Multifunctional ligands for supramolecular chemistry

James Kakoullis
Louisiana State University and Agricultural and Mechanical College, jkakou1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses
Part of the Chemistry Commons

Recommended Citation

Kakoullis, James, "Multifunctional ligands for supramolecular chemistry" (2007). LSU Master's Theses. 3400.
https://digitalcommons.lsu.edu/gradschool_theses/3400

MULTIFUNCTIONAL LIGANDS FOR SUPRAMOLECULAR CHEMISTRY

A Thesis
Submitted to the Graduate Faculty of the Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of Master of Science

in

The Department of Chemistry
by
James Kakoullis
B.S. Eckerd College, 2002

August 2007

I have fought the good fight. I have finished the course. I have kept the faith.
2 Timothy 4:7

Acknowledgments

I thank my parents for all their love and support during these past years that I have attended graduate school. Were it not for them, I would not be at this point. I owe them all that I have accomplished in my life.

I would also like to acknowledge my graduate advisor, under whose supervision this work was conducted. I thank him for this opportunity to demonstrate my abilities and to become a fully realized scientist.

This work would not have developed as it has were it not for the technical expertise and work of Dr. Frank Fronczek with determining crystal structures. Dr. Dale Treleaven has also been a great aid in the area of NMR. Were it not for Dr. Treleaven, I probably would not have attained a tenth of the knowledge of this field.

This research could not have been achieved without our lab's post-doctoral fellows Dr. Bang-lin Chen, Dr. Chandi Pariya, and Dr. Kalu marakkala Nalin de Silva - and graduate students Sylvester Burton, Christopher Sparrow, Yixun Zhang, Yoseph Marcos, and Jackson Cherutoi.

Table of Contents

Epigraph ii
Acknowledgments iii
List of Tables vi
List of Figures vii
List of Reaction Schemes ix
List of Molecules X
Abstract xV
Chapter 1 Introduction 1
1.1 Host-Guest Chemistry History: The Organic Period 1
1.2 Host-Guest Chemistry History: The Metal Coordinated Complexes 2
1.3 History of $\mathrm{Cu}(\text { pyac })_{2}$ 6
1.4 Goal of the Current Research 7
1.5 References 9
Chapter 2 The Attempted Synthesis of a Molecular Square, $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ 11
2.1 Introduction 11
2.2 Experimental Section 13
2.2.1 Materials and Procedures 13
2.2.2 Attempted Direct Synthesis of Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, \mathbf{1 . 2 1}$ 14
2.2.3 Attempted Synthesis of Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, \mathbf{1 . 2 2}$ 14
2.2.4 Synthesis of Molecular "Corner" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, \mathbf{2 . 2}$ 15
2.2.5 Attempted Synthesis of $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, \mathbf{1 . 2 1}$ with $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, \mathbf{2} .2$ 15
2.3 Results and Discussion 20
2.3.1 IR Analyses of Direct Synthesis of Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, \mathbf{1 . 2 1}$ and Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, \mathbf{1 . 2 2}$ 20
2.3.2 MS Analysis of Direct Synthesis of Molecular Square $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, \mathbf{1 . 2 1}$ and Molecular " $\mathrm{L} " \mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, 1.22$ 21
2.3.3 DLS Analysis of Samples Re1a and Relb 23
2.3.4 IR Analyses of Molecular "Corner" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ 23
2.3.5 X-ray Crystallography of Molecular "Corner" $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ 24
2.4 Conclusions and Future Work 26
2.5 References 27
Chapter 3 The Attempted Synthesis of a Molecular Cube, $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 28
3.1 Introduction 28
3.2 Experimental Section 29
3.2.1 Materials and Procedures 29
3.2.2 Synthesis of Tris(4-formylphenyl)Phosphine 2.2 29
3.2.3 Synthesis of Tris(4-formylphenyl)Phosphine Oxide 3.4 31
3.2.4 Synthesis of $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$. 32
3.2.5 Synthesis of $\mathrm{OPphac}_{3} \mathrm{H}_{3}$, 3.6 32
3.2.6 Attempted Synthesis of $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12} \mathbf{1 . 2 4}$ 34
3.3 Results and Discussion 35
3.3.1 X-ray Crystal Structure of Tris(4-formylphenyl)phosphine Oxide 3.4 35
3.3.2 Phosphine Cycle 36
3.4 Conclusions and Future Work 37
3.5 References 39
Chapter 4 Conclusions and Future Work 40
Appendix Spectra. 42
Vita 99

List of Tables

Table 2.1. Amounts Used and Product Yield for Timed Experiments 16
Table 2.2. Amounts Used for Dilute Experiments 18
Table 2.3. IR of CO Stretching Frequencies of Re Samples 22
Table 2.4. X-ray Crystal Parameters of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ 25
Table 3.1. X-ray Crystal Parameters of Tris(4-formylphenyl)phosphine Oxide, 3.4 36

List of Figures

Fig. 1.1. 18-Crown-6 1
Fig. 1.2. Examples of Cram's Crown Ether Derivative 2
Fig. 1.3. An Example of Fujita's Molecular Squares 3
Fig. 1.4. Some Guest Molecules Used by Fujita in his Association Constant Studies 3
Fig. 1.5. Examples of Hupp's Re Squares 5
Fig. 1.6. Examples of Stang's Molecular Squares, his Other Polygons, and a Guest 6
Fig. 1.7. PyacH, 1.19, and Examples of Pyac Metal Complexes 7
Fig. 1.8. Target Molecular Square $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyacH })_{2}\right]_{4} \mathbf{1 . 2 1}$ 8
Fig. 1.9. Target Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2} \mathbf{1 . 2 2}$ 8
Fig. 1.10. The Target Molecules $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ and $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 9
Fig. 2.1. Examples of Hupp's Re Squares 11
Fig. 2.2. Target Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4} 1.21$ 12
Fig. 2.3. Target Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, \mathbf{1 . 2 2}$ 13
Fig. 2.4. Target Molecular "Corner" $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ 13
Fig. 2.5. $\quad \operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}$ With its Protons Labeled for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ 16
Fig. 2.6. Examples of Re Complexes 21
Fig. 2.7. X-ray Crystal Structure of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ 24
Fig. 2.8. \quad X-ray Crystal Structure of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2}, 2.3$ 25
Fig. 3.1. The Target Molecules $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ and $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 28
Fig. 3.2. Structure of Tris(4-formylphenyl)phosphine, 3.1, and Bis(4-formylphenyl)dimethylsilane, 3.2 29
Fig. 3.3. Tris(4-formylphenyl)phosphine, 3.1 With its Hs Labeled 31
Fig. 3.4. Tris(4-formylphenyl)phosphine Oxide, 3.4 With its Hs Labeled 32

Fig. 3.5. $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.27$ With its Hs Labeled .. 33
Fig. 3.6. $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ Oxide 3.6 With its Hs Labeled34

Fig. 3.7. X-ray Crystal Structure of Tris(4-formylphenyl)phosphine Oxide with THF, 3.4 36
Fig. 3.8. Triphenylphosphine, 3.7 ... 37
Fig. 3.9. The Interrelationship Between the Different Phosphines .. 38
Fig. 3.10. Target Molecules $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ and $\left(\mathrm{OPphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 3.8. 38
Fig. 4.1. Target Molecular Square and Cube .. 40

List of Reaction Schemes

Reaction Scheme 3.1. Synthetic Route to Tris(4-formylphenyl)phosphine, 3.1 30
Reaction Scheme 3.2. Reaction to Synthesize $\mathrm{Pphac}_{3} \mathrm{H}_{3}, \mathbf{1 . 2 3}$... 33

List of Molecules

1.1

1.2

1.3 $\mathbf{M}=\mathbf{P t}^{2+}$ or $\mathbf{P d}^{\mathbf{2 +}}$

18-crown-6

1.4
1.5
1.6
1.7
1.8

$\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\text { bpy }\right)\right]_{4} \mathbf{1 . 9}$
$\left[\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}(\mathrm{Pd}(\mathrm{dppp}))_{2}\left(4,4{ }^{\prime}-\mathrm{bpy}\right)_{4}\right]\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{4} \mathbf{1 . 1 0}$

$\left[\operatorname{Re}(\mathrm{CO}){ }_{3} \mathrm{Cl}(2,8,12,18 \text {-tetrabutyl-3,7,13,17-tetramethyl-5,15-bis(4-pyridyl)-porphyrin) }]_{4} \mathbf{1 . 1 1} \&\right.$

1.12

1.14 M = Pt or Pd
$7{ }^{6+}$

1.16

1.15

1.17

pyacH, 1.18

$\mathrm{Al}(\text { pyac })_{3} \mathbf{1 . 1 9}$

$\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { руас })_{2}\right]_{4} 1.21$

Pphac $_{3} \mathrm{H}_{3} 1.23$

$\mathrm{Cu}(\text { руас })_{2}, \mathbf{1 . 2 0}$

$\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12} 1.24$

OPphac $_{3} \mathrm{H}_{3} 1.25$

$\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2} 2.3$

$\mathrm{ReCl}(\mathrm{CO})_{4}$ (pyridine) 2.6

tris(4-formylphenyl)phosphine 3.1

bis(4-formylphenyl)dimethylsilane 3.2

tris(4-formylphenyl)phosphine oxide 3.4

phospholene $3.5 \quad \mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$

Triphenylphosphine 3.7

$\left(\mathrm{OPphac}_{3}\right)_{8}(\mathrm{Cu})_{12} 3.8$

Abstract

Metal-organic frameworks (MOFs) are the primary focus of the Maverick research group, almost exclusively with the acac moeity. Before such MOFs can be attempted, multifunctional ligands of the appropriate geometry for the desired MOFs first must be synthesized. In this thesis, the synthesis and characterization of two new β-diketone ligands, specifically, $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2}, \mathbf{2 . 2}, \mathrm{Pphac}_{3} \mathrm{H}_{3}, \mathbf{1 . 2 3}$, and its oxide 3.6, are described. Also in this thesis, attempts to synthesize other new MOFs will be discussed.

The MOF for which $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2}, 2.2$ was designed was $\left.\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$, 1.21, which is predicted to be a square due to the approximate angle of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}, 2.2$, of 90°. OPphac $_{3} \mathrm{H}_{3}$, 3.6, was designed for $\left(\mathrm{OPphac}_{3}\right)_{8}(\mathrm{Cu})_{12}, 3.8$, which is predicted to be a cube due to the predicted angle of $\mathrm{OPphac}_{3} \mathrm{H}_{3}$, 3.6. Primarily though, the creation of the aforementioned ligands represents the main thrust of this work.

Chapter 1

Introduction

1.1 Host-Guest Chemistry History: The Organic Period

The field of host-guest chemistry began with the development of crown ethers by Pedersen in the 1960s. His major breakthrough was first presented in a paper in 1967 (see Fig. 1.1). ${ }^{1.1}$

1.1

Fig. 1.1. 18-Crown-6
The other great contributor to this field was Cram. ${ }^{1.2} \mathrm{He}$ distinguished between hosts and guests by identifying hosts as organic molecules with convergent binding sites and guests as either molecules or ions with divergent binding sites.

This definition, however, does not fit all cases that have emerged since Cram's early work. Most relevant to this researcher in Cram's definition is the concept that one molecule, a guest, goes into a larger molecule, a host. Once inside the host, the guest remains as a result of forces that depend on the interaction between the specific molecules. This host-guest relationship is not necessarily a permanent state, but it should last sufficiently long to be measurable by such means as IR-spectroscopy or NMR.

The work of Pedersen and Cram, together with that of other early researchers in hostguest chemistry, was dominated by the use of crown ethers, crown ether derivatives, and organic
molecules, similar in structure to crown ethers as hosts. This restriction limited the scope of compounds synthesized for use as host-guest systems.

These all-organic host-guest systems did yield good results. A number of Cram's crown ether derivatives were highly selective, being able, for example, to isolate Sr^{2+} from $\mathrm{Ba}^{2+}, \mathbf{1 . 2}$. (see Fig. 1.2) ${ }^{1.2}$

1.2

Fig. 1.2. Examples of Cram's Crown Ether Derivative

1.2 Host-Guest Chemistry History: Metal Coordinated Complexes

The all-organic molecular host days held sway until the mid 1980s, when groups such as those led by Fujita, Hupp, Maverick, and Stang introduced metal-organic frameworks (MOFs). Cram's previous definition of a host-guest system does not fit these newer compounds (see section 1.1); specifically, the newer compounds are not completely organic in nature. Also, these compounds bind to their guests in a different manner than do Cram's molecules.

Fujita was one of the first to make a metal-coordinated host molecule. He created molecules in which metal centers acted as corners and rigid, aromatic ligands acted as rods to connect the centers. Since these molecules are tetramers and due to their shape, they are called
molecular squares. An example of these squares is $\left[\mathrm{M}(\mathrm{en})\left(4,4^{\prime}-\mathrm{bpy}\right)\right]_{4}^{8+}\left(\mathrm{NO}_{3}{ }^{-}\right)_{8}, \mathbf{1 . 3}$, where M is either Pt^{2+} or Pd^{2+} (see Fig. 1.3). ${ }^{1.3,1.5}$

$$
\text { 1.3 } \mathbf{M}=\mathbf{P t}^{2+} \text { or } \mathbf{P d}^{2+}
$$

Fig. 1.3. An Example of Fujita's Molecular Squares
Fujita also studied the efficacy of these molecules as hosts and measured the association constants of a number of molecules using NMR. The values of these constants range from 0.3 x 10^{2} to 7.5×10^{2} for the compounds below (see Fig. 1.4).

1.4

1.5

1.6

1.7

1.8

Fig. 1.4. Some Guest Molecules Used by Fujita in his Association Constant Studies

Fujita concluded that the guest interacts with the host's cavity, not with the metal center, and that the interaction is a combination of charge-transfer interactions, i.e. electro-static between the host and the guest and hydrophobic interactions. ${ }^{1.6}$ In Cram's definition and compounds, there were set binding sites. In Fujita's compounds, the entire cavity acts as a "binding site" as a result of hydrophobics.

Hupp has also done work in the area of creating molecular squares for use as hosts. In contrast to Fujita's squares, Hupp uses metal centers that are luminescent, namely Re. Some examples of Hupp's squares are $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\mathrm{bpy}\right)\right]_{4}, \mathbf{1 . 9},\left[\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}(\operatorname{Pd}(\mathrm{dppp}))_{2}\left(4,4^{\prime}-\right.\right.$ bpy $\left.)_{4}\right]\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{4}, \mathbf{1 . 1 0}$, and $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(2,8,12,18\right.$-tetrabutyl-3,7,13,17-tetramethyl-5,15-bis(4-pyridyl)-porphyrin) $]_{4}, \mathbf{1 . 1 1}$ (see Fig. 1.5). ${ }^{1.7,1.10}$ The choice of a luminescent metal center was made with the intent that these properties of these squares could be harnessed to detect the presence or absence of a guest in the host. Hupp not only postulated this model, but also went on to study the squares' luminescent properties with guests. With Re square $\mathbf{1 . 1 0}$ when tetraethylammonium perchlorate was added, the emission spectrum was enhanced by the perchlorate anion's binding interaction in the tetracationic cavity. ${ }^{1.7}$ In square 1.11, the luminescence was due to the porphyrin and not the Re center; it was found that in the Zn version there was a red shift when pyridine was added, signifying an interaction with the Zn center in the porphyrin. ${ }^{1.10}$

Stang has also contributed much to this field by making not only molecular squares, but also other shapes (see Fig. 1.6). ${ }^{1.11-1.15} \mathrm{He}$ has also done host-guest studies with some of these squares, specifically, 1.14 and $\mathbf{1 . 1 5}$. With 1.14, the guest molecule was 1,5-dihyroxynaphthalene 1.17; and when the two interacted, the guest went inside the host, causing a shift in the NMR of the host (see Fig. 1.6). ${ }^{1.12}$ Molecular square $\mathbf{1 . 1 5}$ was studied with Ag^{+}as the guest. It was
confirmed via IR spectroscopy that a host-guest complexation interaction did occur between the two molecules. ${ }^{1.13}$

1.9

1.10

$\mathbf{1 . 1 1} \mathbf{M}=\mathbf{2 H} \mathbf{H}^{+}$or $\mathbf{Z n}^{2+}, \mathbf{R}_{\mathbf{1}}=$ butyl

Fig. 1.5. Examples of Hupp's Re Squares
Another important influence on the work of this researcher is that of the Long group. Even though Long did not do host-guest chemistry, he has contributed to this researcher's work through his work on two- and three-dimensional complexes. He has made not only molecular squares, but also three-dimensional cubes. However, the Long group has not yet done research to determine whether these potential hosts do interact with guests. ${ }^{1.15-1.18}$

1.12

1.13 M=Pt or Pd

1.15

1.17

Fig. 1.6. Examples of Stang's Molecular Squares, his Other Polygons, and a Guest

1.3 History of $\mathbf{C u}(p y a c)_{2}$

Pyach, 1.18 first appeared in the literature via a Japanese patent. ${ }^{1.19}$ A metal pyacH complex, specifically $\mathrm{Al}(\text { pyac })_{3}, \mathbf{1 . 1 9}$, seems to have been used as a guest molecule for the first time by Sanders. ${ }^{1.20} \mathrm{Cu}(\text { pyac })_{2}, \mathbf{1 . 2 0}$ was first synthesized by Turner (see Fig. 1.7). ${ }^{1.21}$

1.18

1.19

1.20

Fig. 1.7. PyacH, 1.19, and Examples of Pyac Metal Complexes
The use of $\mathrm{Cu}(\mathrm{pyac})_{2} \mathbf{1 . 2 0}$ to make two-dimensional arrays and complexes was developed by the Maverick research group. ${ }^{1.22}$ Our group thought that a ligand such as $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ could be used in place of (4,4'-bpy) to make a molecular square. Since the Cu is coordinatively unsaturated, guests could interact with it in the same manner as the pyridine did with Hupp's
1.11. Also from the Maverick group, Chen has prepared 1 - and 2 -dimensional porous extended solids from $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ and Cd salts. ${ }^{1.22}$

1.4 Goal of the Current Research

The general goal of this research was to attempt to synthesize new MOFs to be used as hosts in host-guest chemistry. This goal was pursued by attempting to synthesize a Re molecular square.

Our group has used $\mathrm{Cu}(\text { pyac })_{2}, \mathbf{1 . 2 0}$ since 2002. One goal of the present research was to make a new molecular square, using Re as the corner and $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ as the rod to create the structure 1.21 (see Fig. 1.8).

1.21

Fig. 1.8. Target Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\mathrm{pyacH})_{2}\right]_{4} 1.21$

Another specific goal of this research was to make a new molecular "L," using Re as the corner and $\mathrm{Cu}(\text { pyac })_{2}, \mathbf{1 . 2 0}$ as the rod to create the structure $\mathbf{1 . 2 2}$ (see Fig. 1.9).

1.22

Fig. 1.9. Target Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2} 1.22$
Making this molecule was attempted as a possible intermediate step in the preparation of the square and as an alternative to a direct synthesis of the square. Re was selected because of Hupp's extensive work with hosts such as 1.9-1.11.

Another goal of the Maverick research group is to develop a three-dimensional host. Our group decided to focus on a cube. This researcher came up with the idea of using a phosphine ligand as the corner and a metal as the rod. The ligand that was eventually developed was Pphac $_{3} \mathrm{H}_{3}, \mathbf{1 . 2 3}$, which, it was theorized, would form a cube $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}, \mathbf{1 . 2 4}$, when reacted with Cu (see Fig. 1.10).

1.23

1.24

Fig. 1.10. The Target Molecules $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ and $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$
Our group hoped that including a moiety similar to $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ and in the design of the cube itself would result in its properties being retained by the cube. The property we most wanted to retain was the ability to bond to a guest.

In chapter 2 of this paper, there will be a discussion of the attempted creation of the Re square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\mathrm{Pyac})_{2}\right]_{4} 1.21$ which, though not succeeding, did culminate in the new molecule $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2}$ 2.2. In chapter 3 of this paper, there will be a discussion of the attempted creation $\left(\operatorname{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 1.24. While this molecule was not made, two new β-diketones were made $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3}$, 3.6. In chapter 4, these results will be summarized.

1.5 References

1.1 Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017-7036.
1.2 Cram, D. J.; Cram, J. M. Container Molecules and their Guests; Monographs in supramolecular chemistry; No. 4; Royal Society of Chemistry: Cambridge, 1994, 1-5.
1.3 Fujita, M.; Sasaki, O.; Mitsuhashi, T.; Fujita, T.; Yazaki, J.; Yamaguchi, K; Ogura, K. Chem. Commun. 1996, 1535-1536.
1.4 Fujita, M.; Yazaki, J.; Ogura, K. Chem. Lett. 1991, 8, 1031-1032.
1.5 Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112, 5645-5647.
1.6 Fujita, M.; Yazaki, J.; Ogura, K. Tetrahedron Lett. 1991, 32, 5589-5592.
1.7 Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. J. Am. Chem. Soc. 1995, 117, 11813-11814.
1.8 Chen, B.; Fronczek, F. R.; Maverick, A. W. Inorg. Chem. 2004, 43, 8209-8211.
1.9 Slone, R. V.; Hupp, J. T.; Stern, C. L.; Albrecht-Schmitt, T. E. Inorg. Chem. 1996, 35, 4096-4097.
1.10 Slone, R. V.; Hupp, J. T. Inorg. Chem. 1997, 36, 5422-5423.
1.11 Stang, P. J.; Cao, D. H. J. Am. Chem. Soc. 1994, 116, 4981-4982.
1.12 Stang, P. J.; Cao, D. H.; Saito, S.; Arif, A. M. J. Am. Chem. Soc. 1995, 117, 62736283.
1.13 Whiteford, J. A.; Lu, C. V.; Stang, P. J. J. Am. Chem. Soc. 1997, 119, 2524-2533.
1.14 Addicott, C.; Das, N.; Stang, P. J. Inorg. Chem. 2004, 43, 5335-5338.
1.15 Lau, V. C.; Berben, L. A.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 9042-9043.
1.16 Heinrich, J. L.; Berseth, P. A.; Long, J. R. Chem. Commun. 1998, 1231-1231.
1.17 Lau, V. C.; Berben, L. A.; Long, J. R. J. Am. Chem. Soc. 2002, 124, 9042-9043.
1.18 Berseth, P. A.; Sokol, J. J.; Shores, M. P.; Heinrich, J. L.; Long, J. R. J. Am. Chem. Soc. 2000, 122, 9655-9662.
1.19 Nozawa, M. Jpn. Kokai Tokkyo Koho JP 61 69, 760, 1986 (Chem. Abstr., 1986, 105, 97336 m).
1.20 Mackay, L. G.; Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc. Perkin Trans. 1995, 2269-2273.
1.21 Turner, S. S.; Collison, D.; Mabbs, F. E.; Helliwell, M. J. Chem. Soc., Dalton Trans., 1997, 1117-1118.
1.22 Chen, B.; Fronczek, F. R.; Maverick, A. W. Chem. Commun. 2003, 2166-2167.

Chapter 2

The Attempted Synthesis of a Molecular Square, $\left[\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l C u}(\mathbf{p y a c})_{2}\right]_{4}$

2.1 Introduction

The general goal of this research was to attempt to synthesize new MOFs to be used as hosts in host-guest chemistry. This goal was pursued by attempting to synthesize a Re molecular square. Such squares had been previously prepared by the Hupp group. Some examples of Hupp's squares are $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime} \text { '-bpy }\right)\right]_{4} \mathbf{1 . 9},\left[\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}(\mathrm{Pd}(\mathrm{dppp}))_{2}\left(4,4^{\prime} \text { '-bpy }\right)_{4}\right]\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)_{4}$ 1.10 and $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(2,8,12,18 \text {-tetrabutyl-3,7,13,17-tetramethyl-5,15-bis(4-pyridyl)-porphyrin) }]_{4}\right.$ 1.11 (see Fig. 2.1). ${ }^{2.1,2.2}$

1.9

1.10

$\mathbf{1 . 1 1} \mathbf{M}=\mathbf{2 H} \mathbf{H}^{+}$or $\mathbf{Z n}^{2+}, \mathbf{R}_{\mathbf{1}}=$ butyl

Fig. 2.1. Examples of Hupp's Re Squares

The choice of a luminescent metal center was made with the intent that the properties of these squares could be harnessed to detect the presence or absence of a guest in the host. Hupp not
only postulated this, but also went on to study the squares' luminescent properties with guests.
With Re square 1.10, when tetraethylammonium perchlorate was added, the emission spectrum was enhanced by the perchlorate anion's binding interaction in the tetracationic cavity. ${ }^{2.2}$

Since 2002, our group, in remaking $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\text { bpy }\right)\right]_{4} 1.9$, used $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ rather than using $\left(4,4^{\prime}\right.$-bpy $)$ as the ligand/rod unit in the square. One present goal, then, is to make a new molecular square, using Re as the corner and $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ as the rod to create the structure 1.21 (see Fig. 2.2).

1.21

Fig. 2.2. Target Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4} 1.21$
To achieve this goal, three schemes were attempted. The first was direct reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$, 2.1, with $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ to make the square. Another scheme was to make a new molecular "L" using Re as the corner and $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ as the rod to create the structure $\mathbf{1 . 2 2}$ (see Fig. 2.3). Making this molecule was attempted as a possible intermediate step in the preparation of the square and as an alternative to a direct synthesis of the square.

The third scheme was to make a corner by reacting Re and pyacH. In this scheme to make a corner, Re would serve as the center and pyacH 1.18 as the rod to create the structure, 2.2 (see Fig. 2.4).

1.22

Fig. 2.3. Target Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, \mathbf{1 . 2 2}$

2.2

Fig. 2.4. Target Molecular "Corner" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, \mathbf{2 . 2}$

2.2 Experimental Section

2.2.1 Materials and Procedures

All reagents were used as received and without further purification unless mentioned. These materials were of reagent grade or better.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Bruker DPX-250 spectrometer. The IR spectra were recorded on a Bruker Tensor 27. Elemental analyses were performed by MHW Laboratories in Phoenix, Arizona. Mass spectrometer analyses were performed by the facilities at LSU. The dynamic light scattering experiments were conducted by the Russo group. The instrument used was custom built (see section 3.3). The X-ray crystallography was performed by

Dr. Fronczek, using the Nonius Kappa CCD area-detector instrument equipped with a Mo K α source. All spectra are in the Appendix.

2.2.2. Attempted Direct Synthesis of Molecular Square $\left[\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l C u}(p y a c)_{2}\right]_{4}, 1.21$

This compound was prepared following the procedure used by Hupp for $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime} \text {-bpy }\right)\right]_{4}$ 1.9. ${ }^{2.3}$ A sample of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} 2.1\left(0.1008 \mathrm{~g}, 2.79 \times 10^{-4} \mathrm{~mol}\right)$ was combined with $\mathrm{Cu}(\mathrm{pyac})_{2} \mathbf{1 . 2 0}\left(0.1170 \mathrm{~g}, 2.81 \times 10^{-4} \mathrm{~mol}\right)$ in a round bottom flask. To this flask, a solution of 100 mL of 75% tetrahydrofuran as well as 25% toluene was added, dissolving the solids. The reason for using the tetrahydrofuran and toluene solution was that this was the solvent system used by Hupp to synthesize $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\text { bpy }\right)\right]_{4}$ 1.9. The solution was stirred while refluxing for 48 h under a flowing stream of N_{2}. From this reaction sample, $\operatorname{Re} 1(0.0874 \mathrm{~g})$ was recovered by filtering out the solid and washing it with octane. A Soxhlet extraction with acetone was run on this sample and yielded sample Re1a ($0.0204 \mathrm{~g}, 23 \%$ of Re1), which was soluble in acetone, and sample $\operatorname{Relb}(0.0677 \mathrm{~g}, 77 \%$ of $\operatorname{Re} 1)$, which was insoluble in acetone. Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample Rela $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H, 3.06; N, 3.87; Found C, 28.28; H, 2.31; N, 2.06. Anal Calcd For
$\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\mathrm{Pyac})_{2}\right]_{4}$ (1.21) sample Re1b $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$:
C, 38.17; H, 3.06; N, 3.87; Found C, 29.30; H, 3.13; N, 3.13.

2.2.3 Attempted Synthesis of Molecular " L " $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, 1.22$

This compound was also prepared, using the procedure followed by Hupp for $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\text {-bpy }\right)\right]_{4} 1.9{ }^{2.3}$ but with an excess of $\mathrm{Cu}(\text { pyac })_{2}, \mathbf{1 . 2 0}$. A sample of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$, $2.1\left(0.0396 \mathrm{~g}, 1.09 \times 10^{-4} \mathrm{~mol}\right)$ was combined with $\mathrm{Cu}(\text { pyac })_{2}, \mathbf{1 . 2 0}\left(0.2505 \mathrm{~g}, 6.023 \times 10^{-4} \mathrm{~mol}\right)$ in a round bottom flask. To this flask, a solution of 500 mL of 75% tetrahydrofuran and 25% toluene was also added, dissolving the solids. The solution was stirred while refluxing for 48 h
under a stream of N_{2}. From this reaction, sample Re2 $(0.0694 \mathrm{~g})$ was recovered. This was done by filtering the solution through a glass frit and collecting the solid on the glass frit. The solid was then washed with octane and then dried. Anal Calcd For $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}(\mathbf{1 . 2 2)}$ sample $\mathrm{Re} 2 \mathrm{C}_{43} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{ReClCu}_{2}$: C, 45.24; H, 3.88; N, 4.91; Found C, 35.55; H, 3.37; N, 4.00.

2.2.4. Synthesis of Molecular "Corner" $\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l}(\text { pyacH })_{2}, 2.2$

This compound was prepared in a similar manner to the procedure followed by Trovati for $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2}, 2.3,{ }^{2.4}$ but with pyacH 1.18. A sample of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} 2.1(0.0812 \mathrm{~g}, 2.24 \mathrm{x}$ $\left.10^{-4} \mathrm{~mol}\right)$ was combined with pyacH $1.18\left(0.1048 \mathrm{~g}, 5.91 \times 10^{-4} \mathrm{~mol}\right)$ in a round bottom flask. To this flask, 100 mL of CHCl_{3} was added, dissolving the solids. The solution was stirred while refluxing for 72 h under a stream of N_{2}. At the beginning of the reaction the solution was yellow; at the end it was almost colorless. The solution concentrated down to about 10 mL ; then the solution was added to pentane to precipitate out a white, flocculent solid. This was collected on the glass frit. The solid was then washed with pentane and then dried. From this reaction $(0.1346$ g) was recovered. This was a 91% yield. The material, once dried, was an off-white. The ${ }^{1} \mathrm{H}-$ NMR of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, \mathbf{1 . 2 2},\left(250 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right)$ is as follows: ${ }^{1} \mathrm{H}-\mathrm{NMR}: 17.08(\mathrm{~s}$, $1 \mathrm{H}), 8.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.24, \mathrm{Ha}), 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.35, \mathrm{Hb}), 1.95(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Hc})$ (note for reference the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of Pyach 1.18 in Acetone- d_{6} is $8.61,7.30,1.88$) (see Fig. 2.5 for the molecule's Hs labeled; see Spectrum 10 for spectra). Anal. Calcd. For $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}$ (2.2),
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{Re}$: C, 41.85; H, 3.36; N 4.24. Found C, $41.59 ; \mathrm{H}, 3.51 ; \mathrm{N}, 4.15$.

2.2.5. Attempted Synthesis of $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, 1.21$ ith $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}, 2.2$

A number of experiments were set up in an attempt to synthesize the target molecule $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}, \mathbf{1 . 2 1}$. This experiment can be divided into four different types: timed reactions, dilute reactions, concentrated reactions, and growing crystals on templates.

The first set of reactions can be described as timed reactions. Four reactions were set up in which $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$, was reacted with Cu^{2+} over varying time periods. These time periods were $3 \mathrm{~h}, 4 \mathrm{~h}, 6 \mathrm{~h}$, and 8 h . The general procedure used is discussed below. Table 2.1 shows the amounts used and product yield.

2.2

Fig. 2.5. $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}$ With its Protons Labeled for ${ }^{1} \mathrm{H}-\mathrm{NMR}$
Table 2.1. Amounts Used and Product Yield for Timed Experiments

Samples	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}$, 2.2	yield
3 h	0.0748 g	0.0992 g	0.0087 g
	$3.00 \times 10^{-4} \mathrm{~mol}$	$1.50 \times 10^{-4} \mathrm{~mol}$	
4 h	0.0750 g	0.0995 g	0.0197 g
	$3.02 \times 10^{-4} \mathrm{~mol}$	$1.51 \times 10^{-4} \mathrm{~mol}$	
6 h	0.0758 g	0.1004 g	0.0103 g
	$3.05 \times 10^{-4} \mathrm{~mol}$	$1.52 \times 10^{-4} \mathrm{~mol}$	
8 h	0.0760 g	0.1003 g	0.0337 g
	$3.06 \times 10^{-4} \mathrm{~mol}$	$1.52 \times 10^{-4} \mathrm{~mol}$	

A sample of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}, 2.2$ was dissolved in 100 mL of CHCl_{3}. To this 100 mL of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$ solution was added so the desired square would form. The $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$ was prepared from $\mathrm{Cu}(\mathrm{SO})_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ that was dissolved in $\mathrm{H}_{2} \mathrm{O}$. Then $\mathrm{NH}_{4} \mathrm{OH}$ was added to the solution to create $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$. This mixture was stirred for the appropriate time. At the conclusion of the stirring, the two phases were separated. The organic phase was washed with
water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then evaporated, leaving a forest-green colored compound. This compound was triturated with MeOH and then filtered. The solid was tested if soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the compounds were not soluble.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample $3 \mathrm{~h} \mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H , 3.06; N, 3.87; Found C, 41.87; H, 3.88; N, 3.83.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample 4 h $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H , 3.06; N, 3.87; Found C, 41.20; H, 4.18; N, 3.47.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample 6 h $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu} 4$: C, 38.17; H , 3.06; N, 3.87; Found C, 38.55; H, 3.19; N, 4.22.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample 8 h $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H , 3.06; N, 3.87; Found C, 38.00; H, 2.21; N, 4.00.

The next series of reactions can be described as dilute reactions. In this series not only Cu salts were used but other salts such as $\mathrm{Al}, \mathrm{Zn}, \mathrm{Fe}$, and Ni . The Cu reaction is different from other reactions. In the Cu reaction $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2$ was dissolved in 50 mL MeOH . The $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was then dissolved in 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The solutions were combined while stirring, and a precipitate formed. The precipitate was filtered out and washed with MeOH and water. The filtrate was then placed in test tubes so that crystals could grow. The solid was sent off for elemental analysis.

The other reactions were conducted as follows. The metal salt was dissolved in a solution of 100 mL of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ with NaHCO_{3}. This solution was slowly added to the $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}$ 2.2, dissolved in MeOH while stirring. This addition was done over approximately 1 h . This approach was an attempt to maximize filtrate. The reason for the difference, specifically using a higher dilution than with the copper reaction, was to have more
filtrate from which to grow crystals. Some of the solution was then placed in test tubes so that crystals could grow. The remainder was put in a beaker and the solvent was evaporated, leaving a solid that was washed with MeOH and water. The solid was filtered out and sent for elemental analysis. No crystals grew from any of the experiments. The procedures used are discussed below. Another elemental analysis was taken. This time the solid was dissolved in CHCl_{3}. The soluble portion was sent for analysis and the insoluble portion was not sent. These results are listed below. See the elemental analysis.

Table 2.2. Amounts Used for Dilute Experiments

	M	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}$	NaHCO_{3}
$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	0.0283 g	0.0970 g	None
	$1.41 \times 10^{-4} \mathrm{~mol}$	$1.47 \times 10^{-4} \mathrm{~mol}$	
$\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.0064 g	0.0204 g	0.0049 g
	$2.92 \times 10^{-5} \mathrm{~mol}$	$3.09 \times 10^{-5} \mathrm{~mol}$	$5.83 \times 10^{-5} \mathrm{~mol}$
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	0.0056 g	0.0200 g	0.0050 g
	$1.49 \times 10^{-5} \mathrm{~mol}$	$3.03 \times 10^{-5} \mathrm{~mol}$	$5.95 \times 10^{-5} \mathrm{~mol}$
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	0.0185 g	0.0201 g	0.0053 g
	$4.58 \times 10^{-5} \mathrm{~mol}$	$3.04 \times 10^{-5} \mathrm{~mol}$	$6.31 \times 10^{-5} \mathrm{~mol}$
$\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	0.0071 g	0.0207 g	0.0052 g
	$2.85 \times 10^{-5} \mathrm{~mol}$	$3.14 \times 10^{-5} \mathrm{~mol}$	$6.19 \times 10^{-5} \mathrm{~mol}$

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample $\mathrm{Cu} \mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H , 3.06; N, 3.87; Found C, 38.42; H, 2.30; N, 4.00.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample $\mathrm{Cu} \mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H , 3.06; N, 3.87; Found C, 41.14; H, 4.09; N, 2.24.

Anal Calcd For $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyac })_{2}\right]_{3} \mathrm{Al}_{2}$ sample $\mathrm{Al}_{60} \mathrm{C}_{69} \mathrm{~N}_{6} \mathrm{O}_{21} \mathrm{Al}_{2} \mathrm{Cl}_{3} \mathrm{Re}_{3}$: C, 40.86; H, 2.98; N , 4.14; Found C, 43.19; H, 4.11; N, 4.17.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClNi}(\text { pyac })_{2}\right]_{4}$ sample $\mathrm{Ni}_{92} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Cl}_{4} \mathrm{Re}_{4} \mathrm{Ni}_{4}: \mathrm{C}, 38.54 ; \mathrm{H}, 2.81 ; \mathrm{N}$, 3.91; Found C, 41.81; H, 3.87; N, 4.19.

Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyac })_{2}\right]_{3} \mathrm{Fe}_{2}$ sample $\mathrm{Fe}_{60} \mathrm{C}_{69} \mathrm{~N}_{6} \mathrm{O}_{21} \mathrm{Cl}_{3} \mathrm{Fe}_{2} \mathrm{Re}_{3}$: C, 39.73; H, 2.90; N, 4.03; Found C, 58.43; H, 6.38; N, 1.22.

Anal Calcd For $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClZn}(\text { pyac })_{2}\right]_{4}$ sample $\mathrm{Zn} \mathrm{C}_{92} \mathrm{H}_{80} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Cl}_{4} \mathrm{Re}_{4} \mathrm{Zn}_{4}$: C, 38.18; H, 2.79; N, 3.87; Found C, 23.92; H, 1.89; N, 2.38.

The next series of reactions can be described as concentrated reactions. In these, there is an excess of Cu^{2+} reacting with $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2} 2.2$ under concentrated conditions. The procedures used for these reactions are given below. In one experiment, a sample of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, 2.2,\left(0.0200 \mathrm{~g}, 3.03 \times 10^{-5} \mathrm{~mol}\right)$ was dissolved in 10 mL of CHCl_{3}, to which $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$ was added so the desired square would form. The $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$ was prepared from $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(0.0387 \mathrm{~g}, 1.55 \times 10^{-4} \mathrm{~mol}\right)$ that was dissolved in $\mathrm{H}_{2} \mathrm{O}$. Then $\mathrm{NH}_{4} \mathrm{OH}$ was added to the solution to create $\mathrm{Cu}\left(\mathrm{NH}_{3}\right){ }_{4}{ }^{2+}(\mathrm{aq})$. This mixture was stirred for 17 h . At the conclusion of the stirring, the two phases were separated and the organic phase was washed with water. It was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated off, leaving a forest green colored compound. This compound was triturated with MeOH and then filtered. This compound was not soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It was designated Cu 2 and sent off for elemental analysis. Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ (1.21) sample $\mathrm{Cu} 2 \mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H, 3.06; N, 3.87; Found C, 38.42; H, 2.30; N, 4.00.

Another reaction was done with both $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2} 2.2\left(0.0198 \mathrm{~g}, 3.00 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(0.0274 \mathrm{~g}, 1.37 \times 10^{-4} \mathrm{~mol}\right)$ dissolved in MeOH . The solution was evaporated, leaving a solid. The solid was triturated with MeOH , and then the solid was filtered. This compound was not soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The reaction was done again, but under more concentrated conditions. A total of (0.0207 $\left.\mathrm{g}, 3.14 \times 10^{-5} \mathrm{~mol}\right)$ of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2} 2.2$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(0.0280 \mathrm{~g}, 1.40 \times 10^{-4} \mathrm{~mol}\right)$
were dissolved in 8 mL MeOH and $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and stirred for 12 h . The solution was evaporated, leaving a solid. The solid was triturated with MeOH and the solid was filtered out. A portion of this compound was soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The sample could be dried and then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This portion was used to set up layering experiments in an attempt to grow crystals with hexane over the $\mathrm{Re} / \mathrm{Cu}$ complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. None of these layering experiments yielded any crystals. This reaction was run again with $\left(0.0200 \mathrm{~g}, 3.03 \times 10^{-5} \mathrm{~mol}\right)$ of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}$, 2.2, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(0.0279 \mathrm{~g}, 1.40 \times 10^{-4} \mathrm{~mol}\right)$. A total of 0.0066 g was collected and sent off for elemental analysis and designated Cu 3 . Anal Calcd For $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}(\mathbf{1 . 2 1})$ sample Cu2 $\mathrm{C}_{92} \mathrm{H}_{88} \mathrm{~N}_{8} \mathrm{O}_{28} \mathrm{Re}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{4}$: C, 38.17; H, 3.06; N, 3.87; Found C, 34.38; H, 3.44; N, 1.19.

The final set of reactions can be described as attempting to grow crystals on templates Groups of layering experiments were performed to grow $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4} \mathbf{1 . 2 1}$ directly, but in these reactions guests were also introduced as templates so the complex could form around them. Several series of these were done with the guests 1,2-di(4-pyridyl)ethylene,

1,2-bis(4-pyridyl)ethane and $\mathrm{Cu}(\text { pyac })_{2}$ 1.20. In these layering experiments, $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}$
2.2 was dissolved in CHCl_{3} and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in MeOH . There was an intermediate middle layer with $\mathrm{MeOH} / \mathrm{CHCl}_{3}$. The guest was with the Re , the Cu , or the middle layer. In the case of $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ the Re was dissolved in THF and the $\mathrm{Cu}(\mathrm{pyac})_{2} \mathbf{1 . 2 0}$ was always with the Re layer. None of the thirty layering experiments yielded any crystals.

2.3 Results and Discussion

2.3.1 IR Analyses of Direct Synthesis of Molecular Square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\mathrm{pyac})_{2}\right]_{4}, 1.21$ and Molecular "L" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}, 1.22$

In this experiment, the samples Re1, Re1a, and Re1b (from Sect. 2.2.2), and Re2 (from Sect. 2.2.3), and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ had thin film IR's taken. The CO stretching frequencies of Re1,

Re1a, $\operatorname{Re} 1 \mathrm{~b}, \operatorname{Re} 2$ along with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} 2.1$ were measured (see Table 2.3). For the spectra of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ 2.1 Re1, Re1a, Re1b, and Re2 (see Appendix, Spectrum 1-5).

The $v_{\text {CO }}$ values for samples Re1, Re1a, Re1b, and Re2 agreed with those values in the literature for $\operatorname{ReCl}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.$ - bpy $)$, 2.4, and $\operatorname{ReCl}(\mathrm{CO})_{3}\left(4,4^{\prime} \text { '-bpy }\right)_{2}$, 2.5, (see Fig. 2.6). ${ }^{2.5}$ However, these values do not match those of $\mathrm{ReCl}(\mathrm{CO})_{4}$ (pyridine), 2.6, which are 2111, 2009, $1934 \mathrm{~cm}^{-1} .^{2.6}$ From these data, it seems that $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ 2.1, the starting material, did react to form $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClX}_{2}$ in the case of samples Re1, Re1a, Re1b, and Re2.

2.4

2.5

Fig. 2.6. Examples of Re Complexes

2.3.2 MS Analysis of Direct Synthesis of Molecular Square $\left[\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l C u}(\text { pyac })_{2}\right]_{4}, 1.21$ and Molecular " L " $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\mathrm{pyac})_{2}\right)_{2}, 1.22$

Different MS techniques were used to characterize the different samples in this research. For the samples Re1a, Re1b, and Re2, MALDI-MS was used. By doing this experiment, one is able to determine if a molecule of the correct molecular weight is present. Although this alone doesn't confirm that the desired compound was made, it is another piece of evidence. In addition, MS and their fragmentation patterns are distinguishing characteristics of a compound.

The MALDI -MS was taken as an attempt to characterize samples Rela and Re1b. If the samples are the correct compound, the molecular weight should be 2886.48 (see Appendix,

Spectrum 6a-c and 7a-c, respectively labeled as James 4588 with Dithranol and James 4589 with Dithranol).

The MALDI-MS was also taken as an attempt to characterize sample Re2. If the sample is the correct compound, the molecular weight should be 1137.57
(see Appendix, Spectrum 8 ladlabeled as James 4590 with Dithranol).
Table 2.3. IR of CO Stretching Frequencies of Re Samples

Sample	v_{CO}
Re1	2026
	1896
Re1a	2026
	1894
Re1b	2020
	1888
Re2	2022
	1913
	1889
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$	2022
	1949
$\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\mathrm{bpp}\right)\right]_{4} \mathbf{1 . 9}^{2.6}$	$2024{ }^{1}$
	1923
	1893
$\mathrm{ReCl}(\mathrm{CO})_{3}\left(2,2^{\prime}-\right.$-bpy $), 2 . \mathbf{4}^{2.5}$	$2024{ }^{2}$
	1921
	1899
$\operatorname{ReCl}(\mathrm{CO})_{3}\left(4,4^{\prime}-\mathrm{bpy}\right)_{2}, 2.5^{2.5}$	$2027{ }^{3}$
	1926
	1891

In Spectrum 6a-c and Spectrum 7a-c, the parent ion was not shown to be present, and
neither were any fragments, such as $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\mathrm{Pyac})_{2}\right)_{2}, \mathbf{1 . 2 2}$, $(1137.57 \mathrm{FW})$;
$\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{3}(1859.20 \mathrm{FW}) ;\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{3}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{3}(2164.89 \mathrm{FW}) ;$
$\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2}(1443.26 \mathrm{FW})$. In Spectrum 8a-d, the parent ion was not shown to be

[^0]present and neither were any fragments such as $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)$ (721.62 FW). One conclusion that can be drawn is that the target molecules did not exist in the first place.

2.3.3 DLS Analysis of Samples Re1a and Re1b

A series of dynamic light scattering (DLS) experiments was carried out on samples Rela and Relb. The instrument used was one that had been custom built by the Russo group with a laser radiation of $6328 \AA$ and an ALV-5000 digital autocorrelator. ${ }^{2.8}$ These experiments were done in an attempt to measure the molecular size of the samples. The attempted square has dimensions of $2 \mathrm{~nm} \times 2 \mathrm{~nm}$. Since the instrument's minimum detection size is 20 nm , it could tell if some type of polymer had been made if the sample was over 20 nm . Although it can detect particles below this limit (because it can tell the difference between a blank and a sample that is below its threshold), it cannot determine their size.

The samples Rela and Relb were dissolved in acetone and DMSO respectively, and the solutions were filtered through a 45-micrometer filter that was fitted on a syringe. The sample Rela was measured twice over a period of 5 minutes. The first measurement gave a value of 40 nm , and the second gave a value of 100 nm . The sample Relb was measured once, giving a value of 600 nm . The changing results for sample Rela clearly show that the sample is aggregating, so no determination of size could be made. The result for sample Relb is beyond the range for a normal polymer and is most likely also a result of aggregation of the sample. Therefore, no conclusions on the size of the molecules of the samples measured could be drawn from this method. ${ }^{2.9}$

2.3.4 IR Analyses of Molecular "Corner" $\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l}(\mathbf{p y a c H})_{2}, 2.2$

An IR was taken of the sample prepared in section 2.1.21. The wavenumbers of the v_{CO} stretching were 2020, 1908, and 1877 (see Appendix, Spectrum 9). These values match the
values of the compounds $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime} \text { '-bpy }\right)\right]_{4} 2.5$ 2024, 1923, 1893, $\operatorname{ReCl}(\mathrm{CO})_{3}\left(2,2^{\prime}\right.$ '-bpy $)$
$2.4 \operatorname{ReCl}(\mathrm{CO})_{3}\left(4,4^{\prime} \text {-bpy }\right)_{2} 2.5$ and not the values of $\operatorname{ReCl}(\mathrm{CO})_{4}($ pyridine $) \mathbf{2 . 6}$ which are 2111, 2009, $1934 \mathrm{~cm}^{-1} \cdot{ }^{2.6}$ From these data, it seems that $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} 2.1$ the starting material, did react to form $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClX}_{2}$ in this reaction.

2.3.5 X-ray Crystallography of Molecular "Corner" $\operatorname{Re}(\mathbf{C O})_{3} \mathbf{C l}(\mathbf{p y a c H})_{2}, 2.2$

A sample of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2} 2.2$ was dissolved in CHCl_{3} and hexane layered on top of this. Over 15 days, white needle-like crystals grew. An X-ray crystal structure was taken. This experiment revealed the desired compound in a 1:1 ratio with CHCl_{3} (see Fig. 2.7 and Table 2.4). For the CIF File, see CIF 2.1. in Appendix.

Fig. 2.7. X-ray Crystal Structure of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}, \mathbf{2 . 2}$
The N1-Re1-N2 angle is 84.1°; this angle is almost exactly the same as the as N1-Re1N 2 in $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2}, 2.3$ which is 84.2° (see Fig. 2.8). Another compound that is very similar to the synthesized compound, $\operatorname{ReCl}(\mathrm{CO})_{3}\left(4,4^{\prime}-\text { bpy }\right)_{2}, \mathbf{2} .5$ has an $\mathrm{N} 1-\operatorname{Re} 1-\mathrm{N} 2$ angle of $87.0^{\circ} .{ }^{2.2}$ This is larger than the angle found in $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2} 2.3$ or $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2}$ 2.2. The former compound was prepared as stated in the literature. ${ }^{2.11}$ Crystals were grown by dissolving
the substance in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and allowing the solvent to evaporate. In $\mathrm{ReCl}(\mathrm{CO})_{3}\left(4,4^{\prime} \text {-bpy }\right)_{2} 2.5$ the Re-N1 distance is $2.211 \AA$, while in $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2} 2.3$ the Re-N1 is $2.218 \AA$. In $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}$ 2.2, the Re-N1 and Re-N2 distance are 2.237 and $2.202 \AA$, respectively. ${ }^{2.10}$ It seems then, all of these compounds have approximately the same Re-N distance of $2.2 \AA$.

The other issue to note is that since the angle is so close to 90°, there is a strong possibility that when $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2} 2.2$ is reacted with $\mathrm{Cu}(\mathrm{II})$ a tetramer or square would form, i.e. $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\text { pyac })_{2}\right]_{4}$ 1.21.

Table 2.4. X-ray Crystal Parameters of $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2}, \mathbf{2 . 2}$

Compound	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2} \mathbf{2 . 2}$
Crystal system	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$
$\mathrm{a}(\AA)$	$10.889(4)$
$\mathrm{b}(\AA)$	$11.607(4)$
$\mathrm{c}(\AA)$	$24.306(10)$
$\alpha\left({ }^{\circ}\right)$	90.0
$\beta\left({ }^{\circ}\right)$	$102.477(14)$
$\gamma\left({ }^{\circ}\right)$	90.0
$\mathrm{~V}\left(\AA^{3}\right)$	$2999(2)$
Z	4
R	0.058

Fig. 2.8. X-ray Crystal Structure of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{py})_{2}, \mathbf{2 . 3}$

2.4 Conclusions and Future Work

From the research conducted, it can not be concluded that $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{Cu}(\text { pyac }))_{2}\right]_{4} \mathbf{1 . 2 1}$ or $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(\mathrm{Cu}(\text { pyac })_{2}\right)_{2} \mathbf{1 . 2 2}$ were synthesized. This is because even though the IR evidence does show that CO stretching frequency is that of a tricarbonyl (see section 2.3.1), the MS data does not show the parent ion or any fragment (see section 2.3.2) and the elemental analysis of the compounds do not match that of the predicted.

Also, no MOFs were made from $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2} 2.2$ using other metals such as Al , Zn, Ni, and Fe based on their elemental analysis.

On the positive side, $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2} 2.2$ was prepared based on its elemental analysis, IR (see section 2.3.4), and crystal structure (see section 2.3.5)

The reason why the direct route did not work for $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{Cu}(\text { pyac }))_{2}\right]_{4} \mathbf{1 . 2 1}$ may be that the inherent weakness of $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$. When compared to (4,4 '-bpy) in its analgous role in $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime}-\text {-bpy }\right)\right]_{4} 1.9, \mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ is far less soluble than $\left(4,4^{\prime}-\right.$ bpy $)$ and has an affinity to form complexes with itself. This could have led to the formation of a polymeric product.

It is clear that although $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{pyacH})_{2} 2.2$ was synthesized, no MOFs were created. There is no clear electronic or steric reason for $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{Cu}(\text { pyac }))_{2}\right]_{4} \mathbf{1 . 2 1}$ not to form, or any other targeted metal complexes. There is also a good chance that $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{Cu}(\text { pyac }))_{2}\right]_{4}$ 1.21 would be more soluble, or at least as soluble as $\mathrm{Cu}(\mathrm{pyac})_{2} \mathbf{1 . 2 0}$. This is because of the CO groups and Cl on the Re . Also the squares would probably not cling to each other in the same manner as $\mathrm{Cu}(\text { pyac })_{2}$ 1.20. The inability of this experimental group series to succeed in forming metal complexes may come from a lack of appropriate conditions for necessary reactions, rather than from any absence of chemical theory or the application thereof. In future applications, the
researcher will seek to purify $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2} 2.2$, which will lead to an improved ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of this compound. This work will be written up and submitted to the journal Acta Crystallographica Section E.

2.5 References

2.1 Slone, R. V.; Yoon, D. I.; Calhoun, R. M.; Hupp, J. T. J. Am. Chem. Soc. 1995, 117, 11813-11814.
2.2 Slone, R. V.; Hupp, J. T. Inorg. Chem. 1997, 36, 5422-5423.
2.3 Slone, R. V.; Hupp, J. T.; Stern, C. L.; Albrecht-Schmitt, T. E. Inorg. Chem. 1996, 35, 4096-4097.
2.4 Zingales, F.; Sartorelli, U.; Trovati, A. Inorg. Chem. 1967, 6, 1246-1248.
2.5 George, M. W.; Johnson, F. P. A; Westwell, J. R.; Hodges, P. M.; Turner, J. J. J. Chem. Soc. Dalton. Trans., 1993, 2977-2979.
2.6 Zingales, F.; Sartorelli, U.; Canziani, F.; Raveglia, M. Inorg. Chem., 1967, 6, 154-157.
2.7 Fong, B.; Russo, P. S. Langmuir, 1999, 15, 4421-4426.
2.8 Berne, B. J.; Percora, R. Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics; John Wiley \& Sons, Inc.: New York, 1976.
2.9 Belanger, S.; Hupp, J. T.; Stern, C. L. Acta Cryst. 1998. C54, 1596-1600.
2.10 Wrighton, M.; Morse, D. L. J. Am. Chem. Soc. 1974, 96, 998-1003.

Chapter 3

The Attempted Synthesis of a Molecular Cube, $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathbf{C u})_{12}$

3.1 Introduction

The general goal of this research was to synthesize new MOFs to be used as hosts in host-guest chemistry. The specific goal of the Maverick research group is to develop a threedimensional host. Our group decided to focus on a cube. This researcher came up with the idea of using a phosphine ligand as the corner, and a metal as the rod. The ligand that was eventually developed was $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ which, it was theorized, would form a cube $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12} 1.24$ when reacted with Cu (see Fig. 3.1). Our group hoped that including a moiety similar to $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$, in the design of the cube, would result in its properties being retained by the cube. The property that we most wanted to retain was the ability to bond to a guest. Our group has used $\mathrm{Cu}(\text { pyac })_{2} \mathbf{1 . 2 0}$ since 2002.

1.20

1.24

Fig. 3.1. The Target Molecules $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ and $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$

3.2 Experimental Section

3.2.1 Materials and Procedures

All reagents were used as received without further purification unless mentioned. These materials were of reagent grade or better.

The ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Bruker DPX-250 spectrometer. Elemental analyses were performed by MHW Laboratories in Phoenix, Arizona. Mass spectrometer analyses were performed by the facilities at LSU. The X-ray crystallography was performed by Dr. Fronczek using the Nonius KappaCCD area-detector instrument equipped with a Mo K α source. All spectra are in the Appendix.

3.2.2 Synthesis of Tris(4-formylphenyl)Phosphine 2.2

To prepare this compound, the precursor tris(4-formylphenyl)phosphine 3.1 was made first. This compound was prepared following and combining the elements of the procedures for the synthesis of tris(4-formylphenyl)phosphine, $\mathbf{3 . 1}^{3.1}$, and bis(4-formylphenyl)dimethylsilane, $3.2^{3.2}$, (see Fig. 3.2).

3.1

3.2

Fig. 3.2. Structure of Tris(4-formylphenyl)phosphine 3.1 and Bis(4-formylphenyl)dimethylsilane 3.2.

A sample of 4-bromobenzaldehyde dimethyl acetal $3.3\left(5 \mathrm{~mL}, 2.99 \times 10^{-2} \mathrm{~mol}\right)$ was combined with 40 mL dry THF in an inert atmosphere in a round bottom flask. The solution was brought to $-78{ }^{\circ} \mathrm{C}$ under streaming N_{2}, and n-butyllithium $/$ hexanes $1.6 \mathrm{M}\left(19.8 \mathrm{~mL}, 3.17 \times 10^{-2}\right.$
mol) was added over approximately 1 h while stirring. The solution initially turned from colorless to light yellow, then to milky white. After 2 h , at $-78^{\circ} \mathrm{C}, \mathrm{PCl}_{3}\left(0.80 \mathrm{~mL}, 9.17 \times 10^{-3}\right.$ mol) was added over a period of 15 minutes. When the PCl_{3} was added, the solution turned orange-red. The solution was kept at $-78^{\circ} \mathrm{C}$ for another 1 h . (see Reaction Scheme 3.1).

Reaction Scheme 3.1. Synthetic Route to Tris(4-formylphenyl)phosphine, 3.1

Then the solution was allowed to come to room temperature over 1 h . The solvent was evaporated, leaving the crude acetal. The crude acetal was dissolved in a mixture of dichloromethane and water. The solution was then washed: first with concentrated NaHCO_{3} and then with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was then evaporated, leaving a residue (5.24 g). The sample was stored under N_{2} in a freezer until the next day. The next day, the crude material was dissolved in 50 mL THF and 50 mL 2 M HCl . The solution was stirred under reflux conditions for 1 h under a stream of N_{2}. To the solution, 50 mL of water and 50 mL of ethyl acetate were added. The organic phase was then washed, first with concentrated NaHCO_{3} and then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, leaving a residue $(3.97 \mathrm{~g})$. This residue, which is the crude tris(4-formylphenyl)phosphine 3.1, was dissolved in
$25 \% \mathrm{CHCl}_{3} / 75 \%$ Ethyle acetate and applied to a silica gel column with $25 \% \mathrm{CHCl}_{3} / 75 \%$ Ethyle acetate as the mobile phase. The column was run as a flash column. This process yielded a pure $\operatorname{tris}\left(4\right.$-formylphenyl)phosphine 3.1 sample of 1.51 g . This is a percent yield of 44%. The ${ }^{1} \mathrm{H}$ NMR of tris(4-formylphenyl)phosphine 2.2 ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) is as follows: $10.0(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ha})$, $7.89(\mathrm{~d}, 6 \mathrm{H}, J=7.5, \mathrm{Hb}), 7.50(\mathrm{t}, 6 \mathrm{H}, J=7.5, \mathrm{Hc}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}:-4.2$ (see Fig. 3.3, and Spectrum 11, Spectrum 15,16). GC/MS: $346\left(\mathrm{M}^{+}\right)$

3.1

Fig. 3.3. Tris(4-formylphenyl)phosphine, 3.1 With its Hs Labeled

3.2.3. Synthesis of Tris(4-formylphenyl)Phosphine Oxide 3.4

To prepare this compound, the precursor tris(4-formylphenyl)phosphine 3.1 was made first. This residue, which is the crude tris(4-formylphenyl)phosphine 3.1, was dissolved in 25% $\mathrm{CHCl}_{3} / 75 \%$ Ethyl acetate and applied to a silica gel column with $25 \% \mathrm{CHCl}_{3} / 75 \%$ Ethyl acetate as the mobile phase. The column was run as a flash column. This process yielded a pure tris(4formylphenyl)phosphine oxide 3.4 sample of 1.92 g . This is a percent yield of 56%. Its melting point was $128-130^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$-NMR of tris(4-formylphenyl)phosphine oxide 3.4 (250 MHz , CDCl_{3}) is as follows: ${ }^{1} \mathrm{H}-\mathrm{NMR}: 10.1(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ha}), 8.03(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Hb}), 7.91(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Hc})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: 26.9. A GC/MS of this compound showed peaks attributable to the parent ion $\left(\mathrm{m} / \mathrm{z} 362\left(\mathrm{M}^{+}\right)\right.$and $\left.361\left((\mathrm{M}-\mathrm{H})^{+}\right)\right)$. (see Fig. 3.4, and Spectrum 12-14.)

Fig. 3.4. Tris(4-formylphenyl)phosphine Oxide, 3.4 With its Hs Labeled

3.2.4. Synthesis of $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$

Samples of tris(4-formylphenyl)phosphine, $3.1\left(0.65 \mathrm{~g}, 1.88 \times 10^{-3} \mathrm{~mol}\right)$ and phospholene, $3.5\left(1.30 \mathrm{~g}, 6.19 \times 10^{-3} \mathrm{~mol}\right)$ were combined with $2-4 \mathrm{~mL}$ dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in an inert atmosphere. The stoichiometry of this reaction is 1 tris(4-formylphenyl)phosphine 3.1.: 3.3 phospholene 3.5. The phospholene was synthesized, following procedures used by Ramirez et al. ${ }^{3.3}$ The solution was stirred for 24 h . Then 50 mL of MeOH was added to the solution, which was refluxed for 3 h under a stream of N_{2}. This produced the crude $\mathrm{Pphac}_{3} \mathrm{H}_{3} \mathbf{1 . 2 3}$ (see Reaction Scheme 3.2). ${ }^{3.3-3.5}$ The solvent was evaporated and the residue dissolved in hot MeOH. $\mathrm{H}_{2} \mathrm{O}$ was added until the solution became opaque. Over time $\mathrm{Pphac}_{3} \mathrm{H}_{3} \mathbf{1 . 2 3}$ precipitated as a white solid. This reaction yielded $0.386 \mathrm{~g}\left(6.94 \times 10^{-4} \mathrm{~mol}\right)$, which is a yield of approximately 37%. The ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ is as follows: $16.69 \mathrm{ppm}(\mathrm{s}, 1, \mathrm{Ha}), 7.28 \mathrm{ppm}(\mathrm{m}, 2, \mathrm{Hd}), 7.16$ ppm (m, 2, He), $1.92 \mathrm{ppm}(\mathrm{s}, 6, \mathrm{Hb})$. The ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ is as follows: -7.80 ppm (see Fig. 3.5, and Spectrum 17, 18).

3.2.5. Synthesis of OPphac $_{3} \mathbf{H}_{3}, 3.6$

A sample of $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23\left(0.015 \mathrm{~g}, 2.69 \times 10^{-5} \mathrm{~mol}\right)$ was dissolved in $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. To this solution, 0.06 mL 0.8 M of $\mathrm{NaClO}(\mathrm{aq})$ (i.e. commercial chlorine bleach) was added and stirred for 5 minutes. This was done to quickly and completely convert $\mathrm{Pphac}_{3} \mathrm{H}_{3} \mathbf{1 . 2 3}$ to

Reaction Scheme 3.2. Reaction to Synthesize $\mathrm{Pphac}_{3} \mathrm{H}_{3}, \mathbf{1 . 2 3}$

Fig. 3.5. $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ 1.27 With its Hs Labeled
$\mathrm{OPphac}_{3} \mathrm{H}_{3}$ 3.6. This reaction produced $0.014 \mathrm{~g}\left(2.44 \times 10^{-5} \mathrm{~mol}\right)$ a yield of 91%. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) is as follows: $16.74 \mathrm{ppm}(\mathrm{s}, 1, \mathrm{Ha}), 7.65 \mathrm{ppm}(\mathrm{m}, 2, \mathrm{Hd}), 7.32 \mathrm{ppm}(\mathrm{m}, 2$, He), $2.21 \mathrm{ppm}(\mathrm{s}, 6, \mathrm{Hb})$. The ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ is as follows: 28.52 ppm (see Fig. 3.6, and Spectrum 19, Spectrum 20).

3.6

Fig. 3.6. $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ Oxide 3.6 With its Hs Labeled

3.2.6 Attempted Synthesis of $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathbf{C u})_{12} 1.24$

The purified $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23(2.14 \mathrm{~g}, 3.84 \mathrm{mmol})$ was dissolved in 100 mL of CHCl_{3}. The resulting solution then had $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$ added. Then the organic phase of CHCl_{3} was washed with water. The solvent was evaporated off, leaving a forest green powder (P1). The sample was triturated with MeOH at room temperature and the mixture was filtered, leaving a solid (P2) and a filtrate (P3). The solid was a light green while the filtrate was aqua blue. The filtrate had the MeOH evaporated off, leaving a solid. The original sample before trituration was labeled as P1. The filtered solid was labeled P2; it was only soluble in hot pyridine. The MeOH solution, once dried, was labeled P 3 ; it was soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, and MeOH . The total amount of P 1 was $(1.65 \mathrm{~g})$. The total amount of P 2 was $(1.12 \mathrm{~g}, 67 \%$ of P 1$)$ and P 3 was $(0.53 \mathrm{~g}, 33 \%$ of P 1$)$.

Layering experiments were set up with the sample P3 dissolved in MeOH using $\mathrm{H}_{2} \mathrm{O}$, hexane, EtOAc, and ether in an attempt to grow crystals. The solvents $\mathrm{H}_{2} \mathrm{O}$, hexane, EtOAc, and ether were used, because when a drop of P 3 in MeOH was added to them, a precipitate formed. A total of 26 layering experiments was set up. Also, some P3 in MeOH was allowed to evaporate in an attempt to grow crystals. No crystals grew from these attempts, nor did a precipitate form.

Anal. Calcd. For $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}(\mathbf{1 . 2 4})$ sample $\mathrm{P} 2 \mathrm{C}_{264} \mathrm{H}_{264} \mathrm{Cu}_{12} \mathrm{O}_{48} \mathrm{P}_{8}: \mathrm{C}, 60.08$; H, 4.66; Found C, 36.88; H, 4.53.

Anal. Calcd. For $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}(\mathbf{1 . 2 4})$ sample $\mathrm{P} 3 \mathrm{C}_{264} \mathrm{H}_{264} \mathrm{Cu}_{12} \mathrm{O}_{48} \mathrm{P}_{8}: \mathrm{C}, 60.08$; H, 4.66; Found C, 58.34; H, 5.09.

Anal. Calcd. For $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12} \cdot 2 \mathrm{CHCl}_{3}$ sample $\mathrm{P} 3 \mathrm{C}_{266} \mathrm{H}_{266} \mathrm{Cu}_{12} \mathrm{O}_{48} \mathrm{P}_{8} \mathrm{Cl}_{6}$: C, 58.83; H, 4.49; Found C, 58.34; H, 5.09.

Anal. Calcd. For $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}(\mathbf{1 . 2 4})$ sample $\mathrm{P} 3 \mathrm{C}_{264} \mathrm{H}_{264} \mathrm{Cu}_{12} \mathrm{O}_{48} \mathrm{P}_{8}: \mathrm{C}, 60.08 ; \mathrm{H}, 4.66 ; \mathrm{Cu}$, 14.62; P, 4.75; Found C, $59.34 ; \mathrm{H}, 5.20 ; \mathrm{Cu}, 3.70 ; \mathrm{P}, 4.68$. (This sample was prepared without adding any CHCl_{3} to the P 3 after the trituration with MeOH , to reduce the chances that the compound would be a solvate.)

3.3. Results and Discussion.

3.3.1. X-ray Crystal Structure of Tris(4-formylphenyl)phosphine Oxide 3.4

The crystal structure was also determined for the tris(4-formylphenyl)phosphine oxide, 3.4, this crystal was prepared by dissolving the oxide in THF, then allowing the solvent to evaporate over a week (see Fig. 3.7 and Table 3.1). For the CIF File, see CIF 3.1. in Appendix. The C8-P1-C1 angle of the molecule is 106°. Tris(4-formylphenyl)phosphine oxide 3.4 is less likely to form a β-diketone through a reaction with phospholene 3.5. This is because the oxygen is electron withdrawing, which is inhibiting to the point that the reaction does not go to completion and stops at an intermediate step. ${ }^{3.3-3.6}$ This was also observed when
tris(4-formylphenyl)phosphine oxide 3.4 was treated with phospholene 3.5 and only a miniscule enol peak was detected. The C-P-C angle for tris(4-formylphenyl) phosphine 2.2 is probably close to that of triphenylphosphine, 3.3, which is 103° (see Fig. 3.8) ${ }^{3.6}$. The other
possible platonic solid that $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ could form with $\mathrm{Cu}(\mathrm{II})$ is a dodecahedron. The size of such dodecahedron would be 5 nm .

Fig. 3.7. X-ray Crystal Structure of Tris(4-formylphenyl)phosphine Oxide with THF, 3.4
Table 3.1 X-ray Crystal Parameters of Tris(4-formylphenyl)phosphine Oxide, 3.4

Compound	$\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{CHO}\right)_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
Crystal system	Monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
$\mathrm{a}(\AA)$	$21.371(3)$
$\mathrm{b}(\AA)$	$13.474(2)$
$\mathrm{c}(\AA)$	$13.436(2)$
$\alpha\left({ }^{\circ}\right)$	90.0
$\beta\left({ }^{\circ}\right)$	$99.018(9)$
$\gamma\left({ }^{\circ}\right)$	90.0
$\mathrm{~V}\left(\AA^{3}\right)$	$3821.1(10)$
Z	8
R	0.042

3.3.2. Phosphine Cycle

After working with the different phosphine compounds, the interrelationships among them came to light. The tris(4-formylphenyl)phosphine 3.1 can be treated with phospholene to
form the acac $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ 1.23. Tris(4-formylphenyl)phosphine 3.1 though, is O_{2} sensitive. If left out in open atmosphere, it will convert to tris(4-formylphenyl)phosphine oxide 3.4 in approximately 48 hours. This oxidation can be prevented by keeping tris(4-formylphenyl) phosphine 3.1 in an inert atmosphere. Tris(4-formylphenyl)phosphine oxide 3.1, when treated with phospholene, doesn't form any appreciable $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ oxide, 3.6. $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ is also O_{2} sensitive; therefore, if left out in open atmosphere, $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ will convert to $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ in less than 10 hours. These relationships can be seen in Fig. 3.9

3.7

Fig. 3.8. Triphenylphosphine 3.7

3.4 Conclusions and Future Work.

From the research conducted $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 1.24. was not synthesized. It is clear though, that $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ were synthesized.

The primary reason why the MOFs was not created was because the ligands $\mathrm{Pphac}_{3} \mathrm{H}_{3}$ 1.23 and $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ took far longer to create than was initially anticipated. This was due to the fact that the synthesizing of the underlying molecule tris(4-formylphenyl)phosphine 3.1, was in the literature, yet not well understood. In other words, the literature procedure was never reproduced. Additionally, in the literature and when asking the authors directly, the compound sensitivity of tris(4-formylphenyl)phosphine 3.1 to O_{2} remained unknown. This all led to spending far more time than anticipated in creating a new path to the molecule, but the process led to the creation of the new molecule tris(4-formylphenyl)phosphine oxide 3.4, as well as
targets, $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3}$ 3.6. With this established synthesis of $\mathrm{OPphac}_{3} \mathrm{H}_{3}$ 3.6, future research can be conducted and will most probably synthesize $\left(\mathrm{OPphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 3.8. (see figure 3.10) or if not such a complex molecule, at least a simpler metal complex.

Fig. 3.9. The Interrelationship Between the Different Phosphines

Figure 3.10. Target Molecules $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ and $\left(\mathrm{OPphac}_{3}\right)_{8}(\mathrm{Cu})_{12}$ 3.8.

This research will continue to obtain an elemental analysis of the discussed molecules and MS for $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3}$ 3.6. Also, attempts will be made to obtain crystal structures of those molecules that have none. This will be done in preparation of submitting this work to the journal Tetrahedron.

3.5 References

3.1 Bartlett, P. A.; Bauer, B.; Singer, S. J. J. Am. Chem. Soc. 1978, 100, 5085-5089.
3.2 Kumagai, T.; Itsuno, S. Tetrahedron: Asymmetry. 2001, 12, 2509-2516.
3.3 Ramirez, F.; Ramanathan, N.; Desai, N. B. J. Am. Chem. Soc., 1962, 84, 13171318.
3.4 Ramirez, F.; Patwardhan, A. V.; Ramanathan, N.; Desai, N. B.; Greco, C. V.; Heller, S. R. J. Am. Chem. Soc., 1965, 87, 543-548.
3.5 Ramirez, F.; Bhatia, S. B.; Patwardhan, A. V.; Smith, C. P. J. Org. Chem., 1967, 32, 3547-3553.
3.6 Daly, J. J. J. Chem. Soc., 1964, 379

Chapter 4

Conclusions and Future Work

The goal of this research was to synthesize new MOFs. This goal was pursued by attempting to synthesize a Re molecular square $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{ClCu}(\mathrm{Pyac})_{2}\right]_{4} 1.21$ and a phosphine cube $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})_{12} 1.24$ (see Fig. 4.1).

Fig. 4.1 Target Molecular Square and Cube
These target molecules were not achieved. Possible precursor molecules to synthesize this molecule were synthesized.

In the case of the Re research $\mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2} 2.2$ was made the target MOF $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{Cu}(\mathrm{Pyac}))_{2}\right]_{4} 1.21$ was not. To make this Re square two approaches were applied a direct synthesis and a second making $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\mathrm{PyacH})_{2} 2.2$ then reacting it with a metal. This is why it was created. The reason why direct synthesis did not work as it had in the creation of $\left[\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}\left(4,4^{\prime} \text {-bpy }\right)\right]_{4} 1.9$ can be probably accounted for by the differences between the two rods i.e. $\left(4,4^{\prime}\right.$-bpy $)$ and $\mathrm{Cu}(\mathrm{Pyac})_{2} \mathbf{1 . 2 0}$. This approach took up most of the researchers time before working on the second approach. The reason for the failure of the second approach is most probably due to not finding the right conditions and since the ground work here has been laid a future research should be able to find the right conditions and create the target MOF.

In the area of the phosphine research it can not be concluded that the MOF $\left(\text { Pphac }_{3}\right)_{8}(\mathrm{Cu})_{12} \mathbf{1 . 2 4}$ was made. The positive conclusions that can be drawn though are that $\mathrm{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ were made. The reason for not synthesizing $\left(\mathrm{Pphac}_{3}\right)_{8}(\mathrm{Cu})$ 1.24 was that too much time was expended on preparing the precursor compound. This was due to the fact the literature used to make this compound may not have included all the information needed to prepare tris(4-formylphenyl)phosphine 3.1. This then forced the researcher to develop a new way to make the target molecule.

With more time then since the ground work has been laid, future research can take the new molecules $\operatorname{Pphac}_{3} \mathrm{H}_{3} 1.23$ and $\mathrm{OPphac}_{3} \mathrm{H}_{3} 3.6$ and create if not MOFs at least simple metal complexes.

Appendix Spectra

Spectrum 1. IR spectrum (thin film) of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} 2.6$

Spectrum 2. IR spectrum (thin film) of possible "molecular square" product Rel

Spectrum 3. IR spectrum (thin film) of Rela, possible "molecular square" product

Spectrum 4. IR spectrum (thin film) of possible "molecular square" product Relb

Spectrum 5. IR spectrum (thin film) of possible "L" product Re2

Spectrum 6a. MALDI-MS of possible "molecular square" product Re1a

Spectrum 6b. Portion of MALDI-MS of possible "molecular square" product Re1a

Spectrum 6c. Portion of MALDI-MS of possible "molecular square" product Re1a

Spectrum 7a. MALDI-MS of possible "molecular square" product Relb

Spectrum 7b. Portion of MALDI-MS of possible "molecular square" product Relb

Spectrum 7c. Portion of MALDI-MS of possible "molecular square" product Relb

Spectrum 8a. MALDI-MS of possible "L" product Re2

Spectrum 8b. Portion of MALDI-MS of possible "L" product Re2

Spectrum 8c. Portion of MALDI-MS of possible "L" product Re2

Spectrum 8d. Portion of MALDI-MS of possible "L" product Re2

Spectrum 9. IR spectrum (thin film) of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2}$

Spectrum 10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{Cl}(\text { pyacH })_{2} 2.2$ (NS 64 in Acetone- d_{6})


```
CIF 2.1. CIF File of Re(CO)
data_Kakoullis8
_audit_creation_method SHELXL-97
__chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_compound_source 'local laboratory'
_chemical_formula_moiety 'C23 H22 Cl3 N2 O7 Re, C H Cl3'
_chemical_formula_sum 'C24 H23 C14 N2 O7 Re'
_chemical_formula_weight 779.44
loop_
    _atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
''C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Cl' 'Cl' 0.1484 0.1585
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'Re' 'Re' -1.0185 7.2310
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_space_group_name_H-M 'P 21/c '
_symmetry_space_group_name_Hall '-P 2ybc'
_symmetry_cell_setting 'Monoclinic'
loop_
    _symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y-1/2, z-1/2'
_cell_length_a
```

_cell_length_b
11.607(4)
_cell_length_c
cell_angle_alpha
cell_angle_beta
_cell_angle_gamma
_cell_volume
_cell_formula_units_Z
_cell_measurement_temperature 110
_cell_measurement_reflns_used 8612
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 26.0
_exptl_crystal_description plate
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.30
_exptl_crystal_size_mid 0.25
_exptl_crystal_size_min 0.01
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.726
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 1520
_exptl_absorpt_coefficient_mu 4.450
_exptl_absorpt_correction_type 'multi-scan'
_exptl_absorpt_correction_T_min 0.348
_exptl_absorpt_correction_T_max 0.957
_exptl_absorpt_process_details 'HKL Scalepack (Otwinowski \& Minor 1997)'
exptl_special_details
;
?
;
_diffrn_ambient_temperature 110
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKla
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method ' \w scans with \k offsets'
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <2
_diffrn_reflns_number 27300
_diffrn_reflns_av_R_equivalents 0.071

```
```

_diffrn_reflns_av_sigmaI/netI 0.0645
diffrn_reflns_limit_h_min -13
_diffrn_reflns_limit_h_max 13
_diffrn_reflns_limit_k_min -14
_diffrn_reflns_limit_k_max 14
_diffrn_reflns_limit_l_min -29
diffrn_reflns_limit_l_max 29
_diffrn_reflns_theta_min 2.6
diffrn_reflns_theta_max 26.0
_reflns_number_total }574
_reflns_number_gt 4148
_reflns_threshold_expression I>2\s(I)
computing_data_collection 'COLLECT (Nonius, 2000)'
_computing_cell_refinement 'HKL Scalepack (Otwinowski \& Minor 1997)'
_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski \& Minor 1997)'
_computing_structure_solution 'SIR97 (Altomare et al., 1999)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F}\mp@subsup{F}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ , conventional R-factors R are based
on F, with F set to zero for negative F}\mp@subsup{\textrm{F}}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ . The threshold expression of
F}\mp@subsup{2}{}{\wedge
not relevant to the choice of reflections for refinement. R-factors based
on F}\mp@subsup{\textrm{F}}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-'calc w=1/[
^^2^(Fo^2^})+(0.0586P)^2^+2.57P] where P=(Fo^2^+2\mp@subsup{F}{}{\wedge}^2^)/3
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_1s_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 5749
_refine_ls_number_parameters 353
_refine_ls_number_restraints 0

```
```

 refine_ls_R_factor_all 0.093
 refine_ls_R_factor_gt 0.058
 _refine_ls_wR_factor_ref 0.151
_refine_ls_wR_factor_gt 0.137
_refine_ls_goodness_of_fit_ref 1.373
_refine_ls_restrained_S_all 1.373
_refine_ls_shift/su_max 0.008
_refine_ls_shift/su_mean 0.001
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
atom_site_disorder_assembly
atom_site_disorder_group
Rel Re 0.38042(4) 0.62880(3) 0.297709(14) 0.03423(15) Uani 1 1 d....
Cl1 Cl 0.4886(3) 0.81552(19) 0.31775(9) 0.0452(6) Uani 1 1 d . . .
O1 O 0.2549(7) 0.3933(6) 0.2683(3) 0.0484(18) Uani 1 1 d . . .
O2 O 0.3017(8) 0.6311(5) 0.4118(3) 0.056(2) Uani 1 1 d . . .
O3 O 0.1247(8) 0.7359(7) 0.2449(3) 0.068(2) Uani 1 1 d . . .
O4 O 0.6907(7) 0.5455(5) 0.0010(3) 0.0473(18) Uani 1 1 d ...
O5 O 0.6508(7) 0.7541(6) -0.0046(3) 0.0433(17) Uani 1 1 d . . .
H5O H 0.672(10) 0.664(9) -0.018(4) 0.065 Uiso 1 1 d ...
O6 O 1.1297(8) 0.3703(7) 0.4053(4) 0.073(2) Uani 1 1 d . . .
O7 O 1.0437(9) 0.2884(8) 0.4836(3) 0.074(2) Uani 1 1 d . . .
H7O H 1.102(14) 0.338(12) 0.463(6) 0.111 Uiso 1 1 d ...
N1 N 0.4579(8) 0.6302(6) 0.2197(3) 0.0355(18) Uani 1 1 d . . .
N2 N 0.5625(7) 0.5502(6) 0.3366(3) 0.0340(18) Uani 1 1 d . . .
C1 C 0.3013(10) 0.4786(10) 0.2791(4) 0.043(3) Uani 1 1 d . . .
C2 C 0.3286(12) 0.6298(7) 0.3675(4) 0.051(3) Uani 1 1 d . . .
C3 C 0.2215(11) 0.6978(8) 0.2652(4) 0.046(3) Uani 1 1 d ...
C4 C 0.5719(10) 0.6674(7) 0.2197(4) 0.036(2) Uani 1 1 d .. .
H4 H 0.6231 0.6932 0.2543 0.044 Uiso 1 1 calc R . . .
C5 C 0.6212(10) 0.6707(8) 0.1712(4) 0.039(2) Uani 1 1 d ...
H5 H 0.7044 0.6975 0.1732 0.046 Uiso 1 1 calc R . . .
C6 C 0.5483(9) 0.6350(7) 0.1206(3) 0.033(2) Uani 1 1 d . . .
C7 C 0.4262(10) 0.6003(7) 0.1203(3) 0.035(2) Uani 1 1 d ...
H7 H 0.3719 0.5780 0.0859 0.042 Uiso 1 1 calc R . . .

```

C8 C 0.3833(9) 0.5982(7) 0.1699(3) 0.034(2) Uani \(11 \mathrm{~d} . .\).
H8 H 0.29960 .57380 .16900 .041 Uiso 11 calc R . . .
C9 C 0.6380(11) 0.4245(8) 0.0714(4) 0.048(3) Uani \(11 \mathrm{~d} .\). .
H9A H 0.65020 .36500 .04450 .072 Uiso 11 calc R . . .
H9B H 0.55610 .41350 .08120 .072 Uiso 11 calc R . . .
H9C H 0.70480 .41860 .10550 .072 Uiso 11 calc R . . .
C10 C 0.6423(10) 0.5410(8) 0.0455(4) 0.040(2) Uani \(11 \mathrm{~d} .\). .
C11 C 0.5980(9) 0.6418(7) 0.0673(3) 0.033(2) Uani \(11 \mathrm{~d} .\).
C12 C 0.6035(9) 0.7476(7) 0.0401(3) 0.034(2) Uani \(11 \mathrm{~d} .\).
C13 C \(0.5524(10) 0.8569(7) 0.0582(4) 0.045(2)\) Uani \(11 \mathrm{~d} . .\).
H13A H 0.61920 .91500 .06580 .067 Uiso 11 calc R . . .
H13B H 0.52100 .84310 .09250 .067 Uiso 11 calc R . . .
H13C H 0.48350 .88450 .02820 .067 Uiso 11 calc R . . .
C14 C 0.6049(9) 0.4565(7) 0.3144(4) 0.034(2) Uani \(11 \mathrm{~d} .\).
H14 H 0.55460 .42390 .2812 0.041 Uiso 11 calc R . . .
C15 C 0.7192(10) 0.4050(8) 0.3379(4) 0.039(2) Uani 11 d...
H15 H 0.74640 .33990 .32010 .046 Uiso 11 calc R . . .
C16 C 0.7928(9) 0.4468(9) 0.3863(4) 0.040(2) Uani \(11 \mathrm{~d} .\).
C17 C 0.7474(11) 0.5455(8) 0.4109(4) 0.046(3) Uani 11 d...
H17 H 0.79490 .57810 .4447 0.055 Uiso 11 calc R . . .
C18 C 0.6338(10) 0.5924(8) 0.3848(4) 0.040(2) Uani 11 d...
H18 H 0.60400 .65780 .40150 .047 Uiso 11 calc R . . .
C19 C \(1.0096(12) 0.4825(12) 0.3309(5) 0.083(4)\) Uani \(11 \mathrm{~d} . .\).
H19A H 1.08530 .52940 .33320 .124 Uiso 11 calc R . . .
H19B H 0.93570 .53280 .32570 .124 Uiso 11 calc R . . .
H19C H 1.00050 .42930 .29900 .124 Uiso 11 calc R . . .
C20 C 1.0203(12) 0.4164(11) 0.3833(5) 0.064(3) Uani \(11 \mathrm{~d} .\). .
C21 C \(0.9210(11) 0.3978(8) 0.4121(4) 0.045(3)\) Uani \(11 \mathrm{~d} .\).
C22 C 0.9372(11) 0.3346(11) 0.4607(5) 0.059(3) Uani \(11 \mathrm{~d} .\).
C23 C 0.8322(13) 0.3104(16) 0.4899(5) 0.102(5) Uani \(11 \mathrm{~d} .\).
H23A H 0.83650 .22980 .50220 .153 Uiso 11 calc R . . .
H23B H 0.75140 .32450 .46380 .153 Uiso 11 calc R . . .
H23C H 0.83990 .36090 .52270 .153 Uiso 11 calc R . . .
Cl1S Cl \(0.2166(4) 0.3560(3) 0.11919(15) 0.0815(10)\) Uani \(11 \mathrm{~d} \ldots\)
Cl2S Cl -0.0285(5) 0.3272(5) 0.1385(2) 0.1329(18) Uani \(11 \mathrm{~d} \ldots\)
Cl3S Cl 0.0342(6) 0.5336(5) 0.0859(3) 0.170(2) Uani \(11 \mathrm{~d} \ldots\)
C1S C \(0.0705(17) 0.3922(13) 0.0883(6) 0.113(7)\) Uani \(11 \mathrm{~d} .\).
H1S H 0.04610 .35690 .04990 .135 Uiso 11 calc R . . .
loop_
_atom_site_aniso_label
-atom_site_aniso_U_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
-atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
Rel 0.0497(3) 0.0274(2) 0.0299(2) 0.00292(15) 0.01803(16) 0.00554(18)
Cl1 0.075(2) 0.0287(12) 0.0353(12) 0.0000(9) 0.0183(12) 0.0014(12)
O1 0.051(5) 0.039(4) 0.057(4) 0.002(3) 0.016(4) -0.001 (4)
O2 0.095(7) 0.042(4) 0.048(4) 0.011(3) 0.051(4) 0.012(4)
O3 0.064(6) 0.065(5) 0.081(6) 0.033(4) 0.030(5) 0.024(5)
O4 0.073(6) 0.039(4) 0.038(3) -0.005(3) 0.030(4) -0.001(3)
O5 0.057(5) 0.041(4) 0.036(3) 0.008(3) 0.019(3) -0.003(3)
O6 0.045(6) 0.083(6) 0.093(6) 0.007(5) 0.014(5) 0.005(5)
O7 0.066(7) 0.088(7) 0.064(5) 0.008(4) 0.007(5) 0.012(5)
N1 0.054(5) 0.025(4) 0.034(4) 0.005(3) 0.023(4) 0.005(4)
N2 0.047(5) 0.031(4) 0.026(4) 0.000(3) 0.012(3) -0.003(4)
C1 0.046(7) 0.054(7) 0.036(5) 0.018(5) 0.021(5) 0.022(5)
C2 0.090(9) 0.020(5) 0.048(6) 0.001(4) 0.028(6) 0.015(5)
C3 0.052(8) 0.038(6) 0.057(6) 0.019(5) 0.029(6) 0.010(5)
C4 0.055(7) 0.029(5) 0.030(5) -0.004(4) 0.019(5) -0.006(4)
C5 0.051(7) 0.035(5) 0.033(5) 0.005(4) 0.016(5) -0.016(4)
C6 0.050(6) 0.023(4) 0.027(4) -0.002(3) 0.012(4) -0.005(4)
C7 0.052(7) 0.028(5) 0.025(4) -0.001(3) 0.007(4) 0.004(4)
C8 0.036(6) 0.037(5) 0.029(4) -0.003(4) 0.009(4) -0.004(4)
C9 0.071(8) 0.039(5) 0.043(6) -0.004(4) 0.029(5) 0.009(5)
C10 0.055(7) 0.039(5) 0.030(5) -0.003(4) 0.017(5) -0.003(5)
C11 0.046(6) 0.027(5) 0.028(4) -0.002(3) 0.013(4) -0.002(4)
C12 0.037(6) 0.035(5) 0.031(5) 0.002(4) 0.008(4) -0.004(4)
C13 0.057(7) 0.031(5) 0.048(6) -0.002(4) 0.015(5) -0.001(5)
C14 0.040(6) 0.028(5) 0.035(5) -0.010(4) 0.009(4) 0.000(4)
C15 0.044(7) 0.041(5) 0.032(5) -0.010(4) 0.012(4) 0.000(4)
C16 0.030(6) 0.056(6) 0.035(5) 0.007(4) 0.008(4) 0.006(5)
C17 0.068(8) 0.038(6) 0.034(5) -0.010(4) 0.014(5) -0.006(5)
C18 0.055(7) 0.033(5) 0.033(5) -0.002(4) 0.015(5) 0.005(5)
C19 0.052(9) 0.122(12) 0.080(9) 0.028(8) 0.025(7) -0.011(8)
C20 0.049(9) 0.061(7) 0.076(8) -0.004(6) 0.001(7) -0.006(6)
C21 0.054(7) 0.044(6) 0.041(6) -0.005(4) 0.016(5) 0.003(5)
C22 0.042(8) 0.082(8) 0.050(7) 0.010(6) 0.006(5) 0.017(6)
C23 0.060(10) 0.192(16) 0.060(8) 0.049(10) 0.026(7) 0.003(10)
Cl1S 0.096(3) 0.073(2) 0.078(2) -0.0085(17) 0.027(2) -0.0042(19)
Cl2S 0.102(4) 0.188(5) 0.118(4) 0.011(4) 0.044(3) -0.034(4)
Cl3S 0.131(5) 0.118(4) 0.236(7) 0.037(4) -0.018(5) 0.015(4)
C1S 0.120(15) 0.099(12) 0.084(10) -0.032(9) -0.053(10) 0.041(10)
```

_geom_special_details
;

```

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
geom bond distance
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
Re1 C2 1.901(10).?
Re1 C3 1.915(12) .?
Re1 C1 1.954(12) . ?
Re1 N2 2.202(8) .?
Re1 N1 2.237(7) .?
Re1 Cl1 2.465(2) .?
O1 C1 1.117(12).?
O2 C2 1.174(11).?
O3 C3 1.151(12).?
O4 C10 1.302(10).?
O4 H5O 1.46(11).?
O5 C12 1.301(10).?
O5 H5O 1.13(11) .?
O6 C20 1.309(14).?
O6 H7O 1.55(14) .?
O7 C22 1.290(13).?
O7 H7O 1.06(15) .?
N1 C4 1.315(12).?
N1 C8 1.355(11).?
N2 C14 1.340(10) .?
N2 C18 1.349(11).?
C4 C5 1.398(12).?
C4 H4 0.9500 .?
C5 C6 1.375(12).?
C5 H5 0.9500 .?
C6 C7 1.388(13).?
C6 C11 1.511(11).?
C7 C8 1.385(11).?
C7 H7 0.9500 .?
C8 H8 0.9500 .?
C9 C10 1.498(12) .?
C9 H9A 0.9800 .?
C9 H9B 0.9800 .?
C9 H9C 0.9800 .?
C10 C11 1.412(12).?
C11 C12 1.402(11).?
```

C12 C13 1.489(12) . ?
C13 H13A 0.9800 .?
C13 H13B 0.9800 .?
C13 H13C 0.9800 .?
C14 C15 1.388(13) . ?
C14 H14 0.9500.?
C15 C16 1.362(13).?
C15 H15 0.9500.?
C16 C17 1.428(13).?
C16 C21 1.512(14). ?
C17 C18 1.375(14) . ?
C17 H17 0.9500 .?
C18 H18 0.9500 .?
C19 C20 1.470(16) . ?
C19 H19A 0.9800 . ?
C19 H19B 0.9800 .?
C19 H19C 0.9800 .?
C20 C21 1.426(15). ?
C21 C22 1.369(14). ?
C22 C23 1.496(16) . ?
C23 H23A 0.9800 .?
C23 H23B 0.9800 .?
C23 H23C 0.9800 .?
Cl1S C1S 1.660(16) . ?
Cl2S C1S 1.95(2). ?
Cl3S C1S 1.687(14) . ?
C1S H1S 1.0000 .?
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
geom_angle_publ_flag
C2 Re1 C3 87.1(4) . . ?
C2 Re1 C1 90.6(4)..?
C3 Rel C1 87.9(4) . . ?
C2 Re1 N2 91.8(4) . . ?
C3 Re1 N2 178.9(3).. ?
C1 Re1 N2 92.4(3) . .?
C2 Re1 N1 175.2(4) . .?
C3 Re1 N1 96.9(3) . . ?
C1 Re1 N1 92.2(3) . . ?
N2 Re1 N1 84.1(3) . .?

```
```

C2 Re1 Cl1 92.3(3) . . ?
C3 Re1 Cl1 93.7(3) . . ?
C1 Re1 Cl1 176.8(3) . . ?
N2 Rel Cl1 86.08(19) . . ?
N1 Rel Cl1 84.81(19) . . ?
C10 O4 H5O 104(4) . . ?
C12 O5 H5O 109(5) . . ?
C20 O6 H7O 98(6) . . ?
C22 O7 H7O 99(8) . . ?
C4 N1 C8 118.4(7) . . ?
C4 N1 Re1 122.0(6) . . ?
C8 N1 Rel 119.5(6) . . ?
C14 N2 C18 117.4(8) . . ?
C14 N2 Re1 121.3(6) . . ?
C18 N2 Re1 121.2(6) . . ?
O1 C1 Re1 179.3(10) . . ?
O2 C2 Re1 177.2(11) . . ?
O3 C3 Re1 177.8(10) . . ?
N1 C4 C5 122.8(9) . . ?
N1 C4 H4 118.6 . .?
C5 C4 H4 118.6 . . ?
C6 C5 C4 119.6(9) . . ?
C6 C5 H5 120.2 . . ?
C4 C5 H5 120.2 . .?
C5 C6 C7 117.4(8) . . ?
C5 C6 C11 120.5(9) . . ?
C7 C6 C11 122.0(8) . . ?
C8 C7 C6 120.2(8) . . ?
C8 C7 H7 119.9 . . ?
C6 C7 H7 119.9 . . ?
N1 C8 C7 121.5(9) . . ?
N1 C8 H8 119.2 . .?
C7 C8 H8 119.2 . . ?
C10 C9 H9A 109.5 . . ?
C10 C9 H9B 109.5 . . ?
H9A C9 H9B 109.5 . . ?
C10 C9 H9C 109.5 . . ?
H9A C9 H9C 109.5 . . ?
H9B C9 H9C 109.5 . . ?
O4 C10 C11 120.7(8) . . ?
O4 C10 C9 116.2(8) . . ?
C11 C10 C9 123.1(8) . . ?
C12 C11 C10 119.8(8) . . ?
C12 C11 C6 120.6(7) . . ?
C10 C11 C6 119.6(7) . . ?
O5 C12 C11 120.6(8) . . ?

```
```

O5 C12 C13 116.0(8) . . ?
C11 C12 C13 123.4(8) . .?
C12 C13 H13A 109.5 . . ?
C12 C13 H13B 109.5 . . ?
H13A C13 H13B 109.5 . .?
C12 C13 H13C 109.5 . . ?
H13A C13 H13C 109.5 . . ?
H13B C13 H13C 109.5 . .?
N2 C14 C15 122.7(8) . .?
N2 C14 H14 118.7 . .?
C15 C14 H14 118.7 . .?
C16 C15 C14 120.7(8) . .?
C16 C15 H15 119.6 . .?
C14 C15 H15 119.6 . .?
C15 C16 C17 117.0(9) . . ?
C15 C16 C21 122.9(9) . . ?
C17 C16 C21 120.0(9) . . ?
C18 C17 C16 118.9(9) . . ?
C18 C17 H17 120.6 . .?
C16 C17 H17 120.6 . .?
N2 C18 C17 123.2(8) . . ?
N2 C18 H18 118.4 . .?
C17 C18 H18 118.4 . .?
C20 C19 H19A 109.5 . . ?
C20 C19 H19B 109.5 . . ?
H19A C19 H19B 109.5 . . ?
C20 C19 H19C 109.5 . . ?
H19A C19 H19C 109.5 . . ?
H19B C19 H19C 109.5 . . ?
O6 C20 C21 117.3(11) . . ?
O6 C20 C19 117.4(12) . . ?
C21 C20 C19 125.3(11) . . ?
C22 C21 C20 122.3(11) . . ?
C22 C21 C16 119.6(9) . . ?
C20 C21 C16 118.0(9) . . ?
O7 C22 C21 122.1(11) . .?
O7 C22 C23 115.2(11). . ?
C21 C22 C23 122.7(11).. ?
C22 C23 H23A 109.5 . .?
C22 C23 H23B 109.5 . . ?
H23A C23 H23B 109.5 . .?
C22 C23 H23C 109.5 . .?
H23A C23 H23C 109.5 . . ?
H23B C23 H23C 109.5 . . ?
C11S C1S Cl3S 117.2(10) . .?
Cl1S C1S Cl2S 102.9(8) . . ?

```
```

Cl3S C1S Cl2S 103.9(9) . . ?
Cl1S C1S H1S 110.7 . . ?
Cl3S C1S H1S 110.7 . .?
Cl2S C1S H1S 110.7 . .?

```
\begin{tabular}{|c|}
\hline loop_ geom torsion atom site label 1 \\
\hline geom_torsion_atom_site_label_2 \\
\hline geom_torsion_atom_site_label_3 \\
\hline geom_torsion_atom_site_label_4 \\
\hline geom_torsion \\
\hline geom_torsion_site_symmetry_1 \\
\hline geom_torsion_site_symmetry_2 \\
\hline geom_torsion_site_symmetry_3 \\
\hline geom_torsion_site_symmetry \\
\hline geom_torsion_publ_flag \\
\hline C2 Re1 N1 C4-13(4) \\
\hline C3 Re1 N1 C4 132.5(7) \\
\hline C1 Re1 N1 C4-139.4(7) \\
\hline N2 Re1 N1 C4-47.2(7) \\
\hline Cl1 Re1 N1 C4 39.4(7) \\
\hline C2 Re1 N1 C8 171(3) \\
\hline C3 Re1 N1 C8-43.5(7) . . . ? \\
\hline C1 Re1 N1 C8 44.6(7) \\
\hline N2 Re1 N1 C8 136.8(6) \\
\hline Cl1 Re1 N1 C8-136.6(6) . . . ? \\
\hline C2 Re1 N2 C14 129.4(7) . . . . ? \\
\hline C3 Re1 N2 C14 144(18) . . . ? \\
\hline C1 Re1 N2 C14 38.7(7) \\
\hline N1 Re1 N2 C14-53.3(6) \\
\hline C11 Re1 N2 C14-138.4(6) . . . ? \\
\hline C2 Re1 N2 C18-48.4(7) . . . . ? \\
\hline C3 Re1 N2 C18-34(19) \\
\hline C1 Re1 N2 C18-139.0(7) . . . ? \\
\hline N1 Re1 N2 C18 129.0(7) . . . . ? \\
\hline Cl1 Rel N2 C18 43.8(6) . . . ? \\
\hline C2 Rel C1 O1 88(67) . . . ? \\
\hline C3 Re1 C1 O1 1(66) . . . ? \\
\hline N2 Re1 C1 O1-180(100) . . . ? \\
\hline N1 Rel C1 O1-95(67) \\
\hline Cl1 Rel C1 O1-119(66) . . . . ? \\
\hline C3 Re1 C2 O2-148(15) . . . . ? \\
\hline C1 Re1 C2 O2 125(15) . . . ? \\
\hline N2 Re1 C2 O2 32(15) . . . ? \\
\hline N1 Re1 C2 O2-1(18) \\
\hline Cl1 Re1 C2 O2 -54(15) \\
\hline
\end{tabular}
```

C2 Re1 C3 O3-106(22) ?
C1 Re1 C3 O3-15(22) . . . ?
N2 Re1 C3 O3-120(24) ?
N1 Re1 C3 O3 77(22) ?
Cl1 Re1 C3 O3 162(22) ?
C8 N1 C4 C5 -2.8(13) ?
Re1 N1 C4 C5-178.9(6) ?
N1 C4 C5 C6 0.7(14) ?
C4 C5 C6 C7 2.0(13) . . . ?
C4 C5 C6 C11 177.8(8) . . . ?
C5 C6 C7 C8 -2.5(13). . . . ?
C11 C6 C7 C8 -178.3(7) ?
C4 N1 C8 C7 2.3(12) . . . ?
Re1 N1 C8 C7 178.4(6)?
C6 C7 C8 N1 0.4(13) . . . ?
O4 C10 C11 C12 1.4(15) ?
C9 C10 C11 C12 -179.0(10) . . . ?
O4 C10 C11 C6 -176.9(9) ?
C9 C10 C11 C6 2.7(15) . . . ?
C5 C6 C11 C12-76.2(12) . . . ?
C7 C6 C11 C12 99.4(11) ?
C5 C6 C11 C10 102.1(11) . . . ?
C7 C6 C11 C10-82.3(12) . . . ?
C10 C11 C12 O5 -1.0(15) ?
C6 C11 C12 O5 177.3(9) ?
C10 C11 C12 C13 176.5(9) ?
C6 C11 C12 C13-5.2(15) . . . ?
C18 N2 C14 C15-2.1(13) ?
Re1 N2 C14 C15 180.0(7) . . . ?
N2 C14 C15 C16 1.8(14) . . . ?
C14 C15 C16 C17 -0.6(14) . . . ?
C14 C15 C16 C21-176.8(9) ?
C15 C16 C17 C18-0.1(14) . . . ?
C21 C16 C17 C18 176.3(9) . . . ?
C14 N2 C18 C17 1.4(13)?
Re1 N2 C18 C17 179.3(7) . . . ?
C16 C17 C18 N2 -0.3(14) ?
O6 C20 C21 C22 0.0(17) . . . ?
C19 C20 C21 C22 179.6(12) . . . ?
O6 C20 C21 C16-177.9(10) ?
C19 C20 C21 C16 1.8(17) ?
C15 C16 C21 C22-108.2(12)?
C17 C16 C21 C22 75.6(13) . . . ?
C15 C16 C21 C20 69.7(14) ?
C17 C16 C21 C20-106.5(11) . . . ?
C20 C21 C22 O7 0.3(19) . . . ?

```
```

C16 C21 C22 O7 178.1(10) ?
C20 C21 C22 C23-177.3(13) ?
C16 C21 C22 C23 0.5(19) . . . ?

```
loop_
_geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H
    geom_hbond_atom_site_label_A
    _geom_hbond_distance_D D
_geom_hbond_distance_HA
    _geom_hbond_distance_DA
    _geom_hbond_angle_DHA
    _geom_hbond_site_symmetry_A
O5 H5O O4 1.13(11) \(1.46(11) 2.459(9) 144(8)\).
O7 H7O O6 1.06(15) \(1.55(14) 2.486(12) 144(13)\).
_diffrn_measured_fraction_theta_max 0.969
_diffrn_reflns_theta_full 26.0
_diffrn_measured_fraction_theta_full 0.969
_refine_diff_density_max 1.97
_refine_diff_density_min -1.80
_refine_diff_density_rms 0.187
\# END OF CIF

Spectrum 11. GC/MS of tris(4-formylphenyl)phosphine 3.1


Spectrum 12. GC/MS of tris(4-formylphenyl)phosphine oxide 3.4


Spectrum 13a. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) of tris(4-formylphenyl)phosphine 3.1 (NS 128 in \(\mathrm{CDCl}_{3}\) )


Spectrum 13b. Portion of \({ }^{1} \mathrm{H}\)-NMR of tris(4-formylphenyl)phosphine 3.1 (NS 128 in \(\mathrm{CDCl}_{3}\) )






Spectrum 14. \({ }^{31} \mathrm{P}\)-NMR of tris(4-formylphenyl)phosphine 3.1 (NS 1000 in \(\mathrm{CDCl}_{3}\) )


\title{
Phosphoric acid
}


Spectrum 15a. \({ }^{1} \mathrm{H}\)-NMR of tris(4-formylphenyl)phosphine oxide 3.4 (NS 64 in \(\mathrm{CDCl}_{3}\) )






Spectrum 15b. Portion of \({ }^{1} \mathrm{H}\)-NMR of tris(4-formylphenyl)phosphine oxide 3.4 (NS 64 in \(\mathrm{CDCl}_{3}\) )





Spectrum 16. \({ }^{31}\) P-NMR of tris(4-formylphenyl)phosphine oxide 3.4 (NS 1000 in \(\mathrm{CDCl}_{3}\) )
\(\stackrel{O}{-}_{26,699}\)

\title{
Phosphoric
} acid


```

CIF3.1. CIF File of tris(4-formylphenyl)phosphine oxide 3.4
data_JK1
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_compound_source 'local laboratory'
_chemical_formula_moiety 'C21 H15 O4 P, 0.5(C4 H8 O)'
_chemical_formula_sum 'C23 H19 O4.50 P'
_chemical_formula_weight 398.35
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'P' 'P' 0.1023 0.0942
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_space_group_name_H-M 'C 2/c '
_symmetry_space_group_name_Hall '-C 2yc'
_symmetry_cell_setting 'Monoclinic'
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, y, -z+1/2'
'x+1/2, y+1/2, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x, -y, z-1/2'
'-x+1/2, -y+1/2, -z'
'x+1/2, -y+1/2, z-1/2'
_cell_length_a
21.371(3)

```
```

_cell_length_b 13.474(2)
_cell_length_c
cell_angle_alpha 90
cell_angle_beta 99.018(9)
cell_angle_gamma 90
_cell_volume
_cell_formula_units_Z 8
3821.1(10)
_cell_measurement_temperature 110
_cell_measurement_reflns_used 7492
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 33.7
_exptl_crystal_description fragment
_exptl_crystal_colour 'pale yellow'
_exptl_crystal_size_max 0.45
_exptl_crystal_size_mid 0.43
_exptl_crystal_size_min 0.38
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.385
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 1664
_exptl_absorpt_coefficient_mu 0.174
_exptl_absorpt_correction_type 'multi-scan'
_exptl_absorpt_correction_T_min 0.926
_exptl_absorpt_correction_T_max 0.937
_exptl_absorpt_process_details 'HKL Scalepack (Otwinowski \& Minor 1997)'
exptl_special_details
;
?
;
_diffrn_ambient_temperature 110
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKla
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method ' \w scans with \k offsets'
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <2
_diffrn_reflns_number 36155
_diffrn_reflns_av_R_equivalents 0.023

```
```

_diffrn_reflns_av_sigmaI/netI 0.0355
diffrn_reflns_limit_h_min -33
_diffrn_reflns_limit_h_max 33
_diffrn_reflns_limit_k_min -19
_diffrn_reflns_limit_k_max 21
_diffrn_reflns_limit_1_min -20
diffrn_reflns_limit_l_max 20
_diffrn_reflns_theta_min 3.0
diffrn_reflns_theta_max 33.7
_reflns_number_total }759
_reflns_number_gt 5928
_reflns_threshold_expression I>2\s(I)
computing_data_collection 'COLLECT (Nonius, 2000)'
_computing_cell_refinement 'HKL Scalepack (Otwinowski \& Minor 1997)'
_computing_data_reduction 'HKL Denzo and Scalepack (Otwinowski \& Minor 1997)'
_computing_structure_solution 'SIR97 (Altomare et al., 1999)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F}\mp@subsup{F}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ , conventional R-factors R are based
on F, with F set to zero for negative F}\mp@subsup{\textrm{F}}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ . The threshold expression of
F}\mp@subsup{2}{}{\wedge
not relevant to the choice of reflections for refinement. R-factors based
on F}\mp@subsup{\textrm{F}}{}{\wedge}\mp@subsup{2}{}{\wedge}\mathrm{ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
-'calc w=1/[
^^2^(Fo^2^})+(0.0523P)^2^+2.5619P] where P=(Fo^2^ 2 + 2Fc^^2^)/3
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 7598
_refine_ls_number_parameters 280
_refine_ls_number_restraints 0

```
```

 refine_ls_R_factor_all 0.061
 _refine_ls_R_factor_gt 0.042
_refine_ls_wR_factor_ref 0.116
_refine_ls_wR_factor_gt 0.106
_refine_ls_goodness_of_fit_ref 1.027
_refine_ls_restrained_S_all 1.027
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
P1 P 0.328736(12) 0.285691(19) 0.269566(19) 0.01652(7) Uani 1 1 d . . .
O1 O 0.27730(4) 0.35710(6) 0.23209(6) 0.02304(16) Uani 1 1 d . . .
O2 O 0.58557(5) 0.58191(7) 0.41717(7) 0.0341(2) Uani 1 1 d . . .
O3 O 0.21889(4) -0.06198(6) 0.57196(7) 0.02736(18) Uani 1 1 d...
O4 O 0.42853(5) -0.02731(8) -0.07657(8) 0.0385(2) Uani 1 1 d ...
C1 C 0.40140(5) 0.34656(8) 0.32453(7) 0.01777(18) Uani 1 1 d . . .
C2 C 0.40518(5) 0.44958(8) 0.31497(8) 0.02015(19) Uani 1 1 d. . .
H2 H 0.3691 0.4861 0.2848 0.024 Uiso 1 1 calc R . .
C3 C 0.46164(5) 0.49869(8) 0.34949(8) 0.0224(2) Uani 1 1 d . . .
H3 H 0.4643 0.5687 0.3425 0.027 Uiso 1 1 calc R . .
C4 C 0.51435(5) 0.44465(8) 0.39446(8) 0.02102(19) Uani 1 1 d . . .
C5 C 0.51021(5) 0.34239(9) 0.40684(8) 0.0227(2) Uani 1 1 d . . .
H5 H 0.5459 0.3063 0.4393 0.027 Uiso 1 1 calc R . .
C6 C 0.45398(5) 0.29303(8) 0.37179(8) 0.0217(2) Uani 1 1 d . . .
H6 H 0.4512 0.2232 0.3798 0.026 Uiso 1 1 calc R . .
C7 C 0.57583(6) 0.49462(10) 0.42927(9) 0.0268(2) Uani 1 1 d . . .
H7 H 0.6096 0.4556 0.4632 0.032 Uiso 1 1 calc R . .
C8 C 0.30889(5) 0.20142(7) 0.36429(7) 0.01710(17) Uani 1 1 d . . .
C9 C 0.26866(5) 0.12078(8) 0.33428(8) 0.01918(19) Uani 1 1 d . . .
H9 H 0.2543 0.1092 0.2647 0.023 Uiso 1 1 calc R . .
C10 C 0.24976(5) 0.05794(8) 0.40579(8) 0.01975(19) Uani 1 1 d ...
H10 H 0.2230 0.0029 0.3855 0.024 Uiso 1 1 calc R . .
C11 C 0.27051(5) 0.07641(8) 0.50828(8) 0.01879(18) Uani 1 1 d . . .

```

C12 C \(0.30915(5) 0.15758(8) 0.53806(8) 0.0211(2)\) Uani \(11 \mathrm{~d} \ldots\)
H12 H 0.32230 .17030 .6078 0.025 Uiso 11 calc R . .
C13 C 0.32874(5) 0.22025(8) 0.46671(8) 0.01944(18) Uani \(11 \mathrm{~d} .\).
H13 H 0.35540 .27530 .48730 .023 Uiso 11 calc R . .
C14 C \(0.25276(5) 0.01018(8) 0.58758(8) 0.0222(2)\) Uani \(11 \mathrm{~d} .\).
H14 H 0.26920 .02550 .65570 .027 Uiso 11 calc R . .
C15 C 0.35007(5) 0.21019(7) 0.16835(7) 0.01758(18) Uani \(11 \mathrm{~d} .\).
C16 C \(0.39073(5) 0.12789(8) 0.18493(8) 0.0216(2)\) Uani \(11 \mathrm{~d} .\).
H16 H 0.40740 .10810 .25170 .026 Uiso 11 calc R . .
C17 C \(0.40635(6) 0.07555(9) 0.10328(9) 0.0244(2)\) Uani \(11 \mathrm{~d} .\).
H17 H 0.43480 .02110 .11410 .029 Uiso 11 calc R . .
C18 C \(0.38019(5) 0.10291(9) 0.00515(8) 0.0234(2)\) Uani \(11 \mathrm{~d} .\).
C19 C \(0.34019(5) 0.18443(9)-0.01138(8) 0.0236(2)\) Uani \(11 \mathrm{~d} .\).
H19 H 0.3228 0.2031-0.0782 0.028 Uiso 11 calc R . .
C20 C 0.32550(5) 0.23890(8) 0.07013(8) 0.02047(19) Uani \(11 \mathrm{~d} .\).
H20 H 0.29880 .29550 .0588 0.025 Uiso 11 calc R . .
C21 C \(0.39321(6) 0.04313(10)-0.08199(9) 0.0303(3)\) Uani \(11 \mathrm{~d} .\).
H21 H \(0.37220 .0616-0.14690 .036\) Uiso 11 calc R . .
O1S O 0.45041 (11) \(0.23429(19) 0.84831\) (19) 0.0494(6) Uani 0.501 d P A -1
C1S C \(0.51269(14) 0.1940(3) 0.8648(3) 0.0386(6)\) Uani 0.501 d P A -1
H11S H 0.51700 .14480 .92020 .058 Uiso 0.501 calc PR A -1
H12S H 0.54430 .24730 .88310 .058 Uiso 0.501 calc PR A -1
C2S C 0.5231 (3) \(0.1445(4) 0.7670(3) 0.0762(15)\) Uani \(0.501 \mathrm{~d} \mathrm{P} \mathrm{A} \mathrm{-1}\)
H21S H 0.56780 .14980 .75650 .114 Uiso 0.501 calc PR A -1
H22S H 0.51040 .07380 .76520 .114 Uiso 0.501 calc PR A -1
C3S C \(0.4797(3) 0.2050(3) 0.6906(4) 0.0720(16)\) Uani 0.501 d P A -1
H31S H 0.50120 .26560 .67150 .108 Uiso 0.501 calc PR A -1
H32S H 0.46480 .16570 .62920 .108 Uiso 0.501 calc PR A -1
C4S C \(0.4278(2) 0.2296(4) 0.7434(3) 0.0701(14)\) Uani 0.501 d P A -1
H41S H 0.40940 .29440 .71960 .105 Uiso 0.501 calc PR A -1
H42S H 0.39430 .17860 .7298 0.105 Uiso 0.501 calc PR A -1
loop_-
_atom_site_aniso_label
_atom_site_aniso_U_11
-atom_sit_-aniso_U_22
-atom_site_aniso_U_33
-atom_site_aniso_U_23
-atom_site_aniso_U_13
-atom_site_aniso_U_12
P1 \(0.01646(12) 0.01632(11) 0.01603(11)-0.00027(9) 0.00027(8) 0.00020(9)\)
O1 \(0.0221(4) 0.0220(4) 0.0238(4) 0.0014(3)-0.0003(3) 0.0043(3)\)
O2 \(0.0340(5) 0.0338(5) 0.0348(5)-0.0057(4) 0.0062(4)-0.0149(4)\)
O3 \(0.0300(4) 0.0246(4) 0.0285(4) 0.0020(3) 0.0075(3)-0.0029(3)\)
O4 \(0.0330(5) 0.0477(6) 0.0363(5)-0.0206(4) 0.0103(4)-0.0048(4)\)
C1 \(0.0174(4) 0.0189(4) 0.0169(4)-0.0020(3) 0.0024(3)-0.0015(3)\)
```

C2 0.0220(5) 0.0203(4) 0.0182(4) 0.0007(4) 0.0032(3) -0.0007(4)
C3 0.0260(5) 0.0209(5) 0.0209(4) -0.0006(4) 0.0050(4) -0.0049(4)
C4 0.0196(5) 0.0259(5) 0.0183(4) -0.0043(4) 0.0052(3) -0.0045(4)
C5 0.0176(5) 0.0259(5) 0.0244(5) -0.0037(4) 0.0021(4) 0.0008(4)
C6 0.0201(5) 0.0197(5) 0.0249(5) -0.0024(4) 0.0015(4) 0.0004(4)
C7 0.0223(5) 0.0335(6) 0.0253(5) -0.0076(5) 0.0059(4) -0.0075(4)
C8 0.0164(4) 0.0176(4) 0.0172(4) -0.0003(3) 0.0021(3) 0.0005(3)
C9 0.0196(5) 0.0209(4) 0.0166(4) -0.0033(3) 0.0014(3) -0.0014(4)
C10 0.0193(4) 0.0190(4) 0.0210(4) -0.0027(4) 0.0035(3) -0.0022(4)
C11 0.0202(4) 0.0177(4) 0.0190(4) -0.0010(3) 0.0049(3) 0.0018(3)
C12 0.0251(5) 0.0215(5) 0.0162(4) -0.0019(3) 0.0017(4) -0.0001(4)
C13 0.0208(5) 0.0186(4) 0.0182(4) -0.0025(3) 0.0008(3) -0.0019(4)
C14 0.0263(5) 0.0210(5) 0.0206(5) -0.0006(4) 0.0076(4) 0.0026(4)
C15 0.0177(4) 0.0187(4) 0.0159(4) -0.0008(3) 0.0012(3) -0.0024(3)
C16 0.0242(5) 0.0221(5) 0.0180(4) -0.0007(4) 0.0012(4) 0.0012(4)
C17 0.0242(5) 0.0250(5) 0.0239(5) -0.0053(4) 0.0037(4) 0.0005(4)
C18 0.0229(5) 0.0287(5) 0.0192(4) -0.0064(4) 0.0053(4) -0.0076(4)
C19 0.0231(5) 0.0311(5) 0.0160(4) -0.0004(4) 0.0009(4) -0.0066(4)
C20 0.0197(4) 0.0230(5) 0.0177(4) 0.0013(4) -0.0001(3) -0.0028(4)
C21 0.0289(6) 0.0398(7) 0.0235(5) -0.0111(5) 0.0086(4) -0.0105(5)
O1S 0.0330(11) 0.0568(14) 0.0539(14) 0.0064(11) -0.0072(10) -0.0007(10)
C1S 0.0297(13) 0.0431(17) 0.0399(16) -0.0067(14) -0.0043(12) -0.0004(11)
C2S 0.107(5) 0.078(3) 0.039(2) -0.008(2) 0.001(2) 0.021(3)
C3S 0.128(5) 0.0307(17) 0.046(2) 0.0030(17) -0.022(3) -0.003(2)
C4S 0.070(3) 0.078(3) 0.050(2) 0.036(2) -0.0275(19) -0.030(2)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
;
loop
geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
geom_bond_site_symmetry_2
geom_bond_publ_flag
P1 O1 1.4880(8).?
P1 C8 1.8050(10).?
P1 C1 1.8083(11).?
P1 C15 1.8129(10).?

```
```

O2 C7 1.2099(16).?
O3 C14 1.2107(14).?
O4 C21 1.2078(17) .?
C1 C2 1.3975(15).?
C1 C6 1.4009(15).?
C2 C3 1.3905(15).?
C2 H2 0.9500.?
C3 C4 1.3968(16).?
C3 H3 0.9500.?
C4 C5 1.3924(16).?
C4 C7 1.4851(15).?
C5 C6 1.3895(15).?
C5 H5 0.9500.?
C6 H6 0.9500.?
C7 H7 0.9500.?
C8 C13 1.3981(14).?
C8 C9 1.4049(14).?
C9 C10 1.3873(15).?
C9 H9 0.9500.?
C10 C11 1.4013(14).?
C10 H10 0.9500.?
C11 C12 1.3909(15).?
C11 C14 1.4839(15).?
C12 C13 1.3904(15).?
C12 H12 0.9500.?
C13 H13 0.9500.?
C14 H14 0.9500 .?
C15 C20 1.3963(14).?
C15 C16 1.4050(15).?
C16 C17 1.3882(15).?
C16 H16 0.9500 .?
C17 C18 1.3984(16).?
C17 H17 0.9500.?
C18 C19 1.3881(17).?
C18 C21 1.4830(16).?
C19 C20 1.3944(15).?
C19 H19 0.9500 . ?
C20 H20 0.9500 .?
C21 H21 0.9500.?
O1S C4S 1.418(4).?
O1S C1S 1.422(4).?
C1S C2S 1.519(5).?
C1S H11S 0.9900.?
C1S H12S 0.9900 .?
C2S C3S 1.510(6).?
C2S H21S 0.9900.?

```
```

C2S H22S 0.9900 .?
C3S C4S 1.446(8).?
C3S H31S 0.9900.?
C3S H32S 0.9900.?
C4S H41S 0.9900.?
C4S H42S 0.9900.?
loop
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
O1 P1 C8 113.74(5) . . ?
O1 P1 C1 112.73(5) . . ?
C8 P1 C1 106.20(5) . . ?
O1 P1 C15 111.61(5) . . ?
C8 P1 C15 106.89(5) . . ?
C1 P1 C15 105.07(5) . .?
C2 C1 C6 119.95(10) . . ?
C2 C1 P1 118.12(8) . . ?
C6 C1 P1 121.87(8) . . ?
C3 C2 C1 120.11(10) . . ?
C3 C2 H2 119.9 . .?
C1 C2 H2 119.9 . .?
C2 C3 C4 119.68(10) . . ?
C2 C3 H3 120.2 . .?
C4 C3 H3 120.2 . .?
C5 C4 C3 120.36(10) . . ?
C5 C4 C7 118.73(11). . ?
C3 C4 C7 120.91(10) . . ?
C6 C5 C4 120.07(10) . . ?
C6 C5 H5 120.0 . .?
C4 C5 H5 120.0 . .?
C5 C6 C1 119.79(10) . . ?
C5 C6 H6 120.1 . .?
C1 C6 H6 120.1 . . ?
O2 C7 C4 124.11(12) . . ?
O2 C7 H7 117.9 . . ?
C4 C7 H7 117.9 . .?
C13 C8 C9 120.03(9) . . ?
C13 C8 P1 120.75(8) . . ?
C9 C8 P1 119.01(7) . . ?
C10 C9 C8 120.31(9) . . ?

```
```

C10 C9 H9 119.8 . . ?
C8 C9 H9 119.8 . . ?
C9 C10 C11 119.38(10) . . ?
C9 C10 H10 120.3 . . ?
C11 C10 H10 120.3 . . ?
C12 C11 C10 120.30(10) . . ?
C12 C11 C14 118.26(9) . . ?
C10 C11 C14 121.44(10) . . ?
C13 C12 C11 120.57(9) . . ?
C13 C12 H12 119.7 . . ?
C11 C12 H12 119.7 . .?
C12 C13 C8 119.39(10) . . ?
C12 C13 H13 120.3 . . ?
C8 C13 H13 120.3 . . ?
O3 C14 C11 124.87(10) . .?
O3 C14 H14 117.6 . .?
C11 C14 H14 117.6 . . ?
C20 C15 C16 120.01(10) . . ?
C20 C15 P1 116.88(8) . .?
C16 C15 P1 123.09(8) . . ?
C17 C16 C15 119.67(10) . . ?
C17 C16 H16 120.2 . . ?
C15 C16 H16 120.2 . . ?
C16 C17 C18 120.06(11) . .?
C16 C17 H17 120.0 . . ?
C18 C17 H17 120.0 . . ?
C19 C18 C17 120.31(10) . . ?
C19 C18 C21 119.37(11) . . ?
C17 C18 C21 120.29(11) . . ?
C18 C19 C20 119.97(10) . . ?
C18 C19 H19 120.0 . . ?
C20 C19 H19 120.0 . . ?
C19 C20 C15 119.93(10) . . ?
C19 C20 H20 120.0 . . ?
C15 C20 H20 120.0 . . ?
O4 C21 C18 124.90(12) . . ?
O4 C21 H21 117.6 . . ?
C18 C21 H21 117.6 . ?
C4S O1S C1S 107.6(3) . .?
O1S C1S C2S 107.0(3) . .?
O1S C1S H11S 110.3 . .?
C2S C1S H11S 110.3 . .?
O1S C1S H12S 110.3 . .?
C2S C1S H12S 110.3 . .?
H11S C1S H12S 108.6 . . ?
C3S C2S C1S 101.2(4) . .?

```
```

C3S C2S H21S 111.5 . .?
C1S C2S H21S 111.5 . .?
C3S C2S H22S 111.5 . .?
C1S C2S H22S 111.5 . .?
H21S C2S H22S 109.4 . .?
C4S C3S C2S 103.1(4) . .?
C4S C3S H31S 111.2 . .?
C2S C3S H31S 111.2 . .?
C4S C3S H32S 111.2 ..?
C2S C3S H32S 111.2 . .?
H31S C3S H32S 109.1 . .?
O1S C4S C3S 109.3(3) . .?
O1S C4S H41S 109.8 ..?
C3S C4S H41S 109.8 . . ?
O1S C4S H42S 109.8 . . ?
C3S C4S H42S 109.8 . .?
H41S C4S H42S 108.3 . . ?
loop
_geom_torsion_atom_site_label_1
geom_torsion_atom_site_label_2
geom torsion atom site label 3
geom_torsion_atom_site_label_4
geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
geom_torsion_site_symmetry_3
geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
O1 P1 C1 C2 -8.16(10) . . . ?
C8 P1 C1 C2 -133.35(8) ?
C15 P1 C1 C2 113.60(9) ?
O1 P1 C1 C6 174.63(8) ?
C8 P1 C1 C6 49.43(10) ?
C15 P1 C1 C6 -63.62(10) . . . ?
C6 C1 C2 C3 1.99(16) ?
P1 C1 C2 C3-175.28(8) . . . ?
C1 C2 C3 C4 -0.51(15) . . . ?
C2 C3 C4 C5 -1.42(16) ?
C2 C3 C4 C7 178.15(10) ?
C3 C4 C5 C6 1.87(16) . . . ?
C7 C4 C5 C6 -177.70(10) . . . ?
C4 C5 C6 C1 -0.39(16) . . . ?
C2 C1 C6 C5 -1.54(16) ?
P1 C1 C6 C5 175.63(8) ?
C5 C4 C7 O2 175.74(11).... . ?

```
```

C3 C4 C7 O2 -3.83(17) . . . ?
O1 P1 C8 C13-97.60(9) ?
C1 P1 C8 C13 26.97(10) ?
C15 P1 C8 C13 138.76(9) ?
O1 P1 C8 C9 77.11(9) ?
C1 P1 C8 C9-158.32(8) ?
C15 P1 C8 C9 -46.53(9) ?
C13 C8 C9 C10-1.68(16) . . . ?
P1 C8 C9 C10-176.43(8) . . . ?
C8 C9 C10 C11 0.82(16) . . . ?
C9 C10 C11 C12 0.67(16) . . . ?
C9 C10 C11 C14-178.66(10) ?
C10 C11 C12 C13-1.31(16) ?
C14 C11 C12 C13 178.05(10) . . . ?
C11 C12 C13 C8 0.44(16) . . . ?
C9 C8 C13 C12 1.05(16) . . . ?
P1 C8 C13 C12 175.71(8) . . . ?
C12 C11 C14 O3 179.01(11)?
C10 C11 C14 O3-1.64(17) . . . ?
O1 P1 C15 C20 11.07(10) . . . ?
C8 P1 C15 C20 136.02(8) . . . ?
C1 P1 C15 C20 -111.41(9) . . . ?
O1 P1 C15 C16-170.73(9) ?
C8 P1 C15 C16 -45.78(10) . . . ?
C1 P1 C15 C16 66.79(10) . . . ?
C20 C15 C16 C17 0.10(16) . . . ?
P1 C15 C16 C17 -178.04(8) . . . ?
C15 C16 C17 C18-1.91(17) ?
C16 C17 C18 C19 2.16(17) . . . ?
C16 C17 C18 C21-175.80(11) ?
C17 C18 C19 C20 -0.57(17) . . . ?
C21 C18 C19 C20 177.40(10) ?
C18 C19 C20 C15-1.24(16) ?
C16 C15 C20 C19 1.48(16) . . . ?
P1 C15 C20 C19 179.73(8) ?
C19 C18 C21 O4 177.78(12) ?
C17 C18 C21 O4 -4.24(19) . . . ?
C4S O1S C1S C2S -11.3(4) . . . ?
O1S C1S C2S C3S 28.0(4)?
C1S C2S C3S C4S -33.6(5)?
C1S O1S C4S C3S -11.4(4) . . . ?
C2S C3S C4S O1S 29.0(5) . . . ?
_diffrn_measured_fraction_theta_max 0.996
_diffrn_reflns_theta_full 33.7
_diffrn_measured_fraction_theta_full 0.996

```
```

_refine_diff_density_max 0.40
_refine_diff_density_min -0.39
_refine_diff_density_rms 0.057

END OF CIF

```

Spectrum 17a. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) of \(\mathrm{Pphac}_{3} \mathrm{H}_{3}\), 1.23 (NS 64 in \(\mathrm{CDCl}_{3}\) )






Spectrum 17b. Portion of \({ }^{1} \mathrm{H}-\mathrm{NMR}\) of \(\mathrm{Pphac}_{3} \mathrm{H}_{3}, \mathbf{1 . 2 3}\left(\mathrm{NS} 64\right.\) in \(\left.\mathrm{CDCl}_{3}\right)\)


Spectrum 18. \({ }^{31}\) P-NMR of \(\mathrm{Pphac}_{3} \mathrm{H}_{3}\), 1.23 (NS 250 in \(\mathrm{CDCl}_{3}\) )
\(31 P\)



Spectrum 19a. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) of \(\mathrm{OPphac}_{3} \mathrm{H}_{3}\), 3.6 (NS 64 in \(\mathrm{CDCl}_{3}\) )


Spectrum 19b. Portion of \({ }^{1} \mathrm{H}-\mathrm{NMR}\) of \(\mathrm{OPphac}_{3} \mathrm{H}_{3}\), 3.6 (NS 64 in \(\mathrm{CDCl}_{3}\) )



Spectrum 20. \({ }^{31}\) P-NMR of \(\mathrm{OPphac}_{3} \mathrm{H}_{3}\), 3.6 (NS 250 in \(\mathrm{CDCl}_{3}\) )



\section*{Vita}

James Kakoullis, Jr. was born in Kingston, New York, on January 16, 1980. He graduated from Pinellas Park High School in Largo, Florida, in June 1998. After graduating from Eckerd College, St. Petersburg, Florida, in May of 2002 with a Bachelor of Science, ACS certified degree in chemistry and with a concentration in biochemistry, Kakoullis began graduate work at Louisiana State University, Baton Rouge, Louisiana, under the direction of Andrew W. Maverick. James Kakoullis is currently a candidate for the degree of Master of Science in the Department of Chemistry, and will be graduating in August, 2007.```


[^0]:    ${ }^{1}$ FT-IR measurements taken in a solution in Acetone.
    ${ }^{2}$ FT-IR measurements taken in a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
    ${ }^{3}$ Ibid.

