 7.4).   
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The Detection of Fructose in Honey.  There are no sugars in honey at significant 

levels which can form sterically unencumbered tridentate complexes with 2.8 and 2.9, 

other than fructose.  D-fructose and D-glucose are the major components in honey, 

representing 65-95% of the total solids.2.25  Figure 2.18 shows clearly that with the 

application of the above mentioned method, fructose can be detected without obvious 

interference of 100-fold excesses amount of glucose. There are several important reasons 

for monitoring fructose levels in food.  High fructose intake has been implicated in the 

pathogenesis of atherosclerosis, elevated triglyceride levels and insulin resistance in 

humans.2.26  Non-enzymatic glycosylation products form more rapidly from fructose than 

from glucose.2.27  The popular use of food additives such as high fructose corn syrup is 

responsible for an estimated 9% of the daily caloric intake of Americans.2.28  The 

determination of fructose in common foods is thus of interest.  A specific significant 

concern is the fact that fructose has been cited as an adulterant in commercial honey.2.29   

The determination of fructose in honey has long been of great of interest. However, the 

reported methods consist of distinctive drawbacks. It is often expensive and time 

consuming using conventional method such as NMR, HPLC, and carbon isotope ratio 

analysis to detect fructose in honey. Enzyme sensors are easy to use and highly specific, 

nonetheless, the unstable enzymes are relatively expensive and need to be protected 

during manufacturing and specially maintained to prevent decomposition. Except for cost 

and instability, immune response is another drawback that researchers need to concern. 

Color assays based on synthetic chromophores to detect sugars usually require harsh 

conditions like highly toxic/corrosive reagents, high temperature, sometimes require 

multi steps and have reproducibility or interference limitations (Table 2.4).2.30-2.35 The 
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advantages of using resorcinarene boronic acid include ease of synthesis and maintence, 

less expensive, usually conducted in room temperature and under milder conditions, etc.   

 

Table 2.4.  Representative color tests based on non-enzymatic assays.  Note the harsh 
conditions required.  The assays often suffer from significant interference from 
competing analytes. 
 

 
dinitrosalicylic acid assay 
for reducing sugar2.31 

 
Nelson-Somogyi method 
for reducing sugar2.32 

 
ferric-orcinol assay for 
pentose2.30 

 
 
 
phenol-boric acid-sulfuric 
acid assay for ketose2.30 

 
 
Morgan-Elson assay for 
hexosamine2.33 

 
Carbazole assay for uronic 
acids2.34 

 
 
Warren assay for sialic 
acid2.35

 
Interference by CO2 and dissolved O2 as well as certain metal ion
and requires heating at 100 °C. 
 
Requires toxic Na2HAsO4 as well as H2SO4. 
 
 
Includes the use of HCl and requires heating to 100 °C.   
Interference from hexoses can be significant and standards contai
hexoses and pentoses in the expected amounts are needed. 
 
Uses phenol and H2SO4.   
Different ketoses give different responses. Reproducibili
dependent  
upon the manner of H2SO4 addition. 
 
Uses corrosive acids.  Prior acetylation of free hexosamines is oft
required.  Heating at 100 °C required. 
 
Interference from neutral carbohydrates, cysteine, other thiols and
proteins.  Different uronic acids afford different responses. Heatin
100 °C required. 
 
Necessitates prior periodate oxidation and toxic sodium arsenate, 
redistilled cyclohexanone and heating at 100 °C.  Interference 
from fucose (reduced absorbance) and fructose. 

 

 Although other boronic acid-based compounds and methods may be fructose-

selective, and potentially useful in an assay for fructose, very many would suffer from 

significant interference from glucose.2.15   Figure 2.18 shows clearly that with the 

application of the above mentioned method, fructose can be detected voiding the 
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interference of excess amount of glucose.  Despite the wide variety of boronic acid 

chemosensors reported, no simple and direct assay for the selective detection of fructose 

in honey has been previously described. 

The spectrophotometric analysis of fructose in honey is performed via a standard 

addition method. Standard addition is the benchmark quantitative validation assay in 

complex natural matrices.  It permits statistical validation of an assay, via an acceptable 

% recovery of standards, when certified samples are unavailable.   
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Figure 2.19. The calibration curve validated by the addition of fructose standards to a 
solution of honey (0.32 mg/mL) and 2.8 (3.4 mM) in a 1:9 mixture of phosphate buffer 
(0.1 mL, 60 mM, pH = 7.4) and DMSO at 355 nm. 

 
Standard addition of fructose (Figure 2.19) using colored solutions of 2.8 and 2.9 

results in a good linear range of 0-12 mM of fructose and a correlation factor of 0.995, at 

355 nm.  For % recovery determinations, known amounts of fructose are added to the 

honey samples before treatment.  The absorbance difference with respect to the original 
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sample is correlated with the fructose concentration from the calibration curve.  The 

percent recovery was 101.2 % with a R.S.D. (relative standard deviation) of 4.9 % (n=8).  

At 535 nm, standard addition of fructose using colored solutions of 2.8 and 2.9 results in 

a good linearity also with correlation factor of 0.998.   

2.3 Conclusion 

A major goal of this study was to understand the origin of the selective 

colorimetric signal transduction mechanism in resorcinarene-derived xanthenes and other 

xanthenes containing boronic acids.  The first hypothesis driving this study involved a 

potential synergy between 2.8 and 2.9 in solution is not the best description explaining 

selective saccharide detection under my experimental conditions.  I presented strong 

evidence that those sugars which can exhibit hydroxyl configurations analogous to those 

found in fructofuranose, form a specific tridentate complex with 2.9 with high selectivity.  

This finding is successfully applied to explaining selectivity in the detection of specific 

disaccharides via terminal sugar residues.  The findings reported herein allow better 

understanding of spectrophotometric signaling and should permit one to better predict 

potential interferences in challenging natural matrices.   

2.4   Experimental Section 

UV-Vis spectra are acquired on a Spectramax Plus 384 UV-Vis 

spectrophotometer (Molecular Devices Ltd.) using a 1 cm quartz cell at 25 ºC.  NMR 

spectra are obtained with a Bruker DPX DPX-300 spectrometer.  13C NMR spectra are 

acquired using D2O:DMSO-d6, 1:9.  Altrose and allose were purchased from OMICRON 

Biochemicals, Inc. and Fluka respectively.  The remaining chemicals were purchased 
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from Sigma-Aldrich Ltd. and used without further purification. Compound 2.82.1 is 

prepared via methods Dr. Strongin’ research group /reported previously.   

 Solutions of 2.8 containing colored 2.9 are prepared by dissolving 2.8 (3.4 mM) 

in DMSO and heating until a gentle reflux (3 min) followed by cooling to rt.  These 

solutions are mixed at rt with the corresponding sugars which are previously dissolved in 

phosphate buffer (pH = 7.4, 60 mM).  The final solution proportion in each experiment is 

9:1 DMSO:buffer.  The mixtures stand at rt for 25 min before recording UV-Vis spectra.   

For the standard addition experiments, a stock solution of honey is prepared by 

mixing 32 mg of commercial honey (generic class A, purchased at a local Albertsons® 

supermarket) in 10 ml of phosphate buffer solution (pH = 7.4, 60 mM).  The solution is 

filtered through Millipore® YM-3 centrifugal membranes with the aid of a GRAHAAM-

FIELD Centrifuge (3000 rpm).  Fructose standards in phosphate buffer (pH = 7.4, 60 

mM) are added to the filtrate, followed by the addition of a pre-heated colored DMSO 

solution of 2.8 (3.4 mM) in order to construct a calibration curve (standard addition 

method).  The proportion of DMSO:buffer is 9:1, final volume 1 mL.  For % recovery 

determinations, known amounts of fructose (1-12 mM) are added to the honey samples 

before the filtration steps.  UV-Vis spectra are recorded for (i) the 2.8 and honey solution 

(A0) and (ii) for the solutions of 2.8, honey with added fructose (A).    

Semiempirical molecular modeling analysis is performed using CS 

MOPAC/ChemOffice 6.0 (CambridgeSoft) and the potential function AM1.  Molecular 

graphics images are produced using the UCSF Chimera package from the Computer 

Graphics Laboratory, University of California, San Francisco. 
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CHAPTER 3 

STEREOCHEMICAL AND REGIOCHEMICAL TRENDS IN  
THE SELECTIVE SPECTROPHOTOMETRIC DETECTION OF 
SACCHARIDES APPLYING RHODAMINE BORONIC ACID* 

3.1 Introduction 

Most arylboronic acid indicators for sugars are inherently selective for fructose 

or, by design, selective for glucose.3.1  There is an unmet demand for chemosensors that 

promote the detection of other saccharides.  Monitoring sugar levels is important in 

industry, biomedical research and health care. 

Herein I describe a boronic acid-functionalized rhodamine derivative (3.1)3.2 

which displays an unprecedented degree of colorimetric and fluorimetric selectivity for 

ribose and ribose derivatives.  For instance, adenosine as well as nucleotides and 

nucleosides can be detected selectively compared to fructose, glucose and other common 

saccharides.  The hypothesis driving this investigation is that the characteristic regio- and 

stereochemical saccharide mutarotational isomer structures of specific sugars can guide 

indicator design.3.3  

Scheme 3.1. Structure of compound 3.1.  

ON NH

B(OH)2 (HO)2B

3.1

CO2
-

 

*Reprinted in part with permission from Journal of the American Chemical Society, 
2006, Volume 128, pages 12221-12228; Shan Jiang, Jorge O. Escobedo, Kyu Kwang 
Kim, Onur Alpturk, George K. Samoei, Sayo O. Fakayode, Isiah M. Warner, Oleksandr 
Rusin, and Robert M. Strongin; Stereochemical and Regiochemical Trends in the 
Selective Detection of Saccharides. Copyright 2006 American Chemical Society. 
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Figure 3.1.  (a) Relative absorbance changes vs. concentration of various 
monosaccharides in phosphate buffer (0.1 mL, 60 mM, pH 7.4) added to 3.1 (7.2  × 10-5 
M) in DMSO (0.9 mL) and monitored at 560 nm. (b) The UV-Vis spectra of a solution of 
3.1 (7.2 × 10-5 M) alone and 3.1 with added ribose (4 × 10-4 M). (c) Relative fluorescence 
emission spectra at 597 nm of 3.1 (4 × 10-9 M) and saccharides and saccharide-containing 
molecules (1.85 × 10-3 M) in 9:1 DMSO:phosphate buffer (0.05 M, pH 7.4) excited at 565 
nm. (d) Fluorescence emission spectra of a solution of 3.1 (4 × 10-9 M) and 3.1 with 
added ribose (1.85 × 10-3 M) in 9:1 DMSO:phosphate buffer (0.05 M, pH 7.4) excited at 
565 nm. 
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The Selective Detection of Ribose Compared to Common Monosaccharides. 

Ribose has been used as an anti-Hepatitis B virus (HBV) and anti-Epstein Barr virus 

(EBV) agent.3.4  The presence of excessive amounts of ribose has been reported in the 

cerebrospinal fluid (CSF, 47-146 μM) and urine (5-102 μM) of patients with ribose-5-

phosphate isomerase deficiency, a disorder associated with leukoencephalopathy.3.5    

Examination of the spectral response of compound 3.1 to added ribose as compared to 

fructose, galactose or glucose (Figures 3.1a and 3.1b) shows that it is ribose-selective.  

Ribose is detected colorimetrically in this example at levels potentially relevant for 

diagnosing ribose-5-phosphate isomerase deficiency.  The selectivity for ribose is 

confirmed by fluorescence spectroscopy.  The emission of solutions containing 3.1 and 

ribose as well as ribose-containing compounds is generally larger compared to other 

common sugars and related biomolecules studied to date (Figure 3.1c). 

 

Scheme 3.2. Structures of ribose and selected ribosides and ribotides.  
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Detection of Ribosides and Ribotides:  Biomarkers of Inborn Errors of 

Purine Biosynthesis.  Recently, a new and devastating inborn error of purine 

biosynthesis, AICA-ribosiduria, was discovered.  The child studied in this first case 

excreted massive levels of AICAr in her urine (280 mmol/mole creatinine).  In addition, 

succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine 

(S-Ado) were present at levels of 45 and 80 mmol/mole creatinine.  These two latter 

succinylpurines are analogs of AICAr.  They are also the key urinary biomarkers for the 

other inborn error of purine biosynthesis, adenolosuccinate lyase (ADSL) deficiency.  

AICAr, S-Ado and SAICA-riboside and congeners are not present in the urine of healthy 

patients.  In ADSL-affected children, extremely high levels, 1-10 mM in urine, 0.1 mM in 

cerebrospinal fluid (CSF), are present.  ADSL results in mental retardation, congenital 

blindness, epilepsy and dysmorphism.3.6 

Based on the results shown in Figure 3.1 showing selectivity for ribose and 

adenosine, I hypothesized that the detection of inborn errors of purine biosynthesis 

biomarkers could also be feasible using 3.1.  Commercially available AICAr, used as a 

surrogate for SAICAriboside and S-Ado, can be readily detected in solutions containing 

3.1 (Figure 3.2).  Under identical experimental conditions, ATP is also detectable.   

Nucleosides and nucleotides such as ATP and congeners were found at double the 

normal levels (ca. 1600 mmol/mL erythrocytes) in the blood of the patient with AICA-

ribosiduria.  Compound 3.1 may thus serve as a basis of future studies for a general 

chemical test for inborn errors of purine biosynthesis.  One of the many challenges 

remaining involves addressing the remaining interfering signals from fructose. 
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Figure 3.2. UV-Vis spectra of solutions containing 3.1 (7.2 × 10-5 M) in 9:1 
DMSO:phosphate buffer (0.06 M, pH 7.4) and 3.1 in the presence of 4 × 10-4 M solutions 
of ATP, adenosine and AICAr. 

 

Addressing Fructose Interference.  Overcoming the high affinity of arylboronic acids 

for fructose in order to detect glucose selectively has been addressed by many researchers 

to date.3.1  The main strategy has been to design receptors which can bind a glucose 

molecule selectively via two boronic acids in a bidentate fashion.3.7  Alternatively, in the 

current study, fructose-induced interference is eliminated by using a combination of 

receptors exhibiting complementary affinities and spectral properties. 

Fructose-selective Materials Used in Conjunction with 3.1 Heighten 

Selectivity for Ribose-containing Compounds.  We have previously reported an 

extensive study of the mechanism of chromophore formation in resorcinarene 

solutions.3.8a  Solutions containing millimolar concentrations of compound 3.2 developed 

micromolar levels of chromophore 3.3 in situ.  The colored material 3.3 enabled 

saccharide detection via UV-Vis and fluorescence spectroscopy.  Extensive spectroscopic 
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studies proved that the formation of anionic sugar-boronate complexes of 3.3 resulted in 

the sugar-induced spectral changes, as boron became charged.  In chapter 2, I have 

descrbed resorcinarene boronic acid (3.2) and its associated chromophoric species (3.3) 

produced by its oxidation for the selective detection of fructose (Figure 3.3).3.8    

 

OH
OH HO OH HO OH

HO HO

B(OH)2 B(OH)2 B(OH)2 B(OH)2

3.2

OOH
O

HO HOOHOH

n m

B(OH)2 B(OH)2 B(OH)2

3.3     n  = 0, 1, 2, etc
       m = 0, 1, 2, etc  

 

Figure 3.3.  Structures of the resorcinarene boronic acid 3.2 and its chromophoric 
products (3.3) formed in situ. 

 

I thus hypothesize that fructose-reactive 3.2 (and 3.3) should bind fructose and 

remove fructose-derived signals from solutions containing ribose-selective 3.1.  I indeed 

observe that essentially no response due to fructose (and the two other most common 

blood monosaccharides, galactose and glucose) occurs (Figure 3.4) upon adding 3.2 to 

solutions containing 3.1 for ribose detection. 
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Figure 3.4.  Relative absorbance changes vs. concentration of ribose, fructose, galactose 
and glucose in solutions comprised of phosphate buffer (0.1 mL, 60 mM, pH = 7.4) added 
to 3.1 (0.07 mM) in DMSO (0.9 mL) and 3.2 (1.9 mM) monitored at 560 nm.  A 
comparison to Figure 3.1a shows that the use of 3.1 combined with 3.2 removes 
significant fructose interference under these conditions.  

 

3.2 Discussion 

The Chemoselective Signaling of 3.1 Is Unique Compared To Other Boronic 

Acid Dyes.  Ribose exhibits 1:1 binding to 3.1 according to the continuous variation 

method (supporting information).  Table 3.1 displays the apparent binding constants (Keq) 

corresponding to complexes of 3.1 with various monosaccharides.  The order of affinities 

is: ribose > allose > fructose > galactose > altrose > glucose > arabinose.  The latter trend 

does not correlate well with the generic binding affinities involving phenylboronic acid 

and monosaccharides (Table 3.1).  For instance, based on the reported similar binding 

constants of model arylboronate complexes of ribose and arabinose3.9 and the similar 

degree of complexation of ribose and arabinose (65 % and 74 %, respectively),3.3c one 

would have predicted ribose to afford a spectrophotometric response similar to that of 
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arabinose in solutions containing 3.1.  Since boronic acid binding alone cannot account 

for the colorimetric and fluorimetric selectivity observed using 3.1, I thus hypothesize 

that secondary interactions with the rhodamine chromophore are occurring when 3.1 

binds to specific sugars. 

 

Table 3.1.  Apparent binding constants (Keq) of the complexes of various 
monosaccharides and compound 3.1 (7.2 × 3.10-5 M in 9:1 DMSO:phosphate buffer 60 
mM, pH 7.4).  Values are the average of three runs rounded to two significant figures.   

 

Saccharide  Keq (M-1) 

 Calculated 

values for 3.1 

Literature values 

for phenylboronic 

acida

Ribose 2400 24 

Allose 1500 - 

Fructose 1100 160 

Galactose 310 15 

Altrose 270 - 

Glucose 200 4.6 

Arabinose 120 25 
 

a See reference 3.9. 

 

NMR Studies Show That 3.1 Binds Ribose in the Furanose Form.  The 1H 

NMR spectrum of a solution of 3.1 and ribose (0.15 M NaOD/D2O) reveals a preference 

for binding ribofuranose over ribopyranose (Figure 3.5).3.10  Ribofuranose possesses pairs 

of cis-diols for cyclic boronate formation that more eclipsing compared to its pyranose 

forms.3.3  Ribose acetonide formation is precedented to occur at its 2,3-hydroxyls in 90 % 

yield (Scheme 3.3).3.11
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Figure 3.5.  Expansion of the 1H NMR spectra of solutions of (a)  D-ribose and (b) a 
mixture of 3.1 and D-ribose (0.15 M NaOD/D2O).  The resonances shown correspond the 
anomeric protons of each of the four cyclic forms. The assignments are: δ (ppm): 5.30 
(α-ribofuranose), 5.18 (β-ribofuranose), 4.85 (β-ribopyranose) and 4.79 (α-
ribopyranose).  Upon the addition of 3.1 only the resonances corresponding to the 
ribofuranoses exhibit a downfield shift.  This is expected as a result of cyclic boronate 
formation with ribofuranose (reference 3.3c). 

 

Scheme 3.3.  Formation of ribose acetonide via selective reaction of the 2,3-hydroxyls in 
90 % yield (reference 3.11). 
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Ribose, Allose, Talose, Psicose, Adenosine, Nucleotides and Nucleosides 

Exhibit Common Furanose Configurations.  I include a total of 11 commercially 

available monosaccharides in our study (Figure 3.6).  Psicose, allose, talose and ribose 
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are the only monosaccharides to afford spectral changes in solutions of 3.1 containing 3.2 

(Figure 3.7).  D-Psicose is a rare sugar under consideration as a direct substitute for D-

fructose.3.12  Allose is a rare sugar which exhibits scavenging activity toward reactive 

oxygen species (ROS) and a potent inhibitory effect on the production of ROS from 

stimulated neutrophils.3.13  Additionally, allose has been used to reduce thrombus 

formation during post-operative period in combination with other anti-clotting drugs.3.14 

It has recently been shown to be active against ovarian cancer cell lines.3.15  D-Talose has 

shown inhibitory effects on the growth of leukemia L1210 cells.3.16  Tagatose (as well as 

fructose, vide supra) which has a relatively strong binding affinity for phenylboronic acid 

(comparable to fructose, Table 3.1) affords no detectable signal.   
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Figure 3.6.  Structures of 11 monosaccharides in their furanose forms.  Compound 3.1 is 
selective for sugars with hydroxyls shown in blue.  Compound 3.3 is selective for sugars 
with hydroxyls shown in red. 
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The rare ketohexose psicose exhibits a furanose form in which the 3,4-cis diols 

are anti to the 6-OH.  Analogously, the rare aldopentoses allose and talose each possess a 

2,3-cis diol moiety anti to the 1,4- substituents (shown in blue).  Importantly, this is also 

a common feature of ribose, adenosine and the nucleotides and nucleosides.   
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Figure 3.7. Plots of relative absorbance changes vs. concentration of 11 monosaccharides 
in solutions comprised of phosphate buffer (0.1 mL, 60 mM, pH = 7.4) added to 3.1 (0.07 
mM) in DMSO (0.9 mL) and 3.2 (1.9 mM) monitored at 560 nm. 

 

Simulations Show That Ribose and Congeners Can Selectively Undergo 

Secondary Interactions with the Fluorophore Moiety of 3.1.  There is precedence for 

secondary interactions (e.g., in the case of oligosaccharides) affording enhanced 

fluorescence or UV-Vis signaling in boronic acid dyes.3.6a,3.17  Sugars possessing 

pentafuranose configurations with alpha 2,3-cis diols (for boronate ester formation) and 

beta 1,4-substituents allow the 1,4-substituents to undergo secondary interactions with 
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the rhodamine chromophore of 3.1.  Similarly, hexafuranoses exhibiting alpha 3,4-cis 

diols and beta 6-OH substituents should also undergo analogous secondary interactions. 

Recently, Anslyn showed that in protic media (H2O or MeOH), and particularly 

with relatively weaker nitrogen nucleophiles, a solvent molecule adds to boron and 

disrupts the B-N dative interaction between arylboronic acids containing proximal amino 

groups.3.18  This results in a zwitterion wherein the nitrogen atom is protonated as the 

boron atom adopts sp3 hydridization and negative charge upon addition of the fourth 

(solvent) ligand.  A hydrogen bond is concomitantly formed between the proton on 

nitrogen and the solvent (hydroxy or methoxy) molecule attached to boron (Figure 3.8).   
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Figure 3.8. The effect of solvation on the B-N bond in o-(N,N-
dialkylaminomethyl)phenylboronic esters  (adapted from reference 3.18).  

 

Simulations of the boronate complexes of 3.1 with the furanose forms of ribose, 

fructose and glucose, performed using structures that would result from solvolysis of 

boron, reveal how secondary interactions between the sugar moiety and the chromophore 

may occur selectively in the cases of ribose and its analogs.  The simulations how 

pentafuranoses that can exhibit an alpha 2,3-cis diol and beta 1,4 diol configuration may 

have a tighter interaction with the rhodamine chromophore as compared to boronate 

complexes of fructose (which exhibits a well-known motif of intramolecular tridentate 

hydroxyl binding to boron, vide infra) and glucose which can bind to boron via the 

anomeric 1 and 2-cis hydroxyls (Figure 3.9 and Figure 3.10). 
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Figure 3.9.  Energy-minimized structures of boronates derived from 3.1 and ribofuranose 
(“endo” isomer, structure A), fructofuranose (3 rotamers, structures B) and glucofuranose 
(“exo” isomer, structure C, the complementary conformers of the ribo- and glucofuranose 
boronates are included in Figure E4).  A subunit of the the rhodamine chromophore 
moiety is shown for clarity and used in the simulations in order to simplify the 
calculations.  The above calculated structures show that the ribofuranose complex 
exhibits the relatively best geometry for promoting direct contacts between the bound 
sugar moiety and the chromophore moiety of 3.1.  Studies aimed at evaluating the 
specific interactions between ribose, adenosine, ribosides and ribotides with 3.1 that 
might involve π-π stacking, σ-π interactions and/or charged hydrogen bonding between 
the sugar and the rhodamine carboxylate functionality, are ongoing. 
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The Development of 3.2 and 3.3 As Off-on Colorimetric Indicators for 

Sugars with Selectivity Complementary to 3.1.  Figure 3.10 shows that fluorescence 

emission enhancement in solutions containing 3.2 and 3.3 (using the neutral buffer sugar 

solution protocol described above for the studies involving 3.1, where sugar in buffer is 

mixed with dye dissolved in DMSO) follows the expected pattern based on the affinity 

for phenylboronic acid according to Wang’s3.9 prior studies (Table 3.1) fructose > 

arabinose > ribose > galactose > glucose.  The concentration vs. absorbance changes of 

these latter as well as other sugars, as monitored by UV-Vis spectroscopy at 535 nm, is 

shown in Figure 3.11.  There is scatter or no useful signal obtained from psicose, ribose, 

glucose and allose.  Signaling due to the addition of tagatose, fructose, altrose, galactose 

and arabinose is observed.  This trend is in contrast to the responses using 3.1 (vide 

supra) which exhibits signal enhancement in the presence of psicose, ribose and allose 

with no detectable interference from altrose, galactose and arabinose.  

0.0

0.1

0.2

0.3

0.4

0.5

2 ribose

allose

glucose

galactose

arabinose

altrose

fructose
(I-

Io
)/I

o

 

Figure 3.10.  Relative fluorescence emission spectra at 574 nm of 3.2 (5.75 × 10-5 M) 
and monosaccharides (1.85 × 10-3 M) in 9:1 DMSO:phosphate buffer (0.05 M, pH 7.4) 
excited at 550 nm. 
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Figure 3.11.  Relative absorbance changes vs. the concentration of various 
monosaccharides in phosphate buffer (0.1 mL, 60 mM, pH = 7.4) added to 3.2 in DMSO 
(3.4 mM, 0.9 mL) at 535 nm. 
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Figure 3.12.  Anionic fructofuranose-boronate ester structures. 

 

Previously, our research group3.6a and others3.3b have reported 13C NMR evidence 

for the occurrence of a distinct intramolecular tridentate fructose complex (3.4, Figure 

3.12) in D2O/DMSO solutions,  The ability of fructose to form tridentate structures can 

be favored due to the well-known reactivity of the anomeric (and adjacent) hydroxyl.  
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Additionally, the relatively nucleophilic primary hydroxyl of β-fructofuranose is suitably 

positioned to also react with boron.  Importantly, galactose, arabinose and altrose, which 

also promote spectral responses under neutral conditions (Figure 3.11) possess a furanose 

structure similar to that of β-fructofuranose, wherein the same three binding OH-groups 

(anomeric and adjacent as well as the primary hydroxyl) have analogous relative 

configurations (Figure 3.6).  Each of these sugars may adopt furanose structures wherein 

the three binding hydroxyls (on the 1,2 and 5 carbons in the case of aldofuranoses and on 

the 2,3 and 6 carbons for ketofuranoses) are all on the same face of the furanose ring for 

cooperative binding to boron (Figure 3.6, key hydroxyls are shown in red).  The 

saccharides that possess other configurations of these three specific hydroxyls in their 

furanose forms do not afford significant signal changes.  Thus, each of these sugars 

induced signaling that is selective over psicose, ribose, glucose and allose (Figure 3.11) 

which cannot adopt the requisite furanose structures.   

3.3 Conclusion 

A major goal of this study was to understand the origin of the selective signal 

transduction mechanism in xanthene-containing boronic acids.  Strong evidence is 

presented to show that sugars which can share the same hydroxyl configurations as 

ribofuranose promote signaling in solutions of 3.1 with high selectively.  This is the 

initial example of a boronic acid chemosensor which exhibits distinctive selectivity for 

ribose, adenosine and derivatives as well as rare sugars such as allose and talose.  

In contrast, sugars possessing configurations analogous to those found in 

fructofuranose can form a specific tridentate complex with 3.3, resulting in selective 

colorimetric and fluorimetric signaling.  This latter finding is successfully applied to 

explaining selectivity in the detection of specific disaccharides via their terminal sugar 
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residue linkage and configurational patterns.  When receptors with different optical 

response properties are used in tandem, interfering signals can be virtually eliminated in a 

relatively simple manner.  The design and study of new xanthene dyes, such as 3.1, 3.3 

and related compounds, is ongoing in our lab. 

3.4 Experimental Section  

UV-Vis spectra were acquired on a Spectramax Plus 384 UV-Vis 

spectrophotometer (Molecular Devices Ltd.) using a 1 cm quartz cell at 25 ºC.  

Fluorescence emission spectra were recorded using a spectrofluorimeter SPEX 

Fluorolog-3 equipped with double excitation and emission monochromators, and 400W 

Xe lamp and 1 cm quartz cell at 25 ºC.  Altrose and allose were purchased from 

OMICRON Biochemicals, Inc. and Fluka respectively.  The remaining sugars as well as 

4-formylphenylboronic acid and resorcinol were purchased from Sigma-Aldrich Ltd. and 

used without further purification. Compounds 3.1 and 3.2 were prepared according to 

procedures reported earlier.3.2,3.19 

Solutions of 3.2 are dissolved 3.1 in DMSO, heated at a gentle reflux (3 min) 

followed by cooling to rt.  These solutions were mixed at rt with the corresponding 

sugars previously dissolved in phosphate buffer (pH = 7.4, 60 mM).  For experiments 

leading to removal of fructose interference, a DMSO solution of 3.1 (7.2 × 10-5 M) would 

be added.  The final solution proportions were 9:1 DMSO:buffer.  The mixtures stood at 

rt for 25 min before recording UV-Vis or fluorescence spectra.  

Semiempirical molecular modeling analysis was performed in two steps, using 

MOPAC with the potential function AM1 (Chem3D 7.0, CambridgeSoft) to obtain an 

optimized geometry and then energy-minimization using MM2 (Chem3D 7.0, 

CambridgeSoft).  Molecular graphics images were produced using the UCSF Chimera 
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package from the Computer Graphics Laboratory, University of California, San 

Francisco. 
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CHAPTER 4 

SELECTIVE DETECTION OF CYSTEINE AND HOMOCYSTEINE USING A 
FLUORESCEIN DIALDEHYDE* 

 
4.1 Introduction 

This was a collaborative project with other members of my research group. My 

own specific contributions to this project included: 

1. Synthesis of fluorescein dialdehyde. I contributed to the synthesis of 

fluorescein dialdehyde derivative (4.6).  I conducted every step to the final product, 

which was used in the detection of cysteine and homocysteine by our group. 

2. UV-Vis and Fluorescence experiments.  I contributed, in conjunction with Dr. 

Oleksandr Rusin, to the UV-Vis and fluorescence studies of homocysteine in 

deproteinized human blood plasma.  

4.2 Formation of Cysteine and Homocysteine 

Cysteine (4.1) and homocysteine (4.2) are among the most important naturally 

occurring thiols and are of great concern to public health. Homocysteine was first 

discovered by Butz and du Vigneaud at the University of Illinois via heating methionine 

in sulfuric acid.4.1  Though discovered in 1932, homocysteine was not found to be health 

related until the early 1960s when children with mental retardation, dislocation of ocular 

lenses, seizures and skeletal abnormalities were found to have high concentrations in 

their urine.4.2   

 
*Reprinted in part with permission from Journal of the American Chemical Society, 
2003, Volume 126, pages 438-439;  Oleksandr Rusin, Nadia N. St. Luce, Rezik A. 
Agbaria, Jorge O. Escobedo, Shan Jiang, Isiah M. Warner, Fareed B. Dawan, Kun Lian, 
and Robert M. Strongin;  Visual Detection of Cysteine and Homocysteine.  Copyright 
2006 American Chemical Society. 
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The discovery of homocystinuria (homocysteine excreted in the urine) initiated an 

upsurge of interest in homocysteine.  The structures of homocysteine and cysteine are 

very similar.     

The poor water solubility of cystine reduces its ease of excretion.  It therefore 

accumulates either in urine, resulting in cystinuria4.3 or in various organs of the body, 

leading to, for example, kidney stones.4.4 Low levels of cysteine are also involved in liver 

damage, slowed growth, muscle and fat loss, hair depigmentation, lethargy, edhe 

metabolic pathways involving homocysteine are shown in Scheme 4.1. Homocysteine, an 

intermediate metabolite, mainly arises from the demethylation of methionine.  In 

biological systems, L-methionine first reacts with ATP affording S-adenosylmethionine 

(SAM), a widely used methyl donor for many reactions.4.6  In the presence of a methyl-

transferase, S-adenosylhomocysteine (SAH) is produced via demethylation of SAM.4.7  

The subsequent hydrolysis of SAH by the enzyme S-adenosylhomocysteine hydrolyase 

gives rise to homocysteine.4.8 The intake of homocysteine from the diet is very small. The 

homocysteine in the human body mainly originates from the metabolism of methionine. 

The methionine-derived homocysteine can be consumed in three distinct metabolic 

pathways, i.e. remethylation back to methionine, conversion to cysteine and formation of 

an intramolecular thioester.4.9, 4.10, 4.11, 4.12  Homocysteine metabolism through 

transulfuration is the major pathway to afford cysteine, which serves as a source of 

glutathione, sulfate and sulfite. The proper function of the related proteins plays an 

important role in adjusting cysteine and homocysteine metabolism. There are also other 

factors affecting the distributing of cysteine and homocysteine such as transport, 

intracellular import and export, and cellular uptake and output. Mechanistic 
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understanding of the distribution and the transportation of the thiols in human body is of 

importance for understanding of their possible roles in disease.  

Scheme 4.1.  Metabolism of Homocysteine. 
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4.3 Homocysteine in Plasma 

Homocysteine exists in several forms after being released into plasma.4.13-4.15  The 

disulfide form with another thiol molecule such as proteins (more than 70%), 

homocysteine or other low-molecular-weight thiols. Hence, only a small fraction of 

homocysteine is present in plasma as reduced, free form.  However, the amount of 

homocysteine normally refers to the total amount of bonded disulfide and free 

homocysteine.4.15 

4.4 Relevance of Homocysteine to Public Health 

When the dynamic equilibrium of homocysteine metabolism is interrupted due to 

either nutritional deficiency or genetic defects, excess amounts of homocysteine 

accumulate in blood plasma (hyperhomocysteinemia) or urine (homocystinuria). It is 

known that elevated homocysteine in plasma is an independent risk factor associated with 

serious disorders such as Alzheimer’s and cardiovascular diseases.4.16, 4.17  The former is a 

disorder in the human brain and the latter includes dysfunctional conditions of the heart 

and blood vessels which supply oxygen and nutrition to the body. Homocysteine is also 

related to a number of other diseases such as neural tube defects,4.18  pregnancy 

complications,4.19  and renal failure.4.20  Therefore, the detection of cysteine and 

homocysteine are of importance for diagnosing and understanding disease states. 

Due to the health risks associated with homocysteine, improved detection 

methods of biological important thiols have been a focus of numerous research efforts.  

The current methods, including mass spectrometry, chromatographic separations, 

immuno- and enzymatic assays, and electrochemical technology have some intrinsic 

restrictions. The challenges with many current detection methods include harsh 
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conditions, tedious procedures, long run times,4.21 and high operating temperatures.4.8, 4.10, 

4.11  

4.5 Synthesis of Fluorescein Dialdehyde Derivative 4.6 

    

HO O O

O

O

O O

H

4.6  

 

Figure 4.1  Compound 4.6. 

 

The synthesis of fluorescein dialdehyde derivative 4.6 (Figure 4.1) was reported 

by Burdette as a reaction intermediate in the synthesis of a fluorescent sensor for Zn2+ 

detection.4.22  The reactive aldehyde moieties plus the fluorescein chromophore make 

compound 4.6 a potential sensor for cysteine and homocysteine detection (vide infra). I 

was able to synthesize 4.6 with several modifications to the literature procedure.  

The synthesis begins by condensing 2-methyresorcinol with phthalic anhydride in 

the presence of ZnCl2 to afford compound 4.3.  The intermediate 4.3 wasn’t previously 

isolated; however, I obtained it as a red solid by precipitation using aqueous HCl (6M).   
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Scheme 4.2  Synthesis of compound 4.6. 
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The subsequent protection of compound 4.3 with excess benzoic anhydride 

followed by bromination with 1,3-dibromo-5,5-dimethylhydantoin in C6H5Cl produces 

fluorescein dibromide 4.5. Oxidation of compound 4.5 via DMSO (Swern reaction) and 

work-up with aqueous HCl (2M) gives compound 4.6 (Scheme 4.2). 

4.6 Results and Discussion 

It is known that the selective reaction of N-terminal cysteine with aldehydes to 

form thiazolidines has been used to label and immobilize proteins and peptides (Scheme 

4.3).4.23   

Scheme 4.3  Reaction of cysteine with aldehydes to form thiazolidines. 
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The reaction of the aldehyde moieties of 4.6 with cysteine (Scheme 4.4) and 

homocysteine (Scheme 4.5) would promote colorometric and fluorometric responses, 
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which would be easily monitored.  The use of the xanthene dye 4.6 for the efficient 

detection of cysteine and homocysteine is presented herein.  The methodology also shows 

promise towards the direct and quantitative determination of homocysteine.   

Scheme 4.4  Reaction of 4.6 with cysteine 4.1. Reaction conditions: 0.25 M Na2CO3 
buffer pH 9.5, followed by precipitation with MeOH. 
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Scheme 4.5  Reaction of 4.6 with homocysteine 4.2. Reaction conditions: 0.25 M 
Na2CO3 buffer pH 9.5, followed by precipitation with MeOH. 
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Figure 4.2  Top:  color changes of solutions of 4.6 and various analytes.  A = no analyte, 
B = cysteine, C = homocysteine, D = bovine serum albumin, E = glycine and F = n-
propylamine.  Bottom:  co-spots of 4.6 (1.0 x 10-3 M) with and without various analytes 
(1.0 x 10-3 M) under visible and UV light. 
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Figure 4.3  Left: Absorption spectra of dialdehyde (2.5 x 10-6 M) and cysteine (4 x 10-6 
M – 8 x 10-5 M) in H2O, pH 9.5, rt, 5 min. Right: Interaction of the 4.6 (4 x 10-6 M) and 
cysteine (4.9 x 10-5 to 7.4 x 10-4 M) in deproteinized human blood plasma containing 5.0 
mM glutathione at room temperature. Detection limit is 4 x 10-5 M. 
 

The visual detection of cysteine and homocysteine is shown in Figure 4.2.  It 

illustrates that when cysteine or homocysteine (1.0 x 10-3 M) is added to a solution of 4.6 

(1.0 x 10-6 M), in carbonate buffer  at pH 9.5, a solution color change is observed from 
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bright yellow to brownish-orange.  However, no apparent color changes were observed, 

with the use of a common amine, amino acid, or protein at the same concentrations.  

Similar effects on a solid support, C18-bonded silica, are also shown in Figure 4.2. 

Figure 4.3 illustrates UV-Vis characteristic absorbance changes of cysteine-4.6 

solutions.  This solution was readily monitored in the cysteine concentration range of 

10-5-10-6 M.  A 25 nm red shift is observed from 480 nm to 505 nm with an increase in 

cysteine concentration.4.24  Similar shifts were also displayed in the sample of 

commercial human blood plasma (previously centrifuged at 3000 g through a cellulose 

3000 MW cut-off filter), by adding 4.6 and excess amount of glutathione (1 mM).  This 

resulted in concentration-dependent spectrophotometric changes (Figure 4.3).  These 

results show the potential use of 4.6 for calibration and determination of concentrations 

of aminothiols in plasma samples in the presence of other biological thiols.  Addition of 

cysteine or homocysteine to solutions of 4.6 results in fluorescence quenching.   

 

Figure 4.4  Absorbance vs. concentration plots for cysteine ( ) and homocysteine (O) in 
aqueous solutions of dialdehyde (2.5 x10-6 M) at pH 9.5.  
 
 

Solutions of 4.6 containing identical concentrations of 4.1 and 4.2 respectively 

exhibit similar spectrophotometric changes (Figure 4.4).  Absorbance of 4.6 at 480 nm 

decreases in the presence of 5 x 10-6 M  cysteine or  homocysteine.  For concentrations of 
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cysteien or homocysteine in the range 10 x 10-6 – 40 x 10-6 the absorbance increases at 

505 nm.  Poor reactivity of 4.6 with other common thiols (methionine, mercaptoethanol, 

glutathione), other amino acid (glutamine, serine, glycine, glutamic acid), and amines (D-

glucosamine hydrochloride and n-propylamine) (8 x 10-4 M, pH 9.5) highlights the 

selectivity of 4.6 for cysteine and homocysteine.  In response to the analytes mentioned 

above, only about 15% decrease in absorbance at 480 nm is observed. No noticeable 

wavelength shift is seen (Figure 4.5).  Small absorbance decreases without wavelength 

shifts are also observed in another control experiment using solutions containing 4.6 and 

bovine serum albumin or urease.   
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Figure 4.5  Successive addition of serine (to final concentrations of 4 x 10-5 M to 8 x 10-4 
M) to an aqueous solution of dialdehyde (2.5x10-6 M) at pH 9.5 results only in an 
absorbance change at 480 nm.  Addition of cysteine (to final concentrations of 4 x 10-6 M 
- 8 x 10-5 M) to the serine-dialdehyde solution produces an absorbance change at 505 nm.  
 

A linear correlation between fluorescence emission intensity and healthy to 

abnormal homocysteine concentrations in plasma containing 4.1 is shown in Figure 4.6. 
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This provides a potential method toward calibrating and quantitative determining 

aminothiol concentrations in human plasma in the presence of other biological thiols. 

 

 

 

 

Figure 4.6  Fluorescence emission spectra of 4.6 (5.2 x 10-7 M) and homocysteine (2.9 x 
10-6-2.5 x 10-3 M) in deproteinized human plasma excited at 460 nm (pH 9.5).  (Inset) 
Fluorescence emission plotted vs [homocysteine]. 
 

4.7 Conclusion 

We have shown that compound 4.6 can be used to readily detect cysteine and 

homocysteine in the range of their physiological levels.  This is done with negligible 

interference from amines, amino acids, and certain thiols and proteins.  This may allow 

for the rapid detection of cysteine and homocysteine.  We are currently exploring and 

optimizing new methods for the selective detection of cysteine and homocysteine. 

 

 

 75



4.8      Experimental Section  

Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a 

Bruker Proflex III MALDI mass spectrometer with either anthracene or dithranol 

matrices.  UV-Visible spectra were recorded at room temperature on a Spectramax Plus 

(Molecular Devices).  Analytical thin-layer chromatography (TLC) was performed using 

general-purpose silica gel on glass (Scientific Adsorbants).  Flash chromatography 

columns were prepared with silica gel (Scientific Adsorbants, 32-63 μm particle size, 

60Å).  The following compounds were prepared according to literature methods: 4.4,4.22 

4.5,4.22 and 4.6,4.22  All other chemicals were purchased from Sigma or Aldrich and used 

without further purification.  Proton NMR spectra were acquired in either CD3OD, 

CH3OD or DMSO-d6 on a Bruker DPX-250, DPX-400, or AMX-500 spectrometer.  All δ 

values are reported with (CH3)4Si at 0.00 ppm or DMSO at 2.45 ppm as references.   
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APPENDIX A.  STRUCTURES OF TWELVE HEXOSES AND FOUR PENTOSES 
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5. D-Gulose
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9. D-Psicose

CH2OH

O

OHH

OHH

OHH

CH2OH

O

OH OH

O

OH

OH
OH

HO OH

O

HO OH

O

D-psicoketose -D-psicopyranose -D-psicopyranose -D-psicofuranose -D-psicofuranoseα αβ β

OH

HO

OH

OH

HO

HOOH
OH

OH

OH

10. D-Fructose

CH2OH

O

HHO

OHH

OHH

CH2OH

O

OH OH
OH

HO

O

HO

O

D-fructoketose -D-fructopyranose -D-fructopyranose -D-fructofuranose -D-fructofuranoseα αβ β

OH
HO

HOOH

OH
OH

OH

11. D-Sorbose

CH2OH

O

OHH

HHO

OHH

CH2OH

O

OH

O

OH
OH

OH

O

OH

O

D-sorboketose -D-sorbopyranose -D-sorbopyranose -D-sorbofuranose -D-sorbofuranoseα αβ β

OH
OH

HO

OH

OH

HO

HOOH
OH

OH

OH

12. D-Tagatose

CH2OH

O

HHO

HHO

OHH

CH2OH

OH

O O

D-tagatoketose -D-tagatopyranose -D-tagatopyranose -D-tagatofuranose -D-tagatofuranoseα αβ β

HOOH

OH
OH

OH

HO
HOHO

HO HO
OH OH

OHOH OH OH

O

OH

OH
HO

HO

OH

O

OH

OH

HO
HO

HO

O
OH

HO
HO

HO

OH

OH

 

 

 

 

 

 81



2. Pentoses 
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APPENDIX B.  STRUCTURES OF FIFTEEN SELECTED DISACCHARIDES 

1. Maltulose, or       -D-glucopyranosyl-(1 4)-D-fructose
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5. Turanose, or O-      -D-glucopyranosyl-(1 3)-D-fructoseα

6. Kojibiose or O-    -D-glucopyranosyl-(1       2)-D-glucopyranoseα
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10. Gentiobiose O-    -D-glucopyranosyl-(1       6)-D-glucopyranoseβ
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14. lactulose  4-O-β-D-Galactopyranosyl-D-fructofuranose
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APPENDIX C.  STRUCTURES OF TWELVE SELECTED TRISACCHARIDES 
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6. 1-Ketose or  O-    -D-glucopyranosyl-(1       2)-O-     -D-fructofuranosyl-(1       2)-     -D-fructofuranosideα ββ
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10. Erlose or O-    -D-glucopyranosyl-(1       4)-O-     -D-glucopyranosyl-    -D-fructofuranosideα α β
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APPENDIX D.  STRUCTURES OF THREE SELECTED OLIGOSACCHARIDES  
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APPENDIX E.  COLORIMERIC DETECTION OF BIOLOGICAL MOLECULES 
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Figure E1.  Relative absorbance spectral responses at 535 nm vs concentration of di- and 
trisaccharides.  Selectivity for lactulose and maltulose is exhibited at this wavelength, to a 
lesser extent than at 355 nm (see Figure 2.11). 
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Figure E2.  Job’s plot of compound 8 and D-ribose in 9:1 DMSO:phosphate buffer (60 
mM pH 7.4) showing a 1:1 stoichiometry.  A-Ao is the difference in absorbance intensity 
of the solution in the presence of D-ribose and the blank (solution containing only 8) at 
510 nm. 

 
 

Table E1: Percentage recovery of fructose added into Honey measured at 355 mM.  

 

No. Recovery % at 355mM Recovery % at 535mM 
1 104.4 150.5 
2 103.5 143.7 
3 103.5 154.9 
4 104.0 148.9 
5 101.2 143.7 
6 100.8 148.9 
7 102.6 142.9 
8 89.4 145.7 

Average 101.2 147.4 
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Figure E3. The calibration curve validated by the addition of fructose standards to a 
solution of honey (0.32 mg/mL) and 1 (3.4 mM) in a 1:9 mixture of phosphate buffer (0.1 
mL, 60 mM, pH = 7.4) and DMSO at 535 nm. 
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Figure E4.  Energy-minimized structures of the complementary conformers derived from 
3.1 and ribofuranose (“exo” isomer, structure A), and glucofuranose (“endo” isomer, 
structure B).  A subunit of the the rhodamine chromophore moiety is shown for clarity 
and used in the simulations in order to simplify the calculations.  
 
 

 93



References. 

1. Breitmaier, E.; Hollstein, U. Org. Magn. Reson. 1976, 8, 573. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 94



APPENDIX F. LETTERS OF PERMISSION 
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