
ABSTRACT

HYKES, JOSHUA MICHAEL. Radiation Source Mapping with Bayesian Inverse
Methods. (Under the direction of Yousry Y. Azmy.)

We present a method to map the spectral and spatial distributions of radioactive
sources using a small number of detectors. Locating and identifying radioactive
materials is important for border monitoring, accounting for special nuclear material
in processing facilities, and in clean-up operations. Most methods to analyze these
problems make restrictive assumptions about the distribution of the source. In contrast,
the source-mapping method presented here allows an arbitrary three-dimensional
distribution in space and a flexible group and gamma peak distribution in energy. To
apply the method, the system’s geometry and materials must be known. A probabilistic
Bayesian approach is used to solve the resulting inverse problem (ip) since the system
of equations is ill-posed. The probabilistic approach also provides estimates of the
confidence in the final source map prediction. A set of adjoint flux, discrete ordinates
solutions, obtained in this work by the Denovo code, are required to efficiently
compute detector responses from a candidate source distribution. These adjoint fluxes
are then used to form the linear model to map the state space to the response space.
The test for the method is simultaneously locating a set of 137Cs and 60Co gamma
sources in an empty room. This test problem is solved using synthetic measurements
generated by a Monte Carlo (mcnp) model and using experimental measurements
that we collected for this purpose. With the synthetic data, the predicted source
distributions identified the locations of the sources to within tens of centimeters, in
a room with an approximately four-by-four meter floor plan. Most of the predicted
source intensities were within a factor of ten of their true value. The chi-square value
of the predicted source was within a factor of five from the expected value based on
the number of measurements employed. With a favorable uniform initial guess, the
predicted source map was nearly identical to the true distribution, and the source
intensities agreed within the predicted uncertainty. Using experimental data, the
mapping was more difficult due to laboratory limitations. However, by supplanting
14 flawed measurements (out of 69 total) with synthetic data, the proof-of-principle
source mapping was nearly as accurate as the synthetic-only prediction.
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1INTRODUCTION

Before describing our new approach towards resolving the radiation source mapping
problem, we first give a full description of the problem which we intend to solve. This
is the goal of this chapter, as well as discussing potential applications of the developed
methods. Also included is an outline of the remainder of this thesis.

1 .1 defining the problem

The goal of this work is to build a map of the distribution of radioactive sources in a
structure using limited detector measurements. Because there could be a number of
variations on this problem, depending largely on what information is assumed known
or unknown, we spend the following sections giving an account of the approach we
have chosen. These details are delineated according to the known information, the
unknown information, assumptions which we accept in order to solve the problem,
and the external data and tools available.

1.1.1 Knowns

First we discuss the known information. Most significantly, the geometric configura-
tion of the structure is sufficiently known. This structure might be a room, building,
roadway, or other environment with suspected radiation sources present. The knowl-
edge of the setting should include all significant structures and equipment in the
space, whether walls and floors or machinery and piping. For instance, we need to
know the location and thickness of all the walls in the space. Components should
be included in the description of the configuration space if they could significantly
affect the radiation fields around the detector or the sources. Engineering drawings,
blueprints, or a cad file would typically provide this data. Although outside the scope

1



of this work, engineers are exerting significant effort in methods to automatically build
maps of an unknown building.1,105 This is often necessary for autonomous robots.
Thus, the lack of prior knowledge of a structure may not eliminate the applicability
of the methods here described, as long as an automated geometry mapping tool is
available.

Closely related to the geometric configuration, the elemental composition and
density of each material in the space is needed so that the macroscopic cross sections
can be computed. However, precise data may not be required or necessary; this data
could be estimated for most standard materials (such as concrete block walls or steel
pipes).

The other information we require is radiation detector measurements. Here we
focus on gamma (photon) detection, mainly for the ability to measure the energy
spectrum of the gammas. In addition, high-energy photons are able to pass through
thick materials, potentially increasing the information which our detector collects.
Although neutrons are also highly penetrating, we lack the ability to measure the
energy distribution of neutrons and so must typically settle for gross-counts, summing
over all energies.

The multichannel analyzer (mca) records the energy deposited by photons in the
detector. This distribution comprises both photopeaks and the smooth continuum.
The photopeaks are produced by uncollided photons (that is, photons which were
emitted from the source and have made their first interaction within the detector) that
deposit all their energy in the detector. The continuum portion of the spectrum is
caused by scattered photons and by photons which deposit only a fraction of their
energy in the detector. Analyzing the photopeaks is much simpler than analyzing the
full spectrum. In this work, we desire the flexibility to analyze the photopeaks alone,
or the continuum along with the photopeaks. Thus, capturing the effects of scattered
photons is necessary.

We assume that collimated detectors are available. While some of the detectors
may look in all directions, other detectors may be shielded for a more focused view.
These collimated detectors presumably increase the overall information content of a
set of detector signatures.
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1.1.2 Unknowns

We are primarily interested in the distribution of radioactive sources, in both energy
and space. The location and energy spectra of the sources are initially unknown to
us. The goal is to estimate the source map q(~r, E) over the domain of interest. We are
not attempting to find the location and strength of a point source or of several point
sources. Although the point source model is often sufficient, in this work we desire
the ability to estimate distributed sources. Imagine, for instance, estimating the source
density in contaminated water covering the floor of a basement room of a nuclear
power plant after an accident. For measurements taken near the water, a point source
approximation will be considerably lacking. As this example illustrates, one may not
know exactly where a source is located, but it may be obvious that certain areas can
be ruled out, for instance, the air above the contaminated water. Our method should
allow one to exclude these regions without diminishing the generality of the new
approach.

In this work, more emphasis is placed on the spatial dependence of the distribu-
tion. However, that is not to say that the energy dependence is ignored. Algorithms
to reconstruct the sources’ energy spectrum, usually with the goal of predicting
the radionuclides present, have received much study over the past few decades.34

Identifying radionuclides is outside the scope of this project.
While we are narrowing the scope of this project, we should note two further

choices that limit the reach of the developed approach. First, we study situations in
which the radioactive source does not change the material properties of the system,
most importantly the macroscopic cross sections. This means that the problem of
estimating the activity of a significant mass of a chunk of highly-enriched uranium is
outside the scope of this project, since the uranium will self-attenuate and scatter some
of the emitted gamma rays. On the other hand, these methods would be applicable to
situations where low concentrations of a radionuclide are dissolved in water, or for a
thin dusting of a source on the surface of walls, floor, or ground.

Second, we assume that the system is effectively time-independent. Thus, all
significant objects, especially the source itself, are stationary. Furthermore, over the
time span of the measurements, the source should be of constant magnitude. Thus,
these methods are not designed for systems where the radiation source is composed
of radionuclides with short half-lives.
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1.1.3 Available data and tools

Attempting to solve this problem is only possible through the use of a wealth of prior
data and tools to predict the detector response given a particular physical system.
These tools and data are briefly described below.

Microscopic cross section libraries To predict the interaction of gamma rays with mat-
ter, and the flux of gammas throughout the system, macroscopic cross sections are
required. These macroscopic cross sections are computed from the atomic number
density of the nuclides constituting a material and these nuclides’ microscopic cross
section. Thankfully, the microscopic data for gamma rays is tabulated by endf

16

and epdl97
20 for all materials and energies of interest here. As described in Ap-

pendix b, one area in which the epdl97 lacks is an explicit, quantitative estimate of
the uncertainty of these gamma cross sections.

Neutral-particle radiation transport codes Radiation transport simulation codes require
as input (at a minimum) a description of the geometry, material cross sections, and
radioactive source description, and they produce an estimate of the particle flux
throughout the spatial and energy domain. These codes, executed in adjoint mode,
are also able to compute the sensitivity of measurements to various parameters. The
level of sophistication, efficiency, and fidelity of these codes is what allows one to
undertake an inverse problem such as we have outlined here. Throughout this work,
both deterministic and Monte Carlo codes are used, primarily Denovo27 and mcnp.80

Detector energy calibration While this should be part of a basic detection experiment,
we mention here the importance of knowing the mapping between mca bin number
and deposited energy. This is typically performed using a calibration source with
multiple peaks of known energy.

Detector response function The detector response function (drf) provides a mapping
between the photon flux incident on a detector and the response of that detector as
measured by the mca. The drf is highly dependent on the type of detector, and even
varies between detectors of the same type. Thankfully, considerable effort has been
expended in computing these drfs for our direct use.35
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1.1.4 Computational resources and constraints

As the goal of this project is to develop a proof-of-principle of the proposed approach,
meeting stringent operational constraints is not of primary concern at this stage. While
some inverse transport problems require that the calculation complete in a second
or two,77 we are under no such constraints here. In addition, we take the liberty
to use high-performance computing resources, where applicable, that are typically
unavailable in the field. Obviously these are important issues that must be resolved
in future work if the developed method is to find acceptance among practitioners
charged with locating and identifying radiation sources.

1 .2 potential applications

The prototypical application for the methods developed here is a room with a number
of radioisotope source distributions – emitting neutrons, gamma rays, or both. We
have physical access to the room to make detector measurements and to make note of
the geometric shape and material composition of the room, whether in its original
condition or having been modified by malicious acts or via an accident. Normally
this could be done directly by a technician, but a robot could also perform the
task remotely if exposure to the radiation field poses health risks. After obtaining the
detector readings and the information about the geometry and materials configuration,
an analyst would feed these as input to the proposed methods. The final result would
be an estimate of the locations, activities, and energy spectra of the sources in the
room and an estimate of the confidence level of the results.

One could imagine a number of related applications, some of which would require
modifications or extensions to the methods here proposed.

• Estimating a radiation source map for a building could be useful in a number
of situations. Of course, it would be useful for rescue or cleanup following the
dispersal of nuclear materials throughout the building. In addition, preemptive
scanning of a building or public area could help decision makers in the event of a
radiological emergency to better judge between abnormal and normal radiation
source levels.

• Inspectors of nuclear facilities currently get estimates of the quantity of nuclear
materials caught in pipes using specialized instruments.95 In some instances,
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these “hold up” measurements might be improved with a better estimate of
where the source material is lodged.

• Detectors carried by airplanes or helicopters are used to map the radiation source
on the ground, for instance, in the aftermath of the Fukushima Daiichi accident.
To see the results of one such survey, see the nnsa dose maps on page 17 of
Ref. [62].

• Instead of using radiation portal monitors at border crossings to detect sources
in only their own lane of traffic, an array of detectors feeding an inversion
algorithm could give more detailed information about sources in several lanes.

• On a larger scale, the radiation field in a facility could be retroactively recon-
structed using the readings of the detectors worn by their workers.

• This method could potentially be extended to detect a missing fuel rod in an
assembly.

This is not an exhaustive list of potential end applications. The methods that we
develop in this work are general enough to be applied in a variety of other settings.

1 .3 outline of this document

The rest of this thesis is structured as follows.

• Chapter 2 is a broad introduction to inverse problems, with no emphasis on the
particular radiation mapping problem at hand. Inverse problems are defined,
some history and mathematical notes are provided, and Bayesian and discrete
methods for solving them are discussed.

• Chapter 3 discusses inverse problems in radiation transport. First a brief review
of numerical methods for forward and adjoint radiation transport is provided,
followed by a review of existing inverse problems in the field of radiation
transport or nuclear engineering.

• We develop our radiation source mapping methods in chapter 4, discuss how
these fit with the theory from chapter 2, and explain the necessary numerical
techniques.

• Chapter 5 contains the numerical results of the test problem conducted in
Burlington Laboratories room 2144 using both synthetic and experimental mea-
surements.
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• Conclusions are provided in chapter 6.
• The appendices contain supporting material on the numerical and experimental

aspects of this work. We verify the correctness of the adjoint-computed responses
in Appendix a. Appendix b explains the current availability of uncertainties for
photon cross section data. Appendix c details the experiment conducted in 2144

Burlington. Appendix d describes the process of converting detector peak counts
to uncollided flux, via the peak intrinsic efficiency. Finally, Appendix f reviews
some functional analysis and operator theory which is assumed in chapter 2.
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2SOLVING INVERSE PROBLEMS

Before proceeding with the inverse radiation transport problem, we review the history
and theory of inverse problems.

Tartaglia and cannonballs

In the 1530s, Niccolò Tartaglia, a self-taught mathematician from Brescia, Italy, busied
himself with an important task for a nearby nobleman and benefactor – understanding,
and thus predicting, the flight of a cannonball.38 The cannon was a vital means of
defense against surrounding city-states, but also against the powerful invaders from
the east, the Ottoman Empire. In a military confrontation, the challenge for the gunners
was to determine the inclination angle at which they should aim the cannon to hit
the target. Although Tartaglia was unable to determine the correct laws of motion,
discovered by Galileo a century later, his flawed calculations were still useful for the
gunners.

Along the way, he made an important insight about gunnery: Tartaglia developed
a method to hit the same spot with two different firing angles. In other words, the
solution to the aiming problem was not unique. Unknowingly, he had stumbled upon
an important characteristic of inverse problems.

2 .1 what is an inverse problem?

Much of the mental exercise we have come to call reasoning is the study of cause and
effect. An event has a cause or causes and an effect or effects. We will package all
the causes into one quantity which will be called the input to the system, and all
the effects will be lumped into the output. For Tartaglia, the input was the size of
the gunpowder charge, the size and weight of the cannonball, and the aiming angle.

8



The output was the distance the cannonball flew, or the location where it landed. In
addition to identifying the input and output, a third task is developing a model that
connects the input to the output. In the gunnery example, a model of the cannonball’s
motion was proposed by Galileo and Newton many years after Tartaglia.

In any scientific or engineering problem, one or part of the three components –
input, model, or output – is missing. In a typical science class assignment, the missing
component is the output. The input and system model are given, and the student
proceeds to calculate the output. In this context, this process is called the direct or
forward problem, and is illustrated in Figure 2.1. Finding the range of a cannonball

systeminput output
?

Figure 2.1: Direct problem.

is an example of a direct problem. We compute the horizontal range of flight r of
a cannonball shot in a vacuum at an initial speed v0 and an angle of elevation θ,
assuming that the cannon and target are at the same altitude. The inputs are v0 and θ,
and the output is r. Integrating ~F = m~a, the solution to this direct problem is

r(θ, v0) =
v2

0
g

sin 2θ , (2.1)

where g is the constant acceleration due to gravity. Notice that for each set of inputs
{θ, v0}, there is one and only one solution r.

Even if most classroom problems are direct, it is not true that most problems in
science are direct. In many challenging situations, the output is available but either
the input or model is missing. This leads to two types of inverse problems (ips). First,
for a causation problem, one estimates an unknown input from a given model and
output. Figure 2.2 shows this.

One causation inverse problem for Tartaglia’s cannonball is to compute the aiming
angle θ for a given range r (assuming that the initial speed v0 is fixed). This was
the problem facing the gunners. Solving Equation 2.1 for θ, the two solutions to this
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systeminput
?

output

Figure 2.2: Inverse problem—causation.

inverse problem are then

θ(r) =
1
2

arcsin
rg
v2

0
,

or
θ(r) =

π

2
− 1

2
arcsin

rg
v2

0
.

Just as Tartaglia had surmised, there are in general two angles for each range. In
addition, only certain values for the range r are allowed in this expression. Otherwise,
there may be no solution. For instance, the desired range r must be less than or
equal to the maximum range v2

0/g. Having multiple solutions (mathematicians call
this non-uniqueness) or no solutions (called non-existence) is a recurring difficulty in
resolving inverse problems.

The second type of inverse problem, model identification, seeks to find a suitable
model using only known input and output, as shown in Figure 2.3. This is the problem
that Galileo and Newton solved for ideal cannonball flight, showing that the path is
a parabola. The result of this problem is an equation or rules mapping the input to
output, in this case, Newton’s laws of motion.

system

?

input output

Figure 2.3: Inverse problem—model identification.

2.1.1 Historical examples of inverse problems

Groetsch in chapter one of his introductory book Inverse Problems38 provides a number
of helpful historical examples of ips. His first example comes from the first paragraph
of Book VII in Plato’s Republic60:
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And now, I said, let me show in a figure how far our nature is enlightened
or unenlightened: — Behold! human beings living in a underground den,
which has a mouth open towards the light and reaching all along the den;
here they have been from their childhood, and have their legs and necks
chained so that they cannot move, and can only see before them, being
prevented by the chains from turning round their heads. Above and behind
them a fire is blazing at a distance, and between the fire and the prisoners
there is a raised way; and you will see, if you look, a low wall built along
the way, like the screen which marionette players have in front of them,
over which they show the puppets.

In this scene of shadow puppets, the audience sees only the shadow and not the
puppet. The prisoners, with some intuition and imagination, could make a reasonable
guess for much of the outside activity, based only on the shadows on the cave wall.
However, their captors would not struggle to find means to hide certain details from
the unfortunate prisoners. This is a classic causation problem, where the outsiders’
body positions are the input, the system is the projection of light from the fire onto
the cave wall, and the output is the shadows.

For each configuration of captors between the fire and the cave wall, there is one
shadow image. However, for a given shadow image, there are an infinite number of
configurations of captors that would produce such an image. Again we see one of the
severe challenges of inverse problems – a nonunique solution. That the reconstruction
of the real world is not unique is a consequence of the dimensionality of the input and
output. The real world has three spatial dimensions, while the prisoners are viewing
a two-dimensional snapshot. The projection from three dimensions to two destroys
much of the information.

Groetsch offers a number of examples of other historical inverse problems, includ-
ing Archimedes’ test of the purity of the king’s gold crown, Johannes Kepler’s three
laws of planetary motion based on the measurements of Tycho Brahe, the unsuccessful
and successful attempts to estimate the age of the earth by Joly, Kelvin, and Holmes,
and, more recently, the computed tomography medical scan invented by Cormack
and Hounsfield. There is also an abundance of examples in modern use. Although
examples of inverse problems can be found in any field of research, geophysics has
the lion’s share. The problem of determining the age of the earth has already been
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stated. For many years, measuring the earth’s mass was a problem of interest. With
normal methods of measuring precluded, Cavendish in 1798 used indirect methods to
estimate the mean density of the earth as 5.4 g cm−3, only slightly less than 5.5 g cm−3,
the commonly accepted density at present.38

After obtaining a global mean density, it was only natural to look for the internal
structure of the earth. A key tool in this search is the seismograph, which measures
seismic waves. R.D. Oldham used the seismograph readings from around the globe
during and after earthquakes to infer the existence of the earth’s core. Prospectors
have great interest in local geologic structure as well, as they search for oil or valuable
minerals. Books about inverse problems authored by researchers in geophysics, for
example, works by Menke81 and Tarantola,112 are evidence of the field’s progress in
posing and solving inverse problems.

2.1.2 Well-posed versus ill-posed

In addition to the physical basis for inverse problems, reasoning from effect to cause,
there is a closely related dichotomy of well-posed and ill-posed problems. Ill-posed
problems lack one or more desirable properties of well-posed problems: existence and
uniqueness of a solution, and continuity of the operator. Bertrand in 1889 described
a probability riddle in geometry with more than one answer as ill-posed.6 However,
Hadamard in 1902 more clearly identified these three characteristics.40 At the time, he
believed that ill-posed problems were a mathematical curiosity without any physical
significance. In this observation, he was mistaken; as we will see, many physically
significant inverse problems are indeed ill posed. Each of the three requirements
formalizes our intuitions about how solutions should behave.

First, existence of a solution is paramount. Without a solution, there is little reason
to proceed. The problem statement must admit at least one solution. For example,
an overdetermined system of linear equations, for which the number of equations
exceeds the number of unknowns, has in general no solution. It is also common for
nonlinear problems to lack a solution. If no solution exists, the problem must be
restated, perhaps by loosening some constraint, to admit at least one solution. In the
case of an overdetermined linear system, the standard approach is the least squares
method. In any case, without a solution, one has no where to go.

In other instances, there may be many solutions. For the example of linear systems,
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an underdetermined system has infinitely many solutions, since the number of un-
knowns exceeds the number of linearly-independent equations. To pick from the set
of possible solutions, more information is needed. In some ways this is better than
having no solution, but it is typically not clear which solution of the many to choose.

Finally, small changes in the input data should only change the solution by a small
amount. This property is known as stability, and it is related to the continuity property.
If the solution is stable, then the inverse operator is continuous. Without stability,
the solution can exhibit unphysical behavior. Since inverse problems are typically
conducted with uncertain measured data, a lack of stability means that the solution
may change significantly with only small measurement errors. Much research has
focused on eliminating or reducing this instability, most of it going under the banner
of regularization.

The concepts of existence, uniqueness, and continuity are all mathematical terms. In
the deterministic solution of ips, a number of mathematical concepts about operators
and their inverses are helpful in analysing and resolving the problems. The next
section presents a few of these concepts that are relevant to this work.

Now we restate the conditions for a well-posed problem in more precise terms.
(For a review of operator theory, see Appendix f.) Consider the problem Tx = y,
where y ∈ Y is given and the goal is to determine x ∈ X. T is a mapping from X to
Y, that is, T : X → Y. In this case, this problem is well-posed if these conditions are
satisfied:51

1. Existence: for all y ∈ Y, there exists a solution x ∈ X.
2. Uniqueness: for all y ∈ Y, there is only one x such that Tx = y.
3. Continuity: for every ε > 0, there is a δ > 0 such that

‖T−1y− T−1y∗‖X < ε for all y∗ such that ‖y− y∗‖Y < δ ,

where ‖ ◦ ‖X is the norm in X and ‖ ◦ ‖Y is the norm in Y.

Continuity is related to a stability or robustness condition, but it is a weak condition
for well-posedness, in the sense that an inverse operator can be continuous but
ill-conditioned, making the solution unstable.

Condition 1 for existence is equivalent to requiring that the mapping T is onto or
surjective. Condition 2 for uniqueness is equivalent to requiring T to be one-to-one or
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injective. If T is both onto and one-to-one, then it is known as bijective. A bijective
mapping has an inverse. However, without the continuity or stability requirement,
applying this inverse in practice may be unwise. Appendix f.2 defines the operator
terms with more description.

Understanding the null space of an operator is important when finding the inverse
of an operator. The null space of an operator T is defined as

N (T) = {x | Tx = 0} . (2.2)

The null space is a subset of the domain D(T) of T, N (T) ⊂ D(T) ⊂ X. If the null
space is equivalent to the domain, N (T) = D(T), then T is the zero operator.

The conditions for a well-posed problem can be restated in terms of the null space
and range of the operator. If X and Y are Hilbert spaces, then Tx = y is well-posed
if51

Y = R(T), N (T) = {0}, R(T) = R(T) . (2.3)

Here M is the closure of M, which is the set containing all the elements of M and
the accumulation points (or limit points) of M. If M is a subset of X, M ⊂ X, then
an element x0 ∈ X is an accumulation point of M if every neighborhood around x0

contains at least one point z ∈ M distinct from x0.64

2.1.3 Fredholm integral equation

In many ip applications, the problem can be expressed mathematically as

∫ b

a
K(s, t) f (t)dt = g(s) . (2.4)

This is known as the Fredholm integral equation of the first kind (ifk).120 The kernel
K(s, t) and the right-hand side function g(s) are known on the square a ≤ s, t ≤ b.
The function f (t) is to be determined on the interval [a, b]. In a geophysics example,
K(s, t) could be the known, or at least assumed, mathematical model describing wave
transmission, g(s) the measurements taken on the surface, and f (t) some measure of
the composition of the earth (density, for example). The integral operator accomplishes
the projection of the distribution onto the measurement, in a manner analogous to the
light creating shadows on Plato’s cave wall by being projected from the fire.
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The properties of the integral operator and the Fredholm equation make finding
solutions of Equation 2.4 difficult, if not impossible. In fact, Wing makes a point of
calling the determination of f (t) resolving the equation instead of solving it, stressing
the inherent difficulty in solving these types of equations.120

Wing provides a simple and helpful tutorial on the inherent difficulties of the
Fredholm integral equation of the first kind. It is helpful to define the operator

K◦ =
∫ b

a
K(s, t) ◦ dt . (2.5)

He takes as his first example in §5.2 a seemingly simple kernel,

K(s, t) = cos(st), s, t ∈ [−1, 1] . (2.6)

If we choose an odd function for f , such that f (t) = − f (−t), then, since K(s, t) is
even, we have

K f =
∫ 1

−1
cos(st) f (t)dt = 0 . (2.7)

This should give us pause. We would hope, that for a particular set of measurements
g, we could find a unique f that produces that g. Unfortunately, this uniqueness wish
is not fulfilled. There are an infinite number of functions f which satisfy g(s) = 0
for this kernel. In this case, the null space N (K) comprises all odd functions. As
mentioned above, the null space issue is common in inverse problems – it is important
to consider in both continuous and discrete problems. For instance, underdetermined
linear systems have a null space that is greater than {0}.

Another worry with ifks is their potential to be ill-conditioned or unstable. The
difficulty is that often the inverse oprator is unbounded. For an operator T : D(T)→ Y,
the operator is bounded if64

‖Tx‖ ≤ c‖x‖ ∀x ∈ D(T) . (2.8)

Integral operators are bounded, while differentiation operators are unbounded [64,
§2.7]. This is not surprising, as integrals tend to smooth or average the variations in
their operand functions, while derivatives tend to sharpen them. Unfortunately for the
ifk, to invert an integral equation, it is necessary to apply some form of a derivative
operator. Thus, this inverse operator is prone to be unbounded. In this context, an
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operator is bounded if and only if it is continuous. Continuity is one of the conditions
for a well-posed problem, so we see that the inverse ifk is, in general, ill-posed.

2.1.4 Singular value expansion

An important tool in the analysis of ifk is the singular value expansion (sve). Any
square-integrable kernel* has an expansion42

K(s, t) =
∞

∑
i=1

σi ui(s)vi(t) . (2.9)

The functions ui and vi are called the left and right singular functions of the kernel.
The {ui} and {vi} form two orthonormal sets, that is,

〈
ui, uj

〉
=
〈
vi, vj

〉
= δij ∀ i, j ∈N , (2.10)

where δij is the Kronecker delta and the inner product is defined as

〈 f , g〉 ≡
∫ b

a
f (t) g(t)dt .

As i increases, the singular functions oscillate more frequently. The singular values σi

are non-negative real numbers arranged in descending order: σ1 ≥ σ2 ≥ · · · ≥ 0. The
kernel is called degenerate if there are only finitely-many singular values greater than
zero.

With the sve, the fundamental relations of the ifk are

Kvi = σiui , K+ui = σivi , (2.11)

where the integral operator K is [42, §2.5]

[K f ](s) =
∫ b

a
K(s, t) f (t)dt

and K+ is the adjoint of K [64, §3.9-1].

*A kernel is square integrable if
∫ b

a dt
∫ b

a ds K(s, t)2 is finite.
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Expanding f and g in the singular function bases, we have

f (t) =
∞

∑
i=1
〈vi, f 〉 vi(t) , (2.12)

and

g(s) =
∞

∑
i=1
〈ui, g〉 ui(s) . (2.13)

Substituting these expansions and the fundamental relation into Equation 2.4, the
immediate result is

∞

∑
i=1

σi 〈vi, f 〉 ui(s) =
∞

∑
i=1
〈ui, g〉 ui(s) . (2.14)

If the singular values are zero for i > n, then a solution exists if and only if
〈ui, g〉 ui(s) = 0 for i > n. If all singular values are nonzero, then42

f (t) =
∞

∑
i=1

〈ui, g〉
σi

vi(t) , (2.15)

This solution is only square integrable if

∫ b

a
dt f (t)2 =

∞

∑
i=1

(
〈ui, g〉

σi

)2

< ∞ . (2.16)

This is known as the Picard condition. It is a condition on the smoothness of the
right-hand side g(s) of Equation 2.4. Thus, a sufficiently non-smooth g can destroy
the ip solution given by Equation 2.15 by making it unbounded, even in the case of
continuous and exact data. When g contains errors, this condition becomes even more
difficult to satisfy.

2.1.5 Discretization of the IFK

To solve the continuous ifk Equation 2.4 numerically, the equation must be discretized.
Two methods are often used to accomplish this, quadrature or expansion methods.

Quadrature methods Here we compute an approximation to f (t) at specified points
t1, t2, . . . , tn. Using a numerical quadrature to evaluate the integral in the ifk, we
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obtain42

g(s) =
∫ b

a
K(s, t) f (t)dt =

n

∑
j=1

ωjK(s, tj) f (tj) . (2.17)

Recognizing that in general this cannot be satisfied at all points s, we require this
equation to be satisfied at a selected set of points s1, s2, . . . , sm. Then the discrete
equations are

n

∑
j=1

ωjK(si, tj) f j = gi for i = 1, . . . , m , (2.18)

where f j = f (tj) and gi = g(si). This is an m× n linear system of equations in the
discrete unknowns f j.

Expansion methods The second class of discretization methods approximates f and g
in the span of orthogonal basis functions,

f̃ (t) =
n

∑
j=1

f jxj(t) , g̃(s) =
m

∑
j=1

gjyj(s) , (2.19)

where { f j} and {gj} are scalars and {xj(t)} and {yj(s)} are the basis functions.
Substituting these expansions into the ifk,

m

∑
i=1

giyi(s) ≈
∫ b

a
K(s, t)

n

∑
j=1

f jxj(t)dt , (2.20)

we see that the discrepancy in this relation will be caused by errors outside of the
span{yi(s)}. Thus, the inner product of Equation 2.20 with each yi(s) must be exact:42

〈yi, g〉 =
n

∑
j=1

f j

〈
yi,
∫ b

a
K(s, t)xj(t)dt

〉
for i = 1, . . . , m . (2.21)

This is an m× n linear system for f j, where the elements of A and~b are computed
with the appropriate inner product.
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2 .2 probabilistic bayesian methods

Given the existence, uniqueness, and stability difficulties in solving ips, naïvely
inverting an operator is a poor strategy in general. Instead, we can treat ips in a
probabilistic sense. Probabilistic methods take as input a range of possible values
and the probability of each of the values. In return, the probabilistic method gives a
range of possible values for the unknowns. In order to describe these methods, we
first review some basics of probability theory.

A proposition a has a probability of being true denoted as p(a) and assumed to
be mapped to a real number. The probability that the proposition is false, written as
“not a” or a, is p(a). To begin, we only treat propositions which must be true or false.
(Later we will consider probabilities that describe the value of a numerical parameter.)
Thus, p(a) + p(a) represents certainty. If we use the convenient convention that unity
represents certainty, then

p(a) + p(a) = 1 . (2.22)

Also, if a is known with certainty to be false, then p(a) = 0.
Usually we are interested in describing how one event a affects another event b.

This motivates a number of ways to combine the probabilities of observing a and b.
One of the most basic ways to combine probabilities is the Boolean and, which is not
so different than the general English usage of the conjunction “and.” For our two
events a and b, the Boolean and combination, written p(a, b), is the probability that
both a and b are true. This is also called joint probability and sometimes written as
p(a ∩ b). For the Boolean and, the order of the propositions does not matter, that is,
p(a, b) = p(b, a).

A second combined probability is called the conditional probability. A conditional
probability gives the probability of one proposition given (or conditioned upon)
the truthfulness of another proposition. The conditional probability of a on b is the
probability of a being true if b is true, denoted p(a | b). In this case, the ordering of a
and b does matter, meaning that in general p(a | b) 6= p(b | a).

Relating the joint and conditional probabilities turns out to be important. Using
a Venn diagram and the example of an urn with colored balls, it is not difficult to
develop the so-called product rule,107

p(a, b) = p(a | b)p(b) . (2.23)
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For a more rigorous derivation, many cite Cox, who arrived at this relation and
Equation 2.22 as consequences of preserving logical consistency.19

Since a and b can be interchanged in Equation 2.23, it follows that

p(a | b, c) =
p(b | a, c)p(a | c)

p(b | c)
. (2.24)

This is known as Bayes’ theorem. Since in practice we are not concerned with p(b | c),
we can omit the factor in the denominator, leaving the proportionality expression

p(a | b, c) ∝ p(b | a, c)p(a | c) . (2.25)

We have added the proposition c as a catch-all for background information. Since
Bayes’ theorem is used frequently, the individual factors have been given names:

• p(a | c) is the prior, the information we have about a before considering b;
• p(b | a, c) is the likelihood, which quantifies how likely b is for a given a;
• p(a | b, c) is the posterior, the updated probability for a, accounting for the

information in b.

Bayes’ theorem is often used in discerning the accuracy of a physical model after
receiving new data. In this case, the letters can be replaced with more meaningful
terms:

p(model | data, old data) ∝ p(data | model, old data)p(model | old data) . (2.26)

Proponents of Bayesian inference draw an analogy between this approach and human
reasoning in everyday circumstances.56 A typical example is the decision to bring an
umbrella on a walk. A person relies on both theory and observation (rain comes from
dark clouds), and past experience (rain is less common in summer). On a particularly
clear day in August, the likelihood probability of rain would be small for lack of
clouds, and the prior would be small since it’s summer. This is plausible reasoning, in
contrast to deductive reasoning.

Instead of reasoning about propositions, in this work we are more concerned
with estimating the numerical value of quantities, both discrete and continuous. The
probability of a continuous variable is most generally expressed as a probability
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density function (pdf). For a given quantity x, we define the pdf f (x) such that

p(x1 ≤ x < x2) =
∫ x2

x1

f (x)dx . (2.27)

For convenience, we will write the pdf with the same symbol as we have used for
probabilities, p(x). The domain of p(x) is the interval on which x is defined. In general,
this is the real line R, although other intervals can be specified, here denoted as X.

In applications, it is usually impossible to work with the pdf in closed form. One
common method to keep some but not all information of the pdf is to work with the
moments of the distribution. The zeroth moment is the normalization constraint

1 =
∫

X
p(x)dx . (2.28)

The first moment, the mean, provides more useful information. It is defined as

〈x〉 =
∫

X
xp(x)dx . (2.29)

The second moment about the mean, called the variance, is〈
(x− 〈x〉)2

〉
=
∫

X
(x− 〈x〉)2p(x)dx . (2.30)

With higher moments, one could extract more information, but generally the mean
and variance are sufficient.

If there are several quantities of interest, say x1 to xn, then a multivariate pdf

p(x1, . . . , xn) is needed to describe the system. Using vector notation, we place all the
quantities in a vector ~x = [x1, . . . , xn]T and the pdf is p(~x). The vector ~x lives in the
space Xn. The multivariate mean vector is then

〈~x〉 =
∫

Xn


x1
...

xn

 p(~x)dx 1 · · ·dx n =
∫

Xn
~xp(~x)d~x . (2.31)

In addition to the variance of each component〈
(xi − 〈xi〉)2

〉
=
∫

Xn
(xi − 〈xi〉)2p(~x)d~x , (2.32)
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there is also the covariance of each component to another component

〈
(xi − 〈xi〉)(xj −

〈
xj
〉
)
〉
=
∫

Xn
(xi − 〈xi〉)(xj −

〈
xj
〉
)p(~x)d~x . (2.33)

The variances and covariances can be organized in the covariance matrix

Cx =
〈
(~x− 〈~x〉)(~x− 〈~x〉)T

〉
=
∫

Xn
(~x− 〈~x〉)(~x− 〈~x〉)Tp(~x)d~x . (2.34)

2.2.1 Maximum entropy

In applying Bayes theorem, it can be difficult to select the prior pdf that best describes
the current state of knowledge. Often when deciding what prior pdf to use, one has
a few pieces of information about the distribution, but not enough to fully constrain
the pdf. For example, the mean of the distribution may be given, but nothing else. At
other times, no information except the interval of possible values is available. How
should the pdf be assigned?

This question was answered by the mathematician Claude Shannon in 1948 with
the concept of maximum entropy.104 He derived the form for entropy starting from
three conditions for a quantification of uncertainty with discrete probabilities p1 to
pn:55

1. The quantification is continuous with respect to pi.
2. For a uniform pdf, the quantification increases with increasing n.
3. The quantification is the same for equivalent groupings of pi.

Since this quantity was identical to entropy in thermodynamics, this quantity has
become known as information entropy:

S = −∑
i

pi loge pi (2.35)

for the discrete case or
S = −

∫
dx p(x) loge p(x) (2.36)

for continuous data.
To determine the pdf of maximum entropy that fulfills the constraints, Lagrange

multipliers are used. If no contraints are given, the maximum entropy pdf is constant
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or uniform. When means and covariances are given as constraints, the maximum
entropy pdf is a multivariate Gaussian107

p(~x) =
1√
|2πCx|

exp
[
−1

2
(x− 〈x〉)TC−1

x (x− 〈x〉)
]

(2.37)

where |Cx| is the determinant of the covariance matrix of ~x.

2.2.2 Data assimilation procedure

Applying Bayes’ theorem for general multivariate pdfs is complicated by the high
dimensionality of the space Xn. One way to deal with this is to track only certain
moments of the pdfs. Since many types of data and processes can be described by
the normal distribution, it makes sense to incorporate the first and second moments,
that is, the mean and variance, respectively. Cacuci and Ionescu-Bujor have presented
the equations for the Bayesian inference method using the mean and variance.13 The
following is a summary and time-independent simplification of the data assimilation
theory and equations they present.

Assume we have an na-vector~α of model parameters and an nr-vector~r containing
system responses. With this notation,~α contains the model inputs of interest and~r
the outputs. Since these values are not known exactly, we consider them as random
variables. The parameters have a mean or nominal value of~α0 and covariance matrix
Cα, defined as~α0 = 〈~α〉 and

Cα =

〈(
~α−~α0

) (
~α−~α0

)T〉
, (2.38)

respectively.
The responses are both measured and computed. The nominal values for~r are the

measured responses, denoted~rm. These measurements have uncertainties summarized
in the measurement covariance matrix

Cm =
〈
(~r−~rm) (~r−~rm)

T
〉

. (2.39)

If there are correlations between parameters and responses, these are captured by the
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parameter-response covariance matrix

Cαr =
〈(

~α−~α0
)
(~r−~rm)

T
〉

. (2.40)

The response vector can be computed via a map R : Rna → Rnr . For a given~α, the
response is~r = R(~α). The sensitivities of the map R form the matrix S, whose (i, j)
element is

[S(~α)]i,j =
∂Ri(~α)

∂αj
. (2.41)

For a linearization of the response map,

~r = R(~α) ≈ R
(
~α0
)
+ S

(
~α0
) (

~α−~α0
)

, (2.42)

the expectation value of the response is 〈~r〉 = R(~α0). The covariance matrix of this
computed response is then

Crc

(
~α0
)
≡
〈
(~r− 〈~r〉) (~r− 〈~r〉)T

〉
= S

(
~α0
)

CαS
(
~α0
)T

. (2.43)

With the mean and covariance information, the maximum entropy principle sug-
gests that the most objective pdf for the posterior is the multivariate normal distribu-
tion [14, p. 2006]

p(~z | C) =
1√
|2πC|

exp
[
−1

2
Q(~z)

]
. (2.44)

The distribution is a Gaussian if the reponse map R(~α) is linear. If R is nonlinear, then
p will be approximately Gaussian around the minima of functional

Q(~z) ≡ ~zTC−1~z ,

appearing in the argument of the exponential in Equation 2.44.
The vector of deviations ~z is defined as

~z ≡
[
~α−~α0

~r−~rm

]
=

[
~zα

~zr

]
,
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and the super covariance matrix C is

C ≡
[

Cα Cαr

CT
αr Cm

]
.

The functional Q(~z) is similar to a traditional chi-squared metric, but it is generalized
to include covariance information.

It is convenient to define an nr-vector of deviations

~d ≡ R
(
~α0
)
−~rm . (2.45)

The covariance matrix of this ~d is

Cd

(
~α0
)
≡
〈
~d ~d T

〉
= Crc

(
~α0
)
− CT

αrS
(
~α0
)T
− S

(
~α0
)

Cαr + Cm . (2.46)

We also need the parameter-deviation covariance matrix

Cαd

(
~α0
)
≡
〈(

~α−~α0
)
~dT
〉
= Cαr − CαS

(
~α0
)T

(2.47)

and the response-deviation covariance matrix

Crd

(
~α0
)
≡
〈
(~r−~rm) ~dT

〉
= Cm − CT

αrS
(
~α0
)T

. (2.48)

Putting all this moment information in Bayes’ theorem, the most probable values, or
the “best estimate,” for the parameters is

~αbe =~α0 +

(
Cαr − CαS

(
~α0
)T)

Cd

(
~α0
)−1

~d (2.49)

and
~rbe =~rm +

(
Cm − CT

αrS
(
~α0
)T)

Cd

(
~α0
)−1

~d (2.50)

for the responses.
The best estimates for the parameter, response, and parameter-response covariance
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matrices are

Cbe
α = Cα − Cαd

(
~α0
)

Cd

(
~α0
)−1

Cαd

(
~α0
)T

, (2.51)

Cbe
r = Cm − Crd

(
~α0
)

Cd

(
~α0
)−1

Crd

(
~α0
)T

, and (2.52)

Cbe
αr = Cαr − Cαd

(
~α0
)

Cd

(
~α0
)−1

Crd

(
~α0
)T

. (2.53)

Finally, a commonly-used indicator of consistency is the χ2 value, which quantifies
the deviations of the measurements from the computed predictions. If the predictions
are too far from the measurements (relative to the variance of each quantity), then
the χ2 value will be high and the conclusion is that some of the measurements are in
error or the model is faulty. In terms of the vectors and matrices already defined, the
χ2 value is

χ2 = ~d TCd

(
~α0
)−1

~d . (2.54)

This χ2 has nr, the number of responses, degrees of freedom. The χ2/nr-distribution
has mean one and variance 2/nr, so it is often more helpful to report the χ2 value as
χ2/nr. Then, if χ2/nr is close to one, the measurements and predictions are consistent.
If not, there is reason to be suspicious. For χ2/nr < 1, the agreement is better than
would be expected, whereas the agreement is worse than expected if χ2/nr > 1.

2.2.3 Solving nonlinear problems

If R(~α) is nonlinear, then the posterior is no longer Gaussian, so it cannot be max-
imized in one step. Instead, we must find other methods to maximize the poste-
rior distribution p(~z | C) or minimize Q(~z), these two being equivalent. There are
many ways to find the extremal points of these functionals. One method which has
achieved significant success is Markov Chain Monte Carlo [112, §2.3.5], which uses
the Metropolis-Hastings algorithm.43,82,83 Monte Carlo methods are most appropriate
for highly nonlinear models, where the nonlinearities cause many local maxima in
the posterior. Unfortunately, Monte Carlo methods tend to be slower, so we have not
pursued these methods here.

For models that are mildly nonlinear, an iterative approach with a series of lineariza-
tions is possible. At a local minimum, the shape of the functional can be approximated
with a (local) covariance matrix. If there are a handful of local minima, each could be
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visited and approximated with its own covariance matrix. Tarantola discusses this in
§3.2.3.112 In taking this approach, we recognize that the posterior is not a multivariate
Gaussian; however, we approximate it as Gaussian in the neighborhood of the local
minimum.

A common approach to minimize Q(~z) is to use the linear update process in an
iterative fashion, for which the posterior means and covariances are passed to the next
iteration as the prior. However, as Rodgers points out [97, §5.6.2], this is not a prudent
approach because it confuses the role of the iteration state and the prior distribution.
In an iterated linear solution, the prior distribution may be forgotten as the iteration
progresses.

Instead, we minimize Q using a Newton optimization method. Additionally, this
takes advantage of the first and second derivative information of the functional,
which Monte Carlo methods generally ignore. For Newton’s method, the functional’s
gradient ~∇αQ(~zk) and Hessian ∇2

αQ(~zk) are required. The Newton update step is

~αk+1 =~αk − λk

(
∇2

αQ(~zk)
)−1

~∇αQ(~zk) . (2.55)

The line search parameter λk ∈ (0, 1] adjusts the step length. The initial iterate ~α0

is often set to the mean of the prior ~α0. At each iteration ~αk, the sensitivities are
recomputed.

To compute the Hessian and gradient, it is helpful to partition the inverse covari-
ance matrix as

C−1 =

[
C1 C3

CT
3 C2

]
, (2.56)

where the three submatrices are

C1 = S−1
c ,

C2 = C−1
m + C−1

m CT
αrS−1

c CαrC−1
m ,

C3 = −S−1
c CαrC−1

m .

The Schur complement85 is Sc = Cα − CαrC−1
m CT

αr. These expressions can be verified by
performing the blockwise multiplication of CC−1 to show that CC−1 = I, where I is
the identity matrix.
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In terms of these three block matrices, the functional Q is

Q(~z) = ~zTα C1~zα + 2~zTα C3~zr +~zTr C2~zr . (2.57)

The gradient of Q is then

~∇αQ(~z) =
∂Q
∂~α

∣∣∣∣∣
~z

= C1~zα + STC2~zr + C3~zr + STCT
3~zα . (2.58)

Taking the partial derivative of the gradient with respect to~α, the Hessian is

∇2
αQ(~z) =

∂2Q
∂~α2

∣∣∣∣∣
~z

= C1 + STC2S + C3S + STCT
3 +

∂S

∂~α
C2~zr +

∂S

∂~α
CT

3~zα . (2.59)

In the context of nonlinear least squares problems, the typical approach is to ignore
the second-order derivatives of ~R (the ∂S

∂~α factor), resulting in the Gauss-Newton
method [61, §2.4]. This approach is called a quasi-Newton method by Tarantola [112,
§3.4.4]. At the optimal point ~α ∗, the best-estimate covariance matrix Cbe can be
computed with Cacuci’s formulas, provided the sensitivities are evaluated at~α ∗.

2 .3 discrete inverse theory

In parallel with the Bayesian approach, many researchers have developed methods
and tools to compensate for the ill-posed nature of ips. Born of necessity and based on
the analysis of the instabilities of ips, as demonstrated by the sve, researchers have
developed a number of methods to resolve discrete ifk problems. These methods
change the problem slightly in an effort to preserve useful parts of the solution while
minimizing the bad parts. They are primarily intended for linear systems,

A~x =~b , A ∈ Rm×n , ~x ∈ Rn , ~b ∈ Rm , (2.60)

where ~x is unknown and A and~b are given.
These concepts and methods are described in a number of works, for example,

books by Hansen41,42, Vogel117, Santamarina101, and Groetsch.39

As mentioned above, the ifk is ill-conditioned because the inverse operator
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is unbounded and not continuous. When the integral equation is discretized, the
operators become finite dimensional. Every finite-dimensional operator is bounded.64

This is a favorable consequence of the discretization. However, as the discretization
level or order is refined (n and m increase), the ill-conditioning of the problem
worsens and the discrete problem better approximates the poor properties of the
continuous one. This is manifested by an increase in the condition number of A,
κ(A) = ‖A‖‖A‖−1.52 Thus the solution can actually degrade as the mesh is refined,
behavior that is opposite to conventional wisdom in the numerical solution of pdes.

2.3.1 Regularization

Since ips are ill-conditioned, one approach to the resolution of an ip is to replace it
with a nearby problem that is well-conditioned. The process of modifying a problem
to improve its conditioning is known as regularization. A wide variety of regularization
techniques have been developed, including truncated singular value decomposition,
Tikhnonov regularization, and iterative methods. Usually regularization methods
force the solution to be smooth.42

These methods are best analyzed in terms of the singular value decomposition
(svd), the discrete analog of the sve. The svd of a matrix A ∈ Rm×n is

A = UΣ VT . (2.61)

The diagonal matrix Σ ∈ Rm×n comprises the singular values σ1 ≥ σ2 ≥ · · · ≥
σmin{m,n} ≥ 0. The unitary matrices U ∈ Rm×m and V ∈ Rn×n contain the right and
left singular vectors ~ui and ~vi of A.85

In terms of the svd, the generalized inverse of A, called the pseudoinverse, is

A† =
r

∑
i=1

~vi~uT
i

σi
,

where r is the rank† of Σ.
Of interest for discrete inverse problems is the discrete Picard condition, which

states that |~uT
i
~b| must decay faster with increasing i than σi for as long as σi are not

polluted with round-off error. The discrete Picard condition should be satisfied to

†The rank of a matrix is the number of linearly independent rows or columns, whichever is larger.
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obtain a useful solution. Clearly, this is the discrete analogue of the Picard condition
expressed in Equation 2.16. A noisy right-hand-side~b prematurely ends the decay of
the coefficients |~uT

i
~b|.

Truncated svd The truncated singular value decomposition (tsvd) regularization
method attempts to preserve the right singular vectors ~vi associated with the indices
satisfying the discrete Picard condition, while excluding the singular vectors and
values associated with higher i indices.42 Unlike other methods that gradually filter
the higher singular values, tsvd excludes all singular values with indices greater
than k, so that the solution is

A†~b =
k

∑
i=1

~uT
i
~b

σi
~vi ,

The goal is to include the information coming from the useful signal in~b while ex-
cluding the noisy information. Unlike the common computation of the pseudoinverse
(such as pinv in Matlab) that determines the index k based on the magnitude of the
singular values σi, in tsvd for ips, this decision is governed by the rate of decay of
~uT

i
~b.

Tikhonov regularization This method is usually written in terms of the least squares
problem

~xλ = arg min
~x

‖A~x−~b‖2
2 + λ2‖~x‖2

2 , (2.62)

where the regularization parameter λ allows the user to selectively filter portions of
the noise. In terms of the svd, Tikhonov regularization is

~xλ =
n

∑
i=1

σ2
i

σ2
i + λ2

~uT
i
~b

σi
~vi .

In contrast to the tsvd approach, Tikhonov regularization gradually filters higher

singular values with the filter factor σ2
i

σ2
i +λ2 .

Choosing the value of the regularization parameter λ is an important part of
Tikhonov regularization. Various strategies exist for this, including the Morozov
discrepancy principle, the L-curve, and generalized cross validation.42
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Iterative methods For large systems, tsvd or Tikhonov regularization may become
intractable. In this case, iterative methods are often the only choice. Useful iterative
methods for discrete ips exhibit semiconvergence, that is, the iterates ~xk tend to get
closer to the exact solution ~xexact for a while, but then in further iterations the iterates
diverge from the desired solution and instead converge to the unregularized solution
A−1~x.42

Landweber iteration is a well-known method,

~xk+1 = ~xk + ωAT(~b− A~xk) , (2.63)

where the weight ω is a relaxation parameter. This method also has a decaying filter
factor in the svd expression of the solution. Although the Landweber method can be
competitive with other methods in certain applications, for example, tomography, it
is in general much slower to converge than other methods. A related method with
regularizing properties, Kacmarz’s method, uses a similar iterative equation but only
updates one component of ~x per iteration by applying one row of A.

One of the most powerful regularizing iterative methods is Conjugate Gradient
Least Squares (cgls), a modified conjugate gradient method for the normal equations
ATA~x = AT~b. The cgls solution minimizes the error

~xk = arg min
x
‖A~x−~b‖2 (2.64)

such that
~x ∈ span{AT~b, (ATA)AT~b, . . . , (ATA)k−1AT~b} . (2.65)

The cgls method does exhibit semiconvergence, and it also has a filtered svd

solution, although the filter factors are a bit more complicated than the other methods
presented here.42

2 .4 inverse crimes

Before concluding this chapter, we must mention a practice that is often cautioned
against – the inverse crime – that involves a common shortcut taken by method
developers. The ultimate goal in an inverse problem is to accurately estimate system
parameters based on physical measurements using a numerical model of the sys-
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tem. However, while developing and implementing methods for inverse problems,
researchers commonly avoid cumbersome experiments by using a mathematical model
to compute the expected values of the measurements. While this practice is not inher-
ently wrong, using the same model for the “measurements” and the inverse procedure
can make the procedure appear to perform extraordinarily, and often unrealistically,
well, even if the method would fail for actual measurements.

In the inverse problem community, the term inverse crime describes the use of the
identical numerical model for both the forward and inverse solutions.42 Although
success of a method for an inverse-crime problem is a necessary condition for success
using real measurements, it is not a sufficient condition. Thus, while we do commit a
number of inverse crimes to test the initial viability of the method, we also include
tests that do not use the same forward and inverse models to test our approach in
configurations free of inverse crimes. Finally, note that the severest inverse crime
is committed by using the same discretization mesh for the measurements and the
inverse solution (in our case, the mesh comprises the set of discrete ordinates in the
angular quadrature, energy groups, and spatial mesh cells), while using different
meshes with the same numerical model is merely an “inverse misdemeanor.”
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3INVERSE RADIATION TRANSPORT REVIEW

The solution of inverse radiation transport problems is not new. It is natural to wonder
what information can be inferred from the radiation emitted from an object. In this
chapter, we first review the conservation equation for neutral particles moving in
a medium. Next we discuss the numerical methods commonly used to solve this
conservation equation. This model for the transport of radiation is a necessary building
block for any successful inverse transport solution. In the second part of this chapter,
we review some of the prior inverse radiation transport problems that appear in the
literature.

3 .1 radiation transport equations

To solve an inverse problem, one should have a model of the observed system. In
our case, this mathematical model is the radiation transport equation, namely the
time-independent linear Boltzmann transport equation for the conservation of neutral
particles in non-multiplying media,72

Ω̂ · ~∇ψ(~x, E, Ω̂) + σ(~x, E)ψ(~x, E, Ω̂) =∫
dE′

∫
dΩ̂′ σs(~x; E′, Ω̂′ → E, Ω̂)ψ(~x, E′, Ω̂′) + q(~x, E, Ω̂) , (3.1)

for
x ∈ V , Ω̂ ∈ 4π , E ∈ [0, ∞) ,

and with boundary conditions

ψ(~x, E, Ω̂) = ψ0(~x, E, Ω̂) for ~x ∈ ∂V and Ω̂ · n̂ < 0 ,
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where V is the volume of interest, ∂V is the boundary, n̂ is the surface normal pointing
out of V, and ψ0 is the prescribed incoming flux.

The quantities in this equation are

~x ≡ position vector in three dimensions,

E ≡ particle energy,

Ω̂ ≡ unit direction vector along the particle’s

direction of motion in three dimensions,

σ(~x, E) ≡ macroscopic total cross section,

σs(~x; E′, Ω̂′ → E, Ω̂) ≡ double differential macroscopic scattering

cross section,

ψ(~x, E, Ω̂) ≡ angular flux, and

q(~x, E, Ω̂) ≡ fixed source of particles distributed

per unit time and volume.

The macroscopic cross sections represent the probability of interaction per unit path-
length traveled, any interaction in the case of the total cross section σ and a scattering
interaction from a certain incident state (E′, Ω̂′) to another scattered state (E, Ω̂) for
the scattering cross section σs(~x; E′, Ω̂′ → E, Ω̂). The source term q 6= 0 in Equation 3.1
and boundary conditions ψ0 6= 0 make the equation inhomogeneous. The angular flux
is defined as

1
v

ψ(~x, E, Ω̂)d~x dΩ̂ dE ≡ the number of particles

in the volume d~x centered at ~x

in the energy interval dE centered at E

in the solid angle dΩ̂ centered at Ω̂ ,

where v is the particle speed. The angle-integrated angular flux, called the scalar flux,

φ(~x, E) =
∫

4π
dΩ̂ ψ(~x, E, Ω̂) , (3.2)

is important in computing reaction rates. For example, a detector response could be
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computed as106

r =
∫ ∞

0
dE

∫
V

d~x σd(~x, E)φ(~x, E) , (3.3)

where σd(~x, E) is the detector response function (drf). However, for a full-spectrum
response, the drf is σd(~x, E′, E), where E′ is the energy deposited in the detector.35

Then the energy dependent reponse is

r(E′) =
∫ ∞

0
dE

∫
V

d~x σd(~x, E′, E)φ(~x, E) . (3.4)

3.1.1 Adjoint transport equation

Whether for efficiently computing detector responses or for computing sensitivities,
the adjoint transport equation is important. The equation can be derived in a number
of ways. One could begin with the definition of the Hilbert-adjoint operator and
use integration by parts to work out the adjoint transport operator, the approach
taken in the text by Lewis and Miller.72 Bell and Glasstone derive the equation as
a conservation of importance, which is one physical interpretation of the adjoint.4

A simple approach is to apply rules for derivative and integral terms: the sign of
odd-order derivatives flips and the sign stays the same for even-order derivatives, and
the kernels of integral terms have their arguments transposed.

Deriving the adjoint operator from the definition of the adjoint is preferable to
make the boundary conditions apparent. In Equation f.4, if x and y are from the same
space, then the adjoint T+ to T is defined as

〈Tx, y〉 =
〈

x, T+y
〉

. (3.5)

It is important to define the inner product. Since we are usually interested in a reaction
rate (as in Equation 3.3), a natural choice for the inner product is

〈 f , g〉 =
∫

4π
dΩ̂

∫ ∞

0
dE

∫
V

dV f (~x, E, Ω̂)g(~x, E, Ω̂) . (3.6)
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From Equation 3.1, the forward transport operator is

Lψ = Ω̂ · ~∇ψ(~x, E, Ω̂) + σ(~x, E)ψ(~x, E, Ω̂)

−
∫

dE′
∫

dΩ̂′ σs(~x; E′, Ω̂′ → E, Ω̂)ψ(~x, E′, Ω̂′) , (3.7)

Since the inner product is linear in the first and the second arguments for real numbers,
we can treat each of the terms in L in turn. For the streaming operator,

L1ψ = Ω̂ · ~∇ψ(~x, E, Ω̂) , (3.8)

we compute the adjoint operator with an arbitrary function ξ:

〈L1ψ, ξ〉 =
∫

4π
dΩ̂

∫ ∞

0
dE

∫
V

dV
(

Ω̂ · ~∇ψ(~x, E, Ω̂)
)

ξ(~x, E, Ω̂)

=
∫

4π
dΩ̂

∫ ∞

0
dE Ω̂ ·

∫
V

dV
(
~∇ψ(~x, E, Ω̂)

)
ξ(~x, E, Ω̂)

=
∫

4π
dΩ̂

∫ ∞

0
dE Ω̂ ·

[∫
∂V

dS n̂ ψ(~x, E, Ω̂)ξ(~x, E, Ω̂)

−
∫

V
dV ψ(~x, E, Ω̂)~∇ξ(~x, E, Ω̂)

]
=
〈

ψ,−Ω̂ · ~∇ξ
〉

+
∫

4π
dΩ̂

∫ ∞

0
dE

∫
∂V

dS Ω̂ · n̂ ψ(~x, E, Ω̂)ξ(~x, E, Ω̂) .

Here we have used integration by parts to switch the gradient from acting upon ψ to
ξ.* We see in this expression that a boundary term is left over.

*Integration by parts in multiple dimensions for a closed volume V with surface ∂V is∫
V

f ~∇g dV =
∫

∂V
n̂ f g dS −

∫
V

g~∇ f dV .

This expression is a consequence of the divergence theorem and the chain rule for derivatives. The
divergence theorem for a vector-valued function ~F is111

∫
V
~∇ · ~F dV =

∫
∂V

~F · n̂ dS .

If ~F = f~c, with ~c a constant vector, then the divergence theorem reduces to119

∫
V
~∇ f dV =

∫
∂V

n̂ f dS . (3.9)
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The second term in L is much simpler:

L2ψ = σ(~x, E)ψ(~x, E, Ω̂) ,

where σ is a real-valued function. The adjoint of this term is trivial, L+
2 = σ, since

〈L2ψ, ξ〉 = 〈σψ, ξ〉 = 〈ψ, σξ〉 .

The third term in the forward operator is

L3ψ = −
∫

dE′
∫

dΩ̂′ σs(~x; E′, Ω̂′ → E, Ω̂)ψ(~x, E′, Ω̂′) .

The adjoint operator for L3 is then

〈L3ψ, ξ〉 = −
∫

V
dV

∫
4π

dΩ̂
∫ ∞

0
dE

×
∫ ∞

0
dE′

∫
4π

dΩ̂′ σs(~x; E′, Ω̂′ → E, Ω̂)ψ(~x, E′, Ω̂′)ξ(~x, E, Ω̂)

= −
∫

V
dV

∫
4π

dΩ̂
∫ ∞

0
dE ψ(~x, E, Ω̂)

×
∫ ∞

0
dE′

∫
4π

dΩ̂′ σs(~x; E, Ω̂→ E′, Ω̂′)ξ(~x, E′, Ω̂′) ,

where the dummy integration variables for energy and direction have been inter-
changed to extract ψ. Notice that the arguments to the scattering kernel have thus
been flipped. Thus the adjoint to L3 is

L+
3 ξ = −

∫
dE′

∫
dΩ̂′ σs(~x; E, Ω̂→ E′, Ω̂′)ξ(~x, E′, Ω̂′) .

Combining these expressions, the formal adjoint operator is

L+ξ = −Ω̂ · ~∇ξ(~x, E, Ω̂) + σ(~x, E)ξ(~x, E, Ω̂)

−
∫

dE′
∫

dΩ̂′ σs(~x; E, Ω̂→ E′, Ω̂′)ξ(~x, E′, Ω̂′) . (3.10)

The chain rule gives
~∇( f g) = f ~∇g + g~∇ f .

Integrating this and applying Equation 3.9 gives the equation for integration by parts.
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Note the word formal. This is not the general adjoint operator. In operator notation,
the inner product can be written

〈Lψ, ξ〉 =
〈
ψ, L+ξ

〉
+ P[ψ, ξ] , (3.11)

where the bilinear concomitant, evaluated on the surface of the volume V, is

P[ψ, ξ] =
∫

4π
dΩ̂

∫ ∞

0
dE

∫
∂V

dS Ω̂ · n̂ ψ(~x, E, Ω̂)ξ(~x, E, Ω̂) . (3.12)

With vacuum boundary conditions, the concomitant P can vanish. The forward
vacuum boundary conditions are

ψ(~x, E, Ω̂) = 0 for ~x ∈ ∂V and Ω̂ · n̂ < 0 , (3.13)

which states that no particles enter the volume from outside. Then we impose on ξ

the boundary condition

ξ(~x, E, Ω̂) = 0 for ~x ∈ ∂V and Ω̂ · n̂ > 0 . (3.14)

Interpreting ξ as an importance, this condition requires that particles leaving the
volume have no importance, which makes intuitive sense. With these conditions, the
integral over angle in the bilinear concomitant equals zero, and thus P[ψ, ξ] = 0.

Now we can see a use for the adjoint equation. Consider the source-driven forward
problem, written in operator notation as

Lψ = q . (3.15)

Taking the inner product of Equation 3.15 with the arbitrary function ξ, we have

〈Lψ, ξ〉 = 〈q, ξ〉 . (3.16)

Substituting for 〈Lψ, ξ〉 from Equation 3.11 into this expression, we obtain

〈
ψ, L+ξ

〉
= 〈q, ξ〉 − P[ψ, ξ] . (3.17)

The left hand side of Equation 3.17 is the inner product of the forward flux with some
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unspecified function. Since we are interested in responses of the form 〈ψ, σd〉, with σd

a detector response function, it is reasonable to require that

L+ψ+ = σd , (3.18)

where we have switched from ξ to ψ+ since the function is no longer arbitrary. Then,
a response can be computed with the adjoint as

〈ψ, σd〉 =
〈
q, ψ+

〉
− P[ψ, ψ+] . (3.19)

Finally, if the appropriate vacuum boundary conditions on the forward and adjoint
problem are imposed, then the response is simply

〈ψ, σd〉 =
〈
q, ψ+

〉
. (3.20)

In summary, with boundary conditions specified in Equation 3.13 and Equa-
tion 3.14, the adjoint equation to Equation 3.1 is

− Ω̂ · ~∇ψ+(~x, E, Ω̂) + σ(~x, E)ψ+(~x, E, Ω̂) =∫
dE′

∫
dΩ̂′ σs(~x; E, Ω̂→ E′, Ω̂′)ψ+(~x, E′, Ω̂′) + q+(~x, E, Ω̂) , (3.21)

where commonly q+ = σd.

3.1.2 Numerical methods in transport

For most practical applications, the forward and adjoint radiation transport equations
are solved numerically. There are a variety of numerical approaches; here we briefly
outline the deterministic methods used in this work. The energy, angle, and spatial
variables must be discretized.

Energy We use the standard multigroup approximation, in which all energy-dependent
quantities are integrated over a set of smaller ranges of energies.24 For each energy
group, the group cross sections are considered group averages, while the group flux
is a total flux, that is, the flux integrated over the energy interval.
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Angle A common method to discretize the angular variable is the discrete ordinates
approach.72 The single transport equation is replaced with a set of equations, one for
each angle in a predetermined quadrature set. Thus, the angular flux is only known
in certain directions. The scalar flux, as well as higher angular moments, is obtained
by a quadrature summation instead of an integration of the angular flux. The discrete
ordinates approach can be susceptible to unphysical oscillations in the solution, called
ray effects. These can be reduced by increasing the number of discrete directions in the
employed quadrature. However, with a localized radiation source, ray effects can be
noticeable at large distances from the source even with a high-order quadrature.

A common strategy to reduce the effect of these oscillations is the first-collision
source method.27 In this method, the angular flux is divided into two components:

ψ = ψunc + ψcol ,

the uncollided component ψunc and the collided component ψcol. A similar relation
exists for the scalar flux. The uncollided flux is that portion of the flux that has been
emitted by a source but has experienced no subsequent collisions. The collided flux,
on the other hand, has had one or more interactions with the host medium. The
advantage of this approach is the simplicity of the expression for ψunc, which is a
closed-form equation involving material and geometric attenuation. The uncollided
flux can be computed accurately at a point using ray tracing. This eliminates ray effects
in the uncollided flux. Then the uncollided flux is multiplied by the scattering cross
section in each cell to give the so-called first-collision source, that is, the scattering
source of particles that come from the first scatter. This first-collision source is given
as the source term to the discrete-ordinates solver to compute the collided flux ψcol.
The collided flux will still contain ray effects, but they will be less noticeable because
the radiation source is distributed throughout the space.

Space There are a variety of spatial discretization methods in the literature, including
finite difference, finite volume, and finite element schemes.27 Some of these are linear
methods, while others add non-linear factors to increase the order of convergence to
the exact solution.
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Discrete matrix equations The discretized transport equation can be written in matrix
form. Evans presents a compact notation for formulating these equations.27 We follow
his notation here. Using the multigroup energy treatment, discrete ordinate for angle,
and Legendre moments to approximate scattering, the discrete transport equation can
be written as

L~ψ = MS~φ +~qa . (3.22)

The discretizations are made with the following parameters:

ng = number of groups,

nt = number of Legendre scattering moments,

no = number of discrete ordinate directions,

nc = number of spatial cells, and

ne = number of unknowns per cells.

If
a = ng · no · nc · ne , f = ng · nt · nc · ne ,

then the size of Equation 3.22

(a× a)(a× 1) = (a× f )( f × f )( f × 1) + (a× 1) .

The flux angular moments can be computed from the angular flux by a quadrature
rule

~φ = D~ψ ,

where D has size f × a and ~φ has size f .
For our purposes, the angular flux is not of primary concern. Rather, we are

primarily concerned with the flux moments. Thus, the transport matrix equation can
be rearranged as

(DLD−1 − S)~φ = ~qs

where ~qs = D~qa with size f . This particular form requires that we assume a Galerkin
quadrature such that D = M−1.89 Setting Ls = DLM− S, the equations can be written

Ls~φ = ~qs . (3.23)
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The adjoint equations would then be L+s ~φ
+ = ~q+s .

3 .2 inverse radiation transport problems

Starting in the late 1960s, work on radiation transport ips has progressed steadily.
The simplest problems, in which scattering is ignored, were examined first. Example
problems using this approach are computed tomography,45 the reconstruction of
absorption coefficients based on active measurements taken on the exterior, and the
estimation of a one-dimensional spatial change in atmospheric parameters.18 These
methods assume that the medium is optically thin.

Many other ips have since come along, in a wide range of applications. In oil-well
logging, the material composition deep underground is inferred based on radiation
measurements.2 By measuring the energy spectrum of radiation scattered back to a
detector from a radioactive source inserted in a borehole, engineers can estimate the
hydrogen density or bulk density of the surrounding rock formation. In marine biology,
bioluminescence, the emission of light by living organisms, can be computed as a
function of depth in the ocean using an inverse method.122 A common ip is finding
the elemental composition of a material.44 Closely related is material identification,
where a common goal is to detect illicit nuclear materials.77

Given the wide range of ip applications and methods, there are a number of ways
to classify and sort the methods. Algorithmically, the most important distinction is
analytic or closed-form solutions versus discrete or implicit methods. In addition, the
particular application necessitates a choice from the following options:

• Time-dependent versus time-independent. Are the system and measurements
steady-state or not?

• Solving for material properties, internal sources, incoming fluxes, or slab thick-
ness. What is known and unknown?

• Active versus passive. Is the measured radiation coming from the system, or is
an outside source used for interrogation?

• Interior versus exterior sensing. Are the detector measurements taken within the
medium, or are they required only at the outside surface?

These alternatives clearly have a large effect on the problem, sometimes making the
difference between a simple solution and an intractable one. Each of these must be

42



considered when facing an inverse problem.
From a methods perspective, the analytic versus discrete distinction is the most

important. Analytic inverse methods seek a closed-form solution using manipulations
of the transport equation. In contrast, discrete methods begin with the discretized
equations of the forward problem and borrow techniques from numerical linear
algebra, applied math, and optimization to solve the inverse problem. (McCormick
chooses a similar, but not identical, taxonomy: explicit and implicit methods.78) In
the early radiation transport ip literature, analytic methods are most common until
the middle of the 1990s, when discrete solutions began to attract attention. This work
employs the discrete approach, and thus most of the proceeding historical review
focuses on the discrete approach. However, a brief summary of key analytic solutions
is first presented.

3.2.1 Analytic solutions

Analytic ip methods are concerned with exact solutions for the unknown. These
methods are reviewed by McCormick.78 Most of these solutions are limited to one
dimension, usually slab or plane-parallel geometry, since general solutions for the
radiation transport equation are only available in one dimension. The problems are
mostly one group, although a few deal with the complications raised by a dependence
on energy. Most early methods require both interior and exterior detectors, while later
work eliminated the need for interior detectors in some cases. Many analytic solu-
tions were for material properties, densities, cross sections, and scattering moments.
However, a few papers present solutions for an internal radiation source.

In one of the early papers, Larsen computes the internal angular fluxes and sources
for a half-space plane-parallel one-speed problem if the incident and outgoing angular
fluxes are known.70 Note that no interior measurements are required. Zweifel builds
on this solution with what he calls the “canonical inverse problem” – determining the
incoming angular flux given an outgoing flux. Under certain conditions, his solution
reduces to Larsen’s solution for the internal source. However, in commenting on this
solution, McCormick doubts its usefulness:79

The successful implementation of this source estimation technique is even
more questionable than the estimation of a canonical inverse problem
incident distribution.
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This is a reference to the equation’s ill-conditioning, which is a general property of
problems with only exterior detectors.

This ill-conditioning can be lessened by taking measurements within the medium.
This approach was taken in a unique application in bioluminescence in the ocean.122

Researchers were interested in the variation of bioluminiscent sources as a function
of depth below the ocean surface. The computation was complicated by moonlight
incident on the surface. They developed analytic equations based on a balance of
photons in each layer. Then they were able to compute the amount of bioluminescence
in a given layer using measurements of photon irradiance and scalar irradiance
(current and scalar flux in ne parlance) on the surface and at selected depths.

Since this thesis employs the adjoint flux, we point out a few papers that make use
of the adjoint in an analytic ip solution.68,69,98 These papers presented solutions for
material properties, not internal sources. The adjoint fluxes aided in the manipulation
of the transport equation to achieve the authors’ desired result.

Sanchez and McCormick answer the question of uniqueness for the linear inverse
source problem, where the system geometry and cross sections are known but the
source term is unknown.99,100 They consider invasive problems, in which detectors
are placed in the interior and exterior of the system, as well as noninvasive problems,
where the detectors are only on the outside of the system. When the angular flux is
known everywhere in the interior of the domain, the invasive problem has a unique
solution, given by applying the transport operator to the known flux distribution.
However, they offer a family of possible solutions for the noninvasive solution, proving
that the noninvasive solution is not unique. The nonuniqueness is a property of
the linear transport equation; the effect of measurement error is ignored in their
arguments.

In general, analytic solutions are not possible for three-dimensional, general ge-
ometry, multigroup problems. This lack of applicability, combined with the growing
power and capacity of computing resources, prompted research into discrete methods
for ips.

3.2.2 Discrete methods

Instead of seeking closed-form solutions, discrete methods generally assume that the
differential equations are solved numerically. Within the discrete approach, researchers
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in the past decade have tackled a variety of problems. Inverse problems have been
considered with many different combinations of the set of alternatives presented above.
The particular combination places certain limits on the solution methods available. A
few of the relevant inverse problems are listed here.

Norton is one of the earliest to suggest the use of the adjoint flux for ips.91,92

His method assumes that the problem can be written in terms of an error functional
that returns the difference between measured and computed responses. He proposes
a general method using the adjoint to compute Fréchet derivatives of this error
functional. For discrete problems, the derivatives are gradients, which can be used in
any gradient-based optimization procedure: steepest descent, conjugate gradient, or
quasi-Newton. He also derives these expressions using the Lagrange multiplier. Note
that the use of the adjoint in computing the Fréchet derivative is the same as that used
in the sensitivity analysis community.12

Favorite, Bledsoe, and Ketcheson, in various co-author combinations, have consid-
ered geometry and materials (partially) unknown in a series of papers. Their methods
have primarily used gradient-based minimization procedures. Building on the work
of Norton, Favorite laid the foundation of their methods by giving the expressions
to compute the gradient of the error functional using adjoints and the Schwinger
variational functional.32 They assume that modeling the uncollided flux is sufficient
to describe the detector responses, since the spectral lines can be resolved by a high
purity germanium detector. Thus, instead of multigroup calculations, they do uncou-
pled calculations on multiple discrete energy “lines.” The first test problem they use
is a sphere with a central source and surrounding layers of shielding.29–31,33 With
few unknowns and a reasonable initial guess, they achieved success in resolving the
inverse problem under the above assumptions and limitations.

In a more recent series of papers, Favorite, Bledsoe, and Ketcheson estimate some of
the dimension and composition parameters of a shielded uranium cylinder, assuming
the other parameters are known.8,9 Instead of relying only on gradient-based methods,
Bledsoe and Favorite also use global stochastic optimization methods. Since they use
only the uncollided flux, they also explore the use of ray tracing methods.28

Mattingly and Mitchell tackled a one-dimensional spherical problem in which the
material layer thicknesses were unknown but the materials were known, or could
be inferred from the peaks present in the high-resolution detector reading.77 The
unknowns in the solution were the layer thicknesses, although the more fundamental
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unknowns seemed to be the total mass of each material present. To more tightly
constrain the solution, Mattingly and his coauthors include more physics than others,
using neutron multiplicity counting in addition to the more conventional gamma
spectroscopy.76 For the nonlinear minimization, they use the Levenberg-Marquardt61

procedure, where they compute the needed derivatives using a finite-difference
approximation.

Researchers at Texas A&M have published a number of papers on neutron to-
mography – where an external active neutron source is applied on one side of the
object and detectors are placed on the opposite side. In contrast with computed
tomography in medical applications, these methods are focused on objects that are
optically thick, making the inclusion of scattering effects essential. Scipolo illuminated
a two-dimensional area of unknown cross sections and used a gradient-based method
to minimize an objective functional.102 Sternat and Ragusa use the adjoint flux solu-
tion (what they call the “duality principle”) to compute the gradients necessary for a
Newton-type optimization.110 They present results for a one-group, two-dimensional
problem. Wu and Adams suggest using a change-of-variables to constrain the un-
knowns.121 For example, they use a logarithmic transformation to ensure that the
cross section is always non-negative. This allows the use of unconstrained optimiza-
tion, whose theory and implementation is much simpler than that of constrained
optimization.

Working on border security applications, Miller and Charlton seek to triangulate
and estimate the activity of a point source in two dimensions near a portal monitor at
a border crossing.86,87 They assume that the position of automobiles and trucks could
be obtained with image recognition software and that the material cross sections of
the automobiles and surroundings could be reasonably estimated based on a database.
Thus, the problem is similar to the one considered here, with the geometry and cross
sections known. However, there is a significant difference between their problem and
ours: they focus on identifying one point source, while we do not begin with that
assumption. In their test problem with three detectors, the iterative procedure was
sensitive to the initial guess, becoming stuck in local minima in many cases.

Jarman, et al. build on the work of Miller and Charlton by applying a probabilistic
inverse method to the portal monitoring problem.54 They solve for the posterior proba-
bility distribution for the location and source strength of a point source. They compute
the posterior distribution directly at discrete values of each model parameter. This ap-
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proach is tractable for their problem because they have 4 unknown model parameters:
three spatial coordinates and one source strength. Their results show the usefulness of
the Bayesian approach for estimating the uncertainty in the computed mean location.
In addition, they demonstrate that accounting for scattered radiation significantly
improves the estimated source location and intensity for their test problem, in which
the source is located in a medium-density absorber.

Finally, we note that Bayesian inverse methods have been used for decades within
the nuclear engineering community to estimate or adjust cross section data. Jessee in
§1.6 of his dissertation reviews the use of these methods.58 He calls the method the
Generalized Linear Least Squares algorithm. Although the quantities to be estimated
are different than what we study here, the underlying methods are quite similar.

3 .3 more informative detectors

The discrete methods discussed thus far assume that the detector is unable to distin-
guish the incidence direction of incoming particles. While clever algorithms can infer
a surprising amount of information using only isotropic detectors, direction-aware
detectors can provide much richer and sensitive data for use in inversion procedures.
Many of these detector systems share features with cameras.

3.3.1 Compton camera

A Compton camera is made of two parallel planes of semiconductor detectors, often
CdZnTe, abbreviated CZT.23,123 Each plane is made of an array of crystals. In Ref. [118],
each crystal is approximately a cube with 20 mm sides, and each plane is composed of
3 × 3 crystals. The crystals are three-dimensional position sensitive. That is, through
electronic measurements, the location of a photon interaction within the crystal can be
obtained. If a photon happens to interact via Compton scatter in both the front plane
and then scatter or be absorbed within the back plane, the direction of the incident
particle can be inferred to within the surface of one or two cones. This computation is
based on the location of interaction, the energy deposited in the interaction, and the
conservation equations for energy and momentum.
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3.3.2 Coded-aperature imaging

A coded aperture imager is similar to a pinhole camera, in which light enters the
front plane through a small opening and is recorded on the back plane. With this
arrangement, given a location on the back plane, there is only one direction in
which a photon could travel to arrive at this location. The same principle can be
applied to radiation detection, using a shielding material in the front plane to block
all photons except the few entering through the narrow hole. However, radiation
detectors function with many fewer particles available to detect than for a normal
camera. For a pinhole detector, the number of particles which reach the back plane
would usually be unacceptably low. To avoid these losses, a middle ground is sought
in which, instead of only a small opening in the front plane, a significant portion
of the front plane is left open.21,124 This preserves some of the ability to determine
photon trajectories while improving the detection efficiency.
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4SOURCE MAPPING METHODS

In the preceding chapters, we have presented background on inverse problems in
general, as well as specific details for radiation transport applications. This chapter
describes the methods implemented in this work to solve the radiation source mapping
challenge. Since we have focused on the Bayesian approach, the various components
needed for this method are presented in the following sections. However, we first
show how this problem can be written as a first-kind Fredholm integral equation.

4 .1 fredholm integral equation

Many inverse problems can be phrased as Fredholm integral equations of the first
kind (Equation 2.4). This is true for this problem as well. Recall that the measured
data is the detector response. We could in theory measure this everywhere in the
spatial domain. The response is also a function of energy. Thus, we propose r(~x′, E′)
for the continuous detector response [106, §5.4]. If the detector response function is
σd(E′, E), then the response can be computed as35

r(~x′, E′) =
∫

dE σd(E′, E)φ(~x′, E) , (4.1)

where E is the energy of the incident radiation and E′ is the energy deposited in
the detector. Here we assume that a detector could be placed at every point in the
domain. In this equation, r and σd are known and φ is unknown. However, we are
here interested in the source, not ultimately the flux field that it generates. To make
this clear, we can substitute into Equation 4.1 from Lsφ = q (the continuous operator
analog to Equation 3.23). Thus, one way to write the Fredholm integral equation with
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the source q is

r(~x′, E′) =
∫

dE σd(E′, E)L−1
s (~x′, E)q(~x′, E) ,

where the detector response function is the kernel.
Alternately, these equations can be reformulated with the assistance of the adjoint

flux (see section 3.1.1). However, now we need a family of adjoint fluxes, φ+(~x, E→
~x′, E′), that are solutions to

L+
s (~x, E)φ+(~x, E→ ~x′, E′) = σd(~x′, E′;~x, E) ,

where the detector response function now depends on space. The drf will be dis-
cussed in more detail in section 4.4. The arrow is used in the argument of φ+ to
emphasize the similarity with Green’s function methods [24, §5.4(a)].

Thus, the Fredholm equation in terms of the adjoint φ+ is

r(~x′, E′) =
∫

dE
∫

d~x φ+(~x, E→ ~x′, E′) q(~x, E) . (4.2)

The adjoint flux is now the kernel. An unfortunate consequence of using the adjoint
flux is the additional integral over space.

In practice, we only have measurements of r(~x′, E′) at a few points in (~x′, E′) space,
limiting the resolution of the reconstruction of q. In addition, φ+ is estimated with
numerical methods. Thus, in practice, the continuous functions r, φ+, and q must be
represented by discrete quantities, r and q as vectors and φ+ as a matrix. The details
will be provided below, but the general form of the resulting matrix equation is

~r = Φ+~q . (4.3)

The matrix Φ+ is typically not square. We can apply the Bayesian inference method to
this equation.

4 .2 model parameters

In regression, least squares, and Bayesian inference, we have two categories for items
to quantify: model parameters and system responses. This section discusses model
parameters and the next handles system responses. Model parameters are the “input”
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pictured in Figure 2.1. Following Cacuci’s notation, the model parameters are packaged
into the vector~α. While~α could include all data going into our model, often we only
include the most interesting or sensitive parameters.

In our case, the most important model parameters describe the radiation source
distribution in space and energy, while we assume weak dependence on angle. In
addition, other model parameters may include system dimensions, material composi-
tion and geometry, position of detectors, and many others. The values of these state
variables will be known with varying degrees of confidence. For example, we have
little initial information about the source distribution (perhaps we can bracket the
range of possible source intensities within an interval spanning ten orders of mag-
nitude). On the other hand, the dimensions of walls and floors are known with low
uncertainty, assuming that the geometrical configuration is given, say from floor plans
or construction blueprints. While all of these parameters could be included, usually
only those inputs which have significant uncertainty need be included. Given an
infinite budget, all the parameters could be included in~α. However, using engineering
judgement, the exclusion of parameters with low uncertainties should not affect the
final results.

4.2.1 Basis of the source

One could imagine numerous ways in which to represent the source distribution in
energy and space. The two primary means to do this were discussed in section 2.1.5:
quadrature and expansion methods. Since the adjoint flux will be computed on a
Cartesian mesh in space and a multigroup energy structure, a basis to represent
the source should be compatible with this discretization. The spatial and energy
discretizations are discussed below.

Energy basis Radiation sources can produce radiation with discrete energies or with
a continuous spectrum. We wish to have the ability to differentiate between them
and track them individually. First, nuclear or electronic transitions often result in the
emission of gamma or x-rays with energies in a small set of defined values. The gamma
energies associated with the decay of radionuclides are known and tabulated.115 From
a measured detector spectrum, the gamma line energies should be easily discernible.
We set np (p for peak) as the number of gamma energies emitted. The source unknown
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qpeak
p for a particular discrete line p is simply the number of particles emitted per unit

time at that energy.
The second type of radiation is emitted with a continuous spectrum. Bremsstrahlung

photons, commonly produced by an x-ray tube used in medical applications, have a
range of energies from nearly zero to a maximum energy corresponding to the initial
energy of the incident beam of charged particles [106, §3.6.2]. Neutrons born from
fission are another example of a continuous-spectrum radiation [67, §3-4]. To preserve
compatibility with the multigroup calculation, we bin the continuous source into the
ng energy groups. If group g has energy boundaries Eg to Eg−1, the source in this
group from a continuous source q(E) is

qcont
g =

∫ Eg−1

Eg
dE q(E) ,

where qcont
g is the number of particles emitted from a continuous-spectrum source

within group g per unit time.
Sometimes it is useful to combine the discrete and continuous radiation sources

into one total source. We sum this according to the same multigroup structure. To
perform this sum, we must know to which group each peak belongs. If the energy of
peak p is Ep, then p is in group g if Ep ∈ [Eg, Eg−1). We call this mapping g(p), which
returns the corresponding energy group g given a peak index p. Many or no peaks
may fall within a particular group. Using the peak-to-group mapping, the total source
in group g from both discrete and continuous spectrum is

qtotal
g =

∫ Eg−1

Eg
dE q(E) + ∑

p∈Sg

qpeak
p , (4.4)

where Sg = {p | g(p) = g}. For convenience, let ng̃ = ng + np.

Spatial basis Following the spatial discretization used by the adjoint, we split the
spatial domain into nc Cartesian cells. Then the source unknown is the cell-averaged
source. In this work we only track the zeroth spatial moment of source, although
higher moments could theoretically be included if so desired. Although this basis is
an obvious choice, it is not difficult to use others. We could form a basis on a coarse
spatial mesh, thus constraining the source to be constant over groups of finer mesh
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cells. Or one could coarsen some cells but not others, leading to an adaptive basis
(see Appendix e). If the source distribution is believed to be smooth over the domain,
one could use a polynomial or Fourier basis, assuming that it yields non-negative
source intensities over the entire domain. In these ways, the selection of the basis can
incorporate any prior knowledge about features of the source distribution.

Taking the Cartesian product of the energy and space discretizations, we can
form ng̃ · nc = ng̃c basis vectors. For many alternate bases, there is a linear map
P : Rs → Rng̃c such that

~q = P~x , (4.5)

where s is the dimension of the smaller basis and ~x is an s-vector containing the
expansion coefficients of this basis. This projection transforms Equation 4.3 from

~r = Φ+~q , (4.6)

to
~r = Φ+P~x = A~x , (4.7)

where A = Φ+P. By tuning s such that it is smaller or equal to the size of ~r, the
system of equations is overdetermined or well-determined. This strategy is suggested
by Santamarina and Fratta on the basis of Ockham’s Razor, that is, to favor a simple
model over a complex one [101, §9.5.3]. This principle, also know as the rule of
parsimony, is: “Plurality must not be posited without necessity.”

One simple modification of the natural basis is to exclude certain energy-space
cells which do not have any radiation source. For a variety of reasons, we may know
that certain spatial or energy regions contain no source. For instance, it is reasonable
to only treat energies at and below the maximum radiation energy detected. The
algorithm could accommodate higher groups for which no source would be computed,
but this would be a waste of time and effort. In a similar manner, certain spatial
regions may be ruled out and excluded from~α. For example, at a border crossings,
radioactive sources are sought as they are carried by cars or trucks. Algorithms to map
the sources in these vehicles could include as unknowns the source everywhere, both
inside and outside the vehicles. However, it would be more efficient to only include
those cells which are located inside the monitored vehicles. In the test problem in this
work, locating sources in a room, we have assumed that the sources are not suspended
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in air and so have eliminated the cells which only contain air. The linear projection
operator P in this case is particularly simple; it is an identity matrix missing select
columns. The number of reduced spatial cells is represented by n′c.

Packaging source unknowns in a vector Q ∈ Rng̃×nc is an array containing the expansion
coefficients of the source intensities per group or peak and per spatial cell. This array
is flattened into a vector,

~q = flat(Q) .

The flat function unravels the array with multiple dimensions into a one-dimensional
array. The inverse of the flat function is reshape, which requires a second argument
giving the shape of the matrix. The particulars of the flat and reshape functions are
not of importance here, as long as they are performed consistently. Returning to
Equation 4.4, we can rewrite this sum of the peak and continuous sources ~q total ∈ Rngc

as
~q total = G~q peak +~q cont .

The matrix G ∈ Rngc×npc sums the discrete peaks into their energy group. The above
equations are valid for the reduced spatial basis if n′c is substituted for nc.

Here we pause to note that the dimension of the natural basis, ng̃c, or even the
dimension of the reduced basis n′g̃c, will typically be much larger than the number of
measurements available. As mentioned above, the system of equations represented by
Equation 4.3 or Equation 4.7 will be severely underdetermined since the number of
unknowns is much larger than the number of measurements (and equations). For least-
squares problems, this poses a serious dilemma, since an underdetermined system
admits an infinite number of solutions. However, the Bayesian inference approach
sidesteps this issue by accounting for uncertainties. That is, the method ranks the
various admissible solutions in terms of their probability of occurrence given the
prior knowledge and the measured data. Thus, the method allows for the solution
of underdetermined, well-determined, or overdetermined problems. However, there
is no free lunch. Although one can solve a severely underdetermined system using
Bayesian inference, it is likely that the low information content of the measurements
will be reflected in little or modest reductions in uncertainties in the final solution.
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4.2.2 Logarithmic transformation of source intensities

The most direct means of including the sources in~α is by setting~α = ~q. While using ~q
as the model parameters is logical, we instead use loge(~q/q0), where loge is the natu-
ral logarithm operating element-wise. The positive scalar value q0 is some reference
source value necessary to make the argument of the logarithm dimensionless. This
logarithmic transform has two advantages. First, as noted by Tarantola [112, §1.2.4,
§6.2], for positive scaling factors such as the source intensity, the logarithmic transform
disallows unphysical negative source intensities. This is especially important in our
context, because we describe the pdfs of the parameters with multivariate Gaussians.
A Gaussian is non-zero everywhere, and so it assigns non-zero probability to nega-
tive values of the parameter – an unphysical consequence. However, a log-normal
distribution assigns non-zero probability only to positive values of the parameter.

Secondly, this transform enables a much broader prior distribution, which is
beneficial here because we initially have little idea of the source strength order of
magnitude. Assigning a prior distribution which spans many orders of magnitude
is much simpler for a log-normal distribution than for a normal distribution. This
feature is exploited when we assign the prior distribution of the source intensities.

The log-normal distribution was first suggested by Jeffreys for positive parame-
ters.57 These positive parameters and the prior pdfs associated with them are known
as Jeffreys parameters and Jeffreys priors. Others in the nuclear engineering commu-
nity121 and in physics53 have used similar techniques for pragmatic reasons.

Before leaving this topic, we should mention the disadvantages of the logarithmic
transform. Conceptually, the biggest cost is the conversion of a linear set of equations
to a nonlinear set. Usually one seeks to linearize a nonlinear problem, not to un-
linearize a linear problem. Solving a nonlinear problem can be significantly more
costly than a nonlinear one. While the Jacobian of the linear system is constant,
the Jacobian of the transformed system changes as~α changes. Also, the logarithmic
transform can cause instabilities in the optimization method. The optimization is done
in log-space, but a medium-sized step in log-space can produce floating point overflow
or other breakdowns in linear-space. As a result, a constrained optimization method
is used even though we introduced the logarithmic transform in part to remove the
constraints. These issues will be discussed in greater detail in section 4.6.
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4.2.3 Other inputs as model parameters

As stated above, all the system inputs could be included in the model parameter vector
~α. Beside the source map, this could include material compositions and densities,
material cross sections, geometric dimensions, and characterizations of the detector
system. Deciding among all of these possibilities could be a bewildering task. In a
situation where the parameters of interest have a relative uncertainty close to the
relative uncertainty of other inputs, the latter’s effect may have significant influence
on the inverse solution accuracy and trustworthiness. However, in the present case,
the inputs other than the source distribution are assumed to have a relatively low
uncertainty, especially when compared to the initial uncertainty in the source, and
even in comparison to the desired uncertainty in the solution, which is presumably an
order-of-magnitude estimate.

Furthermore, we have not included the material cross sections in ~α for several
reasons. First, the covariance matrices describing the errors in microscopic cross
sections for photon interactions are unavailable in the current version of endf/b-
vii.1.16 See Appendix b for select estimates of the errors in this data found in the source
libraries. The other reason for excluding the microscopic cross section uncertainties is
that their level of relative uncertainty (estimated to be a few percent, see Table b.1) is
likely to be much lower than the uncertainty for material composition and densities.
These quantities were estimated according to common building material values, but
these estimates are likely in error by more than a few percent.

4.2.4 Model parameter covariances

While we could include some positive correlations in neighborhoods of spatial cells
to promote smoother source solutions, we have not pursued this option in this work.
The off-diagonal elements of Cα are set to zero.

4 .3 responses

Having discussed model parameters, the first category of values, we now turn to the
second category, that of measured responses. The raw detector data is a series of counts
placed in uncalibrated bins by the multichannel analyzer (mca). We assume that
there are nb mca channels, where nb typically is a few thousand, depending on the
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hardware. Through the use of calibration sources or other noticeable peaks, an energy
calibration is computed to map each channel edge to the photon’s corresponding
energy value. This raw spectrum consists of two components. First, we have full-
energy photopeaks. These peaks represent the full absorption of an uncollided photon
into the detector. These peaks are the easiest to analyze. Second, we have the detector
continuum. This smoother portion of the measured spectrum is more difficult to
analyze because the cause of these contributions may be (a) a scattered photon
depositing all or part of its energy in the detector or (b) an uncollided photon
depositing part of its energy in the detector. We desire the ability to use both the
photopeaks and continuum of the detector response in the reconstruction of the source
distribution.

There are np peaks. These peaks can be identified and analyzed automatically or by
hand. In either case, the important data about the peak is the centriod energy and the
peak area and accompanying Poisson variance. Photopeaks are convenient to analyze
because the peak area corresponds directly to the number of particles (at the peak
energy) incident on the detector and the detector’s peak intrinsic efficiency. Computing
the peak intrinsic efficiency is a relatively simple task involving the detector’s shape,
the source-to-detector distance and orientation, and the detector’s energy-dependent
linear attenuation coefficient. A Monte Carlo ray tracing simulation is sufficient to
perform this calculation. It can be executed as a preprocess and the data saved for
repeated use by the ip solution algorithm.

The continuum is more difficult to analyze. First, we must rebin the mca finely-
binned data into ng coarser groups. This is because we do not want to perform
a transport calculation with thousands of energy groups. Second, to analyze the
continuum, we must have access to the full detector response function, σd(x′, E′, E).
Unfortunately, for a non-spherical detector, the detector response is a function of
space, that is, the source-to-detector configuration (see section 4.4).

4.3.1 Detector locations and directions

To make a map of the source in energy and space, we need several different detector
readings. The most basic method to get multiple readings is to move the detector
to a different location, or install an array of detectors throughout an area. We will
assume there are nl detector locations. In addition, having a sense of direction with
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the detectors can be useful. With a large budget, one could use a coded-aperture
detector system or a Compton camera (see section 3.3). A cheaper and lower-resolution
option is to use collimators to shield the detector from particles approaching the
detector with certain directions. In the demonstration, we used uncollimated detectors
with a 4π view as well as hemispherical 2π collimators to look left or right, up or
down, and in or out. We assume that we have na = 7 directions at each location,
including the uncollimated 4π reading. Thus, we have nl · na detector spectra. For
each spectrum, there are np photopeaks and ng coarse energy groups. Altogether, this
gives nl · na · (np + ng) data elements, which is the size of~r.

The response vector~r has two sub-vectors, the peak and the continuum. The peak
response vector is~rpeak = flat(Rpeak), where Rpeak has size nl × na × np. Likewise, the
continuum response vector is ~rcont = flat(Rcont), where Rcont has size nl × na × ng.
Then the full response vector is

~r =

[
~r peak

~r cont

]
.

4.3.2 Response errors and covariances

Each channel has an associated Poisson error. These errors need to be propagated
through the peak summing and the collapsing of mca bins into coarse multigroup
structure. The error propagation is simple since these are essentially summations.
Although there are efforts to measure the correlations between channels in a detector
spectrum,114 this technology is not widely available. Thus, we treat the detector
readings in different groups as uncorrelated, making the Cm matrix diagonal. In
addition, the~α-~r correlations are assumed to be zero.

4 .4 detector response function

A detector response function translates the radiation field at a detector to the response
of that detector. The detector response can be either an energy-integrated count or a
spectrum produced by an mca. The drf is the kernel in Equation 4.1. However, there
are many variations of the drf, some more complex and accurate and others simpler
but approximate. The detector response depends on the size and shape of the detector,
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Table 4.1: Parameters for source inversion.

Index Total Description

c nc Spatial cells in adjoint calculation
c′ n′c Spatial cells in reduced source basis
g ng Energy groups in adjoint calculation
b nb mca energy channels
p np Photopeaks
g̃ ng̃ Photopeaks and energy groups
l nl Detector locations
a na Detector directions

so a more general representation of the drf for a detector occupying volume Vd is

r(E′) =
∫

Vd

dV
∫ ∞

0
dE σd(~x, E′, E)φ(~x, E) . (4.8)

Here σd(~x, E′, E)dE′ is the probability per path length that a particle at position
~x with energy E will deposit an amount of energy in the interval [E′, E′ + dE′ ] into
the detector. At this stage, the specific interactions within the detector are impor-
tant to track. In current practice, these integrals are typically computed with Monte
Carlo transport methods, often with empirical adjustments to match certain phe-
nomena.35,88,93 The drf kernel can be computed by estimating this integral for a
sequence of values of E. In discrete form, σd is a matrix. While Monte Carlo methods
are quite powerful for estimating Equation 4.8, they are usually quite slow. Thus, a
common approach is to precompute the drf once. Then the response for a particular
flux spectrum can be computed with a matrix-vector product. All of the physics and
complications of the detector are hidden within the drf matrix. By doing this, the
spatial dependence of the drf is removed:

r(E′) =
∫ ∞

0
dE σd(E′, E)

∫
Vd

dV φ(~x, E) . (4.9)

For a small, optically-thin detector, the flux would be attenuated very little inside the
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detector, and so∫
Vd

dV φ(~x, E) ≈ Vdφ(~x0, E) , (optically-thin detector) (4.10)

where ~x0 is a point within the detector. However, at 600 keV, 2 inches in a sodium-
iodide (NaI) crystal is 1.53 mean free paths.* This means that using Equation 4.10

for a 2”-by-2” detector would introduce significant errors. Instead, one could use the
volume-averaged flux

〈φ(E)〉Vd
=

1
Vd

∫
Vd

dV φ(~x, E) , (4.11)

to evaluate the integral ∫
Vd

dV φ(~x, E) = Vd 〈φ(E)〉Vd
. (4.12)

In computing the integral in Equation 4.11, we are concerned only whether particles
entering the detector volume have an interaction. It is unnecessary to track particles
after scatter events, since the drf accounts for these scatter events. The integral
depends on several influences:

1. the energy-dependent linear attenuation coefficient of the detector,
2. the shape and position of the detector, and
3. the shape and position of the radiation source or sources, and
4. the direction of approach of radiation as it enters the detector. The radiation may

all come directly from the source, or it could have scattered and have an entirely
different approach.

Items 2 through 4 are necessary for computing the distribution of chord lengths that
radiation travels through the detector volume. The distribution of chord lengths is
dependent on the source’s view of the detector. If the detector was spherical, the only
influence would be the source-to-detector distance. For non-spherical sources, the
source-to-detector orientation is also important. For example, in this work we use
cylindrical detector crystals. While controlled experiments often place the source at a

*From nist’s database, for NaI, µt/ρ = 8.225× 10−2 cm2/g at E = 600 keV.5 The density of
NaI is ρ = 3.67 g/cm3 [63, Table 8.3], making µt(600 keV) = 0.3019 /cm. For ∆x = 2 in = 5.08 cm,
µt∆x = 1.53.
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fixed point along the axis of the detector cylinder, in this work the source may have
any orientation with the detector.

With the stated assumptions, computing the integral in Equation 4.11 is tightly
connected to computing the intrinsic total efficiency. The intrinsic total efficiency
εt,i(E) is the probability of interaction within the detector for a particle with energy
E that enters the detector (see Appendix d.1 or [63, §10.d]). Just as for 〈φ(E)〉Vd

,
the intrinsic total efficiency depends on the four factors given above. To make this
explicit, we will write the efficiency as depending on the source location ~x and detector
location ~x′, εt,i(E;~x,~x′). The probability of interaction within the detector with the
total attenuation coefficient µt(E) for given a particular track of length s is

p(s, E) = 1− e−µt(E)s .

However, there is in general no closed-form equation to compute the mean of this
probability of all particle tracks through the detector. This necessitates a Monte Carlo
ray tracing approach to estimate the value of the integrals.

Accounting for these dependencies, the drf for a detector located at ~x′ and source
at ~x is

σd(~x′, E′;~x, E) = σ̃d(E′, E) εt,i(E;~x,~x′) . (4.13)

Here σ̃d(E′, E) is a normalized probability distribution function. For a particle with
energy E that interacts in the detector, σ̃d describes the probability of depositing
energy E′.

4.4.1 Simplified response functions

That the drf is dependent on space complicates the solution algorithm, so we make a
few approximations to simplify the problem. The first approximation is to neglect the
spatial dependence of the detector efficiency,

εt,i(E;~x,~x′) ≈ εt,i(E) .

For detectors that are nearly spherical, this is a decent approximation. For detectors
with a high aspect ratio, this approximation can cause significant error. Using a 2” ×
2” detector, the error induced at lower energies (10s to 100s keV) can approach 50%.
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However, at energies around 1 MeV, the error is less than 5%. Since the higher energy
photons will likely carry more information than low-energy photons, and hence be
more valuable for solving the ip, this approximation is not altogether unreasonable.

The second simplification is motivated by numerical simulations rather than
physical reasons. If the drf is assumed to be the identity operator, then the detector
response is the flux spectrum. The identity drf is

σd(E′, E) = δ(E− E′) ,

such that
r(E′) =

∫ ∞

0
dE δ(E− E′) φ(E) = φ(E′) .

The advantage of this drf is that it allows for the testing of the source mapping
algorithm without concern for the particular physics of the detector.

4.4.2 Discrete response functions

The above discussion has focused on continuous drfs. However, in practice they
must be discretized. Analogous to energy binning performed by an mca, the drf

can be computed in discrete energy bins. The drf is a matrix, Σd, with the row
index corresponding to the detector energy E′ and the column index with the particle
energy E. Each column is a discrete probability distribution function representing the
likelihood of scoring in bin E′ from a photon with incident energy in a particular E
bin. If ~φ is the flux spectrum at the detector, then the measured spectrum is

~r = Σd~φ .

As a practical matter, the energy bins for the mca and the drf will likely not be
equal. In this case, either the detector spectra or the drf must be rebinned according
to the binning of the other. Knoll outlines the basic approach in rebinning a spectrum
from one set of bin edges to another [63, §18.b]. We use a standard energy mesh and
rebin both the mca spectra and the drf (using a 2-d rebinning) to this energy mesh.
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4 .5 sensitivities

Having provided the details concerning the source and the responses, we can now
proceed to describe the form of Equation 4.3.

4.5.1 Uncollided photopeak sensitivities

The discrete form of the uncollided adjoint equation for the detector location l, detector
direction a, and photopeak p is

L+s,unc~φ
+
lap =~σ

lap
d . (4.14)

The vectors ~φ+
lap and ~σ

lap
d have nc elements each, and L+s,unc is a nc × nc matrix. The

adjoint source vector ~σlap
d is zero everywhere except for the element corresponding

to the spatial cell where the detector is located. This element is equal to the intrinsic
peak efficiency at the energy of peak p, that is, the probability an uncollided particle
at this energy that enters the detector will deposit all its energy within the detector.
The adjoint transport operator matrix L+s,unc considered in this section only accounts
for uncollided flux; it ignores the scattering of particles.

While the adjoint flux vector only contains one group, we place it in a vector of
zeros to make it length npc. This larger vector is

~φ+
lap,peak =



~0
...
~0
~φ+

lap
~0
...
~0


,

where the p-th zero vector is replaced by ~φ+
lap. Each zero vector has length nc, so

~φ+
lap,peak ∈ Rnpc .
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From Equation 3.20, the uncollided peak p response due to source ~q peak ∈ Rnpc is

rpeak
lap =

(
~φ+

lap,peak

)T
~q peak . (4.15)

Often we exclude certain spatial regions from the source unknowns using the projec-
tion matrix Ppeak ∈ R

npc×n′pc ,

~q peak = Ppeak~q ′
peak , (4.16)

where ~q ′peak ∈ R
n′pc . The matrix Ppeak is formed from an identity matrix of size npc

that is missing npc − n′pc columns. Because PT
peakPpeak = In′pc

PT
peak~q

peak = ~q ′peak .

Then the adjoint flux and source vectors are both shortened to n′pc elements by

substituting ~q peak = Ppeak~q ′
peak into Equation 4.15,

rpeak
lap =

(
~φ+

lap,peak

)T
Ppeak~q ′

peak

=
(

PT
peak~φ

+
lap,peak

)T
~q ′peak

=
(
~φ+′

lap,peak

)T
~q ′peak .

Thus we only need save the adjoint fluxes in ~φ+′

lap,peak ∈ R
n′pc .

So far we have only discussed the solution to Equation 4.14 for a particular set of
(l, a, p) indices. However, there are nlap equations for the uncollided peaks, and we
store the reduced adjoint ~φ+′

lap,peak for each as a row in matrix Speak ∈ R
nlap×n′pc . (The

order of the rows should follow the same convention as the flat and reshape functions
introduced in section 4.2.1.) With this matrix, all the uncollided responses can be
computed with the matrix-vector product:

~r peak = Speak~q ′peak .
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4.5.2 Continuum sensitivities

The discrete form of the adjoint equation for the detector location l, detector direction
a, and detector energy group g is

L+s ~φ
+
lag =~σ

lag
d . (4.17)

The vectors ~φ+
lag and~σ

lag
d have ngc elements. L+s is a ngc × ngc matrix form of the trans-

port operator, including uncollided and scattering physics. The adjoint source vector
~σ

lag
d is zero everywhere except for the ng elements corresponding to the spatial cell

where the detector is located. These elements contain the column of Σd corresponding
to the energy of group g.

Applying the adjoint flux ~φ+
lag from Equation 4.17 gives the total response for

detector location-direction-group (l, a, g),

rtotal
lag =

(
~φ+

lag

)T
~q total .

However, we are interested in the two components of the total response,

rtotal
lag = ∑

p∈Sg

rpeak
lap + rcont

lag .

In the previous section, the peak response was computed. The expression for the
continuum response is then

rcont
lag = rtotal

lag − ∑
p∈Sg

rpeak
lap ,

(
~φ+

lag,cont

)T
~q total =

(
~φ+

lag

)T
~q total − ∑

p∈Sg

(
~φ+

lap,peak

)T
~q peak .

Substituting for ~q total from Equation 4.4, this equation in terms of the peak and
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continuum sources is

(
~φ+

lag,cont

)T (
G~q peak +~q cont

)
=
(
~φ+

lag

)T (
G~q peak +~q cont

)
− ∑

p∈Sg

(
~φ+

lap,peak

)T
~q peak . (4.18)

Since ~q peak and ~q cont are independent variables, equating their terms separately from
Equation 4.18 yields the two independent equations:

(
~φ+

lag,cont

)T
~q cont =

(
~φ+

lag

)T
~q cont , (4.19)

and

(
~φ+

lag,cont

)T
G~q peak =

(
~φ+

lag

)T
G~q peak − ∑

p∈Sg

(
~φ+

lap,peak

)T
~q peak . (4.20)

Since Equation 4.19 must be valid for an arbitrary (non-negative) ~q cont, we can equate
the two adjoint fluxes

~φ+
lag,cont =

~φ+
lag . (4.21)

This tells us that the sensitivities for the continuous spectrum source are the same as
that for the total responses. This is unsurprising since the continuous-spectrum source
can only contribute to the continuum response, not to the peak response.

Similarly, since Equation 4.20 must be valid for any ~q peak, the sensititivies of the
continuum response on the peak sources are

~φ+
lag,pc = GT~φ+

lag,cont = GT~φ+
lag − ∑

p∈Sg

~φ+
lap,peak . (4.22)

This tells us that the sensitivity of the continuum response to the peak sources is
the same as the total response, with the exception of the removal of the photopeaks
caused by uncollided particles. The multiplication by the GT matrices removes groups
which contain no peaks.

Again, certain spatial regions can be excluded from the source unknowns using
the matrices Ppeak and Pcont. Then the adjoint flux and source vectors are shortened to
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n′pc and n′gc,

rcont
lap =

(
~φ+

lag,pc

)T
~q peak +

(
~φ+

lag,cont

)T
~q cont

=
(
~φ+

lag,pc

)T
Ppeak~q ′

peak
+
(
~φ+

lag,cont

)T
Pcont~q ′

cont

=
(

PT
peak~φ

+
lag,pc

)T
~q ′peak

+
(

PT
cont~φ

+
lag,cont

)T
~q ′cont

=
(
~φ+

lag,pc
′
)T

~q ′peak
+
(
~φ+

lag,cont
′
)T

~q ′cont .

Similarly to the peak responses, we also store the reduced peak-source-to-continuum-
response sensitivities ~φ+′

lag,pc for the (l, a, g) indices as a row in matrix Spc ∈ R
nlag×n′pc .

Likewise for the continuous-source-to-continuum-response sensitivities, we store
~φ+′

lag,cont for the (l, a, g) indices as a row in matrix Scont ∈ R
nlag×n′gc . With this matrix,

all the continuum responses can be computed with the matrix-vector product

~r cont = Spc~q ′peak
+ Scont~q ′cont .

Finally, we can write the peak and continuum equations in one block matrix
equation, [

Speak 0
Spc Scont

] [
~q ′peak

~q ′cont

]
=

[
~r peak

~r cont

]
, (4.23)

or simply
S~q ′ =~r .

If one knows at the start that there are only discrete-energy gamma sources, or
alternately, that the source is only continuous spectrum, then this equation could be
simplified accordingly.

An adjoint calculation, and hence an adjoint flux, is necessary for each element
in the response vector~r. More precisely, for Equation 4.23 we would need as many
adjoints as there are rows in the equation, that is nlag̃.

4.5.3 Directional detector responses

The adjoint calculations to solve Equation 4.14 and Equation 4.17 are performed with
Denovo.27 Because the test problem has a large region of air where scattering is low
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and the adjoint sources are localized, the discrete ordinates calculation is likely to
suffer from ray effects. One method to reduce these effects is the first-collision-source
method, where the uncollided flux is computed using a ray-tracing procedure. Then
the scattering source from the uncollided flux is fed to the SN solver. This is the
method we used to compute all the adjoint fluxes.

In specifying the adjoint source for the uncollided flux solver, the location and
drf of a point detector is given. For the full 4π detector readings, this is sufficient
control. However, for the collimated 2π measurements, we must provide additional
source information. This could be done in two ways. One way might seek to accurately
model the detector shielding by modeling the lead shield around the detector location.
Instead of pursuing this route, we chose to specify an angularly-dependent point
adjoint-source. Denovo has the ability to distribute the point source in n cosine bins,
where the user must specify a reference direction, n + 1 bin edges, and the probability
of each bin. For the 2π collimated detectors, we specified three cosine bins, with edges
{−1,−ε, ε, 1}, with 0 < ε � 1. For the results in chapter 5, we set ε = 0.001. The
first or last cosine bin made the primary contribution. The middle bin was created to
make the transition between forward and backward “fuzzy,” since collimation will
produce a similar effect. Note that the simplified scalar flux forms of Equation 4.14

and Equation 4.17 are not sufficient to specify the source in this situation since it is
not isotropic.

4.5.4 Adjusting sensitivities for logarithmic transform

The Bayesian inference algorithm depends on the sensitivities of the responses with
respect to the model parameters. The adjoint flux gives the response sensitivities with
respect to the source intensities. Since the model parameters are the logarithm of the
source intensities, the adjoint fluxes must be adjusted to serve as the sensitivities.

To determine the adjustment, we examine the dependence of the i-th response
R(~α)i, which depends on the j-th model parameter ~αj. In the logarithmically trans-
formed system, this is equal to ~αj = loge(~qj/q0), where q0 > 0 is a constant. The
derivative of interest is

dRi

d~αj
=

dRi

d loge(~qj/q0)
=

dRi

d~qj
~qj (4.24)

Thus, to convert the sensitivity with respect to the source strength ~q to the model
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parameter~α, we must multiply the adjoint flux by the source strength , the unknown
quantity in the ip solution process. The dependence of the sensitivities (or Jacobian) on
the independent variables~α is the reason we are compelled to use nonlinear iterations.
The (i, j) element of the sensitivity matrix is

[Sα(~α)]ij =
dRi

d~qj
~qj = [Sα]ij q0 e~αj .

The mapping from state space to response space is

R(~α) = S~q = S q0 e~α ,

where the exponential e~x operates on the vector ~x element-wise.

4 .6 nonlinear iteration

Since R(~α) is nonlinear due to the logarithmic transformation, the one-step linear
process described in section 2.2.2 is insufficient, and a nonlinear optimization is need.
As described in section 2.2.3, one approach to minimizing Q(~α) is a Newton-type
method. This is the method that we adopt for this work. These methods are able to
use the gradient and Hessian information to more efficiently find a minimum. The
equations developed in section 2.2.3 are more general than we require, so we describe
here how these are simplified and computed.

In this case, C is block-diagonal since Cαr is zero. Then

C−1 =

[
C−1

α 0
0 C−1

m

]
, (4.25)

and
Q(~z) = ~zTα C−1

α ~zα +~zTr C−1
m ~zr . (4.26)

The gradient of Q is then

~∇αQ(~z) = C−1
α ~zα + STC−1

m ~zr . (4.27)
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and the Hessian is

∇2
αQ(~z) = C−1

α + STC−1
m S +

∂S

∂~α
C−1

m ~zr

≈ C−1
α + STC−1

m S ,

where we have used the Gauss-Newton approximation that ∂S
∂~α ≈ 0.

To efficiently compute the gradient, we solve the following two equations:

Cα~xα = ~zα ,

Cm~xr = ~zr .

The gradient is then
~∇αQ(~z) = ~xα + ST~xr . (4.28)

To efficiently compute the action of a Hessian on a vector ~p, ∇2
αQ(~z)~p, we solve

the following two equations:

Cα~xα = ~p ,

Cm~xr = ~v = S~p .

The matrix-vector product between the Hessian and ~p is then

∇2
αQ(~z)~p = ~xα + ST~xr . (4.29)

In solving these linear systems, it is important to take advantage of the form of the
coefficient matrix, especially when the number of source unknowns is large. In every
problem tested, Cα and Cm were sparse. While the small number of responses utilized
in our studies meant that storing Cm as a dense matrix is cheap, storing a dense Cα

was often beyond the capacity of ram or even hard-disk storage. Thus, Cα was stored
as a sparse matrix, and sparse linear solvers were used for solving the Cα equations.

Bound-constrained optimization One side benefit of using the logarithmic transfor-
mation was the conversion of the optimization problem from a constrained to an
unconstrained form (see section 4.2.2). In general, an unconstrained problem is simpler
to solve than an constrained one. However, in our numerical experiments, using an
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unconstrained solver frequently led to overflow errors. As seen in section 4.5.4, the
exponential of the current ~αk iterate is needed to compute the sensitivities at each
nonlinear step. Unfortunately, a moderately large step taken in the logarithmic space
can easily cause overflow in floating point arithmetic. To avoid these large steps in
logarithmic space, we use a bound-constrained Newton optimizer. These algorithms
accept lower and upper inequality constraints on each component of the solution.
These lower and upper bounds enclose a feasible set of points for the solution. While
the iteration vector is within the feasible set, the iteration proceeds as a normal Newton
method. In this case, the constraints are said to be inactive. However, when the next
iterative step falls outside the feasible set, the violated constraints are then active and
the iteration vector is modified to fall within or on the boundary of the feasible set.
Some constraints can be active and others inactive at a particular iteration. See chapter
5 in Ref. [61] for a fuller description of constrained optimization.

It is reasonable to impose an upper bound because physical limits exist to the in-
tensity of radiation that could be produced in a given volume. In the results presented
in the following chapter, no lower bound was supplied, and the upper bound was
α = 30 or q ≈ 1× 1013 photons/cm2/s. This is well above any reasonable expectation
for the source intensity in our laboratory experiment. For a different application, this
value could be adjusted. In our experience, all of the constraints were inactive at
convergence.

We use the fmin_tnc routine from the Scipy59 numerical library for Python.74 This
function is based on the TNBC Fortran routine written by Nash90 and available on
Netlib. This routine uses a quasi-Newton method, only accepting the gradient of the
cost functional as input, and building an approximation to the Hessian.

Local minima For a well behaved functional, Newton methods generally are successful
in finding a minimum. Unfortunately, there is no guarantee that this minimum is
a global minimum; often it is only a local minimum. Indeed, in the test problems
investigated in this work, we often found that the optimization routine found a local
minimum. This was the case when the initial iteration was set to the mean of the prior
distribution. However, when a much larger initial guess was supplied, the optimizer
found the global minimum, or at least a minimum much nearer to the global minimum.
More details of the initial guess’ effect on the identified minimum will be discussed in
the next chapter.
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4 .7 computing the posterior covariance

After the best model parameter values~α∗ are found by the optimization routine, the
posterior covariance matrices can be computed using Equations 2.51 to 2.53. We are
primarily interested in the covariance data for the model parameters~α contained in
Cbe

α . One modification of Equation 2.51 is necessary; the covariance and sensitivity
matrices must be evaluated at ~α∗ [112, p. 69–70]. Thus, the best-estimate for the ~α
covariance matrix is

Cbe
α = Cα − Cαd(~α

∗) Cd(~α
∗)−1 Cαd(~α

∗)T

where Sα = Sα(~α∗). While Cα is sparse, Cbe
α is dense. Given the large dimensions of Cα,

only certain elements of Cbe
α are computed, usually only the diagonal.
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5SOURCE MAPPING IN A CONTROLLED ENVIRONMENT

As stated in chapter 1, the application of the method considered in this thesis is to
map the radiation source spectral and spatial distribution in a room. We conducted an
experiment in NC State University’s Burlington Engineering Laboratories room 2144

using small 137Cs and 60Co gamma sources, measuring the radiation using a sodium
iodide detector. This experiment is more fully described in Appendix c. From the
measured data, we use the source mapping method described in chapter 4 to estimate
the location and intensity of the sources by energy.

Before presenting the results of the source mapping, we describe the layout of
the room and sources, and the details of the numerical simulations of the room
configuration.

5 .1 description of problem

The following sections provide a summary of the experiment; Appendix c has a more
thorough description.

Room layout The setting for this experiment was 2144 Burlington Engineering Labs
at NC State University, which was formerly a laboratory and had been unoccupied
in recent years. The room is roughly a cube with side length of 4 meters. The walls
are concrete block. There is a pillar on the wall next to the windows. The room is
mostly empty, with the exception of the counter top and cabinets on the east wall.
A fuller description of the room is given in Appendix c.2.3, which also includes the
material description. A Cartesian coordinate system is used to model the space, with
the origin located at the northwest bottom corner of the room. The x-axis points south
and the y-axis points east. Figure c.3 shows the room’s components with the overlaid
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Cartesian coordinates.

Source placement For this experiment, we have available some low-activity gamma
sources from the nuclear engineering student laboratory. These sources were 137Cs and
60Co. 137Cs produces one peak at 662 keV and 60Co produces two gamma energies,
1173 and 1332 keV. Table c.2 gives further information about these sources, and
Table c.4 provides the activities of each of the sources. The six 137Cs sources had a
combined activity of about 3.5 µCi, while the older shorter-lived 60Co sources summed
to less than 1 µCi. Since each source had a low activity, these eleven sources were
combined to increase the detector count rates and decrease the time needed per
measurement.

The 137Cs sources were placed in a small box in the southwest corner of the
room. We chose a point source configuration to give the source mapping method
an easier challenge at first. The five 60Co sources were arranged in a line along the
bottom of the chalkboard on the west wall. Unfortunately, one of the 60Co sources was
significantly stronger than the others, making the effect of the line less pronounced.
The locations and intensities are pictured in Figure 5.1. The coordinate locations are
given in Table c.6.

Safety concerns limited our ability to take measurements with a more widely
distributed source. While a spread-out source would be a more fitting challenge for
the developed methods, it is not practical to handle a radioactive source of this nature
in the laboratory setting to which we had access.

Detectors We used a sodium iodide scintillation detector coupled with an mca to
capture the gamma spectra at six different locations around the room. In addition to
bare detectors that look equally in all directions, we used lead collimation to confine
detection to specific directions. Specifically, we arranged the collimator so that the
detector had a 2π hemisherical view. At each location, seven spectra were possible –
one 4π and six 2π views (±x, ±y, and ±z). Due to time constraints, not all views at
each location were measured. The measurement data is contained in the electronic
archive attached to this thesis. The uncollided portion of the data can be seen in
Figure d.2.
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(a) 137Cs 661.7 keV emissions.
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(b) 1173 keV and 60Co 1332 keV emissions.

Figure 5.1: The true distribution of the 137Cs and 60Co sources, as represented on
the Cartesian computational mesh. The 137Cs sources are grouped together in a point
source, and the 60Co sources are aligned in a row parallel to the x-axis. The natural
logarithm of the source intensity is plotted, that is, loge(qpijk/q0), where q0 is a unit
scalar needed to make the argument of the logarithm dimensionless and qpijk is the
source in peak p in spatial cell (i, j, k). The units of qpijk and q0 are particles emitted
per second. In reality, the blue cells have no sources, but they are shown here with
small source intensities to aid comparison with the results presented below.
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5.1.1 Permutations of the source mapping problem

Even though the 137Cs and 60Co source distribution does not change, we solve this
problem in a variety of different ways to gain confidence in the mapping algorithm
and establish best practices. They are broken into two main sections.

1. The simpler problem uses simulated “measurements.” The flux at the detector is
computed using mcnp. Beginning with synthetic data allows us to use more
detector locations, since we are not constrained by long counting times. It also
eliminates the biases and errors found in measured data. While the use of
synthetic data does not fully test the method, our use of it is not a blatant inverse
crime because the “measurements” are computed with Monte Carlo and the
forward model with a deterministic transport code. However, It could be labeled
an inverse misdemeanor. We perform two tests with synthetic data. The first
uses only the uncollided or photopeak information from the detector spectrum.
Second, we use the full spectrum, both photopeaks and scattered radiation. In
both cases, the responses are the scalar flux at the detector. We could apply the
detector efficiency to both sides of the equation, but this would not change the
solution.

2. The second test uses the experimentally measured data. This is more difficult
than the synthetic data because the measurements are limited. Furthermore, the
errors in this data are much larger than the model-mismatch in the previous
trial. Because of the difficulty in peak identification in a noisy spectrum, some
of the data points that we would expect to be present are not detected. For
the measured data, we only map the source with the uncollided photopeaks,
ignoring the continuum spectrum. We do this for a number of reasons. First, the
uncollided flux dominates the spectrum since most of the room is air. Second,
we began but did not complete the integration of the full NaI detector response
function into the method. The responses in this case are still the scalar flux at
the detector. We convert the measured count rate into flux using the process
described in Appendix d.
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5 .2 transport simulation details

As mentioned in the previous section, we used both Monte Carlo and deterministic
radiation transport codes in this test problem. The Monte Carlo code mcnp simulated
the synthetic “measurements” and allowed a comparison against the measured data.
The deterministic transport code Denovo provided the forward model used in the
inversion method. The following sections give some of the details of these calculations.

5.2.1 MCNP simulation of the experiment

For the 137Cs and 60Co source distribution, we executed two separate mcnp simula-
tions. The first was for the 4π bare detector responses. The six detectors were modeled
using the f5 point detector tallies. All six tallies were included in one simulation. The
second simulation was for the collimated 2π detectors. There would be many ways
to implement such a tally. We chose to include a 10 cm lead cube centered at each
detector location. Then we added point detector tallies at the center of each face of
the cube, separated from the cube by 0.5 mm. The amount of lead around each tally
point is roughly equal to the amount used in the experiment. Each tally used the
standard energy grid for the fine bins, from 100 to 2900 keV (see Appendix c.4.2). The
number of particle histories was greater than 106, which made the relative error of
the significant tallies less than 5%. The mcnp input file is included in the electronic
archive attached to this thesis.

The scalar fluxes computed by mcnp at the various locations are shown in
Figures 5.2, 5.9 and 5.11.

5.2.2 Denovo adjoint discrete ordinates model

Denovo,27 the multigroup discrete ordinates code from Oak Ridge National Laboratory,
performed the adjoint simulations needed for the source mapping inversion. A library
of adjoint flux solutions is built for every source (location, direction, energy group)
combination. This library was built before the inverse source algorithm was executed.
The code uses the multigroup energy discretization. We used the fine-group shielding
library from scale,11 but the groups below 100 keV and above 1.332 MeV are ignored.
The boundaries of these groups are listed in Table 5.1.

For the uncollided gamma simulations, it would be most accurate to use the
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Table 5.1: The energies E and group index i for the 16 energy group structure
used for this test problem. The structure is based on the fine-group gamma
shielding cross section library from scale.11 Energies, in keV, are the upper limit
of the respective group. The groups above 60Co’s highest peak (1.332 MeV) and
below 100 keV are omitted.

i E i E i E

1 1.44× 103 7 7.00× 102 13 3.00× 102

2 1.33× 103 8 6.00× 102 14 2.60× 102

3 1.20× 103 9 5.12× 102 15 2.00× 102

4 1.00× 103 10 5.10× 102 16 1.50× 102

5 9.00× 102 11 4.50× 102 1.00× 102

6 8.00× 102 12 4.00× 102

a The last value is the lower boundary of the lowest-energy group.

pointwise cross sections at the respective energy of each line. However, all deter-
ministic calculations involving the discrete-energy gammas were performed with
group-collapsed cross sections. Since the groups are not wide, this introduces minimal
error. Each of the three gamma energy lines appears in a distinct energy group.

Denovo uses a Cartesian spatial grid. The grid size for this problem was 52 by 53

by 54 cells. Although most cells were roughly cubes with 10 cm sides, the mesh was
not uniform because of material interfaces. All of the results are plotted using this
spatial grid. We use the step characteristic spatial discretization because it produces
uniformly non-negative fluxes.

The adjoint source was specified using the first collision source feature of Denovo.
This feature requires that a point source (or multiple point sources) be supplied. In
this case, we had to execute each adjoint source one at a time, so we only specified
one source per execution. For the 4π view, an isotropic point source is sufficient.
However, for the 2π views, the point source must be anisotropic. In Denovo, this
is accomplished by supplying a probility distribution function of the cosine of the
source emission with respect to a specified vector, as described in section 4.5.3. For
the discrete-ordinates calculation, the angular quadrature was a Gaussian-Legendre
product set with N = 8.

The Denovo input file is included in the electronic archive attached to this thesis.
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5 .3 inverse mapping details

In this section we describe a few of the specific choices we made in applying the
method developed in chapter 4.

5.3.1 Peak and continuum

As summarized in Equation 4.23, it is in general possible to have both peak and con-
tinuum sources and responses. However, only peak sources apply when dealing with
gamma-emitting radionuclides. These discrete energy photons can scatter, producing
a continuum response. Thus, in our circumstance, Equation 4.23 simplifies to[

Speak

Spc

]
~q ′peak

=

[
~r peak

~r cont

]
, (5.1)

since ~q ′cont = 0. As stated above and demonstrated later, the continuum response in
this case is not as significant as the peak response, so the simplified equation

Speak~q ′peak
=~r peak , (5.2)

may be sufficient to compute the source map. We solve the test problem with synthetic
data using only the peak responses and also solve it with the peak and continuum
responses. The solutions in both cases turn out to be similar.

5.3.2 Prior distributions on~α and~r

The Bayesian method outlined in earlier chapters requires that we provide a prior dis-
tribution on both the model parameters~α and the responses~r. The distribution of the
measured responses is more obvious because it corresponds to the measurement error.
However, the distribution on the model parameters is more ambiguous. As we have
already stated, the prior on the source intensities will be modeled as a log-normal dis-
tribution, which requires two parameters, the mean and standard deviation. We chose
a small mean and a large standard deviation. The small mean reflects our belief that
the source is likely not spread out over the entire region. (If there is reason to believe
the source is widely distributed, then a larger prior mean would be recommended.)
The large prior standard deviation shows that we have relatively little confidence in
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the prior mean. In this case, we set the prior mean to 10−2 particles/second, which
translates in logarithmic scale to α0 = loge 10−2 ≈ −4.6. The log-normal prior stan-
dard deviation is set to 6, which gives a ±1σ interval of [2.5× 10−5, 4.0] and a ±3σ

interval of [1.5× 10−10, 6.6× 105]. Thus, the prior distribution spans a wide range of
scales.

We assume that all the correlations between sources intensities in each cell and
group or peak are zero. There are reasons that such correlations would exist. If two
peaks are produced by the same nuclide, then a strong positive correlation should be
assigned for the source in each cell for those two peaks. Although this is the case for
the two 60Co peaks, we treat them as uncorrelated in these test problems. If the source
was believed to be spatially smooth, one could assign a positive correlation between
neighboring cells.

The response standard deviations are based on estimates of the experimental error.
For the mcnp synthetic measurements, we make 3 assumptions to compute the error:

1. The count time for all “measurements” is the same.
2. The total counts (but not the count rate) in each photopeak follows Poisson

statistics.
3. We can tune the fictional “count time” to adjust the counting errors.

With those assumptions, we chose to set the error of the largest measurement to a
specified relative error τmin. The Poisson standard deviation for a count rate r is

σr =

√
c

t
=

√
r · t
t

=

√
r
t

,

where c is the number of counts and t is the count time. Thus, the count time t to
ensure that the largest measurement has error τmin is computed as

t =
1

τ2
min max (~rm)

.

In the tests that follow, τmin = 0.01. If the elements in the vector ~rm span many
orders of magnitude, then this algorithm may produce relative errors for the smaller
components that are greater than one. This is unphysical for Poisson variables. These
elements are commonly the detector readings from directions pointing away from
the source, and so we would expect them to be zero or very small. Here, we use the
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criterion τ ≥ 1 to indicate very small entries. For those entries, the absolute standard
deviation is set equal to a value similar in magnitude to the largest of the small values.
This important step allows the fitting procedure to search within a wider window
for the nearly-zero entries. Otherwise, the residual from these entries can overwhelm
the chi-square functional, thereby diluting the impact of larger, more important data
points.

The uncertainties for the experimentally-measured data are available via the
propagated Poisson error, described further in section 5.4.3.

5.3.3 Newton method implementation

As stated in section 4.6, we use the bound constrained quasi-Newton optimization
routine fmin_tnc to optimize Q(~α). This routine takes as input

• the functional Q(~α),
• the gradient of Q(~α), ~∇αQ,
• the initial guess~αinit,
• lower and upper bounds for each component of~α, and
• the maximum number of function evaluations.

We use the function’s default convergence criterion of

ftol =
√

ε , xtol =
√

ε , (5.3)

where ε is the machine epsilon [94, §2.5.3], which is approximately
√

ε ≈ 1.49× 10−8

for double-precision floating-point numbers. The stopping criteria are

| f (~xn)− f (~xn−1)| ≤ ftol , ‖~xn −~xn−1‖ ≤ xtol . (5.4)

In practice, the routine typically stopped on the f test, before the x criterion was
achieved. The maximum number of function evaluations was set to 2000, but this total
was rarely reached.

5.3.4 Restricting cells permitted to contain a source

One way to narrow the search for the source is to exclude spatial cells which can
not contain source. This process is described in chapter 4, especially section 4.5.
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Equation 4.16 shows that this transformation can be accomplished simply by the
multiplication of an identity matrix with missing columns. In the test problem, the
physical rationale for removing such cells from the model parameter list~α is that we
assume that the sources are not airborne. They must be located near or in the walls,
floor, ceiling, or cabinets. Thus, we eliminate the spatial cells in the interior of the
room for all peak energies. The excluded cells are evident in the source plots in the
following sections, for example, Figure 5.4. The excluded cells appear as the white
regions in z-planes 6 through 47.

The Denovo spatial mesh has nc = 52 · 53 · 54 = 148 824 cells. When the interior
cells are excluded, there are n′c = 84 039 remaining cells where the source intensity
and spectrum are sought. About 44% of the cells have thus been excluded.

5 .4 results for cs -137 and co -60 source mapping

This section presents the results of the source mapping algorithm applied to the 137Cs
and 60Co distributions. First we describe the results with the synthetic “measure-
ments” generated by mcnp, and then we present those results using the experimental
measurements.

5.4.1 Synthetic data: photopeak responses only

Here we present the simplest of the test problems, with the use of only the photopeak
synthetic measurements. This corresponds to Equation 5.2. For this problem, there are
126 rows in this linear system (6 locations × 7 directions × 3 energy peaks). Using a
uniform initial guess of~αinit = 10, the Newton method optimized the Q functional.
At the optimal point~α∗, the posterior covariances were computed.

The measured responses are compared to the best-fit responses in Figure 5.2.
The response computed via Speak~q

′peak resulting from the true source distribution
is also shown. As this figure shows, the best-fit and measurements match well for
the larger fluxes, above roughly 10−2. As the bottom subplot shows, the relative
difference between the best-fit predictions and measurements is typically less than
10%. However, for the smaller fluxes, the agreement is much weaker. These smaller
fluxes are observed when the detector is facing away from the source. The discrepancy
is due to the different way in which the collimation is simulated in mcnp and Denovo.
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Thus, it is not surprising that they are not identical. However, it is important that
in either case the flux is small, close to zero. For these small responses, the values
computed with the adjoints and the true source are much smaller than 10−8. This is
because the Denovo-estimated contribution for sources behind a collimated detector
is zero, while the lead shields in mcnp allow a small contribution.

The mean of the posterior of the source distribution for each of the three gamma
lines is shown in a volume rendering in Figure 5.3. Notice that for the 137Cs peak,
the source is predicted to be located in the southwest bottom corner, as it truly is.
However, the predicted source is spread over a few separated cells. For the two 60Co
peaks, the algorithm predicts the source around the true location.

The distribution can be examined more thoroughly in Figures 5.4a to 5.4g, which
provide in x-y slices the mean and the standard deviation of the posterior source
distribution. In general, the predicted source distribution matches well, if not perfectly,
the true distribution pictured in Figure 5.1.

The posterior uncertainty is notable largely because it is unchanged from the prior
distribution. The measurements have not reduced the source uncertainty for the vast
majority of cells. While it would clearly be preferable to have reduced the uncertainty
in these low-source cells, it is not surprising that we have seen so little reduction given
the underdetermined state of the equations. This large uncertainty also hints at other
possible solutions. Since the cells adjacent to the predicted source cells have such a
wide uncertainty, we have not ruled out the possibility of a source being located in
one of the neighboring cells. Instead, the particular cell with the source should be
taken as the center of a neighborhood where the source is likely to be found.

In the cells with significant source, the uncertainty is greatly reduced. Table 5.2
shows the estimate of the source at each energy, summing the contributions over space
since most of the sources of the same energy are nearby. This value can be compared
to the true source activity. In this case, the 137Cs source magnitude is overestimated
by a factor of roughly 90. The reported uncertainty does not reflect this discrepancy.
However, after examining the location of the 137Cs source prediction, we see that it is
predicted to be near the outside of the wall. This means that the flux emerging from
the wall on its way to the detector will be significantly reduced due to attenuation
within the wall so that achieving the same detector response would require a much
stronger source intensity. Thus, the overprediction is explainable and would have been
eliminated had we restricted the sources to exist only adjacent to wall and floor cells

83



10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

R
es

p
on

se
Fl

u
x

(/
s
·c
m
2
)

Computed with true source
Computed best fit
MCNP "measurement"

10−7
10−6
10−5
10−4
10−3
10−2
10−1

A
b
so

lu
te

E
rr

or

10−3
10−2
10−1
100
101
102
103
104

R
el

at
iv

e
E
rr

or

1
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123

2
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123

3
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123

4
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123

5
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123

6
full
123

+x
123

-x
123

+y
123

-y
123

+z
123

-z
123Peak:

Direction:

Location:

Figure 5.2: A comparison of the measured and computed responses for the source
mapping using only photopeak synthetic responses. The continuum responses are
ignored in this case. The synthetic measurements obtained with mcnp are in red.
The green “computed best fit” responses are generated using the Denovo forward
model and the best-estimate source prediction. Likewise, the “computed with true
source” responses are generated with the Denovo forward model and the actual source
configuration.
For measurements where no “computed with true source” data point is present,
the value is off the bottom of the scale. The absolute error is the magnitude of the
difference between the computed values and the measurement. The relative error is the
ratio of the absolute error to the measurement value. The surface area of the markers
in the bottom two subplots is proportional to the logarithm of each measurement. The
computed responses with the largest relative error correspond to measurements with
small magnitudes.
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(a) 137Cs 661.7 keV emissions. (b) 60Co 1173 keV emissions.

(c) 60Co 1332 keV emissions.

Figure 5.3: Volume rendering of the mean of the posterior distribution of the source
using the photopeak synthetic responses. The source prediction has suppressed source
regions in cells around the primary source cells. This results in dark areas near the
sources visible in the insets.
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(a) 137Cs 661.7 keV emissions.

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

Plane
 3 of 53

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350

y 
(c

m
)

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350
y 

(c
m

)

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0

z=6.6 cm

(b) 137Cs 661.7 keV emissions.

Figure 5.4: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak synthetic re-
sponses. The natural logarithm of the source intensity is plotted, that is, loge(qpijk/q0),
where q0 is a unit scalar needed to make the argument of the logarithm dimensionless.
The units of qpijk and q0 are particles emitted per second.
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(c) 60Co 1173 keV emissions.
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(d) 60Co 1173 keV emissions.
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(e) 60Co 1332 keV emissions.
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(g) 60Co 1332 keV emissions.

Figure 5.4: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak synthetic
responses. (continued)
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Table 5.2: Comparing the predicted source emissions against the true intensities.
The intensities are in total emissions per gamma line per second. They are
summed over all spatial cells. The true source intensities are computed with the
activities from Table c.4 and the yields from Table c.2. Unless noted otherwise,
the initial guess was set to ten,~αinit = 10.

Energy (keV)

661.7 1173.2 1332.5

True 1.075± 0.044× 105 2.19± 0.14× 104 2.20± 0.14× 104

Peak 8.9 ± 0.7 × 106 2.38± 0.05× 104 3.90± 0.27× 104

Peak,~αinit = 1 1.09 ± 0.10 × 105 2.12± 0.11× 104 2.12± 0.49× 104

Peak & continuum 2.80 ± 0.10 × 104 1.21± 0.06× 104 9.67± 0.41× 103

Experiment 7.69 ± 0.73 × 105 4.21± 0.52× 104 2.88± 0.14× 104

in the room’s interior. The two 60Co source estimates are much closer to the true value
differing by 9% and 77%, that constitute excellent and good agreement, respectively,
in the context of the present application.

Varying initial guess As the high uncertainties in much of the posterior suggest, this
problem can have many local minima in which the optimizer can get stuck. Indeed,
using an initial guess equal to the prior mean, the optimizer found a local minimum
that was far from the true solution. Through experimentation, we found that an initial
source guess much larger than the prior mean allowed the Newton optimizer to come
much closer to the functional’s value for the true source distribution.

To quantify the effect of different starting Newton iterates, we ran a sequence
of optimizations with a range of values for the initial guess selected to cover about
9 decades in linear scale. Each initial guess was uniform in space and energy. Our
experience of improved performance with a larger value of the prior mean cited above
is confirmed with these results. First, Figure 5.5 shows the chi-square functional at
the optimal~α∗. A lower value, implying a closer fit, indicates a better solution to the
ip. At lower values of the initial guess, the chi-square functional is almost 100 times
larger than the smallest achieved chi-square. Since there are 126 responses, we should
expect the chi-square value to be close to 126. The best achieved chi-square is within a
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Figure 5.5: Change in chi-square and the number of function evaluations with respect
to the intensity of the uniform initial guess for optimization.

factor of 5 to 10 from this optimal value, while the chi-square of the poorer converged
distributions (resulting from initial guess smaller than about 1) is about 100 times too
large. The optimizer seems to find the local minimum significantly faster, in fewer
function calls, than it requires to find the true minimum.

Finally, Figure 5.8 presents the summed source intensity for each initial guess
value (quantities similar to those reported in Table 5.2). The low-magnitude initial
guesses tend to drastically underpredict the amount of source present. This is because
these solutions typically predict the source in regions close to the detectors. Thus, not
only is the source intensity incorrect, but the spatial distribution is not accurate as
well. A sample prediction for the 137Cs peak is given in Figure 5.6.

As the initial guess increases, the total source prediction becomes rather accurate.
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Figure 5.6: The local minimum reached when using~αinit = −6. The slices in the x-y
plane are the mean and standard deviation of the posterior distribution of the 661.7
keV emissions from 137Cs using the uncollided, photopeak responses. The source is
primarily predicted in cells close to detector locations.

The solutions produced by an initial guess of 1 to 6 seem to produce the most accurate
solutions, where the sources are not located within the walls. The chi-square value in
this range is around the best-achieved value of 500. This is the region with the most
accurate predictions. The predicted source map with~αinit = 1 is shown in Figure 5.7,
and the source intensities summed over space are given in a row in Table 5.2. The
predicted source map matches almost exactly with the true source. The chi-square
value is 505, and the chi-square per degree of freedom is 4.0. This prediction matches
the true source better than the predictions with larger~αinit because the sources are not
located within the concrete walls.

As the initial guess increases beyond 6, the source intensities are more often
overpredicted. As seen in the example above for~αinit = 10, the reason for the overpre-
diction is the placement of the source deep within the wall. Thus, this error is not as
unreasonable as it first appears.
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(c) 60Co 1332 keV emissions.

Figure 5.7: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak synthetic
responses with a favorable initial guess,~αinit = 1.

5.4.2 Synthetic data: photopeak and continuum responses

In the previous subsection, the source mapping was performed using only photopeak
responses, solving Equation 5.2. In this section, both the photopeak and continuum
responses are considered via Equation 5.1. For the synthetic data, the continuum
responses are simply the scattered fluxes binned according to the multigroup energy
structure. They only contain the collided photons; they exclude the uncollided photons.
The continuum responses are also computed using the f5 tally in mcnp, binned in
the fine energy grid. These results are then summed into the scale energy groups.
There are still three photopeak results np = 3, and there are 16 energy groups ng = 16,
so ng̃ = 19. Using the same 6 locations and 7 detection directions per location, there
are now a total of 6 · 7 · 19 = 798 responses.

As for the previous results, we again used a uniform initial guess of~αinit = 10. The
Newton method required 1832 function calls and 184 Newton iterations to converge.
At the optimal point~α∗, the posterior covariances were computed.

The mcnp-measured responses are compared to the best-fit responses in Figure 5.9.
In these figures, the first 126 response indices are for the peak responses, and the
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remainder are the continuum response. Figure 5.9a shows the photopeak responses,
while Figure 5.9b shows the continuum responses. Also shown are the responses
computed with the adjoints based on the true source distribution. Again the best-fit
and measurements match well for the larger fluxes, above roughly 10−2. The relative
difference between the measurements and best-fit predictions is poorer than for the
photopeak-only results (section 5.4.1). In that case, most of the large responses agreed
to within 10%. Here, the relative difference for many of the large responses is between
10% and 100%.

The mean and standard deviation of the posterior distribution for the three energies
are plotted in Figures 5.10a to 5.10l. The predicted source is similar to the true
distribution and that predicted with only the photopeak responses. There are some
false positives in areas without a real source, but the magnitude of the source in
these cells is much lower than the value in the true source region (remember that
the distribution is plotted on a logarithmic scale). This prediction is not noticeably
better than for the photopeak-only prediction, and the uncertainties are no lower. We
attribute this lack of change to the low amount of scattering in this problem. The
uncollided flux at the detector is larger than the scattered flux, usually by a factor of
10–1000. For a medium with more highly scattering material and less air, this would
presumably not be true.

The predicted source for the 60Co is not a line, as the true spatial arrangement of
the 60Co sources were. However, the prediction does show some spatial spread of the
source, in the z-planes surrounding the true height. Although the actual line source is
not accurately reconstructed, the results provide some evidence that the source is not
simply a single point.

The source at each energy summed over space is also provided in Table 5.2. The
137Cs prediction is less than the true value by a factor of four. The predicted location
for the source is about 25 centimeters closer to the nearby detectors (locations 5 and 3)
than the true source, so it is not surprising that the source strength at this location is
underestimated. The 60Co peak intensities are within a factor of two of the true value.

5.4.3 Experimental measurements

The above results used synthetic “measurements” that were computed by mcnp. In
this section, we present the results of the source mapping using the experimental
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(a) Photopeak responses.
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Figure 5.9: Measured and computed responses for the source mapping with synthetic
photopeak and continuum responses. For indices where no “computed with true
source” data point is present, the value is off the bottom of the scale. See Figure 5.2
for an explanation of the absolute and relative error plots.

94



0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

Plane
 3 of 53

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350

y 
(c

m
)

8

6

4

2

0

2

4

6

8

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350

y 
(c

m
)

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0

z=6.6 cm

(a) 137Cs 661.7 keV emissions.

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

Plane
 6 of 53

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350

y 
(c

m
)

8

6

4

2

0

2

4

6

8

0 100 200 300 400
x (cm)

0

50

100

150

200

250

300

350

y 
(c

m
)

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0

z=23.7 cm
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(d) 137Cs 661.7 keV emissions.

Figure 5.10: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using both the photopeak
and continuum synthetic responses. The natural logarithm of the source intensity is
plotted, that is, loge(qpijk/q0), where q0 is a unit scalar needed to make the argument
of the logarithm dimensionless. The units of qpijk and q0 are particles emitted per
second.
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Figure 5.10: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using both the photopeak and
continuum synthetic responses. (continued)

measurements. Appendix c contains a fuller description of the experiment. Since the
source map prediction for the peak and peak-and-continuum results were very close,
we will only use the photopeak responses in this test. This frees us from dealing with
the full two-dimensional detector response function. However, we must still convert
the scalar flux to detector counts, which is a function of the detector efficiency.

Detector efficiency The deterministic radiation transport code computes scalar fluxes,
while the detector data is in count rates. To translate between the two, we must
compute the intrinsic peak efficiency for the NaI detector at each of the three photon
energies. The intrinsic peak efficiency is a measure of the full-energy scores in a
detector versus the number of photons entering the detector at that energy (also known
as the inward partial current). The peak intrinsic detector efficiency depends on the
source-to-detector configuration, which is unknown to us as we seek to determine the
source distribution itself. Thus, an average efficiency is employed. We computed this
efficiency with the F8 tally in mcnp using a spatially-distributed source to capture
the averaging process. The other step in converting from flux to counts is to change
the scalar flux to inward partial current. This is a function of the mean chord length
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(l) 60Co 1332 keV emissions.

Figure 5.10: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using both the photopeak and
continuum synthetic responses. (continued)
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in the detector. A full description of this process is available in Appendix d, as well as
a comparison of the experimental measurements with modeled values.

We express the response in Equation 5.2 as scalar fluxes, just as we did in the syn-
thetic data cases above. This means that the measured count rates must be converted
to scalar fluxes using the detector efficiency. The converted measured scalar fluxes are
plotted in Figure 5.11.

Limited data The measured data set is smaller than the synthetic data set. Because
of time constraints on the experiment, not all 6 locations × 7 directions = 42 configu-
rations were counted. The list of configurations experimentally counted is shown in
Figure c.9, and the specific counts used for this experiment can be found at the bottom
of Figure 5.11. As this second figure shows, there are several measured data points
which are missing, even when the modeled flux was significant (> 10−2 particles/cm2·
s). The missing data is a consequence of the difficulty in finding peaks in noisy spectra.
Since the source activities were low and the count times were limited, some of the
peaks were not resolved. We would not expect to count a peak when the detector is
facing away from the source, but all of the 4π detectors should be expected to register
all three source peaks. Unfortunately, this is not the case here. However, this deficiency
in the experimental data would not have materialized if the deployed sources were
stronger or the counting times were extended beyond what was deemed reasonable
in the context of this proof-of-principle study. Recognizing that this deficiency is not
intrinsic to our new approach we circumvented the adverse effects of the limited num-
ber of experimental data points by supplementing them with a few synthetic points
that we believe would have been experimentally obtained (to within experimental
error) had we had access to stronger sources or a longer time frame. The process of
supplementing the measured data with synthetic values is detailed below.

Because of the limitations in the data, attempts to map the source using only the
measured data were unsuccessful. The predicted source distributions had many false
positive source locations while missing the true locations. Given the several missing
data points visible in Figure 5.11, the poor results are not surprising. However, we
still wish to make some use of the data. Thus, we substituted 14 of the synthetic
data points for missing photopeaks in the experimental data, out of 69 total exper-
imental points. If the sources were more intense or massive, it would be less likely
that one of the photopeaks was missed in the measured counts. Unfortunately, the
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Figure 5.11: Measured and modeled scalar flux for the experiment in 2144 Burlington.
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radioisotope sources that were available to us for use in this experiment were weak.
Even with long count times (several hours to a few days, see Figure c.5), the peaks
were often barely visible, especially for configurations with a large source-to-detector
separation, due to the 1/r2 geometric attenuation. The photopeaks from background
radiation were often of the same magnitude as the peaks of interest, aggravating the
challenge of locating the true peaks in the detector’s response. To supplement the
measured data, we replaced the missing data points with the synthetic data described
in section 5.4.1. A photopeak data point was considered missing if it had a value of
zero and the modeled value for that location-direction-peak combination was greater
than 5× 10−3 photons/cm2/s (see Figure 5.11). For the 662 keV energy, there were 2

missing data points, 6 missing for 1173 keV, and 6 missing for 1332 keV. Over all ener-
gies, 14 modeled values were above the cutoff. Hence, the number of synthetic points
supplementing the experimental data adds up to 14 out of 69 total points. To make
the synthetic measurements more realistic, they were randomly perturbed according
to a Gaussian distribution with standard deviation equal to the estimated error of
each synthetic measurement. In choosing the missing data points, we have used the
information about the source location. Thus, in an end-use application, substituting
the synthetic data is not a viable approach, but it is a reasonable alternative for the
proof-of-principle purposes of this study.

The uncertainties in the non-zero experimental data are the values obtained through
the propagation of the experimental Poisson error. For the synthetic supplemental data,
we used the same method as for the purely synthetic case to estimate Poisson uncer-
tainties for a fictitious counting time. For data points with a value of zero, the absolute
uncertainty is assigned to be a small value, in this case 2× 10−4 particles/cm2· s.
The choice of this value controls the level of fitting on the zero responses by the
optimization routine.

The computed and measured responses are given in Figure 5.12. The effect of the
small absolute uncertainty assigned to zero data is evident in the suppression of the
best-fit responses corresponding to measurements of value zero. These points, shown
in green, are held to about 10−3 in this case.

The source distributions are shown for the three gamma lines in Figure 5.13.
Although there are some small false positives, the general shape of the true source
is predicted, perhaps not as well as for the previous, fully synthetic cases. This
difference is largely due to the number of measurements available to achieve an
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Figure 5.12: Measured and computed responses for the source mapping with experi-
mental data. For indices in the top subplot where a data point is missing, the value
is off the bottom of the scale. See Figure 5.2 for an explanation of the absolute and
relative error plots. The Denovo-computed response using the true source distribution
for the 662 keV peak at location 2 looking in the +z direction is about 100 times
too large. This is because the 137Cs source is located within the fuzzy region around
cos θ = µ = 0 modeled in Denovo (see section 4.5.3). This inaccuracy is also present in
Figure 5.2 and Figure 5.9a, but it is obscured there by the larger number of responses.

accurate optimization of the predicted versus measured responses.
The source intensities in each peak are given in the last row of Table 5.2. The 662

keV peak intensity is overestimated by a factor of 7 because the source location is
within the wall. The 1173 keV peak intensity is roughly double the true value. The
1332 keV intensity is the best estimate, being in error by 30%. Not coincidentally, the
predicted spatial distribution for this peak is quite accurate.
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(d) 60Co 1332 keV emissions.

Figure 5.13: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak responses
of the experimental data. The natural logarithm of the source intensity is plotted,
that is, loge(qpijk/q0), where q0 is a unit scalar needed to make the argument of the
logarithm dimensionless. The units of qpijk and q0 are particles emitted per second.
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5 .5 carpet source test

The source distribution for the previous test problem (see Figure 5.1) is highly localized.
The 137Cs sources are in a small box, and the linear arrangement of 60Co sources
approximates a point since one of the 60Co sources is much more radioactive than
the others. However, one of the advantages of the source mapping method is the
flexibility to map more broadly distributed sources. To test this ability, we designed a
source distribution with a planar source, which we term the carpet source because
of its resemblance to a rectangular piece of carpet lying on the floor. The setting for
the carpet source is still 2144 Burlington Engineering Labs. The sources are contained
within

x ∈ [0, 350] , y ∈ [0, 250] ,

and the 137Cs source is at z = 1 and the 60Co source is at z = 2 (all dimensions in
cm). Within the carpet source region, the source strength varies linearly in space. The
intensity of the 137Cs source is described by

S′′137Cs(x, y) =
x

350

[
particles emitted

cm2 s

]
,

and the intensity of each of the 60Co energy peaks is described by

S′′
60Co

(x, y) =
y

250

[
particles emitted

cm2 s

]
.

This distribution is depicted in Figure 5.14.
For safety and security concerns, we do not have access to such a source. Thus,

our only recourse is to simulate the carpet source. We generate a set of synthetic
measurements in mcnp, just as in section 5.4.1. These scalar fluxes are shown as the
‘mcnp “measurement”’ in Figure 5.15.

Just as in the previous tests, we maximized the posterior distribution using the
quasi-Newton function. It converged in 131 Newton iterations and 1276 function eval-
uations. The fitted response vector is plotted along with the synthetic measurements
in Figure 5.15. The fit for the majority of the large fluxes is within 10% of the measured
values, while even some of the smaller fluxes have a good fit.

The full source prediction for the three peaks is given in Figures 5.16a to 5.16k.
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(b) 1173 keV and 60Co 1332 keV emissions.

Figure 5.14: The true distribution of the 137Cs and 60Co sources for the carpet source
problem. In reality, the blue cells have no sources, but they are shown here with small
source intensities to aid comparison with the results presented below.
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Figure 5.15: Measured and computed responses for the source mapping with the
carpet source. For indices where no “computed with true source” data point is present,
the value is off the bottom of the scale. See Figure 5.2 for an explanation of the absolute
and relative error plots.

The 137Cs source prediction is skewed to the +x side of the rectangle, with no source
being predicted for x ≤ 100 cm. This bias is consistent with the true tilt of the source,
but it fails to indicate that there is some source in the x ≤ 100 cm region.

The 60Co source predictions show a similar bias toward the +y side of the source
region. There is a source location or two that are falsely predicted under the cabinet.
The most striking feature of the solution is the speckled pattern. The optimization
routine apparently favors giving one cell a stronger source rather than distributing it
smoothly over a few neighboring cells. While the speckled pattern does not accurately
predict the smoothness of the true source, it does convey that it is spatially distributed
over the floor.

The source intensity for each energy peak summed over space is given in Table 5.3.
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(f) 60Co 1173 keV emissions.

Figure 5.16: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak responses
for the floor-distributed source. The natural logarithm of the source intensity is plotted,
that is, loge(qpijk/q0), where q0 is a unit scalar needed to make the argument of the
logarithm dimensionless. The units of qpijk and q0 are particles emitted per second.
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(k) 60Co 1332 keV emissions.

Figure 5.16: Slices in the x-y plane of the mean (upper plot) and standard deviation
(lower plot) of the posterior distribution of the source using the photopeak responses
for the floor-distributed source. (continued)
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Table 5.3: Comparing the predicted source emissions per
energy per second summed over space against the true
values for the carpet test problem.

Energy (keV)

661.7 1173.2 1332.5

True 4.4± 0.0× 104 4.4± 0.0× 104 4.4± 0.0× 104

Peak 6.3± 0.2× 104 5.3± 0.3× 104 8.6± 0.2× 104

All of the predicted intensities are within a factor of two of the true value. The
overprediction is consistent with the source being predicted within the floor, whereas
the true source was on top of the floor and so had only air attenuation before reaching
the detector.
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6CONCLUSIONS AND FUTURE WORK

Here we discuss the results presented in the previous chapter and suggest extensions
of this work.

6 .1 conclusions

Predicting source locations and intensities The locations of the source predictions when
using the synthetic data were mostly accurate. There were few false alarms, in which
a source is predicted in a location where there is no source. The source intensities
for the false alarms were insignificant as compared to the intensity at the primary
locations. The 137Cs prediction usually looked like the point source that it should
be, with the first test being an exception. The 60Co line source was never accurately
mapped, but this is not surprising given the large differences in intensity in the 60Co
sources. Although the predictions typically had one cell with the primary 60Co source,
there were also surrounding cells with a non-negligible 60Co sources which gave the
impression of a more distributed source.

As Table 5.2 demonstrated, the source magnitudes were generally on the correct
order of magnitude, although they were not usually within the predicted uncertainty.
In fact, the predicted uncertainty was consistently too small. In cases where the source
prediction was deep within a wall, the source intensity was much larger than the true
value. The larger intensity compensated for the extra material attenuation that was
not present in the true configuration. One way to avoid this would be to eliminate the
interior of the walls from the list of permitted source cell unknowns.

The elimination of most of the void cells was effective in limiting the source to
desired locations. It had the added benefit of decreasing memory and computation
demands of the algorithm.
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Modest reduction in uncertainty The most striking conclusion when focusing on the
standard deviation of the posterior is its near similarity with the prior (except where
source cells were identified). The measured data had no effect on the uncertainty
in the majority of cells. This implies that the resolution of the data is rather poor,
at least in terms of this problem. The collimated detectors certainly increased the
resolving power of the data, but more and better information is necessary to shrink
the uncertainty on more cells. This extra data could be provided by a more sensitive
directionally-dependent detector.

The high uncertainty also points to a multiplicity of solutions. For instance, in the
137Cs source posterior, the cell with the primary source (which has a much smaller
uncertainty) is surrounded on all sides by cells with the prior uncertainty. We interpret
this to mean that the primary source cell could easily be shifted a cell or two without
much change in the response. Thus, even if the primary cell has a small uncertainty,
the surrounding cells with high uncertainty caution against putting too much faith
into the predicted location and intensity.

Choosing the initial guess Although an obvious choice, using the mean of the prior
distribution as the initial guess was an effective way to find a local minimum in the
chi-square functional which was far from the true solution. Our experience indicates
that selecting a uniform guess with a magnitude several orders of magnitude greater
than the prior mean allows the Newton optimizer to find a minimum that is close
to the true solution. With a favorable initial guess, the predicted source is accurate
within the posterior uncertainty.

Peak and continuum responses For the problem of finding the 137Cs and 60Co sources
in 2144 bel, it appears that using only the photopeak responses produced by the
uncollided flux is sufficient. The addition of the continuum response in the form
of the scattered flux does not improve the source distribution prediction. Since the
uncollided flux at the detector is significantly larger than the scattered flux, this result
is reasonable. The scattered radiation would play a more important role in systems
with shields or sources that were otherwise blocked from direct view of the detector.

Overall efficacy of the source mapping algorithm In the tests presented here, the source
mapping algorithm produces predictions which, although far from perfect, capture the
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most important spatial and energy features of the true source distribution. Due to the
ill-posed, underdetermined nature of the problem, these order-of-magnitude estimates,
for instance, of the total source intensities, are the best that could be expected with
a small detector array. The location of the predicted sources was often within 20 cm
of the true location; the worst estimate was in error by 80 cm. For a room with side
lengths of 4 meters, accuracy in the tens of centimeters, that is, a few to 20%, is helpful
for narrowing the search area. The optimal chi-square value was a useful metric in
judging the proximity of the predicted distribution to the true solution. Finally, the
uncertainties in the predicted source distribution indicated the existence of other
nearby solutions, which could only be eliminated with higher-resolution data.

6 .2 future work

A more complete detector response function To include the continuum response (instead
of the photopeaks only) with the experimental data, the two-dimensional detector
response would be required. We avoided the use of the full drf by using only the
peak intrinsic efficiency. The drf can be generated with Monte Carlo methods, but
empirical adjustments are still typically required, for instance, to describe the Gaussian
broadening of the peaks.84

As mentioned above, the drf is dependent on the source-to-detector positioning.
To capture this effect fully would require computing a separate drf for each source
cell, or at least modifying a base drf for the effects of each unique orientation. This
would be the most accurate drf approach. However, one could average the drf over
various orientations, and use the resulting drf to unfold the detector spectrum into
the scalar flux at the detector. Then this flux could be fed to the source mapping
algorithm. This should be more accurate than simply using the photopeaks, but it
lacks some fidelity because the drf must be somehow averaged.

The unfolding of the spectra to produce the scalar flux at the detector is a related
inverse problem. The drfs have been traditionally applied to convert from the flux to
the response, which is the simpler direction. Detector covariance counting data could
improve the results of the unfolding.

Finding a near-global minimum As already observed, there is a very real possibility of
finding a local minimum when optimizing an underdetermined set of equations. In
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this work, we relied on a heuristic rule which was effective in helping the Newton
optimizer to find a minimum close to the true solution. However, this heuristic could
be eliminated by the use or combination of other optimization methods. A brute force
or Monte Carlo selection of initial guesses might be means to gain confidence in the
Newton solution. Also, global stochastic optimizers might be useful, although they
are typically much slower.

Proper response probability distribution The variance-based Bayesian method used in
this work assumes Gaussian distributions on the model parameters and responses. The
state variables were modeled with a log-normal distribution because they can not be
negative. Likewise, the responses cannot be negative, and so a Gaussian distribution
for these variables is not theoretically valid. In practice, the Gaussian distribution was
serviceable, but a log-normal distribution or a non-variance-based method would be a
sounder approach to adopt in future work.

Blind test The experimental validation in this work used non-blind data, in which the
author both conducted the experiment and produced the source mapping. For a true
validation of the methods, the data should be gathered by a third party to eliminate
bias in the mapping procedure.

Other related inverse problems This method could be extended to related inverse prob-
lems discussed in section 1.2. If the radiation source affects the geometry or material
cross sections, then the underlying problem is genuinely nonlinear and additional
transport simulations would be necessary at each iteration of the optimization process.
Adjoint flux solutions for the initial configuration would not be relevant for later
iterations as the cross sections or geometrical details of the system change.
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ARESPONSES AND THE ADJOINT FLUX

As shown in section 3.1.1, in numerical transport calculations, we can compute a
discrete approximation to the adjoint scalar flux ~φ + with the matrix equation

L+~φ + =~σd ,

where L+ is a matrix approximating the adjoint transport operator and~σd is a vector
approximating the detector response. Then in the discrete approximation, the detector
response from a source ~q is

R =
〈
~φ +,~q

〉
= (~φ +)T~q . (A.1)

This is true only with the vacuum boundary conditions of Equation 3.13 and Equa-
tion 3.14. If the boundary conditions are not vacuum, this expression involves the
bilinear concomitant, as in Equation 3.11. However, in all problems described here,
these vacuum boundary conditions are imposed.

By definition, the detector response can be computed with the forward flux,

R = 〈φ, σd〉 = (~φ)T~σd . (A.2)

We desire that the response computed via the adjoint or forward flux is the same, that
is

~φT~σd = (~φ +)T~q . (A.3)

However, due to discretization and truncation errors, these two inner products are
generally not equal. The level of agreement of these two methods is examined in this
appendix.
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In the next section, a simple test problem is used to compare the accuracy of the
adjoint-computed responses. In the second section, we examine the cause of numerical
discrepancies based on the ordering of the adjoint and discretization operations.

a .1 comparing the forward - and adjoint -computed responses

In this section we present a comparison using a test problem of the two methods of
computing the detector response. For this application, we plan to use two production-
level radiation transport codes to compute the forward and adjoint fluxes. The codes
that we consider are tort

96 and Denovo.27 For initial tests, we desire that the relative
difference between the forward-computed and adjoint-computed detector responses,

ε =

∣∣ (~φ +)T~q− ~φ T~σd
∣∣

~φ T~σd
(A.4)

is as small as possible. The response computed using the forward numerical flux
should match the response computed with the adjoint numerical flux to a certain
number of digits. For real-world problems, ε = 10−2 or 10−3 may be sufficient, but
higher precision may be helpful in numerical tests.

We conducted some numerical experiments with a two-group test problem in a
heterogeneous cube with one source cell and another detector cell. The configuration
is described in Table a.1. A unit source in both groups was placed in x ∈ [1, 2]
and y, z ∈ [0, 1], and the detector was a unit response function in both groups in
x, y, z ∈ [4, 5], all dimensions in centimeters. Both forward and adjoint fluxes were
computed using a variety of spatial discretizations available in tort and Denovo.

The forward and adjoint fluxes were then used to compute ε in Equation a.4.
Table a.2 compares ε for three mesh refinements and three levels of flux inner-
iterations convergence criteria (10−3, 10−6, 10−9). In this table, two categories of spatial
discretization methods emerge. In the first category, ε is within a factor of 100 of
the convergence criterion. In the second category, ε is only a weak function of the
convergence criteria, often only changing from a few percent to a few tenths of a
percent over the range of convergence criteria. We call the first category numerically-
adjoint spatial discretizations. Table a.3 categorizes the spatial discretizations that we
considered in our numerical experiment.
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Table a.1: Description of the problem for numerical-adjoint test. The spatial domain
is a 5 cm cube, with x, y, z ∈ [0, 5]. Vacuum boundary conditions are applied, thus
eliminating the need for the bilinear concomitant.

Macroscopic 2-Group Spatial Angular
Cross Sections (/cm) Mesh Quadrature

z ∈ [0, 3]:

σt =

[
1
1

]
,

σs =

[
1/2 0
1/5 3/4

]
z ∈ (3, 5]: void

5× 5× 5 (coarse)
10× 10× 10

(medium)
20× 20× 20 (fine)

LQ16
[72,

§4-2]

a .2 commutativity of adjoint and discrete operations

Although we can gain some insight through the results in the preceding section,
it is also instructive to consider the methods that radiation transport codes use in
discretizing the transport equation and applying the adjoint operation. Indeed, the
order of applying the discretization and adjoint to the SN equations is important. The
discretized adjoint equation is different in general than the adjoint of the discrete
forward system. As we will see, the common practice in SN codes (at least tort and
Denovo) is to supply the solution of the discretized adjoint equation. The identity of
Equation a.3 will be true (to the floating-point convergence tolerance) if the adjoint-
of-the-discretized equation is used. However, if the discretized adjoint solution is
used, then Equation a.3 will only be in close agreement when the truncation error in
the computed fluxes are small and the inner iterations are fully converged. To make
this clear, we develop a very simple discretized transport equation in the following
subsections.

a.2.1 Methods

Before moving to the adjoint equation, we briefly state the relevant forward SN

equation and its discretized form. Next, the continuous adjoint equation is discretized.
Finally we derive the adjoint of the discrete forward system. First, the energy and
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Table a.2: Comparison of relative inner product difference ε of Equation a.4 for
various tort and Denovo spatial discretizations and flux convergence criteria.

Relative Inner Product Error

Convergence Criterion
No. of cells 10−3 10−6 10−9

tort 53 0.042 0.042 0.042
Optimum 103 0.033 0.033 0.033
theta-weighted 203 0.028 0.028 0.028

53 0.11 0.11 0.11
Optimum 103 0.087 0.087 0.087
xyz nodal 203 0.023 0.023 0.023

53 0.0273 0.0273 0.0273
Characteristic 103 0.0047 0.0049 0.0049

203 0.0029 0.0024 0.0024

Denovo 53 0.14 8.4× 10−5 8.6× 10−8

Linear 103 0.019 4.3× 10−5 6.2× 10−8

discontinous 203 0.0014 2.0× 10−5 1.7× 10−8

53 0.078 2.5× 10−5 1.2× 10−7

Tri-linear 103 0.017 2.4× 10−5 0.0
discontinuous 203 0.0025 1.1× 10−5 4.2× 10−9

53 0.0802 0.000 13 2.5× 10−8

Step 103 0.020 2.8× 10−5 5.7× 10−8

characteristic 203 0.0023 1.8× 10−5 8.5× 10−9

53 0.021 1.3× 10−5 2.5× 10−8

Weighted 103 0.022 6.6× 10−5 1.1× 10−7

diamond-difference 203 0.0014 2× 10−5 1.7× 10−8

53 0.056 0.025 0.025
Theta-weighted 103 0.026 0.042 0.042
diamond-difference 203 0.0074 0.0061 0.0061

Weighted 53 0.17 0.23 0.23
Diamond-difference 103 0.38 0.41 0.41
with flux fixup 203 0.16 0.16 0.16
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Table a.3: Numerically-adjoint spatial discretizations in tort and Denovo in the
test.

Numerically Denovo weighted diamond difference
adjoint Denovo linear discontinuous

Denovo tri-linear discontinuous
Denovo step characteristic

Not tort mode 0 – optimum theta-weighted
numerically tort mode 2 – optimum xyz nodal
adjoint tort mode 7 – characteristic

Denovo weighted diamond difference, flux fixup
Denovo theta-weighted diamond difference

angle variables are discussed.

Energy In the energy variable, the only change required for the adjoint is the re-
versal of E and E′ in the scattering kernel. Whether this is done before or after the
multigrouping approximation is applied, the result is that the scattering matrix is
transposed. Thus, for our current purpose, it is enough to consider the one-speed
equation.

Angle In the discrete ordinates method, there are a set of M directions along which
we solve the transport equation. Since the results of these equations are combined in a
linear sum, we only consider one of the equations, corresponding to direction m.

Space To be concise, we treat here only one spatial variable x. Treating the full
three spatial dimensions would add little to the final conclusions. The one-speed SN

equation for ordinate m is

µm
dψm

dx
+ σtψm(x) = qm(x) x ∈ [a, b] ,

where qm includes the scattering and fixed sources. From here on, the m index will be
suppressed. We consider only vacuum boundary conditions ψ(a) = 0 for µ > 0.
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Discrete Forward Equation Integrating over a homogeneous cell i, the equation is

µ

∆i

(
ψi+1/2 − ψi−1/2

)
+ σt,iψi = qi ,

where ∆i is the width of cell i, ψi±1/2 are the right and left edge fluxes, respectively,
and ψi is the cell-average flux. If we take as the closure for the cell-average flux a
weighted sum

ψi =
1 + αi

2
ψi+1/2 +

1− αi

2
ψi−1/2 ,

the forward discrete equation for one cell is

µ

∆i

(
ψi+1/2 − ψi−1/2

)
+

σt,i

2

(
1 + αi

2
ψi+1/2 +

1− αi

2
ψi−1/2

)
= qi . (A.5)

Discrete Adjoint Equation If the continuous one-speed SN adjoint equation is

−µ
dψ+

dx
+ σtψ

+(x) = q+(x) ,

then analogously the discretized adjoint equation is

− µ

∆i

(
ψ+

i+1/2
− ψ+

i−1/2

)
+

σt,i

2

(
1 + αi

2
ψ+

i+1/2
+

1− αi

2
ψ+

i−1/2

)
= q+i . (A.6)

Discrete Forward System If we divide the domain [a, b] into I intervals, then we have I
unknowns. Writing the system of I equations in terms of the cell-edge fluxes, we have



a1

b1 a1
. . . . . .

bi ai
. . . . . .

bI aI





ψ1−1/2

ψ1+1/2

ψ2+1/2

...
ψi+1/2

...
ψI+1/2


=



0
q1

q2
...
qi
...

qI


. (A.7)
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The coefficient matrix is a lower-triangular, bidiagonal matrix. The elements of the
matrix are

ai =
µ

∆i
+

σt,i

2
(1 + αi) ,

bi = −
µ

∆i
+

σt,i

2
(1− αi) .

The left boundary condition has been included in the system to accommodate the
adjoint operation. Since the first element in the right hand side is zero, the element in
position (1,1) in the matrix is arbitrary, so it is set to a1.

Adjoint of Discrete System To obtain the adjoint of Equation a.7, we simply transpose
the coefficient matrix:

a1 b1

a1 b2

a2 b3
. . . . . .

ai bi+1
. . . . . .

aI−1 bI

aI





ψ+
1−1/2

ψ+
1+1/2

ψ+
2+1/2

...
ψ+

i+1/2
...

ψ+
I−1+1/2

ψ+
I+1/2


=



q+1
q+2
q+3
...

q+i+1
...

q+I
0


. (A.8)

The coefficient matrix is an upper-triangular, bidiagonal matrix. The boundary condi-
tion has flipped to the right edge of the interval.

The equation for cell i is now[
µ

∆i−1
+

σt,i−1

2
(1 + αi−1)

]
ψ+

i−1/2
+

[
− µ

∆i
+

σt,i

2
(1− αi)

]
ψ+

i+1/2
= q+i . (A.9)

This equation contains values of ∆, σt, and α for two adjacent cells, i − 1 and i.
This shows that the system in Equation a.8 is different than that represented by
Equation a.6, since that system has only one cell’s data in each row. Thus, the adjoint-
of-the-discrete-equation is different than the discrete-adjoint-equation.

If ∆, σt, and α are uniform throughout the interval [a, b], then Equation a.6 and
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Source Detector

Figure a.1: Demonstrating the non-uniform mesh for the test problem. This is a cut
of the x-y plane.

Equation a.9 would be equivalent. However, in the general case they are not.
Even though this is shown for 1d, the principle still applies to 3d. As long as

the downwind coupling of two adjacent cells occurs, the system will be a block
lower-triangular matrix. When transposed, the same issues will occur.

a.2.2 Numerical results

In general, Denovo solves for the adjoint by flipping the sign of each ordinate and
transposing the scattering matrix. It does not further modify (with one exception) the
spatially discretized equation (the 3d analog of Equation a.5). This procedure solves
the discrete form of the continuous adjoint SN equations. Thus, it should be possible
to see a breakdown in the equivalence of the inner products 〈φ, σd〉 and 〈φ+, q〉, at
least in certain circumstances. If the forward discrete solution is a good approximation
to the continuous forward solution, then the discretized adjoint solution should
approximate the solution of the adjoint of the discrete system. However, when the
discrete forward solution is inaccurate, Denovo’s adjoint may be less trustworthy to
reproduce 〈φ, σd〉 = 〈φ+, q〉.

We built a one-group problem to demonstrate this phenomenon. First, the mesh is
non-uniform so that the adjoint-of-the-discrete is not the same as the discrete-of-the-
adjoint. The Cartesian mesh is 18× 1× 1, and the dimensions are 10 cm in x and 1

cm in y and z. The first and last cells are 1 cm in x. The middle 16 cells are periodic
cells with period 2. The first of the two cells is 0.9 cm thick, and the second of the two
is 0.1 cm thick (in the x direction). See Figure a.1 for an illustration. The boundary
conditions are vacuum.

The cells are all of the same material, with total scattering cross section σt and
scattering ratio c = 1/4. We vary the total macroscopic cross section σt to regions for
which the transport solver will produce results with significant truncation error. This
assumes that as the cells become increasingly optically thick, the local truncation error
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Figure a.2: Accuracy of adjoint as discrete solution degrades.

of the solution will increase.
A unit source is in the far left cell, and a detector with unit response is in the far

right cell. The measure of the adjoint error is

ε =

∣∣∣∣∣
〈
~φ,~σd

〉
−
〈
~φ+,~q

〉〈
~φ,~σd

〉 ∣∣∣∣∣ .

The iterative convergence tolerance is τ = 10−10, so ε ≈ 10−10 is about as good as
could be expected.

The relative error ε for the spatial discretizations available in Denovo is shown in
Figure a.2. The behavior of the results fall into three groups:

Adjoint of discrete The weighted diamond difference (wdd) results produced ε ≈ τ for
all σt. This is despite the extremely poor solutions (with large trunctation error)
at high σt, where the detector response was overestimated by much more than a
factor of 1010. This indicates that the adjoint implemented for wdd is indeed the
adjoint of the discrete forward system, not the discretized adjoint equation. Both
Denovo’s source code and documentation verify that the wdd implementation
uses different equations for the forward and adjoint spatial equations, in contrast
to the other spatial discretizations.

Linear discretizations These methods (step characteristics, linear discontinuous, and
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trilinear discontinuous) have ε ≈ τ at low σt, but at higher optical thicknesses
ε� τ. This is the expected behavior based on the analysis in Appendix a.2.1.

Non-linear discretizations These methods (weighted diamond difference with negative
flux fixup and theta weighted diamond difference) do show an improving ε

as the cell optical thickness decreases. However, this error never reaches the
iterative convergence tolerance τ. The non-linearities in these methods are likely
to blame for the higher errors as compared to the linear methods’ results.

Conclusions From the above analysis and numerical results, we conclude that Denovo
solves the discretized adjoint equations, not the adjoint of the discretized forward
SN system. The lone exception to this is the wdd implementation, which solves the
adjoint of the discrete forward system.

If the discrete solution of the forward and adjoint equations is accurate (that is,
their local truncation error is small), then it is likely that ε will be small, at least for
the linear discretizations. If the discrete solution is inaccurate, then we should not
expect that ε be small, unless we use wdd.
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BGAMMA CROSS SECTION UNCERTAINTIES

As mentioned in section 4.2.3, one can include many kinds of uncertainties when
using Bayesian inference. One source of uncertainty in the predictive model is physical
properties; in the present case, this would include photon cross sections. In the end,
we chose to exclude this data from the adaptable model parameters because the cross
section uncertainties were much smaller than the source uncertainties. This appendix
explains the reasoning behind the choice to exclude the cross sections from~α.

For the deterministic transport calculations, we use the fine-group shielding cross
sections from scale.11 These, in turn, are generated from the Evaluated Nuclear Data
File version seven (endf/b -vii .0).17 While this compilation of nuclear data includes
estimated covariance matrices for neutron data (that is, when the incident particle is a
neutron), there are no included uncertainties for the photon cross sections.

Some argue that since photon cross sections are theoretical, their uncertainties
are negligible. While the uncertainties in neutron data can be much larger, photon
cross sections can still have significant error. In the words of Hubbell, “theory is an
interpolation of experiment for purposes of computing and compiling” photon cross
sections.49 To estimate the uncertainty in the cross section data, one would thus com-
pute the spread of high quality experimental results about the evaluated data. There
have been graphical comparisons of the evaluated data against measurements,47,50 but
there is no database of experimental results to automate such a large task. Hubbell
compiled a bibliography with a list of papers that contain total photon cross section
measurements,48 but one would be forced to copy the 22 000 data points from the 580

references.
Without going to these great lengths, there are limited estimates of the photon

cross section error available. The endf/b -vii .0 photon data is derived from the
Evaluated Photon Data Library published in 1997 (epdl97).20 The epdl97 reference
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Table b.1: Estimated uncertainties in photoelectric cross section in epdl97 (assumed
to be 1σ).

Relative uncertainties (%)

Energy range (keV) Solid Gas

0.5–1.0 10–20 5

1.0–5.0 5 5

5–100 2 2

100–10000 1–2 1–2

contains estimated uncertainties for the photoelectric effect cross section, partially
copied in Table b.1. As Hubbell notes,46

Since photoionization or atomic photoeffect is the dominant interaction at
low photon energies, where the uncertainties are the largest, these very
approximate and subjective percent uncertainties can be taken as a rough
guide to the uncertainties of the total photon cross section σtot. . .

Since the bottom energy of the scale fine-group library is 10 keV, we could assume
an uncertainty of 2% over the energy range for this problem (roughly 10 keV to 2 MeV).
This small uncertainty is much less than the uncertainty on the source parameters.
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CSOURCE MAPPING EXPERIMENT

We conducted a series of radiation detector measurements to test the algorithms
proposed in this work. A number of small radioactive gamma point sources were
placed in different locations in a mostly empty room. Then we took multichannel
counts using a sodium iodide (NaI) detector, moving the detector to different locations
throughout the room. The goal of the experiment is to infer the locations and spectra
of the sources based on the detector readings and the knowledge of the layout of the
room, but without using the knowledge about the location or spectrum of the sources.

The location of the experiment was Burlington Engineering Labs (bel) at NC State
University, room 2144. The counts were performed from August 30, 2011 to September
15, 2011, a span of 17 days. This chapter is an account of the procedures, equipment,
and data of the experiment. Section 5.4.3 demonstrates the use of this data to solve
the ip using our new approach.

c .1 detector statistical error

Before describing the experiment, we first review the concept of statistical error in
radiation detection. The probability of detection in a particular energy channel can
typically be described by the Poisson distribution [63, §3.iib]. The Poisson distribution
gives the probability of a discrete number of occurrences of a specified random event
within a given time interval, assuming that each independent event has a constant
and small probability. The Poisson distribution is a one-parameter distribution, with
that one parameter being the expected value or mean x. The probability distribution
function for the Poisson distribution is

P(x) =
xx

x!
e−x ,
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where x ≥ 0 is the integer number of occurrences and P(x) is the probability of
observing x occurrences.

As Knoll observes, the Poisson distribution is normalized and its mean is x:

n

∑
x=0

P(x) = 1 ,
n

∑
x=0

xP(x) = x ,

Furthermore, the variance is63

σ2 =
n

∑
x=0

(x− x)2P(x) ,

which results in the standard deviation being equal to the square root of the expected
value, σ =

√
x.

If the mean value of the Poisson distribution is not small, x & 20, then the
distribution approaches a normal distribution,

P(x) =
1√
2πx

exp
(
− (x− x)2

2x

)
,

which still has mean x and standard deviation
√

x.
In the case of radiation detection, the Poisson and Gaussian model is valid for

counts in an energy channel. With only one count, the best estimate for the mean
x is the observed counts x. Without further knowledge, we assume x ≈ x and thus
the estimated standard deviation of the count is σx =

√
x. This rule applies for

measurements that are counts, not counting rates, sums or differences of counts,
averages of counts, or other derived values.63

Linear propagation of error While the simple counts are assumed to be described
by Poisson statistics, the quantities derived from these counts are not, and so the
errors must be propagated through the various operations. As is the convention,
the propagation of small errors through arbitrary operations can be well described
by a linear approximation.66 Using a first-order Taylor series approximation of the
derived quantities~r from independent variables~α, the covariance matrix Cr for~r is
(for example, see §2.2 in [58])

Cr = SCαST , (C.1)
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where Cα is the covariance matrix of ~α and S is the matrix of sensitivities. This is
the same equation as Equation 2.43. Since a first-order linear expansion is used to
derive this, it is only accurate for small errors and for functions which can be well
approximated as linear in the local neighborhood.

Assuming that the quantities in vector~α follow a Poisson distribution, the covari-
ance matrix Cα is known. Then the sensitivity coefficients in the matrix S are the only
remaining unknown to compute Cr. These coefficients can be computed in several
ways. In the main portion of this work, adjoint solutions are used to compute the
sensitivity. For simple expressions, analytic forms of the derivatives can be found. In
the propagation of uncertainty of these measurements, we used a similar analytic
approach, but one that is computed automatically by the application of the chain
rule. This technique is known as automatic differentiation.37 We employed the Python
uncertainties* package in performing these calculations.

c .2 equipment

This section describes the sodium iodide multichannel detector system used in this
experiment. In addition, it describes the radioactive sources and the configuration of
the laboratory.

c.2.1 Detector system

The primary instrument for this experiment was the sodium iodide detector system.
This system is property of the Department of Nuclear Engineering at NC State
University. The detector is normally used for laboratory classes.

The detector itself is a sodium iodide (NaI) crystal coupled to a photomultiplier
tube. The crystal has a diameter of 2 inches and a height of 2 inches, and so its
shape is commonly referred to as 2”×2”. This is connected to a preamplifier and
high-voltage supply. The detector signal is processed by a multichannel analyzer with
2048 channels, and the data is acquired via a usb-connected laptop. Table c.1 lists
the individual components, and Figure c.1 describes how they were connected. Long
cables to the detector, 10 feet or more, allowed the electronics to remain in one place

*Eric O. Lebigot, Uncertainties: a Python package for calculations with uncertainties.
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throughout the experiment, with only the detector crystal and preamplifier being
moved.

When we first assembled the detector system, we adjusted the amplifier gain
so that the multichannel analyzer (mca) captured approximately 0 to 3 MeV. Our
reference for this adjustment was a 2615 keV gamma peak present in the background
radiation, emitted by a daughter of 232Th. Adjusting this peak to channel 1700 made
the last channel, number 2048, approximately correspond to 3000 keV.

The Easy-mca-2k mca has a usb-interface. Ortec’s Maestro, mca acquisition
software for Microsoft Windows®, communicates with the mca, enabling one to
visualize and save the counted spectrum.75 We used the ascii Spe format to export
each counted spectrum in a platform-independent file. These files are included in the
electronic archive attached to this thesis.

One important distinction when using the Ortec hardware and Maestro detection
software is the difference between live time and real time. Ortec has developed the
Zero Dead Time (zdt) mode to correct for dead time losses. Dead time is that time
during which a detector system is busy processing an input pulse. Any additional
pulses from further detected particles will be missed by the detector counting system
during this dead time.63 Thus, the detector reading will be an underestimate of its true
value as the dead time increases. The zdt is a correction of the real time to account
for this underestimate. With an estimate of the real time tr and the fractional dead
time fd, the live time tl is [75, §4.2.7.6]

tl = tr(1− fd) .

If we use the live time to compute the count rate, this yields the dead-time corrected
value. The standard deviation in this count rate is

√
N/tl.

c.2.2 Radioactive sources

The radioactive sources used in the experiment were low-activity gamma sources
owned by the Department of Nuclear Engineering at NC State University. The two
types of sources were 137Cs and 60Co. The important decay properties of these two
radionuclides are listed in Table c.2. 137Cs produces one strong gamma line at 662 keV
and 60Co produces two lines at 1173 and 1332 keV.
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Table c.1: Detector components used in experiment. All components are branded
Ortec except the NaI crystal.

Component Model Serial Number

NIM bin 4001c rev. 20 5347

High voltage power supply (hvsp) 556 rev. p 08280653

Amplifier (Amp) 572A rev. b 10238309

Photomultiplier and preamplifier (Preamp) 276 296

Multichannel ahannel analyzer (mca) Easy-mca-2k rev. d 10131831

2”×2” NaI detector 905-3
NaI crystal by Saint-Gobain 2M2/2 60004-00410-i

HVPS

Preamp

Detector

120V A/C NIM Bin

Amp MCA Laptop

Preamp Power

USB

Figure c.1: A schematic of the detector components.
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Table c.2: 137Cs and 60Co radioisotope properties. Gamma energies and branching
fractions are from nndc.15 Half-lives are from nist.116

Gamma Emissions Half-Life Loss in

Isotope Energies (keV) Intensities (%) t1/2 (days) 30 days (%)a

137Cs 661.657± 0.003 85.10 ± 0.20 11 018.3± 9.5 0.19
60Co 1173.228± 0.003 99.85 ± 0.03 1925.20± 0.25 1.1

1332.492± 0.004 99.9826± 0.0006
a The relative amount of atoms which decay in ∆t = 30 days, caculated as 1− exp(−λ ∆t), with

λ = loge(2)
/

t1/2.

Each source was encapsulated in a small plastic disc with diameter 1 inch and
thickness about 1⁄4 inch. In Isotope Products’ (a division of Eckert & Ziegler) classi-
fication, these are Type D sources [25, p. 46]. The active diameter (in which source
material is present) in this case is about 5 mm. Where necessary, we assume that the
source is deposited immediately below the top of the source disk. The source disks
are made of plastic, which we assume is similar to the composition of polyethylene
terephthalate [3, §27], a widely-used plastic with chemical form (C10H8O4)n. Using
the measured values of the mass and volume of the discs, the average density of the
plastic in this experiment was 1.12 g/cm3.

Several sources were used to increase the total activity and thus the detector
count rate. Each source was nominally 1 µCi, as shown in Figure c.2 and tabulated in
Table c.3. Unfortunately, only three of the sources were dated.

To determine the current activity of each source, we counted the sources one by
one using an identical detector-source configuration. The source was placed closely to
the detector to improve the absolute efficiency of the counting. By summing the counts
in the photopeaks above the continuum, we computed the source’s total uncollided
contribution in the detector for that energy. The total counts Ni in a photopeak at
energy Ei from a source with activity A is

Ni = A εabs,peak(Ei) γi . (C.2)

where γi is the average number of gamma particles emitted at energy Ei for one decay
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Table c.3: The 137Cs and 60Co sources used in this
experiment, with their specified calibration date
and activity. Most of the sources are undated.

Id Nuclide Activity (µCi) Calibration Date

11
137Cs 1.01± 0.10a

31 January 1983

12
137Cs 1.00± 0.09 –

14
137Cs 1.00± 0.09 –

15
137Cs 1.00± 0.09 –

16
137Cs 1.00± 0.09 –

21
60Co 0.99± 0.10a

6 March 1974

22
60Co 1.00± 0.09 –

23
60Co 1.00± 0.09 –

24
60Co 1.00± 0.09 15

b March 2005

25
60Co 1.00± 0.09 –

a Professor Robin Gardner on November 10, 2011

estimated the uncertainties of the department-made
sources as five to ten percent. The more pessimistic
estimate is used here. The other uncertainties in this
table are an estimate from a radioisotope supplier. We
assume that these sources have similar uncertainty.
Quoting from the supplier’s catalog: “Sources are
manufactured with contained activity values of ±15%
of the requested activity value unless otherwise noted
in the catalog.” [25, p. 5] Assuming a uniform
distribution of the true value in this interval, the
estimated standard deviation or standard uncertainty is
15%

/√
3 ≈ 9% [113, §4.6].

b The source is labeled March 2005 but does not specify a
day. We assume for calculations that the day is the
middle of the month.
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(a) 137Cs sources.

(b) 60Co sources.

Figure c.2: The six 137Cs sources and five 60Co disc sources. Each source is labeled
with the source id used throughout this experiment.

of the source, and εabs,peak is the absolute peak detector efficiency.
In this case, we have multiple sources that emit the same peak or peaks, but their

activities are presumably different. For three of the sources, the activity A is known.
We could look up γi, but it will be the same for peaks of the same energy. Likewise, we
could estimate the absolute efficiency. However, neither of these steps are necessary,
because these factors are the same for each source, assuming the source-detector
configuration is identical. Instead, we apply Equation c.2 to one peak area counted
from two different sources, one dated and the other undated. (The matter of calibrating
the measured spectra and computing the peak areas will be deferred until a later
section.) Taking the ratio of these two equations, we obtain

Au = Ad Nu
i

Nd
i

.

The u and d superscripts denote dated and undated sources, respectively. Ax is the
activity of the radionuclide source x and Nx

i is the number of counts in photopeak i
from source x. The εabs,peak(Ei) and γi factors cancel because they are the same for
the same peak. For the 137Cs source, one estimate of Au is available, and this is the
one we use. However, for the 60Co source, there are two peaks and so Appendix c.2.2
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can be applied twice. In addition, there are two dated 60Co sources, so there are four
activity estimates for each undated 60Co source, two each for the two peaks and for the
two dated sources. We have combined these with a weighted least-squares average.†

Table c.4 gives the result of these calculations. The sources that have similar labels
and were likely made at the same time ({12, 13, 23}, {14, 15, 16}, {22, 25}, as seen in
Figure c.2) have computed 1-µCi dates within a few years, lending some additional
credibility to the computed activities.

We assume that each of the sources has constant activity over the 17 days of the
measurements. This introduces only negligible errors, since the half-lives of the source
nuclides are several years. As shown in the last column of Table c.2, both of the sources
decay less than 1% in 17 days, a negligible change compared with the manufacturing
uncertainty of 10%.

c.2.3 The room configuration

The experiment was conducted in laboratory room 2144 bel. The room was mostly
empty, with the exception of a few cabinets and counters. The walls are concrete block.
A Cartesian coordinate system has its origin at the bottom northwest corner of the
room. All components of the geometric model are right rectangular prisms, or bodies
formed by the combination of these prisms. Figure c.3 shows the dimensions of the
room and the major components. The room is pictured in Figure c.4. A complete
description of the layout is available in the mcnp input file electronically attached to

†Assume a linear model S~α =~r, where S is known. The vector~r is observed or measured as~rm,
with some level of certainty, described by the covariance matrix Cm. The purpose is to compute the
optimal~α∗, with corresponding covariance matrix C∗α. In the case of using two estimated activities to
obtain a better value for the true activity,~rm is the two activity estimates. Cm is a diagonal matrix with
the variances of the estimates on the diagonal. The unknown~α is a scalar in this case, and the matrix S

is [1, 1]T.
With a prior uncertainty on~α, we could use Bayes’ Theorem to obtain a posterior distribution on~α.

However, with no prior on~α, the next best option is the maximum likelihood estimator [112, Example
3.4]:

~α∗ = C∗αS
TC−1

m ~rm , C∗α = (STC−1
m S)−1 .

This could also be derived by letting Cα → ∞ in the Bayesian formulation. Since Cm is diagonal, these
equations can be simplified to

α∗ = (σ∗α )
2 ∑

i

~rm,i

~σ2
rm ,i

, (σ∗α )
2 =

(
∑

i

1
~σ2

rm ,i

)−1

.

This is commonly referred to as weighted least squares.7
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Table c.4: Estimated sources activities based on computed activities of dated
sources 11, 21, and 24 and on the measured peak area ratios. For each undated
137Cs source, there is one peak and one dated 137Cs reference source, so we have
only one activity estimate. For each undated 60Co source, there are two dated 60Co
reference sources and two peaks, yielding four activity estimates. The reported
activity (and the derived 1 µCi date) are based on a weighted average of the four
estimates.

September 2011 Estimated Date
Id Activity (µCi) of 1 µCi Activity

11 0.52 ± 0.05 a

12 0.69 ± 0.07 3 July 1995

13 0.67 ± 0.07 6 July 1994

14 0.53 ± 0.05 22 August 1983

15 0.52 ± 0.05 14 November 1982

16 0.49 ± 0.05 20 April 1980

21 0.0071± 0.0007a

22 0.030 ± 0.002 15 January 1985

23 0.078 ± 0.005 13 April 1992

24 0.43 ± 0.04 a

25 0.052 ± 0.003 9 March 1989

a The activities for these sources were computed from the activities and dates found on their
labels.
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Figure c.3: Slices from the x-y plane of the 2144 bel room layout.

this thesis.
For simplicity, we limit the number of distinct materials present in the room. The

materials and their composition are listed in Table c.5. For finer detail, see the mcnp

input file.

c .3 procedure

There were two sets of measurements during this experiment. The first set was
necessary to determine the activities of the undated sources. The second was a series
of counts from various detector locations to map the radioactive source.

Count times are shown in Figure c.5. The majority of counts were less than 2 hours.
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(a) The windows on the south (+x) wall. (b) The doors in the north (−x) wall.

(c) The counter and cabinets on the east (+y) wall.

Figure c.4: Pictures of the 2144 room.
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Table c.5: The elemental composition of materials used in the 2144 model.
The densities and compositions are from the Standard Composition manual of
scale.11 Integer values of composition are the atomic abundance per molecule,
while real values indicate atomic weight percent.

Material Density (g/cm3) Composition Components

Void 0.0 - Air in room
Oak Ridge concrete 2.2994 17.52 – carbon Walls, floor

3.448 – silicon and ceiling
3.265 – magnesium
1.083 – aluminum
0.7784 – iron
0.6187 – hydrogen
0.1138 – potassium
0.0271 – sodium

Oak wood 0.7 10 – hydrogen Door
6 – carbon
5 – oxygen

Carbon steel 7.8212 99. – iron Cabinets and
1. – carbon cupboards

PVC 1.6 3 - hydrogen Ceiling
2 – carbon tiles
1 – chlorine

Lead 11.344 100. – lead Lead shields
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Figure c.5: The count times for two counting sets. Each histogram bin is one hour
wide.

The longer counts were typically for a night or weekend.

c.3.1 Source strength counts

Since many of the sources were undated, it was necessary to take a series of counts
to estimate the activity of each source. As discussed in Appendix c.2.2, the activity
of a particular radioactive source can be computed by comparing the ratio of the
counted peak area with the peak area (at the same energy) counted from a reference
source. In order to cancel the influence of detector efficiencies in this calculation, the
source and detector configuration must be identical for the unknown and reference
source. We used an identical configuration for all 137Cs sources and another identical
configuration for all 60Co sources. One of these configurations is shown in Figure c.6.
As the picture shows, the source-to-detector distance is relatively small to decrease
the counting time needed to obtain good statistics.

For the 137Cs sources, seven separate counts were taken – six for the six 137Cs
sources and one background count. For the 60Co sources, five counts were needed for
the five sources and one for background.
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Figure c.6: The source and detector configuration for the source-strength counts.

c.3.2 Locating the sources counts

The second set of counts were to gather the detector data necessary to map the
radiation sources. Counts were performed for two source configurations, in addition
to background, for which all the sources were removed from the room. The two source
configurations were

• 137Cs only, with all six sources in a small box on the floor in the southwest corner
of the room.

• 137Cs and 60Co simultaneously. The 137Cs was located in the same place. The
60Co sources were arranged in a line along the chalk tray, spaced roughly 10 cm
apart. A line was chosen to provide a non-point distribution for the mapping
algorithm.

The coordinates of the sources are given in Table c.6. A graphical presentation of
the source locations and intensities are plotted in Figure 5.1. Pictures of the source
locations are provided in Figure c.7. In retrospect, the first configuration could have
been eliminated, since the peak energies of 137Cs and 60Co are sufficiently distant,
hence unlikely to overlap peaks significantly.

While there were three source configurations (2 with sources and one background),
the main change in this set compared to the source strength estimation counts was
the movement of the detector. There were six locations, which are listed in Table c.7.
We chose these locations to get reasonable spatial coverage of the room in all three
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(a) 137Cs source location in the southwest corner. The detector is at location 5.

(b) 60Co source locations. The black-
board is on the y = 0 plane and the
wood door is on the x = 0 plane. The
detector is at location 6.

Figure c.7: The 137Cs and 60Co source locations.
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Table c.6: Source locations for 60Co. All dimensions are in cm. The y location of
all sources was 9.5 cm, and 90.2 cm for z. All the 137Cs sources (IDs 11-16) were
located at (440, 5, 1) cm.

Nuclide Source x

60Co 21 96.5
60Co 22 108.0
60Co 23 119.4
60Co 24 130.2
60Co 25 143.8

Table c.7: Detector locations. All di-
mensions are in cm.

Index x y z

1 59.7 194.3 54.6
2 242.6 72.5 10.2
3 364.5 180.3 84.5
4 330.2 315.0 177.8
5 425.5 102.9 30.5
6 181.6 42.5 82.6

spatial directions. Locations five and six were added to be closer to the sources to
obtain improved counting statistics.

At each location, a detector count with no collimation was taken for each source
configuration. In addition, six collimated 2π counts were taken at a location: ±x,
±y, and ±z. The collimation was accomplished as shown in Figure c.8. Lead blocks
were used to shield gammas coming from the side or back of the detector. Custom
machined blocks fit snugly around the detector crystal.

With six detector locations, seven directions at each location, and three source
configurations, there are 126 possible combinations. However, many of these measure-
ments were not taken due to time limitations. For the source mapping measurements,
73 counts were taken, but two of these were duplicates. All the possible combinations
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(a) Side view.

(b) Front view.

Figure c.8: The 2π collimated detector. The lead bricks are 2 × 4 × 8 inches in
dimension. The blocks with a hollowed cylinder have an outside side-length of 4

inches and a height of 2 inches.
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Location
1 2 3 4 5 6

Direction

full

+x

−x

+y

−y

+z

−z

4c154b029

25de83e28

f37 057ee5

8a3272 4af

20a6e4 5ef

c605a92a5

f62 98d150

4b8185999

de8 c8f 515

228baa1a5

f01 a591b1

1468b862c

be03d1998

b0d 6f3 865

d6eba9291

7fb 605d46

60875e5b2

d0e 97f 376

b7c fb7 ff5

5988c556a

f64 18327c

e2b106 ff8 838 b84 b1b12c912

Figure c.9: The IDs of the detector measurements that were taken. Blank squares
indicate that no count was taken for that configuration. Each row is a collimation
direction; each column is a location. The three contiguous blocks for a particular
location and direction are the three source configurations: (1) 137Cs only, (2) 137Cs and
60Co, and (3) background (with left-to-right ordering: 1 2 3 ). The three characters
are the first three digits of the ID hash of the measurement.

were conducted for locations 1, 2, and 3. For locations 4 through 6, only the isotropic
combinations were counted. Figure c.9 lists the combinations that we counted.

c .4 processing the data

We describe here the steps taken to preserve, categorize, and filter the detector data.
Much of the data is available in the electronic archive attached to this thesis.

c.4.1 Compiling raw database

Using the Ortec Maestro data acquisition software, text files were exported with:

• the total counts per channel,
• the real and live length of count time, and
• the date and time of the count.
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To each file, we manually added

• the detector location (1–6),
• direction of collimation or lack of collimation (4π or any of the six 2π views),

and
• source configuration (137Cs only, 137Cs and 60Co, or background)..

These files constitute the raw data. This data was saved in an hdf5
‡ file with appro-

priate metadata using PyTables.§ A 40-character hexadecimal identification string was
produced for each count using a sha -1

103 hash of the count’s date and time stamp
and the live count time.

c.4.2 Compiling processed database

After saving the spectra in the database of raw data, there were a few processing steps
that were performed before the data could be used in the source mapping. These steps
were:

1. peak identification,
2. energy calibration,
3. rebinning spectra to a standard energy structure,
4. background subtraction, and
5. determination of peak areas.

These tasks are outlined in the following paragraphs. Through each of these steps, the
standard error of each of the derived quantities must be computed.

Peak identification Although there are many peak identification algorithms, we man-
ually selected peaks in the spectrum by visualizing them in the graphical program
PyMCA.109 The channel of the peak center was recorded for those peaks from the
background and source spectra. Depending on the relative strength of the source
versus background, as well as the overlapping of close peaks, not all the peaks were
identifiable in every spectra. The observed peak channels were then used to cali-
brate the detector. The four background peaks identified in most spectra are listed in
Table c.8.

‡Hierarchical data format version 5.
§Francesc Alted, Ivan Vilata, and others, PyTables: Hierarchical Datasets in Python.
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Table c.8: Gamma particle energies present in background. These were used
in energy calibration. The peak energies are from the National Nuclear Data
Center.15

Parent nuclide Gamma energy (keV)

214Pb 351.9321± 0.0018
214Bi 609.320 ± 0.005
40K 1460.822 ± 0.006
208Tl 2614.511 ± 0.010

Energy calibration The peak finding step produced a list of the peaks present in
each spectrum and the channel about which each peak was centered. The energies
of those peaks are known.15 Using these four to seven data points, we interpolated
each channel bin to its corresponding energy. The amount of light produced versus
the energy deposited in a sodium iodide crystal is almost linear, but there are some
mild nonlinear effects.35 To compensate for these scintillation nonlinearities, we used
a quadratic function to interpolate the peak-and-energy data points:

E = g(N,~a) = a2N2 + a1N + a0 ,

where the constant coefficients~a = [a0, a1, a2]
T are unknown, E is the energy, and N is

the channel number. With the channel-energy pairs {(Ni, Ei)}, the coefficients~a can
be determined from the least squares formulation

χ2 = min
~a

np

∑
i=1

(g(Ni,~a)− Ei)
2

σ2
Ei

.

Since the number of peaks np is four or more, this least squares problem is overdeter-
mined. Once the coefficients are computed, we converted the channel boundaries to
energies.

Rebinning spectra Unfortunately, because each spectra is calibrated separately, each
spectra has different energy bin edges. To simplify the computing of the net spec-
trum (gross minus background), every spectrum was rebinned or resampled onto
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an identical energy grid. This process is described by Knoll in §18.iv.b.63 To do the
rebinning, an assumption must be made about the distribution of the counts within a
channel. Knoll proposed fitting a polynomial through the nearby points. We took a
simpler approach and assumed that the counts are distributed uniformly in each bin.
This assumption guides the redistribution of an old bin’s counts into any overlapping
new bins. In the rebinning process, the total number of counts is preserved if the
range of the new bins is equal to or larger than that of the old bins. The universal
energy grid we chose went from 100 keV to 2900 keV, with 1806 edges and 1805 bins.
The uncertainties package propagated the standard errors through this summation
process.

Background subtraction We are primarily interested in the net counts caused by
the 137Cs and 60Co sources. Thus, the counts from background radiation should be
removed. Since all the spectra have the same energy grid, the subtraction is straightfor-
ward, provided that we use the correct background. The corresponding background is
evident in Figure c.9, where the background spectrum for each location-direction pair
is given in the third subblock. Again, the package uncertainties propagated the error
through this subtraction procedure. The net spectra can be rebinned to the multigroup
energy grid for comparison with transport calculations.

Peak areas After the net spectra were obtained, we desired to compute the area under
each identified photopeak because this represents the number of gamma photons at
this peak energy that deposit all their energy in the detector. For each photopeak,
we fit a Gaussian and exponential. The Gaussian is the model of the peak, and the
exponential models the contribution from the continuum. Note that the exponential is
a straight line on a linear-logarithmic plot. Together, this function

f (x,~p) = C exp
[
− (x− µ)2

2σ2

]
+ ce−rx ,

has 5 unknowns ~p = [µ, σ, C, r, c]T. The nk channels ~Nk are in the range of peak k,
corresponding to counting rates ~dk. Then the model can be fit using a least squares
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formulation with the chi-square metric

χ2 = min
~p

nk

∑
i=1

(
f (~Nk i,~p)− di

)2

σ2
di

.

With this definition of χ2, the covariance of the final parameters can be estimated as
Cp = (JTJ)−1, where the Jacobian is defined as [36, §38.1]

Jij =
1

σdi

∂ fi

∂pj
. (C.3)

The Jacobian must be evaluated at ~p∗, the values of the model parameters ~p which
minimizes χ2.

An example spectrum of the background is plotted in Figure c.10. The plot shows
the peak fits as well. The chi-squared values for these particular peak fits are provided
in Table c.9.

The peak area can be computed by one of two methods. First, the area A under the
peak is equal to the integral of the Gaussian over its entire domain (−∞,+∞), which
is

A = Cσ
√

2π .

The error in this estimate is computed by propagating the error on the C and σ

least-squares parameters. If the least squares fit is poor, then this method will lead
to a large estimated error in the peak area. An alternate method is to simply add the
peak channels over the peak width and subtract the area under the linear continuum.
This is the method used for this work, and it produced more consistent estimates of
the peak area uncertainty.

After they are computed, the peak areas and accompanying uncertainties are saved
in an hdf5 database file for the processed data, along with the net spectra. This is the
file that is used in the source mapping procedure.
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Figure c.10: A representative background spectrum taken with the NaI detector. The
black bar at each peak is the range over which the peak-fitting was performed.
The red curves are the Gaussian component of the fit, and the green lines

are the fit of the continuum.

Table c.9: The normalized χ2-value for the four peak fits
in Figure c.10. The expected normal distribution around
one for the normalized χ2/ndof is also provided. All of the
fits except for the 40K peak fit fall less than two standard
deviations from the mean.

Parent nuclide χ2/ndof Expected normal distribution

214Pb 1.002 1± 0.21
214Bi 1.20 1± 0.15
40K 1.95 1± 0.108
208Tl 0.881 1± 0.109
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DDETECTOR EFFICIENCIES

A radiation detector gives data as a count. This is the number of successful detection
events in the detector. However, to analyze the radiation field, it is necessary to relate
the counts reported by the detector to the scalar flux φ or inward partial current J−
at the detector. The detector efficiency is a simplification of the full drf described
in section 4.4. While the drf has two independent variables (in discretized form
represented as a matrix), the detector efficiency has zero or one independent variable
(represented as a scalar or vector).

d.1 efficiency definitions

Detector efficiencies quantify the effectiveness of detectors in signaling an event as
compared to the amount of radiation present. However, this concept is too general
to be of much use, and we must be more precise with what signals and radiation we
count. There are two different ways to specify these quantities, with both classifications
being useful.

Absolute versus intrinsic efficiency The absolute efficiency εabs(E) is the fraction of
radiation of energy E from the source which creates a signal in the detector. As Knoll
defines it [63, §4-VI],

εabs(E) =
number of pulses recorded

number of particles with energy E emitted by source
.

The absolute efficiency depends on both detector properties as well as source-detector
positioning. For instance, as the source-to-detector distance increases, the absolute
efficiency decreases. In contrast, the intrinsic efficiency εint(E) depends mostly on the
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detector properties. It is defined by Knoll as

εint(E) =
number of pulses recorded

number of particles with energy E incident on detector
.

It measures how effectively the detector is able to recognize radiation that enters
it. Thus, a detector material with a high atomic number and a higher interaction
cross section should have a greater εint. As Knoll points out, the intrinsic efficiency
does depend slightly on the detector-source configuration, since this configuration
affects the average path length of the radiation as it travels through the detector. Since
interaction cross sections change with energy, εint is also a function of E. Intrinsic
efficiencies are more frequently quoted because they have wider application.

Peak versus total efficiency In the above classification, we made no distinction between
full and partial detection. Consider a monoenergetic radiation field incident on a
detector. Some of the radiation particles could pass directly through the detector.
For the particles that interact in the detector, they could eventually scatter out of the
detector, carrying some of their energy away as primary or secondary radiation, or
they could be absorbed, depositing all of their energy in the detector. If the particle
escapes the detector with some of its energy, then the corresponding detector signal
will be smaller. We would prefer for the detector to absorb all of the radiation particle
energy so that the pulse signal would fully represent the initial incident energy. The
full energy signals are simpler to extract from the detector spectrum than unfolding
the overlapping continuum responses produced by partial-score events. The peak and
total efficiencies describe this phenomenon. The peak efficiency is

εpeak =
number of full-energy pulses recorded

number of radiation quanta
,

and the total efficiency is

εtotal =
number of pulses recorded (of any energy)

number of radiation quanta
.

It is best to specify a particular efficiency as absolute or intrinsic and as peak or
total. For gamma detectors, the efficiency is often given as intrinsic peak efficiency.
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d.2 estimating peak intrinsic efficiencies

To convert the counts in a photopeak (corresponding to uncollided radiation) to scalar
flux, we must apply the peak intrinsic efficiency εip. Combining the definitions from
above, the peak intrinsic efficiency is

εip(E) =
number of full-energy pulses (with energy E)

number of particles with energy E incident on detector
.

As mentioned above, this quantity is dependent on the source-detector spatial config-
uration. In this work, we have averaged this spatial dependence to avoid the need to
explicitly account for it in the source mapping procedure. That is, if the true efficiency
is εip(~x, E), the average efficiency over the volume V is

εip(E) =
1
V

∫
V

dV εip(~x, E) .

This integral does not typically have a closed-form expression. Thus, we use Monte
Carlo methods to compute it, specifically with mcnp.

For the experiment described in Appendix c, we used two detector configurations.
The first was the bare NaI detector, used to collect a full view of the room. The second
configuration was the collimated detector which collected the 2π views. We must
compute εip for both configurations, and for each of the three gamma peak energies.
The F8 pulse-height tally of mcnp computes the number of full-energy pulses in the
detector, using a narrow bin around the peak energy. The F1 current tally can supply
the inward partial current, as long as we specify inward and outward cosine bins
(the cosine bin edges set at {−1, 0, 1}). The inward partial current is equal to the total
number of particles entering the detector per second.

For the bare detector configuration, we center the 2”×2” NaI crystal (density 3.67

g/cm3) at the origin of the mcnp simulation. The detector axis is parallel with one
of the coordinate axes. We model a hypothetical isotropic source that is uniformly
distributed within x, y, z ∈ [0, 500] cm, but excluding the detector volume. The source
is located only in one octant of the modeled spatial region to take advantage of the
1⁄8-symmetry. The characteristic dimension of the source region (5 m) is approximately
the size of our laboratory. All materials in the simulation are vacuum except the
detector. Three simulations are executed, one for each peak energy.
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In terms of the tallies, the intrinsic peak efficiency for the bare detector is

εip(E) =
F8 tally of pulses of energy E

F1 tally of inward current of particles of energy E
,

where the tallies are over the detector volume and in a narrow energy bin around E.
The simulation for the collimated detector configuration is identical to that for the

bare detector, except for the addition of the lead (density 11.344 g/cm3) collimator
around the detector crystal. A front view is pictured in Figure d.1. Both the detector
crystal and lead shield are 2 inches tall. In this case, the source is excluded from both
the detector and shield regions. The intrinsic peak efficiency of the crystal itself is the
same as for the bare detector

ε̃ip(E) =
F8 tally of pulses of energy E

F1 tally of inward current of particles of energy E
.

However, we are interested in the intrinsic efficiency with respect to the crystal and
shield configuration. Thus, we must account for the reduction in photons entering the
crystal as a result of the collimator. Thus, the actual intrinsic peak efficiency of the
collimated detector is

εip(E) =
Jcol
−

Jbare
−

ε̃ip(E) ,

where Jcol
− and Jbare

− are inward partial currents for the collimated and bare detector
crystals, respectively.

The computed efficiencies are given in Table d.1. For reference, the intrinsic total
efficiencies εit are also provided.

d.3 partial current to scalar flux

With the intrinsic peak efficiency, we can convert the detector counts in a photopeak
Ap to the uncollided partial current J− entering into the detector using the equation

Ap = εip J− .

However, the deterministic solution of the radiation field is in terms of the scalar flux,
not the partial current. Thus, we must convert from partial current to scalar flux. If
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NaI detector crystal

Lead shield

8"

8"1"

Figure d.1: Lead collimation around NaI detector crystal.

we know the mean chord length65,108 〈l〉 in the detector, then the total track lengths
traversed in the detector by all incoming particles is 〈l〉 · J−. Using the track-length
definition of the scalar flux [106, §2.2.1], the scalar flux can be written as

φ(E) =
〈l〉 J−(E)

V
, (D.1)

where V is the volume of the detector. This is evaluated using the definition of the
mean chord length,

〈l〉 =
∫ ∞

0
l p(l)dl . (D.2)

Here p(l) is the normalized probability distribution function of the path lengths
travelled through the volume.

While Equation d.1 provides the relation we need to convert between partial
current and scalar flux, it does so with the introduction of a new unknown, the mean
chord length 〈l〉. Dirac showed that for an isotropic angular flux, the mean chord
length in a region with volume V and surface area S is22

〈l〉 = 4V
S

.

When computing the spatially-averaged εip for the bare detector with the hypothetical
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Table d.1: Peak and total intrinsic efficiencies for the bare and
collimated detectors, as well as the mean chord length, as com-
puted by mcnp. The one-sigma uncertainties are derived from
the Monte Carlo statistical errors. For reference, the mean chord
length predicted by the Dirac formula is 3.387 cm.

Energies (keV)

662 1173 1332

Bare
Total 0.549± 0.007 0.445± 0.006 0.424± 0.006
Peak 0.257± 0.004 0.140± 0.003 0.121± 0.003
〈l〉 (cm) 3.36 ± 0.04 3.36 ± 0.04 3.36 ± 0.04

Collimated
Total 0.228± 0.004 0.222± 0.004 0.221± 0.004
Peak 0.096± 0.002 0.060± 0.002 0.054± 0.002
〈l〉 (cm) 3.31 ± 0.06 3.38 ± 0.06 3.39 ± 0.06

uniformly distributed isotropic source, the flux is nearly isotropic, and so this equation
is valid. Note that the flux at a detector resulting from a point source (or a few point
sources) is not isotropic. It is only with the spatial averaging of the source location
that we can assume that the flux is isotropic.

However, for the shielded detector, the flux in the detector is not isotropic. As we
did for the efficiency, we used Monte Carlo to evaluate the integral in Equation d.2.
The simulations are similar to those to compute εip, but here the detector volume
is modeled as vacuum. (The collimator is still lead.) The NaI material is excluded
because we are converting between the in-air scalar flux and the in-air partial current.
The effect of the material is captured by the efficiency εip.

The mean chord lengths are given in Table d.1. They are a weak function of energy
because p(l) changes with the penetrating power of the gammas through the lead
shield.
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d.4 from counts to flux in the 2144 bel experiment

We use this method to convert the count rate for a photopeak to the scalar flux in
the 2144 bel experiment described in Appendix c. This allows the comparison of
the experimental data to the response computed by the deterministic or Monte Carlo
transport calculations. This process also provides the key link between the count rate
and scalar flux necessary for the source mapping algorithm.

In Figure d.2 and Figure 5.11, the comparison is made between the measured data
and the model predictions assuming the source distribution is known. Figure d.2 com-
pares the measured count rate in each photopeak with that computed by Monte Carlo
or analytic means. (In this case, the transport calculation is simply the geometric at-
tenuation because we are dealing with the uncollided flux.) The appropriate efficiency
and mean chord length from Table d.1 are used in Equation d.1 and Equation d.2 to
convert the predicted flux to the predicted count rate.

In Figure d.2, it is not surprising that the experiment registers zero counts for
the directions pointing away from the source (roughly, the points where the model
response is less than 10−3). However, those isotropic (full) measurements and the
directions pointing toward the source (roughly the points for which the model is
greater than 10−2) should not be zero. The fact that some are zero where they should
be nonzero points to the difficulty in finding peaks in noisy spectra. This difficulty
is exacerbated in this case because the radiation source peaks are often of a similar
size as the background peaks. The negative consequences of these omissions are
considered further in chapter 5.
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ERADIATION SOURCE RECONSTRUCTION WITH KNOWN
GEOMETRY AND MATERIALS USING THE ADJOINT∗

e .1 abstract

We present a method to estimate an unknown isotropic source distribution, in space
and energy, using detector measurements when the geometry and material composi-
tion are known. The estimated source distribution minimizes the difference between
the measured and computed responses of detectors located at a selected number of
points within the domain. In typical methods, a forward flux calculation is performed
for each source guess in an iterative process. In contrast, we use the adjoint flux to
compute the responses. Potential applications of the proposed method include deter-
mining the distribution of radio-contaminants following a nuclear event, monitoring
the flow of radioactive fluids in pipes to determine hold-up locations, and retroactive
reconstruction of radiation fields using workers’ detectors’ readings. After presenting
the method, we describe a numerical test problem to demonstrate the preliminary
viability of the method. As expected, using the adjoint flux reduces the number
of transport solves to be proportional to the number of detector measurements, in
contrast to methods using the forward flux that require a typically larger number
proportional to the number of spatial mesh cells.

e .2 methods

A common method to resolve inverse problems is to iterate on the unknown inputs
using repeated forward calculations. The new input guess can be found using a

∗This appendix is a reprint of a paper of the same title by Joshua M. Hykes and Yousry Y. Azmy
appearing in the 2011 International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, RJ, Brazil, 2011. Two sections have
been omitted due to their similarity with section 3.2 and Appendix a.1.
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gradient-based or stochastic method. This is the approach taken in Refs. [10, 77]. If
the forward model can be represented by a mapping Tαx = y(α), and the computed
responses by an inner product r = 〈c, x〉, where α is the unknown input, the typical
algorithm is then:

Choose initial guess α0.
Loop for i = 0, 1, . . . until ri is close to the measured response:

Compute operator Tαi and right hand side y(αi).
Solve forward problem Tαi xi = y(αi).
Compute response ri = 〈c, xi〉.
Update inputs αi → αi+1.

Since solving the forward problem can be a computationally-expensive task, it is
undesirable that the task is inside the iteration loop. For inverse problems where the
geometry and materials change significantly from iteration to iteration, this may be
the only viable option. However, for problems in which the materials and geometry
are known, there is another option.

It is well known that the response can be computed from the adjoint flux. In
operator form, the Boltzmann transport equation is

Lψ = q , (E.1)

where L is the streaming, collision, and scattering operator, ψ is the angular flux, and
q is the external source. The inner product of this equation with the so-called adjoint
flux ψ+ results in 〈

ψ+, Lψ
〉
=
〈

L+ψ+, ψ
〉
=
〈
ψ+, q

〉
,

where 〈◦, ◦〉 denotes the inner product over independent variables. If we require that
ψ+ satisfy L+ψ+ = σd, where σd is the detector response function, then r = 〈ψ+, q〉.

Thus using the adjoint, we can modify the iteration algorithm to eliminate the
expensive transport solve from inside the loop. Switching to the transport notation to
emphasize the specificity of the algorithm, the optimization procedure becomes:

Choose initial guess for source q0.
Compute ψ+ from L+ψ+ = σd for each detector reading.
Loop for i = 0, 1, . . . until ri is close to the measured response:

169



Compute response ri = 〈ψ+, qi〉.
Update source qi → qi+1.

Note that an adjoint is necessary for each detector reading. If we have l detector
locations and g energies (in groups or lines), then we need lg adjoint calculations.
Also note that this algorithm is still general, since the method of updating the source
is unspecified. In the following, we proceed to a concrete algorithm.

Imagine we have l detector locations and g energy groups (or spectral lines) per
location, stored in the vector~rm ∈ R

lg
+ (m for measured). Here the nonnegative real

line is written as R+ = [0, ∞). The spatial domain is discretized into n cells (for
instance, a cube mesh with 3

√
n cells per side). We compute a scalar adjoint flux ~φ +

i ,
with a detector response as the adjoint source, for each detector location and group
for i ∈ {1, . . . , lg}, such that

L+~φ +
i =~σd,i ,

where ~φ +
i ,~σd,i ∈ R

ng
+ and L+ ∈ Rng×ng. Then we can compute the expected detector

responses~rc ∈ R
lg
+ , where the i-th detector response from a source guess ~̃q ∈ R

ng
+ is

the well-known inner product (see, for example, §1-6 in [72])

[~rc]i = (~φ +
i )

T~̃q for i = 1, . . . , lg .

Here ~x T is the transpose of ~x.
The transposed and stacked ~φ +

i vectors form the matrix

S =


(~φ +

1 )
T

(~φ +
2 )

T

...
(~φ +

lg)
T

 ,

so that S ∈ Rlg×ng. Then the computed responses~rc are equal to the matrix-vector
product

~rc = S~̃q .

Thus the cost functional f : Rng → R+ that we seek to minimize can be written as

f
(
~̃q
)
= ‖~rm −~rc ‖ =

∥∥~rm − S~̃q
∥∥ .
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Since negative sources are unphysical, the best source estimate is

~q ∗ = arg min
~̃q∈R

ng
+

∥∥~rm − S~̃q
∥∥ . (E.2)

If S is square and has full rank, one could find ~q ∗ such that f (~q ∗) = 0. If l 6= n
and we use the 2-norm, the minimization becomes a least squares problem. If l < n,
the problem is underdetermined, and a potentially infinite number of solutions to
the inverse problem exist. Although we had limited success with underdetermined
problems with peaked (not widely distributed) sources, selecting from the class of
admissible solutions begs for more information. Thus, we focus on determined and
overdetermined systems here.

The constrained form of Equation e.2 is commonly called nonnegative least squares
(nnls).7 A number of algorithms exist to solve nnls problems. For all numerical
results below except Figure e.4e, we used the Fortran subroutine nnls.f described in
Ref. [71] and available on netlib.

e.2.1 Basis of the source reconstruction

It is likely that the number of spatial cells n will exceed the number of detector readings
per group l. Without other modification, this would lead to an underdetermined
system. This motivates us to reduce the number of degrees of freedom of the unknown
source. We phrase this process in terms of the basis in which the source is expanded.

One could think of any number of basis functions for the source. Implicitly, the
basis thus far has been the canonical basis, that is, ng basis vectors with each vector
having one element equal to 1 and all other elements equal 0. We could form a
canonical basis on a coarser spatial mesh, thus constraining the source to a constant
over groups of finer mesh cells. Or one could coarsen some cells but not others,
leading to an adaptive basis. If the source distribution is believed to be smooth over
the domain, one could use a polynomial or Fourier basis. Obviously, the choice of
basis should incorporate any prior knowledge of features of the source distribution.

For many of the non-canonical bases, there exists a linear map P : Rpg → Rng so
that

~̃q = P~x . (E.3)
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In this case, p is the spatial dimension of the smaller basis. We would choose p ≤ l, so
that the transformed problem

min ‖~rm − A~x ‖ subject to [~̃q]i = [P~x]i ≥ 0 for i = 1, . . . , ng (E.4)

is determined or overdetermined. Here A = SP ∈ Rlg×pg.
In the following numerical tests, we use an adaptive basis to ensure the problem is

not underdetermined.

e .3 numerical results

e.3.1 Test problem

We constructed a two-group homogeneous system, described in Table e.1, to demon-
strate our source reconstruction method. For simplicity, the source distribution varies
in only the x dimension. In the finest mesh considered, the unknown source vector
has 2 · 34 elements. Here we will only treat square linear systems, that is, the number
of source unknowns equals the number of detector readings. In all the following, the
detector response is unity in the group and spatial cell of interest, and zero elsewhere.

Full detector coverage The simplest way to solve this problem is to use 2 · 34 detector
readings, one for each group per fine mesh cell, and solve for 2 · 34 unknown sources.
This is shown in Figure e.1. Both the forward calculation and the adjoint calculations
use the same 34 mesh, making this a blatant inverse crime. As we would expect, for
this “illegal” system, it is possible to accurately identify the true source. While this is
helpful to show the consistency of the method, it does not prove much about a real
problem, except, perhaps, that the method still has a chance. The next series of tests
moves closer to reality.

Adaptive source basis To reduce the number of detector measurements to a more
realistic number, we switch from the canonical basis of the previous test to an adaptive
basis using the formalism of §E.2.1. The concept of this basis is simple. Instead of
jumping immediately to the finest mesh, this strategy begins at a very coarse mesh,
where only a few detectors are needed. The source is then reconstructed on this coarse
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Table e.1: Description of the source-reconstruction problem. All faces had vacuum
boundary conditions.

(a) Spatial and material parameters.

Macroscopic 2-Group Spatial Angular
Spatial Domain (cm) Cross Sections (/cm) Mesh Quadrature

x ∈ [0, 30]
y, z ∈ [0, 10] σt =

[
1/10
1/2

]
, σs =

[
1/40 0
1/20 1/10

] uniform
34 ×
1× 1

LQ16
[72,

§4-2]

(b) Source parameters. The source in cell ~c[i] and group g is ~q[g,~c[i]] = ~sg[g] ·~si[i], with
g ∈ {1, 2} and i ∈ {1, . . . , 7}. All cells not in ~c have zero source. See solid lines in Figure e.1.

~sg =
[
1 1/5

]T
~c =

[
13 14 15 50 51 52 53

]T
~si =

[
1/2 1 3/4 1 1.1 1.2 1.3

]T
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Figure e.1: Reconstructed source using 81 detector locations.
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basis. The source basis (or mesh) is only refined in cells in which the solution exceeds
a threshold δ. Then the appropriate number of detector measurements are added, and
the source is recomputed on the refined mesh. This refinement process is repeated
several times.

From a physical standpoint, this process represents an incremental deployment of
detectors. Initially, only a small number of measurements are taken, since it should
be possible to make a rough estimate of the sources based on these few readings.
After the rough estimate is computed, more measurements can be taken to refine the
estimate. Using this approach, we focus our attention on the important regions of
the phase space. This should be more efficient than blanketing the entire space with
detectors from the start.

To understand the procedure fully, one must distinguish three meshes:

• The forward-computation mesh is the finest uniform mesh. It is not refined.
• The adjoint-computation mesh is uniform at each refinement level, and it is refined

uniformly.
• The source-adaptation mesh is non-uniform and adaptively refined. The smallest

possible source-adaptation cell size in a given level is equal to the adjoint-
computation cell size at that same level.

Figure e.2 shows the adaptive refinement process in action. In the beginning, the
algorithm starts with a coarse adjoint-computation and source-adaptation mesh, in
this case 31. Six “detector readings” are computed, one per group in each coarse
cell, taking the forward flux from the fine cell at the center of each coarse cell. Then
2 · 31 adjoint fluxes are computed, and the system of equations is solved. This stage is
shown in Figure e.2a.

The next step is to move to a finer adjoint-computation mesh. Here we split each
adjoint-computation cell in three, yielding 32 cells. If the source solution in a cell in
the previous level was greater than the prescribed small criterion δ, set in this work
to a few percent of the largest source magnitude, we split this source basis cell to
match the current adjoint-computation cell size. Otherwise, this source-adaptation
cell remains coarse. This typically reduces the number of unknowns, thus reducing
the need for additional detector readings. Notice in Figure e.2b, there are 2 · 32 source
unknowns. This is because each source solution in Figure e.2a was greater than δ. We
include a detector reading (one per group) corresponding to the fine cell located at the
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center of the coarse source-adaptation cell, meaning that the source cells and detectors
are aligned.

This process repeats in Figures e.2c and e.2d. In Figure e.2c, the adaptive mesh
requires only 2 · 13 detector readings instead of 2 · 33. For Figure e.2d, we need only
2 · 19 readings instead of 2 · 34, for the same fidelity as Figure e.1.

In this procedure, the detector locations were aligned with the source basis func-
tions. This seems unlikely in applications, so in the next test we force source-detector
misalignment.

Adaptive source basis with unaligned detectors Here we space the detectors evenly
throughout the x domain, leaving off detectors at the right if necessary to match
the number of source unknowns. In other respects, the procedure is identical to the
previous test. Figure e.3 shows the process, with a plus mark indicating the location
of a detector. The one significant difference in the solution versus Figure e.2 occurs for
the third level, the right peak in Figure e.3c. This under-prediction is unsurprising,
given that there is no detector in the errant source cell.

Computing “measured” detector readings with Monte Carlo To move closer to reality,
the forward-computed measurement must come from a model other than the same
deterministic model used for the adjoint, thus avoiding the inverse crime. In this
case, we use a Monte Carlo solution for the forward flux, tallied in the same fine
mesh as the deterministic forward solution. We used Monaco26 from scale for this
purpose, since supplying fictitious multigroup cross sections is straightforward in
Monaco. Figure e.4 shows the results using the Monte Carlo responses. The first
three levels show negligible differences from Figure e.3. However, the fine mesh
solution in Figure e.4d is no longer accurate. This is the first sighting of ill-posed
behavior, where a small change in the detector readings, about 10−2, causes a large
change in the obtained source distribution. The condition number of S is 4 · 108,
which explains the large change in ~̃q resulting from a small change in~rm. If we apply
truncated svd regularization to the system, we can recover more of the solution (see
Figure e.4e), but the computed source distribution no longer matches perfectly with
the true distribution employed in the forward Monte Carlo computation. In the tsvd

procedure, the singular value relative threshold was set equal to the discrepancy
between the deterministic and MC forward fluxes.
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(a) 31 adjoint-computation mesh, 3 detector locations.
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(b) 32 adjoint-computation mesh, 9 detector locations.
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(c) 33 adjoint-computation mesh, 13 detector locations.
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(d) 34 adjoint-computation mesh, 19 detector locations.

Figure e.2: Reconstructed sources using adaptive procedure and “aligned” detectors.
Each filled circle or x-mark denotes one source unknown. The detectors are located at
the source unknowns.
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(a) 31 adjoint-computation mesh, 3 detector locations.
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(b) 32 adjoint-computation mesh, 9 detector locations.
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(c) 33 adjoint-computation mesh, 13 detector locations.
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(d) 34 adjoint-computation mesh, 19 detector locations.

Figure e.3: Reconstructed sources using adaptive procedure with evenly-spaced de-
tectors. The plus marks indicate the x position of the detectors. The vertical positioning
of the pluses on the graph is meaningless.
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(a) 31 adjoint-computation mesh, 3 detector locations.
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(b) 32 adjoint-computation mesh, 9 detector locations.
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(c) 33 adjoint-computation mesh, 13 detector locations.
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(d) 34 adjoint-computation mesh, 19 detector locations, not regularized.

Figure e.4: Reconstructed sources using adaptive procedure with Monte Carlo for-
ward flux.
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(e) 34 adjoint-computation mesh, 19 detector locations, regularized with tsvd.

Figure e.4: Reconstructed sources using adaptive procedure with Monte Carlo for-
ward flux. (continued)

e.3.2 Comparison with an iterative method

A common method for the solution of this type of problem is the Levenberg-Marquardt
(LM) algorithm. We implemented a solver using the LM method for the test problem
with Monte Carlo-computed detector responses for a preliminary comparison of the
adjoint method presented above to LM. Other than changing the inverse solver, the
problem is identical to the adaptive source basis problem, whose solution was shown
in Figure e.4. We used the levmar package73 to solve for the unknown source using the
functions for constrained LM. The number of transport solutions, forward solutions
for LM and adjoint solutions for the adjoint method, is given in Table e.2, along with
the number of iterations in the LM method. The results should be treated with caution
because adjusting the convergence tolerances and other tuning would surely decrease
the costs of the LM solver.

The LM algorithm requires derivatives of the detector responses with respect
to the unknown parameters. In both the Favorite-Ketcheson paper and the Miller-
Charlton paper, the authors use an adjoint to estimate these derivatives,33,86 while
Mattingly and Mitchell use the simpler finite-difference approximation.77 In this test,
we use two approaches. First, we can compute the Jacobian with respect to ~̃q since the
problem is linear. For example, the Jacobian in Equation e.4 is the matrix −A. This
is a simplification of the approach taken by the Favorite and Miller papers, since we
only need the derivatives with respect to ~̃q. In the tally of forward transport solves
in Table e.2 for the analytic Jacobian, the count does not include the transport solves
necessary for computing the Jacobian. Second, we let levmar compute the Jacobian
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Table e.2: Comparison of number of transport solves needed for the adjoint
method and the forward Levenberg-Marquardt iterative method. TS stands
for the number of transport solves, and Its. is the number of iterations.

Adjoint Adjoint LM, analytic Jacobian LM, finite-difference Jacobian

Mesh TS Its. TS Its. TS

31
6 5 6 2 27

32
18 28 398 40

b
1629

33
26 32 550 40

b
2348

34
38 22

a
485

a
40

b
3478

a Iteration converges to errant solution.
b Maximum number of LM iterations encountered.

using the finite-difference method. For both means of computing the Jacobian, if the
number of transport solves is larger than the number of spatial cells times the number
of groups, then it is more efficient in execution time to compute and store the inverse
L−1 of the transport operator, but this may incur an unbearable memory cost.

As in other applications, the benefit of using the adjoint is a reduction in the
number of transport solves from the order of the number of mesh cells to the order
of the number of detector readings, that in our method is the same number as the
distinct source values sought. In general, this is a favorable trade.

e .4 conclusions

We have presented a method to efficiently reconstruct an unknown source distribution
and spectrum using the adjoint flux if the geometry and material composition are
known. The problem can be stated as a nonnegative least squares problem. Selecting an
appropriate basis for the source is an important first step. In the examples presented,
an adaptive basis method proves worthwhile for localized source distributions. The
method is consistent for problems with an inverse crime, which shows its initial
viability. For the problems with coarse meshes or the Monte Carlo-computed responses,
the method proves suitable, although additional regularization is required. Using
the adjoint flux becomes advantageous when the number of detectors is significantly
smaller than the number of spatial cells in the transport calculation.
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FMATHEMATICAL NOTES

f .1 sets , spaces , and sequences

Before discussing operators, we briefly describe the basics of set theory. Sets are
collections of objects, for example: muffins, natural numbers, or continuous functions.
Each object in a set is called an element. Sets are typically denoted by capital letters
(X, Y, . . . ) and their elements are usually listed within braces. Thus, the muffin set
consisting of three types of muffins can be written

M = {blueberry muffin, chocolate chip muffin, lemon poppy seed muffin} . (F.1)

The set of natural numbers is N = {1, 2, . . .}, where the ellipsis indicates that the set
continues indefinitely. Sets can also be specified with a condition, for example

X = {x | x is a continuous function} . (F.2)

The vertical bar | is read “such that.” Sets contain both elements and subsets. If x is
an element in X, we write x ∈ X. A set X contains a subset Y if every element of the
subset is also in the set, that is, if y ∈ Y, then also y ∈ X. Then we write Y ⊂ X or
X ⊃ Y. Note that X contains itself, so X ⊂ X.

The complement of a subset A in a set X is

AC = {x | x /∈ A and x ∈ X} .

A subset is open if every point in the subset is contained in a ball that is also in the
subset. A subset is closed if its complement is open. For example, the set consisting
of all the points inside and on a sphere is not open, since points on the sphere can
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not be contained in a ball entirely enclosed in the subset. An open ball, B(x0; r) ∈ X,
has a center at x0 and a radius of r, and does not include the points at a distance r
from x0. This radius is measured in terms of a metric (to be discussed below). An
ε-neighborhood of x0 is defined as B(x0; ε). A neighborhood of x0 is any subset of X
containing an ε-neighborhood of x0.64

Sets with an accompanying structure or tool are called spaces. Four common spaces
are metric, vector, normed, and inner product spaces. Metric spaces are sets with a
tool to measure distance between elements. (In the following sentences, x and y are
elements of the respective space, and α is a scalar.) This tool is typically represented
as d(x, y). Vector spaces have two operations defined for elements: addition x + y and
scalar multiplication αx. Normed spaces have a tool, called a norm and written ‖x‖,
to measure an individual element’s size. Inner product spaces are sets with a tool to
measure the “alignment” of two elements. This tool is called an inner product 〈x, y〉,
and it generalizes the angle between two vectors in Euclidean space. Both normed
and inner product spaces are also vector spaces. These structures must satisfy certain
axioms, which can be found in the first three chapters of the text by Kreyszig.64

Sequences and their limits in spaces are important in analysis. A sequence x1, x2, . . .
in a metric space X is said to converge to x if the limit

lim
n→∞

d(xn, x) = 0 .

When examining limits, it is often helpful to examine the distance between two
elements in the tail of the sequence, which is formalized by Cauchy sequences. A
Cauchy sequence in a metric space X is a sequence such that for every small tolerance
ε > 0 there is a threshold N = N(ε) such that64

d(xm, xn) < ε for every m, n > N .

If the limit of every Cauchy sequence in X converges to an element in X, the space is
said to be complete. A complete normed vector space is called a Banach space, and a
complete inner product space is called a Hilbert space. In this work, the inputs and
outputs live in Hilbert spaces.
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Figure f.1: Two-dimensional representation of a mapping T. Here Tx1 = y1 and
Tx2 = y2.

f .2 operators

If the inputs and outputs of a system live in two spaces, we need a method to accept
the input element and transform it to the output element. This is commonly called a
mapping. Assuming X and Y are two sets, a mapping T of elements from X to elements
in Y is written

T : D(T)→ Y , (F.3)

where D(T) = A ⊂ X. D(T) is the domain of T and R(T) is the range. For T to be a
mapping, T must associate every x ∈ A with only one element y ∈ Y. The image of x
with respect to T is y = Tx. We can also have an image of a set M ⊂ A, where the
image of M is T(M), and T(D(T)) = R(T). A visualization of a mapping T is shown
in Figure f.1. If X and Y are vector or normed spaces, then a mapping is called an
operator.64

There are three types of mappings: injective, surjective, and bijective mappings.
An injective mapping takes each distinct point in the domain to a unique point in the
range. Mathematically, for two points in the domain of the mapping T, x1, x2 ∈ D(T),
if x1 and x2 are not equal, then the two images Tx1 and Tx2 are also not equal:

x1 6= x2 =⇒ Tx1 6= Tx2 (injective).

Injective mappings are called one-to-one mappings.
A surjective mapping, also known as onto mapping, covers the entire space in which

the image lives. If T : D(T)→ Y, then T is surjective if the range R(T) is equal to Y:

R(T) = Y (surjective).
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A mapping is bijective if it is both injective and surjective (or less formally, one-to-one
and onto).

If T is bijective, then we can define the inverse T−1 : Y → D(T), where T−1y0 = x0

if Tx0 = y0. If T is injective but not surjective, we can still define an inverse, but we
must limit its domain to the range of T, so that T−1 : R(T)→ D(T).

In Tartaglia’s cannonball example, is the map T : X → Y to compute flight distance
r from the angle of elevation θ injective or surjective? If X = Y = R, the real line, then
T is neither. Since sin 0 = sin π = 0, T is not one-to-one. It cannot be onto because the
range R(T) = [−v2

0/g, v2
0/g] 6= R. However, if X = [0, π/2] and Y = [0, v2

0/g], the
mapping T is surjective, but it is still not one-to-one, since two angles can give the
same range.

f.2.1 Adjoint operators

The adjoint T+ : H2 → H1 of an operator T : H1 → H2 for Hilbert spaces H1 and H2

is defined such that
〈Tx, y〉H2

=
〈

x, T+y
〉

H1
, (F.4)

for all x ∈ H1 and y ∈ H2.64 The inner products in H1 and H2 are denoted 〈◦, ◦〉H1

and 〈◦, ◦〉H2
, respectively.
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